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ABSTRACT

An increasing amount of collected data are high-dimensional multi-way arrays (tensors),
and it is crucial for e�cient learning algorithms to exploit this tensorial structure as
much as possible. The ever present curse of dimensionality for high dimensional data
and the loss of structure when vectorizing the data motivates the use of tailored low-
rank tensor classi�cation methods. In the presence of small amounts of training data,
kernel methods o�er an attractive choice as they provide the possibility for a nonlinear
decision boundary. This thesis focuses on developing low-rank decomposition based
kernel methods. One of the �rst proposed approach is the Tensor Train Multi-way
Multi-level Kernel (TT-MMK), which combines the simplicity of the Canonical Polyadic
(CP) decomposition, the classi�cation power of the Dual Structure-preserving Support
Vector Machine (SVM), and the reliability of the Tensor Train (TT) approximation. This
proposed algorithm is based-on computing a CP decomposition by avoiding the NP-hard
issue of �nding the best CP rank by computing �rst a TT decomposition and call it TT-
CP factorization. Along with the experiments it is shown that the TT-MMK method
is usually more reliable computationally, less sensitive to tuning parameters, and gives
higher prediction accuracy in the SVM classi�cation when benchmarked against other
state-of-the-art techniques. Additionally, the classi�cation model that includes low-rank
tensor decomposition as a crucial initial step reduces the computational complexity
and extracts informative features. However, what decisive features of the tensors are
exploited by these kernels is often unclear. Therefore, this work also proposes a novel
kernel that is based on the Tucker decomposition. For this kernel the Tucker factors
are computed based on re-weighting of the Tucker matrices with tuneable powers of
singular values from the Higher Order Singular Value decomposition (HOSVD). This
provides a mechanism to balance the contribution of the Tucker core and factors of
the data. The support tensor machines with this new kernel benchmark on several
datasets. First experiment is using generated synthetic data where two classes di�er
in either Tucker factors or core, and compare the novel and previously existing kernels.
This shows robustness of the new kernel with respect to both classi�cation scenarios.
Further, testing the new method on real-world datasets is also included. The proposed
kernel has demonstrated a similar test accuracy than the state-of-the-art TT-MMK,
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and a signi�cantly lower computational time. Finally, this thesis de�nes a regularized
form of Support Tensor Machine (STM) as a classi�cation machine learning model. The
algorithm builds a full Gradient Descent Primal (GDP) optimization problem that takes
initialized variables from the partial GDP model, which is a standard STM, optimized
with TT-CP low-rank approximation. The full GDP is a tensor decomposition method
tailored to the classi�cation di�culty and a classi�cation method that exploits the low-
rank model of the data. The proposed optimization regime and the relationship between
primal-dual for TT-CP decomposition has been theoretically proven. This proposed
work shows some numerical challenges and detailed discussion on the further plausible
advancements.
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ZUSAMMENFASSUNG

Ein zunehmender Teil der gesammelten Daten sind hochdimensionale Mehrweg-Arrays
(Tensoren), und es ist für e�ziente Lernalgorithmen entscheidend, diese Tensorstruk-
tur so weit wie möglich auszunutzen. Der allgegenwärtige Fluch der Dimensional-
ität für hochdimensionale Daten und der Strukturverlust bei der Vektorisierung der
Daten motiviert den Einsatz maÿgeschneiderter Tensor-Klassi�zierungsverfahren mit
niedrigem Rang. Bei kleinen Mengen von Trainingsdaten sind Kernel-Methoden eine
attraktive Wahl, da sie die Möglichkeit für eine nichtlineare Entscheidungsgrenze bi-
eten. Diese Arbeit konzentriert sich auf die Entwicklung von Kernel-Methoden, die auf
Low-Rank-Zerlegung basieren. Einer der ersten vorgeschlagenen Ansätze ist der Tensor
Train Multi-way Multi-level Kernel (TT-MMK), der die Einfachheit der kanonischen
polyadischen Dekomposition, die Klassi�zierungsleistung der Dual Structure-preserving
Support Vector Machine und die Zuverlässigkeit der Tensor Train (TT) Approximation
kombiniert. Der vorgeschlagene Algorithmus basiert auf der Berechnung einer kanonis-
chen polyadischen (CP) Zerlegung, indem er das NP-schwere Problem, den besten CP-
Rang zu �nden, vermeidet, indem er zuerst eine Tensor-Train (TT)-Zerlegung berech-
net und ihn TT-CP-Faktorisierung nennt. Zusammen mit den Experimenten wird
gezeigt, dass die TT-MMK-Methode in der Regel rechnerisch zuverlässiger ist, weniger
emp�ndlich auf Tuning-Parameter reagiert und eine höhere Vorhersagegenauigkeit bei
der SVM-Klassi�zierung bietet, wenn sie mit anderen modernen Techniken verglichen
wird. Darüber hinaus reduziert das Klassi�zierungsmodell, das die Tensorzerlegung mit
niedrigem Rang als entscheidenden ersten Schritt beinhaltet, die Rechenkomplexität
und extrahiert informative Merkmale. Es ist jedoch oft unklar, welche entscheidenden
Merkmale der Tensoren von diesen Kerneln genutzt werden. Daher wird in dieser Ar-
beit auch ein neuartiger Kernel vorgeschlagen, der auf der Tucker-Zerlegung basiert.
Für diesen Kernel werden die Tucker-Faktoren auf der Grundlage einer Neugewichtung
der Tucker-Matrizen mit einstellbaren Potenzen der Singulärwerte aus der HOSVD-
Zerlegung berechnet. Dies bietet einen Mechanismus, um den Beitrag des Tucker-
Kerns und der Faktoren der Daten auszugleichen. Die Support-Tensor-Maschinen mit
diesem neuen Kernel werden an verschiedenen Datensätzen getestet. Das erste Ex-
periment verwendet synthetische Daten, bei denen sich zwei Klassen entweder in den
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Tucker-Faktoren oder im Kern unterscheiden, und vergleicht den neuen mit den bereits
vorhandenen Kerneln. Dies zeigt die Robustheit des neuen Kernels in Bezug auf beide
Klassi�zierungsszenarien. Weitere Tests der neuen Methode auf realen Datensätzen
sind ebenfalls enthalten. Der vorgeschlagene Kernel hat eine ähnliche Testgenauigkeit
wie der Stand der Technik und eine deutlich geringere Rechenzeit gezeigt. Schlieÿlich
wird in dieser Arbeit eine regularisierte Form der Support Tensor Machine (STM) als
maschinelles Klassi�kationslernmodell de�niert. Der Algorithmus erstellt ein vollständi-
ges Gradient Descent Primal (GDP)-Optimierungsproblem, das initialisierte Variablen
aus dem partiellen GDP-Modell übernimmt, das eine Standard-STM ist und mit TT-
CP-Niedrigrang-Approximation optimiert wurde. Das vollständige BIP ist eine auf
das Klassi�zierungsproblem zugeschnittene Tensor-Zerlegungsmethode und eine Klas-
si�zierungsmethode, die das Low-Rank-Modell der Daten ausnutzt. Das vorgeschlagene
Optimierungsregime und die Beziehung zwischen primär-dual für die TTCP-Zerlegung
wurden theoretisch nachgewiesen. Die vorgeschlagene Arbeit zeigt einige numerische
Herausforderungen und eine detaillierte Diskussion weiterer plausibler Weiterentwick-
lung.
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LIBRARIES

Following mentioned libraries and toolboxes are used for the work proposed in this thesis.

Remark:
Mostly, the implementations are done on the Max Planck Institute's server (Mechthild)
in a virtual environment.

� Tensor Toolbox: Computation of low-rank aproximations and working with N-way
array or tensors includes use of Tensor Toolbox for MATLAB by Brett W. Bader,
Tamara G. Kolda and others.

� TT Toolbox: This toolbox is available in both languages MATLAB and Python�
which is useful to directly apply TT decomposition for particular given problem.
This was developed by Sergey Dolgov and Ivan Oseledets.

� LIBSVM: This MATLAB based library works for Support Vector Machine and
related models. This was developed by Chih-Chung Chang and Chih-Jen Lin.

� Tensor�ow: This is a software library for high performance numerical computation
and based on machine learning approach with Python script. Tensorboard is
used for visualizing neural networks. Tensor�ow uses models from Scikit-learn,
Keras, generation of plots with Matplotlib, data frame work Pandas, and scienti�c
computation Numpy.

� t3f : This is a software library implementation of tensor train decomposition and
related functions on top of tensor�ow. Parallel processing capabilities are built in
and taken care in the backend by tensor�ow.

� NARX : This is a MATLAB toolbox for nonlinear model identi�cation basics. One
more evolved version of this is NARMAX [7, 33].
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1.1 The Synopsis and Signi�cance of A Journey

Towards Con�ation

Psychological curiosity seeks to comprehend complex human behaviour by exploring
the human mind, while neuroscientists attempt to uncover similar insights by studying
the intricate human brain using a more practical data-based approach. In both cases,
computer scientists/ mathematicians strive to develop tools that can analyse data ob-
tained from case studies in psychology or experiments in neuroscience. Through these
e�orts, the main aim remains to understand how the brain engages in activities such as
processing, analysing, and transforming information. The brain's neurodynamics thus
form a natural foundation for learning how information is stored and processed. In the
1960s, while working at Cornell University, psychologist Rosenblatt made a connection
the between brain's neurons and Perceptrons, which are simple machines that can sim-
ulate neurons. The correlation is straightforward (Algorithm 1.1): the inputs that the
brain receives are like instructions, the prioritization of which instructions to execute is
assigned weights (w), executing instructions is accomplished through linear functions,
and avoiding over/underdoing is achieved through a threshold. Perceptrons are geno-
typic models with a memory mechanism that enables them to learn responses to various
stimuli in experiments. Initially, Rosenblatt and his team employed the Mark I Percep-
tron to classify images. However, complications arise when dealing with more complex
situations, such as noise in data or other external factors. Just as the human brain
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Chapter 1. Introduction

Algorithm 1.1: Perceptron Learning Algorithm.

P : positive label input
Q : negative label input
Initialize w randomly
while convergence do
Pick random x P P YQ
if x P P and wTx   0 then
w � w � x

end if
if x P Q and wTx ¥ 0 then
w � w � x

end if
end while

struggles to cope with uncertain and complex situations, it is challenging to construct a
machine's brain that can handle such circumstances.

Arti�cial Intelligence

In the 1960s, the �eld of arti�cial intelligence (AI) emerged to develop e�cient computer
models that could contain the intelligence of an arti�cially built brain learning a model
capable of recognizing complex patterns with less memory storage. One such model is
the Mark I Perceptron [148]. This was considered a far better arti�cially built brain
model than the available computer. Rosenblatt's approach was based on the construc-
tion of decision rules associated with the �nding of linear hyperplanes in a space (see
Algorithm 1.1). However, Minsky and Papert's book, Perceptrons: An Introduction to
computational Geometry [118], pointed out that the Perceptron has severe shortcomings
with complex pattern recognition tasks, speci�cally, that it is unable to classify non-
linear patterns. Its classi�catory capacities are limited to linearly separable patterns,
and that it has wider limitations of having a single-layer network. As a result, a mathe-
matical framework for the Perceptron was needed for better scienti�c explanation of the
feasibility of a task and also for a generalized understanding of the Perceptron. Before
long, the much-needed early successes of the multi-layer perceptron back-propagation
swung back the pendulum towards machine learning. Afterward, more complicated
systems could be carried over from the perceptron. In this way, the perceptron be-
came a theoretical archetype of machine learning today. However, Minsky and Papert's
book was often interpreted as implying that, even with multi-layered perceptrons back-
propagation [153, 151, 104, 135], the problem beyond linear separability could not be
solved.
In 1995, Corinna Cortes and Vladimir Vapnik [47] presented a supervised learning
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model, �Support Vector Network,� which conceptually implemented the idea of a non-
linear embedding of the input vectors to a high-dimensional feature space. In this feature
space, a linear decision surface is constructed. The special properties of the decision
surface ensure the high generalization ability of the learning machine. This provided a
benchmark to go beyond linear separability that wasn't possible before. It is noteworthy
that VM is a learning system that can answer two important questions about learning
machines. The �rst question is whether a learning machine can accurately represent
the intended information. The second question is whether the learning algorithm can
get closer to the desired information as it learns from more examples. For instance,
a Support Vector Network that employs a universal kernel can not only represent any
predicate with arbitrary precision but also approach it with increasing accuracy as the
number of training examples grows. This guarantees an exceptional level of performance,
exceeding that of the heuristic speci�cation approach.
Machine learning has made great progress in practical applications, but our under-

standing of its underlying theory is still limited. However, computers are excellent at
tasks that have clear mathematical instructions because programming is essentially a
mathematical exercise. Unfortunately, many important tasks, like recognizing visual
patterns, don't have clear mathematical instructions.
There are two common ways to deal with this problem. One is to come up with

approximate instructions based on rules of thumb, which is called heuristic construction.
The other approach is to use a large set of training images and let a learning machine
�gure out the appropriate instructions. This second approach has been successful in
cases where we have access to large datasets of images and have the computational
power, such as with GPU computing, to process such large datasets. Even though the
theoretical understanding behind learning machines is lacking, they have still achieved
practical successes in various domains.

Neuroimaging

Functional magnetic resonance imaging (fMRI) [57, 124, 141] is a powerful tool used in
various �elds, including neuroscience, psychology, and medical diagnosis. These fMRI
datasets are four-dimensional, comprising space and time, and contain voxels (3D pixels).
Recently, there has been growing interest in using fMRI images to develop arti�cial
intelligence (AI) models [184, 158]. One potential application of fMRI images in AI
development is to train models to recognize patterns in brain activity that correspond to
speci�c mental states or behaviours [160]. Another potential application is to use fMRI
images to improve speech recognition algorithms by analysing brain activity during
speech production and perception [175]. However, the collection of such data that is
easily accessible, simple, or inexpensive may not be possible due to data protection laws,
higher cost, and lack of resources. This is one major issue that has been overlooked by
the machine learning community. One particular problem that is of great interest is the
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development of a model that can distinguish between healthy individuals and those with
a speci�c disease based on resting-state functional magnetic resonance images. This is
essentially a binary classi�cation problem, but the challenge lies in the small sample size
of the dataset.
Moreover, neural network-based techniques often attempt to learn patterns through

least square curve-�tting issues, which can easily overlook rare information in medical
data that could be crucial for detecting diseases. For instance, there exist NN-based
models that correctly predicted the occurrence of cancer in a patient, not based on the
tumour in the brain, but rather on some nearby information in the data [88]. This is a
glaring �aw in terms of medical research.
Consequently, to analyse the complex and multidimensional data generated by fMRI

scans, numerical multilinear algebra is used. This involves decomposing the data into
simpler components to better understand the underlying patterns and structures in brain
activity. This can lead to new insights into brain function and the development of more
advanced AI algorithms. However, using fMRI images for DL/ML development comes
with challenges, such as the need for large datasets and the di�culty of interpreting
complex patterns of brain activity. Overall, the combination of fMRI images and nu-
merical multilinear algebra has the potential to advance our understanding of the brain
and develop more advanced AI algorithms [4, 5].

Numerical Multi-linear Algebra

As technology continues to advance, it has become increasingly clear that data is one of
the most valuable resources for the future. In light of this, the big data paradigm has
given rise to a pressing need for multidimensional machine learning techniques that pro-
vide tools for modelling and analysing complex data structures with multiple dimensions.
Numerical multilinear algebra is a branch of linear algebra that deals with higher-order
tensors, which are generalizations of matrices and vectors. The classical NLMA has
been enthusiastically embraced by the machine learning community as a powerful tool
for addressing big data issues [191, 26, 4, 207, 43, 5].
Meanwhile, in the mathematical community, researchers have been grappling with

the challenges posed by multidimensional data. Thus, the concept of tensor (multi-
dimensional arrays) decomposition was born [76, 75]. As the curse of dimensionality
is a well-known problem in this �eld, researchers have found more e�ective ways of
representing tensorial data [52, 99, 201, 134, 86]. This has led to a renewed interest in
classical numerical linear algebra approaches and the generalization of low-rank methods
for matricizing tensorial data. However, this process can be laborious and requires a sig-
ni�cant amount of storage memory and high computational complexity. Moreover, the
conversion into matrix or vector format may not preserve the underlying structure of the
tensorial data. As a result, there has been a growing need for the direct implementation
of tensor-based approaches.
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Moving Beyond Linearity and Vectorization

Small Sample Size

Multidimensional DataTheoretical Advancements

Figure 1.1: Main Focus of Thesis.

Hence, researchers across various �elds, such as mathematics, physics, quantum chem-
istry, and chemometry, have tackled these concerns independently. In the late twentieth
century, the �rst tensor decomposition was introduced by two di�erent groups [28, 68].
Since then, many more e�cient tensor decomposition formats have been introduced to
solve scienti�c issues. Some of these well-known low-rank formats are highly stable,
easily tunable to speci�c problems, and require approximately linear storage in terms of
data dimension. These are some of the qualities that make low-rank tensor formats an
attractive choice to explore further.

Moving Beyond Linearity and Vectorization (Signi�cance of
con�ation)

Theoretical and algorithmic advancements in terms of the explainability or interpretabil-
ity of AI models are crucial in several �elds, especially in situations where the conse-
quences of a model's predictions can have a signi�cant impact on people's lives, such
as healthcare, �nance, and criminal justice. Improved algorithms can help address in-
creasingly complex issues and unlock AI's full potential for new innovations. Therefore,
the need for robust and more interpretable models is at its peak to evolve and meet the
ethics of AI while considering its impact on society. The presented research work aims
to promote tiny discoveries and build new classi�cation ML models, acting as a catalyst
for building the theoretical foundation of n dimensional (nD)-ML models. As shown in
Figure 1.1, the main contribution breaks down into three main categories. Firstly, the
model goes beyond linearity to non-linear machine learning that can be more accurate
than linear methods in certain scenarios, such as highly non-linear data or complex inter-
actions between features. Secondly, to incorporate multidimensionality, moving beyond
vectorization provides a solution to the issue of lost structural information. Addition-
ally, the curse of dimensionality is addressed with the important techniques of numerical
multilinear algebra in machine learning based on tensor decompositions for extracting
useful information from high-dimensional data. Tensor decomposition involves break-
ing down a tensor into a sum of simpler tensors, which can reveal hidden structure or
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patterns in the data. The tools borrowed from the NLMA community help combine
and analyse data from di�erent views by enabling the development of more accurate
and robust models. Models that rely on such techniques have applications in �elds such
as image processing [122, 190, 187, 159, 95], signal processing [165, 168, 173, 41], and
several other �elds [40, 42, 37, 4, 21]. Beyond building nonlinear tensor-based models,
the pinnacle of the presented research is to build well-explained, state-of-the-art, robust,
and computationally cheap models.

1.2 Outline of This Thesis

The thesis has been divided into three main parts: an introduction to the topic in the
�rst part, contributed work in the second part, and a conclusion of the research in the
third and �nal part. The main goal of this monograph is to combine research projects
on low-rank tensor decompositions in kernel-based methods.
Chapter 2 in the �rst part of the monograph introduces classical machine learning

classi�cation models, with a focus on the maximum margin model, also known as �Sup-
port Vector Machine (SVM).� This chapter provides a detailed description of the SVM
model for linear and non-linear boundary value problems, along with some terminolo-
gies and de�nitions that are commonly used in the machine learning community. In
Chapter 3, the vector-based classi�cation model is elaborated to a tensor-based model.
As the multidimensional (tensor) based model has a long research literature, Chapter 3
covers a short review of the state-of-the-art models of the respective period that hinge
on di�erent low-rank tensor factorizations. Hence, the chronicle of the developed tensor
method and corresponding algorithms are well-explained.
The contributed work is distributed among three chapters. Chapter 4 discusses the

development of a new low-rank tensor decomposition algorithm that optimizes the non-
linear boundary classi�cation SVM model. The work presented in this chapter was
originally published in the �Journal of Machine Learning Research [98].� Chapter 5 is
available on arXiv and is currently in the �nal stage of preparation [97]. The primary
task was the development of another new low-rank tensor decomposition algorithm along
with a new function to de�ne non-linearity among tensor data. Chapter 6 is an auxiliary
chapter and has not been published or submitted anywhere. The work done in this
chapter is an extension of Chapter 4. This chapter highlights certain theoretical aspects
of the non-convex, non-linear regularized SVM model for tensor input data.
The last part of this thesis includes Chapter 7. The �7.1 is a conclusive part of the

thesis that demonstrates the strengths, weaknesses, and an analysed overview of the
proposed contributed work. Meanwhile, �7.2 is designed to leave readers intrigued by
compelling them to ponder upon plausible open questions and their interconnection with
other �elds, as well as applications.
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2.1 Mathematical Introduction to Supervised

Learning Models

Linear regression [70], the earliest form of what is now known as regression analysis,
was developed using the method of the least squares in the 19th century. In the 1940s,
logistic regression was introduced as an alternative approach. The term �generalized
linear model� was coined in the early 1970s to describe a class of statistical learning
methods that included both linear and logistic regression [48]. However, these methods
were primarily linear, as �tting non-linear relationships was computationally challenging
at the time. By the 1980s, advancements in computing technology made non-linear
methods more accessible [82]. This led to the development of classi�cation and regression
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trees, generalized additive models, and neural networks [116, 59]. In the 1990s, support
vector machines emerged as a popular non-linear method.

The idea of building these mentioned linear and nonlinear model throughout history
was to �nd an interpolation of input data points corresponding to output data points.
Suppose input data is X � tx1,x2, . . . ,xNu, xi P Rm and response is Y then general
formulation of interpolation function would be written as,

Y � fpX q � ϵ,

where f is some unknown function and ϵ is an error term. In all the cases, those models
approximate the target variable Y by a weighted linear combination of input variables,
wTx � b, where w P Rm. For developing the model, we would need to estimate the
function f by a function f̂ which is a prediction function at a set of predictors X such
that Y � f̂pX q for any observation pX ,Yq. For minimizing the error or �nding the best
estimation f̂ , we need to measure the quality of the �t via calculation mean square error
(MSE), given by,

MSE �
1

N

Ņ

i�1

pyi � f̂pxiqq
2, (2.1)

the MSE represents the training error, this means it observe the �t for a seen dataset
that is used during the training of model. While, we are interested in the accuracy of
the predictions of our method to previously unseen test data. Therefore, the training
MSE is not a good metric to build a generalized model. Mathematically, we want an
estimated function f̂ such that f̂pxi0q � yi0, where pxi0, yi0q are previously unseen data
point. This implies that we want to minimize the test MSE, given by,

test MSE �
1

Ns

Nş

i�1

pyi0 � f̂pxi0qq
2, Ns Ñ number of test data (2.2)

since the training MSE and the test MSE appear to be closely related. Unfortunately,
there is a fundamental problem with this strategy: there is no guarantee that the method
with the lowest training MSE will also have the lowest test MSE. As the �exibility of the
supervised learning method increases, there is a monotone decrease in the training MSE
and a U-shape in the test MSE [70, 80]. This is a fundamental property of statistical
learning that holds regardless of the particular data set at hand and regardless of the
supervised model being used.
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Over�tting [80]: Increasing model �exibility reduces training MSE, but it may not
improve test MSE. Over�tting occurs when a method produces a small training MSE
but a large test MSE because it has found patterns in the training data that do not
exist in the test data. Over�tting happens when a more �exible model results in a
larger test MSE than a less �exible model would have.
Under�tting [80]: It occurs when a model is not �exible enough to capture the
underlying patterns in the data. This can result in both high training and high test
errors. In other words, the model is too simple to capture the complexity of the data,
and as a result, it performs poorly on both the training and test data.

In practice, one can usually compute the training MSE with relative ease, but estimat-
ing test MSE is considerably more di�cult because usually no test data are available.
One important method to estimate this minimum is cross-validation (�2.4.1), which is
a cross-validation method for estimating test MSE using the training data.

Classi�cation Model

The above-mentioned concepts for regression setting are directly encountered in clas-
si�cation setting with only some changes due to the fact that Y R R any more rather
y P t�1, 1uN for the given predictors X � tx1,x2, . . . ,xNu, X P RN,m with N training
measurements. The response variable in case of classi�cation is qualitative, that are
often referred to as categorical. Further we discuss a special approach for predicting
qualitative responses, a process that is known as classi�cation. Classi�cation problems,
both binary and multiclass, are encountered in numerous applications in daily life and
scienti�c research. These applications include healthcare (disease diagnosis), marketing,
retail, image and speech recognition, sentiment analysis, natural language processing
(document classi�cation), and more. Thus, the signi�cance of classi�cation models can-
not be underestimated in these �elds. The distribution of classi�cation models is shown
in Figure 2.1.

Machine Learning

Supervised Learning

Unsupervised Learning

Linear Classi�cation (�2.2)

Non-linear Classi�cation (�2.3)

Figure 2.1: Machine Learning type distribution.
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2.2 Linear Classi�cation

Early machine learning models were based on linear classi�cation of data. This means,
the data is linearly separable by a hyperplane that needs to be optimized (see Fig-
ure 2.2). As explained in introductory Chapter 1, the Perceptron was a �rst linear
classi�cation model. This section focuses mainly on one of the most popular methods
that are for classifying data points Support Vector Machines (SVM) [185, 186]. These
are based on margin maximization and the computation of the corresponding weights
via an optimization framework, typically the SMO algorithm [140].

2.2.1 Support Vector Machine

For constructing Support Vector Machine (SVM) for linear classi�cation model a training
data set tpxi, yiqu

N
i�1 P pX ,Yq, with input data xi P Rm with yi � fpxiq, @i P xNy is

used. A hypothesesH, a binary classi�er like SVMs, arranges now every new observation
into the target space Y . For SVM there can be many such hypotheses the ones with a
small complexity are favoured. A linear classi�er has hypotheses with small complexity,
which can be de�ned as follows:

H � tx ÞÑ signpwTx� bq : w P Rm, b P Ru.

The SVM hypothesis H could be de�ned as follows,

fpxq �

#
wTxi � b ¡ 0, y � 1

wTxi � b   0, y � �1

The goal here is to �nd an optimization regime for above-mentioned hypothesis and for
�nding optimized hyperparameters w and b.

Separable and non-separable case

In the separable case, the training sample set X can be separated perfectly by a linear
hyperplane into positively and negatively labelled points. Generally, it is not possible to
clearly separate the training data set pX ,Yq. That means it is possible that there are
points which are located between the marginal hyperplanes or on the wrong side of the
hyperplane. Then there exists xi P S such that

yipw
Txi � bq ¥ 1.

Therefore the slack variables ξi exists to get a relaxed version where points lying in the
margin or on the wrong side are allowed. In this relaxed version, for each i P xNy, there
exist ξi ¥ 0 such that

yipw
Txi � bq ¥ 1� ξi.

10



2.2 Linear Classi�cation

If a point is classi�ed incorrectly or correctly but with a margin less than 1 it has a slack
variable ξi ¡ 0. This point is de�ned as an outlier. It is now desired to reduce the sum

of the slack variables
N°
i�1

ξi, or, more generally
N°
i�1

ξki for some k ¥ 1. A more detailed

description is given in [70].

Remark 2.1:
According to the statistical learning theory [186], SVM-based learning performs well
when the number of training measurements is larger than the complexity of the model.
Moreover, the complexity of the model and the number of parameters to describe the
model are always in a direct proportion. ♢

In other words, having more data to train on can lead to better results, especially
when dealing with more complex models. The complexity of a machine learning model,
such as an SVM, is directly related to the number of parameters required to describe
the model. In essence, as the model becomes more complex, it tends to have more
parameters that need to be adjusted during the learning process.

2.2.2 Primal-dual Relationship

This subsection focuses on �nding the smallest complexity SVM's hypotheses. To de�ne
an optimization problem for SVM we need to maximize the margin ρ � 1

∥w∥ that means

minimize the distance ∥w∥ or 1
2
∥w∥2. The SVMs non-separable [70] case not only

includes the maximizing margin but also needs a trade-o� parameter C ¥ 0 with slack
variable to keep an account of non-separable data points. These parameters manage
to retain a trade-o� between maximizing the margin and minimizing the sum of slack
variables. The problem formulation is the following optimization problem,

min
w,b,ξ

1

2
∥w∥2 � C

Ņ

i�1

ξki (2.3)

subject to yipw
Txi � bq ¥ 1� ξi ^ ξi ¥ 0, i P xNy.

