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ABSTRACT
Head direction (HD) cells are important for navigating throughout our environment.
They have been found in several brain regions of both rodents and, recently, humans.
Their firing rate increases when the animal faces a specific direction and decreases
when they move their head away from their preferred orientation. Thus, these cells
have been considered to act as an internal compass. However, these HD cells must
remain stable in relation to their environment to function properly. This stabilisation
can be achieved via landmarks, which are supposed to give concrete directional
information. In Chapter 1, we investigated the impact of landmark stability on the HD
coding in the human brain. We found that the primary visual cortex (V1) and
retrosplenial cortex (RSC) coded the landmark stability similar to previous studies.
We also decoded a HD signal associated with stable landmarks in the RSC, unstable
landmarks in the thalamus, and both landmarks types in the presubiculum. Moreover,
another gap in the HD system literature was the influence of ageing on the system.
Indeed, several studies reported a decline in spatial navigation skills due to ageing,
but there is a lack of studies on how the HD system is affected. Therefore, Chapter 2
investigated the effect of ageing on the HD system using immersive virtual reality. In
addition, to test for the accumulation of noise during a stationary orientation, a delay
period was introduced in half of the trials before the response phase. We found that
older participants produced higher angular errors than young participants.
Additionally, both age groups were negatively impacted by the delay period
suggesting an accumulation of noise while stationary. To help explain the differences
between age groups, in Chapter 3, we created a model using ring attractor networks,
a typical architecture when modelling the HD system. Previous HD models could not
correctly assess ageing and the influence of noise sources related to physiological
changes. Hence, we assessed ageing by implementing three distinct sources of
noise: synaptic changes, loss of cerebral volume and vestibular input. We found that
synaptic noises and increased neuron death led to a tendency to get stuck in local
minima, which could lead to the increased range of errors observed in older
participants. Altogether, the work from this thesis helped to understand in more depth
the effect of ageing on the HD system and is a first step in characterising how the
system degrades in ageing.
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General Introduction

1.1 The spatial navigation system

Navigation is an essential aspect of life. From an evolutionary point of view, the ability

to map complex environments and remember important information, such as food

locations, are crucial factors in enhancing evolutionary fitness (Darwin, 1859). In their

everyday life, humans are constantly navigating, either when going to their work, to

their home or when travelling and discovering a new place.

Due to its importance, navigation has been the focal point of many studies with

various focuses and objectives for decades. One of those focuses is understanding

the different processes and cognitive functions involved in navigation. Indeed, human

navigation faces various situations and requires multiple strategies to achieve

successful navigation without getting lost (Wiener et al., 2009; Wolbers and Wiener,

2014; Ekstrom and Isham, 2017). The current state of the literature defines two main

reference frames: allocentric and egocentric (Figure 1) (Committeri et al., 2004;

Burgess, 2006; Wolbers and Wiener, 2014; Ekstrom et al., 2017). Allocentric strategy

focuses on learning landmarks and their spatial relations, such as distances or

directions, independently from the observer’s point of view (Klatzky, 1998). This

strategy creates maps of the environment that are helpful for large-scale navigation or

planning (Tolman, 1948). Egocentric is focused on the observer’s point of view

regarding their own body (Klatzky, 1998). It is usually used for small-scale or direct

navigation and helps avoid collision with the direct peripheral space (Wang and

Spelke, 2000).
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Figure 1: The two reference frames of spatial navigation.
Schematic showing the relation between individuals and environments for the egocentric (left)
and allocentric (right) reference frames.

In addition to those reference frames, previous studies defined two specific types of

cues. On the one hand, idiothetic cues are related to motion and correspond to

self-generated features such as vestibular input, proprioception or motor efference

(Gallistel, 1990). On the other hand, allothetic cues include external sensory

processes like vision or audition and derive information from the environment (e.g.

landmarks) (Gallistel, 1990). As their characteristics are complementary, those two

types of cues are often combined and not strictly linked to a specific reference frame

(Jain et al., 2017). Finally, it is essential to differentiate human spatial navigation from

animal spatial navigation regarding its inputs. Compared to rodents, one of the most

commonly used animal models, humans use more vision than other sensory systems,

such as audition or olfaction (Ekstrom, 2015).

Another critical research focus is finding the key components of the brain that

constitute the navigation system (Grieves and Jeffery, 2017; Ekstrom et al., 2017).

One central region that plays a vital role is the medial temporal lobe (MTL),

comprising some fundamental regions such as the hippocampus or entorhinal cortex

(Figure 2). Brain regions like the thalamus or the retrosplenial cortex (RSC) also

belong to the spatial navigation circuit (Figure 2). While some studies have tried to

find a specific link between those regions and either egocentric or allocentric frames
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(Committeri et al., 2004; Ekstrom et al., 2014), previous works suggest that there is no

such strict limitation and that context is more important (Wolbers and Wiener, 2014).

Furthermore, such regions are populated with spatial neurons, allowing successful

navigation. Many spatial neurons have been discovered and described, such as place

cells and grid cells (O’Keefe and Dostrovsky, 1971; Hafting et al., 2005), leading to

the award of a Nobel prize in 2014. This thesis will focus on another type of spatial

neuron called head direction cells, and the second part of this introduction will give a

further explanation.

Figure 2: The spatial navigation system in the human brain.
Schematic of the sagittal cut of a human brain representing important spatial navigation regions,
including the entorhinal cortex (orange), hippocampus (blue), retrosplenial cortex (green) and
thalamus (red).

Even more, literature shows that spatial navigation ability varies between individuals

regarding age, gender, experience and cultural differences (Maguire et al., 1999;

Ishikawa and Montello, 2006; Hegarty et al., 2006; Wolbers and Hegarty, 2010; Lester

et al., 2017; Coutrot et al., 2018). For example, several studies using Sea Hero

Quest, a mobile game developed to study spatial navigation across the world, showed

that depending on the layout of cities a person grew up in, his overall skills in spatial

navigation varied (Coutrot et al., 2022). For example, people living in European cities,

with more complex structures of streets and roads, tend to have better spatial
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navigation skills than people living in American cities, who usually have straight roads

and 90° turns.

1.2 The head direction system

1.2.1 Seminal work and description

Head direction (HD) cells were first discovered and coined by Ranck in an abstract for

the Society of Neuroscience conference in 1984. Following this initial discovery, Taube

et al. (1990a,b) described the general properties of HD cells in two seminal studies.

These studies defined the rodent HD cells as neurons coding for the facing direction of

the animal when it is looking at a specific direction (e.g. North). More specifically, there

is an increase in the firing rate (number of spikes/second) of a HD cell when the head

of the animal aligns with its preferred firing direction (PFD). For example, in Figure 3,

if the animal is facing 0°, any HD cells tuned to 0° will fire, and the firing profile will be

similar to the red curve on the right side of the figure. If the animal rotates by 90°, the

neurons tuned to 0° will have their firing rate decreased, whereas neurons tuned to 90°

will fire at their maximum. Since the brain contains an entire network of HD cells with

different PFDs spanning the 360-degree range, researchers describe it as the “neural

compass of the brain”.
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Figure 3: The head direction cell firing.
Four examples of HD cells with separate PFDs and their associated tuning curve when the
animal faces each PFD. For example, the orange cell fires maximally when the animal is facing
East (90°).
Figure adapted from Sharp et al. (2001b).

Aside from their firing rate, Taube et al. (1990a) described the shape and additional

properties of the signal, and multiple studies replicated the findings (Taube, 1995; Blair

and Sharp, 1996; Taube and Muller, 1998). First, the shape of the firing rate is similar

to a Gaussian curve (i.e. bell-shaped curve) and is called a tuning curve. Its shape

originates from the PFD of HD cells as its firing rate increases as the animal faces its

PFD and decreases when it moves away. The directional firing range of HD cells is

the range of orientation when the neurons fire. It is about 90° on average but can vary

from 60° to 110°. Second, the firing rate is usually stable without adaptation when the

animal faces the same direction. It means the maximum firing rate does not decrease

over time if the animal maintains a fixed orientation. However, the authors observed that

the maximum firing rate of a HD cell varies across PFDs and found examples ranging

from 6 spikes/second to 100 spikes/second. Third, the PFD of HD cells is independent

of the animal’s location in its environment. This finding implies that distinct views of the

environment do not influence the HD signal. Finally, the PFD of cells remains stable

across days when researchers record the animal in the same environment.
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Taube et al. (1990b) investigated additional HD cell properties in a changing

environment. In a regular context, landmarks are usually fixed and take the form of a

cue card in rodent experiments. If the experimenter rotates the cue card by a certain

amount (e.g. 90 degrees), the PFD of HD cells follows in the same direction with a

similar amount but not equal. When the card is removed from the environment, a shift

in the PFD happens by an uncertain amount. Those properties are the first indication

that HD cells have a solid relation to landmarks, and Figure 4 summarises all those

properties. However, studies found that the HD signal can be updated using solely

body-based cues by recording rodents moving around in darkness (Goodridge et al.,

1998; Yoder et al., 2011). The authors found that the HD signal was still present even

when vision was unavailable, and they observed only a little shift in the PFD. Further

studies discovered news properties that give more details about the network and their

connections (Jacob et al., 2017; Kornienko et al., 2018; Viejo and Peyrache, 2020;

Grieves et al., 2022; Fallahnezhad et al., 2023). However, as they are beyond the

scope of the thesis, they will not be described here.

Figure 4: Head direction cells properties in a changing environment.
A, HD cell response after a 180° rotation of the cue card. The PFD of the cell shifted by 180°
(red curve) and returned to its initial position following another 180° rotation (purple curve). B,
example of two HD cells when the cue card is removed from the environment. The tuning curve
was maintained, but the PFD of HD cells shifted to another location (dashed curves).
Figure adapted from Taube (2007).
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1.2.2 Neural substrates in rodent research

HD cells were first recorded in the postsubiculum (PoS) of the rodent brain (Ranck,

1984). Later electrophysiology studies observed HD cells in several other regions, such

as the RSC (Chen et al., 1994; Cho and Sharp, 2001), the anterodorsal thalamic nuclei

(ADN) (Taube, 1995; Stackman and Taube, 1998), the entorhinal cortex (EC) (Sargolini

et al., 2006) as well as in the dorsal tegmental nuclei (DTN) (Sharp et al., 2001a) and

the lateral mammillary nuclei (LMN) (Stackman and Taube, 1998). In addition, lesion

studies investigated the contributions of regions in generating and maintaining the HD

signal. Lesions to the PoS (Goodridge and Taube, 1997) or EC (Clark and Taube, 2011)

do not disrupt the HD signal. In contrast, lesions of the vestibular system (Stackman

and Taube, 1997; Stackman et al., 2002), bilateral LMN (Blair et al., 1998; Bassett et al.,

2007; Sharp and Koester, 2008) or ADN (Goodridge and Taube, 1997) disrupt the HD

signal. Those results suggest that the HD signal is generated from the vestibular system

and transmitted via the LMN to the ADN before going to the other cortical regions.

However, lesions that do not extinguish the signal lead to some signal alteration. For

example, lesion to the RSC leads to unstable PFD in the animal, especially in the case

of allothetic cues (i.e. landmark processing), while idiothetic cues would remain intact

(Clark et al., 2010).

These different brain regions can be linked, creating two separate pathways

corresponding to the different inputs the HD system is receiving. The first pathway,

linked to allothetic cues and sensitive to vision, allows the integration of the

landmarks. Multiple reports showed landmarks’ critical role in the signal’s stability

(Taube et al., 1990b; Taube, 1995; Knierim et al., 1995; Zugaro et al., 2001, 2003).

Therefore, the visual cortex would project to the RSC, the central hub for landmark

integration (Auger et al., 2012). The RSC then send this information to the ADN and
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PoS to combine with the other inputs (Yoder et al., 2015). The second pathway relies

on idiothetic cues such as self-motion with inputs from the vestibular system.

Self-motion is another essential input as it allows perception of the head rotation when

vision is not available to update the HD (Goodridge et al., 1998; Yoder et al., 2011)

and angular head velocity (AHV) cells support it (Stackman and Taube, 1998; Bassett

and Taube, 2001). Those cells are located primarily in the DTN (Bassett and Taube,

2001; Sharp et al., 2001b), which has reciprocal connections to the vestibular system

and LMN (Liu et al., 1984; Sharp et al., 2001a; Bassett et al., 2007). Those neurons

would integrate changes in the head velocity and would be used to update the HD

system (Graham et al., 2023). Thus, the pathway is generated from the vestibular

system and then moves up to the DTN and LMN before reaching the ADN (Taube,

2007). Finally, both pathways combine their signal in the ADN before being projected

to the PoS and EC. Then, the signal is incorporated with the other spatial neurons to

contribute to the navigation ability of the animal (Sargolini et al., 2006; Grieves and

Jeffery, 2017; Poulter et al., 2018). Figure 5 shows a summary schematic

representing the two pathways and the associated regions.
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Figure 5: Simplified circuit of the regions involved in the HD system.
Red squares represent regions containing HD cells, and blue squares represent regions
containing AHV cells. ADN, anterodorsal thalamus; DTN, dorsal tegmental nucleus; LMN,
lateral mammillary nuclei; EC, entorhinal cortex; PoS, postsubiculum; RSC, retrosplenial cortex.
Figure adapted from Clark and Taube (2012).

In addition to rodent research, several papers studied other animal models to describe

their HD systems. Indeed, recent work from Petrucco et al. (2023) found evidence of

the HD system in the zebrafish, and the authors characterise the system similarly to

the rodent. The HD system in the fruit fly has also been described for the insects,

especially in the modelling context and will be explained later in this introduction

(Seelig and Jayaraman, 2015; Green et al., 2017; Kim et al., 2017). Finally, studies

also found HD cells in mammals such as bats (Finkelstein et al., 2015, 2019) and

primates (Robertson et al., 1999). However, relatively few studies have studied HD

cells per se in humans.
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1.2.3 Neural substrates in human research

While many studies have been conducted in animal research, only a handful have tried

to investigate HD in humans. Among them, most tried to look at HD in behavioural

experiments, and only four published papers looked directly at HD using functional

magnetic resonance imaging (fMRI).

The first study by Baumann et al. (2010) designed a virtual maze with symbols at the

different ends of corridors. After being familiarised with the environment, participants

performed a spatial judgement task where they saw a pair of pictures taken from the

environment and decided if each picture was on the left or right from the maze’s centre.

Importantly, each pair of pictures represented either the same direction (e.g. North-

North) or a different one (e.g. West-North), but the task performed was independent of

HD. Thus, in their analysis, the authors compared novel heading (i.e. different heading)

against repeated HD and found a HD signal in the Medial Parietal Cortex (Brodmann

area 31).

A second study by Marchette et al. (2014) asked participants to remember four

buildings placed in a park with four landmarks at each cardinal point. Each building

had a set of objects that participants learned. Next, a judgement of relative direction

task tested the participant’s performance regarding the individual object positions.

Specifically, the task asked if an object was located to the left or right of a second

reference object. The authors used a multivariate pattern analysis (MVPA) with

Pearson correlations to compare the similarity in the neural pattern if the same

direction was repeated across trials, either within or across buildings. The authors

found a signal in the RSC in accordance with the rodent literature. They also found

that the RSC distinguished local HD, associated with the building’s inside geometry,

and global HD, related to landmarks.
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The third study by Chadwick et al. (2015) designed a four-path square environment

with goal objects at each corner and four scenes as a landmark at each side. Then,

participants performed a goal direction task where they saw one of the scenes plus

an object, and they needed to determine the location of this goal object either from

an egocentric (e.g. Left or right) or geocentric way (e.g. which scene). The authors

performed a searchlight pattern similarity analysis using Pearson correlation on the

pattern of voxel activation, similar to Marchette et al. (2014). They found a signal in a

cluster centred on the entorhinal cortex and spreading to the subicular region, and they

thought it reflected the HD signal.

Finally, the fourth study done by Shine et al. (2016) used four buildings with pictures

of a single category (animals, abstract arts, colour blocks and geometric shapes) in

each one of them. In addition, the authors used a head-mounted display (HMD) while

learning the environment. They suggested that providing full body-based cues during

the training could lead to a recapitulation of such information during the scanning phase,

where only visual cues are available. In this study, participants performed a one-back

task where they were asked to retrieve the facing direction associated with a picture

compared to the one previously seen. The authors analysed the data for evidence of

repetition suppression with a general linear model (GLM) and found a signal in the RSC

and the thalamus.

These studies found a set of regions in the human brain associated with HD signals

similar to the rodent literature: the EC, RSC, subiculum and thalamus using fMRI

methods and analysis (Figure 6). Those results suggest that even with head-fixed, i.e.

no vestibular inputs, HD signal can be extracted from the human brain. Interestingly,

a recent study by Sit and Goard (2023) recorded HD cells in the RSC of head-fixed
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mice. They showed evidence that the heading can be encoded separately from the

physical head orientation of the animal.

Figure 6: Summary of human brain regions sensitive to HD signal.
Schematic of the sagittal cut of a human brain including the entorhinal cortex (orange), medial
parietal cortex (purple), retrosplenial cortex (green), subicular region (dashed blue lines), and
thalamus (red).

In addition to those fMRI studies, researchers investigated the impact of RSC lesions

on patients’ behaviour. Multiple studies reported that after lesions to RSC, patients

would usually have impaired spatial navigation skills with some feeling of

disorientation (Song et al., 2020; Maguire, 2001; Vann and Aggleton, 2004;

Hashimoto et al., 2010; Claessen and van der Ham, 2017). For example, Takahashi

et al. (1997) found pure topographical disorientation after RSC lesions where patients

could identify landmarks but not establish spatial relations. This disruption in the

processing of landmarks is similar to the finding from lesion studies in rodents

described above. Lesions to other regions, such as the thalamus or hippocampus,

also lead to deficits in spatial navigation, such as path integration, where those
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patients would have trouble finding the correct pathway between locations in their

environment (Astur et al., 2002; Bartsch et al., 2010; Kim et al., 2013).

1.2.4 Behavioural mechanisms of orientation coding in human

Next to the studies focusing on the neural mechanisms underlying HD computations,

only a few studies investigated the HD system using pure behavioural analysis.

Sadalla and Montello (1989) investigated if participants could maintain their sense of

orientation after performing a rotation. They found that participants were less

disoriented when turning on angles close to cardinal directions (0, 90 or 180) and that

they tend to remember angles as 90°. In addition, several experiments looked at

connected aspects.

The first aspect is visual perspective-taking, defined as the study of changes in the

spatial relation between objects after a switch in the imagined point of view (or

perspective) (Flavell et al., 1981; Parsons, 1987; Amorim, 2003; Zacks et al., 2003).

