
Frontiers in Psychology 01 frontiersin.org

Comparing laboratory and online 
settings: equivalence in training 
and transfer effects for training 
task-order coordination 
processes
Daniel A. Darnstaedt *, Leif Langsdorf  and Torsten Schubert 

Department of Psychology, Martin-Luther University Halle-Wittenberg, Halle (Saale), Germany

Introduction: The literature on dual-task training suggests reductions in task-
coordination costs with extensive practice, yet such regimens are resource-
intensive. This study investigates the feasibility of online assessments for 
cognitive training studies by comparing training and transfer effects on task-
order coordination (TOC) skills in laboratory versus online settings.

Methods: We conducted a 5-day training regimen including pre-and post-test. 
Sixty-two participants completed training either in our laboratory or online via 
Pavlovia. They were assigned to one of two training order conditions, either 
practicing two visual-manual tasks in a dual-task situation with fixed task order 
or with random task order. Performance metrics included reaction time (RT) 
and error rates for trained and untrained tasks to assess TOC costs before and 
after the training. Data from both setting conditions (laboratory vs. online) were 
compared.

Results: Firstly, data of both settings revealed training-order specific training 
and transfer effects for TOC costs on RT level. Random task order training 
improved TOC for trained and untrained tasks, whereas fixed order training did 
not. Secondly, cross-setting analyses, both frequentists and Bayesian, confirmed 
these effects and revealed no reliable impact of setting on outcomes.

Discussion: This research carries two significant implications. Our findings 
demonstrate the acquisition of task-order coordination skills, extending prior 
research on improving task-coordination in dual-task situations. Additionally, 
the robust effects for such improvements were independent of specific tasks 
and setting (whether investigated online or in the laboratory), supporting the 
use of online testing in cognitive training regimens for resource savings without 
compromising quality.
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1 Introduction

Performing two component tasks at the same time, known as dual tasks (DT), can 
be quite challenging in unpracticed situations. In these situations, performance of one 
or both tasks is usually impaired, thus leading to DT costs. The DT costs are reflected 
in slower reaction times (RTs) and/or increased error rates in contrast to single task 
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situations (Pashler, 1994; Schubert et al., 2008; Welford, 1952), 
but it has been shown that one can reduce these costs with 
extensive practice. For example, when learning a musical 
instrument, at the beginning, novices struggle to coordinate 
various task aspects such as finger placement, rhythm, and 
reading the note sheets. However, as people continue to practice, 
they gradually become capable of coordinating these different 
aspects, which allows them to play the instrument more 
proficiently. The improved coordination of multiple task 
requirements is a result of ongoing practice and can lead to 
enhanced performance when conducting various activities while 
playing the instrument.

While this example demonstrates a common everyday situation 
in which practice can improve the coordination of multiple tasks, in 
the psychological laboratory rather simple and well-controlled 
component tasks, such as choice reaction-time tasks are used to 
investigate the regularities of DT processing and its training-related 
improvement. In order to examine the training-related acquisition of 
task-coordination skills, rigorous training protocols have been 
employed, which require participants to undergo several laboratory 
sessions across multiple days (e.g., Liepelt et al., 2011; Schubert et al., 
2017; Schubert and Strobach, 2018; Strobach et al., 2014). Of course, 
such an experimental procedure of conducting multiple-day training 
is time-consuming and it requires a high level of commitment from 
the participants and of experimental effort as well. Therefore, 
alternative approaches are highly welcome, which allow researchers to 
optimize the large demand of time, labor resources, and even 
economical costs that are related to such long-lasting 
training procedures.

Therefore, the primary objective of the current study was to assess 
the potentials of online training regimens for studies focusing on 
training-related improvements of task-coordination, by comparing it 
with effects obtained in a traditional laboratory-based training. That 
in turn could provide valuable evidence supporting the feasibility of 
online training studies as a means to examine the acquisition of task-
coordination skills.

Next, we will describe what is known from laboratory training 
studies about the cognitive processes and mechanisms of task-
coordination skills. This will allow us to form assumptions about 
which processes can or cannot be enhanced through laboratory and 
online training procedures. Subsequently, we  will specify the 
characteristics of laboratory and online training approaches and then 
report the findings of an empirical investigation, which compared 
training and transfer effects on task coordination after laboratory and 
online training.

1.1 Training-related changes in 
task coordination

Evidence for the acquisition of task coordination stems from 
studies comparing participants’ DT performance following training 
in DT situations versus single-task (ST) situations (Hirst et al., 1980; 
Liepelt et al., 2011; Schubert et al., 2017; Schubert and Strobach, 
2018; Strobach et al., 2015). Practice with isolated component tasks, 
i.e., in ST situations, can enhance DT performance, which is often 
attributed to task automatization (Logan, 1988; Maquestiaux et al., 

2008; Schneider and Shiffrin, 1977) and/or stage shortening 
(Ruthruff et al., 2006b; Strobach et al., 2013; Strobach and Schubert, 
2017b). However, further advantages are observed when practicing 
these tasks concurrently in DT situations (but see Hartley et al., 
2011; Ruthruff et al., 2006a; Schumacher et al., 2001, for a different 
approach combining ST and DT trials during training to boost 
DT performance).

This improvement is thought to result from enhanced task-
coordination skills developed during DT training, which involves 
repeated bottleneck processing. In contrast, ST training lacks this 
simultaneous task processing, limiting coordination improvements 
(Liepelt et al., 2011; Schubert et al., 2017; Schubert and Strobach, 2018; 
see also Strobach, 2020; Strobach and Schubert, 2017a for recent 
reviews). Specifically, the authors interrupt the two task chains at the 
central processing stages and causes their sequential processing 
(Pashler, 1994; Schubert, 1999). Consequently, task coordination 
improvements are exclusive to DT training, as ST training fails to 
engage in repeated bottleneck processing (e.g., Liepelt et al., 2011; 
Schubert et al., 2017).

Interestingly, these studies demonstrate that improvements in task 
coordination extend beyond the trained tasks to novel DT situations, 
indicating independence from specific stimuli and stimulus–response 
mappings (Kramer et al., 1995; Liepelt et al., 2011; Schubert et al., 
2017; Strobach and Schubert, 2017a).

Importantly, efficient task coordination requires not only the 
rapid switching between two task streams but the regulation of 
temporal order of tasks as had recently been proposed by studies 
highlighting that task-order coordination (TOC) is an important 
executive mechanism in DT situations involving a bottleneck 
(Luria and Meiran, 2003, 2006; Schubert, 1999; Schubert et al., 
2008; Szameitat et al., 2006). Since a bottleneck requires sequential 
processing of the two tasks, several accounts have proposed that 
bottleneck processing is actively regulated by executive control 
processes, which are involved in the temporal scheduling of the 
tasks (Kübler et  al., 2022a,b). The operation of such TOC 
processes can be shown by comparing DT performance in task 
situations in which the two component tasks are presented in 
fixed order throughout the whole block, with the performance in 
situations in which the order of the two tasks varies randomly 
from trial to trial, so called random-order blocks (De Jong, 1995; 
Kübler et al., 2018; Stelzel et al., 2008; Szameitat et al., 2002). In 
these studies, participants are instructed to respond to both 
stimuli based on their sequential presentation order and the RTs 
and error rates are usually larger in random-order compared to 
fixed-order blocks. This pattern is indicative for the operation of 
additional control processes necessary to coordinate the 
processing order of both tasks in the random-order blocks. While 
a number of studies have provided sufficient evidence for the 
operation of TOC processes in unpracticed DT situations (Luria 
and Meiran, 2003, 2006; Schubert et al., 2008; Szameitat et al., 
2002, 2006), it remains an open issue to which degree these 
executive control mechanisms can be optimized by extended DT 
practice. In the current study, we aim to elaborate on the potential 
training-related improvement of TOC in DT processing in 
addition to the primary research objective whether a training-
related improvement of TOC can be  achieved similarly in 
laboratory-based and online DT training situations.
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1.2 Online vs. laboratory-based 
experiments

