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Understanding the intraindividual relation between an individual’s speed and
ability in testing scenarios is essential to assure a fair assessment. Different ap-
proaches exist for estimating this relationship, that either rely on specific study
designs or on specific assumptions. This paper aims to add to the toolbox of ap-
proaches for estimating this relationship. We propose the intraindividual speed-
ability-relation (ISAR) model, which relies on nonstationarity of speed and ability
over the course of the test. The ISAR model explicitly models intraindividual change
in ability and speed within a test and assesses the intraindividual relation of speed
and ability by evaluating the relationship of both latent change variables. Model
estimation is good, when there are interindividual differences in speed and ability
changes in the data. In empirical data from PISA, we found that the intraindividual
relationship between speed and ability is not universally negative for all individuals
and varies across different competence domains and countries. We discuss possible
explanations for this relationship.

Introduction

With computerized testing becoming more and more common, there has been a
trend of leveraging additional data, such as response times, in addition to the ex-
aminee’s responses. Response time data may provide in-depth insights into the ex-
aminees’ behavior during the test. For instance, they can be employed as measure-
ment indicators of examinee’s speed, modeled alongside customary ability estimates.
Response time data can be used to better understand multiple aspects of examinee
behavior, such as test-taking strategies, motivation, and cheating (Kyllonen & Zu,
2016). In this paper, we model response time alongside item response information to
investigate the intraindividual relationship between ability and speed in psychomet-
ric assessments.
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Intraindividual Relationship of Speed and Ability

One of the most widely used models for joint psychometric analysis of responses
and response times is the speed-accuracy (SA) model by van der Linden (2007). The
model describes two levels. On the lower level, it is composed of measurement mod-
els for latent ability and latent speed. On the second level, the model relates these two
latent variables, which allows researchers to explore the interindividual relationship
between speed and ability. The model has served as a basis for many extensions. It
has been extended to include multiple dimensions in the ability measurement model
(Man et al., 2019), allowing for the exploration of compensatory effects of different
ability dimensions along with the response times. Other extensions include models
which aim to increase the precision of ability estimates (Bolsinova & Tijmstra, 2018;
Molenaar, Oberski, Vermunt, & De Boeck, 2016; Molenaar, Tuerlinckx, & van der
Maas, 2015; Molenaar, Bolsinova, & Vermunt, 2018; van der Linden, 2008; van der
Linden & Guo, 2008), account for missing values (Frey, Spoden, Goldhammer, &
Wenzel, 2018; Liu & Wang, 2020; Liu, Wang, & Shi, 2021; Pohl, Ulitzsch, & von
Davier, 2019; Ulitzsch, von Davier, & Pohl, 2020c, 2020b), model guessing behav-
ior (Guo et al., 2016; Schnipke & Scrams, 1997; Wang & Xu, 2015), or to model
engaged and disengaged test-taking behavior (Ulitzsch, von Davier, & Pohl, 2020a).

One extension of van der Linden’s (2007) model which is particularly noteworthy
for the context of this paper is the one by Fox and Marianti (2016). In this model
extension, the authors relax the assumption of stationarity of speed and model in-
traindividual change in speed over the course of the test using latent growth model-
ing. Peng, Cai, Wang, Luo, & Tu (2022) build upon the model of Fox and Marianti
(2016) and applied it to cognitive diagnostic modeling. They sorted participants into
multiple groups with regards to the measured attributes and examine how each of
these groups behaves when it comes to their speed fluctuations within the test. Both,
Fox and Marianti (2016) as well as Peng et al. (2022), do, however, assume that
even though speed may change within a person, the ability level stays the same.
This is a rather strong assumption that may not hold in applications. In fact, lately
different research has dealt with the relation of ability and speed on the intraindi-
vidual level. This is not only relevant to evaluate model assumptions (e.g., of sta-
tionarity or conditional independence), but is also important as differences in speed
may also impact ability level and is, thus, relevant for a fair comparison of persons
(e.g., Pohl, Ulitzsch, & von Davier, 2021).

Intraindividual Relationship between Ability and Speed

In psychometrics, it has been acknowledged that exhibited ability may depend on
the speed with which a person works on the test (e.g., Goldhammer, 2015; van der
Linden, 2007). As such a person may exhibit different ability levels, depending on
the speed they chose. Ranger, Kuhn, & Pohl (2021) define the hypothetical maxi-
mum level of ability which an examinee could obtain as target ability. This is not
necessarily observed in a specific assessment. Instead, we usually assess effective
ability, that is, the ability exhibited at the chosen, that is the effective speed of the
test taker (Goldhammer, 2015). While each person has one level of target ability, they
have multiple values on effective ability, depending on the effective speed level. If
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persons do not change in speed across the test, we usually observe only one effective
speed and effective ability level per person.

Psychometric research has emerged that investigates the intraindividual rela-
tionship between ability and speed in various different ways (e.g., Alfers, Gittler,
Ulitzsch, & Pohl, 2021; Kang, De Boeck, & Ratcliff, 2022; Ranger, Kuhn, & Pohl,
2021). Research aiming to investigate this relationship in psychometric assessments
is challenged by difficulties in identifying this relation on the intraindividual level.
Estimating the intraindividual relationship between ability and speed requires one to
have several values of both speed and ability for each person. Different strategies
have been proposed to tackle this. These either rely on (a) using experimental de-
signs, (b) using external proficiency measures, or (c) relying on nonstationarity of
ability and speed within the test.

Experimental designs. To investigate the intraindividual relationship of ability
and speed with an experimental design, researchers usually manipulate the time lim-
its for the test (Alfers et al., 2021; Nietfeld & Bosma, 2003) or each item response
(Goldhammer, 2015). The advantage of experimental approaches is that they assure
a variation of speed within persons and have good internal validity. Experimental
variations may, however, be confounded by order or position effects. Manipulating
an examinee’s working speed requires either a within-subject design, which might
interfere with order and position effects or a between-subject design, which relies on
comparability of persons across groups. In practice, it may also often be unfeasible
to implement experimental conditions, which makes this approach less applicable to
many studies which are assessments.

External proficiency measures. Another method to infer the intraindividual re-
lation of ability and speed is to make use of external proficiency scores. For example,
Ranger et al. (2021) used data from the Amsterdam Chess Test (van der Maas & Wa-
genmakers, 2005) to obtain participants’ effective speed and effective ability. They
used the Elo score as an external measure of proficiency and grouped persons with
a similar Elo score. Assuming that persons with a similar Elo score have a similar
intraindividual relation of ability and speed, they thus, were able to estimate the in-
traindividual relationship of speed and ability. This approach is easier to apply than
an experimental manipulation since it does not require a controlled environment.
However, to use this approach, one needs an external measure of proficiency that is
not affected by any choice of speed level. Such a measure is rarely available in prac-
tice. Furthermore, the assumption that examinees with similar proficiency show the
same relationship between ability and speed, is likely to be violated in practice.

