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There are some algebraic laws that hold in a lattice L if and only if L does not have a sublattice of a
specific shape. For example, a lattice is modular if and only if it does not have a sublattice isomorphic to
the so-called pentagon L5.

If L is a lattice, then we call a group L-free if and only if its subgroup lattice does not contain a lattice
isomorphic to L. For example, the finite L5-free groups are exactly the modular groups, and these have
been classified by Iwasawa in 1941, see [4]. The subgroup lattice of the dihedral group of order 8, often
denoted by L10, and some of its sublattices are of particular interest. One reason is that, if p is a prime
number, then a finite p-group is L5-free if and only if it is L10-free.

There are several sublattices of L10 containing L5:

L5 L6 L7 L8 M8 M9 L9 L10

In 1999 Baginski and Sakowicz [2] studied finite groups that are L6-free and L7-free at the same time,
and later Schmidt [8] classified the finite groups that are L6- or L7-free. Together with Andreeva and the
first author he also characterized, in [1], all finite groups that are L8-free or M8-free. Finally, the finite
M9-free groups have been classified by Pölzing and the second author in [6]. Furthermore, there is a
general discussion of L10-free groups by Schmidt, which can be found in [9] and [10].

In this paper we investigate finite L9-free groups. Since L9 is a sublattice of L10, the groups that we
consider are L10-free and therefore we can use Corollary C in [9] as a starting point for our analysis:
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Every finite L10-free group G has normal Hall subgroups N1 ≤ N2 such that N1 = 〈P ∈ Syl(G) | P � G〉,
N2/N1 is a 2-group and G/N2 is meta-cyclic.

Our strategy is to choose N := N1 maximal with respect to the above constraints, and then we show
that N has a complement K that is a direct and coprime product of groups of the following structure:
cyclic groups, groups isomorphic to Q8 or semi-direct products Q � R, where Q has prime order and
R is cyclic of prime-power order such that 1 �= �(R) = CQ(R). Furthermore, [N, K] ∩ CN(K) is a 2-
group and CO2(N)(K) is cyclic or elementary abelian of order 4 and every Sylow subgroup of [N, K] is
elementary abelian or isomorphic to Q8. If the action of K on N satisfies some more conditions, then we
say that NK is in class L.

The aim of our article is to prove the following theorem:

Main Theorem. A finite group is in class L if and only if it is L9-free.

1. Notation and preliminary results

In this article we mostly follow the notation from Schmidt’s book [7] and from [5]. All groups considered
are finite and G always denotes a finite group, moreover p and q always denote prime numbers. We
quickly recall some standard concepts:

L(G) denotes the subgroup lattice of G, consisting of the set of subgroups of G with inclusion as
the partial ordering. The infimum of two elements A, B ∈ L(G) is A ∩ B (their intersection) and the
supremum is A ∪ B = 〈A, B〉 (the subgroup generated by A and B).

If L is any lattice, then G is said to be L-free if and only if L(G) does not have any sub-lattice that is
isomorphic to L.

A lattice L is said to be modular if and only if for all X, Y , Z ∈ L such that X ≤ Z, the following (also
called the modular law) is true: (X ∪ Y) ∩ Z = X ∪ (Y ∩ Z). We say that a group G is modular if and
only if L(G) is modular.

The modular law is similar to Dedekind’s law (see 1.1.11 of [5]). For all X, Y , Z ≤ G such that X ≤ Z
it says that XY ∩ Z = X(Y ∩ Z). We will use Dedekind’s law frequently throughout this article without
giving an explicit reference each time.

If N ≤ G, then we say that an element g ∈ G induces power automorphisms on N if and only if
Ug = U for all subgroups U of N. Furthermore PotG(N) := {g ∈ G | Ug = U f.a. U ≤ N} is a subgroup
of G because PotG(N) = ⋂

U≤N
NG(U).

Lemma 1.1. Let K be a finite group that acts coprimely on the p-group P. Then P = [P, K]CP(K). If P is
abelian, then this product is direct. If [P, K] ≤ �(P), then [P, K] = 1. Furthermore [P, K] = [P, K, K] and
for all K-invariant normal subgroups N of P we have that CP/N(K) = CP(K)N/N.

Proof. These statements are a collection from 8.2.2, 8.2.7, 8.2.9, and 8.4.2 of [5].

Lemma 1.2. Let p ∈ π(G) and suppose that G = PK, where P is a normal Sylow p-subgroup of G, K ≤ G
is a p′-group and P0 := [P, K] �= 1. Suppose further that �(P0) ≤ CP(K) and that K acts irreducibly on
P0/�(P0). If g ∈ P \ CP(K), then P0 ≤ 〈[g, K], K〉 ≤ 〈g, K〉.

Proof. Let g ∈ P \ CP(K) and R := 〈[g, K], K〉. Then we first remark that R ≤ 〈g, K〉. Lemma 1.1 shows
that P = CP(K)P0 and hence we have elements c ∈ CP(K) and h ∈ P0 such that g = ch. We note that
P0 � G and therefore �(P0) is a normal subgroup of G, moreover P0 is a p-group and hence P0/�(P0)
is elementary abelian. Let − : G → G/�(P0) denote the natural homomorphism. As P0 = [P̄, K̄] is
abelian and K̄ acts coprimely on it, we see that C[P̄,K̄](K̄)∩[P̄, K̄, K̄] = 1, again by Lemma 1.1. Therefore
C[P̄,K̄](K̄) = C[P̄,K̄,K̄](K̄) = 1. We recall that ch = g /∈ CP(K) and thus h /∈ CP(K), and then by
hypothesis h /∈ �(P0) and in particular 1 �= h̄ ∈ P0. It follows that [h̄, K̄] �= 1 because C[P̄,K̄](K̄) = 1,
see above. We conclude that 1 �= [h̄, K̄] = [ḡ, K̄] = [g, K] ≤ P0 ∩ R̄. By hypothesis K acts irreducibly
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on P0, hence K̄ does as well and we see that P0 = P0 ∩ R�(P0) = (P0 ∩ R)�(P0). The main property
of the Frattini subgroup (see for example 5.2.3 in [5]) finally gives that P0 = P0 ∩ R.

Lemma 1.3. Let Q be a 2-group that is elementary abelian, cyclic or isomorphic to Q8. Then Q does not
admit power automorphisms of odd order.

Proof. If Q is abelian, then the assertion follows from 2.2.5 of [5]. If Q ∼= Q8, then Aut(Q) ∼= Sym4, and
any automorphism of order 3 interchanges the maximal subgroups of Q.

Lemma 1.4. Suppose that G = NK, where N is a normal Hall subgroup of G and K is a complement. Let
N1, N2 ≤ N, Q, R ≤ K and x ∈ N. Then the following hold:

(a) If N1Q and N2Rx are subgroups of G, then N1Q ∩ N2Rx = N1(Q ∩ R) ∩ N2(Q ∩ R)x.
(b) If N2Rx ≤ G and 〈xQ∩R〉 ∩ N2 = 1, then Q ∩ N2Rx = Q ∩ Rx ≤ CQ∩R(x).
(c) If K is abelian and acts irreducibly on the abelian group N/�(N) or if N is abelian and K induces

power automorphisms on it, then CK(N) = CK(x) or x ∈ �(N).
(d) If Q ≤ R, then 〈Q, Rx〉 = 〈[x, Q]Rx〉Rx.

Proof. Suppose that N1Q and N2Rx are subgroups of G.
For (a) we do the following calculation:

N1Q ∩ N2Rx = (N1Q ∩ NQ) ∩ N2Rx = N1Q ∩ (NQ ∩ N2Rx) = N1Q ∩ N2(NQx ∩ Rx)

= N1Q ∩ N2(NQx ∩ (Kx ∩ Rx)) = N1Q ∩ N2((NQx ∩ Kx) ∩ Rx)

= N1Q ∩ N2(Qx ∩ Rx) = N1Q ∩ (N(Q ∩ R)x ∩ N2(Q ∩ R)x)

= (N1Q ∩ N(Q ∩ R)) ∩ N2(Q ∩ R)x = N1(Q ∩ N(Q ∩ R)) ∩ N2(Q ∩ R)x

= N1((Q ∩ K) ∩ N(Q ∩ R)) ∩ N2(Q ∩ R)x

= N1(Q ∩ (K ∩ N(Q ∩ R))) ∩ N2(Q ∩ R)x

= N1(Q ∩ (Q ∩ R)) ∩ N2(Q ∩ R)x = N1(Q ∩ R) ∩ N2(Q ∩ R)x.
Then (a) yields that Q∩N2Rx = (Q∩R)∩N2(Q∩R)x. Therefore, if 〈xQ∩R〉∩N2 = 1 and if a, b ∈ Q∩R

and y ∈ N2 are such that a = ybx = yx−1xb−1 b, then the fact that ab−1 = yx−1xb−1 ∈ K ∩ N = 1
implies that a = b and that y−1 = [x, b−1] ∈ N2 ∩ 〈xQ∩R〉 = 1. We deduce that a = bx = ax ∈ Q ∩ Rx

and that [x, a] = 1. Hence Q ∩ N2Rx = (Q ∩ R) ∩ N2(Q ∩ R)x = Q ∩ Rx ≤ CQ∩R(x). This is (b).
If K is abelian, then x ∈ CN(CK(x)) and CN(CK(x)) is K-invariant. Thus, if K acts irreducibly on

N/�(N) and x /∈ �(N), then CN(CK(x))�(N) = N, and the fact that [CK(x), N] = 1 implies that
CK(x) = CK(N). If K induces power automorphisms on the abelian group N, then 1.5.4 of [7] implies
that these are universal. If x = 1, then x ∈ �(N), and otherwise x �= 1 and every element of K that
centralizes x also centralizes N. Altogether (c) holds.

Suppose finally that Q ≤ R. Then, for all g ∈ Q, we have that g = gx · (g−1)x · g ∈ Rx[x, Q] ≤
〈[x, Q]Rx〉Rx. It follows that 〈Q, Rx〉 ≤ 〈[x, Q]Rx〉Rx.

On the other hand (g−1)x ∈ Qx ≤ Rx for all g ∈ Q and therefore [x, g] = (g−1)xg ∈ 〈Q, Rx〉.
This implies that [x, Q] ≤ 〈Q, Rx〉. Since Rx ≤ 〈Q, Rx〉, we deduce that 〈[x, Q]Rx〉Rx ≤ 〈Q, Rx〉, which

is (d).

2. Battens and batten groups
Definition 2.1. (a) We say that G is a batten if and only if G is a cyclic p-group, or isomorphic to Q8, or

G = QR, where Q is a normal subgroup of prime order and R is a cyclic p-group of order coprime
to |Q| and such that CR(Q) = �(R) �= 1.

(b) We say that G is a batten group if and only if G is a direct product of battens of pairwise coprime
order.
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(c) If G is a batten group, then we say that B ≤ G is a batten of G if and only if B is a batten that is one
of the direct factors of G.

Warning: It is possible for a subgroup of a batten group G to be a batten, abstractly, but not to be a
batten of G. This can happen when it is a p-subgroup for some prime p of a batten as in the third case of
Definition 2.1.

Example 2.2. (a) Suppose that Q := 〈x〉 is a group of order 19 and that R = 〈y〉 is a subgroup of Aut(X)

of order 27. Further suppose that xy := x7. Then B := QR is a non-nilpotent batten. For this we
calculate that xy3 = (x7)y2 = (x49)y = (x11)y = x77 = x. Then the fact that xy = x7 �= x implies
that CR(Q) = 〈y3〉 = �(R). We note that B is a batten group and that Q is a subgroup of B that is a
batten, but not a batten of B because [Q, R] �= 1.

(b) Let B = QR be as in (a), let T ∼= Q8 and let S be a cyclic group of order 625. Then B × T × S is a
batten group.

Remark 2.3. Let G be a batten group and let B be a batten of G such that |π(B)| = 2.
(a) B is not nilpotent, but B has a unique normal Sylow subgroup.
(b) A Sylow subgroup Q of B is cyclic, and therefore Q is batten. But Q is not a direct factor of G and

hence Q is not a batten of G.

Definition 2.4. Suppose that G is a non-nilpotent batten. Then there is a unique prime q ∈ π(G) such
that G has a normal Sylow q-subgroup Q, and Q is cyclic of order q. In this case we set B(G) := Q.

From the definition we can immediately see that B(G) is a characteristic subgroup of a non-nilpotent
batten G and that it has prime order.

Lemma 2.5. Suppose that G is a non-nilpotent batten, that r ∈ π(G) and that R ∈ Sylr(G) has order at
least r2. Then Z(G) = CR(B(G)) = �(R) = Or(G).

Proof. Since |R| ≥ r2, we see that R �= B(G). Then Definition 2.1 implies that R is cyclic and that there
is a prime q ∈ π(G) \ {r} such that Q := B(G) ∈ Sylq(G).

Now G = Q � R and CR(B(G)) = �(R). We recall that R is cyclic, and then this implies that
�(R) ≤ Z(G). Since G is not nilpotent, we see that B(G) is not contained in Z(G). Thus Z(G) is an
r-group, because B(G) has prime order. In addition R � Z(G), because G is not nilpotent. Since �(R)

is a maximal subgroup of the cyclic group R, it follows that �(R) = Z(G). Moreover we have that
[Q, Or(G)] ≤ Q ∩ R = 1, whence Or(G) ≤ CR(Q) = �(R) = Z(G) ≤ CR(Q). This proves all
statements.

Lemma 2.6. If G is a batten group and P ≤ G is a Sylow p-subgroup of G for some prime p, then G has
a subgroup of order p. In addition, �1(P) ≤ Z(G) or there is some non-nilpotent batten B of G such that
�1(P) = P = B(B).

Proof. Since P ≤ G, it follows that P is cyclic or isomorphic to Q8. Therefore �1(P) has order p.
If P is a batten, then �1(P) ≤ Z(P) ≤ Z(G). In particular �1(P) is the unique subgroup of G of

its order. Otherwise there is a non-nilpotent batten B of G such that P ≤ B. If P has order p, then
P = �1(P) = B(B) is a normal subgroup of B and so of G. Again �1(P) is the unique subgroup of K of
order q. Otherwise we have that �1(P) ≤ �(P) = Z(B) ≤ Z(G) by Lemma 2.5. In particular �1(P) is
the unique subgroup of K of its order.

Lemma 2.7. Suppose that H is a batten and that U � H. Then U is a cyclic batten group. Furthermore,
all subgroups of batten groups are batten groups.
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Proof. Assume for a contradiction that U is not a cyclic batten group. Then U is not a cyclic batten, and
therefore H is neither cyclic of prime power order nor isomorphic to Q8. Thus H is not nilpotent, in
particular |π(H)| = 2 and all Sylow subgroups of H are cyclic. This implies that U is not a p-group. Let
π(H) = {q, r}, let Q := B(H) and R ∈ Sylr(H) be such that H = QR and CR(Q) = �(R) �= 1. Now
π(U) = {q, r} as well and therefore B(H) ≤ U. Then Dedekind’s law gives that U = B(H) · (U ∩ R) is
a proper subgroup of H = B(H) · R, and it follows that U ∩ R is a proper subgroup of R. In particular,
since R is cyclic, we have that 1 �= U ∩R ≤ �(R). Then Lemma 2.5 gives that �(R) = Z(H). Altogether
U ≤ B(H)�(R) = B(H) × �(R). But then U is a direct product of cyclic groups of prime power order,
i.e. a cyclic batten group, and this is a contradiction.

Next suppose that G is a batten group and that U is a subgroup of G. Then U is a direct product of
subgroups of the battens of G whose orders are pairwise coprime. Consequently U is a batten group as
well, by the arguments above.

We remark that sections of battens, or batten groups, are not necessarily batten groups. For example,
Q8/Z(Q8) is not a batten group.

Lemma 2.8. Suppose that K is a batten group and that Q ≤ K is a q-group.
If Q is not normal in K, then there is a non-nilpotent batten B of K such that B = B(B)Q and NK(Q) =

CK(Q).
If Q � K, then |K : CK(Q)| ∈ {1, 4} or this index is a prime number.

Proof. Since K is a batten group, there is a batten B of K such that Q ≤ B. Moreover there is a subgroup
L of K such that K = L × B. Then L ≤ CK(B) ≤ CK(Q) (∗).

We first suppose that Q is not a normal subgroup of K. Since K is a direct product of battens, it follows
that Q is not normal in B. Thus B is neither abelian nor hamiltonian (otherwise all subgroups of B would
be normal), and it follows that B is not nilpotent. Now Q is a proper subgroup of B because Q � �B. We
conclude from Lemma 2.5 that neither Q ≤ B(B) nor Q ≤ Z(B), whence B = B(B)Q and therefore
NB(Q) = Q = CB(Q). Consequently (∗) and Dedekind’s modular law yield that NK(Q) = LNB(Q) =
LCB(Q) = CK(Q).

Suppose now that Q � K. Using (∗) we see that |K : CK(Q)| = |B : CB(Q)|. Hence we may suppose
that B is not abelian. If B is not nilpotent, then Z(B) and a Sylow q-subgroup of B centralize Q. Thus
Lemma 2.5 yields that |K : CK(Q)| = |B : CB(Q)| equals the prime in π(B)\{q}. Let B ∼= Q8 and suppose
that Q � Z(B). Then Q has order 4 or 8. In the first case |K : CK(Q)| = |B : CB(Q)| = |B : Q| = 2 and
in the second case |K : CK(Q)| = |B : CB(Q)| = |B : Z(B)| = 4, which completes the proof.

3. L10 and its sublattices

Throughout this article we will use the notation from the next definition whenever we refer to L10 and
its sublattices:

Definition 3.1. The lattice L10 is defined to be isomorphic to L(D8), with notation as indicated in the
picture.

E

F

A
B

C

S T D U V

Now we define
(a) L5 := {E, S, U, A, F},
(c) L7 := L5 ∪ {D, C},
(e) M8 := L10 \ {T, V},
(g) M9 := L10 \ {B},

(b) L6 := L5 ∪ {T},
(d) L8 := L10 \ {B, V},
(f) L9 := L10 \ {V},

with the corresponding inclusion relations induced from the
lattice L10.
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Definition 3.2. Let L be a lattice. An equivalence relation ≡ on L is called a congruence relation if
and only if, for all A, B, C, D ∈ L such that A ≡ B and C ≡ D, we have that 〈A, C〉 ≡ 〈B, D〉 and
A ∩ C ≡ B ∩ D.

Lemma 3.3. Let ≡ be a congruence relation on L9 = {A, B, C, D, E, F, U, T, S} as in Definition 3.1
and suppose that ≡ is not equality. Then E ≡ D.

Proof. Let ≡ be a congruence relation on L9 and suppose that E �≡ D.
If X ∈ {A, B, C, F}, then E ∩ D = E �≡ D = X ∩ D and therefore E �≡ X.
First we assume that X0 ∈ L9 \ {F} is such that F ≡ X0. Then there is some X ∈ {A, B, C} such

that X0 ≤ X, and then X = 〈X0, X〉 ≡ 〈F, X〉 = F. We choose Y ∈ {T, U} such that X ∩ Y = E. Then
E = X ∩ Y ≡ F ∩ Y = Y and therefore, if Z ∈ {T, U} \ {Y}, then Z = 〈Z, E〉 ≡ 〈Z, Y〉 = F. Now it
follows that E = Z ∩ D ≡ F ∩ D = D, which gives a contradiction.

We have seen that E is not congruent to any of the elements A, B, C, D, F. Next we assume that X ∈
{S, T, U} is such that E ≡ X and we choose Y ∈ {A, C} such that X � Y . Then Y = 〈Y , E〉 ≡ 〈Y , X〉 = F,
which gives another contradiction. We conclude that {E} and {F} are singleton classes with respect to ≡.

If there are X, Y ∈ L \ {E, F} such that X �= Y and X ≡ Y , X ∩ Y = E or 〈X, Y〉 = F, then this implies
that X = X ∩ X ≡ X ∩ Y = E or X = 〈X, X〉 ≡ 〈X, Y〉 = F. As this is impossible, we conclude that such
elements X, Y do not exist.

