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Summary

1. Summary

N-methyl-D-aspartate receptors (NMDARSs) are voltage- and ligand-gated ion chan-
nels of the brain. They are key glutamate receptors regulating neuronal synaptic
transmission, learning and memory formation. They are also implicated in various
neuronal disorders like excitotoxicity, Parkinson’s disease, mood disorders or
schizophrenia. NMDARs thus are attractive targets to treat neuronal diseases, and
NMDAR antagonists like ifenprodil, MK801 or memantine are used to evaluate
NMDAR function in vitro. Among them, only memantine is clinically used to treat
Alzheimer’s type of dementia as it is well tolerated. Memantine is a low-affinity, un-
competitive, voltage-dependent drug with a fast receptor kinetic. Its voltage-
dependency is explained by its specific blocking site near to the Mg®*-binding site or
selectivity filter of NMDARs. As NMDARs have been described to be expressed on
lymphocytes, the aim of this study was to determine how NMDAR inhibitors affect T-
and B-cell function with regard to possible NMDAR activity, membrane potential, and
Ca®"-mobilization. The uncompetitive antagonists memantine and MK801 and the
non-competitive inhibitor ifenprodil reduced T-cell receptor (TCR)- and B-cell recep-
tor (BCR)-induced Ca?-flux in a concentration dependent manner indicating that
these antagonists affect T- and B-cell proximal signalling and activation. Interest-
ingly, TLR4/LPS-induced B-cell activation was also impaired by the antagonists as
they depolarized the membrane potential. However, in patch clamp studies NMDAR
currents on lymphocytes could not be detected. Instead, it was found that the used
antagonists cross-inhibit K,1.3 and K¢,3.1 K*-channels on primary murine and hu-
man lymphocytes and Jurkat and Raji lymphoma cell lines. K,1.3 and Kc,3.1 chan-
nels are the major K*-channels expressed on lymphocytes that maintain the mem-
brane potential as important parameter for Ca**-fluxes and, thereby, influence many
Ca®*-dependent cell responses. Notably, peripheral blood T cells of Alzheimer pa-
tients treated with memantine for 1 week showed a strong reduction of K,1.3 channel
activity, but after 12 weeks of treatment K,1.3 channel activity was nearly similar to
the values before treatment. In conclusion, using electrophysiological and immu-
nological techniques, this study shows substantial effects of NMDAR antagonists on
lymphocytes, most likely through cross-inhibition of K,1.3 and K¢,3.1 channels. The
pharmacological cross-reactivity of memantine may be harmful for lymphocytes and,
therefore, an immunological surveillance during memantine application is sug-

gested.



Zusammenfassung

2. Zusammenfassung

N-methyl-D-Aspartat-Rezeptoren (NMDARen) sind spannungs- und ligandenge-
steuerte lonenkanale des Gehirns. Sie spielen eine wichtige Rolle bei der
synaptischen Ubertragung und der Regulation von Lern- und Gedachtnisprozessen.
Zu den NMDAR-assoziierten Stérungen zahlen Exzitotoxizitat, Morbus Parkinson,
affektive Stérungen und Schizophrenie. Bei der Behandlung neuronaler Er-
krankungen sind NMDARen daher wichtige pharmakologische Angriffspunkte.
NMDAR-Antagonisten, wie Ifenprodil, MK801 und Memantin, werden bei in vitro
Untersuchungen zur NMDAR-Funktionalitat verwendet. Aufgrund der guten
Vertraglichkeit wird aber lediglich Memantin zur Behandlung von Alzheimer-
Demenzen eingesetzt. Memantin ist ein niedrig-affiner, nicht kompetitiver und
spannungsabhangiger Inhibitor mit schneller Rezeptorkinetik. Er blockiert die Mg?*-
Bindungsstelle, also den Selektivitatsfilter von NMDARen und behindert derart den
Ca*-Einstrom in die Zelle. Die Expression von NMDARen wurde auch fir
Lymphozyten beschrieben. In der vorliegenden Studie wurde der Einfluss von
NMDAR-Inhibitoren auf die NMDAR-Aktivitat, das Membranpotential und die Ca*-
Mobilisierung in Lymphozyten ermittelt. Die Antagonisten Memantin, MK801 sowie
Ifenprodil reduzierten den T-Zellrezeptor- und B-Zellrezeptor-induzierten Ca**-Influx
in konzentrationsabh&ngiger Weise. Dies weist darauf hin, dass die Antagonisten die
proximalen Signalwege der Antigenrezeptoren und die Aktivierung von B- und T-
Zellen beeinflussen. Auch die TLR4/LPS-induzierte B-Zellaktivierung wurde durch
die Inhibitoren gehemmt, wobei auch hier eine Depolarisation des Membran-
potentials durch die Inhibitoren nachgewiesen wurde. In den Lymphozyten wurden
jedoch keine NMDAR-Strome mittels Patch-Clamp vorgefunden. Stattdessen wurde
aufgezeigt, dass die verwendeten Antagonisten K,1.3 und Kc.3.1 K*-Kanéle in
primaren Lymphozyten sowie Jurkat- und Raji-Lymphom-Zellen kreuzinhibieren.
Diese Kanale sind die wichtigsten K*-Kanale der Lymphozyten zur Regulation des
Membranpotentials und damit Ca*-abhéngiger Zellantworten. T-Zellen von
Alzheimer Patienten zeigten nach einwéchiger Behandlung mit Memantin eine
Reduktion der K,1.3-Kanalaktivitat, die sich nach 12-wdchiger Behandlung wieder
auf das Ausgangsniveau normalisierte. Mittels elektrophysiologischer und
immunologischer Techniken wurden somit substantielle Effekte von NMDAR-
Inhibitoren auf Lymphozyten nachgewiesen, die wahrscheinlich auf Kreuzreaktionen
mit K,1.3 und Kc,3.1 K'-Kanalen beruhen. Eine immunologische Uberwachung bei
Memantinbehandlung ist daher empfehlenswert.
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3. Introduction
3.1 The Immune System

The cellular defence network of higher vertebrates against foreign antigens is a sophisti-
cated system involving the interplay between several types of leukocytes, principally
macrophages, dendritic cells (DCs), granulocytes, natural killer (NK) cells, T and B lym-
phocytes. The specificity, flexibility and efficiency of this security system are achieved by
tightly regulated interactions between these immune cells.

The immune system is divided into two parts: the innate and adaptive arms provide the two
lines of defence against invading pathogens. The cells of the innate immune system pro-
vide a first line of defence against many common microorganisms. However, they cannot
always eliminate infectious agents, and some pathogens cannot be recognized due to the
relatively poor diversity of specific recognition elements of innate cells. The lymphocytes of
the adaptive immune system have evolved to provide a more versatile means of antigen-
specific defence, which also provides increased protection against subsequent re-infection
with the same pathogen. The cells of the innate immune system, however, play a crucial
part in the initiation and subsequent direction of the adaptive immune response, and par-
ticipate in the removal of pathogens that have been targeted by the adaptive immune re-
sponse. Moreover, because there is a delay of ~1 week before the initial adaptive immune
response becomes effective, the innate immune response has a critical role in controlling

infections during this period (Rouzaire-Dubois B et al. 2002).

3.1.1 The Innate Immune System

The innate immune system consists of cells and proteins, like the complement cascade,
that are always present and ready to be mobilized to fight foreign antigens at the site of
infection. The main components of the innate immune system can be classified into anat-
omic, physiologic, phagocytic and inflammatory mediators for occluding the entry of foreign
organisms. The anatomical barriers consist of skin and mucous membrane to inhibit the
entry of foreign antigens into the body. Skin is the major mechanical barrier retarding the
entry of microbes. The physiological obstacles are higher temperature, low pH, and chemi-
cal mediators like lysozyme, interferons (IFs), complement, collectins, or Toll-like receptors
(TLRs). TLRs can recognize microbial molecules like lipopolysaccharide (LPS) of gram-
negative bacteria and send signals into the cells to secrete immune-stimulatory cytokines.
Besides these two obstacles, there are cellular barriers formed by phagocytic and inflam-
matory branches. Blood monocytes, neutrophils, and tissue macrophages can phagocy-

tose, digest and kill foreign microorganisms. The inflammatory process consists of a series
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of events started by tissue damage and infection and is caused by the chemical mediators
released by the phagocytic cells engulfing the pathogen, for instance bacteria. This whole
process of tissue damage due to the phagocytosis process is characterized by four physical
signs. These ‘four cardinal signs of inflammation’ are rubor (redness), tumour (swelling),
calor (heat), and dalor (pain) as already described by the Roman physician Celsus in 1600
BC. Physiologically, this is caused by the vasodilation of the blood vessels, the increase in
capillary permeability and influx of phagocytes from the capillaries into the tissues. Phago-
cytic cells accumulate at the site of inflammation, phagocytose bacteria, and release lytic
enzymes, which can damage nearby healthy cells. Additionally, chemical mediators re-
leased due to tissue damage include serum proteins called acute-phase proteins. These,
histamine, kinins, fibrin, and C-reactive protein become concentrated hugely in tissue-
damaging infections and take part in the inflammation machinery (Kuby J 2003; Rouzaire-
Dubois B 2002; Murphy K 2012).

3.1.2 The Adaptive Immune System

The innate immune response makes a crucial contribution to the activation of adaptive im-
munity. The inflammatory response increases the flow of lymph containing antigen and an-
tigen-bearing cells like DCs into lymphoid tissue, while complement fragments on microbial
surfaces and induced changes in activated phagocytes provide signals that synergize in
activating lymphocytes whose antigen-receptors bind to specific microbial antigens. Macro-
phages that have phagocytosed bacteria and become activated can activate T lympho-
cytes. However, the cells that specialize in presenting antigen to T lymphocytes and are

most effective in initiating adaptive immunity are the DCs.

The induction of an adaptive immune response begins when a pathogen is ingested by an
immature DC in the infected tissue. These specialized phagocytic cells are resident in most
tissues and are relatively long-lived, turning over at a slow rate. They derive from the same
bone marrow precursor as macrophages, and migrate from the bone marrow to their pe-
ripheral locations, where their role is to survey the local environment for pathogens. After
antigen-uptake, tissue-resident DCs migrate through the lymph to the regional lymph nodes
where they interact with naive T lymphocytes. On activation, the immature DC matures into
a highly effective antigen-presenting cell (APC) and undergoes changes that enable it to
activate antigen-specific T cells in the lymph node. APCs process and present antigens
bound to major histocompatibility complex (MHC) molecules which are recognized by the
antigen-specific T-cell receptor (TCR) expressed on the T cells (Samelson et al. 1985).
MHC class | and class Il molecules are expressed on all nucleated cells and professional

APCs, respectively. MHC-I molecules consist of an a-chain and B,-microglobulin and are
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recognized by CD8 co-receptors and TCRs of cytotoxic T-cells (T.). MHC-II molecules con-
sist of an a- and B-chain and are recognized by CD4 co-receptors and TCRs present on T

helper cells (Ty).

The adaptive immune response is mediated through humoral and cell-mediated responses.
Humoral immunity is mediated by B cells, which produce antibodies after activation and
differentiation into plasma cells. Antibodies are secreted into the circulation and mucosal
fluids, neutralize extracellular microbes, microbial toxins and virus present in the blood and
lumen of mucosal organs, such as the gastrointestinal and respiratory tracts. Defence
against intracellular microbes and virus relies on cell-mediated immunity by T lymphocytes.
Ty cells secrete cytokines which support phagocytosis to destroy ingested microbes and B
cell differentiation. T, cells destroy host cells harbouring intracellular virus and tumor cells.
T cells recognize only processed protein antigens, whereas B cells and antibodies are able
to recognize different types of antigens, including proteins, carbohydrates, nucleic acids,
and lipids.

The defence system of innate immunity is effective in combatting many pathogens. How-
ever, it is constrained by relying on relatively few fixed germline-encoded receptors to rec-
ognize microorganisms which evolve more rapidly than the host cells they infect. In con-
trast, the antigen recognition mechanism used by lymphocytes in adaptive immune re-
sponse has evolved to overcome the constraints faced by the innate immune system to
specifically recognize an almost infinite diversity of antigens. The diversity and specificity of
the antigen receptors of T and B cells is determined by a unique genetic mechanism,
named gene recombination that operates during lymphocyte development in the bone mar-
row (where B cells are formed) and thymus (where T cells are generated) and generates a
huge diversity of antigen-specific TCR and BCR molecules. In 1950, Macfarlane Burnet
already postulated in the ‘clonal selection theory’ the pre-existence of many different poten-
tial antibody-producing cells in the body, each having the ability to make antibody of a dif-
ferent specificity (Rouzaire-Dubois 2002). Thus, although an individual lymphocyte carries
antigen receptors of only one specificity, the antigen receptor specificity of each lymphocyte
is different. On binding specific antigen, T and B cells are activated to divide and produce
many identical progeny, known as clonal selection. Expanded B cells differentiate to pro-
duce antibodies with specificity identical to that of the BCR that triggered activation and
clonal expansion (Kuby J 2003; Rouzaire-Dubois B 2002; Murphy K 2012).

A hallmark of the adaptive immune response is the generation of memory cells which get
activated when the same pathogen is encountered another time and leads to a faster im-

mune response. The immunological memory is the basis for vaccination or transplantation
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studies. All human memory T cells express the surface marker CD45RO", whereas
CD45RA" and CCR7 (CD197) mark the naive and central memory cell population, respec-
tively (Mackay 1999).

3.2 Signalling Pathways in Lymphocytes
3.2.1 T cell Signalling

TCR ligation induces a number of signalling events that ultimately determine the T cell fate
through regulating cytokine production, cell survival, proliferation, and differentiation. T-cell
activation is initiated by ligation of the membrane-associated TCR and ‘cluster designation’
molecules CD4 or CD8 by MHC-II or MHC-I molecules presenting specific peptide on the
surface of an APC. TCR activation is initiated by the phosphorylation of immunoreceptor
tyrosine-based motifs (ITAMs) within the TCR¢ chains of the TCR/CD3 complex by lympho-
cyte protein tyrosine kinase (Lck). The CD45 receptor tyrosine phosphatase dephosphory-
lates and activates Lck and other Src family tyrosine kinases. Zeta-chain associated protein
kinase (Zap-70) is recruited to the phosphorylated TCR¢ chains where it becomes activated
by Lck and then phosphorylates downstream adaptor or scaffold proteins like LAT (Linker
for Activated T cells). Phosphorylation of SH2-domain—containing leukocyte protein of 76
kD (SLP-76) by Zap-70 promotes recruitment of Vav (a guanine nucleotide exchange fac-
tor) and inducible T cell kinase (Itk). Phosphorylation of phospholipase Cyl (PLCyl1) by Itk
results in the hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP,) to produce the sec-
ond messengers diacylglycerol (DAG) and inositol-1,4,5-triphosphate (IP3;). DAG activates
protein kinase C6 (PKC6) and the mitogen-activated protein kinase (MAPK)/Erk pathway,
both promoting activation of the transcription factor nuclear factor-kB (NF-kB). IP3 triggers
the release of Ca** from the endoplasmic reticulum (ER), which promotes entry of extracel-
lular Ca** into the cell through calcium release-activated Ca** channels (CRAC) (Weiss
2009, 2010).

3.2.2 B cell Signalling

Similar to T cells, the B-cell receptor (BCR) complex consists of two modules: the antigen-
binding and the signal transducing moiety. The antigen-binding moiety in essence is an
immunoglobulin that is integrated into the lipid bilayer of the plasma membrane through a
hydrophobic transmembrane domain. The signal-transducing moiety is a disulphide-linked
heterodimer (CD79) consisting of CD79a and CD79b, also called Iga and Ig@, respectively.
Binding of antigen to the BCR triggers phosphorylation of the ITAM tyrosine residues in Iga
and IgB by the tyrosine protein kinase Lyn which initiates a signalling cascade through acti-

vation of bruton tyrosine kinase (Btk) and PLCy2 followed by IP; and DAG generation and
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Ca?*-influx. Subsequent signals involve activation of phosphatidylinositol 3-kinase (P13-K)
and Akt, Erk and NF-kB pathways, which contribute to B cell activation and proliferation
(Wienands and Engels 2001).

3.2.3 TLR Signalling

Besides ligation of the BCR, B cells can be activated by TLRs. The Interleukin-1 receptor
(IL-1R)/TLR superfamily of single transmembrane domain receptors comprises 24 mem-
bers, including five adaptor proteins, which share a cytosolic domain named Toll/IL-1 recep-
tor (TIR) domain. The TLR family includes 10 members, which play a key role in activating
innate immune cells and B cells. TLRs recognize pathogen associated molecular patterns
(PAMPSs), which are highly conserved motifs of common pathogens. Each TLR has a dis-
tinct pattern-recognition specificity (Lee and Kim 2007). For example, TLR4 recognizes LPS
of bacteria. However, a number of endogenous molecules (named as ‘damage-associated
molecular patterns’ or ‘danger signals’) released by injured tissue can also activate the in-
nate immune system via stimulation of certain TLRs (Bianchi 2007; Tsan and Gao 2004).
IL-1R/TLR receptors are ubiquitously expressed by leucocytes (Janeway and Medzhitov
2002), epithelial cells (Yoshimoto and Nakanishi 2006) and endothelial cells (Gibson et al.
2006). Members of this family of receptors have also been shown to be expressed on CNS
neurons, microglia and astrocytes (Vezzani et al. 2011). The critical role of the TLR4 path-
way in treating severe sepsis and septic shock was delineated in many clinical trials
(Wittebole et al. 2010).

