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Abstract

The accurate characterization of aquifer heterogeneities in terms of hydraulic pa-

rameters is an essential precondition for groundwater modeling tasks. Therefore, a

reliable prediction of flow and transport processes at a given site strongly depends on

the accuracy of conducted field experiments, and likewise on the robustness of the

available data processing and inversion techniques to derive the hydraulic conduc-

tivity K and its structural features at different scales. This thesis develops several

new inversion approaches that allow inferring a K-distribution based on induced

polarization (IP) and/or hydraulic tomography (HT) data.

Geophysical methods are considered appealing for performing such imaging tasks

due to their great efficiency in the field. In particular, IP has frequently been used

to infer hydraulic parameters in situ. Based on the conceptual similarities between

groundwater flow and electrical conduction processes, various petrophysical relations

between IP parameters and hydraulic properties have been derived from laboratory

experiments. They can be used to estimate K, typically within unconsolidated

sediments. In a novel approach, these petrophysical laws are directly incorporated

into an IP inversion procedure, so that the spatial distribution of K is a straight

result of the inversion, and no additional processing steps are required. The new

method is implemented and tested synthetically on an aquifer analog data set,

revealing that structural features can be reconstructed with high resolution and

accuracy, and that the K-estimates are reliable, especially when being calibrated

with measured hydraulic data. This is underlined by performing synthetic transport

modeling experiments, where using the IP inversion results yields tracer plumes that

are comparable with those derived from the original data set. The results highlight

the great potential of the IP method for providing hydraulic information relevant to

groundwater modeling tasks.

However,K-estimates based on geophysical data always bear a significant amount

of uncertainty due to the approximative character of the petrophysical relations and

their dependency on specific assumptions for the geological setting. In contrast,

hydraulic methods, such as HT, test for the hydraulic parameters directly, and are
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Abstract

therefore more reliable for K-quantification. Performing a travel time inversion of

HT data is an easy and computationally efficient approach for processing hydraulic

information. Therefore, it serves as a reference point for comparing results from

new inversion methods throughout this thesis.

Since the classical travel time approach is based on continuum models, it is often

not suitable for fractured rock. In such cases, discrete fracture network (DFN)

models can be used to infer individual fractures from the HT data. However, in

some rock types, both fracture and matrix flow are hydraulically relevant and should

be considered. To combine the two model assumptions, a hybrid DFN inversion is

developed that accounts for groundwater flow through the matrix and individual

fractures. The new approach is tested on a field data set from a fractured-porous

site in Göttingen, Germany. It is shown that the experimental data are fitted more

precisely by the hybrid DFN inversion compared to a purely fracture-based approach

and to a travel time inversion. Furthermore, the subsurface model based on the

hybrid approach is more suitable to predict heat tracer tests that have also been

conducted at the site.

In the final step, a joint inversion for IP and HT is implemented, which allows for

computing a common K-distribution that is supported equally by both data types.

The proposed approach leverages the complementary strengths of both methods

in terms of sensitivity distribution, practically achievable spatial resolution, and re-

liability of K-estimates. The joint inversion approach utilizes the aforementioned

IP-K inversion, as well as a travel time approach for the HT data. It is tested on a

horizontally layered synthetic model case to illustrate the potential of jointly invert-

ing the data, and the advantages compared to individual inversions. In addition, it

is shown how petrophysical uncertainties contained in the IP data can be corrected

automatically by including the typically more reliable K-estimates from HT.

All new inversion methods developed in this thesis facilitate a more accurate

characterization of aquifer heterogeneities, i.e., high resolution imaging of hydraulic

conductivity K. However, the specific field method, the acquisition setup of the

experiments, and the actual data processing and inversion techniques always have

to be chosen carefully based on the geological setting. Future research should

thus focus on applying the new inversion methodologies to more field cases to

enhance the experience regarding the applicability to certain in situ conditions.

Ultimately, the combined application of geophysical and hydraulic methods is an

important step towards more reliable groundwater modeling results, leading to a

better understanding and prediction of flow and transport processes.
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Zusammenfassung

Die genaue Charakterisierung von Aquiferheterogenitäten hinsichtlich hydraulischer

Parameter ist eine wichtige Voraussetzung für Grundwassermodellierungsaufgaben.

Dabei hängt eine verlässliche Vorhersage der Fließ- und Transportprozesse an einem

Standort enorm von der Robustheit der verfügbaren Datenprozessierungs- und Inver-

sionstechniken für die genutzten Aquifercharakterisierungsmethoden ab. Im Rahmen

dieser Arbeit werden daher verschiedene neue Inversionsansätze entwickelt, welche

die Berechnung der hydraulischen Leitfähigkeit K aus Messungen der Induzierten

Polarisation (IP) und/oder Hydraulischer Tomographie (HT) erlauben.

Geophysikalische Methoden gelten aufgrund ihrer Effizienz in der Feldanwen-

dung als vielversprechend für die in-situ-Bestimmung hydraulischer Parameter. Auf

Grundlage der konzeptionellen Ähnlichkeiten von Grundwasserfließ- und elektrischen

Leitfähigkeitsprozessen konnte mittels Laborexperimenten bereits eine Vielzahl pe-

trophysikalischer Zusammenhänge zwischen IP-Parametern und hydraulischen Ei-

genschaften hergeleitet werden, die für die K-Abschätzung insbesondere in Locker-

sedimenten Anwendung finden. Diese Gesetzmäßigkeiten werden nun direkt in die

IP-Inversion integriert, sodass die K-Verteilung ein direktes Inversionsergebnis ist

und keine zusätzlichen Prozessierungsschritte notwendig sind. Die Methode wird

für einen Aquiferanalog-Datensatz implementiert und mittels synthetisch erzeug-

ter Messdaten getestet. Dabei kann eine hochaufgelöste Rekonstruktion der Struk-

turelemente erreicht werden und die K-Abschätzung ist insbesondere dann zu-

verlässig, wenn eine Kalibrierung mit hydraulischen Daten erfolgt. Dies wird durch

synthetische Transportmodellierungsexperimente unterstrichen, bei denen die IP-

Inversionsergebnisse Tracerdurchbrüche korrekt vorhersagen.

Allerdings sind die K-Schätzungen aus geophysikalischen Daten stets jenen Un-

sicherheiten unterworfen, die aus dem approximativen Charakter der petrophysikali-

schen Zusammenhänge sowie aus deren eingeschränkter Anwendbarkeit für spezifi-

sche Standortbedingungen erwachsen. Im Gegensatz dazu können pumptestbasierte

Methoden die hydraulischen Parameter auf direktere Weise herleiten, sodass die K-

Quantifizierung oft zuverlässiger ist. Für die Nutzung von HT-Daten ist die Lauf-
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zeitinversion ein beliebter, weil rechenzeiteffizienter Ansatz, der daher im Rahmen

dieser Arbeit als Referenz zur Bewertung weiterer Ergebnisse herangezogen wird.

Da klassische laufzeitbasierte Inversionen jedoch auf Kontinuumsmodellen beru-

hen, sind sie für geklüftete Gesteine meist unzureichend. Stattdessen sollten discrete

fracture networks (DFNs) verwendet werden, um ein Netzwerk diskreter Klüfte aus

den HT-Daten abzuleiten. In einigen Materialien sind allerdings sowohl Einzelklüfte

als auch die Gesteinsmatrix hydraulisch relevant. Um beide Modellannahmen zu ver-

binden, wird eine hybride DFN-Inversion entwickelt, die Fließprozesse durch die Ma-

trix und durch Einzelklüfte berücksichtigt. Dieser neue Ansatz wird an HT-Felddaten

getestet, die an einem porös-geklüfteten Standort in Göttingen gewonnen wurden.

Dabei wird mit dem hybriden Ansatz ein verbesserter Datenfit im Vergleich zu

klassicher DFN- und zur Laufzeitinversion erreicht. Das Untergrundmodell aus der

hybriden DFN-Inversion eignet sich zudem besser für die Modellierung von ebenfalls

am Standort durchgeführten Wärmetransportversuchen.

Den Schlusspunkt der Arbeit bildet die Implemetierung einer Joint Inversion für

IP und HT, welche die Berechnung einer durch beide Datentypen gleichermaßen

gestützten K-Verteilung erlaubt. Das Konzept fußt auf den komplementären Ei-

genschaften der beiden Methoden bezüglich Sensitivitätsverteilungen, räumlichem

Auflösungsvermögen und der Verlässlichkeit der K-Abschätzung. Die Implementie-

rung der Joint Inversion basiert auf dem o.g. IP-K Inversionsansatz sowie der lauf-

zeitbasierten HT-Inversion. Diese Methodik wird an einem synthetischen Beispiel-

modell getestet und mit den entsprechenden Einzelinversionen verglichen. Außer-

dem wird gezeigt, dass die aus den petrophysikalischen Annahmen resultierenden

Unsicherheiten automatisch durch die Einbeziehung verlässlicherer HT-basierter K-

Abschätzungen korrigiert werden.

Die im Rahmen dieser Arbeit entwickelten Inversionsansätze erlauben somit eine

genauere und verlässlichere Charakterisierung von Aquiferheterogenitäten. Jedoch

muss die Auswahl der im jeweiligen Fall geeigneten Methoden, Akquisitionsgeome-

trien und Datenprozessierungs- und Inversionstechniken stets mit Bedacht und im

Hinblick auf das vorliegende geologische Setting erfolgen. Künftige Forschungsakti-

vitäten sollten sich daher vor allem mit der Anwendung der neuen Inversionstech-

niken auf verschiedenartige Feldbeispiele beschäftigen, um den Erfahrungshorizont

bezüglich der Anwendbarkeit der Methoden in bestimmten geologischen Kontexten

zu erweitern. Letztlich kann die kombinierte Anwendung geophysikalischer und hy-

draulischer Methoden zu mehr Verlässlichkeit bei der Grundwassermodellierung und

einem besseren Verständnis von Fließ- und Transportprozessen beitragen.
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Aims and Objectives

1.1 Introduction

In times of a changing climate (IPCC, 2023), the reliability of groundwater resources

becomes an increasingly immanent topic for many societies in various regions of the

world (Earman & Dettinger, 2011; Green et al., 2011; Taylor et al., 2013; Amanambu

et al., 2020; Barbieri et al., 2023). Monitoring and management of aquifers is crucial

for ensuring the availability and quality of this vital freshwater resource (Gorelick &

Zheng, 2015; Dillon et al., 2019; Rau et al., 2020; Condon et al., 2021). Therefore,

groundwater flow and transport processes in the subsurface have to be understood

correctly not only in its entirety, but also at a local scale for specific field cases

(Refsgaard et al., 2012; Woodward et al., 2016; Guo et al., 2019). In particular,

groundwater modeling tools play a key role in understanding and predicting some of

these processes, such as contaminant transport (Comunian et al., 2011; Karatzas,

2017), groundwater discharge and recharge (Döll & Fiedler, 2008; Mogaji et al.,

2015), interaction with rivers or seawater (Carrera et al., 2010; Brunner et al.,

2017; Epting et al., 2018; Costall et al., 2020), and within geothermal applications

(Griebler et al., 2016; Guo et al., 2022; Zhao et al., 2022).

To achieve reliable groundwater modeling results, accurate and high-resolution in-

formation about the distribution of hydraulic conductivity K and its heterogeneities

at different scales within the domain of interest is indispensable (Huysmans et al.,

2008; Zech et al., 2016). One-dimensional borehole data alone are often too sparse

to cover all relevant structural features, and therefore not sufficient for providing

a distribution of K that can be used for modeling tasks (De Marsily et al., 2005;

Yu & Michael, 2022). Instead, tomographic methods can be used to map the

K-heterogeneities with higher resolution (Cirpka et al., 2011; Ringel et al., 2024).

These methods are either based on hydraulic stimulation (i.e., cross-borehole pump-

ing tests), or estimate the hydraulic properties from geophysical data using petro-

physical approximations (Binley et al., 2015). The subsequent section 1.2 introduces

the geophysical method of induced polarization (IP), considering its ability to infer

the relevant K-information based on the conceptual similarities between ground-

water flow, and electrical conduction and polarization phenomena. Afterwards, the

concept of hydraulic tomography (HT) is elaborated in section 1.3, which also in-

cludes a comparison between continuum- and fracture-based modeling approaches.

Finally, section 1.4 delves into the topic of inverse problems, and illustrates the

potential of jointly inverting IP and HT data for a common K-distribution.
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Induced polarization methods for estimating hydraulic conductivity

1.2 Induced polarization methods for estimating

hydraulic conductivity

More than a century has passed since the first observation of the IP effect by Schlum-

berger (1920). It was discovered while performing classical resistivity measurements

when the abrupt termination of current injection did not trigger an instantaneous

but slow decay of voltage as a result of charge storage effects in the subsurface,

particularly in the presence of metallic sulfides (Seigel et al., 2007). To this day,

IP field experiments are still often conducted with the same (or slightly modified)

instrumentation and acquisition geometries as classical geoelectrical measurements,

with two electrodes injecting a current into the subsurface, and two other elec-

trodes recording the resulting voltage signal (Zarif et al., 2017). Typical acquisition

geometries include surface profiles, 2D arrays, as well as cross-borehole setups.

In time-domain IP (TDIP) surveys, the voltage decay curves as a response to a

step function of current injection are analyzed for retrieving the information about

electrical conduction and polarization properties of the ground. TDIP experiments

are often preferred for field surveys due to the wider availability of instruments and

typically smaller acquisition times (Maurya et al., 2018b). However, measurements

can also be performed in the frequency domain by injecting an alternating current

and observing the phase shift of the resulting voltage signal. By covering a wide

frequency range, the spectral properties of the IP effect can be captured directly.

Due to a more straight-forward interpretation of the data and potentially higher

accuracy, this method of spectral induced polarization (SIP) is mostly used for

laboratory experiments (Kemna et al., 2012; Revil et al., 2014), but can also be

applied in the field yielding results consistent with TDIP (Martin et al., 2020).

Although rooted in mineral exploration, the fields of application for the IP method

have diversified in the last decades. Most prominently, the new sub-disciplines

of biogeophysics (Atekwana & Slater, 2009; Kessouri et al., 2019) and hydrogeo-

physics (Binley et al., 2015; Day-Lewis & Bathija, 2022) have emerged, focusing

on using the method for studying biological materials and their activity, as well as

groundwater-related parameters and processes, respectively. This was facilitated by

a more detailed understanding of the origins of the IP effect, leading to the de-

velopment of a wide range of conceptual and mathematical models describing the

electrical polarization phenomena.
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1.2.1 Models for the IP effect

The IP effect is caused by a variety of electrochemical processes that allow a re-

versible storage of charges within the rock additional to pure conduction (Lesmes &

Morgan, 2001; Bücker et al., 2019). In the high-frequency range (> 103 Hz), the

so-called Maxwell-Wagner polarization is often dominant (Maxwell, 1873; Wagner,

1914), resulting from discontinuities in electrical conductivity between phase (solid,

liquid, gas) interfaces. However, this phenomenon is not of particular interest for

most practical applications of the IP method, and thus the focus is typically on lower

frequencies (10−5–103 Hz). There, the presence of electron conducting particles can

also produce a strong IP response, commonly referred to as electrode polarization

(e.g., Pelton et al., 1978). However, since these materials are typically absent in

sedimentary environments, this type of polarization is also not considered within

this thesis.

Instead, diffusion-related decays of gradients in ion concentration are the main

contributors to the IP effects that are of interest within hydrogeophysical applica-

tions. These processes are associated with the electrical double layer (EDL), i.e.,

the interface between the mostly negatively charged rock matrix and the pore space,

which adsorbs charged ions from the pore fluid (Helmholtz, 1879; Revil & Glover,

1997) (Fig. 1.1a). As a result, an overall increase of electrical potential (Fig. 1.1b),

ion concentration, and consequently electrical conductivity σ (Fig. 1.1c) towards

the EDL can be observed.

When an external electric field is applied, three different EDL-related phenomena

occur. First, the Stern layer polarization describes the tangential displacement of

counterions in the Stern layer that is formed at the surface of a mineral (Schwarz,

1962) (Fig. 1.1d). This causes the ions of the diffuse layer to also be displaced,

leading to an additional polarization component known as diffuse layer polarization

(Dukhin et al., 1974). As a third contribution, the so-called membrane polarization

is particularly pronounced at pore throat restrictions being blocked with cations

(Marshall & Madden, 1959) (Fig. 1.1e).

Due to the finite velocity of ion displacements, part of the observed voltage

response to the external electrical field is delayed, resulting in the gradual decays of

voltage described in the previous section. Mathematically, this can be expressed in

terms of a complex-valued and frequency-dependent electrical conductivity σ∗

σ∗(ω) = σel + σ∗int(ω), (1.1)
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Figure 1.1: (a) The electrical double layer (EDL) forms at a negatively charged min-
eral surface. (b) Electrical potential (with zeta potential ζ). (c) Elec-
trical conductivity (with DC conductivity σ0) at the EDL. (d) Stern and
diffuse layer polarization at a mineral grain. (e) Pore throat restriction
with the blocking of ions in the diffuse layer (membrane polarization).
Inspiration for the figures was taken from Binley & Slater (2020) and
Bücker et al. (2019).

being a superposition of electrolytic conductivity σel in the free pore space, com-

monly described by Archie’s law (Archie, 1942), and interface conductivity σ∗int, with

ω = 2πf being the angular frequency, and the ∗ denoting complex quantities (e.g.,

Olhoeft, 1985). It can also be written in terms of real and imaginary part (σ′ and

σ′′, respectively), or as magnitude |σ∗| and phase angle ϕ

σ∗(ω) = σ′(ω) + iσ′′(ω) = |σ∗| · eiϕ, (1.2)

where i is the imaginary unit.

To describe the complex conductivity resulting from those polarization mecha-

nisms, different analytical and mechanistic models have been developed (e.g., Vine-
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gar & Waxman, 1984; Leroy & Revil, 2009; Revil, 2012; Bücker & Hördt, 2013;

Bücker et al., 2019). They typically relate the IP response to other petrophysical

parameters, like the formation factor F , or the inner surface area Spor. Such models

are crucial for gaining a more detailed understanding of different polarization mech-

anisms and their relevance depending on different influencing parameters, especially

in the context of highly accurate SIP laboratory experiments. However, they are

usually too complicated for being used to evaluate field data. In such cases, simpler

phenomenological models can be employed that often describe the spectral behav-

ior of the complex conductivity quite accurately, though they are based less on the

actual processes in the pore space.

For rock and soil types with a wide distribution of grain or pore sizes, the constant

phase angle (CPA) model is considered a good approximation (Börner et al., 1996;

Weller et al., 1996; Lajaunie et al., 2016). It assumes that the conductivity is

characterized by the same phase angle ϕ over the complete frequency range. If,

instead, the data exhibit a single, dominant polarization peak at a certain frequency,

the Cole-Cole model is commonly used to describe the spectral behavior of σ∗ (Cole

& Cole, 1941; Pelton et al., 1978; Tarasov & Titov, 2013):

σ∗(ω) = σ0

[
1 +

m0

1−m0

(
1− 1

1 + (iωτσ)c

)]
. (1.3)

There, σ0 is the DC conductivity, m0 the intrinsic chargeability as defined by Seigel

(1959), τσ the relaxation time, and c the frequency exponent. Although originally

derived for electrode polarization using an equivalent electrical circuit model, it can

also be a good approximation for sediments with a narrow distribution of grain or

pore sizes (Revil et al., 2014). However, if multiple sources of polarization (i.e., more

than one peak in the spectrum) are present, the more flexible Debye decomposition

approach allows for obtaining objective parameters for the interpretation of such

data (Nordsiek & Weller, 2008; Zisser et al., 2010; Weigand & Kemna, 2016). This

is often regarded as the most generalized model space for IP data since any arbitrary

complex conductivity spectrum can be represented by a superposition of n Debye

relaxations:

σ∗(ω) = σ0

[
1−

∑
n

mn

(
1− 1

1 + (iωτn)

)]−1

, (1.4)

with mn as chargeability, and τn as relaxation time of contribution n. Further re-

parameterizations of the Cole-Cole model have been proposed by Fiandaca et al.

(2018a), such as the maximum phase angle (MPA) model, the maximum imaginary
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conductivity (MIC) model, and the minimum imaginary resistivity (MIR) model.

All these parameter sets can potentially serve as model spaces for the inversion

of IP data, yielding a spatial distribution of electrical parameters in the subsurface

to explain observed data of IP field experiments (Hönig & Tezkan, 2007; Gazoty

et al., 2012; Doetsch et al., 2015). If those were conducted in the time domain

(TDIP), a Fourier transform has to be applied within the inversion procedure in

order to retrieve frequency domain parameters (Fiandaca et al., 2012, 2013). The

subsequent interpretation of such subsurface models in terms of hydraulic properties

relies on petrophysical relations derived from laboratory experiments.

1.2.2 Petrophysical relations for K-estimation from IP data

Based on the conceptual similarities between the flow of groundwater and electric

currents, approximate petrophysical relations have been found linking the IP pa-

rameters with hydraulic properties. In particular, the hydraulic conductivity K (or,

interchangeably, permeability k) of porous rock is governed by the same pore space

properties as the polarization mechanisms described in the previous section 1.2.1.

Therefore, most petrophysical equations incorporate representations of two primary

pore space characteristics: First, a pore volume parameter, such as porosity Φ or

formation factor F can be derived from the electrolytic part of conductivity σel.

Since a higher pore volume typically correlates with increased values in both K and

σel, those two parameters are assumed proportional, resulting in an inverse relation-

ship between K and F . Second, an increase in inner surface area Spor is mostly

related to stronger polarization effects due to a greater density of EDLs. Therefore,

an increase in the imaginary part of conductivity σ′′ is observed, but K is usually

lower due to higher tortuosity of the pore space, thus demonstrating an inverse re-

lationship between K and σ′′. Such petrophysical laws can be found by systematic

laboratory measurements, that also allow for quantification of additional empirical

parameters. The approach found by Weller et al. (2015) for unconsolidated and

fully saturated sediments belongs to this category, containing F as a measure for

the volumetric properties, and σ′′ accounting for the polarization strength:

k =
1.08 · 10−13

F 1.12 (σ′′(1 Hz))2.27
. (1.5)

However, other studies suggest that instead of σ′′, the Cole-Cole relaxation time τσ

can be a more appropriate parameter in some contexts. This parameter can serve
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as a measure of characteristic hydraulic length scales, such as pore throat size or

grain size, thus allowing for the quantification of hydraulic parameters. For instance,

Revil et al. (2012b) proposed the relation

k =
τσD+

4F
, (1.6)

where D+ denotes the diffusion coefficient of the Stern layer. The discussion about

the applicability of those two approaches for certain field settings is still ongoing

(e.g., Weller et al., 2016), but it is important to note that they are based on similar

principles and are therefore not necessarily contradictory.

Several studies have already used such petrophysical equations to estimate K

from IP field data (e.g., Hördt et al., 2009; Attwa & Günther, 2013; Maurya et al.,

2018a). However, these relations have always been applied after the inversion for

IP parameters in a separate step. This sequential procedure usually makes an inter-

pretation of the results in terms of hydraulic parameters more ambiguous, because

starting models for the inversion, regularization parameters, prior information, and

error estimation procedures can only be defined in terms of the electrical parameters,

and not for K.

To overcome these issues, the first objective of this thesis consists in the develop-

ment of an inversion procedure that allows for direct computation of K from TDIP

data (Chapter 2). The petrophysical relations (Eq. 1.5 and 1.6) can be incorporated

into the inversion directly by a re-parameterization of the Cole-Cole model space in

terms of hydraulic properties. To retrieve the full spectral content, the inversion is

based on the method of Fiandaca et al. (2012, 2013), and combines the petrophys-

ical approaches of both Weller et al. (2015) and Revil et al. (2012b) to increase

the robustness against varying field conditions. This new approach is expected to

allow for better applicability of IP methods to aquifer characterization tasks, and to

provide highly resolved K-information required for groundwater modeling.

Hypothesis 1:

Time-domain induced polarization data can be inverted directly for a hydraulic

conductivity subsurface model.
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1.3 Hydraulic tomography at porous and fractured sites

Inspired by tomographic setups commonly used for geophysical methods, similar

acquisition schemes have been adapted for aquifer characterization approaches us-

ing hydraulic stimulation. Gottlieb & Dietrich (1995) first proposed the concept

of hydraulic tomography (HT), which is based on sequential pumping tests at iso-

lated depth intervals within a borehole, and the observation of the resulting pres-

sure response at other nearby intervals. By performing these experiments for all

source receiver combinations, the whole domain of interest can be covered, providing

higher-resolution insights into the heterogeneities of hydraulic properties compared

to traditional pumping tests. Other hydraulic methods utilized in this context com-

prise classical slug tests (Butler Jr., 2019), methods based on natural variations in

hydraulic head like river stage tomography (Xia et al., 2023), or simplified and there-

fore more time-efficient versions of the HT concept (Brauchler et al., 2013b). In

contrast to geophysical methods (such as IP), the hydraulic properties are derived

directly from hydraulic experiments, and therefore no approximate petrophysical

assumptions have to be applied. However, conducting pumping tests is often time-

demanding and requires sophisticated equipment, limiting the number of feasible

experiments considering the financial constraints. This typically sets restrictions to

the achievable spatial resolution and also results in a high level of non-uniqueness

of the inverse problem (Bohling & Butler Jr., 2010).

Nevertheless, HT has been used frequently in the field to image subsurface het-

erogeneities in sedimentary aquifers (Bohling et al., 2007; Berg & Illman, 2013;

Cardiff et al., 2020; Zhao & Ilman, 2022; Luo et al., 2023), for investigating faults

and fractures in the context of nuclear waste deposits and geothermal sites (Ill-

man et al., 2009; Zha et al., 2015; Klepikova et al., 2020; Ringel et al., 2022), or

to identify preferential flow paths at mining sites (Mao et al., 2018; Wang et al.,

2021b; Qiu et al., 2024). Various data processing and inversion techniques have

been developed that can be used depending on the specific site characteristics. In

particular, there typically is a clear distinction between porous and fractured media,

which requires specialized modeling approaches.

1.3.1 Continuum-based modeling approaches

Continuous models are commonly preferred for describing the spatial distribution of

physical properties in porous aquifers. In these models, structural features, such as

sand and clay lenses or different sedimentary layers, usually exhibit smooth bound-
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aries. Such continuous aquifer models require a discretization, on which the forward

and inverse problem can be defined (Fig. 1.2a). Each discretization element stores

an average value of the parameter inside, and the variability of this parameter with

respect to neighboring elements can often be defined by smoothness constraints.