Common examples that can often happen in our everyday lives are taking another

person’s perspective while giving instructions for driving or predicting someone else’s

movement in a crowded place to avoid a collision. While the subject is extensive, our

interest is in how HD is involved and studied. Early studies thought that HD was

involved due to the misalignment between the actual position and the imagined switch

of perspective (May et al., 1995; Shelton and McNamara, 1997). However, later work

proposed to differentiate HD and misalignment (Waller et al., 2002; May, 2004; Mou

et al., 2004). They explained that misalignment is due to a difference in the participant

heading between the learning and testing phases of the experimental task. In

contrast, changes in the heading are within a single phase (usually testing) between

the real and imagined orientation (Waller et al., 2002; May, 2004; Mou et al., 2004).
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Finally, recent work from Ueda et al. (2021) investigated the impact of torso and head

rotation during a visual perspective transformation task. Specifically, participants

would have to solve an orientation judgement task from several perspectives while

seeing a human avatar from different positions with either its torso or head forward to

the object or backward. They found evidence in their experiment that if the torso is

facing the object, it facilitates and improves performance, while the position of the

head has less impact on results. Unfortunately, most studies on perspective-taking do

not investigate in more depth how the HD system is involved, and firm conclusions

are difficult to draw.

The second aspect is self-motion perception and how studies investigate the

influence of different cues (i.e. auditory, visual or vestibular). Those experiments ask

the participants to self-rotate or move along a path whether different cues are present

(Israël et al., 1997; Siegler et al., 2000; Etienne and Jeffery, 2004; Crane, 2012;

Zanchi et al., 2022). Those studies found evidence that removing those cues usually

negatively impacts participants’ sense of direction, e.g., when navigating in darkness

(Israël et al., 1997; Siegler et al., 2000). Moreover, one typical experiment linked to

self-motion is path integration. Path integration is defined as the ability to follow a

trajectory while continuously updating one’s position and orientation by monitoring

self-motion cues (Mittelstaedt and Mittelstaedt, 1980). Many studies have looked at

path integration (Wolbers et al., 2007; Chrastil and Warren, 2021; Qi and Mou, 2023),

but it is challenging to disentangle the involvement of the HD system completely.

Indeed, studies investigating how HD influenced the task are usually confounded with

how the participants’ answers are being measured.

Nevertheless, a recent study from Harootonian et al. (2022) examined how HD

integrates path integration and visual landmark navigation. The authors used a
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self-rotation experiment where participants were asked to rotate on themselves before

facing back the learned position. There was no visual feedback except for some trials

where the visual feedback was offset from the actual position, allowing the authors to

look at systematic errors participants would make. They used those results to

compare it with different theoretical models. The authors found evidence that

participants were probably using a mix of both body-based and visual-based cues to

solve the task. However, their model did not use the type often used in the context of

HD, and they did not model the HD system per se.

Finally, it is essential to remember that experiences from most studies are just an

approximation of real life as they used smaller-scale spaces. However, the expansion

of the methods available for human research tries to account for this. There has been

an increase in the use and development of virtual reality (VR) systems and, more

importantly, HMD. Nowadays, most human research studying navigation uses VR

environments to mimic ecological context and increase the sense of embodiment

(Kilteni et al., 2012; Diersch and Wolbers, 2019). All the experiments made

throughout this thesis use VR and HMD. However, trying to get more real-life

experiments would contribute positively to the field. Such studies (Maguire et al.,

2006; Marquardt et al., 2022; Heward et al., 2023) are starting to be published. For

example, Marquardt et al. (2022) looked at adults’ navigation performances using a

mobile app to track their movement while navigating in the real world to perform a

task.

1.2.5 Computational modelling

This next section will present the theoretical model used to study the HD system: the

ring attractor network. A theoretical attractor network can be described as
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nodes/neurons organised as a conceptual ring with recurrent connections. In 1982,

Hopfield introduced the basic equations and properties and in 1989, Amit proposed

so-called attractor networks and theorised their dynamics.

It is important to note that one of the first models describing the head direction system

was not a ring attractor network. The model from McNaughton et al. (1991)

hypothesised an integration of inputs between movement (i.e. angular velocity) and

the current HD to create the output being the next state of HD. However, in a refined

model from Skaggs et al. (1995), the authors added the ring attractor network

architecture accounting better for the connections and dynamics of the system. More

precisely, they defined that there should be strong excitatory connections between

neighbouring nodes and inhibitory connections to distant nodes. In a stable state, this

would produce a cluster of activated cells somewhere on a circle, forming the current

bump of activity of the HD akin to a tuning curve (Figure 7). They also described how

vision or vestibular input would interact with such a model and how it allowed the

model to rotate by having the input either clockwise or counterclockwise, which would

drive the HD state to the location of the input.
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Figure 7: Schematic of ring attractor network dynamics in a HD model.
A, Two states of a ring attractor with 8 neurons (coloured rings) with an example of the pattern
of connections (black lines) between a single neuron (yellow on the left and light blue on the
right) to the other rings. The connections are excitatory for neighbouring neurons (arrowhead
lines), or inhibitory for distant neurons (flathead lines). In the model, every neuron has the same
connection pattern. Inside each neuron is a value representing the firing rate of the neurons
when a stimulus (represented by the black and grey arrow) is applied to the yellow (left) or light
blue (right) neuron. B, the tuning curve associated with the state 1 (yellow) and state 2 (blue).

In 1996, a completemodel by Zhang was developed and significantly impacted the field.

His model is being used since then in several studies (Byrne et al., 2007; Page et al.,

2014; Page and Jeffery, 2018; Yan et al., 2021). Themodel replicated the HD properties

described in the rodent literature at the time (i.e. directional tuning, vision based with

landmark or vestibular inputs). Hismodel also used the ring attractor network dynamics,

similar to Skaggs et al. (1995), with symmetric or asymmetric weights, allowing for

the rotation of the activity bump within the ring. While this model is imperfect and

has some flaws, especially in terms of physiological plausibility, other models have

been developed since then to investigate further properties or try to account for those
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(Goodridge and Touretzky, 2000; Song and Wang, 2005; Bicanski and Burgess, 2016;

Page and Jeffery, 2018; Yan et al., 2021).

In complement to this theoretical work, researchers tried to investigate the location and

generation of this potential attractor network. Substantial evidence supports that the

generation of the bump is linked to the vestibular signal and its afferent connection,

such as DTN and LMN (Skaggs et al., 1995; Sharp et al., 2001a; Song and Wang,

2005). Even more, the transformation from AHV to HD signal might be done in the

sub-cortical part of the system, especially the ADN where the ring could be located

(Knierim and Zhang, 2012). However, there is no concrete evidence of whether the

signal is a product of some brain properties or is created from a network of neurons

similar to a ring attractor architecture.

From the few papers investigating it, a study from (Peyrache et al., 2015) hypothesised

that if the HD system was internally organised as a ring attractor model, the relationship

between the neurons would persist between wake and sleep states. The authors used

Bayesian-based decoding to infer the HD signal and the head orientation of the animal

when it was asleep. As hypothesised, they found a robust correlation between the two

states (wake and sleep). They also found evidence similar to a property of the ring

attractor, which suggests that only a subset of neurons fire simultaneously, creating the

bump. However, no neuron topology similar to a ring has been found in the rodent.

However, fruit fly possesses such topology (Seelig and Jayaraman, 2015; Green et al.,

2017; Kim et al., 2017). Indeed, a part of the brain called the ellipsoid body has the

shape of a ring and acts as a ring attractor network by providing projection to other parts

of the brain. Strikingly, studies presented that with rotation inputs, the activity would also

move CW or CCW, similarly to the theoretical ring attractor network. Visual inputs also
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seemed to connect to the ellipsoid body. No evidence of ring attractor dynamics has

been found yet in human studies.

1.3 The population ageing

The last report of the WHO estimates that the world population is getting older and

might reach 50% of older adults by 2030 in Europe (Figure 8) (Wilmoth et al., 2023).

Henceforth, many studies investigated cognitive changes associated with ageing (for

review, see Lester et al. (2017)). It was reported that old adults are impacted by

different behaviours, such as being disoriented, lost or not finding personal objects.

Such problems arise due to a deficit in spatial navigation skills and point to further

complications for this population. Indeed, it can lead to isolation as they cannot

navigate outside, which increases the chance of having more severe cognitive decline

or neurological disease (Hendriks et al., 2023). Logically, studies focused on spatial

navigation as evidence to find which neural circuits are targeted early during cognitive

decline.
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Figure 8: Percentage of people aged 65 years or over across world regions from
1950 and estimated until 2050.
Figure adapted from WHO 2023 report (Wilmoth et al., 2023)

Studies on the ageing brain are numerous and investigate the changes in the input

and neural processes of the brain across the lifespan. For the inputs, studies show

that vision, one of the dominant sensory inputs for humans, is impaired during ageing

(Quillen, 1999; Loh and Ogle, 2004; Swenor et al., 2020). In addition, studies have

shown that with ageing, some degree of vestibular loss exists (Neuhauser et al., 2008;

Agrawal et al., 2009; Anson and Jeka, 2015). This loss would also lead to a deficit in

the navigation system, especially the HD system since lesions in the vestibular of the

rodent erase the HD signal (Stackman and Taube, 1997; Stackman et al., 2002).

30 General Introduction



Furthermore, next to the deficit in inputs, ageing impacts the synaptic connection

between neurons (for review, see Morrison and Baxter (2012)) by reducing their

numbers and the number of neurotransmitters. This reduction impairs the brain’s

overall functioning and connected abilities, such as spatial navigation. In addition,

multiple studies showed a decrease in cerebral volumes during ageing in several

brain regions related to navigation, such as the hippocampus (Burke and Barnes,

2006; Raz and Rodrigue, 2006), the thalamus (Hughes et al., 2012), and the RSC

(Moffat et al., 2006). Some studies (Rapp and Gallagher, 1996; Freeman et al., 2008)

link loss of cerebral volumes without loss of neurons but loss of neuronal and dendritic

connections. However, other studies state that neuron death occurs during healthy

ageing and varies between brain regions and individuals (Mueller et al., 1998;

Thompson et al., 2003). This subject is up for debate in the field as rodent studies

also observe no such loss of neurons in MTL structures (Merrill et al., 2001; Rapp

et al., 2002).

Therefore, it is crucial to continue the research on how ageing impacts navigation to

help detect cognitive decline early to treat it better. One way to assess it is to define

spatial navigation tasks to check if their skills are impaired and to characterise further

and understand the mechanics behind it (Moffat, 2009; Bates and Wolbers, 2014;

Colombo et al., 2017). Several studies tried to investigate those and found evidence

that navigation strategy such as path integration is impaired with ageing (Harris and

Wolbers, 2012; Stangl et al., 2018; Segen et al., 2022). In addition, other studies

found evidence for impaired allocentric skills, especially related to route learning and

landmark knowledge (Wiener et al., 2013; Bécu et al., 2023). Many of those studies

have connected those deficits to other types of spatial neurons, such as place cells or

grid cells. However, no studies have investigated the effect of ageing on the HD
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system in humans. This thesis will try to find more evidence on how ageing impacts

the HD system.

1.4 Aim of this thesis

The thesis aims to build and develop how the human brain’s HD system works. The

thesis will be separated into three chapters reflecting the three experiments undertaken.

All of them aimed to increase our understanding of the system in the human brain.

1.4.1 Chapter 1: How does the stability of environmental cues

affect HD computations?

As HD needs stable landmarks to maintain its signal, the effect of landmark stability

was studied to see its impact. The goal was to see if and how unstable landmarks

influence and change the HD signal. The analysis and methods in this chapter used

the strength of MVPA to decode the HD signal and characterise the influence of stability.

Finally, as human participants had different strategies and behavioural performances

when solving a task, those were discussed in relation to the results.

1.4.2 Chapter 2: How does human ageing affect our ability to keep

track of orientation?

The second chapter focused on creating a new behaviour experiment examining the

HD system. Only a few experiments tried to look at HD specifically from a behavioural

point of view. Therefore, the task found a way to get the “purest” measure of HD. In

addition, the study was conducted on both young and older adults to see how ageing
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affects HD. Since ageing seems likely to impact HD, this chapter tried to understand

the mechanisms that are changing with ageing in more depth.

1.4.3 Chapter 3: A computational modelling approach to

characterise age-related changes in the HD circuit.

The last chapter focused on developing a model of the HD system to understand the

mechanism by which orientation computations are compromised in old age. Building

on existing ring attractor models, this new model resolved their pitfalls so ageing could

be characterised. Indeed, the goal was to find noise sources, such as synaptic deficit or

neuron death, and modify their level to characterise their impact on the HD system. The

goal was to be able to describe the potential loss that would happen during ageing and

where it would come from in the system. Finally, the model implemented the second

chapter’s task and tweaked the noise amount. The objective was to see which noise

sources best described young or older adults’ performance.
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CHAPTER 1: How does the stability of

environmental cues affect HD

computations?

2.1 Introduction

In the general introduction, the different fMRI studies investigating HD have been

presented and discussed. However, the experimental designs used in these human

studies did not assess the properties of the HD cells. Therefore, the experiment

undertaken for this chapter tries to investigate one of the properties of HD: its relation

to landmarks.

HD cells are maintained stable relative to the environment (Taube et al., 1990b), and

landmarks are crucial in giving such stable directional information (Knierim et al., 1995).

There are many landmarks in everyday life, and some are more stable and salient than

others. It is essential to identify the permanence of landmarks to avoid getting lost. A

study by (Zugaro et al., 2001) investigated the effect of object rotation on the PFD of

HD cells when background cues were present or not. The authors show evidence that

rodents primarily used the background cues to update the PFD of HD cells compared to

foreground cues (i.e. objects). They justified this finding as the background cues would

be more salient and stay longer within the animal’s retina when moving. In addition,

the animal could consider foreground objects unreliable as they would see them from

different viewpoints.

Multiple studies investigated the coding of landmark stability in the human brain

(Auger et al., 2012; Auger and Maguire, 2013; Auger et al., 2015, 2017; Auger and
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Maguire, 2018a,b). The authors found that the RSC, PoS and hippocampus would

encode permanent landmarks in an allocentric spatial map of the environment.

Moreover, they hypothesised that the HD signal might play a role by firing in response

to the reliable permanent landmark. This assumption is supported by the fact that

permanent landmark coding and HD signals have been found in the RSC. Moreover,

previous studies mentioned a difference in the perception of landmark stability

between good and bad navigators (Auger and Maguire, 2013; Auger et al., 2017).

Precisely, bad navigators would have a lower activity in the RSC regarding the

permanence of items while learning the environment. Finally, this landmark stability

has been examined for everyday objects (Auger et al., 2012; Auger and Maguire,

2013) and novel ’alien’ landmarks (Auger et al., 2015, 2017; Auger and Maguire,

2018b). Therefore, it would be interesting to investigate the relationship between HD

and landmark stability in the human brain. It is unknown whether unstable landmarks

would not be integrated within the HD system or would be coded, but the tuning curve

associated with them would change.

The analysis of this study will be based on MVPA, a fMRI analysis that can decode

which direction the participant is facing with the neural pattern taken from the

blood-oxygen-level-dependent (BOLD) signal. This method was developed by Haxby

et al. (2001) in order to find a pattern of voxel activity within the brain using classifiers.

Different papers investigating the MTL have successfully used this MVPA (e.g.

Hassabis et al. (2009); Bonnici et al. (2012)). First, the study of Hassabis et al. (2009)

decoded place responses by training classifiers differentiating the position of

participants within two different environments. In addition, Bonnici et al. (2012) also

looked at pattern completion in the MTL through the morphing of two scenes. The

authors successfully decoded the choice of the participants in the hippocampus.
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Therefore, a new experiment should be carefully designed to allow MVPA decoding

and study HD properties, such as the impact of landmark stability.

The study aimed to investigate how the stability of landmarks, whether stable or

unstable, influences the neural signal in the human brain. Regions related to HD,

such as the EC, hippocampus, RSC and thalamus, were measured. Using immersive

VR, participants learned a simple environment with two stable and two unstable

landmarks. This setup provided participants with full body-based cues during training.

Then, participant neural signals were recorded during fMRI while passively moving

within the learned environment. The prediction would suggest that decoding of

heading toward stable landmarks would be stronger than the one toward unstable

landmarks and that RSC would be able to differentiate between stable and unstable

landmarks.

2.2 Materials and Methods

2.2.1 Participants

Twenty healthy young adults aged between 18 and 30 years (25.68 ± 4.8, female n=9)

participated in the study. Participants were fluent in German, did not report any

physical or mental disorders, and were not colourblind. The local ethics committee

approved the experiment, and all research was performed under relevant guidelines

and regulations. Written informed consent was obtained from each participant before

starting the experiment. Participants were compensated financially for their

participation. We excluded one participant due to insufficient performance compared

to the others in the pointing task during testing.
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2.2.2 Design and procedure

The study was performed in a balanced, within-subject design (Figure 9). Every

participant came for two consecutive days, performing the learning of the environment

during the first day in immersive VR using a HMD. More precisely, during the whole

learning phase, participants were wearing an HTC Vive HMD with a wireless adapter,

and they could actively walk in an area of 5 by 5 metres without constraint. On the

second day, participants did the testing while being in an MRI scanner. For details on

the tasks, see the descriptions below.

Figure 9: Design of the task.
Within-subject design of the experiments with participants performing the learning on day 1
using immersive and desktop VR. On day 2, participants did the testing phase inside a MRI
scanner.

2.2.3 Environment

The virtual environment was created using Unity software (version: 2019.2.0f1). The

ground had a moon-like texture with no apparent pattern preventing orientation. The

skybox also had a star pattern without a specific pattern. In addition, the skybox was

rotated randomly during every trial, preventing participants from using it to locate

themselves. Four landmarks designed as planets were positioned in each cardinal

direction to allow participants to orient. Each had a different colour (green, red, blue

or orange) and different texture so participants could easily differentiate them. The

colour and texture were different across participants. Importantly, those four planets
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had different stability, meaning their position within the environment would change.

Henceforth, the “North” and “South” landmarks were stable and stayed at the same

position during the whole experiment. On the contrary, the “East” and “West”

landmarks were unstable, and their position changed every trial within a range from

25° to 155° for the East and 205° to 335° for the West. Finally, two other smaller

“planets”, called “moons”, were positioned at the diagonal of the environment (115

and 290) and had separated colours from the main landmarks (purple and grey, also

switching between participants). Those “moons” were used in a pointing task to test

participants’ memory of the spatial relation between the moons and the permanence

of landmarks. Figure 10 shows a bird’s eye view of the environment.

Figure 10: Environment of the task.
Bird-eye view schematic of the environment learned by participants. It comprises 4 landmarks, 2
stable (red and blue) and 2 unstable (green and yellow). Unstable landmarks changed position
every trial of the task within a given range as shown by the black arrows. Two small objects
called “moon” were positioned at the diagonal of the environment and were only used for a
pointing task
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2.2.4 Learning phase

We separated the learning phase into learning blocks. Each block included three

tasks: the actual learning task and two checking tasks to see if the participant learned

the environment. The learning blocks were repeated until the participant passed the

checking tasks (Figure 11). In every trial, the unstable planets’ position change

occurred during a fade-in/fade-out phase, so participants could not watch the switch.