Ligand binding of the TLRs leads to the recruitment of MyD88 and other cytosolic adaptor
proteins to the TLR complex, activating IL-1R-associated kinasel/4 (IRAK1/4) and tumor
necrosis factor receptor associated factor 6 (TRAF6), leading eventually to the expression
of genes involved in inflammation, including the transcription factors NF-kB, activator pro-
tein-1 (AP-1) and interferon regulatory transcription factors (IRFs) (O'Neill and Bowie 2007).
TLR3 and TLR4 can also signal using a MyD88-independent pathway which involves TIR-
domain-containing adaptor-inducing interferon-B (TRIF). The TRIF-dependent signalling
cascade results in the activation of IRF-3, which then induces IFNa and IFNR. Induction of
PI3-K can also occur in response to TLR stimulation, presumably using a MyD88-

independent pathway (Davis et al. 2006; Diem et al. 2003).

These signalling pathways are orchestrated through the interplay of different ion channels
(CRAC, K\1.3, Kca3.1, TRPM4 and P2X). These ion channels regulate the normal mem-
brane potential, which when altered affects the activation of downstream signalling cas-

cades leading to cell proliferation, differentiation or cell death.
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3.3 The Function of the Membrane Potential and lon Channels in Immune Cells
3.3.1 Reasons for lons to Cross through the Cell Membrane

Physiological processes depend on the continued flow of ions into and out of cells. lons are
more ‘stable’ in water than in the lipid layer inside the membrane. Thus, the hydrophobic
membrane acts as a serious energy barrier for transporting ions. In a situation without bio-
logical pumps and ion channels, there can be large ion potential differences between the
two sides of a biological membrane so that the predominant ions Na*, K, Ca?', and CI can
never cross it. To resolve this issue, ion pumps, ion exchangers (‘active’ transport) and ion
channels (‘passive’ transport) are used in cells. An ion channel needs a single gate and ion
pump works with at least two gates. A gate or a selectivity filter is considered to be a part of
a protein that hinders ion movement along the translocation pathway in the prohibitive con-
firmation but not in the permissive confirmation. The ion channels, like voltage-gated Na'-,
Ca?'- or K*-channels, are opened when a change of membrane potential displaces the volt-
age sensors connected to a cytoplasmic side of the ‘activation gate’. They can be closed by
reversal of those displacements (‘deactivation’) in response to an opposite change of mem-
brane voltage. But even with their activation gates in the permissive position, the ion path-
way through those channels can be closed by a separate gating process called ‘inactiva-
tion’. Both these gates should be in a permissible position for the channel to conduct ions,
and closure of either gate obstructs the ion flow (Gadsby 2009). In contrast, ion pumps are
controlled by timely cohesion of two gates which are never open simultaneously (Lauger
1979). Instead, the chosen ions are allowed to enter the pathway from one side of the
membrane while one of the gates is open, and then to leave at the other side of the mem-
brane through another gate after the first one shuts down (Vidaver 1966; Gadsby 2009).
Although these two transport systems work differently, ion selectivity is a prime criterion for
both of them. The ion pumps generally transport ions against the electrochemical gradient
with the use of energy like adenosine tri-phosphate (ATP) and a relatively slow speed. In
contrast, ion channels are passive transporters of ions with a very high ion conduction rate
to maintain the proper membrane potential. The membrane potential is defined as the elec-
trical potential difference between the interior and exterior of the cell. It can be defined with
Ohm’s law (V = IR, where V = voltage, | = current and R = resistance). Voltage in this law is
synonymous to the difference in the electrical potential, thereby, the ability to drive electric
current across a resistance. The plasma membrane of a cell acts as an electrical resistor as
it has low intrinsic permeability to ions. Insertion of ion-specific channels creates a mem-
brane potential, which depends on the ion selectivity of the ion channels. Most eukaryotic
cells possess selective channels for K™ and CI resulting in a membrane potential between -
40 to -80 mV depending on the cell type (Gouaux and Mackinnon 2005; Dubyak 2004).

10
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The resting potential of excitable cells like neurons and muscles varies from -70 to -80 mV,
whereas for non-excitable cells like immune cells it is between -40 to -50 mV. The differ-
ence in the resting potential of these cell types relates to their function (Hille B 2001). The
opening and closing of transmembrane ion channels alter the resting potential. It is called
depolarization, if the interior voltage becomes less negative, and hyperpolarization, if the
voltage becomes more negative. In excitable cells, a sufficient depolarization of the mem-
brane can evoke an action potential for a short time period, which transiently repolarises the
membrane. In immune cells, changes in the membrane potential are less transient and de-
pend on the activation state of the cell. Maintaining a normal membrane potential is impor-
tant for any immune cell. Thus, several ion channels (described in section 3.3.3) are ex-

pressed in the plasma membrane to allow the modulation of the membrane potential.

In non-excitable cells including immune cells, the membrane potential plays a prominent
role in setting the electrical driving force for Ca**-influx. In cells where voltage-independent
Ca?*-channels like TRPM4 and K are present, Ca®-influx only depends on the electro-
chemical gradient over the membrane and is stronger if the membrane potential is more
negative (hyperpolarised). In contrast, Ca**-influx is mediated through voltage dependent
Ca”*-channels in excitable cells, like neurons. Functional coupling of Ca*-activated K*-
channels (Kc,) with other predominant ion channels leads to a positive feedback cycle
promoting a sustained Ca*-influx in case of immune cells (Figure 1) (Gao et al. 2010) or a
negative feedback to terminate the flux by hyperpolarising the membrane potential and

hence closing voltage-activated Ca®*-channels in neurons (Fakler and Adelman 2008).

3.3.2 Regulation of Intracellular Ca**-level

Na" and K" are the most abundant cations in biological systems. Na* ions are most often
present at high concentrations outside the cell, and K* is present at high concentrations
inside the cell. Gradients for these ions across the cell membrane provide the energy
source for action potentials generated by opening Na* and K*-channels (Murata et al. 2005;
Meier et al. 2005), and for moving solutes and other ions across the cell membrane via
coupled transporters. Among several ions, the gradient for Ca*" ions is the largest. It helps
in controlling several physiological processes like secretion, excitation, contraction, and
cellular proliferation (Berridge 1995; Berridge et al. 2000). The cytosol is surrounded by two
massive Ca?*-stores: the extracellular space, where the Ca®* concentration is ~1.8 mM, and
the sarco-endoplasmic reticulum (SER), where the Ca®* concentration varies from 300 pM
to 2 mM (Hannaert-Merah et al. 1995). In immune cells, the intracellular Ca®* concentration
is ~0.1 UM in the resting state, but it is increased 10-fold when the cells are activated
(Feske et al. 2012; Hoth and Penner 1992).

11
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Plasma membrane Ca*-channels are specifically important in cell-cycle progression and
proliferation of immune cells. Accumulating evidence suggests that Ca?*-influx is important
at different steps of the cell cycle, the progression at late G1 into S phase as well as G2/M
transition (Takuwa et al. 1991; Takuwa et al. 1992; Nordstrom et al. 1992). The nature of
Ca?-channels involved in proliferation is well-defined and can be separated into voltage-
activated (VACC), receptor-activated (RACC), store-operated (SOCC) and second mes-
senger-operated (SMOCC) channels. RACC, SOCC and SMOCC are ubiquitous, whereas
VACC is expressed in excitable cells only. VACC (e.g. L-, T-, N-, P-, Q-type Ca**-channels)
open when the membrane is depolarized (Tsien et al. 1995). RACC (e.g. P2X purinergic
receptors) open when a ligand binds to the channel (MacKenzie et al. 1999), whereas
SOCC (e.g. transient receptor potential (TRP) (Clapham et al. 2001) and archetype CRAC
(Hoth and Penner 1992) are activated when the level of Ca?* within the lumen of the ER
drops below a threshold level (Putney 1986; Putney and McKay 1999; Putney et al. 2001).
Another type, SMOCC (e.g. arachidonic acid-regulated Ca** current) is activated by intra-
cellular second messengers like arachidonic acid (Shuttleworth 1996). The role of CRAC,
TRPM4 and P2X channels are important in case of immune cells in the continuous struggle
to keep Ca?" at an optimal level important for the maintenance of cellular functions in paral-

lel with ion pumps like Na*/K* pumps (Mijatovic et al. 2007; Lefranc and Kiss 2008).

Among the different ion channels mentioned in Figure 1 involved in the regulation of Ca**
homeostasis, CRAC channels are the most important ones. CRAC channels have been
extensively characterized (Hoth and Penner 1992; Zweifach and Lewis 1993) and are dis-
tinguished by an extremely high ion selectivity for Ca** and a low conductance (Prakriya
2009). CRAC channels are activated through the binding of the ER Ca** sensors stromal
interaction molecule 1 (STIM1) and STIM2 to the CRAC channel proteins ORAI1-3 (also
known as CRACM1-3) (Hogan et al. 2010). ORAI1 is a widely expressed surface glycopro-
tein with four predicted transmembrane domains, intracellular amino- and carboxyl-termini
and no sequence homology to other ion channels except for its homologues ORAI2 and
ORAI3. All three ORAI proteins form Ca**-channels with broadly similar functional proper-
ties when ectopically expressed, although they differ in their inactivation characteristics,
pharmacological properties and tissue expression (Lis et al. 2007; DeHaven et al. 2007).
The activation of ORAI CRAC channels involves a complex series of coordinated steps,
during which STIM proteins fulfil two crucial roles. Firstly, they sense the depletion of ER
Ca?*-stores, and secondly, they communicate store depletion to the CRAC channels (Liou
et al. 2005; Roos et al. 2005; Cahalan 2009). In resting cells with repleted Ca?*-stores,
STIM proteins are diffusely distributed throughout the ER membrane. Following the deple-

tion of Ca*-stores, STIM proteins are activated, oligomerize and redistribute into discrete
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punctae located in junctional ER sites that are in close proximity to the plasma membrane
(Cahalan 2009; Luik et al. 2008). Lymphocytes express two closely related STIM isoforms,
STIM1 and STIM2, and both mediate store-operated Ca**-entry (SOCE) in B and T cells
(Matsumoto et al. 2011; Oh-Hora et al. 2008). CD4" and CD8" T cells from ORAI1- and
STIM1- deficient patients and mice show defective production of many cytokines, including
IL-2, IL-17, IFN-y and tumour necrosis factor (TNF) (Feske 2009; Feske et al. 2001). How-
ever, despite the profound defects in SOCE in B cells from ORAI1- and STIM1-deficient
patients and mice, CRAC channels do not have a major role in antibody production (Feske
et al. 2010).

3.3.3 Role of lon Channels in Maintaining the Membrane Potential

The resting potential of a lymphocyte membrane is ~-50 mV (Lewis and Cahalan 1995).
Membrane potential alterations mainly occur when lymphocytes get activated (Crabtree
1999). TCR engagement activates PLCy1, which catalyses the hydrolysis of PIP, into IP;
and DAG. IP; stimulates the release of Ca®* from intracellular ER stores which triggers the
opening of plasma membrane CRAC channels. It is the resulting influx of extracellular Ca*
that is responsible for the sustained rise in cytoplasmic Ca?" after TCR stimulation. Ca*'
binds to the cytoplasmic Ca**-dependent protein calmodulin which then activates the phos-
phatase calcineurin. This phosphatase dephosphorylates and activates the nuclear factor of
transcription of activated T cells (NFAT), which enters the nucleus and helps to initiate inter-
leukin-2 (IL-2) gene transcription (Serfling et al. 2007; Rao 2009). During the activation of
immune cells opened CRAC-channels raise the intracellular Ca** level. To maintain the
balance in membrane conductance, K¢, channels get opened to hyperpolarize the mem-
brane as this channel helps in Ca®*-efflux. A negative feedback loop is established until
Ca** reaches high enough levels inside the cell to inhibit CRAC-channels. With the Ca*-
dependent activation of TRPM4 channels in T cells, there is also involvement of K,1.3
channels to repolarize the membrane (as illustrated in Figure 1). Along with these conven-
tional ion channels, the two-pore K*-channels (K,p) TASK-1 and TASK-3 are known to regu-
late immune cell effector functions by hyperpolarizing the membrane (Meuth et al. 2008).
Although the best characterized channel for Ca®*-influx in T cells is CRAC, several other
channels may also mediate Ca**-influx in T cells, including members of the transient recep-
tor potential (TRP) family, P2X receptors and voltage-gated Ca** (Ca,) channels. Compared
to CRAC channels, however, their contribution to TCR-induced Ca?*-influx in immune cells
is less well-defined (Feske 2013).
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Figure 1. Oscillatory changes of the membrane potential in lymphocytes. Ca**-influx in lympho-
cytes depends on the gradient between the extracellular Ca”* concentration (~1 mM) and the intra-
cellular Ca®* concentration (~0.1 pM) and on an electrochemical gradient established by the K-
channels (K,1.3, Kc,3.1 and partially by K, channels) and the Na'-permeable channel TRPM4
(Cahalan and Chandy 2009; Chandy et al. 2004). CRAC channels are activated following the en-
gagement of the TCR or BCR and is mediated through the activation of PLCy, the production of IP;
and the release of Ca®* from ER Ca®*-stores. The ensuing activation of STIM1 and STIM2 results in
the opening of ORAI1L CRAC channels and SOCE. Sustained Cca**-influx through CRAC channels
leads to the activation Ca2+-dependent enzymes and transcription factors, including calcineurin and
NFAT (Lewis 2001; Hogan et al. 2010; Feske 2007). Additionally, P2X receptors (e.g. P2X4 and
P2X7), which are non-selective Ca”*-channels, are activated by extracellular ATP mediating ca*-
influx (modified from Launay, P., 2004) (Feske et al. 2012; Launay et al. 2004).

3.3.3.1 K'-channels

K*-channels are encoded by a superfamily of 78 genes (Harmar et al. 2009) and are in-
volved in diverse physiological and pathological processes (Wulff et al. 2009). Structurally,
K*-channels are classified into three major groups: six transmembrane (Figure 2A), two
transmembrane (Figure 2B) and four transmembrane (Figure 2C) K*-channels. Voltage-
gated K*-channels (the first type) can further be subdivided into four families: K, (shaker-
like), Ether-a-go-go (EAG), KCNQ and K¢, (Ca**-activated K*-channels) (Yellen 2002;
Shieh et al. 2000). K¢, channels can be classified into three types: BKca (Kcal.1), 1Kca
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(Kca3.1) and SKca (Kea2.1, Kea2.2, Kea2.3) (Wei et al. 2005). Among K*-channels, immune
cells mainly express voltage-activated (K,1.3), calcium-activated (Kc,3.1) and two-pore Kyp
channels (TASK-1, TASK-3). K*-channels protect against membrane depolarization by me-
diating the efflux of K to depolarize the plasma membrane (Cahalan and Chandy 2009).
K,1.3 is a homotetramer of four a-subunits, each composed of six transmembrane seg-
ments (S1-S6), and is activated by membrane depolarization (Cahalan et al. 1985). Depo-
larization of the membrane is sensed by four arginine residues that are localized in the S4
segment and results in a conformational change that causes channel opening (Bezanilla
2008). Kca3.1 is a Ca**-activated K*-channel, but it has similar membrane topology and
pore architecture as K,1.3. However, rather than containing a voltage sensor, the C- termi-
nus of Kc,3.1 is constitutively bound to calmodulin, and channel opening occurs after Ca**
binds to calmodulin (Xia et al. 1998). Kc,3.1 channels powerfully hyperpolarize the mem-
brane following elevations in the intracellular Ca?* concentration and thus help to sustain
the driving force for Ca?*-entry. In addition to the requirement of Ca®*, Kc.3.1 channel activ-
ity depends on a class Il PI3-K, which increases the concentration of phosphatidylinositol 3-
phosphate (Ptdins(3)P) in the plasma membrane (Feske et al. 2012). TASK-1 and TASK-3

also contribute to hyperpolarizing activities (Meuth et al. 2008).

The relative contribution of K,1.3 and Kc.3.1 in lymphocyte Ca**-influx are determined pri-
marily by their expression level, which depends on the lymphocyte subset and its state of
activation. Under resting conditions, CCR7"CD45RA" naive human T cells predominantly
express K,1.3 channels and depend on K, 1.3 for activation (Leonard et al. 1992). Following
activation, naive human T cells up-regulate Kc,3.1 expression (Ghanshani et al. 2000), and
inhibition of Kc,3.1 in pre-activated T cells blocks TCR-stimulated Ca**-influx and prolifera-
tion (Fanger et al. 2000; Fanger et al. 2001). Furthermore, mouse Tyl and T2 cells pre-
dominantly express Kc¢,3.1 and depend on Kc,3.1 for TCR-mediated Ca”*-influx and cyto-
kine production, whereas Ty17 cells mainly express K,1.3 and require K,1.3 for their activa-
tion and production of IL-17 (Di et al. 2010). Differential use of K*-channels is also observed
in effector memory T cells (Tey) and central memory T cells (T¢y) (Cahalan and Chandy
2009; Srivastava et al. 2006; Beeton et al. 2001). When activated at sites of inflammation,
Tewm cells, which have the phenotype CCR7 CD62L"°“CD45RA", produce various cytokines
including IFNy, IL-4 and IL-5, and exclusively up-regulate K,1.3 expression. In contrast, Tcy
cells, which are CCR7'CD62L"CD45RA", up-regulate the expression of Kc,3.1 following
their activation in lymph nodes and mucosal lymphoid organs. As a result, K,1.3 blockers
are effective inhibitors of Tgy cells, whereas K¢,3.1 blockers are effective at inhibiting Tey

cells.
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Figure 2. Scheme of structural classification of K*-channel subunits. Structurally, K*-channels
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et al., 2000) (Shieh et al. 2000). K,: voltage-
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TWIK: Two-pore weak inward rectifier; TREK:
TWIK-related; TASK: TWIK-related acid-sensitive; TALK: TWIK-related alkaline pH activated;
TRAAK: TWIK-related arachidonic acid-stimulated K*-channel.