Nonstationarity. Research has shown that speed of a person is not necessarily
stable within a test, but that a person may change work pace (e.g., Fox & Marianti,
2016). Due to the speed-ability trade-off (SAT), a change in effective speed may also
impact test performance and as such effective ability. Some approaches aimed at
investigating the intraindividual relationship between ability and speed make use of
nonstationarity of speed and ability across the test. Nonstationarity allows for observ-
ing different levels of effective speed and effective ability within the same person.
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Intraindividual Relationship of Speed and Ability

For example, Domingue et al. (2022) used an approach that relied on residuals.
They first modeled responses assuming stationarity of ability. They then regressed
the residuals of the responses on the response times to evaluate in which way devi-
ations from stationarity are impacted by response times. Similar as Domingue et al.
(2022), Guo, Luo, and Yu (2020) applied an approach in which a single latent speed
and ability variable are modeled. In order to infer the intraindividual relationship of
ability and speed, different from Domingue et al. (2022), they regress the responses
on the standardized residual response times. Also, Meng, Tao, and Chang (2015)
relied on nonstationarity of ability and speed and modeled conditional dependen-
cies by extending the model of van der Linden (2007). In contrast to the other two
models, they allowed for different strength of the intraindividual residual correlation
across persons. Also in the diffusion IRT (Item Response Theory) model with ran-
dom variability coefficients (DIRT-RV, Kang et al., 2022), it is allowed that the size
and even the form of the relationship differs between persons. In this model, however,
it is assumed that the form and size of the relationship depends on the ability level.
Specifically, it is assumed that the relation of accuracy and response time is opposite
for high response probability than for low response probability. This assumption has
shown to be less plausible in psychometric test data (Krause et al., 2022).

Approaches relying on nonstationarity have the advantage of being applicable to
data most often found in practice, as they neither need experimental manipulation
nor external measures. The only requirement is that changes in speed and ability
do occur within persons across the test. As such, they are very promising for wide
use. While the existing approaches provide already great tools for investigating the
intraindividual relationship, they mainly do not directly model the relation of ability
and speed, but only the relation of the residuals. This only indirectly allows to infer
to the speed-ability relation.

Results of Investigating the Intraindividual Relationship of Speed and Ability
in Psychometric Assessments

The results of studies investigating the intraindividual relationship of speed and
ability in psychometric data show mixed results. There are a number of studies that
suggest that the intraindividual relationship between both variables is negative. Guo
et al. (2020) found support for the negative within-person relationship of effective
speed and effective ability for almost all items but those of middle difficulty. The
study by Nietfeld and Bosma (2003) shows that, while most of the participants dis-
play patterns of a negative relationship between ability and speed, there is also a
considerable number of individuals who do not fit into the pattern (their responses
are fast and accurate or slow and inaccurate). Domingue et al. (2022) analyzed
29 different data sets with different kinds of tests and found inconsistent results on
the estimated within-person relation of speed and ability. A negative relationship
was found for some tests, but not for others. Noticeably, positive relationships were
mainly found in data sets consisting of participants of higher age. For certain tasks,
a curvilinear dependency was found—ability first rises, and then declines as speed
increases. Kang et al. (2022) also found that, in general, there is a curvilinear within-
person relationship of effective speed and effective ability on mental rotation tasks.
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The curvilinear dependency was of the same shape—ability first increases, and then
decreases with the increase in speed. Similar results were obtained by Ranger et al.
(2021), who found that for some people the relationship between effective speed and
effective ability is curvilinear. However, they also found that in other groups the rela-
tionship of effective speed and effective ability was positive until it reaches a certain
plateau. They also find a dependency on overall ability level; for respondents with
above-average ability, the relationship between effective speed and effective ability
is positive, although above a certain level of speed, this relationship becomes weaker
or nonexistent.

Explanations for the Intraindividual Relationship of Ability and Speed

There are different explanations of reasons for the intraindividual relation of abil-
ity and speed within a test (e.g., Bolsinova, Tijmstra, Molenaar, & De Boeck, 2017;
Goldhammer, 2015; Pohl et al., 2021; Ranger et al., 2021; van Breukelen, 2005).

The SAT. One of the most prevalent explanations for the intraindividual rela-
tionship of ability and speed is the SAT. The SAT refers to the widely observed
within-person decrease in task performance which appears as a consequence of an
increase in the speed of performing the task. It can be visualized with a SAT curve,
which shows the relationship between speed and ability as a monotonically decreas-
ing function. The SAT curve is thought to be asymptotic (Goldhammer, 2015), that
is, effective ability levels off after some time.

Because persons can show different levels of speed, and thus, of ability, van der
Linden (2007) introduced the terms of effective ability and effective speed. As in
psychometric testing, different examinees usually do not use the same speed level,
but differ in their choice, fairness of comparisons of ability levels across examinees
are threatened (Goldhammer, 2015; Pohl et al., 2021). As such, investigation of SAT
is an important topic when it comes to fairness in assessments.

Changes in concentration. A positive relationship between speed and ability
could be a result of changes in concentration of the participant across the test (Ranger
et al., 2021). When the concentration of an individual decreases, they experience an
increase in task-irrelevant cognition. As a result, the participant spends more time
on an item, given that a part of the time is used up for task-irrelevant cognition.
Simultaneously, not focusing well enough on the task deteriorates the participant’s
performance. If a participant’s concentration changes during the test, both speed and
ability may change in the same direction, thus resulting in a positive relationship
between the two (Bolsinova et al., 2017).

Changes in effort. The effort an examinee invests into solving the items can im-
pact both, ability and speed. If effort changes across the course of the test, this can
have an impact on the intraindividual relationship of their speed and ability. Investing
more effort can lead to longer response times, given that a larger amount of infor-
mation is processed. At the very least, extremely fast response times are thought to
reflect rapid guessing (Wise & Kong, 2005), and are thus indicative of nonmotivated
test-taking behavior. On the other hand, whether the increase in effort will lead to
higher accuracy or not depends on the capability of the examinee (limited by the
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Intraindividual Relationship of Speed and Ability

maximal ability level of the examinee; Ranger et al., 2021). In examinees capable
enough to solve an item, investing more effort should also lead to better accuracy,
while in examinees not capable enough to solve an item correctly, the effect should
be opposite. Likewise, a faulty solution process might lead to lower speed and lower
accuracy (van Breukelen, 2005). Thus, the direction of the relationship of speed and
accuracy also depends on the person’s capability. For a capable examinee, a change in
effort results in a negative relationship, while for a less capable examinees a change
in effort results in a positive relationship.

Practice effects. Practice effects are yet another factor which could influence
the intraindividual relationship of speed and ability. Practice effects refer to the
changes in the solving process which take place after the examinee got acquainted
with the nature of the test material. It has been shown that practice leads to an in-
crease in accuracy (Scharfen, Peters, & Holling, 2018), although the effect reaches a
plateau after a certain point. Practice was also shown to increase examinees’ speed
(Scharfen, Blum, & Holling, 2018). Thus, an increase practice effects during the
course of the test would increase both speed and accuracy, and, thus, result in a pos-
itive intraindividual relationship between the two.