Figure 11: Design of the learning phase.
The black box is an example of a learning block with the 3 different tasks. Top, the learning
part where participants walked in immersive VR and saw the entire environment. Middle, the
rating of stability task to test participant on their perception of landmark permanence. They saw
only one landmark at a time, and the moons were not present. Bottom, the pointing task where
participants had to point to the position of moons while seeing the four landmarks. Participants
repeated a learning block if they failed one of the checking tasks.
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During the learning task, the participant could see the whole environment (four planets

and two moons) and performed five trials for each block. During each trial, participants

moved around the environment by picking up an object (represented by a gas canister).

In addition, during two out of the five trials, participants had to perform a pointing task.

The goal of that task was to point to one of the two moons while seeing only one of the

landmarks.

After performing those learning trials, participants performed the stability rating. For

each trial, participants had to move to a random location within the environment

indicated by a blue circle on the ground. Upon reaching the circle, participants rotated

to face one of the four landmarks. Then, a scale appeared in front of the participants,

asking them to rate the landmark’s stability. The scale ranged from one, completely

unstable, to five, completely stable. After picking the answer, participants moved to

another random location to rate the next landmark until all of them were rated once.

For the participant to succeed in this checking task, they had to correctly identify

stable landmarks as stable (i.e. rating 5) and unstable landmarks as unstable (i.e.

rating 1 or 2). The rating for the unstable was decided to be either 1 or 2 since those

landmarks would move only on half of the environment.

As the last step in this phase, participants performed a pointing task. Compared to the

one done during the learning task, every landmark was visible simultaneously. The task

asked the participants to move to a random location within the environment, indicated

by a blue circle on the ground. Then, they needed to point to one of the two moons

using their controller. The target moon was indicated by displaying its picture next to

the controller. To complete this task, participants needed to point to the correct moon

with an accuracy of 15° degrees for every trial. Participants performed six trials in total,

with three pointing for each moon. If the participant succeeded in the stability rating
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and the pointing task, they moved to the next phase of the experiment. However, if

participants did not pass at least one task, they would perform another learning block

composed of the same three tasks.

2.2.5 Criterion phase

After completing the learning phase, participants performed a last task on the desktop

the same day. The environment was the same as in the learning phase and followed

the same stability rules. This task aimed to ensure participants could transfer their

knowledge and perception of the immersive VR environment experienced during the

HMD to the one on desktop VR. The task was another pointing task where participants

saw a single landmark in front of them, and they had to use a joystick to point to the

location of the target moon. For each trial, participants had 1 second to see a picture of

the target moon and the landmark they were facing. Then, they had up to 2.5 seconds

to use the joystick to point to the correct position of the moon. Participants performed

24 trials, 6 trials per landmark, and they needed an accuracy of 40° to pass this phase.

Only the trials related to the stable landmark were used to calculate the accuracy since

participants could not know the position on the moon from an unstable position. If the

participants could not succeed in this task, they would return to the learning phase to

complete another block. If the participants succeeded, they completed the experiment’s

first day and came back the next day for the testing part.

2.2.6 Testing phase

On the second day, participants arrived at theMRI scanner to perform the testing phase.

Upon arrival, we asked them to fill out a questionnaire asking for the stability rating,
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similar to the learning phase, with the same scale. The goal was to ensure participants

remembered the landmarks’ stability before entering the scanner.

Before the main scanning phase, participants performed the training of the testing task

(Figure 12). For each trial, participants saw one of the landmarks in front of them for 2

seconds. Then, they were passively moved toward it for 5 seconds. Finally, an inter-

trial interval (ITI) with a fade in/fade out was presented for a mean of 3 seconds (ranging

from 1 to 5 seconds). After the passive movement, a pointing trial similar to the criterion

phase could happen. Indeed, participants could see only one of the landmarks in front

of them and had to rotate to one of the moons using a joystick.

Figure 12: Design of a testing trial.
During the testing in the MRI scanner, participants performed multiple testing trials. Each
trial started with a 2-second period where they could see a landmark in front of them. Next,
participants were passively moved toward it for 5 seconds. Lastly, an ITI of 3 seconds on
average with a fade-out screen would appear. Another trial would start afterwards.

For each scanning run, every landmark had ten regular trials and two pointing trials.

Participants performed eight runs, so each direction was sampled 80 times. Finally,

the trial sequence was optimised using de Bruijn sequence to enhance the analysis

results (Aguirre et al., 2011). In brief, this optimisation improved the detection power

for MVPA analysis by counter-balancing the order of directions across runs.
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2.2.7 MRI data acquisition

The imaging data were acquired using a 3T SIEMENS Prisma scanner with a

64-channel phased array head coil. Several scans were included: a

three-dimensional structural T1-weighted anatomical image with 1 mm isotropic

resolution (voxel size = 1 mm; TR/TE/Inversion time = 2500/2.82/1100 ms; flip-angle =

7 degrees; FOV = 256 mm; 192 slices; MPRAGE sequence); a high resolution

T2-weighted structural image including the EC and hippocampus was acquired

perpendicular to the long axis of the hippocampus using a turbo-spin-echo sequence

(voxel size = 2 mm; TR/TE = 6000/71 ms; FOV = 224 mm2; 64 slices); the gradient

echo field maps (slice-thickness = 2 mm; TR/TE1/TE2 = 700/4.92/7.38 ms; flip-angle

= 60 degrees; FOV = 220 mm2; 72 slices); eight runs with 260 volumes of

T2*-weighted functional images were acquired with a partial-volume echo-planar

imaging sequence (Figure 13), the image were first aligned with the long axis of the

hippocampus but shifted by 7 slices to the superior part of the brain, this allowed the

capture of more region of interest (ROI) such as the precuneus (slice thickness = 2

mm; TR/TE = 2000/30 ms; flip angle = 90 degrees; FOV = 216 mm2; 30 slices;

GRAPPA acceleration factor 2). Finally, a single run of T2*-weighted functional with

whole brain volume echo-planar imaging sequence was comprised, allowing for a

more precise coregistration of functional and structural images (slice thickness = 2

mm; TR/TE = 4400/30 ms; flip angle = 90 degrees; FOV = 216 mm2; 70 slices;

GRAPPA acceleration factor 2).
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Figure 13: EPI slab of the brain.
EPI slab of the brain (orange) used in the neuroimaging analysis overlay on top of the structural
T1 image (grey).

2.2.8 Behavioural analysis

Data reduction relied on Python (version: 3.7.4) and statistical analysis on R (version:

4.1.3). First, we computed the stability rating for each learning block and the number

of total blocks done. In addition, we determined the number of learning blocks done

after rating the stability correctly. Finally, the time spent in VR when participants used

the HMD was extracted from the learning data.

Furthermore, the pointing accuracy during the checking task was used to examine the

error distribution over learning blocks. We calculated it by taking the absolute angular

error computed between the target’s correct position and the participant’s answer. Even

more, for each pointing trial, we calculated the percentage of time within a trial when

the participant was facing one of the landmarks. To do so, we checked if the landmark

was in the centre field of view of the participant +/- 20° and then counted for how many

seconds the heading of the participant was within that range. In addition, we added a
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separate variable to mark if the unstable landmark was located between the position

of the moon and the stable landmark associated. The statistical analysis relied on

repeated measures ANOVAs and Spearman correlations.

Lastly, we extracted the pointing accuracy from each participant during the criterion

phase. Then, the circular mean and standard deviation were calculated for each

landmark’s last learning block (i.e., the last successful block). The same data

reduction was done for the pointing trial completed during the testing phase on the

second day. The statistical analysis used repeated measures ANOVAs and paired

t-tests.

2.2.9 fMRI data preprocessing

The preprocessing was done using FSL (version 5.0.9), ANTs (version 3.0.0) and

Python 3 (version 3.7.4) with the main packages nipype (version 1.2.2) and nilearn

(version 0.10.1). We created the whole preprocessing pipeline with nipype, including

multiple steps, which we described below.

First, the anatomical scans were bias-field corrected three times using ANTs to increase

the contrast in the image. We used a FSL function to remove part of the neck if its

proportion was too high. Then, the images were skullstripped using the BET function

from FSL with individual parameters for each participant to achieve the best results.

In addition, the structural image was normalised to the Montreal neurological institute

(MNI) standard image 1mm using non-linear registration from the ANTs suite.

Second, the magnitude fieldmap was skullstripped using BET with individual

parameters and eroded by five voxels to remove any skull leftovers. Then, we used a

FSL function to transform the phase and magnitude fieldmap to a single image with

the correct units (rad/s).
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Third, the eight runs of EPIs (annotated EPIslab for simplicity here) were all

concatenated together to find the mean image. Next, each run was motion-corrected

by realigning the EPIslab to the mean image. Six motion parameters (the three

translations and three rotations around the x, y and z axis) were extracted and stored

for the main analysis. Similarly, for the single EPI run covering the whole head

(annotated EPIwb), the mean image was extracted and used for motion correction for

the EPIwb volumes.

Fourth, the mean image of the EPIwb was registered to the structural image and the

prepared fieldmap was included for warping correction. Then, a second registration

was done between the mean image of the EPIslab and the EPIwb unwarped. This

registration allowed the unwarping of the EPIslab.

Finally, we smoothed the EPIslab data with a 4mm Gaussian kernel. An additional step

was done to account for voxels at the edge of the brain being smooth within the data,

incorrectly decreasing those values. To correct the brain mask, we smoothed it with

the same 4mm kernel and divided it from the EPIslab data to account for voxels with

values of 0.

2.2.10 Brain masks

The individual structural images were segmented using Freesurfer (version 6), and

the precuneus, EC, and RSC (defined as the posterior ventral cingulate cortex) were

extracted using the ’Destrieux’ cortical atlas (Destrieux et al., 2010). We also

extracted a mask of the ventricles containing the cerebrospinal fluid (CSF) and a

white matter mask using the ‘Desikan-Killiany’ atlas (Desikan et al., 2006). The

hippocampus and thalamus masks were extracted using FSL first, which has been

shown to segment those regions better (Patenaude et al., 2011). The primary Visual
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cortex (V1) mask was taken from the MNI brain template using the ‘Juelich’

Histological Atlas and was subsequently thresholded at 50%. Next, the affine

matrices calculated during the preprocessing were used to warp the masks from the

MNI space to the structural image space. Finally, all the masks were warped from the

structural space to the EPIslab space to be included in the analysis (Table 2.1).

Name of Software Neuroimaging Encyclopedia

the mask used space used used

Retrosplenial freesurfer Individual ’Destrieux’

cortex (RSC) space cortical atlas

Entorhinal freesurfer Individual ’Destrieux’

cortex (EC) space cortical atlas

Precuneus freesurfer Individual ’Destrieux’

space cortical atlas

Thalamus fslfirst Individual FSL first

space

Hippocampus fslfirst Individual FSL first

space

Cerebrospinal fsl MNI ‘Juelich’

fluid (CSF) space Histological Atlas

Primary visual freesurfer Individual ’Desikan-Killiany’

cortex (V1) space atlas

White Matter freesurfer Individual space ’Desikan-Killiany’

space atlas

Table 2.1: Brain masks defining the ROIs used in the analysis

2.2.11 fMRI analysis

Analysis of the fMRI was done in both univariate and multivariate ways. For

univariate, we achieved a ROI and a whole brain analysis. Specifically, those
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analyses tried to compare the BOLD signal between stable vs unstable landmarks.

For the ROIs, a GLM was constructed for each run and then combined using a

fixed-effects model. The design matrix of the GLM included two main regressors of

interest. Specifically, they were created by taking the five seconds translation periods

when participants were going either towards stable landmarks (North or South) or

unstable landmarks (West or East). We included another regressor taking the period

during which participants performed the pointing trial. Then, the time derivative of

those regressors was calculated. In addition, multiple noise regressors were included,

such as the six motion parameters and “physiological noise” (Behzadi et al., 2007).

The latter was computed by taking the signal from the white matter and CSF of the

participant on each run and including it on a principal component analysis (PCA).

Next, we used a broken stick method (Jackson, 1993) to determine the number of

principal components to select for each participant. An example of the design matrix

can be found in Figure 14. We ran a contrast comparing if the signal was higher for

stable compared to unstable landmarks. The individual t-stat maps were averaged

and compared to 0 to check for a significant difference between the two conditions.

The same GLM was computed for every run and combined using the fixed effect for

the whole brain analysis. Next, a second-level analysis was run with a random effect

to account for the participants. Finally, the resulting z-score map was thresholded at Z

> 2.3, and a cluster extent of p < 0.05 was applied to identify continuous clusters and

to control for family-wise error (FWE) rate.
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Figure 14: Example of a design matrix created for univariate analysis and run-
wise decoding.

Additionally, we implemented a multivariate pattern analysis (MVPA) with two

separate types of decoding: run-wise and trial-wise (Figure 15). The run-wise MVPA

was performed to decode the brain signal for stable vs unstable landmarks, similar to

the univariate analysis within each ROI. We decided to use run-wise decoding as the

literature showed it gave better stability of decoding accuracy across cross-validation

(Allefeld and Haynes, 2014). The first step was to acquire t-stat brain maps using the

same GLM as the univariate but without computing a fixed effect across the GLM. We

extracted individual t-stat maps for each run and each condition (stable or unstable),

leading to 16 maps separated between the eight runs. Then, a classifier was used to

separate the runs between training (7 runs) and test (1 run) sets. In the training set,

the data were first standardised, and a feature selection was run to include only a

percentage of the most responsive voxels within the ROI. Next, we computed a linear

support vector machine (SVM) to differentiate between the two conditions of interest.
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In order to optimise the model, a grid search was executed to have different

combinations of the C parameter for the SVM (controlling the steepness of the curve

separating the condition) and the percentage of selected voxels. The C parameters

ranged from 0.001 to 1000 with multiples of 10, and the percentile used were 25, 50

and 100%. The training set was further divided into the proper training set (6 runs)

and a validation set (1 run). Every combination of parameters was tested to find the

best pair of parameters used to calculate the decoding accuracy in the leftover testing

set. Cross-validation was performed, so every run was used as the testing set. This

led to calculating eight decoding accuracies that were subsequently averaged for

each participant. To test for statistical significance, simple t-tests were computed to

compare the average decoding accuracy of participants against chance level (0.5).

The choice to not perform permutations was motivated by the limited number of

possible unique permutations (128), leading to a really low statistical power.

Figure 15: MVPA analysis for run-wise and trial-wise decoding.
On the left, the blue box shows the steps to extract t-stat maps from the brain signal in each
ROI. The example given is for run-wise decoding. For trial-wise decoding, the design matrix
would be different, but the output would still result in t-stat maps for the conditions for each run.
On the right, the green box presents the steps to obtain the decoding accuracy.

The trial-wise MVPA aimed to decode the neural signal between two conditions: North

vs South or West vs East. We used trial-wise analysis to decode directions as we could

include ten times more samples in the MVPA than run-wise, increasing the detection

power. Indeed, the main difference compared to the run-wise was the computation
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of the regressors of interest in the GLM. We modelled each trial separately, meaning

that the first regressor included only the trial of interest (e.g. the first trial when moving

toward North), the second regressor included the other trials of interest (all the other

trials when moving toward North or South) and finally the third regressors included the

other trials not included in the MVPA (e.g. trials toward West and East) as shown in

Figure 16. This led to the creation of 20 t-stat maps per run. Next, we calculated the

decoding accuracy between the two conditions in the same way as the run-wise MVPA

described above (Figure 15). Statistical significance was assessed by comparing the

average decoding accuracy of the participants to a null distribution. The null distribution

was created by calculating 1000 random permutations by shuffling the correct labels

during the training of the model.

Figure 16: Example of a design matrix created for trial-wise decoding.

Finally, a last analysis was calculated to investigate if there was a similarity in the signal

when moving in the same direction. The goal was to check the brain signal’s stability

when passively moving toward the same landmark. For example, highly correlated
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signals would be linked to the brain signal repeating itself as the participant moved

in the same direction. On the contrary, uncorrelated data could be due to the brain

signal changing directions every time, similar to unstable landmarks. To test those

hypotheses, we extracted the t-stat maps for individual trials across the four directions,

similar to the trial-wise decoding. Then, a correlation matrix was computed between

the trials going in the same direction, resulting in 45 unique correlations for each run

and direction. Lastly, those values were entered into a linear mixed-effect model that

comprised a nested random effect between participants and runs. The model was run

using R (version: 4.1.3) with the packages nlme (version: 3.1) and investigated for

each ROI if there was a difference between stable and unstable landmarks.

2.3 Results

Participants learned and memorised the stability of each landmark across the

experiment.

Every participant successfully completed the learning phase within the limit of 25

learning blocks (Figure 17A). However, the number of learning blocks done to finish

the task (mean=12; std=5.03) and the time spent in immersive VR (mean=85.68;

std=45.68) varied across participants. Similarly, the number of learning blocks done

before participants learned the stability of the four landmarks (mean=4.73; std=3.30)

differed. Indeed, some participants took longer to learn the stability of the landmarks

(Figure 17A), while others took longer to succeed in the pointing task by reaching the

correct threshold (15°, red line in Figure 17C).
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Figure 17: Learning results from participants.
A, number of learning blocks (bars) and time spent in VR (red line) for each participant. Grey
bars represent the blocks done before learning the stability of landmarks. Black bars represent
the blocks done after learning the stability of landmarks. B, final rating of individual participants
regarding the two unstable landmarks West (green) and East (yellow). C, average angular error
of participants during the pointing task in the learning phase when pointing to the North West
moon (left) or South East moon (right). The red line represents the learning threshold of 15°.

The majority (63%) of participants rated both unstable landmarks as completely

unstable (1 out of 5 on the scale) (Figure 17B). Nevertheless, 4 participants thought
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the East landmark was less unstable than the West landmark. Also, 3 participants

rated East and West landmarks as “not completely unstable” (2 on the scale).

Interestingly, the West landmark was never rated as “not completely unstable” unless

participants rated both landmarks as 2 on the scale. Finally, participants repeated the

same answers when rating the landmarks again on the 2nd day for the testing in the

fMRI.

Participants learned the position of themoons in immersive VR in relation to their

associated landmarks.

During the pointing task in immersive VR, participants could see the four landmarks at

the same time. To determine if they used more stable than unstable landmarks to

point to the moons, the percentage of time that participants faced each of the

landmarks was calculated during the last successful learning block (Figure 18). An

ANOVA suggested a main effect of landmarks for both the North-West (NW) moon

(F(3,54)=12.04; p<0.001) and the South-East (SE) moon (F(3,54)=6.03; p=0.001).

However, the unstable landmarks could be positioned between the stable landmarks

and the position of the moons. Therefore, those trials would have an inflated time for

the facing direction of the unstable landmark even if the participant does not

necessarily try to face those. To measure the impact of those trials, they were

discarded and another ANOVA was calculated. We found no main effect of landmarks

for the NW moon (F(3,51)=1.873; p=0.15) or the SE moon (F(3,48)=0.62; p=0.61).