The simplest type of discretization in 2D is a rectangular grid, describing the het-

erogeneous features in the form of a pixel map. For solving the forward and inverse

problem on such grids, finite difference methods are typically employed. In contrast,

triangular meshes require the utilization of finite element modeling for performing

these tasks. As an alternative to equidistant cell boundaries, adapted grids can be

used that allow for a local refinement of cells in areas of higher heterogeneity (Ves-

naver & Böhm, 2000; Mehl et al., 2006). Furthermore, staggered grids represent

superpositions of individual rectangular grids with a relatively coarse resolution that

are shifted among each other (Vesnaver & Böhm, 2000; Brauchler et al., 2003; Hu

et al., 2015; Divahar et al., 2024). They require running the forward calculation

multiple times for each iteration but yield a higher resolution of the result without

leading to ill-posed inverse problems. In addition, continuous models may also be

stored in the form of pilot points, and the actual parameter distribution is inter-

polated between those points based on the geostatistical properties of the aquifer

(Jimenez et al., 2013; Illman, 2014; Poduri & Kambhammettu, 2021).

Various inversion techniques for HT data have been developed based on continu-

ous models. Geostatistical approaches comprise the simultaneous successive linear

estimator (Berg & Illman, 2011; Yeh & Liu, 2000), quasi-linear estimator (Kitani-

dis, 1995; Cardiff et al., 2020), or ensemble Kalman filter (Sánchez-León et al.,

2020). They are based on geostatistical prior models that assume a certain spatial

correlation of hydraulic properties. In contrast, a travel time inversion of HT data

requires fewer prior assumptions, and also less computational effort since it does not

simulate a complete groundwater flow model (Brauchler et al., 2003). Instead, the

approach is based on the eikonal equation, which can be derived from the ground-

water flow equation (Vasco et al., 2000) and solved by ray-tracing techniques, such

as Dijkstra’s algorithm (Dijkstra, 1959).

Due to the wider availability of established tools for discretizing a model based

on the continuum assumption (e.g., Geuzaine & Remacle, 2009), fractured rock

is also modeled with this approach quite frequently (Hao et al., 2008; Zha et al.,

2015). Although main flow channels can be captured, the identification of individual

fractures requires a different type of model.
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Figure 1.2: Illustration of the hybrid discrete fracture network (DFN) model ap-
proach (c), combining both continuum (a) and DFN models (b).

1.3.2 Fracture-based modeling approaches

In most crystalline and metamorphic rock, groundwater flow is predominantly main-

tained by individual fractures, while the rock matrix is typically assumed to be

impermeable. Fracture networks can therefore represent the preferential pathways

for flow and transport within these types of rock (Adler & Thovert, 1999; Berkowitz,

2002). Correctly characterizing such networks is essential for different applications

such as constructing and operating geothermal sites (Gan & Elswort, 2016; Make-

donska et al., 2020; Liu et al., 2021), evaluating the suitability of potential nuclear

waste disposal facilities (Tsang et al., 2015; Hadgu et al., 2017; Li et al., 2022b),

assessing the excavation damaged zone around tunnels (De La Vaissiere et al., 2014;

Lei et al., 2017b; Vazaios et al., 2019), or predicting flow and transport processes

in fractured freshwater reservoirs (Neumann, 2005; Parker et al., 2012; Li et al.,

2020).

To account for their special characteristics, discrete fracture network (DFN) mod-

els have been developed that approximate the fractures as discrete line elements (in

a 2D domain), or as planar 2D objects (in a 3D domain), and often neglect the ma-

trix completely (Adler et al., 2013; Lei et al., 2017a; Berre et al., 2019) (Fig. 1.2b).

Each fracture can be described by a parameter set that contains an average aperture
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af , hydraulic conductivity Kf , specific storage Ss,f , as well as positional param-

eters. The forward simulation requires solving the partial differential equation for

pressure diffusion in a fracture mid-plane

af Ss,f
∂h

∂t
−∇T (af Kf ∇Th) = af Q, (1.7)

within a finite element framework (e.g., Ringel et al., 2021). There, h is the hydraulic

head, and Q is a source/sink term. The gradient ∇T is evaluated in the fracture

plane.

For the inversion of HT data following Ringel et al. (2021), each iteration may

comprise the insertion or deletion of a fracture, or a parameter update for a fracture,

with the aim of minimizing the overall data misfit. This is usually implemented based

on stochastic procedures, which consequently results in a stochastic representation

of the fracture network (e.g., a fracture probability map). DFN inversion approaches

have recently been applied to different types of HT field data acquired in crystalline

rock (Klepikova et al., 2020; Fischer et al., 2020; Ringel et al., 2021, 2022).

However, some rock types may also exhibit characteristics of both model types,

i.e., individual fractures and a permeable matrix. In particular, this dualism is often

observed for different types of sandstone and claystone (Liu & Manga, 2009; Zhang

et al., 2020; Wang et al., 2022). Discretization and modeling approaches for these

so-called fractured porous media have been reviewed by Berre et al. (2019). They

require the simultaneous implementation of both continuum models for consider-

ing matrix flow, and DFN models for incorporating individual fractures (Fig. 1.2c).

These hybrid models may capture the hydraulic processes in such media more ac-

curately, thereby yielding better inversion results in terms of minimization of misfit

to the experimental HT data, and consequently a more reliable representation of

the actual aquifer properties. The development of such a hybrid DFN inversion

procedure, including its application to field data, is the second objective of this

thesis (Chapter 3). It is expected that the subsurface models achieved by the hy-

brid approach are favorable compared to both continuum- and DFN inversion when

predicting flow and transport processes at fractured porous sites.

Hypothesis 2:

A combination of continuum- and fracture-based modeling approaches yields more

accurate and reliable inversion results using hydraulic tomography data.
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1.4 Inverse problems

1.4.1 Mathematical background

Most geophysical and hydrogeological imaging methods, such as IP and HT, require

solving an inverse problem to achieve a subsurface model of the parameters of

interest based on the experimental data (Zhdanov, 2015; Binley & Slater, 2020).

In any inversion framework, a forward problem needs to be defined that describes

the physical processes for the respective method, i.e., how a given distribution of

the model parameters in the subsurface generates the observed data. Generally, this

forward problem can be defined as

d = F (m), (1.8)

where d is the data vector containing N observations, m is the model vector con-

taining M parameter values, and F is the forward operator describing the physical

system, often by differential equations. In practice, this formulation needs to be

reversed to find the model parameters based on a given set of input data. Conse-

quently, the inverse problem can be defined by

m = F−1(d). (1.9)

In most cases, this problem is non-linear, and the forward operator F is non-

invertible, so the inverse solution needs to be obtained iteratively. Additional chal-

lenges in solving the inverse problem may arise due to inherent measurement errors

or noise contaminating the data, by the discretization of the differential equations,

by simplifications in the underlying physics (including petrophysical assumptions,

scaling issues, dimensionality restrictions, anisotropy, etc.), and consequently non-

uniqueness of the inverse problem.

A wide range of inversion strategies has been developed based on different types

of input data, forward models, and specific requirements for the characteristics of

the result. As a first category, deterministic approaches aim at minimizing the

misfit between the observed data and the hypothetical data derived from a forward

simulation (Eq. 1.8) for a given model. The optimization is implemented in an

iterative process that updates the model vector, so that the result of the forward

simulation moves towards the experimental data. An example of such a strategy is

the utilization of the Gauss-Newton solution (e.g., Oldenburg & Li, 1994; Loke &
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Dahlin, 2002; Binley & Slater, 2020), where the equation

(
JTWT

d WdJ
)
∆m = JTWT

d (d− F (mk)) (1.10)

needs to be solved for the parameter update ∆m. There, Wd is the data weight

matrix, a diagonal matrix containing the reciprocal of the standard deviation of each

measurement, and mk is the current model vector at iteration k. Furthermore, J is

the Jacobian (or sensitivity) matrix given by

Ji,j =
∂F (mk)i
∂mj

(1.11)

with i = 1, 2, ...N and j = 1, 2, ...M . The new parameter set mk+1 can then be

obtained by

mk+1 = mk +∆m (1.12)

Different types of damping and regularization terms are often employed in practice

for handling the non-uniqueness of the problem, and to improve the geological

realism of the subsurface model (Mojabi & LoVetri, 2009; Lelièvre & Farquharson,

2013; Wu, 2017; Benning & Burger, 2018). Within the inversion, the data-model

misfit Φd given by

Φd = (d− F (m))T WT
d Wd (d− F (m)) (1.13)

is minimized. A satisfactory solution is typically obtained when the chi-squared

statistic

χ2 =
Φd

N
(1.14)

is close to one. In this thesis, both the IP-K inversion developed in Chapter 2, as

well as the travel time inversion for HT data used in all subsequent chapters, are

based on the Gauss-Newton approach.

In addition to deterministic methods, stochastic approaches can also be used for

solving the inverse problem. Within this category, Bayesian inversion procedures

are typically employed (e.g., Jackson & Matsuura, 1985; Ulrych et al., 2001). This

statistical inference starts with a prior probability of model parameters p(m) and

derive the posterior probability based on the data d following Bayes’ theorem (Bayes,

1763)

p(m|d) = p(m)p(d|m)

p(d)
, (1.15)
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where the notation p(X|Y) describes the probability of an event X given the event

Y. More specifically, p(d|m) is often referred to as the likelihood function that

quantifies the likelihood of a data set given a set of model parameters. The in-

verse problem is then solved by determining the parameter set that corresponds to

the maximum likelihood. However, the stochastic nature of the approach allows

for the computation of a distribution of posterior models together with its asso-

ciated likelihoods. This is often achieved by implementing a Markov chain Monte

Carlo (MCMC) search in the parameter space (Green, 1995; Chib, 2001), generating

multiple plausible models and evaluating their individual likelihood.

These stochastic approaches allow for a better evaluation of the uncertainty within

inversion results (Bagnardi & Hooper, 2018; Ringel et al., 2022; Zhang et al., 2024),

e.g., due to measurement errors or non-uniqueness of the solution, as well as an eas-

ier integration of prior models from various types of data sources (Ramirez et al.,

2005; Linde et al., 2015). However, such methods are computationally more expen-

sive than deterministic inversions, and therefore applications to large data sets or

model domains with high dimensionality are rarely feasible. Within this thesis, the

(hybrid) DFN inversion approach (Chapter 3) is based on Bayesian methods.

1.4.2 Joint inversion

For many hydrogeophysical applications, the complexity of the subsurface cannot

be captured by a single data type. Instead, geophysical as well as hydraulic methods

have individual advantages and limitations in terms of sensitivity distribution, relia-

bility of parameter estimates, spatial resolution, or practical feasibility. To combine

the abilities of multiple methods, joint inversion approaches have been developed

that minimize the data misfit of both data types and invert for a common distribu-

tion of the model parameters (Linde & Doetsch, 2016). Joint inversion procedures

are well-established tools for a variety of geophysical applications, where different

types of experiments are conducted at the same site to achieve more informative

results (e.g., Gao et al., 2012; Mollaret et al., 2020; Turco et al., 2021).

The idea of jointly inverting electrical and hydraulic data in the context of aquifer

characterization has already been expressed in both the hydrogeological commu-

nity (e.g., Bohling & Butler Jr., 2010), and among hydrogeophysicists (e.g., Slater,

2007). In particular, when imaging heterogeneities in hydraulic conductivity K, re-

sults obtained from IP may have a high spatial resolution due to potentially small

electrode spacing, but bear a significant amount of uncertainty in K-quantification

introduced by the petrophysical assumptions (section 1.2). In contrast, K-estimates
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from HT are highly reliable, but data sets are often sparse due to the time and finan-

cial demands of the pumping experiments (section 1.3). Therefore, a joint inversion

of both IP and HT data for a common K-distribution is expected to benefit from

a combination of the complementary strengths of these methods. Since the petro-

physical relations between IP parameters and K are only valid in fully saturated,

unconsolidated sediments, the joint inversion approach will be restricted to these

environments (section 1.2.2). Consequently, fractures are not relevant in such set-

tings, and therefore continuum models (section 1.3.1) can be applied for discretizing

the model space for both methods. Due to its computational efficiency, the travel

time inversion approach for HT data seems most appealing for a joint inversion.

Furthermore, it does not require any prior assumptions, and the joint inversion can

be performed in a deterministic framework (section 1.4.1) for both methods. The

development of such an inversion scheme is the third objective of this thesis (Chap-

ter 4).

Hypothesis 3:

A joint inversion of induced polarization and hydraulic tomography data improves

the spatial resolution, accuracy and reliability of the hydraulic conductivity

estimation by combining the complementary abilities of both methods.
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Abstract

Precise information about the spatial distribution of hydraulic conductivity (K) in

an aquifer is essential for the reliable modeling of groundwater flow and transport

processes. In this study, we present results of a new inversion procedure for induced

polarization (IP) data that incorporates petrophysical relations between electrical

and hydraulic parameters, and therefore allows for the direct computation of K.

This novel approach was successfully implemented for the Bolstern aquifer analog

by performing synthetic IP experiments with a combined surface and cross-borehole

setup. From these data, the distribution of K was retrieved with high accuracy

and resolution, showing a similar quality compared to images achieved by hydraulic

tomography. To further improve the quantitative estimates of K, we use synthetic

pumping test data to inform two novel calibration strategies for the IP inversion

results. Both calibrations are especially helpful for correcting a possible bias of the

IP inversion, e.g., due to resolution limitations and/or to bias in the underlying

petrophysical relations. The simulation of tracer experiments on the retrieved to-

mograms highlights the accuracy of the inversion results, as well as the significant

role of the proposed calibrations.
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2.1 Introduction

Tomographic methods have evolved as a promising family of hydrogeological field

investigation techniques for imaging the hydraulic conductivity (K) distribution (Yeh

& Liu, 2000; Vasco et al., 2000; Jimenez et al., 2013; Zhao & Illman, 2018; Pouladi

et al., 2021). They rely on sending and recording multiple signals at different

positions of an aquifer. By processing all signals together, the spatial distribution of

hydraulic parameters is reconstructed. The choice of a tomographic configuration for

identification of subsurface structures is rooted in geophysical exploration (Gottlieb

& Dietrich, 1995; Yeh & Lee, 2007). Accordingly, tomographic concepts based

on classical hydrogeological field techniques with hydraulic stimulation or tracer

signals often adopt data inversion principles that are established in geophysics (Hu

et al., 2011; Kong et al., 2018; Ringel et al., 2021). Vice versa, especially near

surface geophysical techniques such as ground penetrating radar, electrical resistivity

tomography or electromagnetic induction are tuned to not only identify geological

but also hydraulic structures (Slater, 2007; Linde et al., 2006; McLachlan et al.,

2021).

Still, hydraulic or tracer tomography is not fully established in practice. A major

reason is the rather high experimental demand for installation of field equipment

and borehole devices (Bohling & Butler Jr., 2010; Brauchler et al., 2013b; Cardiff

et al., 2013; Klepikova et al., 2020). Fast applicability in the field is an advan-

tage of many geophysical techniques. However, a common shortcoming is that

aquifer heterogeneities are described by geophysical proxy parameters. As classical

geophysical exploration techniques do not test hydraulic properties directly, their

capacity to provide meaningful hydrogeological insight in aquifers is limited. Ideally,

geophysical and hydrogeological information is thus jointly processed for obtaining

hydrogeophysical tomograms to benefit from the advantages of both approaches

(Irving & Singha, 2010; Vilhelmsen et al., 2014; Ahmed et al., 2016).

In the growing research field of hydrogeophysics (Binley et al., 2015) a strong

focus is on electrical methods due to their ability of sensing pore space properties

that govern the hydraulic parameters (Revil et al., 2012a; Wang et al., 2021a).

However, imaging hydraulic conductivity requires the separation of pore volume

and pore surface properties, which cannot be achieved by conventional geoelectrical

methods. As a remedy, the additional information contained in induced polarization

(IP) measurements about electrical polarization effects at the pore-matrix-interface

can be used to quantitatively separate these properties (Slater, 2007).
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To link the electrical parameters of IP measurements with the hydrogeological

parameters, we mainly rely on empirical relations derived from laboratory measure-

ments. The first quantitative relation between IP parameters and K was established

by Börner et al. (1996). Since then, a variety of other empirical laws has been derived

by spectral induced polarization (SIP) laboratory measurements (Slater & Lesmes,

2002; Binley et al., 2005; Revil & Florsch, 2010; Titov et al., 2010; Revil, 2012;

Attwa & Günther, 2013; Weller et al., 2015; Robinson et al., 2018).

Most of the IP parameters that are valuable for estimating K are defined in the

frequency domain, as e.g., the Cole-Cole parameters (Cole & Cole, 1941; Pelton

et al., 1978), and can therefore be most easily derived from SIP measurements.

However, although some applications of SIP in the field do exist (Kemna et al.,

2012; Orozco et al., 2012; Gallistl et al., 2018), this method is mainly used for

the electrical characterization of rocks in the laboratory (Revil et al., 2014; Börner

et al., 2017; Römhild et al., 2019), whereas for field campaigns time domain IP

(TDIP) measurements are most common (Kemna et al., 2004; Gazoty et al., 2012;

Doetsch et al., 2015). This gap can be overcome by using a Fourier transform

within the IP inversion procedure, so that TDIP data can be inverted for frequency

domain parameters, such as Cole-Cole parameters (Fiandaca et al., 2012, 2013) or

other re-parameterizations of the Cole-Cole model (Fiandaca et al., 2018a). This

approach yields results of a similar quality compared to frequency domain measure-

ments (Madsen et al., 2017), but often has an advantage in terms of acquisition

time (Maurya et al., 2018b; Martin et al., 2020).

In several studies, K has already been estimated from these electrical param-

eters at field scale (Hördt et al., 2009; Attwa & Günther, 2013; Maurya et al.,

2018a). However, the petrophysical relations mentioned above have always been

applied after the inversion for IP parameters, making the interpretation in terms

of hydraulic parameters ambiguous. Instead, incorporating the petrophysical laws

into the inversion procedure allows the direct computation of the K-distribution in

the subsurface from the measured IP data. Although ambiguities might also be

reduced with strong structural priors such as training images (Pirot et al., 2017),

a petrophysical inversion approach can have further advantages. By introducing a

new parameterization, parameter correlations can be reduced, and the direct inver-

sion for K makes it easier to study its uncertainties and how data errors propagate

to model errors. It also allows to apply the regularization to the actual hydraulic

parameters instead of the electrical parameters and simplifies the integration of prior

models that are often given as a distribution of K. Petrophysical inversion strate-
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gies have already been applied in other contexts, such as permafrost sites (Mollaret

et al., 2020), gas hydrate systems (Turco et al., 2021) or reservoir characterization

(Gao et al., 2012), but mostly with the aim of establishing a joint inversion.

While our new IP-K inversion approach has already been mentioned briefly in

conference abstracts (Fiandaca et al., 2021; Martin et al., 2021), we now present

the complete methodology and a detailed assessment of the results for the first

time. We are aiming to show the abilities and limitations of this deterministic inver-

sion for imaging K-heterogeneities in near-surface aquifers by performing synthetic

modeling and inversion tests on aquifer analog data with a combined surface and

cross-borehole IP setup. We compare those results with data derived from synthetic

hydraulic tomography (HT) experiments using a similar setup. Our main goal is

to achieve a distribution of K that would yield a correct solute transport simula-

tion. For this purpose, a straightforward calibration strategy of complementing IP

inversion with hydraulic information is introduced.

In the following, we briefly explain the methodological concepts of IP and HT, as

well as our new IP-K inversion approach. As the study site for simulating a synthetic

cross-hole HT and IP application, a sedimentary aquifer analog is implemented to

compare the abilities of the two methods in imaging decimeter-meter scale K-

heterogeneities with varying point spacing. The performance of the new calibration

strategy is evaluated and all findings are discussed with special emphasis on the

applicability of the suggested methodology within field campaigns.

2.2 Materials and Methods

Fig. 2.1 gives an overview of the procedures applied in this study. The Bolstern

aquifer analog (Heinz et al., 2003) serves as the input data set for the forward

modeling of IP data and the HT synthetic experiments. The achieved data sets are

then used for the respective inversion (the new IP-K inversion procedure and an HT

travel time inversion). Additionally, we achieve an effective hydraulic conductivity

Keff as an average value for the whole domain by a small set of seven pumping

tests and use it to calibrate our inversion results. To assess the quality of those

calibrations and the performance of the two methods in general, we finally conduct

tracer transport simulations with the achieved K tomograms and evaluate them

based on imaged tracer plumes as well as depth-integrated tracer breakthrough

curves.
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Figure 2.1: Workflow for imaging K in heterogeneous aquifers with induced polar-
ization (IP, left section) and hydraulic tomography (HT, right section).
Blue boxes represent any type of data and black boxes contain the dif-
ferent processing steps. The green labels refer to the other figures in
this work.

2.2.1 Bolstern aquifer analog

The Bolstern aquifer analog data set (Heinz et al., 2003) was derived from an

outcrop analog study of fluvial deposits located near Bolstern (SW-Germany, see

Fig. 2.2a) within the paleo-discharge zone of the Rhine glacier. The analog study

comprises a rectangular 20 m × 7 m 2D cross-section (Fig. 2.2b), which is built

up by a mosaic of hydrofacies units that were delineated from the outcrop wall

at a resolution of 0.05 m. The hydrofacies units represent nearly hydraulically

homogeneous units with K derived from grain size analysis, as well as porosity

information. The hydrofacies accord with the sedimentary lithofacies, and this is
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Figure 2.2: (a) Location of the Bolstern aquifer analog in SW-Germany and (b)
visualization of the data set as a 2D cross-section including the hetero-
geneities of hydraulic conductivity K and porosity ϕ. The red rectangle
indicates the section of the data set used in this work and the black lines
represent the three hypothetical boreholes at x = 3 m, 6 m and 9 m.

reflected in the structural features of the analog, with heterogeneous layers and

cross beddings as a common characteristic for many sedimentary unconsolidated

aquifers. The Bolstern analog has already been used as a realistic test case for

modeling contaminant transport in previous work (Höyng et al., 2015).

We use a section of the whole analog between x = 0 m and 12 m (which corre-

sponds to x = 6 m and 18 m in the original nomenclatures of Heinz et al. (2003)),

covering the whole depth range from z = 0 m to -7 m (red rectangle in Fig. 2.2b).

For all simulated virtual experiments we assume to have three boreholes at x = 3 m,

6 m and 9 m (black lines in Fig. 2.2b).
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Figure 2.3: Comparison of induced polarization (left section) and hydraulic tomog-
raphy (right section) experimental setups as well as simplified input and
output signals. (a) Typical IP setup with current electrodes A, B and
voltage electrodes M, N distributed (i) on a surface profile, (ii) as a
cross-borehole setup or (iii) in a single borehole. (b) Typical HT setup
with source points S1 ... SN (pumping locations) in the left borehole
and receiver points R1,1 ... R2,N (observation locations) in the two
other boreholes. (c) Input signal of the injected current: rectangular
function with alternating polarity. (d) Observed voltage signal: decay
curves reacting to the injected current and the polarization effects in
the rock’s pore space. (e) Pumping signal in the source points follow-
ing a Heaviside function. (f) Observed pressure response curves at the
receiver points with peak time tpeak and early time tα,h according to the
10%-diagnostics approach.
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2.2.2 Induced Polarization

Electrical rock properties

The electrical conductivity σ∗ of a rock is generally considered to be a frequency-

dependent and complex-valued quantity (Olhoeft, 1985)

σ∗(ω) = σel + σ∗int(ω) (2.1)

consisting of electrolytic conductivity σel and interface conductivity σ∗int, with ω

being the angular frequency and the ∗ denoting complex quantities. It can be written

in terms of real and imaginary part (σ′ and σ′′, respectively) or as magnitude |σ∗|
and phase angle ϕ

σ∗(ω) = σ′(ω) + iσ′′(ω) = |σ∗| · eiϕ, (2.2)

where i is the imaginary unit. The electrolytic part is controlled by the conduction

through a rock’s pore space and thus depends on pore volume properties as described

by Archie’s Law (Archie, 1942)

σel =
σw
F

= Φm · σw, (2.3)

where σw is the pore water conductivity, F = Φ−m is the formation factor, Φ is

porosity and m is the empirical cementation exponent. This formulation assumes

fully saturated conditions.

The interface conductivity σ∗int, however, may contain contributions from a variety

of electrical polarization phenomena that are mainly related to the interface between

rock matrix and pore space. If electronically conductive minerals, such as graphite

or pyrite, are absent, as it is mostly the case in sedimentary environments, diffusion-

related polarization connected to the electrical double layer (EDL) at the pore-

matrix-interface is dominant (Marshall & Madden, 1959; Schwarz, 1962).

While standard geoelectrical methods are only sensitive to the real part σ′ of

the electrical conductivity, IP measurements can retrieve information about the

imaginary part σ′′ as well. This is either done by conducting spectral induced

polarization (SIP) measurements in the frequency domain and then converting the

magnitude and phase angle information to a complex electrical conductivity, or by

performing time domain induced polarization (TDIP) measurements and full-decay

spectral inversion (Fiandaca et al., 2012, 2013; Madsen et al., 2020). We will focus

on the latter option since the acquisition time is smaller in the field (Maurya et al.,
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2018b) and a good retrieval of spectral properties is achievable when a wide time

range is used in acquisition (Madsen et al., 2017), for instance through the analysis

of full-waveform recordings (Olsson et al., 2016).

A typical TDIP field setup is similar to a standard DC geoelectrics setup with a

sequence of quadrupoles injecting a current with two electrodes (A, B) and mea-

suring the resulting voltage with two other electrodes (M, N). A simplified setup

is shown in Fig. 2.3a. The sequence is typically distributed along a 2D profile on

the surface, e.g., following a gradient protocol (i), and can be complemented by

cross-borehole measurements (ii) or quadrupoles in a single borehole (iii). For the

synthetic experiments carried out within this study, a combination of the three op-

tions shown in Fig. 2.3a is used, but a variety of other sequences is possible (Bing

& Greenhalgh, 2000). While surface IP measurements are becoming a more widely

used method, field examples of cross-borehole IP are still rare (Kemna et al., 2004;

Binley et al., 2016; Bording et al., 2019).

