

D I SSERTAT ION

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Knowledge and Learning
Synergies between Ontologies and Machine Learning

Doktoringenieur (Dr.-Ing.)

M.Sc. Martin Glauer

01.07.1989 Magdeburg

Prof. Dr. Till Mossakowski
Prof. Dr. Robert Hoehndorf
Prof. Dr. Janna Hastings

10.10.2024

Otto-von-Guericke University Magdeburg

Department of Computer Science
Institute for Intelligent Cooperating Systems

Doctoral Thesis

Knowledge and Learning
Synergies Between Ontologies and Machine Learning

Author:

Martin Glauer

October 10, 2024

Advisers:

Supervisor Supervisor
Prof. Dr.-Ing. Till Mossakowski Prof. Dr. Janna Hastings

Department of Computer Science School of Medicine
Otto von Guericke University University of St.Gallen

Universitätsplatz 2 St.Jakob-Strasse 21
39106 Magdeburg, Germany CH-9000 St.Gallen, Switzerland

Glauer, Martin:
Knowledge and Learning
Synergies Between Ontologies and Machine Learning
Doctoral Thesis, Otto von Guericke University
Magdeburg, 2024.

Contents

Abstract

Zusammenfassung

1 Introduction and Motivation
1.1 Objectives of this Thesis . 5
1.2 Structure of this Thesis . 6

2 Background
2.1 Ontologies . 7
2.2 ChEBI . 8
2.3 Cheminformatics . 11

2.3.1 SMILES . 11
2.3.2 Molecular Fingerprints . 13
2.3.3 ClassyFire . 15

2.4 Machine Learning . 17
2.4.1 Logistic Regression . 18
2.4.2 K-Nearest Neighbor . 18
2.4.3 Decision Trees and Random Forests 19
2.4.4 Naive Bayes . 20
2.4.5 Linear Discriminant Analysis . 21
2.4.6 Support Vector Machine . 21
2.4.7 LSTM . 22
2.4.8 Transformers and Electra . 23
2.4.9 Binary Cross-Entropy Loss (BCE) 27
2.4.10 Evaluation Metrics . 28

3 Related Work
3.1 Ontology Learning . 31
3.2 Chemical Ontologies and Structure-Based Classification of Chemicals 34
3.3 Machine Learning and Deep Learning Approaches 35
3.4 Training with Semantic Support . 38

4 Ontology Extension
4.1 Data preparation . 43

4.1.1 A Balanced Approach . 44
4.1.2 Lifting Data Limitations . 46
4.1.3 Going Beyond ChEBI . 49

4.2 Input Encodings . 49
4.2.1 Fingerprints . 50

iii

iv CONTENTS

4.2.2 Tokenization . 50
4.3 Prediction Model . 52

4.3.1 Traditional Approaches . 52
4.3.2 Sequence-based models . 53

4.4 Evaluation . 55
4.4.1 Evaluation of the Traditional Methods and LSTM 55
4.4.2 Evaluation of the Electra-based Models 71

4.5 The ChEB-AI Tool . 87
4.6 Chebifier . 89

4.6.1 The Chebifier System . 89
4.6.2 User study . 92
4.6.3 Results . 94

4.7 Discussion . 96

5 Semantic Support
5.1 Ontology Pre-Training . 99

5.1.1 Datasets . 102
5.1.2 Methods . 103
5.1.3 Results . 104
5.1.4 Discussion . 107

5.2 Semantic Loss . 107
5.2.1 Methods . 108
5.2.2 Results . 110
5.2.3 Discussion . 113

6 Conclusions and Future Work
6.1 Future Work . 116

A Bibliography

CONTENTS v

Abstract

The growing pool of available information and knowledge makes suitable knowledge
representation indispensable. Over the past decades, ontologies have emerged as a
suitable method for describing knowledge flexibly and with rich semantics. However,
ontology development is a labor-intensive and time-consuming process that requires
consensus-building processes involving many experts.

This growth in available information is further enhanced by machine learning meth-
ods. These have delivered astonishing results, particularly in recent years. However,
many of them suffer from a transparency problem.

In this thesis, I show synergies between the world of ontologies and that of machine
learning that can address their respective problems. We will present a novel, machine-
learning-based approach to extend ontologies. Existing approaches rely largely on
existing domain literature, which does not reflect the consensus that inheres in the
ontology. Contrary to that, our approach is based solely on an existing ontology and
its annotations. I will evaluate the proposed prediction system on a case study on the
ChEBI ontology and demonstrate an interface that can be used by ChEBI developers
in order to accelerate the development process.

Conversely, we will also present two methods with which ontologies can be used
in machine learning. Firstly, I will show that an ontology can serve as a knowledge
base for learning tasks, even if the knowledge relevant to the task is not explicitly
represented. Furthermore, I will present a method to use the semantic structure of
the ontology to improve the logical consistency of predictions.

vi CONTENTS

Zusammenfassung

Der wachsende Fundus an verfügbaren Informationen und Wissen macht eine gute
Wissensrepräsentation unerlässlich. Im Laufe der vergangenen Jahre haben sich
Ontologien als geeignete Methoden etabliert, um Wissen flexibel und mit reich-
haltiger Semantik zu beschreiben. Das Erstellen dieser Ontologien ist jedoch eine
arbeitsintensive und zeitaufwendige Aufgabe, die voraussetzt, dass eine Gruppe von
Domänenexperten einen gemeinsamen Konsens findet.

Die Geschwindigkeit, mit der die verfügbaren Informationen anwachsen, hat sich
seit der steigenden Popularität von Methoden des maschinellen Lernens stark er-
höht. Diese haben zwar beeindruckende Resultate in den verschiedensten Domänen
geliefert, leiden jedoch unter ihrer mangelnden Transparenz.

In dieser Arbeit möchte ich die Synergien zwischen der Welt der Ontologien und der
des maschinellen Lernens aufzeigen, die diese jeweiligen Probleme adressieren kön-
nen. Ich werde einen neuartigen Ansatz präsentieren, welcher maschinelles Lernen
nutzt, um Ontologien zu erweitern. Existierende Ansätze hierfür beruhen häufig auf
Domänenliteratur, welche nicht den Konsens einer bestehenden Ontologie reflek-
tieren. Im Gegensatz hierzu beruht dieser Ansatz ausschließlich auf der Ontologie
und den enthaltenen Annotationen. Ich werde das resultierende Vorhersagesystem
anhand der ChEBI-Ontologie evaluieren und einen neuen Service vorstellen, mit
dem die Entwickelnden ihre Arbeit an der Ontologie beschleunigen können.

Weiterhin möchte ich zwei Wege demonstrieren, auf denen Ontologien Methoden
des maschinellen Lernens unterstützen können. Zunächst zeige ich, dass Ontologien
als Wissensquelle für komplexe Lernaufgaben dienen können, selbst wenn das Wis-
sen, das für die Aufgabe benötigt wird, nicht explizit in der Ontologie repräsentiert
wird. Weiterhin werde ich eine Methode vorstellen, mit der die semantische Struktur
der Ontologie direkt in das Training eingebunden werden kann, um konsistentere
Vorhersagen zu fördern.

1
Introduction and Motivation

A good understanding and overview of the latest research results have always

been the basic prerequisites for successful scientific work. But in recent years,

the pace of scientific discovery increased significantly due to the use of com-

putational methods. Artificial intelligence in particular has had a major im-

pact on the speed with which new scientific results are produced and pub-

lished. While this proliferation of information holds great promise for ad-

vancing our understanding of the world, it also poses significant challenges

to researchers who aim to preserve their broad expertise within their own do-

mains.

This development is particularly prominent in the field of research data pub-

lication. The widespread and accepted standard used to be that it was suffi-

cient to make research data publicly and freely available. However, in the face

of the rapidly growing landscape of scientific data, it has become increasingly

difficult to find data and to understand the data found. To address these and

other problems in the growing data landscape, the FAIR principles [1] were

introduced in 2016, which define concise and measurable quality criteria for

the publication of reusable, open data. The name is derived as an acronym

of the four principles: Findability (F), Accessibility (A), Interoperability (I) and

Reuseability (R).

In the course of the work of our group – independent of the work done in this

thesis – on the development of the Open Energy Platform1, a data platform

for open energy systems modelling, these criteria were the focus of many de-

sign decisions. The platform allows researchers to publish domain-relevant

data and annotate it with appropriate metadata in a way that complies with

the FAIR principles. However, this development process has shown that a

purely superficial description of data records is not sufficient to really fulfil

the FAIR principles and it also quickly became clear that a purely text-based

annotation was not sufficient here. Like most other scientific communities,

1 https://openenergy-platform.org/

1

https://openenergy-platform.org/

2 CHAPTER 1. INTRODUCTION AND MOTIVATION

the energy modelling community consists of many small and often insular

sub-communities that use their own organically evolved terminologies. These

terminologies are often not compatible across communities. As a result, an-

notations that are correct and understandable in one community may be mis-

interpreted by members of another community. It is therefore not enough to

describe the data superficially.

During our development of the Open Energy Ontology [2], we asked different

experts from the domain for a definition for the term "powerplant". The result

was a collection of three distinct definitions. For simplicity, we will illustrate

these three different concepts using the example of a wind turbine. For one

group of experts, a powerplant was a single wind turbine. For another group,

a powerplant was a whole wind park. The third group defined a powerplant

as just the electrical generator part that is installed inside the turbines top. A

naive integration of data sources regarding the energy production of power-

plants from these three groups would lead to an inconsistent dataset. There-

fore, these underlying ambiguities must be identified and resolved before any

data integration can take place. A description of the semantics underlying the

data is required.

The problems we mentioned above for the energy system modelling commu-

nity are of course not limited to them. In fact, these problems have been occu-

pying experts in biology, chemistry and medicine in particular for some time.

For centuries, biologists have been studying the processes within living organ-

isms of various kinds, while chemists deal with chemicals and their interac-

tions. Obviously, the processes that interest biologists are based on chemical

processes. A cross-domain integration of data sources would therefore benefit

research endeavors in both domains. But both communities had developed

terminologies and distinction systems that were not compatible with each

other and harmonization of concepts from both domains is essential for suc-

cessful data integration. Similar to the previous example from the energy do-

main, it should also be clear here that a simple mapping of concepts between

the domains is not realistic. At the same time, however, both domains deal

with different aspects of the same reality. The semantics behind the relevant

concepts must therefore still be compatible. In order to overcome the hur-

dles of knowledge integration between the domains of biology and chemistry,

the experts developed numerous domain-specific semantic technologies un-

der the umbrella of the Open Biological and Biomedical Ontology Foundry [3]

(short: OBO foundry). As the name indicates, OBO focuses mainly on the de-

velopment of ontologies for different sub-domains within the bio-chemical

nexus. We will introduce ontologies more thoroughly in chapter 2. Broadly

speaking, ontologies are a means to describe concepts within a domain and

relations between these concepts.

3

Two of the most successful ontologies developed within this context are

the Gene Ontology[4, 5] (GO) and the ontology of Chemicals Of Biological

Interest[6, 7, 8] (ChEBI). Both ontologies have been widely adopted within

their respective communities and have been used in a variety of different

applications. The development process of ChEBI in particular, however, high-

lights one of the main challenges in modern ontology development. ChEBI

Release 229, which was published on 1st January 2024, contains 61,065 fully

annotated chemical compounds. Over the past 100 monthly releases, an aver-

age of 158 compounds have been added to ChEBI per month [9]. This level of

maintenance already requires a considerable amount of effort. Yet, this rate

Figure 1.1: Comparison of new compounds added to ChEBI (derived from [9]) and
PubChem (derived from [10]) per month in 2023 on a log-scale.

of growth is dwarfed in contrast to the rate of scientific discovery in the field.

PubChem [11], a popular but mostly unstructured data source for chemical

compounds, features a set of 116,125,060 chemical compounds2. Figure 1.1

compares the growth of both resources in 2023. It can be seen that not only

has PubChem vastly outperformed ChEBI by several orders of magnitude, but

the growth of ChEBI has also been significantly below its own 100-release

average of 158. This decline in growth is typical for ontology development, be-

cause the addition of new classes requires the consideration of an increasingly

large hierarchy and the distinctions on lower hierarchy levels are often more

nuanced and hard to define. Ontologies also suffer from similar structural

problems as scientific software. After large and urgent problems addressed by

2 Sourced from https://pubchem.ncbi.nlm.nih.gov/docs/statistics on 25th January 2024

https://pubchem.ncbi.nlm.nih.gov/docs/statistics

4 CHAPTER 1. INTRODUCTION AND MOTIVATION

ontology have been dealt with, there is often a lack of long-term funding. The

focus of researchers, developers and management is shifting to other impor-

tant areas. Ensuring sustainable maintenance and further development and

training new developers then often becomes a sideline for enthusiasts. Yet,

ontologies are important resources that are required to structure the complex

knowledge in these domains. Therefore, new development techniques and

support systems are required to support the ontology development process.

Artificial intelligence methods have been a major driving factor in scientific

discovery in recent years. Large language models in particular have been in

the focus throughout 2023 and public applications of generative AI models

such as ChatGPT have sparked significant public interest. According to Gart-

ner’s “Hype Cycle for Data and Analytics Programs and Practices, 2023” [12],

generative AI models are currently at the peak of their “hype curve”. One par-

ticular driver that is referenced in this analysis is its ability to support software

development, with an estimate that generative AI models “can automate up

to 30% of a programmer’s work”. This raises the question of whether these

systems could play a similar role in the creation and evolution of ontologies.

Ontology development involves defining concepts, relationships, and axioms

to represent knowledge in a structured and formalized manner. If generative

AI models can streamline software development by automating coding tasks,

it prompts exploration into whether they could assist in generating or refining

ontological structures, potentially accelerating the often intricate and time-

consuming ontology engineering process. However, the Gartner analysis also

covers challenges faced by generative AI models, including the issue of hal-

lucinations. The term “hallucination” refers to the generation of incorrect or

nonsensical information by the model. In the context of ontology develop-

ment, this poses a significant hurdle as inaccuracies could compromise the

conceptual and logical integrity of the knowledge representation. Therefore,

different techniques are required to play this role.

Gartner’s analysis also highlights another problem with popular generative AI

models. Most modern AI approaches do not allow detailed insights into their

internal workings or the actual knowledge that they represent. Yet, a detailed

understanding is crucial for application of these systems in contexts that are

critical. An automobile producer that integrates artificial intelligence into

their self-driving cars has to guarantee that the car behaves in an expected

way even in unexpected or unusual situations. To quote the analysis by Gart-

ner [12], “Hallucinations, factual errors, bias, a black-box nature [...] preclude

the use of generative AI for critical use cases.”

Purely data-driven machine learning approaches learn to extrapolate from a

dataset. Without a proper method to understand and evaluate the internal

mechanisms, one cannot predict how a model will react when confronted

1.1. OBJECTIVES OF THIS THESIS 5

with previously unseen data. The usual solution for this problem is a larger,

more diverse dataset to fill the gaps. However, given a sufficiently complex

problem, there will always be a case that has not been covered by the training

data. An extension of training data may also not be possible or very expensive.

Imagine a model that aims to predict the toxicity of chemicals. Generating

new data would require possibly lethal experiments on cell cultures or even

live animals. The integration of expert knowledge in these systems can reduce

the amount of data needed to reach the desired predictive performance for a

model and ontologies can be an excellent source of this knowledge.

1.1 Objectives of this Thesis

In this thesis, we want to present and analyze different ways in which ontology

development and machine learning can benefit each other in order to address

the problems that we pointed out earlier.

Objective 1: Machine learning aids ontology development Ontology develop-

ment is often slow and labour intensive. This is primarily due to the rigour

required when introducing new concepts into an existing ontology, as these

additions must align with a consensus among various experts and commu-

nities and also with the general structure of the ontology and with its upper

ontology. Ensuring a cohesive representation of this consensus requires con-

sistent design decisions throughout the entire ontology. As part of this first ob-

jective, we introduce and analyze a system capable of training on an existing

ontology and subsequently expanding upon it. To achieve this, we use spe-

cific structural annotations that contain information regarding the intended

semantics of a class. We will present multiple approaches to this method and

evaluate them using the ChEBI ontology. This ontology contains classes are

annotated with string representations of molecules serving as the aforemen-

tioned structural annotations.

Objective 2: A support system for ChEBI developers Ontology development is

always a collaborative effort that cannot be successful without the active con-

tribution of experts from the domain. These experts are often well-established

and active experts in their respective domain and consequently highly sought-

after and involved in many valuable efforts outside of ontology development.

It is therefore mandatory that a system that supports ontology development is

tailored toward the specific needs of these experts and can be used in a mean-

ingful and frictionless way. As part of this objective, we present a web-based

framework that aims to enable stakeholders to use the system developed as

6 CHAPTER 1. INTRODUCTION AND MOTIVATION

part of Objective 1. We will present the different features of this system and

discuss the result of a user study and subsequent developments.

Objective 3: Ontologies aid machine learning Ontologies are also a valuable

resource for expert knowledge. The considerable effort that must be invested

when developing a high-quality domain ontology results in a precise, con-

sistent and well-structured representation of important domain knowledge.

This knowledge can also be used as a resource that guides machine-learning

approaches. As part of this goal, we will demonstrate how the integration

of ontological knowledge into the learning process can impact the predictive

quality of a model. Herein, we will focus on two different techniques. First, we

will demonstrate the impact of an additional ontology-based pre-training step

on tasks that are not directly covered by the ontology. Second, we will present

a method to integrate the logical framework that underlies many ontologies

to guide the model during training.

1.2 Structure of this Thesis

We would like to address these three objectives in this thesis. To do so, we will

first introduce the concepts that are relevant to understanding this work in

Chapter 2. In Chapter 4, we will then present a system with which an ontol-

ogy can be automatically extended. We will introduce the individual building

blocks that make up this system and evaluate them using the ChEBI ontology.

Furthermore, in this chapter we will present an interface that allows ontology

developers to easily interact with our system. In Chapter 5, we will present

two different ways in which ontologies can also help with machine learning.

Here we will demonstrate how knowledge from an ontology can contribute

to better learning of chemical toxicity. Furthermore, we will present a special

ontology-based loss function that leads to better consistency in the trained

model. Finally, we will summarise the discussed results in Chapter 6 and give

an outlook on the future perspectives of the methods we have investigated

and how they will be continued in a new research project.

2
Background

The aim of this work is to bring the worlds of machine learning and ontolo-

gies closer together. An understanding of basic concepts from both areas is

therefore necessary. In this chapter, we will introduce those concepts that are

important to understanding the methods proposed in this thesis.

2.1 Ontologies

Ironically, the term "ontology" is a very overloaded one that is interpreted dif-

ferently in different domains. Ontologies have their origins in philosophy as a

"study of being", in which a generalized categorization of existing things and

their relationships is sought. Here the concept of ontology reaches back to

Aristotle’s "Metaphysics" and revolves around the question of the structure of

reality - as a whole or in specific parts. Recently, however, the term has been

taken up by the field of knowledge representation. This field studies methods

to express existing knowledge in ways that are human and machine-readable.

When it comes to ontologies, the fundamental question remains the same:

"How can certain aspects of reality be captured correctly and consistently?".

However, since knowledge representation often deals with specific use cases

that are also intended to be used in software solutions, a more pragmatic no-

tion of ontologies than the one studied in pure philosophy is required here.

The most widespread definition of the term ontology comes from Gruber [13]

and has since been expanded [14] to

Definition 1 (Ontology [13, 14]) An ontology is a formal, explicit specification

of a shared conceptualization.

But assuming we were to use this definition to build a system for ontology

development. What are the components of an ontology? What kinds of prop-

erties are important when building an ontology? Definition 1 does not provide

a sufficient framework to answer these questions. This is because this defini-

7

8 CHAPTER 2. BACKGROUND

tion uses terms that themselves require definition [15]. An alternate definition

has been proposed by Neuhaus in 2018 [16].

Definition 2 (Ontology [16]) An ontology of a given domain of interest is a doc-

ument that provides

1. a vocabulary for describing the domain of interest,

2. annotations that document the vocabulary, and

3. a logical theory (consisting of axioms and definitions) for the vocabulary,

in a way that these three elements together enable a competent user of the

ontology to ascertain its intended interpretation.

That work also contains a more formal definition that yields a precise math-

ematical specification of what an ontology is. For the context of this work,

however, this informal definition is sufficient. Compared to the definition by

Gruber, it is also closer to the reality of how ontologies for knowledge repre-

sentation are built in practice. Ontologies play a crucial role in knowledge rep-

resentation by providing a structured framework for organizing and categoriz-

ing information in a specific domain. An ontology defines a set of concepts

and their relationships, that capture the essential elements within a particu-

lar knowledge domain. These concepts are often formalized using the Web

Ontology Language (OWL). The OWL language consists of classes (e.g. dog or

mammal) and their relations. The most prominent and most frequently used

of these relations is the subclass relation. OWL also allows the expression of

complex relationships such as "Every dog is a mammal", "A dog is not a cat" or

"A dog is a mammal that barks.". These relationships are expressed as logical

axioms. These are usually not the most accessible way to describe concepts to

non-logicians. OWL therefore also allows for the textual annotation of these

classes and relations. High-quality annotations allow domain experts easy ac-

cess and understanding of the concepts defined in the ontology.

2.2 Chemical Entities of Biological Interest (ChEBI)

Chemical Entities of Biological Interest [8, 7] (ChEBI) is a comprehensive

and widely utilized database and ontology that focuses on the representa-

tion of molecular entities that occur in biological processes. Developed and

maintained by the European Bioinformatics Institute (EBI), more specifically

EMBL’s European Bioinformatics Institute (EMBL-EBI), ChEBI serves as a valu-

able resource for researchers, scientists, and professionals in the fields of

bioinformatics, chemistry, and life sciences.

2.2. CHEBI 9

ChEBI is designed to provide a systematic and structured classification of

chemical entities, encompassing a diverse range of molecules such as small

molecules, peptides, nucleic acids, carbohydrates, and more. Larger chemi-

cal structures such as proteins [17], genes [4, 18] are not part of ChEBI, but

covered by different ontologies under the umbrella of the Open Biological

and Biomedical Ontology foundry (OBO, [19]). The ontology employs a con-

trolled vocabulary to annotate and classify molecular entities, enabling users

to explore relationships, similarities, and distinctions between various com-

pounds.

Figure 2.1: Screenshot of the representation of the class naphthionic acid
(CHEBI:38219).

Figure 2.1 shows the class of naphthionic acid (CHEBI:38219) as represented

in ChEBI. The molecular structure on the left shows that this class is fully

specified - that is, that it is annotated with a specific structure that all in-

stances of this class share. The structure shows the two ortho-fused benzene

rings that are characteristic for naphthalenes (CHEBI:25477), a superclass of

naphthionic acid (CHEBI:38219), as well as the sulfo group linked to a car-

10 CHAPTER 2. BACKGROUND

S-block molecular entity

Hydrogen molecular entity

Main group molecular entity P-block molecular entityMolecular entity

Chemical entity

Hydroxides

Heteroatomic molecular entity

Polyatomic entity

Oxygen molecular entity

Chalcogen molecular entity

Fentin hydroxide

Organotin compound

Organometallic compound Tin molecular entity

Organic molecular entity

Carbon group molecular entity

2

Figure 2.2: Fentin hydroxide and its hierarchical classes. Blue lines indicate the
subsumption relationships.

bon of an aryl group, that classifies this structure as an arenesulfonic acid

(CHEBI:33555), another superclass of naphthionic acid (CHEBI:38219).

The box right of the molecular structure contains fundamental information

about this entry, such as its name, its ChEBI-identifier, and information re-

garding the curation level of this entry, encoded by the number of stars rang-

ing between zero and three. Three stars denote entries that have been manu-

ally annotated by ChEBI developers; two stars if an entry has been annotated

by a third party. As of Release 229, ChEBI there are 60,882 fully annotated 3-

star compounds and 134,778 2-star compounds. In this work, we use release

200, which contains 59,108 3-star compounds and 80,611 2-star compounds.

Single-star annotations are mostly preliminary entries that have not yet been

manually annotated, while no stars denote entries that are deleted. This re-

lease was the most recent version when we started our investigation of the

presented methods. To ensure comparability between our results, we fixed

this version for our analyses, unless stated otherwise.

Below this box is an overview of important chemical qualities such as the net

charge and average mass. Most important for this work is the SMILES anno-

tation. We will explain this string representation of molecular structures in

detail in Section 2.3.1. ChEBI also annotates roles such as potential uses of

chemicals. In this example, one can see that naphthionic acid (CHEBI:38219)

can be a Brønsted base. While this role contains information about the chem-

ical’s reactive behavior, there are also roles that represent potential uses or bi-

ological roles, such as poison (CHEBI:64909) or vitamin (CHEBI:33229). The

methods in this work do not yet utilize role information, but an extension of

the proposed system is currently ongoing research and will be discussed in

Chapter 6.

Lastly, we can see the most important information for this work: The entry’s

position within ChEBI’s taxonomy, i.e. the way this class is connected to oth-

ers via the subsumption hierarchy. At its core, ChEBI provides a hierarchical

classification based on an “is a”-relationship between its classes that can be

2.3. CHEMINFORMATICS 11

very complex as can be seen in Figure 2.2. The part of the taxonomy that

we are focused on in this work starts with the root class “chemical entity”

(CHEBI:24431), which in turn has four important subclasses:

atom (CHEBI:33250) Atoms are the fundamental building blocks of chemi-

cal substances. This subclass focuses on these smallest components that

constitute matter at the atomic level.

group (CHEBI:24433) Groups are functional or otherwise important sub-

structures within molecules. The group subclass delineates the specific

components that contribute significantly to the molecular structure’s

functionality.

molecular entity (CHEBI:23367) : Distinguishable chemical structures com-

prising atoms, bonds, and other molecular components. Molecules,

in this context, represent specific and distinguishable arrangements of

chemical elements.

chemical substance (CHEBI:59999) : Compositions of molecular entities, in-

cluding mixtures, the Substances subclass encapsulates complex combi-

nations of molecules. It extends beyond the individual molecular level

to encompass higher-order arrangements of chemical entities.

In this work, we are interested in concrete chemical structures. Therefore, the

branch of molecular entities is particularly important. It is important to note

the intended semantics of a class in ChEBI. Take a bucket of water as an ex-

ample. The body of water contained in this bucket would not be a member

of the class water (CHEBI:15377), but each individual molecule therein would.

The body of water is an aggregate of several instances and would therefore be

classified as a chemical substance - depending on its precise composition, a

pure substance (CHEBI:60003) or a mixture (CHEBI:60004). Therefore, we will

not be concerned with actual instances of classes in ChEBI but, instead, put a

larger focus on their structural definitions in the form of SMILES representa-

tions.

2.3 Cheminformatics

2.3.1 SMILES

The Simplified Molecular-Input Line-Entry System (SMILES) is a formal lan-

guage that allows a string-based representation of chemical structures. Its

original version was published in 1988 [20] as a means to represent and ex-

change chemical structures in a machine-readable way. Ever since, it has

12 CHAPTER 2. BACKGROUND

been one of the widely used representations for chemical structures that is

now maintained as a proprietary standard by Daylight Chemical Information

Systems, Inc. This proprietary character did, however, hinder the widespread

application of SMILES. In 2007, the Blue Obelisk community developed an

open-source version of SMILES, the Open Smiles specification [21]. In the fol-

lowing, we will give a basic overview of Open Smiles that is required to under-

stand the input encodings and discussions for the proposed system. The main

building blocks of chemicals are atoms and their bonds. These also comprise

the fundamental parts of SMILES strings.

(a) ethanol
(ChEBI:16236)
CCO

(b) iron(III) oxide-
hydroxide(1-)
(CHEBI:78619)
[O-][Fe]=O.

(c) sec-butylbenzene
(CHEBI:35097)
CCC(C)c1ccccc1.

Figure 2.3: Different molecular structures from ChEBI with their respected SMILES
strings.

Each SMILES string represents an atom-wise traversal of the molecular graph

of a molecule. Atoms are represented by their elemental symbols (e.g., C for

carbon, O for oxygen), and the bonds between them are implied based on

their sequential arrangement. For example, in ethanol (CCO), the two carbon

atoms are assumed to be connected by a single bond, and the oxygen is at-

tached to one of the carbon atoms. The single bonds are optional and could

be made explicit by using a single dash (-). Notably, the defining feature of

ethanol, namely the hydroxy group bound to a saturated carbon atom is not

explicit in its SMILES string. This is the case because in most cases, hydrogen

is not explicitly denoted. Instead, SMILES is interpreted under the assump-

tion that each atom has a full valence shell unless explicitly annotated with

a charge counter, such as the [O-] in Figure 2.3b. The square brackets used

in [O-] are the default for all atoms, but can be omitted for elements from

the organic subset (B, C, N, O, S, P, F, Cl, Br, I). These brackets can contain

additional information regarding the enclosed atom, such as isomeres (e.g.

[10C]), charge (e.g. [C+]), connected hydrogen (e.g. [CH3]) and chirality

(e.g. [C@@]). Ring structures as seen in sec-butylbenzene in Figure 2.3c, are

indicated by numeric position markers (e.g. the six-carbon ring c1ccccc1).

2.3. CHEMINFORMATICS 13

The atom preceding each position marker is still part of the ring. In this par-

ticular example, the ring is also aromatic, which is indicated by the use of

lower-case letters. The structure of sec-butylbenzene (CHEBI:35097) also con-

tains a branch that is enclosed in parenthesis. The order in which branches

and cycles are processed is not determined by the smiles standard. Figure 2.4

(a) CCC(C)c1ccccc1 (b) CCC(c1ccccc1)C (c) c1cccc(C(C)CC)c1

Figure 2.4: Different SMILES representations for sec-butylbenzene (CHEBI:35097).
Blue numbers indicate the order in which nodes have been visited.

shows different SMILES representations for the same molecule. The choice of

the starting atom heavily influences the resulting string. It can be seen in Fig-

ure 2.4c that the numeric markers that indicate the beginning and end of the

aromatic ring have been separated to the beginning and the end of the entire

string.

2.3.2 Molecular Fingerprints

The SMILES language provides a useful framework, but a large number of

SMILES structures can encode the same chemical structure. In fact, every

node in the molecular graph can be used as the start of the iterative genera-

tion process. It is therefore hard to determine whether two SMILES strings ac-

tually encode the same chemical structure. At the same time, SMILES strings

do not directly encode important chemical features. Due to the way cycles are

broken during the graph traversal, these features may be distributed over dif-

ferent parts of the SMILES string. This may cause structures that are close in

the molecule, to be far apart in the molecule’s SMILES representation. These

properties can be detrimental to different machine-learning approaches.

Morgan Fingerprints Morgan fingerprints, also known as Extended Connec-

tivity Fingerprints (ECFP, [22]), aim to provide a fixed-length representation

of a molecule that contains important structural features. They are generated

by traversing the local environment around each atom in a four-step process.

First, each atom in the molecule is assigned a unique integer identifier. These

14 CHAPTER 2. BACKGROUND

identifiers are generated using a hash based on the Daylight atomic invariants

rule [20], which includes the number of non-hydrogen neighbors, number of

attached hydrogen, the valency excluding hydrogen bonds, and characteris-

tics of the represented atom (number, mass and charge). The fingerprints

used in this work also include a boolean identifier that represents whether

the atom is part of a bond.

In the next step, these identifiers are updated in an iterative process that ag-

gregates immediate non-hydrogen neighbors together with their respective

bond information. These aggregates are then hashed again into a structure

that contains information about the atom itself and its immediate neighbor-

hood. Repeating this process increases the radius of the neighborhood that

is covered by this representation such that, after k iterations, each node con-

tains information about its k-neighborhood. The bonds in this neighborhood

are also explicitly tracked and hashes that represent the same neighborhood

as an already existing one are discarded. This process is repeated until a fixed

number of iterations have been performed. Finally, the remaining hashes are

turned into fingerprints of fixed length n. These are initialized as a boolean

vector. For each hash, the remainder of the division by n is calculated and the

corresponding bit in the fingerprint is set to 1.

This generation process is inherently lossy. The aggregation of fingerprints

in the final step does not account for bit collisions, i.e. the case in which

two hashes have the same remainder. There are, therefore variants of this ap-

proach that do not return boolean vectors, but integer vectors that do not lose

this information. This special kind of fingerprint is also referred to as the Ex-

tended Connectivity Fingerprint Count (ECFC, [23]).

Topological Fingerprints Another frequently used kind of fingerprint is the

topological fingerprint, particularly their implementation in the RDKit li-

brary [24]: RDKit Fingerprints. Like the Morgan fingerprints, these are based

on consecutively aggregated hash values. However, the way in which these

hashes are generated differs significantly. Instead of being based on individ-

ual nodes and their neighborhood, topological fingerprints are calculated on

all substructures of a certain size. I.e. all subgraphs containing at most a given

number of chemical bonds are aggregated. Alternatively, only all paths of a

certain length can be aggregated here. A hash is then calculated for the indi-

vidual bonds in these substructures, which are then combined to form a hash

for the entire graph. These hashes are then also used with a random number

generator to set bits in the fingerprint.

