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Simple Summary: The mechanisms underlying the size progression of vestibular schwannomas
remain poorly understood. Accordingly, this study was focused on investigating the potential role
of messenger substances in regulating the growth of these tumors. These cytokines are produced
by the tumor cells themselves or by other cells, such as immune cells. The influence of the cy-
tokines on the size progression of tumors could facilitate the development and establishment of
drug therapies for vestibular schwannoma patients, which are currently unavailable for sporadic
vestibular schwannomas.

Abstract: Sporadic vestibular schwannomas (VSs) often exhibit slow or negligible growth. Neverthe-
less, some VSs increase significantly in volume within a few months or grow continuously. Recent
evidence indicates a role of inflammation in promoting VS growth. Therefore, our study aimed to
identify cytokines, which are associated with larger VSs. The expression of different cytokines in
VS tumor samples and VS primary cultures was investigated. Additionally, the concentration of
cytokines in cell culture supernatants of VS primary cultures and cerebrospinal fluid (CSF) of VS
patients and healthy controls were determined. Correlation analysis of cytokine levels with tumor
volume, growth rate, Koos grade, age, and hearing was examined with Spearman’s-rank test. The
mRNA expression of CC-chemokine ligand (CCL) 18, growth differentiation factor (GDF) 15, and
interferon regulatory factor 4 correlated positively with tumor volume. Moreover, the amount of
GDF15 in the cell culture supernatant of primary cells correlated positively with tumor volume. The
concentrations of the cytokines CCL2, CCL5, and CCL18 and transforming growth factor beta (TGFB)
1 in the CSF of the patients were significantly different from those in the CSF controls. Inhibition of
immune cell infiltration could be a putative approach to prevent and control VS growth.

Keywords: vestibular schwannoma; acoustic neuroma; cytokines; tumor-associated macrophages;
transforming growth factor; CC-chemokine ligand; growth differentiation factor

1. Introduction

Vestibular schwannoma (VS) is a benign tumor arising from the vestibular part of
the eighth cranial nerve [1] and is the most common tumor of the cerebellopontine an-
gle [2,3]. With the increased use of contrast-enhanced magnetic resonance imaging (MRI),
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VS has been diagnosed more frequently. Sporadic tumors are usually localized unilater-
ally, whereas VS associated with neurofibromatosis type 2-related schwannomatosis (NF2)
occurs bilaterally [1,4].

Although approximately 50% of sporadic VS do not increase in size, there are tumors
which show a rapid size progression [4]. This can lead to the displacement of adjacent cere-
bral structures and brainstem compression [5]. Symptoms such as hearing loss, unilateral
tinnitus, and vertigo are frequently observed. So far, little has been known about the causes
and mechanisms of VS size progression. Moreover, there is no established pharmacological
therapy to prevent growth.

Besides monitoring the progression of VS with MRI (wait and scan), there are currently
two therapeutic options [6]. One option is radiosurgery, and the other is resection. The size
of the tumor is crucial for the decision of the procedure [6]. However, because VSs often
have incalculable growth rates, the optimal time for therapy is difficult to estimate [7]. As
tumors increase in size, the risk of a worse postoperative outcome for the auditory and
facial nerve also increases [6]. There are also risks associated with both VS treatments, as
hearing function can be affected, or other cranial nerves, especially the facial nerve, can be
damaged [3].

In recent years, the importance of research on inflammatory processes and the influ-
ence of immune cells on VS progression has increased. A previous analysis showed that
the majority of proliferating cells in the progressive VS were allograft inflammatory factor
1 (AIF1)-positive macrophages [5], which is a marker for the macrophages of the brain (mi-
croglia) [8]. In addition, higher mRNA levels of the macrophage markers CD68 and CD163
were detected in large, as well as in fast-growing, VSs [1,9]. In addition, rapidly grow-
ing VSs showed higher expression of macrophage colony-stimulating factor (M-CSF) [7].
Among these, CD68 was found on all macrophages and monocytes [10], whereas CD163 is
a high-affinity scavenger receptor and a marker of tumor-associated M2 macrophages [11].
These have anti-inflammatory properties and promote tumor growth [11]. M-CSF is as-
sociated with higher macrophage activity and tumor progression [7], and it induces the
differentiation of macrophages into M2 macrophages [12]. These macrophages exhibit
tumor-promoting properties, such as suppression of the immune response, promotion of
size growth, and angiogenesis in tumors [13].

In other tumors, cytokines are associated with the recruitment of macrophages from
the peripheral blood, and their polarization and activation to form tumor-associated
macrophages (TAMs). CC-chemokine ligand (CCL) 2, CCL5, and CCL18 and transforming
growth factor beta (TGFB) 1 secreted by tumor cells have been described to have chemotac-
tic effects on macrophages [14–17]. Positive correlations with the number of TAMs have
been demonstrated for the expression of CCL2 and CCL5 [18,19]. Interferon regulatory
factor (IRF) 4 and TGFB1 stimulate the polarization of macrophages to M2 macrophages
through the activation of interleukin (IL) 4 and IL10 genes [20,21]. Growth differentiation
factor (GDF) 15 is described to be secreted by tumor cells, but also by TAMs. GDF15 was
also shown to polarize macrophages towards the M2 subtype [22]. These mechanisms of
macrophage attraction and polarization, as well as their role in tumor size progression,
known for other tumor entities have not yet been investigated for VS.

Numerous substances targeting TAMs have been developed for treating malignant tu-
mors, employing diverse therapeutic approaches. Firstly, the M-CSF receptor on macrophages
can be directly inhibited by antibodies, leading to a reduction in macrophage infiltration
into the tumor [23,24]. Secondly, the attraction and polarization of macrophages can be
prevented by inhibiting cytokines or their receptors. Promising results have been observed
in cancer patients’ treatment with Carlumab, an anti-CCL2 antibody, or Maraviroc, a CCR5
antagonist [25–28].