Recently, online or web-based testing of human subjects has 
become very popular in several research domains, including cognitive 
psychology, social science or economic research. The adherence to 
COVID-19 safety precautions resulted in sustained laboratory 
closures, which, in conjunction with recent technological 
advancements, led to an increasing tendency to conduct studies in 
online settings (see Grootswagers, 2020; Sauter et  al., 2020 for a 
detailed overview of tools and methods of online testing). However, 
there are still unsolved issues about the usefulness and reliability of 
data obtained within such online settings. In particular, it is harder to 
achieve sufficient levels of validity, reliability, and controllability of 
both technical setup and environment in online compared to 
laboratory settings, which is particularly relevant when response time 
sensitive-psychological paradigms are applied. However, there have 
been several attempts in the past, which addressed these issues and 
showed that technical precision and accuracy of the measurement 
across diverse platforms and applications are sufficiently well and 
reach the standards of laboratory research (e.g., Anwyl-Irvine et al., 
2021; Bridges et al., 2020; Uittenhove et al., 2023). In addition, several 
studies could provide evidence for the assumption that online and 
laboratory-based psychological experiments yielded comparable 
results for a range of different cognitive tasks (e.g., Crump et al., 2013; 
Semmelmann and Weigelt, 2017). However, so far, this was mainly 
shown for rather simple sensory-motor tasks such as Stroop task, 
Eriksen flanker tasks, basic attentional cueing tasks and others, 
requiring from participants the performance of a single task situation. 
In a recent study, Sauter et al. (2022) compared the RTs in online 
settings and in the laboratory, even for a more complex and 
demanding DT paradigm and showed similar response time effects in 
online and laboratory-based testing.

While these earlier studies indicate that online testing can 
be considered as a valid instrument for investigating various research 
questions with timing-sensitive sensory-motor tasks, it remains an 
open question to which degree online testing would also be suitable 
for the investigation of studies addressing training-related 
improvements in DT processing. Therefore, in the current study, 
we  applied a DT paradigm and investigated to which degree a 
training-related DT performance improvement can reliably and 
validly be investigated within an online setting. In fact, the application 
of an online setting for training DT situations may expose unique 
challenges to the experimentation. For example, variances in 
participant performance may be larger in online testing compared to 
laboratory-based settings. If these increased variances persist each day 
of the training, they could accumulate over the course of the 
experiment, leading to a compounded inaccuracy that may diminish 
the observed effect size when assessing training outcomes. In addition, 
an important issue for multiple-session training experiments is the 
sustainment of participants’ motivation and attention throughout the 
testing sessions. Often, as individuals engage in training activities, 
their motivation tends to diminish over time, leading to reduced effort 
in the training situation and even to drop outs (Birk et al., 2016). Thus, 
maintaining a reliable level of task commitment of participants can 
be  more challenging in online compared to laboratory settings, 
primarily due to the reduced intensity of contact between 
experimenter and participants.

Dual-task training is inherently demanding and intensive, which 
is essential for fostering effective learning outcomes. In this context, 
decreased task commitment and decreasing motivation can have a 
detrimental impact on the learning results, which might be  in 
particularly problematic if training is assumed to affect the 
development of executive control functions. Thus, sustaining high 
levels of task commitment becomes paramount, especially in online 
settings, to ensure the training’s efficacy and the acquisition of 
cognitive skills, such as task-coordination skills.

On the other hand, online testing also offers benefits that, in turn, 
scale with multiple days of testing (see also Gagné and Franzen, 2023, 
for a comprehensive list of costs and benefits associated with online 
studies). For example, there is no need for physical appearance of 
participants in the laboratory during online experiments; therefore, 
participants and experimenters can reduce the related effort. 
Furthermore, online experiments allow for rapid data collection 
through parallel testing of multiple subjects in the web, which would 
result in large time savings. Additional advantages may include 
reduced social pressure for participants (even though for some 
participants, a lack of social interaction may lead to reduced 
motivation) and decreased equipment and research costs (Gagné and 
Franzen, 2023).

All of these aspects substantiate the research question of whether 
we  can achieve comparable outcomes in an online training 
intervention as in the laboratory, potentially paving the way for future 
utilization of online assessments to investigate inquiries regarding 
cognitive training research. To achieve this goal, in the current study 
participants practiced a DT situation across several days in two 
different experimental settings, the laboratory and the online setting. 
We maintained as much consistency and parity as possible between 
both setting conditions. The recruitment strategy and experimental 
protocols remained identical, and participants completed an equal 
number of training sessions in both conditions. However, in the 
laboratory setting, participants were physically present at the research 
laboratory, where they received instructions and a debriefing, and 
carried out the experimental sessions in a controlled environment 
with direct personal contact during the whole session. Conversely, in 
the online setting, participants received instructions and a debriefing 
via video conferencing and conducted the sessions on their personal 
devices from their homes. Hence, the frequency of contact with the 
experimenter remained consistent in both setting conditions, with the 
primary difference being the mode of interaction. While in the 
laboratory setting, the interaction was conducted in form of in-person 
and face-to-face communication, the interaction was conducted 
through digital means in the online setting. This approach allowed us 
to control for the potential effects of experimenter presence, which 
may not significantly impact simple reaction time tasks (Hilbig, 2016), 
but could be  more influential in situations in which sustaining 
motivation over multiple training sessions is crucial, as in the 
present study.

In one training order condition, participants practiced two tasks 
in DT blocks with fixed order, i.e., two component tasks were 
presented with constant order throughout the whole block. In the 
second training order condition, participants practiced them in DT 
blocks with random order, i.e., the presentation order of the two 
component tasks varied randomly from trial to trial. Based on earlier 
findings of enhanced improved task-coordination skills, we expected 
TOC costs (as a measure of task-order coordination skills) to 
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be specifically reduced in participants who practiced random-order 
blocks, but not in those who practiced fixed-order blocks. This 
improvement was anticipated for both tasks (task 1 and task 2) in the 
DT situation, and due to the higher-order nature of these skills, 
we expected these improvements to extend for both the trained tasks 
and untrained (transfer) tasks, demonstrating a task-
unspecific enhancement.

On one hand, it seems reasonable to anticipate differences in the 
training outcomes between online and laboratory-based training 
regimens; for example, such disparities could arise from technical 
limitations (e.g., Elze and Tanner, 2012; Neath et al., 2011) especially 
due to testing on multiple days or potential decrease of participants’ 
motivation and attention over several days of online training (Jun 
et al., 2017; Kyewski and Krämer, 2018). However, we hypothesized 
no significant differences due to the advanced state of digital 
technology used for experimentation. Both, that is high 
measurement precision of current online platforms for 
experimentation (Anwyl-Irvine et al., 2021; Uittenhove et al., 2023) 
and the careful alignment of the experimental procedures between 
online and laboratory-based testing should allow for highly reliable 
and valid measurements even in experimental situations of 
psychological research aimed at testing higher level executive control 
functions (Gagné and Franzen, 2023; Sauter et al., 2020). Given the 
constrained interpretability of frequentist statistics, especially for 
null effects (e.g., van den Bergh et al., 2020; Wagenmakers et al., 
2018b), we employed Bayesian model statistics in order to test for 
potentially lacking differences in the effects between the two settings. 
For that purpose, we tested various models, each with or without 
effects involving the training setting condition factor. If models 
lacking this factor demonstrated the most optimal fit to our data, it 
would imply that the setting of the training (laboratory vs. online) 
has no remarkable influence on the outcome of training and 
transfer effects.