Nevertheless, at the individual level, some participants had an increase in the facing

time related to stable landmarks across the task (Figure 19).
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Figure 18: Percentage of time a landmark was seen by a participant during a
pointing trial.
Pointing trial results during the learning phase for the North West moon (A) and South East
moon (B). Violin plots show the distribution of the percentage of time a stable (North in red,
South in Blue) or an unstable landmark (West in green, East in yellow) was in the FOV’s centre.
Individual data points are shown in black, and participant means in grey. Triangles represent
trials where the unstable landmark was between the moon and the associated landmark.

Finally, Spearman correlations were computed between the facing time for each

landmark versus the absolute angular error across every trial and participant. Hence,

a positive correlation was found for South (R=0.26; p<0.001) and East (R=0.18;

p<0.001) landmarks when pointing to the NW moon. Similarly, a positive correlation

was also found for the North (R=0.19; p<0.001) and West (R=0.16; p<0.001)

landmarks for the SE moon. This result would suggest that across the pool of

subjects, they performed worst when facing non-associated landmarks (stable or

unstable) for each moon.
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Figure 19: Percentage of time a landmark was seen during a pointing trial across
the learning phase for each individual participant.
Detail on the next page
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Figure 19: Pointing trial results during the learning phase for the North West moon (A)
and South East moon (B). Colour lines represents the percentage of time a stable (North
in red, South in Blue) or an unstable landmark (West in green, East in yellow) was in
the FOV’s centre across the learning blocks performed by each participant. Triangles
represent trials where the unstable landmark was between themoon and the associated
landmark.

Participants used different pointing strategies when seeing a single landmark.

Compared to the pointing done in immersive VR, participants could only see a single

landmark at a time in the desktop version (criterion and testing phase). The pointing

toward stable landmarks was within +/- 30° around the correct position of the moon as

the learning threshold was set to 40° (Figure 20). Interestingly, the task design

allowed the participant to point to any direction desired when looking at an unstable

landmark. This led to the participants adopting different strategies to answer

(Figure 21). We assessed the spread in the response by calculating the circular

standard deviation of the pointing direction across trials for each landmark

(Figure 20). An ANOVA found a main effect of the circular standard deviation across

landmarks for criterion (F(3,54)=5.70; p=0.002) and testing (F(3,54)=4.49; p=0.005).

For the criterion phase, additional paired t-tests found a significant difference between

East and North (t(19)=-2.64; p=0.017), East and South (t(19)=-3.09; p=0.006), West

and North (t(19)=-2.44; p=0.025) and West and South (t(19)=-2.80; p=0.012). For the

testing phase, paired t-tests found a significant difference between East and North

(t(19)=-2.48; p=0.023), West and North (t(19)=-3.40; p=0.003) and West and South

(t(19)=-2.10; p=0.05). However, when using Bonferroni correction to account for

multiple comparisons, only East and South during criterion (t(19)=-3.09; p_adj=0.038)

and between North and West during testing (t(19)=3.40; p_adj=0.019) survived.
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Figure 20: Average pointing answer to the moons for participants during the
criterion and testing tasks for each landmark.
Each arrow represents the average pointing answer of a participant when they saw the North
(red), South (blue), West (green) or East (yellow) landmark. The length of the arrow represents
the inverse circular standard deviation with a shorter length describing a larger standard
deviation (i.e. larger spread of answers). Participants had to point to the NW moon (purple)
when they saw the North and West landmark, and to the SE moon (grey) when they saw the
South and East.

Furthermore, a visual inspection of the individual plots suggested different strategies

employed by participants regarding the unstable landmarks (Figure 21). The first would

be associated with a large spread of answers, such as participant 2, 9 or 16. The

second one would be linked to clustered answers aligned with the correct position of

the moon, such as participant 1, 7 or 19. Finally, the third strategy also had clustered

answers but pointed to another location within the environment, such as participant 4,

8 or 18.
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Figure 21: Pointing answer to the moons during the criterion task and
testing phase for each individual participant.
Detail on next page.
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Figure 21: Each line represents a pointing answer of a participant when they saw the
North (red), South (blue), West (green) or East (yellow) landmark. Participants had to
point to the NW moon (purple) when they saw the North and West landmark and to the
SE moon (grey) when they saw the South and East. A-B, the data shown are from the
criterion block from the last learning block performed. C-D, the data shown correspond
to all the pointing trials participants performed across scanning runs.

Decoding of signal differentiating stable and unstable landmarks.

We assessed whether there was a signal related to the stability of landmarks

associated with heading direction (Figure 22). A MVPA was computed to the signal

when participants were moved toward stable (North and South) compared to unstable

(West and East) landmarks. We found significant decoding above chance level (0.5)

in the RSC (t(18)=3.02 p=0.007), precuneus (t(18)=2.28 p=0.035) and V1 (t(18)=2.8

p=0.011). To test if this effect was indeed linked to stability, the landmarks were mixed

(e.g. North and West vs South and East; North and East vs South and West), so both

stable and unstable landmarks were included in each condition. We found no

significant decoding after running another MVPA on those mixed stability conditions.

Finally, our ROIs and whole-brain univariate analysis did not find significant

differences between signals related to stable and unstable landmarks.
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Figure 22: Decoding results for stable vs unstable landmarks and control
conditions.
Decoding results when comparing (A) stable vs unstable landmarks or (B,C) a mix of stable
and unstable landmarks for each ROI. The dots represent the average decoding accuracy
for the individual participants, and the diamond is the average among participants. The red
line corresponds to the chance-level at 0.5. EC, entorhinal cortex; HC, hippocampus; PC,
precuneus; RSC, retrosplenial cortex; TL, thalamus; V1, primary visual cortex. * denotes
significant decoding (p<0.05).
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Decoding of HD signal differentiating stable and unstable landmarks.

In addition, we investigated if we could find HD signals in the different ROIs

associated with the HD system and if the stability of landmarks impacted the

decoding. We examined the decoding accuracy of North vs South (stable landmarks)

and West vs East (unstable landmarks). Then, we derived the associated p-value

from a null distribution generated via 1000 permutations of the condition labels

(Figure 23). For North vs South, we found significant decoding in the RSC (p<0.001)

and V1 (p=0.022) but not in thalamus (p=0.25), hippocampus (p=0.071), EC

(p=0.064) or precuneus (p=0.26). For West vs East, significant decoding was found in

the thalamus (p=0.01), hippocampus (p=0.005) and EC (p=0.04) but not in RSC

(p=0.44), precuneus (p=0.351) and V1 (p=0.741).
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Figure 23: Decoding results for North vs South (Stable) and West vs East
(Unstable) for the ROIs.
Detail on next page.
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Figure 23: A, decoding results when comparing North vs South (blue) and West vs
East (red). The dots represent individual data, and the diamond is the average among
participants. The red line corresponds to the chance-level at 0.5. The null distribution
from permutations (grey bars) can be seen for (B) North vs South and (C) West vs
East. The dots also represent individual data and the vertical black line is the average
among participants. EC, entorhinal cortex; HC, hippocampus; PC, precuneus; RSC,
retrosplenial cortex; TL, thalamus; V1, primary visual cortex. * p<0.05; ** p<0.01, ***
p<0.001.

Furthermore, we segmented the thalamus and the hippocampus to extract the

presubiculum, a critical region within the HD circuit, to decode the HD signal

(Figure 24). For the presubiculum, we observed significant decoding for North vs

South (p=0.002) and West vs East (p=0.035). For the segmentation of the thalamus,

we did not find significant decoding for North vs West in the anterior thalamus

(p=0.07), lateral thalamus (p=0.507), medial thalamus (p=0.191) and posterior

thalamus (p=0.834). For West vs East, we found significant decoding in the posterior

thalamus (p=0.003) but not in the anterior (p=0.148), lateral (p=0.161) and medial

(p=0.40) thalamus.
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Figure 24: Decoding results for North vs South (Stable) and West vs East
(Unstable) for the segmented ROIs
Detail on next page.
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Figure 24: A, decoding results when comparing North vs South (blue) and West vs
East (red). The dots represent individual data, and the diamond is the average among
participants. The red line corresponds to the chance-level at 0.5. The null distribution
from permutations (grey bars) can be seen for (B) North vs South and (C) West vs East.
The dots also represent individual data and the vertical black line is the average among
participants. PeS, presubiculum; ant-TL, anterior thalamus; lat-TL, lateral thalamus;
med-TL, medial thalamus; post-TL, posterior thalamus. * p<0.05; ** p<0.01.

Finally, a last analysis investigated if the signal was consistent across trials when

participants moved in the same direction. This analysis could tell us if the HD signal,

an approximation of the tuning curve, would stay the same for stable landmarks, i.e.

high correlation values, or change for unstable landmarks, i.e. uncorrelated values.

We calculated correlation matrices between the t-stat maps related to trials moving in

the same direction for each run. Then, we entered all the matrices for each participant

and directions within a random mixed-effect model. The goal was to assess if the

stability of the landmarks for each ROI could explain the correlation results. However,

we found no significant difference between stable vs unstable landmarks for EC

(t(27207)=0.59; p=0.55), hippocampus (t(27207)=0.08; p=0.94), precuneus

(t(27207)=-0.49; p=0.62), RSC (t(27207)=0.56; p=0.57), thalamus (t(27207)=-0.52;

p=0.60) or V1 (t(27207)=-1.37; p=0.17).

2.4 Discussion

In the present study, we found evidence for stability coding in RSC, precuneus and V1

when comparing stable vs unstable landmarks. These results are in line with previous

findings from the literature (Auger et al., 2012; Auger and Maguire, 2013; Auger et al.,

2015, 2017; Auger and Maguire, 2018b) that found permanence coding of landmarks

in the RSC. However, our paradigm linked the landmarks with directional information

compared to those studies. This allowed the analysis to decode HD signals when
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participants were moved toward stable or unstable landmarks. We found that the RSC

and V1 could decode the HD signal when moving toward stable landmarks but not

for unstable landmarks. These results replicated the ones from both rodent studies

(Knierim et al., 1995; Cho and Sharp, 2001; Jacob et al., 2017) and human studies

(Marchette et al., 2014; Shine et al., 2016; Koch et al., 2020) that found HD signal

in the RSC. The HD signal found in V1 was similar to the finding from Koch et al.

(2020), which found significant decoding accuracy of walking direction in the early visual

cortex. Nevertheless, those regions could not decode HD signals related to unstable

landmarks. One explanation could be that RSC and V1 are thought to rely almost

exclusively on visual inputs (Tong, 2003; Alexander et al., 2023). Indeed, participants

might be unable to differentiate their heading when moving toward unstable landmarks

precisely. It would make decoding more difficult as the extracted brain signal would

differ for the unstable landmark. Even more, a recent computational model developed

by (Yan et al., 2021) investigated how visual information, such as landmarks, could be

included in the HD system. In their study, the authors manipulated the environment

by changing the position of landmarks. They found that the HD signal associated with

unstable cues could be disconnected from the RSC if they were treated as not salient

or did not give information.

In addition, HD signals related to unstable landmarks were found in the thalamus,

hippocampus and EC. Those three regions also have been found in previous findings

to be related to HD signals in rodents (Ranck, 1984; Taube et al., 1990a; Taube, 1995;

Stackman and Taube, 1998; Sargolini et al., 2006) and human studies (Chadwick

et al., 2015; Shine et al., 2016). Surprisingly, we found no HD signal when comparing

directions related to stable landmarks. One hypothesis is that the thalamus could

decode this HD signal using the recapitulation of body-based cues from the learning

phase while they were in immersive VR, also suggested by Shine et al. (2016). Then,
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this signal would be sent to the next part of the HD hierarchical pathway (i.e. from the

thalamus to the hippocampus and to the EC (Taube, 2007)). Moreover, we

segmented the hippocampus and found that the presubiculum could decode both

directions when moving towards stable or unstable landmarks. This result could be

evidence that the signal from the RSC (coding for the stable landmark) and the

thalamus (coding for the unstable landmark) would merge in this region. This would

align with the current state of the literature describing the structure and connection

within the HD system (Taube, 2007; Clark and Taube, 2012).

Another important question of the study is whether or not the instability of the

landmark influences the HD signal itself. Our results suggest that HD signals related

to unstable landmarks are still integrated within the HD circuit, especially in the end

part of the circuit, such as the presubiculum. Since our participants learned that the

position of the unstable landmarks moved in different orientations, we can

hypothesise that the tuning curve associated with the landmark would also move.

This would suggest that the PFD associated with the landmark would switch, but the

width of the tuning curve would remain the same. To test this hypothesis, we

investigated if correlations between the brain signals when passively moved toward

the same landmark are related to its stability. If there is a higher correlation in the

signal for stable compared to unstable, it could be seen as an approximation that the

signal is more similar for stable landmarks, meaning the PFD would not change. In

contrast, the signal and the PFD would vary across trials due to direction changes for

the unstable landmarks. However, we found no difference in the correlations between

stable and unstable. Hence, another hypothesis is that the PFD would remain the

same, but the width of the tuning curve would get broader and cover the whole range

of instability of the landmark. While this was not tested in the current study, some

studies applied methods that could investigate it (Nau et al., 2020; Koch et al., 2020).
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For example, (Nau et al., 2020) used von Mises distributions of different widths (from

10° to 60°) and convoluted them with the HRF signal. Then, they trained and tested

their model to find which widths of distributions explain the time course of the neural

signal. Future work could use a similar approach to create several width distributions

and see if it correlates with the signal for stable and unstable landmarks.

An important observation that emerged in our study was linked to the behavioural

variability across participants. Indeed, while the measures regarding stable landmarks

were controlled and similar across all participants, answers regarding the unstable

landmarks differed between participants. First, their answers varied when they were

asked to rate the stability of unstable landmarks. Second, not all participants faced

and tried to use the unstable landmark during the pointing in the learning phase.

Third, they showcase a high variability in their pointing during the desktop version

when they only saw a single landmark at a time. Several patterns of answers have

been used between the participants, indicating various strategies. On the one hand,

some participants had a high spread of answers, suggesting that they probably

encoded that the unstable planet could be anywhere. On the other hand, we

observed highly clustered answers which could suggest specific hypotheses. First,

participants might have pointed to an average orientation by sampling all the positions

of the landmarks they experienced while in immersive VR. Then, this position could

either be a random orientation or linked to the cardinal direction, which would produce

a correct answer when pointing to the moon. Lastly, some participants, who knew

their answers did not matter, could repeat the same motor movement they performed

when seeing a stable landmark. However, how this would impact the representation

of the unstable landmark and its relation to the HD signal is still to be determined.

While this question could be addressed in future studies, a few hypotheses can be

already discussed. Indeed, if the spread of answers is related to the internal
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representation of the landmark, participants with clustered answers could have a

stable tuning curve, resulting from the average of direction sampled. On the contrary,

individuals with spread-out answers could have a broader tuning curve and would

repeatedly sample from it and get highly variable responses.

Nevertheless, the fact that participants express such differences could also limit the

study’s findings. Indeed, effect sizes in fMRI studies are usually small and require the

experimenter to create and analyse the data carefully (Geuter et al., 2018). Usually,

fMRI experiments require a comparable behaviour performance among subjects to look

at the desired effect. Hence, while participants rated the stability of the landmarks in a

similar way, intra-individual differences in the other tasks could have led to higher noise

within the fMRI analysis. Therefore, follow-up studies should find a way to address this

issue and find a way to increase the detection power. An example could use a within-

subject design encouraging behavioural variability and thoroughly exploring multiple

metrics from a smaller sample of participants. On the opposite, participant strategies

and performances could be uniform to decrease the variability and have a homogenous

sample of participants.

2.5 Contributions

Matthieu Bernard (MB) completed this project in a collaborative effort with Jonathan

Shine (JS), Asema Hassan (AH), Malika Schaumburg (MS) and ThomasWolbers (TW).

MB, JS and TW conceptualised the work. MB managed the project administration. MB

and AH programmed the VR task. MB and MS acquired the data. MB analysed the

data and visualised the results. TW supervised the work.
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CHAPTER 2: How does human ageing

affect our ability to keep track of

orientation?

3.1 Introduction

Few studies investigated and measured the HD system using behavioural experiments

(Sadalla and Montello, 1989; Warren et al., 1989; Harootonian et al., 2022). Indeed,

HD measure is usually extracted from other types of experiments, such as perspective

taking (Flavell et al., 1981; Parsons, 1987; May et al., 1995; Shelton and McNamara,

1997; Amorim, 2003; Zacks et al., 2003;Waller et al., 2002; May, 2004; Mou et al., 2004)

or path integration (Mittelstaedt and Mittelstaedt, 1980; Wolbers et al., 2007; Chrastil

and Warren, 2021; Qi and Mou, 2023). However, this often leads to a measure of the

HD system confounded with other behavioural measures such as mental rotation or

movement (either passive or active). Therefore, one of the goals of this chapter is to

create a clearer readout of HD.

While many studies looked at the effect of ageing regarding spatial navigation (Lester

et al., 2017), almost no study investigated it from the HD system point of view.

However, much evidence points to a probable HD system dysfunction during ageing.

Studies found some deficit in ageing for navigation tasks related to spatial landmarks

such as path integration, and older participants performed worse than young

participants when making turns (Harris and Wolbers, 2012; Stangl et al., 2018; Segen

et al., 2022). In addition, several studies found deficits in the perception of self-motion

in older participants that lead to a misperception of heading (Warren et al., 1989).

73



From a physiological aspect, previous studies found degradation with age of essential

brain structures belonging to the HD circuit, such as the hippocampus (Burke and

Barnes, 2006; Raz and Rodrigue, 2006), thalamus (Hughes et al., 2012) or RSC

(Moffat et al., 2006). Moreover, degeneration of the vestibular system has been

reported (Neuhauser et al., 2008; Agrawal et al., 2009; Anson and Jeka, 2015) and

could impact downstream functions like the HD circuit. All those deficiencies would

logically lead to issues in the HD system, but previous ageing studies did not

investigate how this system could be impacted. Hence, this study will compare the

performance between young and old adults and assess how ageing affects the HD

system.

A previous HD model hypothesised how increased noise could impair the HD system.

Indeed, one property of the HD model from Zhang (1996) can be interesting to

investigate in the context of ageing: the reduction of the representational space.

Specifically, it is described by the reduction of the possible range of preferred heading

directions. In other terms, a system at the equilibrium with a precise coverage of 360°

would drift to a selected few peaks with time (Figure 25). This effect emerges when

noise is added to the system, making connections between neurons unstable, as it

could happen with ageing. Renart et al. (2003) also described this phenomenon in

another modelling study. The authors investigated working memory function using a

continuous network structure (similar to a ring attractor). They placed “points” in

equally spaced locations around a circle, included noise in the system, and simulated

the model for six seconds. After the simulation ended, the authors found that the

points moved from their origin space to a limited number of clustered positions.