The finding that K,1.3 and K¢,3.1 function to activate distinct lymphocyte subsets provides
an opportunity to more selectively target lymphocyte subsets for therapeutic purposes. The
relevance of these findings to humans was demonstrated by the observation of high levels
of K,1.3 expression by myelin-reactive T cells isolated from patients with multiple sclerosis
(Wulff et al. 2003). Similar studies have shown an increase of K,1.3 channels in disease-
associated Tgy cells in patients with type | diabetes, rheumatoid arthritis (RA) and psoriasis,
and the treatment of these diseases with K,1.3 blockers lead to the amelioration of the dis-
ease (Beeton et al. 2006; Fasth et al. 2004; Friedrich et al. 2000; Gilhar et al. 2011). By
contrast, inhibition of Kc,3.1 protected mice from developing colitis in two mouse models of
inflammatory bowel disorder (Di et al. 2010), suggesting that Kc;3.1 may be a novel thera-

peutic target to treat patients with Crohn’s disease or ulcerative colitis.

K.1.3 is one of the first voltage-gated K*-channels reported to be modulated during apop-
tosis (Szabo et al. 1996) and is shown to contribute to the increased K'-efflux underlying
the late phase of lymphocyte apoptosis. There is also proof of stimulation of these channels
by death receptor CD95/Fas during apoptosis of Jurkat T lymphocytes

(Storey et al. 2003). K,1.3 expression also shows a correlation with tumour progression as
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exemplified by the up-regulation of K,1.3 expression in diffuse human large B-cell lym-
phoma and glioma (Preussat et al. 2003). Mechanistically, pro-apoptotic mediator cyto-
chrome C can activate K,-channels while anti-apoptotic protein Bcl-2 inhibits them
(Remillard and Yuan 2004). K,1.3 depletion decreases the expression of Caspase-3, Cas-
pase-9 and Bad, molecules that exacerbate apoptotic cell death (Wasserman and Koeberle
2009). This mechanism indicates that inhibition of K,1.3 channels confers resistance to
apoptosis while their over-expression favours this process.

3.3.3.2 Transient Receptor Potential (TRP) Channel

In humans, TRP channels form a large superfamily of 28 cation channels, which can be
divided into 7 subfamilies (Venkatachalam and Montell 2007). T cells predominantly ex-
press channels belonging to TRPC and TRPM subfamilies, including TRPC1, TRPC3,
TRPC5, TRPM2, TRPM4, and TRPM7 (Wenning et al. 2011). Most TRP channels are non-
selective and permeable to several cations, including Ca®* and Na* (Ramsey et al. 2006;
Owsianik et al. 2006). The function of TRPM4 channels is well documented in T cells and
other immune cells unlike most other TRP channels. TRPM4 channels mainly conduct Na*
and K" and, in contrast to other TRP channels, are only weakly permeable to Ca?
(Vennekens and Nilius 2007). The activation of TRPM4 channels, which occurs in response
to an increase in intracellular Ca®* concentration, results in Na*-influx, membrane depolari-
zation and a reduction in the electrical driving force for Ca®*-influx. TRPM4 channels thus
provide a negative feedback mechanism for the regulation of SOCE and were proposed to
prevent cellular Ca®*-overload. Given that TRPM4 and K, channels elicit opposing effects
on the membrane potential, it remains to be elucidated precisely how TRPM4 works to-
gether with K,1.3 and K¢,3.1 to regulate changes in the membrane potential and intracellu-

lar Ca®* concentration (Feske et al. 2012).

3.3.3.3 Purinergic P2X Receptor Channel

P2X receptors are a family of non-selective ion channels that are activated by extracellular
ATP and regulate the influx of Na*, Ca** and other cations (Junger 2011). At least three
different P2X receptors have been implicated in Ca**-influx in human T cells: P2X1, P2X4
(Woehrle et al. 2010) and P2X7 (Yip et al. 2009). Their opening, especially that of P2X7,
causes Ca”-influx and the activation of downstream signalling molecules such as cal-
cineurin, resulting in the proliferation of B and T cells (Baricordi et al. 1996; Padeh et al.
1991) and IL-2 production (Adinolfi et al. 2005; Woehrle et al. 2010). Potential sources for
the ATP required for P2X receptor activation include the T cells themselves, which are re-

ported to release ATP in an autocrine manner through pannexin 1 hemichannels that co-
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localize with P2X7 at the immunological synapse (Woehrle et al. 2010; Schenk et al. 2008).
It has been suggested that autocrine ATP signalling in T cells via P2X receptors serves to

amplify weak TCR signals, gene expression and T cell effector functions (Junger 2011).

The bi-directional connection between the neuronal and immune system is established by
the presence and functional relevance of molecules and ion channels present in both sys-

tems as explained in the next chapter.

3.4 Connection between the Neuronal and Immunological Systems

Although there has been evidence for years for a crosstalk between the immune and nerv-
ous systems following injury, the ‘dogma’ in the field of neuro-immunology has been that
the healthy central nervous system (CNS) is ‘immune-privileged’ because it lacks classical
immune molecules (Joly et al. 1991; Murphy and Sturm 1923). However, the role of MHC-I
molecules in neuronal synapse development and synaptic plasticity is quite evident in brain
cells of the visual system (Huh et al. 2000), and TCR/CD3¢ molecules contribute to the spa-
tial learning and memory function (Xu et al. 2010). Furthermore, the role of MHC-II mole-
cules in the degradation of neurons in Alzheimer’'s disease (AD) is established (McGeer et
al. 1989). Several inflammatory molecules like IL-1, TLR4 and TLR3 are expressed during
brain inflammation (Rogers et al. 1988) and antagonists to these inflammatory mediators
were shown to protect the brain. In addition, auto-antibodies generated against transmitter-
receptors or voltage-gated ion channels in the brain influence the function of neuronal
ligand- and voltage-gated ion channels, leading to synaptic dysfunction, and are found in
Rasmussen’s encephalitis, Lambert-Eaton Myasthenic Syndrome (LEMS) or NMDAR-
associated encephalitis, as shown in Table 3. In the same way as neurons are regulated by
molecules predominantly expressed in immune cells, brain molecules can regulate immune

function, like regulation of immune cells by glutamate as described in section 3.7.

3.5 Glutamate Receptors
3.5.1 lonotropic and Metabotropic Glutamate Receptors

Glutamate (Glu) can interact with multiple receptor types, which are divided into two main
groups: ionotropic glutamate receptors (iGIuRs), which form homo- or heteromeric ion
channels from several subunits with four transmembrane domains and mediate fast excita-
tory glutamate responses, and metabotropic glutamate receptors (mGIluRs), which have
seven transmembrane domains and belong to the superfamily of G protein-coupled recep-
tors (Nakanishi 1992). On the basis of sequence homology and agonist preference, iGIURs

are classified into N-methyl-D-aspartate (NMDA), a-amino-3-hydroxy-5-methylisoxasole-4-
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propionate (AMPA) and kainate (KA) receptors, which are associated with permeability to
particular cations (Wisden and Seeburg 1993). The first type is highly permeable to Ca*,
whereas AMPA and KA receptors are mostly permeable to Na* ions (Nakanishi 1992).
MGIuRs are classified into three subgroups (I, Il, lll) and there are eight family members
identified so far (Pin and Duvoisin 1995). Group | contains mGIlulR and mGIu5R subtypes,
which are mainly coupled to PLC, and quisqualic acid is their most potent agonist. Group Il
consists of mGIu2R and mGIlu3R, which negatively couple to adenylate cyclase and for
which L-2-(carboxycyclopropyl)-glycine is a potent agonist. Group Il contains mGlu4R,
mMGIu6R, mGIu7R, and mGIu8R, which have the same property as type-Il, but they have a
different agonist, namely L-2-amino-4-phosphonobutyric acid (Pin and Duvoisin 1995; Pin

and Acher 2002). This classification is schematically represented in Figure 3.

3.5.2 lonotroic Glutamate Receptors in the Brain

NMDARs and AMPARs are the main ionotropic GIuRs involved in glutamatergic neuro-
transmission in the CNS. Their functions in synaptic transmission and plasticity are well
established including long term potentiation/depression and excitotoxicity. NMDARs are
hetero-tetramers consisting of the obligatory GIuN1 subunit and two accessory subunits
named GIUN2A-D, GIuN3 or GluN4. Activation of NMDARs requires the binding of gluta-
mate or aspartate, the co-agonists glycine or D-serine and membrane depolarization. The
GluN2 family of NMDAR subunits contains a binding site for glutamate, the endogenous
agonist, whereas the GIuN1 subunit binds glycine (Johnson and Ascher 1987) as illustrated
in Figure 4. There is another component, D-serine, which binds to the glycine site of classi-
cal NMDARs. Although levels of glycine are 10-fold higher than D-serine, several reports
indicate that endogenous D-Serine and not glycine is the dominant exogenous co-agonist
for NMDAR-mediated neurotoxicity (Shleper et al. 2005; Mothet et al. 2000; Wolosker et al.
1999). When glutamate and glycine/D-serine bind and the cell is depolarized to remove the
Mg®*-block of NMDARs, the channel opens with consequent influx of Ca** and Na* into the
cell, the amount of which can be altered by higher levels of agonists and by substances
binding to one of the modulatory sites on the receptor (Figure 4). The opening kinetic of
NMDARs depends on the subunit composition and has profound consequences for down-
stream signalling pathways. Thereby, NMDARs can sense different activation patterns and
trigger specific intracellular signalling pathways via the induction of intracellular Ca®*

changes within small domains below the neuronal membrane (Paoletti et al. 2013).
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Figure 3. Classification of glutamate receptors (GluRs). GluRs are divided into two major
classes, according to their differential intracellular signal transduction mechanisms as well as se-
guence homologies. iGIuRs are sub-classified on the basis of sequence homologies and agonist
preference into NMDA, AMPA and KA receptors, which are all associated with ion channels perme-
able to particular cations. There are three distinct subtypes of mGIuRs, classified by their sensitivity
to exogenous agonists and intracellular second messengers employed (modified from Hinoi, E. et
al.) (Hinoi et al. 2004; Pacheco et al. 2007; Collingridge et al. 2009).

As NMDARs are important for several neuronal functions, they are implicated in various
neuronal disorders like traumatic brain injury and ischemic stroke (Shohami and Biegon
2013), Huntington’s disease (Daggett and Yang 2013), AD (Malinow 2012), schizophrenia
(Paoletti et al. 2013), mood disorders (Machado-Vieira et al. 2010), and encephalitis (Finke
et al. 2013). The physiological functions of NMDARs are mediated by the signalling events
occurring downstream of their activation. Ca®*-activated kinases like Ca*/calmodulin
dependent protein kinase Il (CaMKIl) and members of the protein kinase C (PKC) family
mediate Early-Long-Term-Potentiation (E-LTP). The src kinase Fyn enhances NMDAR
currents by phosphorylation of GIuN2 subunits. More recent studies show NMDAR-induced
activation of the MAPK, Erk1/2 and PI3-K/Akt pathways. NMDAR signals culminate in the
activation of a cohort of transcription factors that orchestrate specific gene expression pro-
grams guiding neuronal homeostasis, cell death or plasticity. The localization and composi-
tion of the NMDARSs in the neuronal membrane is fundamental for the initiation of these

intracellular signalling events (Groc et al. 2006; Cognet et al. 2006; Kahlfuss et al. 2014).
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Figure 4. NMDAR model illustrating important binding sites for agonists and antagonists. The

agonists glycine (Gly)/D-serine (D-
Ca?*> Na*
Ser) and glutamate/N-methyl-D-
aspartate (Glu/ NMDA) are shown
bound to their respective binding
sites. The binding sites for Mgz+ (Mori
et al. 1992; Mayer et al. 1984),
MK801 (Huettner and Bean 1988)

and memantine (Chen and Lipton

1997; Chen et al. 1992) are within the Mg2*

ion channel pore region and ifenprodil MK801* a2>Na*  Ifenprodil

. . Memantine*

binds to the GIuN2B subunit (Kew et

al. 1996). The different kinds of antagonists are marked as: *competitive, +uncompetitive, -non-

competitive (modified from Lipton, S.A. et al.) (Lipton 2006).

Excessive stimulation of NMDARs leads to excessive intracellular Ca?*-influx, generation of
free radicals such as nitric oxide and reactive oxygen species, collapse of the mitochondrial
membrane potential, loss of ATP, and eventually neuronal apoptosis or necrosis depending
on the intensity of the initial insult and the extent of energy recovery. This process is termed
excitotoxicity and appears to be an integral component in a final common pathway to neu-
ronal injury in neurodegenerative disorders including HIV-associated dementia (Yeh et al.
2000).

As NMDARs are involved in many neuronal disorders, modulation of their activity is im-
portant in clinical perspective. Among the NMDAR modulators clinically used for the treat-
ment of neuronal disorders, memantine hydrochloride was approved by the U.S. Food and
Drug Administration (FDA) and European Agency for the Evaluation of Medicinal Products
(EMEA) in 2003 for moderate to severe kinds of AD. Another NMDAR inhibitor ketamine,
which originally was developed as an anesthetic, is able to improve depressive symptoms
within hours in subjects with treatment-resistant depression (Berman et al. 2000). Experi-
mentally, ketamine mainly acts through Erk and Akt, which activate the kinase mTOR
(mammalian target of rapamycin) enabling the translation of synaptic proteins (Zunszain et
al. 2013).

3.6 NMDAR Inhibitors

A competitive antagonist is defined as an inhibitor which competes with the agonist binding
site present in the receptor. This kind of antagonist competes with glutamate for binding to

the glutamate receptor site on the GluN2 subunit of the NMDAR. Examples for competitive
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antagonists are D-APV (mostly used in neurobiological studies) and selfotel (anti-
convulsant with side-effects), as illustrated in Figure 4*. A non-competitive antagonist can

work via two mechanisms: it can bind to the active site of the receptor or to an allosteric site
of the receptor. An allosteric site is defined as a binding site distinct from the active or ago-
nist binding site. The end result of these two non-competitive mechanisms is quite similar.
They reduce the magnitude of maximum response attained by any amount of agonist,
whereas competitive antagonists reduce the quantity of agonist required to achieve a
maximal response. In case of NMDAR antagonists, these two kinds of non-competitive
mechanisms are exemplified by ifenprodil and ketamine. Ifenprodil binds to the GIuN2B
subunit and aptiganel to the Mg?*-binding site (active site) of NMDARs. Ketamine, which

acts as an analgesic and is in clinical trial for depression and mood disorders, appears to
bind to the allosteric site of the channel (Orser et al. 1997), as shown in Figure 4-. Finally,

an uncompetitive antagonist is defined when receptor activation by an agonist is required
before it can bind to a separate allosteric binding site of the receptor. This type of antago-
nist follows a kinetic rule where the ‘same amount of antagonist blocks higher concentration
of agonist better than the lower concentration’ (Lipton 2004). The prominent examples in
this group are memantine (used for the treatment of AD), MK801 (used in scientific re-

search) and, amantidine (used for treating influenza and Parkinson’s disease) as shown in

Figure 4+.

Cross-reaction of an antagonist with other channels is quite common within the neuronal
ion channel population. Memantine and MK801 are known to cross-react with o-7-nicotinic
acetylcholine (a-7-nAchR) and serotonin receptors in heterologous expression systems and
rat hippocampal neurons (Aracava et al. 2005; Amador and Dani 1991; Rammes et al.
2001; Iravani et al. 1999). Furthermore, memantine is known to block dopaminergic (D2)
receptors in pituitary cells (Seeman et al. 2008), and ifenprodil blocks ionotropic serotonin
receptors (5-HT3) (Barann et al. 1998), presynaptic P/Q type Ca**-channels (Delaney et al.
2012) and K" inward rectifier channels (Kobayashi et al. 2006).

3.6.1 Pharmacological Quantification: Hill slope, Dwell time, Type of Inactivation
In pharmacological research, there are several parameters used for showing the binding

kinetic of a drug to its target. These terms are described in the following:

The Hill slope (n) provides a way to quantify whether one or more ligands bind to a recep-
tor. It describes the co-operativity of ligand binding to its receptor in this way: If n> 1, then

the receptor has affinity to bind to more than one molecule (positively co-operative binding).
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If n< 1, then it does not bind to more than one molecule (negatively co-operative binding),
and if n = 1, then the affinity does not depend on whether there is any chance of binding

any other molecule (non-cooperative binding).

The Dwell time (1) gives information on the kinetic processes. It defines the amount of time
a channel remains in the closed position and is used to describe the amount of time an ion
spends in an ion channel pore at a particular binding site. This information is important
when choosing a drug to be pharmacologically important. For example, memantine is pre-
ferred among other pharmacological NMDAR inhibitors like MK801 or D-APV because of its
small =. The Dwell time describes the kinetics of binding of an inhibitor to its receptor elec-
trophysiologically, whereas the behaviour of the ion channel can be described biochemi-
cally with rate constants K,, and K. The biomolecular scheme of macroscopic blocking
and unblocking are hypothetically shown with this equation:

K
channel+ MEM €<———> channel- MEM (blocked channel)........... (1)

Koff

Kon is dependent on the memantine concentration and Ky in Egqn. (1) is inhibitor-
independent. The macroscopic on-rate constant (K,,) is related to the time for onset con-
stant (ton) by @ sum of blocking rate (K,,) and unblocking rate (K. constants. Here, Ky is

the reciprocal of the measured unblocking time constant (t.¢). Thus, the equation is:

Kon calculated from Eqn. (2) experimentally is dependent on an increasing memantine con-

centration, whereas K, in Egn. (3) remains relatively constant (Nelson DL 2004).

K= Kot (K /IMEM)..coovvneeereeeeesesesaeeneasecenns (4)

The dissociation constant (K;) at equilibrium for memantine action can be calculated from
Eqn. (4). It is found empirically that memantine is a low-affinity (apparent affinity of ~1 pM)
open-channel blocker of the NMDAR and a major component of the affinity is determined
by a K at clinically relevant concentrations in the low micromolar range (Chen and Lipton
1997).