2 Materials and methods

2.1 Participants

A total of 62 participants took part in the study, 28  in the 
laboratory setting and 34 in the online setting. We conducted a power 
analysis with MorePower 6.0 (Campbell and Thompson, 2012) for the 
laboratory setting condition assuming an effect sizes (partial eta 
square, η2

p) of 0.32. This effect size was derived from previous training 
studies, demonstrating group-specific improved inter-task 
coordination (effects in dual-task costs) with effect sizes between 0.25 
and 0.32 (Liepelt et al., 2011; Schubert and Strobach, 2018; Strobach 
et al., 2012a). It also matches the effect size found by Kübler et al. 
(2018) on an effect of an instruction manipulation on TOC costs 
(η2

p = 0.34). For detecting similar effect sizes for our relevant three-way 
interaction (as described below), the power analysis indicated that a 
group size of 14 participants per group would yield sufficient power 
(> 0.9) with a set alpha level of 0.05. To compensate for potential 
dropouts especially in the online setting, we deliberately increased the 
number of participants to 17 for each training order condition, for the 
online setting condition. Participants (75% female) were recruited 
from the Martin-Luther-University Halle-Wittenberg and had a mean 
age of 23.2 years (SD = 3.8). All participants had normal or 

corrected-to-normal vision and 95% were right-handed. Informed 
consent was collected from each participant. Participants were paid 
for participation at a rate of one course credit or seven euro per hour 
plus performance-based bonuses. Participants were assigned to one of 
two training order conditions (random DT training or fixed DT 
training) and to one of two setting conditions (laboratory or online). 
The first 12 participants per setting condition were randomly assigned 
to the two training order conditions after the pre-training session. All 
subsequent participants were assigned to a training order condition, 
so that the two conditions’ group size would remain as similar as 
possible on our critical depended variable, namely TOC costs (for a 
similar procedure see Jaeggi et al., 2014). Participants in the laboratory 
setting condition received a personal instruction and debriefing on 
each day they came to the laboratory, while in the online setting, these 
interactions were moved to an online video conference platform of the 
university,1 where the participant and the experimenter met at the 
start and at the end of each session, just like in the laboratory. The 
actual experiment itself was conducted on participants’ own 
computers in their homes. This approach allowed for parallel testing 
in the online setting, as only the instructions and debriefings needed 
to be scheduled; while one participant proceeded with the experiment, 
the next could receive their instruction. In contrast, parallel testing in 
our laboratory was not possible due to restricted laboratory space. 
Overall, despite our anticipation of potential dropouts (especially in 
the online setting), all participants completed every session, whether 
they were in the laboratory or online.

2.2 Apparatus and component tasks

The experiments were programmed in PsychoPy3 (Version 
2021.1.4, Peirce et  al., 2022). In the laboratory setting condition, 
participants sat in front of a 24-inch LCD monitor with a resolution 
of 1920 × 1,080 pixels and a refresh rate of 144 Hz. For the online 
setting condition, the experiment built in PsychoPy3 was hosted 
online on the platform Pavlovia2. Participants received instructions 
not to use a mobile device; however, they were allowed to use their 
computer equipped with a suitable keyboard at their homes. During 
pre-, training and post-session participants conducted different 
versions of two visual sensorimotor component tasks, to test for 
training effects (trained tasks) as well as for transfer effects (transfer 
tasks). Visual stimuli of the component tasks were presented centrally 
on the screen. The size of the stimuli did not scale with the size and 
resolution of participants’ screens at home, but remained of constant 
height and width for both laboratory and online settings. With the 
instruction to sit at a distance of approximately 75 cm, the stimuli of 
both visual component tasks were within the field of foveal vision of 
2° visual angle and were presented in black font on a gray background.

Stimuli of the trained shape task consisted of the shapes circle, 
triangle and square, and for the transfer shape task, the shapes cross, 
star and hexagon were presented. Participants were instructed to 
respond as fast and as accurately as possible to the shape with the ring, 
middle or index finger of their left hand to press buttons ʻA,’ ʻS,’ or ‘D,’ 

1 mluconf.uni-halle.de/b

2 https://pavlovia.org/
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respectively. For the trained symbol task, the letters ‘A,’ ‘E,’ and ‘U’ 
were used, while for the transfer symbol task, digits ‘1,’ ‘5,’ and ‘9’ were 
presented. Participants were instructed to respond as fast and as 
accurately as possible to the symbol with the index, middle or ring 
finger of their right hand to press buttons ʻJ,’ ʻK,’ or ‘L’, respectively.

A single task (ST) trial started with the presentation of a fixation 
cross for 800 ms, followed by a blank display for 700 ms. Then the 
visual stimulus appeared centrally on the screen and stayed until 
participants responded with a button press or until a maximum of 
3,000 ms passed. Error feedback was given when the answer was 
incorrect as well as after omitted responses and consisted of the 
German words ‘FEHLER (error) and ‘ZU LANGSAM’ (too slow), 
respectively.

A DT trial, again, started with the presentation of a fixation cross for 
800 ms, followed by a blank display for 700 ms (see Figure 1). Then the 
first visual stimulus appeared centrally on the screen and with a stimulus 
onset asynchrony of 100 ms the second visual stimulus was presented. 
Both stimuli stayed on the screen until participants responded with a 
button press for each task or until a maximum of 3,000 ms after the 
appearance of the second stimulus passed. For DT blocks, participants 
were additionally instructed to respond according to the order of 
stimulus presentation. Error feedback was given when at least one 
stimulus discrimination was incorrect (but not if the order was 
incorrect) as well as after omitted responses and consisted of the German 
words ‘FEHLER (error) and ‘ZU LANGSAM’ (too slow), respectively.

2.3 Design and procedure

Participants engaged in the experiment over five consecutive days 
covering (if possible) one single week, as illustrated in Figure  2. 
Commencing on Monday, irrespective of their later training order 

condition assignment, participants started the study with a pre-session 
that lasted approximately 90 min. Initially, they practiced the transfer 
component tasks in nine single-task (ST) trials each to familiarize 
themselves with the mappings. Subsequently, they conducted two 
practice blocks involving the same component tasks within dual-task 
(DT) trials, featuring a random task order. Following the practice 
phase, participants completed 46 ST trials for each component task, 
followed by four blocks of 37 DT trials with fixed order. These fixed-
order DT blocks encompassed two blocks for each possible order of 
component tasks in an alternating sequence (shape – symbol or symbol 
– shape). The order of stimulus presentation remained constant 
throughout each entire fixed-order block. Subsequently, participants 
conducted four blocks with 37 DT trials in random order of the 
component tasks. The number of trials per DT block was determined 
by the need to fully balance different experimental conditions: there 
were three possible stimuli for each task, two possible task orders and 
two possible order transitions from the previous trial, i.e., the order of 
the current trial could either repeat the previous order or be reversed. 
This balancing resulted in 36 trials (3 × 3 × 2 × 2) for each block, with 
one additional trial at the beginning (due to there was no transition 
from the previous one) which was excluded from analysis. For these 
random blocks, we  pseudo-randomized the order of stimulus 
presentation before the start of the experiment. For the pseudo-
randomization we adhered to the following rules: (1) the number of 
trials in which the order changed compared to the previous trial and 
trials in which the order repeated was equal; (2) within trials of order 
repetition, the number of both possible task orders (shape – symbol 
and symbol – shape) was equal; (3) within trials of order changes, the 
number of both possible task orders was equal; (4) the task order 
changed or repeated by a maximum of four consecutive trials.

After the random-order blocks with transfer component tasks, the 
procedure was repeated for the trained component tasks: a practice 

FIGURE 1

The time course of a DT trial as it was applied in fixed-order DT blocks as well as in random-order DT blocks. Following a fixation cross (800  ms) and a 
blank display (700  ms) both stimuli were presented separated by an SOA of 100  ms. The maximum time for both responses was set to 3,000  ms. Both 
stimuli remained on screen until both responses were given or until this maximum passed. After an ITI of 1,000  ms consisting of 500  ms error feedback 
(if there was an error) and 500  ms blank display the next trial started. ITI, intertrial interval; SOA, stimulus onset asynchrony.
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phase, 46 ST trials per component task, four blocks of 37 fixed-order 
DT trials and four blocks of random-order DT trials.