To extract meaningful parameters from IP data, the Cole-Cole model is commonly

used to describe the spectral behavior of σ∗ (Cole & Cole, 1941; Pelton et al., 1978;

Tarasov & Titov, 2013):

σ∗(ω) = σ0

[
1 +

m0

1−m0

(
1− 1

1 + (iωτσ)c

)]
. (2.4)

Here, σ0 is the DC conductivity, m0 the intrinsic chargeability as defined by Seigel

(1959), τσ the relaxation time and c the frequency exponent.

Based on petrophysical relations found in laboratory studies, the electrical prop-

erties of a rock can be used to predict hydraulic conductivity K. In the following,

we make use of two different approaches. First, Revil (2012) found a relation for

permeability k (and hence hydraulic conductivity K) based on relaxation time τσ,

formation factor F and the diffusion coefficient of the Stern layer D+:

k =
τσD+

4F
. (2.5)

A powerlaw fit of R2 = 0.88 was reported for the used set of clean saturated sand

samples. The relation is based on the idea that τσ can be treated as a measure

for typical scale lengths (e.g., pore throat size), that in return govern the hydraulic

conductivity. The volumetric properties are accounted for by F as a measure for

effective porosity. At first sight, this approach does not include any empirical pa-

rameters and should be straight-forward to use. However, while τσ and F can be
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directly derived from the IP measurements, the diffusion coefficient D+ can only

be estimated, typically depending on the clay content. Revil et al. (2015) give the

following values for clean sand and clay:

D+,sand = 1.3 · 10−9 ·m2 s−1,

D+,clay = 3.8 · 10−12 ·m2 s−1,
(2.6)

However, other laboratory findings are raising doubt about the existence of two

distinct values forD+ (Weller et al., 2016). Instead, an apparent diffusion coefficient

Da can be introduced that may cover a much wider range of values, although its

physical significance remains unclear. In our study, in which sand-clay mixtures are

actually reflected in a wide range of K-values, we still use the two values given by

Revil et al. (2015) to compute a distribution of D+ directly from K by imposing

an interpolation in logarithmic space. However, the purpose of this simplification is

only the simulation of realistic τσ-values (according to Eq. 2.5) within the forward

modeling.

The second petrophysical approach was introduced by Weller et al. (2015). It

uses the formation factor F and the imaginary part σ′′ evaluated at a frequency of

1 Hz for permeability estimation:

k =
α

F β (σ′′(1Hz))γ
(2.7)

with the empirical parameters α = 1.08 · 10−13, β = 1.12 and γ = 2.27 for

unconsolidated and fully saturated sediments. The coefficient of determination

is reported as R2 = 0.862 and an additional degree of uncertainty lays in the

applicability of the empirical parameters α, β and γ in the given geological setting.

Furthermore, we use a relationship between imaginary and real part of surface

conductivity found by Weller et al. (2013):

σ′′(1Hz) = l · σ′int(1Hz) (2.8)

with l = 0.042 ± 0.022, but imposing the relation at the frequency f = (2πτσ)
−1

(Fiandaca et al., 2018b).

Finally, the conversion from permeability k to hydraulic conductivity K can be

achieved by

K =
d · g
η

· k, (2.9)
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where d is the density of the pore fluid, g the gravitational acceleration and η the

dynamic viscosity of the pore fluid. Assuming a groundwater temperature of 10◦C

we use the approximation

K = 7.5 · 106 · k. (2.10)

For more details on the petrophysical background we refer to Fiandaca et al. (2018b)

and the references therein.

Clearly, all petrophysical laws between hydraulic and electrical parameters are only

approximations that bear a significant amount of uncertainty. Additionally, due to

the regularization applied within the inversion, the petrophysical relationships of the

tomograms are also resolution-dependent (Hermans & Irving, 2017). Although we

will show how these regularization-induced errors as well as a simple bias in the

petrophysical relations can partly be corrected by our proposed calibrations, their

intrinsic scatter can barely be reduced by these procedures. Especially in strongly

heterogeneous aquifers (like the Bolstern aquifer) this uncertainty can be significant,

easily spanning one to two orders of magnitude (e.g., Hördt et al. (2009)). In addi-

tion, further parameters (like the cementation exponentm) that are approximated as

constants, might be spatially variable (Schön, 2015; Yue, 2019). Therefore, petro-

physical relations actually present in the field are often far from the laws derived in

the lab (e.g., Benoit et al. (2019)), so that not only the inherent uncertainty, but

also the applicability of those relations in a given field setting are limiting factors for

the quality of the inversion result. Synthetic experiments should always be regarded

as best case scenarios showing the upper limit of K-prediction quality that may

be achieved in a field application. However, even best-case scenarios are anything

but trivial, and insights from synthetic studies are important means to judge the

role of procedural assumptions for an inversion and the resolution capability of the

proposed methods.

Forward modeling

For defining the input data set used within the forward simulation, the WhyCDF

model space

mWhyCDF = {σw,K,D+, F, c} (2.11)

was used. The WhyCDF acronym indicates the model parameters, i.e. water and

hydraulic conductivity σw and K, respectively, diffusion coefficient D+ and forma-

tion factor F (the frequency exponent c is not specified in the acronym). The

idea of re-parameterizing the model space is based on Fiandaca et al. (2018a), now
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being extended by directly imposing the petrophysical relations (Eq. 2.1, 2.2, 2.4,

2.5, 2.7, 2.8 and 2.10) onto the objective function. Therefore, the conversion from

hydrological to electrical parameters is part of the modeling process and not a sepa-

rate procedure. The two petrophysical approaches by Revil (2012) and Weller et al.

(2015) are simultaneously used by forcing them to yield the same permeability k.

The five different input parameters were set up in the following way:

� Water conductivity σw was assumed to be constant at 100 mS/m, which is a

realistic value for groundwater (Schön, 2015).

� Hydraulic conductivity K was directly imported from the Bolstern data set

(Heinz et al., 2003).

� The diffusion coefficient D+ was derived from K by interpolation in log-space

from the sand-clay values suggested by Revil et al. (2015), thereby imposing

realistic τσ-values on the data.

� The formation factor F was computed from the porosity information contained

in the Bolstern data set by assuming a constant cementation exponent of

m = 1.3 as a realistic value for unconsolidated sediments (Schön, 2015).

� The frequency exponent of the Cole-Cole model c was assumed to be constant

at 0.5.

The full data set (hydraulic conductivity K, diffusion coefficient D+ and bulk con-

ductivity σ0 including both F , σw and σ′int) is shown in section A.2.

The synthetic IP experiments are based on a setup consisting of one surface

profile over the entire length of the data set (x = 0 ... 12 m) as well as electrodes

in three hypothetical boreholes at x = 3 m, 6 m and 9 m. We consider this to be

a realistic setup within a field study that should allow resolving the heterogeneities

of the aquifer within the whole domain. Furthermore, the same setup of boreholes

is expected to work well for HT, so that the results of the two methods can be

compared directly. In practice, the same boreholes could be used to conduct all the

experiments.

To simulate realistic field conditions, Gaussian noise of 2% and 10% magnitude

was added after the forward simulation to resistivity and IP data, respectively. Field

data can mostly be fitted with this level of error, as for instance demonstrated in

Maurya et al. (2018a). Some exemplary decay curves with added noise and error

bars of the assumed standard deviation model are depicted in section A.2.
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We run the forward simulation in 2D following Fiandaca et al. (2013) with three

different electrode spacings - 1 m, 0.5 m and 0.25 m - to assess the impact of varying

spacings on the inversion (in terms of computational performance and ability to

imageK-heterogeneities). The sequence follows a commonly used gradient protocol

for the surface profile and borehole quadrupoles according to the cases (i), (ii) and

(iii) shown in Fig. 2.3a, with IP time gates ranging from 0.003 s to 12 s. The total

number of quadrupoles (from which the total duration of a field experiment might

be estimated) are 162 for 1 m spacing, 885 for 0.5 m spacing and 2866 for 0.25 m

spacing.

Inversion

The inversion was performed in the ThyCD model space

mThyCD = {σ0,K,D+, c} (2.12)

consisting of total (DC) conductivity σ0, hydraulic conductivity K, diffusion coeffi-

cient D+ and frequency exponent c. All four parameters are space-dependent and

uncoupled during the inversion, but the spatial variability of each parameter can be

adjusted by setting horizontal and vertical constraints.

While a model space with five parameters (like WhyCDF) is convenient as input

for a forward simulation, it is not possible to invert for both the formation factor

and the water conductivity, since the effects of both parameters on DC conductivity

cannot be separated. Consequently, the water conductivity is considered a prior

information in the inversion, and the total DC conductivity is used for the parame-

terization of the inversion result. This choice is supported by the results of Markov

chain Monte Carlo modeling performed with different parameterizations (Fiandaca

et al., 2021), where the ThyCD model space turned out to be the most suitable

and is therefore used for this work. Again, it should be stressed that the conversion

from electrical to hydrological parameters is an inherent part of the inversion and

not a separate procedure.

Although we refer to the diffusion coefficient as D+ here, it might also be inter-

preted as an apparent diffusion coefficient Da (Weller et al., 2016) in the inversion

results. We also performed additional inversion tests with a different model space,

where D+ is replaced by τσ, so that Eq. 2.5 (Revil, 2012) is actually not used. The

distribution of K remains almost identical, which shows that Eq. 2.7 (Weller et al.,

2015) alone can also be sufficient for the inversion of TDIP data.
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The data space of the inversion consists of the DC data and the full decays of

the quadrupole sequence. The objective function, which contains the squared data

misfit and smoothness regularization terms for vertical and horizontal constraints,

is minimized through a iterative Gauss-Newton approach (Fiandaca et al., 2013).

We ran all the codes on a standard desktop PC with an 8-core i7-9700K 3.6 GHz

processor and 32 GB RAM. The runtime for one iteration is about one minute for

the 1 m spacing electrode sequence, 7-8 minutes for the 0.5 m sequence and around

30 minutes for the 0.25 m sequence, which adds up to a total inversion runtime

of several hours (depending on the number of iterations) in the last case. This

shows that also the inversion of field data can mostly be conducted on standard PC

equipment.

Calibration with hydraulic data

Identification and resolution of K-heterogeneity is in particular relevant for per-

forming transport modeling. Therefore, it is especially crucial to obtain accurate

K-estimates in the preferential flow paths and thus in areas of high K. However,

the strongest IP signal (e.g., in terms of chargeability) is typically measured in ma-

terials with low K since they have a higher inner surface area and therefore a more

pronounced polarization connected to the EDL. In contrast, in the high-K-zones the

IP signal is relatively weak, so that the K-estimates in the preferential flow paths

are less supported by the IP data and might be less accurate. Considering these

unfavorable properties of IP, resulting tomograms may resolve structural features

very well but they are not very reliable with respect to the hydraulic characteriza-

tion of preferential flow paths. Additionally, the uncertainties of the petrophysical

relations linking electrical and hydraulic properties, as well as regularization effects

might produce a bias in K-prediction. As a remedy, we suggest calibrating the IP

inversion result by incorporating information gathered from pumping test data.

In the synthetic example, we retrieve the effective hydraulic conductivity Keff

as a single value for the whole domain by performing synthetic pumping tests on

the Bolstern data set using Feflow. The procedure is inspired by the approach of

Wu et al. (2005). A setup of seven pumping locations in the left borehole and

seven observation points in the right borehole is used (see section A.1, part c).

The pumping tests are carried out in exactly the same way as the HT experiments

(see section 2.2.3). Additionally, we set up a model with homogeneous K and

perform the same experiments. The optimal K-value of the homogeneous model is

chosen by minimizing the cumulative RMS-misfit when comparing these hypothetical
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pressure response curves with those of the Bolstern data set (“benchmarking”). We

consider the value for K producing the smallest misfit to be the effective hydraulic

conductivity Keff and found the following value for the Bolstern aquifer analog:

Keff = 7 · 10−5 m

s
. (2.13)

In practice, Keff may be inferred from the transmissivity that is estimated by con-

ducting a single standard pumping test at the site.

We suggest two different approaches to use Keff for calibrating the IP inversion

results: (i) calibration with a constant factor (factor calibration) and (ii) calibra-

tion with a flexible calibration matrix using an exponential relationship (exponential

calibration).

The first option consists of a simple multiplication of the inversion result KIP

with the calibration coefficient C, so that the geometric mean of the calibration

result Kfac will be equal to Keff:

Kfac = KIP · C, (2.14)

C =
Keff

mean(KIP)
. (2.15)

This calibration is based on the assumption that Keff should be close to the geo-

metric mean of the K-values of the original data set Korig (considering only the

inner part between the boreholes), which for the Bolstern aquifer analog is found to

be

mean(Korig) = 3.75 · 10−5 m

s
. (2.16)

Keff is slightly higher than this value, because it is typically more sensitive to the

preferential flow paths (and therefore to areas with high K), especially in a highly

anisotropic medium with pronounced horizontal layering as present in the Bolstern

aquifer. However, we would still propose using the geometric mean of the K-field

since this does not require any a priori assumptions about structural features or

anisotropy in a field setting.

The exponential calibration attempts taking into account the different sensitivities

of IP experiments and pumping tests by introducing a flexible calibration matrix Cα.

The concept of this approach is visualized in section A.1, already including the results

for different parameterizations. The calibration matrix is made up by

Cα = eα·KIP (2.17)
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and the calibration result Kexp is achieved by computing the Hadamard product

between Cα and the inversion result KIP:

Kexp = Cα ◦KIP. (2.18)

For low K-values (strong IP effect), the elements in Cα will be close to one, so that

the inversion result is not changed by the calibration, whereas for higher K-values

(weak IP effect) the impact of the calibration generally becomes stronger. However,

the overall strength and direction of the calibration is determined by the exponent

α, which is chosen according to the pumping test data. We iterate over a wide

range of values for α in order to minimize the misfit between the geometric mean

of the calibration result Kexp and Keff.∣∣∣ mean
(
Kexp]

100%
ξ

)
−Keff

∣∣∣ α∈R−−−→ min! (2.19)

Since Keff is often higher than the actual geometric mean of K (as shown above for

the Bolstern aquifer), we do not use the whole data set to compute the geometric

mean within this calibration, but neglect a certain percentile ξ with the lowest K-

values. The impact of ξ is visualized in section A.1: for very low values (close

to 0%) the result is likely to be over-corrected, whereas for too high values an

under-correction will occur. However, we find that the optimal percentile ξ can be

estimated by visual assessment of the uncalibrated inversion result, and the function

α(ξ) as shown in part (b) of section A.1 allows for an evaluation of the impact of

different ξ-values on the calibration result. Typically, the optimal value for ξ will

rise with increasing electrode spacing since smoothing effects lead to more extensive

areas of low K. We finally choose ξ = 30% for 0.25 m spacing, ξ = 35% for 0.5 m

spacing and ξ = 50% for 1 m spacing. Undoubtedly, this choice is to some extent

subjective, and more experience and testing will be needed to choose the best value

for ξ in other applications.

2.2.3 Hydraulic Tomography

General concept

Hydraulic tomography (HT) requires hydraulic stimulation (e.g., pumping or slug

tests) with several observation points at different locations to generate a tomograph-

ical configuration, similar to many geophysical tomography methods (Fig. 2.3b).

The pressure response measured at the observation point is used to invert the
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stratigraphic structure, i.e. the spatial distribution of hydraulic diffusivity, hy-

draulic conductivity and specific storage. The main inversion algorithms consist

of geostatistics-based and travel time-based methods. The geostatistical methods

for HT inversions can be predicated on a variety of algorithms, including simultane-

ous successive linear estimator (Berg & Illman, 2011; Yeh & Liu, 2000), quasi-linear

estimator (Cardiff et al., 2020; Kitanidis, 1995) or ensemble Kalman filter (Sánchez-

León et al., 2020). A common feature of these approaches is that they require a

priori geostatistical models to assume the spatial correlation of the hydraulic param-

eters. In contrast, travel time methods used for HT inversion (Brauchler et al., 2003,

2013a) are based on an eikonal equation, which is transferred from the groundwater

flow equation (Vasco et al., 2000) and can be solved by ray-tracing or particle track-

ing techniques. Compared to the first class of methods, this approach requires much

less computational effort since it does not simulate in a complete groundwater flow

model. Additionally, it does not require any prior assumptions about the geosta-

tistical model, which can be highly uncertain due to the sparse measurements and

various application scales. However, the travel time-based approach has limitations

in reproducing the hydraulic parameters in low-permeability areas due to the low

ray coverage. Although many studies prove that the structure of the formation can

be readily reconstructed, a sequential inversion scheme is still required for a more

accurate quantification of the hydraulic parameters (Hu et al., 2011, 2015; Jimenez

et al., 2013).

Forward modeling

The synthetic HT experiments were simulated using the software Feflow (Diersch,

2014). The model domain was discretized by irregular triangular meshing. The

initial hydraulic head in the whole domain is set to zero and we apply constant-

head boundaries at the two sides. The hydraulic conductivity values were assigned

to the mesh according to the values of the Bolstern aquifer analog, whereas the

specific storage coefficient was assumed to be homogeneous at Ss = 10−4 m−1

according to typical values found in literature (Kuang et al., 2020). Source points

were placed at the hypothetical borehole at x = 3 m, whereas receiver points were

placed at x = 6 m and x = 9 m. Three different scenarios were simulated with

varying vertical spacing of respectively 0.25 m, 0.5 m and 1 m within the boreholes.

Therefore, the setups are similar to the IP experiments and the quality of the results

can be directly compared. At the receiver points, the hydraulic head was recorded

during the pumping tests, which are sequentially carried out from top to bottom.
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The pumping signal is a Heaviside function with a constant rate of 1 l/s, as shown

in Fig. 2.3e.

The resulting pressure response curves were imported to Matlab for further pro-

cessing. All source-receiver-combinations with a ray path angle larger than 60◦ were

filtered out since the layered stratigraphy typical for a shallow porous medium can

be better resolved by reducing those large-angle ray paths (Brauchler et al., 2007).

The 10% diagnostic (Brauchler et al., 2003) is selected for the inversion, meaning

that the early time tα,h is picked where the derivative value reached 10% of the

maximum derivative at the observation point (Fig. 2.3f). Hence, the data space

consists of all source and receiver coordinates (except the filtered ones) as well as

the respective early times. The travel time information was contaminated with a

noise level of 3%, similar to Doetsch et al. (2010) and Hu et al. (2017).

Inversion

Hydraulic travel time of a pumping test is defined as a line integral in which the

pumping-induced pressure is generated at the source point x1 and travels along the

path ε before reaching the receiver point x2:

√
tα,h =

1√
6fα,h

∫ x2

x1

dε√
D(ε)

, (2.20)

where tα,h is the early time and fα,h is a conversion factor (Brauchler et al., 2003).

The subscript h indicates the usage of a Heaviside source. Similar to the seismic

travel time inversion, Eq. 2.20 is resolved using ray tracing techniques, and the

inverted slowness can be converted to the hydraulic diffusivity D. In this study, the

open-source framework pyGIMLi is utilized to invert the hydraulic travel times, which

is based on the generalized Gauss-Newton method (Rücker et al., 2017; Günther

et al., 2006) and where the forward operator for calculating the travel times uses

Dijkstra’s algorithm (Dijkstra, 1959). As a final step, we use the factor calibration

approach introduced for IP to translate the achieved diffusivities D to a hydraulic

conductivity distribution KHT that is in agreement with Keff. This procedure

replaces the common approach of multiplying with a specific storage coefficient

Ss (K = D · Ss), which is typically also assumed as homogeneous.
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2.2.4 Tracer Experiments

We want to assess the quality of the inversion results by performing synthetic tracer

experiments using the achieved K-images and compare the results to those obtained

by modeling with the original Bolstern data set.

The corresponding simulations were conducted using Feflow in the area between

the hypothetical boreholes (x = 3 m ... 9 m). Steady-state hydraulic conditions were

assumed, and constant heads assigned to the model boundaries induce a hydraulic

gradient of 0.001 between the inflow and outflow borders. A conservative tracer

was injected as a hypothetical line source with a constant rate of 1 mg/l at the

upstream border of the model domain (x = 3 m, left borehole). The longitudinal

and vertical transverse dispersivities were set to 2.5 · 10−2 m and 2.5 · 10−4 m,

respectively, according to the values given in Höyng et al. (2015).

2.3 Results

2.3.1 HT and IP Inversion Results

Fig. 2.4c gives an overview of all the inversion results for the different methods and

spacings. The original Bolstern data set is given at the top (Fig. 2.4a), where the

grey numbers (1) - (5) indicate the most important highly permeable layers. Those

layers are only subjectively defined to make it easier to refer to certain features in

the text, but we will also show that they are responsible for the major tracer fingers

found in the transport simulation presented below. Also note that the K-images

derived from HT comprise only the domain between the boreholes (between x = 3 m

and x = 9 m), whereas IP has the ability to image areas left and right of that domain

as well, although with decreasing sensitivity. We show all the inversion results as

images of K to allow a direct comparison.

The HT travel time inversion produced meaningful results that reveal the most

important structures and overall good estimates of K. With 0.25 m and 0.5 m

spacing, all the highly permeable layers (1) - (5) can be reconstructed at the correct

locations and with well-estimated K-values. However, smaller heterogeneities, as

e.g., within layer (2), cannot be resolved and some inversion artifacts are visible in

the results, as e.g., a decrease in K in the direct vicinity of the left borehole. The

inversion result for 1 m spacing misses the uppermost layer (1) since no source and

receiver locations are present in this part of the aquifer. However, the other layers

(2) - (5) are still visible, although smoothing effects are becoming more pronounced.

36



Results

Figure 2.4: (a) The original data set of the Bolstern aquifer analog. The colorbar
for K also applies to all inversion results. (b) Structural similarity index
(SSIM) of the inversion results compared to the original data set. (c)
Overview of all inversion results for HT, IP and the two different IP
calibrations for varying spacing of pumping locations / electrodes, given
as images of K.

The travel time inversion typically yields integrated values along the different

ray paths, which in our case produces an offset between K-values left and right

of the central borehole. Although the general trend of the major layers is correct

and the inversion results reflect the true behavior of the original data set, local
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K-heterogeneities are not always attributed to the exact location, but are smeared

along the respective section of the ray path, creating a sharp border at the central

borehole.

For IP we show the uncalibrated results for K as well as the images achieved by

the new factor calibration and exponential calibration procedures. Note that the

ThyCD inversion of IP data always yields a set of parameters, of which only K is

shown in Fig. 2.4. An example of the complete set of parameters is given in A.2.

Firstly, we focus on the uncalibrated IP results. With 0.25 m electrode spacing,

the aquifer heterogeneities are correctly reconstructed in terms of structural behavior

and K-quantification. The highly permeable layers (1) - (4) are clearly retrieved

by the inversion, but layer (5) can hardly be reproduced. Obviously, the sensitivity

in this lowest part is small due to a very limited number of quadrupoles. However,

when it comes to resolving smaller heterogeneities within the layers, IP yields slightly

better results than HT and the attribution of certainK-heterogeneities to their exact

location is more reliable.

When increasing the electrode spacing, smoothing effects introduced by the reg-

ularization become more pronounced and this effect is much stronger compared to

the HT results. During IP measurements, one quadrupole integrates over an area

of at least three times the spacing also in vertical direction, whereas for HT the in-

tegrative behavior is mainly related to the horizontal direction (along the ray path).

Therefore, HT can resolve the borders between horizontal layers quite well, while this

becomes much more difficult for IP. Another effect of the regularization is that the

K-values, especially in the highly permeable layers, are typically under-estimated for

larger electrode spacing. Therefore, we cannot expect to achieve correct transport

simulations using those results. This can be overcome by using the new calibration

procedures employed in the following.

The factor calibration leads to an overall increase in K for all three spacings since

the value for Keff is higher than the geometric mean of the inversion results. This

yields an improvement in K-estimation especially for the larger spacings (0.5 m

and 1 m), where the K-values of the most permeable layers are now predicted

more correctly. However, an over-estimation of K can be observed in the less

permeable zones. This drawback can be overcome by the exponential calibration,

which leaves the lowest K-values unchanged and only adjusts the permeable zones

to the pumping test data, as described in section 2.2.2. This effect is clearly visible

in the results: now the K-estimates are very close to the original data set in all

parts of the aquifer and for all three spacings. The exponential calibration typically
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sharpens the contrast of the resulting image, thereby diminishing the smoothing

effects especially for larger electrode spacings.

To quantify the reproduction quality of aquifer structures, we calculate the struc-

tural similarity index (SSIM) for each inversion result compared to the original data

set (Fig. 2.4b). This metric is commonly used in image processing and measures

the similarity between two images by taking into account luminance, contrast and

structural information (Wang et al., 2004). It is bounded between 0 and 1, while the

latter value indicates perfect similarity. We use the Python package “scikit-image”

(van der Walt et al., 2014) to calculate the SSIM and find it to be a useful measure

to assess the quality of the inversion results.

For all methods, a decreasing SSIM with increasing spacing can be observed due

to lower data density and stronger smoothing effects. This behavior is expected

and corresponds to the visual assessment of the inversion results. Generally, the

lowest SSIM is computed for the HT results (between 0.17 and 0.05). Although the

major layers are retrieved correctly, the method is not capable of retrieving the true

structural behavior on smaller scales. The IP results yield relatively high SSIM values

for the smallest spacing (0.30), indicating a good reproduction of the structural

features. However, increasing the electrode spacing leads to a stronger decline of the

SSIM compared to HT, showing again that smoothing effects are more pronounced

for IP in this example. The factor calibration can strongly improve the structural

reproduction, with the SSIM slightly increasing for 0.25 m spacing and strongly

increasing for 0.5 m and 1 m spacing. While measurements with small spacing and

therefore high data density cannot be improved much further by the calibration,

the results achieved with larger spacing strongly benefit from this procedure. The

exponential calibration is less successful in improving the structural information of

the results, but still yields higher SSIM values compared to the uncalibrated IP

tomograms.

To further evaluate the prediction quality of theK-estimates, we show histograms

of the ratio between the estimated and the true value for each cell of the inversion

result (Fig. 2.5). To perform the comparison, the values of the 0.05 m x 0.05 m cells

of the original data set had to be averaged within the corresponding bigger cells of

the inversion results. In the histograms, values at 100 indicate a perfect prediction

of K compared to the averaged value of the original data set. We also show the

median value of the ratio (blue line) as well as how much of the prediction is within

one order of magnitude (black lines and corresponding percentage) and within two

orders of magnitude (red lines and corresponding percentage).
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Figure 2.5: Histograms of Kest/Ktrue (deviation of the inversion result from the true
K-value for each cell) for the different methods, calibrations and spac-
ings with the positions of the diagrams according to Figure 2.4. The blue
vertical lines indicate the median value (ideally at 100 = no deviation).
The black (red) dashed lines show the one-(two-)order-of-magnitude-
interval and the percentage indicates how many cells are within this
range of deviation.

