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Foreword

This text summarizes my research activities in 14 years following my PhD thesis. During this

time, I have worked on the application of mathematical statistics in the life sciences, and to a

very large part in the design and analysis of clinical trials. The work is inspired by the experience

that multiplicity is ubiquitous in clinical trials and that medical statisticians benefit greatly from

a well-stacked toolbox that allows them to get the right instrument for converting a research

question into a statistical decision problem.

Within this common theme, the papers included in this cumulative habilitation cover a range

of topics. Thus, they require a framework introducing the wider medical context as well as an

outline of some technical foundations that they share. To meet these requirements, I start by

discussing definitions and origin of multiplicity in clinical trials in chapter 1. Chapter 2 introduces

the statistical models that are needed to deal with the challenges posed by multiplicity. The

subsequent chapters on multiple testing, multivariate inference and estimation are split into a

foundation section which discusses state of the art methodology and a contributions section

summarizing the papers of this cumulative habilitation.
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Chapter 1

Introduction

This work is about the design of clinical trials and the analysis of data arising from them. Most

clinical trials are performed to assess the effect of a treatment on a disease. The endpoints

of a clinical trial are measures quantifying this treatment effect. Such endpoints are derived

from the responses to treatment observed on patients participating in the trial. For example,

in a cancer trial, the response maybe the survival time, and the corresponding endpoint the

observed hazard ratio of survival under a new treatment versus survival under the standard-

of-care. In a trial for a new diabetes drug, the endpoint will often be the average percent

change from baseline of glycated haemoglobin A1C (HbA1C) after 12 weeks of treatment1.

For clinical trials aiming at admission of a drug to the market, health authorities typically require

a pre-specified confirmatory analysis for the primary endpoint. The design and analysis of

clinical trials is therefore often based on the primary endpoint paradigm, which states that

only a single, univariate measure of interest, called primary endpoint, should be subject to the

formal confirmatory statistical assessment performed at the end of the trial to decide about

the treatment benefit. Any additional investigations of other endpoints are then labeled as

secondary and are subject to a less formalized exploratory analysis.

In practice, the primary endpoint paradigm is often difficult to implement. Frequently there

is some disagreement about the most appropriate primary endpoint. The reasons for this can

be manifold. Here are some examples:
1The word endpoint is usually used without any more formal definition. To give an example, suppose the percent

change from baseline of HbA1C after 12 weeks of treatment is measured in patients on a new treatment and patients
in a control group. Suppose further that the endpoint is the ratio of these changes between treatment and placebo.
Finally, assume that this assessment is done in two populations of patients: 1. the intention-to-treat-population
and 2. the per-protocol population. Depending on the context, the two ratios will sometimes be considered as two
endpoints or as two investigations of the same endpoint. In the context of this work, we will deal in general with
situations where more than one endpoint is of interest, irrespective of ”type” of endpoint.

5



CHAPTER 1. INTRODUCTION 6

• In an ophthalmological trial, one health authority required the visual acuity as the pri-

mary endpoint, whereas the health authority of another country required the number of

recurrences of eye inflammations.

• In many time-to-event trials, the primary endpoint is a composite of several events, e.g.

death due to any cause, or non-fatal stroke, or hospitalization due to major myocardial

event. Such composites are sometimes questioned and additional investigations of their

individual components will often be of interest.

• The benefit-risk-profile of a drug can often not be assessed adequately with a single

endpoint. For example, platelet-reducing drugs for the prevention of heart failure reduce

the probability of thrombosis, but increase the risk of stroke.

• In earlier phases of clinical development, when a candidate compound is investigated

for its potential benefit, trials are usually relatively small and short. Such trials do not

yield a sufficient amount of data to reliably assess a clinical endpoint like survival time.

In this case, biomarkers (e.g. measurements of laboratory parameters) are often inves-

tigated as surrogates. Usually, there are many biomarkers that need to be investigated

simultaneously.

• The analysis of safety data usually comprises many types of adverse events. It is rarely

possible to condense these into a single primary endpoint.

In addition to these cases, multiple endpoints also arise from repeated measures of the

same quantity under different circumstances:

• The primary population of a clinical trial is not always obvious. Efficacy of a drug is

typically investigated with the intention-to-treat population (all patients enrolled in the

study, including those for whom some kind of protocol violation, i.e. a deviation from the

treatment pre-specified in the study protocol, has occurred), whereas the per-protocol-

population (only those patient whose treatment followed the study protocol) is often con-

sidered more appropriate for safety. As another example, it is sometimes suspected that

a subpopulation of patients may benefit more from a new treatment than the rest of the

study population and it is unclear whether the investigation of the full population or a

subpopulation should be considered the primary comparison.
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• Measurements of response to treatment are often taken repeatedly in time. For example,

in glucose-lowering treatments for diabetic patients, change from baseline may be con-

sidered after 4, 6 or 12 weeks of treatment. The response to treatment at one of these

timepoints or a summary measure of the time effect (e.g. the area under the curve or the

slope of a linear time trend) are then candidates for the primary endpoint definition.

• In a similar fashion, data from clinical trials is sometimes investigated repeatedly in time

when responses from only a fraction of all patients who have or will be recruited are

available. Such trials are called group-sequential trials if the interim analyses are pre-

planned before the start of patient recruitment with the intention to stop the trial in case of

conclusive evidence for the presence or absence of a treatment benefit. Group-sequential

trials are a special case of adaptive trials. The latter allow additional changes of the study

conduct, like selection of treatment arms or changes of overall sample size. In both

cases, it is necessary to adjust statistical inference for the fact that the treatment benefit

is estimated repeatedly in time.