Research Objectives

The current study aims to add another approach to the toolbox of approaches for
modeling the intraindividual relationship of speed and ability. Our model does not
aim to be always superior to all other approaches but rather to provide another tool
with different strengths and limitations than the existing ones. By adding to the tool-
box, a researcher may choose which of the approaches best fits their aim and which
of the assumptions is most plausible in a given situation.

We draw on modeling approaches that rely on nonstationarity (such as Domingue
et al., 2022; Guo et al., 2020), as these are most widely applicable in many assess-
ment settings, that is, they do neither require experimental manipulations (as for
example, in Nietfeld & Bosma, 2003; Alfers et al., 2021; or Goldhammer, 2015), nor
external measures of proficiency (as for example in Ranger et al., 2021).

Building upon modeling ideas of Fox and Marianti (2016) and Meng et al. (2015),
we also aim to explicitly model change in speed, and thus, enable to model and
explain this change in further analyses. In contrast to Fox and Marianti (2016), Meng
et al. (2015), and similar models such as Peng et al. (2022), we do not assume that
ability is stationary but at the same time allow for ability to also change across the
test and for change in ability also to depend on change in speed.

While similarly as Domingue et al. (2022), Guo et al. (2020), Meng et al. (2015),
and Kang et al. (2022), we rely on nonstationarity, different from them, we explicitly
model the relationship of ability and speed (and not of residuals). This also allows
for including further explaining variables for the change in ability and speed.

In the following, we will present (1) the proposed model, (2) a simulation study
evaluating the performance of model estimation, and (3) an empirical application
illustrating the use of the model.
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Model

We are proposing a model that explicitly models changes in effective speed and
effective ability and allows for investigating their within-person relation. For this,
we rely on nonstationarity of effective speed and effective ability throughout the test.
The proposed model is based on the model of Fox and Marianti (2016) which allows
the growth in latent speed but assumes stationarity of ability.

Fox and Marianti (2016) based their approach on the hierarchical model of van der
Linden (2007). The first level includes measurement models for ability and for speed.
Ability is modeled via an IRT model, and a lognormal distribution is assumed for
the response times. On the higher level, the model features a multivariate normal
distribution of latent ability and speed.

Fox and Marianti (2016) extended this model by adding a growth model for the
latent speed parameter. Specifically, they demonstrated the usage of linear and linear-
quadratic growth terms. This allows researchers to look at person-level speed trajec-
tories and to explore how speed trajectories are related to the person’s ability level.

We extend the model of Fox and Marianti (2016) to also allow for changes in ef-
fective ability and change in effective ability and effective speed to be related within
persons.

Model Specification

The intraindividual speed-ability-relationship (ISAR) model is specified as fol-
lows. On the lower level, the model consists of the measurement models for the
responses and response times. The measurement model for the responses is given
by:

P(Ypi = 1) = exp(θ0,p + θ1,pXpi − bi )

1 + exp(θ0,p + θ1,pXpi − bi )
, (1)

with

Xpi = lpi − 1

K
. (2)

Ypi denotes the response of examinee p to item i, P(Ypi = 1) is the probability for
a correct response and bi is the difficulty parameter of item i. Xpi is the timescale
variable which represents the relative position of item i in the test as encountered by
examinee p. lpi denotes the absolute position of item i as encountered by person p in
the test starting with lpi = 1 for i being the first item in the test for person p. K is the
total number of items administered. In the case where all examinees encounter the
items in the same order, lpi and Xpi are reduced to li and Xi, respectively. The scale of
X starts from 0 and its theoretical upper bound is 1, which it reaches when K = ∞
(see also Fox & Marianti, 2016). Due to this timescale, θ0,p represents the effective
ability of person p at the beginning of the test (initial ability) and θ1,p represents the
rate of change in effective ability of person p from the beginning of the test to the
hypothetical K + 1th item (change in ability).
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Intraindividual Relationship of Speed and Ability

Following (Fox & Marianti, 2016), the measurement model for the response times
is given by:

ln(Tpi ) ∼ N (βi − (τ0,p + τ1,pXpi ), σ
2

Ti ), (3)

where Tpi is the response time of person p to item i, βi is the time intensity parameter
of item i, σ2

Ti is the residual variance of the log response times to item i, τ0,p is the
effective speed of person p at the beginning of the test (initial speed), and τ1,p is the
rate of change in effective speed of person p from the beginning of the test to the
hypothetical K + 1th item (change in speed).

On the higher level, the latent speed and latent ability parameters are related to
each other via a multivariate normal distribution:⎛

⎜⎜⎝
θ0

θ1

τ0

τ1

⎞
⎟⎟⎠ ∼ N

⎛
⎜⎜⎝

⎛
⎜⎜⎝

μθ0

μθ1

μτ0

μτ1

⎞
⎟⎟⎠,

⎛
⎜⎜⎝

σ2
θ0

ρθ0θ1 ρθ0τ0 ρθ0τ1

ρθ0θ1 σ2
θ1 ρθ1τ0 ρθ1τ1

ρθ0τ0 ρθ1τ0 σ2
τ0 ρτ0τ1

ρθ0τ1 ρθ1τ1 ρτ0τ1 σ2
τ1

⎞
⎟⎟⎠

⎞
⎟⎟⎠, (4)

where the μ values are the means of the person parameters, σ2 are their variances,
and ρ are the correlations between them.

Similar as in Molenaar et al. (2015, 2016), we model item parameters (bi and βi)
as fixed effects. The person parameters θ0, θ1, τ0, and τ1 are assumed to follow a
multivariate normal distribution:

A path diagram of the ISAR model is depicted in Figure 1.
The crucial features of the ISAR model are the correlation ρθ1τ1 , reflecting the

relationship of the change in speed and the change in ability, and the individual lines
depicting the relationship of speed and accuracy within every person.

To identify the model, we introduce two scaling constraints. First, we constrain the
error variance of the log response times, σ2

Ti , to be the same across all items (σ2
T ).

Second, we fix all the person parameter means (μθ0 , μθ1 , μτ0 , and μτ1 ) to 0. Note,
that by posing this constraint, we cannot evaluate whether on average there is an
increase or decrease in effective ability or effective speed, but we can only evaluate
whether effective ability and effective speed change differently across persons. If all
items are presented to all examinees in the same order, we cannot disentangle average
change in effective ability and effective speed from differences in item difficulty or
item time intensity, respectively. It is possible to disentangle average change in latent
variables from item difficulty and item time intensity, when items are presented in
random order to each person. In such settings, identification can be achieved by fixing
the item difficulty and time intensity of one item to be equal across item positions,
instead of fixing μθ1 and μτ1 to 0.