After the pre-session, participants were allocated to one of two 
training order conditions, as detailed earlier. On Tuesday, 
Wednesday and Thursday, participants completed one training 
session each. Participants in the fixed-order training condition 
practiced the two trained component tasks in 14 fixed-order DT 
blocks, each comprising 37 trials, with an alternating sequence of 
order between blocks. Conversely, participants in the random-
order training condition engaged in 14 random-order DT blocks 
for the two trained component tasks, which were 
also pseudorandomized.

Finally, on Friday, all participants finished the study with a post-
session, structured similarly to the pre session. However, in the post-
session, the block involving the trained component tasks was 
administered before the block featuring the transfer component tasks. 
This sequencing ensured that the participants’ post-session performance 
in the trained tasks could not be influenced by the performance in the 
transfer tasks, because the latter were tested after the trained tasks.

2.4 Statistical procedure

For the statistical RT analyses, we excluded all trials from practice 
blocks and the initial trial of each DT block as well as trials with RTs 
deviating more than ±2.5 standard deviations from the mean of each 
specific factor combination for each participant (across laboratory and 
online setting m = 7.7%). Additionally, we  removed error trials, 
encompassing both discrimination errors and those with incorrect 
task order (across laboratory and online setting m = 13.4%). RTs and 
error rates were aggregated across trials with the figure or the symbol 
task as task 1.

To investigate the acquisition of TOC skills, we compared DT 
performance, i.e., the RTs and error rates, in blocks with random 
task order with those in fixed task order. The RT and error rate 
differences between these two block types reflect the TOC costs 
and the observation of significantly larger RTs and/or error rates 
in random compared to fixed-order blocks would be consistent the 
assumption of the operation of additional control processes 
involved in coordinating the processing order in random-
compared to fixed-order blocks. To test whether there are 

training-order specific training and transfer effects, we analyzed 
the TOC costs in form of pure RT or error data both before and 
after training using separate analyses of variance (ANOVAs). These 
2 × 2 × 2 ANOVAs included the within-subjects factors test time 
(pre training, post training) and trial type (fixed-order, random-
order) as well as the between-subjects factor training order (fixed 
DT training, random DT training), individually for the trained and 
transfer tasks. In a first step, we conducted these ANOVAs for the 
laboratory setting condition, and subsequently for the online 
setting condition.

Following that, we examined whether the training and transfer 
effects were modulated by the setting condition. For that purpose, 
we performed an additional 2 × 2 × 2 ANOVA with the three factors 
test time (within-subjects: pre training, post training), training order 
(between-subjects: fixed DT training, random DT training), and 
setting (between-subjects: laboratory, online). For the sake of 
simplicity, for this analysis, we used as a dependent variable, the 
TOC costs (i.e., the difference scores for random minus fixed order 
blocks, both for RTs and errors) in order to reduce the complexity of 
the further analyses because this allowed us to skip the factor 
trial type.

In addition, we  conducted a Bayesian ANOVA using JASP, 
Version 0.18 (JASP Team, 2023), for comparison of the training-
order specific training and transfer effects on TOC costs. For this 
Bayesian analysis, we, again, used the difference scores as the 
dependent variable. This decision was made to streamline the factors 
involved and, consequently, allowed us to minimize the number of 
potential models. This is important for the case of Bayesian analysis, 
because here, as the number of factors increases, a valid drawing of 
conclusions becomes progressively more uncertain (van den Bergh 
et al., 2020; Wagenmakers et al., 2018a). In particular, we calculated 
the posterior probabilities of a model not including any effect of the 
factor setting (main effect and interactions) and compared it to a 
model containing such effects. Note, the Bayes factor BF01 provides 
information which of these two models better fits the data, with 
values smaller than 1 suggesting support for the model without any 
effects and values greater than 1 providing evidence for a model 
incorporating these effects. A model without any effect of the factor 
setting would suggest that online training of task-coordination skills 
is as effective as laboratory-based training, whereas a model 
including such effects would indicate a difference between online 

FIGURE 2

Overview for the procedure of blocks and trials for the different practice sessions of the study. Participants completed one pre session, three training 
sessions and one post session during the course of the study. Pre and post session: For the transfer tasks as well as for the trained tasks they performed 
two blocks of ST trials (one for the shape task, one for the symbol task), followed by four blocks of fixed-order trials (two for each task order), followed 
by four blocks of random-order trials. Training sessions: participants trained the two component tasks either in fixed-order DT blocks or in random-
order DT blocks according to their training order condition assignment. ST, single task; DT, dual-task.
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and laboratory-based training (van den Bergh et  al., 2020; 
Wagenmakers et al., 2018a,b).

3 Results

3.1 Laboratory setting

3.1.1 RT analyses

3.1.1.1 Trained tasks
First, we  analyzed the RTs for the trained tasks (Figure  3A), 

focusing on reactions times for the first task presented in a trial (RT1). 
We  observed significant main effects of the factors test time, F(1, 

26) = 35.26, p < 0.001, η2
g = 0.17, and trial type, F(1, 26) = 162.10, 

p < 0.001, η2
g = 0.22. These findings indicate that RT1 was faster in the 

post-test (m = 879 ms) than in the pre-training session (m = 1,090 ms), 
signifying training effects, and, that responses in fixed-order blocks 
were executed more rapidly (m = 823 ms) than in random-order blocks 
(m = 1,065 ms), demonstrating the increased demand on 
TOC. Additionally, the training order × test time interaction depicts 
the tendency, F(1, 26) = 3.74, p = 0.064, η2

g = 0.02, that the reduction of 
RTs from pre-to post-test was more prominent in the random DT 
training condition (mpre-minus post-test = 291 ms; p < 0.001) than in the 
fixed DT training condition (mpre-minus post-test = 131 ms; p = 0.057). 
Furthermore, the training order × trial type interaction was significant, 
F(1, 26) = 7.35, p = 0.012, η2

g = 0.01, which reflects the fact that the 
TOC costs (difference of RT1 in random-order blocks minus RT1 in 

FIGURE 3

Mean RTs in ms as a function of test time (pre vs. post), trial type (fixed-order vs. random-order) and training order (fixed DT training vs. random DT 
training) for the laboratory setting. Error bars reflect the within-subject standard error of the mean (Cousineau, 2005). (A) RTs for the trained tasks of 
the laboratory setting. (B) RTs for the transfer tasks of the laboratory setting. Fixed  =  fixed-order trials, random  =  random-order trials, pre  =  pre training 
session, post  =  post training session.
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fixed-order blocks) of the random DT training condition 
(mdifference = 190 ms) were smaller compared to those of the fixed DT 
training condition (mdifference = 294 ms), p = 0.012. Most importantly, this 
interaction was furthermore moderated by the factor test time as 
indicated by the significant 3-way interaction training order × test time 
× trial type, F(1, 26) = 11.09, p = 0.003, η2

g = 0.01. While there was no 
difference in TOC costs between both training order conditions during 
the pre-test (mdifference random DT training condition = 236 ms; mdifference fixed DT training 

condition = 264 ms; p = 0.551), they differed during the post-test (mdifference 

random DT training condition = 145 ms; mdifference fixed DT training condition = 322 ms; 
p = 0.001). Training resulted in a reduction of TOC costs from pre-to 
post-test for the random DT training condition (mdifference pre-minus post-

test = 91 ms) but in an increase of TOC costs for the fixed DT training 
condition (mdifference pre-minus post-test = −58 ms). This pattern is consistent 
with the assumption that training DT situations with random-order 
blocks improves TOC but training DT situations with fixed-order 
blocks does not.