• Several antihypertensive drugs are combination therapies which combine two monother-

apies (e.g. two different blood-pressure lowering compounds) in a single pill. In order to

gain approval, such treatments need to demonstrate an advantage over both monothera-

pies, and in some cases over placebo treatment as well. No single of these comparisons

can be the sole primary comparison in this situation.

• In many trials, different doses or treatment regimens of the same drug are investigated

with none of them being clearly of primary interest.

In all of these examples, the limitation of the confirmatory statistical analysis to a univariate

primary endpoint seems undesirable. One may be tempted to simply declare several of these

endpoints as equally important (”multiple primary endpoints”), and analyze them separately

with methods from univariate statistical analysis. This is indeed a possible strategy, but care is

needed with the correct interpretation of its results. Firstly, the statistical properties of selected

extreme results (like e.g. the smallest p-value from several statistical tests) are not the same

as those of the corresponding, seemingly identical non-selected results (e.g. the p-value from

the same test, but this time not selected after the application of several statistical tests to the

data). If such selected extreme results are treated as if they were from a single analysis, the

consequences are:
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• Inflation of nominal type I errors in statistical tests of hypotheses,

• selection biases and random extremes in point estimates of treatment effects,

• deviations from nominal coverage probabilities in confidence intervals of treatment effects.

These complications are referred to as the problem of multiplicity of endpoints.

Secondly, such simultaneous univariate analyses also fail to exploit relations between vari-

ables. They only consider the marginal variation in variables and do not make use of any

patterns observed in their joint behavior.

To illustrate the effect of multiplicity, consider the following example:

Example 1: Type I error inflation from multiple tests in the investigation of the EEG

Läuter et al. (1996) investigate data from 19 depressive patients acquired at the begin-

ning and at the end of a six week therapy with an antidepressant. The analysis considers the

changes of absolute theta power of electroencephalograms (EEG) during the therapy in nine

selected channels. Table 1.1 shows the data together with the observed mean, standard de-

viation and the p-value of a univariate two-sided t-test for the null hypothesis of no change in

response separately for every channel.

Table 1.1: change of absolute theta-power in 19 depressive patients
Patient ch3 ch4 ch5 ch6 ch7 ch8 ch17 ch18 ch19
1 -3.54 -3.11 -0.24 0.42 -0.49 2.13 -4.15 2.87 1.34
2 5.72 5.07 6.87 5.96 8.2 4.87 5.48 5.57 6.33
3 0.52 -0.18 0.9 0.6 1.27 1.28 -0.95 1.74 0.79
4 0 0.74 1.1 0.13 0.19 0.07 0.8 0.25 -0.66
5 2.07 0.76 3.51 0.6 3.71 1.86 1.49 3.11 1.8
6 1.67 4.18 2.77 4.55 1.8 4.79 4.51 3.24 3.99
7 9.13 12.92 3.44 4.8 0.48 1.63 9.94 1.34 1.53
8 -0.43 -1.59 -0.31 -0.61 -1.04 -0.13 -0.61 -0.61 -0.43
9 -0.56 0.92 -1.22 0.67 -0.97 -0.98 0 -1.22 -0.91
10 1.28 0.92 1.89 1.77 1.83 0.91 1.4 1.1 -0.12
11 3.21 3.41 3.92 0.85 2.77 0.79 3.31 1.2 2.15
12 1.47 2.38 1.22 1.71 -0.25 -1.52 1.46 2.26 2.01
13 -2.14 -2.44 -2.01 -1.95 0.31 -3.3 -1.04 -1.28 -1.59
14 -1.4 0.37 -1.1 0.18 -1.71 0.37 -0.12 -0.98 0.06
15 -0.29 0.31 -0.13 -0.89 -0.65 -1.06 0.71 0.35 -1.29
16 2.58 3.16 2.67 3.77 1.26 3.61 6.12 2.83 4.39
17 0.85 3.02 -0.59 2.17 0.65 1.25 1.2 -0.24 0.36
18 -1.71 -1.4 -1.83 -2.01 0.24 -0.61 -1.77 -0.12 -3.66
19 -1.89 0.76 -1.15 -0.95 -1.43 0.24 -0.77 -7.14 2.81
mean 0.871 1.589 1.037 1.146 0.851 0.853 1.422 0.751 0.995
stdev 2.950 3.514 2.358 2.252 2.276 2.069 3.261 2.635 2.359
p 0.215 0.064 0.071 0.04 0.121 0.089 0.074 0.23 0.083
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The smallest of the p-values from the 9 tests occurs in channel 6 (p = 0.04). Considered in

isolation, the change in channel 6 is statistically significant at the usual 5% level. Since, how-

ever, this is the minimum p-value from 9 simultaneous investigations, it overstates the evidence

against the null hypothesis of no treatment effect on the EEG. A resampling test (Westfall and

Young, 1993) can be used to quantify the true evidence against the null hypothesis H0 that

the treatment has no effect in any of the channels: If this hypothesis were true, then each per-

mutation of the signs would yield an equally likely outcome. Hence, one can go through all

k = 1, . . . , 219 = 524288 sign permutations x
(k)
i = ±xi, i = 1, . . . , 19, where xi = (xi1, . . . , xi9)′

is the vector of the responses in the 9 channels from patient i = 1, . . . , 19, obtain the minimum

p-value from the 9 two-sided t-tests of every channel performed on each of the permutations,

and record the fraction of cases in which the minimum p-value is smaller than the observed p-

value from the original data. This results in an adjusted p-value, i.e. the probability of observing

a minimum p-value of 0.04 or even smaller under H0 (Westfall and Young’s min-p-test, 1993).

Here we get padj = 0.17, far larger than the unadjusted p-value of 0.04.