In particular A, B, C are pairwise non-congruent and D, S, T, U are also pairwise non-congruent.
We assume that D ≡ X ∈ {A, B, C}. Then we choose Y ∈ {T, U} such that Y � X, and this gives

the contradiction F �= 〈Y , D〉 ≡ 〈Y , X〉 = F. Hence {D} is a singleton as well.
Finally, we assume that there are X ∈ {A, B, C} and Y ∈ {T, S, U} such that X ≡ Y . We have seen

that X ∩ Y �= E and then it follows that Y ≤ X by the structure of L9. Now D = X ∩ D ≡ Y ∩ D = E,
which is impossible. In conclusion, for all X, Y ∈ L9, we have that X ≡ Y if and only if X = Y . This
means that ≡ is equality.

In the following lemma we argue similarly to Lemma 2.2 in [8].

Lemma 3.4. Suppose that n ∈ N and that G1, . . ., Gn are normal subgroups of G of pair-wise coprime
order such that G = G1 × · · · × Gn. Then G is L9-free if and only if, for every i ∈ {1, . . ., n}, the group Gi
is L9-free.

Proof. Since subgroups of L9-free groups are L9-free we just need to verify the “if ” part.
Suppose that G1,…,Gn are L9-free. Then Lemma 1.6.4 of [7] implies that L(G) ∼= L(G1)×· · ·×L(Gn).

By induction we may suppose that n = 2. Assume that L = {E, T, S, U, D, A, B, C, F} is a sublattice of
L(G) ∼= L(G1)× L(G2) that is isomorphic to L9 as in Definition 3.1. Then the projections ϕ1 and ϕ2 of L
into L(G1) and L(G2), respectively, are not injective, because L(G1) and L(G2) are L9-free. Let i ∈ {1, 2}
and define, for all X, Y ∈ L:

X ≡i Y :⇔ ϕi(X) = ϕi(Y).

Then ≡i is a congruence relation on L, because ϕi is a lattice homomorphism, but it is not equality
because φi is not injective. Then Lemma 3.3 implies that ϕ1(D) = ϕ1(E) and ϕ2(D) = ϕ2(E), and hence
D = E. This is a contradiction.

Lemma 3.5. L9 = {A, B, C, D, E, F, U, T, D} as in Definition 3.1 is completely characterized by the
following:

L9 (i) D �= E.
L9 (ii) 〈S, T〉 = 〈S, D〉 = 〈T, D〉 = A and S ∩ T = S ∩ D = T ∩ D = E.
L9 (iii) 〈D, U〉 = C and D ∩ U = E.
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L9 (iv) 〈S, U〉 = 〈T, U〉 = F.
L9 (v) 〈A, B〉 = 〈B, C〉 = F and A ∩ B = A ∩ C = B ∩ C = D.

Proof. We first remark that L9 satisfies the relations given in L9 (i) – L9 (v).
Suppose conversely that a lattice L = {A, B, C, D, E, F, S, T, U} satisfies the relations given in L9

(i) – L9 (v). Then we see that E ≤ A, B, C, D, S, T, U ≤ F and D ≤ A, B, C as well as S, T ≤ A and
U ≤ C. If these are the unique inclusions and |L| = 9, then L ∼= L9.

For all X, Y ∈ L such that X ≤ Y we have that X ∩ Y = X and 〈X, Y〉 = Y . Thus L9 (ii) shows that
S, T, and D are pair-wise not subgroups of each other.

Using L9 (iii) we obtain that D � U and U � D, and L9 (iv) gives that also S, T and U are pair-wise
not subgroups of each other. In addition, by L9 (v), we have that A, B and C are pair-wise not subgroups
of each other. Together with the fact that S, T ≤ A and U ≤ C, this implies that A � U, C � S, T and
B � S, T, U. Moreover we have that D ≤ A, B, C and S, T ≤ A and U ≤ C and A �= F �= B and
C �= F. Together with L9 (ii) and L9 (iii), this information yields that A � U and C � S, T as well as
B � S, T, U.

We conclude that there is a lattice homomorphism ϕ from L9 to L. Hence we obtain a congruence
relation ≡ on L9 by defining that X ≡ Y if and only if ϕ(X) = ϕ(Y), for all X, Y ∈ L9.

If ϕ is not injective, then Lemma 3.3 implies that E = D. This contradicts L9 (i). Consequently ϕ is
injective and L ∼= L9.

The next lemma gives an example of a group that is not L9-free.

Lemma 3.6. D12 is not L9-free.

Proof. Let G be isomorphic to D12 and let a, b ∈ G be such that o(a) = 6, o(b) = 2 and G = 〈a, b〉.
Then we find a sublattice in L(G) isomorphic to L9 by checking the equations from Lemma 3.5.

We let L := {1, 〈b〉, 〈a2b〉, 〈a2〉, 〈ab〉, 〈a2, b〉, 〈a〉, 〈a2, ab〉, G} and we define A := 〈a2, b〉 and C :=
〈a2, ab〉.

1

D12

〈a2, b〉 〈a〉 〈a2, ab〉

〈b〉
〈a2b〉 〈a2〉

〈ab〉

L9 (i): We see that a2 �= 1 and hence 〈a〉 �= 1.
L9 (ii): We notice that A ≤ G is isomorphic to

Sym3 with cyclic normal subgroup 〈a2〉
of order 3 and distinct subgroups 〈b〉,
〈a2b〉 of order 2. Then 〈〈b〉, 〈a2b〉〉 =
〈〈b〉, 〈a2〉〉 = 〈〈a2b〉, 〈a2〉〉 = A and 〈b〉 ∩
〈a2b〉 = 〈b〉 ∩ 〈a2〉 = 〈a2b〉 ∩ 〈a2〉 = 1.

L9 (iii): The subgroup C is also isomorphic to
Sym3, the subgroup 〈ab〉 ≤ C has order
2, and moreover 〈〈a2〉, 〈ab〉〉 = C and
〈a2〉 ∩ 〈ab〉 = 1.

L9 (iv): We first see that 〈〈b〉, 〈ab〉〉 = 〈a, b〉 = G and then 〈〈a2b〉, 〈ab〉〉 = 〈a2b(ab)−1, ab〉 = 〈a, b〉 =
G.

L9 (v): 〈a〉 is a cyclic normal subgroup of G of order 6, and the subgroups A and C also have order
6. These three subgroups are maximal in G. Hence 〈A, 〈a〉〉 = 〈C, 〈a〉〉 = G. Assume for a
contradiction that A = C. Then b ∈ C = {1, a2, a4, ab, a3b, a5b}, which is false. Since 〈a2〉 is the
unique subgroup of order 3 of G, we conclude that A ∩ 〈a〉 = A ∩ C = 〈a〉 ∩ C = 〈a2〉.

Altogether it follows, with Lemma 3.5, that L is isomorphic to L9, and then G is not L9-free.

The next lemma shows how we can construct an entire class of groups that are not L9-free.
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Lemma 3.7. Suppose that p �= q and that G = PQ, where P is an elementary abelian normal Sylow p-
subgroup of G and Q is a cyclic Sylow q-subgroup of G. Suppose that Q acts irreducibly on [P, Q] �= 1 and
that |CP(Q)| ≥ 3. Then G is not L9-free.

Proof. Since Q is abelian, we see that E := CQ(P)� G. We claim that G/CQ(P) is not L9-free. Therefore
we may suppose that E = 1.

Our hypotheses imply that [P, Q] is not centralized by Q, and in particular |[P, Q]| ≥ 3. Moreover
|CP(Q)| ≥ 3 by hypothesis. Since P is elementary abelian, Lemma 1.1 gives that P = [P, Q] × CP(Q).

We let V ≤ [P, Q] and D ≤ CP(Q) be subgroups of minimal order such that |V| ≥ 3 and |D| ≥ 3
and we set A := V × D. If p is odd, then A has order p2, and if p = 2, then |A| = 24 = 16. In the
first case A has p2−1

p−1 = p + 1 ≥ 4 subgroups isomorphic to V . In the second case A has 15·14
3 = 70

subgroups isomorphic to V , where 3 · 14
2 − 2 = 19 of these subgroups intersect V non-trivially and 19

of them intersect D non-trivially. In both cases, we find subgroups T and S of A isomorphic to V such
that |{D, T, S, V}| = 4 and T ∩ V = T ∩ D = T ∩ S = S ∩ D = S ∩ V = 1 = E.

We recall that A is elementary abelian, and then it follows that L9 (i) and L9 (ii) hold and that A =
〈S, V〉 = 〈T, V〉 (∗).

We further set U := Q. Then U ∩D ≤ Q∩P = E = 1 and 〈U, D〉 = UD =: C, which implies L9 (iii).
If X ∈ {T, S}, then X � CP(Q) and then the irreducible
action of Q on [P, Q] and Lemma 1.2 yield that V ≤
[P, Q] ≤ 〈X, U〉. Using (∗) it follows that D ≤ A ≤
〈V , X, U〉 = 〈X, U〉. Combining all this information gives
that 〈X, U〉 = [P, Q]DQ. Now if we set F := [P, Q]DQ,
then we have L9 (iv).
To prove our claim, it remains to show that property L9
(v) of Lemma 3.5 is satisfied.
We set B := DQx for some x ∈ [P, Q]#.
If y ∈ {1, x}, then D ≤ A ∩ DQy = D(A ∩ Qy) = D and
hence A ∩ B = A ∩ C = D. We further have that D ≤
B ∩ C = D(Q ∩ DQx) = DCQ(x) = D, by Lemma 1.4 (b)
and (c), because Q acts irreducibly on [P, Q]. 1

[P, Q]DQ

A DQx DQ

S T D
Q

In addition, the irreducible action of Qx on [P, Q] and Lemma 1.2 yield that [P, Q] ≤ 〈A, Qx〉. It
follows that 〈A, B〉 = [P, Q]DQx = F. Finally we deduce from Part (d) of Lemma 1.4 that

〈B, C〉 = D〈Q, Qx〉 = D〈[x, Q]Qx〉Qx = D[P, Q]Qx = F.

4. Group orders with few prime divisors

Much of our analysis will focus on non-nilpotent groups with a small number of primes dividing their
orders. The next lemma sheds some light on why this situation naturally occurs.

Lemma 4.1. Suppose that G is L9-free. Then G possesses a normal Sylow subgroup.

Proof. Assume that this is false. Since G is L9-free and hence L10-free, [9, Corollary C] is applicable. Then
G is metacyclic because it does not have any normal Sylow subgroup, and it follows that G is supersoluble.
Then Satz VI.9.1(c) in [3] gives a contradiction.

Lemma 4.2. Suppose that G is a p-group. Then the following statements are equivalent:
• L(G) is modular.
• G is L5-free.
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• G is L9-free.
• G is L10-free.

Proof. This lemma follows from Theorem 2.1.2 in [7] and Lemma 2.1 in [9], since L9 is a sublattice of
L10 containing L5.

Lemma 4.3. Suppose that p �= q and that G is an L9-free {p, q}-group. Let P be a normal Sylow p-subgroup
of G and let Q ∈ Sylq(G). If G is not nilpotent, then Q is cyclic or Q ∼= Q8.

Proof. First we note that all subgroups and sections of G are L9-free and that G is L10-free.
Let G be non-nilpotent and assume for a contradiction that Q is neither cyclic nor isomorphic to Q8.

Given that G is L10-free, we may apply Theorem B of [9] and we see that neither (a), (b) nor (c) hold.
Therefore p = 3 and q = 2. Now there are a, b ∈ Q such that 〈a, b〉 is not cyclic and b is an involution.
If, for all choices of b, we have that CP(b) = CP(Q), then �1(Q) acts element-wise fixed-point-freely on
P/CP(Q), contradicting 8.3.4 (b) of [5]. Therefore we may choose b such that a does not centralize CP(b),
and we also choose a of minimal order under these constraints. Then a2 centralizes P and a inverts an
element x ∈ CP(b) by a result of Baer (e.g. 6.7.7 of [5]). If follows that a inverts �1(〈x〉) and we may
suppose that x has order 3. Now 〈x, a, b〉/C〈a〉(x) is isomorphic to D12, contrary to Lemma 3.6.

Lemma 4.4. Suppose that p �= q and that G is an L9-free {p, q}-group. Furthermore, let P be a normal
Sylow p-subgroup of G and let Q ∈ Sylq(G) be cyclic such that 1 �= [P, Q] is elementary abelian.

Then every subgroup of Q acts irreducibly or by inducing (possibly trivial) power automorphism on
[P, Q]. Moreover, CP(Q) is a cyclic 2-group and P is abelian.

Proof. First we note that all subgroups and sections of G are L9-free and that all subgroups and sections of
[P, Q] are elementary abelian, by hypothesis. In addition Lemma 2.2 of [9] yields that P = CP(Q)×[P, Q],
as G is also L10-free. In particular P is abelian if CP(Q) is.

Assume that the lemma is false and let G be a minimal counterexample.
Since [P, Q] is elementary abelian, we introduce the following notation with Maschke’s theorem:

Let n ∈ N and let M1, . . . , Mn ≤ [P, Q] be Q-invariant and such that [P, Q] = M1 × · · · × Mn and
that Q acts irreducibly on M1, . . . , Mn, respectively. Lemmas 2.3.5 of [7] and 4.2 yield that �1(CP(Q)) is
elementary abelian. Now there are r ∈ N and cyclic subgroups Mn+1, . . . , Mn+r of �1(CP(Q)) such that
�1(CP(Q)) = Mn+1 × · · · × Mn+r .

We set H1 := (M1 × · · · × Mn+r−1)Q and H2 := (M2 × · · · × Mn+r)Q.
Then for every i ∈ {1, 2} the group Op(Hi) is elementary abelian. Moreover Hi is a proper subgroup

of G and then the minimal choice of G implies that every subgroup of Q either induces (possibly trivial)
power automorphisms on [Op(Hi), Q] or acts irreducibly on it.

(1) CP(Q) = 1 and n ≤ 2.

Proof. We assume for a contradiction that n + r ≥ 3.
Then Q does not act irreducibly on both Op(H1) and Op(H2), and it follows that Q induces (possibly

trivial) power automorphisms on [Op(Hi), Q].
We suppose first that CP(Q) = 1. Then [Op(Hi), Q] = Op(Hi) for both i ∈ {1, 2}. Therefore Lemma

1.5.4 of [7], together with the fact that 1 �= M2 ≤ Op(H1) ∩ Op(H2), provides some k ∈ N such that
ay = ak for every a ∈ Op(H1)Op(H2) = [P, Q]�1(CP(Q)). But this means that Q, and hence every
subgroup of Q, induces (possibly trivial) power automorphism on Op(H1)Op(H2) = [P, Q] in this case.
Thus G is not a counterexample, which is a contradiction.

We conclude that CP(Q) �= 1 and now there is some i ∈ {1, 2} such that 1 �= [Op(Hi), Q]
and COp(Hi)(Q) �= 1. Then Hi satisfies the hypotheses of our lemma and it follows that COp(Hi)(Q)
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is an non-trivial 2-group. In particular p = 2. But then Lemma 1.3 provides the contradiction that
[Op(Hi), Q] = 1.

For the proof of (1), we assume for a further contradiction that r = n = 1. Then Q acts irreducibly
on the elementary abelian group [P, Q] and Lemma 3.7, applied to ([P, Q] × �1(CP(Q)))Q, gives that
|�1(CP(Q))| = 2. In particular we have that p = 2. Thus the minimal choice of G and Lemma 1.3 yield,
for every proper subgroup U of Q, that U centralizes P or acts irreducibly on [P, Q] = [P, U].

Since G is a counterexample, it follows that CP(Q) is not cyclic. But |�1(CP(Q))| = 2 and therefore
CP(Q) is a generalized quaternion group. It follows that CP(Q) ∼= Q8 by Lemma 4.2. In this case 1 �=
Z := Z(CP(Q)) � G and G/Z satisfies the hypotheses of our lemma, but not the conclusion. Thus G is
not a minimal counterexample, contrary to our choice.

(2) Q acts irreducibly on P = [P, Q].

Proof. Assume for a contradiction that n = 2. By hypothesis Q is cyclic, and then we may suppose that
CQ(M1) ≤ CQ(M2) =: Q0. If CQ(M1) = CQ(M2), then Lemma 2.8 of [9] implies that Q induces power
automorphisms on P. Thus G is not a counterexample, which is a contradiction.

Therefore CQ(M1) � Q0 and 1 �= [M1, Q0] ≤ [P, Q0]. The minimal choice of G yields that Q0 acts
irreducibly or by inducing power automorphisms on [P, Q0] and that CP(Q0) is a cyclic 2-group. Now
we notice that M2 ≤ CP(Q0), but M2 � 1 = CP(Q), whence we deduce a contradiction from 2.2.5
of [5].

Since G = PQ is a counterexample to the lemma, Q has a proper subgroup U that does not act
irreducibly on [P, Q] = P and it also does not induce power automorphisms on [P, Q]. In particular it
does not act trivially. Since PU is a proper subgroup of our minimal counterexample G, it follows that
1 �= CP(U) �= P. But CP(U) is Q-invariant, because Q is abelian. This is a final contradiction with regard
to (2).

Lemma 4.5. Suppose that q is odd and that G is an L9-free {2, q}-group. Suppose further that P is a normal
Sylow 2-subgroup of G such that [P, Q] is hamiltonian and let Q ∈ Sylq(G). Then one of the following holds:

(a) G is nilpotent or
(b) [P, Q] ∼= Q8 and there exists a group I of order at most 2 such that P = [P, Q] × I and Q is a cyclic

3-group. Moreover [P, Q]Q/Z([P, Q]Q) ∼= Alt4.

Proof. We suppose that G is not nilpotent.
Then Q is not normal in G and Lemma 4.3 implies that Q is cyclic. Furthermore, P is L9-free and

hence it is modular by Lemma 4.2. Since [P, Q] is hamiltonian, Theorem 2.3.1 of [7] provides subgroups
P0, I ≤ P such that P0 ∼= Q8, I is elementary abelian and P = P0 × I.

We recall that the automorphism group of Q8 is isomorphic to Sym4. Thus, if Q8 ∼= P1 ≤ P is Q-
invariant, but not centralized by Q, then Q8 ∼= P1 ≤ [P, Q] and 1 �= |Q/CQ(P1)| = 3. It follows that Q
is a cyclic 3-group and [P1, Q]Q/Z([P1, Q]Q) ∼= Alt4.

We conclude that our assertion holds if I = 1. Now suppose that I �= 1. We recall that P � G and
therefore �(P0) = �(P) � G. Since |�(P0)| = 2, it follows that �(P0) ≤ Z(G), and then Ḡ :=
G/�(P0) is not nilpotent because G is not. Furthermore, Ḡ is L9-free, Ī ∼= I �= 1, Q̄ ∼= Q and P̄0
is elementary abelian of order 4. In particular P̄ is elementary abelian, hence it is a non-hamiltonian
2-group of order at least 8. Lemma 4.4 states that Q̄ acts irreducibly on [P̄, Q̄] �= 1 or induces power
automorphisms on it. The second case is not possible by Lemma 1.3.

Hence Q ∼= Q̄ acts irreducibly on [P̄, Q̄] = [P, Q] and, by Lemma 4.4, we see that CP̄(Q̄) is a cyclic
2-group. Since I �= 1 and �1(P) = �(P0) × I, we have that 1 �= Ī = �1(P) is Q̄-invariant and P̄0 is a
non-cyclic complement of Ī in P̄. This implies that Ī = CP̄(Q̄) is cyclic and elementary abelian at the same
time. Thus I ∼= Ī has order 2 and with Lemma 1.1 we deduce that CP(Q)�(P0) = I�(P0) = �1(P) is
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elementary abelian of order 4. Then we deduce that CP(Q) = �1(P) and then [P, Q] ∩ CP(Q) �= 1.
Moreover, since [P, Q]CP(Q) = P = P1 × I ≤ P1CQ(P), it follows that |[P, Q]| ≤ |P1| ≤ 8.
In conclusion, [P, Q] is a subgroup of order at most 8 admitting an automorphism of odd order that
centralizes �1([P, Q]). It follows that [P, Q] ∼= Q8 and then, together with the fact that I ≤ Z(G), our
assertions follow.