Therefore, the aim of this exploratory study was to elucidate the mRNA levels and
concentrations of immunomodulatory cytokines in VS tumor samples, VS primary cultures,
and cerebrospinal fluid (CSF) of VS patients for an understanding of macrophage recruit-
ment as well as their polarization and activation into TAMs. Insight into the interaction
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between tumor cells and immune cells could lead to (i) a more thorough understanding of
the progression of VSs and (ii) the identification of new drug targets against VS growth as
there is currently no medical therapy option for VSs. A further aim of our study was to com-
pare the mRNA level of cytokines in VSs with the mRNA level of corresponding vestibular
nerves, as well as the cytokine concentrations in CSF of VS patients with the CSF cytokine
concentration in controls, in order to investigate the influence of the immunomodulatory
cytokines on the development of VS.

2. Materials and Methods
2.1. Study Design, Ethics, and Tumor Volumetry

The database included 232 consecutive patients with sporadic VS from 2012 to 2023
who were at least 18 years old at the time of surgery and had at least one preoperative
cranial MRI scan, acquired less than 6 months before the operation. Patients with recurrence,
radiation, or NF2 diagnosis were excluded from the study (Figure 1) [9]. Data from
175 patients were used for the experimental analyses.
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a correlation with tumor volume in 49 samples and a correlation with growth rate in 12 samples was 
obtained. Abbreviations: CSF, cerebrospinal fluid; MRI, magnetic resonance imaging; NF2, NF2-
related schwannomatosis; qPCR, quantitative real time polymerase chain reaction; VS, vestibular 
schwannoma. 
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Figure 1. Workflow of the study. Of the 232 patients in the database, not all bio-material was available
from each patient. In 176 patients, at least mRNA, primary culture, or CSF was present. mRNA
analysis was obtained for 144 tumor samples, correlation with tumor volume could be obtained
in 124 samples, and correlation with growth rate was found in 31 tumor samples. Quantification
of cytokines in cell culture supernatants (CCSs) of primary cultures was performed in 45 samples,
correlation with tumor volume was possible in 40 samples, and correlation with growth rate was
possible in 12 samples. Concentration analysis of cytokines in CSF was feasible in 52 samples,
whereby a correlation with tumor volume in 49 samples and a correlation with growth rate in
12 samples was obtained. Abbreviations: CSF, cerebrospinal fluid; MRI, magnetic resonance imaging;
NF2, NF2-related schwannomatosis; qPCR, quantitative real time polymerase chain reaction; VS,
vestibular schwannoma.

Preoperative tumor volume was determined by preoperative MRI as described in
Leisz et al. [9]. For tumor volume and growth rate determination, only MRIs with a slice
thickness of 2.5 mm or less were considered, resulting in tumor volume determination from
155 patients. To determine the growth rate, at least two preoperative images were required
that had a slice thickness less than 2.5 mm and were at least 6 months apart, resulting in a
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growth rate determination from 39 patients. The MRI image history was used to calculate
the absolute annual growth rate as follows:

tumor volume MRI time point 2 − tumor volume MRI time point 1
(MRI time point 2 − MRI time point 1)/365

The relative annual growth rate was calculated using the MRI images as follows:

tumor volume MRI time point 2/tumor volume MRI time point 1
(MRI time point 2 − MRI time point 1)/365

In addition to the tumor volume, the VSs were classified according to the Koos grade,
considering the extent of the VS in the cerebellopontine angle and the relation to the brain
stem. Positive votes (approval numbers 2020-122 and 2021-101) of the ethics committee
of the medical faculty of the Martin Luther University Halle-Wittenberg were obtained.
The study was in accordance with the criteria of the Declaration of Helsinki. Written
informed consent was obtained from each patient prior to surgery, which included the
collection of patient data from medical records, the usage of preoperative MRI images,
surgical specimens, and CSF. CSF samples from neurological patients provided a control
group for the CSF concentration of cytokines. Patients were excluded from the control
group if they had a disorder of the blood–brain barrier, an underlying inflammatory
disease, a tumor, or a degenerative brain disease in their medical history. Hearing class
was determined preoperatively from all VS patients according to the American Academy
of Otolaryngology-Head and Neck Surgery (AAO-HNS) classification [29], as previously
described in Rahne et al. [30]. The hearing class was determined on the basis of speech
intelligibility (Word recognition score 40SL) and tone threshold audiometry (4 pure tone
audiometry 0.5, 1, 2, 3 kHz). In addition, a fifth category DS (surditas for deafness) was
defined for preoperatively deaf patients.

2.2. Nerve Samples, DNA Extraction, and Genotyping

The nerve sections originate from the vestibulocochlear nerve. Nerve samples were
obtained from 10 patients during the vestibular schwannoma surgery. DNA was iso-
lated from these nerves, as well as from the corresponding tumor samples, using the
Qiagen AllPrep DNA/RNA Micro Kit (Qiagen, Hilden, Germany). Then, 350 µL RLT
buffer plus one percent beta-mercaptoethanol was added to the samples. The samples
were then ground in the Tissue Lyser for 2 × 2 min at 50 Hz. The samples dissolved
in the buffer were pipetted onto a DNA column to bind the DNA. After washing the
columns twice, the DNA was dissolved in EB buffer, which was heated to 70 ◦C in ad-
vance. The tumor samples and the corresponding nerves were genotyped using Infinium
EPIC Array v2.0 (Life&Brain Genomics, Bonn, Germany). All tumors could be identified
as schwannomas with a calibrated score > 0.9 using DNA methylation-based classifica-
tion [31] (www.molecularneuropathology.org, brain_classifier_v12.8; last accessed on 4
January 2024).

2.3. CSF Samples

The patients’ CSF was collected intraoperatively after opening the basal cistern. The
CSF of the control group was obtained to exclude neurological diseases, and no abnormali-
ties were found in the CSF. According to standardized procedures, 10–12 mL of CSF was
collected in sterile polypropylene tubes and centrifuged at 300× g and 4 ◦C for 10 min to
remove cells. The supernatant was aliquoted and stored at −80 ◦C until measurement.