For the HT results a relatively broad distribution of prediction quality can be

observed with approximately 90% of the values being within the 102-interval and

between 67% and 75% within the 101-interval. A significant number of cells is

strongly over-estimated, leading to a slightly bimodal distribution of the investigated

ratio with a smaller second maximum around 102. The median value is slightly

smaller than 100 for all three spacings.

The uncalibrated IP results show a narrower distribution of prediction quality

with 96.5% - 98% of the values within the 102-interval. While the median value

is close to 100 for the smallest electrode spacing, it is shifted to lower values with

increasing spacing. At the same time, the percentage of values within the 101-
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interval decreases from 77.5% to 59.9%. Due to the low data density and strong

regularization effects, a majority of the K-values gets significantly under-estimated

with increasing spacing.

After performing the factor calibration this bias produced by the inversion is mostly

corrected with all median values being very close to 100 and a much higher number

of values can be found within the 101-interval. However, the growing range of

the distribution with increasing spacing cannot be removed by the calibration. The

exponential calibration improves the prediction quality compared to the uncalibrated

results, but is less successful than the factor calibration.

In the same way, a possible bias of the petrophysical laws underlying the inversion

procedure might be corrected by the suggested calibration approaches. While the

IP method is very well capable of retrieving the structural information correctly and

giving a rough estimation of the expected trend in the K-values, the calibration

using hydraulic information is being used for a more exact K-estimation. Still, it

is important to note that the inherent scatter of the petrophysical laws cannot be

removed and the achieved K-distribution remains an approximation of the reality

within the limits of the accuracy of the petrophysical relations.

2.3.2 Transport Simulation

Snapshots of Tracer Plumes

Firstly, we evaluate the results of the transport modeling by imaging the tracer

plumes that are simulated using the different inversion results as input data for

the K-distribution. Fig. 2.6 shows an overview of snapshots taken at a simulation

time of 50 days after starting the tracer injection for the different methods and

calibrations as well as point spacings, arranged similarly to Fig. 2.4. The result for

the original data set is given on the left side and we consider this to be the actual

tracer concentration that would be observed in reality as a basis for comparison. The

highly permeable zones (1) - (5) identified in Fig. 2.4 have produced fingering tracer

plumes, that mostly extend as far as the center part of the domain (x = 6 ... 7 m).

Finger (2) inhibits some smaller variations due to the small-scale K-heterogeneities

and finger (3) splits up into two thinner layers with high tracer concentration.

The HT results for 0.25 m and 0.5 m spacing correctly show all tracer fingers

(1) - (5) with roughly the right extension and shape. Smaller features, as e.g.,

the variations in finger (2) or the splitting of finger (3), however, can hardly be

made out. With 1 m spacing the two uppermost tracer fingers disappeared due to
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Figure 2.6: Transport modeling results for HT, IP and the two different IP calibra-
tions for varying spacing of pumping locations / electrodes, given as
images of relative mass concentration of the tracer injected in the left
borehole. The result for the original data set of the Bolstern aquifer
analog is given on the left for comparison. Here, the numbers (1) - (5)
indicate the preferential flow paths identified in Fig. 2.4. All the plots
show snapshots taken 50 days after starting the tracer injection. The
same color bar applies to all images.

smoothing effects and the lack of pumping locations at the very top and only the

fingers (3), (4) and (5) are modeled correctly.

Using the IP inversion results for the tracer prediction correctly reproduces the fin-

gers (1), (3) and (4) with the right extension and shape. Some small-scale features,

like the splitting of finger (3), are more realistic compared to HT. However, finger

(2) gets strongly under-estimated due to smoothing effects, and layer (5) cannot

be sensed due to the lack of quadrupoles in the lowest part of the domain. With

larger spacing, the stronger influence of the smoothing effects becomes apparent.
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The simulation with 1 m spacing can only reproduce the fingers (3) and (4), but

they do not extend as far as they should. This indicates, that for cross-hole IP

measurements a small enough electrode spacing is crucial to obtain reliable results.

The tracer prediction resulting from the factor calibration shows a clear over-

estimation of K in the highly permeable layers with the fingers (1), (3) and (4)

extending too far to the right. This effect is strongest for 0.25 m spacing, where

the plume is already extending out of the domain at this time step. For the larger

spacings, the images are at least closer to the reality than the uncalibrated results,

although still somewhat over-corrected.

The best prediction of tracer plumes is achieved by the exponential calibration.

For 0.25 m spacing the uncalibrated result has already been close to reality and

it remains almost unchanged by the exponential calibration. A stronger effect of

the calibration is visible for 0.5 m spacing, where the extension of the plumes is

now predicted correctly. For 1 m spacing the result is still quite far from reality

since the calibration cannot compensate for the lack in identified structures and the

strong smoothing effects. Even so, there is a clear improvement compared to the

uncalibrated result.

Tracer Breakthrough Curves

The depth-integrated relative tracer concentration over time at the central borehole

(x = 6 m) is depicted in Fig. 2.7a-c. The concentrations were also recorded in the

right borehole (x = 9 m), but all the main trends in the results are similar, so they

are not further detailed here.

The breakthrough curve (BTC) for the original data set (red line) shows a rel-

atively steep increase in tracer concentration within the first 150 days, which is

stimulated by the highly permeable layers in the aquifer (layers (1) - (5) in Fig. 2.4

and 2.6). For later times, we observe a much slower increase in concentration as a

result of the delayed propagation in the less permeable parts.

As a basis for comparison, we also show the BTC of a hypothetical homogeneous

model with Keff = 7 · 10−5 ms−1 (red, dashed line). Here, we only observe a

relatively quick incline of tracer concentration in the time span between 150 and

200 days. However, the true shape of the BTC cannot be reproduced, since no

structural information on the sediments is processed. In contrast, all transport

simulation results from HT and IP better approximate the true shape of the BTC.

Apparently, the structural information gained from the two imaging techniques is

valuable, even when just looking at depth-integrated BTCs. Especially the tracer
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Figure 2.7: (a) - (c): Depth-integrated tracer breakthrough curves at the center
borehole (x = 6 m) resulting from different inversion results and calibra-
tions compared to the original Bolstern data set (red solid line) and a
hypothetical homogeneous model (red dashed line) for varying spacing
of pumping locations / electrodes. (d) Breakthrough delay of the dif-
ferent methods and calibrations depending on the varying point spacing
as a measure for the error of the transport simulations compared to the
original data set. The dashed lines represent a linear regression between
the data points for visual guidance only.

breakthrough at early times is strongly under-estimated by the homogeneous model.

The HT results (black lines) are successful in reproducing the whole BTC, al-

though we observe a slight under-estimation of tracer breakthrough at early times

and an over-estimation at late times. This can be interpreted as a result of smooth-

ing effects, leading to a less pronounced distinction between areas with higher or

lower K. It corresponds with the fact that this effect becomes stronger with in-

creasing spacing, where smoothing effects have more impact.

Although the IP results (dark blue lines) correctly reproduce the general shape

of the BTC (due to correctly retrieved structural information), they strongly under-

estimate the tracer breakthrough within the entire time span. Apparently, the to-

mograms are not accurate enough to be used for a transport simulation.

The exponential calibration (cyan lines) mainly corrects the early-time behavior

of the BTC since only the highly permeable parts are changed by this calibration

approach. Especially for the larger spacings (0.5 m and 1 m) this brings an advantage
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compared to the uncalibrated result, whereas for the smallest spacing (0.25 m)

almost no change can be observed. This is in agreement with the findings for the

inversion results (Fig. 2.4) and the tracer plumes (Fig. 2.6). For the late times,

the calibration does not compensate the under-estimation of tracer breakthrough.

However, this is not caused by an under-estimation of K in the less permeable

zones, since the slope of the BTC is correctly reproduced. Instead, the extension of

high-K-zones is underestimated due to regularization (especially for large spacings)

and therefore the early-time breakthrough reaches lower concentrations. This offset

remains for the whole time span and leads to an overall under-prediction of tracer

breakthrough.

The factor calibration (green lines) is more successful in correcting the IP results.

Although the tracer concentration is over-estimated for early times, the long-term

behavior is correctly predicted with a quality that is at least similar to the HT results.

Applying the Keff-value to the whole domain yields the best K-prediction in terms

of average values and therefore the best reproduction of the complete BTC.

Finally, we assess the impact of the point spacing (electrodes or pumping loca-

tions) on the quality of the tracer breakthrough prediction. For this purpose, we pick

a certain breakthrough time for all curves at the time where half of the relative con-

centration has been reached. We calculate the difference to the breakthrough time

of the original data set and call this the breakthrough delay, considering it a rough

measure for the error in the prediction of the BTC. The dependency of the delay

on the spacing is shown in Fig. 2.7d. For all methods we observe an increase of the

delay for increasing spacing due to a lower data density and stronger smoothing ef-

fects. This effect is only weakly pronounced for the HT results, indicating again that

the point spacing is not as crucial and relatively good results can also be achieved

with fewer pumping tests. On the other hand, the dependency on electrode spacing

of the uncalibrated IP results is very pronounced, showing that a sufficiently small

electrode spacing is particularly important to retrieve all the necessary structural

information and gain good K-estimates. However, acquiring cross-borehole IP data

with such small spacing in the field can be a very challenging task. Therefore, we

consider the calibration with hydraulic data to be valuable especially when a larger

spacing has to be used and therefore important structural information is not well

resolved. While the exponential calibration can only slightly compensate for those

problems, the factor calibration is very successful in reducing the breakthrough delay.

Here, the results have a quality very similar to the HT data and the errors resulting

from the large electrode spacing have been reduced significantly.
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2.4 Conclusions

We have shown that both HT and IP are valuable tools for imagingK-heterogeneities

in near-surface aquifers. The structural information of our test data set, the Bol-

stern aquifer analog, has been reconstructed by the inversion procedures to a high

degree of resolution and quantitative accuracy. For the first time, the distribution

of K could be computed directly from the IP data with our new IP-K inversion

procedure and the general quality of the results is comparable to the HT travel time

inversion. However, to achieve highly accurate K-estimates that allow using the

results for groundwater modeling, we calibrate the results with hydraulic informa-

tion. After the factor calibration, the depth-integrated tracer BTCs of the original

data set could be reproduced. Imposing Keff on the whole domain leads to a good

prediction of the long-term behavior of tracer breakthrough. On the other hand,

the exponential calibration is more suitable to correctly predict the tracer plumes

at early times. Therefore, in practice it would be necessary to decide on one of the

calibrations depending on how the data will be used later on. Both calibrations may

not only correct regularization-induced errors in K-prediction, but also a possible

bias of the petrophysical laws that link electrical and hydrological parameters. Al-

though we cannot account for the inherent scatter of the petrophysical relations,

we still consider those calibrations to be highly valuable tools within the processing

of IP data. While the structural features of an aquifer can be accurately retrieved

with IP, hydraulic information is essential for a reliable K-quantification.

Future research should focus on testing the suggested methodology within field

experiments. The new IP-K inversion procedure for IP data has already been tested

on borehole data (Fiandaca et al., 2021) and 2D surface profiles from five different

European countries (Martin et al., 2021), giving K-values within one decade from

slug tests / grain size analysis estimates. However, no benchmarking of the field K-

estimates for flow and transport modeling or tracer experiments have been conducted

yet.

Ideally, future field experiments should follow a similar concept as presented in

this study (Fig. 2.1). Conducting both HT and IP experiments at the same site

would allow a direct comparison of the performance of the methods in the field.

Furthermore, the pumping tests carried out for the HT survey could provide the

Keff-value needed for the IP calibrations. Finally, the quality of the achieved K-

images might also be tested by tracer experiments.

On the other hand, field campaigns with limited financial and time resources may
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now also rely on IP measurements alone (together with one or just a few pumping

tests for retrieving Keff) following the suggested calibration methodology. While a

full HT experiment is often very time-consuming and costly, IP measurements can

mostly be conducted within a few hours (in a setting similar to the example shown

in this work). Therefore, a detailed characterization of aquifer heterogeneities in

the field might become more convenient by applying our IP-K inversion procedure

and the results can be expected to have a similar quality compared to HT.

However, the two calibration approaches suggested in this work should only be

regarded as a starting point. In a real field environment, further elaborated cali-

bration methods might turn out to be more successful. Furthermore, stronger data

integration approaches between hydraulic and geophysical methods are expected

to yield even better results. While hydraulic methods are often most sensitive to

preferential flow paths, IP generates the strongest polarization response in areas of

low K. We therefore see a big potential in using the complementary sensitivities

of the two methods by a stronger integration of the data. Ultimately, a fully-joint

inversion of HT and IP data sets might open the door to an improved ability of

imaging hydraulic conductivity in near-surface aquifers.

Research Data

The original Bolstern data set as well as all HT and IP inversion results are available

through https://doi.org/10.5281/zenodo.6361423.
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Abstract

The accurate characterization of hydraulic conductivity heterogeneities in an aquifer

is crucial for predicting flow and transport processes correctly. Hydraulic tomogra-

phy (HT) experiments are often used to infer the hydraulically relevant features,

but the correct inversion of the data remains a challenging task. We implemented a

discrete fracture network (DFN) inversion approach that is expanded by considering

a nonzero matrix permeability. The hybrid model allows the accurate characteriza-

tion of fractured-porous sites by taking into account both matrix and fracture flow.

This novel inversion algorithm is successfully applied to HT data acquired at a field

site in Goettingen (Germany), and the results are compared with those of a stan-

dard travel time inversion. Furthermore, we validate the inversion results by using

them as the underlying material parameters for simulating heat tracer experiments

and comparing the modeled temperature responses with those of heat tracer tests

actually conducted at the site. It is shown that the DFN ensemble predicts the ther-

mal response of the experiments correctly for the two major fractures in terms of

location, amplitude, and time-dependent behavior of the temperature anomaly, as

long as the stochastic nature of the results is taken into account. We conclude that

considering both matrix and fracture flow in a hybrid DFN inversion approach can

lead to significant improvements in flow and transport modeling at fractured-porous

sites.
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3.1 Introduction

The prediction of flow and transport behavior in aquifers is relevant for many ap-

plications in subsurface engineering and hydrogeology, such as geothermal energy,

management of groundwater resources, and storage of hydrogen or methane (At-

tard et al., 2020; Gasanzade et al., 2021; Li et al., 2022a). However, the accuracy

and reliability of the prediction depend on the characterization of the subsurface

heterogeneity. Various tomographic methods have been established for imaging the

distribution of hydraulic properties. Among these methods, hydraulic tomography

(HT) is based on sequentially injecting (or extracting) water in one borehole in-

terval and monitoring the transient pressure or hydraulic head response in other

nearby intervals at different depths (Yeh & Liu, 2000). The tomographical config-

uration created by this setup is inspired by geophysical tomography methods such

as crosswell seismic or electrical resistivity tomography (Bing & Greenhalgh, 2000;

Binley & Slater, 2020; Bregman et al., 1989). However, in contrast to geophysical

methods, HT provides a direct link between the measured signals and the hydraulic

properties of the fracture network or the porous media (Day-Lewis et al., 2017).

All pressure responses measured at the observation points can be used to invert the

stratigraphic structures, i.e., the spatial distribution of hydraulic diffusivity, specific

storage or hydraulic conductivity.

In general, two conceptual models are available for the inversion of the hydraulic

head responses: the heterogeneous continuum model and the discrete fracture net-

work (DFN) model. The application of a continuum model results in a spatial

(element-wise) distribution of hydraulic parameters. It is assumed that the hetero-

geneities in hydraulic parameters are attributed exclusively to matrix flow, meaning

that individual (discrete) fractures cannot be inferred. The continuum model is

well established for the characterization of porous and fractured sites (e.g., Berg &

Illman, 2011; Cardiff et al., 2013, 2020; Fischer et al., 2017; Illman et al., 2009;

Liu et al., 2022; Luo et al., 2023; Ren et al., 2021; Somogyvari & Bayer, 2017;

Tiedeman & Barrash, 2020; Zha et al., 2015; Zhao et al., 2019, 2023) and several

inversion methods have been developed based on this concept. While geostatisti-

cal approaches can generate tomograms for both hydraulic conductivity (K) and

specific storage (SS) and often produce the best results for drawdown predictions,

continuum-based travel time inversion only yields diffusivity (D) tomograms, but

allows for the accurate characterization of high-D zones with less hydraulic data be-

ing required for the inversion (Qiu et al., 2023). In particular, travel time inversion
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is considered a more efficient inversion approach in terms of computational costs

and less reliance on a forward model for evaluating the error between simulated and

measured data (Brauchler et al., 2003, 2013b; Hu et al., 2011; Liu et al., 2022;

Yang et al., 2020). Thereby, potentially insufficient initial and boundary conditions

can be avoided.

Further insights into the properties of fracture networks can be gained by imple-

menting a DFN model for the inversion. The hydraulic properties of a predefined

DFN structure (Klepikova et al., 2014, 2020), the structural properties (Somogyvári

et al., 2019), or structural and hydraulic properties of DFNs (Fischer et al., 2020;

Ringel et al., 2022) can be estimated. Typically, the contribution of the matrix

to the flow is neglected in the DFN model, but the approach can infer individual

(discrete) fractures based on the HT data.

In this study, we investigate the HT-based characterization of a fractured-porous

field site. This category of aquifers can be of great relevance for geothermal appli-

cations (e.g., Bauer et al., 2017; Boersma et al., 2021; Huang et al., 2021; Kushnir

et al., 2018). Reliable inversion results can help optimize the planning and opera-

tion of these sites. For that purpose, we develop a novel inversion strategy using a

hybrid DFN model. It is based on a DFN inversion algorithm that has been applied

for fractured crystalline rock masses assuming an impermeable rock matrix (Ringel

et al., 2021, 2022; Somogyvári et al., 2017). However, at fractured-porous sites

the characteristics of purely fractured rocks and a porous rock matrix with consid-

erable permeability are combined and therefore it might not be sufficient to rely on

either a continuum model or a DFN model alone. Instead, a combined (hybrid)

approach considering flow in both discrete fractures and the porous matrix becomes

necessary (Fischer et al., 2020). Therefore, the objective of this study is to expand

the existing DFN inversion approach by the implementation of a hybrid model with

a nonzero matrix permeability. We demonstrate this methodology for HT experi-

ments conducted at the fractured rock experimental site located at the campus of

the University of Göttingen, Germany, and compare the results with those obtained

by using a continuum model alone.

This paper is structured as follows: subsequently, a description of the field site,

the conducted HT experiments, and the fundamentals and implementations of both

inversion algorithms are presented (Chapter 3.2). Afterwards, we evaluate the in-

version results in Chapter 3.3 and validate the results by predicting and comparing

the measured data of independently conducted heat tracer tests at the field site in

Chapter 3.4. The results are discussed in Chapter 3.5, where we also present a com-
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parison between the continuum model and the hybrid DFN approach. A conclusion

of our findings is given in Chapter 3.6.

3.2 Methods

3.2.1 Site description and data acquisition

The experimental site is located at the north campus of the University of Göttingen,

Germany (Fig. 3.1a), at the eastern shoulder of the Leinetalgraben, which is a

distinctive zone of subsidence in the southern part of Lower Saxony, Germany. The

geological structure is complex due to polyphase tectonic development under various

tension forces. Lithologically, the area is located in the Lower and Middle Keuper,

which mainly consists of clay sequences and silt-sandstone layers.

The lithological situation of the site has been described in Werner (2013) based

on drill cores. The top 14 m are composed of quaternary limestones and claystones

with mineralizations of quartz, feldspar, and calcite. Below this depth, different

types of consolidated sediments of the Middle Keuper can be found, starting with

red and grey siltstones as well as fine sandstones between 14 m and 24 m, with a high

abundance of calcite mineralizations. Between 24 m and 42 m, grey claystones as

well as siltstones are present, again with calcite mineralizations, but also iron oxide

films and small amounts of mica. An alternation of different silt- and claystones

continues until 64 m depth, where the Lower Keuper begins. For more details about

the geological setting and the lithology we refer to Werner (2013).

Since 2013, five groundwater wells arranged in a cross shape have been installed

at this site (Fig. 3.1b). Each well is 80 m deep and the horizontal distances from

the middle well to other wells are between 1.9 m and 3 m. To hydraulically connect

to the surrounding strata at different depths, each well was fitted with nine separate

filter sections. Each filter screen is 5 m long and installed in alternation with a

3 m impermeable filter section backfilled with clay, except for the 8 m long casing

at the top of the well (Fig. 3.1c). Therefore, tomographic pumping tests can be

performed independently between different filter sections of the test and observation

wells, which are hydraulically isolated by the double-packer system. Also, fiber-optic

cables were pre-buried outside each wellbore in order to observe the temperature

changes along the wells at high resolution during thermal tracer tests. Based on

previous studies including geophysical borehole logging (Werner, 2013), flowmeter

logging (Liu, 2022), long-term heat injection tests (Baetzel, 2017), and hydraulic

tests (Qiu, 2020; Yang et al., 2020; Liu et al., 2023), the hydraulic connection
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Figure 3.1: (a) Location of the field site in Göttingen within Central Europe. (b)
Setup of the wells at the field site. (c) Tomographic configuration of the
HT experiment with pumping screens in green and observation screens
in red colors. The data recorded at M5 were not used due to high noise
levels (dashed ray paths).

between wells M and O in the upper 45 meters seems most significant and several

transmissive fractures can be inferred. Therefore, the cross-well area between wells

M and O in the upper 45 meters will be the focus of this study (Fig. 3.1c).

The HT experiments were conducted in April 2018 as a series of cross-well multi-

level pumping tests. A submersible pump (Grundfos MP1) was used to extract

groundwater from isolated intervals in well O with a pumping rate of approximately

30 l min−1 (the exact rate for each test was recorded and could be used in the

forward model of the hybrid DFN inversion). The resulting drawdown data were

recorded by pressure transducers (“Druck” pressure sensors with an accuracy of

1 mmH2O and a temporal resolution of 20 ms) in both the pumping well O and

the observation well M in the intervals separated by the double packer systems.

The pumping tests were conducted in four different intervals (O2-O5), and for each

test the resulting pressure response was recorded in the respective four intervals

(M2-M5) in the opposite borehole, thereby creating a tomographic configuration.

Drawdown data were also recorded in the pumping well O, but they are strongly

affected by the three-dimensional diffusion of the pressure perturbation (radially,
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assuming an isotropic medium), which is not included in the 2D forward model.

Therefore, these data are not used within this work. Furthermore, the pressure

signal at observation interval M5 is extremely noisy and was therefore excluded

from the further processing and inversion (dashed lines in Fig. 3.1c). Therefore, the

used data set consists of 12 different pressure response curves (red lines in Fig. 3.4).

More information about the field experiments can be found in Yang et al. (2020).

3.2.2 Continuum-based travel time inversion

The hydraulic travel time of a pumping test can be defined as a line integral between

a source point x1 (where the pumping-induced pressure is generated) and a receiver

point x2 (at which the resulting pressure response curves are recorded). It is assumed

that the signal travels along the path ε, which minimizes the travel time based on

the given distribution of diffusivity D
[
m2 s−1

]
in the subsurface:

√
tα,h =

1√
6fα,h

∫ x2

x1

dε√
D(ε)

, (3.1)

where tα,h [s] is the hydraulic travel time and fα,h is a conversion factor (Brauchler

et al., 2003). The subscript h indicates the usage of a Heaviside source. The travel

time of the signal is obtained by selecting the maximum of the absolute value of its

first derivative (see Fig. 3.2a). In order to calculate this derivative, the raw data

have to be denoised to create a smooth pressure response curve. For this purpose,

we employed the wavelet method and polynomial regression as reported in Yang

et al. (2020). Although the duration of the experiments is relatively long (between

300 s and 3000 s pumping duration), the travel time can typically be found within

the first seconds of the signal (see Fig. 3.2b).

Similar to the seismic travel time inversion, Eq. 3.1 is resolved using ray tracing

techniques, and the inverted slowness can be converted to the hydraulic diffusivity

D. In this study, the open-source framework pyGIMLi is utilized to invert the

hydraulic travel times, which is based on the generalized Gauss-Newton method

(Günther et al., 2006; Rücker et al., 2017) and where the forward operator for

calculating the travel times uses Dijkstra’s algorithm (Dijkstra, 1959). As a final

step, the diffusivity D might be converted to hydraulic conductivity K
[
ms−1

]
by

multiplying with specific storage Ss
[
m−1

]
:

K = D · Ss. (3.2)
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The spatial distribution of Ss can be inferred from hydraulic attenuation inversion

(Brauchler et al., 2011; Song et al., 2023), but it is often assumed homogeneous

by using literature values. Within this study, we use a constant specific storage of

Ss = 5 · 10−5 m−1 based on average values from Qiu (2020).

For performing the inversion, a uniform rectangular grid with a vertical resolution

of 0.5 m and a horizontal resolution of 1 m is used. The relatively coarse resolution

is chosen to account for the low data density produced by the limited number of

source and receiver positions. The model space using this grid consists of 150 cell

values, while the data space is made up by only 12 travel times. Therefore, an

even finer resolution would pretend an accuracy of the result that is not actually

supported by the data. Furthermore, the rectangular (non-square) cells are helpful to

reproduce the horizontal layering typical for sedimentary environments, without the

need to apply anisotropic constraints within the inversion. While the pumping and

observation intervals have a relatively long vertical extension (red and green lines in

Fig. 3.2c), the source and receiver positions are only modeled as points that are set

at the top or bottom of the interval (black dots in Fig. 3.2c). Since the travel time

inversion is generally most sensitive to the shortest path of the signal, the receiver

points are placed at the position that minimizes the distance to the respective

pumping location. Consequently, since results from a travel time inversion can only

cover the domain between source and receiver points, no diffusivity information can

be obtained for the area between the deepest intervals (-40 m to -45 m), as well as

beyond the pumping and observation locations in horizontal direction.

