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1. Introduction

Let R denote a commutative ring with x = x1, . . . , xr a system of elements. For an 
R-module M we study generalizations of a M -regular sequence called M -pro-regular 
sequence and M -weakly pro-regular sequence. To this end we denote by Čx the Čech 
complex with respect to x (see e.g. [17, 6.1]). It is a bounded complex of flat R-modules. 
For an R-module M we write Čx(M) = Čx⊗R M . We call Ȟi

x(M) = Hi(Čx(M)), i ∈ Z, 
the Čech cohomology of M . Dually we look at the complex R HomR(Čx, M) in the 
derived category. There is a free resolution of Čx by a bounded complex Lx and 
HomR(Lx, M) is a representative of R HomR(Čx, M) (see [17] and [16]). We define 
Ȟx

i (M) = Hi(HomR(Lx, M)) ∼= Hi(R HomR(Čx, M)), i ∈ Z, as the Čech homology of 
M . For the case of R a Noetherian ring let a = xR then it follows that Ȟi

x(M) ∼= Hi
a(M), 

the i-th local cohomology of M with support in a. At first this was established by 
Grothendieck (see [6] and [7]). Dually, for Noetherian rings R we have Ȟx

i (M) ∼= Λa
i (M), 

where Λa
i (·) denotes the left derived functors of the completion Λa(·). Contributions were 

done by Matlis (see [9]), Simon (see [18]), Greenlees and May (see [5]) and others.
Starting with Greenlees and May (see [5]) and Lipman et al. (see [1]) there were 

extensions to non-Noetherian rings with sequences x that are called pro-regular resp. 
weakly pro-regular (see below for the definitions). In particular, when x is weakly pro-
regular the isomorphisms Ȟi

x(M) ∼= Hi
a(M) and Ȟx

i (M) ∼= Λa
i (M) hold for any i ∈ Z

and any R-module M and more generally for any complex X ∈ D(R) (see [11], [12], [14]
and [17] for more details).

In the situation of x an R-regular sequence there is a corresponding property of x
being an M -regular sequence (see e.g. [10]). This is a challenge for the study of the 
relative version that x is weakly M -regular for modules instead of M = R. Namely, x is 
called an M -weakly pro-regular sequence (see also [17, 7.3.1]) provided the inverse system 
{Hi(x(n); M)}n≥1 is pro-zero for i = 1, . . . , r, i.e. for each n there is an integer m ≥ n

such that the natural map Hi(x(m); M) → Hi(x(n); M) is zero. Here x(n) = xn
1 , . . . , x

n
r

and Hi(x(n); M) denotes the Koszul homology. An R-weakly pro-regular sequence is 
called weakly pro-regular. For a first description of M -weakly pro-regular sequences see 
[15, Theorem 4.2]. Let M̂x = Λx(M) denote the x-adic completion of M .

Theorem 1.1. For an R-module M and a sequence x = x1, . . . , xr the following is equiv-
alent:

(i) x is M -weakly pro-regular.
(ii) Čx(HomR(M, I)) is a right resolution of HomR(Λx(M), I) for any injective R-

module I.
(iii) HomR(Lx, M ⊗R F ) is a left resolution of Λx(M ⊗R F ) for any free R-module F .
(iv) HomR(Lx, X) is a left resolution of Λx(X) for X = M, M [T ].
(v) HomR(Lx, M [T ]) is a left resolution of Λx(M [T ]).



96 P. Schenzel / Journal of Algebra 652 (2024) 94–112
Note that the equivalence of (i), (iii) and (iv) in the particular case of M = R was 
shown by Positselski (see [12, Theorem 3.6]), that is in the case when x is R-weakly 
pro-regular (or weakly pro-regular for short). Then the complexes HomR(Lx, X) and 
LΛx(X) are isomorphic in the derived category for all X ∈ D(R) (see [11] generalizing 
the case of bounded complexes shown in [16]). For the proof of 1.1 and the notion of 
left/right resolution see the comments after 3.6.

The notion of a weakly pro-regular sequence x = x1, . . . , xr is defined in terms of 
the Koszul homology of the whole sequence x. An M -regular sequence is defined by 
the vanishing of xi−1M :M xi/xi−1M for i = 1, . . . , r, where xi−1 = x1, . . . , xi−1. As a 
generalization of that Greenlees and May (see [5]) resp. Lipman et al. (see [1]) invented 
the notion of an M -pro-regular sequence. Note that both of the definitions are equivalent 
(see [15, Proposition 2.2]). A sequence x is called M -pro-regular if the inverse system 
{x(n)

i−1M :M xn
i /x

(n)
i−1M)}n≥1 with multiplication by xn

i is pro-zero for i = 1, . . . , r. Note 

that if x is M -regular it is also M -weakly pro-regular since x(n)
i−1M :M xn

i /x
(n)
i−1M = 0

(see [10, 16.1]). A characterization of pro-regular sequences in terms of Čech cohomology 
is known (see [15, Theorem 3.2] and 4.4). Here there is a description in the terms of Čech 
homology. See 4.5 for the following:

Theorem 1.2. Let x = x1, . . . , xr denote a sequence of elements of R. For an R-module 
M the following conditions are equivalent:

(i) The sequence x is M -pro-regular.
(ii) Ȟxi

0 (Λxi−1(M⊗RF )) ∼= Λxi(M⊗RF ) and Ȟxi
1 (Λxi−1(M⊗RF )) = 0 for i = 1, . . . , r

and any free R-module F .
(iii) Ȟ

xi
0 (X) ∼= Λxi(X) and Ȟxi

1 (X) = 0 for i = 1, . . . , r and X = M, M [T ].
(iv) Λxi−1(M [T ]) is of bounded xi-torsion for i = 1, . . . , r.

In the final section we apply the previous results to a global situation. To this end 
we consider a pair (I, x) consisting of an effective Cartier divisor I ⊆ R and an element 
x ∈ R (see 5.1 for the definitions). We call it pro-regular whenever the inverse system 
{H1(xn; R/In)}n≥1 is pro-zero. Then our investigations (see 5.5) yield the following:

Corollary 1.3. With the previous notation the following conditions are equivalent:

(i) R/I is of bounded x-torsion.
(ii) (I, x) is pro-regular.
(iii) Ȟx

0 (ΛI(F )) ∼= Λ(x,I)(F )) and Ȟx
1 (ΛI(F )) = 0 for any free R-module F .