Any voltage-gated ion channel exists in three different states: activation, deactivation and

inactivation. In this context, the concept of gate should be described. The pore domain, as
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explained in Figure 2 with P marked in green colour of a voltage-gated ion channel as ex-
emplified by a K*-channel in Figure 2, acts as a permeation pathway, which is opened and
closed by two distinct molecular gates: activation and inactivation gates. In most voltage-
gated ion channels, the activation gate is closed at normal membrane potential. Membrane
depolarization causes a conformational change in voltage-sensing domains, as shown in
the S4 domain of Figure 2A, that is transmitted to the pore domain, as illustrated between
S5 and S6 of Figure 2A, resulting in opening of the gate. Inactivation is a non-conducting
state during maintained depolarization. Conventionally, there are two kinds of inactivation:
N- and C-type. The different names come from the protein parts that are involved in the
inactivation process. The fast inactivating N-terminal region is involved in N-terminal inacti-
vation, in contrast to C-type, which includes the C-terminal part of the protein. Voltage-
activated K*-channels modulate through the slower C-type of inactivation. In case of N-
inactivation, the N-terminal residues (amino acids 6-46) of the channel move into the inter-
nal vestibule, as described in the S4-S5 linker of Figure 2, to occlude the intracellular
mouth of the ion-conducting pore (Isacoff et al. 1991; Hoshi et al. 1991). Once the pore is
occluded, it is hard to close the pore similar to a ‘foot-in-the-door’ mechanism (Demo and
Yellen 1991) keeping it in a deactivated state. In comparison, C-type inactivation involves a
slower rearrangement of the outer mouth and specific residues in the pore region (Liu et al.
1996).

Inhibitors can change the property of an ion channel by binding to the sites which are in-
volved in the inactivation phenomenon. For example, L-type Ca®*-channel blockers like
nifepidine and verapamil, used for cardiovascular disorders, stabilize the inactivated closed
state. This effect delays the transition to the resting phase and, thereby, inhibits the depo-
larization-induced Ca®*-influx. With this property, these drugs are clinically used for the
treatment of hypertension and cardiac arrhythmias by decreasing blood pressure and

cardiac contractility (Abernethy and Schwartz 1999; Striessnig et al. 1998).

3.6.2 Reasons for Selecting Memantine to Block NMDAR Activity

Memantine HCI (systematic name: 3, 5-dimethyladamantan-1-amine) was first developed
by Eli Lily & Co. in 1963 as an anti-diabetic agent for lowering the blood glucose level. Merz
& Co. then proved its effectiveness in the treatment of AD due to its antagonism of
NMDARs (Parsons et al. 1999). This was succeeded by a series of clinical trials by French,
UK and USA pharmaceutical companies. The results of these trials convinced the Euro-
pean Union in 2002 and the US FDA in late 2003 (Lipton 2006) to approve memantine for
the treatment of AD. Among the different types of NMDAR inhibitors mentioned before,

memantine is chosen as a drug of choice because of its low side-effects. To be clinically
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acceptable, the anti-excitotoxic therapy must block the excessive activation of NMDARSs
while leaving NMDAR function relatively normal. Drugs that compete with Glu or Gly at the
agonist-binding sites block normal function and therefore do not meet this requirement.
Consequently, these drugs have failed in clinical trials because of severe side-effects such
as drowsiness, hallucination and even coma (Lipton and Rosenberg 1994; Kemp and
McKernan 2002; Koroshetz and Moskowitz 1996; Hickenbottom and Grotta 1998; Lutsep
and Clark 1999; Rogawski 2000; Palmer 2001).

Although memantine and MK801 are uncompetitive inhibitors, memantine was chosen for
clinical trials due to its small t. The Ky rate of an inhibitor is a major determinant of clinical
tolerability of open-channel blockers, because an excessively slow off-rate (associated with
a long t and higher K.) causes the drug to accumulate in the channels, interfere with nor-
mal neurotransmission and to produce unacceptable adverse effects as in the case of
MK801. These kind of drugs make patients hallucinate (e.g. phencyclidine, also known as
Angel Dust) or so drowsy that they can serve as anaesthetics (as ketamine). The relatively
small Ky and short © of memantine prevent the drug from accumulating in the ion channels
and interfering with normal synaptic transmission. Thus, memantine can provide neuro-
protection without displaying adverse side effects (Lipton 2006). The neuro-protective prop-
erties of memantine have been confirmed in a large number of in vitro studies and in vivo
animal models (Lipton 2006). Neurons were protected by memantine in several areas of the
brain like cerebrocortical, cerebellar and retinal regions (Vorwerk et al. 1996; Lipton 1993;
Chen and Lipton 1997; Chen et al. 1992; Lipton 1992; Pellegrini and Lipton 1993; Sucher et
al. 1997; Osborne 1999). A series of human clinical trials have been completed or are
nearly completed testing the efficacy of memantine in AD, vascular dementia, HIV-
associated dementia, diabetic neuropathic pain, depression, and glaucoma. Along with mild
to moderate vascular dementia (Orgogozo et al. 2002), randomized clinical trials reported
that memantine was beneficial in severely demented patients, probably representing both
AD and vascular dementia (Winblad and Poritis 1999).

In terms of binding to NMDARS, memantine has two binding sites. The specific site of me-
mantine action is presumed to be near to the Mg?*-binding site at the selectivity filter region
of the NMDAR channel (Sakurada et al. 1993). This specific binding site manifests a slow
unblocking rate, moderate voltage dependence and high affinity (Danysz and Parsons
2003). The voltage-dependency is exemplified by the increase of 1Cs (inhibiting NMDAR
responses by 50%) with depolarization (Johnson and Kotermanski 2006; Parsons et al.

2007; Rogawski and Wenk 2003). The second unspecific binding site of memantine is re-
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ported to have a much lower affinity, minimal voltage dependence and a non-competitive
mechanism of blocking (Bresink et al. 1996; Antonov and Johnson 1996).
Pharmacokinetics: Memantine (trade name: Namenda) is absorbed completely from the
Gl tract, and peak plasma concentrations are achieved within 6-8 h after oral intake. By
repeated administration a steady-state plasma level is reached within 21 days. Under
therapeutic conditions, the serum levels of memantine with daily maintenance doses of 20
mg range from 0.5 to 1.0 uM. The plasma clearance half-life is 60-100 h. The elimination of
memantine is mainly performed by the kidneys as schematically showed in Figure 26 as
unchanged substance or hydroxylated metabolite. Memantine crosses the blood-brain bar-
rier (BBB), but cerebrospinal fluid (CSF) concentration is ~20-50% lower due to its binding
to albumin in the blood serum (Kornhuber and Quack 1995).

3.7 Glutamatergic Regulation of Immune Cells
3.7.1 Presence of Glutamate Receptors in Non-neuronal Organs

Dopamine, Glu, serotonin and other neurotransmitters constitute a group of physiochemi-
cally stable molecules, which may act on target cells relatively far from where they were
originally released (volume transmission). In contrast, acetylcholine belongs to the group of
labile compounds which, when released, achieve effective concentrations to act near to the
target cells due to their rapid degradation by cholinesterases that are abundant in tissue
and plasma (Danysz and Parsons 2003). Thus, substantial amounts of the former type of
neurotransmitters can be detected in extracellular fluids including plasma. The Glu concen-
tration in plasma is relatively high (50-100 umol/L) compared with the CNS (0.5-2 pmol/L in
extracellular fluids) (Morrell et al. 2008)and is tightly regulated by peripheral Glu transport-
ers (Hinoi et al. 2004). For example, platelets express excitatory amino acid transporters
(EAATS) to clear Glu from the extracellular environment (Morrell et al. 2008). Emerging evi-
dence suggests that Glu can play a dual role in mechanisms underlying cellular homeosta-
Sis: as an excitatory neurotransmitter in the central neurocrine system and as an extracellu-
lar autocrine and paracrine signal mediator in peripheral tissues. This leads to the assump-
tion that Glu receptors are present on different non-neuronal cells. Accumulating evidence
indicates the expression of Glu receptors in the heart, spleen, testis, kidney, pancreas, and
on osteoblasts, osteoclasts, and platelets (Morrell et al. 2008). Functional relation studies
reveal stimulation of insulin release from pancreatic  cells by AMPA (Bertrand et al. 1993)
and regulation of platelet production from megakaryocytes by NMDA (Hitchcock et al.
2003). Several of the Glu receptors were cloned and sequenced and are identical to those
found in the CNS (Hinoi et al. 2004). Over the last years evidence has emerged that im-

mune cells including macrophages, neutrophils, T cells, and DCs release glutamate and
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can be regulated by glutamate found in the blood stream, peripheral organs or CNS
(Pacheco et al. 2007).
3.7.2 Glutamate Receptors in Immune Cells

Immune cells were shown to express NMDARs, AMPARs (GluA3-subunit) (Ganor et al.
2003) and metabotropic Glu receptors (group I, Il and Il mGIuRs) (Pacheco et al. 2007),
which modulate their functions. Glu receptors were found to be expressed on murine thy-
mocyte subsets (double negative (DN) immature, double positive (DP) and mature thymo-
cytes), peripheral T cells and human peripheral blood lymphocytes (PBLs). Glu transporters
are reported to be expressed on macrophages and DCs (Pacheco et al. 2007). Although
less explored, mGIuRs are present on B cells (Rush et al. 2004) and DCs (Rezzani et al.
2003). Functionally, effects of NMDARs and AMPARs on the migration and apoptosis of
immune cells were described. NMDARs on rodent lymphocytes seem to mediate an in-
crease of intracellular Ca** and reactive oxygen species (Boldyrev et al. 2004), and AM-
PARs may play a role in the integrin-mediated adhesion to laminin and fibronectin (Ganor et
al. 2003). Furthermore, inhibitory effects of CNS Glu on myelin basic protein (MBP)- and
myelin oligodendrocyte glycoprotein (MOG)-specific lymphocyte activation were described
in case of multiple sclerosis (MS) patients (Sarchielli et al. 2007). In case of another auto-
immune disorder, Rasmussen’s Encephalitis, antibodies to AMPAR GIuR3 subunits are
found in paediatric patients (Levite and Hermelin 1999) and auto-antibodies to NMDARs
may be involved in several neuronal disorders (Kleopa 2011). In 2011, when our studies on
NMDAR function in T and B cells had already commenced, Affaticati et al. showed that
NMDAR GIuN1 subunits accumulate in the synaptic contact region formed between OT-II
TCR transgenic (tg) thymocytes and DCs presenting cognate ovalbumin (OVA)-peptide.
Inhibition of NMDARSs by the antagonists MK801 or memantine altered the duration of TCR-
induced Ca?*-flux and, thereby, influenced the apoptosis of DP thymocytes (Affaticati et al.
2011). This study further supported the idea that NMDARs are central regulators of T cell

function.

However, it has to be noted that a major difference between the functional studies on neu-
ronal and immune cells is the reported sensitivity to NMDAR-specific pharmacology. In im-
munological studies, NMDAR antagonists were often used in 10-fold higher concentrations
than in neurons raising the question to what extent NMDARSs are functional and important in

lymphocytes.

3.8 Aim of the Study:

In view that NMDARSs were reported to be expressed in lymphocytes and to affect human T

cell function, the major aims of my thesis were
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a) to proof the expression and functionality of NMDARSs in lymphocytes
b) to determine the effects of several types of NMDAR inhibitors on the membrane po-

tential and Ca?*-flux of murine and human lymphocytes.

For this analysis, electrophysiological and immunological methods were applied.
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4. Material and Methods

4.1 Material
4.1.1 Mouse Lines

Experiments were conducted with wild-type (wt) C57BL/6 mice, OT-Il TCR transgenic (tg)
(Barnden et al. 1998) and OT-I TCR tg (Hogquist et al. 1994) mice on C57BL/6 back-
ground. Mice were at the age of 6-10 weeks. All animal work was performed in compliance
with the German Guidelines for the Use of Experimental Animals. Animals were housed in

the Animal Facility of the Medical Faculty, Magdeburg.

41.2 Cell Culture-related

4.1.2.1 Media
Chemicals Amount
FBS (heat-inactivated) 5% or 10%
1x SC 25 ml
Streptomycin 100 U/mi
B/2-Mercaptoethanol 50 mM

in 500 ml RPMI-1640

20X SC contains

Chemicals Amount

FBS 500 ml

(heat-inactivated)

Na-Pyruvate 12.2 mM

Non-essential amino 10 mm

acids

Penicillin/ Streptomy- | 1x10*

cin U/ml

L-Glutamine 5%

FBS was inactivated at 56°C, aliquoted and stored at -20°C. Ingredients used for supple-
mentation of the medium were sterile-filtered prior to use. 1X SC is used for optimal culture

conditions.
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4.1.2.2 Cell Isolation Kits

Kit name (cell type) Constituents (biotinylated Abs)

mouse CD4°/CD8" NK 1.1 (PK136), CD8a (53-6.7), CD4 (GK1.5), I-A/I-E

(2G9), CD45R/B220 (RA3-6B2), Ter-119

T cells
human T cells CD14, CD16, CD19, CD36, CD56, CD123, Glycophorin A
mouse B cells CD43 (Ly48), CD4 (L3T4), Ter-119

All kits were purchased from Miltenyi Biotec (Bergisch Gladbach, Germany) and contain
streptavidin-coupled microbeads along with the biotinylated Abs for isolation of the cell sub-

sets.

41.2.3 Cell Stimulation

Antibodies Company

and mito-

gens

CD3 (2C11) BD Biosciences

(Heidelberg, Germany)

CD28 (CD28.2) BD Biosciences

SuperAvidin coated
microsphere beads (IN, USA)

Bangs Laboratories

LPS Sigma-Aldrich

(Steinheim, Germany)

a-lgM (Fab’), fragment Jackson Immunoresearch

(Hamburg, Germany)

4.1.2.4 Reagents

Cell culture reagents Company
RPMI-1640 Biochrom AG

(Berlin, Germany)
DMEM Gibco AG

(Darmstadt, Germany)
AIMV Gibco AG
EDTA Sigma-Aldrich
Trypsin Gibco AG
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FBS (Fetal Bovine Serum)

Pan Biotech

(Aidenbach, Germany)

Hank’s Buffer Biochrom AG

PFA Sigma-Aldrich

Triton X-100 Sigma-Aldrich

BSA Sigma-Aldrich
Streptomycin Biochrom AG
Gentamycin Roth GmbH

(Karlsruhe, Germany)

OVA- peptide AnaSpec

(Fremont, USA)

2-mercaptoethanol Gibco AG
DMSO (Dimethylsulfoxide) Roth GmbH
Na-pyruvate Biochrom AG
NEA (Non-essential amino | Gibco AG
acids)

L-Glutamine Gibco AG
Trypan Blue Roth GmbH
PBS Biochrom AG
Poly-D-Lysine Sigma-Aldrich
Poly-L-Lysine Sigma-Aldrich
Mowiol® 4-88 Sigma-Aldrich

4.1.3 Microscopy-related

4.1.3.1 Immunofluorescence Abs

Antibodies Epitope Company

GIluN1 extracellular rabbit a-mouse Alomone labs (Jerusalem, Israel)
and Synaptic systems (Géttingen,
Germany)

GIuN2A extracellular rabbit a-mouse Alomone labs

GIluN2B extracellular rabbit a-mouse Alomone labs

GFP monoclonal mouse-a-GFP Roche GmbH (Penzberg, Ger-
many)
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19G2b rabbit IgG2b control Dianova (Hamburg, Germany)
1gG2a rabbit IgG2a control Dianova

FITC- secondary Ab a-mouse Invitrogen

coupled

Cy5-coupled | secondary Ab a-rabbit Jackson Immuno Research

4.1.3.2 Solutions for Electrophysiological Analysis

41321 Extracellular Solution
Channel Chemical Concentration (mM)
K,1.3 NaCl 160

KCI 4.5
HEPES 5.0
MgCl, 1.0
CacCl, 2.0
Keca3.1 Na-aspartate 160
KCI 4.5
CacCl, 2.0
MgCl, 1.0
HEPES 10.0
4.1.3.2.2 Intracellular Solution
Channel Chemical Concentration (mM)
K,1.3 KF 162
EGTA 11
HEPES 10
CaCl, 1
MgCl, 2
Kca3.1 K-aspartate 145
CaCl, 8.5
MgCl, 2
EGTA 10
HEPES 10

32



Material and Methods

Extracellular and intracellular solutions were adjusted to pH7.4 and pH7.2, respectively.

The osmolarity of both solutions was maintained at 300-340 mOsm.

4.1.3.3 Inhibitors

Inhibitors (blocked channel) Company

Margatoxin (K,1.3) Tocris Biosciences (Bristol, UK)
Charybdotoxin (Kca3.1) Tocris Biosciences

TRAM-34 (Kc,3.1) Tocris Biosciences

Ifenprodil (GIuN2B of NMDARS) Tocris Biosciences

MK801 (open channel of NMDARS) Tocris Biosciences and Alomone labs
Memantine (open channel of NMDARS) Tocris Biosciences

Ketamine (open channel and allosteric site of | Tocris Biosciences

NMDARS)

D-APV (competitive for Glu-site of NMDARS) Tocris Biosciences

All inhibitors were reconstituted in ddH,O and stored at -20°C for 3 months.