2.4. RNA Extraction from Tumors and Corresponding Nerve Samples and Reverse Transcription
into cDNA

RNA was isolated from VS tumor samples and corresponding vestibular nerve samples
and reverse transcribed into cDNA as described in Leisz et al. [9]. Briefly, the Qiagen AllPrep

www.molecularneuropathology.org
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DNA/RNA/Protein Mini Kit (Qiagen, Hilden, Germany) was used for RNA isolation. The
cDNA synthesis was performed using the RevertAid First Strand cDNA Synthesis kit
(Thermo Fisher Scientific, Waltham, MA, USA).

2.5. RNAseq Analysis of Tumor and Corresponding Nerve Samples

For nerve and tumor tissue samples, RNA was also isolated as described in Section 2.2.
Ten tumor and nerve pairs were selected for bulk RNA sequencing (RNAseq). The RNA of
tumor samples was also used for qPCR analysis. The RNAseq data were obtained from 1 µg
of RNA using the Illumina Novaseq6000 system (Novogene, Cambridge, UK). Subsequently,
the data were further processed using the Galaxy Server (https://usegalaxy.eu/, accessed
on 13 December 2023) essentially as described in Wieland et al. [32]. Mapping of reads to
the human genome version HG38 was performed using Hisat2, and read quantification
was performed using featureCounts. The RNAseq data of the tumors were compared
with the corresponding nerve sample using Wilcoxon matched-paired signed rank test
and visualized graphically using GraphPad Prism version 10 (GraphPad Software, Boston,
MA, USA).

2.6. Isolation of Primary Cultures from Cavitron Ultrasonic Surgical Aspirator
Filter-Obtained Tissue

Primary cultures were obtained from the Cavitron Ultrasonic Surgical Aspirator
(CUSA) filter-obtained tissue. The isolation and characterization of primary cultures were
performed as previously established in Leisz et al. [33]. In brief, tissue was washed with
phosphate buffered saline without Ca2+ and Mg2+ (PBS; Thermo Fisher Scientific, Waltham,
MA, USA), digested with an enzyme solution of collagenase and hyaluronidase (both
enzymes Merck, Sigma-Aldrich, Darmstadt, Germany) for approximately 14 h, and then
further digested with another enzyme solution (DNase and trypsin, Gibco, Thermo Fisher
Scientific, Pittsburgh, PA, USA) for 5 min. The cells were now plated onto a 75 cm2 cell
culture flask (Sarstedt, Nümbrecht, Germany) pre-coated with poly-L-lysine and poly-
L-ornithine (both Merck, Sigma-Aldrich, Darmstadt, Germany). The isolated primary
cultures were mainly S100-positive and CD56-positive cells (Table S1). S100 and CD56
served as markers for the identification of schwannoma cells [34,35].

2.7. Immunofluorescence Staining

To characterize VS primary cells, immunofluorescence analysis was used. Therefore,
the chambers of a slide (4-well Tissue Culture Chambers, Sarstedt, Nümbrecht, Germany)
were coated with poly-L-lysine and poly-L-ornithine, and primary cells were seeded on the
slide. The slices were incubated for 24 h. Following washing with Hanks’ Balanced Salt
Solution with Ca2+ and Mg2+ (Thermo Fisher Scientific, Waltham, MA, USA), the cells were
fixed with ice-cold methanol. The slides were washed with PBS before the cells were blocked
with a blocking buffer (PBS with 5% normal goat serum (Cell Signaling, Danvers, MA,
USA) and 0.3% Triton X 100 (Carl Roth, Karlsruhe, Germany)). The cells were stained with
primary antibodies against S100 and CD56 (Table S2) and incubated overnight at 4 ◦C. The
slides were washed and stained with the secondary anti-mouse-antibody (Table S2). The
slides were covered with a mounting medium containing DAPI (ImmunoSelect Antifading
Mounting Medium DAPI, Dianova, Hamburg, Germany). The images were captured
with a Keyence BZ-800E microscope (Keyence, Neu-Isenburg, Germany). The cells were
quantified using the IdentifyPrimaryObjects tool of the CellProfiler software (version 4.2.4
(Broad Institute, Cambridge, MA, USA)). The proportion of S100+ and CD56+ in the total
cell count, which was determined using the number of DAPI-positive cells, was calculated.

2.8. Obtaining Cell Culture Supernatants from Primary Cultures and RNA Isolation from
Primary Cells

To obtain cell culture supernatants (CCSs), 4 × 105 primary cells per well were seeded
on a six-well plate in 3 mL DMEM (Dulbecco’s Modified Eagle Medium)/F-12 (Gibco,
FisherScientific, Pittsburgh, PA, USA). The primary cells were incubated for 48 h at 37 ◦C

https://usegalaxy.eu/
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at 5% CO2 in a humidified incubator. Subsequently, 2 mL of the CCS was collected and
centrifuged at 300× g for 10 min at 4 ◦C to remove cells. The supernatant was transferred
to a new tube and stored at −80 ◦C. Wells were washed twice immediately with ice-cold
PBS. Then, cells were lysed directly by the addition of 350 µL LBP buffer (Macherey-Nagel,
Düren, Germany), transferred to a tube, and stored at −20 ◦C. The NucleoSpin RNA Plus
Kit (Macherey-Nagel, Düren, Germany) was used for the isolation of RNA from the cell
lysate according to the manufacturer’s instructions.

2.9. Quantitative Real-Time PCR

Quantification of cytokine mRNA levels was performed by quantitative real-time
polymerase chain reaction (qPCR), as described previously [9]. Specific forward and reverse
primers (Table S3) were obtained from Invitrogen (Thermo Fisher Scientific, Waltham, MA,
USA). The 2−∆∆CT method was used for the analysis, and glycerin aldehyde 3-phosphate
dehydrogenase (GAPDH) served as constitutive housekeeping gene.