The analysis of reaction times for the second task presented in a 
trial (RT2) replicated the outcomes observed for the RT1 analysis: It 
revealed significant main effects of test time, F(1, 26) = 29.75, p < 0.001, 
η2

g = 0.24, and of trial type, F(1, 26) = 175.98, p < 0.001, η2
g = 0.15, a 

significant training order × trial type interaction, F(1, 26) = 7.89, 
p = 0.009, η2

g = 0.01, as well as the significant 3-way interaction 
between training order, trial type and test time, F(1, 26) = 22.19, 
p < 0.001, η2

g = 0.01 on RT2. Similarly, in the random DT training 
condition, participants exhibited reduced TOC costs (mdifference pre-minus 

post-test = 111 ms; p = 0.007) after training while participants in the fixed 
DT training condition demonstrated even an increase of the TOC 
costs (mdifference pre-minus post-test = −95 ms; p = 0.018) after training.

3.1.1.2 Transfer tasks
Regarding the transfer tasks (Figure 3B), for RT1, the main effects 

of test time, F(1, 26) = 34.33, p < 0.001, η2
g = 0.17, as well as trial type 

proved significant, F(1, 26) = 117.67, p < 0.001, η2
g = 0.22, mirroring the 

training effect (mpre = 1,032 ms; mpost = 828 ms) and coordination 
demands (mrandom-order trials = 1,004 ms; mfixed-order trials = 783 ms) associated 
with the trained tasks. For the transfer tasks, we found a significant 
interaction between training order and test time, F(1, 26) = 6.68, 
p = 0.016, η2

g = 0.04, as well as between test time and trial type, F(1, 
26) = 17.11, p < 0.001, η2

g = 0.12 on participants RTs. Participants in the 
random DT training condition exhibited a more pronounced 
reduction in RTs from pre-to post-test (mpre-minus post-test = 295 ms; 
p < 0.001) compared to the fixed DT training condition (mpre-minus post-

test = 131 ms; p = 0.046). Furthermore, the RT reduction was more 
prominent in random-order trials (mpre-minus post-test = 239 ms; p < 0.001) 
than in fixed-order trials (mpre-minus post-test = 135 ms; p = 0.025). These 
findings were further specified by the 3-way interaction of training 
order × test time × trial type, F(1, 26) = 4.18, p = 0.051, η2

g < 0.01, which 
reflects the fact that, in the random DT training condition, participants 
improved TOC in random-order trials from pre-to post-test 
(m = 157 ms; p < 0.001), while in the fixed DT training condition, 
participants showed no improvement (m = 52 ms; p = 0.376). This 
result is in line with the hypothesis that training-related improvements 
of TOC, obtained during DT training with random-order blocks, also 
transfers to untrained tasks.

The analysis for RT2 provided similar results observed in RT1’s 
analysis, revealing two main effects: test time, F(1, 26) = 42.03, 
p < 0.001, η2

g = 0.28, and trial type, F(1, 26) = 119.78, p < 0.001, 

η2
g = 0.18. Additionally, the test time × trial type interaction reached 

significance, F(1, 26) = 15.08, p = 0.001, η2
g = 0.01, but the training order 

× test time interaction did not (p = 0.100). In addition, and most 
importantly, we found a significant 3-way interaction of trial type, 
training order and test time on RT2, F(1, 26) = 4.45, p = 0.045, η2

g < 0.01, 
which reflects the observation of a training-related reduction of TOC 
costs in the random DT training (mdifference pre-minus post-test = 140 ms; 
p < 0.001), but no reduction in the fixed DT training condition 
(mdifference pre-minus post-test = 47 ms; p = 0.532).

3.1.2 Error analyses

3.1.2.1 Trained tasks
Subsequently, we examined error rates for both task 1 and task 2 

(see Table 1). For the trained tasks, error rates for task 1 revealed a 
significant main effect of trial type, F(1, 26) = 22.46, p < 0.001, η2

g = 0.11, 
reflecting the occurrence of TOC costs at the error rate level, with 
higher error rates in random-order trials (m = 5.3%) compared to 
fixed-order trials (m = 3.0%). No other main effects or interactions 
reached significance. Similarly, in task 2, the main effect of trial type 
was also significant, F(1, 26) = 42.13, p < 0.001, η2

g = 0.09. Moreover, the 
main effect of test time reached significance, F(1, 26) = 6.62, p = 0.016, 
η2

g = 0.06, indicating a general reduction in error rates from pre-test 
(m = 5.6%) to post-test (m = 4.4%). None of the other main effects or 
interactions reached statistical significance.

3.1.2.2 Transfer tasks
For the transfer tasks, we  found a similar result pattern. 

We observed a main effect of trial type, for task 1, F(1, 26) = 21.96, 
p < 0.001, η2

g = 0.08, and for task 2, F(1, 26) = 10.23, p = 0.004, 
η2

g = 0.07, respectively, which indicates higher error rates in random-
order trials (mtask 1 = 5.3%; mtask 2 = 3.5%) compared to fixed-order 
trials (mtask 1 = 3.3%; mtask 2 = 2.3%). Moreover, the main effect of 
training order was marginally significant, F(1, 26) = 3.34, p = 0.079, 
η2

g = 0.05 for task 2. No other main effects or interactions 
reached significance.

3.1.3 Interim summary
Overall, the data of the laboratory setting condition revealed 

training-order specific training and transfer effects for TOC costs (on 
RT level), suggesting that participants can improve TOC through 
appropriate practice in random-order DT situations, which enable 
them to flexibly adjust the task order from trial to trial. Conversely, 
when participants practiced the same component tasks in fixed order, 
such improvements were not attainable. The findings were not 
contradicted by error rate analyses and no evidence for a speed-
accuracy speed-off was observed.

3.2 Online setting

3.2.1 RT analyses

3.2.1.1 Trained tasks
For the online setting, our findings closely paralleled those of 

the laboratory setting. First, we examined RT1 for the trained tasks 
(see Figure 4A), revealing significant main effects of test time, F(1, 
30) = 50.98, p < 0.001, η2

g = 0.15, and trial type, F(1, 30) = 132.98, 
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p < 0.001, η2
g = 0.17 on RT1. The former illustrates a general training 

effect, i.e., reduction of RTs from pre- (m = 1,034 ms) to post-test 
(m = 846 ms), while the latter depicts the typical demands of TOC, 
with higher RTs for random-order trials (m = 1,005 ms) compared 
to fixed-order trials (m = 811 ms). Additionally, the test time × trial 
type interaction reached significance, F(1, 30) = 14.11, p = 0.001, 
η2

g = 0.01, indicating that the reduction of RT1 from pre-to post-test 
was more pronounced in random-order trials (mpre-minus post-

test = 212 ms; p < 0.001) than in fixed-order trials (mpre-minus post-

test = 138 ms; p = 0.009). Most importantly, this interaction was 
furthermore moderated by the factor training order, as indicated by 
the significant 3-way interaction training order × test time × trial 
type, F(1, 30) = 5.58, p = 0.025, η2

g < 0.01. The random DT training 
group exhibited a reduction of TOC costs from pre-to post-test 
(mdifference pre-minus post-test = 120 ms; p < 0.001), while this reduction was 
statistically not evident for the fixed DT training condition (mdifference 

pre-minus post-test = 28 ms; p = 0.748). This finding aligns with the 
assumption that training DT situations with random-order blocks, 
but not with fixed-order blocks, enhances TOC, even an 
online setting.