By using the distribution of a quantity derived from permutations as the empirical null dis-

tribution, Westfall and Young’s min-p-test automatically takes into account the correlations be-

tween the 9 channels. Thus, it correctly adjusts for the selection bias inherent in the multiplicity

problem. However, the minimum p-value is not an efficient quantity to detect differences be-

tween the pre- and post-treatment responses in this case. The stable multivariate tests by

Läuter et al. (1996) combine the information from all channels in a more efficient way while

also avoiding the bias arising from selecting the most significant of many univariate tests with-

out proper adjustment. �

As the situations discussed so far indicate, multiplicity of endpoints is both ubiquitous in

clinical trials and associated with several different research questions. This work will focus on

statistical hypothesis testing. Many clinical trials are performed in order to detect differences

between different treatment options. For example, most clinical trials performed in the pharma-

ceutical industry are designed to investigate if a new treatment under development performs

better in terms of efficacy than previously available treatment options. For this purpose, the

null hypothesis of no treatment effect is assessed by an appropriately chosen quantity (the

so-called test statistic). If the test statistic takes a value which is larger than a critical value,

the null hypothesis can be rejected and it can be concluded that there are statistically signifi-

cant differences between the treatments (see e.g. Lehmann and Romano, 2005, for the theory
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of statistical hypothesis testing). Multiplicity implies either that there are many such null hy-

potheses H1, . . . ,Hp or that the single null hypothesis H0 consists of a statement about many

treatment effects (e.g. the effects of the antidepressant on the different theta channels in the

EEG in example 1) simultaneously.

The various problems posed by multiplicity have been the subject of a lot of research from

various schools of thought. This work aims at clarifying relations between some of these, but

an exhaustive, complete overview of all aspects of multiplicity is beyond the scope of this text.

To give an example of a topic which is not covered, many Bayesian statisticians have worked

on dealing with random highs via shrinkage estimation (e.g. Gelman et al., 2004).

To discuss the concepts of multiplicity adjustment and multivariate analysis in the context of

statistical testing, we will use the following terminology:

• We assume that there are p elementary (null) hypotheses Hi, i = 1, . . . , p. These consti-

tute the atoms of the research questions at hand. For example, in a clinical trial investi-

gating two doses of a new drug versus the standard-of-care in subpopulations of patients

characterized by a genetic marker (M+ or M-), the hypothesis of no difference between

new drug and standard-of-care in dose 1 and subpopulation M+ would be one of the Hi’s.

• H0 = ∩pi=1Hi is called the global hypothesis. In the example, it would be the statement

that there is no difference between new drug and standard-of-care in any dose or sub-

population.

• Other intersections HI = ∩I⊂{1,...,p}Hi will be called intersection hypotheses.

In the following, we will distinguish between two situations:

1. Elementary hypotheses are of specific interest:

In most clinical trials, each of the corresponding elementary hypothesesHi is of individual

interest. In confirmatory phase III trials aimed at approval of a drug to the market, health

authorities will often require so-called strong control of the type I error of erroneously

declaring any of the tested endpoints as efficacious. That is, they require that the prob-

ability P (Hi is rejected |Hi is true ) ≤ α for all Hi, where Hi denotes the hypothesis that

endpoint i is not efficacious. As a typical example, consider the case where two doses

of a new drug are compared with the standard-of-care. In this case, it is not sufficient to

conclude that the new drug is better than the standard-of-care (without further specifying
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which dose it is that is actually better). A statistically qualified statement must be made

about which of the doses is better.

Multiple comparison procedures (Hochberg and Tamhane, 1987; Hsu, 1996) have been

developed to deal with this situation. In recent years, research in this area has focussed

on stepwise multiple comparison procedures (Dmitrienko et al., 2009). These will be

discussed in more detail in chapter 3.

2. Elementary hypotheses are not of specific interest:

When there are many endpoints (dozens to millions), the individual endpoints are usu-

ally not of individual interest. Instead, it is explicitly or implicitly assumed that groups

of endpoints (or more generally variables as they are called in multivariate analysis) are

manifestations of some underlying, unobservable latent quantity (Läuter, 1992). Only the

combined evidence from these variables is relevant for the decision about efficacy of a

treatment. Consequently, regarding statistical testing, only H0 is relevant. Gene expres-

sion data, readings from many channels in the EEG etc, are examples.

Multivariate analysis methods are often suitable for such data. Substantial methodological

progress in multivariate analysis was achieved in the fifties to seventies (Anderson, 1958,

1981, 2004; Ahrens and Läuter, 1974, 1981; Mardia, Kent and Bibby, 1979; Srivastava

and Khatri, 1979). Interest in these methods was then revived around the year 2000 when

advances in genomics created a need for high dimensional data analysis (Speed et al.,

2003). Chapter 4 deals with multivariate analysis.

Typically, in the first situation there are few hypotheses, and the analysis is regarded as a

multiplicity problem calling for a multiple comparison procedure. In contrast, the second situa-

tion is usually a consequence of the large number of hypotheses and is seen as a multivariate

problem. Hence, one might be tempted to postulate a natural association:

number of elementary hypotheses analysis method
hypotheses of interest?

few yes multiple comparison procedure
many no multivariate analysis

In many applications, these associations hold true, but they are not strict.

As an example of a case where few individual endpoints are not of individual interest, con-
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sider the following case: A respiratory drug was investigated with the forced expiratory volume

from 1 second of exhaling (FEV1) as the primary endpoint in two independent clinical trials.

Two trials were performed because health authorities often request confirmation of the treat-

ment benefit in two independent trials. The two trials also investigated a quality-of-life related

score from the St. George’s Respiratory Questionnaire (SGRQ) as a secondary endpoint.

