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Abstract
This paper considers large-scale linear stochastic systems representing, e.g., spatially
discretized stochastic partial differential equations. Since asymptotic stability can
often not be ensured in such a stochastic setting (e.g., due to larger noise), the main
focus is on establishing model order reduction (MOR) schemes applicable to unstable
systems. MOR is vital to reduce the dimension of the problem in order to lower the
enormous computational complexity of for instance sampling methods in high dimen-
sions. In particular, a new type of Gramian-based MOR approach is proposed in this
paper that can be used in very general settings. The considered Gramians are con-
structed to identify dominant subspaces of the stochastic system as pointed out in this
work. Moreover, they can be computed via Lyapunov equations. However, covariance
information of the underlying systems enters these equations which is not directly
available. Therefore, efficient sampling-based methods relying on variance reduction
techniques are established to derive the required covariances and hence the Gramians.
Alternatively, an ansatz to compute the Gramians by deterministic approximations of
covariance functions is investigated. An error bound for the studied MOR methods is
proved yielding an a priori criterion for the choice of the reduced system dimension.
This bound is new and beneficial even in the deterministic case. The paper is concluded
by numerical experiments showing the efficiency of the proposed MOR schemes.
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1 Introduction

Let w = (
w1, . . . , wq

)� be an R
q -valued mean zero Wiener process with covariance

matrix K = (ki j ), i.e., E[w(t)w�(t)] = Kt for t ∈ [0, T ], where T > 0 is the
terminal time. Suppose that W and all stochastic process appearing in this paper are
defined on a filtered probability space

(
�,F , (Ft )t∈[0,T ], P

)
1. In addition, we assume

w to be (Ft )t∈[0,T ]-adapted and the increments w(t + h) − w(t) to be independent
of Ft for t, h ≥ 0. We consider the following large-scale controlled linear stochastic
differential equation

dx(t) = [Ax(t) + Bu(t)]dt +
q∑

i=1

Ni x(t)dwi (t), x(0) = x0, (1a)

y(t) = Cx(t), t ∈ [0, T ], (1b)

where A, Ni ∈ R
n×n , B ∈ R

n×m and C ∈ R
p×n . The state dimension n is assumed

to be large and the quantity of interest y is often low-dimensional, i.e., p � n, but we
also discuss the case of a large p. By x(t; x0, u), we denote the state in dependence on
the initial state x0 and the control u, for which we assume that it is (Ft )t∈[0,T ]-adapted
and ‖u‖2

L2
T

:= E
∫ T
0 ‖u(s)‖22 ds < ∞ with ‖·‖2 representing the Euclidean norm.

The goal is to construct a system with state x̄ and quantity of interest ȳ having the
same structure as (1) but a much smaller state dimension r � n. At the same time, it is
aimed to ensure y ≈ ȳ. Such a reduced-order model (ROM) is particularly beneficial
if many evaluations (1) for several controls u are required (e.g., in an optimal control
problem) combined with need of generating many samples of y for each individual u.
Now, a ROM shall be achieved under very general conditions such as the absence of
mean square asymptotic stability, i.e., E ‖x(t; x0, 0)‖22 → 0 (as t → ∞) is not given.
Methods involving such a stability condition are intensively studied in the literature
[3, 4, 13, 16] since it is often guaranteed if (1a) results from a spatial discretization of
a stochastic partial differential equation (SPDE) such as

∂X (t, ζ )

∂t
= �X (t, ζ ) + Bu(t) +

q∑

i=1

NiX (t, ζ )
∂wi (t)

∂t
. (2)

We refer to [6] for more details on the theory of such equations. The solution X (t, ·)
to the heat equation (2) is viewed as a stochastic process taking values in a Hilbert
space and shall be approximated by x . In this context, A can be seen as a discretized
version of the Laplacian � and B, Ni represent discretizations of the linear bounded
operatorsB,Ni . Moreover,wi can be interpreted as Fourier coefficients corresponding
to a truncated series of space-time noise. Further explanations on different schemes
for a spatial discretization can, for example, be found in [2, 10]. However, even in a
setting like in (2), mean square asymptotic stability can be violated since the noise
can easily cause instabilities (e.g., if it is sufficiently large).

1 (Ft )t∈[0,T ] shall be right continuous and complete.
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Such a scenario is of interest in this paper.We establish generalizations of balancing
related model order reduction (MOR) schemes in order to make them applicable to
general systems (1). These MOR methods rely on matrices called Gramians that can
be used to identify the dominant subspaces of (1). Based on this characterization of the
relevance of different state directions, less important information in the dynamics is
removed leading to the desired ROM. This step can be interpreted as an optimization
procedure applied to spatially discretized SPDE. In an unstable setting, Gramians
need to be defined that generally exist in contrast to previous approaches. We consider
generalized time-limited Gramians in this work. Such type of Gramians have been
used in deterministic frameworks [9, 11, 15]. Although such an ansatz is beneficial
for the setting we want to cover, the analysis of MOR methods based on generalized
time-limited Gramians is much more challenging. Furthermore, the question of how
to compute these Gramians in practice is very difficult but vital since they are required
to derive the ROM.

In this paper, we introduce time-limited Gramian in the stochastic setting studied
here.We point out the relation between these Gramians and the dominant subspaces of
(1) and show their relation to matrix (differential) equations. Subsequently, we discuss
two different MOR techniques based on these Gramians and analyze the respective
error. In particular, an error bound is established that allows us to identify situations
in which the approaches work well. It is important to mention that this bound is more
than just a generalization of the deterministic case [15]. The new type of representation
links the truncatedHankel singular values of the system or the truncated eigenvalues of
the reachability Gramian, respectively, to the error of the approximation without need-
ing asymptotic stability and is hence beneficial also in unstable settings. Moreover, we
discuss different strategies that can be used to compute the proposed Gramians. They
are solutions to Lyapunov equations. However, in a time-limited scenario, covariance
information at the terminal time enters these Lyapunov equations which is not imme-
diately available. Since direct methods only work in moderate high dimensions, we
focus on sampling based approaches to estimate the required covariances. In order to
increase the efficiency of such procedures we apply variance reduction methods in this
context leading to an efficient way of solving for the time-limited Gramians. Apart
from this empirical procedure, a second strategy to approximate covariance functions
and hence the Gramians is investigated, where potentially expensive sampling is not
required. The paper is concluded by several numerical experiments showing the effi-
ciency of the MOR methods.

2 Gramian-basedMOR

2.1 Gramians and characterization of dominant subspaces

Identifying the effective dimensionality of system (1) requires the study of the fun-
damental solution to the homogeneous stochastic state equation. It is defined as the
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matrix valued stochastic process � solving

�(t) = I +
∫ t

0
A�(s)ds +

q∑

i=1

∫ t

0
Ni�(s)dwi (s), t ∈ [0, T ], (3)

where I denotes the identity matrix. Multiplying (3) with x0 from the right, we obtain
the solution to (1a) if u ≡ 0. Based on � we define two Gramians by

PT := E

∫ T

0
�(s)BB���(s)ds (4)

QT := E

∫ T

0
��(s)C�C�(s)ds, (5)

where PT and QT are supposed to identify the less relevant states in (1a) and (1b),
respectively. PT and QT can be viewed as generalizations of deterministic time-
limited Gramians which are obtained by setting Ni = 0 for all i = 1, . . . , q resulting
in �(t) = eAt . MOR schemes based on such Gramians in a deterministic framework
are investigated, e.g., in [9, 11, 15]. PT and QT generally exist in contrast to their limits
limT→∞ PT and limT→∞ QT which require mean square asymptotic stability. MOR
methods based on these limits are, e.g., considered in [3, 4, 13, 16] and are already
analyzed in detail. However, the necessary stability condition is often not satisfied in
practice.

Let us briefly sketch the relation between PT and dominant subspaces in (1a) for
the case of zero initial data. Suppose that (pk)k=1,...,n is an orthonormal basis of R

n

consisting of eigenvectors of PT . We can then write the state as

x(t; 0, u) =
n∑

k=1

〈x(t; 0, u), pk〉2 pk .