Definition 4.6. Suppose that Q is a cyclic q-group that acts coprimely on the p-group P. We say that the
action of Q on P avoids L9 (and we indicate more technical details by writing “of type (·)”) if and only
if one of the following is true:

(std) Every subgroup of Q acts irreducibly or by inducing (possibly trivial) power automorphisms on
the elementary abelian group [P, Q] = P.

(cent) Every subgroup of Q acts irreducibly or trivially on the elementary abelian group [P, Q], P is
abelian and CP(Q) is a nontrivial cyclic 2-group.

(hamil) [P, Q] ∼= Q8, P = [P, Q] × I, where I is a group of order at most 2, and Q is a cyclic 3-group
such that [P, Q]Q/Z([P, Q]Q) ∼= Alt4.

Lemma 4.7. Suppose that p is an odd prime and that G is an L9-free {2, p}-group. Let further P be a normal
Sylow p-subgroup of G and let Q ∈ Syl2(G) be isomorphic to Q8 and such that 1 �= [P, Q] is elementary
abelian.

Then p ≡ 3 mod 4, |P| = p2 and Q acts faithfully on P.

Proof. We set Z := �1(Q). If Z � G, then Z ≤ Z(G) and we consider Ḡ := G/Z. Then Ḡ is an L9-
free {2, p}-group, P̄ is a normal Sylow p-subgroup of Ḡ and Q̄ ∈ Syl2(Ḡ). Since Q̄ is neither cyclic nor
isomorphic to Q8, Lemma 4.3 is applicable and we see that Ḡ is nilpotent. But then G is also nilpotent,
contrary to our hypothesis that [P, Q] �= 1. Thus �1(Q) is not normal in G and Q acts faithfully on
P. Now, for all y ∈ Q of order 4, we apply Lemma 4.4 on [P, Q]〈y〉 to deduce that 〈y〉 either induces
power automorphisms on [P, Q] or acts irreducibly on it. Theorem 1.5.1 of [7] states that PotG(P) is
abelian, but Q ∼= Q8 is not, which means that we may choose y such that y does not induce power
automorphisms on P. In particular P is not cyclic of prime order. Moreover p is odd and therefore
4 divides (p + 1)(p − 1) = p2 − 1, and Satz II 3.10 of [3] yields that |P| ≤ p2. It follows that
|P| = p2. More precisely, as |P| �= p, the result implies that p ≡ 3 (mod 4), and then the proof is
complete.

Definition 4.8. Suppose that Q ∼= Q8 acts coprimely on the p-group P. We say that the action of Q on P
avoids L9 if and only if p ≡ 3 mod 4, |P| = p2 and Q acts faithfully on P.

Lemma 4.9. Suppose Q ∼= Q8 and that P is a p-group on which Q acts avoiding L9. Then P is elementary
abelian, �1(Q) inverts P, and every subgroup of Q of order at least 4 acts irreducibly on P.

Proof. Since a cyclic group of order p2 has an abelian automorphism group by 2.2.3 of [5], it follows that
P is elementary abelian. If 1 �= R is a cyclic subgroup of P, then |Aut(R)| = p−1 and therefore R does not
admit an automorphism of order 4. Additionally, [P, �1(Q)] is Q-invariant and, since Q acts faithfully on
P, we see that [P, �1(Q)] �= 1. Furthermore, Lemma 1.1 gives that [P, �1(Q)]∩CP(�1(Q)) = 1 because
P is abelian. Moreover, Q has rank 1, and then it follows that Q acts faithfully on [P, �1(Q)]. This implies
that |[P, �1(Q)]| �= p and consequently [P, �1(Q)] = P. Hence 8.1.8 of [5] states that �1(Q) inverts P.
In particular �1(Q) inverts every cyclic subgroup R of P.

In addition, these arguments show that every subgroup U of order 4 of Q does not normalize any
nontrivial proper subgroup of the elementary abelian group P. This means that U acts irreducibly
on P.
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Corollary 4.10. Suppose that p �= q and that G is an L9-free {p, q}-group such that P ∈ Sylp(G) is normal
in G and Q ∈ Sylq(G).

Then either G is nilpotent and P and Q are modular or Q is a batten and it acts on P avoiding L9.
In particular, if G is not nilpotent, then Q is isomorphic to Q8 or cyclic and [P, Q] is elementary abelian

or isomorphic to Q8, where in the second case q = 3.

Proof. By hypothesis G is L9-free, hence P and Q are, too. Then Lemma 4.2 implies that P and Q are
modular.

Suppose that G is not nilpotent. Then Lemma 4.3 applies: Q is cyclic or isomorphic to Q8 and hence it
is a batten. Moreover Lemma 2.2 of [9] states that [P, Q] is a hamiltonian 2-group or elementary abelian.
In the first case Lemma 4.5 gives the assertion. In the second case our statement follows from Lemmas 4.4
and 4.7.

Lemma 4.11. Let Q be a nilpotent batten that acts on the p-group P avoiding L9, and suppose that U is a
subgroup of Q.

Then U induces power automorphisms on P or it acts irreducibly on [P, Q]/�([P, Q]).

Proof. First suppose that Q ∼= Q8. Then Lemma 4.9 implies that every subgroup of order at least 4 of
Q, and in particular Q itself, acts irreducibly on P = [P, Q]/�([P, Q]). Moreover, the involution of Q
inverts P by Lemma 4.9, and then the statement holds.

Next we suppose that Q is cyclic. Then Definition 4.6 gives the assertion unless the action of Q on P
avoids L9 of type (hamil). In this case every proper subgroup of Q centralizes P, while Q acts irreducibly
on [P, Q]/Z([P, Q]) = [P, Q]/�([P, Q]).

Next we investigate groups of order divisible by more than two primes. This needs some
preparation.

Lemma 4.12. Suppose that P and R are distinct Sylow subgroups of G, that Q ∈ Sylq(G) is cyclic and that
it normalizes P and R, but does not centralize them. Suppose further that R normalizes every Q-invariant
subgroup of P. If CQ(P) = CQ(R), then G is not L9-free.

Proof. We suppose that CQ(P) = CQ(R) =: E. Then E is a normal subgroup of G because Q is abelian.
We claim that G/E is not L9-free, and for this we may suppose that E = 1. Then Q �= 1 acts faithfully

on P and R. Now we need a technical step before we move on:
There are a Q-invariant subgroup D of P and elements x, y ∈ D such that CQ(x) = CQ(y) =

CQ(xy−1) = 1 and D = [x, Q] = [y, Q] = [xy−1, Q]. (∗)
Since Q is cyclic, there is some u ∈ Q such that 〈u〉 = Q. Let x0 ∈ [P, Q] be such that �1(Q) does not

centralize x0.
Then [x0, Q] = [x0, 〈u〉, Q] = [〈[x0, u]〉, Q] = [[x0, u], Q] by Lemma 1.1, and for all integers n we

have the following: (x−1
0 xu

0)un = 1 iff xun
0 = xun+1

0 iff xu
0 = 1. It follows that [x0, u] ∈ [[x0, u], Q] = [x, Q]

and CQ([x0, u]) = CQ(x0) = 1.
Now we set x := [x0, u], y := xu and D := [x, Q]. Then D is Q-invariant and we have that x, y ∈ D,

CQ(x) = CQ(y) = 1 and D = [x, Q] = [y, Q]. If we set z := xy−1, then z = [x−1, u] and we can use the
information from the end of the previous paragraph:
[z, Q] = [x−1, Q] = D and CQ(z) = CQ(x−1) = CQ(x) = 1. This concludes the proof of (∗).

We use (∗) and its notation and, similarly, we find a Q-invariant subgroup R0 of R and an element
h ∈ R0 such that CQ(h) = 1 and R0 = [h, Q].
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We set S := Qx, T = Qy, A := DQ, B := DR0, U := Qh, C := DQh

and F := DR0Q, and we claim that {A, B, C, D, E, F, S, T, U} is
isomorphic to L9. The properties L9 (i) and L9 (iii) of Lemma 3.5 follow
from the choice of D, since h and Q normalize D.
For L9 (ii) we first note that D ∩ Qx = D ∩ Qy = 1 = E and 〈D, Qx〉 =
〈D, Qy〉 = DQ, since x ∈ D and hence y = xu ∈ D. Next, Lemma 1.4 (b)
yields that T ∩ S = Qx ∩ Qy ≤ CQ(xy−1)y = 1. Part (d) of the
same lemma shows that 〈T, S〉 = 〈Qx, Qy〉 = 〈[xy−1, Q]Qxy−1 〉Qxy−1 =
DQxy−1 = DQ = A, as xy−1 ∈ D.
For all z ∈ {x, y} we calculate that 〈Qz, Qh〉 = 〈[zh−1, Q]Qzh−1 〉Qzh−1 =
〈([z, Q]h−1 [h−1, Q])Qzh−1 〉Qzh−1 = 〈D, R0〉Qzh−1 = F by Lemma 1.4 (d).
Thus L9 (iv) of Lemma 3.5 is true.

1

DR0Q

DQ
DR0

DQh

Qx Qy P Qh

We moreover have that 〈A, B〉 = 〈D, Q, R0〉 = F = 〈D, Qh, R0〉 and A ∩ B = DQ ∩ DR0 = D(Q ∩
DR0) = D = D(Qh ∩ DR0) = C ∩ B. Finally A ∩ C = DQ ∩ DQh = D(Q ∩ DQh) ≤ DCQ(h) = D by
Lemma 1.4 (b).

Using Lemma 3.5 we conclude that G/E is not L9-free, and hence G is not L9-free.

Corollary 4.13. Suppose that p, q and r are pairwise distinct primes and that G is a directly indecomposable
L9-free {p, q, r}-group. Suppose further that P ∈ Sylp(G) and R ∈ Sylr(G) are normal in G and let Q ∈
Sylq(G).

Then Q is cyclic and CQ(P) �= CQ(R).

Proof. Since G is directly indecomposable, we see that Q acts non-trivially on both P and R. Moreover,
PQ and RQ are L9-free by hypothesis, and then we conclude that Q is cyclic or isomorphic to Q8.

In the first case, our assertion follows from Lemma 4.12, and in the second case, we choose a maximal
subgroup Q1 of Q. Then Q1 acts irreducibly on P and R by Lemma 4.9, and the same Lemma shows that
�(Q) inverts P and R. Thus Q1 acts on P and on R avoiding L9, respectively, and it acts faithfully. This
contradicts Lemma 4.12.

We explain another example where a subgroup lattice contains L9.

Lemma 4.14. Suppose that p, q and r are pairwise distinct primes and that G is a {p, q, r}-group. Suppose
further that P ∈ Sylp(G) is normal in G and that Q ∈ Sylq(G) and R ∈ Sylr(G) are cyclic groups such that
R � RQ. Suppose that |R| = r and CQ(R) = 1.

If R acts irreducibly on P, but non-trivially, and if 1 �= [P, Q] is elementary abelian, then G is not L9-free.

Proof. We first remark that G is soluble, because P � PR � PRQ = G. We will construct the lattice L9 in
L(G) using Lemma 3.5. For this we set E := 1 and D := P. Then D �= E and we see that L9 (i) is true.

Next, we recall that 1 �= [P, Q] by hypothesis. Assume that |[P, Q]| = 2. Then Q, which normalizes
[P, Q], must centralize it, and then Lemma 1.1 gives a contradiction.

Therefore |[P, Q]| � 2. As a consequence, we find a, b ∈ [P, Q]# such that a �= b, and then we set
S := Ra and T := Rb. Now D ∩ S = 1 = E = D ∩ T and 〈D, T〉 = PRb = PR = PRa = 〈D, S〉. We
set A := PR. In addition, since R acts irreducibly, but non-trivially on P, it follows that CR(ba−1) � R.
Then the fact that |R| = r gives that CR(ba−1) = 1 = E.

Lemma 1.4 (b) shows that S∩T = (R∩Rba−1
)a ≤ CR(ba−1)a = E, and now we recall that [ba−1, R] �=

1. Moreover, R acts irreducibly on P, and then Part (e) of the same lemma yields the following:
〈T, S〉 = 〈R, Rba−1〉a = (〈[ba−1, R]Rba−1 〉Rba−1

)a = PR = A. We conclude that L9 (ii) holds.
For L9 (iii) we set U := Q and C := 〈D, Q〉 = PQ. Then we note that U ∩ D = Q ∩ P = 1 = E.
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Assume for a contradiction that X := 〈Rc, Q〉 has odd
order for some c ∈ {a, b}.
In both cases X is a p′-Hall subgroup of the soluble group
G = PRQ and therefore Rc = Or(X). It follows that Q
normalizes Rc and then that Qc−1 and Q normalize R.
Since NP(R) is R-invariant and R acts irreducibly, but non-
trivially on P, we conclude that NG(R) = RQ. Thus Sylow’s
theorem provides some y ∈ R such that Qc−1 = Qy. Now
[yc, Q] ≤ PR ∩ Q = 1. In addition |R| = r and [R, Q] �= 1
by hypothesis. Together this gives that yc ∈ CG(Q)∩PR ≤
PQ ∩ PR = P(Q ∩ PR) = P, by Dedekind’s modular
law. Altogether we have that yc ∈ CP(Q). We recall that
c ∈ {a, b} ⊆ P, and then y = ycc−1 ∈ P. But we chose
y ∈ R and now y ∈ R ∩ P = 1, whence Qc−1 = Q. In
other words, c ∈ NP(Q), and this means that [Q, c] ≤
Q ∩ P = 1 and c ∈ CP(Q). We recall that c ∈ [P, Q]#

and that [P, Q] is elementary abelian by hypothesis. Then
Lemma 1.1 implies that [P, Q] = [P, Q, Q] × C[P,Q](Q),
and this contradicts the fact that c ∈ CP(Q) ∩ [P, Q].

It follows that X has even order and since Rc acts irreducibly on P, we conclude that P ≤ X. This
implies that 〈S, U〉 = 〈Ra, Q〉 = PRQ = G = 〈Rb, Q〉 = 〈T, Q〉 and then L9 (iv) holds for F := G.

We finally set B := PQz for some z ∈ R#. Then R = 〈z〉 and Lemma 1.4 (b) and (c), together
with our hypothesis, show that P ≤ PQ ∩ PQz = P(Q ∩ PQz) ≤ PCQ(z) = PCQ(R) = P. Thus
we have that B ∩ C = P = D. We further see that A ∩ C = PR ∩ PQ = P(R ∩ PQ) = P = D
and A ∩ B = PR ∩ PQz = P(R ∩ PQz) = P = D. Since 〈A, B〉 = 〈PR, PQz〉 = PQR = G and
〈B, C〉 = 〈PQ, PQz〉 = P〈[Q, z]Qz 〉Qz = P[Q, R]Q = PRQ = G by Lemma 1.4 (d), we finally obtain
L9 (v).

Altogether Lemma 3.5 gives the assertion.

Proposition 4.15. Suppose that p, q, and r are pairwise distinct primes and that G is a non-nilpotent L9-
free {p, q, r}-group with normal Sylow p-subgroup P. Suppose further that R ∈ Sylr(G) and Q ∈ Sylq(G)

are not normal in G, that R � RQ and [R, Q] �= 1.
Then RQ is a batten, P is elementary abelian of order pr, R and Q act irreducibly on P and �(Q) induces

non-trivial power automorphisms on P.

Proof. We proceed in a series of steps.
(1) The groups PQ and PR are not nilpotent, Q is cyclic and R ∼= Q8 or |R| = r. In addition R = [R, Q]

and [R, CQ(P)] ≤ CR(P).

Proof. By hypothesis R is not normal in G, but Q normalizes R. Hence P � NG(R) and in particular
PR is not nilpotent. But PR is L9-free, because G is. Moreover, RQ is non-nilpotent and L9-free, again by
hypothesis. Then Corollary 4.10 implies that R and Q are battens, that R acts on P avoiding L9 and that
Q acts on R avoiding L9. More specifically, R and Q are cyclic or isomorphic to Q8, and [P, R] as well as
[R, Q] are elementary abelian or isomorphic to Q8.

It follows that R ∼= Q8 or that R is cyclic of order r. In both cases Lemma 1.1 yields R = [R, Q] and
the avoiding L9 action of Q on R gives that Q is cyclic.

In addition [P, CQ(P), R] = 1, [P, R, CQ(P)] ≤ [P, CQ(P)] = 1 and then the Three Subgroups Lemma
(see for example 1.5.6 of [5]) implies that 1 = [R, CQ(P), P]. Thus [R, CQ(P)] ≤ CR(P).

If it was true that [P, Q] = 1, then R = [R, Q] = [R, CQ(P)] would centralize P. But this is a
contradiction.
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(2) CR(P) = 1 and CQ(P) ≤ Z(G).

Proof. Since [P, R] �= 1 by (1), we can apply Corollary 4.10 to PR, and this shows that R acts on P avoiding
L9. Otherwise (1) implies that R ∼= Q8 and then Definition 4.8 gives that R acts faithfully on P. If |R| = r,
then R acts faithfully of P because [P, R] �= 1. In both cases we see that CR(P) = 1, and then the last
statement of (1) implies that [R, CQ(P)] ≤ CR(P) = 1. Then CQ(P) centralizes P and R, and Q is cyclic
by (1), and therefore it follows that CQ(P) ≤ Z(G).

(3) Z(G) = 1 or p �= 2.

Proof. We suppose that p = 2. Let − : G → G/Z(G) be the natural homomorphism. We show that Ḡ
satisfies the hypotheses of our lemma.

From (1) we see that none of the groups P, Q or R is contained in Z(G). We even have that R∩Z(G) = 1
by (1). In particular p, q, r ∈ π(Ḡ) and Ḡ is L9-free. We see that P̄ is a normal Sylow p-subgroup of G and
that Q̄ ∈ Sylq(G) and R̄ ∈ Sylr(G) are such that R̄ � R̄Q̄ ≤ G. Let X ∈ {R, Q}. If X̄ � Ḡ, then XZ(G)� G
and X is a characteristic Sylow subgroup of XZ(G) and hence normal in G. This is a contradiction.

We deduce that all hypotheses of the lemma hold for Ḡ and that [R̄, Q̄] = [R, Q] = R̄ �= 1. Therefore,
if Z(G) �= 1, then the minimal choice of G implies that �(Q̄) induces non-trivial power automorphisms
on the elementary abelian group P̄. Then Lemma 1.3 yields that p �= 2.

(4) CP(R) = 1, and the groups [P, Q] and P = [P, R] are elementary abelian.

Proof. As PR and PQ are not nilpotent by (1), Corollary 4.10 implies that X acts on P avoiding L9 and
that [P, X] is elementary abelian or isomorphic to Q8 for both X ∈ {Q, R}.

Assume for a contradiction that [P, X] is isomorphic to Q8 for some X ∈ {Q, R}. Then X acts on P of
type (hamil). Hence we obtain a group I of order 1 or 2 such that P ∼= Q8 × I. It follows that Aut(P) is
a {2, 3}-group. But this is impossible because Q and R both act coprimely and non-trivially on P by (1),
and p = 2, q and r are pairwise distinct.

We conclude that [P, Q] and [P, R] are elementary abelian, and then it follows that P is abelian, by
Lemma 4.4, applied to PR.

Assume for a further contradiction that CP(R) �= 1. As R avoids L9 in its action on P, it follows from
Lemma 4.9 that R is not isomorphic to Q8. Now (1) yields that R is cyclic and we may apply Lemma 4.4
to PR, because [P, R] is elementary abelian. It follows that CP(R) is a cyclic 2-group and thus q and r are
odd.

Furthermore CP(R) is normalized by Q, because Q normalizes P and R. Since q is odd, it follows that
CP(R) is centralized by Q. We recall that P is abelian, and then (3) yields that CP(R) ≤ Z(G) = 1. This
is a contradiction.

Altogether CP(R) = 1 and Lemma 1.1 gives that P = [P, R] is elementary abelian.

(5) CP(Q) = 1 and Q acts on P avoiding L9 of type (std).

Proof. Since PQ is not nilpotent and Q is cyclic by (1), Corollary 4.10 implies that the action of Q on P
avoids L9. But P is elementary abelian by (4), and therefore the action is not of type (hamil).

We assume for a contradiction that CP(Q) �= 1. Then it follows that PQ is not of type (std). We
consequently have type (cent) and we see that CP(Q) is a cyclic 2-group. In particular p = 2, and thus q
and r are odd. Then |R| = r by (1).