The tendency of this primal optimization problem is having a unique solution. The con-
cern is to �nd the best learning algorithm or an optimization method. The optimization
problem is convex since the constraints are a�ne and the objective function is convex for
any k ¥ 1. The norm ∥�∥k is convex so that the objective function ξ ÞÑ

°N
i�1 ξ

k
i � ∥ξ∥kk

is also convex. The choice of k leads to more or fewer penalizations of the slack terms.
For k � 1 (Hinge loss) or k � 2 (quadratic loss) we get the most straightforward so-
lution. Here we consider k � 1 for the following analysis. Considering a quadratic
objective function and a�ne constraints, a quadratic programming (QP) optimization
problem is achieved. As long as, concerns are related to such convex QP, there are a

11



Chapter 2. Mathematical Foundations of Supervised Machine Learning

lot of solvers [199, 63, 120, 55], but the computational cost is high. As for the dual
optimization, there exist optimization procedures that are speeding up the training of
the SVM because the dual optimization problem is not depending on ξi and therefore
also not depending on the Lagrange variables µi ¥ 0, i P xNy. The Lagrangian can then
be de�ned for all w P Rm, b P R, and α P RN

� , by

LP pw, b, ξ,α,µq �
1

2
∥w∥2 � C

Ņ

i�1

ξi �
Ņ

i�1

αiryipw
Txi � bq � 1� ξis �

Ņ

i�1

µiξi.

The optimal solution needs to satisfy the KKT conditions:

1. Primal Feasibility:

p1� ξi � yipw
Txi � bqq ¤ 0 (2.4)

�ξi ¤ 0 ùñ ξi ¥ 0 (2.5)

2. Dual feasibility:

αi ¥ 0, µi ¥ 0 (2.6)

3. Complementary slackness:

@i,αip1� ξi � yipw
Txi � bqq � 0 ùñ αi � 0_ yipw

Txi � bq � 1� ξi (2.7)

@i, µiξi � 0 ùñ µi � 0_ ξi � 0. (2.8)

4. Gradient:

∇wL � w �
Ņ

i�1

αiyixi � 0 ùñ w �
Ņ

i�1

αiyixi (2.9)

∇bL � �
m̧

i�1

αiyi � 0 ùñ
Ņ

i�1

αiyi � 0 (2.10)

∇ξiL � C �αi � µi � 0 ùñ αi � µi � C (2.11)

From these KKT conditions the following dual form of Lagrangian is obtained, where b
is bias, α are the dual optimization parameter, both α and b depends on support vectors.
The support vectors are the points that lies on the marginal hyperplanes. Consequently,
the maximum-margin hyperplane is de�ned by the support vectors. We get the objective
function:

LD � min
α

Ņ

i�1

αi�
1

2

Ņ

i�1

αiαjyiyjpx
T
i xjq

subject to (Linear Constraints): 0 ¤ αi ¤ C ^
Ņ

i�1

αiyi � 0. (2.12)

12



2.3 Nonlinear Classi�cation

Note that (2.12) is a quadratic function ofα, therefore this optimization is a QP problem.
The so far best known algorithm is Sequential minimal optimization (SMO, used as
optimization method in LIBSVM1; mentioned in �4.3) method [140]. This optimization
algorithm speeds up the training of SVM. The bene�t of this algorithm is that it uses
several small optimizations with only two Lagrange multipliers instead of carrying out
one large optimization. This α can be used to determine the hypothesis or decision
function for a point x via:

fpxq � signpwTx� bq � sign

�� Ņ

i�1

αiyixi
Txi �

Ņ

i�1

�
yi �

Ņ

j�1

αjyjxi
Txj

	�
 (2.13)

The training of linear SVMs is straight forward and simple. However, the training data
is not usually linearly separable. If that is the case we can try to �nd a linear hyperplane
in a higher dimension. This process is mentioned in the next section.

Figure 2.2: Non-linear(kernel) and linear SVM.

2.3 Nonlinear Classi�cation

For nonlinear classi�cation (see Figure 2.2), the data get transformed by a nonlinear
function Φpxq into a Feature space with higher dimensionality.

Similar to linear classi�cation case the nonlinear SVM classi�er [70, 80] for non-
separable with hinge loss (k � 1) case can be given as follows,

min
w,b,ξ

1

2
∥w∥2 � C

Ņ

i�1

ξi

subject to yipxw,Φpxiqy � bq ¥ 1� ξi, ξi ¥ 0, @i (2.14)

1https://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Chapter 2. Mathematical Foundations of Supervised Machine Learning

and the Lagrangian becomes,

LP pw, b,α, µq �
∥w∥2

2
� C

Ņ

i�1

ξi �
Ņ

i�1

αip1� ξi � yipxw,Φpxiqy � bqq �
Ņ

i�1

µiξi. (2.15)

The KKT conditions would immediately work as linear case and the above-mentioned
parameters w and b are computed accordingly,

weight: w �
Ņ

i�1

αiyiΦpxiq (2.16)

bias: b �
Ņ

i�1

yi �wTΦpxiq

�
Ņ

i�1

�
yi � x

Ņ

j�1

αjyjΦpxjq,Φpxiqy
	

(2.17)

If we take w from the primal form w �
°N

i�1αiyiΦpxiq and put this into above equation
along with other constraint, then we end up with the dual formulation and corresponding
relation between weight parameters and data can be given in the following way,

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i�1

Ņ

j�1

αiαjyiyjxΦpxiq,Φpxjqy

subject to 0 ¤ αi ¤ C ^
Ņ

i�1

αiyi � 0, (2.18)

or the well known form of the nonlinear binary classi�cation given by,

min
α

1

2
αTQα� eTα

subject to 0 ¤ αi ¤ C, i � 1, . . . , N ^
Ņ

i�1

αiyi � 0 (2.19)

where Qij � yiyjΦpxiq
TΦpxjq, e � r1, 1, � � � , 1sT and w �

°N
i�1αiyiΦpxiq. With this the

decision boundary is as follows:

xw,xy � b (linearity)Ñ xw,Φpxqy � b pnonlinearityq

fpxq �
Ņ

i�1

αiyiΦpxiq
TΦpxq � b, (2.20)
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2.3 Nonlinear Classi�cation

where a tuning function Φ de�nes the nonlinear decision boundary with Φ: xi Ñ Φ pxiq.
In practice, explicitly knowing the right Φ function is not obvious. Also, the computation
of xΦ pxiq ,Φ

�
xj

�
y is expensive when it is mentioned explicitly. Therefore, �nding an

implicit way to this issue is required. Typically, it is done by using the so-called Kernel
Trick [155, 154].

Remark 2.2:
The given constraint in Lemma 2.11 for input training data xi � xj, @i � j can easily
be ful�lled for any classi�cation problem, just by adding a small perturbations to each
data point. ♢

2.3.1 Reproducing Kernel Hilbert Spaces

Some important de�nitions and theorems are presented here to understand kernel trick [155,
154]. The mathematical setting for it to hold

De�nition 2.3:
A Hilbert space (H) is a complete inner product space. ♢

De�nition 2.4:
A functional f over H is Linear functional such that Lx : H Ñ R with Lxpfq �
fpxq, @f P H ♢

Theorem 2.5 (Riesz Representation Theorem [11, 150]):
In a Hilbert space H, all bounded linear functionals are of the form x�, fyH for some
f P H. This means f on H represents as, fpxq � xx, zy, where f is uniquely de�ned
with ∥f∥ � ∥z∥. ♢

De�nition 2.6:
[8, 27] k : X � X Ñ R is a kernel if

(a) symmetry: kpx, yq � kpy, xq

(b) positive semi-de�nite Kij � kpxi, xjq, @i, j P xmy, & xi, xj P X , where @a P RI

Gram Matrix K, s.t. a
1
Ka ¥ 0 ♢

In order to compute xΦpxiq,Φpxjqy we are trying to learn it explicitly. This is done
by using the following de�nition of Reproducing Kernels.

De�nition 2.7 (Reproducing Kernel):
[8] Let

�
H, x�, �y

�
be a Hilbert space of real valued functions Φ on some set X . A function

k : X � X Ñ R is said to be a Reproducing Kernel of H i� :
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Chapter 2. Mathematical Foundations of Supervised Machine Learning

(a) k p�, xq P H, @x P X

(b)
@
k p�, xq ,Φ

D
� Φ pxq , @x1, x2, . . . , xN P X , @Φ P H.

By using reproducing kernel, a Hilbert space can be de�ned on such kernels.

De�nition 2.8:
A Reproducing Kernel Hilbert Space (RKHS) [16]

�
H, x�, �y , k

�
, is a Hilbert space H of

functions
�
H, x�, �y

�
that possesses a reproducing kernel k. ♢

One of the most important theorem that have been used for solving a nonlinear sta-
tistical models [70] is as follows,

Theorem 2.9 (Mercer's Theorem [81, 51, 27]):
Consider k is a continuous positive semi-de�nite kernel on a compact set X , and Tk : L2pX q Ñ
L2pX q

pTkfqp�q �

»
X
kp�, xqfpxqdx

is positive semi-de�nite integral operator, this means, @f P L2pX q,»
X
kps, tqfpsqfptqdsdt ¥ 0.

Then there exists an orthonormal basis tϕiu of L2pX q space that consist of eigenfunctions
of Tk such that the corresponding eigenvalues λi are non-negative. Also, the eigenfunc-
tions that correspond to non-zero eigenvalues are continuous in X and the kernel kps, tq
is

kps, tq �
i�1̧

8
λiϕipsqϕiptq

for which the convergence is absolute and uniform, that is,

lim
mÑ8

sup
s,t

|kps, tq �
i�1̧

m

λiϕipsqϕiptq| � 0.

Theorem 2.10 (Moore-Aronszajn Theorem [172]):
If k : X � X Ñ R is positive de�nite then there is a unique RKHS H � RX with
reproducing kernel k. ♢

Figure 2.3 clarify connections among above mentioned de�nitions, that helps to further
elaborate the connection between nonlinear function Φ and a reproducing kernel [8].

16



2.3 Nonlinear Classi�cation

Reproducing Kernel Positive de�nite functions

Hilbert space with bounded linear functional

Figure 2.3: Creation of reproducing kernel in Hilbert space

2.3.2 Feature Map and Kernel Trick

Hence, there exists a well-de�ned function Φ: Rm Ñ F such that Φpxq � kx (reproducing
kernel), k : Rm � Rm Ñ R,

ki,j � k
�
xi,xj

�
� xΦpxiq,ΦpxjqyF, (2.21)

the typically unknown function (Φ) is called feature map, and the feature space F is
a Hilbert Space [156]. The evaluation of the inner product between two feature vectors
is carried out in (2.21), is known as the kernel trick, that not only is computationally
tractable but also avoids the function Φ. The kernel matrix (K �

�
kpxi,xjq

�
ij
P Rm�m)

that results from the continued evaluation of the kernel function on the set of data
points is then positive semi-de�nite. It is used to get a linear learning algorithm to learn
a nonlinear boundary, without explicitly knowing the nonlinear function Φ. The only
task needed for the SVM is thus to choose a legitimate kernel function. That is how we
work with the input data in the high-dimensional space while doing all the computation
in the dual low dimensional space. Figure 2.4 illustrates the linear separation in a higher
dimensional space. The inner product is computed using kernel function.

This is called the kernel trick. Some of the most popular reproducing kernels are the
Fisher Kernel, Radial Basis Function Kernel (RBF), and Polynomial Kernel. The Fisher
Kernel analyses and measures the similarity of two objects while the values of the RBF
Kernel only depend on the distance from the center. The Polynomial Kernel uses the
polynomials of the original variables to embody the similarity of vectors in the higher
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kpx, yq

paq pbq

Figure 2.4: Nonlinear mapping using kernel trick: paq Nonlinear classi�cation of data in
R2, pbq Linear classi�cation in higher dimension (R3).

dimension. Some of these popular choices for k are given as,

Linear : kpx,x
1

q � xx,x
1

y,

dthdegree polynomial : kpx,x
1

q � pθ � xx,x
1

yqd,

Radial Basis or Gaussian : kpx,x
1

q � exp
�
�

∥x� x
1∥2

2g2

	
,

Fisher Kernel : kpx,x
1

q � UT
xI�1Ux1 ,

Fisher score [106] Ux � ∇θlogP px|θq, I Ñ Fisher information

Inverse Multiquadratic : kpx,x
1

q �
1a

∥x� x1∥2 � c2
.

These kernels allow non-linear classi�cation for the (2.19) while computingQij � yiyjk
�
xi,xj

�
.

This way the SVM model performs well in higher dimensions. The solution of the con-
vex optimization problem (2.19) is de�ned as the global minimum so that an optimal
hyperplane is guaranteed. But �nding the right kernel can cause a high computational
cost. The dimensionality of the RKHS in Gaussian is in�nite while in polynomial it
is �nite. As by above given Moore-Aronszajn theorem, it is shown that a symmet-
ric positive de�nite kernel is associated to a unique RKHS [172]. So by exhibiting an
in�nite-dimensional RKHS corresponding to the Gaussian kernel, that is done in [172]
and similarly for polynomial kernel as well.

The nonlinear function Φpxq transform data into a Hilbert Space while preserving lin-
earity of data (that means data can be linearly separable in higher dimension) according
to Lemma 2.11. Although, dimensionality of feature space induced by Φpxq can be much
larger than original input space.
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2.3 Nonlinear Classi�cation

Lemma 2.11:
For any given pC, g2q and xi � xj, @i � j, the solution pαq of equation (2.12) is unique.
Also, for every g2, tΦpxiq|yi � 1u and tΦpxiq|yi � �1u are linearly separable. [23, 142]♢

Mercer's theorem provides conditions under which a kernel function is valid, ensuring
that the associated feature space is a Hilbert space. Therefore the mapping of Φpxq
((2.21)) into a Hilbert Space makes theorem guarantees that the SVM optimization
problem remains convex.

kpxi,xjq
FRKHS

HHyperplane

H: FÑ R
Hp�q � xf, �y � b

Φ:Rm Ñ F

x P XInput Space

f̂Optimal Hyperplane

f̂ :X Ñ R
f̂p�q � fp�q � b

y P R

Figure 2.5: Kernel trick with RKHS embedding.

For a given input dataset (XInput Space), �nding realtion between nonlinear mapping Φ
on XInput Space as depicted in Figure 2.5, is similar to computing kernel in FRKHS. This
leads to optimal hyperplane for the given output y, that lies in Hilbert space for data in
RKHS feature space.

2.3.3 Kernelised Support Vector Machine

As explained earlier, the Figure 2.5 depict the correlations mentioned in the sections
�2.3.1, and �2.3.2. which has explained the kernel trick mentioned in �2.3.2. The use of
kernel trick and computation of xΦpxq,Φpx

1
qy as kpx, x

1
q leads to a new form of the dual
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nonlinear boundary objective function (2.18), that can be rewritten as follows,

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i�1

Ņ

j�1

αiαjyiyjkpxi,xjq

subject to 0 ¤ αi ¤ C ^
Ņ

i�1

αiyi � 0, (2.22)

and the decision function can also be derived directly from (2.20) as,

fpxq �
Ņ

i�1

αiyikpxi,xq � b, (2.23)

z0

z1

...

zD

ϕpz0q

ϕpz1q

...

ϕpzDq

kpz0, xiq

kpz1, xiq

...

kpzm, xiq

1

�1

Input layer
hidden layer

hidden layer

output layer

Figure 2.6: SVM as a Neural Network.

The SVM are considered to be earlier or smaller version of present DL models. Every
neural network (NN) has a input-output structure with some hidden layers in between.
These hidden layers are some nonlinear function. Mathematically, the NN is a compo-
sition of nonlinear functions that eventually minimize the hinge loss or in some other
cases di�erent loss functions can be de�ned. Hence, as depicted in Figure 2.6, the SVM
model can be seen as a neural network. In the SVM model the hidden layer is equivalent
to computation of the kernel matrix (Gram matrix), the α parameter corresponds to
weight parameter between hidden and input layers. Therefore, SVMs are also called
Support Vector Network [47].
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2.4 Optimizing a Supervised Learning Model

SVM with 2-dimensional Input

The general SVM problem mentioned in (2.3) deals with data expressed in a vector
form, x. If, on the other hand, the collected data is 2-dimensional (Matrix) X, the
matrix-SVM is known as Support Matrix Machine (SMM). The �rst typical idea would
be to vectorize it by computing vecpXq, and then feed it to the standard SVM. However,
in some scienti�c applications, the natural expression of data comes in the form of
matrices, where the structural information could be bene�cial for classi�cation. Hence,
the intutive soft margin SMM from (2.3) [115] can be written as follows,

min
W,b,ξ

1

2
xW,Wy � C

Ņ

i�1

ξi

subject to yipxW,Xiy � bq ¥ 1� ξi, ξ ¥ 0, i P xNy, (2.24)

with xW,Wy � trpWTWq equation (2.24) becomes,

min
W,b,ξ

1

2
trpWTWq � C

Ņ

i�1

ξi

subject to yiptrpW
TXiq � bq ¥ 1� ξi, ξ ¥ 0, i P xNy (2.25)

If we observe closely, (2.25) is essentially equivalent to the standard SVM (2.3) when
de�ning w � vecpWTq, which fails to exploit the correlation between the matrix struc-
tured data, since

trpWTXiq � vecpWTqTvecpXT
i q � wTxi, (2.26)

trpWTWq � vecpWTqTvecpWTq � wTw, (2.27)

The lost of information while exploitation of correlation between data and data or
data and weights persist in multi-dimensional input data. In multidimensional input
(tensors), the standard numerical linear algebra approaches immediately do not hold.
Therefore, discovering an optimization regime of SVM and corresponding solution ideas
are fascinating challenges. This is a topic for the next section.

2.4 Optimizing a Supervised Learning Model

The optimal solution of objective function (2.19) is usually build upon some known
methods for tuning hyperparameters and choosing loss functions. This sections provides
an overview of well-known method for optimizing hyperparameters in ML, along with
some well-known loss function for classi�cation model.
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2.4.1 Cross Validation

Cross-validation (CV) [145] is a resampling method commonly used in statistical model
learning. Resampling involves drawing data from a training set X and re�tting a model
to obtain additional information. However, this approach can be computationally expen-
sive due to multiple iterations of data �tting. Nonetheless, research has made signi�cant
advancements in addressing issues such as the curse of dimensionality. CV is used to
estimate the test mean squared error (MSE) or test error in general when data is lim-
ited. This allows us to achieve a certain level of expected performance by selecting an
appropriate level of �exibility or degree of freedom. Model assessment involves evalu-
ating a model's performance, while model selection involves selecting the proper level
of �exibility for a model. In CV, we estimate the test error rate by holding out a
subset of the training observations from the �tting process and applying the statistical
learning method to these held-out observations. This process is repeated k times, with
di�erent subsets used as the validation set each time. By estimating the test error us-
ing CV, we can avoid over�tting and choose the appropriate level of �exibility for the
model. Although CV can be computationally intensive, it is a powerful technique for
model assessment and selection, applicable to various statistical learning methods such
as regression, classi�cation, and clustering [70, 80, 156].

Validation Set Approach: This is a simple method for estimating the test error
rate in statistical model learning. It involves dividing the complete sample data,
also known as input data, into two subsets: the training set and the validation or
holding-out set. The model is trained on the separated training set, and the �tted
model is used to predict the response on the validation set. The validation mean
squared error (MSE) is then considered the test error rate. This approach is widely
used in practice, but it has some limitations, such as the potential for high variability
due to the particular way in which the data is split. Other methods, such as k-fold
cross-validation, can be used to overcome these limitations and obtain a more reliable
estimate of the test error rate.

The validation set approach has a limitation in that it does not account for previously
unknown data when estimating the test error rate. This is because the same validation
set is used to estimate the error during the training procedure. The reasons for this
limitation are explained by the following points:

1. The validation estimate of the test error rate can be highly variable due to the
sensitivity of the estimated error rate to the particular way in which the data is
split between the training and validation sets. This can result in over�tting or
under�tting of the model and an unreliable estimate of the test error rate.

2. The validation approach uses a subset of observations for training, which may cause

22



2.4 Optimizing a Supervised Learning Model

the validation set error rate to overestimate the test error rate for the entire data set
due to statistical methods performing worse when trained on fewer observations.

k-fold Cross Validation

In the k-fold CV, the set of observations is divided randomly into k groups of approxi-
mately equal size. Each fold is used as a validation set once, and the remaining k � 1
folds are used for training. The method's mean squared error (MSEk) is then calcu-
lated on the held-out fold, and the process is repeated k times, with each fold used as
a validation set. Hence, the resulted k error estimation is used to get average error as
follows,

CVpkq �
1

k

ķ

i�1

MSEi, (2.28)

where CVpkq is k�fold CV estimate. The CV brings some advantages in ML models and
here are some points outlining the advantages of k-fold cross-validation,

1. E�cient use of data: k-fold CV allows us to use most of the available data for
training and testing without the need for a separate validation set. This can be
particularly useful when data is limited or expensive to collect.

2. Low bias: Because k-fold CV averages the test error over k folds, it can provide a
more accurate estimate of the true test error than a single validation set approach.
This can be particularly useful when the dataset is small or when the model has
high variance.

3. Better model selection: k-fold CV can help to choose the best model among
several alternatives. By evaluating the performance of di�erent models on the
same data, it can help to identify the model that has the lowest test error.

4. Robustness: k-fold CV is less sensitive to the partitioning of the data than
other methods such as leave-one-out CV (LOOCV). Because k-fold cross-validation
averages over k di�erent partitions, it is less likely to be a�ected by outliers or
anomalies in the data.

5. Flexibility: k-fold CV can be easily adapted to di�erent datasets and models.
The value of k can be adjusted to provide more or less emphasis on training or
testing, depending on the needs of the analysis.

Loss functions [70]: Based on how the loss functions are de�ned, such as squared loss,
absolute loss, Huber loss, exponential loss, logistic loss, hinge loss, cross entropy loss,
and multi-class hinge loss, each of these leads to the solution of di�erent problems. Cross
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Chapter 2. Mathematical Foundations of Supervised Machine Learning

entropy loss is used when the data is categorical, while logistic loss is used when building
a classi�cation model out of a real output function, and so on. The main concern when
choosing a loss function is that it is preferably smooth, robust, and sparse.
The classi�cation model are based on mainly two types of loss function. These are as

follows,

� Hinge loss/Multi class SVM Loss [149, 147]: The primary objective in clas-
si�cation is to ensure that the score assigned to the correct category surpasses the
combined scores of all incorrect categories by a certain safety margin, typically
one. This is why hinge loss is commonly employed in maximum-margin classi-
�cation tasks, particularly in SVM. Despite being non-di�erentiable, hinge loss
exhibits convexity, which facilitates its utilization with standard convex optimiza-
tion methods prevalent in the �eld of machine learning.

Hinge loss �
�
1� yifpxiq

�
� (2.29)

Huberised square Hinge loss [149] �

#
�4yifpxiq yifpxiq   �1,�
1� yifpxiq

�2
otherwise.

(2.30)

Where yi are the true labels and fpxiq predicted value from SVM objective function
at datapoint xi.

� Cross entropy loss/Negative log likelihood : Cross entropy loss meausres
a probability value between 0 and 1. It promotes con�dent predictions for the
correct class and penalizes deviations between predicted and true probabilities.
Minimizing this loss through techniques like gradient descent improves classi�ca-
tion accuracy. Regularization terms like l1 or l2 regularization are often combined
with cross entropy loss to prevent over�tting and enhance model generalization.

Cross entropy loss � �pyi logpŷiq � p1� yiq logp1� ŷiqq, (2.31)

where yi are the true labels and ŷi are the predicted labels. More detailed discussion
over loss fucntions is mentioned in [70].

2.5 Chapter Summary

The chapter starts out with a short historical background of supervised learning while ex-
plaining training-MSE and test-MSE for regression problem (�2.1) as a reference model.
The idea is broadened to classi�cation (�2.1) in next two sections for linear (�2.2) and
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nonlinear (�2.3) cases, respectively. The �2.2.1 fancy mathematical construction of objec-
tive function for optimizing classi�cation problem based on maximum-margin approach.
The �2.2.2 includes Lagrangian frame to achieve dual form, that is easy to handle for
nonlinear case as per the kernel trick mentioned in �2.3.2. From �2.1 to �2.3.2 introduce
the building a dual SVM model while the last section �2.4 talk about how to deal with
concern like bias-variance trade o� by prefacing detailed description of Cross Validation
approach, and some de�nitions relate to ML community.
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3.1 Introduction

Tensor representations are often very useful in mitigating the small sample size problem
in discriminating subspace selection, because the information about the structure of
objects is inherent in tensors and is a natural constraint which helps reduce the number
of unknown parameters in the description of a learning model. In other words, when
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Chapter 3. Low-rank Tensor Methods in Supervised Learning

the number of training measurements is limited, tensor-based learning machines are
expected to perform better than the corresponding vector-based learning machines, as
vector representations are associated with several concerns, such as loss of information
for structured data and over-�tting for high-dimensional data.

3.2 Tensor Algebra

This section introduces terminology and de�nitions used throughout the thesis. Multi-
dimensional tensor structure has much more power and is richer than linear algebra. A
tensor is a multidimensional array [95] which is a higher order generalization of vectors
and matrices. The M th-order tensor (M ¥ 3) is denoted by a calligraphic letter XP
RI1�I2�...�IM , its entries by xi1i2...iM , a matrix by a boldface upper case letter XP RI�J ,
and a vector by a boldface lower case letter x P RI . Matrix and vector elements are
denoted by xij � Xpi, jq and xi � xpiq, respectively. The order of a tensor is the number
of its dimensions, ways or modes. The size of a tensor stands for the maximum index
value in each mode. For example, X is of order M and the size in each mode is Im,
where m P xMy. A �ber or tube of a tensor X P RI1�I2�...�IM is a vector attained by
�xing all but one index, e.g. xp:, i2, i3, . . . , iMq is a �ber when im, m � 2, 3, . . . ,M are
�xed. A slice of a tensor X P RI1�I2�...�IM is a matrix attained by �xing all but two
indices, e.g. Xp:, :, i3, . . . , iMq is a slice when im, m � 3, . . . ,M are �xed, using [95, 105].

For simplicity, throughout this thesis all tensors are assumed to be real valued.

De�nition 3.1:
An m-mode matricization Xpmq P RIm�I1...Im�1Im�1...IM for m P xMy is the unfolding (or
�attening) of an M th-order tensor into a matrix in the appropriate order of elements,
i.e. a tensor element pi1, i2, . . . iMq maps to an element pim, jq of a matrix as follows [95]:

j � 1�
M̧

k�1,k�m

pik � 1qJk with Jk �
k�1¹

ℓ�1,ℓ�m

Iℓ.

This is known as the classical [212] or Kolda [95] unfolding. This multi-indices is little-
endian convention (reverse lexicographic ordering) mentioned in [53]. ♢

De�nition 3.2:
An m-mode product X�m A P RI1�...�Im�1�J�Im�1,�...�IM , given X P RI1�I2�...�IM and
A P RJ�Im , is de�ned as a tensor-matrix product in mth way:

Ypmq � pX�m Aqpmq � AXpmq.

28



3.2 Tensor Algebra

......

1

.

2

.

3

.4 .5. 6.

7

.

8

.

9

.

1

.

2

.

3

.

6

. 9.

1

.

2

.

3

.

6

.

9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 2 3

4 5 6

7 8 9

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

1 4 7

2 5 8

3 6 9

..

1

.

4

.

7

.

2

.

5

.

8

.

3

.

6

.

9

.1 .4. 7. 2. 5. 8. 3. 6. 9.

1

.

4

.

7

.

2

.

5

.

7

.

3

.

6

.

9

1-
m
od
e
m
at
ric
iza
tio
n

2-mode matricization

3-m
ode

m
atricization

3-dimensional tensor

Figure 3.1: Unfolding of a 3-dimensional tensor.

This is also known as tensor-times-matrix (TTM) product. Some e�cient algorithms for
TTM are mentioned in [107, 13, 14]. Similarly, tensor-times-vector (TTV) product for a
vector a P RI

m is de�ned. TTV results in a tensorZ � Xpmq�̄ma P RI1�����Im�1�Im�1�����IM

with the entries as,

zi1,...,im�1,im�1,...,iM �
Im̧

im�1

xi1,...,im�1,im,im�1,...,iM aim .

Thw product of a tensor with a matrix doesn't change the tensor order while product
with vector reduces the order by one.

De�nition 3.3:
A mode-tmu canonical matricization is also the mode-p1, 2, . . . ,mq matricization for a
�xed index m P xMy, of a tensor X P RI1�I2�...�IM . The element wise entry of the matrix
is de�ned as follows, [60]

Xxmy P RI1I2���Im�Im�1���IM , pXxmyqi,j � xi1,i2,...,iN , i P I1I2 � � � Im, j P Im�1 � � � IM .