Given x0 = 0, the expansion coefficient can be bound from above as follows

sup
t∈[0,T ]

E |〈x(t, 0, u), pk〉2| ≤ √
λk ‖u‖L2

T
, (6)

see [13, Section 3], where λk is the eigenvalue corresponding to pk . If λk is small, the
same is true for 〈x(·, 0, u), pk〉2 and hence pk is a less relevant direction that can be
neglected. This implies that the eigenspaces of PT belonging to the small eigenvalues
can be removed from the system. On the other hand, we aim to find state directions
that have a low impact on the quantity of interest y. We therefore look at the initial
state x0 since it determines the dynamics of the state variable. We expand

x0 =
n∑

k=1

〈x0, qk〉2 qk,
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where (qk)k=1,...,n is an orthonormal basis of eigenvectors of QT with associated
eigenvalues (μk)k=1,...,n . Using the solution representation of the state variable, we
obtain

y(t; x0, u) = C�(t)x0 + C
∫ t

0
�(t, s)Bu(s)ds

=
n∑

k=1

〈x0, qk〉2 C�(t)qk + C
∫ t

0
�(t, s)Bu(s)ds

with t ∈ [0, T ] and �(t, s) := �(t)�−1(s). Consequently, neglecting qk has a low
impact on y if C�(·)qk is small on [0, T ]. It now follows that

E

∫ T

0
‖C�(t)qk‖22 dt = q�

k QT qk = μk, (7)

telling us that the eigenspaces of QT are unimportant for which the associated eigen-
values μk are small. Knowing both the less relevant state directions in (1a) and (1b)
from (6) and (7) it is aimed to remove them. This can be done by diagonalizing PT such
that less important variables in (1a) can be easily identified and truncated. Another, but
computationally more expensive, approach is based on simultaneously diagonalizing
PT and QT which allows to remove more redundant information from the system.
Both strategies are discussed in Sect. 2.2.

Below,we point out the relation between theGramians and linearmatrix differential
equations. To do so, we introduce two operators LA(X) = AX + X A� and �(X) =∑q

i, j=1 Ni XN�
j ki j on the space of symmetric matrices endowed with the Frobenius

inner product 〈·, ·〉F . LA is a Lyapunov operator and � is positive in the sense that
�(X) is a positive semidefinite matrix if X is positive semidefinite. The corresponding
adjoint operators are L∗

A(X) = A�X + X A and �∗(X) = ∑q
i, j=1 N

�
i X N j ki j .

The equations related to PT and QT will be helpful to compute these Gramians
that are needed in order to derive the reduced system. By Ito’s product rule [12], we
can show that F(t) = E[�(t)BB���(t)], t ∈ [0, T ], solves

Ḟ(t) = LA (F(t)) + �(F(t)) , F(0) = BB�. (8)

Integrating both sides of (8) yields

F(T ) − BB� = LA (PT ) + �(PT ) , (9)

see [7, 13, 14].

Remark 2.1 The generalized Lyapunov operator LA + � is linked to the Kronecker
matrix

K = A ⊗ I + I ⊗ A +
q∑

i, j=1

Ni ⊗ N jki j , (10)
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where · ⊗ · is the Kronecker product between two matrices. Let vec(·) be the vector-
ization of a matrix. Then, it holds that vec ((LA + �) (X)) = Kvec(X).

The link between QT and the corresponding matrix equation is established in a
different way. We formulate this result in the following proposition.

Proposition 2.2 Let C�C be contained in the eigenspace of the Lyapunov operator
L∗

A + �∗. Then, G(t) = E[��(t)C�C�(t)], t ∈ [0, T ], satisfies

Ġ(t) = L∗
A (G(t)) + �∗ (G(t)) , G(0) = C�C . (11)

Proof Since C�C is contained in the eigenspace of the Lyapunov operator, there

exist α1, . . . , αn2 ∈ C such that C�C = ∑n2
k=1 αkVk , where (Vk) are eigenvectors of

L∗
A+�∗ corresponding to the eigenvalues (βk). Then, we haveE[��(t)C�C�(t)] =

∑n2
k=1 αkE[��(t)Vk�(t)]. Let us apply Ito’s product rule, see [12], to ��(t)Vk�(t)

resulting in

d
(
��(t)Vk�(t)

)
= d

(
��(t)

)
Vk�(t) + ��(t)Vkd (�(t)) + d

(
��(t)

)
Vkd (�(t)) .

We insert the stochastic differential of � above, compare with (3), leading to

d
(
��(t)Vk�(t)

)
=

(

��(t)A�dt +
q∑

i=1

��(t)N�
i dwi (t)

)

Vk�(t)

+ ��(t)Vk

(

A�(t)dt +
q∑

i=1

Ni�(t)dwi (t)

)

+ ��(t)
q∑

i, j=1

N�
i Vk N j ki j�(t)dt

= ��(t)

⎛

⎝A�Vk + Vk A +
q∑

i, j=1

N�
i Vk N j ki j

⎞

⎠�(t)dt

+
q∑

i=1

��(t)
(
N�
i Vk + Vk Ni

)
�(t)dwi (t).

We apply the expected value to both sides of the above identity and exploit that Ito
integrals have mean zero (see, e.g., [12]). Hence, we obtain

d

dt
E[��(t)Vk�(t)] = E[��(t)(L∗

A + �∗)(Vk)�(t)] = βkE[��(t)Vk�(t)].

123



Mathematics of Control, Signals, and Systems (2022) 34:855–881 861

This implies that E[��(t)Vk�(t)] = eβk tVk providing E[��(t)C�C�(t)] =
∑n2

k=1 αkeβk tVk . Consequently, we have

d

dt
E[��(t)C�C�(t)] =

n2∑

k=1

αke
βk tβkVk =

n2∑

i=1

αke
βk t (L∗

A + �∗)(Vk)

= (L∗
A + �∗)(E[��(t)C�C�(t)])

using the linearity of L∗
A + �∗. This concludes the proof. ��

Remark 2.3 The assumption of Proposition 2.2 is always true if K is diagonalizable
over C because in that case there is a basis of C

n2 consisting of eigenvectors of K�.
Hence, vec(C�C) can be spanned by these eigenvectors which are of the form vec(Vk)

with Vk being an eigenvector of L∗
A + �∗ providing that C�C is in the eigenspaces

of this operator. Therefore, from the computational point of view, the assumption of
Proposition 2.2 does not restrict the generality since the set of diagonalizable n2 × n2

matrices is dense in C
n2×n2 .

In fact, we can find a stochastic representation of the solution to (11) differ-
ent from E[��(t)C�C�(t)], t ∈ [0, T ]. Introducing the fundamental solution
�d by the equation �d(t) = I + ∫ t

0 A��d(s)ds + ∑q
i=1

∫ t
0 N�

i �d(s)dwi (s), we
see that G(t) = E[�d(t)C�C��

d (t)]. This is a direct consequence of the relation
between E[�(t)BB���(t)] and the solution of (8) when (A, B, Ni ) is replaced by
(A�,C�, N�

i ). Therefore, E[�d(t)C�C��
d (t)], t ∈ [0, T ], solves (11) and hence

coincides with E[��(t)C�C�(t)], t ∈ [0, T ], given the assumption of Proposition
2.2.

Generally, we have �d(t) �= ��(t). In case all matrices A, N1, . . . , Nq commute,
we know that A and Ni commute with � (see, e.g., [14]). Hence, �d(t) = ��(t)
which can be seen be transposing (3) and subsequently exploiting the commutative
property. This is particularly given in the deterministic case where Ni = 0 for all
i = 1, . . . , q.