2.10. Enzyme-Linked Immunosorbent Assay

Quantification of cytokines in CCS and CSF was performed by using the Ella Enzyme-
linked immunosorbent assay (ELISA) system (ProteinSimple, BioTechne, Minneapolis,
MN, USA). A multi-analyte cartridge (ProteinSimple, BioTechne, Minneapolis, MN, USA)
was used to determine the concentration of the cytokines CCL2, CCL5, and CCL18 in
parallel. TGFB1 and GDF15 concentrations were detected on separate cartridges. After
centrifugation (300× g for 5 min at 4 ◦C), CCS and CSF were diluted from 1:1.5 to 1:25
for concentration determination and activated in advance with 1N HCl for measurement
of TGFB1, according to the manufacturer’s instructions. The cartridge was loaded with
50 µL of activated and diluted CCS or CSF per well. Total protein concentrations of CCS
and CSF were determined using the Pierce BCA Protein Assay Kit (Thermo Fisher Scien-
tific, Waltham, MA, USA) according to the manufacturer’s instructions. Concentrations
of cytokines and total protein concentration were similarly determined in the CSF of a
control group. The percentage of cytokine concentration of the total protein concentration
was calculated.

2.11. Statistical Analysis

Initial exploratory correlations examined mRNA values or the concentration of im-
munomodulatory cytokines with tumor volume and growth rate. Correlations were as-
sessed as shown in Table S4. A separate analysis was performed with a smaller number
of patient samples in which a tumor growth rate was available. Spearman’s rank correla-
tion was used due to the ordinal scaling of the AAO-HNS hearing classification and the
non-normal distribution of the other parameters. For this purpose, the mRNA level data
were normalized to the first patient sample by forming a ratio. For the ELISA data, the
proportion of the total protein concentration was first determined and then normalized to
the first patient sample as for the mRNA data. For further confirmation of the correlations
with tumor volume, a linear regression analysis of the factors significantly correlated with
tumor volume was performed.

To illustrate the results in the correlation analysis of mRNA levels in tumor samples, a
non-parametric Wilcoxon signed-rank test was conducted. For this purpose, the results of
the large (tumor volume > 7.5 cm3) and small (tumor volume < 0.4 cm3) VSs were examined
comparatively with respect to the different markers. The differences between the groups
were examined using Fisher’s exact test (gender) and Mann–Whitney test (hearing class,
tumor volume, Koos grade, and age).

For comparisons between groups, the interquartile range (IQR) was used as a dis-
persion parameter. p-values of correlations and comparisons between controls, patients,
and largest and smallest tumors were false discovery rate (FDR)-corrected for multiple
comparisons [36].
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The RNAseq data analysis as well as the creation of the corresponding graphs were
performed with Prism version10 (GraphPad Software, Boston, MA, USA). All other analyses
were calculated with R 4.0.5 [37].

3. Results
3.1. Cytokine mRNA Analyzed by qPCR Correlates Positively with Tumor Volume and
Macrophage Markers but Not with Tumor Growth Rate
3.1.1. Correlation Analysis of Investigated Markers with Tumor Volume in Tumor Samples
from 144 VS Patients

The correlation of the mRNA level analyzed by qPCR of eight immunomodulatory
cytokines (CCL2, CCL5, CCL18, CCL20, CCL22, IL10, TGFB1, and GDF15), the transcription
factor IRF4, the marker of proliferation Kiel 67 (MKI67), and two macrophage markers
(CD68, CD163) with clinical parameters such as tumor volume (n = 124), growth rate
(n = 31), relative growth rate (n = 31), hearing class (n = 143), Koos grade (n = 144), and age
at surgery (n = 144) were investigated (Figure 2). For this purpose, a Spearman’s-rank test
was utilized, and p-values of correlations were FDR-corrected for multiple comparisons. Of
the 144 patients, there were 61 males and 83 females (Table S5). The median tumor volume
was 2.1 cm3 (IQR 15.25). The mRNA levels of the cytokines CCL5, CCL18, and GDF15, as
well as the transcription factor IRF4, correlated weakly positively with the tumor volume
(Table S6). Furthermore, the mRNA levels of the macrophage marker CD68 correlated
weakly positively with the tumor volume. Moreover, these factors also correlated weakly
positively with the Koos grade. In addition, the mRNA levels of the cytokine CCL22
correlated very weakly positively with the Koos grade. Most mRNA levels of the cytokines
correlated weakly or moderately with the macrophage markers CD68 and CD163. An
exception to this is the mRNA level of GDF15. The mRNA level of GDF15 does not
correlate with the mRNA levels of the macrophage markers. Apart from the GDF15
mRNA level, the mRNA levels of the investigated cytokines correlated with each other.
The mRNA levels of the analyzed cytokines did not correlate with the growth rate or the
relative growth rate.

Linear regression analysis of parameters correlating significantly with tumor volume
in correlation analysis was performed. Of the markers that correlate significantly with
tumor volume, growth rate (estimate 2.940, standard error 0.434) and mRNA levels of
IRF4 (estimate 1.063, standard error 0.358) and CD68 (estimate 0.545, standard error 0.208)
were found to have a significant positive association with tumor volume in the regression
analysis (Table S7). In this analysis, the adjusted R-squared was 0.898, and the F statistic
was significant (p < 0.001).