The matricization operator in the MATLAB notation (reverse lexicographic) is given by

Xxmy � reshape

���X,

�� m¹
p�1

Ip,
M¹

p�m�1

Ip

��
��
.
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Chapter 3. Low-rank Tensor Methods in Supervised Learning

Some properties holds between mode-tmu and other matricization/vectorization, such
as,

Xx1y � Xp1q, XxM�1y � XT
pMq, XxMy � vecpXq. ♢

Tensorization :� pmatrix/vectorÑ tensorq

Matricization/Vectorization :� ptensorÑ matrix/vectorq

De�nition 3.4:
The inner product of given tensors X, Y P RI1�I2�...�IM is de�ned as

xX,Yy �
I1̧

i1

I2̧

i2

. . .
IM̧

im

xi1i2...imyi1i2...im .

De�nition 3.5:
The Kronecker Product of matrices A P RI�J ,B P RK�L is de�ned as usual by

AbB �

���a1,1B � � � a1,JB
...

. . .
...

aI,1B � � � aI,JB

��� P RIK�JL.

Similarly, the Kronecker product of two tensors X P RI1�I2�...�IM ,Y P RJ1�J2�...�JM

returns a tensor Z � Xb Y P RI1J1�I2J2�...�IMJM . ♢

De�nition 3.6:
the Khatri-Rao product for matrices is a column-wise Kronecker product,

AdB � ra1 b b1, a2 b b2, � � � , aR b bRs P RIK�R.

Moreover, the mode-m Khatri�Rao product of twoMth-order tensors, X P RI1�I2�...�IM ,
and Y P RJ1�J2�...�JM returns a tensorZ � Xd mY P RI1J1�����Im�1Jm�1�Im�Im�1Jm�1�����IMJM ,
with Im � Jm, and in terms of Kroneker product,

Zp:, . . . :, im, :, . . . , :q � Xp:, . . . :, im, :, . . . , :q b Yp:, . . . :, im, :, . . . , :q

. ♢

De�nition 3.7:
The outer product is the primary operate to multiply two di�erent tensors. It is known
as outer or tensor product. For two given tensorsX P RI1�I2�...�IM and Y P RJ1�J2�...�JN

in outer product results in a tensor Z � X �Y P RI1�����IM�J1�����JN where each element
is computed as,

zi1,...,iM ,j1,...,jN � xi1,...,iM yj1,...,jN .
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Figure 3.2: Kronecker Product of two matrices A and B.

When three non-zero vectors a P RI , b P RJ and c P RK are multiplied with using
outer product then it results in a 3rd-order tensor X � a � b � c P RI�J�K with each
entry computed as xijk � ai bj ck.

De�nition 3.8:
A Rank-1 tensorX P RI1�I2�...�IM is which can be expressed exactly as the outer product,

X � ap1q � ap2q � � � � � apMq of non-zero factor vectors, apmq P RIm , and the tensor entries
of rank-1 is given as,

xi1,i2,...,iN � a
p1q
i1
a
p2q
i2
� � � a

pNq
iN

.

De�nition 3.9:
Hadamard Product (element-wise product/ entry-wise product/ Schur product is de�ned
for two same dimensional tensors X,Y P RI1�I2�...�IM as follows,

pXf Yqi1,i2,��� ,iM � xi1,i2,��� ,iMyi1,i2,��� ,iM

De�nition 3.10:
Amode-(m,n) contracted productZ � X�n

mY P RI1�...�Im�1�Im�1�...�IM�J1�...�Jn�1�Jn�1�...�JN ,
for given tensors X P RI1�I2�...�IM and Y P RJ1�J2�...�JN , with Im � Jn, yields a tensor
Z of order pM �N � 2q with entries

zi1,...,im�1,im�1,...,iM ,j1,...,jn�1,jn�1,...,jN �
IM̧

im�1

xi1,...,im�1,im,im�1,...,iMyj1,...,jn�1,im,jn�1,...,jN .
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This is a fundamental and the most important operation which can be considered a
higher-dimensional analogue of matrix multiplication, inner product, and outer product.
Also, known as tensor contraction. In such manner tensors can be contracted in several
dimensions or sometimes in all.

De�nition 3.11:
A mode-(M ,1) contracted product Z � X �1

M Y � X �1 Y P RI1�...�IM�1�J2�...�JM , for
given tensors X P RI1�I2�...�IM and Y P RJ1�J2�...�JM , with IM � J1, yields a tensor Z
that can be written as,

Z � X �1
M Y � X�1 Y � X 
 Y P RI1�I2�����IM�1�J2�����JN ,

with entries

zi1,...,iM�1,j2,...,jM �
IM̧

iM�1

xi1,...,iMyiM ,j2,...,jM .

In comparison to the matrix-matrix product, the available e�cient algorithms for tensor
contraction are limited. Therefore, dealing with related high computational cost is done
by executing above-mentioned tensor operations approximately.

Curse of dimensionality: The number of entries in tensor grows exponentially
with dimension M . e.g.for a given tensor of order 40 with size of each dimension
being I1 � I2 � . . . � IM � 2 will need 220 (terabyte) storage! Hence, storing tensor
explicitly is not a�ordable. Also, increment of dimensionality can lead to over�tting,
poor generalization, and unreliable predictions. This way, high-dimensional data can
pose challenges in terms of analysis and modelling of data while having extremely
large number of degrees of freedom.
Blessing of dimensionality: On the other hand, blessing of dimensionality refers
to the advantages that arise when dealing with high-dimensional data. In particu-
lar, high-dimensional spaces can o�er more �exibility and more room for variation,
which can be useful in capturing complex patterns and relationships in the data. For
example, in natural language processing, high-dimensional embedding of words can
capture subtle nuances in meaning and context, which can lead to more accurate
language models. Similarly, in computer vision, high-dimensional feature representa-
tions can capture �ne-grained details in images, which can improve object recognition
and classi�cation accuracy. It can also o�er opportunities for capturing complex pat-
terns and relationships that may not be apparent in lower-dimensional spaces.

3.3 Low-rank Tensor Factorization

Tensor decomposition methods have been signi�cantly enhanced during the last two
decades [40, 42], and applied to solve problems of varying computational complexity.
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3.3 Low-rank Tensor Factorization

The main goal is the linear (or at most polynomial) scaling of the computational com-
plexity in the dimension of a tensor. The key ingredient is the separation of variables via
approximate low-rank factorizations. The past research in machine learning have pro-
posed methodologies to extracted these low-rank factorization that include some prior
statistical data information such as uniqueness, well-posedness, sparsity, non-negativity.
These low-rank factorizations help to optimize hyperparameters and provide desired
features in the developed model. These desired features eventually help in building
the optimized and more e�cient machine learning model. The basic approach is to
these low-rank tensor factorization (LRTF) is similar to low-rank matrix factorization
(LRMF), in which a matrix is approximated by factor matrices and an error term as
follows,

X � Λ�1 A
p1q �2 A

p2q � E �
Ŗ

r�1

λr a
p1q
r � ap2qr � E �

Ŗ

r�1

λr a
p1q
r ap2qr

T
� E, (3.1)

the factor matrices A1 and A2 ful�l the predetermined constraints with a diagonal
scaling matrix Λ � diagpλ1, . . . , λRq. This formulation gives an intuitive multi-way ap-
proach for a multi-way data array (tensor), this is explained in �3.3.1. Additionally, some
other well established LRMF are the Singular Value Decomposition (SVD), Principal
Component Analysis (PCA), Independent Component Analysis (ICA), Non-negative
Matrix Factorization (NMF), etc. The SVD expression (3.2) gives as an intuition to
Higher Order SVD �3.3.2 or Tucker decomposition �3.3.2 that we discuss later.

X � S�1 U
p1q �2 U

p2q �
Ŗ

r�1

σr u
p1q
r � up2qr �

Ŗ

r�1

σr u
p1q
r up2qr

T
, (3.2)

where Up1q P RI1�R and Up2q P RI2�R are column-wise orthogonal matrices and S P
RR�R is a diagonal matrix with σr ¡ 0 in a monotonically non-increasing order. Some
widely used tensor factorizations are mentioned more.

3.3.1 Canonical Polyadic Decomposition

Introducing a tensor in polyadic form was �rstly done in 1927 [75, 76], where a tensor was
presented as a �nite sum of rank-1 tensors. In 1970, in the psychometric community, the
same decomposition was reintroduced under the names of CANDECOMP (CANonical
DECOMPosition) [28] as well as PARAFAC (PARallel FACtors) [68]. Simultaneously,
Möcks [119] discovered the same decomposition as topographic component model. This
model was built to deal with brain images. Eventually it found its standard and now
most commonly used name, the CP (Canonical Polyadic) decomposition after Kiers [91].

33



Chapter 3. Low-rank Tensor Methods in Supervised Learning

The CP decomposition of an M th�order tensor X P RI1�I2�...�IM is a factorization into
a sum of rank-1 components, which is given element-wise as

xi1i2...iM �
Ŗ

r�1

a
p1q
i1,r

a
p2q
i2,r

� � � a
pMq
iM ,r,

�
Ŗ

r�1

ap1qr � ap2qr � � � � � apMq
r

or shortly, X � JAp1q,Ap2q, � � � ,ApMqK, (3.3)

where Apmq �
�
a
pmq
im,r

�
P RIm�R, m � 1, . . . ,M , are called factor matrices of the CP

I1

I2

I3

X �

a
p1q
1

a
p2q
1

a
p3q
1
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Figure 3.3: canonical polyadic decomposition of a 3D tensor.

decomposition, see Figure 3.3, and R (smallest) is called the CP-rank for which the
CP decomposition holds exactly. The notation with J�K is also called the Kruskal [100]
representation of the CP factorization. The m�mode matricization version of CP de-
composition can be written as following,

Xpmq � Apmq
�
ApMq d � � � dApm�1q dApm�1q d � � � dAp1q

	
(3.4)

Despite the simplicity of the CP format, the problem of the best CP approximation is
often ill-posed [50]. This implies that the best rank-R CP approximation of a given data
tensor may not exist. However, a rank-R tensor can be approximated arbitrarily well by
a sequence of tensors for which the CP ranks are strictly less than R. A practical CP
approximation can be computed via the Alternating Least Squares (ALS) method [125],
but the convergence may be slow. It may also be di�cult to choose the rank R.
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Algorithm 3.1: CP decomposition of a tensor using Basic ALS [68, 95].

1: Input: M -dimensional tensor X P RI1�I2�...�IM , rank R, iter.

2: Ensure: Cores Ap1q,Ap2q, � � � ,ApMq of the CP decomposition X in the CP-format with

scaling vector λ P RR

3: Initialize Apmq.
4: while not converged or iteration ¤ iter do

5: for m � 1, 2, . . . ,M do

6: Apmq Ð Xpmq
�Ä

m̃�mApm̃q
	�
fm̃�mpA

pm̃qTApm̃qq
	:

7: Unit length normalize columns of Apmq :
�
Apmqpi, jq Ð ∥Apmqpi,jq∥

∥Apmqp:,jq∥




8: Store the norm in λ
9: end for

10: end while

11: return Ap1q,Ap2q, � � � ,ApMq and λ

Advantage of CP-ALS: The Alternating Least Squares (ALS) method for com-
putation of CP approximation is mentioned in Algorithm 3.1. The ALS approach
computate optimized CP factors by �nxing all but one factor at a time. It is known
for its elegant simplicity, and has proven to be e�ective for well-de�ned problems. To
tackle the challenge of processing tensors on a large scale, parallel ALS algorithms
implemented over distributed memory have been proposed in previous studies [36, 85].

Uniqueness of CP: The CP factorization is a powerful technique because of its
uniqueness under mild conditions without having any additional constraints on the
factor matrices [100, 164]. Naturally, if the constituents in one or more modes are
understood to exhibit certain characteristics, for example, positivity, orthogonality,
statistical independence, or sparseness, this pre-existing knowledge can be assimilated
into the CPD algorithms to simultaneously ease uniqueness conditions and heighten
precision and consistency. Moreover, such limitations can promote improved physical
comprehensibility of the extracted components [162, 92, 171, 93, 213, 108].
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Applications: The CP decomposition has already been established as an advanced
tool for blind signal separation in vastly diverse branches of signal processing and
machine learning [5, 95, 121, 9, 193, 181, 165]. It is also routinely used in exploratory
data analysis, where the rank-1 terms capture essential properties of dynamically
complex datasets, while in wireless communication systems, signals transmitted by
di�erent users correspond to rank-1 terms in the case of line-of-sight propagation
and therefore admit analysis in the CP format. Another potential application is
in harmonic retrieval and direction of arrival problems, where real or complex ex-
ponential have rank-1 structures, for which the use of CP decomposition is quite
natural [163, 161, 173]

.

3.3.2 Tucker Decomposition

The Tucker decomposition [182] is a more general decomposition compared to CP, along
with having Tucker matrix factors, it also has core tensor with smaller dimensions com-
pared to the original tensor. The di�erence in CP is that, the cube core tensor has
non-zero elements only on the main diagonal. For a given tensor X P RI1�I2�...�IM the
Tucker decomposition or Tucker-M (not unique) model is expressed as follows [105],

X �
R1̧

r1�1

R2̧

r2�1

. . .
RM̧

rM�1

gr1r2...rM

�
up1qr1

� up2qr2
� . . . � upMq

rM

	
� JG;Up1q,Up2q, . . . ,UpMqK, (3.5)

R3

R2

R1 G

R1

I1 U p1q
I2

R2U p2q

X
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I3

�

R3

I3
U p3q

Figure 3.4: Tucker decomposition of a 3-way tensor.

where Upmq �
�
u
pmq
im,r

�
P RIm�Rm , m � 1, . . . ,M , are called mode-m factor matrices of

the Tucker decomposition (see Figure 3.4) and typically Rm    Im, m � 1, 2, . . . ,M,
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are called the Tucker ranks. The core tensor is denoted by G P RR1�R2�...�RM . If
Upmq are full rank, the Tucker decomposition is called independent Tucker format, while
with orthogonal factor matrices Upmq it is called, orthonormal format. The standard
format of the Tucker-M model is orthogonal. Tucker decompositions have a long history,
recent surveys and more detailed information [95, 60, 44, 41, 165]. The next tensor
decomposition �3.3.3 is equivalent to the Tucker�2 model of a 3rd order tensor. The
Tucker-2 model has the third core as the identity.

Higher Order SVD: Special form of Tucker

The Higher Order SVD known as HOSVD is also called Multi Linear Singular Value
Decomposition or MLSVD [102, 49]. The HOSVD is considered to be special case of
Tucker model, where HOSVD algorithm is one way of computing orthonormal format of
Tucker-M model. Along with having orthogonal factor matrices Apmq, the core tensor
is all-orthogonal.

Computational Cost and Various approaches: The HOSVD or Tucker decom-
position applies the matrix-SVD on tensor tensor unfoldingXpmq P RIm�I1...Im�1Im�1...IM .
For the large-scale tensor input standard computer memory easily exceeds. There are
two standard solutions to this problem, �rst is using a divide-and-conquer approach
on a partition of Xpmq and eventually on orthogonal matrices Upmq, and the second
approach is useful when the matrix has low-rank. The randomized SVD algorithm
deals with it e�ciently. Some literature in this direction are [34, 65, 45, 137].

The Algorithm 3.2 has been proposed to deal with computational cost of computing
HOSVD and known as Sequential Truncated HOSVD [183].

Applications and Advantages: the Tucker decomposition is a versatile technique
that �nds applications in various signal processing tasks, including blind source sep-
aration, feature extraction, classi�cation, and subspace-based harmonic retrieval. It
can also be used for signal compression and enhancement. By identifying and classi-
fying relevant data, it simpli�es feature extraction and helps reveal desired informa-
tion. Furthermore, it is useful in anomaly detection [54], which involves identifying
patterns, signals, outliers, or features that do not conform to expected behaviours.
The projected data onto a lower-dimensional subspace using Tucker decomposition
helps to easily identify anomalies. This way it provides a natural framework with an
assumption that normal and abnormal patterns will appear signi�cantly di�erent in
the projected subspace.
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Chapter 3. Low-rank Tensor Methods in Supervised Learning

Algorithm 3.2: Sequential Truncated HOSVD [183]

Input: M -dimensional tensor X P RI1�I2�...�IM with truncation accuracy ϵ
Output: HOSVD of X in the Tucker-format X � JG;Up1q,Up2q, . . . ,UpMqK,
Initialize YÐ X

for m � 1 to M do
Compute m�mode matricization Ypmq of tensor Y
Compute truncated SVD: Ypmq � UpmqSV � Em, ∥Em∥F ¤

ε?
M

Core computation: GÐ VS
end for
GÐ reshapepG, rR1, . . . , RM sq
return Core tensor G and orthogonal factor matrices Upmq P RIm�Rm .

3.3.3 Tensor Train Decomposition

To alleviate the di�culties of the CP decomposition mentioned above, the new form of
tensor decomposition was introduced as the Tensor Train (TT) [133, 131] decomposition.
The TT approximation of anM th�order tensor X P RI1�I2�...�IM is de�ned element-wise
as

xi1i2...iM �
¸

r0,...,rM

C
p1q
r0,i1,r1

C
p2q
r1,i2,r2

� � �C
pMq
rM�1,iM ,rM

,

X � xxCp1q,Cp2q, . . . ,CpMqyy, (3.6)

where Cpmq P RRm�1�Im�Rm , m � 1, . . . ,M, are 3rd-order tensors called TT-cores
(see Figure 3.5), and R0, . . . , RM with R0 � RM � 1 are called TT-ranks. The TT

C2
R3

. . .
C3

C1

CM
R1 R2

RM�1

I1 I2 I3
IM

Figure 3.5: Tensor train decomposition of an M th�order tensor.

decomposition was introduced as the Matrix Product State (MPS) [136, 6, 157] rep-
resentation. It was subsequently extended by many researchers. In fact, the TT was
rediscovered several times under di�erent names: MPS, valence bond states, and den-
sity matrix renormalization group (DMRG) [195]. Also, in quantum physics the ALS
algorithm is called the one-site DMRG, while the Modi�ed ALS (MALS) is known as
the two-site DMRG [195, 189, 188, 157, 77, 129].
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3.3 Low-rank Tensor Factorization

Advantage: An important advantage of the TT/MPS format its simpler practical
implementation. The alluring capability of the TT format is its ability to perform al-
gebraic operations directly on TT-cores avoiding full tensors. These operations only
requires TT-cores to be stored and processed, which makes the number of parameters
to scale linearly in the tensor order, M , of a data tensor and all mathematical opera-
tions are then performed only on the low-order and relatively small size core tensors.
Moreover, a stable quasi-optimal rank reduction for TT approximation of any given
tensor using the tSVD (Algorithm 3.3) can be computed. This builds on the fact
that the TT decomposition constitutes a recursive matrix factorization, where each
TT-rank is the matrix rank of the appropriate unfolding of the tensor, and hence the
TT approximation problem is well-posed [133].

Drawback: A major drawback of TT format is while applying basic mathematical
operations on TT-cores, the produced tensor that is also in TT format, generally
exhibit increasing TT-ranks. Also, the rank of TT format is not invariant to the
permutation of the modes or sizes.

Algorithm 3.3: TT-SVD Decomposition using truncated SVD (tSVD) [133]

1: Input: M -dimensional tensor X P RI1�I2�...�IM , relative error threshold ϵ.
2: Ensure: Cores Cp1q,Cp2q, � � � ,CpMq of the TT-approximation X1 to X in the TT-format

with TT-rounding ranks rm equal to the δ-ranks of the unfolding Xpmq of X, where

δ �
b

ϵ
M�1∥X∥F .

3: Initialize Ẑ1 � Xp1q, R0 � 1.
4: for m � 1 to M � 1 do

5: Zm :� reshape
�
Ẑm, rRm�1Im, Im�1 � � � IM s

	
6: Compute δ-truncated SVD: Zm � UmSmVT

m �Em, ∥Em∥F ¤ δ, where

Um � ru
pmq
1 , u

pmq
2 , . . . , u

pmq
Rm

s, Sm � diagpσ
pmq
1 , σ

pmq
2 , . . . , σ

pmq
Rm

q, Vm �

rv
pmq
1 , v

pmq
2 , . . . , v

pmq
Rm

s

7: C
pmq
rm�1,im,rm

� u
pmq
rm�1�pIm�1qRm�1, rm

,

8: Cpmq :� reshapepUm, rRm�1, Im, Rmsq
9: Ẑm�1 :� SmVT

m

10: end for

11: CpMq � ẐM

12: return X
1
� xxCp1q,Cp2q, � � � ,CpMqyy

39



Chapter 3. Low-rank Tensor Methods in Supervised Learning

Algorithm 3.4: TT Rounding (Recompression or Truncation) [133].

1: Input: Mth-order tensor X
1

� xxCp1q,Cp2q, � � � ,CpMqyy P RI1�I2�...�IM is in the TT
format, relative error threshold ε with an overestimated TT ranks,
rTT � tR1, R2, . . . , RM�1u and ranks bounded by Rmax

2: Output: An Mth-order tensor pX with a reduced TT rank; such that
}X

1

� pX}F ¤ ε }X
1

}F
3: Initialize by computing truncation parameter δ � ε?

M�1
}X

1

}F .
4: � Left-to-right Orthogonalization �
5: for m � 1 to M � 1 do
6: C

pmq
 2¡ :� QmR, where C

pmq
 2¡ P RRm�1Im�Rm

7: C
pmq
 2¡ Ð Qm and C

pm�1q
 1¡ Ð RC

pm�1q
 1¡ , where C

pm�1q
 1¡ P RRm�Im�1Rm�1

8: end for
9: � Compression of the orthogonalized representation �

10: for m �M to 2 step �1 do
11: Compute δ-truncated SVD: C

pmq
 1¡ � USVT,

12: Govern minimum rank pRm�1 Ð
°

r¡Rm�1
σ2
r ¤ δ2}S}2

13: New cores pCpm�1q
 2¡ Ð pCpm�1q

 2¡ pUpS and pCpmq
 1¡ � pVT

14: end for

15: return Mth-order TT tensor pX � xxpCp1q
, pCp2q

, . . . , pCpMq
yy P RI1�I2�����IM , with

reduced cores pCpmq
P R pRm�1�Im� pRm

3.3.4 Existing Interrelationship of Tensor Decompositions

3.3.4.1 CP to TT

A tensor in the CP format, given by

X �
Ŗ

r�1

ap1qr � ap2qr � � � � � apNq
r , (3.7)

can be straightforwardly converted into the TT format as follows. Since each of the R
rank-1 tensors can be represented in the TT format of TT rank p1, 1, . . . , 1q, taking into
account that the CP decomposition is a sum of R rank-1 tensors, therefore it is possible
that,

X �
Ŗ

r�1

xxap1qTr , ap2qTr , . . . , apMqT
r yy (3.8)

�xxCp1q,Cp2q, � � � ,CpMqyy, (3.9)
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3.3 Low-rank Tensor Factorization

where the TT-cores Cpmq P RR�Im�R have diagonal lateral slicesCpmqp:, im, :q � C
pmq
im

�
diag

�
aim,1, aim,2, . . . , aim,R

�
P RR�R for m � 2, 3, . . . ,M � 1 and Cp1q � Ap1q P RI1�R

and CpMq � ApMq T P RR�IM (see Figure 3.6).

R

IM�1

R ApM�1q

I2

R

R

Ap2q �1 . . .�1

I1

R
Ap1q �1

IM

RApMq�1

Figure 3.6: Relation representation of an M th�order tensor X between CP format and
TT format.

Table 3.1: Storage Complexity.

1. Full tensor format (ktensor) OpIMq
2. CP OpMIRCP q
3. Tucker OpMIRTucker �RM

Tuckerq
4. TT/MPS OpMIR2

TT q
5. CP-TT
6. QTT [52] OpMlogpIqR2

QTTR
4
TT q

7. QTT-Tucker [52] OpMlogpIqR2
QTTR

2
Tucker �MR2

TTRTuckerq

3.3.4.2 Qunatized Tensor Train (QTT)

The QTT (Quantized Tensor Train) is considered an extension of the TT (Tensor Train)
decomposition, with factorization into quantized sizes (e.g., 2, 3, 4). The QTT represents
more deeper structure of the TT decomposition by introducing virtual modes. The main
advantage of QTT is analogous to the `blessing in disguise' concept, but in a tensorial
context, referred to as the `blessing of dimensionality' [40]. The QTT was introduced in
[90], and [132] as Quantized tensor network (QTN). In whcih the small 3rd-order cores
are connected through tensor contractions while providing an e�cient, compact, and low-
rank representation of a data tensor, reducing the problem of curse of dimensionality.
to understand concept of QTT, if we take a huge size vector x P RI , I � 2p then an

example tensor X as 2�2�� � ��2 with dimension p can be created. There often exists a
well compressed tensor factorization of such large vector x by imposing possible LRTF.
Although, the ranks of the QTT format often increase signi�cantly with data size,

however with a linear improvement in accuracy. To address this, the QTT-Tucker for-
mat [52] was invented, and is explained in next subsection. This format applies the
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Chapter 3. Low-rank Tensor Methods in Supervised Learning

TT approximation to both the Tucker core tensor and the factor matrices, supporting
distributed computation and often resulting in bounded ranks, thus mitigating the curse
of dimensionality.

3.3.4.3 QTT-Tucker

The QTT-Tucker format combines the bene�ts of the Tucker, TT, and QTT formats. In
many cases, the ranks of the Tucker and TT formats are similar. This means that using
the QTT approximation of the Tucker factors instead of the TT ones can often result
in smaller ranks for the same level of accuracy and avoid high rank peaks in the middle
of a TT. The QTT-Tucker format is a closed manifold, similar to the Tucker format.
Work has been done on converting the �TT-to-Tucker� format and its extended version,
where TT is �rst converted into its quantic form (QTT), to the Tucker format. This
approach requires only M blocks with cubic storage in rank, whereas MlogpIq blocks
have a quadratic dependence, as in the linear QTT format. The QTT approximation of
the Tucker factors is useful for approximating tensors generated by smooth functions.
The reason why this last step was not explicitly written is that, when computing a Tucker
decomposition, it is more e�cient to keep the Tucker factors separate from the format
used for the core. The QTT-Tucker format has a worse asymptotic storage estimate
compared to other formats, but it performs better than the �standard� linear-structured
QTT in some cases. Additionally, the rank distribution is more uniform compared to
the linear QTT.

The storage complexities for di�erent low-rank tensor format has for their Interrela-
tionship conversion is summarized in Table 3.1.

3.4 Tensor Classi�cation

Consider now a typical problem in computer vision, where the objects are represented by
data tensors and the number of the training measurements are limited. This leads to the
need of using a classical machine learning model that deals with tensor data avoiding the
curse of dimensionality by using low-rank tensor methods. Further, the mathematical
foundation for such model is now explained.

3.4.1 Support Tensor Machine

The previous chapter established a foundation for SVMs (�2.2.1), and consideration of
tensors naturally leads to a tensor-based extension of SVM, called the support tensor ma-
chine (STM). For this, consider a general supervised learning scenario with N training
measurements, tXi, yiu, i P xNy, represented by Mth-order tensors, Xi P RI1�I2�����IM ,
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3.4 Tensor Classi�cation

which are associated with the scalar variable yi. As here the focus is on tensor classi�ca-
tion model, yi P t�1,�1u that is, it takes categorical values, which is a standard classi�-
cation problem. The linear boundary STM [176, 177, 67] can be formulated through the
composition of M , QP sub-problems with inequality constraints in non-separable case,

min
wm,b,ξ

1

2
}wm}

2
m̃�m¹

1¤m̃¤M

p}Wm̃}
2q � C

Ņ

i�1

ξi

subject to yi

�
wT

m pXi�̄m̃�mwm̃q � b
	
¥ 1� ξi, ξ ¥ 0, i P xNy. (3.10)

Once the STM solution has been obtained, the class label of a test example, Xt, can
be predicted by a nonlinear transformation

ypXq � sign pX��̄1w1 � � � �̄MwM � bq . (3.11)

As it is discussed in previous chapter that in practice, it is often more convenient to
solve the optimization problem (3.10) by considering the dual problem (2.12), given by

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i,j�1

αiαjyiyjxXi,Xjy,

subject to
Ņ

i�1

αiyi � 0, 0 ¤ αi ¤ C, i P xNy, (3.12)

where α are the Lagrange multipliers. It is straightforward that when the input sam-
ples, Xi are vectorized, this model converts into standard vector SVM (2.3). As men-
tioned in SMM models (�2.3.3) the lost structured issue persist with tensors as well. In
case of tensors, the inner product of a tensor has been looked through a di�erent perspec-
tive, such as the computation of xXi,Xjy, is equivalent to the inner product of the rank

one decomposition
�
Xi �

°R
r�1 x

p1q
ir � x

p2q
ir � � � � � x

pNq
ir and Xj �

°R
r�1 x

p1q
jr � x

p2q
jr � � � � � x

pMq
jr

	
as follows [67],

xXi,Xjy �
Ŗ

p�1

Ŗ

q�1

A
x
p1q
ip ,x

p1q
jq

EA
x
p2q
ip ,x

p2q
jq

E
� � �
A
x
pNq
ip ,x

pNq
jq

E
, (3.13)

and (3.12) can be solved by a sequential QP optimization algorithm. The prediction
function for a test example Xt is given as,

ypXtq � sign

�� Ņ

i�1

Ŗ

p�1

Ŗ

q�1

αiyi

M¹
m�1

A
x
pmq
ip ,x

pmq
tq

E
� b

�
. (3.14)

43



Chapter 3. Low-rank Tensor Methods in Supervised Learning

Considering this approach for the non-linear, non-separable STM can be an intuitive
choice. This is further discussed.