Next we claim that G satisfies the hypotheses of Lemma 4.14.
First, q and r are pairwise distinct odd primes and G is a finite {2, q, r}-group. From above, (1) and

our assumption we see that P ∈ Syl2(G) is normal in G and that Q ∈ Sylq(G) and R ∈ Sylr(G) are cyclic
groups such that R � RQ. We have shown that R has order r.
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We recall that CP(Q) is a cyclic 2-group (first paragraph). As r is odd and CP(R) = 1 by (4), we see
that CP(Q) is not R-invariant. But CP(CQ(R)) is R-invariant, and now the irreducible action of R on P
and the fact that 1 �= CP(Q) ≤ CP(CQ(R)) show that P = CP(CQ(R)). Then (2) and (4) imply that
CQ(R) ≤ CQ(P) ≤ Z(G) = 1.

By (4) P is an elementary abelian 2-group, and P = [P, R] �= 1 by (1) and (4). In particular R does not
induce power automorphism on P by Lemma 1.3. As CP(R) = 1 by (4), we deduce that R acts irreducibly
on P (using Lemma 4.4). Finally, (1) and (4) yield that 1 �= [P, Q] is elementary abelian.

All hypotheses of Lemma 4.14 are satisfied now, and we infer that G is not L9-free. This is a
contradiction.

Thus CP(Q) = 1 and we deduce that the action of Q on P is not of type (cen). It remains that Q acts
on P avoiding L9 of type (std).

(6) R and Q act irreducibly on P. If X ≤ Q induces power automorphisms on P, then X centralizes R.

Proof. We recall from (2) that CQ(P) ≤ Z(G) and CR(P) = 1. Consequently CRQ(P) = CQ(P) ≤ Z(RQ)

and RQ/CQ(P) is isomorphic to a subgroup of Out(P). Since RQ is not nilpotent, we see that RQ/CQ(P)

is not nilpotent.
The group P is an elementary abelian p-group by (4) and hence, if X ≤ RQ induces power

automorphisms on it, then it follows that XCQ(P)/CQ(P) ≤ Z(RQ/CQ(P)), see page 177 of [3]. We
denote this fact by (∗). Then we deduce that [R, X] ≤ CQ(P) ≤ Z(RQ) (see above) and therefore
[R, X] = [X, R] = [X, R, R] = 1 by Lemma 1.1.

In addition, the fact (∗) shows that neither R nor Q induces power automorphisms on P. It
follows from (5) and Definition 4.6 (std) that Q acts irreducibly on P. Furthermore (1), together with
Corollary 4.10, yields that R acts on P avoiding L9. Since CP(R) = 1 by (4), this action has type (std) or
(hamil). In the first case, the irreducible action follows from Definition 4.6 (std), and in the second case,
it follows from Lemma 4.9.

(7) CQ(R) induces nontrivial power automorphisms on P.

Proof. We set Q0 := CQ(R) and we assume that Q0 acts irreducibly on P. Then II 3.11 of [3] implies that
RQ = CRQ(Q0) is isomorphic to a subgroup of the multiplicative group of some field of order |P|, and it
follows that RQ is cyclic. This is a contradiction.

Thus (6) and Lemma 4.11 show that Q0 induces power automorphisms on P. Since R normalizes
every Q-invariant subgroup of P by (7), we see from Lemma 4.12 and (2) that CQ(R) � CQ(P).

(8) |P| = pq and �(Q) = CQ(R).

Proof. We recall that Q is cyclic, by (1). Moreover [R, Q] �= 1, whence CQ(R) < Q and therefore we may
choose y ∈ Q such that CQ(R) < 〈y〉.

By (5) and Lemma 4.11, it follows that every subgroup of 〈y〉 either acts irreducibly on P or induces
power automorphism on it (in particular normalizing every subgroup of P). Then P〈y〉 satisfies (b) of
Lemma 3.1 in [8], which implies that it satisfies one of the possibilities 3.1 (i)–3.1 (iii). By (5) and the
choice of y, we see that 3.1 (i) is not true. Further (7) provides some x ∈ CQ(R) that induces a power
automorphism of order q on P. This implies that q divides p−1 and therefore P〈y〉 satisfies (ii) of Lemma
3.1 (b) in [8]. It follows that |P| = pq and that, if k is the largest positive integer such that qk divides
p − 1, then y induces an automorphism of order qk+1 on P. We conclude that qk+1 = |〈y〉 : C〈y〉(P)| =
|〈y〉 : CR(P)|, because Q is cyclic. Finally, we deduce that o(y) is uniquely determined, that Q = 〈y〉 and
thatCQ(P) = �(Q).

By (6), we see that R and Q act irreducibly on P, and (1) gives that Q is cyclic. Then (8) and (7) say
that �(Q) induces nontrivial power automorphisms on P. In addition P is elementary abelian by (4),
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and it has order pr by (8). If |R| = r, then R is a cyclic group of order r and RQ is a batten. In particular
G satisfies the assertion of our lemma.

But G is a counterexample, and then it follows that R ∼= Q8 and r = 2. Then (4) yields that PR
fulfills the hypothesis of Lemma 4.7, and consequently pr = p2 = |P| = pq by (8). This is our final
contradiction, because q �= r.

Definition 4.16. Suppose that B is a non-nilpotent batten that acts coprimely on the p-group P. We say
that the action of B on P avoids L9 if and only if [P, Z(B)] �= 1 and if one of the following occurs:

(Cy) [P,B(B)] = 1 and Q acts on P avoiding L9 for every Sylow subgroup Q of B different from B(B)

or
(NN) P is elementary abelian of order p|B:B(B)Z(B)| and the Sylow subgroups of B act irreducibly on P,

while Z(B) induces power automorphisms on P.

As in Definition 4.6, we specify the type of the L9-avoiding action by writing that “B acts on P avoiding
L9 of type (·)”.

Lemma 4.17. Let B be a batten that acts non-trivially and avoiding L9 on the p-group P. Then the following
hold:

(a) If CP(B) �= 1, then p = 2.
(b) Either P = [P, B] × CP(B), where [P, B] is elementary abelian and CP(B) is cyclic, or P = [P, B] × I,

where I is a group of order at most 2 and [P, B] ∼= Q8.
(c) CP(B) is centralized by every automorphism of P of order coprime to p that leaves CP(B) invariant.

Proof. If B ∼= Q8, then Definition 4.8 and Lemma 4.9 imply that P is elementary abelian and that B acts
irreducibly on it. We conclude that P = [P, B] is elementary abelian and we deduce from Lemma 1.1
that CP(B) = 1. Hence, in this case, all statements of our lemma hold.

Now suppose that B is not nilpotent and that it acts of type (NN). Then Definition 4.16 states that,
once more, P is elementary abelian and B acts irreducibly on it. Again we see that P = [P, B] is elementary
abelian, and as before all statements hold.

Next we suppose B is not nilpotent and that it acts of type (Cy), or that B is cyclic. In the first case B
has a cyclic Sylow subgroup Q that acts on P avoiding L9 such that CP(Q) = CP(B) and [P, B] = [P, Q]
by Definition 4.16. In the second case we set Q := B.

Then, in both cases, Q is a cyclic group that acts on P avoiding L9 such that CP(Q) = CP(B) and
[P, B] = [P, Q]. If Q acts of type (std), then P = [P, Q] is elementary abelian by Definition 4.6. Again we
deduce the statements of our lemma.

Suppose that Q acts of type (cent). Then Definition 4.6 yields that [P, Q] = [P, B] is elementary
abelian, that P is abelian and that CP(Q) = CP(B) is a cyclic 2-group. In particular P = [P, B] × CP(B)

by Lemma 1.1. It also follows that CP(B) is centralized by every automorphisms of P of odd order that
leaves CP(B) invariant. These are the statements of our lemma.

Finally, suppose that Q acts of type (hamil). Then Definition 4.6 yields that [P, Q] ∼= Q8 and P =
[P, Q]× I, where I is a group of order at most 2. In particular statement (a) is true. Moreover, we deduce
that CP(Q) ≤ �1(P) = �([P, Q]) × I, where �([P, Q]) is cyclic of order 2. In particular �([P, Q])
is centralized by B and by every automorphisms of P. We conclude that CP(Q) is elementary abelian
of order at most 4 and that every automorphism of P centralizes a cyclic subgroup of order 2. This
implies (b).

5. Avoiding L9

We now work toward a classification of arbitrary L9-free groups, and therefore we need to understand in
more detail the group structures that appear when “L9 is avoided” in the sense of the previous section.
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Definition 5.1. Suppose that K is a batten group that acts coprimely on the p-group P. We say that the
action of K on P avoids L9 if and only if [P, K] �= 1 and every batten of K either centralizes P or avoids
L9 in its action on P.

Lemma 5.2. Let K be a batten group that acts coprimely on the p-group P avoiding L9. Suppose further
that L ≤ K and L0 � L such that [P, L] �= 1 = [P, L0]. Then L/L0 acts on P avoiding L9. In particular
L/L0 is a batten group.

Proof. By induction we may suppose that K is a batten and that either L0 = 1 and L is a maximal
subgroup of K or that L0 is a minimal normal subgroup of K = L. Thus either |L0| has order q or
|K : L| = q. Since L0 ≤ CK(P), we first remark that L/L0 induces automorphisms on P.

If K ∼= Q8, then K acts faithfully on P by Definition 4.8. Thus L0 ≤ CK(P) = 1 and it follows that L
is a cyclic group of order 4. Thus Lemma 4.9 yields that �1(L) inverts P and that L acts irreducibly on
the elementary abelian group P = [P, L]. Then we see that L ∼= L/L0 acts on P avoiding L9 of type (std).

Next suppose that K is cyclic. Then L/L0 is cyclic. If K acts of type (std) on P, then L and every
subgroup of L act irreducibly or via inducing power automorphisms on the elementary abelian group
P = [P, K]. Since [P, L] �= 1 and power automorphisms are universal, by Lemma 1.5.4 of [7], it follows
that P = [P, L]. Moreover, the action of L on P is equivalent to that of L/L0, and then it follows that L/L0
acts on P avoiding L9 of type (std).

If K acts on P of type (cent), then L and all its subgroups act irreducibly or trivially on the elementary
abelian group [P, K]. Again the fact that [P, L] �= 1 implies that P = [P, L], and then CP(L) = CP(K) by
Lemma 1.1. Since the action of L on P is equivalent to that of L/L0, it follows that L/L0 acts on P avoiding
L9 of type (cent).

We suppose now that K acts of type (hamil). Then K is a cyclic 3-group and K/CK(P) has order 3.
It follows that L = K. But again, the action of L/L0 = K/L0 on P is equivalent to the action of K on P,
which means that it has type (hamil).

We finally suppose that K is a non-nilpotent batten. Let R be a Sylow subgroup of K such that K =
B(K) · R. Suppose first that L/L0 is a q-group. Then our choice of L and L0 implies that L/L0 ∼= R. If K
acts on P of type (Cy) in this case, then it follows that L/L0 ∼= R is cyclic and that it acts on P avoiding L9,
according to Definition 4.16. Otherwise, if K acts of type (NN), then B(K) � CK(P) and then L0 = 1. It
follows that L = R acts irreducibly on the elementary abelian group P, whence P = [P, L] = [P, L/L0].
In addition �(L) and all of its subgroups induce power automorphism on P. Altogether the cyclic group
L/L0 ∼= L acts on P of type (std).

Now we suppose that L/L0 does not have prime power order. Then L0 ≤ �(R) = Z(K). Now if L/L0
is nilpotent, then L �= K and therefore L0 = 1. It follows from Lemma 2.5 that L = Z(K) × B(K).
We have already proven that R acts on P avoiding L9, and then Z(K) also acts on P avoiding L9. In
addition B(K) either centralizes P or it acts irreducibly on the elementary abelian group P = [P,B(K)].
Since B(K) has prime order, it follows that the cyclic group B(K) acts on P avoiding L9 of type (std).
Altogether L/L0 ∼= L = Z(K) × B(K) acts on P avoiding L9.

Finally, suppose that L/L0 is not nilpotent. Then L is not nilpotent and hence Lemma 2.7 implies that
L = K. We conclude that L0 �= 1. Since [P, Z(K)] �= 1 by Definition 4.16, it follows that L0 is a proper
subgroup of Z(K) and that L/L0 = K/L0 ∼= B(K)�R/L0 is a non-nilpotent batten. If [P,B(K)] = 1, then
our investigation above imply that the cyclic group R/L0 acts on P avoiding L9, and then K/L0 acts on P
avoiding L9. Otherwise 1 �= [P,B(K)] is elementary abelian of order p|K:B(K)Z(K)| = p|K/L0:B(K)Z(K)/L0|,
moreover B(K) ∼= B(K)L)/L0 and R/L0 act irreducibly on P. At the same time Z(K/L0) = Z(K)/L0
induces power automorphisms on P. Altogether K/L0 acts on P avoiding L9 of type (NN).

Lemma 5.3. Let K be a batten group that acts coprimely on the p-group P avoiding L9. Then the following
assertions are true:

(a) If L � K, then [P, K] = [P, L] or [P, L] = 1.
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(b) [P, K] is elementary abelian or isomorphic to Q8.

Proof. Let L � K be such that [P, L] �= 1. Then L is a batten group by Lemma 2.7 and therefore there
is a batten B of L such that [P, B] �= 1. Assume for a contradiction that [P, B] ≤ [P, L] � [P, K] ≤ P.
Then the fact that P �= [P, B] implies that CP(B) �= 1 by Lemma 1.1. In addition B avoids L9 in its
action on P, by Lemma 5.2. Since B is a batten of L, it is characteristic in L, and therefore B � K. In
particular CP(B) is K-invariant and hence it is centralized by K by Lemma 4.17 (c). This implies that
CP(B) = CP(K). Finally [P, K] = [[P, B]CP(B), K] = [[P, B]CP(K), K] = [[P, B], K] ≤ [P, B] � [P, K],
which is a contradiction. In particular (a) is true.

Together with Lemma 4.17 (b), the statement in (b) follows from (a).

Lemma 5.4. Let K be a batten group that acts on the p-group P avoiding L9, and suppose that H is a
subgroup of K. Then H centralizes P or [P, H] = [P, K].

Moreover, H induces power automorphisms on P or it acts irreducibly on [P, K]/�([P, K]).

Proof. Let H ≤ K. If H centralizes P, then it induces power automorphisms on P. We may suppose that
[P, H] �= 1. Then H has a q-subgroup Q such that [P, Q] �= 1. Therefore, if Q � K, then we have that
[P, K] = [P, Q] by Lemma 5.3 (a). Then the fact that [P, Q] ≤ [P, H] ≤ [P, K] yields that [P, H] = [P, K].

Assume for a contradiction that [P, K] �= [P, H]. Then Lemma 2.8 implies that K has a non-nilpotent
batten B such that B = B(B)Q. We moreover deduce that [P, Q] � [P, K] and [P, B] = [P, K] by
Lemma 5.3 (a), because B � K. Since the action of K on P avoids L9, the action of B also does. If B acts
of type (Cy), then we obtain the contradiction that [P, Q] = [P, B]. Thus B acts of type (NN) and in
particular Q acts irreducibly on P. But this is impossible as well. It follows that [P, H] = [P, K].

Assume for a further contradiction that H ≤ K neither induces power automorphisms on P nor does
it act irreducibly on [P, K]/�([P, K]) = [P, H]/�([P, H]). Then there is a batten B of H that neither
induces power automorphisms on P nor does it act irreducibly on [P, H]/�([P, H]). Similarly to the
arguments above, we deduce that [P, K] = [P, H] = [P, B], and Lemma 5.2 gives that B avoids L9 in its
action on P. Therefore Lemma 4.11 yields that B is not nilpotent. From Definition 4.16 we further see
that B does not act of type (NN), and thus B acts of type (Cy) on P. Consequently [P,B(B)] = 1 and B
has a cyclic Sylow subgroup Q such that B = B(B)Q and Q acts on P avoiding L9. Again we have [P, K] =
[P, B] = [P, Q] and Lemma 4.11 gives that Q induces power automorphisms on P or acts irreducibly on
[P, Q]/�([P, Q]) = [P, K]/�([P, K]). In the first case B = CB(P)Q induces power automorphism on P
and in the second case B acts irreducibly on [P, K]/�([P, K]). This is a contradiction.

Lemma 5.5. Let K be a batten group that acts on the p-group P avoiding L9, and suppose that H is a
subgroup of K that acts non-trivially on R ≤ P.

Then CH(R) = CH(P), CP(H) = CP(K) and [P, H] = [P, K].

Proof. From Lemma 5.4 we see that [P, H] = [P, K]. In addition CP(K) ≤ CP(H) ≤ CP(Q) for every
q-subgroup Q of H and every prime q. Let Q be a q-subgroup of H for some prime q such that CP(Q) �=
P. Then Q is a batten by Lemma 2.7, and it acts on P avoiding L9 by Lemma 5.2. If Q � K, then K
centralizes CP(Q) by Lemma 4.17(c). Thus CP(K) ≤ CP(H) ≤ CP(Q) ≤ CP(K), and this gives that
CP(K) = CP(H). If Q is not a normal subgroup of K, then Lemma 2.8 provides a non-nilpotent batten
B of K such that B = B(B)Q. Since the action of K on P avoids L9, the action of B also does. If B acts
of type (NN), then Q acts irreducibly on P and therefore CP(Q) = 1 ≤ CP(K). Again we deduce that
CP(K) = CP(H). If B acts of type (Cy), then [P,B(B)] = 1 and hence CP(B) = CP(Q). But now B is
a normal subgroup of K, and then Lemma 4.17(c) gives that CP(B) = CP(Q) ≤ CP(K). As above we
deduce that CP(K) = CP(H).

Finally, suppose that R ≤ P is H-invariant, but not centralized by H, and set H0 := CH(R) ≥ CH(P).
Assume for a contradiction that H0 does not centralize P. Then we deduce, as above, that CP(K) =
CP(H0) ≥ R. This is a contradiction, because H does not centralize R.
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Corollary 5.6. Let K be a batten group that acts non-trivially and avoiding L9 on the p-group P. Then the
following hold:

(a) If CP(K) �= 1, then p = 2.
(b) If CP(K) = 1, then P = [P, K] is elementary abelian.
(c) If K induces power automorphisms on P, then P = [P, K] is elementary abelian of odd order. In

particular CP(K) = 1 in this case.

Proof. Let B be a batten of K that does not centralize P. Then Lemma 5.5 implies that CP(K) = CP(B).
Thus Part (a) and (b) of Lemma 4.17 yield the statements (a) and (b) of our lemma. For Part (c) we
suppose that K induces power automorphisms on P. Then P is not an elementary abelian 2-group
by Lemma 1.3. If CP(K) = 1, then our assertion holds by (b). Otherwise p = 2 by (a), and then
Lemma 1.3 implies that [P, K] is neither elementary abelian nor isomorphic to Q8, contradicting Part
(b) of Lemma 5.3.

For the final comment we just use that p is odd and then apply (a).

Lemma 5.7. Let B be a batten that acts on the p-group P avoiding L9. Let R ≤ P be B-invariant and
R0 ≤ CP(B).

Then B avoids L9 in its action on R/R0.

Proof. Since B centralizes R0, the action of B on R/R0 is well-defined.
We first suppose that B ∼= Q8. Then Lemma 4.9 yields that B acts irreducibly on P, and then it follows

that R = P and R0 = 1. Thus our assertion is true in this case.
Next suppose that B is cyclic. If B acts of type (std) on P, then R0 ≤ CP(B) = 1. If B acts irreducibly

on P, then again P = R and there is nothing left to prove. Otherwise B and all of its subgroups induce
power automorphisms on P, and hence on R = [R, B] as well. It follows that B also acts of type (std) on
R ∼= R/R0.

Suppose now that B acts of type (cent). Then, since B does not centralize R and B acts irreducibly on
[P, B], it follows that [P, B] ≤ R. Moreover P is abelian and then we use the fact that R0 ≤ CP(B). This
gives that R/R0 = [R/R0, B]×CR/R0(B) ∼= [R, B]×CR(B)/R0, where CR(B)/R0 is a cyclic 2-group. Since
every subgroup of B that does not centralize P acts irreducibly on [P, B] ∼= [R/R0, B] in this case, there
are two possibilities for the action of B on R ∼= R/R0: If R0 �= CR(B), then B acts of type (cent), and
otherwise it acts of type (std).