2.3. CHEMINFORMATICS 15

2.3.3 ClassyFire

We explained in the introduction that ontology development is a slow, labor-

intensive process and that appropriate tool support is needed to speed it

up. ChEBI developers already use a tool for classifying chemicals: Classy-

Fire [25]. This tool was developed in conjunction with the chemical ontology

ChemOnt1. Contrary to ChEBI, ChemOnt does not use different orthogo-

nal concepts for class distinctions such as structure, function and chemical

derivations. Instead, ChemOnt is based solely on structural distinctions. Ac-

cording to the related publication, it contained at the time of publishing a

total of 4825 chemical categories – for comparison, the current version of

ChEBI contains 61,065 fully annotated compounds.

The ClassyFire tool was then developed based on these structural definitions

as a system of classification rules. The vast majority of these manually created

rules use the SMARTS notation, an extension of SMILES for molecular pat-

tern matching. More than 9000 SMARTS strings were created. However, the

formal description of chemical structures requires a very expressive logic [26].

Therefore, some structures cannot be expressed in SMARTS. Markush struc-

tures, a formalism commonly used in the description of chemical structures

in patents, have been used for some, while others rely on a logic formalism

that allows the arithmetic analysis of ring and atom counts. The exact nature

of this formalism remains unspecified in [25].

Some of the classes in ChemOnt can be found in ChEBI, such as its main dis-

tinctions ‘organic compounds’ and ‘inorganic compounds’, which correspond

to the ChEBI classes organic molecular entity (CHEBI:50860) and inorganic

molecular entity (CHEBI:24835). Other classes do not align that smoothly. The

class alkali metal salts is contained in both ChemOnt and ChEBI as is shown

in Figures 2.5 and Figures 2.6. But in ChemOnt, this class is a subclass of in-

organic compound, while organic sodium salt (CHEBI:38700) is a subclass of

alkali metal salt (CHEBI:35479). The intended semantics of alkali metal salts

must therefore be different in both ontologies.

During the development of ClassyFire, some mappings to other resources

from the domain of chemistry, such as ChEBI, have been created. The re-

sulting look-up table for ChEBI maps ChemOnt classes to an average of 1.24

ChEBI classes. These mappings have also been integrated into the develop-

ment process. ClassyFire is actively used as a tool by ChEBI’s development

team in order to propose preliminary classifications for new compounds.

This process is limited to classes that are covered by ChemOnt, which is signif-

icantly smaller than ChEBI. Consequently, this automated classification will

result in classifications that are higher in ChEBI’s taxonomy. This process may

1 http://classyfire.wishartlab.com/downloads

http://classyfire.wishartlab.com/downloads

16 CHAPTER 2. BACKGROUND

Figure 2.5: Parent classes of organic sodium salt (CHEBI:38700) in ChEBI

Figure 2.6: Superclasses in ChemOnt as depicted in [25]

2.4. MACHINE LEARNING 17

affect the structure of future ChEBI versions. Our analysis of ChEBI has shown

that certain classes in ChEBI have a significantly larger number of direct sub-

classes than most others. In ChEBI version 239, there were over 1000 classes

that were a direct subclass of peptide (CHEBI:16670), which may likely stem

from automated classification tools, likely ClassyFire.

This highlights also one of the problems with hand-crafted rules such as the

ones employed by ClassyFire. A newer version of the ontology that the tool has

been built upon requires a manual extension of the tool. Predictions based

on tools that were built against a particular ontology version can only predict

classes that were represented in this version - even if more specific classifica-

tions would be correct. One possible solution would be to convince the ontol-

ogy developers to not only produce verbal definitions of ontology classes but

also formal ones. A precise formal definition of chemicals is not trivial [26] and

the ClassyFire tool itself is based on multiple languages to capture the com-

plexity that inheres in the domain of chemistry. Such a requirement would

therefore be likely to further hinder the already slow ontology design process.

Furthermore, the ChemOnt ontology has not been maintained since its re-

lease 2.1 in 20162. There is a new related ontology, the Chemical Functional

Ontology (ChemFOnt, [27]), but at the time of writing, ClassyFire remains in

its original version 1.0. This rigidity stifles the usability of tools such as Classy-

Fire for the development of actively developed ontologies such as ChEBI. A

tool that is more adaptable to changes in the underlying ontology would be

more desirable.

2.4 Machine Learning

Definition 3 Classification problems An m-label prediction model is a param-

eterized function aθ : Rn → [0,1]m with parameters θ from a given parame-

ter space Ω that maps data points from an n-dimensional feature space to m

fuzzy class predictions between 0 and 1. Given a partial cost or loss function

c : Ω× {X |X ⊆ (Rn × {0,1}m)} → R and a set of instances with corresponding

label assignements P ⊆ Rn × {0,1}m , an m-label classification problem is the

optimization problem

min
θ

c(θ,P)

A (single-label) multi-class classification problem denotes the special case, in

which for each instance, exactly one label is positive, i.e. ∀(x, y) ∈ P :
m∑

i=1
yi = 1.

2 http://classyfire.wishartlab.com/downloads

http://classyfire.wishartlab.com/downloads

18 CHAPTER 2. BACKGROUND

Binary classifiers can only distinguish between two disjoint classes (m = 2).

Despite this limitation, it is still possible to use these classifiers for multi-class

problems by using the "one-VS-rest" method. In this method, m different

classifiers are trained in which a single class from the original classification

problem is compared against an artificial class that represents the union of all

remaining classes. The results are m "one-VS-rest" predictions and the one

with the highest predicted membership is used as the class prediction. Binary

classifiers usually assume that a data point belongs to either class. Therefore,

we will simplify our notation for the prediction function and shorten a predic-

tion aθ(x) = (p,1−p) to aθ(x) = p.

2.4.1 Logistic Regression

In its methodology, logistic regression is closely related to linear binary classi-

fication. The predictor is based on a linear hyper-plane gθ(x) : θn+1+
n∑

i=1
θi ·xi

that separates the two classes:

aθ(x) =
{

1 gθ(x) > 0

0 otherwise

In real-world applications, the input data is often noisy, which makes such

a crisp classification less meaningful. Instead, the system should express a

lower certainty for those points that are close to the separating line. Logistic

regression applies an additional sigmoid function σ(x) = 1
1+e−x to its predic-

tion function:

aθ(x) =σ(gθ(x))

A commonly used loss function for logistic regression is the mean of the cross-

entropy:

c(θ,P) =− 1

|P |
∑

(x,y)∈P
(y1 · l og (aθ(x)1)+ y2 · log (aθ(x)2))

2.4.2 K-Nearest Neighbor

The k-nearest neighbor algorithm is one of the few classification algorithms

that does not feature immediately trainable parameters. Instead, the labeled

data points are directly used for classification based on a given distance met-

ric. Given an unseen datapoint x, this method selects k data points from the

labeled dataset that are closest to x. The predicted class is then assigned to

that class that represents the majority amongst these k points.

2.4. MACHINE LEARNING 19

There are different approaches to parameterize this classification method,

such as Large Margin Nearest Neighbor that allow it to adapt to different

distributions of classes in the feature space.

2.4.3 Decision Trees and Random Forests

a < 20

b < 250

c < 3

Class: A Class: B

d < 18

Class: C Class: A

c < 20

Class: C a < 80

Class: A Class: C

Figure 2.7: Example of a decision tree. Left-hand branches represent a positive answer
to the condition in the parent node, right-hand branches represent a negative answer.

Decision trees are classifiers that build a tree structure that can be seen as

flow charts and are used for multi-class problems. Each node in the tree rep-

resents a decision point and depending on the outcome of this decision, a

different branch is taken. Figure 2.7 shows an example of a decision tree. For

a given data point (a,b,c) = (25,40,99), the processing inside the tree starts

at the root node. The root node has the attached expression a < 20, which is

not satisfied by the given datapoint (a = 25). Therefore, the algorithm follows

the right-hand branch. The corresponding next decision criterion c < 20 will

also be answered negatively and the next right path is taken. Finally, a posi-

tive decision is made in the third level for a < 80. As the left-hand path is now

followed here, we reach the final decision of the decision tree and classify the

data point as a member of class A.

In this work, we focus on Classification and Regression Trees (CART). These

trees are built based on a recursive process. Given a dataset, the decision cri-

terion for the root node is determined based on a splitting criterion that esti-

mates the ’impurity’ within a dataset. The goal is to find a decision that splits

the dataset in a way that minimizes the probability that assigning a random

class to a given data point relative to the relative frequency pi = |{(x,y)∈P |yi=1}|
|P |

(i = 1, ...,m) would lead to misclassification. The probability for this impurity,

also known as the Gini impurity, is

IGini(p) = 1−
m∑

i=1
p2

i

Note that IGini(p) = 0 if and only if pi = 1 for some class i and, consequently

p j = 0 for all others. This means that the Gini Impurity is minimal on a dataset

20 CHAPTER 2. BACKGROUND

that contains effectively only a single class - also called a ‘pure’ dataset. The

CART algorithm uses this index by attempting to split the dataset w.r.t. each

feature separately. For a simple boolean feature, this splits the dataset into two

subsets: Those instances for which the feature is present and the ones where

it is absent. The feature that separates the dataset in a way that yields the

smallest Gini Impurity is selected. This process is repeated with both subsets

until all datasets are pure or no further splits are possible. The result of this

process is a binary tree of decision points. In order to classify a new data point,

one simply has to traverse these decision points until a leaf node is reached.

In the case of a pure leaf node, the assigned class is the one that is pure in the

respective subset. In the case of an impure leaf node, the class that has the

highest number of members in this leaf is assigned.

The biggest advantage of decision trees is the fact that they are easily explain-

able. As long as features have fixed meanings, the path of decision nodes that

leads to a specific decision also contains the explanation for this decision. For

larger data and feature sets, decision trees do, however, tend to become com-

plex which limits their explainability and also often leads to over-fitting.

A random forest [28, 29] is an ensemble of multiple decision trees that are built

on sub-samples of the original dataset. A majority vote amongst the classifica-

tions derived from all trees is used to determine the predicted class for a given

data point.

2.4.4 Naive Bayes

A Naive Bayes classifier is a binary classifier that bases its predictions on a

probability distribution. Given certain features x, it predicts the binary class

membership based on the conditional probabilities

aθ(x) = (P (C1|x1, · · · , xn),P (C2|x1, · · · , xn))

Using bayes theorem, these conditional probablilities for C ∈ {C1,C2} can

be expressed as P (C |x1, · · · , xn) = P (C)P (x1,··· ,xn |C)
P (x1,··· ,xn) . The prior P (C) can either

be derived from the given dataset or set by existing expert knowledge. The

remaining probabilities cannot be easily derived in real-world applications

and are therefore approximated under certain assumptions. First, it is as-

sumed that the dataset is sampled uniformly from the feature space and

the denominator P (x1, · · · , xn) is therefore assumed to be constant. The sec-

ond assumption is more restrictive. In order to compute the conditional

probability P (x1, · · · , xn |C) for C ∈ {C1,C2} of a feature combination given a

class C ∈ {C1,C2}, one would already require knowledge on how the class one

aims to predict is distributed in the features space. This would be akin to a

probabilistic, feature-based specification of each class, which is usually not

2.4. MACHINE LEARNING 21

available. Therefore, the Naive Bayes approach assumes that all features are

mutually independent. Under this assumption, the conditional probability of

the feature combination collapes to the product of the conditional probabili-

ties of each individual feature:

P (C |x1, · · · , xn) ∝ P (C) ·
n∏

i=1
P (xi |C)

2.4.5 Linear Discriminant Analysis

One of the main drawbacks of Naive Bayes methods is their independence

assumption. Linear Discriminant Analysis follows a similar mechanism but

accounts for possible co-variances among features, i.e. it estimates the con-

ditional probability P (x1, · · · , xn |C) without the additional assumption of mu-

tually independent features. Instead, LDA classifiers assume that these prob-

ability distributions follow normal distributions with equal covariance ΣC1 =
ΣC2 =Σ. The conditional probability of a point can then be expressed

P (x1, · · · , xn︸ ︷︷ ︸
=x

|C) = − 1

(2π)
d
2 |Σ| 1

2

e−
1
2 (x−µC)TΣ−1(x−µC)

As with Naive Bayes, we are only interested in the relation between each class-

wise probability and can therefore ignore the constant denominator in front

of this expression. Similarly, we can exploit the monotonicity of the natural

logarithm and instead consider the log-likelihood

ln(P (x1, · · · , xn |C)) ∝ −1

2
(x −µC)TΣ−1(x −µC)

Therefore, we can estimate the log likelihood of the predictor as

ln(P (C |x1, · · · , xn)) ∝ ln(P (C))− 1

2
(x −µC)TΣ−1(x −µC)

2.4.6 Support Vector Machine

Support Vector Machines aim to find a hyperplane that separates two classes,

and therefore uses the same prediction function as a linear binary classifier.

They have, however, the additional goal of keeping the maximal possible mar-

gin to the closest point of each class:

c(θ,P) = ‖(θ1, · · · ,θn)‖2 + 1

|P |
∑

(x,y)∈P
max

(
0,(y2 − y1) · (θn+1 +

n∑
j=1

θ j ·x j)

)

There are, however, many scenarios in which a linear separation is not possi-

ble. In order to circumvent this limitation, Support Vector Machines apply

22 CHAPTER 2. BACKGROUND

−8 −6 −4 −2 0 2 4 6 8

(a) No kernel

−8 −6 −4 −2 2 4 6 8

20

40

60

(b) Kernel φ(x) = (x, x2)

Figure 2.8: Comparison of a point separation task with and without kernel.

a non-linear transformation φ that maps the feature space into a possibly

higher or even infinite-dimensional space. These higher-dimensional spaces

allow for a more versatile classification method, but can also be detrimental

to the performance of a classifier. In the case of infinite-dimensional transfor-

mations, it is not even possible to implement the actual representation of the

mapped features. However, it has been shown that the actual explicit repre-

sentation of this feature space is not necessary. Instead, only the dot product

〈φ(xi),φ(x)〉 between a given point x and all points xi (for (xi , yi) ∈ P) is re-

quired to represent this mapping in a support vector machine. Intuitively, this

relation expresses how similar x is to any existing data point. Using Mercer’s

Theorem [30], we know that the inner product is 〈φ(xi),φ(x)〉 can be expressed

as a positive-semidefinite kernel function K (xi , x).

This so-called “kernel trick” allows for a simple transformation of the feature

space and, thereby, a classifier that can be flexibly adapted to different data

distributions. Figure 2.8 shows an example of such a kernel method. The

points on the left are not separable by a single linear classifier. By introducing

an additional dimension based on a kernel function, they become separable.

An example of a separating classifier is given by the dashed line. The choice

of the appropriate kernel function, however, is manual and is one of the main

deciding factors on whether Support Vector Machines can be successfully ap-

plied or not.

2.4.7 LSTM

Traditional neural networks are based on input vectors of fixed size. Many use

cases, however, revolve around more flexible data. Natural language, for ex-

ample, is based on a sequence of words or phones. In order to apply these

models to this kind of use case requires elaborate pre-processing, such as fin-

2.4. MACHINE LEARNING 23

ct−1 ct

xt

σ σ

σ

tanh

tanh

+∗

∗

∗ht−1 ht

Figure 2.9: Architecture of an LSTM cell. Boxes with blue, solid borders depict dense
layers with the respective output functions. Boxes with red, dashes borders depict
element-wise operations.

gerprinting or other means of feature extraction are required. Long short-term

memories (LSTM, [31]) were proposed as a neural network that is able to pro-

cess sequences of inputs that represent parts of the input sequence. In natural

language processing, these smallest parts - also known as tokens - can be, for

example, individual letters. While processing a sequence of tokens, LSTMs

maintain an internal state h and a memory c. Figure 2.9 shows a schematic

representation of the way an input vector x is processed to update the internal

state and memory. Each input vector is processed in sequence. A concatena-

tion of the input vector x and the internal state from the previous step ht−1

is passed to three different units, also called gates, that handle the interaction

with the memory. The first forget gate, uses its input in order to remove parts

from the current memory. Next, new values are committed to the memory by

the input gate. Lastly, the output gate produces the next hidden state, which is

also the output, based on a combination of its input and the current memory

state. The resulting hidden state ht and memory ct are then used in order to

process the next input vector.

2.4.8 Transformers and Electra

The undoubtedly most prominent architectures in recent years have been

Large Language Models (LLM). These systems can process and produce com-

plex natural language and have shown impressive performance in a variety

of tasks. Underpinning these architectures is a transformer model. These

complex deep neural networks consist of a complex stack of layers of different

kinds of networks [32] as depicted in Figure 2.10.

As we discussed before, LSTMs process sequences of input tokens. Transform-

ers follow a similar approach but process the whole input series at once. In or-

24 CHAPTER 2. BACKGROUND

Figure 2.10: Transformer as depicted in [32]

der to still retain information about the order of tokens in the sequence, trans-

formers use positional encodings. These encodings are small offsets that are

added to the embedded tokens in order to represent their relative and abso-

lute position within the input sequence. A sinus-based embedding is used for

even dimensions and a cosine-based for odd dimensions:

p(k,2i) = sin
(
kα− 2i

d

)
p(k,2i +1) = cos

(
kα− 2i

d

)
where p(k, j) is the positional encoding for position k at dimension j in an in-

put vector of length d . The user-defined hyperparameter α is fixed to 10,000.

The main architecture of a transformer consists of two parts: An encoder and a

decoder. The decoder of a transformer is only used in sequence-to-sequence

tasks. In this work, however, we will focus on classification tasks, which are

purely based on the encoder half of the transformer model. The left half of Fig-

ure 2.10 depicts only a single module of the encoder stack. Each encoder mod-

ule consists of an attention mechanism and a standard feed-forward layer.

The attention mechanism is one of the central components of a transformer

architecture. The intuition behind attention mechanisms is that of a dictio-

nary. Given are tensors of s keys K ∈ Rs×dk and values V ∈ Rs×dv and a query

2.4. MACHINE LEARNING 25

tensor Q ∈ Rl×dq of length l . In order to find those positions within the key

tensor that match the query tensor best, the dot product between their indi-

vidual vectors is used. The dot product can be seen as a similarity measure

between vectors

〈v, w〉 = |v | · |w | ·cos^(v, w)

that is maximal with |v | · |w | for vectors that point in the same direction, 0 for

orthogonal vectors and minimal with −|v | · |w | for vectors that point in oppo-

site directions. If an entry at position i , j is particularly large, it means that the

query vector qi ,· is similar to k j ,·. In order to represent this relationship as a

binary relationship, the softmax of this dot product is computed:

Sim(Q,K) := Softmax

(
QT K√

dk

)

where Softmax(x) is the normalization of the exponential of its input vector.

Softmax(x)i := exi∑n
j=0 ex j

The similarity is then applied to v to aggregate those values, whose corre-

sponding keys matched the query:

Attention(Q,K ,V) = Sim(Q,K) ·V

It can be seen in Figure 2.10 that the input arrow towards the attention box

in the encoder block splits into three. This is because the encoder part of the

transformer model uses self-attention in which the same input tensor is used

for roles of queries, keys and values. Instead, the system is learning three role-

dependent projections (Mq , Mk , Mv) and the self attention is then computed

as

SelfAttention(x) = Attention(x ·Mq , x ·Mk , x ·Mv).

The calculation of the dot product over the whole dimensionality of the latent

space can be costly. Transformers do therefore employ a strategy in which

the input tensors are projected to a lower dimensional space, in which the

attention mechanism is then computed. These projections are then called at-

tention heads. A transformer can have k attentions heads where k is a divisor

of the dimensionality dmodel of the latent space. Each attention head h then

contains its own, independent set of projections Mq , Mk , Mv ∈ Rdmodel× dmodel
k .

The results of each of these heads are then concatenated in order to regain the

full dimensionality of the latent space.

The result of these attentions is then combined with a residual connection,

i.e. the original input, as indicated by the curved arrow around the attention

26 CHAPTER 2. BACKGROUND

box. The resulting tensor is then normalized using Layer Normalisation [33]

that aims to fix the variance of inputs in order to produce more stable results.

What follows is a standard feed-forward network followed by another residual

connection with Layer Normalisation.

This mechanism can be used to gain some insights into the way information is

spread throughout the network. Analyses of the binary relation that is induced

by Sim(Q,K), have been used as means to gain basic interpretability for model

predictions [34].

Pre-Training Imagine a model whose task is to classify the messages from a

chat according to their sentiment. In order to fulfill this task, the system must

first learn a large number of complex subtasks. Even to correctly analyze a

simple sentence such as "I don’t like that your dog barks so often", the words

must be understood in their context. The system must therefore learn the

connection between words at the same time it learns to predict sentiments.

However, the actual meaning of the words is not necessarily required to estab-

lish the connection between these words. Given a sufficient amount of text,

it is quite plausible that a model can recognize that in a masked sentence "I

don’t like that your [MASK] barks so often", the word that was masked was

probably "dog". But in order to derive this answer, the model needs to learn

the interdependencies of words in a sentence. The task of sentiment analysis

that requires often manually labeled data can therefore be separated from the

task of learning syntactic connections between words, which does not require

manually annotated data.

This procedure is known as masked-language modelling [35], in which unla-

beled data can be used to allow the model to learn interdependencies within

its input data. A large set of data that consists of inputs is taken and a sin-

gle element is masked by a fixed token. The model is then trained to correctly

predict the token that has been masked. This allows for the training of general-

purpose models for a larger domain that can be fine-tuned to address specific

tasks within that domain.

The Electra model [36] is essentially a transformer model that uses a variant of

pre-training via masked language modeling. This variant co-trains two trans-

former models. The generator is trained based on the common masked lan-

guage task. As depicted in Figure 2.11 masked token is then replaced by the

token that the generator predicted as the most likely candidate. This altered

sequence is then passed to the discriminator, which must predict which token

in this sequence was the one that was masked in the first step.

2.4. MACHINE LEARNING 27

I don’t like that your [MASK] barked

Generator

cat

I don’t like that your cat barked

Discriminator

original original original original original replaced original

Figure 2.11: The Electra pre-training method. The discriminator wrongfully predicts
the masked token to be "cat", allowing the discriminator to detect the replaced token.

2.4.9 Binary Cross-Entropy Loss (BCE)

In Definition 3, we introduced the notion of a classification model over a do-

main R based on a labeled dataset P , and a model aθ : Rn → [0,1]m . For a

given class i and a datapoint (x, y) ∈ P , the respective label yi is either 0 or 1.

Likewise, the predicted membership aθ(x)i falls into the interval [0,1]. Both

can therefore be considered to be probability distributions yi (x) and aθ(x)i .

The goal when training a classifier is to adapt its parameters θ in such a way

that the probability distribution induced by aθ matches that induced by the

ground truth y(x) for all classes. The binary cross-entropy allows us to mea-

sure this quality as

H(x, y) =−
n∑

i=0
yi log(aθ(x)i)+ (1− yi) log(1−aθ(x)i).

Many deep learning models derive their final predictions using a sigmoid

function σ(x) = 1
1+e−x . The binary cross-entropy takes the logarithm of the

derived predictions. It can be seen that these operations create the logarithm

of a sum of exponentials:

log(σ(x)) = log

(
1

1+e−x

)
=− log(1+e−x) =− log(e0 +e−x)

This operation is a special case of a function known as the log-sum-exp func-

tion lse(x1, ..., xm) = log
(∑m

i exi
)
. Calculating the gradients for this function is

more numerically stable than calculating it for the original operations sepa-

rately [37].

28 CHAPTER 2. BACKGROUND

2.4.10 Evaluation Metrics

2.4.10.1 F1

In order to assess the quality of trained classifiers, one analyses their predic-

tions in relation to the expected outcome. In the case of classifiers that re-

turn non-crisp predictions within the interval [0,1], we consider a class pre-

diction as positive, if the predicted value is above 0.5. Given a feature-label

pair (x, y) ∈ P and its prediction aθ(x)i for class Ci there are four possible sce-

narios as shown in Table 2.1. Let

nTP,i := |{(x, y) ∈ P |aθ(x)i ≥ 0.5∧ yi = 1}|

be defined as the class-wise number of true positive predictions in P for a class

Ci . We analogously define nTN,i for true negatives, nFP,i for false positives and

nFN,i for false negatives.

aθ(x)i < 0.5 aθ(x)i ≥ 0.5

yi = 0 True negative False positive
yi = 1 False negative True positive

Table 2.1: Possible outcomes given a feature-label pair (x, y) ∈ P and its prediction
aθ(x)i for class Ci with a threshold of 0.5.

Based on these counts, we can define the usual prediction metrics. Precision is

the probability that a given datapoint that a datapoint that has been predicted

as a member of a class indeed belongs to that class:

P (yi = 1|aθ(x)i ≥ 0.5) = nTP,i

nTP,i +nFP,i

and recall is defined the reversed conditional, i.e. that a given datapoint that

is a member of a class is classified as such

P (aθ(x)i ≥ 0.5|yi = 1) = nTP,i

nTP,i +nFN,i
.

These metrics give a good insight into the general predictive quality of a clas-

sifier. However, it is important that both metrics cannot be meaningfully eval-

uated in isolation. A classifier that never predicts any false positives would

result in perfect precision – regardless of how many true positive classifica-

tions there actually are. Likewise, a classifier without false negative prediction

would result in perfect recall. Both metrics must therefore be considered in

2.4. MACHINE LEARNING 29

relation to each other. The F1 score represents such a relation by calculating

the harmonic mean of the precision and the recall, i.e.

F1,macro := 1
m

m∑
i=1

2

P (yi = 1|aθ(x)i ≥ 0.5)−1 +P (aθ(x)i ≥ 0.5|yi = 1)−1

= 1
m

m∑
i=1

2nTP,i

2nTP,i +nFP,i +nFN,i

Note that all of the above metrics for multi-class classification are calculated

class-wise and then averaged, which is called the macro-aggregation of a met-

ric. Further, we will also use the micro-aggregation, which aggregrates true

positives, false positives and false negatives globally before computing the F1-

measure:

F1,micro :=

m∑
i=0

2nTP,i

m∑
i=0

(2nTP,i +nFP,i +nFN,i)

While the micro-aggregation yields a general overview of the predictive perfor-

mance, it does not work as well on an imbalanced dataset. Consider a dataset

that consists of two classes A and B . The dataset consists of 99 instances of A

and only a single instance of B . Now consider a classifier that answers A in all

instances. It would still yield a quite good micro F1-score:

F1,micro = 2 ·99+2 ·0

(2 ·99+1+0)+ (2 ·0+0+1)
= 198

200
= 0.99.

The macro average, on the other hand, calculates these scores for each class

first. Class A reaches a score of almost one (perfect classification), while B has

a score of zero, which is the worst possible F1 score:

F1,macro = 1

2
·
(

2 ·99

2 ·99+1+0
+ 2 ·0

2 ·0+0+1

)
= 1

2

(
198

199
+ 0

1

)
≈ 0.4975.

These calculations show how the micro F1-score favors large classes over

smaller ones. Class A is almost always correctly classified. But for a system

that relies on a correct detection of B , this classifier would not be usable.

Therefore, the micro-F1 aggregation is a good metric for a balanced dataset,

but yields biased results on an unbalanced one.

2.4.10.2 AUC-ROC

For the above definition of the F1-Score, we use a fixed threshold of t = 0.5 for

positive classifications. The choice of this parameter, however, impacts the

evaluation of a given prediction model. A classifier that produces predictions

with a high level of certainty (i.e. close to 0 or 1) is preferable over a predictor

of the same quality which predicts values close to 0.5.

30 CHAPTER 2. BACKGROUND

The receiver operating characteristic (ROC) is the curve that results from plot-

ting the true positive rate TPR = 1
n

m∑
i=1

nTP,i against the false positive rate FPR =
1
n

m∑
i=1

nFP,i for each threshold t ∈ [0,1]. The area under this curve (AUC-ROC)

yields a value in [0,1]. Values close to 1 indicate an almost perfect predic-

tion with high certainty. For a random classifier, predictions and labels are

independent, therefore: P (y = 1∧ aθ(x)i ≥ t) = P (y = 1) · (1− t) and P (y =
0∧aθ(x)i ≥ t) = P (y = 0) ·(1− t). On a balanced dataset, these values are there-

fore equal for all values of t . The ROC curve is then a linear function and the

respective area under the curve is 0.5.

3
Related Work

As already described in Chapter 1, we will focus on two main topics in this

work. Firstly, we deal with the question of how machine learning methods

can be used to extend a given domain ontology. We will evaluate the deep-

learning-based method we have developed using the example of the ChEBI

ontology. For this specific use case, our method can be understood as a kind

of chemical classification. Furthermore, we will demonstrate two ontology-

based methods that can be used to help train machine learning models. Ac-

cordingly, in this chapter, we will first present existing machine learning meth-

ods for automatic ontology development and extension - in short, ontology

learning. We will then discuss methods of structure-based classification of

chemicals in general and then more advanced deep learning methods from

the context of chemistry. Finally, we will highlight existing methods that can

be used to support machine learning methods using semantic technologies.

3.1 Ontology Learning

Ontology development is time and labor-intensive and requires the involve-

ment of domain experts from different communities. The use of artificial in-

telligence to support this process, also known as ontology learning [38, 39, 40,

41, 42], is therefore a natural step. However, in order to replace the involve-

ment of experts, these systems must be able to access a suitable, domain-

relevant source of information. Ontologies often represent scientific domains.

In these, it is common to publish domain knowledge in books, research ar-

ticles or similar. These collections of information can therefore serve as a

source for the required domain knowledge. In order to extract this knowledge,

however, these texts must be processed. An overview article on existing ap-

proaches to ontology learning [41] developed a comprehensive description of

the most commonly used methods. As a first step, standard techniques from

natural language processing are used to extract relevant terms from existing

literature. The resulting collection of terms that occur within the corpus is

31

32 CHAPTER 3. RELATED WORK

often too broad to be useful in ontology development. Statistical measures,

such as C and NC values [43, 44] and contrastive analysis [45], are therefore

used to distinguish terms that are relevant to the specific domain from those

that are not.

But equally as important as domain-relevant terms are the relationships be-

tween them. These relationships can be relationships between individuals of

two classes (e.g. the "part of" relationship between a car and its wheels) or log-

ical axioms between classes such as subsumption (e.g. "Every dog is a mam-

mal") or disjointness (e.g. "No dog is a cat"). Sanderson et al. [46] use the

conditional probabilities P (t1|t2) that a term t1 occurs in a given document

that contains term t2. A concept referred to by a term t1 is considered a sub-

concept of a concept referred to by a term t2 if P (t1|t2) > P (t2|t1) and P (t1|t2)

is larger than a predefined threshold. This method has later been extended to

include multiple terms per concept [47].

Methods of subsumption prediction are often used in automated ontology

extension to match extracted terms with those already present in the ontol-

ogy. Althubaiti et al. [48] use a two-step approach to ontology extension.

The first step aims to detect terms in a text corpus that are related to the do-

main of a given ontology. To do so, the model uses a text corpus as negative

and embeddings of human-readable labels synonyms from the ontology as

positive examples. A machine learning model is then trained on Word2Vec-

embeddings [49] of these words. The second part of the system uses the

“Whatizit” tool to detect ontology terms in text. A model is then trained to

predict whether a given word occurs in similar contexts as classes from the

ontology. These predictions are then used to predict subsumption relations

to existing classes.

Cui et al. [50] use a graph-based approach to identify possibly missing sub-

sumption relations in the SNOMED ontology. They search the graph of the

subsumption relation for non-lattice pairs, i.e. pairs of classes that share at

least two different superclasses that are not in a (inferrable) subclass relation.

The authors argue that these structures indicate the presence of missing sub-

class relationships between either the two classes in the non-lattice pair or

their shared superclasses. Different lexical patterns are then utilized to iden-

tify the missing subsumption relation and fix the ontology accordingly. While

ChEBI contains similar structures, it does not follow as stringent naming con-

ventions as SNOMED. A lexical analysis of labels as done in this work, is there-

fore not as promising. The resulting non-lattice pairs can, however, be used

as a starting point for structure-based analyses.

An approach [51] that, among other kinds of axioms, also allows for the gener-

ation of existential relationships (e.g. “Every car has wheels”) uses an existing

3.1. ONTOLOGY LEARNING 33

set of pre-defined predicates and concepts. These concepts are then matched

with sentences in a text corpus. When two concepts occur in the same sen-

tence and there is a known relation between these two concepts, then the sen-

tence fragment between these classes is associated with this relationship. This

dataset is then used to train several machine learning models for relationship

prediction from text.

Most ontologies used in ontology learning approaches are concerned with the

extension of ontologies that cover a particular domain. More general ontolo-

gies such as BFO [52] or DOLCE [53] are much broader and cover very abstract

concepts with distinctions that are often complex logical or philosophical con-

siderations. Lopes et al. [54] compare eight different deep learning methods

regarding their ability to extend the DOLCE ontology based on a given term

with a textual definition. While still text-based, this approach is much closer

to the way we understand the process of ontology development, because it

is based on the definitions from the ontology it aims to extend. These defi-

nitions reflect the consensus that ontology developers agreed upon and pro-

vides important context in which a concept is to be understood. It is how-

ever arguable, how useful this approach is in practice as it requires a textual

definition not just for ontology classes, but also for concepts that it aims to

extend the ontology with. In practice, there are competing, contradictory def-

initions for concepts external to the ontology. Finding mutually agreed-upon

definitions is often the most time-consuming and labor-intensive part of the

ontology development process.