The analysis for RT2 reproduced the patterns observed in RT1 
analysis, revealing two significant main effects: test time, F(1, 
30) = 52.10, p < 0.001, η2

g = 0.22, and trial type, F(1, 30) = 115.90, 
p < 0.001, η2

g = 0.12, as well as the test time × trial type interaction, F(1, 
30) = 8.93, p = 0.006, η2

g = 0.01, and the 3-way interaction training 
order × test time × trial type, F(1, 30) = 4.38, p = 0.045, η2

g < 0.01. 
Similarly, participants in the random DT training condition showed 
decreased TOC costs after training (mdifference pre-minus post-test = 129 ms; 
p = 0.004), while participants in the fixed DT training condition 
showed no enhancement due to training (mdifference pre-minus post-test = 22 ms; 
p = 0.999).

3.2.1.2 Transfer tasks
For RT1 of the transfer tasks (Figure  4B), we  again found a 

significant effect of test time, F(1, 30) = 34.25, p < 0.001, η2
g = 0.16, and 

of trial type, F(1, 30) = 139.39, p < 0.001, η2
g = 0.20 on RT1. Duplicating 

results from the trained tasks, this signifies a general training effect 
(mpre = 1,039 ms; mpost = 832 ms) as well as the typical demands of TOC 
(mrandom-order trials = 1,005 ms; mfixed-order trials = 811 ms) for the RT1 in the 
transfer tasks. Furthermore, the test time × trial type interaction 
proved significant, F(1, 30) = 17.65, p < 0.001, η2

g = 0.02, indicating a 
more prominent reduction of RT1  in random-order (mpre-minus post-

test = 246 ms; p < 0.001) compared to fixed-order trials (mpre-minus post-

test = 130 ms; p = 0.010). The 3-way interaction training order × test time 
× trial type was marginally significant, F(1, 30) = 3.46, p = 0.073, 
η2

g < 0.01, which reflects the fact that, in the random DT training 
condition, participants improved TOC with training (mdifference pre-minus 

post-test = 166 ms; p < 0.001), while the training-related reduction of TOC 
costs was only minimal for the fixed DT training condition (mdifference 

pre-minus post-test = 64 ms; p = 0.358). This observation supports the 
hypothesis that transfer effects resulting from training-related 
improvements of TOC can be realized in an online setting.

The analysis of RT2 paralleled again the results of RT1 analysis. 
Following the same pattern as with RT1, both main effects were 
significant: test time, F(1, 30) = 46.34, p < 0.001, η2

g = 0.22, and trial 
type, F(1, 30) = 131.45, p < 0.001, η2

g = 0.16, as well as the test time × 
trial type interaction, F(1, 30) = 11.623, p = 0.002, η2

g = 0.01. Most 
importantly, the 3-way interaction training order × test time × trial type 
reached significance, F(1, 30) = 4.97, p = 0.033, η2

g = 0.01, 
demonstrating a significant training-related TOC cost reduction for 
the random DT training condition (mdifference pre-minus post-test = 187 ms; 
p < 0.001), but not for the fixed DT training condition (mdifference pre-minus 

post-test = 38 ms; p = 0.994).

TABLE 1 Error rates for task 1 and task 2 in percent (%) for the laboratory and the online setting.

Laboratory setting Online setting

Errors task 1 Errors task 2 Errors task 1 Errors task 2

Test time Test time Test time Test time

Training order 
condition/Tasks/
Trials

Pre Post Pre Post Pre Post Pre Post

Fixed DT training

Trained tasks

  Fixed-order trials 3.2 (2.2) 2.1 (1.3) 5.4 (3.8) 2.7 (2.1) 5.3 (4.3) 4.0 (3.6) 6.4 (5.5) 3.2 (3.5)

  Random-order trials 5.8 (4.0) 5.1 (3.1) 6.6 (4.7) 5.2 (3.9) 7.7 (6.2) 8.6 (7.4) 3.2 (3.5) 8.3 (7.4)

Transfer tasks

  Fixed-order trials 3.3 (2.9) 2.8 (3.5) 2.4 (1.9) 1.8 (1.4) 4.9 (6.4) 4.6 (5.7) 3.6 (3.1) 3.3 (2.0)

  Random-order trials 5.0 (4.4) 5.1 (4.2) 3.1 (2.3) 2.4 (2.3) 10.0 (9.8) 7.9 (8.5) 5.6 (6.0) 6.9 (6.9)

Random DT training

Trained tasks

  Fixed-order trials 3.9 (3.6) 2.9 (2.8) 4.2 (1.9) 3.2 (2.3) 3.3 (2.2) 1.9 (1.6) 4.2 (2.5) 2.6 (1.5)

  Random-order trials 5.3 (3.6) 5.0 (6.5) 5.5 (3.0) 5.2 (3.6) 5.1 (3.7) 3.1 (3.2) 5.2 (3.3) 3.7 (3.0)

Transfer tasks

  Fixed-order trials 3.9 (2.7) 3.3 (2.8) 2.9 (1.7) 2.3 (2.8) 3.1 (2.9) 2.6 (1.8) 1.9 (1.1) 1.6 (1.5)

  Random-order trials 5.3 (3.7) 5.9 (4.8) 4.7 (3.4) 3.8 (3.7) 4.6 (2.9) 3.6 (3.6) 2.9 (2.9) 2.3 (2.5)
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3.2.2 Error analyses

3.2.2.1 Trained tasks
Subsequently, we  analyzed error rates for task 1 and task 2 

(Table 1). Starting with the trained task 1, we observed a main effect 
of trial type, F(1, 30) = 17.44, p < 0.001, η2

g = 0.08, and a main effect of 
training order, F(1, 30) = 5.93, p = 0.021, η2

g = 0.12 on error rate in 
task 1. The former indicates the typical demands of TOC on error rate 
(mrandom-order trials = 6.1%; mfixed-order trials = 3.6%), while the latter depicts 
higher overall error rates for the random DT training condition 
(m = 7.0%) compared to the fixed DT training condition (m = 3.6%). 
Notably, the 3-way interaction training order × test time × trial type 
showed a pronounced trend, F(1, 30) = 3.86, p = 0.059, η2

g = 0.01, 
indicating that participants in the random DT training condition 
slightly improved TOC in terms of error rates in task 1 (difference of 

error rate in random-order blocks minus fixed-order blocks) from 
pre-to post-test (mdifference pre-minus post-test = 0.6%), while participants in the 
fixed DT training condition demonstrated a decline in error-based 
performance (mdifference pre-minus post-test = −2.2%). No other main effects or 
interactions reached significance.

For task 2, the main effect of trial type was significant, F(1, 
30) = 15.27, p < 0.001, η2

g = 0.05, demonstrating higher error rates 
in random-order trials (m = 6.1%) compared to fixed-order trials 
(m = 4.1%). Furthermore, the significant main effect of test time, 
F(1, 30) = 15.77, p < 0.001, η2

g = 0.04, indicated a general reduction 
in error rates (mpre = 6.2%; mpost = 4.7%). Moreover, the training 
order × trial type interaction was marginally significant, F(1, 
30) = 3.86, p = 0.059, η2

g = 0.01, showing that the TOC costs in 
form of error rates differed between the training order conditions 
(mrandom DT training = 1.1%, mfixed DT training = 3.1%).

FIGURE 4

Mean RTs in ms as a function of test time (pre vs. post), trial type (fixed-order vs. random-order) and training order (fixed DT training vs. random DT 
training) for the online setting. Error bars reflect the within-subject standard error of the mean (Cousineau, 2005). (A) RTs for the trained tasks of the 
laboratory setting. (B) RTs for the transfer tasks of the laboratory setting. Fixed  =  fixed-order trials, random  =  random-order trials, pre  =  pre training 
session, post  =  post training session.
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3.2.2.2 Transfer tasks
Analysis of the transfer tasks produced a comparable outcome to 

that of the trained tasks. For task 1, the main effect of trial type was 
significant, F(1, 30) = 28.38, p < 0.001, η2

g = 0.06, which reflects the 
increased demands for TOC in random-order compared to fixed-
order trials (mrandom-order trials = 6.5%; mfixed-order trials = 3.8%). The main effect 
of training order was marginally significant, F(1, 30) = 3.98, p = 0.055, 
η2

g = 0.09, with greater error rates for the fixed DT training condition 
(m = 7.6%) compared to the random DT training condition (m = 3.7%). 
Moreover, the significant training order × trial type interaction, F(1, 
30) = 8.47, p = 0.007, η2

g = 0.02, indicated less pronounced TOC costs 
in form of error rates in the random DT training condition (m = 1.2%) 
compared to the fixed DT training condition (m = 4.3%).