Suppose now that B acts of type (hamil). Then the cyclic 3-group B acts irreducibly on
[P, B]/�([P, B]), by Lemma 5.4, and we see again that [P, B] ≤ R. It follows that R ∼= Q8 × I,
where I is a group of order at most 2, and then R0 ≤ CR(B) ≤ �([R, B]) × I. We remark that
[R/R0, B]B/Z([R/R0, B]B) ∼= [R, B]B/Z([R, B]B) ∼= [P, B]B/Z([P, B]B) ∼= Alt4.

If R0 ∩ [P, B] = 1, then R/R0 ∼= Q8 × J̃ for some group J of order |I|
|R0| . Thus B acts on R/R0 of type

(hamil) in this case.
Otherwise we have that R0 ≥ �([P, B]) and therefore R/R0 is elementary abelian of order 4 or 8.

Moreover B acts irreducibly on [R/R0, B], which is a group of order 4. In addition every proper subgroup
of B centralizes R/R0. Consequently, if R/R0 = [R/R0, B], then B acts on R/R0 of type (std) or of type
(cent).

The final case is that B is not nilpotent, and we suppose that B acts of type (NN) on P. Then
Definition 4.16 yields that B acts irreducibly on P. Hence there is nothing left to prove.

Suppose that B acts of type (Cy). Then we choose a Sylow subgroup Q of B such that B = B(B)Q. Then
[R/R0,B(B)] = [R,B(B)] = [P,B(B)] = 1 and Q acts on P avoiding L9 in such a way that �(Q) = Z(B)

does not centralize P. Then Lemma 5.5 yields that �(Q) does not centralize R. In particular, we have
that [R/R0, Z(B)] �= 1. In addition Q acts on R/R0 avoiding L9, by our arguments above. Altogether B
acts on R/R0 avoiding L9 of type (Cy) in this final case.
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6. The first implication

We now investigate the general case.

Proposition 6.1. Let G be a finite L9-free group. Then G = NK, where N is a nilpotent normal Hall-
subgroup of G with modular Sylow subgroups and K is a batten group. Moreover, for all p ∈ π(N), every
batten of K acts on Op(N) avoiding L9 or it centralizes Op(N).

Proof. We first remark that G is L10-free, whence Theorem A of [9] implies that G is soluble. Further-
more, Corollary C of [9] provides normal Hall-subgroups N and M of G such that N ≤ M and such
that N is nilpotent, M/N is a 2-group and G/M is metacyclic. We choose N as large as possible with
these constraints. From Lemma 4.1 we see that N �= 1. We also have that every Sylow subgroup of N
is L9-free, and hence it is modular by Lemma 4.2. In addition the Schur-Zassenhaus Theorem (see for
example 3.3.1. of [5]) provides a complement K of N in G.

(1) If RQ is a non-nilpotent Hall {r, q}-subgroup of K, where R is a normal Sylow r-subgroup of RQ
and Q ∈ Sylq(RQ), then RQ is a batten. For all p ∈ π(N), the group RQ centralizes Op(N) or acts on it
avoiding L9.

Proof. If there is some p ∈ π(N) such that [Op(N), R] �= 1, then we set P := Op(N). Otherwise the
maximal choice of N implies that R is not a normal subgroup of K. Then, using the solubility of G, we
find a prime s ∈ π(K) \ {r} and a normal s-subgroup T of K such that [T, R] �= 1 (see 5.2.2 of [5]). Then
s �= q because 1 �= [R, Q] ≤ R and 1 �= [T, R] ≤ T. In this case we set P := T.

In both cases p, r and q are pairwise different primes and PRQ is a non-nilpotent {p, r, q}-subgroup
that satisfies the hypothesis of Proposition 4.15. For this we note that P � PRQ, P � NG(R) and R �
NG(Q). Since [R, Q] �= 1, the assertion in (1) follows.

(2) Every Sylow subgroup S of K is a batten, and for all p ∈ π(N) it is true that S centralizes Op(N)

or acts on Op(N) avoiding L9.

Proof. Let S be a Sylow subgroup of K. If S centralizes N, then the choice of N provides some Sylow
subgroup R of K such that RS is not nilpotent. Then (1) implies that RS is a batten, then that S is cyclic
and hence that S is a batten.

Let p ∈ π(N/CN(S)). Then Op(N)S is an L9-free {p, q}-group for some prime q. Hence Corollary 4.10
implies the assertion.

(3) K is a batten group.

Proof. Let 1 �= B ≤ K be such that there is some K1 ≤ K such that K = K1 × B, where (|K1|, |B|) = 1
and B is not a direct product of nontrivial subgroups of coprime order. In particular B is a Hall subgroup
of K. If B is nilpotent, then B is a Sylow q-subgroup of K for some prime q. In this case (2) implies that
B is a batten.

Assume for a contradiction that B is not a batten of K. Then B is not nilpotent and therefore (1)
yields that |B| is divisible by at least three different primes. Since B ≤ G is L9-free, Lemma 4.1 provides
a normal Sylow r-subgroup R of B for some prime r ∈ π(B). We remark that R is a normal subgroup
of K = K1 × B. In addition B is is not a direct product of non-trivial subgroups with coprime order
and hence there are a prime q ∈ π(B) and some Q ∈ Sylq(B) such that RQ is not nilpotent. Now B is
a Hall subgroup of K and thus RQ is a Hall subgroup of K. In particular (1) implies that RQ is a batten
and it follows that |R| = r and 1 �= CQ(R) = �(Q). We further see, from Definition 4.16 and (1), that
for every p ∈ π(N) with the property [Op(N), R] �= 1 we have that |Op(N)| = pq. Since R is a normal
Sylow subgroup of K, the maximal choice of N provides some p ∈ π(N) such that R does not centralize
P := Op(N). In particular we have that |P| = pq.
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Let s ∈ π(B) \ {q, r} and let S be a Sylow s-subgroup of B such that QS = SQ. Such a subgroup exists
by Satz VI. 2.3 in [3]. If S does not centralize R, then RS is not nilpotent and therefore our arguments
above show that ps = |P| = pq. This is impossible because r �= s. Consequently [R, S] = 1.

Since B is directly indecomposable, we conclude that SQ is not nilpotent. But SQ is a Hall subgroup
of B and then it is a Hall subgroup of K. In particular (1) yields that SQ is a batten. From the fact that
1 �= CQ(R) = �(Q) we conclude that |Q| �= q, and then |S| = s and S � SQ. In addition CQ(S) =
�(Q) = CQ(R). But (R × S)Q is an L9-free group, and this situation contradicts Corollary 4.13.

We conclude that, by construction, G = NK, where N is a nilpotent normal subgroup of G with
modular Sylow subgroups and K is a batten group, by (3), such that for all p ∈ π(N) it is true that every
batten of K centralizes Op(N) or acts on Op(N) avoiding L9, by (1) and (2).

The converse of Proposition 6.1 is false, as can be seen in the following example and subsequent
lemma.

Example 6.2. Let H = C19 × C19, J = C5 × C5 and let x, y ∈ GL(2, 19) × GL(2, 5) be such that

x =
(( −1 0

0 −1

)
,
(

0 3
1 0

))
and y =

((
4 0
0 4

)
,
(

2 3
1 2

))
.

Then xy =
(( −4 0

0 −4

)
,
(

3 1
2 3

))
= yx. Hence G := (H × J) � (〈x〉 × 〈y〉) is a group.

Moreover, N := H × J is a nilpotent normal subgroup of G with modular Sylow subgroups. Since

x8 = (x2)4 =
((

1 0
0 1

)
,
(

3 0
0 3

))4
=

((
1 0
0 1

)
,
( −1 0

0 −1

))2
= 1

and

y9 =
((

7 0
0 7

)
,
(

1 0
0 1

))3
, it follows that x and y have coprime order.

Thus K := 〈x〉 × 〈y〉 is cyclic, which means that it is a batten group.
We see that x and y induce non-trivial power automorphisms on H. Thus every batten of K acts on

H = O19(N) avoiding L19 of type (std). In addition x2 and y3 induce power automorphisms on J. Since
x and y act irreducibly on J, it follows that every batten of K acts on J = O5(N) avoiding L19 of type
(std), too.

Altogether G satisfies the conclusion of Proposition 6.1.
On the other hand we observe that π(K) = {2, 3} = π(〈x, y〉/〈x2〉) = π(K/CK(H)) and that

CH(CK(J)) = CH(〈y3〉) = 1.
If g ∈ HJ centralizes 〈x〉 or 〈y〉, then g = 1. Thus the following lemma yields that G is not L9-free.

Lemma 6.3. Let H be a non-trivial abelian group where all non-trivial Sylow subgroups are non-cyclic
elementary abelian, let L be a cyclic group inducing power automorphism on H such that π(L) =
π(L/CL(H)) and let 1 �= J be an abelian group admitting L as a group of automorphisms such that the
action of L on Op(J) avoids L9 for every p ∈ π(J) and such that (|H|, |J|) = 1.

Let π := {q ∈ π(L) | COq(L)(H) < COq(L)(J)}. Suppose that CH(CL(J)) = 1 and, for all g ∈ (H × J)#,
suppose that g centralizes neither Oπ (L) nor Oπ ′(L).

Then (H × J) � L is not L9-free.

Proof. We first set L1 := Oπ (L) and L2 := Oπ ′(L). Since none of the groups L1 nor L2 is centralized by
any element of HJ \ {1} �= ∅, it follows that L1 and L2 are both non-trivial.

For every odd prime p ∈ π(H) there is an elementary abelian subgroup Hp of H that has order p2. In
particular there are elements ap and bp of H such that Hp = 〈ap〉 × 〈bp〉.

We set a := ∏
p∈π(H)

ap and b := ∏
p∈π(H)

bp.
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These elements are well-defined (in the sense that the ordering of the primes does not matter) because
H is abelian. For every p ∈ π(J), we further see that L acts on Op(J) avoiding L9. Since J is abelian,
we deduce from Lemma 5.3(b) that [Op(J), L] is elementary abelian. In addition L acts irreducibly on
[Op(J), L] or it induces power automorphisms on Op(L), by Lemma 5.4. We choose xp ∈ [Op(J), L]#.
Then L acts irreducibly on P := 〈xL

p〉. Next we choose l ∈ L such that L = 〈l〉. Then 1 �= xl
p ∈ P ≤ HJ

and 1 �= [l, xp] ∈ P ≤ HJ. Thus our hypothesis implies that 1 �= [[l, xp], L1] ≤ P and 1 �= [xl
p, L2] ≤ P.

Altogether we have that P = 〈xL
p〉 = 〈(xl

p)
L〉 = 〈[[l, xp], L1]L〉 = 〈[xl

p, L2]L〉. Moreover, Lemma 5.5 yields
that CL(xp) = CL(P) = CL(Op(J)).

For every p ∈ π(L) we choose 1 �= xp ∈ [Op(J), L], and then we set x := ∏
p∈π(J)

xp.

Since J is abelian, it follows that CL(J) = ⋂
p∈π(J) CL(Op(J)) = ⋂

p∈π(J) CL(xp) = CL(x). Next we set
y := xl. Then our previous arguments show that J0 := 〈xL〉 = 〈yL〉 = 〈[[l, x], L1]L〉 = 〈[y, L2]L〉 (∗).

We will construct a subgroup lattice L9 using Lemma 3.5. For this we set E := CL(HJ) � HJL and
D := CL(J).

For every q ∈ π ′ we have COq(L)(H) ≥ COq(L)(J) and so COq(L)(J) ≤ E. This implies that CL2(J) =
CL2(HJ) ≤ E (∗∗) and that D = CL(J) = CL1(J). We conclude that CL1(x)E = (L1 ∩ CL(x))E =
(L1 ∩ CL(J))E = CL1(J)E = DE = D.

If q ∈ π = π(L1), then COq(L)(H) < COq(L)(J) ≤ CL1(x) and therefore CL1(H) = CL1(HJ) ≤ E
(∗ ∗ ∗). Then it follows that E ∩ L1 = CL1(HJ) = CL1(H) < CL1(x) ≤ D ∩ L1. In particular E �= D and
hence (L9(i)) of Lemma 3.5 holds.

Next we set A := 〈a〉Lx
1E, S := Lax

1 E and T := La−1x
1 E. Then we have that A contains the subgroups

S, T and D (= CL1(x)E). In addition, if c ∈ {a, a−1, a2}, then we see that 〈c〉 = 〈a〉, because o(a) is odd by
construction. Since C〈a〉(D) ≤ CH(D) = CH(CL(J)) = 1, it follows that 〈a〉 = 〈c〉 = [c, D] × C〈a〉(D) =
[c, D], by Lemma 1.1. The group L1 induces power automorphisms on H, which means that it normalizes
[c, D]. Together with Part (d) of Lemma 1.4 we conclude that

〈D, Lc
1E〉 = 〈[c, D]Lc

1E〉Lc
1E = [c, D]Lc

1E = 〈c〉L1E = Ax−1
.

In particular, since D centralizes x, it follows that 〈D, T〉 = 〈D, S〉 = A. Moreover, we have that A ≥
〈T, S〉 = 〈L1, La2

1 E〉a−1x ≥ 〈D, La2
1 E〉a−1x = (Ax−1

)a−1x = A and therefore we conclude that 〈S, T〉 = A
as well. Next Lemma 5.5 gives that CL1(a) = CL1(H) ≤ E by (∗ ∗ ∗). Furthermore Lc

1 is a π-group for
all c ∈ {a, a−1, a2}, whence

L1E ∩ Lc
1 ≤ Oπ (L1E) ∩ Lc

1 = L1 ∩ Lc
1 = CL1(c) = CL1(a) ≤ E

by Part (b) of Lemma 1.4. Altogether Dedekind’s modular law gives that L1E ∩ Lc
1E = (L1E ∩ Lc

1)E ≤ E
for all c ∈ {a, a−1, a2}. We conclude that T∩S = Lax

1 E∩La−1x
1 E ≤ Ex = E, that D∩T ≤ (L1E∩La−1

1 E)x ≤
Ex = E and that D ∩ S ≤ (L1E ∩ La

1E)x ≤ E. With all these properties, we see that (L9(ii)) of Lemma 3.5
is true.

Now we set C := 〈b〉DL2 and U := 〈b〉L2E. Then C = 〈D, U〉 and D ∩ U = CL(J) ∩ 〈b〉L2E =
(CL(J) ∩ 〈b〉L2)E = CL2(J)E by Dedekind’s modular law and by Part (b) of Lemma 1.4. Hence (∗∗)
implies that (L9(iii)) of Lemma 3.5 holds.

Let c ∈ {a, a−1} and let X := 〈Lcx
1 , L2〉. Then X contains a π-Hall subgroup as well as a π(L2)-Hall

subgroup of HJL. Since HJL is soluble, there is a π(L)-Hall subgroup K of X such that L2 ≤ K and some
g ∈ HJ such that Lg = K. It follows that L2 ≤ K ∩L = Lg ∩L = CL(g) by Lemma 1.4(b). The hypothesis
of our lemma yields that g = 1 and therefore L = K ≤ X. From there we obtain some h ∈ X such that
Lh

1 = Lcx
1 and hence L1 = L1 ∩ Lhx−1c−1

1 ≤ CL(hx−1c−1) by Lemma 1.4(b). This forces cx = h ∈ X, and
then c, x ∈ X, because H and J have coprime order and centralize each other. Altogether 〈c〉 = 〈a〉 and
〈xL〉 = J0 are subgroups of X, and we conclude that X = 〈a〉J0L. Thus

〈U, T〉 = 〈La−1x
1 , 〈b〉L2E〉 = 〈b〉〈La−1x

1 , L2, E〉 = 〈b〉XE = 〈a, b〉J0L = 〈b〉〈Lax
1 , L2, E〉 = 〈U, L〉.
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We set F := 〈a, b〉J0L in order to obtain Part (L9(iv)) of Lemma 3.5. Moreover, Dedekind’s law and
Part (a) of Lemma 1.4 gives that

A ∩ C = 〈a〉Lx
1E ∩ 〈b〉DL2 = (〈a〉Lx

1E ∩ 〈b〉L2)D

= (〈a〉(L1E ∩ L2)
x ∩ 〈b〉(L1E ∩ L2))D = (〈a〉CL2(HJ)x ∩ 〈b〉CL2(HJ))D

= (〈a〉CL2(HJ) ∩ 〈b〉CL2(HJ))D = (〈a〉 ∩ 〈b〉CL2(HJ))CL2(HJ)D = CL2(HJ)D = D.
We set B := 〈ab〉Ly. Then

A ∩ B = (〈a〉L1E ∩ 〈ab〉Lyx−1
)x ≤ (〈a〉(L1E ∩ HLyx−1

))x ≤ (〈a〉CL1E(yx−1))x ≤ (〈a〉CL(J))x = 〈a〉D
by Lemma 1.4(b), because 〈(yx−1)L〉 ∩ H ≤ J ∩ H = 1.

CL(HJ)

F

〈a〉Lx
1E 〈ab〉Ly

〈b〉CL1(J)L2

Lax
1 E La−1x

1 E CL(J)
〈b〉L2E

In a similar way we obtain that A ∩ B ≤ 〈ab〉D and
therefore D ≤ A ∩ B ≤ 〈a〉D ∩ 〈ab〉D = (〈a〉 ∩
〈ab〉D)D = D.

We further calculate that
B ∩ C = 〈ab〉Ly ∩ 〈b〉DL2 ≤ 〈ab〉(Ly ∩ HDL2) ≤ 〈ab〉CDL2(y) ≤ 〈ab〉CL(J) = 〈ab〉D

and similarly B ∩ C ≤ 〈b〉D. Therefore D ≤ B ∩ C ≤ 〈ab〉D ∩ 〈b〉D = (〈ab〉 ∩ 〈b〉D)D = D.
Finally (∗) and Part (d) of Lemma 1.4 yield that

〈A, B〉 = 〈〈a〉Lx
1E, 〈ab〉Ly〉 = 〈a, b〉〈Lx

1E, Ly〉 = 〈a, b〉〈[yx−1, L1]L〉L = 〈a, b〉〈[[l, x], L1]L〉L
= 〈a, b〉J0L = F = 〈a, b〉〈[y, L2]L〉L = 〈a, b〉〈Ly, DL2〉 = 〈〈ab〉Ly, 〈b〉DL2〉 = 〈B, C〉.

Altogether {A, B, C, D, E, F, S, T, U} satisfies every condition of Lemma 3.5, which means that it is
isomorphic to L9.

The previous lemma and Lemma 4.12 motivate the following definition:

Definition 6.4. Here we define a class L of finite groups, and each group in L has a type.
We say that G ∈ L has type (N, K) if and only if the following hold:

(L1) G = N �K, where N is a normal nilpotent Hall subgroup of G with modular Sylow subgroups and
K is a batten group.

(L2) If p ∈ π(N), then every batten of K centralizes Op(N) or it acts on it avoiding L9.
(L3) For all Sylow subgroups Q of K and all distinct Sylow subgroups P and R of N that are not centralized

by Q, we have that CQ(P) �= CQ(R).
(L4) Suppose that H ≤ N is abelian, that its nontrivial Sylow subgroups are not cyclic and that L ≤

PotK(H) is cyclic and such that π(L) = π(L/CL(H)). Let 1 �= J ≤ N be L-invariant and abelian,
suppose that (|H|, |J|) = 1, [H, J] = 1 and CH(CL(J)) = 1, and set π := {q ∈ π(L) | COq(L)(H) <

COq(L)(J)}.
Then there is some g ∈ (HJ)# that centralizes Oπ (L) or Oπ ′(L).
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Theorem 6.5. Let G be a finite L9-free group. Then G ∈ L.

Proof. From Lemma 6.1 we see that G = NK and that (L1) and (L2) are satisfied.
For (L3) we let Q be a Sylow subgroup of K and we let P and R be distinct Sylow subgroups of N that

are not centralized by Q. Since N is a nilpotent normal Hall subgroup of G, it follows that [P, R] = 1 and
that Q normalizes P and R. Then (P×R)Q is directly indecomposable and L9-free, whence Corollary 4.13
gives that CQ(P) �= CQ(R).