3.1.2. Increased CCL18 and IRF4 mRNA Levels in VSs with Large Tumor Size

To analyze whether the different marker levels investigated in Figure 2 depended on
tumor size, Wilcoxon signed-rank tests were performed. Two groups were selected from
the cohort of tumors, with one group containing the 20 smallest tumors and the other group
containing the 20 largest tumors. This resulted in the small tumors having a tumor volume
smaller than 0.4 cm3 and the large tumors having a tumor volume larger than 7.5 cm3. In
both cohorts, the sex distribution was almost equal (small VS: 8 males, 12 females, median
51, IQR 16; large VS: 10 males, 10 females, median 49, IQR 20.25; Table S8). The median
tumor volume in the group of small tumors was 0.3 cm3 (IQR 0.17 cm3); the median tumor
volume in the group of large tumors was 12.5 cm3 (IQR 7.59 cm3).
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Figure 2. Correlation analysis of the indicated markers and clinical parameters in 144 VS tumor
samples using Spearman’s rank test. Depicted is the correlation between the mRNA levels of the
10 examined markers and age as well as Koos grade of 144 patients, and the correlation of marker
levels with hearing class in 143 patients and with tumor volume in 124 patients. The correlation
coefficient r is shown. Significant negative correlations (p < 0.05) are plotted in red and significant
positive correlations (p < 0.05) in blue. Non-significant correlations are plotted uncolored. p-values of
correlations were FDR-corrected for multiple comparisons.

There was no significant difference in patient age and gender between the two groups
(Table S8). Koos grade and hearing class were higher in the larger tumor group than in
the smaller VS group. The analysis of the investigated markers in the large and small VS
revealed a statistically significant difference in two markers (Figure 3). The mRNA levels
of the cytokine CCL18 were significantly higher in large tumors compared to small tumors
(p = 0.017), with the median of the large tumors being 5.26 and the median of the small
tumors being 0.69 (Table S9). The levels of the transcription factor IRF4 were increased
two-fold in the large VS (median = 1.56) compared to mRNA levels in the small tumors
(median = 0.61, p = 0.013). In addition, the mRNA levels of CCL2 showed a tendency to be
higher in the small tumors than in large VS (p = 0.056). The median of the small tumors
increased approximately two-fold compared to the small tumors (small VS median = 1.54,
large VS median = 0.98).
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3.2. Differences in RNA Transcription Levels Investigated Using RNAseq between 10 VS Tumors
and the Corresponding Vestibular Nerves

The RNA reads of immunomodulatory cytokines, their receptors, schwannoma cell
markers, and macrophage markers were determined in 10 tumor samples and the 10 corre-
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sponding nerves using RNAseq. Half of the patients were male (n = 5) and the other half
female (n = 5, Table S10).

Some of the cytokines and receptors examined showed differential expression between
the tumors and the vestibular nerves (Figure 4). The mRNA of the cytokines CCL2, CCL20,
and TGFB2, as well as the mRNA of the transcription factor IRF4, had higher expression in
the nerves than in the tumors. The mRNA levels of TGFB1, MKI67, and S100 were higher
in the tumors than in the vestibular nerves. In addition, the mRNA of the receptors CCR2,
IL10RB, TGFBR1, and TGFBR2 were expressed at higher levels in the tumors compared to
the nerves.
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Figure 4. The transcripts per million (TPM) of the indicated genes in 10 tumor samples and the
10 corresponding samples of vestibular nerves are shown. The TPM of the tumor is connected to
the TPM of the corresponding nerve from the same patient by a line. The mRNA in the tumors was
compared with the mRNA in the nerves using a Wilcoxon matched-paired signed rank test. The
corresponding p-values are presented.
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3.3. TGFB1 and GDF15 Concentration in CCS Correlates Positively with Tumor Volume
3.3.1. Concentrations of the Investigated Cytokines in CCS of VS Primary Cultures

The concentration of five immunomodulatory cytokines (CCL2, CCL5, CCL18, TGFB1,
and GDF15) was determined in the CCS of 45 VS primary cultures. The transcription
levels of these cytokines in the primary cells were examined subsequently. The samples
for this study were from 18 male and 27 female patients (Table S11). The median tumor
volume was 2.47 cm3 (IQR 3.44 cm3). Isolated cells were positive for S100 and CD56
(Table S1), as described earlier for schwannoma cells [34,35]. All cytokines examined could
be detected in the CCS of VS primary cultures, although the concentrations varied widely
(Figure 5, Table S12). The concentration of CCL2 in the CCS of the primary cultures was the
highest, with a median concentration of 13,199 pg/mL (950–56,407 pg/mL). The range of
concentrations was also high for CCL2. With a median of 2092 pg/mL (602–5268 pg/mL),
the TGFB1 concentration in the CCS was second highest. A concentration of 378 pg/mL
(0.4–2509 pg/mL) was detected for GDF15. The concentration of CCL5 was noticeably
lower, with a median of 12.9 pg/mL (0.4–78.7 pg/mL). However, the concentration of
CCL18 in the CCS was the lowest (1.36 pg/mL; 0.008–117 pg/mL).
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Figure 5. Concentrations of the investigated cytokines in the CCS of 45 primary cultures from patients
with sporadic VSs. The borders of the box range from the 25th to 75th percentiles, and outliers are
visualized as dots. The median is represented by the crossbar.

3.3.2. Correlation Analysis of Cytokine mRNA Levels and Secretion in VS
Primary Cultures

The transcription levels of the five cytokines CCL2, CCL5, CCL18, TGFB1, and GDF15
in VS primary cultures were correlated with their concentration in CCS of VS primary
cultures. These data were correlated with clinical data, such as patient age and Koos grade
in 45 patients, hearing class in 43 patients, and tumor volume in 40 patients. The mRNA
levels of the investigated cytokines were moderately to strongly positively correlated with
the concentration of the corresponding cytokine in the CCS (Figure 6, Table S13). The tumor
volume was weakly to moderately positively correlated with the GDF15 transcript levels
in the primary cells, as well as the GDF15 concentrations in the CCS. Some of the mRNA
levels and concentrations of the cytokines correlated positively among each other.