3.4.2 Tensor-product Reproducing Kernel Hilbert Space

The approach to tensor-product RKHS is based on standard RKHS (�2.3.1). In machine
learning, tensor products have been used to build kernels for a long time [56, 79]. The
structure of tensor product functions has been exploited for the existing regularization
in [166]. Here kernel functions can be considered as a mean for de�ning a new topology
which implies a priori knowledge about the invariance in the input space [156]. This
means, that the kernel function's predictions or behavior should remain unchanged even
when the input undergoes certain transformations or perturbations. From �2.3.1 assume
that pHm̃, x�, �ym̃, k

pm̃qq is a RKHS on a domain Xm̃, m̃ P xMy such that [166],

x � pxp1q,xp2q, . . . ,xpMqq P X , s.t. X :� �M
m̃Xm̃.

If a vector space is formed by the linear combinations of the functions bM
m̃�1f

pm̃q that
simply gives the tensor-product HS denoted by pH, x�, �yq, without loss of generality,
de�ned by:

bm̃PxMyf pm̃q ÞÑ
¹

m̃PxMy
f pm̃qpxpm̃qq, f pm̃q P Hm, @ m̃ P xMy, (3.15)

where bm̃PxMy is a rank-1 tensor, then the HS related to tensor product is H given by
pf,g, . . .q in a way that,

f �
¸
i

αif
p1q
i1
b f

p2q
i2
b . . .b f

pMq
iM

, (3.16)

with i � pi1, i2, . . . , iMq and

fpxq �
¸
i

αipf
p1q
i1
b f

p2q
i2
b . . .b f

pMq
iM

qpxq �
¸
i

αi

M¹
m̃�1

f
pm̃q
im̃

pxpm̃qq, (3.17)

taking a symmetric kernel function as,

k : pxi,xjq ÞÑ kp1qpxp1qi ,x
p1q
j q kp2qpxp2qi ,x

p2q
j q . . . kpMqpxpMq

i ,x
pMq
j q, (3.18)

from (3.17) there is,
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f �
¸
i

αi

M¹
m̃�1

xf
pm̃q
im̃

, kpm̃qp�,xpm̃qqym̃ � xf ,kxy. (3.19)

Here, kx is corresponding reproducing kernel for tensor product HS. Hence, the tensor
product Reproducing Kernel Hilbert Space is denoted by pH, x�, �y,kq with kpm̃q a factor
kernel for Hm̃ the factor space.

KpXi,Xjq
FTP-RKHS

HOptimal Hyperplane

H : FÑ R
Hp�q � xf, �y � b

Ψ:RI1�I2�...�IM Ñ F

X P XInput Space

f̂Hyperplane

f̂ :X Ñ R
f̂p�q � fp�q � b

y P R

Figure 3.7: Kernel trick with TP-RKHS embedding.

Figure 3.7 illustrate a nonlinear mapping from tensor input space (X P XInput Space)
to feature TP-RKHS (FTP-RKHS). Both spaces leads to the computation of the optimal
hyperplane for output y where one is explicit and another is implict (kernel) way.

3.4.3 Kernelised Support Tensor Machine

The presented model here uses a data set tpXi, yiqu
N
i�1 with input data in the form

of a tensor Xi P RI1�I2�...�IM . The maximum margin approach to get the separation
hyperplane is taken. The non-linear boundary STM can be formulated from (3.10) the
composition of M , QP sub-problems with inequality constraints in non-separable case,

min
wm,b,ξ

1

2
}wm}

2
m̃�m¹

1¤m̃¤M

p}wm̃}
2q � C

Ņ

i�1

ξi

subject to yi

�
wT

m

�
ΨpXiq�̄m̃�mwm̃

�
� b
	
¥ 1� ξi, ξ ¥ 0, i P xNy. (3.20)
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Hence, the mentioned objective function for a nonlinear boundary in the tensor space
can be further written in much simpler way, as follows [25]:

min
W,b

xW,Wy � C
Ņ

i�1

ξi (3.21)

subject to yipxW,ΨpXiqy � bq ¥ 1� ξi ξi ¥ 0 @i.

The classi�cation setup given in eq. (3.21) is known as Support Tensor Machine
(STM) [176]. The dual formulation of the corresponding primal problem can be given
as follows:

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i�1

Ņ

j�1

αiαjyiyjxΨpXiq,ΨpXjqy

subject to 0 ¤ αi ¤ C,
Ņ

i�1

αiyi � 0 @i. (3.22)

The nonlinear feature mapping Ψ: RI1�I2�...�IM Ñ F takes tensorial input data to a
higher dimensional space similarly to the vector case. Hence, by extending the kernel
trick, explained in �2.3.2, we have reproducing kernel K : RI1�I2�...�IM �RI1�I2�...�IM Ñ
R (Figure 3.7), such that,

Ki,j � K
�
Xi,Xj

�
� xΨpXiq,ΨpXjqyF, (3.23)

now, the STM can be de�ned as follows:

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i�1

Ņ

j�1

αiαjyiyjKpXi,Xjq

subject to 0 ¤ αi ¤ C,
Ņ

i�1

αiyi � 0 @i. (3.24)

The STM classi�er for predicting correct labels of test tensor data is given by,

GpXq � sign

�� Ņ

i�1

αiyixΨpXiq,ΨpXqy � b0

�
. (3.25)
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By using the kernel trick [155], this becomes,

GpXq � sign

�� Ņ

i�1

αiyiKpXi,Xq � b0

�
. (3.26)

The value of b0 is given as follows,

b0 �
1

N0

¸
i:αiPp0,Cq

��yi �
Ņ

j�1

αjxΨpXjq,ΨpXiqy

�
,

�
1

N0

¸
i:αiPp0,Cq

��yi �
Ņ

j�1

αjKpXj,Xiq

�
, with N0 �
¸

i:αiPp0,Cq
1. (3.27)

This setup is called the Kernelised STM (KSTM). Once the real-valued function (ker-
nel) value for each pair of tensors is available, state-of-the-art methods, such as LIB-
SVM [29] can be used, which relies on the Sequential Minimal Optimization algorithm
to optimize the weights αi and provides optimal parameter values αi and b0. Hence,
the pre-eminent part is the kernel function KpXi,Xjq. However, the direct treatment
of large tensors can be both numerically expensive and inaccurate due to over-�tting.
Therefore, it is needed to choose a kernel that exploits the tensor decomposition. The
next section is a brief overview of research work in the direction of optimizing and �nding
state-of-the-art for Kernelised Support Tensor Machine (3.24).

3.4.4 Reproducing Tensor Kernels

At the hand of tensor-product RKHS (�3.4.2), discussion about the kernels for tensor-
valued inputs, that exploit multi-way structures while maintaining the notion of simi-
larity measures, comes forward. Most straightforward tensor-valued reproducing kernels
would be generalized vector-valued into Mth-order tensors. The most common tensor-
valued kernels, K : X�XÑ R, are given by,

Linear kernel: KpX,X1q � xvecpXq, vecpX1qy. (3.28)

There are many possibilities to de�ne kernel functions for tensors. As the focus of
this thesis is on LRTF methods (�3.3) with nonlinear boundary, therefore here are some
ways to de�ne factor kernel functions,

47



Chapter 3. Low-rank Tensor Methods in Supervised Learning

Vectorization :

KpX,Yq �
A
ΦpvecpXqq,ΦpvecpYqq

E
, (3.29)

Matricization :

KpX,Yq �
A
ΦpXp1q, . . . ,XpMqq,ΦpYp1q, . . . ,YpMqq

E
, (3.30)

CP Decomposition :

KpX,Yq �
A
Φ
�
A

p1q
X , . . . ,A

pMq
X

�
,Φ
�
B
p1q
Y , . . . ,B

pMq
Y

�E
, (3.31)

TT Decomposition :

KpX,Yq �
A
Φ
�
C
p1q
X , . . . ,C

pMq
X

�
,Φ
�
C
p1q
Y , . . . ,C

pMq
Y

�E
. (3.32)

In order to de�ne a similarity measure that directly exploits the multilinear algebraic
structure of the input tensors, [167, 168] proposed a tensorial kernel which both exploits
the algebraic geometry of tensors spaces and provides a similarity measure between the
di�erent subspaces spanned by higher-order tensors. Another approach is a balanced
compromise between (3.13) and the factor kernel de�ned on m� mode matricization of
a pair of tensors as follows,

KpX,X
1

q �
M¹

m�1

kpmq
�
Xpmq,X

1

pmq
	
. (3.33)

In case of higher dimensions as known from earlier sections, matricization is not ef-
�cient as this similarity measure does not generalize well. Therefore, di�erent kind of
kernels were introduced in literature, e.g. [209, 38, 39] suggested a new group of prob-
abilistic product kernels based on generative models. The advantage of probabilistic
tensor kernels is that they provide a way to model one tensor to a lower-dimensional
vector spaces, this makes it possible for multiway relations to be captured within a
similarity measure. This kernel can then e�ectively capture the statistical properties of
tensors, which promises to be a powerful tool for multidimensional structured data anal-
ysis. The following section gives an overview of development of such tools over decades
along with it advantages and drawbacks.

3.5 Low-rank Tensor Decomposition in Kernel

Models

When tensor objects are reshaped into vectors, a substantial amount of inherent in-
formation present in the tensorial data is lost, as discussed earlier. This phenomenon

48



3.6 Chapter summary

is evident in domains like medical images, such as fMRI data, where adjacent voxel
values tend to exhibit proximity [71]. Consequently, to mitigate this loss of informa-
tion, the application of STM (Section 2.3) is recommended, as emphasized by various
authors [177, 214, 62].
In a notable departure from the classical maximum-margin criterion, Wolf et al. [198]

introduced the idea of minimizing the rank of the weight parameter alongside orthogonal
constraints on its columns. A subsequent enhancement by Pirisiavash [139] relaxed these
orthogonality constraints to re�ne the Wolf method.
Addressing the tensor factorization strategies, Hao et al. [67] delved into an R-sum

rank-one tensor factorization for each input tensor. In contrast, Kotsia et al. [96] opted
for the Tucker decomposition of the weight parameter to retain a richer structural un-
derstanding. Further extending this paradigm, Zeng et al. [204] incorporated a Genetic
Algorithm (GA) as a precursor to the Support Tucker Machine (STuM), enhancing the
contraction of the input feature tensor.
Notably, these strategies, including the R-sum rank-one tensor, Tucker, and TT ap-

proximations [31], predominantly center on linear data representations. However, the
limitation of a linear decision boundary's suitability for complex real-world data sepa-
ration is well-recognized [70].
The subsequent chapters will pivot towards addressing the challenge of nonlinearity

in tandem with low-rank approximation.

3.6 Chapter summary

This chapter begins with a systematic transition from LRMF to LRTF in Section 3.3 and
a basic guide to tensor notations and de�nitions in Section 3.2. Section 3.3 demonstrates
linear and multilinear dimensionality reduction approaches for analysing extreme-scale
multidimensional data. The main goal is to illustrate that tensor decompositions are a
natural phenomenon to study the inherent compression ability of data and correspond-
ing process information. The numerical multilinear algebra serves as the mathematical
backbone to build strong and stable models for classi�cation in large-scale datasets. Sec-
tion 3.3.4 showcases the ease of multiple tensor decomposition into each other with no
extra cost, leading to a win-win situation in selecting the best features from each of these
decompositions while working better with constraints on factor matrices. While research
on tensor methods for dimensionality reduction in many modern applications of machine
learning is emerging, Section 3.4 provides an explicit overview of the classi�cation prob-
lem with tensor as input data. Section 3.4.1 serves as a transitional mathematical theory
from vector to tensor space, such as RKHS (Section 2.3.1) to tensor-product RKHS (Sec-
tion 3.4.2) and kernelised SVMs to Kernelised STMs (Section 3.4.3). The �eld of machine
learning is growing exponentially, with multiple application problems and the theoret-
ical need for a mathematical foundation in machine learning to estimate this curse of
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dimensionality. Section 3.5 furnishes this need with the work done in the advancement
of the �eld, showcasing a small historical story from the beginning of LRTFs in Kernel
methods that is clearly conveyed by the section's title.
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4.1 Introduction

The previous chapters have provided in detail the main problem Kernelized Support
Tensor Machine (�3.4.3) but do not include any solution approaches. The existing kernel
for tensor data gives a small pavement to the long way of �nding solution to KSTM
(3.24). The depth literature review in �3.5 provide a route through history for such
advancements. This chapter is also a contribution work in similar direction. Recently,
kernel approximations in the TT format have been introduced in [32]. Initially, a similar
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idea for fMRI data sets had pursued, but it was observed that the nonlinear SVM
classi�cation using the TT factors directly leads to poor accuracy, since di�erent TT
factors have di�erent dimensions and scales, making the feature space more complicated.
Hence, this chapter provides a better exploitation of the data structure.

Main Novelty: This chapter explains the development of an e�cient structure-
preserving nonlinear kernel function for SVM classi�cation of tensorial data (3.24),
by computing a reliable CP approximation for DuSK (4.6). The starting point is
computation of TT approximation (3.6) of the data points, which can be computed
reliably by the TT-SVD algorithm (Algorithm 3.3). Moreover, the uniqueness en-
forcement on the SVD factors, such that �close� tensors yield �close� TT factors, is
included. Along with, performing an exact expansion of the TT decomposition into
the CP format. This uni�es the dimensions of the data used in classi�cation. Finally,
the redistribution of the norms of the CP factors to equilateral the actual scales of
the data elements, is done. This yields a CP decomposition that is free from scaling
indeterminacy, while being a reliable approximation of the original data. It is ob-
served that using this decomposition in DuSK signi�cantly increases the classi�cation
accuracy and stability of the STL (�3.4.1).

The chapter is structured as follows. The Section �4.2, explains the entire proposed al-
gorithm step by step. In particular, the introduction to the uniqueness enforced TT-SVD
algorithm (�4.2.1), the TT-CP expansion (�4.2.2) and the norm equilibration (�4.2.3).
The Section �4.3 benchmarks the di�erent steps of the proposed algorithm and propose
comparison to a variety of competing methods using two data sets each from two di�er-
ent �elds with a limited amount of training data, which are known to be challenging for
classi�cation.

4.1.1 Problem Formulation

This chapter provides a method for solving the following problem,

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i�1

Ņ

j�1

αiαjyiyjKpXi,Xjq

subject to 0 ¤ αi ¤ C,
Ņ

i�1

αiyi � 0 @i. (4.1)

As mentioned earlier in the literature review of KSTM methods (�3.5), using low-rank
approximation for kernel computation is one way of dealing with computation cost as
well as producing state-of-the-art.
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4.1.2 Related Work

Motivation : This chapter draws motivation from the works by DuSK and MMK[71,
72], which are based on the CP decomposition. CP-based approaches are widely used
in signal processing due to their convenience for working with factor kernels. The Dual
Structure-preserving Kernel (DuSK) was introduced for STL, tailored speci�cally to
SVM and tensor data, using the CP format [71]. Subsequently, the concept of Kernelised-
CP (KCP) factorization was introduced, leading to the Multi-way Multi-level Kernel
(MMK) technique [72, 73], which further extends the kernelization in factors. Detailed
descriptions of DuSK can be found in �4.2.5. DuSK and MMK, when coupled with an
accurate CP approximation, o�er e�ective and e�cient classi�cation solutions. However,
the numerical instability and computational di�culty associated with CP approximation
for arbitrary data can be limiting [50]. Optimization methods such as Newton, Steepest
Descent, or Alternating Least Squares used to obtain the CP decomposition may only
yield locally optimal solutions, posing challenges in distinguishing between local and
global optima.

Utilizing Low-rank Approximations and Kernel Methods: The limitations of
CP don't hinder the use of low-rank approximation in kernel methods. Tensor decom-
positions and kernel-based techniques have become invaluable tools in various learning
tasks. For instance, the TT decomposition is employed in both input tensors and cor-
responding weight parameters in generalized linear models, as shown in [127]. Kernel
Principal Component Analysis (KPCA), a nonlinear feature extraction technique, was
proposed in [200]. In [103], a strategy to accelerate Convolutional Neural Networks
(CNN) involves applying a low-rank CP decomposition on kernel projection tensors. The
Tensor Train (TT) decomposition, o�ering a stable approximation similar to Tucker for-
mat while scaling well to higher dimensions like CP, has led to a natural generalization
of DuSK (MMK) to the TT format, as outlined in [31].

Furthermore, the applicability of the incentives from DuSK and MMK [71, 72] in the
context of TT and enhanced methods is elaborated upon in the subsequent sections.

4.2 The Proposed Algorithm

The �rst essential step towards using tensors is to approximate them in a low-parametric
representation. To achieve a stable learning model, our method starts with computing
the TT approximations of all data tensors. The second most expensive part is the
computation of K

�
Xi,Xj

�
for each pair of tensors. Therefore, an approximation of the

kernel is required. Moreover, the kernel has the property of exploiting the factorized
tensor representation. These issues are resolved in the rest of this section.
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4.2.1 Uniqueness Enforcing TT- SVD

Since the TT decomposition is computed using the SVD [133] (Algorithm 3.3), the
particular factors Cp1q,Cp2q, . . . ,CpMq are de�ned only up to a sign indeterminacy. For
example, the �rst step is, to compute the SVD of the 1-mode matricization,

Xp1q � g1u1v
J
1 � � � � � gI1uI1v

J
I1
,

followed by truncating the expansion at rank R1 or according to the accuracy threshold
ε, choosing R1 such that gR1�1   ε. However, any pair of vectors tur1 , vr1u can be
replaced by t�ur1 ,�vr1u without changing the whole expansion. While this is not an
issue for data compression, classi�cation using TT factors can be a�ected signi�cantly
by this indeterminacy. For example, tensors that are close to each other should likely
produce the same label. In contrast, even a small di�erence in the original data may lead
to a di�erent sign of the singular vectors, and consequently, signi�cantly di�erent values
in the kernel matrix KpXj,Xiq and the predicted label (3.26). As it will be explained
in �4.2.6, the kernels are functions of the left singular vectors ui only (Algorithm 4.2).
The signs of the singular vectors are �xed as follows. For each r1 � 1, . . . , R1, �nd

the position of the maximum in modulus element in the left singular vector, i�r1 �
argmaxi�1,...,I1 |ui,r1 |, and make this element positive,

ūr1 :� ur1{signpui�r1 ,r1
q, v̄r1 :� vr1 � signpui�r1 ,r1

q.

Finally, collection of ūr1 is done into the �rst TT core, C
p1q
r0,i1,r1

� ūi1,r1 , and continue with
the TT-SVD algorithm using v̄r1 as the right singular vectors. In contrast to the sign,
the whole dominant singular terms ur1v

J
r1
depend continuously on the input data, and

so do the maximum absolute elements. The procedure is summarized in Algorithm 4.1.

Lemma 4.1:
Assume that the singular values g

pmq
1 , . . . , g

pmq
Rm

are simple for each m � 1, . . . ,M � 1.
Then Algorithm 4.1 produces the unique TT decomposition. ♢

Proof. The m-th TT core produced in TT-SVD is a reshape of the left singular vectors
of the Gram matrix of the current unfolding, Am :� ZmZ

J
m. To set up an induction,

notice that Z1 � Ẑ1 � Xp1q is unique, and assume that Zm is unique too. Consider

the eigenvalue decomposition AmUm � UmΛm, Λm � diagpλ
pmq
1 , . . . , λ

pmq
Rm�1Im

q. Since

the eigenvalues λ
pmq
i � pg

pmq
i q2 are simple, each of them corresponds to an eigenspace of

dimension 1, spanned by the corresponding column of Um. This means that each eigen-
vector is unique up to a scalar factor, and, if the eigenvector is real and has Euclidean
norm 1, the scalar factor can only be 1 or �1. The latter is unique if it is chosen as the
sign of the largest in modulus element of the eigenvector (which is always nonzero), with
ties broken to take the �rst of identical elements. It remains to establish the uniqueness

54



4.2 The Proposed Algorithm

Algorithm 4.1: Uniqueness Enforcing TT-SVD

1: Input: M -dimensional tensor X P RI1�I2�...�IM , relative error threshold ϵ.
2: Ensure: Cores Cp1q,Cp2q, � � � ,CpMq of the TT-approximation X1 to X in the TT-format

with TT-rounding (Alg. 3.4) ranks rm equal to the δ-ranks of the unfoldings Xpmq of X,

where δ �
b

ϵ
M�1∥A∥F .

3: Initialize Ẑ1 � Xp1q, R0 � 1.
4: for m � 1 to M � 1 do

5: Zm :� reshape
�
Ẑm, rRm�1Im, Im�1 � � � IM s

	
6: Compute δ-truncated SVD: Zm � UmSmVT

m �Em, ∥Em∥F ¤ δ, where

Um � ru
pmq
1 , u

pmq
2 , . . . , u

pmq
Rm

s,Sm � diagpg
pmq
1 , g

pmq
2 , . . . , g

pmq
Rm

q,Vm �

rv
pmq
1 , v

pmq
2 , . . . , v

pmq
Rm

s
7: for rm � 1 to Rm do

8: i�rm � argmaxi�1,...,Rm�1Im |u
pmq
i,rm

| (with ties broken to �rst element)

9: ū
pmq
rm :� u

pmq
rm {signpu

pmq
i�rm ,rm

q, v̄
pmq
rm :� v

pmq
rm � signpu

pmq
i�rm ,rm

q

10: C
pmq
rm�1,im,rm

� ū
pmq
rm�1�pIm�1qRm�1, rm

11: end forV̄m � rv̄
pmq
1 , v̄

pmq
2 , . . . , v̄

pmq
Rm

s

12: Ẑm�1 :� SmV̄T
m

13: end for

14: CpMq � ẐM

of Zm�1 to complete the induction. By the orthogonality of Ūm � rū
pmq
1 , . . . , ū

pmq
Rm
s, we

get Ẑm�1 � ŪT
mZm, and since the reshape is unique, so is Zm�1.

Remark 4.2:
Most of the data featuring in machine learning are noisy. Therefore, the singular val-
ues of the corresponding matricizations are simple almost surely, and hence the TT
decomposition delivered by Algorithm 4.1 is unique almost surely. ♢

It is reasonable to say that if the sign of the singular values is undetermined, then an
SVD algorithm [133] would be unstable in selecting such signs when the training data
is slightly changed. Also, these signs would a�ect the classi�er (3.26), hence to kernel.
Therefore, to make it more understandable at this point how the sign of the singular
values a�ects the kernels and thus the classi�er. Here let consider two classes of 4 � 4
matrices of the following form:

label 1: Xp1q �
�
expp�ijq

�4
i,j�1

Xp2q �Xp1q � 10�3 � Zpxq, Z
pxq
i,j � N p0, 1q,

label �1: Yp1q �
�
expp�2.5 � ijq

�4
i,j�1

Yp2q �Yp1q � 10�3 � Zpyq, Z
pyq
i,j � N p0, 1q,
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where the elements of Zpxq and Zpyq are independent samples from the standard normal
distribution. That is, Xp2q and Yp2q are small perturbations of Xp1q and Yp1q, and belong
to the same classes. Performing the Singular Value Decomposition of all matrices,

U p1qSp1qV p1q � Xp1q, U p2qSp2qV p2q � Xp2q,

U p3qSp3qV p3q � Yp1q, U p4qSp4qV p4q � Yp2q,

and compute the elements of the kernel matrix as the Gaussian kernel of the �rst three
left singular vectors,

Kp,q � exp

�
�

3̧

k�1

||U
ppq
k � U

pqq
k ||2F

0.52

�
, p, q � 1, . . . , 4.

Using the default economic svd function in MATLAB gives the following �rst elements
of the singular vectors (up to 4 decimal digits):

k 1 2 3

U
p1q
1,k -0.9406 0.3369 -0.0420

U
p2q
1,k -0.9411 0.3361 0.0264

Note the di�erent signs in the elements of the third singular vectors, leading to the
following kernel matrix

K �

�����
1.0000 0.0000 0.0856 0.0014
0.0000 1.0000 0.0000 0.0000
0.0856 0.0000 1.0000 0.0006
0.0014 0.0000 0.0006 1.0000

����� .

In particular, |K1,3| ¡ |K1,2|, indicating that Xp1q has more similarity to Yp1q than
Xp2q, despite the fact that Yp1q is a matrix of a di�erent class. In contrast, �xing the
signs of the singular vectors as described in Section 4.2.1 gives

K �

�����
1.0000 0.1110 0.0856 0.0014
0.1110 1.0000 0.1365 0.0001
0.0856 0.1365 1.0000 0.0006
0.0014 0.0001 0.0006 1.0000

�����
with the correct relation |K1,2| ¡ |K1,3|, putting Xp2q into the same class with Xp1q.
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4.2.2 TT-CP Expansion

Despite the di�culties in computing a CP approximation, its simplicity makes the CP
format a convenient and powerful tool for revealing hidden classi�cation features in the
input data. However, as long as the TT decomposition is available, it can be converted
into the CP format suitable for the kernelized classi�cation.

Proposition 4.3:
For a given TT decomposition (3.6),a CP decomposition can be obtained

¸
r0,...,rM

C
p1q
r0,i1,r1

C
p2q
r1,i2,r2

� � �C
pMq
rM�1,iM ,rM

�
Ŗ

r�1

Ĥ
p1q
i1,r

Ĥ
p2q
i2,r

� � � Ĥ
pMq
iM ,r, (4.2)

♢

by merging the ranks r1, r2, . . . rM into one index r � r1 � pr2 � 1qR1 � . . . � prM �
1q
±M�1

ℓ�1 Rℓ, r � 1, . . . , R, R � R1 � � �RM , and introducing the CP factors

Ĥ
pmq
im,r � C

pmq
rm�1,im,rm

, m � 1, . . . ,M.

The transformation to obtain the TT-CP expansion is free from any new computations
and simply requires rearranging and replicating the original TT cores. Although this
expansion is valid for arbitrary dimensions, the number of terms may increase massively
for higher dimensions. However, since many experimental datasets are typically three
or four-dimensional tensors, the TT-CP expansion is feasible.
It should be noted that the number of terms R in the CP decomposition equation (4.2)

can be larger than the minimal CP rank of the exact CP decomposition of the given
tensor. However, it is observed in numerical tests that the nonlinear kernel function is
more sensitive to the features of the data rather than the number of CP terms per se,
and therefore, the expansion (4.2) leads to better classi�cation accuracy than attempting
to compute an optimal CP approximation using an ALS method.
The main reason for using the TT-CP expansion is twofold. On the one hand, the

DuSK kernel is better formulated for CP-like structures, and on the other hand, ap-
proximating low rank via CP-ALS is challenging. The TT, on the other hand, is more
stable in an algorithmic way since the estimation of the best low-rank for TT depends
on matrix SVD ranks. Therefore, combining the simplicity of CP with its compatibility
to DuSK and the stability of TT leads to improved performance.

4.2.3 Norm Equilibration

The researchers tried using the TT-CP expansion with the CP kernel from [72] directly
in preliminary experiments, but it did not result in better classi�cation results. Later,
they tried using the DuSK kernel [72], which introduces the same width parameter for
all CP factors. However, this requires all CP factors to have identical (or at least close)
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magnitudes, which is not the case in the plain TT-SVD algorithm [133], where di�erent
TT cores have di�erent norms. To address this issue, the TT-CP expansion is rescaled
to ensure that the columns of the CP factors have equal norms. This ensures that the
same kernel features are produced with the same width parameter, which is found to be
a crucial ingredient for the successful TT-SVM classi�cation.
Given a rank-r TT-CP decomposition JĤp1q, Ĥp2q, � � � , ĤpMqK, compute the total norm

of each of the rank-1 tensors

nr �
∥∥∥Ĥp1q

r

∥∥∥ � � �∥∥∥ĤpMq
r

∥∥∥ , (4.3)

and distribute this norm equally among the factors,

Hpmq
r :�

Ĥ
pmq
r∥∥∥Ĥpmq
r

∥∥∥ � n1{M
r , m � 1, 2, � � � ,M. (4.4)

4.2.4 Noise-aware Threshold and Rank Selection

In general, measurement or preprocessing noise can a�ect both computational and mod-
eling aspects of data coming from real world applications. The TT ranks may increase
due to the lack of any meaningful TT decomposition in a tensor of noise, and the clas-
si�cation may be spoiled if the noise is too large. However, the SVD can be used as a
de-noising algorithm automatically, as the dominant singular vectors are often �smooth�
and represent a useful signal, while the latter singular vectors capture primarily the
noise. Therefore, computing the TT approximation with deliberately low TT ranks /
large truncation threshold is actually bene�cial. However, the TT rank should not be too
low to ensure su�cient accuracy in approximating the features of the tensor. To evaluate
the e�ectiveness of the model, cross-validation is used, which involves re-sampling the
data into training-testing data sets. Since the precise magnitude of the noise is unknown,
a k-fold cross-validation test is carried out (where k � 5) to �nd the optimal TT rank.