Since the sample size of each individual trial would not be sufficient to reliably evaluate this

more variable endpoint, it was agreed to pool the two trials for the sake of its analysis. In this

situation, although formally there are two endpoints that in theory could be considered in two

separate hypotheses (namely treatment effect on SGRQ in study 1 and 2), it was agreed that

there is really only one hypothesis and that the possibility of a difference in treatment effect

between the two studies can be ruled out a priori. Hence, this can be viewed as a situation

where there are two endpoints (treatment effect in study 1 and 2), but we are not interested in

an isolated statement about each of them.

As another example, in so-called thorough QT (TQT) trials, the effect of a new drug on the

QT-interval is assessed. The QT-interval is a quantity derived from the electrocardiogram. A

prolongation of this interval indicates an adverse effect of the drug on the heart function. TQT

trials are performed in healthy volunteers who are randomly assigned to three groups receiving

placebo, the new drug, and an active control, respectively. The QT-interval is measured pre-

treatment and at k > 1 times post-treatment. The number of time points relevant for the assess-

ment of the QT-interval is usually small, typically only 3 to 6 time points. The primary endpoint

of a QT study is the change in the QT-interval length before and after treatment (∆QT ). The

difference between the ∆QT of the new treatment and the ∆QT of placebo is called ∆∆QT .

The primary aim of the study is to establish that there is no substantial prolongation of the QT-

interval due to the new drug, i.e. that ∆∆QT is below a pre-specified threshold, often 10 ms.

The active control group is included to establish assay sensitivity: The ∆∆QT of the new drug

with placebo is considered valid only if a corresponding, expected prolongation is demonstrated

for the active control. Hence, the active control is a substance known to cause a QT prolon-

gation, and assay sensitivity is considered established if at any point in time post treatment,

the ∆∆QT of active control and placebo is above a threshold, e.g. 5 ms. The corresponding

statistical decision problem addresses the elementary null hypotheses Ht : ∆∆QT ≤ 5 ms for

time points t = 1, . . . , k. Rejection of at least one of these hypotheses establishes assay sensi-

tivity. Hence, we are only testing the global null hypothesis H0 = ∩kt=1Ht. There is no need for
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additional statements about the Ht’s. For merely declaring assay sensitivity is not necessary to

know at which specific point in time an increase of ∆QT was caused by the active control.

Regarding the analysis method used, efficiency (e.g. the power of statistical tests) is also a

concern when deciding about the use of multiple comparison procedures or multivariate meth-

ods. If, for example, a treatment only affects one of many endpoints, then a multiple comparison

procedure investigating the minimum p-value from several univariate tests of treatment versus

control may yield a more efficient analysis than many multivariate methods, even if we are not

interested in the individual variables. In practice however, these aspects are usually related to

the number of variables: With just two or three variables, even if we claim not to be interested

in the individual variable, a multiple comparison procedure like the simple Bonferroni adjust-

ment is surprisingly ”hard to beat” in terms of efficiency (Srivastava, 2002, chapter 4). On the

other hand, with thousands of gene expression measurements from a microarray, it is hardly

conceivable that in reality a treatment affects only a single of these or that there is a genuine

individual interest in more than a few genes that are of special interest due to prior information.

Finally, there are situations where questions about the individual importance of the ele-

mentary hypotheses cannot simply be answered by ”yes” or ”no”. For example, we may be

interested in individual statements about some of the endpoints, but only a joint statement

about an entire group of others, or we may be interested in individual statements about several

intersection hypotheses HI , but not down to the level where these HI ’s are the elementary

hypotheses. Such situations will occur repeatedly in the following chapters.



Chapter 2

Mathematical foundations

2.1 Multivariate normal distribution

In many of the situations outlined in chapter 1 it can be assumed that the multiple endpoints

have a joint normal distribution: Let ŷ = (ŷ1, . . . , ŷp)
′ be the vector of treatment effect estimates

in p endpoints. Then ŷ has a p-dimensional normal distribution

ŷ ∼ Np(β,Σ), (2.1)

where β = (β1, . . . , βk)
′ is the vector of true treatment effects and Σ a covariance matrix.

In the simplest case, formula (2.1) may arise from the difference ȳT − ȳC between the av-

erage responses ȳi =
∑ni

k=1 yik, i = C, T of individual patients k who are randomly assigned

to investigated treatment T and control treatment C, where the individual responses per treat-

ment are assumed to follow a normal distribution. However, it may also arise as the asymptotic

distribution of treatment effect estimates from a wide variety of other models, e.g. the treat-

ment effect estimate from a multivariate analysis of variance (MANOVA) model adjusting for

several other covariates, the joint distribution of log-rank test statistics in a group-sequential

time-to-event trial, the joint distribution of log-odds ratio estimates of adverse event counts from

different types of side effects of a drug, or the joint distribution of the estimated effect of a

treatment in a full and in a subpopulation.

In general the true treatment effects β are unknown and the object of inference. The co-

variance matrix Σ = (σij)i,j is usually not of interest in itself, but it has an impact on point

estimates, type I errors and confidence intervals of the treatment effect. It will almost never be

14
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known completely, but it is not always entirely unknown either. Parts of it are usually known

whenever endpoints are measures of the same underlying quantity and the correlation be-

tween them is caused by an overlap in patients. For example, if ŷ are the estimated average

responses to treatment at different analysis time points in a group-sequential trial on a single

normally distributed response which analyzes interim data at time j when nj patients have com-

pleted treatment (n1 ≤ n2 ≤ . . . ≤ nk), then σij = σ2
√
ni/nj . Thus Σ is known, apart from σ2,

the unknown variance of an individual response. Likewise, if several doses of a new treatment

are compared with a common control and response to treatment is normally distributed with a

common variance σ2, the correlation between endpoints is
√

n1
n0+n1

√
n2

n0+n2
with sample sizes

n0, n1, n2, respectively, in the control group and dose groups 1 and 2.