For task 2, only the two main effects of trial type, F(1, 30) = 7.81, 
p = 0.009, η2

g = 0.06, and of training order, F(1, 30) = 7.31, p = 0.011, 
η2

g = 0.13, were significant, indicating higher error rates for task 2 in 
random-order trials (m = 6.5%) compared to fixed-order trials 
(m = 3.8%), as well as lower error rates for task 2 for the random DT 
training condition (m = 3.7%) compared to the fixed DT training 
condition (m = 7.6%). None of the other main effects or interactions 
reached statistical significance.

3.2.3 Interim summary
In sum, data of the online setting condition yielded a result 

pattern analogous to that of the laboratory setting in terms of training-
order specific training and transfer effects for TOC costs (on RT level). 
The error rate data again did not contradict these findings. For the 
online setting, participants in the random DT training condition was 
also able to enhance their TOC, independent of the specific stimuli 
used. In contrast, participants in the fixed DT training condition did 
not show such improvements.

3.3 Cross setting analyses

To further investigate whether the training and transfer effects 
observed in the online setting were comparable to those in the 
laboratory setting, we conducted an additional ANOVA including the 
factor setting. In order to reduce data complexity, we  included a 
difference score reflecting the TOC costs across both tasks, i.e., task 1 
and task 2, in the ANOVA. For that purpose, we collapsed the RTs for 
task 1 and task 2 together and calculated the difference between mean 
RTs in random-order trials minus mean RTs in fixed-order trials (i.e., 
RTrandom-order – RTfixed-order) across both tasks. Using the resulting 
parameter as a dependent variable in the ANOVA allowed us to skip 
the factor trial type from the ANOVA and to calculate a 2 × 2 × 2 
ANOVA with the factors training order (between-subjects: fixed DT 
training, random DT training), test time (within-subjects: pre, post), 
and setting (between-subjects: laboratory, online) on the TOC costs. 
We conducted the analysis separately for the trained and the transfer 
tasks. Notably, for both trained and transfer tasks, the interaction 
training order × test time was statistically significant, with F(1, 
58) = 23.06, p < 0.001, η2

g = 0.101, for the trained task and with F(1, 
58) = 9.24, p = 0.004, η2

g = 0.052, for the transfer task, respectively. This 
outcome confirmed the presence of training-order specific training 
and transfer effects as previously identified in analyses conducted 
separately for the two experimental settings. Most importantly, the 
factor setting did not significantly modulate these findings, as the 
interactions training order × test time × setting did not reach 

significance, for both, i.e., the trained tasks, F(1, 58) = 0.79, p = 0.378, 
η2

g = 0.004, and the transfer tasks, F(1, 58) = 0.07, p = 0.793, η2
g = 0.000, 

respectively. In sum, the training-order specific training and transfer 
effects remained unaffected of whether the study was conducted in 
laboratory or online setting.

3.3.1 Bayesian analysis
Additionally, we  conducted a Bayesian model comparison 

approach, in order to assess in more detail which model would best 
explain the current data set. In particular, we  aimed to assess the 
observation of the former frequentist ANOVAs that the factor 
experimental setting has no reliable influence on the outcome of the 
training and transfer results. Please, note that in terms of a Bayesian 
analysis, this would be reflected by the observation of weak evidence 
for a model, which includes the factor setting compared to a model not 
including this factor. To assess this, we  conducted two separate 
Bayesian repeated-measures ANOVAs, one for the TOC costs 
(difference values; RTrandom-order – RTfixed-order across task 1 and task 2) of 
the trained tasks and another for the TOC costs of the transfer tasks. 
All in all, a complete model testing would result in testing a total of 18 
potential models against the best-fitting model, which are summarized 
in Appendix Table A1 for the trained tasks and in Appendix Table A2 
for the transfer tasks. As the number of factors and models is very large 
in such complete model testing, it becomes increasingly uncertain to 
draw conclusions based on a comparison involving only a limited 
subset of these models (van den Bergh et al., 2020; Wagenmakers et al., 
2018a). Thus, we performed Bayesian model averaging across matched 
candidate models, which are illustrated in Tables 2, 3 for the trained 
and transfer tasks, respectively. The aim is to preserve uncertainty in 
model selection by averaging the conclusions from each potential 
model, weighted by the model’s posterior plausibility (Wagenmakers 
et  al., 2018a). The prior inclusion probability of an effect [i.e., the 
column P(incl)] aggregates the prior probabilities of all models 
containing that effect, while the posterior inclusion probability [i.e., the 
column P(incl|data)] represents the sum of posterior probabilities for 
those models. Crucially, the Bayes factor of inclusion (i.e., the column 
BFincl) indicates the change from prior to posterior inclusion odds, 
providing evidence for inclusion or exclusion of the respective effect 
(please, refer to Table 1 in Wagenmakers et al., 2018a for a descriptive 
classification scheme for the interpretation of Bayes factors).

For the trained tasks (Table 2), the data supported the inclusion 
of the main factors test time (BFincl = 3.938) with moderate evidence 
and training order (BFincl = 14.440) with strong evidence. Notably, the 
interaction test time × training order received extreme support for 
inclusion (BFincl = 1268.191). Most importantly, any model containing 
the factor setting received only anecdotal support for either inclusion 
or exclusion (all BFincl within the range of 0.4–1.5). This confirms the 
conclusion that the way of investigating DT training, i.e., either in 
laboratory or in online setting, has no influence on the training 
performance of participants.

Turning to the transfer tasks (Table 3), the data overwhelmingly 
favored the inclusion of the main factor test time (BFincl = 54902.264). 
Similarly as with the training tasks, the inclusion of the interaction test 
time × training order received strong evidence (BFincl = 15.119). Again 
and most importantly for the purpose of the current study, any model 
involving the predictor setting received anecdotal or moderate support 
for exclusion (all BFincl within the range of 0.2–0.5).

In summary, the Bayesian model comparison approach substantiated 
the conclusions drawn from classical inference analyses; it confirmed the 
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observation of training-order specific training and transfer effects and, 
most importantly, it confirmed the conclusion that the training setting, 
i.e., whether or not training was conducted in laboratory or in online 
fashion, has no reliable impact on the training outcome.

4 Discussion

The primary objective of the current study was to investigate 
whether online training of dual-task performance can yield comparable 
results to those obtained in a laboratory setting. To this end, 
we conducted two distinct training regimens for dual-task situations 
across 5  days, an online and a laboratory environment, with two 
different training order conditions. Our aim was to evaluate the impact 
of training on dual-task costs, specifically focussing on the occurrence 
of TOC costs. These TOC costs represent the demands arising from the 
need to regulate the processing order due to bottleneck-induced 
sequential processing of two component tasks (De Jong, 1995; Kübler 
et al., 2022a,b; Liepelt et al., 2011; Szameitat et al., 2002). We aimed to 
investigate training effects and the subsequent stimulus-independent 
transfer of these effects, particularly in the context of TOC.