(iv) ΛI(R) and ΛI(R[T ]) are of bounded x-torsion.

As shown in [15] this has applications to prisms in the sense of Bhatt and Scholze 
(see [3]). The equivalent conditions in 1.3 are improvements of the results shown in [15, 
Corollary 5.7].
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In the paper we start with recollections about inverse limits. In particular we include 
a different proof of one of Emmanouil’s results (see [4]) about inverse systems needed in 
the paper. In the third section we prove additional statements about weakly pro-regular 
sequences, extending those known before. In section 4 we study pro-regular sequences, 
continuing the results shown in [15]. Moreover, we prove a necessary and sufficient con-
dition for the isomorphism Λx(ΛI(M)) ∼= Λ(x,I)(M) for an ideal I ⊂ R and an element 
x ∈ R generalizing a result by Greenlees and May (see [5, Lemma 1.6]). Finally in sec-
tion 5 we study when a pair (I, x) consisting of an effective Cartier divisor I and an 
element x ∈ R is pro-regular. Finally we apply these results to prisms in the sense of [3]
generalizing partial results of [15].

In the terminology we follow that of [17]. In our approach we prefer to work in the 
category of modules instead of the derived category. For that reason we use a bounded 
free resolution of the Čech complex (see 3.1).

2. Recollections about inverse limits

Notation 2.1. (A) Let R denote a commutative ring. Let {Mn}n≥0 be an inverse system 
of R-modules with φn,m : Mm → Mn for all m ≥ n. Then there is an exact sequence

0 → lim←−−Mn →
∏
n≥0

Mn
Φ−→

∏
n≥0

Mn → lim←−−
1Mn → 0,

where Φ denotes the transition map and lim←−−
1Mn is the first left derived functor of the 

inverse limit (see e.g. [20, 3.5] or [17, 1.2.2]).
(B) Let M denote an R-module. Let T be a variable over R. In the following we use 
M [|T |], the formal power series R-module over M . That is, the R-module M [|T |] consists 
of all formal series 

∑
i≥0 xiT

i with xi ∈ M for all i ≥ 0. Correspondingly, the R-module 
M [T ] consists of all polynomials over M . Therefore, 

∑
i≥0 xiT

i ∈ M [T ] if only finitely 
many xi are non-zero. Whence there is an injection 0 → M [T ] → M [|T |] of R-modules.
(C) The inverse system {Mn}n≥0 is called pro-zero if for each n there is an integer m ≥ n

such that the homomorphism φn,m : Mm → Mn is zero. If {Mn}n≥0 is pro-zero, then it 
is well known that lim←−−Mn = lim←−−

1 Mn = 0 since Φ is an isomorphism (see e.g. [17, 1.2.4]).
(D) Let {Mn}n≥0 be an inverse system. Then clearly Imφn,m′ ⊆ Imφn,m ⊆ Mn for all 
m′ ≥ m ≥ n. We say that {Mn}n≥0 satisfies the Mittag-Leffler condition if for each n
the sequence of submodules {Imφn,m|m ≥ n} stabilizes. For instance, this holds if the 
maps φn,m are surjective or {Mn}n≥0 is an inverse system of Artinian R-modules. It is 
well-known that lim←−−

1 Mn = 0 if {Mn}n≥0 satisfies the Mittag-Leffler condition (see e.g. 
[17, 1.2.3]).

For more details about inverse systems we refer to Jensen’s exposition in [8] and to [4]. 
It is remarkable that the vanishing in 2.1 (C) does not imply that {Mn}n≥0 is pro-zero. 
To this end see the example [17, 1.2.5] or the following generalization:
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Example 2.2. Let (R, m) denote a complete local Noetherian ring with x ∈ R a non-unit. 
We consider the direct system {Rn}n≥0 with Rn = R and ψn,n+1 : Rn → Rn+1 the 
multiplication by x. Then lim−−→Rn

∼= Rx and there is a short exact sequence

0 → ⊕n≥0Rn → ⊕n≥0Rn → Rx → 0.

Now we apply HomR(·, R) and obtain the inverse system {Mn}n≥0 with Mn =
HomR(Rn, R) and with the multiplication Mn+1

x→ Mn. By applying HomR(·, R) to 
the previous short exact sequence it yields the exact sequence

0 → HomR(Rx, R) →
∏
n≥0

Mn →
∏
n≥0

Mn → Ext1R(Rx, R) → 0.

Since R is also xR-complete lim←−−Mn = HomR(Rx, R) = 0 and lim←−−
1 Mn = Ext1R(Rx, R) =

0 (see [17, 3.1.10]) while the inverse system {Mn}n≥0 is neither pro-zero nor satisfies the 
Mittag-Leffler condition.

In the following we shall discuss necessary and sufficient conditions for an inverse 
system to be pro-zero. This extends known results. We need a technical construction.

Remark 2.3. An R-module M induces a short exact sequence

0 → M [T ] T−→ M [T ] → M → 0,

where T denote the shift operator defined by 
∑k

n≥0 xnT
n 
→

∑k
n≥0 xnT

n+1. The inverse 
system {Mn}n≥0 induces a short exact sequence of inverse systems

0 → {Mn[T ]}n≥0
T−→ {Mn[T ]}n≥0 → {Mn}n≥0 → 0,

induced by the shift operator. Then we have the six-term long exact sequence associated 
to the inverse limit

0 → lim←−−Mn[T ] → lim←−−Mn[T ] → lim←−−Mn → lim←−−
1Mn[T ] → lim←−−

1Mn[T ] → lim←−−
1Mn → 0

(see e.g. [17, 1.2.2]).

By the Example 2.2 it follows that the vanishing of lim←−−
1 Mn is necessary but not suffi-

cient for the Mittag-Leffler condition of the inverse system {Mn}n≥0. A characterization 
of the Mittag-Leffler condition was shown by Emmanouil (see [4]). For our purposes we 
recall part of Emmanouil’s result (see [4, Corollary 6]). In our argument we use a cer-
tain exact sequence (see the proof of 2.4) and modify an idea of [19, tag 0CQA] as new 
ingredients.