The proposed approach poses several requirements for its implementation and
identification and makes several assumptions. First, as the timescale in the model
is operationalized by item position, the model is only applicable to data in which
persons approach the test in a linear way, without revising items. The estimation of
the model as well as the investigation of the nonstationarity requires that persons
indeed change their effective speed and effective ability throughout the test. In data
in which this is not expected, the model may not be estimable. This is similar to
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Figure 1. Path diagram of the ISAR model. Y and T
represent the responses and response times, respectively,
while the subscript 1, 2, . . . , K denotes the ith item.

the requirements of the other approaches relying on nonstationarity. Similar as the
model of van der Linden (2007), the model assumes (a) that item responses follow
an IRT model and response times follow a lognormal model and (b) conditional in-
dependence of item responses and response times given the latent person variables.
Although we do not assume stationarity of ability and speed, we still make assump-
tions on the form of the change, here being a linear one.

While the ISAR model cannot account for possible nonlinear relationships of
speed and ability which might be present, it may offer some insight into the nature of
the examinee’s response process. For example, a positive relationship between speed
and ability of an examinee would strongly suggest that the SAT did not play a major
role when that examinee was giving their response. Likewise, a negative relation-
ship between speed and ability of an examinee could potentially rule out any major
changes in their concentration during the test or any practice effects.
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Intraindividual Relationship of Speed and Ability

Prior Distributions

Relying on Bayesian estimation, we specify the prior distributions for all parame-
ters. For the item difficulty parameters b and the item time intensity parameters β we
use weakly informative normal distribution priors with a mean of 0 and a standard
deviation of 2 (Gelman et al., 2008). For the error variance of the log response times,
a weakly informative half-Cauchy prior is chosen with a location of 0 and a scale of
2.5, which is a commonly used prior distribution for variances (Gelman, 2006). For
the variance-covariance matrix � of person parameters, we use a separation strat-
egy to avoid the problem of dependencies between the variances and the correlations
(Alvarez, Niemi, & Simpson, 2014). Again, we use a half-Cauchy distribution with a
location of 0 and a scale of 2.5 as a prior for the variances of the person parameters:
For the correlation matrix of person parameters �, we choose an uninformative LKJ
distribution (Lewandowski, Kurowicka, & Joe, 2009), specifically tailored for corre-
lation matrices: � ∼ LKJ (1). The variance-covariance matrix � may be calculated
as

� = diag(σP )� diag(σP ), (5)

where σP is the vector of variances of person parameters (σ2
θ0 , σ2

θ1 , σ2
τ0 and σ2

τ1 )
and diag(σP ) is a diagonal matrix with the values of σP on the diagonal.

Estimation

In our implementation, we employed a Bayesian MCMC (Markov chain Monte
Carlo) sampler in Stan (Stan Development Team, 2021), which utilizes Hamiltonian
Monte Carlo techniques with a No U-Turn Sampler. We provide the Stan code in
the Appendix.

Reparameterizations

Due to the number of correlated dimensions, estimation is more challenging. In or-
der to enhance estimation, we reparameterized the model (Stan Development Team,
2021). First, we employ the Cholesky decomposition (Benoit, 1924) for easier esti-
mation of the correlation matrix. The correlation matrix � can be written as a product
of a lower triangular matrix L and its transpose LT as follows:

� =

⎛
⎜⎜⎝

L11

L21 L22

L31 L32 L33

L41 L42 L43 L44

⎞
⎟⎟⎠

︸ ︷︷ ︸
L

⎛
⎜⎜⎝

L11 L21 L31 L41

L22 L32 L42

L33 L43

L44

⎞
⎟⎟⎠

︸ ︷︷ ︸
LT

, (6)

where all the Lcd values (c denoting the row and d denoting the column in the ma-
trix L) are called Cholesky factors. The Cholesky decomposition shows excellent
numerical stability (Higham, 2009) and is thus more efficient than the usual param-
eterization which directly includes a correlation matrix (Stan Development Team,
2021).

Second, the specification of the distribution of person parameters was modified
so that the parameterization is noncentered. To achieve this, a vector of intermediate
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Mutak ET AL.

variables θ0
∗, θ1

∗, τ0
∗, and τ1

∗ was created. Each of the intermediate variables θ0
∗,

θ1
∗, τ0

∗, and τ1
∗ was assumed to follow a standardized normal distribution with the

mean of 0 and a standard deviation of 1. The original vector of person parameters
was then decomposed as follows:⎛

⎜⎜⎝
θ0

θ1

τ0

τ1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

μθ0

μθ1

μτ0

μτ1

⎞
⎟⎟⎠ +

⎛
⎜⎜⎝

σ2
θ0

σ2
θ1

σ2
τ0

σ2
τ1

⎞
⎟⎟⎠

⎛
⎜⎜⎝L

⎛
⎜⎜⎝

θ∗
0

θ1
∗

τ0
∗

τ1
∗

⎞
⎟⎟⎠

⎞
⎟⎟⎠. (7)

Thus, direct sampling from the multivariate normal distribution is avoided. By ex-
cluding explicit hierarchical correlations shown in Equation 4 from the sampling pro-
cess and instead recalculating their values based on intermediate parameters, noncen-
tered parameterization removes the dependence of the lower-order model parameters
on the higher-order model parameters, instead making them both dependent just on
the data during the process of sampling (see Papaspiliopoulos et al. (2007) for a de-
tailed overview of the noncentered parameterization techniques and Neal (2003) for
the mathematical background of the issues which may arise in estimating hierarchical
models). Noncentered parameterization was shown to outperform centered parame-
terization and overcoming posterior pathologies (Betancourt & Girolami, 2015) and
is a recommended choice for hierarchical models in Stan (Stan Development Team,
2021).

Third, the Cauchy prior for the variances was reparameterized by creating an inter-
mediate variable. We here show this reparameterization on the example of the error
variance of log response times. The original parameter, σ2

T , is obtained as a derived
parameter as

σ2
T = γ tan(σ∗2

T ), (8)

where γ is the scale parameter from the Cauchy prior (in our case, 2.5) and σ∗2
T is the

intermediate variable. The intermediate variable σ∗2
T is sampled from a uniform dis-

tribution: σ∗2
T ∼ U0, π

2
. The variances of the person parameters are reparameterized

in the same way. An intermediate variable is introduced for each of the four person
parameters, and the original variable is computed as γ (2.5) times the tangent of the
intermediate variable. All of the intermediate variables follow a uniform distribution
bounded between 0 and π

2 . These reparameterizations rely on using the tangent func-
tion to construct the cumulative distribution function of the Cauchy distribution, but
avoid sampling from the heavy-tailed Cauchy distribution itself, which Hamiltonian
Monte Carlo algorithms, as implemented in Stan, have trouble sampling from (Stan
Development Team, 2021).