Finally, we look at (L4) and we assume that it is not true. Then there is an abelian subgroup H of N
such that the nontrivial Sylow subgroups are not cyclic, and we find a cyclic group L ≤ PotK(H) such
that π(L) = π(L/CL(H)) and a nontrivial L-invariant abelian subgroup J of N such that (|H|, |J|) = 1,
[H, J] = 1 and CH(CL(J)) = 1. Let π := {q ∈ π(L) | COq(L)(H) < COq(L)(J)}. Then we have, for all
g ∈ (HJ)#, that g centralizes neither Oπ (L) nor Oπ ′(L) for π := {q ∈ π(L) | COq(L)(H) < COq(L)(J)}.

We note that P does not centralize Oπ (L) ≤ L. Then we find a prime q ∈ π(L) such that a Sylow
q-subgroup Q of L does not centralize P. Using Lemma 5.2, we see that Q acts on Op(N) avoiding L9 and
then Lemma 5.7 yields that Q acts non-trivially on P, and avoiding L9. Now we may apply Corollary 5.6:
Since L induces power automorphisms on P, Part (c) shows that P is elementary abelian. Then the
hypotheses of Lemma 6.3 are satisfied. It says that (H × J)�L is not L9-free, which is false. We conclude
that (L4) holds.

7. The class L

Lemma 7.1. All groups in the class L are soluble.

Proof. Let G ∈ L be of type (N, K). Then N is nilpotent normal Hall subgroup of G and G/N ∼= K is
a direct product of p-groups or of groups whose order is divisible by exactly two primes. Thus G/N is
soluble as well, and it follows that G is soluble.

Lemma 7.2. Let G ∈ L be of type (N, K) and π := π([N, K]). Then every subgroup of Oπ (N) is normal
in N.

Proof. Let U be a subgroup of Oπ (N). Then U�N if and only if Op(U)�Op(N) for all p ∈ π , since N is
nilpotent. Let p ∈ π . We note that this implies that Op(N) is not centralized by K. In particular there is a
batten of K that acts non-trivially on Op(N) and avoiding L9. If Op(N) is abelian, then Op(U)�Op(N). If
Op(N) is not abelian, then we apply Lemma 4.17 (b) to a batten B of K that acts non-trivially on Op(N).
The first possibility described there implies that Op(N) is abelian, which is not the case here. Thus the
second possibility holds, and then Op(N) ∼= Q8 × I, where I is cyclic of order at most 2. We conclude
that Op(N) is hamiltonian and it follows that Op(U) � Op(N).

Lemma 7.3. Let G ∈ L be of type (N, K) and X ≤ G. Then there is some x ∈ [N, K] such that X =
(N ∩ X)(Kx ∩ X).

Proof. We set M := N ∩ X. Then M is a normal Hall subgroup of X, because N is one of G. Then
the Schur-Zassenhaus Theorem provides a complement C of M in X, and we notice that C and M have
coprime orders. Therefore π(C) = π(X) \ π(M) ⊆ π(G) \ π(N) = π(K). It follows that C is contained
in a complement for N in G. Since G is soluble by Lemma 7.1, such a complement is conjugate to K, and
thus we find g ∈ G such that C ≤ Kg . The coprime action of K on N yields, together with Lemma 1.1,
that N = CN(K)[N, K], and therefore G = KN = KCN(K)[N, K]. We notice that [N, K]� G and we let
x ∈ [N, K] and y ∈ KCN(K) ≤ NG(K) be such that g = yx. Then C = Kg ∩ X = Kx ∩ X and hence
X = MC = (N ∩ C)(Kx ∩ X).
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Lemma 7.4. Let G ∈ L be of type (N, K) and suppose that U ≤ G. Then U is a group in class L of type
(U ∩ N, U ∩ Kg) for some g ∈ [N, K].

Proof. Lemma 7.3 provides some g ∈ [N, K] such that U = (U ∩ N) · (U ∩ Kg). By conjugation we may
suppose that g = 1 and we set K1 := U ∩ K. Then Lemma 2.7 yields that K1 = U ∩ Kg ≤ Kg ∼= K is
a batten group. Moreover, M := U ∩ N ≤ N is a normal nilpotent Hall subgroup of U with modular
Sylow subgroups, by (L1). This means that (L1) holds for U, and now we turn to (L2) and let p ∈ π(M).
Suppose that B is a batten of K1 that does not centralize Op(M). Then it does not centralize Op(N) and
therefore Lemma 5.2 implies that B ∼= B/1 acts on Op(N) avoiding L9. Then we may apply Lemma 5.7
to see that B also acts on Op(M)/1 ∼= Op(M) avoiding L9.

This gives property (L2) of Definition 6.4 for U, and (L4) follows because M ≤ N and K1 ≤ K.
For (L3) we let Q1 be a Sylow subgroup of K1 and we let p, r ∈ π(M) be different primes such that

[Op(M), Q1] �= 1 �= [Or(M), Q1]. We need to prove that CQ1(Op(M)) �= CQ1(Or(M)).
First we let Q be a Sylow subgroup of K that contains Q1. Then [Op(N), Q] �= 1 �= [Or(N), Q] and

therefore CQ(Op(N)) �= CQ(Or(N)), using Property (L3) for G. In particular, these centralizers cannot
both be trivial, and we may suppose that CQ(Op(N)) �= 1. Then Q does not act faithfully on Op(N), but
the action of Q on Op(N) avoids L9. Definition 4.8 immediately gives that Q �∼= Q8. Then it follows that
Q is cyclic, which means that the subgroup lattice L(Q) of Q is a chain, and Q1 is also cyclic.

We assume for a contradiction that CQ1(Op(M)) = CQ1(Or(M)). Then Lemma 5.5, with Q1 in the role
of H, Op(M) in the role of R and Op(N) in the role of P, gives that CQ1(Op(M)) = CQ1(Op(N)). Similarly
CQ1(Or(M)) = CQ1(Or(N)), and then it follows that CQ1(Op(N)) = CQ1(Or(N)). We recall that
CQ(Op(N)) �= CQ(Or(N)) and that Q is cyclic, and now we may suppose that CQ(Op(N)) � CQ(Or(N)).
This forces CQ1(Op(N)) � CQ(Op(N)), which is impossible. Thus CQ1(Op(M)) �= CQ1(Or(M)) and (L3)
holds for U as well.

Lemma 7.5. Let G ∈ L be of type (N, K) and suppose that S is a normal Sylow q-subgroup of K that
centralizes N for some prime q. Let K1 be a Hall q′-subgroup of K.

Then G is also of type (N × S, K1). In particular, if we choose (N, K) such that |N| is as large as possible,
then π(K) = π(K/CK(N)).

Proof. We show that G = (N × S)K1 satisfies (L1)–(L4) of Definition 6.4, and we first note that K1 is a
batten group by Lemma 2.7. The structure of K forces all Sylow subgroups of K to be cyclic or quaternion,
more specifically S is cyclic or isomorphic to Q8. This means that S is modular. Since S is a normal Sylow
q-subgroup of K and N is a Hall subgroup of G, by hypothesis, it follows that N × S is a Hall subgroup
of G where all Sylow subgroups are modular.

By hypothesis [N, S] = 1 and N is nilpotent, hence N × S is nilpotent, too. This is (L1).
For (L2) we let B be a batten of K1 and p ∈ π(N × S). We keep in mind that B is not necessarily a

batten of K – if it is, then it centralizes Op(N × S) or it acts on it avoiding L9, because of (L2) for G.
Now we suppose that B is not a batten of K and that [Op(N × S), B] �= 1. Then SB is a non-nilpotent

batten of K. If p �= q, then SB acts on Op(N) avoiding L9, and [Op(N), S] = 1. Then Definition 4.16
implies that SB acts of type (Cy) and it follows that B acts on Op(N) avoiding L9. Finally suppose that
q = p. Then �(B) centralizes S = Op(NS), while B induces power automorphisms on the cyclic group
S of order p. Thus SB satisfies (std) of Definition 4.6, and we deduce that B acts on S avoiding L9.

We turn to (L3). Let Q be a Sylow subgroup of K1 and let P and R be distinct Sylow subgroups of N ×S
that are not centralized by Q. First we note that Q is a Sylow subgroup of K because K1 is a Hall subgroup
of K by hypothesis. Therefore, if PR ≤ N, then we immediately have that CQ(R) �= CQ(P), by (L3) in G.

Without loss suppose that R � N, i.e. R = S. Then we recall that Q was chosen not to centralize P
and R = S, which means that Q and S cannot come from distinct battens of K, but their product must
be a non-nilpotent batten of K. Moreover, [P, QS] �= 1. We obtain from Lemma 2.5 and Definition 4.16
that �(Q) = Z(Q) = CQ(S) does not centralize P and therefore CQ(R) �= CQ(P). This is (L3).
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Finally, let H ≤ N × S be such that its nontrivial Sylow subgroups are not cyclic, let L ≤ PotK1(H) be
cyclic and such that π(L) = π(L/CL(H)) and let 1 �= J be an L-invariant abelian subgroup of M such
that (|H|, |J|) = 1, [H, J] = 1 and CH(CL(J)) = 1.

As K is a batten group, the set π(K/CK(S)) contains at most one element. We recall that L ≤ K1 ≤ K,
and then it follows that, for every set of primes π , the group S centralizes Oπ (L) or Oπ ′(L). In order to
prove (L4) of Definition 6.4, we may thus suppose that H and J are subgroups of N.

Then L ≤ K1 ≤ K shows that L ≤ PotK(H). Hence we apply (L4) of Definition 6.4 to G, i.e. to the
type (N, K). If π := {q ∈ π(L) | COq(L)(H) < COq(L)(J)}, then we find some g ∈ (HJ)# that centralizes
Oπ (L) or Oπ ′(L).

Altogether, G = (N × S)K1 satisfies Definition 6.4.
We now suppose that |N| is as large as possible and we assume for a contradiction that S ≤ CK(N)

is a Sylow subgroup of K. Then S is not normal in K, hence there is a non-nilpotent batten B of K such
that B = B(B)S. For all p ∈ π(N) it follows that [Op(N), Z(B)] ≤ [Op(N), S] = 1, by Lemma 2.5.
Then Definition 4.16 yields that B does not act on Op(N) avoiding L9, whence B centralizes Op(N). But
now B(B) ≤ CK(N) and B(B) is a normal Sylow subgroup of K. This contradicts the maximal choice
of N.

Lemma 7.6. Let G ∈ L and suppose that M � G. Then G/M ∈ L.

Proof. By induction we may suppose that M is a minimal normal subgroup of G. We recall that G is
soluble by Lemma 7.1, and we let r be prime such that M is an elementary abelian r-group. If M has a
complement C in G, then G/M ∼= C and Lemma 7.4 gives that C ∈ L and hence G/M ∈ L.

Consequently we may suppose that M does not have a complement in G. We choose N, K ≤ G such
that G has type (N, K) and such that |N| is as large as possible. Then π(K) = π(K/CK(N)) by Lemma 7.5.

First suppose that r ∈ π(K). Then M ≤ K and we see that [N, M] ≤ N ∩ M ≤ N ∩ K = 1, because
N is a Hall subgroup of G. Hence M ≤ CK(N). Next we let B be a batten of K that contains M. Then
M ≤ CB(N), which means that for all p ∈ π(N), B does not act faithfully on Op(N).

Since there is some p ∈ π(N) such that B acts on Op(N) avoiding L9, it follows from Definition 4.8
that B is not isomorphic to Q8. In addition M � Z(B), if B is not nilpotent, by Definition 5.1. Therefore,
in this case, the section B/M is a non-nilpotent batten as well. We conclude that K/M is a batten
group.

Assume for a contradiction that r ∈ π(N), but that M � CN(K). Then we note that CM(K) � G
by Lemma 7.2, and we deduce that CM(K) = 1, because M is a minimal normal subgroup of G. This
forces M ≤ [Or(N), K]. Then [Or(N), K] is not elementary abelian, because otherwise M would have a
complement in this commutator and hence in G. But we are working under the hypothesis that it does
not.

Now Lemmas 5.4 and 4.17(b) imply that M ≤ [Or(N), K] ∼= Q8. But now Z([Or(N), K]) is the unique
subgroup of order 2 of [Or(N), K], which means that it must be centralized by K and contained in M.
But this is a contradiction. Thus M ≤ CN(K) and Corollary 5.6 implies that p = 2. We summarise that
M ≤ CK(N) and that K/M is a batten group or M ≤ CN(K) and p = 2.

Let − : G → G/M be the natural homomorphism. Then Ḡ = N̄ · K̄, where N̄ is a normal nilpotent
Hall subgroup of G with modular Sylow subgroups, since sections of modular p-subgroups are modular.
Moreover K̄ is a batten group. Thus Ḡ satisfies (L1) of Definition 6.4. We further deduce (L2) from
Lemmas 5.2 and 5.7.

For (L3) we let Q be a Sylow subgroup of K and we let p, s ∈ π(N̄) be distinct primes such that
[Os(N̄), Q̄] �= [Op(N̄), Q̄]. Then [Os(N), Q] �= [Op(N), Q] and therefore CQ(Os(N)) �= CQ(Op(N)).
Since M ≤ CN(Q) or M ≤ CK(Os(N)) ∩ CK(Op(N)), it follows that CQ̄(Os(N̄)) �= CQ̄(Op(N̄)).

We finally let 1 �= H̄ ≤ N̄ be abelian with non-cyclic Sylow subgroups and L̄ ≤ PotK̄(H̄) be cyclic
with π(L̄) = π(L̄/CL̄(H̄)) and we let J̄ be an abelian L̄-invariant subgroup of N̄ such that (|H̄|, |J̄|) = 1
and CH̄(CL̄(J̄)) = 1. We set π̄ := {q ∈ π(L̄) | ∀ Q̄ ∈ Sylq(L̄) : CQ̄(H̄) < CQ̄(J̄)}.
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Then we assume for a contradiction that every nontrivial element ḡ ∈ H̄J̄ centralizes neither Oπ (L̄)

nor Oπ ′(L̄). Then Lemma 1.1 yields that [H̄J̄, L̄] = H̄J̄. We choose pre-images H, L and J in G of smallest
possible order. Then HJ = [HJ, L] and π(X̄) = π(X) for all X ∈ {H, L, J}, because G is soluble by
Lemma 7.1. In particular we have that (|H|, |J|) = 1.

If r ∈ π(X) for some X ∈ {H, J}, then r = 2. Then our assumption implies that CO2(X)(L) ≤ M.
It follows that X ∼= X̄ or that M ≤ �(X) = �([X, L]). In the second case, we apply Lemmas 5.4 and
4.17. Together they show that [O2(N), K] = [O2(N), L] ∼= Q8 and thus π(L/CO2(N)(L)) = {3}. This
means that O2(N) centralizes Oπ (L) or Oπ ′(L). But then we also have that [O2(X̄), Oσ (L̄)] = 1 for some
σ ∈ {π , π ′}, which is a contradiction. We deduce that H̄ ∼= H and J̄ ∼= J. In particular H ≤ N is abelian,
with non-cyclic Sylow subgroups, and J �= 1 is an abelian L-invariant subgroup of N. Since L̄ is cyclic,
it follows from our arguments above that L is also cyclic. Moreover π(L) = π(L̄) = π(L̄/CL̄(H̄)) =
π(L/CL(H)), because M ≤ CK(N) or M ∩ L = 1.

We now investigate the action of L on H. Since H̄ ∼= H and M ∩ L = 1 or M ≤ CL(H), we see that L
induces power automorphisms on H. In addition Lemma 1.1 shows that

CH(CL(J)) ∼= CH̄(CL(J)) ∼= CH̄(CL̄(J̄)) = 1
and then the fact that H ∩ M = 1 yields that CH(CL(J)) = 1. Altogether we obtain, by applying (L4)
to G, some g ∈ HJ# such that g centralizes Oπ (L) or Oπ ′(L), where π := {q ∈ π(L) | ∀ Q ∈ Sylq(L) :
CQ(H) < CQ(J)}. Since H̄J̄ ∼= HJ, it follows that ḡ �= 1 and [Oπ (L̄), ḡ] = 1 or [Oπ ′(L̄), ḡ] = 1 . Again
we use that L̄ acts on H̄ ∼= H and J̄ ∼= L equivalently to L, because M ∩ L ≤ CL(N). Then we see that

π̄ := {q ∈ π(L̄) | ∀ Q̄ ∈ Sylq(L̄) : CQ̄(H̄) < CQ̄(J̄)} = π .
This is a contradiction.

Lemma 7.7. Let G ∈ L be of type (N, K) such that CK(N) = 1, let q ∈ π(K) and let Q ∈ Sylq(K). Then
1 �= [N, �1(Q)] has prime power order.

Proof. We apply Lemma 7.4 and we see that N�1(Q) ∈ L has type (N, �1(Q)). Since �1(Q) does not
centralize N, there is a prime p ∈ π(N) such that [Op(N), �1(Q)] �= 1. It follows that C�1(Q)(Op(N)) =
1. Now (L3) implies that �1(Q) centralizes Or(N) for every r ∈ π(N) \ {p}, and this shows that 1 �=
[N, �1(Q)] ≤ [Op(N), �1(Q)] ≤ Op(N).

Lemma 7.8. Let G ∈ L be of type (N, K) such that CK(N) = 1, let q ∈ π(K) and let Q ∈ Sylq(K). Let
p ∈ π(N) be such that �1(Q) does not centralize P := Op(N). Then the following hold:

(a) NG(�1(Q)) = (Op′(N)K) × CP(K).
(b) G = [P, �1(Q)]NG(�1(Q)).
(c) [P, �1(Q)] = [P, K] acts transitively on �1(Q)G = {Q0 ≤ G | |Q0| = q}.
(d) If X ≤ G, then there is some x ∈ [P, �1(Q)] such that X = (X ∩ P)NX(�1(Q)x).
(e) Suppose that X ≤ G, that q divides |X| and that x ∈ P. Then X = (X ∩ P)NX(�1(Q)x) if and only if

�1(Q)x ≤ X.

Proof. We set P0 := [P, �1(Q)]. Then Lemma 7.7 implies that P0 = [N, �1(Q)] and so Op′(N) ≤
CG(�1(Q)) ≤ NG(�1(Q)). Furthermore K acts on P avoiding L9 and then we have that P0 = [P, Q] =
[P, K] by Lemma 5.4. Next K ≤ NG(�1(Q)) from Lemma 2.6.

Since N is nilpotent, we conclude that NG(�1(Q)) = (Op′(N)× NP(�1(Q)))K. But we also have that
[NP(�1(Q)), �1(Q)] ≤ P ∩ �1(Q) = 1, whence NP(�1(Q)) ≤ CP(�1(Q)) = CP(K) by Lemma 5.5.
Consequently NP(�1(Q)) = CP(�1(Q)) and it follows that NG(�1(Q)) = (Op′(N)K)×CP(K), as stated
in (a).

For (b) we recall that, by (a), the subgroups K and Op′(N) normalize �1(Q). Then G = POp′(N)K ≤
PNG(Q) ≤ G. Moreover P � G and Lemma 1.1 implies that P = CP(�1(Q))P0, where CP(�1(Q)) ≤
NG(�1(Q)) and therefore G = P0NG(�1(Q)) as stated in (b).
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From there we deduce that P0 acts transitively on �1(Q)G by conjugation. The second statement of
(c) follows because G is soluble (Lemma 7.1), together with the fact that �1(Q) is the unique subgroup
of its order in the Hall subgroup K of G (Lemma 2.6). This means that every subgroup of order q of G is
conjugate to �1(Q), completing (c).

For (d) and (e) we let X ≤ G. Lemma 7.3 provides some g ∈ G such that X = (N ∩ X)(Kg ∩ X).
Moreover, (a) implies that Kg and Op′(N)(= Op′(N)g) normalize �1(Q)g , and then we summarise:

X = (N ∩ X)(Kg ∩ X) ≤ (P ∩ X)(Op′(N) ∩ X)(Kg ∩ X) ≤ (P ∩ X)NX(�1(Q)g) ≤ X.
Using (b) we see that G = NG(�1(Q))P0, and then we take y ∈ NG(�1(Q)) and x ∈ P0 such that g = yx.
Now we deduce that X = (P ∩ X)NX(�1(Q)yx) = (P ∩ X)NX(�1(Q)x), as stated in (d).