3.2.3 Hybrid DFN inversion

Forward simulation and numerical model

Since the HT data were acquired at a fractured-porous field site, a hybrid DFN

model, also called discrete fracture matrix (DFM) model, is applied for the simula-

tion of the HT experiments (Berre et al., 2019). This conceptual model integrates

larger and more permeable fractures directly while smaller and less conductive frac-

tures are considered by the hydraulic conductivity and specific storage of the matrix

elements. Flow in the fracture network and the porous media is governed by Darcy’s

law and the continuity equation. The porous medium is modeled as 2D continuum:

Ss
∂h

∂t
−∇ (K · ∇h) = Q (3.3)
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with the following initial and boundary conditions:

h
∣∣
t=0 = 0, h

∣∣
Γ1 = 0, (K · ∇h) · n

∣∣
Γ2 = 0. (3.4)

Here, h [m] is the hydraulic head, Q
[
s−1

]
is a source/sink term, Γ1 comprises the

left and right boundary of the domain, Γ2 the top and bottom boundary, and n is

a normal vector on the respective boundary.

Fractures are reduced to 1D discrete lines assuming a constant hydraulic head

normal to the fracture plane:

af Ss,f
∂h

∂t
−∇T (af Kf ∇Th) = af Q, (3.5)

where af [m] is the fracture aperture. The gradient ∇T is evaluated in the fracture

plane. The subscript f always refers to fracture parameters (in contrast to porous

media parameters).

The finite element method (FEM) is applied for the numerical solution of Eq. 3.3,

3.4, and 3.5. Intersections between different fractures and between fracture and

matrix are considered by a conforming mesh discretization which imposes continuity

of the head and balance of the fluxes (Woodbury & Zhang, 2001). The mesh

discretization for the computational domain including the boreholes and the fracture

network is implemented utilizing the open source mesh generator Gmsh (Geuzaine

& Remacle, 2009).

Solution of the inverse problem

The inversion of the HT data is based on a stochastic approach. Accordingly,

the DFN parameters θ (a parameter set containing position, size, and hydraulic

conductivity K of the fractures, see Table 1) are interpreted as random variables

characterized by their posterior distribution p (θ|d). The Bayesian equation relates

the posterior distribution, considering a set of measured HT data, to the likelihood of

the modeled data for a given DFN realization and the prior information of the DFN

parameters. The likelihood function L evaluates the error between the measured

HT data d and the HT signals F (θ) simulated by the forward model:

logL (d|θ) ∝ −
N∑
i=1

(di − F (θ)i)
2

2σ2i
, (3.6)
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where σ is the data variance estimated by Gibbs sampling, as in previous works

(Ringel et al., 2019, 2022). The posterior distribution of the DFN parameters is

evaluated by generating samples from the distribution according to Markov chain

Monte Carlo (MCMC) methods. This results in a set of DFN realizations that

are equally likely by adjusting the structural and hydraulic properties of the DFN.

Starting from an initial DFN realization, the DFN parameters are updated iteratively

by proposing a new parameter set θ′ with a proposal distribution q based on the

current realization of the DFN. This parameter set is accepted or rejected according

to the update probability:

ψ = min

(
1,

p (θ′|d)
p (θi−1|d)

q (θi−1|θ′)
q (θ′|θi−1)

)
. (3.7)

Insertion or deletion of a fracture is a so-called transdimensional update following the

reversible jump MCMC algorithm (Green, 1995). Additionally, parameter updates

can be applied that adjust position, length, or hydraulic conductivity of the fractures.

More information about this DFN inversion approach can be found in Ringel et al.

(2022).

Implementation of the inversion

The computational domain comprises a rectangle covering the depth range between

0 m and -60 m in vertical (z-) direction and a horizontal (x-) extension between

-10 m and 12 m. The two boreholes are located at x = 0 m and x = 1.9 m, so that

the distance between both boreholes and the corresponding boundary of the domain

is approximately 10 m. This distance ensures that boundary effects of the model

directly affecting the relevant hydraulic signals are negligible, but long fractures are

still able to connect the boundary conditions with the boreholes to simulate the

interaction with the parts of the aquifer not included in the computational domain.

As shown in Eq. 3.4, these boundary conditions on the left and right side of the

domain were implemented as zero head boundaries due to the negligible natural

flow conditions at the site. At the top and bottom of the domain, no-flow boundary

conditions are employed. The initial hydraulic head is set to zero within the whole

domain.

The pumping intervals are implemented as 1D line source elements using the

exact vertical extension according to the field experiments (Figure 3.1c). The re-

sulting pressure response curves are achieved by integrating over the volume of the

borehole intervals (using the exact borehole radius and vertical extension), so that
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the contributions of all fractures crossing the respecting intervals, as well as the

matrix, are considered.

The pumping duration and extraction rates of the individual hydraulic tests are

implemented according to the actual field experiment. However, only the first 100 s

of the signals were evaluated within the inversion. This early time span is the most

dynamic part of the response and contains almost all necessary information about the

subsurface hydraulic parameters (e.g., Hou et al., 2023). Also, using the complete

signal for the inversion procedure would significantly increase the computational

cost.

For modeling flow in the porous medium, we assign a hydraulic conductivity of

10−6ms−1 and a specific storage of 5 · 10−5m−1 to the matrix. These values are

based on earlier results of single-well multi-level pumping tests and corresponding

type curve analysis, which give a range of possible values for both parameters (e.g.,

between 3.4 · 10−7ms−1 and 1.3 · 10−6ms−1 for K, based on Qiu (2020)). A more

detailed discussion of the selected matrix parameters in contained in section 3.3.4.

The inversion algorithm works with a limited number of distinct fracture sets that

are each characterized by a fixed fracture orientation angle. Based on data from

an optic televiewer system, three major orientations of the fractures were identified

by an earlier study (Werner, 2013) in terms of azimuth and dip angle: 351◦/6◦,

221◦/37◦, and 45◦/59◦. By projecting these planes into our 2D domain, we obtain

the following dip angles: -0.94◦, -26.31◦, and 49.64◦.

At the beginning of the inversion process, an initial DFN has to be defined as

the starting model. While some of the initial fractures are manually inserted to

ensure connectivity to the boundary conditions, as well as between the pumping

and observation intervals for the first iteration, a number of randomly generated

fractures is also added. All of the initial fractures belong to one of the three fracture

sets mentioned above, meaning that the orientation angles of the initial DFN are

based on the three different angles from the televiewer data (Werner, 2013), and

they remain fixed throughout the inversion process. Each orientation is chosen with

a probability of 1
3 when generating the initial DFN, and also when inserting a new

fracture during the inversion process.

To evaluate the influence of the starting model, we performed several inversions

with different initial DFNs in parallel. It could be observed that all inversions end up

at similar posterior DFN ensembles despite large differences in the starting model.

In all cases, none of the initial fractures remains untouched by the inversion. In-

stead, most of the direct interval connections are actually deleted and replaced by
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parameter minimum maximum

x-position of the fractures mid-point -8 m 10 m

z-position of the fractures mid-point -46 m -15 m

length of the fracture 0.5 m 10 m

hydraulic conductivity of the fracture 10−4ms−1 100ms−1

Table 1: Minimum and maximum values for the prior distribution of fracture param-
eters.

more indirect connections by a combination of several fractures. A lot of other

initial fractures undergo significant changes in position and size during the inversion

procedure.

All fractures in the model are assumed to be straight lines characterized by an

aperture of 0.002 m (Liu et al., 2022) and a specific storage of 10−5m−1. While

those two parameters remain fixed during the inversion, the hydraulic conductivity

K as well as location and length of the fractures are regarded as inversion param-

eters. The minimum and maximum values used for the prior distribution of those

parameters are summarized in Table 1.

Note that hydraulic conductivity is assumed to be constant within each individual

fracture. The minimum and maximum number of fractures for a DFN are set to 20

and 200, respectively, while the latter has never been reached during the inversion

process. The prior distributions also apply as proposal functions for the insertion

of a fracture. For the deletion of a fracture, one fracture is randomly chosen from

a uniform distribution over the number of fractures. In the case of a parameter

update, the proposal distribution is a normal perturbation of the current value with

a given standard deviation.

3.3 Inversion results

3.3.1 Travel time inversion result

The result from the continuum-based travel time inversion of the HT data is shown in

Fig. 3.2c. The tomogram is evaluated in terms of diffusivity D, since this parameter

is the direct result of the inversion and no conversion to hydraulic conductivity

(Eq. 3.2) has been performed at this stage. In the result, most areas have diffusivity

values between 0.1m2 s−1 and 10m2 s−1. However, there is one distinct high-
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Figure 3.2: (a) Example for pressure response curves of the HT experiment and
travel time processing. The raw data (red curve) are first denoised
(black, dashed line), before the maximum of the first derivative (blue
line) is picked as the travel time for the corresponding ray path. (b)
Table with the derived travel times (in seconds) for all source-receiver
combinations. The travel time from plot (a) is marked in blue. (c) Re-
sult of the travel time inversion in terms of diffusivity D. The green and
red lines represent the pumping and observation intervals, respectively,
whereas the black dots visualize the assumed source and receiver points
for calculating the ray paths.

diffusivity zone at the depth of -25 m that connects the intervals M3 and O3.

Clearly, a strong hydraulic connectivity was established between those intervals, but

the exact depth of this connection remains unclear. The inversion algorithm places

the high-diffusivity zone at the top of the interval, since the source and receiver

61
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Figure 3.3: (a) Individual DFN realization from the last iteration of the inversion.
The black lines represent the zero pressure boundary conditions (the no-
flow boundaries at the top and bottom are not shown here), while green
and red lines are pumping and observation intervals, respectively. The
blue lines visualize the individual fractures of the DFN with the width of
the line indicating the individual permeabilities. (b) Fracture probability
map generated from the posterior ensemble of the hybrid DFN inversion.

points are positioned there in the forward model. In the field experiments, the

complete intervals function as sources and receivers, so the connection could also

be located at the bottom of these intervals (e.g., around -28 m). Therefore, it is not

possible to derive the exact depth of the hydraulically relevant features using the

continuum-based travel time inversion in combination with this specific field setup.

3.3.2 Hybrid DFN inversion results: individual realizations

Firstly, we show the DFN realization of the last iteration as one example of the

posterior ensemble in Fig. 3.3a. This network consists of 23 individual fractures, with
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three of them being part of the first fracture set (dip angle -0.94◦, almost horizontal

lines in the plot), eleven of the second fracture set (-26.31◦) and nine of the third

fracture set (49.64◦). The hydraulic conductivity of the fractures is visualized by

the width of the blue lines and ranges from 0.25ms−1 to 0.99ms−1. All these

values are close to the upper limit for K used within the inversion (1ms−1), so that

even the relatively thin lines in the plot are fractures with a hydraulic conductivity

significantly higher (around five orders of magnitude) than the matrix.

All fractures of this realization have a connection to the entirety of the network,

either by other fractures or by the two boreholes. There are two fractures that

connect the network to the left boundary and four fractures establish the connection

to the right boundary (black lines). Only one direct connection between two opposite

intervals can be found (marked as fracture B in Fig. 3.3a), which corresponds with

the high-diffusivity zone identified in the travel time inversion result (Fig. 3.2c).

However, many more connections between other intervals (also in vertical direction)

are established in indirect ways by the interplay of several fractures. In some cases,

fractures end very closely to one of the intervals, leaving a little gap, where the

hydraulic connection is maintained by flow through the matrix (e.g., fracture A is

very close to the pumping interval, but still leaves a small gap). In these cases, the

combined fractured-porous approach is of great importance.

A comparison of the measured HT data with the modeled data based on the last

DFN realization is shown in Fig. 3.4. Overall, a good data fit has been reached for

the first 100 s of the signal. The hydraulic head towards steady-state conditions has

mostly been simulated correctly with values between -0.1 m and -0.15 m. Only for

combination O2-M4, the misfit between measured and simulated data at the last

shown time step is significant. In other cases, the slope of the simulated curves is

not entirely correct (e.g., combination O3-M3, where the drop in hydraulic head

is actually much slower, but in the end, the same steady-state level is reached).

This could be explained by an underestimation of the specific storage in either the

matrix or the fracture network by the inversion but might also be a result of possible

3D effects in the experiment that are not accounted for in the 2D forward model.

However, with respect to the high noise level of the measured data, the simulated

pressure response curves can be regarded as satisfactory.

3.3.3 Hybrid DFN inversion results: fracture probability map

The high number of DFN realizations (samples from the posterior ensemble) requires

the evaluation of the inversion result as a fracture probability map (FPM). Due
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Figure 3.4: Measured (raw) data of the HT experiments (red lines) and modeled
pressure response curves for the last iteration of the hybrid DFN inversion
(blue lines). Only the first 100 s of the signal are used within the
inversion procedure. The RMSE values (in m) shown in the plots are
calculated using smoothed pressure response curves to eliminate the
effect of noise on the RMSE. However, within the inversion procedure,
the raw signal is used to include the uncertainty of the data.

to the large ensemble size and the strong similarity of consecutive realizations,

the method of sequence thinning (Somogyvári et al., 2017) was used to select

realizations that show significant differences. We use every 100th realization of the

last 2500 iterations of the ensemble. A raster with 0.2 m resolution is generated for
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each DFN realization and the values 1 and 0 are assigned to the individual raster

elements, based on whether a fracture is present or not. By computing the mean

of all rasters for the chosen DFNs, the FPM is created, showing the probability

(between 0 and 1) for each raster element to be part of a fracture. The variations

in hydraulic conductivity among the different fractures are not considered in the

FPM.

Fig. 3.3b shows the resulting FPM. The individual realization from Fig. 3.3a

can clearly be identified in the FPM as well, and deviations within the posterior

ensemble are relatively minor. There is a limited number of fractures that only

appear in some realizations (e.g., in the lower left corner). Instead, most of the

fractures only undergo small positional changes (blurry areas in the FPM) or are

almost not being shifted at all (dark lines in the FPM). All of those fractures are in

some way connected to pumping/observation intervals or to the boundary, so that

they are hydraulically relevant and therefore crucial to fit the data properly.

A zone with a particularly high fracture density can be identified around the second

pair of intervals (between -22 m and -30 m, approximately). Here, the fracture

network establishes a strong hydraulic connectivity between the opposite intervals

and beyond (to the boundary). Again, fracture B appears as a very prominent feature

that directly connects the intervals and is characterized by very high probabilities

(dark colors) in the FPM. This zone of high fracture densities is in good agreement

with the continuum-based inversion result (Fig. 3.2c) that indicates a high-diffusivity

zone in a similar depth range. Above and below these depths, a lower fracture density

can be observed, with only a few distinct fractures being hydraulically relevant.

Outside the area covered by the intervals, no fractures are being inserted by the

inversion algorithm due to the absence of hydraulic data.

3.3.4 Influence of matrix characteristics

Within the hybrid DFN inversion approach, selecting the correct hydraulic conduc-

tivity of the matrix plays a key role. As stated previously in section 3.2.3, we assign

a hydraulic conductivity of 10−6ms−1 to the matrix based on earlier findings of Qiu

(2020). Generally, fitting some of the data by analytical solutions can help to find

a good initial guess for the matrix parameters.

However, alternative matrix characteristics were also tested to evaluate their influ-

ence on the inversion results. If, on the one hand, the value for matrix-K is chosen

too high, flow in the porous phase alone might explain the measured hydraulic data

and therefore almost no fractures are inserted by the inversion algorithm. In this
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Figure 3.5: Influence of matrix parameters on the inversion results. Choosing a
hydraulic conductivity of 10−6ms−1 for the matrix results in the smallest
misfit (solid, blue line), e.g., compared to a lower K-value of 10−8ms−1

(dashed, blue line), and especially compared to a classical DFN inversion
neglecting the matrix completely (dotted, blue line). For the complete
results of all source receiver combinations, we refer to section A.3 (S1
and S2).

case, the matrix hydraulic conductivity is already an average value that contains

both the porous and the fractured part. If, on the other hand, K of the matrix is

chosen smaller, seemingly reasonable DFNs are generated by the inversion, but the

experimental data cannot be fitted with the same accuracy. This trend is illustrated

by Figure 3.5: When selecting a lower hydraulic conductivity of K = 10−8ms−1

for the matrix, we observe a modeled pressure response that is too rapid for ex-

plaining the measured data (dashed, blue line in Figure 3.5). Overall, this DFN

ensemble produced higher RMSE-values between measured and modeled data and

is therefore characterized by a lower likelihood compared to the original matrix-K of

10−6ms−1. The complete inversion results for all source receiver combinations are

shown in section A.3 (S1). It shall be noted that for both cases the misfit between

measured and modeled data had remained almost constant for several thousands

of iterations. It is thereby ensured that a stationary level had been reached and no

better fit is possible, meaning that the shown DFN realization must be part of the

posterior ensemble.

When neglecting the matrix completely (dotted, blue line in Figure 3.5), the

modeled pressure response is even more rapid, and no satisfactory fit of the data can

be achieved. The full result of this inversion case is shown in section A.3 (S2). As a

consequence, a classical DFN inversion cannot be suitable for this data set. Instead,
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the hybrid DFN inversion approach is necessary for processing the experimental data

of this site, and probably also beneficial at other fractured-porous field sites.

3.4 Validation with thermal tracer test data

3.4.1 Field experiments

The thermal experiments used for the validation are conducted in opposite direction

compared to the HT experiments (Fig. 3.1c) with heat injection in borehole M and

observation of the resulting temperature response in borehole O. We evaluate the

results for three different heat injections in the intervals M2, M3 and M4. The

temperature of the injected water was approximately 20 ◦C, while the ambient

temperature was around 9 ◦C during the experiments. The the tests ran for 5

hours with an injection rate of 25 lmin−1. In the observation well, temperatures

were recorded using a distributed temperature sensing (DTS) system with a vertical

resolution of 0.5 m and an observation frequency of 1 min. During each thermal

tracer test, double-packer systems were installed at different filter sections in the

injection well attempting to reveal fractures at different filter sections. The results

of these experiments have been published previously in Liu et al. (2022).

3.4.2 Simulation of the field experiments

The thermal tracer experiments were simulated in COMSOL 6.1 (Comsol, 1998)

using the different inversion results obtained from the HT experiments as the un-

derlying representation of the hydraulic properties. The computational domain is a

60 m x 60 m 2D rectangle with no-flow boundaries at the top and bottom and zero-

pressure boundaries on the left and right, similar to the model used for the hybrid

DFN inversion. We found that a larger horizontal distance between the boundary

conditions and the boreholes (compared to the hybrid DFN inversion) is necessary

due to the longer duration of the experiments.

The travel time inversion result was first converted from diffusivity D to per-

meability k (Eq. 3.2 and Eq. 3.8) by assuming a homogeneous specific storage of

5 · 10−5 m−1 (the same value was used for the matrix in the DFN inversion). The

resulting k-distribution was imported as a pixel map, while the rest of the com-

putational domain outside the inversion result was filled with a constant value of

k = 1.33 ·10−13 m2, which corresponds with the value of matrix permeability within
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the hybrid DFN inversion (K = 10−6ms−1) by using the conversion

k =
η

d · g
·K ≈ 1.33 · 10−7 ·K, (3.8)

where η and d are dynamic viscosity and density of water, respectively, and g is

the gravitational acceleration. To use the DFN result within the numerical model,

several realizations of the posterior ensemble have to be implemented due to the

stochastic nature of the inversion. Again, the sequence thinning method is employed

to select every 100th realization of the last 900 iterations of the ensemble, meaning

that the thermal tracer test simulations were conducted on 10 different DFN mod-

els. Each fracture was added manually to the numerical model as a line segment

with the exact coordinates and permeability values from the inversion result. The

permeability of the matrix was again assigned with 1.33 · 10−13 m2. Furthermore,

porosity values of 0.3 for the matrix and 0.8 inside the fractures were assumed, as

well as an average rock density of 2700 kgm−3 (Schön, 2015). The thermal con-

ductivity (0.58Wm−1 K−1 for the fluid and 3.0Wm−1 K−1 for the matrix), as well

as the specific heat capacity (4200 J kg−1 K−1 for the fluid and 1000 J kg−1 K−1 for

the matrix) are based on literature values for sandstone (Schön, 2015).

Similar to the hydraulic forward models used within the inversion procedures, a 2D

model is also employed for the thermal simulations. This approximation is typically

reasonable in local zones with clearly defined principal stress directions (Lang et al.,

2018), which is fulfilled in this specific field case due to the small distance between

the boreholes (1.9 m) and the given orientation angles of the fractures.

For all the simulations, a homogeneous temperature field of 10 ◦C was used

as initial condition and the temperature at the boundaries is kept at this value,

accounting for the temperature of water inflow from the sides. In the injection

interval, a mass flux of 25 l min−1 with a temperature of 20 ◦C was employed, in

accordance with the actual field survey. The complete time span of the experiment

(5 hours) was simulated. Fig. 3.6 illustrates the thermal tracer test simulation for

one DFN realization for the injection interval M3 at three different time steps.

3.4.3 Comparison between measured and predicted thermal response

Fig. 3.7 compares the measured thermal response (left column of plots) produced

by the three different injections in the intervals M2, M3, and M4 with the modeled

thermal response using the continuum-based inversion result (middle column) and

the hybrid DFN inversion result (right column). The results were evaluated in terms
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Figure 3.6: Snapshots of the thermal tracer test simulations performed in COMSOL
for injection interval M3 at the first time step (left), after one hour
(center) and at the last time step (right).

Figure 3.7: Comparison of measured data from the thermal tracer test (left column)
and the simulated data using the travel time inversion result (center
column) and the hybrid DFN inversion result (right column). Fracture
A and fracture B are also shown in Fig. 3.3a.
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of temperature deviation ∆T from the respective minimum values since the actual

temperature of the aquifer was often slightly smaller (1-2 K) than the 10 ◦C assumed

in the numerical model.

The measured data reveal two significant temperature anomalies: one for the first

injection in interval M2 at a depth of -20 m with a temperature amplitude of up to

5 K, and another one for the second injection in interval M3 at a depth of -28 m

with a temperature amplitude of up to 8 K. We interpret these major pathways for

heat transport as the two prominent fractures A and B, which can also be identified

in the hybrid DFN inversion result (Fig. 3.3a). The time-dependent behavior of the

temperature breakthrough in those two fractures is also shown in Fig. 3.8 by the red

lines. In these plots, the depth with the highest temperature amplitude was used

for the evaluation, as this was assumed to be the crossing point of the fracture with

the observation borehole.

The other temperature anomalies with much smaller amplitude, but wider vertical

extensions (red areas in the plot) are most likely a result of vertical heat transport

inside the observation borehole and/or remaining heat from the respective earlier

injections (the experiments were conducted from top to bottom). Both of these

effects are not accounted for in the numerical model, so that the anomalies cannot

be observed in the simulated data.

The simulated temperature data using the continuum-based inversion result (mid-

dle column in Fig. 3.7) only reveal one significant temperature anomaly for injection

M3 at a depth of -24 m. This corresponds with the high-diffusivity zone observed

in the travel time inversion result shown in Fig. 3.2c. As described earlier, the exact

depth of this zone cannot be expected to be reproduced by the travel time inversion.

Therefore, this high-diffusivity zone can be assumed to resemble fracture B and so

we show both thermal responses together in Fig. 3.8b. Compared to the measured

data, the response from the travel time inversion result (orange line) is delayed and

has a significantly smaller amplitude. We therefore conclude that, although the

continuum-based approach actually reproduces this fracture, the estimation of its

depth and permeability is not very accurate. At the approximate position of frac-

ture A (Fig. 3.8a), only a very small temperature anomaly is simulated assuming a

continuum (which would probably be below the noise level in a field experiment).

In this case, the continuum model is not able to correctly predict the heat transport

by this fracture.

The simulated temperature data using the hybrid DFN inversion result (right col-

umn in Fig. 3.7) is able to reproduce both fractures A and B. The calculated depths
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Figure 3.8: (a) Measured and (b) simulated temperature response curves for frac-
tures A and B. The curves are always generated for the depth showing
the greatest temperature amplitude, so that smaller inaccuracies regard-
ing the location of the fractures in the inversion result are not considered
in these plots. The plots (c-d) show the ten individual realizations of
the posterior ensemble used for the numerical simulations (blue lines).
Here, the black arrows indicate the general direction of heat transport
from the injection to the observation borehole.

of the temperature anomalies are very accurate in comparison with the measured

data. There is actually another weak anomaly caused by a fracture in the hybrid

DFN result for injection interval M4 at a depth of -37 m. A similar anomaly is

also visible in the measured data, but the signal is superimposed by noise and the

borehole effects, which hampers reliable interpretation.

When looking at the time dependency as well as the amplitude of the temperature

response (Fig. 3.8), it is crucial to distinguish between the individual realizations
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Römhild et al. (2024a) - Water Resources Research

(shown as black, dashed lines) and the average of those 10 realizations (blue, solid

line). For fracture A, a strong variability among the individual realizations can

be observed, with maximum temperature deviations ranging from 1 K to almost

8 K at the last time step. The reason is illustrated in Fig. 3.8c, where all ten

DFN realizations are shown as blue lines. The major pathway of heat transport

(black arrow) is maintained by a fracture that, although crossing the observation

borehole (green line) directly, has no immediate contact to the injection borehole

(red line). In the remaining gap, heat is only transported through the rock matrix,

which is much slower compared to the heat transport in the fractures. Therefore,

besides the exact parameter values assigned to the matrix in the model, the size

of the remaining gap (=the distance of the heat transport through the matrix)

has a huge impact on the temperature response observed in the other borehole.

Since the position of this fracture is adapted and changes during the inversion

process, the individual realizations produce strongly differing temperature responses.

However, when computing the average of these realizations, the measured data can

be predicted almost perfectly. This again highlights the importance of considering

the stochastic nature of the hybrid DFN inversion results, as well as the need to

model the flow in both discrete fractures and porous matrix within the hybrid DFN

approach.

For fracture B, the individual realizations produce more similar temperature re-

sponses compared to fracture A, with maximum temperature deviations between

6 K and 9 K (Fig. 3.8b). In this case, the fracture directly connects the injection

interval with the observation borehole (Fig. 3.8d), so that small variations in the

position do not have a strong impact on the heat transport. However, changes in

the permeability of the fracture may still affect the results. Again, the prediction of

the measured data using the average of ten DFN realizations is fairly good, even if

the rise in temperature is too rapid at early times. For both fractures, the prediction

quality using the hybrid DFN inversion result is significantly better than using the

continuum model.

3.5 Discussion

While the main focus of this study is the application of the novel hybrid DFN

inversion approach to HT field data, we also want to give a detailed comparison

with the continuum-based travel time inversion as well as provide guidance for future

applications about how to select the more suitable inversion method under certain
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conditions.