As all elements of the decomposition of the covariance matrix � (see Equation 5)
are reparameterized, diag(σP ) may be calculated as diag(γ tan(σP

∗)), where σP
∗ is

a vector of intermediate variables used to reparameterize the Cauchy distribution of
person parameter variances (σ2

θ0

∗, σ2
θ1

∗, σ2
τ0

∗, and σ2
τ1

∗). The correlation matrix �

is calculated as L ∗ LT , as shown in Equation 6.
Reparameterizing our model results in more regular shapes of trace plots and less

bias in the estimated parameters than without these reparameterizations. They also
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Intraindividual Relationship of Speed and Ability

noticeably reduce the estimation time. However, we also found that a sufficiently
large number of iterations was needed to obtain large enough effective sample sizes
(ESS).

Simulation Study

In the simulation study, we examined under which conditions the parameters of the
ISAR model can be accurately recovered in estimation. We specifically aim to inves-
tigate the minimum requirements and, thus, the boundary conditions for estimating
the model.

Data Generation

Item responses and response times were generated according to Equations 1 and
3, respectively. Item difficulty and item time intensity parameters were simulated to
be uncorrelated. The values were chosen to cover the most common range of the la-
tent score scale. Item difficulty parameters were generated as bi = −1.5 + (i − 1) ∗
3/(ni − 1) with ni giving the number of items. This results in difficulty parameters
ranging from −1.5 to 1.5 in equidistant steps. This was similarly done for time in-
tensity parameters βi with the same values, that is, βi = −1.5 + (i − 1) ∗ 3/(ni − 1).
According to the results of Fox and Marianti (2016), the residual variance of response
times σ2

T was set to .3. Person parameters were drawn from a multivariate normal
distribution according to Equation 4 with the means of all four person variables set
to zero. According to results from empirical studies (Fox & Marianti, 2016; Ulitzsch
et al., 2020c, 2020b), we set the variance of the initial ability (σ2

θ0 ) to 1.15 and of
the initial speed (σ2

τ0 ) to .3.
We varied four factors in the simulation study. These were the size of the vari-

ances of person parameters (small; large), the strength of the correlations of person
parameters (weak; strong), the sample size (1,500; 5,000; 8,500), and the number
of items/test length (9; 25). In the small variance condition, the variances of the
latent variable slopes were 1/6 of the variances of their respective intercepts (i.e.,
σ2

θ1 = .2 and σ2
τ1 = .05), whereas in the large variance condition they were equal

to the variance of the latent intercept variables (σ2
θ0 = 1.15, σ2

τ0 = .3). To generate
correlation matrices for the two correlation levels, we made use of the LKJ distribu-
tion (Lewandowski et al., 2009). We randomly drew values from the LKJ distribution
to generate a correlation matrix �. For the weak condition, we set the η parameter
of the LKJ distribution (which determines the strengths of correlation) to 3, and for
the strong condition, we set it to .3. This resulted in the correlation matrices shown
in Table 1.

The above setup yielded a total of 2 × 2 × 3 × 2 = 24 conditions. For each of the
conditions, we generated 50 data sets. In total, there were 1,200 generated data sets.
Model estimation was performed on Freie Universität Berlin’s high-performance
cluster Curta (Bennett, Melchers, & Proppe, 2020) in Stan (Stan Development Team,
2021). We have estimated the model in 10 chains with 10,000 iterations each, of
which 4,000 are warm-ups.1
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Table 1
Correlations of Person Parameters Used in the Simulation Study in the Weak and Strong Con-
dition

Weak Strong

θ0 θ1 τ0 θ0 θ1 τ0

θ1 −.13 θ1 −.67
τ0 .17 −.09 τ0 .27 −.17
τ1 .16 −.14 −.15 τ1 .59 −.66 −.54

Evaluation Criteria

To evaluate model performance, we examined several criteria, both on model as
well as on parameter level. To assess convergence of the estimation, we examined
the R̂ values. Cases where R̂ values were smaller than 1.1 were considered good
(Gelman & Shirley, 2011). To assess the efficiency of the estimator, we calculated
ESS and the Bayesian fraction of missing information (BFMI). Values of ESS above
400 were considered good (Zitzmann & Hecht, 2019), and so were BFMI values
above .3 (Betancourt, 2017). Replications where R̂ was larger than 1.1 were excluded
from further analyses of bias and coverage.

Furthermore, for each parameter in the model, we calculated the difference be-
tween the true and the estimated value and report on the distribution of these values
across the 50 replications. Coverage of the parameter estimates was evaluated by
examining relative number of replications for which the 95% credibility interval of
the posterior distribution includes the true value of the parameter. Following Muthén
and Muthén (2002), coverage between.91 and.98 was considered good.

Results

Convergence. Table 2 shows the proportion of analyses in each simulation condi-
tion for which all parameter estimates in the model satisfied the criteria of model con-
vergence and estimation efficiency (R̂ < 1.1, and BFMI > .3). There were no sim-
ulation conditions under which all the model parameters had ESS greater than 400.

The results suggest that convergence is good when the variances of the person pa-
rameters (specifically of the change in speed and the change in ability) are large. If
there are hardly any interindividual differences in intraindividual change, the model
is hard to estimate and does not converge. This is not surprising, as the estimation
of an effect which does not exist in the data is in general challenging. This is further
corroborated by the fact that, on the parameter level, most parameters achieve good
convergence and the specific parameter with most convergence issues is the variance
of ability change, which also impacts the correlations associated with that parame-
ter (see Figure S5 in the Supplementary materials). As such, convergence issues of
change parameters indicate that there are no interindividual differences in change.

While for large variances, convergence of the model is high, a notable exception
is the condition with weak correlations, large sample size, and item number. Model
estimation is challenging in these conditions as well. Convergence issues specifically
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Table 2
Relative Number of Analyses within Each Simulation Conditions that Fulfill the Criteria of
R̂ < 1.1, and Bayesian Fraction of Missing Information BFMI > .3

Variance Condition Correlation Condition N K R̂ < 1.1 BFMI > .3

Large Strong 1,500 9 1 1
25 1 1

5,000 9 .98 .98
25 .92 1

8,500 9 .8 .74
25 .72 .78

Weak 1,500 9 .92 1
25 1 1

5,000 9 .96 .74
25 .74 1

8,500 9 .6 .52
25 .22 .66

Small Strong 1,500 9 .16 1
25 .04 1

5,000 9 0 .9
25 .02 1

8,500 9 .02 .7
25 0 .88

Weak 1,500 9 .06 1
25 0 1

5,000 9 0 .96
25 0 1

8,500 9 0 .62
25 0 .9

Note: N = sample size, K = number of items, R̂ = R-hat convergence diagnostic, BFMI = Bayesian
Fraction of Missing Information.

occur for the correlations of the person parameters and for the variances of the person
ability parameters (see Figure S5). It is possible that in larger data sets, due to the
larger number of estimated parameters, the currently used number of iterations was
not sufficient for proper model estimation.

Because the replications in the condition with small variances displayed low con-
vergence rates, all being even below 20%, we excluded these conditions with small
variances from further analyses of bias and coverage.