Notably, all approaches discussed in this section rely on a text-based extrac-

tion of domain knowledge. Ontology development, however, goes beyond the

mere extraction of existing knowledge [55]. Among the most time-consuming

tasks in ontology development is the communication, comparison and align-

ment of different views on the same domain. This consensus is usually not

present when the ontology development process starts and is, consequently,

not represented in literature. A recent analysis [56] has also indicated that

while ChatGPT seems to have some semblance of an upper-level ontology, it

does not align with any of the existing ones (BFO, UFO, DOLCE). The authors

of this study also report that the responses and the derived ontology varied

significantly based on the phrasing of the queries.

A pure extraction of existing knowledge from domain literature will therefore,

in the best case, lead to ambiguously defined concepts that hinder the consis-

tent annotation of data or, in the worst case, lead to an ontology that is logi-

cally inconsistent. The approach we present in this thesis tackles the problem

from a different angle. We aim to extract the existing consensus from an exist-

ing ontology and train a system to adhere to that consensus.

34 CHAPTER 3. RELATED WORK

3.2 Chemical Ontologies and Structure-Based Classifi-
cation of Chemicals

Domain ontologies are - as the name implies - developed to describe a certain

domain. For our study, we will focus on an ontology from the domain of chem-

istry, namely the ChEBI reference ontology, discussed in Section 2.2. ChEBI

has been widely adopted and can be considered the “gold standard” chemical

ontology in the public domain. It is used for informatics applications such as

bioinformatics and systems biology analyses of metabolism, biological data

integration, natural language processing, and as a chemistry component for

semantic web applications (e.g. [57, 58, 59, 60]).

Although chemical classification is typically based on structural features, full

computable structural definitions for classes – which would support the use

case of ontology extension through automated reasoning – are seldom for-

mally captured in chemical ontologies, as the underlying logical formalisms

are not able to encompass the full range of relevant structural features [61,

62, 26]. Thus, chemical ontologies typically only reflect a partial axiomatiza-

tion for the chemical domain. Various extensions to the OWL language have

been explored in order to allow a fuller set of structural features to be exposed

to the computable classification hierarchy, including description graphs [63],

logic programs [64], and non-monotonic existential rules [62].

Nevertheless, these formalisms have not seen widespread adoption, in part

because they are not supported by the wide range of tools that are available for

OWL, and in part, because performance remains a challenge. Thus, they have

not been able to scale to the use case of extending real-world ontologies such

as ChEBI. Moreover, chemists themselves often only have implicit knowledge

(e.g. about which functional groups or structural patterns are most relevant

for a classification) that is hard to make explicit.

The SMILES language has an extension, SMARTS, which allows ambiguities

and patterns in, and logical combinations of, chemical structural elements, to

be represented in a way that allows for the definition of classes of chemicals.

This language has been used to define chemical classes in chemical ontolo-

gies such as OntoChem’s SODIAC [65] and more recently the ClassyFire appli-

cation [25]. At the time of writing, ClassyFire is the state-of-the-art tool for

structure-based chemical ontology classification, in terms of size (9,000 defi-

nition rules, and an associated ontology of 4,825 classes) and adoption, and

is used in the automated extension of the ChEBI ontology. However, as we

discussed in Section 2.3.3, ClassyFire’s scope is limited and the tool itself is

not open. Thus, the tool operates as an algorithmic “black box”, in that the

rules it uses are not semantically accessible, the associated chemical ontology

3.3. MACHINE LEARNING AND DEEP LEARNING APPROACHES 35

still has to be maintained manually, and updating the integrated knowledge

system can only be accomplished by updating the custom software suite.

The expressivity of SMARTS is, also, still limited. In research [66] tangential

to this thesis, we drafted an approach that extends ChEBI with axioms in first-

order logic and used automated reasoning for classification. While first-order

logic is more expressive than SMARTS, it has been shown that it is still not

strong enough to capture important molecular structures, such as connect-

edness [67]. More expressive logics such as monadic-second order logic are

needed [26] but reasoning for these expressive logics is inefficient.

However, the limitations of current formal approaches to describe molecules

pose a significant hurdle to their usability for ontology extension tasks. The

detection of different kinds of features is relevant for the purpose of extend-

ing ChEBI because the ontological distinctions in ChEBI’s taxonomy can be

based on molecular structure, function or the chemical origin of a chemical

entity. An automated tool that aims to extend ChEBI therefore needs to detect

these orthogonal concepts for which formal specifications are often incom-

plete. Machine learning methods have been successfully employed for many

tasks, for which a formal specification is difficult or infeasible. Such methods

are therefore important for an automated extension method of ChEBI.

3.3 Machine Learning and Deep Learning Approaches

Applications of artificial intelligence in the domain of chemistry have been a

heavily researched topic in recent years with a major focus on the prediction

of specific application-centered targets. Maziarka et al. [68] use an adjacency-

based interpretation of the attention mechanism in a transformer-based sys-

tem for classification and regression in order to predict properties like solubil-

ity (FreeSolv [69], ESOL [70]), the ability to penetrate the blood-brain barrier

(BBBP [71]), activity towards estrogens, and metabolic stability (MetStab [72]).

Another transformer-based approach [73] uses an auto-encoder to build a la-

tent space that is then used to train Gaussian process and support vector re-

gression models in order to predict the boiling point of organic fluids. Deep

learning has been used in chemistry in various ways, e.g. for protein struc-

ture prediction, drug design, property prediction and even synthesis plan-

ning [74, 75]. The DeepChem library [76] is an open-source machine learning

framework that has gained widespread adoption in the life science commu-

nity as it offers a variety of tools and algorithms to facilitate chemical prop-

erty analysis. MoleculeNet [77], which serves as a benchmark and curated

dataset collection for molecular machine learning, is also released as a part of

the DeepChem library.

36 CHAPTER 3. RELATED WORK

Deep learning has also been used for the classification of molecules in chem-

ical ontologies (which in turn can be used for ontology extension). In [78], a

back-propagating artificial neural network is applied to classify natural prod-

ucts, that is, secondary metabolites largely of plant origin. Named NPClassi-

fier, it is trained on a dataset of around 73,000 natural products sourced from

public databases including PubChem, ChEBI, and the Universal Natural Prod-

ucts Database. The hierarchy into which these molecules were organized con-

sisted of three hierarchical levels: 7 Pathways, 70 Superclasses, and 653 Classes.

Rather than training a single model for the full prediction task, they used three

single-task models – one model for each of the classification hierarchical lev-

els. They report promising performance in a direct comparison to ClassyFire

for a selection of classes. However, the restriction to only natural products (a

subset of organic molecules) and to only three hierarchical levels addresses

an artificially simpler task than the general problem of classification in chemi-

cal ontologies, where classes can be arranged in a hierarchy of arbitrary depth

and reflect a wider chemical diversity.

In [79], machine learning was used to predict class membership directly from

mass spectrometry features in an untargeted metabolomics study. This is an

important use case, as in untargeted metabolomics there are often many fea-

tures that relate to ‘unknown’ molecular entities and thus are not mapped to

defined molecular entities about which metabolic information is known, how-

ever, they may nevertheless share detectable chemical classes. In this effort,

the chemical fingerprint was used as an intermediary structural representa-

tion for learning purposes: support vector machines were used to predict

chemical fingerprints from mass spectrometry features, and a deep neural

network was then used to predict class membership from the resulting fin-

gerprints. However, their system predicts class membership only for a subset

of the classes belonging to the chemical ontology underlying ClassyFire and

moreover does not attempt to extend the ontology itself.

A particular focus of deep learning approaches lies in the prediction of prop-

erties that are hard or expensive to test, like toxicity [80, 81], have been in

focus of these approaches. The Tox21 challenge and the datasets that have

been derived from it have been a benchmark for the evaluation of many ma-

chine learning systems. The “Toxicology in the 21st Century” (Tox21) program

hosted a competition [82] in 2014 on the challenging task of toxicity predic-

tion, in which 40 different approaches participated. The winner of this chal-

lenge [83] is based on a deep feed-forward network with up to four layers in an

ensemble with support vector machines, random forests and a variant of a lin-

ear regression classifier. Their system pre-calculates a significant number of

features, including the absence or presence of “2500 predefined toxicophore

features, i.e., patterns of substructures previously reported as toxicophores in

3.3. MACHINE LEARNING AND DEEP LEARNING APPROACHES 37

the literature” [83]. They also note that extensive cleaning was necessary be-

fore using the original training set. The inputs of the system were often “mix-

tures of substances” instead of individual molecules. These structures may

be salts or other structures that were loosely connected via ion bonds, but

not covalent bonds. The authors split these into their connected components

and considered them as individual substances, whose predictions were then

merged via a mediation process. Further data augmentation techniques were

applied to counteract the limited size of the Tox21 dataset. This need for data

augmentation has been a common theme throughout the successful partici-

pants of the Tox21 data challenge. Since then, a new, cleaned version of the

Tox21 dataset has been published as part of the MoleculeNet [77] data collec-

tion. We will use both Tox21 datasets in a later evaluation.

One approach that used ontologies for toxicity prediction [84] for proteins, is

based on the Gene Ontology (GO). Here, the ontology is used to generate fea-

ture vectors as input for a deep neural network in order to predict a more gen-

eral notion of toxicity than the one used in this work. Proteins are extracted

from a GO-annotated database with their respective annotations. These an-

notations are then used to construct a binary vector for each protein that rep-

resents the presence or absence of a particular annotation.

The embedding of definitions can be used to understand concepts [54]. There

are also more general approaches to embedding natural language in high-

dimensional spaces. Word2Vec uses either a continuous-bag-of-words or

skip-gram methods to achieve such embeddings. It was shown that important

semantic relations are preserved in the spatial relations of the embeddings,

even if they were not explicitly present in the training data. The question of

whether such embeddings can also be considered for ontology terms was pur-

sued further by Onto2Vec [85]. Axioms are represented as syntactic sentences

and the ontology is a text consisting of several sentences. These embeddings

of classes are then used to embed a given new instance as the sum of all its

associated class embeddings. Based on a similarity measure on instances, a

system could then be developed that predicts protein-protein interactions

with a quality that is only slightly inferior to that of humans. In its extension

OPA2vec [86], this approach is extended to also include text-based annota-

tions. While based on ontological knowledge, this approach cannot be easily

applied to ontology extension. Onto2Vec and OPA2Vec require existing onto-

logical annotations and axioms to generate a prediction for a given entity. In

this work we seek a system that can generate these axioms. However, there is a

potential synergy between the two systems in that a combination of both can

be used to predict the properties of new proteins, which is worthy of further

investigation in future work.

38 CHAPTER 3. RELATED WORK

3.4 Training with Semantic Support

Researchers are also increasingly interested in semantic validations in the

wake of growing concerns about the logical inconsistencies in responses from

systems like ChatGPT but the principles of combining machine learning and

semantic methods are not new. “Knowledge-Based Artificial Neural Networks”

(KBANN, [87]) attempted to directly represent formulae in propositional logic

within the network structure. During training, the system is able to adapt

these structures to better fit the training data. This allows the priming of a

learning system with prior knowledge.

The training process of neural networks is usually based on a form of gradi-

ent descent. Consequently, in order to allow answers as truth values {0,1},

one must allow arbitrary predictions from [0,1] in order to retain differentabil-

ity. This naturally leads to an interpretation of these values as values from

a many-valued logic such as fuzzy logic or probabilistic logic. Indeed, there

have been many approaches that aim to combine fuzzy systems and neural

networks [88, 89]. These systems are particularly useful when training data is

limited. In a recent work [90, 91], we applied an ontology-based neuro-fuzzy

controller. The approach in this section was inspired by this work, in which

we also applied a semantic penalty system to ensure logically sound rules.

DeepProbLog [92] is based on a probabilistic interpretation of these predic-

tion values. This approach is based on the probabilistic logic programming

framework ProbLog [93]. ProbLog allows the expression of Prolog-like infer-

ence rules with additional uncertainty annotations, e.g. 0.3::P(X) :- Q(X), R(X).

The formulation of these rules, however, requires extensive expert knowledge

or data in order to derive the appropriate annotations. DeepProbLog extends

this framework by allowing these uncertainty annotations to be derived from

a neural network. DeepProbLog relies on a model counting approach in order

to derive the probability for a given atom.

Logic Tensor Networks [94] follow a similar approach to DeepProbLog. Here

too, predicate interpretations are represented by neural network operations.

However, Logic Tensor Networks do not use probabilistic semantics here, but

fuzzy semantics. A grounding function G interprets constants as vectors in

an n-dimensional space and predicates as tensors. In their original version,

a sentence P (a,b) is then assigned a fuzzy truth value based on the tensor

product with a concatenation of the grounded terms G(a) and G(b). In a more

recent publication [95], this approach is extended to allow for arbitrary rep-

resentations of predicates as operators that can be manually defined or be

represented by arbitrary trainable neural networks.

3.4. TRAINING WITH SEMANTIC SUPPORT 39

Neural networks are, in particular during training, prone to make mistakes

that may result in logically inconsistent predictions. An image recognition

system may, for example, classify the same picture as a cat and a dog. In com-

bination with logic approaches, these mistakes may cause severe side effects

or other systems that expect consistent input [96]. In most classical logics,

once an inconsistency has been derived, any statement can be inferred. This

strong effect of inconsistencies is not desirable in applications that must al-

low for some level of inconsistency - in particular, if human input is used. If

a person makes an inconsistent statement in their tax form, a possible neuro-

symbolic tax system should not be able to infer that Elvis is the king of Sweden

or other arbitrary facts from that - the inconsistency should be kept local. Log-

ical Neural Networks [97] allow for some local inconsistencies in their reason-

ing process. This kind of network is designed to directly represent the struc-

ture of a logical theory with upper and lower bounds instead of truth values.

During inference, these systems also use a semantic penalty term that trains

the system to avoid logical inconsistencies.

For the problem of protein function prediction exist several approaches that

use the Gene Ontology [4]. The DeepGO approach [98] uses a combination of

convolutional networks and knowledge graph embeddings that are combined

into a hierarchical classifier to predict protein functions from the Swiss-Prot

knowledge base [99]. This approach is an excellent example of how an ontol-

ogy can be incorporated into the learning process. Here, the rich knowledge

base of the ontology is used to additionally ensure the consistency of the target

labels. This is done by using a special ontology-based output layer. DeepGO

was later extended in scope and architecture to the DeepGOPlus [100] model.

Herein, the convolution network has been changed to a more compact version

with multiple filters and the model uses a flat output representation instead

of the hierarchical classification layer. The semantic structure of the Gene

Ontology then returns to the focus in the follow-up work DeepGOZero [101].

Despite the similar name, this approach is not based on convolutional net-

works but instead represents GO classes that represent protein functions as

n-dimensional balls and relations as vectors using ELEmbeddings [102] and a

lightweight two-layer multi-layer perceptron as input embeddings that repre-

sent proteins as n-dimensional points. Whether a protein has a certain func-

tion is then determined by its containment in the ball that represents that

class after being shifted along the vector that represents the has function rela-

tion. This allows predictions for classes that have not been seen by the model

before and can therefore be used for zero-shot learning.

The starting point for this work is as follows: Effective ontology development

requires suitable tool support. While the ChEBI ontology already uses a tool

for development in the form of ClassyFire, this is not customized to ChEBI and

40 CHAPTER 3. RELATED WORK

not actively developed. Formal methods are theoretically suitable for repre-

senting at least the structure-based necessary classification criteria, but com-

plex, logical formalisms are required that are not yet widely established in the

domain and for which there is only limited tool support. Another problem

with purely formal approaches is the need for manual extension.

Therefore, in this work, we want to take a closer look at the methods of au-

tomatic ontology extension. Approaches based on machine learning already

exist. However, these are based on domain literature, which often shows am-

biguities and inconsistencies. An analysis of large language models also indi-

cates that these inaccuracies are transferred to the models [56]. Instead, we

look for methods that utilize the existing structure of the ontology to find a

predictive model for possible extensions. To our knowledge, no such system

exists yet.

Furthermore, ontologies are an excellent source for learning domain knowl-

edge. It is easy to see that using this knowledge for learning tasks is beneficial.

In particular, we have already discussed methods from the field of protein

functions that successfully apply ontology-based knowledge. The question

therefore arises as to whether a model that has understood the consensus cri-

teria of an ontology can also use this knowledge for further tasks and whether

the ontology can be used in other, more direct ways.

4
Ontology Extension

In Section 2.2, we discussed the current state of the ChEBI ontology. The dif-

ference in speed between the pace with which ChEBI and PubChem are ex-

tended highlights that ontology development needs to be supported by fully

automated or semi-automated methods. One of the significant challenges

for automated ontology extension approaches is the need for precise domain

knowledge in order to determine the necessary distinctions that need to be

made to add a new concept to an existing ontology. Most approaches to ontol-

ogy extension rely on domain literature to deliver this important knowledge.

One of the core purposes of an ontology is however to properly define the

key distinctions for its target domain. Different literature sources from a do-

main that has not yet adopted a shared conceptualization are therefore prone

to contain inconsistent nomenclatures and definitions that even domain ex-

perts may not be aware of [55]. Using these sources as a basis for automated

ontology extension will transfer these inconsistencies to the ontology.

To address this, we propose a system that requires no external resources and

is built based only on information that is contained within the ontology. This

requires that the ontology adheres to a set of specific constraints. Recalling

the ontology definition from [16], an ontology consists of three parts: A vo-

cabulary, its annotations and a logical theory. In order to appropriately ex-

tend an existing ontology, the system needs to learn the intended meaning of

classes that already exist. We discussed earlier that a vocabulary that is tai-

lored to one of these subcommunities will not match the usage by others. A

vocabulary on its own is therefore not an appropriate source to understand

the intended meaning of an ontology. Logical axioms are better suited to cap-

ture the semantics of concepts. The logical theories underpinning ontologies

are often too weakly axiomatized to fully capture the intended meaning of all

classes. "A dog is a mammal" does not provide any insights into what dogs

or mammals are. Whilst there are efforts to build ontologies based on more

expressive logics such as the first-order axiomatization for BFO, most ontolo-

gies are comprised of little more than simple subsumption and disjointness

41

42 CHAPTER 4. ONTOLOGY EXTENSION

axioms. Complex formalizations also often limit the readability of an ontol-

ogy due to the inherent complexity of expressive formal logic languages. The

best link between ontology concepts and their intended meaning lies in anno-

tations. For most ontologies, these consist of natural language definitions for

all classes. However, this requires a system that is able to understand defini-

tions. In order to derive the intended meaning of a class from its natural lan-

guage definitions, it needs to understand the intended meaning of all words

that are used therein. Ontologies often use so-called Aristotelian definitions,

in which a concept is defined in relation to the closest concept by which it is

subsumed. "A dog is a mammal that has a tail, teeth and that barks" defines

the concept of "dog" in relation to its superclass "mammal" and also other

concepts such as "tail", "teeth" and "bark". A system that is built to derive the

meaning of "dog" purely from its textual definition would require it to already

know the meaning of "mammal". This could either be derived from literature

with all the disadvantages that we discussed earlier. Alternatively, the mean-

ing of missing terms could be derived from the definitions annotated within

the ontology. This results in a recursive cycle until there are either classes that

have no definitions or there are dependencies between definitions that are

circular.

Ontology

Training Data (4.1)

Sampling

Input Encoding (4.2)

M
o

le
cu

le
E

m
b

ed
-

d
in

g
an

d
E

n
co

d
in

g

Prediction Model (4.3)

M
o

le
cu

le

C
la

ss
ifi

ca
ti

o
n

Predicted Subsumptions

Figure 4.1: Schematic depiction system proposed in this work. The modules are
annotated with those sections that describe them.

In this work, we aim to overcome these problems by utilizing additional struc-

tural annotations. We define structural annotations as any additional anno-

tation that is machine-readable and characterizes instances of this particular

4.1. DATA PREPARATION 43

class. These machine-readable annotations give more detailed insights into

the intended meaning of a class. Examples of these structural annotations are

the SMILES annotations we discussed in Section 2.3.1. If a ChEBI class is an-

notated with a SMILES string, all instances of this class are required to adhere

to this structure and all SMILES annotations of subclasses are refinements of

this SMILES string.

In this chapter, we present a system that uses structural annotations in order

to predict new subsumption relations for a given ontology. Figure 4.1 depicts a

schematic representation of the proposed model. In the following chapter, we

will present the different modules of this architecture in the sections denoted

in the figure.

This thesis is the result of joint research work with my collaborators. However,

the resulting methods and results are only really meaningful in their entirety

and to limit the analysis to those results would obscure important context.

Nevertheless, in order to make my contribution to the work transparent, I will

insert a box labeled "My contributions" at the beginning of each relevant sec-

tion. In these, I will explain what work the reported results are based on and

what part of the work I have done.

4.1 Data preparation

My contributions

The following section summarizes the datasets used for our ontology

extension task [103, 104, 105, 106]. My contribution was the construc-

tion of all multi-label and pre-training datasets, with the exception of

Pubtox and the ChEBI709
v148 datasets. The inclusion of these datasets

into the ChEB-AI framework, however, was also done by me.

All datasets in this chapter are derived from the ChEBI ontology, which is pub-

licly available. In particular, we use version 200 of the ChEBI ontology. In

order to prepare the ChEBI ontology for the learning tasks, we downloaded

and parsed the OBO format export of ChEBI’s ontology. We use only the hier-

archical (is a) relationships from the ontology for this work.

As we discussed in Section 2.2, ChEBI’s classes define sets of individuals, even

if their respective SMILES annotation is fully specified. There are however

classes that allow for heterogenous structures within their instances and those

that only cover homogenous structures. For the purpose of the data aggrega-

tion, therefore, introduce the distinction between partially specified classes,

which we define as those classes within ChEBI that subsume multiple struc-

44 CHAPTER 4. ONTOLOGY EXTENSION

turally annotated members, fully specified classes, which we define as those

classes in ChEBI that are associated with a fully-defined molecular structure,

indicated by the presence of an associated SMILES annotation that does not

contain wild-cards.

The number of classes within the full ChEBI ontology, their unbalanced sizes,

and the problem of multiple inheritance at every level make it challenging to

train some classifiers on the whole ontology, in particular simple classifiers

that predict just one class for a given chemical structure as input. Other, more

modern approaches do however tend to benefit from larger datasets. We thus

implemented several different data selection schemes to compare different

approaches.

4.1.1 A Balanced Approach

Traditional classification methods assume a more or less homogenous distri-

bution of members for each class. In order to support approaches that benefit

from balanced data, we developed a dedicated selection strategy that does

not use the full ChEBI ontology but rather chooses classes, and sub-samples

randomly from their members, such that the result is balanced (i.e. all class

having a similar number of members). We restrict the sampling of classes to

those that are classified beneath the ‘molecular entity’ root of ChEBI, as this

is where the bulk of the leaf members with defined molecular structures are

found.

Alongside the need to prepare a balanced dataset in terms of the number

of members per class, it is also important that the members with structures

are selected so that individual members are not duplicated across multiple

classes, in order to enable the clean separation of the dataset into training,

test and validation sets. In practice however, the ontology contains a large per-

centage of overlapping members between classes, since the ontology classes

higher up in the hierarchy describe general chemical features that in many

cases can be compositionally combined in classes lower down in the hierar-

chy [61], as illustrated in Figure 4.2. To mitigate this challenge, the selection

process only sampled each leaf member structure once, assigning it as a mem-

ber of the training data for just one class, even though in the actual underlying

ontology that molecule in fact belongs to multiple classes. This is an artifi-

cial restriction for the purpose of the learning task: we sub-sample the leaf

members with molecular structures for each class such that no leaf member

with structure is selected for more than one class. Therefore, each molecule in

this dataset is assigned exactly one class and, thus, the learning tasks on this

dataset are multi-class learning problems.

4.1. DATA PREPARATION 45

Fi
gu

re
4.

2:
C

la
ss

h
ie

ra
rc

h
y

fo
r

th
e

m
ol

ec
u

le
L-

al
an

in
e

(C
H

E
B

I:
16

97
7)

w
it

h
m

an
y

b
ra

n
ch

in
g

an
d

p
ar

ti
al

ly
ov

er
la

p
p

in
g

an
ce

st
or

.A
rr

ow
s

in
d

ic
at

e
th

at
th

e
cl

as
s

at
th

e
so

u
rc

e
is

a
su

b
cl

as
s

o
ft

h
e

cl
as

s
at

th
e

ta
rg

et
.

46 CHAPTER 4. ONTOLOGY EXTENSION

Sub-sampling members for classes such that no classes have any shared mem-

bers is likely to introduce a bias. We designed the selection in a way that will

have the least impact by minimizing the discrepancy from the actual ontol-

ogy structure. The classes were first sorted from the smallest to the largest

(in terms of the number of leaf members with structural annotations) to pri-

oritize classes with fewer members over classes with more members. This re-

duces the amount of sub-sampling required. Following this strategy, we iter-

atively selected sets of N classes with M randomly sampled member struc-

tures, where N and M were specified dynamically, to be able to evaluate per-

formance across a range of different problem sizes. A dataset containing N

classes of which each has M members will be denoted as N×M . No additional

chemical prioritization strategy (e.g. to ensure chemical diversity in selected

members) was used in the selection.

4.1.2 Lifting Data Limitations

The formulation of the classification of chemicals as a multi-class problem

does not appropriately represent the way ontologies are structured. Due to

the subsumption relation between classes, a class that is not a direct subclass

of chemical entity (CHEBI:24431) has at least inferable superclasses. There-

fore, we aimed to lift this restriction for all the following datasets and turn

the problem into a multi-label classification task. Herein, a label is positive, if

and only if it represents a superclass of a given molecule. We derived multiple

datasets as depicted in Figure 4.3. All multi-label datasets follow the naming

scheme ChEBI[number of labels]
[ChEBIversion used]. The first is a multi-label-version of the dataset

500 × 100, which retains the same 500 classes but assigns instances in the

dataset to all classes of which they are a member according to ChEBI. In the

following, we will also call this the ChEBI500∗
v200 dataset. The star indicates that

due to the previous selection process, contrary to all of the following datasets,

this dataset does not contain all possible members that are in ChEBI.

The balanced data extraction has specifically been designed for those meth-

ods that are vulnerable to differences in representation for different classes.

Yet, this approach also limits the amount of data that is available during train-

ing. In order to analyze the impact of this limitation, we created a second

dataset including the same classes as in the previous dataset, but for each

class including all possible molecules that belong to this class in ChEBI, i.e.

without sub-sampling only 100 members for the selected classes. The result-

ing ChEBI500
v200 dataset shows greater levels of imbalance and overlap but fea-

tures almost twice as many training instances. By using both datasets, we are

able to contrast the detrimental effect of imbalances vs. the positive effect of

4.1. DATA PREPARATION 47

ChEBI

Pubchem

Merge sibling classes
until 100 annotated
subclasses reached

Collect all classes
with at least X

annotated subclasses

Select 100,000 random
instances

Select 100,000 instances
of toxic chemicals

Sample all annotated
instances

Finish once more
than 100 members

Include all members
of each selected class

Merge

X = 100

X = 50

ChEBI500∗
v200

ChEBI500
v200

ChEBI854
v200

ChEBI709
v148

ChEBI1332
v200

Pubtox

Mol-Pretrain

for fine-tuning

for evaluation

for pre-training

Figure 4.3: Processes used to derive the multi-label datasets from ChEBI and Pub-
chem. The dotted boxes group datasets w.r.t their usage in the ontology extension
task. ChEBI854

v200 and ChEBI709
v148 are derived from the same process, but from different

versions of ChEBI.

48 CHAPTER 4. ONTOLOGY EXTENSION

increasing the dataset size for learning. Figure 4.4 depicts the differences in

member distribution and the increased imbalance between these datasets.

Figure 4.4: Distribution of class sizes on the ChEBI500∗
v200 and ChEBI500

v200 dataset.

While the focus of the ChEBI500
v200 dataset was to analyze the impact of a larger,

more imbalanced dataset on the same classes as the ChEBI500∗
v200 dataset, we

also wanted to investigate the performance on a larger fragment of ChEBI.

The limitation on those classes represented in ChEBI500∗
v200 and ChEBI500

v200 puts

a larger focus on those classes that are further down in the hierarchy. The

ChEBI854
v200 dataset contains all classes in ChEBI that have at least 100 anno-

tated subclasses the resulting dataset raised the number of classes to 854. We

also created a version of this dataset with a lowered threshold of 50 resulting

in the ChEBI1332
v200 dataset with 1,332 classes.

The ChEBI709
v148 dataset has been constructed in the same way as the ChEBI854

v200

dataset but the generation was based on ChEBI version 148, instead of ver-

sion 200. This version contained only 709 classes with 100 members. It was

ensured that the test sets contain the same instances, so far possible, by dis-

carding all SMILES-annotated classes that are present in the ChEBI854
v200 test

set before creating a train-validation split for ChEBI709
v148. Therefore, this test

set can be used both for models trained on ChEBI854
v200 and for models trained

on ChEBI709
v148. For the evaluation of models trained on the ChEBI709

v148 dataset,

only the labels of the test set have been changed to the 709 labels present in

ChEBI709
v148. Notably, only 701 classes can be found in both ChEBI709

v148 and

ChEBI854
v200. This discrepancy stems from the ongoing development that re-

moved some classes from the ontology.

4.2. INPUT ENCODINGS 49

4.1.3 Going Beyond ChEBI

The great advantage of ChEBI is its rich semantic foundation, which, however,

can only be guaranteed with a considerable amount of work. However, this

structure is not necessary for certain learning tasks that are not based on au-

tomatic ontology-based classification. Therefore, we also generate a data set

that is composed of PubChem’s much larger, unstructured pool of chemical

compounds. Whilst PubChem has a much larger variety of different chemi-

cals, molecules are not necessarily associated with their chemical classes in

ChEBI.

We want to test our method of ontology extension with a dataset of chemi-

cals not yet present in ChEBI that is based on a plausible real-world use case.

We selected all chemicals from PubChem that have a hazard class annotation

(n=152,205, as of October 2021). These can be assumed to be biologically rel-

evant and well within the target scope for ChEBI, but as a group are not yet

well represented in ChEBI. We then excluded any that were already present in

ChEBI, which reduced the overall number to 140,913. The resulting Pubtox

dataset serves as an exemplar of a set of molecules that would typically form

the use case for ontology extension.

This unlabelled dataset can also be used in learning tasks that do not require

present labels, such as pre-training. To further extend the variety, we also ran-

domly sampled 100,000 molecules from the broader PubChem database and

merged the result with the previously discussed "hazardous" dataset and all

molecules from the ChEBI ontology. The resulting Mol-Pretrain dataset has

been used to pre-train all Electra-based models.

4.2 Input Encodings

My contributions

The following section summarizes methods used to process the anno-

tated SMILES strings into data formats that are useable by different

methods based on collaborative work [103, 104, 105, 106]. My contri-

bution was the conceptualization and implementation of the Char and

Chem tokenizers.

The data sets presented above are all based on SMILES representations. How-

ever, these cannot be processed directly by all of the approaches that we want

to discuss in this work. Therefore, in this section, we would like to present var-

ious methods with which these SMILES representations can be preprocessed.

50 CHAPTER 4. ONTOLOGY EXTENSION

4.2.1 Fingerprints

In Section 2.3.2 we introduced the notion of chemical fingerprints for mole-

cules. For each structure, we calculated such a fingerprint using the RDKit [24]

software library’s RDKFingerprint, represented as a bit string with a size of

1024 bits. For the maximal neighborhood depth, we used the default value of

k = 7.

4.2.2 Tokenization

For learning systems that require fixed-length inputs, as do many of the classi-

fiers that we tested, fingerprints are a feature-rich input encoding that has reg-

ularly been used. However, encoding structural features via fingerprints may

lose crucial information concerning the actual arrangement of these features.

Certain kinds of artificial neural networks, such as transformers, are able to

process variable-length inputs. SMILES can be regarded as a language with

atoms and their bonds as the alphabet. In connection with the learning ob-

jectives for our classification problem, language models have shown to have

the potential to be applicable for chemical classification [107]. Thus, we also

explored using the full SMILES representation. Similar encoding approaches

have been successfully employed in analyses of natural language [108].

We have also used this simplest tokenization method for the SMILES strings

in this work. But even in natural language, letters are not very helpful on their

own. Certain word fragments often have similar functions. In English, for ex-

ample, the prefix "un-" negates adjectives before which it appears. Accord-

ingly, linguistically meaningful or frequently occurring fragments are often

combined during tokenization. Similarly, do Hydrogen (H) and Helium (He)

or Phosphorus (P) and Lead (Pb) have very different properties despite their

overlapping syntactic elements. Therefore, it may be beneficial to remove the

burden of learning these differences from the dataset by using an encoding

that is based on fragments of the SMILES string.