A linear regression analysis was performed for the markers that correlated significantly
with tumor volume (Table S14). Among these markers, only the mRNA amount of GDF15
correlated with tumor volume (estimate 1.637, standard error 0.282). The adjusted R-
squared was 0.001919, and the p-value of the F statistic was significant (p < 0.001).
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Figure 6. Correlation analysis of primary culture mRNA levels (with suffix qPCR) and concentration
(with suffix ELISA) of various cytokines. Illustrated is the correlation of the mRNA levels and
concentration of the investigated markers with one another, with age, hearing class, and Koos grade
in 45 patients and with tumor volume in 44 patients. The correlation coefficient r is displayed in each
panel. Areas plotted blue (p < 0.05) indicate significant positive correlations. Non-significant correla-
tions are plotted uncolored. p-values of correlations were FDR-corrected for multiple comparisons.

3.4. Distinct Cytokine Concentrations in CSF of VS Patients Compared to Control Group
3.4.1. Concentration of Cytokines in CSF of VS Patients Compared to Control Group

The concentrations of the cytokines CCL2, CCL5, CCL18, TGFB1, and GDF15 were
determined in the CSF of 52 VS patients and 14 healthy controls. The concentration of
cytokines in the control group was compared with the concentration in the patient group,
as well as with the concentration in small-VS large tumors. Two groups were formed from
the cohort of tumors, with one group containing the 20 smallest tumors and the other group
containing the 20 largest tumors. The small tumor group was also compared with the
large tumor group. In the patient group and the large and small tumors, respectively, the
genders were evenly distributed (Table S15). However, there were more females (9 patients)
than males (5 patients) in the control group (Table S16). The median tumor volume of the
patients was 2.8 cm3 (IQR 4.55 cm3; Table S15). The median tumor volume of small VSs
was 0.8 cm3 (IQR 1.09 cm3), and the median tumor volume of large VSs was 7.3 cm3 (IQR
4.03 cm3). The concentration of the five cytokines in the CSF of the patients was at similar
levels (Table S17). Independent of the tumor volume, the concentration of CCL2 in the CSF
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of the patients was lower than in the CSF of the control group (Figure 7). The opposite was
observed for CCL5, CCL18, and TGFB1. Compared to the control group’s CSF, there was
a higher concentration in the CSF of the patients. Interestingly, the concentrations of the
cytokines CCL5 and TGFB1 were higher only in the patients with small tumors than in the
healthy control group (Table S16).
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Figure 7. The concentration of the cytokines CCL2, CCL5, CCL18, GDF15, and TGFB1 in the CSF of
a control group (n = 14) was compared with the concentration in the CSF of 52 patients, as well as
with the concentration in the CSF of the 20 largest and 20 smallest VSs. A Wilcoxon signed-rank test
was performed to compare the groups. The median concentration is marked by the crossbar. The
boundaries of the boxes represent the interquartile range, and the whiskers represent 1.5 times the
interquartile range. Outliers are presented as dots. p-values of correlations were FDR-corrected for
multiple comparisons.

Differences were also observed between the large and small tumors. The concentration
of CCL2 and CCL18 was higher in the CSF of the patients with large tumors than the
concentration in the CSF of the patients with small tumors. In contrast, the concentration
of CCL5 and TGFB1 in the CSF of the patients with a small VS was higher than in the CSF
of the patients with a small VS.

3.4.2. Decreased CCL5 and TGFB1 CSF Concentration with Increasing Tumor Volume
of VS

The correlation of the concentration of the five cytokines CCL2, CCL5, CCL18, TGFB1,
and GDF15 in CSF of VS patients with Koos grade and patient age in 52 patients and with
preoperative hearing class and tumor volume in 49 patients, as well as the correlation of the
five cytokines with absolute and relative growth rate in 12 patients, was analyzed (Figure 8).
CCL5 and TGFB1 CSF concentration was moderately to strongly negatively correlated with
tumor volume, as well as with Koos grade (Table S18).
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Figure 8. Illustrated is the correlation of the concentration of CCL2, CCL5, CCL18, TGFB1, and GDF15
in the CSF of 52 patients with clinical parameters, such as age, hearing class, Koos grade, and tumor
volume, as well as the correlation of the concentration of the five cytokines in the CSF of 12 patients
with growth rate and relative growth rate. Spearman’s r is plotted for each correlation. Significant
positive correlations (p < 0.05) are colored blue, and significant negative correlations are colored red.
Non-significant correlations are plotted colorless. p-values of correlations were FDR-corrected for
multiple comparisons.

A linear regression analysis of growth rate and CSF cytokine concentrations signifi-
cantly correlating with tumor volume revealed a significant association for growth rate
(estimate 1.986, standard error 0.166) only (Table S19). The F statistic was significant for the
analysis, and the adjusted R-squared resulted in a value of 0.9395.

4. Discussion

In recent years, there has been increasing interest in the role of TAMs in VS progression.
Leisz et al. and Hannan et al. demonstrated a correlation of TAMs with tumor volume
and growth rate [1,9,38]. This is congruent with our results. In many malignant tumors,
such as breast, colorectal, and ovarian cancers, TAMs play an important role in tumor
progression [39–42]. In carcinomas, macrophages are known to be attracted to the tumor
by various cytokines produced by tumor cells (but also by macrophages) and polarized to
the tumor growth-promoting M2 subtype [42–44]. Thus, the influence of macrophages and
immunomodulatory cytokines on tumor progression can be assumed. Cytokines, including
CCL2, CCL5, CCL18, TGFB1, and GDF15, are produced by tumor cells and attract immune
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cells, such as macrophages and lymphocytes, from the blood and bone marrow into the
tumor microenvironment [14,16,22,42,45–47].