Of course, if the multiple endpoints are genuinely different quantities like visual acuity and

eye inflammations, the entire matrix Σ will be unknown.

The multivariate normal distribution assumption (2.1) is central to all of the publications

summarized in this work.

2.2 Resampling-based Methods

The multivariate normal distribution provides an appropriate model for many types of multivari-

ate data. Due to the central limit theorem, it often holds asymptotically, even if the original

data is far from normally distributed. For example, the score statistics as well as likelihood ra-

tio statistics are asymptotically normally distributed under very general assumptions (Pawitan,

2001). Sometimes, however, the multivariate normal distribution does not provide an adequate

model. For example, asymptotic arguments are not relevant if sample sizes are very small.

Furthermore, with multivariate data, it can be very difficult to estimate the covariance matrix Σ

if there are many variables p. Resampling-based methods (Westfall and Young, 1993) are an

alternative in these cases.

To illustrate the basic idea of resampling-based methods, assume that we have multivariate

observations from n patients on p variables in two groups (for example, treated and untreated

patients) with sample sizes n1 and n2, respectively, n1 + n2 = n. Let these be arranged in the

two ni×p-matricesX1 andX2 and letX =
(
X1

X2

)
be the n×p matrix of all observations stacked

into one matrix. It is furthermore assumed that there is a test statistic t(X) = t(X1,X2) for the

global null hypothesis H0 of no difference between the two groups. Under H0, the distribution of
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t(X1,X2) is not affected by whether a patient is assigned to group 1 or 2. Hence, any exchange

of rows of X1 and X2 does not change the distribution of the test statistic. To test H0, we can

thus proceed as follows:

1. Produce all n!
n1!n2! permutations X(k) of the rows of X.

2. Calculate t(X(k)) from each permutation.

3. Reject H0 if X is larger than the
(

(1− α) · n!
n1!n2!

)
-largest value of the t(X(k))’s.

The set
{
t(X(k)), k = 1, . . . , n!

n1!n2!

}
is the empirical distribution of the random variable t(X)

under H0 given the sample X.

This method of statistical testing is very generally applicable. As long as the values of

t(X) can be ordered with respect to some notion of ”closeness” to H0, it can be used. In

the description just given, it is assumed that large values of t(X) provide evidence again H0.

Hence, the power of the procedure is high if deviations from H0 lead to large values of t(X).

There is no need to derive the null distribution of t(X), as the resampling process mimics

this distribution empirically (under H0). In this sense, correlations between X1, . . . ,Xp are

automatically taken care of.

The method is very well suited for computer implementation. The permutation of rows of X

can be done by attaching an index vector of group membership to X and just permuting this.

This way, the method can be implemented very efficiently. If the number of permutations is

too large, a random sample of all permutations can be performed, or the bootstrap (Efron and

Tibshirani, 1993) can be used.

The method also has some disadvantages: First of all, it is designed for testing the global

H0 of no treatment effect. It is difficult to generalize to a shifted H0 (like, for example, a non-

inferiority hypotheses stating that differences between treatment and control are larger than

some fixed value which is not 0). It also does not generalize naturally to point or interval

estimation of treatment effects.

Furthermore, resampling can be combined with the closed test principle (see section 3.1)

to decide about the statistical significance of single variables, but this requires an additional

assumption: Assume that {1, . . . , p} is split into two mutually exclusively subsets S and non-S.

If S consists of null variables only, then the conditional distribution of t(XS) given t(Xnon-S)

must be stochastically not larger when the non-subset variables do not fufill H0 than when they

do. This is a generalization of the subset pivotality condition by Westfall and Young (1993).
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The latter requires that the conditional distribution of t(XS) is the same for all values of the

non-subset variables, i.e. t(XS) and t(Xnon-S) are stochastically independent. In this case,

the conditional null distribution of t(XS) is the same irrespective of whether the non-subset

variables do fufill H0 or not.

In any case, this condition can be difficult to verify in practice. It is fulfilled for the multivariate

Normal distribution when testing hypotheses about the mean, and the covariance matrix is the

same for all rows of X.



Chapter 3

Multiple comparison procedures

3.1 Foundations

Many of the problems arising in clinical trials are associated with few endpoints. As a typical

case, assume that a trial’s success depends on statistical evidence of a treatment benefit on

the primary endpoint (for example overall survival time in an oncology trial or triglyceride level

in a diabetes trial), but additional claims of treatment benefit may be attained from a secondary

endpoint (e.g. weight loss in the diabetes trial case). Different doses of the treatment or the

repeated testing of the endpoints may generate further multiplicity, but the situation is char-

acterized by the fact that each of the elementary hypotheses Hi, i = 1, . . . , k, is sufficiently

interesting to be tested individually.

Familywise error rate (FWER) control is a key concept in this situation. A multiple testing

method is said to control the FWER at level α if

P (HI is rejected |HI is true) ≤ α (3.1)

for all sets of indices I ⊂ {1, . . . , k}, where HI =
⋂
i∈I Hi. Hence, it requires that no true

hypothesis or subset of true hypotheses must be rejected with a probability larger than α. This

is also called strong control of the type I error. In contrast, weak control would only require to

establish P (HK is rejected |HK is true) ≤ α, K = {1, . . . , k}.

Strong control places emphasis on each individual hypothesis Hi.