Under the assumption of Proposition 2.2, it holds that

G(T ) − C�C = L∗
A (QT ) + �∗ (QT ) , (12)

exploiting (11). In fact, we need to compute PT and QT within the MOR procedure
described later. Lyapunov equations (9) and (12) are used to do so. However, one
needs to have access to F(T ) and G(T ) which are the terminal values of the matrix-
differential equations (8) and (11). This is indeed very challenging in a framework,
where n � 100. We will address possible approaches for computing PT and QT for
such settings in Sect. 4.
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2.2 Reduced-order modeling by transformation of Gramians

In this work, we address MOR techniques that rely on a change of basis. In particular,
one seeks for a suitable regular matrix S that defines xS(t) = Sx(t). Inserting this into
(1) yields

dxS(t) = [ASxS(t) + BSu(t)]dt +
q∑

i=1

Ni,SxS(t)dwi (t), y(t) = CSxS(t), t ∈ [0, T ],

(13)

where (AS, BS,CS, Ni,S) = (SAS−1, SB,CS−1, SNi S−1). System (13) has the
same input–output behavior as (1) but the fundamental solution and hence the Grami-
ans are different. The fundamental solution of (13) is �S(t) = S�(t)S−1 which can
be observed by multiplying (3) with S from the left and with S−1 from the right.
Consequently, the new Gramians are

PT ,S = E

∫ T

0
�S(s)BSB

�
S ��

S (s)ds = SPT S
�,

QT ,S = E

∫ T

0
��

S (s)C�
S CS�S(s)ds = S−�QT S

−1.

The idea is to diagonalize at least one of these Gramians, since in a system with
diagonal Gramians, the orthonormal bases (pk) and (qk) are canonical unit vectors
(columns of the identity matrix). Thus, unimportant directions can be identified easily
by (6) and (7) and are associated with the small diagonal entries of the new Gramians.
For the first approach, we set S = S1, where S1 is part of the eigenvalue decomposition
PT = S�

1 �
(1)
T S1. This leads to PT ,S = �

(1)
T with �

(1)
T being the diagonal matrix of

eigenvalues of PT . Notice that S� = S−1 holds in this case. If (1a) is mean square
asymptotically stable, PT can be replaced by limT→∞ PT . This method based on the
limit is investigated in [16].

The second approach uses S = S2, which leads to PT ,S = QT ,S = �
(2)
T , where

�
(2)
T is the diagonal matrix of the square roots of eigenvalues of PT QT . Those are

called Hankel singular values (HSVs). Given PT , QT > 0, the transformation S2 and
its inverse are obtained by

S2 = �
(2)
T

− 1
2U�L�, S−1

2 = KV�
(2)
T

− 1
2
, (14)

where the ingredients of (14) are computed by the factorizations PT = KK�, QT =
LL� and the singular value decomposition of K�L = V�

(2)
T U�. The same procedure

can be conducted for the limits of theGramians (as T → ∞) ifmean square asymptotic
stability is given [4]. However, such a stability condition is generally too restrictive in
practice. We introduce the matrix

�T = diag(σT ,1, . . . , σT ,n) = �
(i)
T , i ∈ {1, 2}, (15)
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as the diagonal matrix of either eigenvalues of PT or of HSVs of system (1). For
S = S1 or S = S2 the coefficients of (13) are partitioned as follows

AS =
(
A11 A12
A21 A22

)
, BS =

(
B1
B2

)
, CS = (

C1 C2
)
,

Ni,S =
(
Ni,11 Ni,12
Ni,21 Ni,22

)
, xS(t) =

(
x1(t)
x2(t)

)
, �T =

(
�T ,1

�T ,2

)
,

(16)

where x1(t) ∈ R
r , A11 ∈ R

r×r , B1 ∈ R
r×m , C1 ∈ R

p×r , Ni,11 ∈ R
r×r and �T ,1 ∈

R
r×r , etc. The variables x2 are associated with the matrix �T ,2 of small diagonal

entries of �T and are the less relevant ones. A reduced system is now obtained by
truncating the equations of x2 in (13). Additionally, we set x2 ≡ 0 in the equations for
x1 leading to a reduced system

dx̄(t) = [A11 x̄(t) + B1u(t)]dt +
q∑

i=1

Ni,11 x̄(t)dwi (t), x̄(0) = x̄0, (17a)

ȳ(t) = C1 x̄(t), t ∈ [0, T ], (17b)

approximating (1). Below, we give another interpretation for (17). Let us decompose
the transformation

S =
(
W�


)
, S−1 = (

V 
)

(18)

where W� and V are the first r rows and columns of S and S−1, respectively. Notice
that W�V = I and hence VW� is a projection. Furthermore, we have W = V if
S = S1. Consequently, (17) can be seen as a projection-based model with A11 =
W�AV , B1 = W�B, C1 = CV and Ni,11 = W�NiV which is obtained by the state
approximation x(t) ≈ V x̄(t). Inserting this approximation into (1) and subsequently
multiplying the state equation with W� to enforce the remainder term to be zero then
results in (17).

3 Output error bound

In this section, we prove a bound for the error between (1) and (17). Below, we
assume zero initial conditions, i.e., x0 = 0 and x̄0 = 0.We begin with a general bound
following the steps of [4, 13]. The solutions x(t) and x̄(t), t ∈ [0, T ], to (1) and (17)
can be expressed using their fundamental matrices �(t) and �̄(t), respectively, see
[13]. Therefore, we have

x(t; 0, u) =
∫ t

0
�(t, s)Bu(s)ds, x̄(t; 0, u) =

∫ t

0
�̄(t, s)B1u(s)ds,
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where �(t, s) = �(t)�−1(s) and �̄(t, s) = �̄(t)�̄−1(s). Consequently, representa-
tions for the outputs are

y(t) = Cx(t; 0, u) = C
∫ t

0
�(t, s)Bu(s)ds,

ȳ(t) = C1 x̄(t; 0, u) = C1

∫ t

0
�̄(t, s)B1u(s)ds,

(19)

where t ∈ [0, T ]. Then, we find

E‖y(t) − ȳ(t)‖2 = E

∥∥
∥C

∫ t

0
�(t, s)Bu(s)ds − C1

∫ t

0
�̄(t, s)B1u(s)ds

∥∥
∥
2

≤ E

∫ t

0

∥∥∥
(
C�(t, s)B − C1�̄(t, s)B1

)
u(s)

∥∥∥
2
ds

≤ E

∫ t

0

∥
∥∥C�(t, s)B − C1�̄(t, s)B1

∥
∥∥
F
‖u(s)‖2ds.

(20)

Here, ‖ · ‖F denotes the Frobenius norm. Using Cauchy’s inequality, it holds that

E‖y(t) − ȳ(t)‖2 ≤
(

E

∫ t

0

∥
∥∥C�(t, s)B − C1�̄(t, s)B1‖2Fds

) 1
2
(

E

∫ t

0
‖u(s)‖22ds

) 1
2

=
(

E

∫ t

0

∥∥
∥Ce�e(t, s)Be

∥∥
∥
2

F
ds

) 1
2
(

E

∫ t

0
‖u(s)‖22ds

) 1
2

,

where Be = (
B
B1

)
, Ce = ( C −C ) and �e = (

� 0
0 �̄

)
is the fundamental solution to the

system with coefficients Ae = (
A 0
0 A11

)
and Ne

i =
(

Ni 0
0 Ni,11

)
.