C C 1 (B r) C (S c 2 c c c c c 2 [N +] · · ·
(a) Tokenisation without atom grouping

CC 1 (Br) C (Sc 2 ccccc 2 [N +]([O -])= O · · ·
(b) Tokenisation with atom grouping (BPE)

C C 1 (Br) C (S c 2 c c c c c 2 [N+] ([O-] O · · ·
(c) Tokenisation with atom grouping (Chem)

Figure 4.5: Comparison of tokenizations for a fragment of the SMILES strings of
BNPS-skatole (CHEBI:85968)

4.2. INPUT ENCODINGS 51

Sub-word tokenization strategies, such as Byte Pair Encoding (BPE), break a

text sequence into sub-words that can then be recombined to generate em-

beddings for previously unseen words. The BPE algorithm begins by count-

ing the number of times each character pair appears in the dataset. After

each iteration, the most frequently occurring pairings are merged and added

to the vocabulary. For the next iteration, the two characters in each pairing

are combined and considered as a single unit. The performed merge opera-

tions are stored and used when the tokenization algorithm is confronted with

an unknown token. So, by considering the possible merges for the character

pairs in an unknown token, this unknown token can be broken into smaller

known tokens. As previously discussed, this approach makes sense when pro-

cessing natural language, as it is compositional in nature [109] and similar

word components tend to have similar meanings. However, this can only be

transferred to the context of chemistry to a limited extent. Since the BPE to-

kenizer is based on subword frequency, it does not respect the intended se-

mantics of the chemical abbreviations. The token vocabulary frequently con-

tained SMILES-specific reference characters that capture branches, cycles or

molecule charges resulting in chemically infeasible tokens. Figure 4.5 exem-

plifies the tokenization of a SMILES string the tokenizers used in this work.

It can be seen that the BPE tokenizer merges a charge indicator ("-") and an

adjacent double bound into a single token ("-])="). The BPE technique does

also not allow deeper insights into the influence that some singular atoms had

on the model’s predictions. Thus, given a token OCB it would not be possible

to ascertain whether the model based its prediction on Oxygen, Carbon, Bar-

ium or a combination of those. It is also possible that the probability-based

merging of tokens conflates tokens that should not necessarily be merged into

one. Figure 4.5b shows how the contained sulfur atom (S) has been merged

with the adjacent carbon atom (c) into a token that one would expect to rep-

resent scandium (Sc). This limits the interpretability of token-based analysis

approaches.

Therefore, we developed a third tokenizer that parses the SMILES string ac-

cording to its concrete syntax and uses the resulting syntactic categories as

tokens. This means that tokens consist of single atoms including their respec-

tive charges and isotopes (e.g. "[Br]", "B", "[Fe2+]"), bonds (e.g. "-", "=") and

ring and branch references. However, the current encoding has no special

handling for different charges of the same element, i.e. "[Fe2+]" and "[Fe3+]"

are embedded independently. Figure 4.5c shows an example using the result-

ing Chem-tokenizer.

52 CHAPTER 4. ONTOLOGY EXTENSION

4.3 Prediction Model

My contributions

The following section summarizes the different models used for the on-

tology extension task based on collaborative work [103, 104, 105, 106].

My contribution was the implementation and training of the LSTM

and Electra-models as well as the implementation of the ChEB-AI

framework.

In the previous sections, we have presented the individual building blocks that

are necessary for understanding this work. Now we want to show how these

are put together to form an overall system. To this end, we will further refine

the system described in Figure 4.1 and explain how we combine the encodings

described in Section 4.2 with the architectures introduced in Section 2.4 to

ultimately predict subclass relations for an ontology.

4.3.1 Traditional Approaches

Out of the classification algorithms that we presented in Sections 2.4, seven

require input lengths of a fixed size, namely Logistic Regression, k-Nearest

Neighbor, Decision Trees, Ransom Forests, Naive Bayes, Linear Discriminant

Analysis and Support Vector Machines. This poses a challenge for applications

in chemistry, as molecules occur in a variety of different sizes. Accordingly, the

SMILES annotations on the ChEBI classes also have different lengths and can-

not be used as input for these models without further processing. So we use

the topological fingerprints presented in Section 2.3.2 to convert the SMILES

strings into fixed-size inputs. All these methods were used as implemented

in the scikit-learn library [110] and their performance has been evaluated on

the multi-class problem that is represented by the balanced N × M-datasets

described in Section 4.1.1.

Logistic Regression Logistic regression, at its core a binary classification algo-

rithm. In order to apply it to a multi-class problem, we use the One-VS-Rest-

methodology. This method also allows for a separate weighting of classes to

address possible imbalances. This balancing is however not necessary for the

dataset used in this category, because all classes are by design balanced. We

used the liblinear solver as an optimizer and L2-Regularization to counteract

overfitting.

4.3. PREDICTION MODEL 53

Support Vector Machine In this work, we used Support Vector Machines with

three different kernels. The first, linear kernel K (xi , x) = 〈xi , x〉 aims to sep-

arate the problem space using a linear plane – similar to linear regression –

but adds additional penalties for points that are too close to the line of separa-

tion. This results in a more robust classification. The second, sigmoid kernel

K (xi , x) = tanh(〈xi , x〉) reshapes the problem space with respect to a sigmoid

function (e.g. tanh). This makes points on the high end of the function more

easily separable from the ones on the low side. And finally, the radial basis ker-

nel K (xi , x j) = e−‖xi−x‖2
reshapes the problem space according to a Gaussian

distribution around similar points in the feature set. All three Support Vector

Machines have been trained with L2-Regularization.

k-Nearest Neighbor We used the standard Euclidean distance to determine

neighborhoods of size five. Notably, because the feature space for the topo-

logical fingerprints used is binary, this metric is equal to the square root of the

hamming distance of the topological fingerprints. For a given data point, the

classification has been derived by an unweighted majority vote, i.e. that class

that was represented in most of the members of the point’s 5-neighborhood,

was picked as the predicted class. In case of a tie, the class with the smaller

index is assigned.

Decision Trees/Random Forests We used the Gini impurity as a decision crite-

rion to pick the best splitting points among all available features. As with logis-

tic regression, we did not employ any weighting scheme for different classes.

These trees were used as single predictors or in a random forest, i.e. as an

ensemble of 100 decision trees. Individual trees in this ensemble were only

trained on a subset which size equaled the square root of the size of the total

training set.

Naive Bayes/Linear discriminant analysis For Naive Bayes and Linear Discrim-

inant Analysis, we used a Gaussian distribution. Additionally, the LDA is com-

bined with a Singular Value Decomposition to reduce the number of dimen-

sions to the number of available classes minus one.

4.3.2 Sequence-based models

The sequence-based models in this work used the SMILES annotation from

ChEBI as input. We used the tokenization approaches described in Section 4.2.

Figure 4.6 illustrates the way we apply the LSTM model to a given tokenization.

Each token is embedded into a real vector. The LSTM consumes each of these

embeddings in sequence and adapts its internal activation and memory state.

54 CHAPTER 4. ONTOLOGY EXTENSION

The output of the last cell is then passed through a dense layer with a trailing

dropout to prevent overfitting. The results are passed to a dense layer with a

sigmoid activation function. The result is a vector of values between 0 and 1,

representing predictions of this model.

Token 1 Token 2 Token 3 · · · Token m

Embedding Embedding Embedding Embedding

LSTM
(n=300)

LSTM
(n=300)

LSTM
(n=300)

LSTM
(n=300)

Dense (n=1000, relu)

Dropout (p=0.2)

Dense (n=100, sigmoid)

Figure 4.6: Depiction of a one-directional LSTM. The values of n denote the output
dimension of the respective layer.

For the Electra model, we use a similar setup based on the hyperparameters

depicted in Table 4.1. The input is altered to include a special [CLS] token

that represents the start of this sequence and whose activation at the end will

be used as the output of the transformer model. Followed by an output unit

that consists of two linear layers.

Parameter Setting

Number of attention heads 8
Number of hidden layers 6
Neurons in hidden layer 256
Dropout for attention probabilities 0.1
Activation function in the encoder gelu
Number of epochs in pre-training 100
Number of epochs in fine-tuning 100
Loss function for pre-training BCEWithLogits
Loss function for fine-tuning BCEWithLogits
Optimizer Adam

Table 4.1: (Hyper-)Parameters of the Electra model.

4.4. EVALUATION 55

Both models were implemented based on the pytorch library1. The Electra-

based model was implemented as part of the ChEB-AI framework2 that was

developed in order to simplify AI-based methods around the ChEBI ontology.

The BCEWithLogits-loss is the binary cross-entropy variant using the log-sum-

exp-trick discussed in 2.4.9.

4.4 Evaluation

4.4.1 Evaluation of the Traditional Methods and LSTM

My contributions

The following section summarizes the results from our collaboration

published in [103]. My contributions to this work were the conceptual-

ization, implementation, training and evaluation of the LSTM-based

model and production of the respective results, excluding the class-

wise evaluation in Section 4.4.1.3. I also authored the related journal

article [103].

We will first focus on the results of the more traditional approaches, namely

Logistic Regression, k-Nearest Neighbor, Decision Trees, Ransom Forests,

Naive Bayes, Linear Discriminant Analysis and Support Vector Machines.

These methods have been trained on the balanced, multi-class M×N -datasets

described in Section 4.1.1. It should, however, be noted that not all of these

approaches follow the same mechanisms. The Logistic Regression, for exam-

ple, uses the one-VS-rest method that trains one classifier for each class, while

others aim for a direct multi-class prediction. We will also compare these

results to the first sequence-based approach, the Long Short-Term Memory

(LSTM) model. This model has been trained on multi-label variants of the

100×500 and 500×100 datasets. The Electra model was not used when this

original research was published, and as later tests showed, its performance

would not exceed what was achieved with larger data sets.

The multi-class approach bears a particular problem when considering a set

of classes with hierarchical relationships. Predicting a direct parent of the tar-

get class is still wrong, from the perspective of the classification task, but not

logically. Therefore, we also developed a path-based evaluation method that

we use to compare our approaches to the current state-of-the-art that is used

as part of ChEBI’s development process that we will evaluate in Section 4.4.1.4.

1 https://www.pytorch.org
2 https://github.com/ChEB-AI/python-chebai

https://www.pytorch.org

56 CHAPTER 4. ONTOLOGY EXTENSION

4.4.1.1 Evaluation Results by Problem Size

Due to the structure of ontologies, predictions further down the hierarchy are

more valuable, as they are more specific, while more general subsumptions

follow from the transitivity of the subsumption relation. But this very property

also entails that classes that reside on lower levels of the ontology have fewer

annotated subclasses that can be used to derive the intended meaning of a

class. At the same time, the total number of classes that are higher up in the

hierarchy is inherently small. So there is a high number of classes with few

annotated leaf-classes and a low number of classes with many annotated leaf-

classes and a choice on one value dictates the available range for the other.

There are, for example, not 500 classes with 500 members in ChEBI. In this

evaluation, we aim to analyze different combinations of these values and their

impact on the predictive quality of our models. In general, we would expect

that a smaller number of classes, and a larger set of examples to learn from,

would yield an easier task for most automated approaches to classification.

Because the LSTM model is a deep-learning model that relies heavily on large

amounts of heterogeneous data and is also one of the approaches that re-

quired the largest amount of time and resources during training, we have in-

cluded LSTMs only in selected parts of this analysis.

Figure 4.7: Mean F1 score across all classes for different problem sizes. LR=logistic
regression; KNN=K-nearest neighbours; CART=decision tree; RF=random forest;
NB=naive bayes; SVM=support vector machine; LDA=linear discriminant analysis;
LSTM=long short-term memory network.

Figure 4.7 depicts the result of traditional approaches and the LSTM models

on different numbers of classes and members. Our analysis shows for the tra-

ditional approaches an increasing number of either classes or members per

class has a negative impact on the overall performance. While there are some

classifiers that performed better on datasets with 100 classes than on one with

4.4. EVALUATION 57

25, there is a general steep deterioration once the number of classes increases

above 100. As shown in Figure 4.8a, there are less than 1,000 classes that con-

tain at least 100 members. Even the highest number of classes in our dataset

(500) therefore only covers a fraction of the ChEBI ontology. This indicates

that the extensibility of these approaches to a larger fragment of ChEBI is lim-

ited.

(a) Number of classes with at least M mem-
bers, for different sizes of M , in ChEBI.

(b) Performance of all models in the 500x100
problem for classes with different sizes. Each
dot represents the F1 score for a single class
in a single model.

Figure 4.8: Class distribution and model performances.

The drop in performance for larger numbers of members per class does not

follow the expected behavior of many modern machine learning models.

These approaches usually improve performance with a growing amount of

data. This behavior may be attributed to different factors. First, the distri-

bution of structural features is not homogenous. Classes that are high up in

the hierarchy are often specified by simpler, easy-to-detect concepts. The

presence of atoms from the p-block of the periodic table is, for example,

the defining feature for p-block molecular entity (CHEBI:33675). Conversely,

classes that are very specific and further down in the taxonomy are often de-

fined by very specific, distinguishing features. Figure 4.9 depicts an example

of a class that requires a very specific molecular sub-structure for all of its

subclasses. These rare substructures will generate very unique fingerprints,

which makes them easier to detect for fingerprint-based approaches. The sec-

ond factor is the data selection strategy, which we discussed in Section 4.1.1.

This approach ensures that the dataset is constructed as a multi-class dataset.

In reality, however, molecules belong to several classes. A molecule that,

structure-wise, should belong to a certain class while the dataset does not

reflect that, will likely be detrimental to a model’s performance. The larger the

overlap in classes, the higher the impact of this problem. We have also seen

earlier that the ChEBI ontology has a complex subclass hierarchy with over-

lapping and interleaving branches. Classes with a lower number of members

58 CHAPTER 4. ONTOLOGY EXTENSION

Figure 4.9: (Incomplete) structural specification for 1-O-(alk-1-enyl)-2-O-acyl-sn-
glycero-3-phosphocholine (CHEBI:17810)

generally reside further down in the hierarchy than those with more members.

Consequently, for a smaller number of required members, the individual sub-

branches can be more “spread out” and thereby reduce the potential overlap.

A more general class in ChEBI will therefore perform worse in this problem

statement, which is also indicated by the negative correlation between F1-

score and total member size seen in Figure 4.8b.

This highlights that the problem of chemical classification should be seen as

a multi-label problem. We therefore also explored whether multi-label hierar-

chical classification approaches could mitigate the shortcomings of the clas-

sical classifier algorithms applied to this problem. Any of the above classifiers

can be used together with a hierarchical classification strategy [111]. In a hier-

archical classifier, subsumption relations between the target classes are taken

into consideration by training separate classifiers for each of the higher-level

nodes in the hierarchy. These then derive predictions just for the levels be-

neath them. The result is a chain of nested classifiers that are iteratively ap-

plied until a leaf node is reached. This is also closely related to the approach

that was taken in the natural products classifier mentioned above [78], as in

that work a different classifier was trained for each of their three hierarchi-

cal levels. We thus evaluated a hierarchical classification approach based on

subsets of ChEBI corresponding to the hierarchy above a given set of selected

classes. However, we found that this approach in practice did not scale to sub-

4.4. EVALUATION 59

sets of ChEBI classes at the problem sizes we have used. This is likely because

the complex subsumption hierarchy of ChEBI still requires a large number of

classifiers to be queried for a given prediction. Moreover, performing hierar-

chical classification in the case of ChEBI classes would involve significant re-

dundancy because the classes at the intermediary levels have so much mutual

overlap in terms of their lower-level members. Artificial neural network-based

approaches can learn hierarchical structures directly, as we will see, thus, we

did not further explore hierarchical classifiers at this stage, although we may

return to this in future work.

4.4.1.2 Comparison of Different Algorithmic Approaches

Among the classical classifiers, we see that logistic regression performs best

(Figure 4.10), followed by linear discriminant analysis, SVMs and random

forests performing about the same.

Figure 4.10: F1 scores per algorithm for the 25x100 problem, 100x100 problem, 500x25
problem and 500x100 problem. LR=Logistic regression;KNN=K-nearest neighbours; CART=Decision tree; RF=Random forest; NB=Naive
Bayes; SVM=Support vector machine; LDA=Linear discriminant analysis; LSTM=Long short-term memory network

Naive Bayes shows the worst performance among the classical classifiers for

this problem. The large difference in performance between Naive Bayes and

LDA implies that there are considerable co-variances among the fingerprint

features – which would be expected – and can be confirmed by a correlation

analysis. These may originate from the fact that the walks that produce the fin-

gerprints are performed on the same substructure, or by the way the hashes

60 CHAPTER 4. ONTOLOGY EXTENSION

are calculated. Decision trees seem to over-fit – especially with larger sample

sizes. The random forests mitigate this to some extent, but a decline in deci-

sion tree performance impacts the random forests as well.

The performance of Logistic Regression and Support Vector Machines with a

linear kernel is almost identical, which is to be expected as they use essentially

the same classification method. The different loss functions used in the re-

spective gradient descents do not have any significant impact. However, non-

linear kernels had a highly negative impact on the SVM classification perfor-

mance.

Figure 4.11: Violin plot of F1 scores per algorithm for the 100x500 problem (left) and
the 500x100 problem (right). LR=Logistic regression;KNN=K-nearest neighbours;
CART=Decision tree; RF=Random forest; NB=Naive Bayes; SVM=Support vector ma-
chine; LDA=Linear discriminant analysis; LSTM-Long short-term memory network.
Value ranges are not clipped to possible range [0,1], the density function therefore
extends the plot outside of the possible range.

While a direct comparison should be interpreted with caution, as the LSTM

is performing a different classification task to the other classifiers (i.e. multi-

label rather than single-label), nevertheless, we can make some observations

about the resulting F1 scores. Interestingly, we see that from the overall per-

formance perspective, although the LSTM does not outperform the other ap-

proaches at problem size 100x100 (Figure 4.10), it performs somewhat bet-

ter at the 100x500 problem size, and significantly better than the other ap-

proaches for the 500x100 problem size (Figure 4.11). This implies that the

LSTM is, at least on the face of it, better able to scale towards the scope of

the full ontology than the classical approaches, although we did not attempt

to use the LSTM for problem size categories involving small numbers of mem-

bers per class (e.g. with 25 members), as network performance decreased with

decreased numbers of members per class, as would be expected for this type

of approach.

The LSTM networks have been trained on the above datasets for 100 epochs

with binary cross-entropy as their loss function. Figures 4.12a to 4.12f show

4.4. EVALUATION 61

the progress of different metrics during this process. The loss on the vali-

dation set rebounds after the 25th epoch, which indicates overfitting on the

dataset. Surprisingly, this does not impact the precision and recall negatively.

For computing precision and recall, we used a threshold of 0.5 to distinguish

class membership from non-membership. Further inspection of the predic-

tions reveals that the mentioned lack of impact is caused by the predictions

diverging from the optimal answers towards the threshold, but not passing it.

This means that after the turn, prediction strength decreases since distance

from the threshold can be seen as confidence about the prediction. The slight,

but constant rise of precision and recall after that indicates an additional im-

provement of those, but apparently at the cost of overfitting.

The encoding of chemicals does not have any significant impact on the suc-

cess of the learning task. This implies that the networks successfully learn the

structure of atom labeling in SMILES strings relatively early on without much

effort. Similar experiments in natural language processing [112] have been

conducted and results implied that aggregations of syntactic structures have

an impact on the training. Our results indicate that this impact does not exist

with the tokenizers used in this work.

LSTMs were the approach that did not suffer greatly from larger sample sizes.

One aspect of this is that the larger sample sizes create problem spaces that are

more uneven, which the LSTM is better suited to handle, as the LSTM is able

to make a multi-label prediction and predict multiple classes simultaneously,

rather than (as is the case for the other approaches) making just a single pre-

diction. Furthermore, as described above, the data sampling procedure from

the ontology will lead to more generic classes if the number of members is

larger. This implies that smaller substructures are relevant for the classifica-

tion, which may be distributed widely across the actual molecules. A random

walk has a lower probability of covering all the relevant aspects in this case.

The LSTM consumes the whole SMILES string, which allows a more consis-

tent classification.

Figure 4.11 shows that there is a large variance in performance w.r.t different

chemical classes. A more class-focused analysis of the results is done in the

following section.

It should be noted that we explored several configurations of LSTMs, and none

of them performed better than the given configuration, whilst a substantial

number showed almost identical results on the validation set. The introduc-

tion of a dropout led to a clear rise in performance, whilst different LSTM sizes

and structures – even bidirectional ones – showed no positive impact.

62 CHAPTER 4. ONTOLOGY EXTENSION

0 20 40 60 80
0

0.02

0.04

0.06

0.08

0.1

0.12
variable

with atom grouping
character encoding

epoch

va
lu

e

(a) Loss on training data

0 20 40 60 80

0.04

0.06

0.08

0.1 variable
with atom grouping
character encoding

epoch

va
lu

e

(b) Loss on validation data

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

variable
with atom grouping
character encoding

epoch

va
lu

e

(c) Precision on training data

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

variable
with atom grouping
character encoding

epoch

va
lu

e

(d) Precision on validation data

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

variable
with atom grouping
character encoding

epoch

va
lu

e

(e) Recall on training data

0 20 40 60 80
0

0.2

0.4

0.6

0.8

1

variable
with atom grouping
character encoding

epoch

va
lu

e

(f) Recall on validation data

Figure 4.12: Metrics recorded during training of the LSTM model.

4.4. EVALUATION 63

4.4.1.3 By Chemical Class Within the Ontology

As can be seen by the wide distribution of F1-scores for the performances

within each of the different problem sizes and algorithmic approaches, there

is variance in the performance of learning for different ontology classes. At the

same time, we see variance in the performance of different molecules. This

prompts us to ask whether there are some general observations that we can

derive about the problem of structure-based chemical ontology classification

from these experiments.

Firstly, we can ask whether different algorithms give the same best-performing

classes or different best-performing classes. Figure 4.13 shows the over-

lap of top-performing classes for different problem sizes for the three best-

performing algorithms.

Figure 4.13: The Venn diagrams show the overlap of classes that scored F1 more than
0.8 (i.e., best-performing classes) for three of the classifiers in each of these problem
sizes. LR=logistic regression; RF=random forest; LDA=linear discriminant analysis; LSTM=long short-term memory

Figure 4.13 indicates that while there is a shared common core, different clas-

sifiers give partially non-overlapping sets of ‘best scoring’ classes. That is, they

have partially distinct profiles with respect to the classes for which they give

the best performance. This suggests that the general problem of structure-

based chemical ontology classification might benefit from ensemble-based

approaches that integrate results across different models.

In general, the classical classifiers perform best on classes that have relatively

few members and well-defined structural features. For example, the best per-

formers (F1=1.0) using the LR algorithm all have fewer than 50 members (Ta-

ble 4.2).

The worst-performing classes for the classical classifiers, exemplified by the

worst-ranked for the LR algorithm indicated in Table 4.2, include those with

features not directly represented in the fingerprint, such as D-stereochemistry,

cations and salts. The information that would be required to make these clas-

sifications is just not available for these classifiers to learn, however, these

could be improved with the adoption of alternative fingerprinting strategies.

64 CHAPTER 4. ONTOLOGY EXTENSION

ChEBI-ID f1 class name num. members

CHEBI:61689 1.0 amino cyclitol 41
CHEBI:26253 1.0 polyprenylhydroquinone 45
CHEBI:134209 1.0 aporphine alkaloid 54
CHEBI:132157 1.0 hydroxy-1,4-naphthoquinone 35
CHEBI:17810 1.0 1-O-(alk-1-enyl)-2-O-acyl-sn-glycero... 46
CHEBI:17636 1.0 sphingomyelin d18:1 46
CHEBI:26255 1.0 prenylquinone 38
CHEBI:83563 1.0 long-chain alkane 29
CHEBI:60687 1.0 cembrane diterpenoid 35
CHEBI:38836 1.0 1-benzothiophenes 43
CHEBI:36685 1.0 chlorocarboxylic acid 33
CHEBI:75946 1.0 cytochalasan alkaloid 30
CHEBI:38768 1.0 phthalazines 41
CHEBI:80291 1.0 aliphatic nitrile 35
CHEBI:38769 1.0 indazoles 45
CHEBI:37531 1.0 polyprenyl diphosphate 41
CHEBI:58168 1.0 1-O-acyl-sn-glycero-3-phosphocholine 37
CHEBI:83876 1.0 cationic sphingoid 30
CHEBI:64590 1.0 monoalkyl-sn-glycero-3-phosphocholine 30
CHEBI:131903 1.0 pyranopyrazole 32

ChEBI-ID f1 class name num. members

CHEBI:16733 0.0 D-alpha-amino acid 51
CHEBI:48544 0.0 methanesulfonates 54
CHEBI:33702 0.0 polyatomic cation 2178
CHEBI:47704 0.0 ammonium salt 38
CHEBI:59869 0.0 L-alpha-amino acid zwitterion 53
CHEBI:50128 0.0 biflavonoid 53
CHEBI:25414 0.0 monoatomic monocation 32
CHEBI:46899 0.0 benzothiazine 37
CHEBI:35218 0.0 anthocyanin cation 47
CHEBI:64985 0.0 bioconjugate 39
CHEBI:33639 0.0 ortho- and peri-fused compound 56
CHEBI:38716 0.0 carboxylic acid dianion 311
CHEBI:59635 0.0 organophosphonate oxoanion 38
CHEBI:35284 0.0 ammonium betaine 1205
CHEBI:29089 0.0 1,2-diacyl-sn-glycerol 3-phosphate 52
CHEBI:35296 0.0 ortho-fused polycyclic arene 38
CHEBI:26469 0.0 quaternary nitrogen compound 1317
CHEBI:38037 0.0 methanesulfonate salt 40
CHEBI:76176 0.0 2-hydroxy fatty acid anion 43
CHEBI:59558 0.0 medium-chain fatty acid anion 36

Table 4.2: Highest and lowest-scoring classes using the LR algorithm

4.4. EVALUATION 65

The profile of poor performers is different for the LSTMs compared to the clas-

sical approaches.

Table 4.2 shows the twenty best and twenty worst performing classes with the

LSTM approach according to their respective F1 score. The best-performing

classes also include classes that have well-defined structural features, but

these have far more members than the best performers in the LR approach,

illustrating the ability of the LSTM to cope with larger problem sizes – and the

added value of additional examples to learn from.

The worst-performing classes for the LSTMs have a quite different profile to

those of the LRs, and as expected do not include salt or ion classes. Rather,

somewhat intriguingly, we see many examples of classes with complex ring

structures, especially aromatic or substituted ring structures.

To confirm this observation, we applied the BiNChE chemical enrichment

analysis utility [57] on the 50 worst-performing classes from the LSTM-only

set, we see a number of clear enrichments – benzenes, aromatic compounds,

and carbocyclic compounds (Figure 4.14), while in the worst-performing

classes from all algorithms we see no similar enrichment.

Figure 4.14: Enrichment analysis result on the ChEBI structural ontology for the 50
worst-performing classes in the LSTM

We can hypothesize that the poor performance for the aromatic molecules

with the LSTM may be due to the fact that aromaticity can be encoded in

SMILES strings in multiple different ways – using alternating single and dou-

ble bonds or using lowercase letters. It is plausible that the network did not

learn that e.g. the aromatic ‘c’ carbon atom is in fact the same atom type as

the typical ‘C’ in another molecular representation, and treated them as dif-

ferent entities. Larger datasets from possibly synthetic sources or a more ho-

mogenous representation of aromatic components may help the network to

learn those abstractions. It is also worth observing that in general the LSTM

can be expected to have more difficulty with parsing cycles than linear molec-

66 CHAPTER 4. ONTOLOGY EXTENSION

ChEBI-ID f1 class name num. members

CHEBI:17984 1.000000 acyl-CoA 696
CHEBI:37240 0.998350 adenosine 3’,5’-bisphosphate 697
CHEBI:22251 0.995114 adenosine bisphosphate 702
CHEBI:61078 0.993104 purine nucleoside bisphosphate 706
CHEBI:58946 0.992382 acyl-CoA oxoanion 707
CHEBI:61079 0.991522 ribonucleoside bisphosphate 707
CHEBI:51277 0.990164 thioester 745
CHEBI:37123 0.989925 nucleoside bisphosphate 708
CHEBI:60971 0.989796 aminophospholipid 104
CHEBI:18303 0.989796 phosphatidyl-L-serine 104
CHEBI:64583 0.986667 sphingomyelin 251
CHEBI:58342 0.985302 acyl-CoA(4-) 613
CHEBI:74927 0.985222 furopyran 934
CHEBI:35766 0.983871 glycerophosphoserine 129
CHEBI:78799 0.983607 hydroxy fatty acid ascaroside 152
CHEBI:52565 0.980769 acylglycerophosphoserine 114
CHEBI:26875 0.980392 terpenyl phosphate 133
CHEBI:36233 0.980392 disaccharide 156
CHEBI:64482 0.979315 phosphatidylcholine 623
CHEBI:57643 0.979315 1,2-diacyl-sn-glycero-3-phosphocholine 621

ChEBI-ID f1 class name num. members

CHEBI:64365 0.333333 aralkylamino compound 138
CHEBI:22715 0.333333 benzimidazoles 352
CHEBI:23697 0.328358 dichlorobenzene 452
CHEBI:48470 0.322581 amidobenzoic acid 148
CHEBI:25235 0.320000 monomethoxybenzene 247
CHEBI:46848 0.315789 N-arylpiperazine 176
CHEBI:51681 0.305085 dimethoxybenzene 269
CHEBI:26455 0.294118 pyrroles 200
CHEBI:83403 0.293333 monochlorobenzenes 429
CHEBI:50995 0.292683 secondary amino compound 417
CHEBI:27024 0.277778 toluenes 135
CHEBI:37407 0.259887 cyclic ether 806
CHEBI:73539 0.256410 naphthyridine derivative 162
CHEBI:26878 0.251429 tertiary alcohol 756
CHEBI:36786 0.246246 tetralins 108
CHEBI:27116 0.235294 trihydroxyflavone 150
CHEBI:38338 0.235294 aminopyrimidine 149
CHEBI:33572 0.222222 resorcinols 153
CHEBI:83812 0.114286 non-proteinogenic amino acid derivative 145
CHEBI:13248 0.108108 anilide 279

Table 4.3: Highest and lowest-scoring classes using the LSTM algorithm

4.4. EVALUATION 67

ular structures from SMILES strings because these structures are broken up

during the translation of a molecule into its SMILES representation.

4.4.1.4 Comparison to the State of the Art

As a final evaluation, we compare our results to the state-of-the-art structure-

based ontology classification tool, ClassyFire [25]. We do this comparison

using as input the 500x100 problem size dataset, by executing ClassyFire on

the SMILES strings associated with the test set of molecules, encompass-

ing 20% of the full set of 50,000 molecules, i.e. 10,000 sample molecules

with SMILES. Of these, ClassyFire was unable to process 501 of them due to

errors in the generation of an InChI (IUPAC international chemical identi-

fier, [113]) from the SMILES. ClassyFire uses an InChI-Key-indexed cache of

parent classes for molecules that have been previously classified in order to

speed up its classification performance, as matching multiple substructural

patterns is expensive. Certain structures cannot be represented by InCHI

but are expressible in SMILES, such as octahedral and square planar geome-

tries [114] or structures with undefined substructures or attachment points.

These 501 molecules are of this type – mainly due to the explicit represen-

tation of attachment points within the SMILES, e.g. the following SMILES:

C(C(COP(=O)(OC[C@@H](C(=O)O)N)O)OC(=O)*)OC(=O)*. There were also

a few entries for which ClassyFire returned other errors. In total, we received

9,484 classification results for our 10,000 sample molecules. Each classifi-

cation result includes multiple ChEBI classes including the very high-level

ChEBI classes such as ‘molecular entity’. We condensed these to only include

classes that were not superclasses of each other.

It is not straightforward to make a direct comparison between our results and

the performance of the ClassyFire tool, for various reasons. First, ClassyFire

uses a different underlying ontology to ChEBI that is only partially mapped

to ChEBI. The ontologies differ in some fundamental ways in their treatment

of chemical classes. For example, ClassyFire’s classes include molecules with

different charge states, encompassing conjugate bases and acids in the same

grouping, while ChEBI strictly separates these. Therefore, ChEBI class predic-

tions returned by ClassyFire may be less precise than the ClassyFire original

class. However, our dataset is restricted to the ChEBI classification from which

it was generated. Second, ClassyFire makes multiple parent class predictions,

while our classical classifiers make only a single best match parent class pre-

diction, and although the LSTM is able to make multiple predictions, it makes

far fewer predictions than ClassyFire does. Figure 4.15a shows a kernel density

diagram for the number of parent classes in different approaches: 1) ChEBI di-

rectly asserted parents (with a mean of 1.816 parent classes per leaf structure

68 CHAPTER 4. ONTOLOGY EXTENSION

(a) Number of parent classes in different ap-
proaches.

(b) Path length to asserted parent class in dif-
ferent approaches.

(c) Minimum and maximum path lengths to
asserted parent classes.

Figure 4.15: Analysis of path length between ClassyFire and ChEBI

4.4. EVALUATION 69

across the full ontology), 2) the LSTM predicted parent classes (mean = 1.435

in the 500x100 problem), and 3) ClassyFire predicted parent classes (mean =

9.926). For both ClassyFire and the LSTM, these counts exclude any parent

classes returned by the algorithm that are superclasses of any of the other par-

ent classes. The higher number of classes predicted by ClassyFire is, however

not very useful for domain experts because these classes are too general. The

bottom-up nature of our data selection algorithm (Section 4.1.1) terminated

before these classes were reached. Finally and most importantly, ClassyFire

has since its initial release in 2016 been used in the development of ChEBI: it

is used in the bulk submissions pipeline to automatically classify entities that

are incorporated into ChEBI before they can be manually curated. This means

that ClassyFire has actually produced a portion of the classifications in our

dataset (both training and test), although these are not flagged or indicated as

such in any way. This introduces a bias that is difficult to fully address.