Finally, suppose that q divides |X| and that x ∈ P. Suppose first that X = (X ∩ P)NX(Qx). Then q
divides |NX(�1(Q)x)|, which provides a subgroup Q0 of order q in NX(�1(Q)x) ≤ NG(�1(Q)x) and,
by (d), there is some y ∈ P0 such that �1(Q)y = Q0 ≤ NG(�1(Q)x) = NG(�1(Q))x. Then �1(Q) and
�1(Q)yx−1 are subgroups of NG(�1(Q)) and therefore

[yx−1, �1(Q)] = [[yx−1, �1(Q)], �1(Q)] ≤ [[P, �1(Q)] ∩ NG(�1(Q)), �1(Q)]
≤ [CP(�1(Q)), �1(Q)] = 1

by Lemma 1.1. We conclude that �1(Q)x = �1(Q)y = Q0 ≤ NX(�1(Q)x) ≤ X.
Now, conversely, suppose that �1(Q)x ≤ X. Then (d) provides some z ∈ P0 such that X = (P ∩

X)(NX(�1(Q)z)). In the paragraph above we have shown that �1(Q)z ≤ X. We apply (c) to X = (X ∩
N)(X ∩ Kg), which is a group in L by Lemma 7.4, and we obtain some y ∈ P ∩ X such that �1(Q)zy =
�1(Q)x. We conclude that

X = Xy = (P ∩ X)y(NXy(�1(Q)zy)) = (P ∩ X)(NX(�1(Q)x)),
because P ∩ X � X.

Lemma 7.9. Let G ∈ L be of type (N, K) and let p ∈ π(N) such that K induces non-trivial power
automorphisms on P := Op(N).

Then for all X, Y ≤ G, there is some i ∈ {0, 1} such that |〈X, Y〉 ∩ P| = |(P ∩ X)(P ∩ Y)| · pi.
In addition i = 0 if and only if there is some g ∈ P such that for both Z ∈ {X, Y} we have Z ≤

(Z ∩ P)Op′(N)Kg.

Proof. We first remark that Lemma 7.2 gives that every subgroup of P is normal in N, and hence in
G, because K normalizes every subgroup of P as well. In addition P = [P, K] is elementary abelian by
Corollary 5.6 (c).

Let X, Y ≤ G. Then Lemma 7.3 provides x, y ∈ P such that X ≤ (X ∩ P)Op′(N)Kx and Y ≤
(Y ∩ P)Op′(N)Ky.

This implies that 〈X, Y〉 ≤ (X ∩ P)(Y ∩ P)〈x−1y〉Op′(N)Kx, bearing in mind that X ∩ P and Y ∩ P
are normal subgroups of G, and therefore 〈X, Y〉 ∩ P = (P ∩ X)(P ∩ Y)〈x−1y〉.

Since P is elementary abelian, we see that o(xy−1) ∈ {1, p} and we deduce the first assertion.
If it is possible to choose x = y, then 〈X, Y〉 ∩ P = (P ∩ X)(P ∩ Y)〈x−1y〉 = (P ∩ X)(P ∩ Y) and in

particular i = 0 in the statement of the lemma.
For the converse we suppose that i = 0, i.e. |〈X, Y〉∩P| = |(P∩X)(P∩Y)|. Then x−1y ∈ 〈X, Y〉∩P =

(P ∩ X)(P ∩ Y) and thus we find x0 ∈ X ∩ P and y0 ∈ Y ∩ P such that x−1y = x0y0. Then g := yy−1
0 =

xx0 ∈ P ∩ X ∩ Y . We note that x0 normalizes X, centralizes P ∩ X and normalizes Op′(N), which implies
that X = Xx0 ≤ ((X ∩ P)Op′(N)Kx)x0 = (X ∩ P)Op′(N)Kxx0 . Similarly Y ≤ (Y ∩ P)Op′(N)Kyy−1

0 .

Lemma 7.10. Let G ∈ L be of type (N, K). Suppose that X and Y are subgroups of G such that 〈X, Y〉 = G
and let B is a batten of K. Suppose that K has a normal q-complement H. Then one of the following hold:

(a) q � |G : X|,
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(b) q � |G : Y|, or
(c) q = 2, K has a section isomorphic to Q8 and 4 divides (|X|, |Y|).

Proof. Let Q ∈ Sylq(K) and suppose that q divides neither |G : X| nor q | |G : Y|. Then Lemma 7.3
gives maximal subgroups MX and MY of Q such that X ≤ NHMX and Y ≤ NHMY .

If Q is cyclic, then MY = MX = �(Q) and it follows that G = 〈X, Y〉 ≤ NH�(Q) �= NHQ = G.
This is impossible. We conclude that Q is not cyclic and then, since K is a batten group, it follows that
Q ∼= Q8. We assume for a contradiction that 4 � |X|. Then X ≤ NH�(Q) and hence G = 〈X, Y〉 ≤
NHMY �= NHQ = G, which is again a contradiction.

Lemma 7.11. Let G ∈ L be of type (N, K) such that K acts irreducibly on [Op(N), K]/�([Op(N), K])
for some prime p ∈ π(N). If X, Y ≤ G are such that 〈X, Y〉 = G, then X or Y acts irreducibly on
[Op(N), K]/�([Op(N), K]).

Proof. Let X, Y ≤ G be such that 〈X, Y〉 = G and let P := Op(N). We assume for a contradiction
that neither X nor Y act irreducibly on [P, K]/�([P, K]). Lemma 7.2 implies that N normalizes every
subgroup of P (∗). Moreover, by Lemma 7.3, there are x, y ∈ N such that X = (X ∩ N)(X ∩ Kx) and
Y = (X∩N)(Y ∩Ky) and, by assumption, neither X∩Kx nor Y ∩Ky act irreducibly on [P, K]/�([P, K]).
It follows from Lemma 5.4 that X ∩ Kx and Y ∩ Ky both induce power automorphisms on P and that
|P| �= p. Thus (∗) yields that X and Y normalize every subgroup of P. Then also G = 〈X, Y〉 normalizes
every subgroup of P, which contradicts the irreducible action of K.

8. The main result

Theorem 8.1. If G ∈ L, then G is L9-free.

Proof. Assume for a contradiction that the statement is false and let G be a minimal counterexample.
Then there is a sublattice L = {E, S, T, D, U, A, B, C, F} of L(G) isomorphic to L9, and in particular L
satisfies the relations in Definition 3.1.

We let G be of type (N, K) where, among the minimal counterexamples, we choose G such that |N|
is as large as possible and we set

π(K)∗ := π(K) \ {|B(H)| | H is a non-nilpotent batten of K}.

Then K has a normal q-complement for every q ∈ π(K)∗ and Lemma 7.10 is applicable.
We will first analyze how L fits into the subgroup lattice of G.
(1) F = G, CK(N) = 1 and every subgroup of N is normal in N.

Proof. The group F is a subgroup of G that is not L9-free, and Lemma 7.4 yields that F ∈ L. Hence the
minimal choice of G implies that F = G.

Similarly, it follows from Lemma 3.4 that G is not a direct product of two non-trivial groups of coprime
order. Let p ∈ π(N). Then N = Op′(N) × Op(N) because N is nilpotent. If K centralizes Op(N), then
G = Op′(N)K × Op(N), where the direct factors have coprime order by (L1). But we just saw above that
such a direct decomposition of G is not possible. Therefore [Op(N), K] �= 1 and p divides |[Op(N), K]|,
which divides |[N, K]|. We conclude from Lemma 7.2 that every subgroup of Op(N) is normal in N. This
implies that every subgroup of N is a normal subgroup of N, because N is nilpotent.

Since we have chosen N as large as possible, Lemma 7.5 implies that π(K) = π(K/CK(N)). Let
q ∈ π(CK(N)). Then the previous equation forces q ∈ π(K/CK(N)), and therefore a Sylow q-subgroup
of K has order at least q2. In particular, for all non-nilpotent battens V of K, we have that B(V) �
CK(N). It follows that q ∈ π(K)∗. Now Lemma 7.10 provides X, Y ∈ {T, U, B} ⊆ L such that X �= Y
and Oq(CK(N)) ≤ X ∩ Y = E. Since Oq(CK(N)) is characteristic in CK(N) � NK = G, it follows
that G/Oq(CK(N)) is not L10-free. Moreover, G/Oq(CK(N)) ∈ L by Lemma 7.6. Since G is a minimal
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counterexample, we conclude that Oq(CK(N)) = 1. We recall that G is soluble, by Lemma 7.1, hence
CK(N) is soluble, and then there must exist a prime q ∈ π(CK(N)) such that Oq(CK(N)) �= 1. This
gives a contradiction, and therefore CK(N) = 1.

We remark that, by (1), we may apply Lemmas 7.7 and 7.8.
(2) For all p ∈ π(N) we have that Op(N) ∩ D � G. In particular N ∩ D � G and N ∩ E = 1.

Proof. Let H ∈ {E, D}, let p ∈ π(N) and set P := Op(N). If H = E, then we set M := {U, T, B}
and otherwise we set M := {A, B, C}. Then for all distinct X, Y ∈ M, we have that X ∩ Y = H and
〈X, Y〉 = F.

Assume for a first contradiction that H∩P is not a normal subgroup of G. Since every subgroup of N is
normal in N by (1), it follows that K does not induce power automorphism on P. Then Lemma 5.4 implies
that K acts irreducibly on P̃ := [P, K]/�([P, K]). We apply Lemma 7.11 twice to find some X ∈ M and
some Y ∈ M \ {X} such that X and Y act irreducibly on P̃. In particular [P, K] = [H ∩ P, Y] =
[H ∩ P, X] ≤ X ∩ Y = H. It follows that [P, K] ≤ H ∩ P ≤ [P, K]CP(K), which yields that H ∩ P is
normalized by K and hence H ∩ P � NK = G. This is a contradiction. We deduce that P ∩ D � G as
stated, in particular N ∩ D � G and also N ∩ E � G.

For the final statement in (2) we use that G/(N ∩ E) is not L9-free. Then the minimality of G and
Lemma 7.6 give that N ∩ E = 1.

(3) For every q ∈ π(K) such that 1 �= Q ∈ Sylq(D), one of the following holds:
[N, �1(Q)] ≤ D ≤ A or K induces power automorphisms on [N, �1(Q)] and [N, �1(Q)] ∩ A �= 1.
Moreover E = 1.

Proof. We adopt the same notation as in the previous step, which means that H ∈ {E, D}, p ∈ π(N) and
P := Op(N). If H = E, then M := {U, T, B}, and otherwise M := {A, B, C}. Whenever X, Y ∈ M are
distinct, then X ∩ Y = H and 〈X, Y〉 = F.

Let q ∈ π(K) ∩ π(H) and Q ∈ Sylq(D). By conjugation we may suppose that Q ≤ K. Then �1(Q) =
�1(Q0) for some Sylow q-subgroup Q0 of K by Lemmas 2.6 and 7.7 provides some p ∈ π(N) such that
1 �= [N, �1(Q)] is a p-group. Now Lemma 7.8 (e) states that X = (X ∩ P)NX(�1(Q)) for all subgroups
X ∈ M (∗).

Let X and Y be distinct elements of M and assume for a contradiction that X ∩ P and Y ∩ P are
subgroups of CP(K). Then

G (1)= F = 〈X, Y〉 (∗)≤ 〈CP(K), NX(�1(Q)), NY(�1(Q))〉 ≤ CP(K)NG(�1(Q)) = NG(�1(Q)),
which contradicts (1).

For the remainder of this proof we let X and Y in M be such that their intersection with P is not
contained in CP(K). We note that CP(K) = CP(�1(Q)) by Lemma 5.5. Then it follows that 1 �= [P ∩
X, �1(Q)] = [[P ∩ X, �1(Q)], �1(Q)] and hence [P, K] ∩ X � CP(K). In a similar way we observe that
[P, K] ∩ Y � CP(K).

If K acts irreducibly on [P, K]/�([P, K]), then Lemma 7.11 yields that X or Y , say X, acts irreducibly
on [P, K]/�([P, K]). It follows that [P, K] ≤ X and [P, K] ∩ Y ≤ X ∩ Y = H. Let Z ∈ M \ {X, Y}. Then
Lemma 7.11 yields that Z or Y , say Y , acts irreducibly on [P, K]/�([P, K]) and contains [P, K]∩Y . Since
[P, K] ∩ Y � CP(K), it follows that [P, K] ≤ V ∩ X = H. By (1), this is only possible if H = D, in other
words π(K) ∩ π(E) = ∅. Then the fact that E ∩ N = 1 (see (1) once more) forces E = 1.

The previous paragraph also gives that [N, �1(Q)] = [P, �1(Q)] = [P, K] ≤ D ≤ A, by Lemma 5.4,
in the case where K acts irreducibly on [P, K]/�([P, K]).

Otherwise Lemma 5.4 gives that K and hence �1(Q) induce power automorphisms on P. Together
with (1) this means that every subgroup of P is normal in G. Now, if V , W ∈ M are distinct, then

PNG(P) = G = 〈V , W〉 (∗)≤ (V ∩ P)(W ∩ P)NG(�1(Q))
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and it follows that P = (V ∩ P)(W ∩ P). We deduce that |P| = |V∩P|·|W∩P|
|H∩P| for all W, V ∈ M. In

particular |W ∩ P| = |X ∩ P| �= 1 for all W ∈ M. This implies all our claims about D, because
P = [P, K] = [P, �1(Q)] = [N, �1(Q)] by Lemma 5.4 and A ∈ M.

If, still in the power automorphism case, we have that H = E, then we recall that E ∩ P = 1 by (1).
Therefore

|(U ∩ P)| · |(T ∩ P)| = |(U ∩ P)| · |(T ∩ P)|
|E ∩ P| = |(U ∩ P)(T ∩ P)| = |P| = |(U ∩ P)(A ∩ P)|

= |U ∩ P| · |A ∩ P|
|P ∩ E| = |U ∩ P| · |A ∩ P|.

This implies that A ∩ P = T ∩ P �= 1. But in this case we may interchange T by S in M. Since 1 �=
T ∩ P = A ∩ P = S ∩ P, we arrive at the contradiction that 1 �= S ∩ T ∩ P = E ∩ P ≤ E ∩ N = 1 (by
(1)). Thus, we have that π(K) ∩ π(E) = ∅ in this case as well. Again it follows that E = 1.

The remainder of the proof is dedicated to constructing a subgroup of G that violates Property (L4).
(4) If p ∈ π(N), then A ∩ K does not centralize Op(N). In particular A ∩ K �= 1.

Proof. We assume for a contradiction that A ∩ K centralizes P := Op(N) for some p ∈ π(N).
It follows from Lemma 7.3 that, for every subgroup X of G = POp′(N)K, there is some x ∈ P such

that X ≤ (X ∩ P)Op′(N)Kx. Since [P, A ∩ K] = 1, we further have THAT X ≤ (X ∩ P)Op′(N)Ky for all
X ≤ A and y ∈ P (∗).

Assume that A ∩ P = 1. Then for both X ∈ {U, B}, we see that P ≤ G (1)= F = 〈U, A〉 (∗)≤ (P ∩
X)Op′(N)Kx and therefore P = P ∩ U = P ∩ B ≤ U ∩ B = E. But this contradicts (3).

Thus A ∩ P �= 1 and then (1), together with our assumption at the beginning of the proof, imply
that every subgroup of A ∩ P is normal in A. Suppose that X, Y ∈ {S, T, D} are distinct. We recall that
A ∩ P ≤ A = 〈X, Y〉 ≤ (X ∩ P)(Y ∩ P)Op′(N)K, and then it follows that A ∩ P = (X ∩ P)(Y ∩ P). Since

X ∩ Y = E (2)= 1, we know more: T ∩ P ∼= S ∩ P ∼= D ∩ P and |T ∩ P|2 = |A ∩ P|.
If K induces power automorphisms on P and if X ∈ {A, T, S}, then (X ∩ P) and (U ∩ P) are normal

subgroups of G by (1). In addition there is some u ∈ P such that U ≤ (U ∩ P)Op′(N)Ku and then
X ≤ (X∩P)Op′(N)Ku by (∗). We apply Lemma 7.9 to see that |P∩A| = |P : P∩U| = |P∩S| = √|P ∩ A|.
Now it follows that P ∩ A = 1, which is a contradiction.

We conclude that K does not induce power automorphisms on P. Then Lemma 5.4 gives that K
acts irreducibly on [P, K]/�([P, K]). Since P ∩ D � G by (2), we see that either [P, K] ≤ D or that
1 �= P ∩ D ≤ CP(K).

In the first case T ∩ P ∼= D ∩ P ≥ [P, K] and T ∩ D = E (2)= 1. This implies, together with Lemma 1.1,
that CP(K) has a subgroup isomorphic to [P, K]. We apply Lemma 5.4, in combination with Part (b) of
Lemma 4.17, and we deduce that [P, K] is cyclic of order 2 and that, therefore, K centralizes it. This is
impossible.

It follows that the second case holds, i.e. 1 �= P∩D ≤ CP(K). Then p = 2 by Corollary 5.6 (a). If [P, K]
is not elementary abelian, then Part (b) of Lemmas 4.17 and 5.4 give that [P, K] ∼= Q8 and P = [P, Q]×I,
where I is a subgroup of P of order at most 2. We note that T∩P ∼= D∩P and T∩D = E (3)= 1, and then we
conclude that T ∩P and D∩P are cyclic of order 2. Consequently A∩P = (T ∩P) ·(D∩P) = �1(P)�G.
Now 1 (3)= E = U ∩ A ≥ U ∩ �1(P) and therefore U ≤ Oπ ′(N)Ku. We arrive at a contradiction:
P ≤ G = 〈U, A〉 ≤ (P ∩ A)Oπ ′(N)Ku, because [P, K] ∼= Q8 is not elementary abelian.

So we finally have that [P, K] is elementary abelian. Then Lemma 4.17(b) gives that CP(K) is cyclic
and Lemma 1.1 shows that T ∩ P ∼= D ∩ P ≤ CP(K).

Together with the fact that T ∩ D = E (3)= 1, we obtain that D ∩ P is cyclic of order 2. It follows
that P ∩ D, T ∩ P and P ∩ S have order 2 and hence P ∩ A is elementary abelian of order 4. Moreover
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A ∩ [P, K] is cyclic of order 2, and therefore it equals one of the subgroups T ∩ P, S ∩ P or D ∩ P.
The last case is not possible because D ∩ P ≤ CP(K). By symmetry between S and T in the lattice we
may suppose that T ∩ P ≤ [P, K]. Recall that K acts irreducibly on [P, K] while A ∩ K centralizes P.
In particular (1) implies that A does not act irreducibly on [P, K]. Thus Lemma 7.11, together with the
fact that G (1)= F = 〈A, U〉, gives that U acts irreducibly on [P, K]. We also know that T ∩ U = E (3)= 1,
and this implies that [P, K] � U. Then Lemma 1.2 yields that U ∩ P ≤ CP(K). But we recall that CP(K)

is cyclic, and its unique involution is contained in D. Then the fact that U ∩ D = E (3)= 1 implies that

U ∩ P = 1. Finally, we see that G (1)= F = 〈U, T〉 (∗)≤ [P, K]Op′(N)Ku, which gives a contradiction.

By conjugation and by Lemma 7.3 we may suppose that A = (A ∩ N)(A ∩ K).
We set π := π(K)∗ ∩ π(A) and we let L1 be a Hall π-subgroup of A ∩ K.
Then we let

σ := {p ∈ π(N) | [Op(N), Q] �= 1 for some Q ≤ L1, where |Q| ∈ π}.
(5) If p ∈ π(N) and [Op(A), L1] = 1, then Op(N) ≤ D. Moreover π �= ∅ �= σ .

Proof. First suppose that L1 centralizes P := Op(N) for some p ∈ π(N). Then (4) implies that A∩K �= L1
and then there is a non-nilpotent batten V of K such that Q := B(V) ≤ A and [P, Q] �= 1. Now
|Q| = q is a prime and [N, Q] = [P, Q] by Lemma 7.7. In addition we see, from Definition 4.16, that Q
does not induce power automorphisms on P and that P = [P, Q]. If q divides |D|, then (3) implies that
P = [N, Q] ≤ D, as stated.