Applying the arguments that are used in [4, 13], we know that

E[�e(t, s)BeBe��e�(t, s)] = E[�e(t − s)BeBe��e�(t − s)]. (21)

For t ∈ [0, T ], the identity in (21) yields

E

∫ t

0

∥∥∥Ce�e(t, s)Be
∥∥∥
2

F
ds = E

∫ t

0
tr(Ce�e(t, s)BeBe��e�(t, s)Ce�)ds

= E

∫ t

0
tr(Ce�e(s)BeBe��e�(s)Ce�)ds

≤ tr

(
Ce

∫ T

0
Fe(s)ds Ce�

)
(22)

with Fe(t) = E

[
�e(t)BeBe��e�(t)

]
exploiting Fubini’s theorem as well as the

fact that the trace and Ce are linear operators. Since F(t) = E
[
�(t)BB���(t)

]
is a
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stochastic representation for equation (8), see Sect. 2.1, Fe satisfies

Ḟe(t) = AeFe(t) + Fe(t)Ae� +
q∑

i, j=1

Ne
i F

e(t)Ne
j
�ki j , Fe(0) = BeBe�, (23)

using the same arguments. From (23), it can be seen that the left upper n × n block
of Fe is F which solves (8). On the other hand, the right lower r × r block F̄ and the
right upper n × r block F̃ of Fe satisfy

˙̄F(t) = A11 F̄(t) + F̄(t)A�
11 +

q∑

i, j=1

Ni,11 F̄(t)N�
j,11ki j , F̄(0) = B1B

�
1 , (24)

˙̃F(t) = AF̃(t) + F̃(t)A�
11 +

q∑

i, j=1

Ni F̃(t)N�
j,11ki j , F̃(0) = BB�

1 , (25)

with stochastic representations

F̄(t) = E[�̄(t)B1B
�
1 �̄�(t)], F̃(t) = E[�(t)BB�

1 �̄�(t)]. (26)

Consequently, using (22) with the partition Fe =
(

F F̃
F̃� F̄

)
, we find

E

∫ t

0

∥∥∥Ce�e(t, s)Be
∥∥∥
2

F
ds ≤ tr

(
CPT C�)

+ tr
(
C1 P̄T C

�
1

)
− 2tr

(
C P̃TC

�
1

)
,

where P̄T = ∫ T
0 F̄(t)dt and P̃T = ∫ T

0 F̃(t)dt solve

F̄(T ) − B1B
�
1 = A11 P̄T + P̄T A

�
11 +

q∑

i, j=1

Ni,11 P̄T N
�
j,11ki j , (27)

F̃(T ) − BB�
1 = AP̃T + P̃T A

�
11 +

q∑

i, j=1

Ni P̃T N
�
j,11ki j . (28)

Summing up, we obtain that

sup
t∈[0,T ]

E‖y(t) − ȳ(t)‖2 ≤
(
tr(CPTC

�) + tr(C1 P̄T C
�
1 ) − 2tr(C P̃TC

�
1 )

) 1
2 ‖u‖L2

T
.

(29)
The bound in (29) is very useful in order to check for the quality of a reduced system.
Since PT has to be computed to obtain (17), the actual cost to determine the bound lies
in solving the low-dimensional matrix equations (27) and (28). However, (29) is only
an a posteriori estimate which is computed after the reduced order model is derived.
Therefore, we discuss the role of �T ,2 = diag(σT ,r+1, . . . , σT ,n) which is either the
matrix of neglected eigenvalues of PT or HSVs of the system. �T ,2 is associated
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with the truncated state variables x2 of (13), compare with (16). By (6) and (7), it is
already known that such variables x2 are less relevant if σT ,r+1, . . . , σT ,n are small.
This makes the values σi a good a priori criterion for the choice of r . In the following,
we want to investigate how the truncated values σT ,r+1, . . . , σT ,n characterize the
error of the approximation. For that reason, we prove an error bound depending on
�T ,2. As we will see, �T ,2 is not the only factor having an impact on the bound that
is structurally independent of whether we choose S = S1 or S = S2.

Theorem 3.1 Let y be the output of (1) and ȳ be the one of (17). Suppose that S =
S1, S2, where S1 is the factor of the eigenvalue decomposition of the Gramian PT
and S2 is the balancing transformation defined in (14). Using partition (16) of the
realization (AS, BS,CS, Ni,S), we have

sup
t∈[0,T ]

E‖y(t) − ȳ(t)‖2

≤
(
tr

(
�T ,2

[
C�
2 C2 + 2A�

12 Q̃2 +
q∑

i, j=1

N�
i,12

(
2Q̃

(
N j,12

N j,22

)
− Q̄N j,12

)
ki j

])

+ 2tr

(
Q̃

(
F̃1 − F11
F̃2 − F21

))
+ tr

(
Q̄(F11 − F̄)

)) 1
2

‖u‖L2
T
,

where Q̄ and Q̃ = (
Q̃1 Q̃2

)
and are the unique solutions to

A�
11 Q̄ + Q̄ A11 +

q∑

i, j=1

N�
i,11 Q̄N j,11ki j = −C�

1 C1, (30)

A�
11 Q̃ + Q̃ AS +

q∑

i, j=1

N�
i,11 Q̃N j,Ski j = −C�

1 CS . (31)

Moreover, the above bound involves FS(T ) := SF(T )S� =
(

F11 F12
F21 F22

)
and F̃S(T ) :=

SF̃(T ) =
(

F̃1
F̃2

)
, where F(T ), F̄ = F̄(T ) and F̃(T ) are the terminal values of (8),

(24) and (25), respectively.

The terms in the bound of Theorem 3.1 that do not directly depend on �T ,2 are
related to the covariance error of the dimension reduction at the terminal time T (with
u ≡ 0). To see this, let V be thematrix introduced in (18). As explained below (18), the
state of the reduced system (17) can be interpreted as an approximation of the original
state in the subspace spanned by the columns of V . By the stochastic representations
of F(T ), F̃(T ) and F̄(T ) (see above (8) and (26)), we can view F(T ) and F̄(T ) as
covariances of the original and reduced model at time T , whereas F̃(T ) describes the
correlations between both systems. Let us now assume that

F(T ) ≈ F̃(T )V�, (32)

F(T ) ≈ V F̄(T )V�, (33)
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i.e., the covariance at T is well-approximated in the reduced system. This is, e.g.,
given if the uncontrolled state is well-approximated in the range of V at time T ,
i.e., �(T )B ≈ V �̄(T )B1. Now, multiplying (32) with S from the left and with W

(defined in (18)) from the right, we obtain that
(

F̃1−F11
F̃2−F21

)
is small. Multiplying (33)

with W� from the left and with W from the right provides a low deviation between
F11 = W�F(T )W and F̄ . Although we additionally have these terms related to the
covariance error, looking at�T ,2 is still suitable for getting an intuition concerning the
error and hence a first idea for the choice of r . This is because a small�T ,2 goes along
with a small error between �(T )B and its approximation V �̄(T )B1 in the range of
V . This observation can be made due to

E

∫ T

0
‖ (�(t)B)� zT ‖22dt = z�T PT zT = 0,

where zT ∈ kerPT . Since t �→ �(t) is P-almost surely continuous, we have
(�(t)B)� zT = 0 P-almost surely for all t ∈ [0, T ]. Choosing t = T , we there-
fore know that the columns of �(T )B are orthogonal to kerPT . This means that
�(T )B ∈ imPT since PT is symmetric. Hence, there is a matrix ZT such that

�(T )B = PT ZT = S−1�T S
−�ZT = (

V 
) (�T ,1

�T ,2

)(
V�


)
ZT ≈ V�T ,1V

�ZT ,

i.e., the columns of �(T )B lie almost in the span of V if �T ,2 is small. Therefore,
a good approximation can be expected if one truncates states with associated small
values σT ,r+1, . . . , σT ,n . This can be confirmed by computing the representation in
(29) after a reduced order dimension r was chosen based on the values σT ,i .

Remark 3.2 Notice that the covariance F(T ) vanishes in the limit as T → ∞ if (1) is
mean square asymptotically stable. In this context, the deviations in (32) and (33) can
be expected to be small for sufficiently large T since the covariance error disappears
at ∞. If the system is unstable, we have ‖F(T )‖ → ∞ as T → ∞. In this case,
the covariance error might be large and dominant if T is very large such that the
approximation quality is lower. The role of T is additionally discussed in Sect. 5.