P. Schenzel / Journal of Algebra 652 (2024) 94–112 99
Lemma 2.4. Let {Mn}n≥0 denote an inverse system of R-modules. Then the following 
conditions are equivalent:

(i) {Mn}n≥0 satisfies the Mittag-Leffler condition.
(ii) {Mn[T ]}n≥0 satisfies the Mittag-Leffler condition.
(iii) lim←−−

1 Mn = 0 and lim←−−
1 Mn[T ] = 0.

(iv) lim←−−
1 Mn[T ] = 0.

Proof. (i) =⇒ (ii): This follows since the inverse system {Mn[T ]}n≥0 satisfies the Mittag-
Leffler condition too.
(ii) =⇒ (iv): This holds trivially.
(iii) ⇐⇒ (iv): This is a consequence of the six-term exact sequence in 2.3.
(iii) =⇒ (i): The injections 0 → Mn[T ] → Mn[|T |] induce a short exact sequence of 
inverse systems

0 → {Mn[T ]}n≥0 → {Mn[|T |]}n≥0 → {Mn[|T |]/Mn[T ]}n≥0 → 0.

By passing to the inverse limit it provides an exact sequence

0 → lim←−−Mn[T ] → lim←−−Mn[|T |] → lim←−−Mn[|T |]/Mn[T ] → lim←−−
1Mn[T ].

Now suppose that {Mn}n≥0 does not satisfy the Mittag-Leffler condition. Then there 
is an integer m such that the sequence of submodules {Imφm,k|k ≥ m} of Mm does 
not stabilize. Whence there is an infinite sequence m = m0 < m1 < . . . < mi < . . .

and elements xi ∈ Mmi
such that φm,mi

(xi) ∈ Mm \ φm,mi+1(Mmi+1). Now we define 
F = (fn)n≥0 ∈

∏
n≥0 Mn[|T |] with fn =

∑
i≥n zn,iT

i where we put

zn,i =
{
φn,mi

(xi) if mi ≥ n

0 else.

As easily seen fn − φn,n+1(fn+1) ∈ Mn[T ] and F defines an element
F ′ ∈ lim←−−Mn[|T |]/Mn[T ]. Suppose F ′ has a preimage G = (gn)n≥0 ∈ lim←−−Mn[|T |] with 
gn =

∑
i≥0 yn,iT

i and yn,i ∈ Mn for all i ≥ 0. We have that yn,i = φn,n+k(yn+k,i) for 
all k, i ≥ 0 and therefore yn,i ∈ φn,n+k(Mn+k). That is, ym,i ∈ φm,mi+1(Mmi+1) and 
ym,i = φm,mi

(xi) since φm,mi
(xi) ∈ Mm \ φm,mi+1(Mmi+1). Therefore

fm − gm =
∑
i≥0

(φm,mi
(xi) − ym,i)T i ∈ Mm[T ]

and G can not be a preimage of F ′, a contradiction to the vanishing of lim←−−
1Mn[T ]. �

As a consequence of 2.4 a characterization of pro-zero inverse systems follows. The 
vanishing limMn = lim 1Mn = 0 is not sufficient for {Mn}n≥1 being pro-zero (see 2.2). 
←−− ←−−
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As shown next it follows by the vanishing lim←−−Mn[T ] = lim←−−
1Mn[T ] = 0 (see 2.5). For the 

proof we modify Weibel’s argument (see the proof [20, 3.5.7]). For an R-module M and 
a set S we define M (S) = ⊕s∈SMs with Ms = M . Then it is clear that conditions (iii) 
and (iv) hold also for the inverse system {(Mn)(S)}n≥0 when they hold for {Mn}n≥0.

Corollary 2.5. Let {Mn}n≥0 denote an inverse system of R-modules. Then the following 
conditions are equivalent:

(i) {Mn}n≥0 is pro-zero.
(ii) {Mn[T ]}n≥0 is pro-zero.
(iii) lim←−−Mn = lim←−−

1 Mn = 0 and lim←−−Mn[T ] = lim←−−
1 Mn[T ] = 0.

(iv) lim←−−Mn[T ] = lim←−−
1 Mn[T ] = 0.

Proof. (i) =⇒ (ii): Because {Mn}n≥0 is pro-zero this holds also for the induced inverse 
system {Mn[T ]}n≥0 as easily seen.
(ii) =⇒ (iv): This is obviously true because {Mn[T ]}n≥0 is pro-zero.
(iii) ⇐⇒ (iv): This is a consequence of the six-term exact sequence in 2.3.
(iii) =⇒ (i): By view of 2.4 the inverse system {Mn}n≥1 satisfies the Mittag-Leffler 
condition. We define Nn = Imφn,m where m = m(n) is choosen such that {Imφn,k}k≥n

becomes stable. Then {Nn}n≥1 becomes an inverse system with surjective maps. Because 
the inverse system {Mn/Nn}n≥1 is pro-zero the exact sequence 0 → Nn → Mn →
Mn/Nn → 0 implies lim←−−Nn = lim←−−Mn = 0 and therefore Nn = 0. �
3. Weakly pro-regular sequences

We start with a few recalls of results and definitions of [17] and [16]. As above R
denotes a commutative ring.

Notation 3.1. (A) For a system of elements x = x1, . . . , xr of R let Čx denote the Čech 
complex

Čx := Čx1 ⊗R · · · ⊗R Čxr
,

where Čxi
: 0 → R → Rxi

→ 0 (see e.g. [7] or [17, 6.1]). In the following we look at 
the complex R HomR(Čx, M) for an R-module M in the derived category. By virtue 
of [5] there is a finite free resolution of Čx. We follow here the one Lx as given in [16]. 
Whence HomR(Lx, M) is a representative of R HomR(Čx, M). Define the Čech homology 
Ȟx

i (M) = H−i(HomR(Lx, M)) and the Čech cohomology Ȟi
x(M) = Hi(Lx ⊗R M) for 

all i ∈ Z (see [17] and [16] for more details).
(B) Let U = U1, . . . , Ur denote a sequence of r variables over R. For an R-module 
M we denote, as above, by M [|U |] the module of formal power series in the variables 
U . Clearly M [|U |] = limM [U ]/U (n)M [U ], where U (n) = Un

1 , . . . , U
n
r and M [U ] is the 
←−−
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polynomial module over M . For the sequence x = x1, . . . , xr we define the sequence 
x−U = x1 −U1, . . . , xr −Ur. As one of the main results of the paper [17, Section 8] the 
following isomorphisms are shown

HomR(Lx,M) ∼= K•(x− U ;M [|U |]) ∼= lim←−−K•(x− U ;M [U ]/U (n)M [U ]),

where K•(x − U ; ·) denotes the Koszul complex with respect to the sequence x − U . 
Moreover there are isomorphisms

Lx ⊗R M ∼= K•(x− U ;M [U−1]) ∼= lim−−→K•(x− U ;M [U ]/U (n)M [U ]),

where M [U−1] denotes the module of inverse polynomials and K•(x−U ; ·) is the Koszul 
co-complex (see [16, 4.1] for all of the details).