However, those models are theoretical, and knowing if this property translates

behaviourally is essential.
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Figure 25: The reduction of the representational space.
A, when noise is added to the HD system, it is hypothesised that the coverage of activity hills
would be reduced to a limited number of peaks after a delay period. B, this effect is explained by
the pseudo-potential activity having local minima where the peaks would fall into (arrowheads
on the bottom panel).
Figure adapted from Zhang (1996)

Shinder and Taube (2014) tried to shed some light on this by rotating head-fixed rodents

to different orientations andmaintaining them fixed for 30 seconds while recording in the

ADN. The authors found a reduction in firing rate when the animal faced away from their

PFD compared to facing it. They hypothesised that this could be due to increased noise,

making the neuron spiking less predictive of the animal HD. The authors discussed

different hypotheses, as this finding could be due to a drift of the PFD, but they argued

that it was unlikely. However, this study did not investigate ageing, and the reduction

of the representational space may happen only for high noise levels.

Translating this to humans, if the reduction of the representational space is a property

of the HD system that would increase with noise, older participants would have a more

imprecise coverage of the 360° rings. To test this, we developed a task that included a
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20-second delay period before answering, which led to the formulation of two separate

hypotheses. On the one hand, we could observe a clustering of answers after the delay

period since the heading coverage would be reduced to a limited amount of stable

direction, as Zhang (1996) suggested (Figure 26, right panel). On the other hand, if the

drift during the delay is random, there would be an increase in error but not necessarily

a clustering of answers (Figure 26, left panel).

Figure 26: Testing the hypothesis of the reduction of the representational space
with the task.
This hypothesis can be tested by including a delay period in the behavioural task and
investigating if clustering of answers happens, rejecting the null hypothesis.

To answer those hypotheses, we carefully designed a behavioural experiment where

participants used immersive VR to learn the position of a single distant landmark

within a circular arena. Then, participants had to retrieve the position of the landmark

from different orientations with or without a delay period before they answered.

Hence, we predict that older adults would perform worse than young participants

across the rotations. Moreover, the impact of delay should be higher for the older

participants as their system might be more noisy, and the drift during delay would be

faster than for young participants.
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3.2 Materials and Methods

3.2.1 Participants

Thirty healthy young adults aged between 18 and 30 years (23.77 ± 3.20, female

n=17) and thirty healthy older adults aged between 60 and 80 years (68.31 ± 5.58,

female = 15) participated in the study. Participants were fluent in German, did not

report physical or mental disorders and were not colourblind. The experiment was

approved by the local ethics committee, and all research was performed in

accordance with relevant guidelines and regulations. Written informed consent was

obtained from each participant before starting the experiment. Participants were

compensated financially for their participation. One older participant was excluded

due to an incomplete dataset.

3.2.2 Experimental design and procedure

Every participant came on two consecutive days. On the first day, participants

performed three different colour tests (Ishihara test, colour arrangement and colour

matching) to verify that they were not colourblind and to assess their colour

perception. Then, participants performed the learning task in immersive VR using a

HMD followed by the testing task (description in detail below). Each day, participants

performed two blocks of the testing task with a break in the middle. After each block,

they completed a task where they needed to place the learned landmark. Participants

returned on the second day to repeat the learning task and two new blocks of the

testing task. During the entire experiment, participants wore a HTC Vive HMD with a

wireless adapter and could actively walk in a space of 5 by 5 metres without

constraint.
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3.2.3 Environment

The virtual environment was created using the Unity software (version: 2019.3.0f6).

The ground was made of a grass texture without any visible pattern, and the skybox

also did not have a specific pattern. In addition, a circular arena with a diameter of 100

virtual meters (vm) surrounded the participant with a height of 4.5 vm (Figure 27). The

distance between the cylinder and the participant was far enough, so the participant

could not reach it. The texture applied to the cylinder was a colour gradient with the

different colours of the rainbow (Figure 27). Furthermore, a large black rectangle acting

as a distant landmark with a width of 34.8 vmwas placed on the other side of the cylinder

and centred at the position of 0°. The landmark covered 10° of the participant’s field

of view when they directly faced it from the centre of the environment. Its position was

constant across the whole experiment and between participants.

Figure 27: Virtual environment used in immersive VR.
A, bird-eye view of the environment composed of a distant landmark and a circular arena. B,
view of the participant when using the HMD in VR. C, colour gradient mapped into the circular
arena. D, participant wearing the wireless headset and performing the task.
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3.2.4 Learning task

The goal of the task was to learn the position of the landmark, and participants had up

to 100 trials to remember the correct position. For each trial, participants walked to a

random starting location indicated by a blue circle on the ground. Upon stepping on it,

the arena and the landmark disappeared. Then, a 3D arrow appeared in front of them,

prompting the participants to rotate either left or right by a fixed amount. The amount

was controlled to be either small (50°), medium (105°) or large (160°). After making

the rotation, participants heard an auditory cue and saw a text asking them to answer

immediately. We added the auditory cue tone to ensure older participants would not

overturn and stop at the correct orientation. To answer, participants were instructed to

rotate physically to face back the position of the landmark. After giving their answers,

participants received feedback in the form of smileys shown in front of them. Feedback

was calculated using the absolute angular error computing the difference between the

landmark’s actual position and the participant’s facing direction when he answered.

They had either a red (if the error was over 45°), orange (error between 45° and 20°),

yellow (error between 20° and 8°) or green smiley (error below 8°). To complete the

learning, participants had to pass a threshold calculated by taking the average of the

last five angular errors. If the average was below 8°, participants passed the learning

phase and could proceed to the testing task. If not, they continued the learning until

they succeeded or reached the limit of 100 trials. Every participant in this analysis

passed the learning before the 100-trial threshold. A schematic of the task can be seen

in Figure 28.

CHAPTER 2: How does human ageing affect our ability to keep track of orientation? 79



Figure 28: Design of the learning task with a trial example.
Participants could see both the arena and the landmark when the environment was present.
1, participants walked to the starting location indicated by a blue circle on the ground. 2, they
rotated by following an arrow presented in front of them. 3, they physically rotated back to face
the landmark. 4, they received feedback, and another trial would start.

3.2.5 Testing task

The testing task was done in the same environment, with the only difference being that

the landmark was not visible, only the arena. Participants started a trial by walking to

a random location indicated again by a blue circle on the ground. Upon reaching it, a

3D arrow asked the participant to rotate until they reached the correct facing direction

for the start of the trial. Next, they decided when to press the trigger button of the

controller to start the first turn. The arena disappeared when they pressed the trigger,

and another 3D arrow made participants rotate left or right by a controlled amount,

similar to the learning task. After rotating, a delay of 20 seconds happened for half of
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the trials. During this delay, participants were asked to perform a backward counting

task with steps of 2, with a starting number generated randomly between 90 and 110.

The goal was to distract the participants during the delay period and prevent them

from rehearsing their answers. The experimenter ensured that the participants were

counting correctly during the whole task. After the delay or no delay, participants had to

answer by physically rotating to face the landmark, similar to the learning task. When

participants answered, no feedback was given, the arena appeared again, and another

trial started. A schematic of the task can be seen in Figure 29.

Figure 29: Design of the testing task with a trial example.
Participants could only see the arena during this task. 1, participants walked to the starting
location indicated by a blue circle on the ground. 2, they rotated by following an arrow presented
in front of them. 3, the delay condition occurred, and participants either performed the distractor
task for 20 seconds or answered immediately. 4, they physically rotated back to face the
landmark. In the analysis, we investigated their answer (black) against the expected rotation to
the landmark (orange).

CHAPTER 2: How does human ageing affect our ability to keep track of orientation? 81



The trial sequence was created prior to the start of the experiment and was composed

of 48 unique trials, each repeated three times. For the unique trials, they were made

using the different rotations (small, medium and large), the delay conditions (0 or 20

seconds) and the expected amount of rotation needed to face the landmark (0°, 45°,

90°, 135°, 180°, -135°, -90°, -45°). All 144 trials were separated into four blocks of 36

trials, with 72 trials done per day. Finally, at the start of each block, participants could

see the correct position of the landmark for as long as they desired.

3.2.6 Placement of the tower task

At the end of each block, participants were asked to place the landmark within the

environment. The goal was to get a direct measure of the memory of the landmark for

each participant. Then, we could ensure that they memorised correctly its position

across the experiment. During the task, they only saw the arena and placed the

landmark by facing the correct position and pressing the trigger button. Then, the

landmark appeared at the position currently faced by the participant. Next,

participants could refine their answers by using the controller to move its position

either left or right. Lastly, they locked their answer and continued the testing task.

3.2.7 Data reduction and statistical analysis

Data reduction relied on Python (version: 3.7.4) and statistical analysis on R (version:

4.1.3). The statistical analysis involved repeated-measures ANOVAs and t-tests. For

learning, we extracted the number of trials completed between the two age groups for

both days from the datasets. The placement of the landmark was also taken for each

participant.
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For the testing task, the absolute angular error was calculated similarly to the learning

task, i.e., the difference between the landmark’s actual position and the participant’s

facing direction when answering. However, we corrected those values by taking the

position of the landmark placed by the participant and using it as the reference when

calculating the angular error. In addition, we took the heading of the participant during

the delay period and calculated its circular standard deviation. The goal was to

assess if participants moved their heads during the delay period. Moreover, the

angular error for the trials where participants faced the landmark before answering

was further analysed. Since the correct answers for those trials would be to answer

without rotating, the analysis focused on the impact of delay and first turn. We look at

whether participants moved by assessing the rotation performed by the participant.

For each trial, we checked if the movement was below 5° and calculated the

percentage of time when the participant moved. We decided to take 5° as the

threshold since participants make slight head movements, as seen during the delay

period. Lastly, to investigate if there was a clustering of answers, the raw heading of

the participant after answering was extracted, and the circular standard deviation was

calculated across the different repetitions of the unique trials.

Finally, the scores for each control colour test were calculated for each participant.

For the Ishihara test, the percentage of successful trials was computed. For the test

assessing colour arrangement (i.e. perception of gradient over similar colour), the

number of trials to get a perfect answer was average for each arrangement. Then,

those values were averaged to create a percentage of accuracy. For the

colour-matching tests, the mean value over the trials of each difficulty (easy, medium

and hard) was calculated. Next, those values were either average to create an overall

colour-matching score or separated to get a score for each difficulty.
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3.3 Results

Both age groups learned the position of the landmark.

First, we computed t-tests to compare the performance in the colour tests between

the two age groups. The goal was to ensure that our results were not confounded with

differences in colour perception. For the Ishihara tests, we found no significant

difference (t(54.99)=0.23, p=0.81) between older (mean=98.38 ± 3.60) and young

(mean=98.17 ± 3.14). For the arrangement test, a significant difference was found

(t(32.13)=-3.31, p=0.002) between older (mean=96.30 ± 4.17) and young

(mean=98.96 ± 1.14). This difference was most likely due to an older participant who

performed at around 80%. Lastly, a significant difference was found in the

colour-matching test when we included every difficulty (t(40.77)=3.25, p=0.002).

However, the colour gradient mapped onto the circular arena had bright colours and

was more related to the easy difficulty of the task. We ran another t-test including only

the easy difficulty, and we observed no difference (t(54.04)=-0.87, p=0.39) between

older (mean=32.48 ± 9.91) and young participants (mean=29.96 ± 12.01).

All participants could learn the landmark’s position on both days for both age groups

(Figure 30). When running an ANOVA, we found a main effect of age (F(1,57)=12.39,

p<0.001) and day (F(1,57)=9.79, p=0.003), but no interaction (F(1,57)=1.04, p=0.31).

Additional t-tests showed significant differences between young and older participants

on day 1 (t(54.19)= -3.22, p=0.002) and day 2 (t(51.61)= -2.22, p=0.03). In addition,

older participants learned significantly faster on the second day than the first (t(28)=-

2.65, p=0.01). This was not the case for young participants (t(29)=-1.68, p=0.10).
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Figure 30: Learning performance across days.
Number of learning trials completed before passing the threshold for young (YA) and older
(OA) adults on Day 1 and Day 2. Violin plots show the distribution of data. The dots represent
individual data, and the diamond is the average across individuals. * p<0.05; ** p<0.01.

Moreover, we investigated whether participants placed the landmark close to the real

position for each block (Figure 31). An ANOVA show a main effect for days

(F(1,57)=5.69, p=0.02) but not for age groups (F(1,57)=0.20, p=0.88) nor an

interaction effect (F(1,57)=1.30, p=0.26). In addition, subsequent t-tests showed that

older participants were more accurate when placing the landmark on the second day

(t(28)=-2.18, p=0.04). Young participants did not show such differences (t(29)=-1.05,

p=0.30).
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Figure 31: Landmark placement between days
A, placement of the landmark by young adults on Day 1 (left) and Day 2 (right). B, placement
of the landmark by older adults on Day 1 (left) and Day 2 (right). The black bar represents the
correct position of the landmark, and the coloured bars represent the individual data.

Older participants performed worst on average and both age groups were

negatively impacted by the delay condition.

The experiment was performed for two consecutive days. We checked if we could

combine the data across the two days by taking the average corrected angular error

and comparing it between the two days (Figure 32A). An ANOVA showed a main effect

of age (F(1,57)=9.83, p=0.003) but no main effect of days (F(1,57)=2.11, p=0.15) nor

interaction (F(1,57)=0.0002, p=0.99). This result would suggest that the performance

was not different across the testing days and allow subsequent analyses to look at the

dataset as a whole. In addition, another control was performed to check if participants

were moving their heads during the delay phase (Figure 32B). We found that the range
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of motion of young participants (mean=2.03° ± 5.26°) was not different compared to

older participants (mean=1.67° ± 2.97°) (t(53.27)=1.42; p=0.16).

Figure 32: Control measures for equal performance between testing days and
head movement during the delay phase.
A, Corrected angular errors separated between age groups and testing days. B, the circular
standard deviation of the head movement performed by the participants during the delay period.
OA, older adults; YA, young adults.

To assess the effect of age and delay, we separated the data by the “expected rotation to

the landmark” (Figure 33A), corresponding to the amount of rotation necessary for the

participant to face the landmark. For example, if the expected rotation to the landmark

is 180°, the participants must perform a 180° turn to achieve a perfect answer. Hence, a

first ANOVA found a main effect of age (F(1,57)=9.83, p=0.003), delay (F(1,57)=36.93,

p<0.001) and expected rotation (F(7,399)=4.79, p<0.001). In addition, an interaction

effect between delay and expected rotation was also found (F(7,399)=3.21, p=0.003).

However, we found no interaction between age and delay (F(1,57)=1.12, p=0.29), age
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and expected rotation (F(7,399)=1.64, p=0.12), nor a triple interaction (F(7,399)=1.87,

p=0.072).

Figure 33: Average angular error across delay conditions and age groups.
Average absolute angular errors (coloured bars) for young (YA) and older (OA) adults for the
two delay conditions. The vertical black lines represent the standard error for each bar.

We further analysed the data pattern by considering the different amounts of rotation

in the expected rotation to the landmark. Specifically, we divided the absolute angular

error by its associated expectation rotation value to obtain a ratio (Figure 34A). This

prevented the analysis of the 0° expected rotations, and we conducted a separate

analysis. An ANOVA showed a main effect of delay (F(1,57)=24.34, p<0.001) and

expected rotation (F(7,399)=297.51, p<0.003) but not age (F(1,57)=3.05, p=0.086).

An interaction effect was also found between age and expected rotation

(F(7,399)=2.30, p=0.002) and delay and expected rotation (F(7,399)=22.38, p<0.001)

but not age and delay (F(1,57)=3.64, p=0.06). Lastly, a triple interaction was found

between age, delay and expected rotation (F(7,399)=3.50, p=0.001). Interestingly,

when separating the data by the first turn performed (Figure 34B/C), the influence of

the first turn seemed to be larger for smaller expected rotations such as 45°.
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Figure 34: Ratio of angular error by expected rotation across delay conditions
and age groups.
A, average ratio of the absolute angular errors divided by the associated expected rotation
to the landmark for young and older adults for the two delay conditions. The vertical black
lines represent the standard error for each bar. The average ratio is separated by the first turn
executed for young (B) and older (C) adults after the delay conditions.
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Both age groups were impacted by the 20-second delay when already facing the

correct orientation before answering.

We decided to investigate the particular case when participants were already facing

the landmark before answering (i.e. expected rotation of 0°). Indeed, in this condition,

the main impact of the error should come from either the first turn or the delay period.

When looking at the distribution of participant answers across delay conditions

(Figure 35A/B), we observed an increase in the spread of answers both for young

(t(29)=2.83; p=0.008) and older (t(28)=3.09; p=0.004) participants after the 20-second

delay period. In addition, we looked at the amount of rotation performed by

participants across delay conditions (Figure 35C). The goal was to check if

participants moved as a perfect answer required participants to maintain their

orientation. The results from an ANOVA indicated a main effect of delay

(F(1,57)=14.82; p<0.001) but not age (F(1,57)=0.0008; p=0.98) nor an interaction

(F(1,57)=0.91; p=0.34). Paired t-tests show a higher amount of rotation after the delay

period for young (t(29)=-3.12; p=0.004) and older (t(28)=-2.29; p=0.03).
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Figure 35: Testing results when already facing the landmark prior to answering.
Each arrow represents the average facing answer for (A) young and (B) older participants for
(left) no delay and (right) 20s delay conditions. The length of the arrow represents the inverse
circular standard deviation with a shorter length describing a larger standard deviation. C,
average rotation performed between age groups and delay conditions. Violin plots show the
distribution of data. The dots represent individual data, and the diamond is the average across
individuals. The horizontal black line represents the threshold of ”Fixed heading” (i.e. 5°). D,
bars represent the percentage of trials where participants did not move across age groups and
delay conditions. Data were separated by the first turn prior to the delay condition. * p<0.05; **
p<0.01.
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Lastly, we checked whether participants would tend not to move for those trials

(Figure 35D). We calculated the percentage of time participants moved less than 5°

as a quantitative way to assess fixed answers (horizontal black line in Figure 35C).

The reason for not only counting trials with 0° rotations is that participants might move

their heads without noticing, as shown during the delay period (Figure 32B).

Separating those results by the first turns, an ANOVA showed a main effect of age

(F(1,57)=4.18; p=0.045), delay (F(1,57)=10.54; p=0.002) and first turn

(F(2,114)=11.08; p<0.001). An interaction effect between age and delay

(F(1,57)=4.34; p=0.042) and delay and first turn (F(2,114)=5.54; p=0.005) was also

found. In addition, averaging the results across the first turns showed a significant

decrease in the percentage of fixed heading after the delay period for older

participants (t(28)=2.93; p=0.007). We did not find a difference for young participants

(t(29)=1.32; p=0.20). Even more, there was a lower percentage of fixed heading for

young participants compared to older when there was no delay period (t(44.86)=-2.57;

p=0.013) but not for the twenty seconds delay (t(48.20)=0.61; p=0.55). Those results

indicated that the delay condition impacted more older participants than young ones

and that the signal drifted to more distant orientations.