We are now ready to prove the error bound in the following:

Proof of Theorem 3.1 Since S = S1, S2 diagonalizes PT , we have

AS�T + �T A
�
S +

q∑

i, j=1

Ni,S�T N
�
j,Ski j = −BSB

�
S + FS(T ). (34)

We set ỸT := S P̃T and obtain the corresponding equation by multiplying (28) with S
from the left resulting in

ASỸT + ỸT A
�
11 +

q∑

i, j=1

Ni,SỸT N
�
j,11ki j = −BSB

�
1 + F̃S(T ). (35)
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Now, we analyze the trace expression ε2 := (tr(CPTC�) + tr(C1 P̄T C�
1 ) −

2tr(C P̃TC�
1 )) in (29). We see that

ε2 =
(
tr(CS�TC

�
S ) + tr(C1 P̄T C

�
1 ) − 2tr(CSỸT C

�
1 )

)

=
(
tr(C1�T ,1C

�
1 ) + tr(C2�T ,2C

�
2 ) + tr(C1 P̄T C

�
1 ) − 2tr(CSỸT C

�
1 )

)
.

(36)

Exploiting (31) yields

−tr(CSỸT C
�
1 ) = −tr(ỸT C

�
1 CS) = tr

⎛

⎝ỸT

⎡

⎣A�
11 Q̃ + Q̃ AS +

q∑

i, j=1

N�
i,11 Q̃N j,Ski j

⎤

⎦

⎞

⎠

= tr

⎛

⎝Q̃

⎡

⎣ASỸT + ỸT A
�
11 +

q∑

i, j=1

Ni,SỸT N
�
j,11ki j

⎤

⎦

⎞

⎠ .

Comparing (31) and (35), we find that

− tr(CSỸT C
�
1 ) = −tr(Q̃BS B

�
1 ) + tr(Q̃ F̃S(T )). (37)

Using the partition in (16), the first r columns of (34) are

(
A11

A21

)
�T ,1 +

(
�T ,1A�

11
�T ,2A�

12

)
+

q∑

i, j=1

((
Ni,11

Ni,21

)
�T ,1N

�
j,11 +

(
Ni,12

Ni,22

)
�T ,2N

�
j,12

)
ki j

= −BSB
�
1 +

(
F11
F21

)
.

(38)
We insert (38) into (37) and obtain

−tr(CSỸT C
�
1 ) = tr

⎛

⎝Q̃

(
F̃1 − F11
F̃2 − F21

)
⎞

⎠ + tr

⎛

⎝Q̃

⎡

⎣
(
A11

A21

)
�T ,1 +

(
�T ,1A�

11
�T ,2A�

12

)

+
q∑

i, j=1

((
Ni,11

Ni,21

)
�T ,1N

�
j,11 +

(
Ni,12

Ni,22

)
�T ,2N

�
j,12

)
ki j

⎤

⎦

⎞

⎠

= tr

(
Q̃

(
F̃1 − F11
F̃2 − F21

))
+ tr

⎛

⎝�T ,2

⎡

⎣A�
12 Q̃2 +

q∑

i, j=1

N�
i,12 Q̃

(
N j,12

N j,22

)
ki j

⎤

⎦

⎞

⎠

+ tr

⎛

⎝�T ,1

⎡

⎣Q̃

(
A11

A21

)
+ A�

11 Q̃1 +
q∑

i, j=1

N�
i,11 Q̃

(
N j,11

N j,21

)
ki j

⎤

⎦

⎞

⎠ .
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Using the partition of the balanced realization in (16), we observe that the last term of
above equation is the first r columns of (31). So, we can say that

−tr(CSỸT C
�
1 ) = tr

(
Q̃

(
F̃1 − F11
F̃2 − F21

))
+ tr

⎛

⎝�T ,2

⎡

⎣A�
12 Q̃2 +

q∑

i, j=1

N�
i,12 Q̃

(
N j,12

N j,22

)
ki j

⎤

⎦

⎞

⎠

− tr(�T ,1C
�
1 C1).

(39)
Inserting (39) into (36), we have

ε2 = tr

⎛

⎝�T ,2

⎡

⎣C�
2 C2 + 2A�

12 Q̃2 + 2
q∑

i, j=1

N�
i,12 Q̃

(
N j,12
N j,22

)
ki j

⎤

⎦

⎞

⎠

+ 2tr

(
Q̃

(
F̃1 − F11
F̃2 − F21

))
+ tr

(
(P̄T − �T ,1)C

�
1 C1

)
.

(40)

Equation (30) now yields

tr
(
(P̄T − �T ,1)C

�
1 C1

)

= −tr

⎛

⎝Q̄

⎡

⎣A11(P̄T − �T ,1) + (P̄T − �T ,1)A
�
11 +

q∑

i, j=1

Ni,11(P̄T − �T ,1)N
�
j,11ki j

⎞

⎠

⎤

⎦

The combination of (27) and the left upper block of (34) gives

A11(P̄T − �T ,1) + (P̄T − �T ,1)A
�
11 +

q∑

i, j=1

Ni,11(P̄T − �T ,1)N
�
j,11ki j

=
q∑

i, j=1

Ni,12�T ,2N
�
j,12ki j + (F̄ − F11).

Consequently, we have

tr
(
(P̄T − �T ,1)C

�
1 C1

)
=−tr

⎛

⎝�T ,2

⎡

⎣
q∑

i, j=1

N�
i,12 Q̄N j,12ki j

⎤

⎦

⎞

⎠ + tr
(
Q̄(F11 − F̄)

)
.

So, we obtain that

ε2 = tr

⎛

⎝�T ,2

⎡

⎣C�
2 C2 + 2A�

12 Q̃2 +
q∑

i, j=1

N�
i,12

(
2Q̃

(
N j,12
N j,22

)
− Q̄N j,12

)
ki j

⎤

⎦

⎞

⎠

+ 2tr

(
Q̃

(
F̃1 − F11
F̃2 − F21

))
+ tr

(
Q̄(F11 − F̄)

)
,
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which concludes the proof of this theorem. ��
Notice that the estimate in Theorem 3.1 is also beneficial if Ni = 0 for all

i = 1, . . . , q, since it improves the deterministic bound [15] in the sense that we can
generally deduce the relation between the truncated HSVs and the actual approxima-
tion error here. It is important to notice that, in the deterministic case, “improvement”
is not meant in terms of accuracy. The error bound representation in [15] just has the
drawback that it allows to make similar conclusions only if the underlying system is
asymptotically stable. Moreover, the result of Theorem 3.1 is a generalization of the
bounds for mean square asymptotically stable stochastic systems [4, 16], where the
covariance related terms vanish as T → ∞.

4 Computation of Gramians

In this section, we discuss how to compute PT and QT which allow us to identify
redundant information in the system. These matrices are solutions of Lyapunov equa-
tions (9) and (12) with left-hand sides depending on F(T ) and G(T ), respectively.
Given F(T ) andG(T ) it is therefore required to solve generalized Lyapunov equations

L = LA(X) + �(X) (41)

efficiently, where L is a symmetricmatrix of suitable dimension. According to Remark
2.1 this can be done by vectorization, i.e., one can try to solve vec (L) = Kvec(X)

with the Kronecker matrixK defined in (10). SinceK is of order n2, the complexity of
deriving vec(X) from this linear system of equations is O(n6) making this procedure
infeasible for n � 100.

However, more efficient techniques have been developed in order to solve (41), see,
e.g., [8], where a sequence of standard Lyapunov equations (� = 0) is solved to find
X . Such standard Lyapunov equations can either be tackled by direct methods, such
as Bartels-Stewart [1], which cost O(n3) operations, or by iterative methods such as
ADI or Krylov subspace methods [17], which have a much smaller complexity than
the Bartels–Stewart algorithm, in particular, when the left-hand side is of low rank or
structured (complexity of O(n2) or less).

Solving for PT and QT now relies on having access to F(T ) and G(T ) which are
the terminal values of the matrix-differential equations (8) and (11). The remainder of
this section will deal with strategies to compute these terminal values.