In the following there is technical result for the computation of Ȟx
i (M) and Ȟi

x(M)
resp.

Lemma 3.2. We fix the notation of 3.1. Furthermore let x(n) = xn
1 , . . . , x

n
r and let 

Hi(x(n); M) denote the Koszul homology and Hi(x(n); M) the Koszul cohomology.

(a) There are isomorphisms Ȟi
x(M) ∼= lim−−→Hi(x(n); M) and short exact sequences

0 → lim←−−
1Hi+1(x(n);M) → Ȟx

i (M) → lim←−−Hi(x(n);M) → 0,

for all i ∈ Z.
(b) For i > 0 we have Ȟx

i (M) = 0 if and only if lim←−−
1Hi+1(x(n); M) = lim←−−Hi(x(n); M) =

0 and Ȟx
0 (M) ∼= Λx(M) if and only if lim←−−

1H1(x(n); M) = 0.

Proof. For the proof of (a) we refer to [17, 6.1.4, 8.1.7] or [16, 5.6]. Then (b) is a conse-
quence of the exact sequences in (a). �

Next we shall give a further characterization for an element x ∈ R such that an 
R-module M is of bounded x-torsion.

Definition 3.3. (A) Let M denote an R-module and x ∈ R an element. Then M is called 
of bounded x-torsion if the family of increasing submodules {0 :M xn}n≥0 stabilizes, 
that is

0 :M xn = 0 :M xn+1 for all n � 0.

Note that this is equivalent to the fact that the inverse system {0 :M xn}n≥0 with the 

multiplication map 0 :M xm xm−n

−→ 0 :M xn, m ≥ n, being pro-zero.
(B) It is obvious that M is of bounded x-torsion if and only if the inverse system of Koszul 
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homology modules {H1(xn; M)}n≥0 with the multiplication map H1(xm; M) xm−n

−→
H1(xn; M) is pro-zero. With this in mind Lipman (see [2]) introduced the generalization 
of a weakly pro-regular sequence for a ring R. For a generalization to an R-module M see 
[17, 7.3.1]. That is, a sequence x = x1, . . . , xr is called M -weakly pro-regular, if for i > 0
the inverse system {Hi(x(n); M)}n≥0 is pro-zero, where Hi(xm; M) → Hi(xn; M), m ≥ n, 
denotes the natural map induced by the Koszul complexes. A first systematic study of 
R-weakly pro-regular sequences has been done in [14].

For a characterization of M -weakly pro-regular sequences see [16]. In fact, this is an 
extension of R-weakly pro-regular sequences shown in [11] which extended the results 
of [14] to unbounded complexes. Here we shall prove another characterization of M -
weakly pro-regular sequences. It is a slight extension of Potsitselski’s result see [12, 
Section 3]) to the case of an R-module M . As above, for an R-module M and a set 
S we define M (S) = ⊕s∈SMs with Ms = M . Note that M [T ] ∼= M (N). Moreover, 
Λx(M) = M̂x = lim←−−M/x(n)M denotes the xR-adic completion of an R-module M .

Theorem 3.4. Let x = x1, . . . , xr denote a sequence of elements of R. For an R-module 
M the following conditions are equivalent:

(i) x is M -weakly pro-regular.
(ii) For any set S it holds Ȟx

i (M (S)) = 0 for all i > 0 and Ȟx
0 (M (S)) = Λx(M (S)).

(iii) Ȟx
i (M [T ]) = Ȟx

i (M) = 0 for all i > 0 and Ȟx
0 (M [T ]) = Λx(M [T ]) and Ȟx

0 (M) =
Λx(M).

(iv) Ȟx
i (M [T ]) = 0 for all i > 0 and Ȟx

0 (M [T ]) = Λx(M [T ]).

Proof. (i) =⇒ (ii): It is clear that for i > 0 the inverse system {Hi(x(n); M (S))}n≥0 is 
pro-zero too. Then lim←−−Hi(x(n); M (S)) = lim←−−

1Hi(x(n); M (S)) = 0 for i > 0 and (ii) is a 
consequence of 3.2.
(ii) =⇒ (iii) =⇒ (iv): These hold obviously.
(iv) =⇒ (i): By view of 3.2 the assumptions imply that

lim←−−Hi(x(n);M [T ]) = lim←−−
1Hi(x(n);M [T ]) = 0 for i > 0.

By 2.5 this completes the proof because of Hi(x(n); M [T ]) ∼= Hi(x(n); M)[T ]. �
In the following example we show that it is not sufficient to assume S to be finite in 

3.4 for the characterization of weakly pro-regular sequences (see also [15, Example 3.3]).

Example 3.5. Let R = k[|x|] denote the formal power series ring in the variable x over 
the field k. Then define A =

∏
n≥1 R/xnR. By the component wise operations A be-

comes a commutative ring. The natural map R → A, r → (r + xnR)n≥1, is a ring 
homomorphism with x 
→ x := (x + xnR)n≥1. As a direct product of xR-complete 
modules A is an xR-complete R-module (see [17, 2.2.7]). Since R is a Noetherian 
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ring x is R-weakly pro-regular and Ȟx
i (A) ∼= Hi(HomR(Lx, A)) = 0 for i > 0 and 

Ȟx
0 (A) ∼= H0(HomR(Lx, A)) ∼= A. Moreover, by the change of rings there is an isomor-

phism HomR(Lx, A) ∼= HomA(Lx, A). That is, Ȟx
i (A) = 0 for i > 0 and Ȟx

0 (A) ∼= A. 
Now note that A is not of bounded x-torsion as easily seen. It follows that the 
equivalent conditions in 3.4 do not hold for A and A[T ]. To be more precise, recall 
H1(xn; A) =

∏
i≥1(xi−nR/xiR) with xi−nR = R for i ≤ n, that is

H1(xn;A) = (R/xR, . . . , R/xnR,︸ ︷︷ ︸
i≤n

xR/xn+1, . . . , xi−nR/xiR, . . .︸ ︷︷ ︸
i>n

).