Figure 4.16: D-glucopyranose 3-phosphate, an example molecule for which Classy-
Fire performs poorly on this metric.

We compare the approaches by computing a path length distance between

what we might call the ‘ground truth’ of the asserted classification in ChEBI,

and the predicted classification. That is, we count the number of subclass

relations that must be traversed to get from a directly asserted parent to the

predicted parent. In practice, the longer paths tend to reflect classifications

that are either wrong (in a different ontology branch) or not very useful (at a

very high level). Thus, path length provides a useful metric for the quality of

a classification. As there may be multiple directly asserted parents and multi-

ple predicted parents, for each structure in the test set, we computed all path

lengths

between pairwise combinations of asserted parents and predicted parents. If

the predicted class was identical to one of the asserted parents, we added a

path length of 0 to indicate a match. Note that the asserted parents in ChEBI

are not always the class that we used as input to our classifiers, due to the

selection processing of the ontology for learning purposes. Thus, we compute

the path lengths also on the classes that we used as the selection. Figure 4.15b

illustrates the overall density of the returned path lengths in this metric, with

the selected classes indicated as ‘Training’, showing the results for the LSTM,

70 CHAPTER 4. ONTOLOGY EXTENSION

the best and worst of the classical approaches, and ClassyFire. It can be seen

that ClassyFire returns the widest range of path lengths on this metric with

a mean path length of 3.20, while the LR (mean=2.29) outperforms the NB

(mean=2.74) and the LSTM (mean=2.81), which appear to perform similarly.

The training baseline for our learning approaches has mean=1.48.

These results may reflect a bias based only on the number of paths computed.

For that reason, we calculated also the minimum path length and the max-

imum path length (Figure 4.15c). The minimum path length in particular

addresses an important limitation of measuring the path lengths: Given two

target classes and two correct predictions of a molecule as a member of these

classes, the path lengths would still include the path length between these

two classes, even though the predictions were correct. The minimum path

length would be 0 in this case. On the minimum path length, ClassyFire out-

performs the other approaches, while on the maximum path length, it shows

the worst performance. However, in practice for a novel structure, it would

not be known without manual inspection which of the results returned was

the best classification – reducing the benefit of using an automated approach.

To illustrate why the maximum path length of ClassyFire is significantly longer

than for the other approaches, let’s consider the molecule ‘D-glucopyranose 3-

phosphate’ as an example. In ChEBI it is classified as glucose phosphate that

is a derivative of hexose. ClassyFire returns the following predicted classifica-

tions for this molecule: ‘primary alcohol’ (CHEBI:15734), ‘secondary alcohol’

(CHEBI:35681), ‘ether’ (CHEBI:25698), ‘monoalkyl phosphate’ (CHEBI:25381),

‘polyol’ (CHEBI:26191), ‘oxanes’ (CHEBI:46942), ‘hemiacetal’ (CHEBI:5653),

‘hexose’ (CHEBI:18133), and ‘organic oxide’ (CHEBI:25701). Many of these

classifications relate to correct but very general chemical groupings , illus-

trating the challenges with the substructure-based approach to automated

structure-based ontology classification in the context of the large and combi-

natorial chemical structural landscape. Whilst they are correct, these classifi-

cations are not useful for most use cases and there are more specific classes

that should be assigned instead. Due to the different concept distinctions

discussed in Section 2.3.3 and therefore loose alignments, ClassyFire is un-

able to predict these classes. Other classifications made by ClassyFire are

incorrect in ChEBI, often due to differences between ClassyFire and ChEBI’s

approach to classification (e.g. hexose vs. hexose derivative). It may be bene-

ficial to introduce an additional penalty to these predictions. Defining such a

penalty is, however, not trivial because cases in which ClassyFire’s predictions

contradict classifications in ChEBI may also originate from parts of ChEBI’s

taxonomy, that are not well structured. The class of peptide (ChEBI:16670),

has a large number of subclasses that should be included as subclasses of

4.4. EVALUATION 71

their siblings. Defining a correctness-based penalty would therefore require

manual examination of ClassyFire’s predictions.

ClassyFire has already had an enormous impact on the field of chemical data

management by enabling novel structures to be classified. However, our

results underline that there is a role for dynamic machine learning-based ap-

proaches alongside substructure-based approaches. ClassyFire predicts for

each molecule significantly more (non-redundant) parent classes (mean =

9.926) than the LSTM (mean = 1.435) or the LR (1 prediction), where - roughly

speaking - often, one of these predicted parent classes is better than the

classes predicted by the LSTM or the LR in our path distance metric (bearing

in mind the possible bias due to the use of ClassyFire in ChEBI development),

but most of them are worse. ClassyFire seems particularly suitable for semi-

automatic use cases, where the results that are returned by ClassyFire are

validated manually. However, if manual validation is not possible, the other

approaches appear to be more suitable, in particular, if they can be used

together in a way that plays to the differential strengths of the different ap-

proaches. Importantly, they are also likely to be easier to maintain and extend

going forward.

4.4.2 Evaluation of the Electra-based Models

My contributions

The following section summarizes the results from our collaboration

published in [104, 115]. My contributions to this work were the concep-

tualization and implementation, pre-training, training and evaluation

of the predictive quality of the Electra-based models on the ChEBI500∗
v200,

ChEBI500
v200 and ChEBI854

v200 dataset. This does not include the classifica-

tion of never-seen chemicals in Section 4.4.2.2. Furthermore, I was the

main author of the related book chapter [106] and journal article [104].

I also supervised a master’s thesis and authored the subsequent pa-

per [105] on a related investigation using the ChemBERTa [116] model.

For the evaluation of the Electra-based models, we employed five differ-

ent datasets (ChEBI500∗
v200, ChEBI500

v200, ChEBI854
v200, ChEBI1332

v200, ChEBI709
v148) that

emerged from our initial analysis of traditional approaches discussed in

Section 4.4.1. Following this iterative process, we first compared the per-

formance of the Electra-based model with the LSTM model which was the

best-performing model for wide-range ontology extension, as shown in our

previous analysis. Table 4.4 compares the results of the current model with

the previously obtained results for the LSTM model on the ChEBI500∗
v200 dataset

72 CHAPTER 4. ONTOLOGY EXTENSION

using the Chem tokenizer. The Electra-based model outperformed the LSTM-

based model in both micro and macro aggregations. The macro-aggregation

is of particular importance for the task of ontology extension. Classes that are

higher up in the taxonomical hierarchy are more likely to have more members

in the dataset than those lower down. The micro-aggregation weights the per-

formance of these classes equally, while a poor performance for a single class

has a higher impact on the macro-F1 score.

Macro Micro

LSTM ELECTRA LSTM ELECTRA

F1 0.71 0.79 0.74 0.79

Recall 0.68 0.76 0.70 0.77

Precision 0.77 0.80 0.79 0.82

Table 4.4: The comparison of the scores achieved by two models on the ChEBI500∗
v200

dataset. Better values are represented in bold font.

(c)

Figure 4.17: Boxplots for the F1 scores of all 500 classes on the ChEBI500∗
v200 dataset. A

statistical test comparing the two class-wise F1 scores distributions yields a p-value
of less than 0.001, indicating the distributions significantly differ and that Electra
(blue) outperforms the LSTM model (red).

Due to the improved performance over the previous approaches, we selected

the Electra-based model for further analyses. We discussed in Section 4.1.2

that the ChEBI500∗
v200 dataset did not include all possible members of a given

class. Therefore, we created the ChEBI500
v200 dataset that contained all these ad-

ditional instances and fine-tuned an additional Electra-based model on this

new dataset.

4.4. EVALUATION 73

Macro Micro

ChEBI500∗
v200 ChEBI500

v200 ChEBI500∗
v200 ChEBI500

v200

F1 0.79 0.77 0.79 0.82

Recall 0.76 0.74 0.77 0.79

Precision 0.80 0.80 0.82 0.84

Table 4.5: Comparison of the scores achieved by the Electra-based model with Chem-
tokenizer on the ChEBI500∗

v200 and ChEBI500
v200 dataset after being pretrained on Mol-

Pretrain-dataset based on different embeddings.

Table 4.5 shows the different F1-scores for the Electra model based on the

ChEBI500∗
v200 dataset and the ChEBI500

v200 dataset. The models perform differently

based on the aggregation method used. While the model produced higher

macro scores on the smaller set than on the larger one, the opposite is the

case for the micro aggregation. We attribute this to the different distribution

of class sizes in both datasets. While the design for the original ChEBI500∗
v200

dataset was built in a way that focused on a balanced distribution of mem-

bers in classes, we lifted this restriction entirely to achieve a larger amount

of training data. Consequently, the classes in the extended dataset contain

more instances and due to the transitive property of the subsumption rela-

tion, classes higher up in the hierarchy have more annotated subclasses than

those further down in the hierarchy. The training loss, however, is calculated

instance-wise. The training on the extended dataset, therefore, favors those

classes that have a higher number of instances. Nevertheless, it shall be noted

that the data in Table 4.5 should not be used to conclude that one dataset is

better than the other as they express very different data distributions. The

extended dataset gives a better representation of the way that domain ontolo-

gies are structured and the larger amount of training data hedges the model

against out-of-distribution errors.

Macro Micro

BPE Chemical tokens BPE Chemical tokens

F1 0.75 0.77 0.84 0.82

Recall 0.75 0.74 0.86 0.79

Precision 0.75 0.80 0.82 0.84

Table 4.6: Comparison of the scores achieved by Electra on the ChEBI500
v200 dataset after

being pretrained on Mol-Pretrain-dataset based on different tokenization methods.

74 CHAPTER 4. ONTOLOGY EXTENSION

Another aspect we were interested in was the impact of different tokenization

strategies on the Electra-based models. Therefore, we pre-trained and fine-

tuned an additional Electra-based model using the BPE-tokenizer and com-

pared it with the version using the chemistry-oriented Chem tokenizer. The

results are shown in Table 4.6. Similar to what we have seen when we an-

alyzed the behavior in different datasets, both methods appear better with

respect to different aggregation methods. In this case, the model using the

BPE-tokenizer outperformed the one using the Chem-tokenizer when con-

sidering the Micro-aggregation. The opposite is true for Macro-aggregation.

This may again be attributed to the different distributions of members in the

dataset. The molecular substructures that a model needs to detect in order to

correctly classify a member class are much simpler for more general classes.

Those further down in the hierarchy require more complex structures and, as

we discussed in Section 4.2, BPE tends to merge tokens in ways that are not

chemically meaningful. This was particularly true for numeric cycle identi-

fiers. These structures are also more prominently present in more specific

classes. The slight improvement in Micro-F1-score, however, comes at the ex-

pense of interpretability because the frequency-based aggregation results in

chemically infeasible tokens. We will therefore limit further discussions to the

chemical tokenization. The macro aggregation is also more relevant for the

ChEBI500
v200 dataset, as the inclusion of additional instances increased the im-

balance.

4.4.2.1 Interpretability

One of the big advantages of transformer-based models is not just their predic-

tive power and versatility, but also the embedded attention mechanism that

we discussed in Section 2.4.8. This part of the architecture allows the model

to learn a binary relation between different kinds of tokens. The combination

with positional embeddings further enables relations between different posi-

tions of the input sequence. These relationships are then used to filter parts

of the input sequence, allowing the model to focus on those parts that are im-

portant for the given classification task [117]. The inspection of this learned

relationship can, therefore, give important insights into the structures that led

to a particular classification [118, 119, 120, 121]. We also described earlier that

these attention mechanisms utilize several lower-dimensional modules, the

so-called attention heads, that do not share their respective projections Mq ,

Mk , and Mv . This allows the model to learn multiple filtering criteria in par-

allel. Our model consisted of 6 layers with 8 attention heads each, which re-

sulted in a total of 48 different attention relations per input sequence.

4.4. EVALUATION 75

For the input structures for our Electra model with the Chem tokenizer, this

means that we get a fuzzy binary relationship between different atoms, bonds

and other syntactic elements of the SMILES representation. We examined two

different ways to visualize these relationships. The first one is the straight-

forward representation of this relationship as done in Figure 4.18 for selected

attention heads and layers for the molecule naphthionic acid (CHEBI:38219).

Darker lines in the network plot indicate a stronger attention relation between

tokens. Similarly, darker green in the molecule plot indicates that higher atten-

tion was paid to that particular part of the molecule. These plots, however, can

be hard to read in particular for those who are not familiar with the SMILES

notation. Therefore, we also depict the attention for a specific input token in

the query input in Figure 4.19.

(a) Attention of naphthionic acid
(CHEBI:38219) in layer 2, heads 1-3.

(b) Attention of naphthionic acid
(CHEBI:38219) in layer 5, heads 4-6.

Figure 4.18: Attention relations for naphthionic acid. Query input is depicted on the
right, key input is depicted on the left of each plot.

According to ChEBI, naphthionic acid (CHEBI:38219) is a subclass of arenesul-

fonic acid (CHEBI:33555). The latter is defined as a sulfonic acid that features

one or more carbon rings. These are also the structures that caused high atten-

tion in our model when processing the SMILES string with which the class of

naphthionic acid (CHEBI:38219) is annotated in ChEBI. The left column of Fig-

ure 4.18b illustrates the model’s attention from the ring index "2" at position

8 to the fused carbon ring structure. The highlighted portions in Figure 4.19a

represent the areas to which the system allocates high attention when exam-

76 CHAPTER 4. ONTOLOGY EXTENSION

(a) Attention for naphthionic acid in layer 5,
head 4, when visiting cycle index marker 2

(b) Attention for naphthionic acid in layer 5,
head 6, when visiting sulfur

Figure 4.19: Attentions per input token in the query input for naphthionic acid,
projected to the molecule

ining ring index "2." The right column of Figure 4.18b and, correspondingly,

Figure 4.19b displays the model’s attention to the sulfonic acid group originat-

ing from the sulfur atom "S" at position 17. These structural elements play a

crucial role in accurately classifying the molecule as an arenesulfonic acid.

Visualizations such as those in Figure 4.19 provide a representation of the

attention structure that is more intuitive for chemists and enable a sort of

visual explanation for the classification. The middle column of attention

weights in Figure 4.18b shows that the model also paid attention to a sub-

stantial portion of the molecular structure from the nitrogen atom at position

0. Nitrogen is the essential element in amino compounds. As there were

other amino classes that were part of the 500 selected classes, such as amino

monosaccharide (CHEBI:60926), glutamic acid derivative (CHEBI:22693) or

ethanolamines (CHEBI:23981), it is possible that the model needs to analyze

larger parts of the molecule in order to rule out those possible candidates for

superclasses.

We also found that some universal patterns emerged during classification.

The attention distribution in the first layer was almost homogenous. The sec-

ond and third layers focused mostly on direct neighborhoods (preceding and

following tokens) within the SMILES string, as depicted in Figure 4.18a. At-

tention to neighborhood tokens is important for understanding how general

chemical connectivity within molecules is specified in the SMILES language.

The fourth, fifth and sixth layers focused on larger structures, as shown in

Figure 4.18b.

4.4. EVALUATION 77

The visualizations that we presented in this section provide a useful way to

interpret the attention mechanism of the model, because in the case of true

positives or true negatives, they enable a chemist to check whether the classifi-

cation by the model was indeed based on the chemically salient substructures

of a molecule. If that is the case, it provides some validation for the assump-

tion that the model learned some chemically meaningful distinctions. Analo-

gously, if a molecule is classified wrongly because the model fails to pay atten-

tion to the presence of one of the relevant substructures (e.g., a false negative

classification), then the visualization of the attention mechanism is helpful to

understand which of the salient substructures the model fails to recognize. A

presentation of these predictions and visualizations to a group of chemists in-

formally received enthusiastic confirmation that these visualizations provide

meaningful insights into the operation of the system accessible to domain ex-

perts. We, therefore, expect the visualizations presented here to improve the

ontology development process. However, our approach is limited to the visu-

alization of attention to the presence of substructures. This is a significant lim-

itation because some chemical classes are defined by the absence of certain

structures, which our approach cannot visualize. It is, therefore, not known to

us, whether the Electra model uses the absence of structures for classification.

4.4.2.2 Classification of never-seen chemicals

To evaluate the performance of the model on never-seen chemicals, we ap-

plied it to a set of 140,913 SMILES extracted from PubChem that had ‘hazard

class’ annotations and were not present in ChEBI.

Among these, we found that 29% (41,097) – almost a third – of the input

molecules were not assigned any class at all (Figure 4.20, left), which can

be regarded as a ‘don’t know’ response from the model. Assessing these

molecules reveals that many contain isotopic SMILES with unusual atoms

such as 13C Carbon isotopes or 2H Hydrogen isotopes, not present in the

training dataset. Others had explicit charges, complex branching structures

and explicit stereochemistry, all attributes that are poorly represented in the

training data. Although a high percentage, this result is consistent with our

earlier findings with similar models and offers a good motivation to connect

deep learning-based models together with other approaches in ensembles so

that if the learning-based model offers a ‘don’t know’ response, the system as

a whole can still offer a reasonable prediction for every input molecule.

The remaining input molecules were assigned to at least one class, and

amongst those 57,039 were assigned to multiple classes, including one mole-

cule that was assigned to 13 distinct classes (Figure 4.20, left). The distribution

of molecules into classes is spread quite well across the 500 classes with which

78 CHAPTER 4. ONTOLOGY EXTENSION

(a) Bar plot indicating how many
molecules were assigned a particular num-
ber of class predictions, for example, the
bar at 0 indicates that 41,097 molecules
were assigned no class prediction.

(b) Scatter plot indicating the number of
molecules predicted to belong to each of
the 500 ChEBI classes in the prediction
task (ordered), with the rolling average in-
dicated by a line.

Figure 4.20: Plots depicting the distribution of predictions on the hazardous dataset.

the model is trained (Figure 4.20, right). Figure 4.21 shows a subset of the

ChEBI hierarchy illustrating the assignment of molecules to classes, with col-

ors indicating how many molecules were assigned to each class (red=fewer,

green=more). In general, the classes lower down in the hierarchy received

fewer molecule assignments, as would be expected. The full visualization of

all the 500 selected classes is available at Zenodo3.

We then created an ontology extension from the subset of ChEBI classes in-

cluded in our model with newly added classes based on the classified input

molecules. Each input molecule is assigned a class in the extended ontology

and the predicted classes are asserted as superclasses. The extended ontology

is available at Zenodo4.

We combined this extended ontology with the disjointness axioms between

chemical classes in ChEBI [122] and then tested for consistency using the Her-

miT reasoner in Protégé. Most of the predicted classifications were consistent,

but we found that 5 of the input molecules’ predicted classifications resulted

in a disjointness violation. These were caused by:

• Classification as both carbohydrate acid and carbohydrate acid ‘deriva-

tive’. In these cases, the derivative class shares the same core structural

features as the class from which it is derived; however, the class defi-

nition reflects not only the presence but also the absence of features,

which may be harder to learn.

• Classifications into multiple parent classes involving specific counts of

groups, e.g. as both a diglyceride and a triglyceride. In these cases, per-

3 https://doi.org/10.5281/zenodo.6023497
4 https://doi.org/10.5281/zenodo.6023497

https://doi.org/10.5281/zenodo.6023497
https://doi.org/10.5281/zenodo.6023497

4.4. EVALUATION 79

Fi
gu

re
4.

21
:Z

oo
m

in
g

in
on

a
su

b
se

to
ft

h
e

p
re

d
ic

te
d

cl
as

se
s,

co
lo

re
d

by
h

ow
m

an
y

m
ol

ec
u

le
s

ar
e

as
si

gn
ed

to
th

at
cl

as
s

w
it

h
re

d
=

fe
w

er
an

d
gr

ee
n

=
m

or
e.

D
ar

k
re

d
=

fe
w

er
th

an
10

,D
ar

k
G

re
en

=
m

or
e

th
an

10
0,

O
ra

n
ge

=
10

-1
00

,G
re

y
=

n
ot

in
cl

u
d

ed
in

th
e

50
0

p
re

d
ic

te
d

cl
as

se
s

b
u

ti
n

cl
u

d
ed

in
th

e
vi

su
al

iz
at

io
n

fo
r

h
ie

ra
rc

h
ic

al
co

m
p

le
te

n
es

s.

80 CHAPTER 4. ONTOLOGY EXTENSION

haps larger targeted training sets would enable the network to better dis-

tinguish the features associated with these classes.

• Classifications into classes from both the inorganic and organic branches

of the ontology, e.g. inorganic ion and steroid ester, or inorganic ion and

dibenzopyrans.

As a final step, we then removed those 5 molecules that had conflicting clas-

sifications from the automated ontology extension, resulting in a consistent

ontology extension. The extended ontology was manually inspected for cor-

rectness and no further problems were detected.

4.4.2.3 Evaluation on Datasets with Threshold

The above results indicate that the Electra model can be a good classifier for

the 500 classes that were covered by the ChEBI500∗
v200 and ChEBI500

v200 datasets.

It does, however not cover all viable classes in ChEBI. As we have seen in

Figure 4.8a, there are 854 classes in ChEBI that have at least 100 subclasses

with SMILES annotations. We extended the scope of our tool by creating the

ChEBI854
v200 dataset that contains all classes in version 200 of ChEBI as labels

and all their subclasses with annotated SMILES strings as instances. In order

to extend the scope even further, we lowered this threshold to 50, which re-

sulted in the ChEBI1332
v200 dataset with 1332 classes.

Figure 4.22: Distribution of path lengths (log scale) amongst non-redundant super-
classes among molecular entities in the test set

4.4. EVALUATION 81

Figure 4.22 illustrates the difference between ChEBI854
v200 and ChEBI1332

v200 by

comparing the distribution of path lengths within the test set. These paths

have been calculated based on the subsumption graph from each direct par-

ent in the dataset, i.e., those that cannot be inferred from any other super-

classes. It can be seen that when passing from ChEBI854
v200 to ChEBI1332

v200, the

focus of the dataset shifts towards classes deeper down in the hierarchy. The

way paths are counted is illustrated in Figure 4.23.

Preliminary tests indicated that the increased number of labels had a negative

impact on the prediction quality for smaller classes. Therefore, we introduced

an additional weighting scheme proposed by Cui et al. [123] that penalizes pre-

diction error based on the number of members in each class C . This weight-

ing mechanism assigns each class C of size |C | an effective number EC = 1−β|C |
1−β ,

which is an estimate of the space that a set of |C |possibly overlapping volumes

of size 1 would occupy. The intuition behind the metric is that new instances

to already large classes have a smaller impact on the overall size than it would

have for a smaller class. As proposed by Cui et al. we used the inverse of this

effective number as a weighting with β= 0.99:

wC = 1−β
1−β|C |

Micro Macro

unweighted weighted unweighted weighted

ChEBI854
v200 0.9032 0.8901 0.6070 0.6372

ChEBI1332
v200 0.9020 0.9010 0.6022 0.6552

Table 4.7: Comparison of F1 scores on both datasets with different aggregation
methods. The best result for each combination of dataset and aggregation method is
highlighted in bold.

Two different metrics were used in the evaluation to comprehensively assess

the performance of all models. The details of these evaluation metrics are

explained in section 2.4.10. When comparing F1 scores (Table 4.7), both

weighted and unweighted labels were considered for both datasets. This com-

parative analysis provided insight into how well the models handle the het-

erogeneous distribution of classes on both datasets. Micro F1 scores, which

indicate overall precision and recall, showed similarities in both datasets.

This metric provides a measure of how well the model performs given an in-

dividual chemical entity. The macro F1 scores, while lower than the micro

F1 scores, provide insight into the model’s performance on the overall class

level. The lower macro F1 scores can be attributed to the inherent tendency

82 CHAPTER 4. ONTOLOGY EXTENSION

Figure 4.23: Example of subsumption paths from the molecular structure at the bot-
tom (CHEBI:71342) to chemical entity (CHEBI:24431). CHEBI:71342 has two direct
parents, namely glucosamine oligosaccharide (CHEBI:22485) and amino tetrasaccha-
ride (CHEBI:59412). There are nine paths of length 12 and nine paths of length 14
from these parents to chemical entity (CHEBI:24431).

4.4. EVALUATION 83

(a) ChEBI854
v200 (b) ChEBI1332

v200

Figure 4.24: Distribution of F1 scores among classes on weighted and unweighted on
ChEBI854

v200and ChEBI1332
v200.

of the model to focus more on predominant classes, a challenge that mirrors

the broader problem of bias in machine learning more generally.

We aimed to mitigate this tendency by introducing additional weighting,

which would allow for a more balanced assessment, especially for datasets

with unbalanced class distributions. The evaluation metrics showed an in-

crease in the performance regarding the macro F1 evaluations when em-

ploying additional weighting. This improvement was more pronounced for

ChEBI1332
v200 compared to ChEBI854

v200, with the former benefiting more due to its

hierarchical structure with a larger number of classes further down the hierar-

chy. Figure 4.24a and Figure 4.24b show the density plot of the distributions

of F1 scores for both datasets with and without weighting. It can be seen that

the weighting improved predictions in both cases and lowered the number of

cases in which no correct predictions were made.

Evaluating the specificity of model predictions

Datasets that are produced with a lower threshold will always cover more

classes than ones with a higher threshold but the complex structure of ChEBI

hinders an easy intuition of the actual structure of the resulting ontology frag-

ment that is covered by the prediction model. In order to quantify the depth

that was added by this lowering of the threshold from ChEBI854
v200 to ChEBI1332

v200,

we analyzed the path length of classes along the class hierarchy to the root.

For each of the molecules in the test set of ChEBI1332
v200 and ChEBI854

v200, we

evaluated the path lengths from the directly asserted parent in the ontology

to the predicted parents in the calculated model predictions. The best case

is that the distance is 0, i.e., that the predicted parent class is the same as

the asserted parent class. Figure 4.25 shows the distribution of path lengths

between classification parents and predicted parents in the two datasets.

84 CHAPTER 4. ONTOLOGY EXTENSION

Figure 4.25: Minimum (left) and mean (right) path lengths between the asserted
parent for a SMILES string and the predicted parent in the two datasets.

For a given molecule and a correct prediction C1 by the ChEBI1332
v200 model, all

correct predictions of the ChEBI854
v200 model for the same molecule are consid-

ered. If the ChEBI854
v200 model predicts a subclass C2 of C1, then its prediction

is considered more specific. If the ChEBI854
v200 model predicts a superclass C2

of C1, then its prediction is considered less specific. In case both models agree

on their predictions, their predictions are equally specific. In the last case, the

ChEBI854
v200 model makes no prediction that is in the same taxonomic branch

as C1. More specifically, the ChEBI854
v200 model does not correctly predict some

class C2 such that C2 is comparable to C1 with respect to the partial order pro-

vided by the taxonomic structure of ChEBI. In this case, the predictions of the

two models are considered as not comparable. As Table 4.8 shows, the predic-

tions of the ChEBI1332
v200 model are more specific in 21.69% and less specific in

8.43% of the cases compared to the ChEBI854
v200 model. In most cases, however,

there is no difference between the models.

more
specific

less
specific

equally
specific

not
comparable

Amount 5,021 1,951 14,448 1,724
Percentage (21.69%) (8.43%) (62.43 %) (7.45%)

Table 4.8: Analysis of specificity between predictions made by the systems trained on
ChEBI1332

v200and compared with ChEBI854
v200.

The three different approaches to evaluate specificity lead to a consistent re-

sult: in comparison to its predecessor the model trained on ChEBI1332
v200 pro-

vides more specific predictions. However, its increase of coverage of ChEBI by

56% does not translate into an equally large increase in the specificity of its

predictions. Unfortunately, although we did observe an increase in the speci-

ficity of model predictions across a range of metrics, the observed increase in

prediction specificity was only moderate. This result can largely be attributed

to two main causes.

4.4. EVALUATION 85

First, ChEBI1332
v200 extends ChEBI854

v200 with classes that have between 50 and

99 examples (i.e., classes that have between 50 and 99 members, that is sub-

classes that are annotated with SMILES in ChEBI). ChEBI1332
v200 is trained on

129,187 molecules. As a result, only between 0.039% and 0.077% of molecules

in the dataset are members of any given class amongst those that are in

ChEBI1332
v200 but not in ChEBI854

v200. Hence, any one of these additional classes

is irrelevant for the majority of classification tasks. In fact, only 18.79% of all

molecules in the dataset are a member of any of the 478 additional classes.

Thus, extending ChEBI854
v200 by 478 of these relatively rare classes can only be

expected to have a limited impact on the overall performance. Second, since

our model is trained based on datasets generated from ChEBI’s taxonomy, it

learns to imitate ChEBI. And because ChEBI contains a lot of examples of

chemical entities that are classified on a quite high level, our model imitates

that lack of specificity. For example, lactam (CHEBI:24995) has 7,328 direct

subclasses. Thus, while ChEBI provides a taxonomy that enables the classifi-

cation of different types of lactam, given the vast number of molecules that

are directly classified as lactam by ChEBI, it is difficult for a machine learning

model to learn the subclasses of lactam. Lactam is not unique, e.g., azamacro-

cycle (CHEBI:52898, 7,246 direct subclasses) and peptide (CHEBI:16670, 6,199

direct subclasses) are two other examples of classes that are used to classify

molecules on a high level of generality. Note that these general classifications

are usually not the result of ChEBI’s manual curation process, but the result of

semi-automated processes that are already adopted in the development pro-

cess, largely using the ClassyFire tool. A specific mitigation strategy for this

problem in the future might be to exclude these overly general classes from

the training data and subsequently re-classify all the children of the classes in

a targeted ontology specificity improvement step. An alternative strategy in

the future to further increase the specificity of predictions would be to include

classes with even fewer examples (e.g., classes with at least 25 subclasses that

are annotated with a SMILES), although there are additional challenges to

training models to learn from such a small number of examples. In general,

as the development of ChEBI progresses and ChEBI is improved by providing

more examples of more specific classifications, the ability of our model to

provide more specific classifications will also in turn improve.

4.4.2.4 Comparison between ChEBI versions

The purpose of our tool is to provide a system that is more adaptable to newer

versions of ChEBI than the currently used ClassyFire tool. Our results indicate

that the model can be scaled to larger portions of ChEBI. However, the role

86 CHAPTER 4. ONTOLOGY EXTENSION

of the ontology version has not yet been investigated. Therefore, we repeated

the data extraction process for ChEBI854
v200 on version 148 of ChEBI.

No. classes Training Micro F1 Macro F1 Macro F1
set size (all cl.) (all cl.) (common)

v148 709 80,639 0.8546 0.5133 0.5200
v200 854 129,187 0.9032 0.6070 0.6231

Table 4.9: Comparison of number of classes, training size and F1 scores with different
aggregation methods for ChEBI709

v148 and ChEBI854
v200. The macro F1 score was calcu-

lated for all classes predicted by the model and, for comparison, also on the subset
of 701 classes that appear in both ChEBI versions. The best result for each score is
highlighted in bold.

Table 4.9 outlines the dataset sizes and classification performance for both

versions. Following four years of development, more classes in ChEBI854
v200

now surpass the threshold of having at least 100 subclasses associated with

SMILES compared to ChEBI709
v148. This has resulted in an additional 145 classes

in ChEBI854
v200 compared to ChEBI709

v148. Notably, ChEBI version 200 provides

over 50% more training data, contributing to an overall higher F1 score with

both micro- and macro-aggregation.

However, the comparison of macro F1 scores between ChEBI709
v148 and ChEBI854

v200

is somewhat constrained due to the inclusion of different classes in each ver-

sion. For instance, the improvement in the macro F1 score from version 148

to version 200 may be influenced by the latter version containing classes that

are inherently easier to learn. To facilitate a more meaningful comparison, we

also computed macro F1 scores specifically for the 701 classes shared between

ChEBI709
v148 and ChEBI854

v200. With respect to these shared classes, the macro F1

score is 10% higher for the model trained on version 200.

These results are important because they highlight two important aspects of

our model in relation to ontology development. For one, the results indicate

that the model benefits from a larger amount of training data. But it can also

be seen that, while the increase in classes between ChEBI854
v200 and ChEBI1332

v200

had little effect on the predictive performance, the same was not true between

ChEBI709
v148 and ChEBI854

v200. In the latter case, the performance of the model

improved significantly. The high quality of the manual ontology development

did therefore fix important issues that were detrimental to the prediction qual-

ity of our model. This further highlights the importance of ongoing ontology

development that we aim to support with our proposed system.

4.5. THE CHEB-AI TOOL 87

4.5 The ChEB-AI Tool

My contributions

I am the founding developer and current main developer of the ChEB-

AI library. Whilst, in the meantime, there is a larger team of developers,

all data processing methods and models that I developed in the context

of this thesis are part of this tool and were implemented by me. The im-

plementation of the initial ChEB-AI interface as well as the transition

to PyTorch Lightning were planned and executed by me.

The heterogeneous nature of data sets and models in machine learning often

presents an unnecessarily large barrier to entry into this domain. A significant

amount of implementation work is often required to incorporate new data

into existing models. Libraries such as PyTorch [124] and tensorflow [125],

which provide a standard interface for data and models, have already taken

an important step towards making these methods easier to use. In the do-

main of ontology-based learning, this poses a particular challenge. Here it

is often necessary to use methods that go beyond conventional data process-

ing. As we have already discussed in Section 4.1.2, for example, it is necessary

to calculate the transitive closure of subsumption relation within the ChEBI

ontology in order to assign the correct labels to all molecules. We therefore

consolidated the data processing, training and evaluation scripts that have

been used in the experiments shown in this thesis into a single, open-source

Python library: The ChEB-AI framework5.