Assessment of the efficiency of the estimation shows that the sampling process is
not optimized. The results show that under no condition an ESS above 400 was ob-
tained for all parameters. However, it is also worth noting that on the parameter level,
most of the parameters, including those in the conditions with small variances, had
sample sizes over 400 (see Figure S6). Low ESS was obtained for those parameters
that also had issues with convergence.
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Figure 2. Box-and-whiskers plots showing the difference between the true and the estimated
value of the person parameter correlation estimates (bias). Bias was only computed for
analyses in which the model converged with R̂ < 1.1. K = test length, N = sample size, ρ =
correlation, θ0 = initial ability, θ1 = ability change, τ0 = initial speed, τ1 = speed change.
The x-axis shows combinations of person parameters for which the correlation was computed.

BFMI shows that the model is efficiently estimated in most conditions, including
those with small variances. Several exceptions occur in the conditions with the weak
correlations and sample sizes of 8, 500.

Parameter recovery. Figures 2 and 3 display the difference between the true and
the estimated value of person parameter correlations and person parameter variances,
respectively. Results are only shown for analyses in which the model converged with
R̂ < 1.1 and are only shown for the simulation study conditions with the large vari-
ances. The results suggest that there is overall very little bias in the person parame-
ter correlation (Figure 2) and variance estimates (Figure 3) in conditions with large
variances. Slight deviations occur for weak correlations in the condition with low
number of item (K = 9) and persons (N = 1, 500). In this condition, the variance of
the change in ability as well as the correlation of initial ability and change in ability
are slightly biased. Estimates of the item parameters were unbiased (see Figure S3).

Tables 3 and 4 display the coverage of person parameter correlations and person
parameter variances, respectively, for all simulation study conditions with large vari-
ances. The coverage of the parameters was very good in most cases, that is, being
between.91 and.98. Only in conditions with weak correlation and small number of
items, parameters related to the change in ability (θ1) showed slightly lower coverage
rates (the smallest being.83). Coverage of the item parameters was always excellent
(between.91 and.98, see Table S1).
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Figure 3. Box-and-whiskers plots showing the difference between the true and the estimated
value of the person parameter variance estimates (bias). Bias was only computed for analyses
in which the model converged with R̂ < 1.1. K = test length, N = sample size, σ2 =
variance, θ0 = initial ability, θ1 = ability change, τ0 = initial speed, τ1 = speed change.

Table 3
Coverage of the Person Parameter Correlations Using 95% Credibility Intervals of the Poste-
rior Distribution

ρ

Correlation Condition N K θ0θ1 θ0τ0 θ0τ1 θ1τ0 θ1τ1 τ0τ1

Strong 1,500 25 1 1 .94 1 .86 .96
9 .88 .96 .88 .92 .82 .96

5,000 25 .98 .93 .96 .93 .96 .96
9 .94 .92 .92 .9 .82 .96

8,500 25 .97 .89 .92 1 .89 .97
9 .98 .93 .9 .9 .85 .9

Weak 1,500 25 .98 .98 .88 .96 .9 .92
9 .93 .96 .85 .98 .91 1

5,000 25 .97 .97 .97 .95 .95 .97
9 .94 .9 .92 .98 .92 .92

8,500 25 1 1 .91 1 1 1
9 .83 .97 1 .93 1 .97

Note: N = sample size, K = number of items, ρ = correlation between person parameters. θ and τ repre-
sent ability and speed and 0 and 1 in their subscripts represent the initial value and the change, respectively.
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Table 4
Coverage of the Person Parameter Variances Using 95% Credibility Intervals of the Posterior
Distribution

σ2

Correlation Condition N K θ0 θ1 τ0 τ1

Strong 1,500 25 .92 .96 .92 .94
9 .94 .98 .94 .96

5,000 25 .96 .91 .87 .98
9 .94 .96 .92 .94

8,500 25 .94 .94 .97 .97
9 1 .98 .95 .93

Weak 1,500 25 .94 .92 .9 .92
9 .93 .87 .93 .93

5,000 25 .95 1 .92 .92
9 .96 .96 .92 .96

8,500 25 .91 1 1 1
9 .87 .87 .97 .93

Note: N = sample size, K = number of items, σ2 = variance of person parameters. θ and τ represent
ability and speed and 0 and 1 in their subscripts represent the initial value and the change, respectively.

Empirical Example

Data

To illustrate the use of the ISAR model for investigating the intraindividual rela-
tion of ability and speed, we made use of data collected as part of the Programme
for International Student Assessment (PISA; Organization for Economic Cooper-
ation and Development, 2018) in 2018. We compared two different subject areas,
Mathematics and Science, and two different geographical and linguistic regions, the
English speaking part of North America2 and the Spanish speaking part of Latin
America.3 The application of PISA exams in 2018 was hybrid—some examinees
solved the exams in a pen-and-paper setting, while the others solved the exams on
computers. As we rely on response time data, we only considered individuals in our
analyses who solved the exams on computers. This resulted in the following sample
sizes included in the analyses: in Latin America 4,612 persons on Mathematics items
and 4,390 persons on Science items; in North America 1,998 persons on Mathemat-
ics items and 1,875 persons on Science items.

For the analyses, we selected the first cluster of items of the Mathematics and Sci-
ence test, comprising 12 and 20 items, respectively. Items for which it was possible
to achieve partial credit were recoded to binary variables; only if the item was fully
solved, it was scored as 1, otherwise it was scores as 0.

Analyses

We applied the ISAR model to each of the four data sets separately. The analyses
were run with the same setup as in the simulation study.
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Intraindividual Relationship of Speed and Ability

To assess the fit of the model, we performed posterior predictive checks separately
for responses, for response times, and for the covariances of responses and response
times. The details of these analyses can be found in the Section Model fit in the
empirical study in the Supplementary materials.

In order to illustrate the added value of the ISAR model, we compare the results
to those when analyzing the data with the hierarchical model by van der Linden
(2007), that assumes stationarity of ability and speed. In other words, the model does
not include growth terms for latent speed and ability, but just single parameters for
these constructs. In our implementation, on the lower level, the measurement model
for the responses was also modeled with a Rasch model. The measurement model
for the response time followed a lognormal distribution, were we also assumed the
common variance for all response times. On the higher level, the model includes
a multivariate distribution of latent speed and ability. We also compared it to the
Rasch model without the response times. We implemented the model in Stan (Stan
Development Team, 2021), also retaining all the reparameterizations which we used
for our proposed model. The same posterior predictive checks were performed for
this model and the proposed model.

Results

Convergence. The results suggest that the model has converged well. The largest
R̂ values were 1.03 for the Latin America Mathematics data set, 1.06 for the Latin
America Science data set, 1.01 for the North America Mathematics data set, and 1.04
for the North America Science data set.

Estimation efficiency. Evaluation of the estimation efficiency via the ESS shows
that the sampling process is not optimized. The lowest values of the ESS were 91.41
for the Latin America Mathematics data set, 114.21 for the Latin America Science
data set, 141.47 for the North America Mathematics data set, and 191.88 for the
North America Science data set.