Therefore H1(xm; A) does not stabilize under the multiplication by xm−n in H1(xn; A). 
Note that the i-component of the image of H1(xm; A) under the multiplication by xm−n

in H1(xn; A) is zero for i ≤ m − n < m and non-zero for i = m − n + 1. Whence 
{H1(xn; A)}n≥1 does not satisfy the Mittag-Leffler condition. By view of 2.4 we have 
lim←−−

1H1(xn; A[T ]) = 0 and Λx
0(A[T ]) ∼= Ȟx

0 (A[T ]) � Λx(A[T ]) is not an isomorphism 
(see 3.2 (a)).

As an application we have another characterization that an R-module M is of bounded 
x-torsion for an element x ∈ R. Note that (iii) in 3.6 is the analogue to 3.4 (iv).

Corollary 3.6. For an element x ∈ R and an R-module M the following conditions are 
equivalent:

(i) M is of bounded x-torsion.
(ii) Ȟx

1 (M [T ]) = Ȟx
1 (M) = 0 and Ȟx

0 (M [T ]) ∼= Λx(M [T ]) and Ȟx
0 (M) ∼= Λx(M).

(iii) lim←−− 0 :M [T ] x
n = lim←−−

1 0 :M [T ] x
n = 0.

Proof. The equivalence of the first two conditions is a particular case of 3.4. The equiv-
alence of the first and third condition is a particular case of 2.5. �

Moreover, the proof of Theorem 1.1 follows by 3.4 and [16, Proposition 5.3]. To this 
end note that Ȟx

i (M) = Hi(HomR(Lx, M)). For an R-module X we call a complex 
X· : . . . → X1 → X0 → 0 a left resolution whenever X·

∼−→ M . A co-complex Y · : 0 →
Y 0 → Y 1 → . . . is called a right resolution of X provided X ∼−→ Y ·.

With the previous results we have the following slight generalization of Potsitselski’s 
result (see [12, Theorem 3.6]). Note that x is R-weakly pro-regular if it is R[T ]-weakly 
pro-regular as easily seen.

Corollary 3.7. For a sequence x = x1, . . . , xr of a ring R the following conditions are 
equivalent:

(i) x is R-weakly pro-regular.
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(ii) HomR(Lx, M) is a left resolution of Λx(M) for any free R-module M .
(iii) HomR(Lx, R[T ]) is a left resolution of Λx(R[T ]).

Remark 3.8. While the property of R-regular and M -regular sequences are quite “sym-
metric” this is not the case for the notion of weakly pro-regularity. Let x denote a 
sequence of elements of R. If it is R-weakly pro-regular it follows that Ȟx

0 (M) ∼= Λx
0(M)

for any R-module M (see e.g. [17, Chapter 7]). Let x be M -weakly pro-regular, then 
Ȟx

0 (M) ∼= Λx(M) as shown in 3.4. Note that the homomorphism Λx
0(M) → Λx(M) is 

onto (see [17, 2.5.1]) but in general not an isomorphism (see e.g. Example 3.5).

4. Pro-regular sequences

Before we shall investigate pro-regular sequences we need technical results about 
pro-zero inverse systems. To this end let M denote an R-module with {Mn}n≥1 a 
decreasing sequence of submodules of M , i.e. Mn+1 ⊆ Mn for n ≥ 1. Then M =
{M/Mn}n≥1 forms an inverse system with surjective maps M/Mn+1 → M/Mn. More-
over, let Λ(M) = lim←−−M/Mn. For a sequence of elements x = x1, . . . , xr ∈ R we 
consider the induced filtration {(x(n)M, Mn)}n≥1, where x(n) = xn

1 , . . . , x
n
r . We write 

Λ(M/xM) := lim←−−M/(x(n)M, Mn) for the inverse limit of the induced filtration. Then 
there is a natural homomorphism Λx(Λ(M)) → Λ(M/xM). In the following we will 
discuss when it is an isomorphism.

Lemma 4.1. With the previous notation there is a short exact sequence

0 → lim←−− n lim←−−
1
mH1(x(n);M/Mm) → Λx(Λ(M)) → Λ(M/xM) → 0.

Therefore Λx(Λ(M)) ∼= Λ(M/xM) if and only if lim←−−n
lim←−−

1
mH1(x(n); M/Mm) = 0.

Proof. Let m, n denote positive integers. We investigate the inverse system of Koszul 
complexes {K•(x(n); M/Mm)}m≥1. For its inverse limit there are isomorphisms

lim←−−mK•(x(n),M/Mm) ∼= HomR(K•(x(n)),Λ(M)) ∼= K•(x(n); Λ(M)).

The inverse system {K•(x(n); M/Mm)}m≥1 is degree-wise surjective. Whence for its 0-th 
homology there is a short exact sequence

0 → lim←−−
1
mH1(x(n);M/Mm) → H0(x(n); Λ(M)) → lim←−−mH0(x(n);M/Mm) → 0

(see [17, 1.2.8]). It forms an exact sequence of inverse systems on n. By passing 
to the inverse limit it provides the short exact sequence of the statement since 
lim←−−

1
n lim←−−

1
mH1(x(n); M/Mm) = 0 because of the underlying bi-countable indexed system 

(see the spectral sequence in [13]). Whence the statement follows. �
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The previous result is an extension of [5, Lemma 1.6] to the case of a sequence of 
elements and a more general filtration. Namely, it was shown by Greenlees and May that 
the vanishing of lim←−− n lim←−−

1
mH1(xn; M/ImM) implies the isomorphism Λx(ΛI(M)) ∼=

Λ(x,I)(M). By 4.1 the vanishing is also necessary for the isomorphism.
For any set S we define also Λ(M(S)) = lim←−−M (S)/M

(S)
n

∼= lim←−−((M/Mn)(S)). For an 
element x ∈ R we put - as before -

Λ((M/xM)(S)) = lim←−−M (S)/(xM,Mn)(S) ∼= lim←−−((M/(xM,Mn)(S))).