The first version of this library included a custom interface for data and model

management as well as a training setup that was based on PyTorch version 1.

In the course of the upgrade to PyTorch 2, we decided to switch to the existing

Pytorch Lightning Framework [126], because it allows frictionless training on

multiple GPUs and cluster nodes. The existing modules of ChEB-AI were then

rewritten so that they corresponded to the new Lightning interface. As usual

in the Lightning Framework, the ChEB-AI training interface consists of three

core components: A model, a data loader and a trainer. The model is one of

the core components and, as the name indicates, defines the machine learn-

ing model used in a training task. Its functionalities, however, go beyond that.

A Lightning model also handles the computation of loss as well as the config-

uration of optimizers used during training, such as Adam. We implemented

a based class ChebaiBaseNet that extends the the basic LightningModule to

automatically log important metrics during training such as the F1 score with

micro and macro aggregation.

5 https://github.com/ChEB-AI/python-chebai

https://github.com/ChEB-AI/python-chebai

88 CHAPTER 4. ONTOLOGY EXTENSION

The data loader in Lightning enables the reproducible generation of datasets,

with automated downloads of missing files and splits into test, train and vali-

dation sets. We implemented custom data loaders for all multi-label datasets

presented in this chapter. The framework also allows the frictionless integra-

tion of other ontologies which enables the usage of this framework beyond

the methods described in this thesis. In order to incorporate a wide variety of

datasets and data processing mechanisms, ChEB-AI introduces the notion of

“data readers”. A reader defines the way data is read from a data source. The

different tokenizers discussed in Section 4.2 are examples for different read-

ers. This mechanism allows the comparison of the influence of different data

encodings similar to the one between the BPE tokenizer and Chem tokenizer

reported in Section 4.4.2. Our custom dataloaders also enable different rea-

soning capabilities, such as the calculation of the transitive closure of an on-

tology’s subsumption hierarchy. Contrary to mOWL [127], a comparable tool

for ontologies in the domain of bio-medicine, we do not incorporate the OWL

API into this process. This decision was made, because our experiments have

indicated that the OWL API was not performant enough to handle ontologies

of ChEBIs size. Instead, we use the fastobo library [128], to parse the OBO-

representation of the ontology and implement important reasoning steps as

part of the ChEB-AI library. We are, however, currently investigating the in-

tegration of Horned-OWL [129]. Preliminary tests have indicated that this

tool vastly outperforms the OWL API on large ontologies and, as of recently,

there is also a python-based interface6, allowing for more frictionless commu-

nication with the tool. A trainer ties the data loader and the model together

and handles the communication between both. Most importantly for us, the

trainer also defines the training strategy, which controls how multiple GPUs

and cluster nodes can be used in parallel during training. Lightning’s train-

ers are mostly used as-is in ChEB-AI. We do, however, define a default trainer

configuration that enables the logging and training configurations used by us.

We hope that this infrastructure will allow a frictionless integration of datasets,

ontologies and models from different domains. The generic data interface al-

lows for an easy integration of new methods into this framework. In our cur-

rent line of research, we also aim to integrate more formal reasoning into the

system. This, naturally, involves reasoning with the ontology as mentioned

before. However, we are also exploring formal descriptions of chemical enti-

ties and are, therefore, also implementing bindings to the Heterogenous Tool

Set (HETS, [130]) via our in-house proof library, gavel [66], in order to support

more expressive logics.

6 https://jannahastings.github.io/py-horned-owl/

https://jannahastings.github.io/py-horned-owl/

4.6. CHEBIFIER 89

4.6 Chebifier

My contributions

The work in this section is based on collaborative work [115]. My con-

tributions were the conceptualization training, implementation of the

models already presented, as well as the conceptualization, design,

and implementation of the Chebifier web interface – including both

frontend and backend. This does not include the design, execution or

evaluation of the user study. Furthermore, I was the first author of the

related journal article [115].

In the previous sections, we presented different approaches towards auto-

mated ontology extension that are fine-tuned to represent the consensus

within a specific ontology. These models, however, require some knowledge

on how to install and interact with the python-based ChEB-AI framework.

The purpose of this tool is to lessen the workload that ontology development

imposes on domain experts. An expectation for them to acquire these skills is

therefore counterproductive. Therefore, we implemented an easy-to-use in-

terface that allows domain experts to simply input the SMILES representation

of a molecular structure and receive the predicted subsumptions as predicted

by the model: Chebifier.

4.6.1 The Chebifier System

The primary use case that Chebifier is intended to address is as follows: An

expert from the domain of chemistry or biology notes that a chemical that

is important to their line of work is not represented in the ChEBI ontology.

They know the precise molecular structure, but not the correct classification

according to ChEBI. This user can represent this chemical structure using the

SMILES notation discussed in Section 2.3.1, visit the Chebifier website7 and

retrieve a classification in ChEBI.

Figure 4.26 shows the system architecture of Chebifier. The Chebifier user in-

terface is a web application developed based on a simple Python Flask server

with a JavaScript React front-end. There are two ways in which users can en-

ter the SMILES strings. Firstly, they can be entered directly into a ready-made

table form. Chebifier also allows a large number of chemicals to be classified

at once. Accordingly, users can also upload a text file containing one SMILES

string per line. These are then automatically transferred to individual lines in

the table.

7 https://chebifier.hastingslab.org/

https://chebifier.hastingslab.org/

90 CHAPTER 4. ONTOLOGY EXTENSION

Prediction
Model

Flask
Backend

React
Frontend

alkylbenzene
ChEBI:38976

Attention Plots

predictions,
attentions

json

http: post call

smiles

Figure 4.26: System architecture of Chebifier

Figure 4.27: The user interface of Chebifier with example input.

4.6. CHEBIFIER 91

By clicking on the "Predict Classes" button, these SMILES strings are trans-

ferred to the backend with an HTTP post request. Here, the corresponding

connected model is called in order to obtain the corresponding classification

predictions.

The Chebifier system is based on a prediction model that was developed with

the help of the ChEB-AI library. The connection was implemented in such a

way that any trained ChEB-AI model can be used for predictions with mini-

mal effort. Chebifier 1.0 was based on a model trained on ChEBI854
v200 using

the Electra model presented earlier. As we will elaborate later, feedback from

our user study indicated a desire to include more specific classes from ChEBI.

In response, we created the ChEBI1332
v200 dataset, which includes all classes in

ChEBI (release 200) that have a minimum of 50 SMILES-annotated subclasses.

The reduction in the size of members required allowed the dataset to expand

to a wider range of classes, resulting in 1,332 class labels that the model is

able to predict. Chebifier 1.1 uses a model that is trained on ChEBI1332
v200 with

weighting.

The calculated predictions are then returned and displayed as bullets next to

the input form. These bullets also act as a link to the corresponding ChEBI

classes, allowing experts to manually check the predictions directly if required.

Figure 4.27 shows the interface after this workflow. The user submitted a

string that represents the class of ethoxzolamide (CHEBI:101096). The system

predicted the superclasses sulfonamide and benzothiazoles, which matches

the superclasses according to the ChEBI ontology.

Figure 4.28: The ontology fragment for ethoxzolamide as predicted in Figure 4.27. The
interactive visualization displays class labels when the pointer hovers over a node.

Chebifier can be used to provide classification suggestions to improve the

speed of the manual curation process of ChEBI. After classification, Chebifier

also displays an extended version of the ChEBI ontology. As can be seen in Fig-

ure 4.28, this is represented as a directed graph in which existing classes are

represented by blue nodes and the new classes by grey nodes. This graph rep-

resentation is also interactive so that users can arrange the nodes themselves

for better readability if this is not sufficiently good despite the automated lay-

92 CHAPTER 4. ONTOLOGY EXTENSION

out. Further information on the classes can be obtained by clicking on the

corresponding node. These are then displayed in a sidebar.

To make the system easier to understand, detailed information is also pro-

vided for each classification in a molecule-specific view. This detail view, parts

of which are shown in Figure 4.29, can be pulled up by clicking on the light

bulb icon next to the classification bullets. The molecular graph associated

with the molecule, as rendered by RDKit, is displayed here. There is also an

extended version of ChEBI, which has only been extended by the class for

which the details are displayed. Additional information about the classifier

is also displayed for further interpretability. Since a transformer-based model

was connected in the previous versions, the attention weights are displayed

as a network graph. We are planning to develop further explainable systems

in the future, for which the corresponding classification explanations can be

displayed here.

Since Chebifier is itself trained from the content of ChEBI, future extensions

of ChEBI will improve the performance of Chebifier. Thus, in the long run,

our approach has the potential to create a virtuous feedback cycle of ontology

extension, checking and then improvement of the classification model, which

serves to lay the foundations for semantic chemical discovery research.

4.6.2 User study

An anonymous online user survey in the English Language was conducted

from June to August 2023 using Qualtrics8. Following a purposive recruitment

strategy, we engaged participants via LinkedIn, Twitter, and direct emails. The

recruitment strategy included invitations to the curators of ChEBI, the Pub-

Chem team, the developers of key partner databases such as Rhea [131], and

members of the chemical informatics community who had previously shown

an interest in chemical classification.

The objectives of the user survey were threefold. First, we aimed to assess user

satisfaction with the accuracy and exactness of the automated classifications.

Second, we aimed to gather insights on the user interface, including associ-

ated visualizations. Third, we aimed to explore the acceptability and recep-

tion of a machine learning-based application for the problem of predicting

structure-based chemical ontology classifications.

The survey questionnaire was divided into two parts, collectively comprising

a total of six questions with open-text response options. It was estimated that

respondents would require approximately 10 minutes to complete the survey.

The initial part of the survey directed participants to engage with the Cheb-

8 www.qualtrics.com

www.qualtrics.com

4.6. CHEBIFIER 93

(a) Molecular graph and extended ontology

(b) Attention network for first attention head in the first layer

Figure 4.29: Screenshots of Chebifier’s detail view for predictions of sec-butylbenzene
(CHEBI:35097)

94 CHAPTER 4. ONTOLOGY EXTENSION

ifier tool and add one or more SMILES strings representing molecular enti-

ties of their choice, and then execute class prediction. Once the prediction

was returned, respondents were asked to rate its correctness and appropriate-

ness. Subsequent to the prediction step, participants were directed to open

the individual details page for a single prediction. On this page, a visualiza-

tion of the molecular structure of the input SMILES was displayed along with

a subset of ChEBI, relevant to the molecule’s direct parents. Finally, the predic-

tion model’s internal attention parameters were displayed. Participants were

asked to evaluate the utility of the visualization representing the subset of the

ChEBI hierarchy. Furthermore, they were encouraged to explore the attention

clusters, encompassing various heads and layers, and asked for recommenda-

tions for improvement. Concluding the survey, respondents were offered an

opportunity to provide further suggestions to enhance the Chebifier tool as a

whole.

4.6.3 Results

A total of 12 participants engaged in the survey, testing a diverse range of

SMILES inputs and offering useful suggestions on both the user interface and

tool functionality. Out of these, 9 participants (75%) rated the classifications

as either correct or partially correct as well as appropriate for the provided

input molecules. In contrast, one solitary user (8%) noted inaccuracy, while

two participants (17%) refrained from specifying their responses. There were

instances of missing or inaccurately assigned classifications:

• “Yes, they are true but do not describe the most important point. This

is a transition metal complex! Hence, transition metal should come as

classification as well.”

• “Yes, but only one classification was made and many others are equally

true, for example D-galactose, cerebroside, β-galactosylceramide.”

• “Four answer provided. Three are correct. One is not the organocarbonyl

was not correct. I suspect it called the amide a as an organocarbonyl.”

Considering the correct classifications, 7 participants (58%) acknowledged

the classification’s chemical significance, either fully or to a partial extent.

Conversely, 2 users (17%) expressed no utility in the classification, while 3

users (25%) did not further elaborate their response. However, a recurring

theme was that the classifications were overly generalized, highlighting the

need for a finer level of granularity:

4.6. CHEBIFIER 95

• “Yes they are meaningful if someone want to look at the general classes

but if users want to go into a more detail level of granularity, especially

for natural product classes, then ClassyFire may be a better option.”

• “I see no reason why the one classification that was made is more mean-

ingful than the other possible classifications.”

• “I tested several lipids and most of the time the class predicted was a close

parent. However, there were cases in which the class predicted by the tool

was true but too general [...].”

Regarding the efficacy of visualizing a subset of the ChEBI hierarchy, merely

2 users (17%) perceived it as valuable. In contrast, 5 users (42%) abstained

from answering, while the other 5 users (42%) found the visualization unsuit-

able for their purposes. Their feedback highlighted the superiority of other

established software and suggested improvements such as a vertical orienta-

tion display and the inclusion of labels to enhance the interface design:

• “It is useful. I would recommend to turn the display of the hierarchy into

a vertical tree marking the root class in another color such as red, and the

molecule been classified in a color that the user can clearly see where is

the instance/molecule located in the hierarchy. To read the labels of the

two first parent layers would also increase clarity, so I would make them

static and readable in the graph.”

• “Not really [useful] - none of the names can be seen without mousing over,

so it cannot be scanned and taken in. I also prefer vertical orientation.

• “Only first nodes, after node organic molecular entity I think it is no longer

useful. I guess it depends on what each user is looking for.”

Moreover, for the attention clusters, 3 users (25%) detected disparities in atten-

tion allocation among different attention heads, with one conjecturing that

this variance might stem from layer alterations:

• “This seems to vary by altering layers, and HEAD assignments, so I’d sug-

gest seeing the aspirin SMILES prediction by yourselves.”

Conversely, the remaining 9 users (75%) either deemed the function unhelpful

or refrained from assessing it due to a lack of expertise:

• “I don’t understand how to interpret this visualization. What is a head?”

• “I do not understand this well enough to answer.”

96 CHAPTER 4. ONTOLOGY EXTENSION

Collectively, suggestions for enhancing the tool encompassed several areas,

including the need for improved accuracy and improvements to the interface

design:

• “I think it would be easier if a user adds the SMILES and the tool automat-

ically predicts the class instead of the user clicking on the save and predict

class buttons first.”

• “Putting in a large group of structures and clustering them in meaningful

ways would be useful for us."

• “Thanks for working on this much needed tool. I would suggest to adjust

it for closer parents, the higher levels can be drawn from the hierarchy.”

As a direct response to the consistent user feedback that the classifications

provided by Chebifier were often correct, but too general, we developed Cheb-

ifier 1.1, which – compared to version 1.0 – increases the coverage of ChEBI by

56% without significant changes in accuracy. Since the additional classes are

all lower in the taxonomic hierarchy of ChEBI than previously covered classes,

Chebifier 1.1 is able to provide more specific classifications than the earlier

version and thus addresses a major concern raised by our users. We further

illustrate the improvement in the specificity of the predictions in the next sub-

section.

4.7 Discussion

Semantic resources such as ontologies are key for assigning meaning and in-

terpretation to data, which in turn drives research. Yet the maintenance of

these knowledge resources is a challenging task that requires significant con-

tributions from domain experts, making it slow and labor-intensive. The pace

of scientific discovery, however, is continuously accelerating, driven in part

by the growing integration of artificial intelligence in all research areas [132].

Supporting the evolution of ontologies at sufficient pace and scale requires

semi-automated tools and approaches that are faithful to the existing domain

knowledge and ways of thinking about scientific content, while also having

the potential to learn directly from data. In this chapter, we presented a novel

method that allows the training of a system based solely on a given ontol-

ogy with structural annotations. This approach offers a strategy to navigate

this tension in a sustainable ‘AI in the loop’ fashion, with the potential to be

kept up to date automatically and significantly accelerate the maintenance of

ontology-based knowledge resources in chemistry to keep up with the pace of

discovery.

4.7. DISCUSSION 97

ChEBI already makes use of an automated tool to extend its coverage beyond

the manually curated core, namely ClassyFire, a rules-based system in the

form of - among others - manually defined SMARTS strings. This limits the

extensibility of ClassyFire as an addition of new classes requires the defini-

tion of new SMARTS strings or even more complex rules. Our analysis of the

model performance on ChEBI709
v148 and ChEBI854

v200 showed a newer version of

the ontology with a larger number of classes is not just possible, but may even

improve the model performance. The deep-learning-based approach that we

presented can therefore overcome the limitations of rules-based approaches

by allowing a dynamic creation of classifiers based on a given existing ontol-

ogy structure. However, the dataset that could be used for fine-tuning is still

just a subset of the ontology corresponding to up to 1,332 classes, thus falling

short of the full scope of the entire ontology. Further reducing the selection

threshold, however, is likely to diminish the predictive power of the system be-

cause the model may have fewer examples for classes that have very unusual

or paradigmatic structural features. This could be seen as a limitation of the

applicability of this method, as many of the classes that chemists may be inter-

ested in may have fewer members. A manual review of ChEBI has shown that

there are some classes with a surprisingly high number of direct subclasses.

The class of peptide (CHEBI:16670) has more than 1,000 direct subclasses, a

majority of which have been added by third parties, possibly using automated

methods such as ClassyFire. Targeted curation efforts could be used to revise

this structure of the ontology and add to important classes for any given use

case which allow our approach to cover a deeper, more relevant fragment of

this domain.

Our overall analysis has shown that the Chebifier tool presented in this work

can be a useful integration into the ontology development process. Our analy-

sis in this work was limited to the ChEBI ontology. However, the only require-

ment that an ontology has to fulfill is the presence of structural annotations

that contain information about the intended semantics of the annotated class.

As is the case for ChEBI, not all classes need to be annotated in that way. The

Protein Ontology9 (PRO) can be used with a very similar architecture that uses

a peptide-based tokenizer instead of an atom-based one. It is also worth inves-

tigating to which extent this approach can be extended to the Gene Ontology,

considering the promising results around DeepGO [98], DeepGoZero [101] etc.

Conversely, the methods applied to the Gene Ontology may also be applicable

to ChEBI. We are also investigating the possibility of including image data for

examples of members of a class. Specifically, we aim to use an ontology from

the domain of ornithology that is linked with visual data of birds and feathers

to train a system that enables image-based ontology classification.

9 https://proconsortium.org/

5
Semantic Support

In the previous chapter, we explored the ways in which machine learning

can support ontology development. Machine learning approaches have led

to significant developments in many areas of science. However, it is impor-

tant to emphasize that machine learning is not a "golden hammer" that can

simply be applied to any existing problem. In order to successfully apply

such a system, appropriate prerequisites must be met. For more modern ap-

proaches, this often means that large amounts of high quality data must be

available. However, this is not possible in all domains. Furthermore, even

with the successful application of machine learning methods, it is only pos-

sible to a limited extent to gain insights into the fundamentals on the ba-

sis of which a model makes its predictions. Approaches that incorporate hu-

man knowledge alongside learning from data, which have been called hybrid,

knowledge-aware or informed [133], have the potential to improve the corre-

spondence between what the model learns and the structure of the human

world, which in turn allows the model to learn more generalisable representa-

tions from smaller datasets.

In this chapter we want to investigate whether ontologies can be used to ad-

dress some of these problems.

5.1 Ontology Pre-Training

My contributions

The following section summarizes the results of collaborative work

published in [134]. My contributions to this work were the implemen-

tation, training and evaluation of all models.

Human knowledge is carefully curated into ontologies [135, 55], making them

a prime candidate source of knowledge to incorporate into learning. This

99

100 CHAPTER 5. SEMANTIC SUPPORT

naturally raises the question of whether this knowledge can also be actively

used to support machine learning. When combining ontologies and machine

learning approaches, however, obstacles are quickly encountered. An essen-

tial problem is the alignment between the ontology and the way in which the

world is represented in the input data and the model. Ontologies are often

based on important philosophical considerations, while data models are of-

ten optimized for efficiency, e.g. of read and write accesses. Both approaches

obviously have their raison d’être in their specific domain.

yes no yes no

Figure 5.1: A fictional dataset for Woblox-Classification. The labels below each
monster denote whether it is classified as a Woblox or not.

However, we argue that it may be beneficial, but not absolutely necessary to

combine these two views. Imagine the following binary classification prob-

lem: A system is to learn to recognize an imaginary type of monster based on

images: The Woblox. As training data for this classification problem, the data

set shown in Figure 5.1 is given. As in real learning tasks, we have a variety

of features that can potentially be important for this classification, e.g. the

number of eyes or the presence of teeth, horns or limbs. However, the small

amount of does not data provide the necessary basis for statistical methods

like the ones discussed in Section 2.4.

owl:Thing Monster

Horned Monster

Hornless Monster

Figure 5.2: A fictional ontology for the domain of monsters

But now let us also imagine that there is an ontology from the monster domain

that has been developed by experts for many years, as shown in Figure 5.2, for

example. Notably, the term “Woblox” does not occur in this ontology. We

can, however, learn that one of the key features that experts use to classify

monsters is the absence or presence of horns. We may therefore pay larger at-

tention to those features when trying to classify our monsters and thereby use

5.1. ONTOLOGY PRE-TRAINING 101

the expert knowledge contained within the design decisions of the ontology

despite the absence of our specific target labels from the ontology.

owl:Thing Monster

Horned Monster

Hornless Monster

Figure 5.3: A fictional ontology for the domain of monsters with instances

But this leads to the next important question: How can a model use an ontol-

ogy? Because simply "reading" the ontology is not enough. A human reader

could certainly read the names of the classes and derive the intended seman-

tics of a class, as essential terms such as horns are already known and can be

linked to the corresponding features in the illustrations. A machine learning

model cannot do this as easily because it cannot know the intended seman-

tics. But as we discussed in Chapter 4, it is possible to teach a system the in-

tended semantics of classes if we have an ontology that has structural annota-

tions. Figure 5.3 illustrates the ontology from Figure 5.2 with added instances

as data points. Using our approach for ontology extension would allow the

model to learn the intended semantics of the classes Hornless Monster and

Horned Monster.

In the following, we will show a way to apply this concept to the domain of

chemistry. As before, we used the ChEBI ontology to train a model on the

ontology extension described earlier. As in the previous chapter, we consider

an ontology with structural annotations as depicted in Figure 5.4. In order to

successfully solve this task, the model has to detect those structural features

that were used to make the distinctions made by the ChEBI developers. As in

the monster example above, the system therefore has the opportunity to learn

about properties relevant to the domain without a specific task that requires

102 CHAPTER 5. SEMANTIC SUPPORT

owl:Thing
molecular entity
(CHEBI:23367)

mastoparan
(CHEBI:78496)

myo-inositol
(CHEBI:17268)

Figure 5.4: A fragment of ChEBI with four structural annotations. Intermediate
classes between molecular entity (CHEBI:23367) and the two subclasses mastoparan
(CHEBI:78496) and myo-inositol (CHEBI:17268) have been omitted.

a large, task-specific labeled data set. This approach is therefore versatile and

can applied to a variety of different problems from the domain of chemistry.

The next step is to check whether the model is then also able to successfully

reuse this information when learning a more specific task. In order to do so,

we evaluated our model on the task of toxicity prediction.

5.1.1 Datasets

We will use the Tox21 datasets as our benchmark dataset. It was created by the

National Center for Advanced Translational Sciences (NCATS) of the National

Institutes of Health (NIH) and constitutes a widely used benchmark for re-

search on machine learning for toxicity prediction from small molecules [82].

Notably, there are currently two versions of the Tox21 dataset available in

benchmarks. The first one originates from the Tox21 Challenge that was

conducted in 2014. This dataset consists of three different subsets, one for

training and two for different steps of the challenge evaluation. In our study,

we will use the “testing dataset" that was used for an initial ranking of models

as a validation set and the dataset that was used for the final evaluation as our

test set. This version of the Tox21 dataset suffers from several issues regarding

the consistency and quality of different entries [136]. A more modern version

5.1. ONTOLOGY PRE-TRAINING 103

of this dataset has been published as part of the MoleculeNet benchmark [77].

This version of Tox21 consists of only 7,831 molecules. We split this dataset

into a training (85%), validation (7.5%) and test set (7.5%). There are, however,

still two major challenges that need to be considered when working with this

dataset. First, the number of data points is rather low. Molecular structures

are complex graphs, which makes it hard for any model to derive a sufficient

amount of information from this dataset alone. Second, the information

available in the dataset is not complete: a substantial amount of toxicity in-

formation is missing in this dataset. There are 4,752 molecules for which at

least one of the 12 kinds of toxicity is not known. In the prior literature, this

issue has been approached in different ways. Some approaches perform data

cleaning which limits the number of available data points even further, e.g.

[136] excluded all data points that had any missing labels. We decided to

keep these data points as part of our dataset but exclude the missing labels

from the calculation of all loss functions and metrics. Any outputs that the

model generates for these missing labels are considered correct and do not

influence the training gradient. This approach allows the network to fill these

gaps autonomously.

5.1.2 Methods

Figure 5.5 depicts the training setup that we used to evaluate the effects of on-

tology pre-training. This resulted in a three-step process. As the first step, we

pre-trained an Electra model for 100 epochs on the Mol-Pretrain dataset de-

scribed in 4.1.3. Afterward, we created two copies of this model, one of which

was then trained further on the ontology expansion task using the ChEBI854
v200

dataset and the same hyperparameters as reported in Section 4.4.2. There-

fore, there are two models: One that received the ontology pre-training and

one that did not. We then copy each of these models again and train them

on either the Tox21 dataset used in the competition or the one published by

MoleculeNet.

Preliminary results on the validation set showed that indicated that the mod-

els tend to overfit when trained based on the same hyperparameters as in Ta-

ble 4.1 in Section 2.4.8. We, therefore, manually tuned the hyperparameters

of the model and found that strong regularization impacted the training posi-

tively. The final experiments used the Adamax optimizer dropouts on hidden

states of 0.4 and L2-regularisation of 0.0001. In order to address the relatively

small amount of data and the thereby induced lack of variance, we also im-

plemented an additional dropout directly on the input vectors, that hides ran-

dom parts of the molecule from the model. Each input token had a probability

of 20% to be hidden by this input dropout.

104 CHAPTER 5. SEMANTIC SUPPORT

data:ChEBI854
v200

data:Mol-Pretrain

data:Tox21

train: Electra Pre-training

Pre-trained Model

train: Ontology Extension

Ontology
Pre-trained Model

Toxicity PredictionToxicity Prediction

Figure 5.5: Training stack for standard training and ontology pre-training depicted
using a simplified boxology notation [137] for one of the Tox21 datasets.

5.1.3 Results

The final results of our training stack are four models: with or without on-

tology pre-training and fine-tuned on the original Tox21 competition dataset

or on the smaller version of the Tox21 dataset published as part of Molecu-

leNet. The semantic pre-training already showed a clear impact during the

training phase. Figures 5.6a-5.6d depict the curves for two metrics (F1 score

and ROC-AUC) on our validation set as evaluated at the end of each epoch

during training. We also included the performance reported for the recently

published SSL-GCN model [138], which is trained by co-training two Graph

Convolutional Networks using the SSL “mean teacher” method [139], which

outperformed the successful DeepChem [76] models.

It can be seen that models with ontology pre-training start with better initial

performance and also retain this margin throughout the training. This behav-

ior is also reflected in the predictive performance on both test sets. Table 5.1

shows the predictive behavior for the dataset from MoleculeNet and the orig-

inal challenge. The leading model (highlighted in bold) is predominantly the

one that received additional ontology pre-training. This is particularly visi-

ble for the more noisy and sparse dataset used in the original Tox21 competi-

tion. The overall improved performance shows that pre-training with a more

general ontology pre-training supports the network for the more specialized

5.1. ONTOLOGY PRE-TRAINING 105

toxicity prediction. The drastic drop that can be seen around epoch 50 in Fig-

ure 5.6d but not for the pre-trained model in Figure 5.6b further indicates that

ontology pre-training hedges the model against early overfitting. The reported

results, and in particular the F1 scores, however, show that there is still a large

margin of error for this task.

(a) ROC-AUC for the MoleculeNet Tox21
dataset

(b) F1 score (micro) for the MoleculeNet
Tox21 dataset

(c) ROC-AUC for the original TOX21
dataset

(d) F1 score (micro) for the original TOX21
dataset

Figure 5.6: Development of ROC-AUC and F1 score (micro) during training on the
validation sets of the Tox21 dataset available as part of MoleculeNet and the original
TOX21 challenge.

In this section, we presented a novel approach for pre-training based on

ontologies with structural annotations. Our analysis indicates that this pre-

training can aid the fine-tuning on tasks that are related to the domain cov-

ered by the ontology even if the terminology for this task is not explicitly repre-

sented in the ontology. Usual pre-training approaches are based on masking

tasks that hide parts of the input string. The model then has to predict the

token that was masked. In the case of Electra, there is an additional layer that,

given the input string in which the masked token has been replaced by the

first models’ prediction, has to predict which token of the input sequence has

been masked. These approaches, however, can only cover syntactic represen-

tation. A model that has been pre-trained on a mask language task for natural

106 CHAPTER 5. SEMANTIC SUPPORT

Dataset Tox 21 (MoleculeNet) Tox21 (Challenge)
Metric F1 ROC-AUC F1 ROC-AUC
Model Our Model SSL-GCN Our Model
Ontology Pre-training yes no yes no - yes no yes no

NR-AR 0.41 0.52 0.82 0.76 0.80 0.1 0.14 0.63 0.62
NR-AR-LBD 0.51 0.5 0.85 0.77 0.76 0.05 0.1 0.69 0.67
NR-AhR 0.53 0.45 0.81 0.82 0.83 0.23 0.05 0.8 0.69
NR-Aromatase 0.33 0.15 0.84 0.8 0.73 0.25 0.04 0.75 0.69
NR-ER 0.44 0.4 0.74 0.71 0.72 0.16 0.09 0.64 0.62
NR-ER-LBD 0.37 0.3 0.84 0.76 0.69 0.14 0.12 0.66 0.63
NR-PPAR-gamma 0.29 - 0.84 0.83 0.76 0.14 - 0.67 0.66
SR-ARE 0.48 0.53 0.8 0.84 0.73 0.37 0.23 0.71 0.69
SR-ATAD5 0.14 0.19 0.75 0.74 0.72 0.16 - 0.65 0.65
SR-HSE 0.24 0.22 0.82 0.82 0.78 0.13 0.09 0.76 0.68
SR-MMP 0.62 0.53 0.9 0.88 0.81 0.48 0.21 0.86 0.82
SR-p53 0.39 0.35 0.83 0.8 0.75 0.3 - 0.82 0.78

Table 5.1: Class-wise scores on the test set on both Tox21 datasets. Bold values denote
the best value for a particular combination of dataset and metric. NR - nuclear
receptor; AR - androgen receptor; LBD - luciferase; AhR - aryl hydrocarbon receptor;
ER - estrogen receptor; PPAR - peroxisome proliferator-activated receptor; SR - stress
response; ARE - nuclear factor antioxidant response; ATAD5 - genotoxicity; HSE - heat
shock factor response; MMP - mitochondrial response; p53 - DNA damage response.

language may be able to correctly predict in the string "Our [MASK] barks

at the mailman", the masked token was probably "dog". But this prediction

would solely be based on the fact that these words are likely to occur in this

arrangement. It does not learn the semantics of these words or the target do-

main at large. Ontologies, on the other hand, are designed by domain experts

to represent a concrete domain with fixed intended semantics. The ontology

pre-training presented in this section therefore goes beyond the traditional

syntactical pre-training in that it grants the model access to this source of

knowledge.

The expert knowledge that is contained in structural annotations can then

be used as a foundation to accelerate training tasks for a variety of domain-

related tasks. Additionally, as results in Table 5.1 show, we were able to im-

prove the performance of our model for toxicity prediction with the help of on-

tology pre-training. Further, as we will discuss in the next section, the perfor-

mance of the ontology pre-trained model compares favorably with the state

of the art.

The ontology pre-training approach presented in this section can be applied

to any problem in which there are structural annotations from the ontology

that have the same structure as the input features of the problem. But this is

not a necessary requirement. It is plausible that this same procedure could hy-

pothetically be used for any arbitrary dataset and ontologies, given a method

that links its data points to sets of classes within the domain ontology in the

5.2. SEMANTIC LOSS 107

same way that ChEBI’s annotations link SMILES strings to ontology classes.

This mapping could then be used to turn these data points into artificial an-

notations that can be used for the ontology extension task. The feasibility of

this approach, however, depends on the quality of this mapping and the qual-

ity of the ontology in general.

5.1.4 Discussion

In this section, we presented an approach that allows the inclusion of an on-

tology into the learning process. By introducing an additional ontology-based

pre-training step, we enabled the system to improve the predictive perfor-

mance when fine-tuned on the task of toxicity prediction. This implied that,

even though the concept of toxicity was not explicitly represented in the frag-

ment of the ontology used in this analysis, the model was still able to extract

relevant domain knowledge that allowed it to solve this task. ChEBI contains

chemical, biological or pharmacological roles. We are currently investigating

the effect of including these parts of the ontology on the task of toxicity pre-

diction. Another open question is the exact impact of the ontological hierar-

chy and the quality of the ontology. It seems reasonable to assume that an

ontology of higher quality has a higher impact on the final prediction task

than others. A low-quality ontology might even have a detrimental effect as

it causes the model to focus on structures of artifacts that are not relevant to

the domain. While we limited this analysis to only this particular use case, the

technique can be applied to arbitrary classification tasks that are based on

structural information of chemical compounds. The field of application can

be extended even further by performing the pre-training on different ontolo-

gies.