4.1 Exact methods

One solution to overcome the issue of unknown F(T ) andG(T ) is to use vectorizations
of (8) and (11) for dimensions n of a few hundreds. If we define f (t) := vec(F(t))
and g(t) = vec(G(t)), then

ḟ (t) = K f (t), f (0) = vec(BB�), ġ(t) = K�g(t), g(0) = vec(C�C),
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whereK is defined in (10). Therefore, obtaining F(T ) andG(T ) relies on the efficient
computation of a matrix exponential, since

f (T ) = eKT vec(BB�), g(T ) = eK�T vec(C�C).

One can find a discussion on how to determine a matrix exponential efficiently in [11]
and references therein. Alternatively, one might think of discretizing the matrix differ-
ential equations (8) and (11) to find an approximation of F(T ) andG(T ). However, as
stated above, these equations are equivalent to ordinary differential equations of order
n2. Solving such extremely large scale systems is usually not feasible. In addition, only
implicit schemes would allow for a reasonable step size in the discretization making
the problem even more complex. For that reason, we discuss more suitable numerical
approximations in the following.

4.2 Sampling-based approaches

Weaim toderive an approximationof the terminal value F(T ) = E[�(T )BB���(T )]
of (8) by different stochastic representations. This alternative approach is required
since computing eKT is not feasible if n � 100 knowing thatK ∈ R

n2×n2 . Therefore,
we discuss sampling-based approaches in the following. Let �i (T ), i ∈ {1, . . . , M},
be i.i.d. copies of �(T ). Then, we have 1

M

∑M
i=1 �i (T )BB��i (T )� ≈ F(T ) if M is

sufficiently large. This requires to sample the random variable �(T )B possibly many
times. �(T )B is the terminal value of the stochastic differential equation

dxB(t) = AxB(t)dt +
q∑

i=1

Ni xB(t)dwi (t), xB(0) = B, (42)

with xB(t) ∈ R
n×m . System (42) can be seen as amatrix-valued homogeneous version

of (1a) (u ≡ 0) with initial state B. If (1) needs to be evaluated for many different
controls u and additionally a large number of samples are required for each fixed u,
it even pays off to generate many samples of the solution to (42). In particular, this is
true if the number of columns of B is low. However, we want to avoid evaluating (42)
too often. The number of samples M required for a good estimate of F(T ) depends
on the variance of �(T )BB���(T ). Therefore, we want to reduce the variance by
finding a better stochastic representation than E[�(T )BB���(T )]. In the spirit of
variance reduction techniques, we find the zero variance unbiased estimator first. To
do so, we apply Ito’s product rule (see, e.g., [12]) to obtain

d
(
xB(t)x�

B (t)
)

= d (xB(t)) x�
B (t) + xB(t)d

(
x�
B (t)

)
+ d (xB(t)) d

(
x�
B (t)

)

=
(

AxB(t)dt +
q∑

i=1

Ni xB(t)dwi (t)

)

x�
B (t)
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+ xB(t)

(

x�
B (t)A�dt +

q∑

i=1

x�
B (t)N�

i dwi (t)

)

+
q∑

i, j=1

Ni xB(t)x�
B (t)N�

j ki jdt

= (LA + �)
(
xB(t)x�

B (t)
)
dt +

q∑

i=1

LNi

(
xB(t)x�

B (t)
)
dwi (t).

This stochastic differential is now exploited to find

d
(
eK(T−t)vec(xB(t)x�

B (t))
)

= −eK(T−t)Kvec(xB(t)x�
B (t))dt + eK(T−t)d

(
vec(xB(t)x�

B (t))
)

=
q∑

i=1

eK(T−t)vec
(
LNi

(
xB(t)x�

B (t)
))

dwi (t)

using that vec
(
(LA + �)

(
xB(t)x�

B (t)
)) = Kvec(xB(t)x�

B (t)). Hence, we have

vec
(
xB(T )x�

B (T )
)

= eKT vec(BB�) +
q∑

i=1

∫ T

0
eK(T−t)vec

(
LNi

(
xB(t)x�

B (t)
))

dwi (t).

Devectorizing this equation yields

F(T ) = xB(T )x�
B (T ) −

q∑

i=1

∫ T

0
F
(
T − t,LNi

(
xB(t)x�

B (t)
))

dwi (t), (43)

where the second argument in F represents the initial condition of (8). The right-hand
side of (43) now is unbiased zero variance estimator of F(T ). However, this estimator
depends on F which is not available. Therefore, given a symmetric matrix X0, we
approximate F(t, X0) by a computable matrix function F(t, X0) that we specify
later. This leads to the unbiased estimator

EF (T ) := xB(T )x�
B (T ) −

q∑

i=1

∫ T

0
F

(
T − t,LNi

(
xB(t)x�

B (t)
))

dwi (t) (44)

for F(T ). The hope is that a few samples of EF (T ) can give an accurate approximation
of F(T ). Of course, EF (T ) can only be simulated by further discretizing the above
Ito integrals, e.g., by a Riemann–Stieltjes sum approximation. The variance of EF (T )

is

E

∥∥∥EF (T ) − F(T )

∥∥∥
2

F
= E

∥∥∥
q∑

i=1

∫ T

0
F (T − t, Xi (t)) − F (T − t, Xi (t)) dwi (t)

∥∥∥
2

F
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=
q∑

i, j=1

E

∫ T

0

〈
F (T − t, Xi (t)) − F (T − t, Xi (t)) ,

F
(
T − t, X j (t)

) − F (
T − t, X j (t)

) 〉

F
ki jdt

setting Xi (t) = Ni xB(t)x�
B (t) + xB(t)x�

B (t)N�
i and exploiting Ito’s isometry, see

[12]. Consequently, the benefit of the variance reduction depends on the difference
F(t, X0) − F(t, X0).

We conclude this section by discussing suitable approximations F(t, X0) of
F(t, X0). For that reason, we establish the following theorem.

Theorem 4.1 Let F(t, X0), t ∈ [0, T ], be the solution to

Ḟ(t) = LA (F(t)) + �(F(t)) , F(0) = X0,

where the initial data X0 is a symmetric matrix. Then, there exist constants c and c
such that

eAt X0e
A�t + c

∫ t

0
eAs�(I ) eA

�sds ≤ F(t) ≤ eAt X0e
A�t + c

∫ t

0
eAs�(I ) eA

�sds.

Proof Exploiting the product rule, it can be seen that F is implicitly given by

F(t) = eAt X0e
A�t +

∫ t

0
eA(t−s)� (F(s)) eA

�(t−s)ds. (45)

The solution t �→ F(t) is continuous and F(t) is a symmetric matrix for all t ∈
[0, T ]. Consequently, exploiting [5, Corollary VI.1.6], there exist continuous and real
functions λ1, . . . , λn such that λ1(t), . . . , λn(t) represent the eigenvalues of F(t) for
each fixed t . We now define continuous functions by λ := min{λ1, . . . , λn} and
λ := max{λ1, . . . , λn}. Symmetric matrices can be estimated from below and above
by their smallest and largest eigenvalue, respectively, leading toλ(t)I ≤ F(t) ≤ λ(t)I .
Therefore, given an arbitrary vector in v ∈ R

n , we have

v��(F(t)) v =
q∑

i, j=1

(Niv)�F(t)N jvki j =
q∑

i, j=1

(Niv)�F(t)N jve
�
i K

1
2K

1
2 e j

=
q∑

i, j=1

(Niv)�F(t)N jv

q∑

k=1

〈K 1
2 ei , ek〉2〈K 1

2 e j , ek〉2

=
q∑

k=1

( q∑

i=1

Niv〈K 1
2 ei , ek〉2

)�
F(t)

( q∑

j=1

N jv〈K 1
2 e j , ek〉2

︸ ︷︷ ︸
=:vk

)

{
≤ λ(t)

∑q
k=1 v�

k Ivk
≥ λ(t)

∑q
k=1 v�

k Ivk
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resulting in λ(t)� (I ) ≤ �(F(t)) ≤ λ(t)� (I ), where ei is the canonical basis ofR
q .