Moreover, we study when the inverse system {Mn :M xn/Mn}n≥1 with the multiplica-
tion by x is pro-zero. That is, when for each n ≥ 1 there is an m ≥ n such that the 
multiplication map

Mm :M xm/Mm
xm−n

−→ Mn :M xn/Mn

is zero. This is equivalent to the inverse system {H1(xn; M/Mn)}n≥1 being pro-zero, 
where H1(xn; M/Mn) denotes the Koszul homology of M/Mn with respect to the element 
xn. In other words, for each integer n ≥ 1 there is an m ≥ n such that Mm :M xm ⊆
Mn :M xm−n. Note that, if Mn =: N for all n ≥ 1, then {H1(xn; M/N)}n≥1 is pro-zero 
if and only if M/N is of bounded x-torsion. With this in mind we shall continue with an 
extension of 3.6.

Theorem 4.2. With the previous notation the following conditions are equivalent:

(i) The inverse system {H1(xn; M/Mn)}n≥1 is pro-zero.
(ii) Ȟx

1 (Λ(M(S))) = 0 and Ȟx
0 (Λ(M(S))) ∼= Λ((M/xM)(S)) for any set S.

(iii) Condition (ii) holds for S a set of a single element and S = N.
(iv) lim←−−H1(xn; Yn) = lim←−−

1 H1(xn; Yn) = 0 for both Yn = M/Mn and Yn = M/Mn[T ].
(v) lim←−−H1(xn; M/Mn[T ]) = lim←−−

1 H1(xn; M/Mn[T ]) = 0.

Proof. (i) =⇒ (ii): We put X = M (S) and Xn = (Mn)(S). Then it follows that 
{H1(xn; X/Xn)}n≥1 is pro-zero too since the Koszul homology commutes with direct 
sums, therefore

lim←−−H1(xn;X/Xn) = lim←−−
1H1(xn;X/Xn) = 0.

Furthermore there are isomorphisms

lim←−−
m

H1(xn;X/Xm) ∼= lim←−−
m

HomR(R/xnR,X/Xm) ∼= H1(xn; Λ(X))

for all n ≥ 1. We have the bi-indexed system {H1(xn; X/Xm)}n≥1,m≥1 and the diagonal 
system {H1(xn; X/Xn)}n≥1 cofinal in it. There are the isomorphisms and the vanishing
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lim←−−
n

H1(xn; Λ(X)) ∼= lim←−− n lim←−−mH1(xn;X/Xm) ∼= lim←−−
n,m

H1(xn;X/Xm) = 0.

By virtue of Roos’ spectral sequence (see [13] or [20, 5.8.7]) there is a short exact sequence

0 → lim←−−
1
n lim←−−mH1(xn;X/Xm) → lim←−−

1
n,mH1(xn;X/Xm)

→ lim←−− n lim←−−
1
mH1(xn;X/Xm) → 0 (#)

and a similar one with m, n reversed. This implies the vanishing lim←−−
1H1(xn; Λ(X)) = 0

and also lim←−− n lim←−−
1
mH1(xn; X/Xm) = 0. By view of 3.2 and 4.1 this proves the claim.

(ii) =⇒ (iii): This holds trivially.
(iii) =⇒ (iv): By 3.2 the assumption implies that lim←−−H1(xn; Λ(X )) = lim←−−

1 H1(xn;
Λ(X )) = 0 for X = M and M[T ]. Put X/Xm = Mm. Because Λ(X ) ∼= lim←−−m

X/Xm and 
since the inverse limit commutes (as above) with the first Koszul homology it follows 
that

lim←−−
n

lim←−−
m

H1(xn;X/Xm) = lim←−−
n

1 lim←−−
m

H1(xn;X/Xm) = 0. (�)

The first vanishing implies that lim←−−H1(xn; M/Mn) = 0. In order to continue note that 
the isomorphism of the assumption Ȟx

0 (Λ(X )) ∼= Λ(X/xX ) factors through

Ȟx
0 (Λ(X )) β−→ Λx(Λ(X )) γ−→ Λ(X/xX )

surjections β (see 3.2) and γ (see 4.1). Whence Λx(Λ(X )) → Λ(X/xX ) is an isomorphism 
and lim←−−n

lim←−−
1
mH1(x(n); M/Mm) = 0 (see 4.1). Therefore

lim←−−
1
n lim←−−mH1(xn;X/Xm) = lim←−− n lim←−−

1
mH1(xn;X/Xm) = 0.

By Roos’ exact sequence above (see (#)) lim←−−
1 H1(xn; M/Mn) = 0, as required.

(iv) =⇒ (v): This is obvious.
(v) =⇒ (i): The Koszul homology commutes with direct sums. Therefore the implication 
follows by virtue of 2.5. �

The implication (i) =⇒ (ii) in 4.2 is a generalization of [5, Proposition 1.7]. Further-
more, a certain generalization of bounded torsion to the study of sequences was invented 
by Greenlees and May (see [5]) and Lipman et al. (see [1]), namely:

Definition 4.3. (A) Let x = x1, . . . , xr denote a sequence of elements of R. For an R-
module M it is called M -pro-regular if the inverse systems with the multiplication map 
by xn

i

{(xn
1 , . . . , x

n
i−1)M :M xn

i /(xn
1 , . . . , x

n
i−1)M}n≥1, i = 1, . . . , r,
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are pro-zero. This is equivalent to saying that the inverse systems {H1(x(n)
i ;

M/x
(n)
i−1M)}n≥1 are pro-zero for i = 1, . . . , r. For a sequence of elements x = x1, . . . , xr

we specify the subsystems xi = x1, . . . , xi for i = 0, . . . , r − 1.
(B) The notion of pro-zero is equivalent to say that for i = 1, . . . , r and any positive 
integer n there is an integer m ≥ n such that

(xm
1 , . . . , xm

i−1)M :M xm
i ⊆ (xn

1 , . . . , x
n
i−1)M :M xm−n

i .

Note that an element x ∈ R is M -pro-regular if and only if M is of bounded x-torsion.

For a discussion of the notions of pro-regularity of Greenlees and May (see [5]) resp. 
Lipman (see [1]) we refer to [15]. Moreover, it follows that an M -pro-regular sequence 
is also M -weakly pro-regular (see e.g. [15, Theorem 2.4]), while the converse does not 
hold (see [2]). For a homological characterization of M -pro-regular sequences in terms 
of injective modules we refer to [15, Theorem 2.1]. Here we add a slight extension of [15, 
Theorem 2.1].

Theorem 4.4. Let x = x1, . . . , xr denote an ordered sequence of elements of R. Let M
denote an R-module. Then the following conditions are equivalent.