5.2 Semantic Loss

My contributions

The following section is currently unpublished work. The conceptual-

ization, methods and analyses in this section have been developed and

analyzed by myself with input regarding the formulation of the differ-

ent measures of inconsistency by Fabian Neuhaus. I also authored a

related paper [140] that extends the results presented here and is cur-

rently under review.

The labeling of things, e.g. "this is a bird", is a fundamental technique used by

parents to teach general concepts to children [141]. This method is akin to the

108 CHAPTER 5. SEMANTIC SUPPORT

way we trained machine learning models in Chapter 4. We used the ontology

and its subsumption axioms in particular to derive the appropriate labels for

molecules and used those to teach the system. This method, however, only

gives the system indirect access to these axioms. A direct integration of these

axioms, e.g. "penguins are birds" is not available during training. Additionally,

this utilizes only a single kind of axiom, while most ontologies cover a wider

variety, such as disjointness axioms. These allow the expression of "is-not-a"

relations, e.g. "A bird is not a mammal." In summary, two things are desir-

able: The usage of more ontological axioms and a more explicit involvement

of logical axioms during training and evaluation. In this section, we would

like to present a method with which the axioms of an ontology can be directly

integrated into the learning process.

5.2.1 Methods

We exploit the fact that from A v B follows that ∀x : A(x) → B(x). In boolean

logic, an implication a → c is false of the antecedent a is true and the con-

sequence c is false. Yet, we consider the subsumption relationships in the

given ontology to be correct. Predictions, for which the respective implication

would be false, are considered violations. The membership predictions of our

models are values in [0,1]. In our evaluations in Chapter 4, we interpreted a

predicted membership of more than 0.5 as a positive prediction for that class.

Using this threshold, we can count the boolean implication violations:

Definition 4 (Boolean Violation) Let C be a set of classes and R ⊆ C ×C a set

of subsumption relations over this set. Let further be hc : c → [0,1] be a fuzzy

membership function for a given class c ∈ C . We define the degree of violation

in boolean logic as φR
bi nar y for subsumptions over R as

φv
bi nar y (x) := |{(l ,r) ∈ R : hl (x) > 0.5∧hr (x) ≤ 0.5}| (5.1)

Note that the boolean violation metric is equivalent to the FNR metric used

in [140]. The most successful approaches from Chapter 4 are all based on

gradient descent. For a given prediction, the gradient of the objective func-

tion is calculated to determine the direction in which the hyperparameters

need to be adjusted. In order to define a corresponding penalty term for

logical inconsistency, we therefore need a function that is at least partially

differentiable. For this we use the implication of Łukasiewicz fuzzy logic

ĥ(a → b) = min(1,1 − ĥ(a) + ĥ(b)), or more precisely its negation ĥ(¬(a →
b)) = max(0, ĥ(a)− ĥ(b)):

Definition 5 (Łukasiewicz Violation) Let C be a set of classes and R ⊆C ×C a

set of subsumption relations over this set. Let further be hc : c → [0,1] be a fuzzy

5.2. SEMANTIC LOSS 109

membership function for a given class c ∈ C . We define the degree of violation

φR
luka for subsumptions over R as

φv
luka(x) := ∑

(l ,r)∈R
max(hl (x)−hr (x),0) (5.2)

The Łukasiewicz violation metric aggregates violations based on their degree.

In order to derive the absolute value of violations, we also count the occur-

rence of violations regardless of degree, i.e. all instances in which the pre-

dicted membership value for the class on the left-hand side of a subsump-

tion relation is larger than the predicted membership for that on the right-

hand side. This heavily penalizes even small violations. Machine learning sys-

tems are prone to produce noisy predictions. This noise is, however, an inher-

ent property of the gradient descent used during training and not a sign that

the system does not correctly represent the intended subsumption relation.

Therefore, we also introduce a weakened version of this metric that allows for

violations of at most 0.01.

Definition 6 (Strong and Weak Gaines-Rescher Violation) Let C be a set of

classes and R ⊆ C ×C a set of subsumption relations over this set. Let D be a

domain and hc : D → [0,1] a fuzzy membership function for a given class c ∈C .

We define the degree of violation φR
l uka for subsumptions over R as

φv
str i ct (x) := |{(l ,r) ∈ R : hl (x)−hr (x) > 0}| (5.3)

φv
weak (x) := |{(l ,r) ∈ r : hl (x)−hr (x) > 0.01}| (5.4)

Two classes A,B are disjoint iff A v ¬B . Therefore, we can define analogous

functionsφ6u
l uka ,φ6u

bi nar y ,φ6u
str i ct ,φ6u

weak with h(¬B) = 1−h(B). Bothφv
luka and

φ6u
luka are used as penalties for the loss during training.

With this setup, we repeat our task for ontology extension from Chapter 4 on

the ChEBI854
v200 dataset. We add the terms for implication softmax(φv

luka)·φv
luka

and disjointness softmax(φ6u
l uka) ·φ6u

luka as an additional penalty term to the

binary cross-entropy loss. Preliminary tests have shown that this scaling pre-

vents an exploding gradient that led to a drop in performance for models using

the Łukasiewicz violation [140]. There are some methodological differences

between the results presented here and in [140]. First, as for the rest of this

thesis, we use ChEBI version 200 and models have been trained for 100 epochs

and with softmax scaling, while [140] uses the more recent version 231 and

models that have been trained for 200 epochs without softmax scaling.

Xu et al. [142] proposed a more general definition of a semantic loss for ar-

bitrary logical sentences. The semantic loss presented in this section can be

110 CHAPTER 5. SEMANTIC SUPPORT

seen as a special case of this formalization. An implication loss would be de-

fined in their formulation for a specific axiom A v B and a prediction vector p

over all satisfying models x:

Ls(A v B , p) ∝ − log
∑

x|=AvB

∏
x|=Xi

pi
∏

i :x|=¬Xi

(1−pi)

= − log(pa ·pb −pa +1)

= − log(1−pa · (1−pb))

This loss definition is therefore related to the one used in this work, but based

on the product t-norm T (a,b) = a·b instead of the Łukasiewicz t-norm used in

this work. A further investigation of this metric in [140] shows that this metric

performs similarly to other definitions of fuzzy conjunction.

Training with unlabeled data

Humans are able to verify statements like "I saw an animal that was a cat and

a dog" without actually knowing the entity that is referred to. This is possible

due to the background knowledge that the concept of "cat" is disjoint from

the concept of "dog". A common instance can therefore not exist. Similarly,

a statement like "I saw a dog that was not a mammal" is false, regardless of

the entity in question. Likewise, the semantic loss allows the system to evalu-

ate the logical consistency of a prediction without knowing the actual ground

truth.

We also conducted the fine-tuning of our system on a dataset that did not

only include the ChEBI854
v200 dataset but also a mix-in of the same amount of

unlabeled data randomly sampled from Pubchem. The model is trained on

the same ontology extension task that we discussed in Chapter 4. The loss

function was calculated as before for those instances from the ChEBI854
v200. For

the new, unlabeled fragment, we did not calculate the binary cross-entropy

loss and instead based the loss solely on the violations for implication φv
l uka

and disjointnessφ6u
luka . We ensured for this extension that the training, valida-

tion and test splits were extensions of their counterparts from the ChEBI854
v200

dataset in order to ensure comparability.

5.2.2 Results

We evaluated the model that was trained without semantic loss with the two

models that used this additional penalty on the two data sets that were also

used in the training: The ChEBI854
v200 dataset and the extended variant.

Table 5.2 shows the results of the different implication violation metrics for la-

beled and PubChem data. Both models that were trained with semantic loss

outperformed the standard model. The model that has been trained using

5.2. SEMANTIC LOSS 111

φv
bi nar y φv

l uka φv
str i ct φv

weak

baseline 3.3253e-5 3.8132e-5 0.1303 0.00046
semantic loss 2.1481e-5 2.6676e-5 0.1071 0.00040
semantic loss (mixed) 2.9445e-5 3.3529e-5 0.1465 0.00044

Table 5.2: Implication violations evaluated on labeled data only, averaged over all
instances.

φv
bi nar y φv

luka φv
str i ct φv

weak

baseline 1.2849e-05 2.1121e-05 0.0502 0.0003
semantic loss 8.8642e-06 1.1136e-05 0.1764 0.00016
semantic loss (mixed) 8.0575e-06 1.0411e-05 0.1422 0.00018

Table 5.3: Implication violations evaluated on unlabeled PubChem data averaged
over all instances.

semantic loss with labeled data showed better performance for all metrics

when evaluated on the labeled test dataset. The model that was trained on

mixed data performed better in the evaluation of the unlabeled PubChem set.

This indicates that the additional training is hedging the model against out-

of-distribution data, but at the same time, introduces noise into the training,

which worsens its performance on labeled data.

φ6u
bi nar y φ6u

luka φ6u
str i ct φ6u

weak

baseline 5.9851e-7 6.3729e-7 0.0010 5.1692e-6
semantic loss 4.8858e-9 1.3880e-8 0.0005 2.2475e-7
semantic loss (mixed) 9.7716e-9 2.1747e-8 0.0002 2.5162e-07

Table 5.4: Disjointness violations evaluated on labeled data only, averaged over all
instances.

A similar pattern emerges for the analysis of the disjointness loss on labeled

data in Table 5.4 and unlabelled data in Table 5.5. The overall values are much

smaller, which indicates that the models can successfully learn to separate

classes that do not have any mutual members. Remarkably, the mixed model

caused no violation on the unlabelled dataset, but all models caused very few

violations of disjointness axioms. In particular, no model that was trained

with a semantic loss caused violations on theφ6u
bi nar y metric, i.e. none of them

made predictions that, after applying the threshold, violate a disjointness ax-

iom. It can be seen in all these results, that the strict metric is usually an outlier

when it comes to performance quality. This indicates that a vast majority of vi-

olations are on a very small margin. This means that the membership values

for the left and the right side of the implications are close to each other but

violate the constraints due to instabilities. Such violations contribute the all

112 CHAPTER 5. SEMANTIC SUPPORT

φ6u
bi nar y φ6u

luka φ6u
str i ct φ6u

weak

baseline 9.7716e-09 2.174e-08 0.0003 2.5162e-07
semantic loss 0.0 1.3478e-10 1.4544e-07 9.4854e-09
semantic loss (mixed) 0.0 0.0 0.0 0.0

Table 5.5: Disjointness violations evaluated on unlabeled PubChem data averaged
over all instances.

other loss definitions only marginally but are counted as full violations under

the strict metric.

Micro-F1 Macro-F1
baseline 0.9032 0.6082
semantic loss 0.8939 0.5934
semantic loss (mixed) 0.8843 0.5200

Table 5.6: F1-scores calculated on labeled data.

Lastly, we also evaluated the predictive performance of all three models. As

can be seen in Table 5.6, the macro F1-scores for the models that were trained

with semantic loss, are generally worse than for the one that did not get this

additional penalty. This is particularly true for the F1-Score with macro aggre-

gation for the model that was trained on mixed data.

Our results indicate that the introduction of a semantic loss during training

increases the overall logical consistency of predictions. These results are con-

sistent with results from [140]. This increase in consistency, however, comes

at the detriment of the actual predictive quality. This result seems contradic-

tory at first, as one would assume more consistent results to be better over-

all. This behavior may be attributed to the data imbalance that is inherently

introduced by the hierarchical structure of the ontology. Classes that are fur-

ther down in the hierarchy have fewer members and are therefore underrepre-

sented in comparison to those higher up in the hierarchy. The gradient of the

implication loss is

∂φv
luka

∂θ
(x) = ∑

(l ,r)∈R

{
∂hl
∂θ (x)− ∂hr

∂θ (x) if hl (x) > hr (x)

0 otherwise
(5.5)

For a violation of an axiom A v B , this term can be minimized by increas-

ing the predictions of B or decreasing the one of A. This puts an additional

incentive on the system to not predict smaller classes, which are already

under-represented in the dataset. The system therefore tends to favour larger

classes over smaller ones, which is also supported by the drop in macro F1 for

the models that use semantic loss. Further analysis of this behavior in [140]

5.2. SEMANTIC LOSS 113

showed that an asymmetric loss function that skews the gradient towards the

subclass can mediate this tendency.

The results also indicate that the inclusion of unlabelled data into the train-

ing process hedges the system against inconsistencies when confronted with

unseen data. This result can be particularly useful in scenarios in which the

distribution of features in the dataset is limited. Deep learning systems are

prone to suffer from out-of-distribution errors, e.g. unpredictable behavior

on data that has not been sampled from the same distribution as the train-

ing data. Lifting this limitation is often not easy because additional labeling

is required. The semi-supervised training method presented here can help to

alleviate this problem.

5.2.3 Discussion

In this section, we have presented an approach to directly integrate an on-

tology into the training process. By evaluating the prediction of a model for

logical consistency with respect to the ontology, we were able to define an ad-

ditional loss penalty for two different kinds of axioms. We defined four differ-

ent notions of violations for subsumption and disjointness axioms. Our analy-

sis indicates that models, that were trained using this additional penalty, pro-

duce more logically consistent predictions and are therefore more reliable on

unseen and out-of-distribution data. The analysis has, however, also shown

that the introduction of this additional penalty has a negative impact on the

overall model performance for smaller ontology classes. While this difference

is marginal when training on labeled data only, the impact of mixed train-

ing is particularly severe but also improves the logical consistency for out-of-

distribution predictions. This method can be extended to arbitrary ontology

axioms, such as more complex class expressions such as AuB vC . Therefore,

this method allows for a flexible inclusion of ontology axioms into the training

process.

A comparison with [140] shows that the results presented here can be further

improved with a more recent version of ChEBI and longer training. The im-

proved performance on a newer version of ChEBI is particularly notable be-

cause this allows for a frictionless upgrade of systems such as Chebifier to

newer versions and therefore a continuous evolution of the system alongside

ChEBI.

6
Conclusions and Future Work

Ontologies and other semantic technologies provide an important basis for

modern knowledge representation. However, the development of these usu-

ally requires extensive expert knowledge, a high degree of domain-specific ex-

pertise and, above all, time. At the same time, once they have been created,

they offer a rich pool of expert knowledge that is expressed not only in the ex-

plicitly represented facts and axioms but also in the way they are structured.

Machine learning methods, on the other hand, are often very flexible and can

be applied to a variety of problems in a wide range of domains. However, they

often suffer from a lack of interpretability and the logical consistency of results

- especially on unseen data - cannot be guaranteed.

In this work, we have presented methods with which these two worlds can be

brought closer together. We have seen how machine learning can be used to

support ontology development. We have used special structural annotations

to train a system on a given domain ontology. We evaluated the functional-

ity of this model using the ChEBI ontology. The system we trained not only

showed qualitatively better classifications than the ClassyFire tool currently

used in ChEBI development but it is also flexibly adaptable to new versions

of ChEBI. This allows an iterative process in which the ChEBI ontology is ex-

tended with predictions from our system, this extension is then corrected by

experts and used for a new training of our system. With Chebifier, we have

also developed an interface that allows users to utilize our prediction model

smoothly. This removes the barrier to using our tool and also allows it to be

used beyond ChEBI. We, therefore, hope that Chebifier will be integrated into

ChEBI’s development process. The ChEBI ontology itself is also used in nu-

merous practical areas. These can also benefit from this new classification

tool.

We have also shown that the semantic structure of ontologies can be used

to support a machine-learning system. Here, an additional ontology-based

training step could be used to predict the properties of molecules that were

115

116 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

not present in the training fragment. The expert knowledge that went into

structuring the ontology was able to provide crucial information that allow

the model to learn in a more focused way. Furthermore, we were able to use

the logical axioms of ontology to train a machine learning system so that the

predictions are logically more consistent.

6.1 Future Work

We have demonstrated different types of synergy between ontologies and ma-

chine learning. However, in our opinion, the possibilities of these methods are

far from exhausted. Finally, we would like to point out which open questions

and possible directions for further development we currently see.

In our ontology expansion system, we basically used a two-layer system in

which data is first encoded and then passed to a prediction model. Each

of these components allows for a variety of possible improvements. The

database we used was extracted from a fixed version of ChEBI. Since then,

new enhancements have been made to ChEBI that are not yet represented in

the current model. On the one hand, this would further increase the number

of available data points. However, due to our selection method, this would

also mean that more classes would pass the thresholds we have set. As a re-

sult, the prediction model would also have a larger number of target classes.

However, our analyses have also shown that although ChEBI grows compara-

tively quickly, this growth mainly takes place in the area of not fully annotated

2-star molecules. The 3-star fragment grows comparatively slowly. It would

therefore also be conceivable to carry out the training in the future only on

the 3-star fragment of ChEBI. Although this contains less data, it is of high

quality and has been annotated by experts. But even with the data that we

currently use, there may still be ways to improve the performance. For one,

we do not yet incorporate any stratification mechanisms to ensure an even

distribution of classes in training, test and validation set. Furthermore, we

are mostly using SMILES strings as they are used in ChEBI. To our knowledge,

these SMILES strings are generated using RDKit, which can produce canon-

ized SMILES strings. There are many ways to represent the same molecule in

SMILES. A more varied representation of molecules may allow for the genera-

tion of more training data and a less biased model.

In the encoding layer of our system, we currently primarily utilize SMILES

strings with the SMILES-based tokenizer. Additional encoding methods could

be employed here. With DeepSmiles and SELFIES, there are already two en-

codings specifically designed for certain applications in deep learning. Fur-

thermore, our Chem Tokenizer can also be combined with the BPE (Byte Pair

6.1. FUTURE WORK 117

Encoding) method to generate chemically meaningful token groups. This can

be particularly helpful in analyzing large molecules or searching for functional

groups. Additionally, we are currently not incorporating any supplementary

information. Considering that ontological distinctions in ChEBI are made

based not only on structural but also functional properties or chemical origin,

the enrichment of input data could lead to a significant improvement.

The fragment of ChEBI that we used was also limited in certain respects. As

we argue in Chapter 4, a further extension of the covered classes by way of

lowering the threshold for class selection is not promising. There are, how-

ever, further valuable sources of domain knowledge that may be integrated

in different parts of our system. One example here is the role hierarchy in

ChEBI. These roles include different information about compounds, e.g. that

they can function as a nutrient or toxin. This is of particular interest for the

ontology pre-training, as it may convey more information to the system and,

thereby, allow for the extraction of more domain knowledge.

Most of our approaches were based on a transformer-based model. While

these models are quite potent, they still come with unique downsides. We

have demonstrated that an analysis of attention weights can give some in-

sights into the model’s inner workings, but this is still far from actual explain-

ability. This is a particularly important issue in an area of application in which

ontology developers might want to know why the model reached a certain

(mis-)classification for a given compound. Therefore, we aim to integrate ar-

chitectures that allow for more transparency. Graph neural networks (GNN)

in particular, are promising in two regards. First, they allow for the direct rep-

resentation of a molecular graph without the transformation into a sequence.

This way, cycles and branches can be presented without the need to break

cycles and branches. At the same time, there is a close relationship to for-

mal methods. Grohe showed that the set of queries that can be answered by

bounded graph neural networks is equivalent to those definable a particular

fragment of first-order logic [143], a further investigation of this connection

may lead to more explainable methods. Another promising approach are Log-

ical Neural Networks (LNN), which we already discussed briefly in Section 3.4,

which allow for a direct representation of a logical theory such as an ontol-

ogy. But they can also be applied directly to molecular structures. We already

successfully used first-order reasoning for the classification of chemicals [66].

While this logical framework may not be sufficient to respresent all chemical

structures [26], it may still cover a significant fraction of ChEBI.

The investigation of the specific properties of the ontology-based semantic

loss is still ongoing research. We aim to investigate the influence of different

T-norms and the ways semantic loss formulations can be used in combination

with different machine-learning architectures.

118 CHAPTER 6. CONCLUSIONS AND FUTURE WORK

embedding (GNN) or
encoding (SMILES or fingerprints)

LSTM, Transformer, LNN or XMLC-NN

Logical NN (LNN)

input molecular
structure graph

axioms

classes

predicted
class
membership logical

loss function

relation extraction

relations

ontology

m
o
le

cu
le

 e
m

b
e
d

d
in

g
a
n
d

 e
n
co

d
in

g
m

o
le

cu
le

cl
a
ss

ifi
ca

ti
o
n

lo
g

ic
a
l

co
n
st

ra
in

ts

training
data

sampling

Figure 6.1: Ontology extension system as envisioned in StrOntEx

Parts of these points are currently being investigated in our new research

project Structured-entities Ontology Extension (StrOntEx, funded by German

Research Foundation - DFG - project number 522907718) that has been pro-

posed based on the work presented in this thesis. Within this project, the

presented approach for ontology is going to be part of a larger system that cov-

ers a larger number of approaches that interact in various ways as depicted

in Figure 6.1. The basic working principle for the first two layers remains

as described in Chapter 4. However, the transformer model will be part of

a larger ensemble of different approaches that cover different parts of the

domain. In addition to the subsumption hierarchy of the ontology, we will

also include relations and chemical properties in the dataset but the overall

system presented in this work will be extended by an additional layer that

directly represents the logical structure of the ontology. Herein it is impor-

tant that the chosen structure can adequately represent the rich semantics

of OWL or even stronger logics. Here we may choose from a number of dif-

ferent neuro-symbolic architectures, such as Logical Neural Networks [97],

ELEmbeddings [102] or Logic Tensor Networks [94]. The last two layers of

our architecture are not just a sequential bottom-up model. Instead, we will

also implement a semantic downwards path from the logic layer back to the

prediction layer - not unlike the semantic loss presented in Section 5.2. With

this architecture, we are positive that we can build on the successful work

presented in this thesis, support ontology developers in their important work

and further the development of systems that integrate machine learning and

symbolic methods.

A
Bibliography

[1] Mark D Wilkinson, Michel Dumontier, IJsbrand Jan Aalbersberg,

Gabrielle Appleton, Myles Axton, Arie Baak, Niklas Blomberg, Jan-

Willem Boiten, Luiz Bonino da Silva Santos, Philip E Bourne, et al. The

fair guiding principles for scientific data management and stewardship.

Scientific data, 3(1):1–9, 2016.

[2] Meisam Booshehri, Lukas Emele, Simon Flügel, Hannah Förster, Jo-

hannes Frey, Ulrich Frey, Martin Glauer, Janna Hastings, Christian Hof-

mann, Carsten Hoyer-Klick, et al. Introducing the open energy ontol-

ogy: Enhancing data interpretation and interfacing in energy systems

analysis. Energy and AI, 5:100074, 2021.

[3] Barry Smith, Michael Ashburner, Cornelius Rosse, Jonathan Bard,

William Bug, Werner Ceusters, Louis J Goldberg, Karen Eilbeck, Amelia

Ireland, Christopher J Mungall, et al. The obo foundry: coordinated

evolution of ontologies to support biomedical data integration. Nature

biotechnology, 25(11):1251–1255, 2007.

[4] Michael Ashburner, Catherine A Ball, Judith A Blake, David Botstein,

Heather Butler, J Michael Cherry, Allan P Davis, Kara Dolinski, Selina S

Dwight, Janan T Eppig, et al. Gene ontology: tool for the unification of

biology. Nature genetics, 25(1):25–29, 2000.

[5] Gene Ontology Consortium. The gene ontology resource: 20 years and

still going strong. Nucleic acids research, 47(D1):D330–D338, 2019.

[6] Kirill Degtyarenko, Paula De Matos, Marcus Ennis, Janna Hastings, Mar-

tin Zbinden, Alan McNaught, Rafael Alcántara, Michael Darsow, Mick-

aël Guedj, and Michael Ashburner. Chebi: a database and ontology

for chemical entities of biological interest. Nucleic acids research, 36

(1):D344–D350, 2007.

119

120

[7] Janna Hastings, Paula De Matos, Adriano Dekker, Marcus Ennis, Bha-

vana Harsha, Namrata Kale, Venkatesh Muthukrishnan, Gareth Owen,

Steve Turner, Mark Williams, et al. The chebi reference database and

ontology for biologically relevant chemistry: enhancements for 2013.

Nucleic acids research, 41(D1):D456–D463, 2012.

[8] Janna Hastings, Gareth Owen, Adriano Dekker, Marcus Ennis, Namrata

Kale, Venkatesh Muthukrishnan, Steve Turner, Neil Swainston, Pedro

Mendes, and Christoph Steinbeck. Chebi in 2016: Improved services

and an expanding collection of metabolites. Nucleic acids research, 44

(D1):D1214–D1219, January 2016. ISSN 1362-4962. doi: 10.1093/nar/

gkv1031.

[9] ChEBI Statistics. https://www.ebi.ac.uk/chebi/
statisticsForward.do, 2024. Accessed: 2024-01-25.

[10] National Library of Medicine – National Center for Biotechnology In-

formation. https://www.ncbi.nlm.nih.gov/pccompound/?term=
(%222023%2F1%2F01%22%5BCreateDate%5D+%3A+%222023%2F1%
2F31%22%5BCreateDate%5D), 2024. Accessed: 2024-01-25.

[11] Sunghwan Kim, Jie Chen, Tiejun Cheng, Asta Gindulyte, Jia He, Siqian

He, Qingliang Li, Benjamin A Shoemaker, Paul A Thiessen, Bo Yu,

Leonid Zaslavsky, Jian Zhang, and Evan E Bolton. PubChem 2023 up-

date. Nucleic Acids Res., 51(D1):D1373–D1380, January 2023. ISSN 0305-

1048. doi: 10.1093/nar/gkac956. URL https://doi.org/10.1093/
nar/gkac956.

[12] Donna Medeiros, Donna White, and Kevin Gabbard. Hype Cycle

for Data and Analytics Programs and Practices, 2023. https://www.
gartner.com/document/4597499, 08 2023.

[13] Tom Gruber. What is an ontology, 1993.

[14] Rudi Studer, V Richard Benjamins, and Dieter Fensel. Knowledge en-

gineering: Principles and methods. Data & knowledge engineering, 25

(1-2):161–197, 1998.

[15] Fabian Neuhaus. On the definition of’ontology’. In JOWO, 2017.

[16] Fabian Neuhaus. What is an ontology? arXiv preprint arXiv:1810.09171,

2018.

[17] Darren A Natale, Cecilia N Arighi, Judith A Blake, Jonathan Bona, Chum-

ing Chen, Sheng-Chih Chen, Karen R Christie, Julie Cowart, Peter

https://www.ebi.ac.uk/chebi/statisticsForward.do
https://www.ebi.ac.uk/chebi/statisticsForward.do
https://www.ncbi.nlm.nih.gov/pccompound/?term=(%222023%2F1%2F01%22%5BCreateDate%5D+%3A+%222023%2F1%2F31%22%5BCreateDate%5D)
https://www.ncbi.nlm.nih.gov/pccompound/?term=(%222023%2F1%2F01%22%5BCreateDate%5D+%3A+%222023%2F1%2F31%22%5BCreateDate%5D)
https://www.ncbi.nlm.nih.gov/pccompound/?term=(%222023%2F1%2F01%22%5BCreateDate%5D+%3A+%222023%2F1%2F31%22%5BCreateDate%5D)
https://doi.org/10.1093/nar/gkac956
https://doi.org/10.1093/nar/gkac956
https://www.gartner.com/document/4597499
https://www.gartner.com/document/4597499

121

D’Eustachio, Alexander D Diehl, et al. Protein ontology (pro): enhanc-

ing and scaling up the representation of protein entities. Nucleic acids

research, 45(D1):D339–D346, 2017.

[18] Suzi A Aleksander, James Balhoff, Seth Carbon, J Michael Cherry,

Harold J Drabkin, Dustin Ebert, Marc Feuermann, Pascale Gaudet,

Nomi L Harris, et al. The gene ontology knowledgebase in 2023. Ge-

netics, 224(1):iyad031, 2023.

[19] Rebecca Jackson, Nicolas Matentzoglu, James A Overton, Randi Vita,

James P Balhoff, Pier Luigi Buttigieg, Seth Carbon, Melanie Courtot,

Alexander D Diehl, Damion M Dooley, William D Duncan, Nomi L Har-

ris, Melissa A Haendel, Suzanna E Lewis, Darren A Natale, David Osumi-

Sutherland, Alan Ruttenberg, Lynn M Schriml, Barry Smith, Christian J

Stoeckert Jr., Nicole A Vasilevsky, Ramona L Walls, Jie Zheng, Christo-

pher J Mungall, and Bjoern Peters. OBO Foundry in 2021: opera-

tionalizing open data principles to evaluate ontologies. Database, 2021:

baab069, 10 2021. ISSN 1758-0463. doi: 10.1093/database/baab069.

URL https://doi.org/10.1093/database/baab069.

[20] David Weininger. Smiles, a chemical language and information system.

1. introduction to methodology and encoding rules. Journal of chemical

information and computer sciences, 28(1):31–36, 1988.

[21] OpenSMILES specification — opensmiles.org. http://opensmiles.
org/opensmiles.html, 2024. [Accessed 31-01-2024].

[22] Harry L Morgan. The generation of a unique machine description for

chemical structures-a technique developed at chemical abstracts ser-

vice. Journal of chemical documentation, 5(2):107–113, 1965.

[23] David Rogers and Mathew Hahn. Extended-connectivity fingerprints.

Journal of chemical information and modeling, 50(5):742–754, 2010.

[24] Greg Landrum. RDKit: Open-source cheminformatics, 2020. URL

https://www.rdkit.org/.

[25] Yannick Djoumbou Feunang, Roman Eisner, Craig Knox, Leonid Che-

pelev, Janna Hastings, Gareth Owen, Eoin Fahy, Christoph Steinbeck,

Shankar Subramanian, Evan Bolton, Russell Greiner, and David S.

Wishart. ClassyFire: automated chemical classification with a com-

prehensive, computable taxonomy. Journal of Cheminformatics, 8(1):

61, December 2016. ISSN 1758-2946. doi: 10.1186/s13321-016-0174-y.

URL https://jcheminf.biomedcentral.com/articles/10.1186/
s13321-016-0174-y.

https://doi.org/10.1093/database/baab069
http://opensmiles.org/opensmiles.html
http://opensmiles.org/opensmiles.html
https://www.rdkit.org/
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0174-y
https://jcheminf.biomedcentral.com/articles/10.1186/s13321-016-0174-y

122

[26] Oliver Kutz, Janna Hastings, and Till Mossakowski. Modelling Highly

Symmetrical Molecules: Linking Ontologies and Graphs Artificial Intel-

ligence: Methodology, Systems, and Applications. In Allan Ramsay and

Gennady Agre, editors, Artificial Intelligence: Methodology, Systems, and

Applications, volume 7557 of Lecture Notes in Computer Science, pages

103–111. Springer Berlin / Heidelberg, Berlin, Heidelberg, 2012. ISBN

978-3-642-33184-8. doi: 10.1007/978-3-642-33185-5_11. URL http:
//dx.doi.org/10.1007/978-3-642-33185-5_11. Section: 11.

[27] David S Wishart, Sagan Girod, Harrison Peters, Eponine Oler, Juan Jovel,

Zachary Budinski, Ralph Milford, Vicki W Lui, Zinat Sayeeda, Robert

Mah, et al. Chemfont: the chemical functional ontology resource. Nu-

cleic Acids Research, 51(D1):D1220–D1229, 2023.

[28] Tin Kam Ho. Random decision forests. In Proceedings of 3rd inter-

national conference on document analysis and recognition, volume 1,

pages 278–282. IEEE, 1995.

[29] Leo Breiman. Random forests. Machine learning, 45:5–32, 2001.

[30] J Mercer. Functions of positive and negativetypeand their connection

with theory ofintegral equations. Philosophical Trinsoctions of Royal So-

ciety, pages 4–415, 1909.

[31] Sepp Hochreiter and Jürgen Schmidhuber. Long short-term memory.

Neural computation, 9(8):1735–1780, 1997.

[32] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion

Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention

is all you need. arXiv preprint arXiv:1706.03762, 30, 2017.

[33] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. Layer normal-

ization. arXiv preprint arXiv:1607.06450, 2016.

[34] Mohamad Ballout, Ulf Krumnack, Gunther Heidemann, and Kai-Uwe

Kühnberger. Opening the black box: analyzing attention weights and

hidden states in pre-trained language models for non-language tasks.

In World Conference on Explainable Artificial Intelligence, pages 3–25.

Springer, 2023.

[35] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova.

Bert: Pre-training of deep bidirectional transformers for language un-

derstanding. arXiv preprint arXiv:1810.04805, 2018.

[36] Kevin Clark, Minh-Thang Luong, Quoc V Le, and Christopher D Man-

ning. Electra: Pre-training text encoders as discriminators rather than

generators. arXiv preprint arXiv:2003.10555, 2020.

http://dx.doi.org/10.1007/978-3-642-33185-5_11
http://dx.doi.org/10.1007/978-3-642-33185-5_11

123

[37] Pierre Blanchard, Desmond J Higham, and Nicholas J Higham. Accurate

computation of the log-sum-exp and softmax functions. arXiv preprint

arXiv:1909.03469, 2019.

[38] Houssem Assadi. Construction of a Regional Ontology from Text and its

Use within a Documentary System. In FOIS’98 - 1st International con-

ference on Formal Ontology in Information Systems, volume 46 of Fron-

tiers in Artificial Intelligence and Applications, pages 236–252, Trento,

Italy, June 1998. IOS Press. URL https://hal.archives-ouvertes.
fr/hal-01617868.