Since λ, λ are continuous on [0, T ], they can be bounded from below and above by
some suitable constants. Applying this to (45), we obtain the result by substitution. ��

Of course, the constants in Theorem 4.1 are generally unknown. However, this
result gives us the intuition that F(t, X0) can be approximated by

F(t, X0) = eAt X0e
A�t + c

∫ t

0
eAs�(I ) eA

�sds, (46)

where c ∈ [c, c] is a real number. From the proof of Theorem 4.1, we further know that
c, c ≥ 0 if X0 is positive semidefinite. We cannot generally expect a reduction of the
variance for all choices of c. However, a good candidate will reduce the computational
complexity. A general strategy how to find such a candidate is an interesting question
for future research.

Remark 4.2 Besides generating (a few) samples of xB from (42), we require thematrix
exponentials eAti on a grid 0 = t0 < t1 < · · · < tng = T to determine the estimator
(44) with F as in (46). Here, ng is the number of grid points when discretizing the Ito
integral in (44). If the points ti are equidistant with step size h, one first computes eAh .
The other exponentials are then powers of eAh such that a certain number of matrix
multiplications (depending on ng) have to be conducted.

TheGramian QT can be computed from (12) requiring to determineG(T ). Accord-
ing to Remark 2.3, we know that G(T ) = E[xC (T )x�

C (T )], where

dxC (t) = A�xC (t)dt +
q∑

i=1

N�
i xC (t)dwi (t), xC (0) = C�,

with xC (t) ∈ R
n×p. Exploiting the above consideration regarding F(T ), we can see

that

EG(T ) := xC (T )x�
C (T ) −

q∑

i=1

∫ T

0
G
(
T − t,L∗

Ni

(
xC (t)x�

C (t)
))

dwi (t) (47)

is a possible unbiased estimator for G(T ). The approximation G of G can be chosen
as in (46) replacing (A, Ni ) �→ (A�, N�

i ).

4.3 Gramians based on deterministic approximations of F(T) and G(T)

Based on Theorem 4.1, an estimation of F(T ) (and alsoG(T )) is given in (46). Instead
of using these approximations in a variance reduction procedure like in Sect. 4.2, we
exploit it directly in (9) and (12). This leads to matrices PT and QT solving

F(T , BB�) − BB� = LA (PT ) + �(PT ) , (48)
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G(T ,C�C) − C�C = L∗
A (QT ) + �∗ (QT ) , (49)

where the left hand sides are defined by

F(T , BB�) = eAT BB�eA�T + cF

∫ T

0
eAs�(I ) eA

�sds, cF ∈ R, (50)

G(T ,C�C) = eA
�TC�CeAT + cG

∫ T

0
eA

�s�∗ (I ) eAsds, cG ∈ R. (51)

Certainly, the choice of the constants cF and cG determine how well PT and QT

are approximated by PT and QT , e.g., in terms of the characterization of the respec-
tive dominant subspaces of system (1). Notice that for Ni = 0, F(T , BB�) and
G(T ,C�C) yield the exact values for F(T , BB�) and G(T ,C�C). At this point, it
is important to mention that the Gramian approximation of this section is computa-
tionally less complex than the one in Sect. 4.2. First of all, we do not need to sample
from (42) and secondly no Ito integral as in (44) has to be discretized. Calculating
F and G might also require to compute matrix exponentials on a partition of [0, T ],
compare with Remark 4.2. However, less grid points than for the sampled Gramians
of Sect. 4.2 have to be considered since an ordinary integral can be discretized with
a larger step size compared to an Ito integral. Alternatively, the integrals in (50) and
(51) can also be determined without a discretization since it holds that

LA

(∫ T

0
eAs�(I ) eA

�sds

)
= −�(I ) + eAT�(I ) eA

�T ,

L∗
A

(∫ T

0
eA

�s�∗ (I ) eAsds

)
= −�∗ (I ) + eA

�T�∗ (I ) eAT .

This approach has the advantage that only the matrix exponential eAT at the terminal
time is needed.

5 Numerical experiments

In order to indicate the benefit of the model reduction method presented in Sect. 2, we
consider a linear controlled SPDE as in (2). In addition, we emphasize the applicability
to unstable systems by rescaling and shifting the Laplacian. The concrete example of
interest is

∂X (t, ζ )

∂t
= (α� + β I )X (t, ζ ) + 1[ π

4 , 3π4 ]2(ζ )u(t) + γ e−|ζ1− π
2 |−ζ2X (t, ζ )

∂w(t)

∂t
,

t ∈ [0, 1], ζ ∈ [0, π ]2,
X (t, ζ ) = 0, t ∈ [0, 1], ζ ∈ ∂[0, π ]2, and X (0, ζ ) ≡ 0,

where α, β > 0, γ ∈ R and w is an one-dimensional Wiener process. X (t, ·), t ∈
[0, T ], is interpreted as a process taking values in H = L2([0, π ]2). The input operator

123



876 Mathematics of Control, Signals, and Systems (2022) 34:855–881

B in (2) is characterized by1[ π
4 , 3π4 ]2(·) and the noise operatorN1 = N is defined trough

NX = e−|·− π
2 |−·X for X ∈ L2([0, π ]2). Since the Dirichlet Laplacian generates a

C0-semigroup and its eigenfunctions (hk)k∈N represent a basis of H , the same is true
for α�+β I . Therefore, we interpret the solution of the above SPDE in the mild sense.
For more information to SPDEs and the mild solution concept, we refer to [6]. The
quantity of interest is the average temperature on the non-controlled area, i.e.,

Y(t) = CX (t, ·) := 4

3π2

∫

[0,π ]2\[ π
4 , 3π4 ]2

X (t, ζ )dζ.

In order to solve this SPDE numerically, a spatial discretization can be considered as
a first step. Here, we choose a spectral Galerkin method relying on the global basis of
eigenfunctions (hk)k∈N. The idea is to construct an approximationXn toX taking val-
ues in the subspace Hn = span{h1, · · · , hn} andwhich converges to the SPDE solution
with n → ∞. For more detailed information on this discretization scheme, we refer to
[10]. The vector of Fourier coefficients x(t) = (〈Xn(t), h1〉H , · · · , 〈Xn(t), hn〉H )� is
a solution of a system like (1) with q = 1 and discretized operators

• A = αdiag(−λ1, · · · ,−λn) + β I , B = (〈B, hk〉H )k=1···n , C = (Chk)k=1···n ,
• N1 = (〈N hi , hk〉H )k,i=1···n and x0 = 0,

where (−λk)k∈N are the ordered eigenvalues of �. We refer to [4], where a simi-
lar example was studied. There, more details are provided on how this system with
its matrices is derived. Now, a small α and a larger β yield an unstable A, i.e.,
σ(A) �⊂ C which already violates asymptotic mean square stability of (1), i.e.,
E ‖x(t; x0, 0)‖22 � 0 as t → ∞ . Moreover, a larger γ (larger noise) causes fur-
ther instabilities. For that reason, we pick α = 0.4, β = 3 and γ = 2 in order to
demonstrate the MOR procedure for a relatively unstable system. Notice that enlarg-
ing β or γ (or making α smaller) leads to a higher degree of instability. This affects
the approximation quality in the reduced system given T is fixed. The intuition is that
the less stable a system is the stronger the dominant subspaces are expanding in time.
This is because some variables in unstable systems are strongly growing such that
initially redundant directions become more relevant from a certain point of time. This
can also be observed in numerical experiments.