(i) The sequence x is M -pro-regular.
(ii) The sequence x is (M ⊗R F )-pro-regular for any flat R-module F .
(iii) Ȟ1

xi
(Γxi−1(HomR(M, I)) = 0 for i = 1, . . . , k and any injective R-module I.

(iv) Ȟ1
xi

(HomR(M, I)) = 0 for i = 1, . . . , k and any injective R-module I.

Proof. For the equivalence of the first three conditions we refer to [15, Theorem 2.1]. 
For the proof of (iii) ⇐⇒ (iv) we put X = HomR(M, I) and recall the following short 
exact sequence

0 → Ȟ1
xi

(Ȟ0
xi−1

(X)) → Ȟ1
xi

(X) → Ȟ0
xi

(Ȟ1
xi−1

(X)) → 0

for i = 1, . . . , r, (see [17, 6.1.11] or [16, 8.1 (b)]). Then note that Γxi−1(X) ∼= Ȟ0
xi−1

(X). 
If (iv) holds the claim in (iii) follows easily. For the converse we have Ȟ1

xi
(X) ∼=

Ȟ1
xi

(Ȟ0
xi−1

(X)) = 0 for i = 1, . . . , r and inductively the vanishing of Ȟ1
xi

(X) for 
i = 1, . . . , r, recall that Ȟ1

xi−1
(X) = 0 by the inductive step. This proves (iii). �

Recall that 4.4 provides a characterization of M -pro-regular sequences in terms of 
Čech cohomology. In the following we shall prove a characterization in terms of Čech 
homology. This depends upon the results of pro-zero inverse systems as shown above.

Theorem 4.5. Let x = x1, . . . , xr denote a sequence of elements of R. For an R-module 
M the following conditions are equivalent:
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(i) The sequence x is M -pro-regular.
(ii) Ȟxi

0 (Λxi−1(M (S))) ∼= Λxi(M (S)) and Ȟxi
1 (Λxi−1(M (S))) = 0 for i = 1, . . . , r and 

any set S.
(iii) Ȟxi

0 (Λxi−1(X)) ∼= Λxi(X) and Ȟxi
1 (Λxi−1(X)) = 0 for i = 1, . . . , r and X =

M, M [T ].
(iv) Ȟ

xi
0 (X) ∼= Λxi(X) and Ȟxi

1 (X) = 0 for i = 1, . . . , r and X = M, M [T ].
(v) Λxi−1(X) is of bounded xi-torsion for i = 1, . . . , r and X = M, M [T ].

Proof. First note that x is M (S)-pro-regular for any set S. It turns out since R/x
(n)
i R

is finitely generated and HomR(R/x
(n)
i R, ·) commutes with direct sums. Because of

x
(n)
i−1M

(S) :M(S) xn
i /x

(n)
i−1M

(S) ∼= H1(xn
i ;H0(x(n)

i−1;M
(S)))

for all n ≥ 0 and i = 1, . . . , r, it follows that the corresponding inverse systems are 
isomorphic and pro-zero. Note that H0(x(n)

i−1; M (S)) ∼= M (S)/x
(n)
i−1M

(S). Moreover the 
condition and Theorem 4.2 proves the equivalence of the first three statements.
(iii) ⇐⇒(iv): By view of [16, 8.1] there are short exact sequences

0 → Ȟxi
0 (Ȟxi−1

j (X)) → Ȟ
xi
j (X) → Ȟxi

1 (Ȟxi−1
j−1 (X)) → 0 (†)

for i = 1, . . . , r and j = 0, 1. Then the equivalence is easily seen by the exact sequences. 
More precisely, (iii) =⇒ (iv) follows by increasing induction on i starting at i = 1. The 
converse follows similarly.
(v) =⇒ (iii): The assumption in (v) implies the vanishing

lim←−−H1(xn
i ; Λxi−1(X)) = lim←−−

1H1(xn
i ; Λxi−1(X)) = 0.

By virtue of 3.2 it follows that Ȟxi
1 (Λxi−1(X)) = 0 and Ȟxi

0 (Λxi−1(X)) ∼= lim←−−H0(xn
i ;

Λxi−1(X)). Now we have lim←−−H0(xn
i ; Λxi−1(X)) ∼= lim←−−n

lim←−−m
X/(xn

i , x
(m)
i−1)X ∼= Λxi(X), 

which proves the claim in (iii).
(iii) =⇒(v): The statement yields lim←−−H1(xn

i ; Λxi−1(X)) = lim←−−
1H1(xn

i ; Λxi−1(X)) = 0. 
For a fixed n and j = 0, 1 we have the short exact sequences

0 → lim←−−
1
mHj+1(xn

i ;X/x
(m)
i−1X) → Hj(xn

i ; Λxi−1(X)) → lim←−−mHj(xn
i ;X/x

(m)
i−1X) → 0.

This follows since the inverse system for lim←−−mK•(xn
i ; X/x

(m)
i−1X) ∼= K•(xn

i ; Λxi−1(X))
has degree wise surjective maps. For j = 1 it yields that

0 = lim←−− nH1(xn
i ; Λxi−1(X)) ∼= lim←−− n lim←−−mH1(xn

i ;X/x
(m)
i−1X) ∼= lim←−− nH1(xn

i ;X/x
(n)
i−1X).

It remains to show the vanishing of lim←−−
1
nH1(xn

i ; X/x
(n)
i−1X). First note that the above 

short exact sequence for j = 1 provides that lim1 lim mH1(xn
i ; X/x

(m)
i−1X) = 0. The same 
←−−n ←−−
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sequence for j = 0 yields that lim←−−n
lim←−−

1
mH1(xn

i ; X/x
(m)
i−1X) = 0. Then the above sequence 

(#) (see proof of 4.2) with m, n reversed proves the vanishing lim←−−
1
nH1(xn

i ; X/x
(n)
i−1X) =

0. �
5. A global variation

As before, let R denote a commutative ring. For an element f ∈ R we write D(f) =
SpecR \ V (f). Note that D(f) is an open set in the Zariski topology of SpecR. For 
f ∈ R there is a natural map SpecRf → SpecR that induces a homeomorphism between 
SpecRf and D(f). Since SpecR = ∪f∈RD(f) and since SpecR is quasi-compact there 
are finitely many f1, . . . , fr ∈ R such that SpecR = ∪r

i=1D(fi). Then we recall the 
following definitions (see [15]).