4.1.3.4 Ca*-imaging Dyes/Chemical

Dye Company Activity Use

Fura-2 AM Molecular Probes, double-excitation (at 340* | fluorescence
Invitrogen (Darmstadt, and 380" nm) and single- | microscopy
Germany) emission (510 nm)

Indo-1 AM Molecular Probes single-excitation (350 nm) | flow cytometry

and double- emission
(400" and 475 nm¥*)

lonomycin Molecular Probes and acts as ionophore to raise | flow cytometry
Calbiochem (Merck, the intracellular Ca** and fluores-
Darmstadt, Germany) concentration cence micros-

copy

* Ca’*-free; +: Ca**-bound

Both Ca**-imaging dyes are ratiometric, which reduces the effects of uneven dye loading,
leakage of dye, photobleaching, and problems associated with measuring Ca®" in cells of

unequal diameter.
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4.1.3.5 Chemicals

Electrophysiological Company
Chemicals

NaCl Roth GmbH
KCI Roth GmbH
HEPES Roth GmbH
MgCl, Roth GmbH
CaCl, Roth GmbH
Na-aspartate Sigma-Aldrich
KF Sigma-Aldrich
EGTA Roth GmbH
K-aspartate Sigma-Aldrich

4.1.4 DNA Constructs

Construct Vector backbone Insert Source
GIluNZ1-wt pRcCMV GluN1 gift from Dr.
Paoletti
(Bordeaux)
GIUN2A-SEP (5.8 kb) | pCl (4 Kb) GIuN2A (1.1 Kb)+SEP | Addgene
(0.7 Kb)
GIuN2B-SEP (6.3 kb) | pCl (4 Kb) GIuN2B (1.6 Kb)+SEP | Addgene
(0.7 Kb)
GluR2-SEP (9.6 kb) pcDNA (not known) GluR2 (~4 Kb)+SEP gift from Dr.
(0.7 Kb) Passafaro
(Bordeaux)

SEP = Super-ecliptic protein

4.1.5 Instruments
Instruments Company
pH Meter Mettler-Toledo
(GielR3en, Germany)
OsmoMeter Osmomat 320 Genotec

(Berlin, Germany)
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Vortex Vortex Genie2

(New York, USA)

Light microscope Olympus CK2

(Tokyo, Japan)

Inverted microscope Olympus

(for Ca**-imaging)

Inverted Microscope Zeiss (Oberkochen, Germany)

(for electrophysiology)

Epifluorescence Microscope Zeiss

Water-bath chamber Lauda AQUALINE AL5

(Lauda-Konigshofen, Germany)

Centrifuge Eppendorf AG 5415R, 5810R
(Hamburg, Germany)

EPC 10 Amplifier Warner Instruments

(Hamden, USA)

Electrophysiological chamber and | Warner Instruments

manipulator
LSR Il Flow Cytometer BD Biosciences
Neubauer Chamber Roth GmbH (Karlsruhe, Germany)

41.6 Software

Software Company

PatchMaster v.2.11 HEKA Electronic (Lambrecht (Pfalz), Germany)
FitMaster v2x53 HEKA Electronic

Metamorph Molecular Devices (CA, Germany)
IgorPro5.04B WaveMetrics Inc. (Portland, USA)

FlowJo v3.6.1 TreeStar (Ashland, USA)

Graphpad Prism 5.0 Prism (CA, USA)

ImageJ National Institute of Health (USA)
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4.2 Methods

4.2.1 Cell Culture-related

4211 Cell Isolation

42111 T cell Isolation
421111 Mouse T cell Isolation

Mice were killed with CO,. Spleen and lymph nodes were extracted and kept in RPMI-1640
medium supplemented with 10% FCS at RT. For preparation of single cell suspensions,
spleens or lymph nodes were passed through a plastic cell strainer with a diameter of 100
pum in Petri dishes containing the medium. An aliquot of cells was diluted in 0.05% Trypan
blue in PBS and counted in a Neubauer chamber to determine the cell number. Splenic
cells were treated with Gey’s solution to lyse erythrocytes. This solution was pre-warmed at
37°C in the water bath before use.

CD4" or CD8" T cells were isolated from pooled lymph nodes of wt, OT-Il or OT-I TCR tg
mice by negative selection using a cocktail of biotinylated Abs: NK1.1 (PK136), CD8a (53-
6.7), CD4 (GK1.5), I-A/lI-E (2G9), CD45R/B220 (RA3-6B2), Ter-119 (all from BD Biosci-
ence) and streptavidin magnetic beads (Miltenyi Biotec) according to the manufacturer’s

protocol. Purity of CD4" or CD8" T cells after MACS isolation was routinely above 90%.

CD4" T cells were activated with CD3+CD28 antibodies (3+5 pg/ml) in supplemented
RPMI-1640 medium for 48 h for patch clamp recording.

42.1.1.1.2 Tcell Isolation from Human Peripheral Blood

Fresh CD3" T cells were isolated from the collected blood samples of healthy donors and
dementia patients using the Pan and CD4" T cell isolation kit from Miltenyi Biotec and the
Ficoll-Hypaque gradient procedure according to manufacturer’s protocol. The dementia
patients were prescribed to have a daily 10 mg memantine dose in the first week followed
by 20 mg for the next 11 weeks. The isolation kit contained biotinalyted CD14, CD16,
CD19, CD36, CD556, CD123, and Glycophorin A and anti-biotin microbeads for the conju-
gation to anti-biotin antibodies. The cells were maintained in AIMV medium. Purity of
iolated T cells was 90%. All experiments with human cells were conducted in collaboration
with Prof. Dr. Ursula Bommhardt (Institute for Molecular and Clinical Immunology) and Dr.
Stefan Busse (Department of Psychiatry, Magdeburg) and were approved by the local Eth-

ics Committee.
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42.1.1.2 B cell Isolation

Splenic or lymph node B cells were isolated with the B-cell isolation kit (Miltenyi Biotec)
composed of a cocktail of biotinylated Abs: CD43 (Ly48), CD4 (L3T4) Terll9 and anti-
biotin microbeads. The procedure was followed according to the manufacturer’s protocol
and purity of B cells was 90-95%.

B cells were cultured in complete RPMI-1640 medium supplemented with 10% FCS, 50 uM
B-mercaptoethanol, 1% penicillin/streptomycin and were activated with goat anti-mouse a-

IgM (Fab’), or LPS (10 ug/ml each) for 48-72 h and subsequently used for the experiments.

42113 DC Isolation
421131 Generation of Bone-marrow Derived Dendritic Cells (BMDCs)

Bone marrow (BM) was collected from femur and tibia of wt mice and cells were suspended
in RPMI-1640 medium reconstituted with 1% non-essential amino acids, 5% FCS, 1% L-
glutamine, 0.1% gentamycine, 0.1% 2-mercaptoethanol, IL-4 (48 ng/ml) and GM-CSF (10
ng/ml) from a hybridoma supernatant (a gift of Prof. Dr. Matthias Gunzer). A total of 3x10°
BM cells/5 ml BMDC medium were cultured for 7 days. At day 3, 2 ml medium was re-
placed by fresh BMDC medium, at day 6, total medium was replaced and cells were stimu-
lated with LPS in a concentration of 20 ng/ml for 24 h. DCs used at day 9 or 10 were re-
stimulated with LPS 24 h before experimental onset. Maturation of BMDCs was verified at
day 7 by staining cells with Abs against MHC-II (NIMR-4), CD11c (HL3), CD80 (2D10) and
CD86 (all from BD Bioscience).

421132 Activation of DCs

Mature BMDCs (MHC-II" CD11c* CD80" CD86") were pulsed with OVA-peptide (aa 323-
339, 10 pg/ml or aa 257-264, 5 ug/ml (SIINFEKL), AnaSpec) for 2 h and cultured with OT-II
CD4" or OT-1 CD8" T cells, respectively. CD4" T cells (0.5x10°- 1x10°) were stimulated with
CD3 Abs (3 or 10 pg/ml) or CD3 pus CD28 Abs (3 and 5 pg/ml, respectively).

For single-cell Ca®*-flux measurement, a total of 1x10° OT-Il CD4* or OT-I CD8" T cells
were left untreated or were activated with pOVA-loaded BMDCs in a DC-T cell ratio of 1:10.
NMDAR-inhibitors were added during recording. Matured BMDCs were pulsed with the
OVA-peptide for overnight.
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4.2.1.2 Maintenance of Cell Lines

EL-4 (mouse T cell), JE6.1 (human T cell) and Raji (human B cell) lymphoma cells were
grown in RPMI-1640 medium containing 10% FCS supplemented with nutrients at 37°C
and 5% CO,. Cells were diluted 1:10 after 3 days to maintain an optimal cell density
(1x10°-1x10°cells/ ml). For freezing, the cells were diluted in DMSO at a ratio of 1:10.

Adherent HEK-293T cells were grown in Dulbecco’s MEM (DMEM) containing 10% FCS,
100 units/ml penicillin and 100 pg/ml streptomycin at 37°C and 5% CO,. Cells were diluted
1:10 in 3 day cycles to avoid confluence of the cell layer. For splitting, adherent cells were
washed once with PBS and subsequently treated with 5 ml Trypsin/EDTA solution (0.25%
trypsin/0.02% EDTA in PBS without Ca**, Mg®") for 1 min at RT for cell detachment. Cells

were suspended and diluted 1:10 in fresh medium for culture.

42.1.3 Determination of Cell Number

Determination of the cell number was done with the Neubauer chamber, which is subdi-
vided into four quadrants (each having a surface area of 1 mm?). Each quadrant is subdi-
vided into 16 smaller quadrants. When cells are added to the chamber, each big quadrant
receives a volume of 0.1 pl (0.1 mm®). The cell suspension was diluted 1:50 in Trypan blue
solution and counted with a light microscope of 20x magnification. Bright live cells in the
guadrants were counted excluding the blue coloured ones representing dead cells. Calcula-

tion of cell count = counts of 4 bigger quadrants)/4 x dilution factor x 10,000 = cell count/ml.
4.2.1.4 Transfection Protocol

4.2.1.4.1 Fugene Method

600 pl of PBS was mixed with 2 pg of DNA and 50 pl Fugene (Roche, Berlin, Germany).
This mixture was kept for 15 min at RT and then added to HEK-293T cells according to the
manufacturer’s protocol. Transfected cells were immuno-stained after 24-48 h. This method

was used for transfecting the cell line to test NMDAR Ab specificity.

4.2.2 Microscopy-related
4.2.2.1 Immunofluoroscence Method

For live extracellular staining, HEK-293T cells were incubated with primary Abs (GIUN1-wt,
GIuN2A-SEP and GIuN2B-SEP) in DMEM medium for 30 min at 37°C. Then, the cells were
fixed with 4% PFA and blocked with a solution containing 10% FCS in PBS, 1% Triton X-

100. Then, the cells were washed three times with PBS. Afterwards, secondary Abs in
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PBS/1% BSA were added to the cells and kept for 1 h in the dark. Finally, the cells were

washed three times and mounted in mowiol.

For staining of fixed cells, the cells were initially fixed with 4% PFA and then blocked with
10% FCS/PBS/1% Triton X-100. Then, the cells were incubated with primary Abs in PBS
for 1 h. This was followed by washing the cells three times with PBS/1% BSA. Finally, the
cells were incubated with secondary Abs for 1 h in the dark followed by three times washing
in PBS. At the end, the cells were mounted in mowiol. BSA (bovine serum albumin) inhibits

the non-specific binding of Abs. Thus, its use in immunofluorescence stainings is preferred.

4.2.2.2 Electrophysiological Methods (Patch clamp)

All experiments were carried out in the whole-cell configuration of the patch-clamp tech-
nigue using an EPC10 amplifier and PatchMaster v.2.11 (HEKA Electronic) at RT (20-
24°C).

42221 Voltage Clamp

Patch pipettes from borosilicate glass used for recordings had a resistance between 3-5
MQ. K,1.3 and Kc,3.1 currents were recorded with external and internal solutions men-
tioned in section 4.1.3.2. Osmolarity was set to 300-340 mOsM by the Osmomat instru-
ment. K,1.3 currents were measured with depolarizing voltage steps up to +60 mV from a
holding potential of -80 mV every 30 s in steps of 20 mV. K¢,3.1 currents were elicited by a
200 ms voltage ramp from -120 to +40 mV from a holding potential of -80 mV every 15 s.
Sampling rate was 50 kHz in case of K,1.3 and 20 kHz in case of K¢,3.1. The antagonists
ifenprodil, MK801, memantine, ketamine or D-APV (Tocris) were added during the re-
cording with a constant inhibitor concentration. As a positive control for the measured cur-

rents, margatoxin and TRAM-34 (Tocris) were used.

42222 Current Clamp

For membrane potential experiments, activated mouse T or B cells and JE6.1 or Raji cells
were recorded in the current clamp mode with O pA holding current immediately after estab-
lishment of the whole-cell configuration. Ifenprodil, memantine or D-APV were added during
the recording with a constant inhibitor concentration to determine the membrane depolari-

zation in the presence of the inhibitors.
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4.2.2.3 Ca*-flux Measurement
4.2.2.3.1 Whole-cell Ca%*-flux

For T cells, lymph node cells from wt mice were stained with 4 yM Indo-1 AM (Invitrogen,
Molecular Probes) for 45 min at 37°C. After being washed with PBS, the cells were stained
for CD8 and B220 or CD4 and B220 surface expression for 15 min, washed and re-
suspended in Hank's buffer (Biochrom AG) supplemented with 1 mM CacCl,. CD3-biotin
Abs (145.2C11, 10 pg/ml) plus streptavidin (25 ug/ml, Dianova) were added to induce Ca**-
flux. The NMDAR antagonist ifenprodil (10 or 30 uM) was added for 5 min before CD3 Ab
and streptavidin treatment. Additionally, external NMDA (100 uM) was added to induce

Ca?*-flux.

For B cells, splenocytes were stained with 4 yM Indo-1 AM for 45 min at 37°C. Cells were
washed, stained for CD8 and CD4 surface expression and suspended in Hank’s buffer
supplemented with 1 mM CacCl,. NMDAR antagonist ifenprodil (10 or 30 uM) or memantine
(30 or 50 pM) was added for 5 min before B cells were activated with a-IgM (10 pg/ml) to

induce Ca* -flux.

Towards the end of each measurement, ionomycin (2 uM, Calbiochem) was added as a
positive control for cell reactivity. Ca**-flux was measured on a LSRII flow cytometer (BD
Biosciences). Data files were transferred to FlowJo V3.6.1, mean Ca**-flux was determined
for unlabelled CD4" or CD8" T cells and unlabelled B cells and data were further processed
with IgorPro5.04B software. For each graph, ACa®*-flux was defined as the difference be-

tween the maximum and minimum value of Ca* -intensity.

4.2.2.3.2 Single-cell Ca*-flux

Freshly-isolated CD4" or CD8" T cells were loaded with 2-4 uM Fura-2 AM for 45 min at
37°C. These Fura-loaded cells were measured with the MetaMorph Program (Molecular
Devices) under a fluorescence microscope (Olympus) in 40x magnification along with the
prepared DCs. Mean Ca®'-flux was determined by plotting the 340 and 380 nm values in
Excel and each trace was assessed in IgorPro 5.04B software. The T cells were stimulated
with either OVA-presenting DCs or CD3/CD28 coated microbeads.

422321 Bead Stimulation Protocol

Beads (mean diameter: 10.14 pm, 33 pl for 1x10° cells) were incubated with CD3 and
CD28 Abs (both 10 pg/ml) for 30 min at 37°C to activate the cells. Then, they are washed

with PBS and added to the used cell culture medium.
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4.2.3 Statistical Analysis

Data are given as mean values + standard deviation (SD), if not stated otherwise. Student’s
t test and other statistical measurements were performed in GraphPad Prism 5.04B. Statis-
tical significance was set as *p<0.05, **p<0.01 and ***p<0.001.
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5. Results
5.1 NMDAR Expression in Murine Lymphocytes is Puzzling

In previous work GIuR expression was detected in murine thymocytes and human periph-
eral lymphocytes by intracellular staining and flow cytometry, and localization of GIuN1
subunits in the thymocyte-DC contact zone was shown by confocal microscopy (Affaticati et
al. 2011; Ganor et al. 2003; Lombardi et al. 2001). Inspired by this work, experiments within
our collaborative research project apparently confirmed the results for NMDAR subunit ex-
pression, namely expression of GluN1, GIuN2A and GIuN2B subunits in thymocytes and
peripheral T cells (Kahlfuss et al., 2014). Upon co-culture of OT-Il CD4" T cells with pOVA-
presenting DCs, GIuN1 and GIuN2B subunits were detected in the immunological synapse,
as shown by confocal microscopy. However, in Western blot analyses, GIuN1 protein in
thymocytes and CD4" T cells appeared at a lower molecular weight than GIuN1 protein in
brain lysate. To proof whether the detected protein is GIuN1, we performed analyses on
thymocytes obtained from newborn GIuN1 knock out (ko) mice. PCR and RT-PCR analyses
showed the deletion of GIuN1 at the DNA and mRNA level in thymocytes, and GIuN1 pro-
tein was absent in brain samples, but not in thymocytes. These observations strongly sug-
gest that GIuUN1 protein is not detectable in thymocytes. Intracellular staining with two dif-
ferent GIuN1 Abs and flow cytometry as well as immunohistochemistry also showed identi-
cal staining for wt and GIuN1 ko thymocytes, although the used Abs for GIuN1, GluN2A and
GIluN2B showed specificity for the subunits in transfected HEK-293T cells (Figure 5).
Hence, on the protein level, there is no evidence for expression of the obligatory GIuN1

subunit of NMDARs in murine thymocytes and T cells (Kahlfuss et al. 2014).

Figure 5. NMDAR subunit transfection for testing the specificity of Abs used to detect NMDAR
subunit expression. Fluorescent images of HEK-293T cells transfected with the NMDAR subunits

GluN1-wt, GIuUN2A-SEP and GIuN2B-SEP were analysed by an epifluroscent microscope taken in
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63x magnification and processed with ImageJ. Scale bar = 4 um. Transfected cells were analysed
for GFP(SEP)-expression to detect the individual subunits and were stained with (C) mouse-anti-
GIuN1 (Synaptic System), (D) rabbit-anti-GIuN2A (Alomone labs), (E) rabbit-anti-GIuN2B (Alomone
labs), (A) mouse-lgG2b, (B) rabbit-lgG2a, and secondary PE-labelled Abs. (A) and (B) were used as
controls for mouse-anti-GluN1 and rabbit-anti-GIUN2A/GIuN2B, respectively. The immuno-
histochemical stainings show strong overlap with GFP-expression indicating that the Abs are specific
for the individual NMDAR subunits. Differential interference contrast (DIC) images show the position

and shape of an individual cell. Arrows point towards a representative transfected HEK-293T cell.