4.2.5 Reproducing Tensor Kernels (�3.4.4)

In this section, possible choices for tensor kernels are discussed, as an extension to the
part 1 of reproducing kernels for tensors (�3.4.4). Firstly, brief recapitulation of some
existing tensor kernels and then a new approach to using these kernels on the proposed
low-rank TTCP approximation.

The Gaussian kernel

The natural idea of de�ning a kernel for tensorial data would be to extend the classical
Gaussian kernel directly from vector to tensor format. That is, the computation can be
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given directly as follows,

KpX,Yq � exp
��∥X� Y∥2F

2g2

	
, (4.5)

The distance between the two input tensors is computed using the Frobenius norm, with
g being the length scale of the kernel. E�cient computation of this norm is possible in
each of the tensor formats introduced above and the leading terms of the complexity
estimates are shown in Table 5.2. However, valuable information about the di�erent
tensor modes is lost by treating the tensor as a simple vector. It has been observed (e.g.
in [71, 72]) that this straightforward idea yields suboptimal classi�cation results and
that introducing more sophisticated tensor kernels can lead to further improvement.

Dual Structure-preserving Kernel

The Dual Structure-preserving Kernel (DuSK) was introduced �rst in [71] for a rank-one
tensor factorization and was later extended for the Kernelized CP decomposition in [72].
For given tensors X P RI1�I2�...�IM and Y P RI1�I2�...�IM and their corresponding CP de-
composition given by JAp1q,Ap2q, . . . ,ApMqK and JBp1q,Bp2q, . . . ,BpMqK, the formulation
of the kernel approximation by DuSK is given as follows:

xΨpXq,ΨpYqy � KpX,Yq

� K

�� Ŗ

i�1

a
p1q
i b a

p2q
i b � � � b a

pMq
i ,

Ŗ

j�1

b
p1q
j b b

p2q
j b � � � b b

pMq
j

�

�

Ŗ

i,j�1

kpa
p1q
i ,b

p1q
j qkpa

p2q
i ,b

p2q
j q � � � kpa

pMq
i ,b

pMq
j q, (4.6)

where,

kpa,bq � exp

�
�∥a� b∥2

2g2

�
. (4.7)

In short, the individual factors of the CP decomposition are used to evaluate the kernel
function kp�, �q. The motivation behind DuSK is simple: direct comparison of feature
vectors in each mode is likely to improve classi�cation, given that the CP decomposition
is often unique (up to norm equilibration). However, since this kernel is speci�cally
designed for CP tensors, converting tensors to the CP format �rst (see �4.2) is necessary.

4.2.6 Nonlinear Mapping

Now, with the homogenized TT-CP decompositions of the input tensors equipped, a
nonlinear kernel function can be de�ned. The rationale behind DuSK proposed in [71,
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72] is closely followed, and its generalized form for tensors of arbitrary dimension is
expressed. It is assumed that the feature map function from the space of tensors to a
tensor product Reproducing Kernel Hilbert Space [169] Ψ: RI1 � � � � �RIM ÞÑ F consists
of separate feature maps acting on di�erent CP factors,

Ψ:
Ŗ

r�1

hp1qr b hp2qr b � � � b hpMq
r ÞÑ

Ŗ

r�1

ϕphp1qr q b ϕphp2qr q b � � � b ϕphpMq
r q. (4.8)

The fact that the data is given in the CP format allows for the exploitation of this
format to aid in classi�cation. However, the feature function ϕpaq is to be implicitly
de�ned through a kernel function. Similar to the standard SVM, the kernel trick is
applied to (4.8) to obtain a practically computable kernel. Given CP approximations of
two tensors X � rxi1,...,iM s and Y � ryi1,...,iM s, the kernel can be computed,

xi1,...,iM �
Ŗ

r�1

h
p1q
i1,r

h
p2q
i2,r

� � �h
pMq
iM ,r, yi1,...,iM �

Ŗ

r�1

p
p1q
i1,r

p
p2q
i2,r

� � � p
pMq
iM ,r,

we compute

xΨpXq,ΨpYqy � KpX,Yq

� K

�� Ŗ

r�1

hp1qr b hp2qr b � � � b hpMq
r ,

Ŗ

r�1

pp1qr b pp2qr b � � � b ppMq
r

�
,

� xΨp
Ŗ

r�1

hp1qr b hp2qr b � � � b hpMq
r q,Ψp

Ŗ

r�1

pp1qr b pp2qr b � � � b ppMq
r qy,

�
Ŗ

i,j�1

xϕph
p1q
i q, ϕpp

p1q
j qyxϕph

p2q
i q, ϕpp

p2q
j qy � � � xϕph

pMq
i q, ϕpp

pMq
j qy,

�
Ŗ

i,j�1

kph
p1q
i ,p

p1q
j qkph

p2q
i ,p

p2q
j q � � � kph

pMq
i ,p

pMq
j q. (4.9)

Each pair of the tensor input data, represented by its CP factors, computes this
kernel approximation. Accurate learning requires choosing the width parameter g ¡ 0
judiciously. The proposed model, named the Tensor Train Multi-way Multi-level Kernel
(TT-MMK), is derived from the TT decomposition and aims to extract optimal low-
rank features while constructing a more accurate and e�cient classi�cation model. The
kernel values (4.9) are plugged into the STM optimizer (3.24) to complete the algorithm.
Algorithm 4.2 summarizes the overall idea.

60



4.3 Numerical Tests

Algorithm 4.2: TT-CP approximation of the STM Kernel

Input: data tXnu
N
n�1RI1�I2�...�IM , TT-rank R.

Output: Kernel matrix approximation
�
KpXu,Xvq

�
P RN�N

for n � 1 to N do
Compute TT approximation Xn � xxCp1,nq,Cp2,nq, � � � ,CpM,nqyy by Algorithm 4.1.
Compute TT-CP expansion
JHp1,nq,Hp2,nq, � � � ,HpM,nqK � xxCp1,nq,Cp2,nq, � � � ,CpM,nqyy as (4.2) with equilibrated
norms as (4.4).

end for
for u, v � 1 to N do
K pXu,Xvq �

°R
i,j�1 kph

p1,uq
i ,h

p1,vq
j qkph

p2,uq
i ,h

p2,vq
j q � � � kph

pM,uq
i ,h

pM,vq
j q as (4.9).

end for

4.3 Numerical Tests

� Experimental Settings
All numerical experiments have been done in MATLAB 2016b. In the �rst step, the
computation in the TT format of an input tensor uses the TT-Toolbox1, where the
function @tt_tensor/round.m has modi�ed to enforce the uniqueness enforcing
TT-SVD (�4.2.1). Moreover, the implementation of the TT-CP conversion, to-
gether with the norm equilibration is concluded. For the training of the TT-MMK
model, the svmtrain function available in the LIBSVM2 library is accustomed. All
the experiments run on a machine equipped with Ubuntu release 16.04.6 LTS 64-
bit, 7.7 GiB of memory, and an Intel Core i5-6600 CPU @ 3.30GHz�4 CPU. The
codes are available publicly on GitHub3.

� Parameter Tuning
The entire TT-SVM model depends on three parameters. First, to simplify the
selection of TT ranks, take all TT ranks equal to the same value R P t1, 2, . . . 10u.
Another parameter is the width of the Gaussian Kernel g. Finally, the third
parameter is a trade-o� constant C for the KSTM optimization technique (3.24).
Both g and C are chosen from t2�8, 2�7, . . . , 27, 28u. For tuning R, g and C to the
best classi�cation accuracy, use the k-fold cross validation with k � 5. Along with
this, all computations are reapeated 20 times and computation of statistics such
as average, standard deviation, and numerical quantiles have been done over these
runs. This ensures a con�dent and reproducible comparison of di�erent techniques.

1https://github.com/oseledets/TT-Toolbox
2https://www.csie.ntu.edu.tw/~cjlin/libsvm/
3https://github.com/mpimd-csc/Structure-preserving_STTM

61

https://github.com/oseledets/TT-Toolbox
https://www.csie.ntu.edu.tw/~cjlin/libsvm/
https://github.com/mpimd-csc/Structure-preserving_STTM


Chapter 4. E�cient Structure-preserving Support Tensor Train Machine

4.3.1 Data Collection

1. Resting-state fMRI Datasets

� Alzheimer Disease (ADNI): The ADNI4 stands for Alzheimer Disease
Neuroimaging Initiative. It contains the resting state fMRI images of 33
subjects. The data set was collected from the authors of the paper [72]. The
images belong to either Mild Cognitive Impairment (MCI) with Alzheimer
Disease (AD), or normal controls. Each image is a tensor of size 61�73�61,
containing 271633 elements in total. The AD+MCI images are labeled with
�1, and the normal control images are labeled with 1. Preprocessing of the
data sets is explained in [71].

� Attention De�cit Hyperactivity Disorder (ADHD): The ADHD data
set is collected from the ADHD-200 global competition data set5. It is a
publicly available preprocessed fMRI data set from eight di�erent institutes,
collected at one place. The original data set is unbalanced, so 200 subjects
have chosen randomly, ensuring that 100 of them are ADHD patients (as-
signed the classi�cation label �1) and the 100 other subjects are healthy
(denoted with label 1). Each of the 200 resting state fMRI samples contains
49� 58� 47 � 133574 voxels.

Note: It is mentioned in the MMK paper [72] that the exact indices of the
collected data are not mentioned, which means that the collected dataset
might not be exactly the same. As a result, accuracy percentages cannot be
directly compared to the MMK paper.

2. Hyperspectral Image (HSI) Datasets: The mat �le for both the datasets and their
corresponding labels6 have taken. The following datasets have three dimensional
tensor structure of di�erent sizes, where each tensor data point represents a pixel
value. Therefore, for the presented experiment, a patch of size 5�5 for two di�erent
pixel values, in order to get a binary classi�cation dataset have taken.

� Indian Pines: The HSI images were collected via the Aviris Sensor7 over
the Indian Pines test site. The size of the dataset is 145 � 145 pixels over
224 spectral values. Hence, the size of the tensor data is 145 � 145 � 224.
The collected mat for presented experiment has reduced band size 200. This
excludes bands covering the region of water absorption: [104-108], [150-163].
The original dataset contains 16 di�erent labels to identify di�erent corps and

4http://adni.loni.usc.edu/
5http://neurobureau.projects.nitrc.org/ADHD200/Data.html
6http://www.ehu.eus/ccwintco/index.php/Hyperspectral_Remote_Sensing_Scenes
7https://aviris.jpl.nasa.gov/
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living areas. Only 50 datapoints for each of the two labels 11 (Soybean-mintill
) and 7 (Grass-pasture-mowed) have taken.

� Salinas: This HSI images data was collected by 224 band Aviris Sensor over
Salinas valley, California. Similar to Indian Pines, in this case, samples for
two GroundTruths also have collected, namely 9 (Soil-vinyard-develop) and
15 (Vinyard-untrained) each with 50 datapoints. The size of the dataset is
512 � 217 pixels over 224 spectral values. Hence, the size of the tensor data
is 512� 217� 224.

Note: After the publication of this work, the same experiments were also conducted
on a Computed Tomography (CT) dataset. The .mat �le for the dataset was obtained
from MosMedDataa. This dataset consists of anonymised human lung CT scans with
COVID-19-related �ndings, as well as scans without such �ndings. It comprises 1000
data points corresponding to four di�erent conditions related to COVID-19. The CT
scans were acquired between March 1, 2020, and April 25, 2020, and were provided by
municipal hospitals in Moscow, Russia. The classi�cation accuracy achieved for this
data is nearly on par with the state-of-the-art. This also serves as a benchmark for the
model since existing state-of-the-art models are computationally expensive, especially
considering the optimization of DL-based techniques which tends to be costly in general.

ahttps://mosmed.ai/en/

4.3.2 In�uence of Individual Algorithmic Steps

In the �rst test investigation of the impact of each individual transformation of the TT
decomposition, outlined in �4.2.1��4.2.3. Firstly, a counterpart of the DuSK kernel (4.9)
directly to the initial TT approximation of the data tensors can be applied. Given TT
decompositions

xi1,i2,i3 �
R1,R2¸
r1,r2�1

C
p1q
i1,r1

C
p2q
r1,i2,r2

C
p3q
r2,i3

and yi1,i2,i3 �
R1,R2¸
t1,t2�1

S
p1q
i1,t1

S
p2q
t1,i2,t2

S
p3q
t2,i3

,

computation of a separable kernel similarly to (4.9) via

kpX,Yq �
R1̧

r1,t1�1

R2̧

r2,t2�1

kpCp1q
r1
,S

p1q
t1 qkpC

p2q
r1,r2

,S
p2q
t1,t2qkpC

p3q
r2
,S

p3q
t2 q, (4.10)

has performed and a similar approach was also proposed recently in [32]. Comparison
of two versions of this TT-DuSK kernel: �uTT� and �TT�, which correspond to the TT-
SVD algorithm with and without uniqueness enforcement (Algorithm 4.1), respectively,
are executed.
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Figure 4.1: Test classi�cation accuracy of di�erent versions of the TT-MMK algorithm:
�TT� vs �uTT� (left top), �TT� vs �TTCP� (right top), �TTCP� vs �TTCPe�
(left bottom), and �TTCPe� vs the �nal algorithm �uTTCPe� (right bottom)
for the ADNI dataset. Lines denote averages, and shaded areas denote 95%
con�dence intervals over 20 runs.

Next, the expansion of the TT format without uniqueness enforcement into the CP
format as described in Section 4.2.2 and Eq. (4.2) is done, but without equilibrating the
norms, and apply the DuSK kernel (4.9). The corresponding classi�er is called �TTCP�.
Note that for a given TT decomposition and its exact TT-CP expansion the values of the
kernels (4.10) and (4.9) coincide. However, di�erent runs of the classi�cation algorithm
may produce di�erent signs of the singular vectors in the TT-SVD algorithm, di�erent
initial guesses in the SVM, and di�erent splitting of the data into training and test sets
during the cross validation.
Finally, construct the norms of the CP factors equilibrated as described in Section 4.2.3

and Eq. (4.4), followed by the DuSK kernel (4.9). Depending on using or not using the

64



4.3 Numerical Tests

uniqueness enforcement during the initial TT computation, the corresponding classi�ers
are called �uTTCPe� and �TTCPe�, respectively.
In Figure 4.1 pairwise comparision of these versions of the algorithm to ensure clarity

of overlapping con�dence intervals has executed. Top left plot of Figure 4.1 shows that
the direct TT counterpart of the DuSK kernel (4.10) gives a poor test accuracy, although
the uniqueness enforcement can improve it slightly for higher ranks.
Next, comparison of the TT and TTCP DuSK kernels (top right of Figure 4.1) is

shown. This is merely a sanity check, since deterministic algorithms would give the
same results. Correspondingly, randomized algorithms give overlapping realisations of
the test accuracy.
In the bottom left plot of Figure 4.1 compares TTCP DuSK kernels with and without

norm equilibration, but without uniqueness of the underlying TT decomposition. We
see that the norm equilibration provides a noticeably higher test accuracy at rank 5.
Nevertheless, the mean accuracy is still below 65%.
Finally, upon plugging in both the uniqueness-enforced TT format and its norm-

equilibrated TTCP expansion (Figure 4.1, bottom right), the test accuracy of the TT-
MMK classi�er exceeds 70%, with the best average accuracy of 73% achieved for rank
4. This demonstrates the signi�cance of all steps in the TT-MMK classi�er.

Note: the DuSK kernel of the TTCP with norm equilibration is not equivalent to the
TT-DuSK kernel though, since the norm of a TTCP factor,

nr �
∥∥∥Ĥp1q

r

∥∥∥∥∥∥Ĥp2q
r

∥∥∥∥∥∥Ĥp3q
r

∥∥∥ �∥∥∥Cp1q
r1

∥∥∥∥∥∥Cp2q
r1,r2

∥∥∥∥∥∥Cp3q
r2

∥∥∥ , r � r1 � pr2 � 1qR1,

depends on both TT rank indices r1 and r2, and the norm-equilibrated TTCP factors,
for example,

Hp1q
r :�

Cp1q
r1∥∥∥Cp1q
r1

∥∥∥ � n1{3
r ,

depend on both r1 and r2 too, and are not reducible back to the TT format. How-
ever, since this information concerns a competing method TT-DuSK (and not the main
contribution), it is not included at this stage of research.

4.3.3 Comparison to Other Methods

Next, the comparison of the classi�cation accuracy of the �nal proposed TT-MMK
method (�uTTCPe�) with the accuracy of the following existing approaches is given.

SVM: the standard SVM with Gaussian Kernel. This is the most used opti-
mization method for vector input based on the maximum margin technique. The
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Figure 4.2: CPU time vs classi�cation accuracy for ADNI data with truncation rank
from 1 to 10.

objective function mentioned in (2.18) has been optimized using LIBSVM using
the kernel trick [155].

STuM: The Support Tucker Machine (STuM) [96] uses the Tucker decomposition.
The weight parameters of the SVM are computed for optimization into Tucker
factorization form.

DuSK: The idea of DuSK [71] is based on de�ning the kernel approximation for
the rank-one decomposition. This is one of the �rst methods in this direction. [71]
solves the STM (3.24), with kernel approximation using the DuSK format similar
to (4.9).

MMK: This method is an extension of DuSK to the KCP input. The latter is
the CP format with factor matrices (3.3) projected onto a covariance or random
matrix [72]. The proposed work framework used the original DuSK and MMK
codes provided by the authors of the research article [72].

Improved MMK: This is actually a simpli�ed MMK, where the projection of
the CP onto the KCP is omitted (the covariance/random matrices are replaced by
the identity matrices).

KSTTM: This method is applied directly on the TT-cores with two di�erent
types of kernel computations, namely K-STTM prod and K-STTM sum [32]. In
the experiments, this method ran out of memory for the ADHD dataset during
the computation of the kernel matrix.

TT-MMK: This is the proposed method.
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Figure 4.3: Classi�cation accuracy, average (lines) � one standard deviation (shaded
areas) over 20 runs. Left: ADNI dataset. Right: ADHD dataset.

The key observations from the results shown in Table 4.1 and Figure 4.3 are as follows.

(In)sensitivity to the TT Rank Selection: Figures 4.3 and 4.1 (bottom right)
show that the proposed method gives almost the same accuracy for di�erent TT
ranks. For some samples, even the TT rank of 2 gives a good classi�cation. Note
that this is not the case for MMK, which requires a careful selection of the CP
rank.

Computational Robustness: while the CP decomposition can be computed
using only iterative methods in general, all steps of the kernel computation in TT-
MMK are �direct� in a sense that they require a �xed number of linear algebra
operations, such as the SVD and matrix products.

Computational Complexity: approximating the full tensor in the TT format
has the same OpnM�1q cost as the Tucker and CP decompositions. All remaining
operations with the factors scale linearly in the dimension M and mode sizes, and
polynomially in the ranks.

Classi�cation Accuracy: the proposed method gives the best average classi�-
cation accuracy compared to �ve other state of the art techniques.

Running Time: The time taken by the MMK and TT-MMK experiments for
the ADNI data with C, g P

�
2�8, 2�7, . . . , 27, 28

�
are � 17 minutes and � 3.5 hours,

respectively, for the entire range of R P t1, 2, . . . 10u. However, if Figure 4.2 looked
closely at, the TT-MMK achieves nearly the best accuracy for any rank starting
from 2. This means that even though the TT-MMK process takes more time than
MMK for the same TT ranks due to the higher CP rank induced by (4.2), the
higher test accuracy is a reasonable reward for the larger CPU time. In particular,
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(a) GroundTruth of Indian Pines dataset (b) GroundTruth of Salinas dataset

Figure 4.4: Hyperspectral images with di�erent labels

if the range of R to t1, . . . , 5u is reduced, which is su�cient to discover the best
classi�ers for both methods, the timings are closer: MMK needs about 1 minute
for its best variant (CP rank 5), while the TT rank 4 solution of a better accuracy
is computed in about 3 minutes. This slightly higher runtime is acceptable for a
better classi�cation accuracy.

Reproducibility: Figure 4.3 shows that the MMK method has a higher empir-
ical standard deviation (0.05 for the ADNI dataset, 0.02 for the ADHD dataset)
compared to the TT-MMK method with standard deviations of 0.03 and 0.01 for
the ADNI and ADHD datasets, respectively. This shows that TT-MMK is more
predictable.

Generalization: Top accuracy (see Table 4.1) in datasets from two di�erent areas
(fMRI and HSI) shows that the method is suitable for a wide range of binary tensor
classi�cation problems.

4.4 Chapter Summary

The STM model presented in this chapter, proposes a new low-rank approximation
method, called the TT-CP decomposition, which is described in section �4.2. The ap-
proach involves three main steps. Firstly, the singular vectors are enforced with unique-
ness during TT-SVD computation (�4.2.1). Secondly, the TT format is converted exactly
to the CP format. Finally, to ensure the robustness of the model with respect to rank-
truncation, norm equilibration is performed (�4.2.3).

In addition, section �4.2.4 explains the necessity and importance of applying TT-
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Table 4.1: Average classi�cation accuracy in percentage for di�erent methods and data
sets

Methods ADNI ADHD Indian Pines Salinas

SVM 49 52 46 47
STuM 51 54 57 74
DuSK 55 57 60 92
MMK 69 58 93 98
Improved MMK 70 58 94 98
K-STTM prod 60 - 76 100
K-STTM sum 60 - 73 100
TT-MMK 73 63 99 99

rounding (3.4) when computing the TT decomposition with TT-SVD (3.3). Further-
more, section �4.2.5 is a sequel to the previous chapter's �3.4.4, which introduces two
new reproducing kernels and a way of computing factor kernels over the CP format.
The use of these kernels for the low-rank TT-CP decomposition is explained in section
�4.2.6.
The newly proposed TT-CP approximation and corresponding kernel matrix com-

putation lead to better solutions for the KSTM model. Numerical tests on real-world
data, such as fMRI and hyperspectral images, are presented in section �4.3. A crucial
subsection of this part is the in�uence of individual algorithmic steps on the presented
datasets. Furthermore, to compare two consecutive steps of the �nal algorithm at a
time, including the con�dence intervals over the randomization of signs in the singular
vectors (for the TT approximation without uniqueness enforcement), initial guesses in
the SVM, and data partitioning in the cross-validation, statistical importance of the
results can be assessed. Section �4.3.2 authenticates the proposed research work and
positions it as a state-of-the-art model at the time.
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5.1 Introduction

This chapter builds upon the problem discussed in the previous Chapter 4 and focuses
on solving the problem concerned in �4.1.1. As mentioned in �3.5, classi�cation meth-
ods that rely on low-rank approximations, such as CP (�3.3.1), Tucker (�3.3.2), or TT
(�3.3.3), tend to perform better since they preserve in�uential information of the tensor
input data, resulting in better features. However, it is not entirely clear why kernels
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based on low-rank decompositions are e�ective for classi�cation. This chapter dives into
both the concerns, �rst the exploration of better suited LRTF and a�liated kernel.

5.1.1 Related Work

Motivation : The main goal of this work is to create a new way of transforming data
that captures nonlinear relationships. Recently, approximating tensors using low-rank
decompositions has gained a lot of attention in scienti�c computing [40, 95, 37, 111].
Early attempts on the use of HOSVD/MLSVD [167, 168, 209] applied kernel methods to
tensor data, which involves �attening the tensor data. However, this approach leads to
high-dimensional vectors and matrices, making them prone to over�tting and potentially
losing important tensor structure, which calls for alternative methods.
The well-de�ned problem of Tucker approximation enables us to compute an almost

optimal Tucker approximation using singular value decompositions (SVD) [96] or relaxed
orthogonality has been used for enhancement [139]. E�orts to extract key aspects of ten-
sorial data and design corresponding kernels include the Tucker subspace kernel [167].
The factor match score, discussed in [4], provides a consistent way to compare tensor
decomposition feature vectors. Further understanding of the KCP approach [73] comes
through a kernelized Tucker model, in�uenced by [169]. The Tensor Train (TT) decom-
position, similar to Tucker but scalable to higher dimensions like the CP format, was
extended into the TT format of DuSK (MMK) [31].
However, the exact reason for the success of low-rank decomposition-based kernels in

classi�cation remains unclear. Moreover, since tensor decompositions introduce nonlin-
ear parameters, their representation might lack uniqueness. For example, Tucker and
TT decompositions are not a�ected by factor rotation and scaling, and they can be
interconverted with changes in rank. In Chapter 4, a method is introduced that sig-
ni�cantly improves classi�cation accuracy by removing redundancy in rotation, scaling,
and TT to CP conversion in the TT-MMK method [98]. As the TT-decomposition is
also a tree-based tensor format, the advantages of the Tucker format extend to the TT
format as well. However, the complexity of the TT format increases quadratically with
the ranks, while the Tucker format's complexity grows exponentially with the Tucker
ranks. Yet, this reduction in complexity comes at a trade-o� with interpretability: the
meaning of the TT components is not as straightforward.
Utilizing Low-rank Approximation and Kernel Methods : Although most of

the proposed works based on HOSVD focus mainly on the factors of Tucker/HOSVD,
the data could contain crucial features not only in the Tucker subspaces but also in the
Tucker core. Addressing this challenge is the focus of Chapter 5, which aims to �ll this
gap by introducing a novel kernel that demonstrates high robustness in identifying where
classi�cation information resides within the tensor. Before delving into the details of the
contributions in the subsequent chapters, a following section provides a summary and
explanation of some important kernels introduced in the previous works mentioned.
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This chapter underscores the importance of the TT to CP decomposition for DuSK,
taking a slightly di�erent approach in selecting the type of low-rank approximation.
While examining existing methods, this chapter addresses challenges and issues that
arise and presents e�ective solutions to tackle them.

Main Novelty: This chapter predominantly centers on the innovative kernel, show-
casing remarkable robustness in dealing with the positioning of classi�cation informa-
tion within the tensor. The primary focal point of this chapter involves introducing
a novel approach to express the Tucker (HOSVD) decomposition, featuring weighted
factors. These weighted factors play a pivotal role in constructing a fresh kernel
tailored for support tensor machines. This newly devised kernel not only enables
swift computations but also incorporates a weighting mechanism that considers both
Tucker factors and the core, facilitating the creation of a nonlinear decision boundary.
Through comprehensive numerical experiments conducted on synthetic data, where

class assignment is based on either Tucker factors (leaf ) or the core, it has been
empirically veri�ed that the novel kernel yields accurate classi�cation outcomes in
nearly all scenarios, akin to the pre-existing Tucker-based kernels. Additionally,
while maintaining comparable or even improved levels of classi�cation accuracy, the
proposed kernel exhibits a higher level of versatility concerning rank truncation of
LRTF, all achieved with signi�cantly reduced CPU time.
In summary, the method described in this chapter shows that the new kernel

consistently performs better than state-of-the-art methods in two important aspects:
it almost always achieves higher classi�cation accuracy, and it is more e�cient in
terms of CPU time in all scenarios. This superiority holds true even when dealing
with real-world datasets, highlighting the practical bene�ts of this approach.

5.1.2 Problem Formulation

This chapter provides a method for solving the following problem,

max
α1,...,αN

Ņ

i�1

αi �
1

2

Ņ

i�1

Ņ

j�1

αiαjyiyjKpXi,Xjq

subject to 0 ¤ αi ¤ C,
Ņ

i�1

αiyi � 0 @i. (5.1)

The core problem formulation remains consistent, with the divergence being in�u-
enced by both the selection of Low-Rank Tensor Factorization (LRTF) and the chosen
Kernel. The speci�c gaps highlighted in the preceding section, as elaborated in �5.1, are
e�ectively addressed and resolved in the subsequent content of this chapter.
The mathematical formulation of the two issues at hand is elaborated as follows:
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� Choosing the LRTF of Xi, @i P  N ¡

� Choosing the Kernel KpXi,Xjq

The chapter chapter 4 dig into the TT-CP format as LRTF (�4.2). The direct im-
plication of the TT to CP conversion for HOSVD/Tucker would be Tucker-CP format.
Further, these two conversions are discussed, and their use as LRTF in (5.1). In addi-
tion, the selection of kernel and further exploration of new development is also part of
this chapter.