The main advantage of a continuum-based travel time inversion is the compu-

tational efficiency, with a total run time of 15-20 s on a standard laptop for the

inversion performed on the HT data set of this study. It also requires less assump-

tions (and therefore minor a priori knowledge) about certain site conditions, since

no boundary conditions have to be defined in the forward model and a lot of de-

tails about the experiment (pumping rate, pumping duration, borehole effects) are

irrelevant. Despite all those simplifications, the inversion can yield good results

for porous media with mostly continuous heterogeneities and allows to identify the

major highly transmissive zones within the aquifer. Since the result of the inversion

is deterministic, the interpretation of the tomogram is straightforward and does not

require any stochastic evaluation.

However, only the diffusivity distribution can be retrieved by the travel time inver-

sion. The conversion to hydraulic conductivity (or permeability) requires information

about the specific storage, which can be approximated by a constant value derived

from hydraulic attenuation inversion or by further post-processing (Hu et al., 2011;

Jimenez et al., 2013). It is also important to note that regularization parameters

(e.g., smoothness constraints) may strongly affect the results, and a trial-and-error

strategy is often required to find reasonable values for those parameters. Fur-

thermore, although the inversion itself is rather quick, the denoising procedures and

picking of the exact travel time can be challenging and time-demanding. The strong

simplifications made within the forward model also do not allow an evaluation of

the uncertainties of the result.

For the data set of this study, only one out of two high-diffusivity zones (that

were clearly visible in the thermal tracer test data) could be identified by the travel

time inversion, and inaccuracies were observed in the predicted temperatures as

well as in the location of the thermal breakthrough. It is an inherent limitation of

the travel time inversion approach in combination with this specific field setup that

the exact depth of these highly permeable zones cannot be inferred. Generally, the

setup of this hydraulic tomography experiment with a small distance between the

two boreholes (1.9 m), but a large vertical extension of the intervals (6 m) is not

particularly favorable for performing a travel time inversion. Furthermore, the results

indicate that flow between the boreholes is mainly established by narrow zones of

high permeability, which might be regarded as fractures. Therefore, a continuum-

based inversion approach is probably not suitable to accurately infer the hydraulic

properties at this site.
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Furthermore, a classical DFN inversion only considering individual fractures, but

neglecting the influence of the matrix completely, could not fit the measured data

with reasonable quality. Instead, the hybrid DFN inversion produced the best results

by accounting for flow in both the matrix and the fractures. We could show that both

of the highly transmissive zones could be identified by the hybrid DFN inversion, so

that the thermal tracer test data were reproduced very accurately in terms of both

location and amplitude of the temperature breakthrough. We therefore conclude

that the hybrid DFN results are indeed suitable to be used for flow and transport

modeling. Another advantage of the approach is that no preprocessing of the HT

data is necessary. Noisy data can be used directly, and the underlying uncertainties

are considered in the Bayesian inversion framework. The stochastic nature of the

approach allows for the evaluation its uncertainties, e.g., in terms of a fracture

probability map.

However, a DFN inversion is computationally expensive and may require a high-

performance workstation. For the inversion performed for this study, we used a

standard desktop PC with an 8-core i7-9700K 3.6 GHz processor and 32 GB RAM.

With this setup, a total run time of 4-5 days was required to compute a probabilis-

tic inversion result with a sufficiently large posterior ensemble. The forward model

also requires the implementation of appropriate boundary conditions and some as-

sumptions for fractures (e.g., orientation angles of fracture sets, as well as constant

aperture and permeability for an individual fracture) are necessary. Therefore, a

relatively large amount of a priori knowledge about certain site conditions is crucial

to obtain accurate inversion results. It shall also be noted that, although matrix flow

is contained in the hybrid DFN model, the matrix parameters are so far assumed

constant and need to be predefined, and selecting reasonable values can be a crucial

but challenging task. 3D and borehole effects are also neglected (or contained in

matrix values) in the current study but could be included for other sites if neces-

sary. Furthermore, due to the stochastic nature of the inversion, the results cannot

be interpreted or used for flow and transport modeling directly, but require special

post-processing.

We therefore suggest that the decision for one of the inversion approaches should

be based on the actual site conditions as well as the expectations about the result.

If the data were acquired in a fractured-porous environment with a big contrast

in permeability between the rock matrix and individual fractures, the hybrid DFN

approach is highly suggested. This was also shown by Fischer et al. (2020) for a

karstic and fractured aquifer, where the inferred transmissivities of fracture and ma-
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trix differ by several orders of magnitude. However, for an almost impermeable rock

matrix (e.g., in most crystalline rocks), where hydraulic connections are exclusively

maintained by the fractures, the classical DFN inversion (without matrix flow) can

be sufficient (Ringel et al., 2021, 2022). If, on the other hand, the permeability

contrast between matrix and fractures is very small, e.g., due to only partially open

fractures or high fracture surface roughness, the heterogeneities can be assumed

continuous, so that the travel time inversion is advantageous due to its simplicity

and computational efficiency.

3.6 Conclusions and Outlook

We have shown that a hybrid DFN inversion approach, considering flow in both dis-

crete fractures and a permeable matrix, is valuable for the hydraulic characterization

of fractured-porous sites. The method was successfully applied to HT data acquired

at a field site in Göttingen (Germany). For this specific field case, a good fitting

of the experimental data could not be achieved by implementing a DFN inversion

alone, but only by including a non-zero matrix permeability in the forward model.

The results are in general agreement with a standard continuum-based travel time

inversion, but the hybrid DFN approach can reveal some hydraulic connectivities in

the aquifer with more detail and accuracy. This is also supported by independent

validation data, i.e., a thermal tracer test conducted at the same site. Here, the

inferred DFN ensemble is able to predict the thermal responses with high accu-

racy regarding the depth, the amplitude, and the time-dependent behavior of the

temperature anomalies. However, it is crucial to take the stochastic nature of the

approach into account to achieve good results.

The inversion approach might be used for a variety of applications, including the

characterization of geothermal sites. For instance, according to a sensitivity study by

Heldt et al. (2023), the thermal performance of a high-temperature aquifer thermal

energy storage (HT-ATES) system is most sensitive to hydraulic conductivity and its

vertical-to-horizontal anisotropy ratio. A preliminary characterization of the aquifer

heterogeneity is thus necessary for a better system design and for improving the

heat recovery during the operation phase. This characterization should include an

accurate representation of both the fracture network and the porous rock matrix

(Fischer et al., 2020).

However, this study should only be regarded as a first attempt for including

matrix flow within a DFN inversion approach. For future applications of the hybrid
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DFN inversion, a more generalized procedure can be desirable that has the ability

to treat the matrix characteristics (K and Ss) as inversion parameters, and not

pre-define them manually. Improvements could also be achieved by implementing

spatially variable matrix parameters as well as including borehole effects directly

in the forward model. An improved proposal distribution could be generated by

considering complementary data (e.g., from geophysical methods) for the generation

of DFNs. Furthermore, a proposal distribution could be implemented that considers

the correlation between certain parameters, so that more proposed DFNs are likely

to be accepted. This would ultimately result in higher computational efficiency.

Further research topics include the application of the inversion approach in 3D, as

well as the investigation of the resolution and reliability of the hybrid DFN inversion

results for cases where only one borehole is available (geothermal applications).

For this purpose, preliminary synthetic studies should be conducted to test and

improve the methodology, but ultimately more field examples are needed to prove

the robustness of the inversion approach.

Research Data

The experimental data used in this study (hydraulic tomography and thermal tracer

test) can be found under the following link: https://doi.org/10.5281/zenodo.

10213883
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Geophysical Journal International 238(2) (2024) 960–973

https://doi.org/10.1093/gji/ggae197

https://doi.org/10.1093/gji/ggae197
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Abstract

For accurate modelling of groundwater flow and transport processes within an

aquifer, precise knowledge about hydraulic conductivity K and its small-scale het-

erogeneities is fundamental. Methods based on pumping tests, such as hydraulic

tomography (HT), allow for retrieving reliable K-estimates, but are limited in their

ability to image structural features with high resolution, since the data from time-

consuming hydraulic tests are commonly sparse. In contrast, geophysical methods

like induced polarization (IP) can potentially yield structural images of much higher

resolution, but depend on empirical petrophysical laws that may introduce significant

uncertainties to the K-estimation. Therefore, this paper presents a joint inversion

procedure for both HT and IP data, which allows for combining the complementary

abilities of both methods. Within this approach, a travel time inversion is applied

to the HT data, while the IP inversion is based on a full-decay time-domain forward

response, as well as a re-parametrization of the Cole-Cole model to invert for K

directly. The joint inversion is tested on a synthetic model mimicking horizontally

layered sediments, and the results are compared with the individual HT and IP

inversions. It is shown that jointly inverting both data sets consistently improves

the results by combining the complementary sensitivities of the two methods, and

that the inversion is more robust against changes in the experimental setups. Fur-

thermore, we illustrate how a joint inversion approach can correct biases within the

petrophysical laws by including reliable K-information from hydraulic tests and still

preserving the high-resolution structural information from IP. The different inver-

sion results are compared based on the structural similarity index (SSIM), which

underlines the robustness of the joint inversion compared to using the data indi-

vidually. Hence, the combined application of HT and IP within field surveys and

a subsequent joint inversion of both data sets may improve our understanding of

hydraulically relevant subsurface structures, and thus the reliability of groundwater

modelling results.
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4.1 Introduction

The hydraulic properties of the near-surface Earth have long been a target of geo-

physical research (e.g., Binley et al., 2015). In particular, precise knowledge about

the spatial distribution of the hydraulic conductivity K in shallow aquifers is crucial

for predicting flow and transport processes correctly (e.g., Comunian et al., 2011;

Refsgaard et al., 2012; You et al., 2020). Classically, in the hydrogeological commu-

nity, this information is inferred from different types of hydraulic tests. Among them,

hydraulic tomography (HT) has been established as a method that is able to image

the spatial distribution of K between two or more boreholes using a tomographic

configuration (Yeh & Liu, 2000). The method is based on sequential pumping ex-

periments in several depth intervals within one borehole, while the transient pressure

or hydraulic head response is recorded in other nearby intervals at different depths.

A broad range of inversion approaches is available to infer the hydraulic parameters

from the HT data, which are based either on discrete fracture network models (e.g.,

Klepikova et al., 2014, 2020; Somogyvári et al., 2019; Fischer et al., 2020; Ringel

et al., 2022; Römhild et al., 2024a), or on heterogeneous continuum models (e.g.,

Illman et al., 2009; Berg & Illman, 2011; Cardiff et al., 2013, 2020; Fischer et al.,

2017; Luo et al., 2023; Ren et al., 2021; Somogyvari & Bayer, 2017; Zha et al.,

2015; Zhao et al., 2019, 2023), while the latter is most suitable for porous media.

In particular, continuum-based travel time inversion (Brauchler et al., 2003, 2013b;

Hu et al., 2011; Liu et al., 2022; Yang et al., 2020) is considered appealing due to

its computational efficiency.

The main advantage of these methods is the direct link between the measured

hydraulic data and the desired hydraulic parameters, which does not require using

petrophysical approximations. Therefore, the overall quantification of K is highly

reliable, reflecting the true hydraulic characteristics of the aquifer (e.g., Zhao et al.,

2015). However, conducting these pumping tests in the field can be time-consuming

and expensive, with a single test typically taking several hours (e.g., Berg & Illman,

2013), so that only a small number of them is practically feasible. Therefore, the

ability to image the hydraulic parameters with high resolution is mostly limited due

to a low data density and thus a high degree of non-uniqueness of the inverse problem

(Bohling & Butler Jr., 2010). Furthermore, HT experiments are most sensitive to

high-K zones as the major flow paths within the aquifer, but low-K heterogeneities

are more difficult to image.

In contrast, hydrogeophysical measurements can often be conducted more time-
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and cost-efficiently, making it more feasible to image subsurface heterogeneities

with higher resolution. Particularly, induced polarization (IP) has the potential to

reliably map the distribution of K in near-surface aquifers (Slater, 2007; Binley &

Slater, 2020). Based on the conceptual similarities between groundwater flow and

electrical conduction in porous media, petrophysical relations linking hydraulic and

electrical parameters have been derived from laboratory experiments (e.g., Börner

et al., 1996; Slater & Lesmes, 2002; Binley et al., 2005; Revil & Florsch, 2010;

Titov et al., 2010; Revil et al., 2012b; Attwa & Günther, 2013; Weller et al., 2015;

Robinson et al., 2018). The resulting equations can either be applied to the elec-

trical parameters retrieved from the IP inversion in a separate step (Hördt et al.,

2009; Attwa & Günther, 2013; Maurya et al., 2018a), or directly be incorporated

into the inversion procedure (Fiandaca et al., 2018b; Römhild et al., 2022a). For

the latter, a re-parametrization of the Cole-Cole model (Cole & Cole, 1941; Pel-

ton et al., 1978; Tarasov & Titov, 2013) can be used as the model space (Fiandaca

et al., 2018a). The main advantage of this approach is that K is an actual inversion

parameter, and therefore the results can be interpreted in terms of hydraulic prop-

erties directly. Furthermore, regularization parameters can be defined with respect

to K, and sensitivity calculations may be performed for this parameter. In addition,

prior information given in terms of K can be used to inform the inversion directly

(e.g., in the form of a starting model). It was also shown that the new model

parameters are actually less correlated with each other than the classical Cole-Cole

parameters (Fiandaca et al., 2021). The inversion approach has been tested by

a synthetic study on a realistic aquifer analogue data set and compared with HT

inversion results by Römhild et al. (2022a). Furthermore, the procedure has also

been applied to field data, and the IP inversion results were in good agreement with

K-estimates derived from borehole data, slug tests, and grain size analysis (Martin

et al., 2021; Thalund-Hansen et al., 2023), thereby demonstrating that the IP-K

inversion approach indeed has the potential to map spatial heterogeneities of the

hydraulic properties.

However, the petrophysical relations used within this inversion (Weller et al.,

2015; Revil et al., 2012b) are derived from laboratory experiments performed on

a small set of samples, which is often not representative for the actual field case.

Therefore, the accuracy of the K-estimates may be limited due to the inherent

uncertainty of the petrophysical approximations. Furthermore, the accuracy of the

K-quantification might be affected by the regularization parameters of the inversion.

These limitations motivate the idea of incorporating reliable hydraulic data into the
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IP inversion.

Based on the complementary abilities of HT and IP regarding sensitivity, spatial

resolution, and reliability of the K-estimates, the aim of this work is to combine

the IP-K inversion approach with a HT travel time inversion in order to image the

distribution of K with high accuracy. In an earlier attempt, the IP results have

been calibrated by using hydraulic data providing reliable estimates for an effective

hydraulic conductivityKeff (Römhild et al., 2022a). However, these calibration tech-

niques are often not straightforward and require a certain amount of manual fitting.

Therefore, the objective of this paper is to introduce a joint inversion procedure, in

which HT and IP data can be inverted simultaneously for a distribution of K that

minimizes both data misfits. Generally, petrophysical joint inversion approaches

have already been used in other contexts, such as permafrost sites (Mollaret et al.,

2020), gas hydrate systems (Turco et al., 2021) or reservoir characterization (Gao

et al., 2012). The inversion strategy presented in this paper aims to combine the

high-resolution structural information from IP with the robust K-estimates derived

from HT, as well as the complementary sensitivities of both methods to areas of

enhanced or reduced K. We implement the joint inversion procedure for a sim-

ple synthetic test case to show the main benefits as well as the limitations of the

method. In particular, biased petrophysical relations are introduced to assess the

robustness of the joint inversion against these uncertainties, compared to individual

inversion. The quality of the inversion results is evaluated by using the structural

similarity index (SSIM).

The paper is structured as follows. We introduce the two individual inversion

strategies for IP and HT as well as the joint inversion approach in section 4.2.

Subsequently, the individual and joint inversion results based on a synthetic model

are presented in section 4.3, with special emphasis on the ability of the joint inversion

to correct a petrophysical bias within the IP-based K-estimates. We discuss our

findings in section 4.4, thereby focusing on the applicability to actual field cases.

Some concluding remarks as well as an outlook to further research questions are

given in the last section.
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4.2 Methods

4.2.1 Induced polarization

Petrophysical foundation

The concept of inverting IP data for hydraulic conductivity K is based on the fact

that electrical and hydraulic rock parameters are typically governed by the same

pore space properties (Slater, 2007). In general, the electrical conductivity σ∗ of

a porous medium can be considered as a frequency-dependent and complex-valued

quantity (Vinegar & Waxman, 1984):

σ∗(ω) = σel + σ∗int(ω), (4.1)

which is a superposition of electrolytic conductivity σel and interface conductiv-

ity σ∗int, with ω = 2πf being the angular frequency, and the ∗ denoting complex

quantities. It may either be given in terms of real and imaginary part (σ′ and σ′′,

respectively) or as magnitude |σ∗| and phase angle ϕ:

σ∗(ω) = σ′(ω) + iσ′′(ω) = |σ∗| · eiϕ, (4.2)

with i denoting the imaginary unit. The electrolytic part describes the DC conduction

through a rock’s pore space, and therefore depends on pore volume properties as

described by Archie’s law (Archie, 1942) assuming fully saturated conditions:

σel =
σw
F

= Φm · σw, (4.3)

where σw is the pore water conductivity, F = Φ−m is the formation factor, Φ is

porosity, and m is the empirical cementation exponent.

In contrast, the interface conductivity σ∗int can be governed by a variety of different

electrical polarization phenomena mainly attributed to the interface between pore

space and rock matrix. In the absence of electronically conductive minerals, such as

graphite or pyrite, diffusion-related polarization connected to the electrical double

layer (EDL) at the pore-matrix-interface is dominant (Marshall & Madden, 1959;

Schwarz, 1962; Olhoeft, 1985; Bücker & Hördt, 2013). Since these polarization

effects strongly depend on the frequency of the applied current, the spectral behavior

of σ∗ must be taken into account, which is commonly described by the Cole-Cole
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model (Cole & Cole, 1941; Pelton et al., 1978; Tarasov & Titov, 2013):

σ∗(ω) = σ0

[
1 +

m0

1−m0

(
1− 1

1 + (iωτσ)c

)]
. (4.4)

Here, σ0 is the DC conductivity, m0 the intrinsic chargeability as defined by Seigel

(1959), τσ the relaxation time, and c the frequency exponent.

In order to achieve the re-parametrization of the Cole-Cole model in terms of

hydraulic properties, two different petrophysical approaches are applied within this

work. First, Weller et al. (2015) found a relation to estimate the permeability k

that is based on the formation factor F as a measure for the volumetric properties

of the pore space, and the imaginary part of the electrical conductivity σ′′ evaluated

at 1 Hz accounting for the polarization strength:

k =
1.08 · 10−13

F 1.12 (σ′′(1 Hz))2.27
(4.5)

for unconsolidated and fully saturated sediments. Within this approach, the rela-

tionship

σ′′(1 Hz) = 0.042 · σ′int(1 Hz) (4.6)

between imaginary and real part of surface conductivity found by Weller et al.

(2013) is also used. However, in this work, the relation is imposed at the frequency

f = (2πτσ)
−1 according to Fiandaca et al. (2018b).

As a second approach, we use an equation suggested by Revil et al. (2012b)

using the formation factor F , the diffusion coefficient of the Stern layer D+, and

the relaxation time τσ:

k =
τσD+

4F
. (4.7)

The relation is based on the concept of τσ being a measure for typical scale lengths

in the rock’s pore space, which in return govern hydraulic conductivity. We use the

two distinct D+-values for sand and clay:

D+,sand = 1.3 · 10−9 ·m2 s−1,

D+,clay = 3.8 · 10−12 ·m2 s−1,
(4.8)

given by Revil et al. (2015), in order to simulate realistic τσ-values within the

forward modelling. However, the physical significance of D+ remains ambiguous

(Weller et al., 2016), and therefore this parameter might introduce a high degree of

83



Römhild et al. (2024b) - Geophysical Journal International

uncertainty to this relation (Eq. 4.7). For a more detailed discussion on the inherent

limitations of the petrophysical relations, we also refer to Fiandaca et al. (2018b)

and Römhild et al. (2022a).

In order to include different petrophysical approaches within our inversion proce-

dure, both Equations (4.5) and (4.7) are used simultaneously, forcing the inversion

to produce K-values that fulfil the two relations equally well. This is based on the

hypothesis that a combined approach has the potential to make the K-estimation

more robust against varying field conditions that may differ from the underlying

assumptions of the individual petrophysical relations.

Finally, the conversion from permeability k to hydraulic conductivity K is per-

formed using the relation

K =
d · g
η

· k ≈ 7.5 · 106 · k, (4.9)

where d is the density of the pore fluid, g the gravitational acceleration, and η the

dynamic viscosity of the pore fluid. The approximation is achieved by assuming a

groundwater temperature of 10 ◦C.

IP forward modelling

Generally, IP experiments can be conducted either in the frequency domain (spectral

induced polarization, SIP) or in the time domain (TDIP). Both approaches can

potentially produce consistent results of similar quality (Martin et al., 2020). In this

work, we focus on TDIP, since it is more widely used within field applications due to

a typically smaller acquisition time (Maurya et al., 2018b). By performing full-decay

spectral inversion (Fiandaca et al., 2012, 2013; Madsen et al., 2020), an accurate

retrieval of spectral properties can be achieved, given that a wide time range is used

during data acquisition (Madsen et al., 2017), for instance through the analysis of

full-waveform recordings (Olsson et al., 2016). The general concept of time-domain

IP experiments is illustrated in Figure 4.1. For more details about the method we

refer to Binley & Slater (2020).

The forward response is computed using the WhyCDF model space, similar to

Römhild et al. (2022a). We assume a constant water conductivity of σw = 50 mS m−1

as well as a homogeneous formation factor of F = 5 as realistic values for uncon-

solidated sediments (Schön, 2015). The K-distribution is set up according to the

synthetic test case given in subsequent section 4.2.4, and the diffusion coefficient

D+ is derived from K by interpolation in log-space from the sand-clay values sug-
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Figure 4.1: (a) Generalized setup of (i) surface (blue), (ii) cross-borehole (red),
and (iii) single-borehole (green) IP experiments with current electrodes
A and B, and voltage electrodes M and N. (b) Current signal with
alternating on-times and off-times, and (c) observed voltage including
charging curves and decay curves caused by the polarization effects.
(d) Exemplary voltage decay curves with added Gaussian noise (black
lines with error bars), and the respective curves fitted by the inversion
(coloured lines).

gested by Revil et al. (2015) (Eq. 4.8). Although a continuous relationship between

K and D+ has not yet been proven by other studies, we consider it a reasonable

approximation for imposing realistic τσ-values on the data. The frequency expo-

nent c = 0.5 is assumed homogeneous. Clearly, these can be strong assumptions,

especially regarding a constant formation factor. However, it was shown in previous

works that an accurate K-distribution is also achieved when including spatial vari-

ability in F (Römhild et al., 2022a). Nevertheless, the synthetic experiments can

only be regarded as best-case scenarios that illustrate the general potential of the

method.

The specific setup of the IP experiments is given in section 4.2.4. The forward

simulation is executed using EEMverter, an inversion tool for electric and electro-

magnetic data (Fiandaca et al., 2023). The 2D solution of the forward problem

is computed in the frequency domain, and then transformed to the time domain

85
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through a Hankel transform taking into account both the current waveform and the

receiver transfer function, following Fiandaca et al. (2013).

Finally, Gaussian noise of 2 and 10 per cent magnitude is added to resistivity

and IP data, respectively. As illustrated in Figure 4.1d, this can be regarded as a

relatively high noise level, which accounts for the difficulty to acquire high-quality

IP data under certain field conditions. However, we find that decay curves with

such noise content can still be fitted by the inversion, so that the approach can be

expected to be applicable to field data.

4.2.2 Hydraulic tomography

Full modelling

The HT experiments are simulated by using the finite element solver of pyGIMLi, a

Python-based open-source library for multimethod modelling and inversion in geo-

physics (Rücker et al., 2017). The geometries of the test cases and the corresponding

mesh are generated by the sub-module “meshtools”, and the K-information of the

synthetic model (see section 4.2.4) is assigned to the different layers.

Flow in the porous medium, modelled as a continuum, is governed by Darcy’s law

and the continuity equation. Therefore, the governing equation of the simulation is

the following partial differential equation (PDE):

Ss
∂h

∂t
−∇ · (K∇h) = 0, (4.10)

which can also be written as

Ss
∂h

∂t
−∇K · ∇h−K∇2h = 0. (4.11)

In both formulations, Ss is the specific storage, K is the hydraulic conductivity,

and h is the hydraulic head. Equation 4.10 can be implemented using the function

“solveFiniteElements” of pyGIMLi, which solves PDEs matching the form

c
∂u

∂t
= ∇ · (a∇u) + bu+ f (r, t) , (4.12)

by setting u = h, a = K, b = 0, c = Ss, and f = 0. The hydraulic head on the

sides of the domain is kept at zero by applying a Dirichlet boundary condition. The

injection is implemented as a Neumann boundary condition applied to the respective

injection intervals. Examples of the full solution of the PDE (Eq. 4.10) are shown
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in Figure 4.2b, where the pressure response curves (hydraulic head over time, in

response to a Heaviside pumping signal) are plotted for different combinations of

source receiver pairs. This full modelling approach is applied for computing the

synthetic HT data used in this work. However, only the peak times of the head

responses (the times at which the first derivatives of the pressure signals reach their

maximum) are used as data in the inversion process, as explained in the subsequent

section. The specific setup for the experiments shown in this work is given in

section 4.2.4.

Travel time approximation

For computing the forward response within the inversion of HT data, we use the

travel time approximation of Eq. 4.11, which neglects the (∇K · ∇h) term in com-

parison to Ss
∂h
∂t , such that the peak time (or the time for reaching a fraction α of

the peak) can be computed as the line integral between the source point Si (where

the pumping-induced pressure is generated) and the receiver point Ri (where the

resulting hydraulic head is observed), following the ray path ε:

√
tα,h =

1√
6fα,h

∫ Ri

Si

dε√
Ss(ε)
K(ε)

, (4.13)

where tα,h is the time for reaching the fraction α of the peak, and fα,h is a scaling

factor that is computed numerically from the diffusion equation of homogeneous

media (Brauchler et al., 2003). The subscript h indicates that a Heaviside signal

was used for the pumping tests. In this work, we apply a 25 per cent early time

diagnostics approach (i.e., α = 0.25) according to Brauchler et al. (2003). By using

earlier travel times, the sensitivity of the inversion to preferential flow paths can

be enhanced (Hu, 2011). Similar to seismic travel time inversion (Zelt & Smith,

1992), Eq. 4.13 can be solved by using ray tracing techniques. For this purpose, the

“traveltime” submodule of pyGIMLi is utilized for computing the forward response

based on Dijkstra’s algorithm (Dijkstra, 1959). A noise level of 3 per cent was

added to the travel time data, based on Doetsch et al. (2010) and Hu et al. (2017).