One of the most important techniques to achieve FWER control is the so-called closed test

principle (CTP, Marcus, Peritz and Gabriel, 1976). Assume that a level-α-test is available for

18
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each hypothesis HI , I ∈ P (K) where P (K) is the power set of K = {1, . . . , k}. Then the CTP

states thatHI can be rejected if and only if allHJ , I ⊆ J are rejected. In particularHi is rejected

if and only if all HI , i ∈ I are rejected. Marcus et al. (1976) show that this procedure provides

strong control of the type I error at level α.

With the CTP, it is possible that HI is rejected, but that no Hi, i ∈ I can be rejected. A CTP-

based multiple test procedure which avoids this is called consonant, i.e. it has the property

that:

Rejection of HI implies that there exists an i ∈ I such that Hi is rejected.

Non-consonant multiple test procedures can get ”stuck”. The most famous example for a non-

consonant procedure is Fisher’s least significant difference method. Assume that we want to

compare the means µi, i = 1, 2, 3 of three populations from which we have samples with ob-

servations that are stochastically independent and normally distributed with equal but unknown

variance. Then Fisher’s LSD method consists of the following steps:

1. Test the global hypothesis H0 : µ1 = µ2 = µ3 with an F -test at level α.

2. If and only if H0 is rejected, test the three hypothesis Hij : µi = µj , i 6= j, each at level α.

This procedure controls the familywise type I error at level α. However, there is a positive

probability that H0, but none of H12, H13, H23 is rejected. Hence, there is sufficient evidence

that the means µ1, µ2, µ3 are not all equal, but not sufficient evidence to conclude that any pair

of them is different.

In most practical clinical applications, consonance is a natural requirement. For example,

a non-consonant procedure might lead to the conclusion that there is a treatment benefit on

either triglyceride level or weight loss, but it is not possible to pin it down on one of the endpoints.

Such an outcome would of course be perceived as useless.

Of course, a non-consonant procedure can always be converted into a consonant one by

simply ”throwing away” all rejections which are stuck at a non-elementary hypothesis. For ex-

ample, assume that ti is a test statistic and ci a critical value chosen such that P (ti ≥ ci |Hi is true) ≤

α. Assume further that Hi, i = 1, . . . , k are the elementary hypotheses and Hi, i ≥ k + 1 are

intersections of these. By the CTP, rejection of Hi occurs if tl(i) ≥ cl(i) for all l(i) where l(i)

are the indices of all intersection hypotheses that contain i, i.e. if Hi pertains to index set

I ∈ P (K), then the set of l(i)’s pertains to all J ⊇ I. Non-consonance means that there is a

set of non-elementary hypotheses
{
Hl1 , . . . ,Hlq

}
which are nested according to the CTP such
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that they are all rejected if tl1 ≥ cl1 , . . . , tlq ≥ clq , but for which P (t1 < c1, . . . , tk < ck, tl1 ≥

cl1 , . . . , tlq ≥ clq) > 0. If all of the test statistics t1, . . . , tK have a continuous distribution with

P (ti ∈ [bl, bu]) > 0 for all −∞ < bl < bu < ∞, then of course it is always possible to find an

infinite number of modifications of the critical values c∗l1 ≥ cl1 , . . . , c
∗
lq
≥ clq with at least one

strict inequality and c∗1 ≤ c1, . . . , c
∗
k ≤ ck with at least one strict inequality, such that the FWER

is kept at α and

P (one of ti ≥ c∗i , i = 1, . . . , k, tl1 ≥ c∗l1 , . . . , tlq ≥ c
∗
lq) >

P (one of ti ≥ ci, i = 1, . . . , k, tl1 ≥ cl1 , . . . , tlq ≥ clq)

Hence under a few mild regularity conditions on the involved tests in a closed test procedure, for

every non-consonant procedure there is a consonant procedure that has more power regarding

rejection of the elementary hypotheses. Romano and Wolf (2007) show how such a consonant

procedure can be constructed in a concrete case.

In summary,

• FWER control is an important principle in many clinical trials,

• consonance is often desirable, and

• the CTP is a general method to obtain FWER-controlling statistical tests from test proce-

dures for the individual hypotheses.

These general considerations, however, still leave much room for concrete implementation

in clinical trials. The CTP itself is a ”meta”-technique in the sense that it can be used with any

valid set of statistical tests for the hypotheses indexed by P (K). In particular, the closed test

principle guarantees FWER control, but the power of the resulting procedure depends crucially

on the concrete tests that are used for the individual hypotheses. Furthermore, the CTP can

be tedious to implement when there are many elementary hypotheses, since the total number

of hypotheses to be tested roughly doubles1 with every additional elementary hypothesis.

One way of lifting this burden on computation is to restrict to methods which use max test

statistics t1, . . . , tk for the elementary hypotheses. If doing so, the 2k − 1 tests use only k test

statistics. For any intersection hypothesis HI , the corresponding test statistic is maxi∈I ti. In
1It increases from 2k − 1 to 2k+1 − 1.
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order to fulfill the requirements of the CTP, we need to find 2k critical values c(I) such that

PHI

(
max
i∈I

ti ≥ c(I)

)
≤ α. (3.2)

The resulting procedure is consonant if c(I) ≤ c(J) for all I ⊆ J (Hommel et al., 2007). If all ti’s

have positive probability mass on the entire range of [−∞,∞], then this condition is not only

sufficient, but also necessary for consonance of the procedure.

A further simplification arises if the p-values pi of the statistical tests for Hi, i = 1, . . . , k

are used as the test statistics, and the Bonferroni principle is applied to obtain the critical val-

ues c(I). In this case, we simply have ci = α, i = 1, . . . , k for the elementary hypotheses.