Now we suppose that q does not divide |D|. Let R ≤ K be such that V = QR. Up to conjugation we
may suppose that R ∩ L1 is a Sylow subgroup of L1. Then R does not centralize P by Definition 5.1 and
hence R � L1. It follows that R � A, from the definition of L1. Since Q · �(R) = Q · Z(V) is nilpotent
by Lemma 2.5, we deduce that A has a normal q-complement. Moreover A ∈ L, by Lemma 7.4, whence
we may apply Lemma 7.10 to A. Then we see that S and T have orders divisible by q, because q /∈ π(D).
Let t, s ∈ [P, Q] be such that Qs ≤ S and Qt ≤ T. The irreducible action of Q on P, together with the
fact that P ∩ T ∩ S ≤ E (3)= 1, implies that P ∩ T = 1 or P ∩ S = 1. Without loss P ∩ T = 1. Then
T ≤ NG(Qt) by Lemma 7.8 (e). Assume that A normalizes Qt . Then Qs ≤ NG(Qt), which implies that
[ts−1, Q]Qs = 〈Qs, Qt〉 ≤ NG(Qt) by Lemma 4.1.1 (b) of [7]. Then the irreducible action of Qt on P
forces t = s, contradicting the fact that T ∩ S = E (3)= 1.

Thus A does not normalize Qt and 〈T, D〉 = A � NG(Qt), which yields that D � NG(Qt) =
(Op′(N)K) × CP(K) = Op′(N)K by Part (a) of Lemma 7.8. It follows that D ∩ P �= 1 and therefore
P ≤ D, because P ∩ D � G by (2) and K acts irreducibly on P.

We turn to the second statement and assume for a contradiction that π = π(A) ∩ π(K) = ∅. Then
A ∩ K = 1, contrary to (4). Hence if π = π(A) ∩ π(K)∗ = ∅, then we can draw two conclusions:
First L1 = 1 and the statement we just proved gives that N ≤ D. Second, there must be a prime in
π(K)\π(K)∗ dividing |A|. By definition of π(K)∗, such a prime is |B(V)| for some non-nilpotent batten
V of K. We choose such a non-nilpotent batten V and set Q := B(V). Then there are some prime r and
an r-subgroup R ≤ K such that QR = V , and r ∈ π(K)∗ because of the structure of non-nilpotent
battens (Definition 2.1). In particular r � |A| by assumption and Lemma 7.10 yields that B and U contain
a conjugate of R. We recall that N ≤ D ≤ B by the first consequence of our assumption and because of
the structure of the lattice L9. Then Lemma 7.8(c) gives that �1(R)G ⊆ B. Thus B ∩ U = E (3)= 1, which
is a contradiction. This proves that π �= ∅.

If σ = ∅, then for all p ∈ π(N), all q ∈ π and all q-subgroups Q of L1, we have that [Op(N), Q] = 1.
Then [N, L1] = 1 by definition of L1, and L1 �= 1 because π �= ∅. But then 1 �= L1 ≤ CK(N), contrary
to (1).

Next we set H := Oσ (N) and we prove that H is a candidate for the desired properties in (L4).
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(6) The non-trivial Sylow subgroups of H are elementary abelian (in particular N is abelian), but not
cyclic, and K ≤ PotK(H).

Proof. By definition H ≤ N is nilpotent. If, for all p ∈ σ , the group K does not act irreducibly on
[Op(N), K]/�([Op(N), K]), then Lemma 5.4 gives that K ≤ PotK(H). In particular Op(N) is not cyclic.
Moreover, Corollary 5.6 yields that Op(N) = [Op(N), K] is elementary abelian. Therefore, our claim is
satisfied in this case.

Let us assume for a contradiction that there is some p ∈ σ such that K acts irreducibly on the group
[Op(N), K]/�([Op(N), K]). We set P := Op(N) and we choose Q ≤ L1 of order q ∈ π such that
[P, Q] �= 1, by the definition of σ .

Case 1: [P, Q] ≤ A.
Then Lemma 7.8(c) implies that Qg ≤ A for every g ∈ G. We recall that U ∩ A = E (3)= 1, and then

it follows first that q /∈ π(U) and then that q | |B|, by Lemma 7.10. Here we use that G = F = 〈B, U〉
by (1). Thus we find some g ∈ G such that Qg ≤ D, because D = A ∩ B. We apply (3) to observe that
[P, Q] = [N, Q] ≤ D and then D contains every conjugate of Q by Lemma 7.8(c). Recall that q /∈ π(U),
which implies that q ∈ π(T) by Lemma 7.10. Again we use that G = F = 〈T, U〉. But this contradicts
the fact that T ∩ D = E = 1 by (3).

Case 2: [P, Q] � A.
Then [P, Q] � D, in particular P � D, and P ∩ D � G by (2). This means that K stabilizes the

subgroup [P ∩ D, K]/ of [P, K]/�([P, K]), while acting irreducibly. This forces [P ∩ D, K] ≤ �([P, K]),
and together with coprime action (Lemma 1.1) we see that K centralizes P ∩ D.

By Lemma 7.3 we know that A ∈ L, with type (A ∩ N, A ∩ K). Additionally, since q ∈ π(K)∗, the
group K has a normal q-complement. Then A ∩ K also has a normal q-complement. We may apply
Lemma 7.10 to A = 〈T, S〉 = 〈T, D〉 = 〈S, D〉. It yields that at least two of the groups D, T, S have a
subgroup of order |Q|. As |Q| � |E| by (2), there is some g ∈ G such that Qg �= Q and Qg ≤ A. Then
Part (e) of Lemma 7.8 implies that P ∩ A � CP(Q) = CP(K) by Lemma 5.5. In the present case we
have that [P, A] � A, and then Lemma 1.2 gives that A does not act irreducibly on [P, K]/�([P, K]).
Thus A ∩ K induces power automorphism on P by Lemma 5.4, and these automorphisms are not trivial
because Q ≤ A ∩ K. Corollary 5.6 (c) implies that P = [P, A ∩ K] 5.4= [P, K] is elementary abelian
and in particular that D ∩ P ≤ CP(K)

5.5= CP(A ∩ K) = 1. Hence there is some d ∈ [P, K] such that
D = ND(Qd), by Lemma 7.8(b). In addition we see from Lemma 7.11 that B and C act irreducibly on P.
If it was true that P ≤ B, then it would follow that 1 �= P ∩ A ≤ P ∩ B ∩ A ≤ P ∩ D ≤ CP(K) = 1, which
is a contradiction. We conclude that P � B and hence P ∩ B = 1 because of the irreducible action of B
on P, and similarly P ∩ C = 1.

Then Lemma 7.8(b) provides b, c ∈ P such that B = NB(Qb) and C = NC(Qc). If Qb = Qc, then
G = F = 〈B, C〉 ≤ NG(Qb), which is false.

Consequently Qb �= Qc, and we can use Lemma 7.8(a), Dedekind’s modular law and Lemma 1.4(c).
Together this shows that

D ≤ NB(Qb) ∩ NC(Qc) = Op′(N)Kb ∩ Op′(N)Kc = Op′(N)(Kb ∩ Op′(N)Kc)

≤ Op′(N)CK(bc−1) ≤ CG(bc−1),

because N is nilpotent and because 〈(bc−1)K〉 ∩ Op′(N) ≤ P ∩ Op′(N) = 1.
We recall that P = [P, K] is abelian, hence it is contained in Z(N), and then it follows that D centralizes

1 �= bc−1 ∈ [P, K]. Here we also use Lemma 5.4, i.e. that D centralizes P. We conclude that D = ND(Qh)
for all h ∈ P. Again Lemma 7.8(b) provides t, s ∈ P such that T = (T∩P)NT(Qt) and S = (T∩S)NC(Qs).
Let X ∈ {T, S}. Then P ∩ A ≤ A = 〈D, X〉 ≤ (X ∩ P)NG(Qx), which implies that P ∩ X = P ∩ A. But
now P ∩ A ≤ P ∩ S ∩ T = P ∩ E = 1, by (3), which gives a final contradiction.
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(7) For all p ∈ σ we have that Op(N) ∩ A �= 1.

Proof. We set P := Op(N) for some p ∈ σ . Then there is some Q ≤ L1 of order q ∈ π such that
[P, Q] �= 1, by the definition of σ . Then q ∈ π(K)∗ and we see that K as well as K ∩ A have a normal q-
complement. Since A ∈ L by Lemma 7.4 ,we may apply Lemma 7.10. We notice that A = 〈D, T〉 = 〈D, S〉,
and then it follows that q ∈ π(D) or that q ∈ π(T) ∩ π(S). In the first case (3) implies our assertion.
In the second case we use Lemma 7.8(c). It gives that Qs ≤ S and Qt ≤ T for some t, s ∈ [P, K]. We
deduce that [t−1s, Q] ≤ 〈Qs, Qt〉 ≤ A by Lemma 4.1.1 of [7]. In conclusion, our assertion is true or
t−1s centralizes Q. But in the second case, we see that Qt = Qs ≤ T ∩ S = E (3)= 1, and this gives a
contradiction.

(8) For all q ∈ π we have that q divides |S|, |T|, and |B|.
Furthermore, if Q ≤ L1 and |Q| = q, then [N, Q] ∩ T = [N, Q] ∩ S = 1, but [N, Q] ∩ U �= 1.

Proof. Suppose that Q ≤ L1 has order q. Then [N, Q] is a p-group by Lemma 7.7, for some prime p ∈ σ .
We set P = Op(N). Then for every X ∈ {T, S} there is some x ∈ P such that X = (X ∩ P)NX(Qx),
by Lemma 7.8(b). Using (6) we see that K induces power automorphisms on P. Thus P = [P, K] is
elementary abelian by Corollary 5.6(c), and then Lemma 7.9 is applicable.

Assume for a contradiction that P � (P ∩ A)(P ∩ U). Then, for all X ∈ {T, S, A}, we have that

P ∩ 〈X, U〉 = P ∩ F (1)= P > (P ∩ A)(P ∩ U) ≥ (P ∩ X)(P ∩ U).

Hence Lemma 7.9 yields that |P| = |(P ∩ X)(P ∩ U)|p (2)= |(P ∩ X)||(P ∩ U)|p and, for all X ∈ {T, S, A},
we see that p · |P ∩ X| = |P : P ∩ U|. In particular, we have that |P ∩ A| = |P ∩ S| = |P ∩ T|. Therefore,
the fact that T, S ≤ A implies that P ∩ A = P ∩ T = P ∩ S ≤ P ∩ (T ∩ S) = P ∩ E (3)= 1. This contradicts
(7).

We conclude that P = (P ∩ A)(P ∩ U) and hence Lemma 7.9 provides some element g ∈ P such that,
for both X ∈ {A, U}, it is true that X ≤ (X ∩ P)Op′(N)Kg = (X ∩ P)NG(Q)g .

Assume for a contradiction that q ∈ π(U). Then Part (e) of Lemma 7.8 yields that Qg ∈ A ∩ U =
E (3)= 1. This is impossible. Thus q /∈ π(U) and we deduce that q ∈ π(X) for all X ∈ {T, S, B}. Here
we use Lemma 7.10 and the fact that G (1)= F = 〈U, X〉. Next we apply Lemma 7.9, which gives that
(P ∩ A) �= (P ∩ S)(P ∩ T). Then the same lemma yields, for both combinations of {X, Y} ∈ {T, S}, that
p divides

|P ∩ Y||P ∩ X||P ∩ U| = |P ∩ A||P ∩ U| = |P| ≤ |P ∩ X||P ∩ U| · p.

It follows that p · |P ∩ Y| ≤ p and then that S ∩ P = T ∩ P = 1. Finally (6) and Lemma 7.9 yield that
p2 ≤ |P| ≤ |P ∩ T||P ∩ U| · p = |P ∩ U| · p. We conclude that P ∩ U �= 1.

(9) For every p ∈ σ there is some r ∈ π(K)∗ such that a Sylow r-subgroup of U does not centralize
Op(N).

Proof. We set P := Op(N). Since p ∈ σ , there is some Q ≤ L1 such that |Q| = q ∈ π . In addition (6)
implies that P is elementary abelian, and then P ≤ Z(N) because N is nilpotent. By Lemma 7.8(b) and
(8) there is some s ∈ P such that S = NS(Qs).

Assume for a contradiction that U centralizes P. Then U = Us = (U ∩ P)NU(Qs) by Lemma 7.8(d)
and hence G (1)= F = 〈U, S〉 ≤ (U ∩ P)NG(Qs) implies that U ∩ P = P. With (7) we obtain the
contradiction that 1 �= P ∩ A ≤ U ∩ A = E (3)= 1.

It follows that U does not centralize P. We recall that P ≤ Z(N) and then we obtain a prime r ∈ π(K)

such that a Sylow r-subgroup of U does not centralize P. Since K induces power automorphisms on P
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by (6), Definition 5.1 gives, for every non-nilpotent batten V of K, that B(V) centralizes P. This implies
that r ∈ π(K)∗.

We are now able to define L and J. Let u ∈ N be such that U = (U ∩ N)(U ∩ Ku).
We set π̃ := {r ∈ π(K)∗ | [H, R] �= 1 for some R ∈ Sylr(U)} and we let L2 be a Hall π̃-subgroup of

(Uu−1 ∩ K). Then L2 ≤ K and L = 〈L1, L2〉 is a subgroup of K. In addition (5) and (9) show that π̃ �= ∅.
Next we set ρ := {p ∈ π(N) | [Op(N), R] �= 1 for some R ≤ L2 with |R| ∈ π̃} and J := [Oρ(N), K].

Then ρ �= ∅ by Lemma 7.7, because π̃ �= ∅, and hence J �= 1. Finally, we note that J is L-invariant by
construction.

(10) σ ∩ ρ = ∅, i.e. |H| and |J| are coprime.

Proof. We assume for a contradiction that the prime p divides |H| and |J|. Then by definition there are
q ∈ π and r ∈ π̃ and subgroups Q ≤ L1 and R ≤ L2 such that the following hold:

|Q| = q, |R| = r, 1 �= [N, Q] ≤ Op(N) =: P and 1 �= [N, R] ≤ P.
In particular (6) shows that K induces power automorphisms on P. It follows from Corollary 5.6 (c)

and Lemma 5.4 that P = [P, K] = [P, Q] = [N, Q] = [N, R], and then (8) shows that P ∩ S = 1.
Moreover P ∩ A �= 1 by (7). We apply Lemma 7.9 to obtain some i, j ∈ {1, 0} such that

pi|P ∩ U| = |(P ∩ U)(P ∩ S)|pi = |P| = |(P ∩ U)(P ∩ A)|pj (2)= |(P ∩ U)||(P ∩ A)|pj.

This implies that |P ∩ A|pj = pi, and we obtain that i = 1 and j = 0.
In particular we see that P = (U ∩ P)(A ∩ P). Then Lemma 7.9 and the fact that A ∩ U = E (3)= 1

give some element g ∈ P such that X ≤ (P ∩ X)Kg = (P ∩ X)NG(R)g , where X ∈ {A, U}. Assume for
a contradiction that r ∈ π(A). Then 7.8(d) forces Rg ≤ U ∩ A = E (3)= 1. This is impossible, hence
r /∈ π(A) and we apply Lemma 7.10 to G (1)= F = 〈A, B〉. Then it follows that r ∈ π(B).

Moreover q ∈ π(B)∩π(T) by (8). Since B∩T = E (3)= 1, this is not possible, hence Lemma 7.9 and (8)
give that |P| = |P∩B| · |P∩T| ·p = |P∩B| ·p. On the other hand we have that r ∈ π(B)∩π(U), which is
also impossible because B∩U = E (3)= 1. Now Lemma 7.9 implies that |P∩U|·|P∩B|·p = |P| = |P∩B|·p.
In particular we see that P ∩ U = 1, and this contradicts (8).

We summarize:
The definitions of σ and H imply that H ≤ N, and (6) shows that the non-trivial Sylow subgroups of

H are not cyclic. In addition L ≤ K induces power automorphisms on H.
From (10) we deduce that π ∩ π̃ = ∅. A Hall π(K)∗-subgroup of K is nilpotent by Lemma 2.7, which

means that L is nilpotent. In particular we see that L = L1 × L2. Let r ∈ π(L) = π ∪ π̃ and R = Or(L).
If r ∈ π , then [H, R] ≥ [[N, �1(R)], R] �= 1, and if r ∈ p̃, then [H, R] �= 1 by (9). These arguments show
that π(L) = π(L/CL(H)) (∗).

We assume for a contradiction that L is not cyclic. Then, since L is nilpotent and a batten group by
Lemma 2.7, we deduce that O2(L) ∼= Q8. Definition 4.8 implies that, for all p ∈ π(N), the group O2(L)

does not induce non-trivial power automorphisms on Op(N). In particular O2(L) centralizes H, which
contradicts (∗). Thus L is cyclic.

Furthermore, we already saw that J is L-invariant and that 1 �= J. Then (10) gives that (|H|, |J|) = 1,
and since N is nilpotent, this forces [H, J] = 1.

Assume for a contradiction that J is not abelian. Then Lemma 4.17(b) and Lemma 5.4 show that
O2(J) = [O2(N), K] ∼= Q8 and therefore 2 ∈ ρ. We let r ∈ π̃ be such that a Sylow r-subgroup R of K
acts faithfully on O2(J). Then we must have that |R| = 3 because O2(J) ∼= Q8. Moreover Lemma 7.8(a)
yields that R centralizes O2′(N) ≥ H. This contradicts (∗).

Hence J is abelian. For every q ∈ π and every subgroup Q ≤ L1 of order q, the definition of σ

and Lemma 7.7 provide some p ∈ σ such that [N, Q] ≤ Op(N) = P. Then we see, using (6) and
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Corollary 5.6, that CP(Q) = 1. Furthermore (10) yields that Q centralizes J = Oρ(N), and then it
follows that 1 = CP(Q) ≥ CP(CL(J)). Since H = Oσ (N) is abelian, we conclude that CH(CL(J)) = 1.

The previous argument also yields that {q ∈ π(L) | COq(L)(H) < COq(L)(J)} ⊇ π . Let r ∈ π̃

and suppose that R ≤ L has order r. We recall the definition of ρ and apply Lemma 7.7: Then we see
that 1 �= [N, R] ≤ Oρ(N) = J. Thus r /∈ {q ∈ π(L) | COq(L)(H) < COq(L)(J)} and it follows that
{q ∈ π(L) | COq(L)(H) < COq(L)(J)} = π .

Since G ∈ L, we can use Property (L4), which gives some g ∈ (HJ)# that centralizes Oπ (L) =: L1
or Oπ ′(L) =: L2. Let i ∈ {1, 2} be such that [Li, g] = 1. We may suppose that g has prime order p.
Then p ∈ σ ∪ ρ and hence there is a subgroup Q ≤ L of prime order such that [N, Q] ≤ Op(N) =: P.
Lemma 5.5 gives that g ∈ CP(Li) = CP(K) or that Li centralizes P.

In the first case Corollary 5.6 yields that p = 2, and then K does not induce power automorphisms
on P. Using (6) we deduce that p ∈ ρ and g ∈ Op(J) ∩ CP(K) = [P, K] ∩ CP(K) ∩ J. Since J is abelian,
we obtain a contradiction in this case.

It follows that the second case above holds, i.e. [P, Li] = 1. This means that i = 1 if p ∈ ρ and i = 2 if
p ∈ σ . In addition we see, from (9), that i �= 2. We conclude that Li = L1, p ∈ ρ and q /∈ π . In particular
q /∈ π(A). Since G (1)= F = 〈A, U〉 = 〈A, B〉, Lemma 7.10 implies that B and U contain a conjugate of Q.
In addition (5) shows that P ≤ D ≤ B and therefore Lemma 7.8(c) gives that QG ⊆ B. Finally, we obtain
a contradiction, because B ∩ U = E = 1 by (3). This concludes the proof.

Main Theorem. A finite group is in L if and only if it is L9-free.

Proof. Let G be a finite group. If G is L9-free, then Theorem 6.5 shows that G ∈ L.
Conversely, if G ∈ L, then G is L9-free by Theorem 8.1.
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