87
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Figure 4.2: (a) Generalized setup of a HT experiment with simplified ray paths
between source points Si and receiver points Ri. (b) Travel time pro-
cessing of HT data. The bold lines represent the hydraulic head response
at the receiver points initiated by a Heaviside signal at the pumping lo-
cations. The thin lines are the respective first derivatives, and the peak
times ti are picked at the maximum of these curves. The color-coding
refers to the ray paths in (a). (c) Early-time diagnostics for travel time
processing. The bold, blue line is the hydraulic head response of the first
ray path, while the thin, black line shows its first derivative. The early
time tα,h is picked where the derivative reaches 25% of its maximum
value. Note that numerical instabilities commonly occur in the early
phase of the pumping experiment simulation.

4.2.3 Inversion

IP-K inversion

The data space of the IP inversion comprises both the DC data and the complete

IP decays for the respective quadrupole sequence. The inversion of these data is

performed in the ThyCD model space similar to Römhild et al. (2022a). Con-

sequently, the inversion parameters comprise the total (DC) conductivity σ0, the

hydraulic conductivity K, the diffusion coefficient D+, and the frequency expo-

nent c. When evaluating the inversion results, D+ might also be interpreted in
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terms of an apparent diffusion coefficient Da as described by Weller et al. (2016).

The inverse problem is solved within the EEMverter framework through an iterative

Gauss-Newton scheme based on Fiandaca et al. (2013, 2023), where the objective

function contains the squared data misfit and smoothness regularization terms for

vertical and horizontal constraints. The constraints allow for adjusting the spatial

variability of each model parameter in horizontal and vertical direction. However, all

four model parameters remain uncoupled and space-dependent within the inversion.

HT inversion

The data space of the HT inversion comprises the early times tα,h of the source re-

ceiver pairs of the simulated sequence (described in section 4.2.4), while the model

space is defined by the 2D distribution of K (assuming homogeneous Ss). Although

the inversion could be fully performed in the pyGIMLi environment together with

the forward computations, EEMverter is used in this study for carrying out the HT

inversions (as well as the joint inversions), thanks to the feature of EEMverter of

accepting external forward and jacobian computations. Additional codes for estab-

lishing the interface between EEMverter and pyGIMLi are implemented in MATLAB,

and the transfer of the data is handled by text-based files. In particular, the model

of the current iteration (i.e., the K-distribution) is exported by EEMverter and then

used by pyGIMLi for the forward calculation. The resulting HT data (i.e., the travel

times) as well as the Jacobian matrix for this model are subsequently transferred

back to EEMverter, which handles the actual inversion procedure.

Joint inversion

The joint inversion of both data types is also implemented using the EEMverter

framework, with internal computation of DC and IP data and external forward cal-

culation of the HT response using pyGIMLi. Generally, the results can be achieved

by either a classical, fully-joint inversion (minimizing both data misfits simultane-

ously), or by working with different inversion cycles. In the latter case, the inversion

might be performed for one data type only in a first cycle, and the joint inversion of

both data sets is executed in a second cycle using the result of the first cycle as a

starting model. In this paper, only results from the fully-joint, single-cycle inversion

are shown to ensure comparability. The use of the same inversion algorithm for all

the inversion types in this study (IP-K inversion, HT traveltime inversion, and joint

inversion) allows for a fair and easy comparison of inversion results, because regu-
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larization, damping, data weighting, and stopping criteria are treated in the same

way for all data types.

Since the number of IP data points is typically larger than the available HT data

points, considerations about the correct weighting of the different methods within

the joint inversion are necessary. In the current form of the algorithm, data are

weighted according to their given standard deviation. For the synthetic data used in

this work, we have carefully chosen reasonable standard deviation models that ensure

a well-balanced influence of the two methods within the joint inversion. However,

for the inversion of field data, where the standard deviation is an inherent part of the

data that cannot be modified, the implementation of an explicit weighting factor

might become necessary.

4.2.4 Synthetic model

To illustrate the advantages as well as the limitations of the joint inversion approach,

a simple synthetic model mimicking horizontally layered sediments with alternating

hydraulic conductivity is constructed (Figure 4.3a). The model domain has a hori-

zontal extension of 12 m and extends down to 8 m depth. It primarily consists of

material with an intermediate hydraulic conductivity of K = 10−6ms−1, intermit-

ted by a layer of 1 m thickness with high hydraulic conductivity (K = 10−4ms−1)

at 2 m depth, another layer of the same thickness with low hydraulic conductivity

(K = 10−8ms−1) at 4 m depth, and a thinner layer (0.5 m) of high hydraulic

conductivity (K = 10−4ms−1) at 6 m depth. In this way, the different sensitivi-

ties of the two methods for areas of enhanced K (HT) or reduced K (IP) shall be

illustrated. In addition, the ability of the different experimental setups to resolve

small-scale structural features, such as thin horizontal layers, shall be assessed.

While the hydraulic conductivity is the shared parameter used within the synthetic

experiments of both HT and IP, the model also comprises additional parameters

that are individually required for one of the methods. The underlying assumptions

for those parameters are described in the respective sections about the synthetic

experiments (sections 4.2.2 and 4.2.1), while the values used in the simulations

are shown in Figure 4.3, including the diffusion coefficient D+ (Figure 4.3b). To

illustrate the effect of the heterogeneity in K and D+ on the IP response, additional

electrical parameters are shown in Figure 4.3c–f. Note that those are not defined

as model parameters but can be derived from the other parameters by using the

petrophysical conversions given in section 4.2.1. Consequently, smaller values for K

lead to a stronger polarization (manifested as higher phase peak ϕmax and higher
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Figure 4.3: Distribution of hydraulic conductivity K (a) and diffusion coefficient
D+ (b) in the synthetic model. The parameters given on the right are
assumed constant for the synthetic experiments. The given parameter
set can be used to compute other electrical parameters by the conver-
sions given in section 4.2.1. Here, we show the maximum phase angle
ϕmax (c), the Cole-Cole relaxation time τσ (d), the imaginary part of
electrical conductivity σ′′ evaluated at f = (2πτσ)

−1 (e), and the DC
conductivity σ0 (f). Three boreholes are placed at x = 3 m, 6 m, and
9 m, with IP electrodes (black dots) distributed with 25 cm spacing,
and HT source points (asterisks) and receiver points (triangles) with at
least 1 m spacing.

σ′′), shorter relaxation times τσ, and a higher DC conductivity σ0.

In all cases, it is assumed that three boreholes are located in the model domain

with a horizontal distance of 3 m and a vertical extension down to 7 m depth. The

electrodes for the IP experiments as well as pumping and observation locations of

the HT setup are placed in those boreholes.

For the HT experiments, the injection intervals are located in the left borehole at

x = 3m. We use an interval length of 0.1 m and an injection rate of 0.5 m s−1 to

simulate pumping tests, which are conducted sequentially from top to bottom. The
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observation points are located in two other boreholes at x = 6m and x = 9m at

the same depths as the injection intervals, and the hydraulic head is recorded over

time at the nearest node of the mesh.

The setup of the IP data acquisition is based on a common cross-borehole scheme

with electrodes being distributed with 25 cm spacing in the three hypothetical bore-

holes at x = 3 m, 6 m, and 9 m. Note that for this study no surface electrodes

are used to allow a fair comparison with the HT experiments. The sequence is

built using a combination of cross-borehole and single-borehole quadrupoles (cases

(ii) and (iii) in Figure 4.1a, similar to Römhild et al. (2022a)), consisting of 1860

quadrupoles in total. Each decay curve is defined by 41 IP time gates ranging from

0.003 s to 12 s (Figure 4.1c).

4.3 Inversion results

4.3.1 Individual HT and IP inversion results

The K-images resulting from the different test cases are shown in Figure 4.4 in

comparison with the synthetic model (a). In the IP result (Figure 4.4b), the different

layers of the model are reproduced by the inversion and the overall K-quantification

is accurate. A high spatial resolution can be achieved due to the small electrode

spacing of 25 cm. However, regularization-induced smoothing effects lead to a

tendency of underestimating K in the high-permeability zones and overestimating

K in the less permeable areas. The limited ability to correctly reproduce sharp

boundaries and strong parameter contrasts is a common characteristic of inversion

procedures using smoothness constraints (Loke et al., 2003). In particular, the thin

layer of high K at 6 m depth is strongly underestimated, which is also a result of the

reduced sensitivity of IP to high-K zones due to the weakness of the polarization

effects. However, such thin layers of enhanced K often serve as major flow paths

within an aquifer and are therefore important to capture.

For the HT inversion, we show three different inversion results for different ex-

perimental setups: (i) with 1 m spacing between the pumping locations as well as

between the receiver points (Figure 4.4c, data set with 98 travel times), (ii) with

2 m spacing, and points being placed inside the layers (Figure 4.4d, data set with

18 travel times), and (iii) with 2 m spacing, and points being placed outside the

layers (all points in areas of K = 10−6ms−1, Figure 4.4e, data set with 32 travel

times). In the first case, the two layers of high K are clearly visible in the results,

since they serve as preferential flow paths during the HT experiments. The low-K
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layer has also been reproduced by the inversion due to acting as a hydraulic barrier

between some of the source receiver pairs. Generally, although the K-quantification

in terms of average values is accurate, the spatial resolution of the result is much

lower compared to IP due to the larger spacing between the source and receiver

locations. For the hydraulic experiments, a spacing smaller than 1 m is hardly feasi-

ble in practice. Instead, even this setup can be very time-consuming and expensive,

and an experiment with even less source and receiver points might be favourable.

In this case, when increasing the spacing to 2 m, the individual layer boundaries are

not well-resolved, and the K-information from the zones of high sensitivity (i.e., the

ray paths, which are predominantly inside the layers) migrates to the areas of low

sensitivity due to the smoothness constraints. Therefore, large areas of high K and

low K are visible in the inversion result, instead of the thin layers from the input

model. In the third case (Figure 4.4e), where the source and receiver points are

placed outside the layers, the inversion result is more dominated by the intermediate

K-estimates, and the contrast in K is less pronounced. Furthermore, layer bound-

aries in the inversion result are shifted towards the modified source and receiver

locations, which highlights the strong influence of the sensitivity distribution of the

individual experimental setup on the inversion results. Generally, an HT setup with

2 m spacing is not sufficient to resolve the small-scale structural elements of the

synthetic model.

4.3.2 Joint inversion results

The results of the joint inversion are shown in the right section of Figure 4.4 (f–h).

Clearly, the complementary sensitivities of both methods are combined, so that

both high-K and low-K layers can be identified in the results, and their delineation

with respect to the areas with intermediate K is more accurate. Furthermore, the

high spatial resolution of IP that allows resolving thin layers of contrasting K is

complemented by the strong sensitivity of HT to the preferential flow paths, so that

the thin layer of high K at -6 m depth is more pronounced than in the individual IP

results. Generally, the quantitative estimates of K are very accurate (with stronger

contrasts compared to the individual IP inversion) and the joint inversion is more

successful in attributing the K-information to the correct location due to being

less constraint- and more data-driven. Note that in this case the same smoothness

constraints are applied for all inversions to ensure comparability, although it can

be beneficial to use different constraints depending on the different methods and

setups. In addition, the joint inversion results for the different HT setups are actually
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Figure 4.4: Individual inversion results for IP (b) and HT (c–e), as well as joint
inversion results (f–h) in comparison with the original synthetic model
(a). In the result plots, only the electrodes / source and receiver points
that are contained in the respective data set used for the inversion are
shown. The color bar for K applies to all plots.

very similar, indicating that the joint inversion is more robust against changes in

the experimental setup. Even a small amount of pumping tests can be sufficient to

extract the relevant information that improve the reproduction of theK-distribution.

4.3.3 Influence of petrophysical bias

To assess the potential of the joint inversion to correct a bias in the petrophysical

relations used within the IP inversion, we now include such bias directly in the

forward modelling of the IP data. This is achieved by multiplying the K-values of

the synthetic model with a constant factor (10−2, 10−1, 101, or 102). Therefore, we

can only account for a constant shift within the petrophysical relations, but not for

inherent scatter. All other direct input parameters (includingD+) remain untouched

within this modified example. However, note that the electrical properties do change

as a result of this modification, similar to the illustrations in Figure 4.3c–f.

The resulting K-images of the IP inversion are shown in Figure 4.5 in the up-

permost row of plots. Here, the centre plot depicts the unbiased results as shown

in Figure 4.4b, the left plots include a negative bias, and the right plots a positive

bias of one or two orders of magnitude. As expected, the changes are clearly re-

flected in the individual IP inversion results, with K being underestimated for the
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negative bias, and overestimated for the positive bias. In addition, the reproduction

of structural features is generally less successful for a stronger petrophysical bias.

Subsequently, the joint inversion is performed for all possible combinations of IP

bias and HT setup. The individual HT results are shown again in the left-hand

column of Figure 4.5 – these plots, as well as the joint inversion results without

petrophysical bias, are the same as in Figure 4.4 (c–e and f–h, respectively). For

the first two HT setups (1 m, and 2 m inside), the joint inversion is able to re-

produce all layers of the synthetic model, with fairly good K-estimates and strong

contrasts between the different structural elements. These structures have not been

captured by neither the HT inversion nor the biased IP inversion in such detail, but

by combining the sensitivities of both methods, a large improvement in the quality

of the inversion results is achieved. While HT has the ability to capture the major

flow paths (red layers in the plot) and ensures the reliability of the K-quantification,

the IP data still contain valuable information about small-scale structural features,

even if they are not visible in the individual IP results when assuming a petrophysical

bias. For these two cases, the joint inversion results are also robust against changes

in the setup of the HT experiments, indicating that reducing the amount of pump-

ing tests is not necessarily problematic. However, when shifting the HT source and

receiver location to areas between the layers (last row of plots), the joint inversion

results are significantly less accurate. Here, the hydraulic information provided by

the HT experiments is not sufficient to correct the petrophysical bias with the same

reliability compared to the first two setups. This indicates that not only the spacing

between HT source and receiver points, but also their exact location with respect to

the relevant structural features is crucial for achieving good joint inversion results.

Although the second HT setup contains only three pumping tests, the results are

significantly better than the third HT setup with four pumping tests. However,

compared to the individual IP and HT results, all joint inversion bring improvement

to the reproduction of the structural features.

4.3.4 Comparison of structural similarity

To allow for a more quantitative comparison of the methods, the structural similarity

index (SSIM) of the inversion results compared to the synthetic model is calculated.

Being rooted in image processing, the SSIM measures the similarity between two

images by considering luminance, contrast, and structural information (Wang et al.,

2004), and is bounded from 0 to 1, while the latter value indicates perfect similarity

between two images. The index has already been used as a tool for assessing the
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Figure 4.5: Inversion results for the individual HT inversion (left column), the indi-
vidual IP inversion including petrophysical bias factors (uppermost row),
and joint inversion results for all possible combinations. The colour bar
for K applies to all plots.

quality of geophysical inversion results (e.g., Giraud et al., 2018; Almadani et al.,

2021; Römhild et al., 2022a), or for quantifying the prediction quality of machine

learning approaches (Thibaut et al., 2021). In our work, the Python package “scikit-

image” (van der Walt et al., 2014) is utilized for calculating the SSIM, and only the

part of the domain between the boreholes is used for the computation, since the

sensitivity of HT is restricted to this area.

The results are shown in Figure 4.6 with respect to the petrophysical bias ap-

plied to the IP data. For the individual IP inversion (black curve with triangular

markers), the SSIM is approximately 0.46 for the unbiased case, and decreases sig-

nificantly for the negative bias of one order of magnitude (0.14), and two orders

of magnitude (0.01). As shown above, the structural features of the model can

hardly be reproduced when assuming a negative petrophysical bias (Figure 4.5). In

contrast, a positive bias of one order of magnitude actually produces the highest

SSIM (0.58). Apparently, due to the limited sensitivity of IP to high-K areas, the

inversion result is improved when the K-prediction is shifted by a certain factor. As

shown in Figure 4.5, the contrast between the different layers is more pronounced

for the 101-bias compared to the unbiased result, and the K-prediction in the highly

permeable layers is more accurate. This is also in accordance with some findings by

Römhild et al. (2022a), where calibrating the IP results with a constant Keff derived
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Figure 4.6: Structural similarity index (SSIM) of the inversion results, compared to
the original synthetic model, for the different inversion methods, and
with varying petrophysical bias. The dashed lines are for visual guidance
only.

from hydraulic tests (“factor calibration”) was found to be a helpful approach for

improving the results of transport simulations. However, when increasing the bias

even further to two orders of magnitude, the quality of the results is significantly

reduced, characterized by an SSIM of 0.06. Generally, the individual IP results show

a strong dependency on a potential bias of the petrophysical relations, which is not

only influenced by the amplitude, but also the direction of the bias.

The SSIM of the individual HT results is visualized by circle markers, with the

colours indicating the different setups. While the setup with 1 m spacing (blue)

produces an SSIM of 0.57, which is slightly higher than the individual IP inversion,

a setup with larger spacing (2 m) results in a poorer reproduction of the structural

features and K-estimates, with an SSIM of 0.32 for source and receiver points inside

the layers (red), and an SSIM of 0.16 for points outside the layers (green). This

is in accordance with the visual inspection of Figures 4.4 and 4.5. The quality of

the individual HT inversion results strongly depends on the specific setup of the

hydraulic experiments, and a sufficiently small spacing of source and receiver points

(i.e., a large number of time-consuming pumping tests) has to be used to achieve

results that have a similar quality compared to IP.

The SSIM of the joint inversion results is shown by asterisk markers, and the

colours indicate the setup of the used HT data. When using the unbiased IP data

within the joint inversion, significantly higher SSIM values can be achieved compared

to the individual HT inversion, for all three HT setups (compare pairs of circle and
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asterisk markers of the same colours in the plot). Compared to the unbiased IP

result, the SSIM values of the joint inversion are also slightly higher for all three

HT setups, indicating an improved inversion result even when only sparse hydraulic

data are used to complement the IP data.

When including the biased IP data in the joint inversion, most of the resulting

SSIM values are still higher than the respective individual HT values (or at least in

a similar range). It shows that complementing hydraulic tests by IP experiments

can even be beneficial when the underlying petrophysical assumptions are not en-

tirely fulfiled at the specific field site. In any case, the high-resolution structural

information from the IP data is valuable, and it is worth including them in the joint

inversion procedure, even if the exact quantification of K by the IP experiments is

not correct.

When comparing the joint inversion results with the individual IP results, signifi-

cantly higher SSIM values can be observed in nearly all cases. The only exception for

this specific model is the 101-bias, where the individual IP inversion had produced

an exceptionally high SSIM value, as explained above. Here, the SSIM values of the

joint inversion are slightly smaller, but still indicate a high quality of the inversion

results.

The joint inversion results using the first two HT setups (blue and red markers

in Figure 4.6) are particularly robust against the petrophysical bias of the IP data.

Here, the SSIM values of the biased joint inversion results are almost as high as for

the unbiased joint inversion result (roughly between 0.4 and 0.6). This indicates

that by using the reliable K-estimates from the hydraulic tests, the bias of IP

resulting from the uncertainty of the petrophysical relations can indeed be corrected.

However, a suitable HT setup is crucial for achieving such significant improvements.

When using the last HT setup (2 m spacing, points outside the layers) for the joint

inversion (green markers in Figure 4.6), the improvement compared to the individual

inversion results is rather modest. If the HT source and receiver positions are placed

outside the relevant structural features, the hydraulic information is less valuable

for the joint inversion procedure. Therefore, the exact location of the source and

receiver points can in some cases be more important than simply the amount of

pumping tests.
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4.4 Discussion

The main objective of the presented methodology is the correction of potential

petrophysical uncertainties within the IP-K inversion, as presented in the previous

section. Those uncertainties may arise, for instance, from the empirical parameters

in the approach of Weller et al. (2015), or from the limited applicability of the

diffusion coefficient D+ in the relation of Revil et al. (2012b). The latter may also

be interpreted as an apparent diffusion coefficient Da in the inversion results (Weller

et al., 2016), but its physical significance in the context of IP inversion remains

ambiguous. In addition, petrophysical relations are also resolution-dependent, and

may not hold on different scales (Hermans & Irving, 2017; Singha et al., 2015).

They are mostly derived from a relatively small set of samples in the laboratory,

which is often not representative for the actual field conditions (e.g., Benoit et al.,

2019).

To overcome these problems, the idea of jointly evaluating electrical and hydraulic

data has already been proposed by Slater (2007). We have now shown that a

joint inversion of HT and IP data is a promising approach for implementing this

concept. Including the reliable K-estimates from the hydraulic data can potentially

correct a petrophysical bias within the IP inversion, thereby overcoming some of the

aforementioned uncertainties.

The presented inversion approach relies on a single-component Cole-Cole model,

which can be seen both as an oversimplification or as an unnecessary complexity,

depending on the point of view. The rationale of this choice is that a frequency-

dependent model is necessary for taking into account Eq. 4.7 in the K-estimation,

and that the Cole-Cole model is widely used for fitting IP spectra of data acquired

in the field and consequently for parametrizing the model space of IP inversions.

However, some sediments may not show a single-component polarization peak, but

are instead characterized by several polarization components at different frequencies

(Weigand & Kemna, 2016; Römhild et al., 2022b): in these cases, a more complex

description of the electrical properties and of the link between electrical and hy-

draulic properties might be used, for instance in terms of Debye decomposition

(Nordsiek & Weller, 2008; Zisser et al., 2010; Hase et al., 2022). On the contrary,

when a constant-phase behaviour (Börner et al., 1996; Weller et al., 1996; Lajaunie

et al., 2016) is sufficient for describing the electrical properties of the sediments,

the proposed approach should still work, since the Cole-Cole model for very small

values of the frequency exponent c becomes a constant phase angle model.
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For the latter case, a much simpler method of inferring K from IP data has

been proposed by Flores Orozco et al. (2022). It is based on computing σ′′ from

the integral chargeability, and then relying on the petrophysical relations of Weller

et al. (2015) for computing K. However, this approach does not consider the

actual spectral characteristics of the data, and variations in spectral content as well

as non-standard decay types (e.g., heterodox transients as described by Fiandaca

et al. (2022)) might lead to bias in the inversions. Instead, a full decay inversion

can potentially cover these transient types, and is therefore favourable for inverting

cross-borehole IP data.

Another critical point for every geophysical joint inversion is the dimensionality

of the problem depending on the acquisition schemes of the different methods (Ja-

farGandomi & Binley, 2013; Ghalenoei et al., 2022). For a successful joint inversion

of all data types, consistent acquisition geometries are crucial. In our test case, the

data acquisition points of both HT and IP are placed in the same boreholes, so that

the two data sets cover the same 2D cross-section. Such setups should also be most

feasible within field applications. However, the experiments cannot be carried out

simultaneously, so it needs to be ensured that temporal changes in the subsurface

between the measurements, for instance due to seasonal variations, are negligible.

Furthermore, field measurements could also contain IP data collected on a surface

profile. If such profile covers the same cross-section as the boreholes, so that the

overall inversion problem is restricted to a 2D section, the current version of the

presented algorithm is still applicable. Although surface IP experiments have a

limited ability of resolving small-scale structures in greater depths, the HT data

might still cover this depth range, and a joint inversion of both data types would

benefit from the complementary sensitivities. If no borehole electrodes are installed,

simultaneously carrying out both experiments might be practically possible, but the

hydraulic stimulation during the HT experiments could strongly affect the resulting

IP signal (e.g., due to streaming-induced self-potential). Therefore, a sequential

measuring procedure is still advisable.

Challenges for the joint inversion of HT and IP data might arise from strongly

differing geometries, especially if the combined data set is not restricted to a 2D cross

section but covers a 3D domain. Currently, the inversion algorithm presented here

is not available for 3D applications, but it will be extended in the future (similar to

Madsen et al. (2020)). However, sufficient overlap in the sensitivity coverage would

be crucial to ensure that the hydraulic data can potentially correct biased IP-based

K-estimates within the joint inversion. For this purpose, pre-experimental synthetic
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studies investigating the exact sensitivity distributions would be indispensable to

optimize the acquisition geometry. Additionally, the computational cost to invert

for a 3D distribution of the model parameters increases drastically, so that high-

performance workstations are required. Similar issues would arise from including

anisotropy in the model, which is necessary in some geological settings.

4.5 Conclusions

In a new attempt of combining geophysical and hydrological approaches for imaging

hydraulic conductivity K, IP and HT data were processed together within a fully-

joint inversion. Thereby, the complementary abilities of both methods regarding

sensitivity, spatial resolution and reliability of the K-estimates were combined. We

tested the new joint inversion strategy on a simple synthetic test case to illustrate

the benefits and limitations of the method. It could be shown that the joint inversion

brought significant improvements when comparing the results to the individual IP

and HT inversion, especially when hydraulic information is sparse. In addition,

the robustness against uncertainties in the petrophysical relations underlying the IP

inversion was significantly increased when using the joint inversion approach. By

including the HT data, a possible petrophysical bias was successfully corrected by the

reliable K-estimates from the hydraulic tests, while the high-resolution structural

information from IP is also preserved. Compared to the calibration approaches

proposed by Römhild et al. (2022a), the joint inversion has the ability of handling

the complementary information from the two data sets automatically, is therefore

more elegant, and does not require any manual tuning.

However, the present study shall only be regarded as a starting point showing the

general potential of the joint inversion approach. In future works, the methodology

can be tested on more complex synthetic models, like aquifer analogue data sets

similar to Heinz et al. (2003) or Bayer et al. (2015), also assessing the influence

of other experimental setups, as well as, potentially, more complex bias in the

petrophysical relations of IP. Furthermore, expanding the approach to data sets

with different dimensions might be an important step towards fully capturing the

hydraulically relevant structures in the subsurface.

Clearly, the application of the joint inversion approach to field data will be crucial

to test the actual applicability of the method in practice. For that purpose, a well-

known field site should be chosen to enable the comparison with already available

stratigraphical and hydraulic information, and ideally with other geophysical data.
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The applicability of the petrophysical relations needs to be ensured by choosing a site

with unconsolidated, fully saturated sediments characterized by significant hetero-

geneities in the hydraulic parameters. Pre-experimental synthetic studies might be

conducted to determine the most suitable setup for imaging the relevant structures.