The delay period increased the errors and no specific clustering of answers was

found.

We tested the reduction of the representational space hypothesis. This hypothesis

stated that the range of directions would be reduced to a selected few orientations

with noise and delay. Therefore, the analysis aimed to assess whether the delay

period led to increased clustering of answers corresponding to the only orientations

available to the participants (Figure 36A). To test it, the circular standard deviation

was computed across the answers given by participants, and an ANOVA showed a
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main effect of age (F(1,57)=16.93; p<0.001), delay (F(1,57)=11.52; p=0.001) and

expected rotation (F(7,399)=2.56; p=0.014). An interaction was found between delay

and expected rotation (F(7,399)=2.62; p=0.012) but not for age and delay

(F(1,57)=0.12; p=0.73) nor age and expected rotation (F(7,399)=0.52; p=0.82).

However, when looking at the data pattern between the delay conditions, we did not

find a systematic decrease in the circular standard deviation after a delay period,

invalidating the hypothesis of a clustering of answers. On the contrary, the pattern

indicated an increase in the circular standard deviation, suggesting a higher spread of

answers. This was also the case when separating the trials over the first turns

(Figure 36B-D).
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Figure 36: Checking the reduction of the representational space hypothesis.
To check for potential clustering of answers, the circular standard deviation was calculated
for young (YA) and older (OA) adults for the two delay conditions. The data were either (A)
combined or separated by the first turn (B, C, D) performed. The bars represent the average
circular standard deviation. The black line represents the standard error of the distribution.

3.4 Discussion

The chapter aimed to investigate the ageing effect on the HD system. To check our

hypotheses, we designed a new experiment where participants first learned a distant

landmark and were tested by facing it after being rotated to different orientations. Our
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results found that the pattern of angular errors was proportionally higher for smaller

expected rotations to the landmark (45°) than for large ones (180°). The first turn

influenced only the 45° and 90° turns, where participants performed worst for

increased in first turns. In addition, older participants performed generally worse than

young participants as they made larger angular errors overall. Both age groups were

negatively impacted by the delay effect, especially for the particular case of 0°

expected rotations. However, we did not find any specific clustering of answers after

the delay, as suggested by the reduction of the representational space hypothesis

from Zhang (1996). We found that both young and older participants had a higher

spread of answers after the delay period. This observation suggested that their

heading perception drifted randomly to another orientation and not to the same ones

as first suggested. Those results are in accordance with the current literature that

suggests a deficit in spatial navigation during ageing (Lester et al., 2017). Moreover,

the effect seen is likely not due to a deficit in learning as both age groups performed

extensive learning and had to pass a strict threshold of 8°. Debrief questionnaires

indicated that participants remembered the position of the landmark at any time during

the testing when the colour gradient was present. We also did not find any age

difference when participants had to place back the landmark after performing a block

of trials.

To obtain a precise answer from the participant, we calculated their absolute angular

error in relation to the landmark they placed during each day. Separating the trials

by the expected rotation to the landmark suggested that higher angular errors occur

for larger rotations (e.g. 180°), especially for older adults. However, this measure did

not consider that the amount to rotate was variable due to the different orientations

faced prior to answering. Therefore, a separate measure was computed by dividing

the angular errors via their associated expected rotation, giving a comparable metric.
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We observed that greater errors would come from smaller expected rotation (i.e. 45°).

Furthermore, those trials could be separated by the first turn executed, and its influence

was observed only for the smaller expected rotation, where larger first turns led to

increased errors. Taken together, those results suggest that the main source of errors

for larger expected rotation (from 90° to 180°) is the accumulation of noise during the

execution of the answers. For the smaller expected rotation trials (45°), the error might

come from the increase of noise during the completion of the first turn. We argue that

participants took longer to answer for those larger expected rotations as the distance

was greater. Then, the noise from the velocity integration could accumulate longer

than the 45° expected rotations during the answer phase. Previous studies on motion

perception in humans found similar results where participants had a systematic bias in

their velocity integration during passive translation (Crane, 2012; Zanchi et al., 2022).

For active translation, path integration tasks also showed similar results where noise

accumulation played a significant role in the error (Stangl et al., 2020).

The reduction of the representational space hypothesis was tested by introducing a

delay period before participants answered. The goal was to check whether the delay

would lead to a clustering of answers, as hypothesised by Zhang (1996) or to an

increase of noise in the HD signal (Shinder and Taube, 2014). Our results showed

that the angular errors increased after the delay period across the expected rotations.

To further differentiate between the two possible hypotheses, we looked at the

clustering of answers after the delay but did not find any systematic clustering for both

age groups. This observation would suggest that during the delay period, the HD

activity bump could drift slowly randomly. In addition, when investigating the

difference between the two age groups, the largest effects are found for the small

expected rotations such as 45° and 0°. In fact, for the trials when the expected

rotation was equal to 0°, participants were already facing the landmark before
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answering and should not move. Those trials removed a potential effect of the

translation to perform as a source of noise, and only the first turn and the delay period

played a role. We found that both age groups tended to move more after the delay

period. This result suggests that there is an accumulation of noise during the delay

and the HD system might become more noisy, leading to a faster drift of the HD

bump. In addition, we separated those trials by the first turn executed prior. We

observed for both age groups that lower turns (e.g. 50°) led to a higher chance for the

participant to not move during the no-delay condition. This suggests that the HD

system was sensitive to the noise produced by the first turn, similar to the results

found for the 45° expected rotations.

During the debrief questionnaire, we asked participants to explain their strategy to

solve the task. Then, it was possible to separate those answers into two strategies.

On the one hand, some participants only used idiothetic cues (i.e. body-based). On

the other hand, participants explained that they formed a mental image of the colour

gradient and imagined the colour they were facing while rotating. This strategy can be

seen as approximating allothetic cues, even though it required some vestibular input

from the rotation. In addition, some participants described using a mixture of both

strategies. Interestingly, most older participants reported that they only used the

body-based strategy, whereas young participants were more flexible and used both

strategies. Those results found for young participants align with previous works

looking at cue combinations where young adults usually combine both idiothetic and

allothetic optimally (Chen et al., 2017). For older adults, previous studies found a

deficit in the multisensory integration of sensory cues (Bates and Wolbers, 2014;

Colombo et al., 2017). For example, Bates and Wolbers (2014) tested young and

older participants in a homing task. The authors used three conditions where

participants could use the landmarks to answer, body-based cues or a combination of

CHAPTER 2: How does human ageing affect our ability to keep track of orientation? 97



both cue types. Their results showed that older participants could combine both cues

to increase their performance, but the Bayesian integration was sub-optimal for

landmarks. This observation can be related to the evidence that older participants

have a deficit in their allocentric reference frame (Wiener et al., 2013; Bécu et al.,

2023). In contrast, their egocentric reference frame seems less impacted (Bian and

Andersen, 2013). Those evidences could be a reason why older participants in our

study did not use the colour gradient during the rotations. They mostly used it after

answering to reset their heading toward the position of the landmark. However, our

task did not explicitly test those hypotheses within the task and only got it from the

written feedback from participants.

Lastly, the design of the experiment was created to be accompanied by a modelling

approach. The aim was to understand better the neural mechanisms that could

explain the observed performance deficits in older adults. In the next chapter, we

developed a computational model based on established neural network models of the

HD system. We developed it to investigate ageing by including different sources of

noise. In addition, the behavioural task was implemented within the model and by

modifying the noise values, we tried to explain the behavioural results.

3.5 Contributions

Matthieu Bernard (MB) completed this project in a collaborative effort with Malika

Schaumburg (MS) and Thomas Wolbers (TW). MB and TW conceptualised the work.

MB managed the project administration. MB programmed the VR task. MB and MS

acquired the data. MB analysed the data and visualised the results. TW supervised

the work.
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CHAPTER 3: A computational

modelling approach to characterise

age-related changes

in the HD circuit.

4.1 Introduction

Several models investigating the properties of the HD system have been proposed

throughout the years (McNaughton et al., 1991; Skaggs et al., 1995; Zhang, 1996;

Byrne et al., 2007; Page et al., 2014; Bicanski and Burgess, 2016; Page and Jeffery,

2018; Yan et al., 2021). The majority replicated the properties found in the rodent

(for review, see Taube (2007)) and the insect literature (Seelig and Jayaraman, 2015;

Green et al., 2017; Kim et al., 2017). In contrast, others tried to link them to other

spatial navigation features, such as cue combination (Harootonian et al., 2022) or path

integration (Castegnaro et al., 2023). However, none of these models investigated how

ageing would impact the HD system. A common way to model ageing is to increase the

amount of noise within the model or delete neurons. Zhang’s model (1996) investigated

the impact of noise in the system, but deleting part of a ring attractor with recurrent

connections was detrimental to its functioning. Therefore, it is essential to define those

pitfalls and create a model that can successfully explore the effects of ageing. In his

seminal work, Marr (1982) defined three levels of analysis to understand information-

processing processes. First, the computation level defines what the system is doing. In

our case, the HD systemmeasures the animal’s facing direction. Second, the algorithm
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level asks what processes the HD system employs to create the heading representation

in the brain. Previous papers suggest the ring attractor network to be a good candidate

(Clark and Taube, 2012; Knierim and Zhang, 2012). Third, the implementation level

illustrates how the HD system is implemented in the brain. For this study, we had to

make hypotheses on this implementation level to determine how ageing affects the HD

system.

Physiological changes such as synaptic changes (Morrison and Baxter, 2012), loss

of cerebral volume (Burke and Barnes, 2006; Raz and Rodrigue, 2006; Moffat et al.,

2006; Hughes et al., 2012), or deficiency in the vestibular system (Neuhauser et al.,

2008; Agrawal et al., 2009; Anson and Jeka, 2015) happen during the ageing of the

brain. All those factors could lead to defects within the HD network, and developing

a new model could assess their relative contribution. For example, age-dependent

synapse changes can bemodelled as noisy connections or disconnections by changing

the weights between neurons in the model. Removing neurons from the network could

approximate losses of cerebral volume. Finally, the HDmodel could integrate vestibular

deficit by increasing the noise level.

The tuning curve generated by the model can be described via several measures to

assess the impact of the noise on the model. The tuning curve’s peak firing rate, its

variance, and the full-width-half-maximum (FWHM) of the tuning curve or the drift

between the real HD and model HD can be recorded anytime during a simulation. All

those measures can assert whether or not different levels of noise influence the

stability and precision of the HD signal. If the tuning curve gets broader and drifts

without rotational inputs, the heading signal will be less precise than a sharper tuning

curve that is more stable with time. Those hypotheses can be compared with the

results found in the experiment from Chapter 2. Indeed, we found differences in
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performances between young and old adults, and a modelling approach could try to

characterise this disparity.

To complete those objectives, this chapter will first create a model expanding on the

previous ones published in the literature. Specifically, it will try to overcome the issues

facing Zhang’smodel (1996) that could not efficiently study ageing. Next, an exploration

of different noise sources will investigate their impact on the shape and behaviour of

the tuning curve. Finally, this study will model the behavioural experiment carried out

during Chapter 2 and examine if it can replicate the results between young and old

adults by changing the noise levels. We end with an outlook on further analyses and

modifications of the model.

4.2 Materials and Methods

4.2.1 The base HD attractor model

Researchers have modelled the HD system using a continuous ring attractor network

in several studies exploring the properties of the system. These models date back to

the seminal work by Zhang (1996), using a single attractor ring. More recently, different

ring architectures were developed to characterise the addition of inputs to the system

(Bicanski and Burgess, 2016; Page and Jeffery, 2018; Yan et al., 2021).

Our model used a 3-ring architecture (Figure 37A) and separated excitatory and

inhibitory connections to follow Dale’s principle that a neuron could not have both

(Eccles, 1976). Lesion studies showed that the generation circuitry would be located

in the LMN (Blair et al., 1998; Bassett et al., 2007; Sharp and Koester, 2008), so we

implemented two rings mutually supporting each other. Those two rings would project

inhibitory connections to a third ring situated in the ADN either on its left side
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(clockwise (CW)) or its right side (counterclockwise (CCW)). The ADN ring would

back-project excitatory connections to those rings. To calculate the neural dynamic,

we used a firing-rate neuron model to model the activation of each neuron u within

each ring as follows:

unew = uold +
dt
τ
k with k = I − w ∗ uother (1)

where the new activation unew was calculated for each time step t and its time

constant τ . The equation input used the previous activity state uold, any additional

current I and the connections to other neurons uother multiplied by a weight w

positive for excitatory or negative for inhibitory. Activation is mapped to the firing rate

with a sigmoid transfer function:

funew(t) =
1

1+e−α(unew−β) (2)

where α and β determine the sigmoid shape. This sigmoid normalises the firing rate to

range from 0 to 1 (Figure 37C).

Connections weights followed a Gaussian distribution (Figure 37D). It was centred for

the excitatory ring and shifted to the right for the CW ring and the left for the CCW

ring. Three individual factors controlled the level of the weights of each ring so their

contributions could be increased or decreased. Since AHV cells (Stackman and

Taube, 1998; Bassett and Taube, 2001) were not explicitly modelled, the activity

packet was translated by changing the inhibitory factors. Indeed, those factors could

be manipulated by increasing the factor in one ring (e.g. CW) and decreasing it in the

other (e.g. CCW). This imbalance between those factors would allow the bump to

translate in the direction where the inhibition is the least (in the example, the CCW
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direction). Then, we fitted incremental changes in inhibitory factors to obtain different

translation speeds. The resulting speed profile of the bump of activity was computed

to obtain the differences in inhibitory factors (ΔFinh) for changes in the angular

head velocity of the agent (Vang ):

∆Finh(t) =
√
a+ b ∗ Vang + c (3)

where parameters a, b and c scaled the function to match the physical head velocity

changes and the rotational speed of the bump.

The activity bump was generated and maintained by sending background drives in all

three rings. The background drive followed a probability mass function similar to a

Poisson distribution. This input is thought to mimic the signal received from the

vestibular system as lesions to the vestibular organs extinguish the HD signal

(Stackman and Taube, 1997; Stackman et al., 2002). In addition, we modelled the

visual input as described in Bicanski and Burgess (2016), where a separate ring had a

one-to-one connection with the excitatory ring (Figure 37B). Those connections

allowed the stabilisation of the signal by sending a small current to the neurons in the

excitatory ring that are associated with the current heading of the agent. This

approach aligned with previous works investigating the importance of vision and

landmarks to keep the HD signal stable over time (Bicanski and Burgess, 2016; Page

and Jeffery, 2018; Yan et al., 2021).

To calculate the HD over the neuron assembly firing rate, we used a similar equation

to Song and Wang (2005):

θ(t) = arctan(
∑N

i risin(ϑi)∑N
i ricos(ϑi)

) (4)
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where θ(t) is the estimated population HD of the neuron assemblyN at time t, r is

the rate value of the neuron i and ϑ is its preferred heading direction. This equation

allowed the model to calculate the HD of the agent during the simulations.

Figure 37: Architecture of the model.
A, the 3-ring structure with one ring sending excitatory connections to 2 separate rings that are
sending back inhibitory connections either to the left (CCW) or right (CCW) side. Background
drive is sent to each ring. B, the visual ring with one-on-one connections to the excitatory HD
ring. Panel adapted from Bicanski and Burgess (2016). C, sigmoid function transforming the
firing rate to a normalised range. D, excitatory (left) and inhibitory (right) weights distributions
for one neuron to the other neurons. For inhibitory weights, blue corresponds to CW, purple to
CCW and black to a combination of both sets of weights.
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Finally, we implemented Zhang (1996) model by using the code from Yan et al. (2021)

to compare it to the one developed in this study. In this continuous attractor network

architecture, neurons had excitatory recurrent connections. The self-connection

maintains the HD signal without external inputs such as the background drive. For

more details about its implementation, see Yan et al. (2021).

Parameters Values for 361nn Values for 721nn

Number of neurons on each ring 361 721

τ 0.04 0.04

dt 0.002 0.002

α 0.7 0.7

β 6 6

a 146.20 1.36

b 47.70 2.49

c -12.09 -1.17

Factor Excitatory 0.45 0.225

Factor Inhibitory CW 1.15 0.575

Factor Inhibitory CCW 1.15 0.575

Factor Feedback 5 5

Background drive Excitatory 28 28

Background drive Inhibitory 0.15 0.15

Table 4.1: Model parameters for the 361 and 721 neurons networks.

4.2.2 Source of noises

We implemented different noise sources to characterise the model and changed their

values before running any simulation. The first source was related to the amount of

noise added within the Gaussian distributions of the weights. The second source was

associated with the background drive. Lastly, we implemented neuron death by
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randomly deleting neurons on the three rings. A dead neuron would lose all its

connections with other neurons and have a firing rate of 0 during the whole simulation.

4.2.3 Modelling of the HD behavioural task

In addition to the basic model, we decided to implement the task participants performed

in the study from Chapter 2. For simplicity, the agent stayed static at the centre of the

environment the whole time. The arena with the colour gradient was achieved by linking

the colours to the visual ring. We hypothesised that the agent could (re)orient itself

when looking at the colours like participants. In addition, the agent knew it was facing

the landmark when the activity bump of the excitatory ring was within 356° to 4° since

every participant learned the position with an accuracy of 8°. The model computed the

agent’s physical heading and the HD of the neuron assembly at every step during a

simulation.

We separated each trial into six different phases (Figure 38). A, the agent fixed the

same heading for one second to allow the realignment between the physical heading

and the activity bump. B, the agent rotated to face the starting orientation. C, the agent

faced the same orientation for one second to let the bump stabilise after the rotation.

D, the arena disappeared, and the participants rotated by a given amount. E, the delay

condition happened where the agent remained stationary for either 20 seconds (the

delay condition) or 1 second (the no-delay condition). F, the agent rotated until the

activity bump was aligned with the landmark. Then, the agent’s physical heading was

recorded to measure the absolute angular error of the trial.

106 CHAPTER 3: A computational modelling approach to characterise age-related changes
in the HD circuit.



Figure 38: Task phases performed by the agent during a trial.
The virtual agent followed six phases to replicate the trials participants performed in Chapter
2. The agent always knew the position of the landmark (grey square) and could see the arena
(coloured ring) during phases A, B and C. During those phases, the agent knew its rotation from
visual ring inputs.

During phases A, B and C, the excitatory ring received visual inputs since the arena

with the colour gradient was present in the task. The arena was absent for phases D,

E and F, so the excitatory ring did not receive visual inputs. However, it maintained

one-to-one connections with the visual ring to update its orientation to follow the HD

bump of the excitatory ring. The goal was to have the agent estimate the colour it was

facing, similar to the strategy reported by participants in Chapter 2.