These cytokines were expressed in tumor samples and secreted by the primary VS
cells in our study. Taken together with the mRNA levels of the cytokines’ receptors, this
might suggest that the cytokines influence the attraction of immune cells in the VS and,
thus, might influence the tumor progression. Macrophages could be polarized to the
tumor growth-promoting M2 subtype in the tumor environment by cytokines, such as
CCL2, CCL5, CCL18, and TGFB1 [48–51] and the mRNA levels of the transcription factor
IRF4 [52,53]. The presence of M2 macrophages in VS has already been demonstrated in
some previous studies [1,54]. In addition, M2 macrophages were recently detected in
immunohistological sections in Leisz et al. [9]. With increasing tumor volume, an increased
number of macrophages was determined. The mRNA levels of the cytokines CCL5, CCL18,
and GDF15, as well as the transcription factor IRF4, showed a positive correlation with
the tumor volume. Furthermore, the cytokines CCL2, CCL5, CCL18, and TGFB1 were
secreted by the VS primary cells. Additionally, a differential expression of the cytokine
genes CCL2, CCL20, TGFB1, and TGFB2; the transcription factor gene IRF4; and the receptor
genes CCR2, IL10RB, TGFBR1, and TGFBR2 was identified in tumor tissue and vestibular
nerve tissue. These results could indicate a polarization of TAMs to the M2 subtype by
cytokines in the VS, but in addition, a potential influence of cytokine concentrations on the
development of VSs. The M2 subtype is associated with increased tumor cell proliferation,
metastasis, and vascularization in malignant tumors [22,55–59]. In malignant tumors, the
polarized M2 macrophages produce and secrete cytokines such as CCL18, CCL20, CCL22,
IL10, TGFB1, and GDF15 [22,55,60–62]. These cytokines are known to mediate tumor
progression, angiogenesis, and, in the case of malignant tumors, invasion and metastasis
through various mechanisms [22,55–59]. The immune escape of tumor cells can also be
induced by CCL18 and TGFB1 [63,64]. The mRNA levels of CCL18 and GDF15 were
positively correlated with tumor volume in the tumor samples, and the other cytokines
were also expressed in the tumor samples. In malignant tumors, the macrophages are first
attracted by the interaction of various cytokines and then polarized to the M2 subtype.
Subsequently, tumor progression is promoted by the production of further cytokines and
growth factors originating from the M2 macrophages in malignant tumors.

To date, little is known about the influence of cytokines on the development and
progression of benign tumors such as VSs. Löttrich et al. detected TGFB1, TGFBR1, and
TGFBR2 expression in VS [65], whereas Brieger et al. detected no TGFB1 expression by
immunohistochemistry [66]. Increased mRNA levels of TGFB1 were detected in VS tissue
compared with normal vestibular tissue [67], and Bizzarri et al. detected the secretion of
TGFB1 by VS cells [68]. Weerda et al. hypothesized an autocrine growth factor secretion
of TGFB1 by VS cells [69]. Our data suggest that TGFB1 mRNA is not only present in the
tumor but is indeed secreted by the tumor cells and could play a role in the development
of VSs from vestibular nerves, which has not yet been investigated in VSs. In addition
to the increased levels of a macrophage marker in large tumors, our study suggests an
association between the mRNA levels of the cytokines CCL5, CCL18, and GDF15, as well as
the transcription factor IRF4, and VS tumor volume, which has not yet been investigated
in VSs. Moreover, an interaction of cytokines and macrophages could be suggested by
the correlation of macrophage marker levels with the mRNA levels of most cytokines.
However, the regression analysis only showed a significant correlation between tumor
volume and tumor growth rate as well as IRF4 and CD68 mRNA levels with growth rate
having the strongest influence on tumor volume. Nevertheless, the adjusted R-squared
determined in this analysis was very high. This could indicate that the other significant
correlations with tumor volume in the previous correlation analysis could be explained
by the associations of growth rate and IRF4 mRNA levels in the regression. This is also
consistent with the results, as IRF4 is a transcription factor promoting the polarization of
macrophages to the M2 subtype. For benign VS, there are few studies on the cytokine
concentrations in cell culture supernatants of schwannoma cells. Stankovic et al. and
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Dilwali et al. demonstrated the secretion of CCL2 and CCL22 by VS primary cells into cell
culture supernatants [70,71]. The primary VS cells likewise secreted the cytokine CCL2. In
addition to CCL2, the examination of our cell culture supernatants of VS primary cultures
suggests that vestibular schwannoma cells produce the cytokines CCL5, CCL18, TGFB1,
and GDF15, which has not yet been investigated for VSs. The concentration of the cytokine
GDF15 correlated with tumor volume, suggesting that this cytokine could have an impact
on tumor progression. Unfortunately, these significant correlations were not confirmed
in the regression. However, a significant association with the GDF15 mRNA levels was
calculated. Due to the highly adjusted R-squared, it may be concluded that the VS primary
cells transcribe GDF15 mRNA, which could lead to the secretion of the protein into the CCS.

Considering these results for benign VSs, it can be concluded that a mechanism similar
to that in malignant tumors may be possible. These data suggest possible mechanisms by
which tumor cells might influence the tumor microenvironment. Accordingly, macrophages
could be attracted and polarized by these cytokines produced by tumor cells. In the
polarization to the M2 subtype, the transcription factor IRF4 detected in this study might
be involved in macrophage polarization as well. An immune escape of VS triggered by
cytokines, such as CCL18, also needs to be evaluated. However, the detection of cytokines
solely does not allow for a conclusion on the relationship between these cytokines and
tumor cells as well as macrophages. In addition, these data cannot be used to infer the cells
that produce and secrete the cytokines investigated with qPCR. Moreover, it is possible
that CCL2, CCL5, CCL18, TGFB1, and GDF15 are also produced by cells other than the VS
tumor cells. Further studies are needed to determine the influence of macrophages on the
tumor cells and whether cytokines are also produced by the TAMs.

To date, there have been few analyses of the concentration of immunomodulatory
cytokines in the CSF of VS patients. The study by Nisenbaum et al. showed lower CCL2
levels in the CSF of patients compared to a healthy control group [54]. This finding is
congruent with our results, as we investigated a lower concentration of CCL2 in the CSF of
patients compared to control CSF. The decreased concentration of CCL2 in the CSF of the
patients compared to the control CSF is consistent with the findings of the RNA analysis of
tumor tissue and corresponding vestibular nerves and might be explained by the fact that
mRNA levels of CCL2 were lower in the tumor tissue than in the corresponding vestibular
nerves. In contrast to CCL2, the CCL2 receptor CCR2 exhibited higher expression levels in
tumors than in vestibular nerve tissue. No other cytokines have yet been investigated in
the CSF of patients with VSs. In contrast, there are several studies on immunomodulatory
cytokines in serum and plasma of VS patients [38,72,73].