Model fit. The results of the posterior predictive checks suggest that the model fits
the response time data well, except for the first 5% of the fastest response times (see
Figure S1). The model also showed a good fit to the response data (see Figure S2).

The fit of the measurement model for the response times showed very little dif-
ferences to fit achieved when using van der Linden’s (2007) model, thus showing no
large advantages of our model in revealing the univariate distributions. The proposed
model only yielded very slightly lower residuals of the response times. Likewise,
the measurement model for the responses of our model yields very similar fit to the
empirical data as the model of van der Linden (2007) and even the Rasch model,
without the response times.

Parameter Estimates. Estimated model parameter are shown in Table 5,
Figure 4, and Table S2. Both in Mathematics and Science, students in North America
scored higher than students in Latin America, as indicated by the lower item diffi-
culty parameters b (μb = 1.46 as opposed to μb = .28 in Science and μb = 1.73 as
opposed to μb = .5 in Mathematics; see Table S2). On average, the two populations
hardly differed in their speed as time intensity parameters β were quite similar in
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Table 5
Variances of the Person Parameters

Mathematics Science

Variance North America Latin America North America Latin America

σ2
θ0 .96 1.25 1.18 1.03

σ2
θ1 1.26 .76 .57 .58

σ2
τ0 .27 .31 .37 .46

σ2
τ1 .34 .31 .49 .66

Figure 4. Correlograms of person parameters across the two regions and subject areas.
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both groups (μβ = 1.9 and μβ = 10.78 in Science and μβ = 11.45 and μβ = 11.23
in Mathematics).

The variance of the person parameters is shown in Table 5. Students in Latin
America were generally more heterogeneous in their initial ability and initial speed
than students in North America. There was a high variation in latent change for
both speed and ability in all competence domains and regions, supporting the ex-
isting of nonstationarity of speed and ability. Thus, person speed and ability level
changed across the test. For Mathematics, North Americans showed larger variabil-
ity in the change of ability across the test than Latin Americans (σ2

θ1
= 1.26 as op-

posed to σ2
θ1

= .76), while for the change in speed, parameter estimates were similar
(σ2

τ1
= .34 and σ2

tau1
= .31). In Science, the pattern was opposite: for the change in

ability, the parameter estimates were similar in North and Latin America (σ2
θ1

= .57
and σ2

θ1
= .58), while for the change in speed, Latin American examinees showed

higher variation (σ2
τ1

= .66 as opposed to σ2
τ1

= .49).
The estimated correlations of the person parameters are shown in Figure 4. For

all data sets, the correlation between initial speed and initial ability was negative,
indicating that the faster the students were at the beginning, the lower their effec-
tive ability. There was a negative correlation between change in speed and change in
ability in all four data sets. Broadly speaking, the negative correlation between these
two parameters supports the notion of the existence of the SAT in the data. However,
there is considerable variation in this correlation coefficient across the data sets. The
highest coefficient (ρθ1τ1 = −.89) was found in the North America - Mathematics
data set, while the lowest one (ρθ1τ1 = −.26) was found in the Latin America - Sci-
ence data set. Both the region and the test subject had an impact on the strength of
the correlation: the coefficient was always higher in the Mathematics data sets than
in Science data sets, and it was always higher in the North American data sets than
Latin American data sets.

Figure 5 shows the intraindividual relation of effective ability and effective speed
throughout the test for each person. As we assume a linear change in the model, we
only depict two points of this relationship: the initial and the final effective speed and
effective ability of each individual. In line with the results on the change in ability
and speed, for the majority of individuals, we are able to observe different speed
levels, which is one of the prerequisites for investigating intraindividual relations
of ability and speed. The results also show that not only the chosen effective speed
and the respective effective ability, but also their intraindividual relationship differed
considerably across persons. For most of the individuals, the relationship between
effective ability and effective speed was negative. This is in line with what we would
expect in the presence of an SA trade-off. However, there were also students with
a positive intraindividual relationship of effective ability and effective speed. This
aligns with what one would expect if there are changes in individuals’ concentration
during the test. Such positive relationships were found for 11.8% of the students in
North America and 27.2% of the students in Latin America in Mathematics, and
for 33% of the students in North America, and 47% in Latin America in Science.
The percentage of examinees with positive relationships of speed and ability was
higher for Science than for Mathematics, and it was also higher for students in Latin
America than in North America.
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Figure 5. Functions of the speed-ability relationship for every examinee across
the two regions and subject areas.

Discussion

In this paper, we provide a model which allows for the explicit examination of the
intraindividual relationship between speed and ability in psychometric assessments.
By doing so, we add to the canon of approaches that can be used to investigate
intraindividual relations of ability and speed. The ISAR model can easily be applied
to most psychometric assessments, without the need for experimental manipulation
or the availability of external measures. The approach directly models change in
speed and ability and, as such, the intraindividual relationship of speed and ability.

We consider our model to be a relevant addition to the literature. As general in
assessments, usually only effective ability can be assessed, and examinees do not
use the same speed level, which threatens fairness of comparisons across persons.
With our approach, we aim to take a step toward depicting the individual SAT of
a person, as such getting a more comprehensive picture on the performance of a
person. For example, we can investigate the approximated individual SA curve of a
person, which may be a better base for comparisons than a single value on effective
ability. We advise to take a holistic approach in which both the change in ability
and the change in speed are taken into account when considering an individual’s
performance is preferred to make optimal and fair decisions (Pohl et al., 2021).

The model relies on nonstationarity, that is, that examinees changing their effective
speed and their effective ability throughout the test, and, that this change differs
between examinees (intraindividual differences in intraindividual change). If there is
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no change or examinees do not differ in their change over time, convergence issues
occur and the model cannot be estimated. In this case, it is not possible to investigate
the intraindividual relation of speed and ability.

For estimating the model, it is required that the variances of the person parameters,
specifically of the latent change in ability and speed, are sufficiently large. If there
are no interindividual differences in the intraindividual change, parameter estima-
tion becomes challenging. Low convergence in situations with low person parameter
variances is, thus, expected, since in these situations there is no need to apply this
model. Low convergence of the model may serve as a signal that there is either no
change in the ability or speed over the course of the test or that examinees do not
differ in their change and that conventional models which assume stationarity, such
as the model of van der Linden (2007) can be used instead.

In analyses, in which the model converged, estimates of the distribution of person
parameters were largely unbiased. Bias decreases for large sample size and large
number of items. This suggests that the model, when it has converged, displays none
to minimal bias and can be used to make inferences about the quantities modeled
by it.

Convergence and efficiency (i.e., ESS) was lower in conditions with large number
of items and specifically persons. In applications with larger number of examinees
and items, it may be necessary to increase the number of iterations or chains in the
estimation to obtain satisfactory convergence and efficiency.