Below, we fix a normalized control u(t) = cue−0.1t , t ∈ [0, T ], (the constant cu
ensures ‖u‖L2

T
= 1) and apply theMORmethod to the spatially discretized SPDE that

is based on the balancing transformation S = S2 described in Sect. 2.2. In Sect. 5.1,
we compare the approximation quality of the ROMs using either the exact Gramian
or inexact Gramians introduced in Sect. 4. Subsequently, Sect. 5.2 shows the reduced
model accuracy in higher state space dimension, where solely inexact Gramians are
available. We conclude the numerical experiments by discussing the impact of the
terminal time T and the covariance matrix K in Sect. 5.3.
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5.1 Simulations for n = 100 and T = 1

We compare the associated ROM (17) with the original system in dimension n = 100
first since this choice allows to determine F(T ),G(T ) andhence theGramians PT , QT

exactly according to Sect. 4.1. As a consequence, we can compare the MOR scheme
involving the exact Gramians with the same type of scheme relying on the approxi-
mated Gramians that are computed exploiting the approaches in Sects. 4.2 and 4.3. In
particular, we first approximate F(T ) and G(T ) based on a Monte Carlo simulation
using 10 realizations of the estimators (44) and (47), respectively. The functions F
and G entering these estimators are chosen as in (46) with c = 0. We refer to the
resulting matrices as Sect. 4.2 Gramians. At this point, we want to emphasize that
these sampling based Gramians do not necessarily have to be accurate approxima-
tions of the exact Gramians in a component-wise sense. It is more important that the
dominant subspaces of the system (eigenspaces of the Gramians) are captured in the
approximation. Notice that the dominant subspace characterization is not improved if
the number of samples is enlarged to 1000. Second, we determine the approximations
PT and QT according to Sect. 4.3 and call them Sect. 4.3 Gramians. The associated
constants are chosen to be cF = cG = 0.

In Fig. 1, the HSVs σT ,i , i = {1, . . . , 50}, of system (1) are displayed. By Theorem
3.1 and the explanations below this theorem, it is known that small truncated σT ,i go
along with a small reduction error of the MOR scheme. Due to the rapid decay of
these values, we can therefore conclude that small error can already be achieved for
small reduced dimensions r . For instance, we observe that σT ,i < 3.5e−06 for i ≥ 8
indicating a very high accuracy in the ROM for r ≥ 7. This is confirmed by the error
plot in Fig. 2 and the second column of Table 1.Moreover, Fig. 2 shows the tightness of
the error bound in (29) that was specified in Theorem 3.1. The bound differs from the
exact error only by a factor between 2.5 and 4.6 for the reduced dimensions considered
in Fig. 2 and is hence a good indicator for the expected performance. Notice that the
error is only exact up to deviations occurring due to the semi-implicit Euler–Maruyama
discretization of (1) and (17) as well as theMonte Carlo approximation of the expected
value using 10 000 paths. Besides the MOR error based on PT and QT , Table 1 states
the errors in case the approximating Gramians of Sects. 4.2 and 4.3 are used. It can be
seen that both approximations perform roughly the same and that one looses an order
of accuracy compared to the exact Gramian approach. However, one can lower the
reduction error by an optimization with respect to the constants c, cF , cG . Moreover,
we see that the accuracy is very good for the estimators of the covariances F(T ) and
G(T ) used here.

5.2 Simulations for n = 1000 and T = 1

We repeat the simulations of Sect. 5.1 for n = 1000. This is a scenario, where the
exact Gramians are not available anymore. Therefore, we conduct the balancingMOR
scheme using the Sects. 4.2 and 4.3 Gramians only. In the context of Sect. 4.2 Grami-
ans, it is important to mention that in higher dimensions it is required to use very
efficient discretizations of the Ito integrals in (44) and (47). Otherwise, a very small
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Fig. 1 Decay of first 50
logarithmic HSVs of system (1)
based on time-limited Gramians
PT and QT
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ȳ(t)‖2
)
and logarithmic bound

in (29) for r ∈
{2, 4, 6, 8, 10, 12, 14, 16, 18, 20}

2 8 14 20

−8

−6

−4

−2

Reduced order dimension r

Lo
ga
ri
th
m
ic

E
rr
or

(B
ou

nd
) Log. Exact Error

Log. Error Bound

Table 1 Error between the output y of (1) with n = 100 and the reduced output ȳ of (17) using different
Gramians to compute the balancing transformation S = S2

Reduced dimension r Error supt∈[0,1] E‖y(t) − ȳ(t)‖2 of MOR using

Exact Gramians PT , QT Sect. 4.2 Gramians Sect. 4.3 Gramians

2 7.00e−04 2.61e−03 1.75e−03

4 2.09e−04 1.82e−03 8.61e−04

8 2.99e−06 2.63e−05 4.51e−05

16 5.38e−08 1.31e−06 1.55e−06
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Table 2 Error between the output y of (1) with n = 1000 and the reduced output ȳ of (17) using Sects. 4.2
and 4.3 Gramians to compute the balancing transformation S = S2

Reduced dimension r Error supt∈[0,1] E‖y(t) − ȳ(t)‖2 of MOR using

Sect. 4.2 Gramians Sect. 4.3 Gramians

2 1.43e−03 1.72e−03

4 2.07e−03 8.57e−04

8 5.18e−05 9.26e−05

16 2.13e−06 4.88e−06

Table 3 Error between the output y of (1) and the reduced output ȳ of (17) using the exact Gramians:
n = 100, S = S2 and T = 0.5, 1, 2, 3

Reduced dimension r Error supt∈[0,T ] E‖y(t) − ȳ(t)‖2 of MOR for

T = 0.5 T = 1 T = 2 T = 3

2 3.98e−04 7.00e−04 2.17e−02 3.13e−02

4 1.46e−05 2.09e−04 2.86e−04 6.86e−04

8 2.82e−07 2.99e−06 7.80e−06 2.23e−05

16 5.46e−09 5.38e−08 1.12e−07 2.90e−07

step size is needed such that from the computational point of view it is better to omit
these Ito integrals within the estimators, i.e., just xB and xC are supposed to be sampled
to approximate F(T ) and G(T ). Table 2 shows that the balancing related MOR tech-
nique based on the approximated Gramians of Sects. 4.2 and 4.3 is beneficial in high
dimensions. A very small reduction error can be observed and in the majority of the
cases the sampling-based approach seems slightly more accurate than the approach of
Sect. 4.3 given the same type of approximations for F(T ) and G(T ) for each ansatz.

5.3 Relevance of T and K

As in Sect. 5.1, let us fix n = 100 to be able to compute theGramians exactly.We begin
with deriving reduced systems on different intervals [0, T ]. Second, we extend our
model to a stochastic differential equation with noise dimension q = 2 and investigate
the effect of different correlations between the two Wiener processes.

Relevance of the terminal time Let us study the scenario of Sect. 5.1 with T =
0.5, 1, 2, 3 using the exactGramians to illustrate that dominant subspaces are changing
in time. Indeed, we observe in Table 3 that for a fixed reduced dimension r the error
gets bigger the larger the interval [0, T ] is. This means that with increasing T the
reduced dimension has to be enlarged to ensure a certain desired approximation error.
This is also intuitive in the sense that it is generally harder to find a good approximation
on a larger interval in comparison with a smaller one.

Relevance the the covariance structure Let us extend the SPDE discretization by

introducing N2 := N
6
5
1 so thatwehave a systemof the form (1)withq = 2 and standard
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Table 4 Error between the output y of (1) and the reduced output ȳ of (17) using the exact Gramians:
n = 100, S = S2, T = 1, q = 2 and different correlations ρ = 0, 0.5, 1

Reduced dimension r Error supt∈[0,1] E‖y(t) − ȳ(t)‖2 of MOR for

ρ = 0 ρ = 0.5 ρ = 1

2 1.10e−03 1.43e−03 1.79e−03

4 2.44e−04 2.34e−04 3.24e−04

8 5.71e−06 8.95e−06 1.34e−05

16 1.64e−07 2.37e−07 3.36e−07

Wiener processes w1 and w2. The goal is to investigate how the correlation between
w1 and w2 influences the MOR error. For that reason, we choose the following three
scenarios: E[w1(t)w2(t)] = ρt with ρ = 0, 0.5, 1. Table 4 states the MOR errors for
these correlations. In this example, we can observe that a higher correlation between
the processes yields a larger error. A different observation was made in numerical
examples studied in [14], where systems with high correlations in the noise processes
gave a smaller reduction error. However, [14] studies different types of stochastic
differential equations in the context of asset price models which do not have control
inputs.
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