Definition 5.1. (A) A sequence f = f1, . . . , fr of elements of R is called a covering 
sequence if SpecR = ∪r

i=1D(fi). This is equivalent to saying that R = fR. Moreover, 
if f is a covering sequence then the natural map M → ⊕r

i=1Mfi is injective for any 
R-module M as easily seen.
(B) An ideal I ⊂ R is called an effective Cartier divisor if there is a covering sequence 
f = f1, . . . , fr such that IRfi = xiRfi , i = 1, . . . , r, for non-zerodivisors xi/1 of Rfi with 
xi ∈ R. It follows that I ⊆ (x1, . . . , xr)R.
(C) Let I denote an effective Cartier divisor and x ∈ R. The pair (I, x) is called pro-
regular if for any integer n there is an integer m ≥ n such that Im : xm ⊆ In : xm−n. 
This is consistent with the definition in [5] (see 4.3) and is equivalent to the fact that for 
each n there is an integer m ≥ n such that the multiplication map Im :R xm/Im xm−n

−→
In :R xn/In is the zero map. Moreover, the pair (I, x) is pro-regular if and only if the 
inverse system {H1(xn; R/In)}n≥1 is pro-zero.

For the following we need a technical result about Cartier divisors and their relation 
to pro-regularity.

Lemma 5.2. Let I ⊆ R be an effective Cartier divisor with the covering sequence f =
f1, . . . , fr such that IRfi = xiRfi , i = 1, . . . , r, for non-zerodivisors xi/1 of Rfi . For an 
element x ∈ R the following conditions are equivalent:

(i) R/I is of bounded x-torsion.
(ii) Rfi/xiRfi is of bounded x/1-torsion for i = 1, . . . , r.
(iii) xi/1, x/1 is pro-regular in Rfi for i = 1, . . . , r in the sense of 4.3.
(iv) (I, x) is pro-regular in the sense of 5.1.

Proof. (i) ⇐⇒ (ii): For each pair of integers m ≥ n ≥ 1 we have the following commu-
tative diagram where the horizontal maps are injections
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I :R xm/I → ⊕r
j=1(xiRfi :Rfi

xm/1)/xiRfi

↓xm−n ↓⊕(xm−n/1)

I :R xn/I → ⊕r
j=1(xiRfi :Rfi

xn/1)/xiRfi

which proves the equivalence.
(ii) ⇐⇒ (iii): Note that xi/1, x/1 is pro-regular if and only if Rfi/x

k
iRfi is of bounded 

x/1-torsion for all k ≥ 1. The equivalence follows easily: First note that xi/1 is Rfi -
regular. Then use induction on the short exact sequence

0 → xk
iRfi/x

k+1
i Rfi → Rfi/x

k+1
i Rfi → Rfi/x

k
iRfi → 0

and recall that xk
iRfi/x

k+1
i Rfi

∼= Rfi/xiRfi .
(iii) ⇐⇒ (iv): The equivalence comes out by the following modification of the above 
commutative diagram

Im :R xm/Im → ⊕r
j=1(xm

i Rfi :Rfi
xm/1)/xm

i Rfi

↓xm−n ↓⊕(xm−n/1)

In :R xn/In → ⊕r
j=1(xn

i Rfi :Rfi
xn/1)/xn

i Rfi .

Recall that the horizontal maps are injective (see also [15]). �
Next we apply the previous investigations to the case when the pair (I, x) is pro-

regular in the sense of 5.1.

Lemma 5.3. Let I ⊆ R be an effective Cartier divisor with the covering sequence f =
f1, . . . , fr such that IRfi = xiRfi , i = 1, . . . , r, for non-zerodivisors xi/1 of Rfi . For an 
element x ∈ R the following conditions are equivalent:

(i) R/I is of bounded x-torsion.
(ii) Ȟx

1 ((R/I)[T ]) = 0 and Ȟx
0 ((R/I)[T ]) ∼= Λx((R/I)[T ]).

(iii) Ȟx
1 (ΛI(X)) = 0 and Ȟx

0 (ΛI(X)) ∼= Λ(x,I)(X) for X = R, R[T ].
(iv) ΛI(R) and ΛI(R[T ]) are of bounded x-torsion.

Proof. First note that by 5.2 {H1(xn; R/I)}n≥1 is pro-zero if and only if {H1(xk;
R/Ik)}k≥1 is pro-zero. Then the equivalence of (i) and (ii) follows by 3.4. Moreover, 
by 4.2 the pro-zero property of the second inverse system above implies the equivalence 
to (iii). Finally the equivalence of (iii) and (iv) is a consequence of 4.5 and 4.1 since 
lim←−− n lim←−−

1
mH1(xn; R/Im) = 0. �

In the following we shall give a comment of the previous investigations to the recent 
work of Bhatt and Scholze (see [3]) completing the results of [15]. To this end let p ∈ N

denote a prime number and let Zp := Zp the localization at the prime ideal (p) = p ∈
SpecZ. In the following let R be a Zp-algebra.
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Definition 5.4. (see [3, Definition 1.1]) A prism is a pair (R, I) consisting of a δ-ring R
(see [3, Remark 1.2]) and a Cartier divisor I on R satisfying the following two conditions.

(a) The ring R is (p, I)-adic complete.
(b) p ∈ I+φR(I)R, where φR is the lift of the Frobenius on R induced by its δ-structure 

(see [3, Remark 1.2]).

With the previous definition there is the following application of our results.

Corollary 5.5. Let (R, I) denote a prism. Then the following conditions are equivalent:

(i) I is of bounded p-torsion.
(ii) The pair (I, p) is pro-regular in the sense of 5.1.
(iii) Ȟ1

x(HomR(R/I, I)) = 0 for any injective R-module I.
(iv) ȞpR

0 (ΛI(R(S)) ∼= Λ(pR,I)(R(S))) and ȞpR
1 (ΛI(R(S)) = 0 for any set S.

(v) ΛI(R(S)) and ΛI(R(S)) are of bounded p-torsion for any set S.
(vi) ΛI(R) and ΛI(R[T ]) are of bounded p-torsion.

Proof. This is a consequence of 5.2, 5.3 and 4.4. �
Note that 5.5 is an essential improvement of [15, Corollary 4.5], where it was shown 

that (i) implies the equivalent conditions (ii) and (iii).
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