5.1.3 Converting TT into CP

Evident from (3.3), (3.5), and (3.6), is the ability to transform a tensor from Tucker or TT
format into the CP format through summation over all Tucker ranks R1, . . . , RM , or all
TT-ranks r0, . . . , rM , respectively. However, it's important to note that this conversion
doesn't yield a minimal CP decomposition; rather, it results in a CP representation of
the tensor. Notably, none of these decomposition formats is inherently unique, as CP
permits the rescaling of factor matrix columns, and Tucker and TT can incorporate
identity matrices I � QQ�1 between modes without altering the tensor's essence.
In a prior study (Chapter 4), the challenge of converting TT to CP in a meaningful

manner was resolved by imposing uniqueness in the TT-SVD, followed by conversion
to CP. Column norm equilibration was also employed to eliminate ambiguity in the
CP representation. This method can also be extended to the conversion of Tucker into
CP. The Higher Order SVD (HOSVD) achieves uniqueness by �xing the sign of each
singular vector. This entails identifying the element with the greatest absolute value and
rendering it positive. Analogous to Chapter 4, one can show that under the assumption
of simple singular values, this results in unique Tucker factors. These factors do not
vary too much if the noise is moderate. In the case of the Tucker tensor, conversion to
CP involves summing across all ranks R1, . . . , RM , and subsequent norm equilibration
ensures the even distribution of the scalar gr1r2...rM in (3.5) among all factors.

5.1.4 Converting Tucker to CP

Viewing the CP decomposition of a tensor through a di�erent lens, it can be perceived
as a specialized instance of the Tucker decomposition featuring a diagonal core tensor
(Algorithm 5.1). Speci�cally, if the matrix ranks of the factor matrices Ap1q, . . . ,ApMq

are constrained to be less than a given threshold R, it's feasible to construct a Tucker
decomposition with Tucker ranks Rm   R for each m � 1, . . . ,M . In such scenarios,
the core tensor might not necessarily be diagonal; however, it could potentially include
numerous zero entries when R   R1 � � � � �RM .
Irrespective of the chosen decomposition method, whether CP or Tucker, the factor

matrix Apmq in CP format or the leaf Upmq in Tucker format, serves to span the subspace
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of RIm , encompassing the data pertaining to the m-th mode. This subspace is inherently
de�ned by the columns of the m-mode matricization of the entire tensor.

The memory need for storage for individual and conversionsn(�5.1.3, �5.1.4) among
LRTF are mentioned in the Table 5.1.

Algorithm 5.1: Tucker to CP.

Input: Mth-order tensor X
1

� JG;Up1q,Up2q, . . . ,UpMqK is in the Tucker format with
Tucker ranks rR1, R2, � � � , RM s � RTucker

Output: CP format X �
°R

r�1 a
p1q
r � a

p2q
r � � � � � a

pMq
r

� Normalization �
X= hosvd(full(X), 0, RTucker)
for m � 1 to M do
for rm � 1 to Rm do
Apmqp:, sub2indpRTucker, i, j, kqq � Upmqp:, rmq
Λp:, sub2indpRTucker, i, j, kqq � Gpr1, r2, � � � , rmq

end for
end for
return CP decomposition with Apmq factor matrices

Table 5.1: Memory Storage.

1. Full tensor format (ktensor) OpIMq
2. CP OpMIRCP q
3. Tucker OpMIRTucker �RM

Tuckerq
4. TT/MPS OpMIR2

TT q
5. TT-to-Tucker OpMR2pIq �MR3q
6. Tucker-to-CP OpMRTuckerpIq �MRTuckerRCP q [52]

5.2 Reproducing Tensor Kernels

This section is third sequel of mentioned �3.4.4, and �4.2.5 from preceding chapters.
As the focus is on tucker decomposition, therefore, an existing kernel based on tucker
factors is introduced further. Additionally, signi�cant research work proposed in this
chapter is encompassed in this section.
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5.2.1 The Subspace Kernel

So far, we have understood that the naive way of de�ning the distance between two
tensors ( ∥X� Y∥ ), using the so-called Euclidean metric, is suboptimal for capturing
the topology of the input patterns [98]. Therefore, we explaine a factor-based Subspace
kernel [167] that depends on the chordal distance on the Grassmannian manifolds of
matrix unfolding. This kernel relies on MLSVD and possesses an invariance property.
Instead of comparing the feature vectors in the CP decomposition, one can use a

similar approach for the Tucker format. Here, the feature vectors are stored in the leaf-
componentsUpmq and they span the column spaces of them-th matricizations. However,
using only these components for the classi�cation would mean that all information in the
core component G would be ignored, as discussed in detail in Sec. 5.3.2. For this reason,
the authors of [167] have chosen to compare the subspaces spanned by singular vectors
of tensor unfoldings instead: Let X P RI1�I2�...�IM denote an M th-order tensor, when
the SVD is applied on the mode-m unfolding as Xpmq � U

pmq
X Σ

pmq
X V

pmqT
X and similarly

for Y P RI1�I2�...�IM , Ypmq � U
pmq
Y Σ

pmq
Y V

pmqT
Y , then the Chordal distance-based kernel is

de�ned as,

KpX,Yq �
M¹

m�1

exp
�
�

1

2g2

∥∥∥Vpmq
X V

pmq�
X �V

pmq
Y V

pmq�
Y

∥∥∥2

F

	
(5.2)

Note that here, we use the projections onto these subspaces, given by the Moore-Penrose-
Pseudoinverse V

pmq�
X . Since the components V

pmq
X are (usually) orthogonal, this can

simply be replaced by the transpose. Furthermore, for computational reasons, it makes
sense to only compute the mixed termV

pmq
X V

pmqT
Y in each summand. This kernel provides

us with rotation and re�ection invariance for elements on the Grassmann manifold.
To understand the motivation behind the invention of this kernel, as explained in [167],

a glimpse of the proposed work is provided here to continue the �ow of reading. Firstly,
we consider the distance between the unfoldings of two tensors. This approach treats
tensors as collections of linear subspaces obtained from their respective matricizations.
Hence, the factor kernel for tensors X,Y P RI1�I2�...�IM , and any g is de�ned as,

kmpX,Yq :� exp

�
�

1

2g2
dpXpmq,Ypmqq2



, (5.3)

where, d presents a cordial distance between row-spaces on the Grassmann manifold.
Arguably, in [167], it is mentioned that the presented factor kernel must be positive

de�nite (also discussed in Chapter 3). The distance d should be meaningful so that the
product kernel k (as de�ned in (5.3)) can be equivalently restated as the RBF kernel
. This closely resembles (4.5) but di�ers in that the Euclidean norm is replaced by a
non-Euclidean distance function de�ned as:
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dpX,Yq �

d ¸
mP M¡

dpXpmq,Ypmqq2. (5.4)

As any unitarily invariant metric on a Grassmannian manifold is intrinsically linked to
the concept of principal angles. The principal angles between row spaces can be de�nde
recursively and among many principal angle based measured distances, the projection
Frobenius norm (chordal distance [46]) with a one-to-one relation between supbspace
and its orthogonal projection. As in the case of MLSVD, the orthogonal projection of
subspaces is given by V

pmq
Y V

pmq�
Y , hence the clari�cation of the (5.2).

5.2.2 The Weighted Subspace Exponential Kernel

One main disadvantage of the subspace kernel is that the matrices V
pmq
X containing the

row-space information of each unfolding can be very large: Especially for higher-orders
M , they su�er from the curse of dimensionality as their size grows with order OpM�1q.
Additionally, much of the information in these components is redundant and the row-
spaces of the unfoldings are highly correlated. As already discussed, directly replacing
the projections onto the row-space by those onto the column-spaces is not an option:
While the curse of dimensionality would be broken, all information contained in the core
component G of the Tucker tensor would be lost. This is con�rmed in our synthetic
numerical experiments below.
The DuSK uses a similar strategy as the subspace kernel: Here, we compare all

the feature vectors in the CP decomposition. DuSK therefore also performs well if
most of the information is in the column spaces, i.e., in the feature vectors. The main
contribution of this article is an improved tensor kernel for Tucker tensors that includes
information of the core tensor G while breaking the curse of dimensionality, retaining
the strengths of the subspace kernel and DuSK while allowing for a much more e�cient
computation.
We �rst observe that in the computation of the SVD of a matricized tensor Xpmq,

we can shift any power of the singular values into either the left or the right singular
matrices:

Xpmq � UpmqΣpmqpVpmqqT � Upmq
�
Σpmq

	p �
Σpmq

	1�p

pVpmqqT

for any p P R (assuming no zero singular values, or de�ning 00 � 1). Using this, we
can distribute singular values over the Tucker factors in the HOSVD and we use the
resulting rescaled features

Ūpmq :� Upmq
�
Σpmq

	p }Σpmq}1{MF

}pΣpmqqp}F
(5.5)
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for the computation of the kernel. This means that for all choices p P r0, 1s, the norm
of the tensor is distributed equally over the M feature matrices

}X} � }Σp1q}F � � � � � }ΣpMq}F �
M¹

m�1

}Ūpmq}F ,

which provides accurate classi�cation in practice while using only the row-space compo-
nents. We can choose di�erent values for p: p � 0 yields unweighted feature vectors of
equal importance, while p � 1 would mean a full reweighting according to the importance
of the features in the data (see Figure 5.5).
Since the projections onto the row-spaces are invariant under rescaling of the features,

we compute the Euclidean distances instead and sum over the exponential kernels of all
combinations, noting that if the distances are large, these terms will be negligible. The
result is similar to DuSK, but it uses the feature vectors from the Tucker decomposition
and the order of the sum over the ranks and the product over the tensor order is reversed:

KpX,Yq �
M¹

m�1

Rm̧

i,j�1

kppu
pmq
X qi, pu

pmq
Y qjq �

M¹
m�1

Rm̧

i,j�1

exp

�
�

1

2g2

∥∥∥ūpmq
X,i � ū

pmq
Y,j

∥∥∥2

F



, (5.6)

where, as in the subspace kernel, we distinguish the SVD of the two tensors, writing

Xpmq � U
pmq
X Σ

pmq
X V

pmqT
X and Ypmq � U

pmq
Y Σ

pmq
Y V

pmqT
Y . We call this kernel the weighted

subspace exponential kernel or WSEK for short. We also considered leaving the order of
the sum and the product the same as in DuSK, but this would need further considerations
if the Tucker ranks across the modes are not all the same. Furthermore, our experiments
have not shown any signi�cant di�erence in classi�cation accuracy with respect to the
order of

±M
m�1 and

°Rm

i,j�1.
Algorithm 5.2 summarizes the computation of the reweighted HOSVD with some pa-

rameter p P r0, 1s: First, we compute the SVD of the m-th matricization of X. Then, the
sign ambiguity of the feature vectors is addressed and the reweighting (5.5) is performed.
Finally, the the core tensor G is updated using the tensor-matrix-product de�ned in [183].

5.2.3 Computational Complexity of the Di�erent Kernels

For a large number N of data points, for large tensor order M or large mode dimensions
Im, computing the di�erent tensor kernels can be very time-consuming. If the data input
is already given in CP format, computing the DuSK is not too expensive. But most often,
the data is given as a full tensor. In these cases, it is preferred to compute �rst a TT or
Tucker decomposition of the tensor and then convert it into CP, in order to circumvent
the aforementioned numerical issues with the computation of the CP decomposition.
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Algorithm 5.2: Weighted HOSVD.

Require: Given tensor X P RI1�I2�...�IM , Tucker ranks R1, . . . , RM , weighting power p
(default p � 1{M).

Ensure: Tucker factors Ūp1q, . . . , ŪpMq and core G.
Initialize G � X.
for m � 1 to M do
Step 1: Computing uniqueness-enforced HOSVD

Compute SVD
�
Upmq,Σpmq, pVpmqqT

�
� svdpXpmqq,

where Σpmq � diagpσ
pmq
1 , σ

pmq
2 , . . . , σ

pmq
Im
q

for rm � 1 to Rm do
i�rm � argmaxi�1,...,Im |u

pmq
i,rm

|

û
pmq
rm :� u

pmq
rm {signpu

pmq
i�rm ,rm

q

end for
Ûpmq � rû

pmq
1 , û

pmq
2 , . . . , û

pmq
Rm
s

Step 2: Computing norm weighted factors

Ūpmq � Ûpmq
�
Σpmq

	p }Σpmq}1{MF

}pΣpmqqp}F
where Σ

pmq
p � diagppσ

pmq
1 qp, pσ

pmq
2 qp, . . . , pσ

pmq
Rm
qpq

GÐ ttmpG, pŪpmqq�1,mq [183]
end for

Here, however only notice is on the complexity of the kernel computation with respect to
the given ranks. The maximal dimensions or ranks are denoted by I � maxm�1,...,M Im,
RTucker � maxm�1,...,M Rm, and RTT � maxm�1,...,M�1 rm. The ranks are also to be
understood as the maximal respective rank of all data inputs.

Table 5.2 summarizes the computational complexity for a single entry of the kernel
matrix. Notice that all kernels except the Gaussian kernel can only be computed if
the tensor is in a low-rank format. Also, a tensor is interpreted in CP format to be
a Tucker tensor with diagonal core tensor G and thus the subspace kernel and WSEK
are computed using the factor matrices. Furthermore, in the cases of Tucker and TT
tensors, the complexity using naive matrix multiplication (Opn3q) is reported.

Here observe that for large tensor order M , computation of the Gauss kernel is pro-
hibitive if it is not done in a low-rank format. If the CP rank R is small, all kernels can
be computed e�ciently. However, if the CP decomposition has to be obtained by con-
version from Tucker or TT, these ranks can be large and DuSK su�ers from the curse of
dimensionality. WSEK is even more e�cient than the subspace kernel. The CPU times
for the numerical experiments are reported in Sec. 5.4.
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Table 5.2: Theoretical complexity of computing a single entry of the di�erent kernel
matrices from data given in di�erent formats. Note that some kernel-format
combinations are not de�ned.

Full CP Tucker TT

Gaussian OpIMq OpMIR2q OpMR
pM�1q
Tucker �MIR2

Tuckerq OpMIR3
TT q

DuSK � OpMIR2q OpMIR2M
Tuckerq OpMIR

2pM�1q
TT q

Subspace � OpMIM�1R2q OpMIM�1R2
Tuckerq �

WSEK � OpMIR2q OpMIR2
Tuckerq �

5.3 A Numerical Study on Synthetic Data

As mentioned above, knowledge about the tensor structure can and should be exploited
when choosing the tensor kernel K. In this section, focus is on exploring why the DuSK
performs well in many cases by comparing it to the Gaussian kernel and the subspace
kernel in a synthetic experimental setting. Furthermore, Here it is seen that the proposed
WSEK retains the advantages of DuSK, while outperforming it in cases where DuSK is
less suitable.

5.3.1 Interpreting CP and Tucker

The CP decomposition of a tensor can be seen as a special case of the Tucker decom-
position with a diagonal core tensor. More precisely, if the matrix ranks of the factor
matrices Ap1q, . . . ,ApMq are smaller than R, a Tucker decomposition of the tensor with
Tucker ranks Rm   R for m � 1, . . . ,M is found. The core is then no longer diagonal,
but it will have many zero entries if R   R1 � � � � �RM .
In any case, for m � 1, . . . ,M , the factor matrix Apmq in the CP format, or the leaf

Upmq in the Tucker format, spans the subspace of RIm that the data of them-th mode lies
in (the columns of the m-mode matricization of the full tensor also span this subspace).
ALthough, the Tucker core may become dense if CP factors are decomposed. The
information that is stored in the Tucker tensor (and by inclusion also in the CP tensor)
is therefore twofold: What are the subspaces that input data lies in? This information
is stored in the orthogonalized leafs of the Tucker tensor. And what combination of
feature vectors is present (and to what degree) in the data? This information is stored
in the core tensor G.
This observation can be exploited when designing a tensor kernel for KSTM. The

subspace kernel introduced in �5.2 uses the highly correlated column spaces of the
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unfoldings. Using the smaller row spaces instead would mean that we can only see the
leafs of the Tucker tensor. DuSK includes the core data via the norm equilibration. The
Gaussian kernel uses the whole tensor, but it is less sensible in spotting the subspaces,
because the tensor is simply vectorized, and this information is hidden. The proposed
WSEK includes information of the core tensor because the feature vectors are weighted
with the p-th power of the corresponding singular values.

5.3.2 A Synthetic Experiment

The considerations are substantiated by creating two arti�cial experimental scenarios:
In one (the leaf-scenario), all the information necessary for classi�cation is stored in the
leafs (i.e. the subspaces) and in the other (the core-scenario), all the information is in
the core of the Tucker tensor. Then the performance of the aforementioned kernels on
this data for di�erent noise levels and tensor ranks has tested.

The detailed experimental setup is as follows: Let M � 3 and I1 � I2 � I3 � 100. For
di�erent Tucker ranks R1 � R2 � R3 � rapprox � 1, . . . , 10, simulate the approximation
of a tensor with Tucker ranks R1

1 � R1
2 � R1

3 � rexact � 3 plus some noise. That is, the
core G of the simulated tensor will have size rapprox � rapprox � rapprox and the leafs will
have sizes Im�rapprox for m � 1, 2, 3. The core consists of random noise that is normally
distributed with mean 0 and variance ϑ2 (the noise level to be chosen later). To the small
upper-left-and-foremost cube of size minprapprox, 3q�minprapprox, 3q�minprapprox, 3q, add
the information tensor. In the core-scenario, this is the same tensor for all samples in
the same class, generated by drawing the entries from a standard normal distribution.
In the leaf-scenario, the information tensor is di�erent for all samples (also drawn from
the standard normal distribution).

The leafs of size Im � rapprox also consist of random noise (normally distributed with
mean 0 and variance ϑ2) and to the �rst minprapprox, 3q columns add vectors cospπ�ν �vq,
where ν P R100 is a uniform discretization of r�1, 1s and the frequency ν is picked
uniformly at random (with mean 0 and variance 1). In the leaf-scenario, these frequencies
are the same for all samples in the same class, and in the core-scenario, these frequencies
are di�erent for all samples. After the construction, the leafs are orthogonalized (using
the QR-decomposition and discarding the R-matrix), so that the resulting Tucker tensor
is already in the form of a HOSVD.

The reasoning is that these two scenarios yield Tucker tensors of rank rapprox that
are approximations of noisy tensors of rank rexact, and the cluster information is stored
exclusively in either the core or the leafs. 100 samples in two classes with 50 samples
each for each noise level ϑ2 � 0.01, 0.02, 0.05, 0.1, 0.2, 0.5, 1 and Tucker ranks rapprox �
1, 3, 5, 10 are generated. Continually the SVM is performed 20 times with 5-fold cross
validation in order to determine the hyperparameters C P t2�8:1:8u (the soft-margin
parameter) and g P t2�4:1:12u (the variance parameter in the Gaussian kernel).
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Figure 5.1: Classi�cation Accuracy with 95% con�dence interval for di�erent noise lev-
els in the core-scenario of the generated synthetic data with di�erent rank
truncation rapprox � 1, 3, 5, 10 (subspace kernel doesn't have any rank trun-
cation).

5.3.3 Results and Interpretation

In Fig. 5.1 and Fig. 5.2, the results for the two experimental scenarios are marked-out.
In both cases, the test error (i.e. the classi�cation accuracy on the test set) for the ranks
rapprox � 1, 3, 5, 10 are plotted. For each rank, the accuracies of the di�erent kernels for
all noise levels in one picture are drawn. The computation of DuSK was too expensive
in the case rapprox � 10 as this requires the computation of norms of tensors with CP
rank 1000 many times.

In the core-scenario, the Gaussian kernel outperforms both DuSK and the Subspace
kernel. The WSEK performs similarly to the Gaussian kernel. In the leaf-scenario,
the Subspace kernel gives 100% accuracy in all cases, and all but the Gaussian kernel
performed very well on this data.
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Figure 5.2: Classi�cation Accuracy with 95% con�dence interval for di�erent noise lev-
els in the leaf-scenario of the generated synthetic data with di�erent rank
truncation rapprox � 1, 3, 5, 10 (subspace kernel doesn't have any rank trun-
cation).

These results are not surprising following the considerations in Sec. 5.3.1: The Sub-
space kernel sees only the information in the leafs, and it can therefore not perform well in
the core-scenario. The DuSK kernel includes extra information so that it performs better
in the core-scenario (especially when the rank is correctly guessed, rapprox � rexact � 3)
but still not as good as the Gaussian kernel. In the leaf-scenario, all the information is
in the subspaces and therefore both DuSK and the Subspace kernel perform very well.
Here, the Gaussian kernel performed much worse than all other kernels. The WSEK was
designed to do well in both scenarios and this is shown also in these experiments. The
next chapter exhibits that especially the leaf-scenario is realistic: In the ADNI dataset
explored below, the subspace kernel performs better than the Gaussian kernel and it
even outperforms DuSK. The conclusion is that including information on the m-mode
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subspaces is crucial for the design of a tensor kernel. This is also a possible explana-
tion why DuSK has performed well in many settings. The mounted new kernel however
outperforms DuSK in all o�ered experiments.
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Figure 5.3: The plot shows the CPU time vs classi�cation accuracy for synthetic data
(leaf -case) with truncation rank from 1 to 10 between. The comparison
is done between proposed WSEK (5.2.2) and subspace kernel ([167]). The
subspace is referred as subspace in the plot and has no rank truncation.
Therefore, there is only one point for each noise level.

Running Time Figures 5.3 and 5.4 present a comparison of processing time between
our proposed WSEK (�5.2.2) and the subspace kernel [167]. The graphs clearly illustrate
that the CPU time required for the subspace kernel is signi�cantly higher in both the
leaf and core scenarios. However, the classi�cation performance remains almost similar
for both kernels across varying levels of noise in both scenarios (leaf and core).
WSEK incorporates rank truncation, and even with lower ranks, the classi�cation

performance matches the state-of-the-art for generated synthetic data.

5.4 Classi�cation of Real Datasets

In this section, the performance of the discussed tensor kernels is tested on two real
world datasets: The ADNI dataset contains fMRI images of patients with and without
Alzheimer's disease and the ADHD dataset contains fMRI images of ADHD patients
and healthy subjects. Here using the KSTM with the di�erent kernels to distinguish the
two classes of subjects in each dataset.
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Figure 5.4: The plot shows the CPU time vs classi�cation accuracy for synthetic data
(core-case) with truncation rank from 1 to 10 between. The comparison
is done between proposed WSEK (5.2.2) and subspace kernel ([167]). The
subspace is referred as subspace in the plot and has no rank truncation.
Therefore, there is only one point for each noise level.

All numerical experiments have been done in MATLAB 2019b. Low-rank tensor approx-
imations are computed using TT-Toolbox citettTool and tensor toolbox citetenTool.
All experiments have executed on a computer cluster which is equipped with 2 TB NVMe

SSD Hard disk, 2�Intel Xeon Skylake Silver 4210R CPUs with 10 cores per CPU,
and 768 GB DDR4 ECC of RAM. The hyperparameters in KSTM (3.24) are tuned simi-
larly to Synthetic experiments (see Section 5.3.2), the only di�erence is that the results
for real data experiments for each of the rank R P t1, 2, � � � , 10u are reported, where
R1 � R2 � R3 � R. The SVM problem (3.24) is solved using the svmtrain function
from LIBSVM citelibsvm library, and svmpredict computes the classi�cation accuracy
using (3.26) and (3.27).

5.4.1 Numerical results

In this section, the results for the two fMRI datasets are summarized:

� p-parameter: One of the factors in�uencing the computation of the WSEK
(�5.2.2) is the p value used when distributing weights (singular values) across
Tucker factors. Figure 5.5 illustrates the classi�cation accuracy of ADNI and
ADHD datasets for various p values in (5.5), which rescales the Tucker factors.
In the case of ADNI data, a noticeable distinction is observed for the selected p
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value, whereas ADHD exhibits no improvement, especially concerning the highest
classi�cation accuracy achieved. The best method for ADHD is Subspace Kernel.

Figure 5.5: Classi�cation Accuracy with 95% con�dence interval for di�erent p values
in WSEK for ADNI (left) and ADHD (right) dataset with rank truncation
R P r1, 10s

� Classi�cation accuracy: In Fig. 5.6, the average classi�cation accuracy resulting
from the cross validation is laid-out. In Table 5.3, the best classi�cation accuracy
between rank r1, 10s is laid-out. On both datasets the proposed WSEK gives the
best average classi�cation accuracy (79% for ADNI and 64% for ADHD) compared
to other state-of-the-art tensor kernels. Notice that the accuracy of the subspace
kernel improves for higher ranks in the ADHD dataset and is then similar to that
of WSEK, but this choice of rank is very high for a low-rank truncation method.
On the other hand, the proposed kernel gives good classi�cation accuracy already
at rank 2. The Gaussian kernel was computed for di�erent Tucker approximations
of the full tensor. Using the full tensor in the computation of the kernel did not
improve the accuracy. As in (Chapter 4), the DuSK kernel was computed using a
CP approximation of the full tensor (CP-DuSK), because computing the Tucker
decomposition and then converting to CP yielded high CP ranks and DuSK was
too slow.
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Figure 5.6: (left) Comparison of mean classi�cation accuracy with variance for the dif-
ferent kernels with di�erent rank truncation for ADNI dataset, (right) Com-
parison of mean classi�cation accuracy with variance for the di�erent kernels
with di�erent rank truncation for ADHD dataset.

Table 5.3: Maximum average classi�cation accuracy in percentage � standard deviation
for di�erent methods, data sets, and rank R P r1, 10s. The values for TTCP-
DuSK are taken from [98] for comparison.

Methods ADNI ADHD

Gauss 53 50
CP-DuSK 64 � 0.05 (R = 5) 58 � 0.02 (R = 6)
TTCP-DuSK 73 � 0.03 (R = 4) 63 � 0.01 (R = 5)
TuckerCP-DuSK 75� 0.02 (R = 7) 63 � 0.01 (R = 8)
Tucker Subspace ([167]) 75� 0.03 (R = full) 70 �0.01 (R = full)
WSEK 79� 0.03 (R = 8) 64 �0.01 (R = 2)

Note: Figure 5.7, as described, computes the classi�cation accuracy with a 95%
con�dence interval for the ADNI and ADHD datasets. This approach involves
performing the standard Tucker decomposition on the input data, converting it
into CP format, and then applying the DuSK kernel over the factor matrices.
The corresponding accuracy is also mentioned in Table 5.3 as TuckerCP-DuSK.
However, this method su�ers from signi�cant slowness. As a result, the ADHD
experiment reached its maximum capacity before reaching rank 10, which would
have corresponded to rank 1000 in the case of TuckerCP. In practical terms, this
method is not sustainable.
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Figure 5.7: Comaprison of 95% con�dence interval for DuSK with CP, TT, and Tucker
decompositions: (left) ADNI dataset (right) ADHD dataset.

Remark 5.1:
The Figure 5.7 represents an early work performed during, where experiments
setting is according to previous Chapter 4. The experiments here were exptremenly
slow due to the computation of Kernel on each run separately and showed clear lack
of upgrade in terms of e�ciency. Therefore, further exploration with Tucker-CP
DuSK wasn`t focused. ♢

� Running Time: Table 5.4 and Table 5.5 show the running times for the com-
putation of the di�erent kernels on the ADNI and ADHD datasets respectively.
For small tensors, computing the Gauss kernel is fast. Computation of DuSK on
TTCP however quickly becomes prohibitive and takes a long time in these experi-
ments. The WSEK is faster for all the experiments while subpace becomes slower
for ADNI and even more for bigger dataset as ADHD.

� Statistic comparison: Table 5.3 and Figure 5.6 present the variance associated
with the mean accuracy values. Notably, the WSEK STM demonstrates a favorable
balance between classi�cation accuracy and variance. Speci�cally, for the ADNI
dataset, it achieves the highest classi�cation accuracy. Conversely, in the case of
ADHD, it achieves improved accuracy at substantially lower ranks, accompanied
by reduced variance. A plausible explanation for the enhanced performance of the
subspace method in the ADHD context could be attributed to the larger dataset
size.
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Table 5.4: Comparison of CPU time for R P r1, 10s for ADNI dataset. The values for
TTCP-DuSK are taken from [98] for comparison. The time comparison is
computed based on the originally presented work [71, 167].

Kernel Format Parameters CPUtime for ADNI

Gaussian Ktensor C, g 30 seconds

DuSK CP (�3.3.1) C, g, R 17 minutes

DuSK TTCP (�5.1.3) C, g, RTT 3.5 hours

Subspace MLSVD (�5.2.1) C, g, Rfull 6 minutes

WSEK SqrtmHOSVD (Alg. 5.2) C, g, RTucker 50 seconds

Table 5.5: Comparison of CPU time for R P r1, 10s for ADHD dataset. The values for
TTCP-DuSK are taken from [98] for comparison. The time comparison is
computed based on the originally presented work [71, 167].