Ultimately, the inversion results could be validated by performing tracer experiments

as proposed by Römhild et al. (2022a).

Generally, we would like to encourage the combined application of geophysical and

hydrological methods in the context of imaging the hydraulic parameters of the near-

surface Earth. By applying a joint inversion procedure as proposed in this work, the

benefits of two complementary methods can be combined, thereby yielding results

with much higher resolution and accuracy. In particular, an improved understanding

of the small-scale subsurface heterogeneities in the hydraulic parameters can be

essential to achieve more reliable predictions from flow and transport models, which

strongly depend on the underlying K-information. Therefore, a joint inversion of IP

and HT data can be an important contribution towards the goal of understanding

and modelling flow and transport processes in aquifers more correctly.

Research Data

The synthetic model and data, as well as all inversion results shown in this work

are available through: Römhild, L., Fiandaca, G., & Bayer, P. (2024). Induced

polarization and hydraulic tomography joint inversion results on a synthetic model

[Data set]. Zenodo. https://doi.org/10.5281/zenodo.10208903.
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5.1 Summary and conclusions

Three different hypotheses were formulated as the main objectives of this thesis in

Chapter 1. In the following, it will be evaluated whether their verification has been

successful, and which conclusions can be drawn from the results.

Hypothesis 1:

Time-domain induced polarization data can be inverted directly for a hydraulic

conductivity subsurface model.

A novel inversion procedure for TDIP data has been developed in Chapter 2 (Römhild

et al., 2022a). Within this approach, petrophysical relations between hydraulic and

IP parameters are incorporated into the inversion, allowing for direct computation of

the spatial distribution of K. The method was successfully tested on the Bolstern

aquifer analog data set by performing synthetic IP experiments using a combined

cross-borehole and surface electrode acquisition geometry. By inverting those data,

the structural features of the aquifer were successfully reconstructed with high res-

olution and accuracy. Therefore, it could be shown that TDIP data can be used to

infer the spatial distribution of K within an aquifer without applying any additional

processing.

However, the reliability of such IP-derived K-estimates strongly depends on the

accuracy and applicability of the petrophysical relations within the geological set-

ting present at the field site. This issue was tackled by introducing two different

calibration strategies that use hydraulic information from sparse pumping tests, and

can therefore improve the quantitative estimates of K. The quality of all results was

assessed by performing synthetic tracer experiments, which underlined the impor-

tance of such calibration techniques. Although the proposed methodology yielded

accurate results for this test case, it still requires some manual fitting procedures

for making the K-estimation reliable. Hence, there was still a demand for a more

straightforward procedure of combining hydraulic and geophysical data. This de-

mand was eventually fulfilled by the joint inversion introduced in Chapter 4 (see

Hypothesis 3).
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Hypothesis 2:

A combination of continuum- and fracture-based modeling approaches yields more

accurate and reliable inversion results using hydraulic tomography data.

A new hybrid DFN inversion procedure for HT data has been developed in Chapter 3

(Römhild et al., 2024a). It is based on a classical DFN inversion that allows resolving

individual fractures but is extended by considering a nonzero matrix permeability.

This approach was applied to an HT data set acquired at a fractured-porous field

site in Göttingen (Germany). Results proved that by also considering flow through

a porous matrix, a better data fit can be achieved compared to a classical DFN

approach. For validation, the subsurface models were used to predict heat tracer

tests, which had also been conducted at the site. The modeled temperature response

based on the hybrid DFN result compared well with experimental data in terms of

amplitude, location, and time-dependent behavior of the temperature anomaly. In

particular, the results are superior to a purely continuum-based approach that does

not allow for resolving individual fractures.

Hence, it was shown that combining continuum- and fracture-based modeling

techniques is important for achieving more accurate subsurface representations

based on HT data. Especially at fractured-porous sites, considering groundwa-

ter flow through both the matrix and individual fractures in the forward model of

the inversion is crucial. Neglecting one of the components can lead to misinterpre-

tation of the data. For the hybrid DFN approach implemented within this thesis,

the stochastic nature of the results has to be considered, e.g., by evaluating sev-

eral realizations of the DFN ensemble in a statistical manner. Stochastic inversion

approaches are generally computationally expensive and require more complicated

processing procedures. However, it was revealed that such tools with a high degree

of sophistication are often required to achieve an accurate and reliable characteri-

zation of aquifer heterogeneities.
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Hypothesis 3:

A joint inversion of induced polarization and hydraulic tomography data improves

the spatial resolution, accuracy, and reliability of the hydraulic conductivity

estimation by combining the complementary abilities of both methods.

A new joint inversion procedure for IP and HT data has been developed in Chap-

ter 4 (Römhild et al., 2024b). It is based on the IP-K inversion introduced in

Chapter 2, as well as a travel time inversion for the HT data. Therefore, both

individual inversion techniques are continuum-based and deterministic, which allows

using the same inversion framework, in this case EEMverter. The approach was

successfully tested on a synthetic model inspired by horizontally layered sediments

of contrasting hydraulic (and hence electrical) parameters. The joint inversion al-

lows to increase the spatial resolution, accuracy, and reliability of the K-estimates

compared to individual IP or HT inversion. In particular, it was shown how potential

bias in the petrophysical relations within the IP inversion is corrected automatically

when including the reliable hydraulic information from HT. Vice versa, the IP data

can provide the required structural information with high resolution, which cannot

be achieved by sparse HT data sets alone. This illustrates how the complementary

abilities of both methods are combined by the joint inversion.

Although a joint application of geophysical and hydraulic methods for aquifer

characterization tasks has been promoted frequently in the last decades, the actual

implementation of simultaneous data processing approaches has remained a chal-

lenging task. The joint inversion procedure proposed in this work can be a helpful

tool for handling such different data types in a straightforward manner. However, an

application to different types of field cases will surely be crucial to evaluate the per-

formance in practice and additional challenges must be expected when dealing with

actual field data (see section 5.2). Different geological environments and acquisi-

tion parameters may require modifications within the data processing and inversion

methodology. Ultimately, the joint inversion approach, when used correctly within

the restriction given by its underlying assumptions, may be an important step to-

wards a more accurate characterization of aquifer heterogeneities, thus building the

foundation for an increased reliability of groundwater modeling results.
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5.2 Outlook

With the inversion procedures introduced in this work, several new components are

added to the toolbox of hydrogeophysical data processing and inversion techniques,

allowing for a more accurate characterization of aquifer heterogeneities. This in-

cludes approaches for both fractured and porous rocks, as well as for both hydraulic

and geophysical data. The combined application of these two types of methods is

promoted throughout this thesis, ultimately resulting in the joint inversion procedure

for HT and IP data, which was introduced in Chapter 4.

While the hybrid DNF inversion (Chapter 3) was applied to field data, the other

inversion techniques were only tested on synthetic examples in this work. Con-

sequently, the next step must be the application of these approaches within field

studies. The IP-K inversion introduced in Chapter 2 was used to estimate hy-

draulic parameters at a waste site for assessing contaminant mass discharge, and

the results from IP compared well with data from slug tests and grain size analysis

(Thalund-Hansen et al., 2023). The accurate prediction of contaminant transport

at a specific site will probably be an important field of application for the proposed

methods in the future, because detailed information about K-heterogeneities in a

relatively small domain is crucial for such tasks. More field investigations making

use of the IP-K inversion method in similar contexts are currently under way.

For testing the joint inversion of HT and IP data in practice for the first time,

specific and controlled field settings are required to allow for a validation of the

inversion results. To ensure the applicability of the petrophysical relations within

the IP inversion, a site with unconsolidated sediments and a shallow groundwater

table (fully saturated conditions) is recommended. Ideally, such a site would have

already been investigated extensively. Stratigraphical information, as well as other

geophysical and hydraulic data from previous experiments, could then be used in the

planning phase, and subsequently for a comparison of the results. Furthermore, a

sufficient contrast in K-heterogeneities should be present at the site. For instance,

an alternation of sand and clay would allow for assessing the ability of the methods to

image small-scale structures within the aquifer. Concerning the experimental setup,

at least two boreholes will be required with a suitable distance, ideally between two

and five meters, and a well diameter that can handle both HT and IP equipment.

This setup might be extended by IP surface profiles, and by more boreholes in the

same 2D cross-section similar to the synthetic example in Chapter 4. For a validation

of the inversion results, tracer tests could be conducted similar to the suggestions
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given in section 2.3.2.

In parallel to planning and conducting such field experiments, more methodologi-

cal developments can be considered in the future. Within the IP inversion, a param-

eterization of the model space in terms of a Debye decomposition may be beneficial

compared to the Cole-Cole based approach, as recently proposed by Günther & Mar-

tin (2024). This approach would still allow for handling time-domain full-waveform

IP data but not rely on the assumption of a purely Cole-Cole-like behavior of the

conductivity spectra. Instead, the Debye parameterization is often regarded as the

most generalized and natural model space for IP data, allowing for a superposition

of several Debye relaxations with different time constants τn and chargeabilities mn

(Nordsiek & Weller, 2008). The petrophysical IP-K relations may then be used by

deriving a total chargeability and a log-mean relaxation time from the Debye spectra

(Martin et al., 2024). Using such parameterization may widen the range of geolog-

ical settings, in which the inversion strategy could potentially be used. However, a

careful comparison of the two inversion strategies on synthetic as well as field data

has to be a target of future research.

For the HT inversion, the travel time approach is based on the assumption of a

homogeneous specific storage Ss. To include a spatial variability of this parameter,

hydraulic attenuation inversion could be incorporated into the framework (Brauchler

et al., 2011). Furthermore, the HT forward response may also be based on a full

groundwater model within the joint inversion scheme, instead of using the travel

time approximation. This forward problem can also be solved using pyGIMLi, as

it was implemented for the full modeling of HT data (section 4.2.2). However,

this would result in more degrees of freedom and therefore potentially increased

non-uniqueness of the solution, as well as higher computational effort.

Similar issues might arise when modifying the hybrid DFN inversion procedure by

including spatially variable matrix characteristics for K and Ss as part of the model

space. However, the need for pre-defining of these parameters before the inversion

would be eliminated, making the method more widely applicable at fracture-porous

sites. Using a DFN-based approach for the HT data within the joint inversion is

not considered meaningful since the petrophysical IP-K relations are only valid in

unconsolidated sediments, and not in fractured rock. Therefore, both HT and IP

inversion approaches have to be based on continuum models in such a joint inversion

framework.

Furthermore, including even more methods in the inversion scheme may help to

increase the sensitivity in other areas within the domain of interest, resolve more
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structural features, and potentially enhance the reliability of the K-estimates. In

particular, including electromagnetic (EM) methods seems very promising since they

are often able to reach deeper regions of the aquifer. Also, they allow for airborne

surveys and can therefore cover large areas faster. Including EM data within a

joint inversion scheme could be implemented using the newest developments of

EEMverter (Fiandaca et al., 2024) and EEMstudio (Sullivan et al., 2024), which

will also have the capability of performing 3D inversions. An auspicious example

is the joint inversion of transient EM and IP data recently presented by Signora

et al. (2024), which yielded significant improvements in uncovering subsurface het-

erogeneities in electrical conductivity compared to individual inversions. However,

using the IP effect contained in EM data to invert for hydraulic parameters will

remain a great challenge (Marchant. et al., 2014; Sharifi et al., 2024).

In contrast to a deterministic approach, the joint inversion could also be performed

within a Bayesian framework, similar to the DFN inversion of Chapter 3. This

would allow for better uncertainty estimation and a more detailed analysis of the

individual roles of the methods for the K-quantification, as shown, e.g., by Blatter

et al. (2019). Ultimately, the rapid development of artificial intelligence tools will

also help with the processing and inversion of the data and potentially give new

opportunities for retrieving the required hydraulic information from different types

of field experiments (Yu & Ma, 2021; Sun et al., 2022).

In the long run, these improvements in data processing and inversion techniques

providing highly informative subsurface representations can be the foundation for

more accurate groundwater modeling results, and will therefore contribute to en-

hanced reliability in the monitoring and managing of aquifers as an important pre-

condition for widely available groundwater resources.
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Bayer, P., Comunian, A., Höyng, D., & Mariethoz, G., 2015. High resolution multi-

facies realizations of sedimentary reservoir and aquifer analogs, Scientific Data,

2, 150033.

Bayes, T., 1763. An essay towards solving a problem in the doctrine of chances,

Philosophical Transactions of the Royal Society of London, 53, 370–418.

Benning, M. & Burger, M., 2018. Modern regularization methods for inverse prob-

lems, Acta Numerica, 27, 1–111.

Benoit, S., Ghysels, G., Gommers, K., Hermans, T., Nguyen, F., & Huysmans, M.,

2019. Characterization of spatially variable riverbed hydraulic conductivityusing

electrical resistivity tomography and induced polarization, Hydrogeology Journal ,

27, 396–407.

Berg, S. J. & Illman, W. A., 2011. Three-dimensional transient hydraulic tomog-

raphy in a highly heterogeneous glaciofluvial aquifer-aquitard system, Water Re-

sources Research, 47(10), W10507.

Berg, S. J. & Illman, W. A., 2013. Field study of subsurface heterogeneity with

steady-state hydraulic tomography, Groundwater , 51(1), 29–40.

Berkowitz, B., 2002. Characterizing flow and transport in fractured geological media:

A review, Advances in Water Resources, 25, 861–884.

112

http://dx.doi.org/https://doi.org/10.1029/2018GC007585
http://dx.doi.org/https://doi.org/10.1029/2018GC007585
http://dx.doi.org/https://doi.org/10.1007/s10653-021-01140-5
http://dx.doi.org/https://doi.org/10.1007/s10653-021-01140-5
http://dx.doi.org/https://doi.org/10.1186/s40517-017-0081-0
http://dx.doi.org/https://doi.org/10.1186/s40517-017-0081-0
http://dx.doi.org/https://doi.org/10.1186/s40517-017-0081-0
http://dx.doi.org/https://doi.org/10.1038/sdata.2015.33
http://dx.doi.org/https://doi.org/10.1038/sdata.2015.33
http://dx.doi.org/https://doi.org/10.1098/rstl.1763.0053
http://dx.doi.org/https://doi.org/10.1017/S0962492918000016
http://dx.doi.org/https://doi.org/10.1017/S0962492918000016
http://dx.doi.org/https://doi.org/10.1007/s10040-018-1862-7
http://dx.doi.org/https://doi.org/10.1007/s10040-018-1862-7
http://dx.doi.org/https://doi.org/10.1029/2011WR010616
http://dx.doi.org/https://doi.org/10.1029/2011WR010616
http://dx.doi.org/https://doi.org/10.1111/j.1745-6584.2012.00914.x
http://dx.doi.org/https://doi.org/10.1111/j.1745-6584.2012.00914.x
http://dx.doi.org/https://doi.org/10.1016/S0309-1708(02)00042-8
http://dx.doi.org/https://doi.org/10.1016/S0309-1708(02)00042-8


Bibliography

Berre, I., Doster, F., & Keilegavlen, E., 2019. Flow in fractured porous media: A

review of conceptual models and discretization approaches, Transport in Porous

Media, 130, 215–236.

Bing, Z. & Greenhalgh, S. A., 2000. Cross-hole resistivity tomography using different

electrode configurations, Geophysical Prospecting , 48, 887–912.

Binley, A. & Slater, L. D., 2020. Resistivity and Induced Polarization - Theory and

Applications to the Near-Surface Earth, Cambridge University Press.

Binley, A., Slater, L. D., Fukes, M., & Cassiani, G., 2005. Relationship between

spectral induced polarization and hydraulic properties of saturated and unsatu-

rated sandstone, Water Resources Research, 41, W12417.

Binley, A., Hubbard, S. S., Huisman, J. A., Revil, A., Robinson, D. A., Singha, K., &

Slater, L., 2015. The emergence of hydrogeophysics for improved understanding

of subsurface processes over multiple scales, Water Resources Research, 51, 3837–

3866.

Binley, A., Keery, J., Slater, L., Barrash, W., & Cardiff, M., 2016. The hydrogeo-

logical information in cross-borehole complex conductivity data from an uncon-

solidated conglomeratic sedimentary aquifer, Geophysics, 91, E409–E421.

Blatter, D., Key, K., Ray, A., Gustafson, C., & Evans, R., 2019. Bayesian joint

inversion of controlled source electromagnetic and magnetotelluric data to image

freshwater aquifer offshore new jersey, Geophysical Journal International , 218(3),

1822–1837.

Boersma, Q. D., Bruna, P. O., de Hoop, S., Vinci, F., Moradi Tehrani, A., &

Bertotti, G., 2021. The impact of natural fractures on heat extraction from tight

triassic sandstones in the west netherlands basin: a case study combining well,

seismic and numerical data, Netherlands Journal of Geosciences, 100, E6.

Bohling, G. C. & Butler Jr., J. J., 2010. Inherent limitations of hydraulic tomogra-

phy, groundwater , 48(6), 809–824.

Bohling, G. C., Butler Jr., J. J., Zhan, X., & Knoll, M. D., 2007. A field assessment

of the value of steady shape hydraulic tomography for characterization of aquifer

heterogeneities, Water Resources Research, 43, W05430.

113

http://dx.doi.org/https://doi.org/10.1007/s11242-018-1171-6
http://dx.doi.org/https://doi.org/10.1007/s11242-018-1171-6
http://dx.doi.org/https://doi.org/10.1046/j.1365-2478.2000.00220.x
http://dx.doi.org/https://doi.org/10.1046/j.1365-2478.2000.00220.x
http://dx.doi.org/https://doi.org/10.1029/2005WR004202
http://dx.doi.org/https://doi.org/10.1029/2005WR004202
http://dx.doi.org/https://doi.org/10.1029/2005WR004202
http://dx.doi.org/https://doi.org/10.1002/2015WR017016
http://dx.doi.org/https://doi.org/10.1002/2015WR017016
http://dx.doi.org/https://doi.org/10.1190/geo2015-0608.1
http://dx.doi.org/https://doi.org/10.1190/geo2015-0608.1
http://dx.doi.org/https://doi.org/10.1190/geo2015-0608.1
http://dx.doi.org/https://doi.org/10.1093/gji/ggz253
http://dx.doi.org/https://doi.org/10.1093/gji/ggz253
http://dx.doi.org/https://doi.org/10.1093/gji/ggz253
http://dx.doi.org/https://doi.org/10.1017/njg.2020.21
http://dx.doi.org/https://doi.org/10.1017/njg.2020.21
http://dx.doi.org/https://doi.org/10.1017/njg.2020.21
http://dx.doi.org/https://doi.org/10.1111/j.1745-6584.2010.00757.x
http://dx.doi.org/https://doi.org/10.1111/j.1745-6584.2010.00757.x
http://dx.doi.org/https://doi.org/10.1029/2006WR004932
http://dx.doi.org/https://doi.org/10.1029/2006WR004932
http://dx.doi.org/https://doi.org/10.1029/2006WR004932


Bibliography

Bording, T. S., Fiandaca, G., Maurya, P. K., Auken, E., Christiansen, A. V., Tuxen,

N., Klint, K. E. S., & Larsen, T. H., 2019. Cross-borehole tomography with

full-decay spectral time-domain induced polarization for mapping of potential

contaminant flow-paths, Journal of Contaminant Hydrology , 226, 103523.

Brauchler, R., Liedl, R., & Dietrich, P., 2003. A travel time based hydraulic tomo-

graphic approach, Water Resources Research, 39(12), 1370.

Brauchler, R., Cheng, J. T., Dietrich, P., Everett, M., Johnson, B., Liedl, R., &

Sauter, M., 2007. An inversion strategy for hydraulic tomography: Coupling

travel time and amplitude inversion, Journal of Hydrology , 345, 184–198.

Brauchler, R., Hu, R., Dietrich, P., & Sauter, M., 2011. A field assessment of high-

resolution aquifer characterization based on hydraulic travel time and hydraulic

attenuation tomography, Water Resources Research, 47, W03503.
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V., Titov, K., & Zimmermann, E., 2012. An overview of the spectral induced

polarization method for near-surface applications, Near Surface Geophysics, 10,

453–468.

122

http://dx.doi.org/http://dx.doi.org/10.1016/j.jconhyd.2014.12.005
http://dx.doi.org/http://dx.doi.org/10.1016/j.jconhyd.2014.12.005
http://dx.doi.org/https://doi.org/10.1111/gwat.12119
http://dx.doi.org/https://doi.org/10.1111/gwat.12119
http://dx.doi.org/https://doi.org/10.1029/2007WR006715
http://dx.doi.org/https://doi.org/10.1029/2007WR006715
http://dx.doi.org/https://doi.org/10.59327/IPCC/AR6-9789291691647
http://dx.doi.org/https://doi.org/10.59327/IPCC/AR6-9789291691647
http://dx.doi.org/https://doi.org/10.59327/IPCC/AR6-9789291691647
http://dx.doi.org/https://doi.org/10.1029/2009WR008340
http://dx.doi.org/https://doi.org/10.1029/2009WR008340
http://dx.doi.org/https://doi.org/10.1029/JB090iB01p00581
http://dx.doi.org/https://doi.org/10.1016/j.jappgeo.2013.06.004
http://dx.doi.org/https://doi.org/10.1016/j.jappgeo.2013.06.004
http://dx.doi.org/http://dx.doi.org/10.1016/j.advwatres.2013.10.002
http://dx.doi.org/http://dx.doi.org/10.1016/j.advwatres.2013.10.002
http://dx.doi.org/https://doi.org/10.1007/s11269-017-1729-z
http://dx.doi.org/https://doi.org/10.1007/s11269-017-1729-z
http://dx.doi.org/https://doi.org/10.1190/1.1649379
http://dx.doi.org/https://doi.org/10.1190/1.1649379
http://dx.doi.org/https://doi.org/10.3997/1873-0604.2012027
http://dx.doi.org/https://doi.org/10.3997/1873-0604.2012027


Bibliography

Kessouri, P., Furman, A., Huisman, J. A., Martin, T., Mellage, A., Ntarlagiannis, D.,
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Römhild, L., Fiandaca., G., Hu, L., Meyer, L., & Bayer, P., 2022a. Imaging hy-

draulic conductivity in near-surface aquifers by complementing cross-borehole in-

duced polarization with hydraulic experiments, Advances in Water Resources,

170, 104322.
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A.1 Strategy of the exponential calibration
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Strategy of the exponential calibration

Visualization of the concept of the exponential calibration of IP inversion results

by incorporating pumping test data. (a) The selection of a suitable ξ-percentile

influences the resulting value for α, thereby determining the overall strength and

direction of the calibration. (b) The function α(ξ) for the three different spacings

using Keff = 7 · 10−5 ms−1 as retrieved from the pumping test data. This plot

is typically helpful to find a reasonable value for ξ. It should usually be higher for

larger electrode spacings (e.g., green line - 1 m spacing) since smoothing effects lead

to more extensive areas of low K. (c) Setup of pumping tests for the derivation

of Keff. The source-receiver combinations used for this procedure are a subset of

the full HT data set. (d) The dependence of Cα on the respective K-values of the

inversion result, visualizing the exponential law inspired by the strength of the IP

signal and the effect of different α-values.
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A.2 Full forward model and IP inversion result
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Full forward model and IP inversion result

(a) Left part: Bolstern aquifer analog data including the parameters hydraulic

conductivity K, diffusion coefficient D+ and total electrical conductivity σ0 as a

combination of water conductivity σw, formation factor F and the real part of in-

terface conductivity σ′int. The frequency exponent c is assumed to be homogeneous

and is therefore not shown here. The forward modeling was performed in the Why-

CDF model space. Right part: IP inversion result, performed in the ThyCD model

space with 0.25 m electrode spacing. The transparent parts (lower corners) indicate

areas with low sensitivity. (b) Misfit of the inversion result along the whole profile.

The misfits of the DC data (blue line) and the IP data (red line) end up to be

very balanced and the overall data misfit χ = 1.1 indicates that after the inversion

the data are fitted closely to the noise level. The final result was achieved after

ten iterations. (c) Exemplary decay curves of the forward simulation with added

Gaussian noise (black lines) including error bars of the assumed standard deviation

model and fitted decay curves of the inversion result (red lines).
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A.3 Supporting Information on Römhild et al. (2024a)

The following supporting information show results of the hybrid DFN inversion with

an alternative matrix permeability of K = 10−8m/s (S1), as well as results from a

pure DFN inversion neglecting matrix permeability (S2). This information mainly

refers to section 3.3.4 of this thesis and was originally published as online supporting

information for (Römhild et al., 2024a).

For both of these inversion cases, the misfit between measured and modeled data

had remained almost constant for several thousands of iterations. It is thereby en-

sured that a stationary level had been reached and no better fit is possible, meaning

that the shown DFN realization must be part of the posterior ensemble.

We show that although a different matrix permeability actually produces seem-

ingly reasonable DFN realizations, the data cannot be fitted with the same accuracy

(higher overall RMSE), and therefore the inversion results are characterized by a

lower likelihood compared to the main results shown in the paper.

When neglecting matrix permeability completely, it is not possible to fit the mea-

sured data with reasonable accuracy at all. This shows that a classical DFN inver-

sion is not suitable for this data set, and that the hybrid DFN inversion approach is

necessary for this site, and probably at other fractured-porous field sites.
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Supporting Information on Römhild et al. (2024a)

S1: Hybrid DFN inversion result for hydraulic conductivity of the matrix of

K = 10−8m/s. (a) Fracture set of the last iteration of the inversion - similar

to Figure 3.3a in the main manuscript. (b) Measured (raw) data of the HT experi-

ments (red lines) and modeled pressure response curves for the last iteration of the

inversion (blue lines) - similar to Figure 3.4 in the main manuscript.
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S2: DFN inversion result neglecting matrix permeability. (a) Fracture set of the

last iteration of the inversion - similar to Figure 3.3a in the main manuscript. (b)

Measured (raw) data of the HT experiments (red lines) and modeled pressure re-

sponse curves for the last iteration of the inversion (blue lines) - similar to Figure 3.4

in the main manuscript.
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Supporting Information on Römhild et al. (2024a)

The original supporting information is available through the online version of (Römhild

et al., 2024a).
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Römhild, L., Fiandaca, G., and Bayer, P. (2023): Joint Inversion of Induced Polariza-

tion and Hydraulic Tomography Data for Imaging Hydraulic Conductivity. Workshop

des Arbeitskreises Induzierte Polarisation der DGG, Kassel, Germany, 4-5 October

2023.
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