The simplest (”unweighted”) Bonferroni adjustment would use c(I) = α/card(I) for hypothe-

sis HI , where card(I) is the number of elements in I. This way, we obtain the widely used

Bonferroni-Holm procedure (Holm, 1979), represented in terms of the CTP. This principle can

be generalized to weighted Bonferroni-based stepwise multiple testing procedures. Bretz et al.

(2009) give an elegant generalized graphical framework for such approaches. While this simpli-

fies the construction of complex multiple testing procedures tremendously, one has to keep in

mind that the Bonferroni principle leads to conservative statistical tests and thus a power loss.

When there are just a few elementary hypotheses, this power loss is usually very small. With

many elementary hypotheses, however, it may be substantial.

3.2 Contributions

3.2.1 Application of graphical procedures in complex clinical trials (publication

1 in Appendix)

Maurer, Glimm and Bretz (2010) discuss how the requirements of a confirmative clinical trial

with several hypotheses of potentially different importance can be translated into a multiple

testing strategy. They introduce families of hypotheses to be tested following the principles

described in the previous chapter. The families determine a hierarchy of primary and secondary

hypotheses. Five situations leading to such hierarchies are frequently encountered in clinical

trials:

1. One primary with one descendant secondary endpoint for two comparisons. a)

Comparison of two treatment arms (e.g. two different doses of a drug) versus a control
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arm. b) Comparison of a new treatment versus control in two subgroups of patients.

2. Two primary endpoints with a secondary endpoint each.

3. A primary and secondary comparison of two equally important endpoints with cor-

relation τ . For the comparisons the same assumptions a) and b) are made as for case

1. This case arises when, for example, two doses of a new drug are investigated with re-

spect to two equally important endpoints (e.g. visual acuity and number of inflammations

in an ophthalmologic drug), and the higher dose is the primary target.

4. Non-inferiority (primary) and superiority (secondary) testing for a) two endpoints of

equal importance with correlation τ , b) two treatment arms vs. control, and c) two sub-

groups. Here the correlation ρ between the non-inferiority and the superiority test is 1

if the same analysis population is used for the two tests (e.g. the ”full analysis set”) or

0 ≤ ρ ≤ 1 if the set for non-inferiority is a subpopulation of the population used for the

superiority test (e.g. the per protocol population).

5. Group sequential testing of a primary and a secondary hypothesis with one interim

analysis. For the primary/secondary hierarchy we can consider here a) a primary and

secondary endpoint, b) the total population and a subpopulation and c) non-inferiority and

superiority testing in the same population.

In all these situations, the test statistics ti follow the same asymptotic multivariate normal distri-

butions. However, in some of the cases correlations between them can be calculated because

they are functions of the sample sizes per group (generally speaking, this is the case when

some observations are represented in several test statistics, e.g. if the results from the control

group are used in the comparisons with both of two dose groups of a new treatment), whereas

in others, they are unknown (usually when they represent different quantities measured on the

same patient, e.g. HbA1c reduction and weight loss). The paper analyzes these correlations

in detail. Regarding the statistical testing, most of the paper focuses on weighted Bonferroni-

based stepwise procedures. These are generally applicable without knowledge of correlations.

Some extensions are given for cases where correlations between test statistics can be derived

from the trial design.

Furthermore, the paper defines the properties of successiveness and consistency. Similar

to the way consonance prevents a closed test procedure from getting stuck before reaching a
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useful conclusion about the elementary hypotheses, these properties are requirements which

avoid test decisions that are not in line with the hierarchical structure of the primary and sec-

ondary families. A multiple testing procedure is called successive if a secondary hypothesis

can only be rejected if at least one of its parent primary hypotheses is rejected. It is called

consistent if it is successive and in addition the retention of a secondary hypothesis cannot

preclude the rejection of a primary hypothesis. The paper discusses how these properties can

be checked and how multiple testing procedures obeying them can be constructed.

3.2.2 Extension of graphical procedures to endpoints with known, or partly

known correlations (publication 2 in Appendix)

Bretz, Posch, Glimm et al. (2011) extend the graphical procedures introduced by Bretz et al.

(2009) to cases where the correlation between all or some of the test statistics are known.

They show how this knowledge can be used to construct tests that are more powerful than

Bonferroni-based procedures. More formally, if for each intersection hypothesis HJ , J ⊆ I of

a closed test procedure the joint distribution of the p-values pj , j ∈ J is known, a weighted

min p-test can be defined in the following way: reject HJ if there exists a j ∈ J such that

pj ≤ αwj(J)cJ . The constant cJ satisfies

PHJ

⋃
j∈J
{pj ≤ cJαwj(J)}

 ≤ α. (3.3)

Here, wj(J) are weights that determine the critical value for pj in the step of the closed test

procedure where HJ is tested (for example, wj(J) = 1/card(J) for the Bonferroni-Holm pro-

cedure). To exhaust the level as much as possible, cJ is chosen as large as possible subject

to the inequality restriction (3.3). Obviously, if the p-values are continuously distributed, one

can choose cJ such that the rejection probability is exactly α. For test statistics following the

normal distributions described in section 2.1, the cJ ’s are functions of the correlations between

the test statistics and increase with increasing correlations. For a Bonferroni-based closed test

procedure, they are all 1. The distances from 1 can be interpreted as the ”gains” from using

knowledge about the correlations in comparison with a Bonferroni-based closed test procedure.

This seems a straightforward extension, but there are some complications beyond the mere

technical difficulty of calculating the cJ ’s. In particular, while it is still simple to give a condition

for consonance similar to the one following (3.2), the Bonferroni method’s automatic guarantee
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for achieving it is lost. Section 3.2 of the paper gives an example of this with two doses of a new

drug tested against a control for non-inferiority in the per-protocol-population and for superiority

in the intention-to-treat population. A modification is given to achieve consonance.