Kernel Format Parameters CPUtime for ADHD

Gaussian Ktensor C, g 4 minutes

DuSK CP (�3.3.1) C, g, R 1.3 hours

DuSK TTCP (�5.1.3) C, g, RTT �

Subspace MLSVD (�5.2.1) C, g, Rfull 59 minutes

WSEK SqrtmHOSVD (Alg. 5.2) C, g, RTucker 13 minutes

5.5 Chapter Summary

The previous chapter introduced an initial approach towards a robust classi�cation model
based on TT decomposition and computation of the kernel required in CP format. This
work is an extension that not only focuses on constructing a kernel function or �factor
kernel� but also pays attention to �nding a solution for it. This chapter centres on
another essential form of tensor decomposition: Tucker. Since the primary concern is
to identify a kernel function or feature space that captures the dominant features of
the tensor input while preserving the data structure, Section �5.2 presents an existing
kernel based on Tucker decomposition. As mentioned in the previous chapter, DuSK
has a special form that captures features uniquely. Combining Tucker decomposition-
based subspace kernel (�5.2.1) with DuSK form (�4.2.5) leads to a new discovery. This
new Weighted Subspace Exponential Kernel (�5.2.2) relies on a speci�c form of Tucker
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decomposition called Weighted HOSVD. The Weighted HOSVD includes the uniqueness
property and a weighted distribution of singular values (Algorithm 5.2). Furthermore,
Section �5.3 analyses the advantages and drawbacks of the newly discovered WSEK
in various scenarios. The study concludes positively with numerical experiments on
real-world data in Section �5.4.
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6.1 Introduction

When dealing with STL models, such as STMs, it is often useful to consider both classi-
�cation performance and dimensionality reduction together. Low-rank approximation-
based STM models typically operate on a well-posed low-dimensionality subspace, which
is de�ned by signi�cant low-rank feature vectors, also known as principal components.
The standard version of KSTM (�3.4.3) has already been explained. The methodol-
ogy presented here goes beyond the previously presented solutions of KSTM (�3.4.3)
by introducing an additional constraint that is a regularized term. The rationale for
this extension is elaborated further in [73]. The proposed research consider improving
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the accuracy (rather than computational complexity) of the schemes (Chapter 4, Chap-
ter 5) and exploring joint optimization of the TT cores and SVM weights. Similar to the
neural network compression in the TT format [126], such targeted iterative re�nement
of the TT decomposition may improve prediction accuracy. However, the signi�cant
contribution of this chapter lies in the theoretical development of low-rank methods in
kernel-based machine learning models.

Main Novelty: The existing tensor decomposition methods developed so far are
highly problem-speci�c, and there is a growing interest in �nding a universal and
optimal low-rank tensor factorization method. It is evident that the development of
various STL models is motivated by the fact that tensors contain spatial structures
that are lost when the data is vectorized. In Chapter 4, the TT-CP decomposition is
introduced, which utilizes stable matrix-SVD based algorithms to obtain decomposed
cores with properties of the CP decomposition, as well as a simple structure.
The main idea behind the work presented in this chapter is that �nding the best

low-rank tensor decomposition for the STM objective function collectively is better
than �nding the best �t separately.
However, the formulation of the speci�ed abstraction leads to a regularized STM

form of standard STMs. The optimization approach used for the STM, along with
low-rank tensor factorization, was introduced in [73] through a separate update of
CP factorization and STM update. This chapter extends the same idea to the full
primal problem of STM and solves the simultaneously updated STM and TTCP
factorization. However, �nding a solution to the full primal STM is not straight-
forward due to the non-convex nature of the objective function. While using the
TTCP format avoids the NP-hardness issue associated with �nding the best low-
rank approximation, solving the non-convex optimization problem could still lead to
NP-hardness.
The most signi�cant contribution in this chapter is a "primal-dual relation" of the

STM model in TTCP factorization. This avoids the computational issue of �nding
the nonlinear mapping (Ψ) explicitly by using the previously mentioned kernel trick.
This leads to a plausible solution of the full-primal optimization, which is Projected
Gradient Descent (PGD) (Algorithm 6.2). The PGD is an iterative approach for
constraint non-convex objective functions and requires gradients with respect to each
parameter. This computation is also explained in this chapter. Theoretical analysis
and some open questions regarding the convergence of PGD for the simultaneously-
updated STM are further discussed topics of this contributed work.
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6.2 Regularized Tensor Machine Learning Model

Regularized tensor models aims to reduce the complexity of STL models. The modi-
�cation from standard STLs to regularized STLs are mostly done through constraints
(restrictions) on the model weight parameters (W). This is particularly advantageous
for issues with numerous features but a few data samples. Regularized linear tensor
models can be generally formulated as

min
W,b

fpX, yq � min
W,b

ℓpX, y |W, bq � γRpWq. (6.1)

The expression ℓpX, y; |;W, bq represents a loss or error function, while RpWq is a
regularization term. The parameter γ ¡ 0 determines the balance between the contribu-
tions of the loss and regularization terms. In the case of STMs, a hinge loss in the form
of lpŷq � maxp0, 1 � yŷq is commonly used, where ŷ is the prediction and y is the true
label. Depending on the choice of regularization term, such as Frobenius norm (standard
Tikhonov regularization) or ℓ1 norm (sparsity constraints), the objective function can
be tailored to di�erent applications.
Tensors o�er more �exibility than vectors and matrices in terms of sparsity pro�les.

Instead of imposing global sparsity for the entire tensor, it is possible to impose sparsity
on slices or �bers. The rank properties of tensors, similar to matrices, can also be
utilized, and are richer and more complex due to the multidimensional structure of
tensors. In addition to sparsity constraints, a low-rank structure of tensor data can be
exploited as a regularizer, such as the canonical or Tucker decomposition of W. The
low-rank structure of tensor data has been successfully used in various applications,
including missing data imputation [110] and subspace clustering [205]. Apart from the
low-rank properties of data itself, low-rank regularization can also be applied to learning
coe�cients in classi�cation tasks [203]. The low-rank constraint for the tensor W can
also be formulated through the tensor norm, in the form [197], tensor norms is the tensor
nuclear norm [110] or the (overlapped) trace norm [196], latent trace norm [180].
However, these methods have their own drawbacks. Computation becomes infeasible

for very large-scale applications, or solving sub-optimization problems are not handy as
it requires numerous variables in latent space. In general, dealing with tensor nuclear
norm does not come as easily as matrix nuclear norm. Therefore, solutions for regularized
STMs need to be explored from fresh perspectives.

6.2.1 Regularized Support Tensor Machine

One intriguing navigation to solution of regularized model is to change the choice of
the regularized model. As perceived previously, nonlinear models have the ability to
characterize complex nonlinear dependencies in data. Therefore, unravelling the solution
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is done by going back to the roots, that is by embedding the data into another higher-
dimensional space and �nding a linear separating hyperplane in there.
For a given input tensor X P RI1�I2�...�IM the TTCP decomposition is (let say) T,

then the nonlinear �maximum marginal� classi�cation problem with Ψ as a nonlinear
function can be formulated in the following way:

JpT,ΨpTqq �minimize
W,b

xW,Wy

2
� C

Ņ

i�1

Lpyi, xW,ΨpTiqy � bq, (6.2)

where L is the loss function (hinge loss), W are weight parameters, C, b are trade-o�
parameter and bias term respectively. The decision function is then given as fpXiq �
SignpxW,ΨpTiqy�bq, i � 1, . . . , N . The approximation constraint is considered as ΩpTq
on the tensor data, hence the (6.2) can be written as,

argmin
Ψp�q

JpT,ΨpTqq � γΩpTq. (6.3)

Extending the computational relation of the Lagrangian (2.15) for the tensor format
and combining (6.2) and (6.3), the following will be the principal optimization problem
to solve (ξ is a slack variable for non-separable case �2.2.1),

min
W,b,ξ,Tpm̃,iq

xW,Wy

2
� C

Ņ

i�1

ξi � γ
Ņ

i�1

ΩpTiq

subject to yipxW,ΨpTiqy � bq ¥ 1� ξi, ξi ¥ 0, i � 1, 2, . . . , N (6.4)

The Lagrange function becomes as follows,

Lp �
1

2
||W||2 � C

Ņ

i�1

ξi �
Ņ

i�1

αiryipxW,ΨpTiqy � bq � p1� ξiqs �
Ņ

i�1

µiξi

� γ
Ņ

i�1

ΩpTiq, ^ ΩpTiq �
∥∥∥Xi � JTp1,iq,Tp2,iq, � � � ,TpM,iqK

∥∥∥2

F
, (6.5)

where ΩpTiq is minimized w.r.t. W, b, ξi,T
pm̃,iq. As in the earlier Chapter 4, the

value of xΨpTiq,Ψ
1pTjqy is computed in terms of the TT-CP factorization. Therefore, a

nonlinear mapping from the space of tensors to a tensor product RKHS (�3.4.2, [169])
Ψ: RI1 � � � � �RIM ÞÑ F consists of separate feature maps acting on di�erent CP factors
is taken as follows,
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Ψ: X ÞÑ Ψ:
Ŗ

r�1

tp1qr b tp2qr b � � � b tpMq
r ÞÑ

Ŗ

r�1

ϕptp1qr q b ϕptp2qr q b � � � b ϕptpMq
r q. (6.6)

Note: Each iteration for updating low-rank approximation while optimizing regularized

STM, ΩpTiq �
∥∥∥Xi � JTp1,iq,Tp2,iq, � � � ,TpM,iqK

∥∥∥2

F
need storing OpIMq. Therefore, while

computing the CP form of Xi has linear storage in terms of dimension.

In order to solve LP , the KKT conditions are applied and these are as follows:

1. Primal Feasibility:
p1� ξi � yipW

TΨpTiq � bqq ¤ 0

�ξi ¤ 0 ùñ ξi ¥ 0,

2. Dual feasibility:
αi ¥ 0, µi ¥ 0,

3. Complementary slackness:

αip1� ξi � yipxW
TΨpTiqy � bqq � 0,

4. Derivatives:
δWLP � 0, δbLP � 0, δξiLP � 0 δTpm̃,iqLP � 0.

Now combining all the KKT conditions, Some explicit formats for computation of
variables are obtained. Those are given as follows,

δWLP �W�
Ņ

i�1

αiyiΨpTiq (6.7)

δbLP �
Ņ

i�1

αiyi

δξiLP � C � µi �αi

δTpm̃,iqLP � �αiyixW,Ψ1pTiqy � γδTpm̃,iq

�
ΩpTiq

�
, (6.8)

combining equations (6.7) and (6.8) together, the following equation comes out as a
result,

δTpm̃,iqLP ùñ �
Ņ

j�1

αiαjyiyjxΨpTiq,Ψ
1pTjqy � γδTpm̃,iq

�
ΩpTiq

�
(6.9)
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Gradient Computation I: Equation (6.9) is combination of two terms with δTpm̃,iq

�
ΩpTiq

�
as a second term. The gradient w.r.t. each TT-CP factor Tpm̃,iq can be straight forward
in terms of a Hadamard product. This is given as follows,

δTpm̃,iq

�
ΩpTiq

�
� δTpm̃,iq

�∥∥∥Xi � JTp1,iq,Tp2,iq, � � � ,TpM,iqK
∥∥∥2



� 2

���Tpm̃,iq
�
�

M
m�1,m�m̃T

pm,iqTTpm,iq b I
	


�

�
xT
piq
� Mä
m�1,i�m̃

Tpm,iq b I
	��


� 2

���Tpm̃,iq
�
�

M
m�1,m�m̃T

pm,iqTTpm,iq b I
	


�

�
xpiqT

� Mä
m�1,i�m̃

Tpm,iq b I
	��
.

(6.10)

Hadamard product: The computation of the Hadamard (element-wise) product, Z �
XfY, of two tensors, X and Y, of the same order and the same size can be performed
very e�ciently in the TT format by expressing the slices of the cores, Z P RRm�1�Im�Rm ,
as

Z
pmq
im

� X
pmq
im

bY
pmq
im

, m � 1, . . . ,M, im P xMy. (6.11)

This increases the TT ranks for the tensor Z to at most RmR̃m, m P xMy, but
the associated computational complexity can be reduced from being exponential in M ,
OpIMq, to being linear in both I and M , OpIMpRR̃q2qq.

Gradient Computation II: The computation of �rst term from equation (6.9) is a bit
tricky. Earlier in Section �2.3.2 the kernel trick is explained that can be used to write
(6.2) into dual format and approximate xΨpTiq,ΨpTjqy by xΨpTiq,ΨpTjqy � KpTi,Tjq.
Therefore, inheriting this idea into primal form leads to optimizing kernel formation
(and eventually factor kernels) and learn non-linearity from data itself without explicitly
knowing the nonlinear function (Ψ). Now, the main issue is with the computation of
xΨpTiq,Ψ

1pTjqy. This is computed with use of the following equality,

xΨpXiq,ΨpXjqy � KpXi,Xjq ùñ xΨpXiq,Ψ
1pXjqy �

1

2
δKpXi,Xjq.

Eventually the computation of xΨpTiq,Ψ
1
pTjqy depends on the computation of the

gradient of the kernel function w.r.t. each of the �TT-CP� factors (Tpm̃,iq).
The work proposed in this paper is an extension of standard KSTM (�3.4.3). Hence,

continuation of using reproducing kernels mentioned in Chapter 4 and Chapter 5 in
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sections �4.2.5, �5.2 are preferred. For instance, as the �TT-CP� decomposition is taken
with DuSK (�4.2.5, [71]) is adapted here for the further computation of the gradient.
This allows a way to exploit the fact that the data is given in the TT-CP format to
aid the classi�cation. However, the feature function ΨpXq is to be de�ned implicitly
through a kernel function.

xΨpTiq,ΨpTjqy � KpTi,Tjq

� K

�� Ŗ

p�1

M¹
m�1

ϕpTpm,iq
p q,

Ŗ

q�1

M¹
m�1

ϕpTpm,jq
q q

�
 (6.12)

�
Ŗ

p,q�1

M¹
m�1

k
�
Tpm,iqp:, pq,Tpm,jqp:, qq

	
. (6.13)

Reformulating (6.12) in the following manner,

KpTi,Tjq �
Ŗ

p,q�1

M¹
m�1

exp

�����
∥∥∥pTpm,iqp:, pq �Tpm,jqp:, qqq

∥∥∥2

2g2

���
 (6.14)

�
Ŗ

p,q�1

exp

����� M̧

m�1

∥∥∥pTpm,iqp:, pq �Tpm,jqp:, qqq
∥∥∥2

2g2

���
 (6.15)

�
Ŗ

p,q�1

upq
ij (6.16)

� 1TUij1, (6.17)

where Uij P RR�R and 1 is a vector of all ones. Also, we have

Uijpp, qq � exp

����� M̧

m�1

∥∥∥pTpm,iqp:, pq �Tpm,jqp:, qqq
∥∥∥2

2g2

���
,

or, Uijpp, qq � exp

����� M̧

m�1

∥∥∥pTpm,iq
p �T

pm,jq
q q

∥∥∥2

2g2

���
. (6.18)

97



Chapter 6. Simultaneously-updated Support Tensor Machine

The derivative of the kernel function w.r.t. the TT-CP core can be computed in vector
format as follows,

BKij

BTmk
lp

�
¸
p̃q̃

��up̃q̃
ij

�°
l̃pT

pm,iq
l̃p̃

�T
pm,jq
l̃q̃

q

g2

	
δll̃δpp̃δik̃ � up̃q̃

ij

�°
l̃pT

pm,jq
l̃q̃

�T
pm,iq
l̃p̃

q

g2

	
δll̃δpq̃δjk̃

�

�
¸
q̃

upq̃
kj

���pTpm,kq
lp �T

pm,jq
lq̃ q

g2

�
�¸
p̃

up̃p
ik

���pTpm,kq
lp �T

pm,iq
lp̃ q

g2

�

�
�1

g2

¸
q

upq
kj

�
T
pm,kq
lp �T

pm,jq
lq

�
� upq

ki

�
T
pm,kq
lp �T

pm,iq
lq

�
�
�1

g2

¸
q

�
upq
kj � upq

ki

�
T
pm,kq
lp � upq

kjT
pm,jq
lq � upq

kiT
pm,iq
lq (6.19)

By going back to the computation of (6.9) and combining it with (6.10) and (6.19),
the ensuing matrix formulation will be achieved,

δTpm̃,iqLP � �
Ņ

j�1

αiαjyiyj

�
δTpm̃,iqK

�
Ti,Tj

	

loooooooooooooooooooomoooooooooooooooooooon

J

� 2γ

�
Tpm̃,iq

�
�m�m̃T

pm,iqTTpm,iq
	
�X

piq
pm̃q

�ä
m�m̃

Tpm,iq
	�

, m P xMy.

(6.20)

Note: Equation (6.20) includes the opposite sign compare to (6.8) because the solution
of Regularized STM lies in computing Gradient Ascent in dual form rather than Gradient
Descent.

The compact and easy to understand form of (6.20) is written as follows,
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J �
Ņ

j�1

αiαjyiyjδTpm̃,iqK
�
Tj,Ti

	
� 1T C̃1,

δTpm̃,iqJ �
1

g2

�
Tpm̃q � diagpC̃ � 1q �Tpm̃qC̃

�
,

C̃ � B̃b Ũ , B̃ � ER bB, Bij � αiyiαjyj, and C̃ � C̃T ,

Ũi � exp

���1

2g2

M̧

m�1

Im̧

s�1

�
pTpm,iqps, :qqT �Tpm,iqps, :q

	2�

Computation of the gradient w.r.t. Tpm̃,1q is as follows,

δTpm̃,iqK
�
Tj,Ti

	
� 1δTpm̃,iqUij1.

The gradient δTpm̃,iqLP using (6.19) in matrix form is written as follows,

δTpm̃,iqLP �
1

g2

Ņ

j�1

αiαjyiyj

�
pTpm̃,iq �Tpm̃,jqqUij

	
Hence, the value of δTi

is given as follows,

δTpm̃,iqLP �
1

g2

Ņ

j�1

αiαjyiyj

�
pTpm̃,iq �Tpm̃,jqqUij

	
� 2γ

�
Tpm̃,iq

�
�m�m̃T

pm,iqTTpm,iq
	
�X

piq
pm̃q

�ä
m�m̃

Tpm,iq
	�

, m P xMy.

(6.21)

After having a compact form of the derivatives of the primal Lagrangian, it is necessary
to �nd a way to use it in order to solve primal formulation (6.5). The next section discuss
this in detail.

6.3 Optimizing Regularized Models

Optimizing a regularized Support Tensor Machine (STM) involves �nding the optimal
values for the model's parameters while considering a regularization term. The goal is
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Chapter 6. Simultaneously-updated Support Tensor Machine

to minimize the loss function, which measures the model's prediction error, while also
controlling the complexity of the model using the regularization term. The regularization
term helps prevent over�tting and promotes a more generalizable model.
To optimize a regularized STM, an iterative optimization approach is commonly used.

This approach solves a series of optimization subproblems in each iteration until con-
vergence is achieved. The speci�c optimization algorithm employed depends on the
problem and the chosen regularization technique. Gradient-based methods are often a
good choice for non-convex, non-linear optimization issues like SVMs. These methods
update the model's parameters iteratively by computing the gradients of the loss func-
tion with respect to the parameters and adjusting the parameters in the direction of the
steepest descent. The regularization term is incorporated into the gradient computation
to control the complexity of the model.
When optimizing a regularized STM, there are several important considerations. First,

the computational time required to �nd a solution of the desired quality and constraints,
such as achieving a low error rate, can be high. Second, achieving theoretical e�ciency,
stability, and generalization can be challenging. Third, dealing with large datasets and
high-dimensional data may pose storage issues. Lastly, �nding a simple and e�ective
approach can also be di�cult.

6.3.1 Primal Dual SVM Relation

In the era of deep learning (DL), where unconstrained optimization problems are highly
non-convex, it is crucial to explore the challenges associated with such problems. E�-
cient solutions to large-scale non-convex problems provide rich structures that can be
exploited to address NP-hard problems [117, 123], which are often not achievable by
solving relaxed convex problems. Apart from DL, algorithms that operate in high-
dimensional spaces or work with nonlinear models, such as tensor-based models, are
prone to be non-convex [78]. Some direct approaches for non-convex optimization, such
as projected gradient descent (see chapter 2 [78]) and alternating minimization [114],
have achieved remarkable success in various domains, typically outperforming relaxed
approaches. These algorithms are simple, scalable, e�cient, and fast in practice. How-
ever, the convergence of these heuristic approaches is still poorly understood.
The explicit computational cost of the nonlinear embedding function (Ψ) makes these

non-convex optimizations even more expensive. Therefore, it becomes necessary to con-
sider a dual formulation as a substitute for the primal objective function. This produces
a convex quadratic programming (QP) objective function with bounded constraints, as
discussed in �2.2.1. However, in the above-mentioned regularized STM, reaching such a
well-de�ned problem is not straightforward. Hence, the following proposition provides
a very good compromise between primal and dual for the full primal (6.8).
Additionally, the pre-computed gradient with respect to the �TTCP� factorization and

the mentioned KKT conditions easily lead to the use of gradient-based iterative methods
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such as PGD.
The dual form from the Lagrangian for kernelised SVM has been explained earlier in

Chapter chapter 2 in �2.3.3 ((2.22)) as well as for kernelised STM in Chapter chapter 3
in �3.4.3 ((3.24)). From there we can write vectorised form of Lagrangian (denoted as
LD) as follows,

LD :
¸

αi �
1

2

¸
ij

αiαjyiyjKpti, tjq. (6.22)

Proposition 6.1 (Primal-Dual objective in the TTCP factors):
The STM model has strong duality in CP factors. This means,

δTpm,iq

��LP

∣∣∣∣
W�°N

j�1 αjyjΨpTjq

�
� pδTpm,iqLP q

∣∣∣∣
W�°N

j�1 αjyjΨpTjq
� δTpm,iqLD,

where LD is the dual form of the Lagrangian. ♢

Proof. Substitute conditions and then di�erentiate Lagrangian: This mean fo-
cusing on the �rst term that is given as follows,

δTpm,iq

��LP

∣∣∣∣
W�°N

j�1 αjyjΨpTjq

�

Dual cost: the vectorized form of dual Lagrangian function is taken as,

LD :
¸

αi �
1

2

¸
ij

αiαjyiyjKpti, tjq, (6.23)

where kernel matrix is computed using RBF,

Kpti, tjq �
¸
pq

exp

���� M̧

m�1

∥∥∥tmi
p � tmj

q

∥∥∥
2g2

��
,

The derivative of LD depends on computing derivative of kernel matrix w.r.t. each
TTCP factor vector tm̃i

p̃ ,

δ
tm̃ĩ
p̃
Kpti, tjq �

¸
pq

Uijpp, qq

�
�1

2g2
δtm̃i

p̃

∥∥∥tm̃i
p � tm̃j

q

∥∥∥2
�
,

where Uij (6.18) is proposed earlier and included here to make it equation look more
elegent and easy to understand,
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δ
tm̃ĩ
p̃
Kpti, tjq �

¸
pq

Uijpp, qq

�
�1

g2

�
tm̃i
p � tm̃j

q

	 �
δp̃pδĩi � δp̃qδĩi

��
,

the right hand side can be reformulated as follows,

�1

g2

��¸
q

Uijpp̃, qqt
m̃i
p̃ δĩi �

¸
q

Uijpp̃qqt
m̃j
q δĩi

�
� 1

g2

���¸
p

Uijpp, p̃qt
m̃i
p δĩj �

¸
p

Uijpp, p̃qt
m̃j
p̃ δĩj

�
,

hence, (6.23) can be modi�ed as following,

δ
tm̃ĩ
p̃
LD �

1

2g2

��¸
qj

αĩαjyĩyjUĩjpp̃, qqt
m̃ĩ
p̃ �

¸
qj

αĩαjyĩyjUĩjpp̃, qqt
m̃j
q

��
�

1

2g2

��¸
pi

αiαĩyiyĩUĩipp, p̃qt
m̃i
p �

¸
pi

αiαĩyiyĩUĩipp, p̃qt
m̃ĩ
p̃

�� ,

furthermore,

δ
tm̃ĩ
p̃
Kpti, tjq �

1

g2

¸
qj

αm̃αjyĩyjUĩjpp̃, qq
�
tm̃ĩ
p̃ � tm̃j

q

�
. (6.24)

Di�erentiate Lagrangian then substitute conditions: This concerns the second
term that is given as,

pδTpm,iqLP q

∣∣∣∣
W�°N

j�1 αjyjΨpTjq

Taking equalities from (6.14) and (6.18), the following equations are computed,

Uijpp, qq � exp

����� M̧

m�1

∥∥∥ptpm,iqp:, pq � tpm,jqp:, qqq
∥∥∥2

2g2

���
,

computing gradient of U and from this reaching to the computation of gradient of
kernel matrix. The gradient of U in vector form is as follows,

δ
tm̃ĩ
p̃
Uijpp, qq � Uijpp, qq

�
�1

2g2
δtm̃i

p̃

�∥∥∥tm̃i
p � tm̃j

q

∥∥∥2

�

hence, gradient of K is as follows,

102



6.3 Optimizing Regularized Models

δ
tm̃ĩ
p̃
Kij �

�1

g2

��¸
q

Uijpq, p̃qt
m̃i
p̃ �

¸
q

Uijpq, p̃qt
m̃j
q

�� ,

this implies,

ùñ
1

g2

¸
q

Uijpq, p̃q
�
tm̃j
q � tm̃i

p̃

�
,

the gradient of primal Lagrangian concludes as,

δtm̃i
p̃
LP �

Ņ

j�1

αiαjyiyj

�� 1

g2

Ŗ

q�1

Uijpp̃, qq
�
tm̃i
p̃ � tm̃j

q

��
. (6.25)

Henceforth from (6.24), and (6.25),

δtmi
p
LP � δtmi

p
LD.

Hence, the Lagrangian (primal) mentioned in (6.5) can be reformulated in the dual
form using above proposition (6.1) in the following objective function,

F �
Ņ

i�1

αi �
1

2

Ņ

i,j�1

αiαjyiyjKpTi,Tjq � γ
Ņ

i�1

ΩpTiq (6.26)

When equation (6.26) is closely examined, it can be observed that the partial part is
primarily associated with the solving of the TT-MMK method proposed in Chapter 4. In
addition to TT-MMK, the low-rank approximation is simultaneously updated as an ad-
ditional term. Consequently, this objective function is referred to as the Simultaneously-
updated STM.

6.3.2 Partial Simultaneous Update using Gradient Descent

The partial simultaneous update occurs when the value of γ in (6.26) is set to 0. This
means that the TT-CP factorization term ΩpXq is not updated simultaneously. This
remaining problem is exactly similar to optimizing the dual problem (3.24) using LIBSVM,
as mentioned in �3.4.3. The Sequential Minimization Optimization (SMO) method, used
in the LIBSVM library, optimizes the KSTM (3.24). In this proposed work, the focus
of the developed method is on using the PGD method instead of the standard SMO
for solving the SVM objective function. The overview, advantages, drawbacks, and
intricacies of PGD are explained further in this section.
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Note: One important observation to make is that initializing the full objective function
(6.26) from the previous state-of-the-art (TT-CP based) method (TT-MMK, �4.2.6)
almost surely achieves the same accuracy for any kind of tensorial dataset.

6.3.3 Full Simultaneous Update using Gradient Descent

For solving the objective function given in (6.26), each parameter is updated by �xing all
except one optimization parameters. Typically, the initilization of the hyperparameters
has a signi�cant impact for reaching to optimal solution. As (6.26) is a composition of
TT-MMK and a regualrization term. Therefore, the two hyperparameters α, b can be
initialized from the optimized TT-MMK solution. The gradients w.r.t. each parameter
are computed as follows,

1. Updating Tpm̃,iq: As mentioned that the PGD method is used for solving opti-
mization problem mentioned in (6.26). Hence, the derivative w.r.t. Tpm̃,iq will be
given as follows,

BF
BTpm̃,iq �

BΩ
BTpm̃,iq �

BP
BTpm̃,iq (6.27)

where from equation (6.26), we have

P pTiq � αi �
1

2

Ņ

j�1

αiαjyiyjKpTi,Tjq

The computation of the gradient w.r.t. the tensor factor Ti can be computed using
δLTpm̃,iq from (6.21).