In the analyses of the empirical data from PISA tests (Organization for Economic
Cooperation and Development, 2018), we observed a relationship between effective
speed and effective ability that aligns with the interpretation of an SAT for most,
but not for all students. While we have found a negative relationship between the
change in the latent ability and the change in latent speed in the majority of stu-
dents, which is the direction that would be expected if the SAT is taking place,
there was still a considerable number of cases (11.8–47%, depending on the data
set) in which this relation was positive. This could be due to other confounding
variables, such as changes in the examinees’ concentration during the test (Ranger
et al., 2021).

The results of our study align with previous studies, which mostly reported a neg-
ative intraindividual relationship between speed and ability, but also identified cases
for which the relationship is negative or nonmonotonic (Domingue et al., 2022; Kang
et al., 2022; Nietfeld & Bosma, 2003; Ranger et al., 2021).

Extending the model of van der Linden (2007) to include nonstationarity in empir-
ical data was not necessary to improve model fit. As compared to a model assuming
stationarity, the ISAR model did only slightly improve model fit. However, parameter
estimates showed that there is indeed a considerable amount of nonstationarity in the
data (variances of the change rates of ability and speed, σ2

θ1 and σ2
τ1 were nonzero

in all of the four analyzed data sets). Thus, change in ability and speed does seem to
be present. Most importantly, applying the ISAR model allowed us to investigate the
intraindividual relationship of ability and speed for each person, which would not be
possible with a model assuming stationarity.
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Limitations and Future Directions

Like all models, the ISAR model makes assumptions and has limitations. The
model presented in this paper is currently limited to only allow for linear change in
effective ability and speed throughout the test. Such a specification may not be an
accurate reflection of the process which is taking place in practice. For example, it
could be possible that the change in speed happens rather suddenly when the exam-
inee becomes aware that they are running out of time. It may also be that speed is
accelerating slowly at the beginning and more steeply at the end of the test. For exam-
ple, Yamamoto’s (1989) HYBRID model assumes a sudden change in speed toward
the end of the test. Fox and Marianti’s 2016 model assumes a quadratic progression
of the latent speed over the course of the test. In order to capture other forms of
change, the ISAR model could be extended to incorporate quadratic growth or other
nonlinear growth terms. While this is theoretically straightforward, it poses high de-
mands for estimation. Future work may focus on estimation routines for estimating
these more complex models.

The ISAR model also makes the assumption that the intraindividual relationship
of speed and ability is linear. This is not plausible in all applications. For instance,
in the case that there is an SAT, theory (Heitz, 2014; van der Linden, 2009) suggests
that the SAT curve is at least quadratic. Goldhammer (2015) describes the shape of
the curve as asymptotic, and shows how it can be modeled with a logistic function. It
is also possible that the shape of the curve is nonmonotonic (Ranger et al., 2021) as
a result of processes of different direction taking place (e.g., the SAT and changes in
concentration). While the ISAR model is unable to capture nonlinear relations, (a) it
does extend previous approaches (Fox & Marianti, 2016) in that it accounts for the
fact that ability may be impacted by speed and (b) allows for examining the direction
of the relationship of ability and speed within each individual.

We also made assumptions regarding the measurement models. As previous mod-
els (Fox & Marianti, 2016; van der Linden, 2007), we introduced our approach with
assuming an IRT model for item responses and a lognormal model of response times.
As such, the current formulation of the model could be very sensitive to outliers of
response times. Of course, also other measurement models may be incorporated in-
stead. For example, Ranger and Kuhn (2012) implemented a model, which embeds a
proportional hazard model and an accelerated failure time model into a link function,
for which they binarized response times. It is also possible to specify different mea-
surement models for responses, such as the 2PL (2-parameter logistic) or the 3PL
(3-parameter logistic) model. For example, due to the insufficiencies of the Rasch
model, OECD switched to the 2PL model (Birnbaum, 1968) and the generalized par-
tial credit model (Muraki, 1992) in 2015 (Organization for Economic Cooperation
and Development, 2015).

In settings where items are administered in the same order to all persons, it is
not possible to distinguish between item parameters and average change in person
parameters. As such, we cannot draw any conclusions on average change in effective
ability and speed across the test. However, if items are presented in random order to
each person, the item and person effects can be disentangled and average change in
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effective ability and speed can be identified. In this situation, instead of fixing the
mean of the change variables to zero, the value of the item difficulty and item time
intensity of one item may be fixed to a specific value, for instance, to zero, across
all positions.

Similar as in other approaches that rely on nonstationarity, the intraindividual rela-
tionship may represent the SAT, but also alternative explanations for this relationship
exist. As the approach relies on change over the course of the test, other confounding
factors, such as learning, motivation, fatigue, or test-taking strategy (Ranger et al.,
2021) may change as well. In fact, our empirical results but also those of previous
studies (Domingue et al., 2022; Ranger et al., 2021; Kang et al., 2022) suggest that
this is indeed the case. To disentangle the impact of the SAT from that of these con-
founding factors on the intraindividual relationship of ability and speed, one may
measure such confounders (e.g., change in motivation or change in concentration)
and statistically control for their effects on the change in ability and speed (Much,
Mutak, Pohl, & Ranger, 2023).

The proposed approach was presented for investigating the latent change and
the intraindividual relationship between ability and speed. The approach may also
be applied to other variables than ability and speed, for example, to speed and
omission propensity (Glas & Pimentel, 2008; Moustaki & O’Muircheartaigh, 1999;
Ulitzsch et al., 2020c) or ability and test-taking engagement (Schnipke & Scrams,
1997; Ulitzsch et al., 2020a). This would not only offer valuable information on the
trajectory of omission propensity throughout the course of the test, but also on the
intraindividual relation of, for example, speed and omission propensity. This may, in
turn, help to understand the process resulting in missing responses.
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Notes
1We choose this number of iterations per analyses, as in test runs prior to the

simulation, we observed a satisfactory model performance with this specification.
It is also possible to estimate the model with less but longer chains. The choice of
using 10 chains with 10,000 iterations was due to technical requirements of the high-
performance cluster that we were using.

2Canadian examinees who solved the PISA assessments in French were excluded
from the sample.

3These included Chile, Columbia, Costa Rica, Dominican Republic, Mexico,
Panama, and Peru. Argentina was not included in the sample because response time
data for Argentina were not available.
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Figure S1. Response time fit diagnostics for the ISAR model and van der Linden’s (2007)
model (SA).
Figure S2. Response fit diagnostics for the ISAR model, van der Linden’s (2007) model (SA)
and the Rasch model.
Figure S4. Person parameter distributions across the two regions and subject areas.
Figure S3. Box-and-whiskers plots showing the difference between the true value and the
estimate of the item parameter estimates.
Figure S5. Parameter-specific convergence rates across different conditions of the simula-
tion study.
Figure S6. Parameter-specific effective sample size across different conditions of the simula-
tion study.
Table S1. Coverage of the item parameters using 95% credibility intervals of the posterior dis-
tribution.
Table S2. Item difficulty (b) and time intensity (β) parameter estimates in the empirical study.
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