Although expression of NMDARs at the protein levels was elusive, we detected Ca* -flux in
lymph node (LN) CD4" and CD8" T cells and LN and splenic B cells upon addition of the
NMDAR agonist NMDA (100 pM). NMDA-induced Ca**-flux in T cells was reduced by 10
UM ifenprodil to ~80% and it was nearly abrogated with 30 uM ifenprodil (Figure 6A). In
case of B cells, the reduction in Ca®*-flux was even more prominent, as Ca?-flux was re-
duced to ~40% in LN and to ~20% in splenic B cells by 10 uM ifenprodil (Figure 6B).
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Figure 6. NMDAR antagonists attenuate NMDA-induced Ca*-flux. Indo-1 AM-loaded (A) LN
CD4" and CD8" T cells and (B) LN and splenic B cells were activated with NMDAR agonist NMDA
(100 pM) in the absence or presence of ifenprodil (Ifen.) and Ca**-flux was determined with flow cy-
tometry. lonomycin (I0) was added towards the end of each measurement to control cell reactivity.
Left histograms in (A, B) show a representative experiment for LN CD4" T cells and B cells; right

graphs show the relative ACa**-flux for CD4* and CD8" T cells and B cells calculated from 3-4 ex-
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periments. ACa**-flux from cells activated without ifenprodil (none) was set as 1. Data represent

mean values + standard error of mean (SEM) from 3-4 independent experiments.

Although NMDA-induced Ca**-flux was detected in T and B cells, the presence of NMDARs
should be further examined by performing Ca**-flux experiments in thymocytes from GluN1
ko mice. It should also be mentioned that external Glu (100 puM) did not induce any Ca*-
flux. Thus, we hypothesize that NMDA either unspecifically binds to some other unknown
ion channel(s) on lymphocytes or that NMDARSs are expressed only transiently and in very

small numbers and therefore are not detectable under the used experimental conditions.

Along with whole-cell Ca*-flux in mature T cells, single-cell Ca**-influx was performed, as
Affaticati et. al., 2011 showed Ca**-influx at the immune cell synapse formed between OT-I|
TCR tg CD4'/CD8" thymocytes and OVA-presenting DCs. We used the DC system and
CD3/CD28 Ab-coated microbeads to activate T cells. OT-I TCR tg CD4" and OT-Il TCR tg
CD8" T cells were loaded with 4 pM Fura-2 AM to monitor TCR-induced Ca**-flux changes
using the MetaMorph Program and an inverted microscope. Matured DCs were loaded with
cognate OVA-peptide for 24 h before use. A transient Ca®*-flux was detected in OT-Il CD4"
and OT-1 CD8" T cells after CD3/CD28 bead-stimulation as shown in Figure 7A and C. For
DC/antigen-stimulated OT-ll CD4* T cells, transient as well as sustained Ca**-fluxes were
observed (Figure 7B). However, there was no reliable detection of a reduction of single-cell
Ca**-flux in the T-DC or T-bead contact zone after addition of ifenprodil (data not shown).
This was unexpected and puzzling and could be due to the more homogenous cell popula-
tion using TCR tg T cells instead of heterogeneous whole cell populations used for the
measurement of Ca**-flux by flow cytometry, or, the cells reacting to ifenprodil did not re-

spond with any Ca**-flux at all or due to technical limitations.
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Figure 7. Single-cell Ca**-flux of TCR tg T cells in the presence of antigen-presenting DCs or
CD3/CD28-coated beads. Single cell Ca”"-flux was recorded for 500 s in OT-Il CD4" T cells

stimulated with (A) CD3/28-coated beads or (B) OVA-presenting DCs and in (C) OT-l CD8" cells af-

ter stimulation with CD3/28-coated beads. The data represent averaged Ca”*-fluxes from 14-22 sin-
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gle cells of n = 3-4 experiments out of 8-9 preparations from OT-l/ll TCR tg mice. Insets show the

representative flux for different stimulation conditions mentioned.

5.2 NMDAR Antagonists Attenuate TCR/BCR- induced Ca*-flux
5.2.1 TCR-induced Ca**-flux

In order to understand how NMDAR antagonists influence T-cell activation, their effect on
proximal T-cell signalling was analyzed. | concentrated on the analysis of Ca?*-flux, as this
is pivotal for the activation of many Ca?*-regulated proteins which guide T-cell activation.

LN CD4" and CD8" T cells, loaded with Indo-1 AM to monitor intracellular Ca®*-changes by
flow cytometry, responded to TCR ligation by cross-linked CD3 Abs with a rapid mobiliza-
tion of Ca*". The Ca*-flux was significantly reduced by 10 pM and almost entirely blocked

by 30 uM ifenprodil as shown in Figure 8.
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Figure 8. NMDAR antagonists attenuate TCR-induced ca”*-flux. (A) Indo-1 AM-loaded CD4" and
CD8" T cells were activated with CD3 Abs (10 pg/ml) in absence or in presence of 10 and 30 pM
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ifenprodil (Ifen.) and Ca”*-flux was determined by flow cytometry. 10 was added towards the end of
each measurement to control cell reactivity. The histogram in (A) shows a representative Ca*-flux
measurement for CD4" T cells and the graphs in (B) shows the statistics for CD4" and CD8" T cells.
Data in the the graphs provide the relative ACa®*-flux as mean + SEM calculated from 3 experiments

each. The obtained ACa”*-flux of cells activated in the absence of Ifen. (none) was set as 1.

5.2.2 BCR-induced Ca®'-flux

As TCR-induced Ca**-flux was modulated by ifenprodil, it was intriguing to study B cells as
several autoimmune disorders, as described in Table 3, involve B cells producing auto-
antibodies, for instance against NMDARs. Ligation of the BCR with IgM Abs (a-lgM) and
LPS were used for polyclonal stimulation of B cells. Indo-1 AM-labelled splenic B cells
showed a concentration-dependent inhibition of BCR-induced Ca*'-flux when they were
treated with ifenprodil or memantine. Figure 9A shows a reduction of Ca**-flux to ~80% of

untreated cells in the presence of 10 pM and to ~30% by 30 uM ifenprodil. Figure 9B de-
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picts the reduction of Ca?*-flux to ~80% in the presence of 30 pM and to ~40% by 50 puM

memantine. Thus, NMDAR antagonists also impair BCR-induced B-cell activation.
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Figure 9. Reduced Ca*-flux in BCR-activated B cells in the presence of NMDAR antagonists.
Indo-1 AM-labelled B cells were stimulated with a-IgM (10 pg/ml) in the presence or absence of (A)
ifenprodil (Ifen.) and (B) memantine (Mem.) and Ca”*-flux was determined with flow cytometry. (A)
shows the reduction of BCR-induced Ca**-flux by 10 and 30 uM Ifen. and (B) by 30 and 50 uM Mem.

The ACa*-flux from cells activated without Ifen. or Mem. (none) was set as 1. Corresponding graphs

represent the ACa®*-flux from three experiments each.

5.3 NMDAR Antagonists Modulate the Membrane Potential and Block K,1.3 and
Kca3.1 Channels of Lymphocytes

5.3.1 Mouse Primary T Cells and EL-4 Lymphoma Cells

In view of the strong effects of NMDAR pharmacology on Ca?*-flux in lymphocytes, but the
elusive expression of NMDARs at protein level, we hypothesized that the inhibitor’s targets
could involve K,1.3 and K¢,3.1 potassium channels (Partiseti et al. 1992; Partiseti et al.
1993; Lewis and Cahalan 1995). These channels regulate T-cell activation by controlling
the membrane potential and, hence, the Ca**-flux into T cells (Desai et al. 2000; Lam and
Waulff 2011; Conforti 2012). Indeed, current-clamp recordings of CD4" T cells activated with
CD3+CD28 Abs showed that ifenprodil (30 pM) and memantine (50 uM) depolarized the

membrane potential from ~-50 mV to ~-15 mV and ~-20 mV, respectively, as shown in Fig-

ure 10.
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depolarization. All data were calculated from 5-6 cells of three experiments in each case and are rep-

resented as mean + SEM.

Since the membrane potential was strongly affected by NMDAR antagonists, | next ad-
dressed whether this involves K,1.3 and Kc,3.1channels, the major and most abundant K*-
channels in lymphocytes. K,1.3 and Kc,3.1 channels currents were recorded by voltage
clamp method and dose-response curves were constructed from the transient maximal cur-
rent amplitudes. The obtained Hill slopes and 50% inhibitory concentrations (ICs) for K,1.3
channels on T cells in the presence of ifenprodil and memantine were ~1.5 and ~1.9 and
~35 UM and ~45 pM, respectively, as shown in Figure 11 A, B. For Kc,3.1 channels, Hill
slope and ICs, values were ~1.2 and ~15 pM for ifenprodil and ~1.6 and ~30 uM for me-
mantine, respectively (Figure 11 C, D).
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Figure 11. NMDAR antagonists inhibit K,1.3 and K¢;3.1 channel activity in activated T cells.
Ky1.3 and K¢,3.1 channel-mediated currents were recorded by voltage-clamp method from T cells
activated with CD3+CD28 Abs (3+5 pg/ml) for 24-48 h. Voltage clamp protocol for K,1.3 recording
and current traces are shown in (A). (B) shows the curves formed by plotting the transient amplitude
of the recorded currents versus the indicated inhibitor concentrations. (C) Ramp protocol for measur-
ing Kca3.1 recorded current and example traces are shown and the dose-response inhibition curves
formed by the recorded currents is shown in (D). Each data point in the dose-response inhibition
curves represents mean calculated from 5-7 cells and vertical lines show mean = SEM.
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A competitive antagonist can determine the functional expression of a channel as it is com-
peting with the agonist site of the channel. In case of NMDARS, the competitive antagonist
frequently used in neuronal systems is D-APV, which is competing with the Glu-binding site.
Therefore, the effect of D-APV on K,1.3 channels in activated CD4" T cells was determined.
As shown in Figure 12A, D-APV blocked K,1.3 channels, but only at ~20-fold higher con-
centrations (1 mM) than needed by the other tested inhibitors. In addition to activated pri-
mary murine CD4" T cells, the inhibitory effects of ifenprodil, memantine, MK801, ketamine,
and D-APV on K,1.3 channels were analysed in murine EL-4 lymphoma T cells. Al NMDAR
inhibitors strongly blocked K,1.3 channel currents, but in case of D-APV, ~15-fold higher
concentrations were needed to reach an inhibition similar to that obtained with ifenprodil
(Figure 12B). Thus, the employed concentrations of NMDAR antagonists, which were simi-
lar to those used in previous publication by others (Affaticati et al. 2011), non-specifically
inhibit two K*-channels, which reportedly modulate many Ca®*-mediated processes in T
cells (Lam and Wulff 2011).
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Figure 12. NMDAR antagonists decrease K,1.3 channel activity in activated CD4" T cells and
EL-4 lymphoma cells. K,1.3 channel currents were determined in (A) activated murine CD4" T cells
and (B) EL-4 lymphoma cells in the absence and presence of the indicated NMDAR antagonists. The
currents were recorded by voltage-clamp with the protocol given in Figure 11A. The data in the bar
graphs represent the relative inhibition of recorded K,1.3 transient currents from 5-6 cells and all

data represent mean = SEM determined by unpaired Student’s t test.

5.3.2 Murine B Cells

K*-channels are also expressed on B cells and their inhibition was found to differentially in-
fluence B-cell activation and proliferation (Partiseti et al. 1992; Partiseti et al. 1993; Lewis
and Cahalan 1995). Since NMDAR inhibitors downregulate BCR-induced Ca**-flux in B
cells, their effects on the membrane potential and K,1.3 and Kc,3.1 channels were alalyzed.
Ifenprodil (20 puM) and memantine (30 uM) reduced the membrane potential of a-IgM- or
LPS/TLR4-activated B cells from ~-40 mV to ~-20 mV and ~-10 mV, respectively as shown

in Figure 13. Next, K,1.3 channel-mediated currents from activated B cells were recorded
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and the dose-response curves in the presence of the inhibitors were calculated from maxi-
mal transient current amplitudes. Ifenprodil and memantine markedly reduced the K,1.3
currents of B cells, irrespective of whether they were stimulated with a-IgM or LPS (Figure
14 A,B). ICso and Hill slope values for a-lgM-activated B cells were ~20 uM and ~1.3 for
ifenprodil and ~40 uM and ~1.8 for memantine. For LPS-activated B cells, ICso and Hill
slope values were ~18 pM and ~1.4 for ifenprodil and ~45 pM and ~1.2 for memantine.
Kca3.1 channel-mediated currents were also recorded for B cells activated by BCR ligation
(Figure 14B), whereas Kc,3.1 currents were not detected in LPS-stimulated B cells. ICx
values for ifenprodil and memantine were ~30 uM and ~50 pM and Hill slopes were ~1.4
and ~1.6. Notably, the competitive NMDAR antagonist D-APV, which blocks neuronal
NMDARs at the 1 uM range, had no effect on K,1.3 and Kc,3.1 channels, even at 300 uM
(Figure 14C). Thus, K,1.3 and Kc,3.1 channels, whose specific blockade abolishes B-cell
activation (Amigorena et al. 1990; Wulff et al. 2004), are at least partially inhibited by the
non-competitive NMDAR antagonists ifenprodil and memantine.
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Figure 13. NMDAR antagonists reduce the B cell membrane potential. B cells were activated
with a-IgM or LPS (10 pug/ml each) for 24-48 h and analyzed by current-clamp recordings for chang-
es membrane potential upon addition of ifenprodil and memantine in concentrations as indicated.
KCI treatment served as a positive control for checking the cell integrity. Each data point contains

data from 5-6 cells of four experiments.
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Figure 14. NMDAR antagonists lower K*-channel activity of B cells. Splenic B cells, activated
with a-IgM or LPS, were recorded by voltage-clamp to measure K,1.3 and Kc,3.1 currents. Dose-
inhibition curves of K,1.3 in (A) and Kc,3.1 in (B) were plotted in the presence of Ifen. or Mem. from
the recorded maximal transient currents. Insets show one particular trace of control and inhibited cur-
rent along with the protocols used for measuring K,1.3- and K¢,3.1-mediated currents. Data in the
graphs in (C) represent the relative inhibition of K,1.3- and K¢,3.1-mediated currents in the presence
of the competitive NMDAR antagonist D-APV in a concentration ~10 times higher than used for the

other inhibitors. All data were calculated from 5-6 cells of four experiments.

5.3.3 Human Jurkat T- and Raji B-Lymphoma Cells

As ~2-fold increased plasma Glu levels act as a prognostic marker in certain cancers (e.g.
breast cancer and colorectal carcinoma) (Ollenschlager et al. 1989) and the expression of
GluN1 subunits seems to correlate with the prognosis of other types of cancers like oral
squamous cell carcinoma and retinoblastoma (Choi et al. 2004; Stepulak et al. 2009), it was
also interesting to analyze Jurkat and Raji human lymphoma cells. The question was
whether lymphoma cells would express NMDARs induced by plasma Glu or whether

NMDAR inhibitors would modulate K*-channels as found for primary murine T and B cells.

5.3.3.1 Jurkat T-Lymphoma Cells

At first, the membrane potential was determined by current clamp analysis. The membrane
potential of Jurkat cells was reduced from ~-50 mV to ~-25 mV and ~-20 mV in the pres-

ence of ifenprodil (30 uM) and memantine (50 uM), respectively, as shown in Figure 15.
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Figure 15. NMDAR antagonists change the
membrane potential of Jurkat cells. Human | _ .60 B none
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resented as mean + SEM.

Next, the recorded currents (I) were plotted versus the used voltage (V) potentials. Figure
16A displays the I-V relationship measured at potentials ranging from -80 mV to 60 mV (in
20 mV steps) in control and in presence of ifenprodil (30 pM). The activation of K,1.3 chan-
nel differs distinctly in presence of ifenprodil. Figure 16B shows the mean current densities
(in pA/pF) calculated as maximal current (lna) divided by the cell capacitance (Cgow). With
this calculation, standardization of the current to the cell size is achieved. Under control
condition, K,1.3 value was ~150 pA/pF and it was decreased to ~70 pA/pF in the presence
of ifenprodil (30 uM).
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Figure 16. Comparison of recorded K,1.3 current properties between control and Ifen.-treated
(30 uM) Jurkat cells. Jurkat cells were patched with the protocol shown in (A, right side) and the
maximal transient current amplitude (shown by the arrow) from recorded K,1.3 currents was com-
puted to determine |-V relationships in case of control and Ifen. from 10-13 cells. The recorded cur-
rents were normalized to the respective maximal current (arrow in the inset represents |,y to de-
termine the mean current densities as shown in (B). Mean current densities were determined by di-

viding mean I,,o, With Cgoy in presence of control or Ifen. (30 uM).
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Finally, the major K*-channels (K,1.3 and Kc,3.1) taking part in the depolarizing events of
immune cells were shown to inhibit in Jurkat cells in the presence of the tested NMDAR in-
hibitors ifenprodil and memantine (Figure 17). The K,1.3 and K¢,3.1 measuring voltage-
clamp protocols were mentioned in Figure 17A and Figure 17C respectively. Furthermore,
the current traces measured from this population were depicted here on the lower part of
the Figure 17A and 17C. As a result, the Hill slope and ICs, values for K,1.3 in presence of
ifenprodil and memantine were ~2, ~1.5 and ~30 puM, ~45 pM. For K¢,3.1, channel Hill
slope and ICsy values were ~1.2 and ~20 puM for ifenprodil and ~1.4 and ~30 uM for
memantine.