2. Updating αi:

Lpαkq � αk �
1

2

Ņ

j�1

αjyjαkykkpxk, xjq

� αk �
1

2
αkykαkykkpxk, xkq �

Ņ

j�1,j�k

αjyjαkykkpxk, xjq

BL
Bαk

� 1�αky
2
kkpxk, xkq � yk

Ņ

j�1,j�k

αjyjkpxk, xjq

BL
Bαk

� 1� yk

Ņ

j�1

αjyjkpxk, xjq. (6.28)
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Gradient of L w.r.t. α is ∆pLq �
�
BL
Bα1

, BL
Bα2

, . . . , BL
BαN

�
,

BF
Bαi

� 1� yi

Ņ

j�1

αjyjKpTi,Tjq. (6.29)

The projection gradient method works well when the objective function is convex and
the feasible domain S is a set of box constraints such as bound on the optimization
variable.

Projected Gradient Descent for Bounded Constraints

The PGD is an iterative approach where the feasible direction d � 0 is updated along
the direction vector.

Algorithm 6.1: Projected Gradient Descent

Initialize : x0

Output: Optimized fpxiq s.t. ai   xi   bi, @i P M ¡
Update: xk�1 � P pxk � ηk∇fpxkqq, where η is the step size (learning rate)

Projection : P ris

$''&''%
xi ai   xi   bi

bi xi ¥ bi

ai xi ¤ ai

The algorithm 6.1 converges to a solution that minimizes the objective function while
satisfying the bounded constraints. PGD is particularly useful in scenarios where the so-
lution must lie within a prede�ned range, such as in optimization problems with physical
or practical constraints.
The computation of the learning rate η and its speci�c selection lead to di�erent kinds

of PGD methods. One such method, �the Armijo rule along the projection arc,� was
introduced in [18], originating from [17]. Later, this approach of �nding the best learning
rate proved to be highly e�ective in a wide range of �elds, from machine learning to basic
advancements in algorithms such as NMF [109].

Lemma 6.2:
Let Ω � Rn and suppose that f P C2pΩq. Then let

xk�1 � xk � ηkdk, where xdk,∇fpxkqy   0.

Then for su�ciently small s ¡ 0 one has

fpxk�1q   fpxkq.
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The Armijo rule says [19],

fpxkq � x∇fpxkq, dky   fpxkq � sηx∇fpxkq, dky

Hence, the use of PGD has extend to the KSVM in [87], and with Armijo rule ([10])
in [19]. In current scenario, we extend the KSVM approach on the KSTM while using
TT-factors, and Lemma 6.2. In the current case the bounded constraint is S � tα ¥
0 &

°N
i�1αiyi � 0u.

Algorithm 6.2: Projected Gradient Descent for KSTM.

Input: ObjpXq,
�
α0;T

pm̃,iq
0 ; b0

�
Output: Optimal value for

�
α;Tpm̃,iq; b

�
Set vk �

�
αk;T

pm̃,iq
k ; bk

�
�
�
PSpα0q;PSpT

pm̃,iq0q;PSpb0q
�

for k � 0, 1, . . . kmax do
Search direction: dk � PSpvk �

BObjpXq
Bvk q � vk

Step size stk � maxsPt0,1,2,...u sts, such that

Objpvk � sts � dkq ¤ Objpvkq � cstspBObjpXqBvk qTdk, c P p0, 1q

Providing

�
BObjpXq
Bvk

T


dk   0

vk�1 � vk � stkdk
Convergence tolerance: ∥pdkq∥2 ¤ tol, or tk ¤ tol, or dk is non descent

end for

This used condition of projected gradient methods, ensures the su�cient decrease of
the function value per iteration. This leads to minimal of the function without diverging
or oscillating.

6.3.4 Gradient Descent Enhancement

The approach to �nd the optimal solution for the objective function in (6.26) would be
to �rst compute the TTCP Fcatorization with the initialization of Unconstrained TTCP
fcatorization from the Chapter 4. This computation is independent to the STM update.
Problem can be broken into following two steps,

� Step 1: TTCP Factorization: This form is achieved from equation (3.6) and
mentioned in Chapter 4,

� Step 1: TT Decomposition: Finding the best low-rank approximation (Ini-
tialization) (Computing the TT decomposition using the uniqueness enforcing
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TT-SVD Algorithm 4.1),

min
Cpmq

∥∥∥∥X� xxC̃
p1q
, C̃

p2q
, � � � , C̃

pMq
yy

∥∥∥∥2

F

� Step 2: Exact TT-CP Expansion

¸
r0,...,rM

C
p1q
r0,i1,r1

C
p2q
r1,i2,r2

� � �C
pMq
rM�1,iM ,rM

�
Ŗ

r�1

T̂
p1q
i1,r

T̂
p2q
i2,r

� � � T̂
pMq
iM ,r

by merging the ranks r1, r2, . . . rM into one index such that,

r � r1 � pr2 � 1qR1 � . . .� prM � 1q
M�1¹
ℓ�1

Rℓ, r � 1, . . . , R, R � R1 � � �RM ,

and introducing the CP factors

T̂
pmq
im,r � C

pmq
rm�1,im,rm

, m � 1, . . . ,M.

� Step 3: Norm Equilibration:

nr �
∥∥∥T̂p1q

r

∥∥∥ � � �∥∥∥T̂pMq
r

∥∥∥ ,
and distribute this norm equally among the factors,

Tpmq
r :�

T̂
pmq
r∥∥∥T̂pmq
r

∥∥∥ � n1{M
r , m � 1, 2, � � � ,M.

� Step 2: Solving dual-STM optimization using PGD

max
α,T

pmq
i

Ņ

i�1

αi �
1

2

Ņ

i,j�1

αiαjyiyjKpTi,Tjq � γ
Ņ

i�1

ΩpTiq

subject to 0 ¤ αi ¤ C,
Ņ

i�1

αiyi � 0, i P 1, 2, . . . , N. (6.30)

These above-mentioned steps are re-formulated in an Algorithm 6.3.
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Algorithm 6.3: Simultaneously-update for TT-MMK (SimUpTT-MMK).

Input: data tXnu
N
n�1RI1�I2�...�IM , TTCP-rank R.

Output: Optimized Parameter Tpm,nq,α, b
for n � 1 to N do
for m = 1 to N do
Compute TTCP approximation of Xn � JTp1,nq,Tp2,nq, � � � ,TpM,nqK as
mentioned in Algorithm 4.2
Initialize α and b from TT-MMK Chapter 4
Compute kernel matrix K using (6.15)
Updating Tpm,nq,α and b by Algorithm 6.2

end for
end for

6.3.5 Full Simultaneous update TT-MMK

The PGD (Algorithm 6.2) plausibly returns the optimal solution. This is immediately
true if the objection function (6.26) is β-smooth as discussed now.

Theorem 6.3:
[22] Let F be β�smooth on Rm and bounded from below. Let stk � st � 1

β
for all

k P d. Then for every k P d,

mini¤k∥∇F pθiq∥2 ¤
�

2β

k � 1
pF pθ0q � F pθk�1qq


1{2
� Opk�1{2q. (6.31)

♢

As gradient of the objective is Lipschitz if it is β�smooth. Therefore, dual form is
bounded below. This proof can give theoretical guarantee to convergence of the method.
Once the optimized parameters (Algorithm 6.3) are computed then the decision function
can be used for predicting labels of tensor input. The decision function in dual form is
given as follows,

fpTq �
Ņ

i�1

αiyiΨpTiq
TΨpTq � b �

Ņ

i�1

αiyiKpTi,Tq � b by (6.12)

Using, (6.15)where fpTq �
Ņ

i�1

αiyi

�����
Ŗ

p,q�1

exp

����� M̧

m̃�1

∥∥∥pTpm̃,iqp:, pq �Tpm̃,iqp:, qqq
∥∥∥2

2g2

���

����
� b,

(6.32)
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where, Tpm̃q belongs to a new point X. The function in equation (6.32) shows the
nonlinear decision boundary for Primal Support Tensor Train Machine. The value of b
is given as follows (only for those indices i that must be constrained, 0   αi   C, and
value of b for each of these constrained indices i would be same),

b � yi �WTΨpTiq

� yi �
Ņ

j�1

αjyjxΨpTjq,ΨpTiqy

� yi �
Ņ

j�1

αjyjKpTi,Tjq (6.33)

or average over support indices Ns such that b � 1
Ns

°Ns

i�1p� yi�
°N

j�1αjyjKpTi,Tjqq.

6.4 Numerical Assessment

� Synthetic Data Collection: The dataset is collected as mentioned in Chapter 6
with the noise in frequency (leaf ). For this case, 30 samples are taken with 50�50
division of positive and negative labels. The data size is r50, 50, 50s with the noise
level 0.1.

� Parameter Tuning: The entire SimUpTT-MMK model depends on some pa-
rameters and hyperparameters. First, to simplify the selection of TT-CP ranks,
we take all TT-CP ranks equal to the same value R P t1, 2, . . . 10u. The other
two parameters are α and b. The α and b are initialized from the dual solution
of STM from our previous work Chapter 4. The trade-o� parameter C, the scale
parameter γ, and the Gaussian kernel parameter g are also optimization parame-
ters. For tuning R,α, b and γ to the best classi�cation accuracy, the k-fold cross
validation (�2.4.1) with k � 5. Along with this, all computations are supposed
to be repeated 50 times and average the accuracy over these runs. The other two
optimization parameters pg, Cq lies within the range t2�8, 2�7, . . . , 27, 28u. While
the hyperparameter γ is taken from t2�3, 2�2, . . . , 22, 23u. The another crucial hy-
perparameter take role in PGD method, the so-called 'stepsize'. The stepsize is
initialized within t0.5, 1u range and reduced it by using line-search method in PGD
approach as mentioned in Algorithm 6.2. This ensures a con�dent and reproducible
comparison of di�erent techniques.
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6.4.1 Convergence Analysis

Observations as optimization fails to give better results. Some observation for the
experimental analysis has been made. Firstly, often the stepsize reaches the threshold
before reaching the optimum of objective function. Second, the objective function
might be over�tiing the data, reason being amount of data is small and data might be
sparse. The explanation for this issue is that there is a bog gap between training and
test error. This means model has high variance and �nding best trade-o� between
bias and varinace is a tricky scenario. Third, the objective function is a combination
of SVM part and low-rank approximation. Therefore, it is plausible that PGD is
reaching to �singularity� rather reaching to an optimum. Fourth, the best of the
worst classi�cation is achieved mostly on the edge point of the grid of γ, let say if
γ P t2�3, 2�2, . . . , 23u then high chances that optimum value is achieved on either 2�3

or 23. Also, as much as the range is increased the shift of optimum moves according
to the shift and again to the edges. This also give a supportable reasoning to the
argument of reaching to singularity. Last but not least observation which is in favour
of proposed method is that as much as the noise increase in data, the classi�cation
accuracy decreases.

Plausible Solutions as mentioned earlier the heuristic non-convex approaches have
issue with convergence. Usually PGD stop making progress in optimizing objective
function when �it actually converges to optimum� but vanishing gradient could be
one issue to stop progress toward optimum. An inspiration of �nding solution to
this concern could come from one of the approach used in DL to deal with non-
convex optimization. The route to reach to the convergence at apt time is to �nd a
safeguard such as early stopping, more robust truncation conditions. In case of convex
optimization it only happens when problem solution reaches to global optimum.
However, for non-convex, non-smooth case, another issue could be that each time
optimum get stuck at the local non-minimum minima. As PGD algorithm converge
to global optimum in polynomial time with a linear rate of convergence for well-
structured objective function and constraint sets. Therefore, the requirement of a
well-de�ned optimization training algorithm is needed.

Analysis So far the theoretical explanation given in this chapter provides an advantage
for a generic approach to Regularized STM models. As mentioned in [42], the Tucker
format has an edge over CP-based decomposition for STM models. Tucker decomposi-
tion is a modelling technique that is particularly well-suited for high-dimensional data
with a limited number of available samples. Additionally, it o�ers a more parsimonious
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and compact model. In the case of skewed data in terms of dimensions or signi�cant dif-
ferences in the sizes of di�erent modes, by fully exploiting the multilinear ranks, Tucker
decomposition allows for the freedom to choose a di�erent rank for each mode, which
can be useful in such situations. Moreover, Tucker decomposition explicitly models the
interaction between factor matrices in di�erent modes, enabling a �ner grid search over
a larger modelling space. This can help to identify complex patterns and relationships
in the data that might be missed by other modelling techniques. Overall, Tucker decom-
position is a powerful tool for analysing and modelling high-dimensional data, o�ering
important advantages over other methods.

Note: Given certain advantage of Tucker model and proposed new kernel in Chapter 5
can give further advancement in classi�cation accuracy if aligned in Regularized STM
formulation. At present, only concern is to develop a well-de�ned optimization regime.

6.5 Chapter Summary

This chapter represents the �nal part of the contributed work in this thesis. The intro-
duction section (�6.1) provides an overview of the main novelty behind the research idea.
It discusses the importance of having a regularized model and highlights the challenges
involved in �nding the optimal solution.
The subsequent section (�6.2) delves deeper into these models and explores the tradi-

tional approaches for dealing with them. An alternative approach to address regularized
models is presented in �6.2.1. This approach involves computing the complex gradient
of the Lagrangian (primal) function with respect to each parameter of the objective
function.
The following section (�6.3) utilizes the computed gradient and introduces an iterative

method for non-convex optimization. Prior to discussing the iterative method, the main
contribution of this work is presented, which is the �primal-dual SVM relation� in TTCP
format (�6.3.1). Furthermore, the full simultaneously-updated STM model and the
corresponding algorithms (Algorithm 6.2, 6.3) for �nding solutions are introduced in
�6.3.3 and �6.3.5 respectively.
The suggested theorems and lemmas provide additional theoretical guarantees. In

section �6.4, a synthetic experiment is explained along with crucial observations resulting
from running these experiments. This further emphasizes the need for a comprehensible
model and solution approaches.
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7.1 Conclusions

Chapter 1 makes a connection between two �elds and explains the issues to solve a non-
linear boundary binary classi�cation model. It shows a substantial necessity to include
tensor algebra into such a classi�cation model. After providing a prerequisite detailed
description of forming the model in Chapter 2 and Chapter 3, this thesis predominantly
focuses on three di�erent directions related to solving the KSTM model (�3.4.3), dis-
tributed along three chapters (4, 5, 6).
Chapter 4 centers on developing a new low-rank tensor approximation that is grounded

on the TT decomposition. Along with it, the chapter proposes a new kernel model
for SVM classi�cation of tensor input data. The kernel extends the DuSK (�4.2.5)
approach [72, 71] to the TT decomposition of the input tensor with enforced uniqueness
and norm distribution. The TT decomposition is considered more reliable than the CP
decomposition used in the original DuSK kernel. Using fMRI and Hyperspectral Image
datasets, higher classi�cation accuracy is demonstrated for the new TT-MMK method,
even with unsophisticated choices of the TT ranks, for a wide range of classi�cation
problems. It is found that each component of the proposed scheme, including uniqueness-
enforced TT, TT-CP expansion, and norm equilibration, is crucial for achieving this
accuracy.
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The main part of Chapter 5 is �guring out the reasoning for the success of DuSK
(�4.2.5), especially when using the CP (TT-CP) format of the tensor input data. The
after-e�ect of this analysis led to the development of a new reproducing kernel, the WSEK
(�5.2.2). This relies on a weighted format of Tucker decomposition rather than the CP
format. A detailed numerical study on the synthetic data experiments (�5.3) shows the
persuasiveness and feebleness of the WSEK kernel, and real-world experiments (ADNI
and ADHD datasets) show superior performance of WSEK both in terms of classi�cation
accuracy and running time. It is concluded that the classi�cation information of the
datasets is mostly hidden in the subspaces of the Tucker decomposition (hence the
previously observed good performance of DuSK) but that classi�cation can be improved
by taking the singular values into account (as done in WSEK). Furthermore, computing
the Tucker decomposition of tensor inputs is straightforward and e�cient, resulting in
an all-around very robust tensor kernel.
So far, research has focused either on de�ning a better kernel function in high-

dimensional embedded space or de�ning a computationally e�cient way to construct
these reproducing kernels by developing better feature extraction techniques (low-rank
approximation). The third happy hunting ground for the KSTM model would be to �nd
a better optimization regime while combining both aspects of improving a model (kernel
function and feature extraction). Chapter 6 addresses this issue and develops a solution
for the highly non-linear KSTMmodel by proposing a new optimization regime. The idea
of using simultaneous update of TTCP factors with SVM variable update goes one step
ahead of the standard STM model. The proposition of the primal-dual relationship in
the TTCP format of the regularized STM is a novel work of this chapter. The proposed
algorithms, lemmas, and theorems provide the theoretical guarantee of convergence to
a local minimum (in fact, global) of the non-convex optimization problem.
The prominent highlight of o�ered research work is attaining 15% increment in classi�-

cation accuracy for highly complex fMRI data with small data samples notwithstanding.

Supplemental Contribution [84]:

In this work, authors introduced a method that combines a well-established nonlinear
identi�cation technique, speci�cally the bilinear approach, with the advantages of neural
networks (NNs). Fitting bilinear systems accurately requires recovering the correspond-
ing Markov parameters from input and output measurements, followed by a realization
algorithm similar to the one proposed by Isidori. However, in this approach, NNs are
utilized as a surrogate data simulator to generate input-output (i/o) data sequences.
Authors then employ classical realization theory to construct an interpretable bilinear
model, which can be further utilized to optimize engineering processes through robust
simulations and control design. This integration of the bilinear method with NNs pro-
vides a novel framework for enhanced system identi�cation and engineering applications.
The use of NNs as a data simulator o�ers �exibility and e�ciency in generating i/o data,
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while the bilinear model allows for interpretable and optimized simulations and control
designs.

Note: While providing a detailed description of the work mentioned in [84] is beyond
the scope of this thesis, it can be regarded as an application of machine learning (ML)
models, speci�cally neural networks (NNs) with fewer hidden layers, such as support
vector machines (SVMs).

7.2 Future Research Directions

The successful projects are included as contributed work in the thesis. In this section,
several research ideas that were explored during the timeline of doctoral studies are pre-
sented, along with some remaining open questions. Some of these ideas have compelling
models that directly align with the current research and the need for Generalized AI.
The aforementioned model, as well as these futuristic models, have the potential to be
useful in various applications such as 3D image analysis (e.g., MRI, EEG), anomaly
detection, signal processing, medical equipment technology, and disease diagnosis (e.g.,
cancer, Alzheimer).

7.2.1 Direction 1: Neural Support Tensor Machine (Multiple
Kernel Learning)

The one reason for the success of Weighted HOSVD and its related WSEK is the equal
distribution of weights to all the feature vectors. This approach involves automatically
optimizing a highly nonlinear objective function to assign weights to each neuron in
the neural network. From these two techniques, an immediate intuition arises regarding
the development of a kernel function based on low-rank approximation, such as TTCP
(Algorithm 4.2) or Weighted HOSVD (Algorithm 5.2), which can learn automatically
and provide optimum weighting to the most important feature vectors.

However, running an NN-based model can be computationally expensive for large-
scale problems in high-dimensional space. In addition, other optimization issues, such
as over�tting and vanishing gradients, may easily occur and lead to solutions worse
than those presented in the state-of-the-art methods (see Chapter 4, Chapter 5 and
Chapter 6).

One solution to address the mentioned issues is to utilize Transfer Learning (TL) [20],
which is a popular technique in current DL research and has proven to be computation-
ally e�cient. TL focuses on applying the knowledge gained while solving one task to a
related task. Motivated by this technique, the idea of developing the TT-MMK method

115



Chapter 7. Summary and Outlook

serves as a solid foundation for further advancements. Hence, the next subsection ex-
plains the concept of TT-MMK or TTCP-based NNs.

TTCP-based Neural Network implementation

The implementation of the 3D-CNN model on ADHD data using the TTCP decompo-
sition of the input data is shown in Figure 7.1. The dataset details are mentioned in
Chapter 4, speci�cally in Section �4.3.1. The Figure 7.1 shows classi�cation accuracy
only for 20 epochs. The detailed description of the NN model is as follows:

Implementation Details for ADHD Dataset: A TensorFlow-based CNN imple-
mentation is developed for comparison with TT-MMK. The network design is inspired
by VGG16 [170], a well-performing architecture for binary and multi-class image clas-
si�cation problems. In our case, a modi�ed version of the VGG16 model is used to
handle the three-dimensional input data (ADHD fMRI). The fully connected output
layer with a sigmoid activation function provides the binary classi�cation result. Since
our input data has smaller dimensions compared to the original VGG16 input shape of
p224�224�3q, adjustments are made, such as reducing the kernel size for convolution ker-
nels and pooling steps. Additionally, 2D convolutions are replaced with 3D convolutions
to accommodate the given data. The model has 6, 808, 157 trainable parameters and
follows an 80-20 split for training and validation datasets. During performance checks,
the model is trained for 20 epochs, with a maximum observed validation accuracy of
62.5

Before de�ning the CNN for TT-CP decomposition, a simpler NN is implemented for
the TT decomposed data. A multi-input model is developed for this purpose, where
the three TT cores are fed into three separate branches of the network. Further, the
�attened TT cores are used and fed into a sequential arrangement of fully connected
layers. The outputs from each branch are concatenated by adding them to the end of the
preceding one, creating a long tensor that is then fed into the succeeding dense layers.
The architecture of the dense layers is also modi�ed to include convolutional layers,
considering the challenge posed by the small shape of the input tensor. Moreover, the
concatenation scheme of the branch outputs is being reviewed to better represent the
data. However, this model tends to over�t the training data due to the chosen fully
connected architecture. It consists of 826, 581 trainable parameters.

Note: The e�cient STTM in Chapter 4, contains three main steps in the algorithm.
Among those, applying uniqueness of SVD in t3f library is not straight forward. Building
a NN where taking TT-CP (Alg. 4.2)/Weighted HOSVD (Alg. 5.2) decompositions can
be computed by evaluating three convolution layers separately (for 3D data) and they can
be concatenated into one. This concatenation would resemble the kernel approximation
in the STM method.

116



7.2 Future Research Directions

Figure 7.1: Classi�cation accuracy of ADHD data for 20 epochs.

In Figure 7.1, the training-MSE is not achieved to be 100%, the reasons could be less
amount of training data, missing uniqueness enforcement on TT factors, and not yet
having a comprehensible model or hyperparameter tuning. These perspectives are yet
to be looked into for future research work. The diamond in the rough version of Neural
STM can be depicted as in Figure 7.2.
One of the advantages of working with DL is the �exibility it o�ers in terms of incorpo-

rating complexity, such as the number of layers or the structure of the proposed model.
In the previous chapters, the Gaussian kernel was used, which is a common choice in
the ML community. However, this �xed kernel approach may not capture all aspects of
the data. In other words, certain rare features may be overlooked due to the lack of an
appropriate kernel choice. To address this, a kernel layer can be added as an additional
hidden layer in the Neural STM. This idea bears similarity to the concept of Multiple
Kernel Learning (MKL) [143, 58], but without the need for manual intervention. The
mathematical formulation in Neural STM for kernel computation is as follows,

KpXi,Xjq �
Ŗ

p�1

Ŗ

q�1

ζpq

M¹
m̃�1

exp

�����
∥∥∥pTpm̃,iqp:, pq �Tpm̃,jqp:, qq

∥∥∥2

2g2

���
loooooooooooooooooooooooomoooooooooooooooooooooooon
W pm̃q

, (7.1)

where, X are the tensor data points with T as tensor factorization (TTCP or Tucker)
and ζ are the weight parameter in the corresponding hidden layer. The MKL would also
include di�erent kernel function as an additional layer with additional weight parameter
(η). The mathematical formulation is in (7.2). The depiction of this idea could look like
as in Figure 7.3,
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Ŗ

p�1

Ŗ
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The concept of combining STM as a TL approach to develop a more �exible and
generic model is an intriguing idea that holds promise for future projects. This approach
has the potential to enhance the adaptability and versatility of models, allowing them
to leverage knowledge from di�erent domains and transfer it e�ectively to new tasks.
Implementing and exploring this concept further could open up exciting avenues for
research and contribute to the development of advanced and adaptable machine learning
models.
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Figure 7.3: Neural Support Tensor Network.

Tensor Kernel Learning in Gaussian Mixture Models [94]: This leads to
another future direction of research that is if all the kernels are taken as Gaussian
then multiple kernel learning would eventually be Gaussian mixture models for low-
rank tensor decomposition or multivariate Gaussian mixture models.

7.2.2 Direction 3: Gene Expression Recovery

An exciting direction for future research is the use of tensor-based models.
In the �eld of computational biology, it's not just about �nding the best features; it's

also about truly understanding what these features mean. Plus, interpreting the results
statistically is crucial for making these methods work e�ectively in real-world scienti�c
experiments.
The single-cell RNA sequencing data in Genomics, structured as a three-dimensional

tensor denoted as X P RD�C�G. Here, D represents the number of donors, C signi�es
the cell type, and G characterizes the gene expression pro�les across diverse donors.
This dataset prompts a multitude of intriguing questions spanning from unsupervised
and semi-supervised to supervised learning. Hence, use of low-rank tensor factorization
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is an obvious further step to deal with complexity in data that is caused by multidimen-
sionality. Already, tensor factorizations have found their application in genomics [83].
An advancement in this direction is evident in [174], where the HOSVD method is em-
ployed. This way by using the knowledge from Chapter 4 and Chapter 5 to address
challenges to build an appropriate model for single-cell genomics data. These models
could be more robust. However, beyond appropriately modeling data distribution and
noise, the inherent randomness of tensor factorization algorithms poses a challenge, re-
sulting in disparate outcomes across multiple runs and impeding interpretability and
reproducibility [95]. Thus, the development of a tensor factorization method that not
only captures biologically meaningful gene expression patterns but also yields factors
with stronger correlation becomes imperative.
In many areas like healthcare and genomics, it's common to have data with lots of

zeros, making it sparse. But the usual way of breaking down this data into smaller
pieces, using something called tensor factorization, can be unreliable when the data is
like this [35]. To �x this, people have come up with a new way called Bayesian Tensor
Factorization (BTF). This new way has some bene�ts, like using what we already know,
picking the best model, and telling us how sure we can be. But it's important to
remember that this new way can be slow and needs a lot of careful planning, which
might need the help of an expert.
Another problem is that the usual methods, which break down the data in a special

way, might not work well for �nding complex patterns in the data that are not straight-
forward. To deal with this, a possible solution is to combine this special method with
another technique called kernelization. This would need careful designing of how the
technique works, especially for �nding these not-so-obvious patterns. In the future, we
can try to use known techniques like DuSK and WSEK to �ll in this gap.
One idea is to use WSEK to compare two pieces of data by considering all the parts

together, while in the case of single-cell RNA data, we might focus on how related the
di�erent parts are. The new technique we come up with could be a mix of DuSK and
WSEK, �nding the right balance between them.
Let us take HOSVD (�3.3.2) or SqrtmHOSVD (Alg. 5.2) of tensors X � G�1 �A�2

B �3 C and Y � H �1 �D �2 E �3 F. First normalize G and H such that the entries
are between 0 and 1, so we will consider them as probabilities.

R1̧

i1,j1�1

R2̧

i2,j2�1

R3̧

i3,j3�1

|Gi,j,k �Hi,j,k|kpai1 ,dj1qkpbi2 , ej2qkpci3 , fj3q. (7.3)

This would possibly provide the nonlinear relationship between factors and would
also give a new direction to specialized low-rank approximation used in genomics data.
Although, interpretability of these factors is not straight forward, therefore using a more
advanced form of BTF with Kernel methods would lead to profound knowledge of single-
cell RNA sequence data. This can help healthcare �eld to better understand the disease
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and in future could lead to �nding better cure. Further, [101] presents detailed review of
use of Kernel methods in genetic. The work presented in [192] go more into the direction
of data analysis for gene expression using kernel methods.

Note: The proposed work in this thesis has implications for nonlinear boundary clas-
si�cation and opens up less-explored avenues. One potential direction is to apply the
concepts to regression problems, speci�cally Support Vector/Tensor Regression or Ker-
nel Ridge Regression, where the negative log likelihood loss can be used for classi�cation
(  0.5 P class 1, ¥ 0.5 P class 2) or regression. This approach has numerous applica-
tions, including image analysis, image segmentation, prediction or analysis of time-series
data, sensor networks, and Natural Language Processing.
Another promising prospect is to explore models that incorporate di�erent norms

for the low-rank tensor approximation regularized term. This variation proves useful in
tackling challenges related to Tensor Completion or missing data issues. The applications
of such a model extend to recommender systems, video inpainting, brain imaging, social
network analysis, environmental data analysis, genomics, and bioinformatics, among
others.
Apart from the practical applications of the proposed work, this thesis also contributes

to the extension of knowledge in the �eld of Numerical Multilinear Algebra. The de-
veloped algorithms serve as valuable tools for the wider community working in �eld of
numeric.
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7.3 Outlook

Low-rank Tensor Decompositions in Kernel-based Machine Learning
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