The results of the frequentist analyses of TOC costs revealed a 
reduction in TOC costs in participants who practiced two component 
tasks with a variable order, while those who practiced the same two 
tasks in a fixed order showed no such reduction from pre-to post-test 
session. Crucially, this training-related reduction in TOC costs 
generalized from the practiced to the transfer stimuli, which is 
indicative for the occurrence of stimulus-unspecific transfer effects of 

TOC skills. This finding suggests that the training influenced higher-
order cognitive processes rather than mere consolidation of stimulus–
response associations, which is in line with previous research 
demonstrating the development of generalizable task-coordination 
skills independent of specific task characteristics (Kramer et al., 1995; 
Liepelt et al., 2011; Schubert et al., 2017).

Moreover, the comparability of results between laboratory and 
online setting, evidenced by the absence of any influence of the factor 
setting in conventional frequentist statistics, emphasizes the robustness 
of this stimulus-unspecific training effects. Bayesian statistics further 
substantiated this conclusion by supporting the notion that the 
training setting did not affect training and transfer effects at all (van 
den Bergh et al., 2020; Wagenmakers et al., 2018a,b). Importantly, this 
highlights the resilience of the learning process to variations in 
training settings, whether conducted online or in a laboratory 
environment. Consequently, the benefits of the training regimen 
transcend the specifics of the training context, emphasizing its efficacy 
in fostering cognitive adaptation across diverse conditions.

The results of the study have important implications. First, it 
presents an extension of empirical evidence that practicing two 
component tasks with variable order can enhance TOC skills 
(Strobach, 2024), which goes beyond many previous findings observed 
by studies investigating DT training effects with varies training 
designs. In more detail, prior studies on DT training often employed 
DT situations in which both task stimuli were presented either 
simultaneously (e.g., Liepelt et al., 2011; Schubert et al., 2017; Strobach 
et  al., 2015) or with a variable stimulus-onset asynchrony (e.g., 
Schubert and Strobach, 2018) and compared the resulting practice 
effects with practice effects of participants training only ST situations. 
While the studies attributed the observed advantage after training DT 
compared to training ST situations with the assumption that task-
coordination skills had been acquired, it remained an open issue 
whether flexible TOC can be specifically optimized when training DTs 
requiring a flexible change and instantiation of different task orders. 
Our study extends the former findings by demonstrating that the 
acquisition of such task-order coordination skills can be promoted by 
appropriate dual-task practice. While participants practicing two 
component tasks in a fixed order did not enhance their TOC, those 
practicing these tasks in a variable order showed improvement of 
TOC in the trained tasks and, in addition, in unpracticed 
task situations.

Contrary to the findings of Strobach (2024), who observed 
training effects on TOC skills, our study focused on a different aspect 
of TOC. Strobach analyzed Order Switching (OS) costs, which refer 
to the difference in performance between same-order trials (where the 
order of task 1 and task 2 is repeated) and different-order trials (where 
the order is reversed) (see also Kübler et  al., 2018). He  found a 
reduction in OS costs following DT training with random order, but 
not after ST training. In contrast, we did not observe a similar group-
specific improvement in our data (see Appendix B). However, we did 
find significant effects on TOC costs (measured through block-wise 
comparison) after DT training with random order, but not after DT 
training with fixed order. Strobach did not examine these TOC costs 
in his study. Given the notable differences between the two studies, 
further research is needed to fully understand TOC improvement.

This, in particular, indicates that various sub-mechanisms may 
have contributed to the observed training-related improvements; thus, 
the fact that participants in the random-order condition but not in the 
fixed-order condition improved TOC suggests that training has 

TABLE 3 Analysis of effects for the transfer tasks.

Effects P(incl) P(incl|data) BFincl

Test time 0.263 2.6×10−6 54902.264

Training order 0.263 0.095 0.534

Test time * training order 0.263 0.056 15.119

Setting 0.263 0.677 0.259

Test time * setting 0.263 0.247 0.275

Group * setting 0.263 0.201 0.448

Test time * group * setting 0.053 0.017 0.463

P(incl) prior inclusion probability, P(incl|data) posterior inclusion probability, BFincl change 
from prior to posterior inclusion odds. Compares models that contain the effect to 
equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis 
suggested by Sebastiaan Mathôt.

TABLE 2 Analysis of effects for the trained tasks.

Effects P(incl) P(incl|data) BFincl

Test time 0.263 5.0×10−4 3.938

Training order 0.263 6.7×10−4 14.440

Test time * training order 0.263 0.927 1268.191

Setting 0.263 0.205 1.248

Test time * setting 0.263 0.452 1.449

Group * setting 0.263 0.245 0.473

Test time * group * setting 0.053 0.072 0.517

P(incl) prior inclusion probability, P(incl|data) posterior inclusion probability, BFincl change 
from prior to posterior inclusion odds. Compares models that contain the effect to 
equivalent models stripped of the effect. Higher-order interactions are excluded. Analysis 
suggested by Sebastiaan Mathôt.
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enhanced the monitoring of the stimulus order (Kübler et al., 2018) 
and, in addition, the instantiation and fast change of different task-
order sets in working memory (Kübler et al., 2022b; Schubert et al., 
2024; Schubert and Strobach, 2018). Both would have a positive 
impact on participants’ RT: enhanced monitoring enables a faster 
recognition of and therefore decision about the appropriate processing 
order; and a conjoint instantiation of different task-order sets leads to 
faster activation of the appropriate one in the current trial. However, 
further research is required, in order to disentangle mechanisms 
underlying improved TOC through practice.

The second major implication of this study pertains to the 
utilization of online assessments in cognitive training research. Our 
findings align with previous research indicating that data from online 
psychological experiments are comparable to those from equivalent 
laboratory-based experiments (e.g., Crump et al., 2013; Sauter et al., 
2022; Semmelmann and Weigelt, 2017). We have shown that even 
when participants engage in a study involving complex tasks over 
several days, data remain consistent between laboratory and online 
settings. Effects that develop over time, as measured before and after 
the training regimen (training and transfer effects), were of similar 
magnitude and strength and were unaffected by the setting of the 
study. Consequently, we  could provide robust effects for the 
improvement of TOC across diverse conditions, demonstrating 
independence from specific tasks (consistent effects for trained and 
transfer tasks) and settings (whether investigated online or in the 
laboratory). Hence, we advocate for online testing in cognitive training 
regimens, as such training would save tremendous resources without 
compromising quality of results.

A concern in cognitive training research pertains to the requisite 
number of training days for reliable effects. Previous studies often 
incorporated 8–15 days of practice (e.g., Liepelt et al., 2011; Ruthruff 
et  al., 2006a,b; Schubert et  al., 2017; Schubert and Strobach, 2018; 
Strobach et al., 2012b). However, these studies aimed to investigate 
transfer effects after extensive practice and skill automatization. In 
contrast, our research focused on the issue of online versus laboratory 
comparison of training effects. Therefore, a training regimen of 5 days 
including pre-and post-session seemed sufficient. To enhance the 
generalizability of the effects, future research may replicate these 
findings under various circumstances. Firstly, the impact of an extended 
training duration remains unclear. Potential effects of accumulated 
variances and diminishing motivation over the course of the training 
study may arise. Nevertheless, we demonstrated comparable effects 
between online and laboratory setting within a 5-day training regimen. 
Secondly, as our participants primarily consisted of young students, 
most of whom were psychology students, one could test a broader 
online sample. Lastly, our online setting was still very controlled, with 
an introduction and a debriefing via an online conference tool, 
mimicking a setting in the laboratory. Both, a more diverse sampling 
strategy as well as a more uncontrolled online setting can easily 
be achieved with the powerful tools available nowadays, e.g., Prolific or 
Amazon Mechanical Turk (Grootswagers, 2020; Sauter et al., 2020).

In summary, this study has demonstrated that stimulus-unspecific 
improvements in task(−order) coordination can be  achieved by 
practicing two tasks in variable order. Importantly, these training and 
transfer effects were comparable when assessed in an online and in a 
laboratory setting. This supports the prospect of employing online 
assessments for cognitive training research inquiries, offering potential 
resources savings during data collection.
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