In addition to these inhibitors mentioned in Figure 17, MK801, ketamine and D-APV were
also tested. The constructed curves gave Hill slopes and ICg, values for K,1.3 current are
respectively ~1.5, ~1.3, ~1.7 and ~70 puM, ~200 uM, ~550 uM for MK801, ketamine and D-
APV as mentioned in Figure 18. D-APV, a competitive antagonist in case of Jurkat cells
needed ~10-fold more concentration to be inhibited in comparison to the other non-

competitive inhibitors like ifenprodil and memantine as like murine cells shown before.
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Figure 18. K,1.3 current recorded from Jurkat cell lines in 100

presence of mentioned inhibitors. K,1.3 currents from -6~ K801

Jurkat cells in the presence of MK801, ketamine and D-APV 164 W Ketamine
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A very interesting aspect in terms of channel physiology was observed with the two inhibi-
tors ifenprodil and memantine: K,1.3-mediated tonic currents were also modulated, along
with the transient currents (Figure 19). The inactivation constant (t1) for the control popula-
tion was ~20 ms measured with the 1-exponential model (HEKA FitMaster Program). This
was increased to ~60 ms and to ~80 ms in the presence of ifenprodil and memantine, re-
spectively. Thus, these inhibitors increase the inactivation kinetics similar to the other tradi-
tional K*-channel blockers like Tetra Ethyl Ammonium (TEA) or 4-Amino Pyridine (4-AP)
(Leung 2012). Thus, it will be interesting to determine whether these inhibitors act at the
same amino acid modulating sites as the other K*-channel blockers. The K,1.3 channel be-
havior of Jurkat cells in the presence of different NMDAR inhibitors is summarized in Table
1.
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Figure 19. Inactivation current differences in K,1.3-mediated currents in control and inhibitor

population. Steady-state current were differed in case of Ifen. and Mem. as shown in Figure (A) that
the Tl was increased in presence of Ifen. (10 uM) and Mem. (50 uM). For the inactivation protocol,

the currents were recorded with a slow ramp of 1 s (as shown in the insets in B). The recorded cur-

rent traces were shown in (B). The current traces were recorded in HEKA PatchMaster and traces
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were developed in IgorPro 5.04B program. Data represent 7-8 cells in each case and mean mean +

SEM.

Table 1: K,1.3 Channel Behaviour in Jurkat Cells in Presence of the Tested NMDAR

Inhibitors
features ifenprodil MK801 memantine ketamine D-APV
Hill slope ~2 ~1.5 ~1.4 ~1.3 ~1.7
ICs0(pm) ~30 ~70 ~45 ~200 ~550
effect on yes yes yes yes yes, only at
transient
current higher conc.
effect on only in low con-| no at every no no
tonic centration concentration
current (from low-to-high)
mode of non-competitive, [ uncompetitive, | uncompetitive, uncompetitive |competitively
action GIuN28 blocker open-channel |open-channel and allosteric  inhibits Glu
binding site
blocker blocker g -binding site
blocker
of NMDARs

5.3.3.2 Raji B-Lymphoma Cells

In parallel to Jurkat T cells, the effects of NMDAR antagonists were analyzed on Raji B-
lymphoma cells. For Daudi B-lymphoma cells, it was shown that the B cell lymphoma drug
Rituximab can work through K,1.3 channels (Wang et al. 2012). Thus, modulation of K,1.3-
mediated currents in Raji cells through NMDAR inhibitors would suggest that these drugs

can potentially act as an adjuvans in treating B-cell ymphoma.

The membrane potential of Raji cells was found to be reduced from ~-45 mV to ~-20 mV in
the presence of ifenprodil (20 uM) and memantine (30 uM) (Figure 20A). K,1.3 currents
were recorded from Raji cells in the presence of ifenprodil and memantine (Figure 20B)
and the competitive blocker D-APV (Figure 20C). The ICs, and Hill slopes values for ifen-
prodil, memantine and D-APV were ~25 pM, ~40 pM and ~700 pM and ~1.4, ~1.2 and
~1.7, respectively. Thus, the competitive antagonist D-APV only inhibits at a much higher
concentration than the open channel and uncompetitive blockers tested. This strongly sug-
gests that NMDAR inhibitors do not act via NMDARs potentially expressed on (T and B)

lymphoma cells but most likely through cross-inhibition of K,1.3-channels.
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Figure 20. Effects of NMDAR antagonists on the membrane potential and K'-channel activity

of Raji B-lymphoma cells. (A)
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5.3.4 Primary Human T Cells from Healthy Donors

Finally, | analysed primary human T cells isolated from peripheral blood of healthy donors.
Isolated CD4" T cells were left untreated or were activated with CD3 Ab (MEM-92) and
patched for recording K,1.3 current. It was observed that stimulated T cells needed a
higher concentration of antagonist memantine to be inhibited to the same degree as un-
stimulated T cells. As a result, ICso and Hill slope values are ~20uM, ~40 uM and ~1.2 and

~1.6 for unstimulated and stimulated populations, respectively as shown in Figure 21A.

In addition, CD4" cells isolated from young (20-30 years) and old donors (55-80 years)
were patched to verify the differential expression of K,1.3 channels on T cell populations of
younger and aged persons as already indicated in the literature before by others (Den
Braber I, et al. 2012). Interestingly, it is shown that the expression of K,1.3 was ~20% less

in T cells of older population from the younger ones as shown in Figure 21B.
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Figure 21. Electrophysiological analysis of primary human T cells. CD4" T cells from blood of
normal healthy human donors, unstimulated or stimulated with MEM-92 Ab, were patched in the
presence or absence of Mem. to record K,1.3-mediated currents according to the protocol described
in Figure 17A. The amplitude of transient currents was plotted against the inhibitor concentrations to
obtain dose-response inhibition curves as shown in (A). ICso values are indicated. The data in (B)
represent K,1.3 currents expression recorded from CD4" T cells isolated from young and old donors.
Data represent the mean + SEM from 4-5 cells recorded from 5-6 cell isolations.

5.4 K,1.3 Channel Expression on Blood T cells from Dementia Patients

Since NMDAR antagonist memantine affected K,1.3 channel activity in primary human T
cells, it was highly interesting to investigate how the drug influences T cells of patients di-
agnosed with Alzheimer’s disease, who were treated with memantine. Z1, Z2 and Z3 pa-
tients were designated as untreated, treated for 1 week or for 12 weeks with memantine,

respectively. The patients were on medication of 10 mg of memantine twice a day.

5.4.1 Altered K,1.3 Channel Expression in Alzheimer’s Patients

To analyse whether NMDAR-low-affine inhibitor memantine applied in vivo has effects on
K,1.3-channels, CD4" T cells were isolated from the blood of Z1, Z2 and Z3 Alzheimer pa-
tients and K,1.3 currents were recorded. Interestingly, in Z2 patients, who had been treated
with memantine for only 1 week, the K,1.3 current of T cells was strongly reduced by ~50%.
In Z3 patients, the average amplitude values (70%) had returned to the values of untreated
patients (77%). Thus, in vivo application of memantine, at least transiently, will have a
strong effect on K,1.3-channel activity of T cells and, thereby, may alter the activa-

tion/differentiation processes of T cells.

56



Results

A B
ns
%%k
dede s
100 7 ®ey
3 A AD untreated patients
- RS @ AD untreated patients (Z1)- 77% (N=11, n=34)
£
g
5 G0 = B AD patients treated with
:';: oo A N Mem. for 1-week (Z2)- 37% (N=11, n=34)
<501 e =
f A AD patients treated with
2 Mem. for 12-weeks (Z3)- 70% (N=5, n=12)
1]
®
o " -1-“ ‘"T. i

Figure 22. Memantine in vivo treatment affects K,1.3-channel activity of T cells. CD4" T cells
isolated from blood of Alzheimer patients before (Z1) and after the treatment with Mem. for 1 week
(Z2) and 12 weeks (Z3) were recorded for measuring the K,1.3 channel activity. The recorded tran-
sient current traces shown in (B) were normalized to the highest recorded amplitude values (set as
100%) and are shown in (A) as mean + SEM. The recorded single cells (n) from the number of pa-
tients (N) are indicated in the inset.
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6. Discussion

6.1 The Expression of Functional NMDARs in Immune Cells is Not Feasible

Several reports have described the presence of NMDARs in immune cells as briefly de-
scribed in section 3.7. As the concentration of Glu in blood is higher than in the CSF, sci-
entists since years have presumed the presence of Glu receptors in immune cells and a
role for Glu in regulating immune function. Excited by these observations, we analyzed the
function of T and B lymphocytes in the presence of different NMDAR inhibitors used to
prove the functional impact of NMDARSs in neurons and immune cells (Xiao et al. 2004;
Andine et al. 1999). In our collaborative project, we showed that several NMDAR inhibitors
reduced antigen-specific T-cell proliferation, cytotoxicity of CD8" T cells, the migration of
lymphocytes towards chemokines and TCR-induced signalling (Kahlfuss et al. 2014). How-
ever, the presumptive protein expression of NMDARs in T cells was inconclusive due to the
lack of electrophysiological recordings of these receptors and detection of protein bands of
the obligatory GIuN1 subunit at the exact size (~120 kD) as found in brain protein lysates.
The first observation was in line with what was mentioned in the publication by Affaticati
(Affaticati et al. 2011) and there is no further literature showing the presence of this receptor
in lymphocytes at the electrophysiological level.

However, we detected NMDAR expression at the mRNA level (Kahlfuss et al. 2014) and
through Ca**-influx after application of external NMDA (Figure 6). There can be at least two
explanations for the described NMDA-induced Ca**-influx. Firstly, NMDAR expression could
be very transient, for instance in stress conditions, as the NMDA-induced Ca*-influx was
only observed in HBSS buffer, but not in the cell culture medium RPMI-1640. In connection
with this hypothesis, it was observed that GIuN1 mRNA expression is increased in the me-
dulla and cortical region of the adrenal gland 24 h after stress exposure (Pirnik et al. 2001).
Secondly, NMDA as reagent could cross-react with the pore forming subunit of K*-channels
and, thereby, induce Ca?*-influx in T and B cells. Quantitative RT-PCR analysis should be
applied to more clearly determine the differences in NMDAR expression under different cel-

lular conditions.

6.2 NMDAR Inhibitors can be Enlisted in the Therapeutic Arena of K*-channels of
Immune cells

As there was no GIuN1 protein expression detectable in wild-type thymocytes when com-
pared with GIuN1 ko thymocytes (Kahlfuss et al. 2014), we thought of candidates that could
be modulated by the used NMDAR inhibitors. There are a number of ion channels having a

role in maintaining the membrane potential of an immune cell as described in section 3.3.3.

58



Discussion

We have chosen K,1.3- and Kc;3.1-channels because of their similar structure with
NMDAR subunits and their well-described conductive and gating properties. In addition,
there is a similarity between the pore-forming subunit of K,1.3- and K¢,3.1-channels be-
tween S5 and S6 (as illustrated in Figure 2A) and the binding sites between the obligatory
GluN1 and GIuN2A/B/C subunits of NMDARSs, as illustrated in Figure 4. Thus, there is a
chance of overlap-binding of NMDAR antagonists to these K*-channels. Inspired by this
fact, we measured the membrane potential by current-clamp and recorded K,1.3- and
Kca3.1-currents by voltage-clamp method in murine and human lymphocytes. We detected
strong inhibitory effects of both non-competitive and uncompetitive NMDAR inhibitors on
the overall membrane potential and on the two described K*-channels of immune cells. My
experiments spanned from mouse and human primary T cells to mouse (EL-4) and human
(Jurkat) lymphoma cells as shown in Figure 10-12, 15, 17, 18, and 21 and primary B-cells
and Raji lymphoma B-cells depicted in Figure 14-15, 20.

As shown in the following Table 2, inhibition of K,1.3- and K¢,3.1-channels leads to the
amelioration several immune disorders, ranging from transplantation rejection, leukaemia to
autoimmune disorders like colitis, Rheumatoid Arthritis and asthma. Thus, based on our re-
sults, NMDAR inhibitors can be added in the list K*-channel inhibitors. As NMDAR antago-
nists are already in use to treat Alzheimer’'s disease and are promising candidates for ther-
apy of various other neuronal diseases like Parkinson’s disease, depression or stroke
(Olivares et al. 2012), the use of these pharmaceuticals also necessitates thorough evalua-
tion of their possible effects on lymphocytes. As NMDAR drugs are administered orally in
case of memantine, they will at minimum affect blood lymphocytes while on their way to the

brain.

We speculate that NMDAR inhibitors also have side effects on other ion channels. In this
respect, specfically the two-pore gated K*-channels should be studied as they have two-
pore forming subunits (P1 and P2 pores as shown in Figure 2C), which can simulate the
NMDAR tetrameric structure. They are ‘background’ K*-channels playing a crucial role in
setting the resting membrane potential and regulating cell excitability. They are activated by
physical and chemical factors (e.g. lipid, pH, heat, and volatile anaesthetics) and are in-
volved in many physiological processes (Kim 2005). Furthermore, they always remain
open, are affected even at low membrane potential and regulate lymphocyte osmotic vol-
ume (Bobak et al. 2011; Andronic et al. 2013), apoptosis and tumour genesis (Williams et
al. 2013; Patel and Lazdunski 2004).
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Table 2. The Disease Pathologies Related with K,1.3 and K¢;3.1 Channels

inhibition disease references
of ion
channel
chronic lymphoid leukaemia Leanza et al. 2013
treatment
allo-transplantation studies Hautz et al. 2013
inhibition of T cells Hu et al. 2013
K,1.3 Rheumatoid arthritis Toldi et al. 2013
amelioration
experimental autoimmune Lietal 2012
encephalitis treatment
immunosuppression strategy in Grgic et al. 2009b
kidney allograft
ischemia treatment improvement Chen et al. 2011
helping in lowering blood pressure Damkjaer et al. 2012
T-cell mediated colitis Di et al. 2010
renal fibrosis Grgic et al. 2009a
immunosuppression strategy in Grgic et al. 2009b
kidney allograft
prevention of obliterative airway Hua et al. 2013
Kca3.1

diseases

blockage of pancreatic cell growth

Jager et al. 2004

target for hypertension disease

Kohler et al. 2010

target for Alzhimer’s Disease

Maezawa et al. 2012

limiting stenosis

Tharp et al. 2008

blocking atherogenesis

Toyama et al. 2008

human osteoclast shock recovery

Weskamp et al. 2000

cardiovascular targets

Wulff and Kohler 2013

RA amelioration

Toldi et al. 2013

idiopathic pulmonary fibrosis

Roach et al. 2013

prevention of allograft vasculopathy

Chen et al. 2013
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increases tumor cell killing Koshy et al. 2013

chronic asthma Girodet et al. 2013

6.3 NMDAR Surface Expression under Tight Control

As discussed, there could be a transient expression of NMDARSs in immune cells. It should
be considered that even in neuronal cells the expression of NMDARs is hard to detect. In
the neuronal synapse, only few NMDARs are expressed, often less than 10 per synapse
(Racca et al. 2000). This suggests that few NMDARs expressed on the cell surface are
functionally important. In addition, a single NMDAR (30-50 pS) conducts more Ca** than a
single Stim-ORAIL1 complex (0.024-0.4 pS) (Hogan et al. 2010; Feske 2007). Thus, the sur-
face expression of NMDARs on immune cells should be under very tight control. In our ex-
periments, we could not reliably detect NMDAR surface expression on live resting or acti-
vated T cells or on thymocytes with routine FACS staining and flow cytometry using two dif-
ferent GIuN1 Abs (from Synaptic Systems and Alomone labs), which bind to extracellular
epitopes of GIuN1.

Figure 23. Differential conductivity levels of ion chan- ORAI1
0.024-|0.4p5

nels present in immune cells. The different ion channels
TRPM4
s 25 pS

present in immune cells have different conductive proper- | ... @

30-50 pS
ties as indicated. K,1.3- and Kc,3.1-channels have more *2

or less the same conductive properties, whereas ORAI1

External Ca?*- influx

complex has very less conductivity in comparison with

other ion channels. Along with the conductive properties, oan
they have differences in the gating and opening kinetics. 10aops

S
P2X-channels

NMDARs are hypothetically shown in the figure to illus- 30-60 pS

trate the differences explained in the text. 15 pe

In addition, experiments for over-expressing these receptors in immune cells using several
transfection procedures were not successful in terms of transfection efficiency. Among the
different transfection protocols used for transfecting immune cells, the Amaxa Nucleofector
procedure was best in immune cells showing in ~5% of cells GIuN1-GIuN2B double trans-
fection (GluN1-wt from Paoletti, P. and GIuN2B-SEP from Addgene). Since these two con-
structs showed the best results among the different tested NMDAR constructs, but still had
a very low transfection efficiency, the two constructs were subcloned into another vector,
pXJ41, known to carry bigger inserts. Although the subcloning procedure worked with this
vector, the transfection efficiency for NMDAR subunits in immune cells was still not im-
proved. This indicates that lentiviral vectors might be needed, which are efficient for gene

transfer into human T cells (Verhoeyen et al. 2009).
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6.4 NMDAR Inhibitors Modulate the Steady-state Current of K,1.3-channels

K,1.3- and K¢,3.1-channels are similar with regard to their conductance properties as both
channels are highly selective and have similar single-channel conductance in the order of
10-14 pS as shown in Figure 23. However, they are remarkably different in their gating and
blocker sensitivity. K,1.3-channels are activated by depolarization of the plasma membrane.
The activation threshold of the channel is close to the resting potential of the immune cells
of ~-50 mV. This current is quickly activated and then inactivated by a slow C-type inactiva-
tion. On the contrary, Kc,3.1-channels are solely activated by the increase of cytosolic
Ca?*-concentration and they are not deactivated after prolonged exposure to increased cy-

tosolic Ca®*-concentration (Cahalan and Chandy 2009; Panyi et al. 2006).