While our study focuses on cytokine concentrations in the CSF rather than serum
or plasma, our results demonstrate a correlation between cytokine concentration in the
CSF and the tumor volume, consistent with findings in the studies regarding serum. The
concentrations of the cytokines CCL5, CCL18, and TGFB1 were higher in the CSF of the
patients than in the CSF of healthy controls. For TGFB1 and the receptors TGFBR1 and
TGFBR2, a higher expression was detectable in tumor tissue compared to vestibular nerve
tissue, which is congruent with the CSF data. Moreover, varying concentrations were
observed in patients with large and small tumors. The concentration of CCL2 and CCL18
was higher in the CSF of the patients with the large tumors than in the CSF of the patients
with the small tumors, whereas it was the opposite for the cytokines TGFB1 and CCL5.
Thus, the concentration of the cytokines CCL2, CCL5, CCL18, and TGFB1 in the CSF was
associated with tumor size in patients. At present, no possibility to predict a tendency of
growth in newly diagnosed VS is available.

However, the cohort of patients having CSF along with the growth rate was very
small. Therefore, in order to be able to draw a conclusion about the interaction of the
cytokines in CSF with growth rate, it would be necessary to determine the concentrations
of cytokines in CSF from a larger number of patients having a growth rate. It has also not
been conclusively clarified whether the controls are suitable as controls. Although controls
were selected using exclusion criteria, CSF was taken from all controls due to neurological
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symptoms. These symptoms might be based on an undetected underlying disease that
could influence the cytokine concentrations in the CSF. The different methods of collecting
CSF in the control group compared to the VS patient group could also have an influence
on the cytokine concentrations. It is not known whether anesthesia could influence the
cytokine concentrations in the CSF. These factors could have an influence on the cytokines
in the CSF of the VS patients and controls, which is why it cannot be conclusively answered
whether the selected controls are suitable as such and can be compared with the VS patients.

Based on the data, it could be concluded that the immunomodulatory cytokines could
have an influence on the tumor volume and the size progression of the VS. One possible
mechanism, as described in more detail above, could be the interaction of TAMs with
tumor cells via cytokines. However, no conclusions can be drawn from our data about
possible mechanisms of VS development from the vestibular nerves. In contrast to the
secretion and mRNA level data, conclusions about tumor progression in VS may not be
possible solely based on CSF data. The cytokines in the CSF are not directly in contact
with the VS tumor cells, as the tissue is separated from the surrounding tissue by a layer
of connective tissue [74]. Therefore, the concentrations of cytokines in the CSF could
provide new diagnostic possibilities for predicting the growth of VSs. To draw prognostic
conclusions for new VS diagnoses and the growth prediction, further studies are needed to
investigate the cytokine concentration in the CSF, not only at the time of surgery, but also at
the time of diagnosis. In order to investigate whether the concentration of cytokines in CSF
can also be used to diagnose VS, the CSF concentrations of cytokines in VS patients would
have to be compared with the CSF concentrations of a larger group of controls. Patients
with various diseases would have to be included in order to guarantee prognostic reliability
for the future, as the actual patients are also suffering from underlying diseases. For both
purposes, the collection of CSF from all VS patients and controls would have to be identical.
Therefore, the CSF would need to be obtained using CSF puncture without anesthesia in
all patients, as studies have revealed differences in protein concentration in lumbar and
cerebral CSF [75,76].

Currently, there is no drug treatment option for sporadic VS [77]. Since the cytokines
we investigated may have an impact on the tumor volume of VS, drug therapy and treat-
ment options could be investigated. Indeed, several drugs have already been investigated
for their efficacy in malignant tumors. There are approaches to bind cytokines, such as
CCL2 and CCL5, and more likely their receptors by antibodies, such as Carlumab and
BisCCL2/5i, and, thus, inhibit their effect [25,78–81]. Furthermore, the virustatic agent
maraviroc is known to antagonize the CCL5 receptor and, thus, suppress the effect of CCL5
on it [28,82]. In trials, these drugs reduced the number of TAMs, tumor progression, and
metastasis, and they improved overall survival in mice models. Further research could
explore the possible influence of these substances on the growth behavior of primary VS
cultures, aiming to identify potential therapeutic targets for sporadic VS.

5. Conclusions

Our results might suggest an influence of the immunomodulatory cytokines CCL5,
CCL18, GDF15, and TGFB1 on tumor progression. Therefore, a mechanism similar to that
in malignant tumors could be conceivable for the progression of benign VSs. The cytokines
could attract macrophages into the tumor and polarize them to the M2 subtype. It is known
from the literature that this type of TAMs is associated with tumor progression, which could
explain the association between cytokines and tumor progression. Moreover, an immune
escape mediated by CCL18 could not be disregarded. Moreover, cytokines secreted by
tumor cells are secreted into the CSF of patients as well. Differences were found between
control group and patients, but also between patients with large and small VSs. Due to
the small number of patients, further investigations are needed to establish the correlation
between growth rate and cytokine concentration in the CSF. In addition to new diagnostic
possibilities resulting from the data, the cytokines may represent a starting point for new
drug therapies.
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6. Limitations

Due to the exploratory nature of the study, the number of patients in each group varied
widely. Repeated MRI scans are required to calculate the growth rate. This follow-up can
only be performed in patients with initially small tumors, which is why it was available
from only a small group. The study was conducted on an exploratory basis, as no data
for VSs are available on some of the investigated cytokines. Since the number of healthy
subjects with CSF is limited, the control group for CSF comparison is small as well. A
further limitation could be the different sampling method of the CSF, which could bias the
true differences in the measured protein concentrations.
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