Each agent had a trial sequence that used 30 unique trials with the following

combination of expected amounts to answer: 0°, 40°, 90°, 135° and 180°, delay: 0s

and 20s and first turn: 50°, 105° and 160°. Every trial was done two times for a total of

60 trials. The order of the trials was shuffled across agents. Importantly, the model did

not reset the rate of each ring between two consecutive trials, and the starting heading
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of the agent was the last one from the previous trial. This way, the visual feedback at

the start of the trial had to reset the agent heading with the HD ring heading.

In addition, we wanted to match the agent velocities to the ones produced by the

participant from the behavioural experiment. We created two distributions by

calculating the velocity when participants performed the first turn (phase D) and while

answering (phase F). Those distributions included both young and older participants.

After calculating those distributions, we removed the 5% most extreme values on

each side of the distributions to avoid outliers (Figure 39A-B). At the start of a trial, the

model randomly picked a value from the two distributions. In addition, during the

answer phase, participants could either rotate back toward the starting orientation (i.e.

at phase C) or continue in the same direction and complete the circle. We computed

the percentage of chance participants used one strategy over the other, and each

agent followed one of those percentages (Figure 39C).

Figure 39: Participant distributions used in the model.
Head velocity distributions of participants separated by (A) the first turn performed and (B) the
expected rotation to the landmark. C, percentage of time participants performed a full circle
while answering.
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4.2.4 Processing and Analysis of the Simulations

We investigated if the base model could follow heading trajectories. The goal was to

test whether this speed profile allowed the model to follow a trajectory when changes

in velocity occurred. To test this, we sampled trajectories of four minutes from four

participants, two young and two old, during the learning task. Then, we calculated the

cumulative drift occurring during the trajectory by computing the difference between

the agent’s physical HD and the activity bump’s HD. We ran trajectories under two

conditions, with and without visual input. We also compared when the model had no

noise or a small amount of weight noise (2.5%).

Next, we tested the impact of neuron death in Zhang’s model and ours. Indeed, Zhang

(1996) discussed the impact of noise on weights but not neuron death in his study. We

included a single dead neuron for Zhang’s model and 1% for our model while creating

a constant small velocity input. Each simulation ran until the HD bump completed an

entire loop or until the bump flattened. Then, we plotted the trajectory of the bump over

time while checking when it was passing near a dead neuron.

In addition, the sources of noise were systematically characterised across a suitable

parameter range (Table 4.2). Each simulation lasted one minute, and the model

received no velocity or visual input. Then, we extracted several measures from those

simulations: the excitatory tuning curve’s shape and the activity bump’s HD, FWHM

and peak rate over time. We also ran 50 simulations with a more comprehensive set

of noise levels to explore their influence on the accumulation of drift, FWHM and peak

rate in more detail (Yellow cells in Table 4.2). We assessed the presence of drift by

looking at three measures: the accumulation of drift between every step, either signed

or absolute values, and the maximum separation between the initial and final HD. For
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the BG, due to the erratic bump shape, a Gaussian function was fitted on top of the

bump to calculate the FWHM and peak rate on the fitted curve.

Weight noise Background noise Neuron death

0 0 0

5 10 5

10 20 10

15 30 15

20 40 20

25 50 25

30 60 30

Table 4.2: Percentage of noise for individual static simulation (rows) for each type of
noise (columns). White cells, simulation ran only for analysis of the shape of the tuning
curve.

Moreover, a separate analysis investigated neuron death during the behavioural task

simulation. Indeed, we found that with enough neuron death, the network drifted to

reach a stable position and would get stuck in local minima. The activity bump could

move and continue its translation only with a substantial velocity input into the

network. During the behavioural task, the velocity distribution differed for each

orientation faced by the agent before answering (i.e. rotation to performed,

Figure 39B). On average, 180° orientations had a faster velocity than orientations

such as 45° or 0°. In this analysis, the behavioural task was run using the same first

turn (105°). One hundred agents with damaged ring attractors repeated each

condition three times. The conditions varied the number of neurons in each ring (361

or 721) and the neuron’s death (1% to 15% for 361 neurons and 1% to 30% for 721

neurons). The velocity during the answer phase varied by calculating the average

value and decreasing or increasing the value by adding one or two standard

deviations. For each trial, the simulation ran until an answer was given by the agent or
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until the activity bump got stuck in local minima at a position while answering. Then,

we computed the probability of trials getting stuck in local minima across conditions.

Finally, we investigated the impact of the noise sources on the performance during

the behavioural task. For each set of noise (Table 4.3), 30 agents performed the task

and used the modified trial sequence while the individual noise levels were modified

(Figure 38). Then, we extracted several measures for the different phases of the trials.

We defined the angular error as the angular difference between the HD of the agent and

the one of the bump. Those values were extracted at the end of each phase (Figure 38).

In addition, we calculated the rate of change by computing the velocity of the HD of the

agent and the bump. Then, the values were subtracted from each other and averaged

for each phase. The final rate of change values would either be positive if the agent’s

velocity was faster or negative when the velocity of the bump was faster on average.

Weight noise Background noise Neuron death

0 0 0

5 5 1

10 10 3

15 15 5

20 20 7

25 25 10

30 50 13

Table 4.3: Percentage of noise for individual task simulation (rows) for each type of
noise (columns).
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4.3 Results

The model can follow trajectories from human participants.

After creating the model, we tested whether the HD of the excitatory bump followed

changes in velocity and direction similar to participants. We extracted movement

trajectories of two minutes from four participants (two young and two older). Our

model followed trajectories without drift when the visual feedback was present

(Figure 40). However, when removing the visual feedback, drift accumulated between

the real HD and the HD of the attractor.
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Figure 40: Human trajectory followed by the model and measure of drift.
A, velocity profile of four trajectories taken from participant data (2 young and 2 older adults).
B-C, trajectories performed by the agent when visual feedback was present (B) or not (C). The
red lines correspond to the real heading trajectory of the agent and the blue lines correspond
to the HD bump. D, cumulative sum of drift between the agent heading and the bump heading.
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Zhang’s model cannot accommodate neuron death.

One way to model the effects of ageing is to increase the noise level in the model. We

included three distinct sources of noise: weights, neurons and background drive. In his

seminal study, Zhang’s model only investigated the effect of noise on the weights but

did not assess the impact of neuron death (Zhang, 1996). Therefore, we replicated his

model, removed a single neuron from the attractor (red line in Figure 41A), and let the

bump move in one direction. We found that when the bump reached the dead neuron,

the bump would collapse, and the signal would flatten (Figure 41A). This result provided

evidence that Zhang’s attractor stopped functioning when a minor disruption occurred.

We performed the same simulation with our model while having 1% of neuron death

(red lines in Figure 41B). The simulation showed that the bump completed a full circle

by passing through the dead neurons without getting flat (Figure 41B).
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Figure 41: Simulation of Zhang and newmodel with the addition of neuron death.
A, simulation of Zhang attractor model after removing a single neuron (red line) and letting
the bump move in one direction. Upon reaching the dead neuron, the bump collapsed. B,
simulation of the model developed in this chapter after adding 1% neuron death (red lines).
The bump passed all dead neurons and maintained its shape.

CHAPTER 3: A computational modelling approach to characterise age-related changes
in the HD circuit.

115



The noise types influence differently the shape and stability of the HD bump.

Next, we looked at the influence of individual noise on the shape of the bump when

the state was at rest for simulations of two minutes. For the noise of the weights,

we found a fuzzier bump and the heading would move to another position after a few

seconds. (Figure 42A). There was no consistent drift for the background drive, but we

observed a fuzzier bump leading to the HD, FWHM and peak to jitter (Figure 42B). For

the neuron death, the shape of the bump got wider (from 47 for 5% to 68 for 20%), and

we noticed that it moved to another position after a few seconds, similar to weight noise

(Figure 42C).
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Figure 42: Influence of noise levels on the shape of the tuning curve.
Left to right, tuning curves from the excitatory ring for different noise levels after 1 minute
of simulation; the HD over time; the FWHM over time; and the peak rate over time. These
measures were calculated for (A) noise on the weights, (B) noise in the background drive and
(C) neuron death. Simulations lasted 2 minutes, and no velocity input was given.
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To characterise those changes further, we ran 50 simulations to obtain a broader range

of noise levels. Each simulation lasted two minutes and did not include velocity input.

For weight noise, the cumulative sum of changes indicated a random drift to a stable

position (Figure 43A). The FWHM stayed the same but the peak rate reduced for higher

weight noise values (Figure 43A). Next, we increased the levels of background drive

noise and found that the absolute cumulative sum was greater than the step cumulative

sum (Figure 43B).We also observed a larger amplitude in themaximum separation over

higher noise levels (Figure 43B). This result is linked to the erratic shape and signal

seen in Figure 43B. Finally, when increasing the percentage of neuron death, we did

not find a specific pattern of change in HDs (Figure 43C). However, we found the same

pattern of random drift to a stable position as weight noise, as seen in Figure 43C. In

addition, we noticed a significant increase in FWHM for large neuron death percentage

(Figure 43C).
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Figure 43: Influence of noise levels on the behaviour of the HD model.
Left to right, the cumulative sum of HD changes over simulation steps; the absolute cumulative
sum of HD changes; the separation from the initial HD and the final HD; the average FWHM;
the average peak rate. These measures were calculated for (A) noise on the weights, (B) noise
in the background drive and (C) neuron death. Simulations lasted 2 minutes, and no velocity
input was given. The black lines represent the standard error.
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Neuron death reduces the responsiveness of the HD network at low velocities.

After looking at the model from a static perspective, we investigated its behaviour while

it performed the behavioural task from Chapter 2. The agent completed trials similar

to actual participants, with rotations with and without visual feedback and answering to

face the learned direction (for more details, see the Methods section from Chapters 2

and 3). The static simulation results suggested that the bump started tomove and reach

a stable position with increased neuron death. Indeed, the attractor was not continuous

anymore, and the initial HD settled into a local energy minimum of the network (Brody

et al., 2003). Therefore, we explored if it happened during the task simulation where

velocity inputs are present. We quantified this measure by calculating the probability

of the bump getting stuck in local minima and not moving for at least one second while

a velocity input was present (i.e. during the answer phase).

Our results indicated that the probability of getting stuck in local minima increased when

incrementing neuron death (Figure 44A). This effect was attenuated when we added

more neurons within each attractor and kept the percentage of dead neurons constant

(Figure 44A). By doubling the number of neurons in the network (from 361 to 721),

we obtained the same distribution and range of values when the percentage of neuron

death doubled (maximum from 15% for 361 to 30% for 721, Figure 44A).
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Figure 44: Probability for the attractor to get stuck in local minima when
performing the task.
A, average probability for the attractor with (left) 361 and (right) 721 neurons separated by
expected rotation to the landmark. The maximal percentage of neuron death was set to 15%
for 361 and 30% for 721 neurons. B, average probability for the attractor with 361 neurons
separated by expected rotation to the landmark. The different colours represent the velocity
used during the answer phase. Neuron death was set to (top left) 1%, (top right) 5%, (bottom
left) 10% and (bottom right) 15%. The black lines represent the standard error.
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Finally, we found a link between the probability of getting stuck in local minima and the

velocity input received. Indeed, the mean velocity value across the rotations during the

answer phase differed. For example, this value was larger for rotation at 180° than for

45° (see Figure 39B). Hence, we observed an inverse bell-shape distribution where the

probability was lower for 180° rotation and increased for 45° (Figure 44B). In addition,

we also varied the velocity values for the rotation performed and found that for slower

velocity, the probability of getting stuck in local minimawas higher than for faster velocity

(Figure 44B). This observation was the same for the different levels of neuron death

percentage (Figure 44B).

The noise types influence differently the agent performance on the behavioural

task.

Lastly, we tested the effect of individual noise type while the agent performed the

behavioural task. Due to the complexity of a single trial, we took timestamps from the

end of the different trial phases (Figure 38). Each trial started with active visual

feedback to allow the bump to reset to the same heading as the agent’s (Phase A,

timestamps -1 to 0). Next, the agent rotated to face the starting orientation (Phase B,

timestamps 0 to 1) and waited a second in this orientation (Phase C, timestamps 1 to

2). Then, the first turn started (Phase D, timestamps 2 to 3), followed by the delay

condition (Phase E, timestamps 3 to 4). After the delay, the agent rotated to face the

landmark (Phase F, timestamp 4 to 5). To assess the impact of the noise, we

calculated two measures and assessed their change throughout the trial for the

different noise levels. First, we looked at the angular error by taking the difference

between the agent HD and the bump HD at every timestamp. Second, we computed

the average rate of change during every phase by looking at the difference in velocity
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between the heading of the agent and the bump. We also looked at the influence of

the delay condition by separating the data using this condition.

We compared the evolution of angular error over the trial across delay conditions and

for each weight noise level. The resetting of the HD worked over trials until the weight

noise was larger than 15%. This would suggest that some accumulation of error could

happen for high noise levels, even with visual feedback present. We found increased

angular error after the first turn (Phase D, Figure 45) and the answer phase (Phase F,

Figure 45) for both conditions. In addition, the 20-second delay condition produced a

larger error (Phase E, Figure 45). This was the case up to 15% weight noise where the

difference between the conditions got minimal.

Furthermore, we noticed an overall increase in the rate of change at every phase

without visual feedback (B, D and F) for higher noise levels (Figure 46). Additionally,

the rate of change was negative during the delay phase (E) showing that the HD

bump was drifting to another location while the heading of the agent remained static.

This is an indication that the HD bump was moving to local minima, as found in the

static simulations.
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Figure 45: Evolution of the angular error over the trial phases for increased
weight noise across delay conditions.
The density plots show the distributions of angular error measured at the end of the trial phases.
The vertical black line represents 0°. The plots were separated by expected rotation to the
landmark (colours), by phases (letters on the y-axis), by delay conditions (top - no delay, bottom
- 20s delay) and by increased noise on the weights (columns). Phase A, reset of the network;
Phase C, facing starting orientation; Phase D, performing the first turn; Phase E; delay condition;
Phase F; answer from the agent.
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Figure 46: Evolution of the rate of change over the trial phases for increased
weight noise across delay conditions.
The density plots show the distributions of the rate of change measured at the end of the trial
phases. The vertical black line represents 0. The plots were separated by expected rotation to
the landmark (colours), by phases (letters on the y-axis), by delay conditions (top - no delay,
bottom - 20s delay) and by increased noise on the weights (columns). Phase A, reset of the
network; Phase C, facing starting orientation; Phase D, performing the first turn; Phase E; delay
condition; Phase F; answer from the agent.
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We did not find a systematic increase in the angular error associated with higher

background drive noise levels for both delay conditions (Figure 47). The spread of

angular errors was due to the loss of visual feedback from Phase A to Phase C

(Figure 47). However, we found a negative rate of change across the phases, with its

fastest during the delay phase (E, Figure 48). This rate of change was due to the

network’s erratic bump, which had an unstable HD compared to the agent heading.

Indeed, our static simulations showed that the HD of the bump varied across time

while the average HD stayed at the same position. Those changes in HD would

create faster velocity values than the agent’s, producing the negative rate of change

values in Figure 48.
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Figure 47: Evolution of the angular error over the trial phases for increased
background noise across delay conditions.
The density plots show the distributions of angular error measured at the end of the trial phases.
The vertical black line represents 0°. The plots were separated by expected rotation to the
landmark (colours), by phases (letters on the y-axis), by delay conditions (top - no delay, bottom
- 20s delay) and by increased noise on the background drive (columns). Phase A, reset of the
network; Phase C, facing starting orientation; Phase D, performing the first turn; Phase E; delay
condition; Phase F; answer from the agent.
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Figure 48: Evolution of the rate of change over the trial phases for increased
background noise across delay conditions.
The density plots show the distributions of the rate of change measured at the end of the trial
phases. The vertical black line represents 0°. The plots were separated by expected rotation
to the landmark (colours), by phases (letters on the y-axis), by delay conditions (top - no delay,
bottom - 20s delay) and by increased noise on the background drive (columns). Phase A, reset
of the network; Phase C, facing starting orientation; Phase D, performing the first turn; Phase
E; delay condition; Phase F; answer from the agent.

128 CHAPTER 3: A computational modelling approach to characterise age-related changes
in the HD circuit.



Finally, we assessed the impact of neuron death on the performance of the

behavioural task. Our current model could not reset appropriately after each trial for

large percentages of neuron death (e.g. 7% and higher). As seen in Phase A

(Figure 49), some trials still had an error above 45°, with values reaching up to 180°,

even when visual feedback was present. Those errors could lead to an accumulation

of angular errors over the trials. In addition, we found a large spread of angular errors

at every phase without visual feedback (D, E and F, Figure 49). From our previous

simulation, we hypothesised that the spread came from the higher probability of

getting stuck in local minima in the trials. Indeed, with a high neuron death and slow

velocity, the HD bump can get stuck to some location within the attractor ring.

We found more evidence of the probability of getting stuck in local minima by

analysing the rate of change in the different phases. During the delay phase (phase

E, Figure 50), we noticed a constant negative rate of change where the HD bump

would start to move to the stable position. Interestingly, the rate of change was faster

and had a higher spread during the no-delay period compared to the 20-second

delay. Since the measure was an average over the whole phase, it indicated that the

bump did not reach the stable position during the no-delay and was still moving.

During the 20-second condition, the bump had enough time to reach the position and

stayed static, decreasing the average rate of change.

Further evidence from the answer phase (phase F) showed that most trials had a

positive rate of change, especially for the 20-second delay (Figure 50). These results

can be explained as only the agent HD moved while the HD bump was stuck in local

minima. Lastly, the first turn phase (phase D) distribution was dispersed on both sides

with positive and negative rate of change values (Figure 50). This range indicated that

the bump was not stuck in local minima in every trial.
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Figure 49: Evolution of the angular error over the trial phases for increased
neuron death across delay conditions.
The density plots show the distributions of angular error measured at the end of the trial phases.
The vertical black line represents 0°. The plots were separated by expected rotation to the
landmark (colours), by phases (letters on the y-axis), by delay conditions (top - no delay, bottom
- 20s delay) and by increased neuron death (columns). Phase A, reset of the network; Phase C,
facing starting orientation; Phase D, performing the first turn; Phase E; delay condition; Phase
F; answer from the agent.
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Figure 50: Evolution of the rate of change over the trial phases for increased
neuron death across delay conditions.
The density plots show the distributions of the rate of change measured at the end of the trial
phases. The vertical black line represents 0°. The plots were separated by expected rotation
to the landmark (colours), by phases (letters on the y-axis), by delay conditions (top - no delay,
bottom - 20s delay) and by increased neuron death (columns). Phase A, reset of the network;
Phase C, facing starting orientation; Phase D, performing the first turn; Phase E; delay condition;
Phase F; answer from the agent.
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4.4 Discussion

In this chapter, we developed a new model based on previous architecture from the

literature (Bicanski and Burgess, 2016). The goal was to implement three distinct noise

sources to investigate the effect of ageing on the HD system. We showed that each

noise source impacted and modified the behaviour of the HD attractor dynamics. First,

noise on the weights increased the spikiness of the bump and pushed it to a stable

position where it would get stuck in local minima. Second, noise on the background

drive also increased the spikiness of the bump and created an erratic signal jittering

around the current HD. Third, neuron death made the bump wider and also pushed the

bump to local minima and became unresponsive without substantial velocity inputs.