[39] Alexander Maedche and Steffen Staab. Ontology learning for the seman-

tic web. IEEE Intelligent systems, 16(2):72–79, 2001.

[40] Chris Biemann. Ontology learning from text: A survey of methods. In

LDV forum, volume 20, pages 75–93, 2005.

[41] Muhammad Nabeel Asim, Muhammad Wasim, Muhammad Us-

man Ghani Khan, Waqar Mahmood, and Hafiza Mahnoor Abbasi. A sur-

vey of ontology learning techniques and applications. Database, 2018:

bay101, 10 2018. ISSN 1758-0463. doi: 10.1093/database/bay101. URL

https://doi.org/10.1093/database/bay101. bay101.

[42] Ana Ozaki. Learning description logic ontologies: Five approaches.

where do they stand? KI-Künstliche Intelligenz, 34(3):317–327, 2020.

[43] Efthymios G Drymonas. Ontology learning from text based on multi-

word term concepts: the ontogain method. Master of Science thesis,

Technical University of Crete, Greece, 2009.

[44] Euthymios Drymonas, Kalliopi Zervanou, and Euripides GM Petrakis.

Unsupervised ontology acquisition from plain texts: the ontogain sys-

tem. In Natural Language Processing and Information Systems: 15th

International Conference on Applications of Natural Language to Infor-

mation Systems, NLDB 2010, Cardiff, UK, June 23-25, 2010. Proceedings

15, pages 277–287. Springer, 2010.

[45] Roberto Navigli, Paola Velardi, and Aldo Gangemi. Ontology learning

and its application to automated terminology translation. IEEE Intelli-

gent systems, 18(1):22–31, 2003.

[46] Mark Sanderson and Bruce Croft. Deriving concept hierarchies from

text. In Proceedings of the 22nd annual international ACM SIGIR confer-

ence on Research and development in information retrieval, pages 206–

213, 1999.

https://hal.archives-ouvertes.fr/hal-01617868
https://hal.archives-ouvertes.fr/hal-01617868
https://doi.org/10.1093/database/bay101

124

[47] Hermine Njike Fotzo and Patrick Gallinari. Learning" generaliza-

tion/specialization" relations between concepts-application for auto-

matically building thematic document hierarchies. In RIAO, volume 4,

pages 143–155. Citeseer, 2004.

[48] Sara Althubaiti, Şenay Kafkas, Marwa Abdelhakim, and Robert Hoehn-

dorf. Combining lexical and context features for automatic ontology

extension. Journal of biomedical semantics, 11(1):1–13, 2020.

[49] Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg S Corrado, and Jeff Dean.

Distributed representations of words and phrases and their composi-

tionality. Advances in neural information processing systems, 26, 2013.

[50] Licong Cui, Wei Zhu, Shiqiang Tao, James T Case, Olivier Bodenrei-

der, and Guo-Qiang Zhang. Mining non-lattice subgraphs for detecting

missing hierarchical relations and concepts in SNOMED CT. Journal of

the American Medical Informatics Association, 24(4):788–798, 02 2017.

ISSN 1067-5027. doi: 10.1093/jamia/ocw175. URL https://doi.org/
10.1093/jamia/ocw175.

[51] Alina Petrova, Yue Ma, George Tsatsaronis, Maria Kissa, Felix Distel,

Franz Baader, and Michael Schroeder. Formalizing biomedical con-

cepts from textual definitions. Journal of biomedical semantics, 6(1):

1–17, 2015.

[52] Robert Arp, Barry Smith, and Andrew D Spear. Building ontologies with

basic formal ontology. Mit Press, 2015.

[53] Stefano Borgo, Roberta Ferrario, Aldo Gangemi, Nicola Guarino, Clau-

dio Masolo, Daniele Porello, Emilio M Sanfilippo, and Laure Vieu. Dolce:

A descriptive ontology for linguistic and cognitive engineering. Applied

ontology, 17(1):45–69, 2022.

[54] Alcides Lopes, Joel Carbonera, Daniela Schmidt, Luan Garcia, Fabri-

cio Rodrigues, and Mara Abel. Using terms and informal definitions

to classify domain entities into top-level ontology concepts: An ap-

proach based on language models. Knowledge-Based Systems, 265:

110385, 2023.

[55] Fabian Neuhaus and Janna Hastings. Ontology development is

consensus creation, not (merely) representation. Appl. Ontol-

ogy, 17(4):495–513, January 2022. ISSN 1570-5838. doi: 10.

3233/AO-220273. URL https://content.iospress.com/articles/
applied-ontology/ao220273. Publisher: IOS Press.

[56] Nele Köhler and Fabian Neuhaus. The mercurial top-level ontology of

large language models, 2024.

https://doi.org/10.1093/jamia/ocw175
https://doi.org/10.1093/jamia/ocw175
https://content.iospress.com/articles/applied-ontology/ao220273
https://content.iospress.com/articles/applied-ontology/ao220273

125

[57] Pablo Moreno, Stephan Beisken, Bhavana Harsha, Venkatesh Muthukr-

ishnan, Ilinca Tudose, Adriano Dekker, Stefanie Dornfeldt, Franziska

Taruttis, Ivo Grosse, Janna Hastings, Steffen Neumann, and Christoph

Steinbeck. BiNChE: a web tool and library for chemical enrichment

analysis based on the ChEBI ontology. BMC Bioinformatics, 16:56, 2015.

doi: 10.1186/s12859-015-0486-3.

[58] David P. Hill, Nico Adams, Mike Bada, Colin Batchelor, Tanya Z. Berar-

dini, Heiko Dietze, Harold J. Drabkin, Marcus Ennis, Rebecca E. Foul-

ger, Midori A. Harris, Janna Hastings, Namrata S. Kale, Paula de Matos,

Christopher J. Mungall, Gareth Owen, Paola Roncaglia, Christoph Stein-

beck, Steve Turner, and Jane Lomax. Dovetailing biology and chem-

istry: integrating the gene ontology with the chebi chemical ontol-

ogy. BMC genomics, 14:513, July 2013. ISSN 1471-2164. doi: 10.1186/

1471-2164-14-513.

[59] Gang Fu, Colin Batchelor, Michel Dumontier, Janna Hastings, Egon

Willighagen, and Evan Bolton. PubChemRDF: towards the semantic

annotation of PubChem compound and substance databases. Jour-

nal of Cheminformatics, 7:34, 2015. URL https://doi.org/10.1186/
s13321-015-0084-4.

[60] María Herrero-Zazo, Isabel Segura-Bedmar, Janna Hastings, and

Paloma Martínez. DINTO: Using OWL Ontologies and SWRL Rules to

Infer Drug-Drug Interactions and Their Mechanisms. Journal of chem-

ical information and modeling, 55(8):1698–1707, August 2015. ISSN

1549-960X. doi: 10.1021/acs.jcim.5b00119. URL https://doi.org/
10.1021/acs.jcim.5b00119.

[61] Janna Hastings, Despoina Magka, Colin Batchelor, Lian Duan, Robert

Stevens, Marcus Ennis, and Christoph Steinbeck. Structure-based clas-

sification and ontology in chemistry. Journal of cheminformatics, 4:8,

April 2012. ISSN 1758-2946. doi: 10.1186/1758-2946-4-8.

[62] Despoina Magka, Markus Krötzsch, and Ian Horrocks. A rule-based

ontological framework for the classification of molecules. Journal of

Biomedical Semantics, 5(1):17, April 2014. ISSN 2041-1480. doi: 10.

1186/2041-1480-5-17.

[63] Janna Hastings, Michel Dumontier, Duncan Hull, Matthew Horridge,

Christoph Steinbeck, Ulrike Sattler, Robert Stevens, Tertia Hörne, and

Katarina Britz. Representing chemicals using OWL, description graphs

and rules. In Proc. of OWL: Experiences and Directions (OWLED 2010),

2010.

https://doi.org/10.1186/s13321-015-0084-4
https://doi.org/10.1186/s13321-015-0084-4
https://doi.org/10.1021/acs.jcim.5b00119
https://doi.org/10.1021/acs.jcim.5b00119

126

[64] Despoina Magka, Boris Motik, and Ian Horrocks. Modelling Structured

Domains Using Description Graphs and Logic Programming. In David

Hutchison et al., editors, The Semantic Web: Research and Applica-

tions, volume 7295 of Lecture Notes in Computer Science, pages 330–344.

Springer Berlin Heidelberg, Berlin, Heidelberg, 2012. ISBN 978-3-642-

30283-1. doi: 10.1007/978-3-642-30284-8_29.

[65] Claudia Bobach, Timo Böhme, Ulf Laube, Anett Püschel, and Lutz We-

ber. Automated compound classification using a chemical ontology.

Journal of Cheminformatics, 4(1):1–12, 2012.

[66] Simon Flügel, Martin Glauer, Fabian Neuhaus, and Janna Hastings.

When one logic is not enough: Integrating first-order annotations in

OWL ontologies. Semantic web journal, 2023.

[67] Heinz-Dieter Ebbinghaus and Jörg Flum. Finite model theory, enlarged

edn. Springer Monographs in Mathematics. Springer-Verlag, Berlin,

2006.

[68] Łukasz Maziarka, Tomasz Danel, Sławomir Mucha, Krzysztof Rataj,

Jacek Tabor, and Stanisław Jastrzębski. Molecule attention transformer.

arXiv preprint arXiv:2002.08264, 2020.

[69] David L Mobley. Experimental and calculated small molecule hydration

free energies. 2013.

[70] John S Delaney. Esol: estimating aqueous solubility directly from molec-

ular structure. Journal of chemical information and computer sciences,

44(3):1000–1005, 2004.

[71] Hiroshi Sakiyama, Motohisa Fukuda, and Takashi Okuno. Prediction of

blood-brain barrier penetration (bbbp) based on molecular descriptors

of the free-form and in-blood-form datasets. Molecules, 26(24):7428,

2021.

[72] Sabina Podlewska and Rafał Kafel. Metstabon–online platform for

metabolic stability predictions. International journal of molecular sci-

ences, 19(4):1040, 2018.

[73] Ignacio Pérez-Correa, Pablo D Giunta, Fernando J Mariño, and Javier A

Francesconi. Transformer-based representation of organic molecules

for potential modeling of physicochemical properties. Journal of Chem-

ical Information and Modeling, 63(24):7676–7688, 2023.

[74] Adam C Mater and Michelle L Coote. Deep learning in chemistry. Jour-

nal of chemical information and modeling, 59(6):2545–2559, 2019.

127

[75] Tânia F. G. G. Cova and Alberto A. C. C. Pais. Deep learning for deep

chemistry: Optimizing the prediction of chemical patterns. Frontiers

in chemistry, 7:809, 2019. ISSN 2296-2646. doi: 10.3389/fchem.2019.

00809.

[76] Bharath Ramsundar. Molecular machine learning with DeepChem. PhD

thesis, Stanford University, 2018.

[77] Zhenqin Wu, Bharath Ramsundar, Evan N Feinberg, Joseph Gomes,

Caleb Geniesse, Aneesh S Pappu, Karl Leswing, and Vijay Pande.

Moleculenet: a benchmark for molecular machine learning. Chemical

science, 9(2):513–530, 2018.

[78] Hyun Woo Kim et al. Npclassifier: A deep neural network-based struc-

tural classification tool for natural products, 2020. URL https://doi.
org/10.26434/chemrxiv.12885494.

[79] Kai Dührkop et al. Systematic classification of unknown metabolites

using high-resolution fragmentation mass spectra. Nature Biotech-

nology, pages 1–10, November 2020. ISSN 1546-1696. doi: 10.1038/

s41587-020-0740-8.

[80] Claudio N. Cavasotto and Valeria Scardino. Machine Learning Toxicity

Prediction: Latest Advances by Toxicity End Point. ACS Omega, 7(51):

47536–47546, December 2022. doi: 10.1021/acsomega.2c05693. Pub-

lisher: American Chemical Society.

[81] Hongbin Yang, Lixia Sun, Weihua Li, Guixia Liu, and Yun Tang. In

Silico Prediction of Chemical Toxicity for Drug Design Using Machine

Learning Methods and Structural Alerts. Frontiers in Chemistry, 6, 2018.

ISSN 2296-2646. URL https://www.frontiersin.org/articles/
10.3389/fchem.2018.00030.

[82] Ruili Huang, Menghang Xia, Dac-Trung Nguyen, Tongan Zhao, Srilatha

Sakamuru, Jinghua Zhao, Sampada A. Shahane, Anna Rossoshek, and

Anton Simeonov. Tox21Challenge to Build Predictive Models of Nuclear

Receptor and Stress Response Pathways as Mediated by Exposure to

Environmental Chemicals and Drugs. Frontiers in Environmental Sci-

ence, 3, 2016. ISSN 2296-665X. URL https://www.frontiersin.org/
articles/10.3389/fenvs.2015.00085.

[83] Andreas Mayr, Günter Klambauer, Thomas Unterthiner, and Sepp

Hochreiter. DeepTox: Toxicity Prediction using Deep Learning. Fron-

tiers in Environmental Science, 3, 2016. ISSN 2296-665X. URL https:
//www.frontiersin.org/articles/10.3389/fenvs.2015.00080.

https://doi.org/10.26434/chemrxiv.12885494
https://doi.org/10.26434/chemrxiv.12885494
https://www.frontiersin.org/articles/10.3389/fchem.2018.00030
https://www.frontiersin.org/articles/10.3389/fchem.2018.00030
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00085
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00085
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00080
https://www.frontiersin.org/articles/10.3389/fenvs.2015.00080

128

[84] Aashish Jain and Daisuke Kihara. Nntox: gene ontology-based protein

toxicity prediction using neural network. Scientific reports, 9(1):17923,

2019.

[85] Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. Onto2vec: joint

vector-based representation of biological entities and their ontology-

based annotations. Bioinformatics, 34(13):i52–i60, 2018.

[86] Fatima Zohra Smaili, Xin Gao, and Robert Hoehndorf. Opa2vec: com-

bining formal and informal content of biomedical ontologies to im-

prove similarity-based prediction. Bioinformatics, 35(12):2133–2140,

2019.

[87] Geoffrey G Towell and Jude W Shavlik. Knowledge-based artificial neu-

ral networks. Artificial intelligence, 70(1-2):119–165, 1994.

[88] Rudolf Kruse and Detlef Nauck. Neuro-fuzzy systems. In Computa-

tional Intelligence: Soft Computing and Fuzzy-Neuro Integration with

Applications, pages 230–259. Springer, 1998.

[89] Dong Zhang, Xiao-Li Bai, and Kai-Yuan Cai. Extended neuro-fuzzy mod-

els of multilayer perceptrons. Fuzzy sets and systems, 142(2):221–242,

2004.

[90] Martin Glauer, Robert West, Susan Michie, and Janna Hastings. Esc-

rules: Explainable, semantically constrained rule sets. arXiv preprint

arXiv:2208.12523, 2022.

[91] Janna Hastings, Martin Glauer, Robert West, James Thomas, Alison J

Wright, and Susan Michie. Predicting outcomes of smoking cessation in-

terventions in novel scenarios using ontology-informed, interpretable

machine learning. Wellcome Open Research, 8(503):503, 2023.

[92] Robin Manhaeve, Sebastijan Dumancic, Angelika Kimmig, Thomas De-

meester, and Luc De Raedt. Deepproblog: Neural probabilistic logic

programming. Advances in neural information processing systems, 31,

2018.

[93] Luc De Raedt, Angelika Kimmig, and Hannu Toivonen. Problog: A prob-

abilistic prolog and its application in link discovery. In IJCAI 2007, Pro-

ceedings of the 20th international joint conference on artificial intelli-

gence, pages 2462–2467. IJCAI-INT JOINT CONF ARTIF INTELL, 2007.

[94] Luciano Serafini and Artur d’Avila Garcez. Logic tensor networks: Deep

learning and logical reasoning from data and knowledge. arXiv preprint

arXiv:1606.04422, 2016.

129

[95] Samy Badreddine, Artur d’Avila Garcez, Luciano Serafini, and Michael

Spranger. Logic tensor networks. Artificial Intelligence, 303:103649,

2022.

[96] Eleonora Giunchiglia, Mihaela Cătălina Stoian, Salman Khan, Fabio

Cuzzolin, and Thomas Lukasiewicz. Road-r: The autonomous driving

dataset with logical requirements. Machine Learning, pages 1–31, 2023.

[97] Ryan Riegel, Alexander Gray, Francois Luus, Naweed Khan, Ndivhuwo

Makondo, Ismail Yunus Akhalwaya, Haifeng Qian, Ronald Fagin, Fran-

cisco Barahona, Udit Sharma, et al. Logical neural networks. arXiv

preprint arXiv:2006.13155, 2020.

[98] Maxat Kulmanov, Mohammed Asif Khan, and Robert Hoehndorf.

Deepgo: predicting protein functions from sequence and interactions

using a deep ontology-aware classifier. Bioinformatics, 34(4):660–668,

2018.

[99] Emmanuel Boutet, Damien Lieberherr, Michael Tognolli, Michel

Schneider, and Amos Bairoch. Uniprotkb/swiss-prot: the manually an-

notated section of the uniprot knowledgebase. In Plant bioinformatics:

methods and protocols, pages 89–112. Springer, 2007.

[100] Maxat Kulmanov and Robert Hoehndorf. Deepgoplus: improved pro-

tein function prediction from sequence. Bioinformatics, 36(2):422–429,

2020.

[101] Maxat Kulmanov and Robert Hoehndorf. Deepgozero: improving

protein function prediction from sequence and zero-shot learning

based on ontology axioms. Bioinformatics, 38(Supplement_1):i238–

i245, 2022.

[102] Maxat Kulmanov, Wang Liu-Wei, Yuan Yan, and Robert Hoehndorf. El

embeddings: Geometric construction of models for the description

logic el++. arXiv preprint arXiv:1902.10499, 2019.

[103] Janna Hastings, Martin Glauer, Adel Memariani, Fabian Neuhaus, and

Till Mossakowski. Learning chemistry: exploring the suitability of ma-

chine learning for the task of structure-based chemical ontology clas-

sification. Journal of Cheminformatics, 13(1):1–20, March 2021. ISSN

1758-2946. doi: 10.1186/s13321-021-00500-8. URL https://doi.org/
10.1186/s13321-021-00500-8.

[104] Martin Glauer, Adel Memariani, Fabian Neuhaus, Till Mossakowski, and

Janna Hastings. Interpretable ontology extension in chemistry. Seman-

tic Web, (Preprint):1–22, 2022.

https://doi.org/10.1186/s13321-021-00500-8
https://doi.org/10.1186/s13321-021-00500-8

130

[105] Adel Memariani, Martin Glauer, Fabian Neuhaus, Till Mossakowski, and

Janna Hastings. Automated and explainable ontology extension based

on deep learning: A case study in the chemical domain. In Roberto Con-

falonieri, Oliver Kutz, and Diego Calvanese, editors, Proceedings of the

Workshop on Data meets Applied Ontologies in Explainable AI (DAO-XAI

2021) part of Bratislava Knowledge September (BAKS 2021), Bratislava,

Slovakia, September 18th to 19th, 2021, volume 2998 of CEUR Work-

shop Proceedings. CEUR-WS.org, 2021. URL http://ceur-ws.org/
Vol-2998/paper1.pdf.

[106] Martin Glauer, F Neuhaus, T Mossakowski, Adel Memariani, Janna Hast-

ings, P Hitzler, MK Sarker, and A Eberhart. Neuro-symbolic semantic

learning for chemistry. Compendium of Neurosymbolic Artificial Intelli-

gence. Frontiers in Artificial Intelligence and Applications, 369:460–484,

2023.

[107] Philippe Schwaller, Theophile Gaudin, David Lanyi, Costas Bekas, and

Teodoro Laino. “found in translation”: predicting outcomes of complex

organic chemistry reactions using neural sequence-to-sequence mod-

els. Chemical science, 9(28):6091–6098, 2018.

[108] Oren Melamud, Jacob Goldberger, and Ido Dagan. context2vec: Learn-

ing generic context embedding with bidirectional LSTM. In Proceed-

ings of the 20th SIGNLL Conference on Computational Natural Lan-

guage Learning, pages 51–61, Berlin, Germany, August 2016. Associa-

tion for Computational Linguistics. doi: 10.18653/v1/K16-1006. URL

https://aclanthology.org/K16-1006.

[109] Verna Dankers, Elia Bruni, and Dieuwke Hupkes. The paradox of the

compositionality of natural language: A neural machine translation

case study. In Smaranda Muresan, Preslav Nakov, and Aline Villavicen-

cio, editors, Proceedings of the 60th Annual Meeting of the Association for

Computational Linguistics (Volume 1: Long Papers), pages 4154–4175,

Dublin, Ireland, May 2022. Association for Computational Linguistics.

doi: 10.18653/v1/2022.acl-long.286. URL https://aclanthology.
org/2022.acl-long.286.

[110] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel,

M. Blondel, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Pas-

sos, D. Cournapeau, M. Brucher, M. Perrot, and E. Duchesnay. Scikit-

learn: Machine learning in Python. Journal of Machine Learning Re-

search, 12:2825–2830, 2011.

[111] Carlos N. Silla and Alex A. Freitas. A survey of hierarchical classifica-

tion across different application domains. Data Mining and Knowl-

http://ceur-ws.org/Vol-2998/paper1.pdf
http://ceur-ws.org/Vol-2998/paper1.pdf
https://aclanthology.org/K16-1006
https://aclanthology.org/2022.acl-long.286
https://aclanthology.org/2022.acl-long.286

131

edge Discovery, 22(1-2):31–72, January 2011. ISSN 1384-5810, 1573-756X.

doi: 10.1007/s10618-010-0175-9. URL http://link.springer.com/
10.1007/s10618-010-0175-9.

[112] Rafal Jozefowicz, Oriol Vinyals, Mike Schuster, Noam Shazeer, and

Yonghui Wu. Exploring the limits of language modeling. arXiv preprint

arXiv:1602.02410, 2016.

[113] Stephen R. Heller, Alan McNaught, Igor Pletnev, Stephen Stein, and

Dmitrii Tchekhovskoi. InChI, the IUPAC International Chemical Identi-

fier. Journal of Cheminformatics, 7(1):23, May 2015. ISSN 1758-2946.

doi: 10.1186/s13321-015-0068-4. URL https://doi.org/10.1186/
s13321-015-0068-4.

[114] Paul J Karol. The inchi code, 2018.

[115] Martin Glauer, Fabian Neuhaus, Simon Flügel, Marie Wosny, Till

Mossakowski, Adel Memariani, Johannes Schwerdt, and Janna Hastings.

Chebifier: Automating semantic classification in chebi to accelerate

data-driven discovery. Digital Discovery, 2024.

[116] Seyone Chithrananda, Gabe Grand, and Bharath Ramsundar. Chem-

berta: Large-scale self-supervised pretraining for molecular property

prediction. arXiv preprint arXiv:2010.09885, 2020.

[117] Jesse Vig, Ali Madani, Lav R. Varshney, Caiming Xiong, Richard Socher,

and Nazneen Fatema Rajani. BERTology Meets Biology: Interpreting At-

tention in Protein Language Models. arXiv:2006.15222 [cs, q-bio], March

2021. URL http://arxiv.org/abs/2006.15222.

[118] Pooya Moradi, Nishant Kambhatla, and Anoop Sarkar. Interrogating the

explanatory power of attention in neural machine translation. arXiv

preprint arXiv:1910.00139, 2019.

[119] Danish Pruthi, Mansi Gupta, Bhuwan Dhingra, Graham Neubig, and

Zachary C Lipton. Learning to deceive with attention-based explana-

tions. arXiv preprint arXiv:1909.07913, 2019.

[120] Sofia Serrano and Noah A Smith. Is attention interpretable? arXiv

preprint arXiv:1906.03731, 2019.

[121] Jesse Vig. A multiscale visualization of attention in the transformer

model. arXiv preprint arXiv:1906.05714, 2019.

[122] João D Ferreira, Janna Hastings, and Francisco M Couto. Exploiting

disjointness axioms to improve semantic similarity measures. Bioinfor-

matics, 29(21):2781–2787, 2013. Publisher: Oxford University Press.

http://link.springer.com/10.1007/s10618-010-0175-9
http://link.springer.com/10.1007/s10618-010-0175-9
https://doi.org/10.1186/s13321-015-0068-4
https://doi.org/10.1186/s13321-015-0068-4
http://arxiv.org/abs/2006.15222

132

[123] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-

balanced loss based on effective number of samples. In Proceedings

of the IEEE/CVF conference on computer vision and pattern recognition,

pages 9268–9277, 2019.

[124] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Brad-

bury, Gregory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein,

Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach

DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit

Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. Pytorch: An impera-

tive style, high-performance deep learning library, 2019.

[125] Martín Abadi, Ashish Agarwal, Paul Barham, Eugene Brevdo, Zhifeng

Chen, Craig Citro, Greg S. Corrado, Andy Davis, Jeffrey Dean, Matthieu

Devin, Sanjay Ghemawat, Ian Goodfellow, Andrew Harp, Geoffrey Irv-

ing, Michael Isard, Yangqing Jia, Rafal Jozefowicz, Lukasz Kaiser, Man-

junath Kudlur, Josh Levenberg, Dandelion Mané, Rajat Monga, Sherry

Moore, Derek Murray, Chris Olah, Mike Schuster, Jonathon Shlens,

Benoit Steiner, Ilya Sutskever, Kunal Talwar, Paul Tucker, Vincent Van-

houcke, Vijay Vasudevan, Fernanda Viégas, Oriol Vinyals, Pete War-

den, Martin Wattenberg, Martin Wicke, Yuan Yu, and Xiaoqiang Zheng.

TensorFlow: Large-scale machine learning on heterogeneous systems,

2015. URL https://www.tensorflow.org/. Software available from

tensorflow.org.

[126] William Falcon and The PyTorch Lightning team. PyTorch Lightning,

March 2019. URL https://github.com/Lightning-AI/lightning.

[127] Fernando Zhapa-Camacho, Maxat Kulmanov, and Robert Hoehndorf.

mowl: Python library for machine learning with biomedical ontologies.

Bioinformatics, 39(1):btac811, 2023.

[128] Martin Larralde. Developing python and rust libraries to improve the

ontology ecosystem. F1000Research, 8:1500, 2019. URL https://doi.
org/10.7490/f1000research.1117405.1. poster.

[129] Phillip Lord and Jennifer D Warrender. Horned-owl: Building ontologies

at big data scale. In ICBO, pages 134–136, 2021.

[130] Till Mossakowski, Christian Maeder, and Klaus Lüttich. The hetero-

geneous tool set, hets. In International Conference on Tools and Al-

gorithms for the Construction and Analysis of Systems, pages 519–522.

Springer, 2007.

https://www.tensorflow.org/
https://github.com/Lightning-AI/lightning
https://doi.org/10.7490/f1000research.1117405.1
https://doi.org/10.7490/f1000research.1117405.1

133

[131] Parit Bansal, Anne Morgat, Kristian B. Axelsen, Venkatesh Muthukr-

ishnan, Elisabeth Coudert, Lucila Aimo, Nevila Hyka-Nouspikel, Elis-

abeth Gasteiger, Arnaud Kerhornou, Teresa Batista Neto, Monica Poz-

zato, Marie-Claude Blatter, Alex Ignatchenko, Nicole Redaschi, and Alan

Bridge. Rhea, the reaction knowledgebase in 2022. Nucleic Acids Re-

search, 50(D1):D693–D700, January 2022. ISSN 1362-4962. doi: 10.1093/

nar/gkab1016.

[132] Janna Hastings. AI for Scientific Discovery. CRC Press, June 2023. ISBN

978-1-00-088516-3. Google-Books-ID: hOS1EAAAQBAJ.

[133] Laura von Rueden, Sebastian Mayer, Katharina Beckh, Bogdan Georgiev,

Sven Giesselbach, Raoul Heese, Birgit Kirsch, Michal Walczak, Julius

Pfrommer, Annika Pick, Rajkumar Ramamurthy, Jochen Garcke, Chris-

tian Bauckhage, and Jannis Schuecker. Informed Machine Learning - A

Taxonomy and Survey of Integrating Prior Knowledge into Learning Sys-

tems. IEEE Transactions on Knowledge and Data Engineering, pages 1–1,

2021. ISSN 1558-2191. doi: 10.1109/TKDE.2021.3079836.

[134] Martin Glauer, Fabian Neuhaus, Till Mossakowski, and Janna Hast-

ings. Ontology pre-training for poison prediction. In Dietmar Seipel

and Alexander Steen, editors, KI 2023: Advances in Artificial Intelli-

gence, volume 46 of Lecture Notes in Artificial Intelligence, pages 31–45,

Cham, 2023. Springer Nature Switzerland. ISBN 978-3-031-42608-7. doi:

10.48550/arXiv.2301.08577. URL https://doi.org/10.48550/arXiv.
2301.08577. Best paper award.

[135] Janna Hastings. Primer on Ontologies. In Christophe Dessimoz and

Nives Škunca, editors, The Gene Ontology Handbook, volume 1446 of

Methods in Molecular Biology, pages 3–13. Springer New York, New York,

NY, 2017. ISBN 978-1-4939-3741-7 978-1-4939-3743-1. doi: 10.1007/

978-1-4939-3743-1_1. URL http://link.springer.com/10.1007/
978-1-4939-3743-1_1. Series Title: Methods in Molecular Biology.

[136] Gabriel Idakwo, Sundar Thangapandian, Joseph Luttrell, Yan Li, Nan

Wang, Zhaoxian Zhou, Huixiao Hong, Bei Yang, Chaoyang Zhang, and

Ping Gong. Structure–activity relationship-based chemical classifica-

tion of highly imbalanced tox21 datasets. Journal of cheminformatics,

12(1):1–19, 2020.

[137] Frank Van Harmelen and Annette Ten Teije. A boxology of design pat-

terns for hybrid learning and reasoning systems. Journal of Web Engi-

neering, 18(1-3):97–123, 2019.

https://doi.org/10.48550/arXiv.2301.08577
https://doi.org/10.48550/arXiv.2301.08577
http://link.springer.com/10.1007/978-1-4939-3743-1_1
http://link.springer.com/10.1007/978-1-4939-3743-1_1

134

[138] Jiarui Chen, Yain-Whar Si, Chon-Wai Un, and Shirley W. I. Siu. Chemical

toxicity prediction based on semi-supervised learning and graph convo-

lutional neural network. Journal of Cheminformatics, 13(1):93, Novem-

ber 2021. ISSN 1758-2946. doi: 10.1186/s13321-021-00570-8.

[139] Wenhui Cui, Yanlin Liu, Yuxing Li, Menghao Guo, Yiming Li, Xiuli Li,

Tianle Wang, Xiangzhu Zeng, and Chuyang Ye. Semi-supervised brain

lesion segmentation with an adapted mean teacher model. In Informa-

tion Processing in Medical Imaging: 26th International Conference, IPMI

2019, Hong Kong, China, June 2–7, 2019, Proceedings 26, pages 554–565.

Springer, 2019.

[140] Simon Flügel, Martin Glauer, Till Mossakowski, and Fabian Neuhaus. A

semantic loss for ontology classification, 2024.

[141] Susan A Gelman. Learning from others: Children’s construction of con-

cepts. Annual review of psychology, 60:115–140, 2009.

[142] Jingyi Xu, Zilu Zhang, Tal Friedman, Yitao Liang, and Guy Van den

Broeck. A semantic loss function for deep learning with symbolic knowl-

edge. In Jennifer Dy and Andreas Krause, editors, Proceedings of the

35th International Conference on Machine Learning, volume 80 of Pro-

ceedings of Machine Learning Research, pages 5502–5511. PMLR, 10–15

Jul 2018. URL https://proceedings.mlr.press/v80/xu18h.html.

[143] Martin Grohe. The descriptive complexity of graph neural networks,

2023.

https://proceedings.mlr.press/v80/xu18h.html

	Abstract
	Zusammenfassung
	Introduction and Motivation
	Objectives of this Thesis
	Structure of this Thesis

	Background
	Ontologies
	ChEBI
	Cheminformatics
	SMILES
	Molecular Fingerprints
	ClassyFire

	Machine Learning
	Logistic Regression
	K-Nearest Neighbor
	Decision Trees and Random Forests
	Naive Bayes
	Linear Discriminant Analysis
	Support Vector Machine
	LSTM
	Transformers and Electra
	Binary Cross-Entropy Loss (BCE)
	Evaluation Metrics

	Related Work
	Ontology Learning
	Chemical Ontologies and Structure-Based Classification of Chemicals
	Machine Learning and Deep Learning Approaches
	Training with Semantic Support

	Ontology Extension
	Data preparation
	A Balanced Approach
	Lifting Data Limitations
	Going Beyond ChEBI

	Input Encodings
	Fingerprints
	Tokenization

	Prediction Model
	Traditional Approaches
	Sequence-based models

	Evaluation
	Evaluation of the Traditional Methods and LSTM
	Evaluation of the Electra-based Models

	The ChEB-AI Tool
	Chebifier
	The Chebifier System
	User study
	Results

	Discussion

	Semantic Support
	Ontology Pre-Training
	Datasets
	Methods
	Results
	Discussion

	Semantic Loss
	Methods
	Results
	Discussion

	Conclusions and Future Work
	Future Work

	Bibliography