Ifenprodil blocks pre-synaptic L-type Ca** channels at a concentration of >10 pM (Delaney
et al. 2012). We saw ifenprodil at lower concentration and memantine from low to high con-
centration has substantial effects on both the amplitude and steady-state parameters of
K,1.3-channel kinetics as described in Table 1 for Jurkat cells. It was shown in Figure 19
that ifenprodil and memantine have quantitative effects on the tonic current properties of
Jurkat cells. This can hypothetically be simulated as shown Figure 24, where MK801 block
in immune cells can easily be released as it is only affecting the amplitude of K, 1.3 channel
transient current. In contrast, a block with ifenprodil is difficult to release immediately as the
steady-state or tail current parameters are also affected along with the amplitude. Although,
20 min wash-out with the extracellular solution can reverse back the normal K,1.3 current in

an experimental situation.

¢

. Ifenprodil

F . MK-801
/
24

Closed Open Inactivated

Figure 24. Hypothetical model for the regulation of K,1.3-channel by ifenprodil and meman-
tine. As explained in section 3.6.1, K,1.3 generally follows C-type inactivation, which is character-
ized by a slow type of inactivation. Ifenprodil blocks the pore region so that the channel can not be
inactivated anymore. A channel generally follows three steps of opening and closing: open, inacti-
vated, deactivated and closed. It is easy to change an inactivated state of a channel to a closed and
open stage, but it is hard to close a channel completely when it reaches a deactivated stage. In case

of ifenprodil, K,1.3 hypothetically reaches to a deactivated stage. Thus, this inhibitor is hard to re-
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lease from the pore region of the bound channel. In contrast, MK801 block can easily be released as
the state reached after its release is an inactivated stage (modified from Barros, F., 2012) (Barros et
al. 2012).

The inactivation parameters of K,1.3-channels are interesting to study in terms of K,1.3-
channel inhibitors. Increasing amount of evidence suggests that there are certain com-
pounds which inhibit K,-currents not directly by the K*-conduction pathway (S4), but by ac-
celerating the selectivity filter destabilization (between S5 and S6) once the channel opens
(as illustrated in Figure 25). This mode represents an alternative mechanism of K,-channel
inhibition. Mutation of these amino acids to arginine, lysine, alanine or glutamate acceler-
ates C-type inactivation, while mutation to valine or tyrosine residues retards it. In addition,
the interaction via hydrogen bonds between Shaker 438 and 447 is important in controlling
the C-type inactivation gate. However, how pivotal these residues determine the C-type in-
activation rate is still unknown. Notably, the role of T449, a residue at the external mouth
has been studied in details for this kind of inactivation (Cordero-Morales et al. 2011; Lopez-
Barneo et al. 1993). The traditional K*-channel blocker Tetra-ethyl ammonium (TEA) and 4-
Aminopyridine (4-AP) have been shown to hasten the slow C-type inactivation. It was al-
ready shown that TEA possibly binds to T449 preventing the selectivity filter constriction in
a ‘foot-in-the-door’ fashion (Leung 2012). Thus, it would be interesting to study whether the
NMDAR inhibitors acting on the tonic current also modulate the T449 site like traditional K-
channel blockers or any other site of the K,1.3-channel unknown until now. This inactivity
phenomenon of shaker K*-channels by NMDAR antagonists could be very complex as they
could also interplay with accessory 8 subunits as shown for K,1.5- channels (Decher et al.
2005).

Figure 25. The K,1.3-channel inactivation pathway. Shaker K'-channels (K,1.1-1.9) and Kca

channels have a 6-transmembrane
topology along with a one pore- [.b

forming subunit (forming the gate) Extracellular

e

and a charge-transfer subunit

S6
(S4). It is shown how the c- | Intracellular
terminal is occluding the intracellu- NH \
+
. . 3
lar mouth of the ion-conducting inactivation

COO-

pore in case of K,1.3 inactivation ball
(modified from Buckley, C,2005 and Barros, F., 2012) (Barros et al. 2012; Buckley and Vincent
2005).

6.5 NMDAR Inhibitors Affect B-Cell Activation
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Since there exist Abs against different ion channels present in neuronal cells as described
in Table 3, it is clear that B cells take part in neuronal disorders like MS (Meinl et al. 2006;
Ritchie et al. 2004). Therefore, we also analysed B-cell activation in the presence of differ-
ent NMDAR inhibitors. Notably, they inhibited BCR-induced Ca**-flux as shown in Figure 9,
lowered the total membrane potential and inhibited K*-channels in activated primary murine

B cells and Raji lymphoma cells (Figure 13, 14, 20).

In general, B cells contribute to neuronal disorders via four mechanisms: by production of
Abs causing tissue damage either via complement activation or Ab-dependent-cell-
mediated cytotoxicity; by acting as APCs for the expansion of cytotoxic T cells and Th cell
cytokine production; by production of pro-inflammatory cytokines like IL-6 and TNF, which
activate macrophages and T cells enhancing tissue damage; and by formation of ectopic
germinal centres in the intermeningeal place in a process called neolymphogenesis
(Dalakas 2008). In specific, Abs against NMDARs were detected in women with ovarian
tumour, young children and men without tumour (Dalmau et al. 2007; Novillo-Lopez et al.
2008). The major symptoms in women were memory loss, seizures and decreased con-
sciousness, whereas children and men showed a diffuse lymphocytic meningoencephalitis
and acute juvenile non-herpetic encephalitis (Dale et al. 2009; lizuka et al. 2008). The main
epitope targeted by the Abs lies in the extracellular N-terminal domain of the GIuN1 subunit
(Dalmau et al. 2008). Thus, application of non-competitive NMDAR antagonists during
chronic treatments of neurological disorders like Morbus Alzheimer may not only involve
neuronal NMDARs, but may have additive side-effects by targeting B cells, in addition to T
cells, which are assumed to contribute to these disorders (Yanaba et al. 2008; Danysz and
Parsons 2012; Cunningham 2013; Frodl and Amico 2014). The inhibitory side-effects of
NMDAR inhibitors on B cells might also be beneficial in treating sepsis (Roger et al. 2009)
as we have seen a reduction in LPS/TLR4-induced B-cell signalling and proliferation (Fig-
ure 9 and data not shown but in revision for publication) in the presence of memantine and
other NMDAR inhibitors.

B cells express K,1.3 and Kc,3.1 channels and their mode of Ca?*-influx is through Stim-
ORAI complexes as in T cells. Blockade of these K*-channels by specific K*-channel inhibi-
tors results in immunosuppression (Wulff et al. 2004; Matsumoto et al. 2011). The K,1.3-
and Kc,3.1-specific blockers Shk and TRAM-34 are used in treating vasculopathy or kidney
allograft rejection (Chen et al. 2013; Grgic et al. 2009a). K,1.3 inhibitor Shk-186 had been
started to use in human trial stage | for treating diseases by Kineta. In addition to BCR- and
LPS-induced activation of primary B cells, we found that memantine reduced K,1.3-channel

currents recorded from Raji lymphoma cells (Figure 20). In this respect, memantine may
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therapeutically compete with Rituximab, which has been shown to act through the inhibition
of K,1.3 channels in human B lymphoma cells (Wang et al. 2012). Further studies are re-

quired to determine the drug’s suitability in diverse in vivo settings.

Table 3. Autoimmune Disorders or Abs Related with Neuronal Channels

channel disease references

voltage-gated Ca** Lambert Eaton Myasthenic Pellkofer et al. 2008

channel Syndrome (LEMS)

Voltage-gated K* Acquired Neuromyotonia, Hart et al. 1997; Liguori et al.

2001; Bataller et al. 2007;
Dedek et al. 2001

channel Morvan’s Syndrome (MoS),
Limbic Encephalitis (LE),

Epilepsy

a-3 ganglionic antibodies to a-3 AchR Vernino et al. 2000

acetylcholine recep- | containing o3 and p4

tor

Glu and GABA Encephalitis associated with Novillo-Lopez et al. 2008; lizuka

receptors NMDAR, AMPAR and GABAR | €t &l- 2008; Dale et al. 2009; Lai
et al. 2009; Rogers et al. 1994;

Lancaster et al. 2010

Aquaporin-4 Neuromyelitic Optica (NMO) or | Lennon et al. 2005

Devic’'s Syndrome

6.6 Surveillance of Immune Status is Required during Memantine Treatment

A new therapeutic concept generally passes through a long journey of clinical trials to ac-
complish the final verification for using it in humans. NMDAR antagonists like memantine
may have a wide range of potential therapeutic applications, spanning from acute neurode-
generation in stroke and trauma, chronic neurodegeneration in Morbus Parkinson and Alz-
heimer, amyotrophic lateral sclerosis, and Huntington’s disease to symptomatic treatments
in epilepsy, anxiety, or chronic pain (Parsons et al. 1995; Meldrum 1992a, b; Muller et al.
1996). The high affinity competitive inhibitor D-APV cannot be used in vivo as it impairs
normal synaptic transmission creating serious side-effects. Therefore, the major challenge
was to develop an antagonist that prevents the pathological activation of NMDARs but
maintains their physiological activity. Memantine (1-amino-3, 5-dimethyl-adamantane) as an
uncompetitive low-affinity inhibitor has fulfilled the criteria. It was registered in Germany for
a variety of CNS indications in 1978, but its most likely therapeutic mechanism was only
discovered 10 years later (Bormann 1989; Kornhuber et al. 1989; Kornhuber et al. 1991). It
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was first synthesized by researchers at Eli Lilly company as an agent to lower blood sugar
levels (Gerzon et al. 1963). But, since it is devoid of such activity, Merz & Co. applied for a
patent in 1972 for the treatment of several cerebral disorders. Since then, several in vivo
studies were performed to determine its effects and Merz filed an international application in
1989 claiming memantine as ideal for the treatment of cerebral ischemia and Alzheimer’s
dementia. Since then, clinical research has focused on the treatment of dementia (Parsons
et al. 1999).

Oral entry Interaction with lon channels of .
of memantine blood lymphocytes lymphocytes Crossing of BBB
affected

Entry into Steady-state plasma
the blood stream level reached in 21 days Elimination by kidney

(as unchanged substance or
hydroxylated metabolites)

Figure 26. Scheme of memantine trafficking in the body. A schematic pathway of the traversing
route of memantine when administered in patients. Memantine is mainly administered orally because
of stability issues. It is taken up by the gut and passes into the blood stream where it can act on
blood lymphocytes. Memantine then crosses the BBB, gets absorbed into the liver or is eliminated by
the kidney as unchanged substance or hydroxylated metabolites. Bioavailability is thought to reach

~100% in case of this drug.

Memantine is prescribed orally as a tablet or solution. In our experiments, we have ana-
lysed T cells from patients who are taking a 10 mg tablet twice a day. We found that K,1.3-
mediated currents were lowered by 50% on T cells isolated from patients treated for 1 week
with memantine, compared to T cells from those patients before drug treatment. K,1.3-
mediated currents were nearly normal in T cells from patients treated for 12 weeks with the
drug. Orally uptaken memantine crosses the BBB to act on neurons and is metabolized in
the liver through first-pass metabolism or is excreted through the kidney as an unchanged
substance or hydroxylated metabolites. Thus, it is obvious that memantine could affect
blood lymphocytes. No major side-effects of memantine on lymphocytes were reported until
the Food and Drug Administration (FDA)'s October 2013 survey summary. This summary
describes memantine’s adverse reactions on blood cells and the lymphatic system as post-

marketing drug exposure experience.

In this context, our results with the attenuation of K,1.3-channel activity in Z2 patients is
very striking. Although K,1.3-channel activity was almost “normal” in Z3 patients, T cells
from Z3 patients are non-reactive to stimulation (personal communication of unpublished

results by T. Lowinus/U. Bommbhardt).
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A B C D
No drug 1st exposure drug removal 2nd exposure
of memantine of memantine
f KA.3 'i
immuno activation of ;
suppressive immune system
(A) normal =) (B) immunosuprressed mp (C) withdrawal mmsssm) (D) tolerance

Figure 27. Hypothetical model of K,1.3 counter-adaptive action upon memantine exposure. A
hypothetical model to determine the action of K,1.3 channels during first and second drug exposure.
During first drug exposure the immune cells become suppressed, whereas during continued or sec-
ond exposure lymphocytes regain their function through the increase of K,1.3 channel density (modi-
fied from Ghezzi, A.) (Ghezzi et al. 2010).

The observed “re-expression” of K,1.3 currents in Z3 patients thus may represent some
counter-adaptive role of K,-channels to resist to the drug’s long-term exposure. Such
counter-adaptive drug tolerance was described as triggering adaptive homeostatic changes
that oppose the drug’s effects to produce drug tolerance (Koob and Bloom 1988). Upon
drug clearance, the same changes become counter-adaptive and produce symptoms of
dependence. Our idea of memantine-induced K,-channel tolerance can hypothetically be
described by a model as illustrated in Figure 27. In this case, the immune system or lym-
phocytes become suppressed with the first exposure to memantine after 7 days (Figure
27B). Then, there is thought to be the induction of higher K,1.3 transcription in the drug re-
moval phase (Figure 27C). Thus, the immune system reaches to a tolerance level in the 2™
exposure of the drug after 12-weeks (Figure 27D). In addition, there should be a time point
recorded in between these two extreme time points (1 and 12 weeks) to validate the hy-
pothesis of increased channel expression described in Figure 27C. Furthermore, single
channel current should be recorded to support our idea of K, channel counter-adaptive ef-

fect.

6.7 Good News for Neurons

The physiological role of K*-channels is evident in microglia, resident macrophages in CNS
(Villalonga et al. 2010). Expression of K,1.3 and Kc,3.1 is similar in macrophages to pe-
ripheral T and B cells along with the Ca®*-influx through CRAC channels. Microglia has di-
chotomous functions when activated, either causing neuronal damage by releasing cyto-
toxic substances and pro-inflammatory cytokines or being neuro-protective by releasing

neurotrophic factors and clearing amyloid aggregates and debris from degenerated neurons
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(McGeer and McGeer 2010; ElI Khoury and Luster 2008; Cameron and Landreth 2010;
Hickman et al. 2008). Kc,3.1-mediated Ca**-entry has been shown to be neurodegenerative
in case of microglia when induced by amyloid aggregates causing oxidative burst, nitric
oxide production, and neuronal death (Kaushal et al. 2007; Schilling et al. 2004; Khanna et
al. 2001). Soluble AB oligomers (ABO) are small and early stage amyloid aggregates
(Maezawa et al. 2011). In experimental conditions, ABO was found to initiate an increase of
intracellular Ca** of microglia either directly by forming a membrane pore or indirectly
through interaction with an unknown membrane receptor. This leads to a hyperpolarisation
of the membrane potential by effluxing K* through Kc,3.1 channel. This hyperpolarisation
provides the driving force of Ca**-entry through store-operated inward-rectifier CRAC chan-
nels, thus sustaining the Ca®*-signals necessary for selective Ca*'-activated pathways
(Maezawa et al. 2012). In this case, Kc,3.1 channel inhibitors should be neuro-protective by
deactivating the microglial functions involved in degenerating neurons. Indeed, the Kc,3.1
inhibitor TRAM-34 inhibits ABO-induced microglial activation and microglia-mediated neu-
ronal toxicity (Maezawa et al. 2011). In conclusion, if memantine would inhibit microglial
Kca3.1 currents as well as pathologic NMDAR functions, the drug would have a double
benefit for dementia patients. However, this interesting hypothesis needs further experi-

mentation.
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8. Abbreviations

aa: amino acid
Abs: antibodies

AchR: acetyl choline receptor

AD: Alzheimer’s disease

APC: antigen-presenting cell

AMPA: a-amino-3-hydroxy-5-methylisoxasole-4-propionate
BBB: blood-brain barrier

BCR: B-cell receptor

BSA: bovine serum albumin

Ca,: voltage-activated calcium channel

CRAC: calcium release-activated Ca**-channels
CD: cluster of differentiation

CLL: chronic lymphoid leukemia

CNS: central nervous system

CSF: cerebro-spinal fluid

DC: dendritic cell

DMSO: Dimethylsulfoxide

DP: double positive

DN: double negative

ER: endoplasmic reticulum

EAE: experimental autoimmune encephalomyelitis
FACS: fluorescence activated cell sorter

FBS: fetal bovine serum

FITC: Fluorescein IsoThio Cyanate

Glu: glutamate

HBSS: Hanks’ Balanced Salt Solution

5-HT3: serotonin receptor

Ifen.: ifenprodil

iGluR: ionotropic glutamate receptor

KO: knockout

K,: voltage-activated potassium channel

Kca: calcium-activated potassium channel

LN: lymph node
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LPS: lipopolysaccharide

Mem.: memantine

MEM: minimum essential medium eagle
MAPK: mitogen-activated protein kinase
MOG: myelin oligodendrocyte glycoprotein
MGIuR: metabotropic glutamate receptor
mTOR: mammalian target of rapamycin
NMDAR: N-methyl D-aspartate receptor
NEA: non-essential amino acids

NF-kB: nuclear factor-xB

NFAT: nuclear factor of transcription of activated T-cells
OVA: ovalbumin

PBS: phosphate buffered saline

PBL.: peripheral blood lymphocytes

PFA: paraformaldehyde

PBMCs: peripheral blood mononuclear cells
rpm: revolutions per minute

RACC: receptor-activated calcium channel
RT: room temperature

RPMI: Roswell Park Memorial Institute Medium
SOCC: store-operated calcium channel
SOCE: store-operated Ca?*-entry

SMOCC: second messenger-operated calcium channel
STIM: stromal interaction molecule

tg: transgenic

Ty: T helper cell

Tc: cytotoxic T cell

TCR: T-cell receptor

TLR: Toll-like receptor

TRP: transient receptor potential

Tewm: central memory T cell

Tem: effector memory T cells
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