To the best of our knowledge, no previous HD model tried to investigate how ageing

could impact the system. Seminal models such as Zhang (1996) only described the

influence of noise on the weights. One reason is that his model was not built to survive

some types of noise, such as neuron death. We implemented his model to assess it,

killing a single neuron within the ring attractor. The attractor model did not maintain

the HD bump when it went over the dead neuron. This problem arose from the inner

structure of the model as the author opted for recurrent connections on each neuron,

allowing the creation and maintenance of the bump. Therefore, the firing rate at the

bump’s peak would drop to zero when it passed onto a dead neuron. This signal’s drop

would then propagate on neighbouring neurons, and their signal would decrease and

have no excitation. To avoid this problem, our model moved to a 3-ring structure with

the addition of a background drive, inspired by a previous model from Bicanski and

Burgess (2016). This structure had the advantage of separating the generation of the

signal from the connections between neurons in the rings. Our model could then study
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neuron death while maintaining the attractor bump even when going through those

neurons.

In this chapter, we investigated three sources of noise (weight, background drive and

neuron death) and their impact on HD network dynamics by manipulating their level

individually. We found that after increasing noise in the weights or killing neurons within

the rings, the bump moved from its origin to a stable position. Then, it maintained

its position until it received a driving force strong enough to push it, such as velocity

inputs. This phenomenon has been described previously by Zhang (1996) and can be

understood as a reduction of representational space. It is described as the reduction

of the possible states (i.e. headings) that the attractor network can maintain over time.

However, the author linked it to a high noise level on the weights, where we only found

it for neuron death. As explained above, this can be due to the architectural difference

between our models, as ours separated excitatory and inhibitory connections between

rings. We hypothesised that with increased dead neurons, there is lower inhibition

in the rings, as suggested by the increase of FWHM and peak rate. In addition, the

stable position where the bump moved was random and changed across simulations.

However, whether this observation arose from a specific arrangement of dead neurons

is uncertain. Indeed, with the random location of dead neurons across the three rings,

finding an efficient metric to measure the position impact is complex. Nevertheless,

future work on this model should expand on this.

In addition, this signal drift happens during static and movement phases but when no

visual feedback is present. This observation is in accordance with the literature, where

several studies have shown that the PFD of HD cells drifts when the animal is placed

in darkness (Taube et al., 1990b; Goodridge et al., 1998; Yoder et al., 2011). However,
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those studies did not use aged animals and compare the speed of drift, which was

faster in our simulation for increased noise levels.

Furthermore, we did not see any constant drift or probability of getting stuck in local

minima for high levels of background drive noise. The main impact of this type of

noise was to make the bump noisier with high spiking, leading to an unstable HD as it

would jitter. There was no direct evidence of increased angular error while performing

the task on the individual noise level. This result suggests that older adults’ HD

systems could handle increased instability from the background drive coming from the

vestibular regions. However, combining this noise with the other types might produce

a detrimental impact by extending the influence of the noise on weights or neuron

death.

The decision to add different noise sources was motivated by the current state of the

literature on the impact of ageing. Each noise type approximated a physiological

change happening in the brain during healthy ageing. Weight noise modelled synaptic

change where connections between neurons would be impaired (Morrison and

Baxter, 2012). Neuron death was linked to cerebral volume loss in different brain

regions containing HD cells (Burke and Barnes, 2006; Raz and Rodrigue, 2006;

Hughes et al., 2012). Background drive was associated with vestibular deficiency as

both are the generating power of the HD system (Neuhauser et al., 2008; Agrawal

et al., 2009; Anson and Jeka, 2015). To the best of our knowledge, our model is the

first to address this question directly. The main goal was to implement an attractor

model that could characterise different types of noise. However, the exact

connectivity and architecture of the human HD system are still unknown. Thus, our

model had to include simplifications, and revisions will be required in the future. One

piece of evidence specific to the behavioural task we modelled was that we could not
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replicate the range of errors we saw within our older group. Additional brain

mechanisms could reduce the impact of cerebral loss but were not modelled (Davies,

2016; Wyss-Coray, 2016). As mentioned above, weight changes could compensate

for the loss of dead neurons through some form of homeostasis regulation. This will

be explored in future work.

Additionally, it would be interesting to look at damage to the drosophila HD circuit.

Studies found a ring-like structure within their brain, but no studies investigated whether

it is sensible to neuron death (Seelig and Jayaraman, 2015; Green et al., 2017; Kim

et al., 2017). However, due to the short life span of the drosophila, neuron death might

not happen naturally, and such mechanisms might not exist. On the contrary, mammals

like humans and rodents have a longer life span, and neuron death happens (Morrison

and Baxter, 2012). Then, we can hypothesise that the architecture of the attractor is

different from the drosophila and can compensate for the loss of cerebral volumes.

Finally, the results from our model when it performed the behavioural task shed some

light on the participants’ data from Chapter 2 and the age difference found. We

replicated the delay effect where the angular error increased after the 20-second

delay by adding noise to the weights and with neuron death. This increase was found

in participants from both age groups and could be explained by the HD bump drifting

to local minima during the delay period. For neuron death, the increase in the range

of angular errors could be linked to the accumulation of errors due to the inability to

reset headings between trials properly. However, participants did not display this

behaviour. Every participant knew the landmark’s location, and they could remember

it during the task at every trial. Therefore, this accumulation problem in our model

could be due to nonoptimal parameters within the reset phase. The visual feedback

might not be strong enough to return the HD from the bump to the agent HD.
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Otherwise, the time for the reset phase could be too short if the distance between the

two headings was too large. Lastly, it was challenging to assess the individual effect

of the background drive in the model or the task. As mentioned, assessing it when

combined with another type of noise would be more interesting. For future studies, we

would get more insight into having participants perform vestibular checking prior to the

task (Cohen, 2019). This would give important insight into their deficit, especially in

older participants, and how it could affect their performance.

To conclude, this model was a first step in describing how the HD system is impacted

by ageing and will help future studies to investigate this important aspect. Future work

on this model and behavioural data should check the impact of combined noises on the

ring attractor model. In addition, some parameters from the model can be tweaked from

the results of our first characterisation. Indeed, the reduced representational space in

the neuron death condition could be further characterised by checking its origin and

properties in more detail.

4.5 Contributions

Matthieu Bernard (MB) completed this project in a collaborative effort with Andrej

Bicanski (AB) and Thomas Wolbers (TW). MB, AB and TW conceptualised the work.

MB managed the project administration. MB and AB developed the computational

head direction model. MB analysed the data and visualised the results. AB and TW

supervised the work.
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General discussion

5.1 Summary

The work accomplished in this thesis brought new results on the HD system in

humans, extending our understanding of the system. In the first chapter of the thesis,

we replicated and expanded our knowledge of the HD system using neuroimaging

methods and analysis. Previous work (Taube et al., 2013) hypothesised that

recording HD signals in humans might be impossible with such studies. They justified

that the HD system would require vestibular inputs, which are not present when the

participant is lying in the scanner, head-fixed. However, similarly to previous

neuroimaging studies (Baumann et al., 2010; Marchette et al., 2014; Chadwick et al.,

2015; Shine et al., 2016), we found brain signals sensible to change in HD within the

human brain. This study further proves that the HD system can update itself even

without the direct presence of idiothetic cues. Sit and Goard (2023) also found the

same results by recording HD cells when rodents were head-fixed.

Secondly, our study investigated an essential characteristic of the HD system: the

stability of landmarks. Previous studies described the importance of landmarks for

stabilising the HD signal (Knierim et al., 1995; Zugaro et al., 2001, 2003), but none

actively assessed the impact of instability in humans. Therefore, we created a new

task investigating how the HD system would react when landmarks had different

spatial stability. Our results found that the RSC, coding for the permanence of

landmarks (Auger et al., 2012; Auger and Maguire, 2013; Auger et al., 2015, 2017;

Auger and Maguire, 2018a,b), and V1 could differentiate if landmarks were stable or

unstable. Moreover, those two brain regions could discriminate between the HDs

associated with the stable landmarks, while the thalamus could set apart only the
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unstable landmarks. One explanation is that only idiothetic cues could separate the

position of unstable landmarks as they moved across the environment, and those

vestibular cues were reiterated during the scanner (as proposed by Shine et al.

(2016)). Finally, the presubiculum and, more generally, the hippocampus decoded

both types of landmarks. We suggested that it could be due to its role as an integrator

between the allothetic and idiothetic cues.

In the second chapter, we investigated the impact of ageing on the HD system by

testing young and older participants in a novel behavioural task. In contrast to past

experiments, this task specifically isolated HD computation. We tested their memory

by making them physically turn and then adding a delay condition before their answer.

This new task had the advantage of providing full body-based cues using a HMD and

immersive VR. We found that older adults produced larger angular errors on average

than young participants. This age difference was not due to a memory deficit, as

every participant precisely remembered the landmark’s location. We also found a

detrimental effect on angular error during the delay condition for both age groups.

Those results provide the first evidence of a deficit of the HD system during ageing,

possibly due to increased noise within this system.

In parallel to the behavioural task, we created a computational model to understand

better the neural mechanisms that could explain the performance deficits in older

adults. Recent theoretical models successfully looked at the effect of ageing on other

spatial functions, such as cue combination (Harootonian et al., 2022) or path

integration (Castegnaro et al., 2023). However, previous HD models did not

systematically investigate the effect of ageing by looking at different increases in

noise in the system (McNaughton et al., 1991; Skaggs et al., 1995; Zhang, 1996;

Byrne et al., 2007; Page et al., 2014; Bicanski and Burgess, 2016; Page and Jeffery,
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2018; Yan et al., 2021). Therefore, in the third chapter, we created a HD model

inspired by previous ring attractor architectures (Bicanski and Burgess, 2016) and

integrated three distinct noise sources to investigate ageing. Those types of noise

were linked to known physiological changes happening in the ageing brain: synaptic

change (Morrison and Baxter, 2012), loss of cerebral volume (Burke and Barnes,

2006; Raz and Rodrigue, 2006; Moffat et al., 2006; Hughes et al., 2012) and

vestibular deficit (Neuhauser et al., 2008; Agrawal et al., 2009; Anson and Jeka,

2015). The model translated them to noise on the weights, neuron death and noise on

the background drive (which is thought to generate the signal in the attractor ring).

The first characterisation investigated how increased noise impacted the system

when the HD bump was static. Noise on the weights and eliminating neurons from the

rings drove the bump to drift to a stable position and stay stuck in these local minima.

The background drive produced an erratic bump with a jittering position. Moreover,

we implemented the second chapter’s behavioural task to assess the impact of noise

sources on participant performances. Our results showed that increased noise on

weights and neuron death led to an overall increase in the angular error that could be

due to an accumulation of noise over trials and drift to local minima. Cumulatively,

those results showed that with increased noise within the HD system, the impact is

similar to those found in our participants and could be responsible for impairments in

the overall spatial navigation skills found in older adults (Lester et al., 2017).

5.2 Limitations

There are limitations to the work carried out during the experiments associated with

the three chapters of this thesis. The first limitation is that we did not collect any

measure of the vestibular system in the neuroimaging or behavioural studies.
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However, vestibular degeneration is common in old age and is thought to impact

spatial navigation skills (Neuhauser et al., 2008; Agrawal et al., 2009; Anson and

Jeka, 2015). Clinical tasks exist to test the participant’s balance but require additional

material to ensure a complete and precise measure (Cohen, 2019). Multiple rodent

studies have described the importance of vestibular signals for the generation and

updating of the HD system (Stackman and Taube, 1997; Stackman et al., 2002).

Therefore, participants with a damaged vestibular system could explain some

individual variability seen in the results of the behavioural task. For the neuroimaging

study from the first chapter, a recent study developed an approach to look at the inner

ear’s vestibular organs using neuroimaging data (Ahmadi et al., 2021). This new

method would allow future analysis to use brain images from the dataset of Chapter 1

to check if there are structural differences between participants and if they are related

to variations in performance.

MVPA analysis has been developed and used for over a decade with many

applications in the spatial navigation field (Haxby et al., 2001; Hassabis et al., 2009;

Bonnici et al., 2012). However, there is no consensus on the exact methods to apply

as it depends on the data and the hypothesis. The same debate exists on how to

perform the group-level statistical analysis of decoding accuracy. Most studies

consider permutation-based statistics the best choice when the number of

permutations is high enough. Nevertheless, this statistic can sometimes not be used

as in Chapter 1, when we compared stable vs unstable landmarks. We were limited to

128 unique permutations and had to do simple t-tests to compare the average

decoding against the chance level. Recent statistical methods tried to find a better

approach, such as the ith-test from Allefeld et al. (2016)and expanded by Hirose

(2021). They developed a statistical analysis called the information prevalence

hypothesis, testing whether the significant results from the subjects’ sample can be
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applied to a larger population. This method still needs to be used more widely within

the neuroimaging field to assess its correct functioning.

We also noticed individual differences in the performance and strategy used in both

tasks from Chapters 1 and 2. It could play a role in the findings by leaving the

participants free to use their own strategy to solve the task. In the first study, we found

differences in how participants responded when they needed to point towards

unstable landmarks. Unfortunately, our analysis could not assess the impact of those

individualities on the HD signals. For the behavioural study, the difference in strategy

found between age groups has also been described in previous studies (Colombo

et al., 2017; Lester et al., 2017). However, similar to Chapter 1, we found individual

differences within each age group. Investigating the impact of those differences in

future studies could be beneficial, and this topic has already been discussed in

previous papers (Hegarty et al., 2006; Wolbers and Hegarty, 2010).

Finally, we created a new model to characterise potential degradations of the HD

system during healthy ageing. However, this model only approximates a complex

biological system like the brain. Indeed, our model’s structure only integrates parts of

the complete HD system. Further mechanisms and brain regions not included in the

model exist and may modify some of the results (Davies, 2016; Wyss-Coray, 2016).

In addition, the chapter only investigated individual types of noises, and future work

should combine them. This future characterisation might help to understand the effect

of ageing in more depth since those deficits most likely coexist and interact between

themself within the brain.
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5.3 Implications and Future Perspective

In sum, the work outlined in this thesis has laid the foundation for future studies to

investigate the impact of ageing on the HD system. Previous studies did not explore

this question in the rodent and human literature, but investigating those changes in

more depth could help to understand the mechanisms underlying age-related

navigational decline. Our behavioural study and the associated model directly

compared young and older participants and first characterised how the HD system is

impacted by ageing. In addition, while the first chapter did not test older participants,

the perception of landmark stability could be altered with ageing. Previous reports

suggest that the RSC is degraded with ageing (Moffat et al., 2006; Antonova et al.,

2009), which could lead older adults to perceive stable landmarks as unstable. Then,

we can hypothesise that the tuning curve associated with those landmarks would

either get wider or shift to different orientations. Even more, the landmark stability in

ageing could be assessed with the work from Yan et al. (2021) that modelled the

relation between landmarks and the HD system. However, their model used Zhang

(1996) architecture, and we showed that it cannot correctly investigate ageing.

Nonetheless, we could combine their approach with the model from Chapter 3 to test

those hypotheses and increase the ecological validity of our model. Altogether, those

studies could help open future research to investigate those open questions of ageing

and disease in human and animal models.

In addition, the new behavioural task from Chapter 2 could be developed for usage in

a clinical setting. Indeed, the task was simple to perform, and older participants

learned it successfully. We can assume that patients with mild cognitive impairment

(MCI) or suffering from Alzheimer’s disease (AD) could perform the task. Previous

studies indicate that several critical regions related to HD are sensitive to early AD
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pathology, such as the thalamus, RSC and hippocampus (Braak and Braak, 1995;

Nestor et al., 2003; Pengas et al., 2010; Serino et al., 2014). Behaviourally, both

rodent AD models (Crouzier et al., 2018) and human patients (Aguirre and

D’Esposito, 1999; Coughlan et al., 2018) display symptoms of disorientation, which

could be linked to damage from the HD system. In addition, other spatial navigation

cells using HD inputs, such as grid cells, are impaired with AD (Kunz et al., 2015; Jun

et al., 2020). However, it is unknown how the HD computation is altered in early AD,

but finding a way to measure it could be a way to identify at-risk patients. We could

assess if the task developed in Chapter 2 could be used. A few adjustments to the

task would be necessary to fit the clinical settings where time and space are limited.

The number of trials should be reduced to avoid some repetitions of symmetrical

orientations. The task should also be able to be performed without active movement

while keeping physical rotation by letting the patient stand in the middle of the

environment.

Recently, we have observed an increasing number of studies using

electrophysiological recordings in human patients (Ekstrom et al., 2003; Manning

et al., 2009; Mukamel et al., 2010; Jacobs et al., 2010; Stangl et al., 2020). Those

patients allowed researchers to study the neurophysiological basis of spatial

navigation with similar resolution as in the rodent literature. Recent technological

advances have also enabled ambulatory setups, which are ideal for testing spatial

tasks (Topalovic et al., 2020, 2023). Giving full idiothetic cues to the patients while

they perform a task is critical for replicating naturalistic behaviour. This goal was

already at the origin of developing immersive VR tasks for human experiments to

create closer real-world navigation. Nevertheless, no published studies looked at the

HD system, and this work should be carried out in the future. Indeed, we could use

the task from Chapter 2 without immersive VR, as HMDs are usually incompatible
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with those patients due to the electrodes. We could replace the circular arena with a

coloured curtain and the virtual landmark with a physical one. This physical setup

would be possible as previous studies used it in the context of the Morris water maze

(Laczó et al., 2010). Then, it would be feasible to investigate how the brain signal

related to HD cells is modulated during the task, specifically during the delay period.

This way, we could assess whether the constant drift suggested by the model is

happening or if there is a drift to a stable position, as hypothesised by neuron death.

Nonetheless, the study of those implanted patients is challenging. They are usually

rare, present in special clinics and have limited time to complete tasks. In addition,

doctors decide the electrodes’ placement, and the number of ROIs available is usually

limited to the hippocampus and, in some cases, the RSC (Lehongre et al., 2022).

Lastly, those patients are usually young, which could make ageing studies

challenging to carry out.

To conclude, this thesis hopes to encourage future studies to investigate the HD

system and spatial navigation in the context of ageing. Understanding and treating

spatial navigation deficits arising with age is critical as they lead to everyday

impairments. Older adults with those deficits suffer from reduced mobility, leading to

other problems such as diminished social interaction, fall risk, lower physical activity,

etc (Burns, 1999; Ferrucci et al., 2016; Freiberger et al., 2020). Altogether, those

deficits have been identified as major psychological risk factors for developing

dementia (Hendriks et al., 2023). Using spatial navigation tests to identify those

at-risk populations early is essential to treat them accordingly and reduce the risk of

more severe pathology.
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