Furthermore, methods that exploit known correlations between test statistics are more pow-

erful than Bonferroni-based methods with respect to the probability of rejecting at least one

elementary hypothesis, but not necessarily with respect to rejecting any given hypothesis Hi,

i = 1, . . . , k (see Maurer, Glimm and Bretz, 2010, p. 341 for an example).

3.2.3 Multiple testing in group sequential trials (publication 3 in Appendix)

Glimm, Maurer and Bretz (2010) discuss the important case of a primary and a secondary

endpoint being investigated simultaneously in a group-sequential clinical trial. From a statistical

perspective, this is one of the situations where part of the correlations between test statistics

are known (namely, those between the tests of the same endpoint at several time points),

whereas others (those between test statistics for primary and secondary endpoints) remain

unknown. Hung and Wang (2007) had observed that the FWER is not kept by a hierarchical

strategy that stops the trial when the primary endpoint is significant according to a type I error-

controlling group-sequential approach, and then tests the secondary endpoint at full level α.

Glimm et al. (2010) (and, independently of them, Tamhane, Liu and Mehta, 2010) show that

an upper limit to the maximum type I error inflation in a two-stage clinical trial with multivariate

normally distributed test statistics is given by 1 − Φ√ts,1 (us,1, us,2) , where Φρ(·) denotes the

cumulative distribution function of the bivariate Normal distribution with mean 0, variances 1 and

correlation ρ; ts,1 is the information fraction available for the secondary endpoint at the interim

analysis time point (typically, this will be the percentage of patients in whom this endpoint has

already been observed at the interim), and us,1 and us,2 are the critical values for the interim

and the final test, respectively, of the secondary endpoint. Knowledge of this upper bound

allows the derivation of FWER-controlling group-sequential approaches. The approaches are

based on the use of alpha-spending functions (see e.g. Jennison and Turnbull, 2000) which

may be different for primary and for secondary endpoints. The operating characteristics of

such group-sequential clinical trials (i.e. mathematically speaking: the probabilities with which

primary and secondary hypotheses about the treatment effects can be rejected) then do not

only depend on effect strength, variability and sample size, but also on the preplanned stopping

strategies. For example, consider a group-sequential two-stage oncology trial with progression-
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free survival (PFS) as the primary and overall survival (OS) as the secondary outcome. Two

possible alternatives of conducting the trial are as follows:

1. If at the interim analysis, a statistically significant benefit is seen in PFS, stop the trial,

irrespective of the result on OS.

2. Stop the trial at the interim analysis only if the treatment benefit is statistically significant

for both PFS and OS. Otherwise, continue the trial to the final analysis.

The paper investigates these and various similar stopping strategies with respect to their op-

erating characteristics. As is easily seen, there is no uniformly best approach for all possible

configurations of primary and secondary effects sizes. The paper calculates rejection proba-

bilities for the involved primary and secondary hypothesis under many scenarios. The main

conclusions are:

1. If stopping of the trial for efficacy depends on the primary endpoint alone, it is advan-

tageous to use an aggressive alpha-spending approach for the secondary endpoint (for

example Pocock’s approach (Pocock, 1977) for the secondary endpoint, when the pri-

mary endpoint is tested according to the O’Brien-Fleming approach (O’Brien and Fleming,

1979)).

2. If the trial continues in case of a significant benefit on the primary endpoint, but non-

significance on the secondary endpoints, the use of similar alpha-spending methods

(e.g. O’Brien-Fleming spending for both primary and secondary endpoints) will usually

be preferable.

The paper illustrates planning and implementation of these methods in a trial comparing

a new respiratory drug with an active control for the treatment of the chronic obstructive pul-

monary disease (COPD).

3.2.4 Multiple testing in group-sequential time-to-event trials in Oncology (pub-

lication 4 in Appendix)

As already alluded to in the previous section, group-sequential time-to-event trials are par-

ticularly important in oncology, where the endpoints of interest are typically progression-free

survival and overall survival. The log-rank test (e.g. Collett, 1994, section 2.5.2.) is usually

used to test for a treatment effect. Group-sequential time-to-event trials are more complicated
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to analyze than conventional group-sequential trials, because patients remain in the study until

they have the event (e.g. they die). Hence, they are in the study for a time period which is un-

known at the beginning of the clinical trial. In contrast to conventional, non-time-to-event trials,

the variance of the effect size estimates (and thus the power of the trial) depends on the num-

ber of events rather than on the number of patients available. Because of this, group-sequential

trials in oncology are usually event-driven which means that they continue until a certain num-

ber of events has been observed. In a group-sequential time-to-event trial, this means that,

for example, the interim analysis is performed after 300 events and the final analysis after 600

events. Hence, if OS is the primary endpoint and interim and final analysis are planned for fixed

numbers of deaths, then the number of PFS events at these points in time is a random variable.

Di Scala and Glimm (2010) discuss such trials. They consider the case of two doses of

an experimental treatment compared with the standard-of-care in non-small cell lung cancer

patients. The paper shows how the joint distribution of the log-rank test statistics for the two

endpoints OS and PFS can be approximated by a normal distribution as introduced in chapter

2. Di Scala and Glimm then discuss four testing methods from adaptive design theory which

guarantee FWER control in the group-sequential time-to-event case. These methods also allow

the selection of treatment arms after the interim analysis, thus introducing an adaptive element

into the group-sequential approach. The authors discuss criteria for such a selection. The cri-

teria are based on weighted sums of predictive probabilities of success for the two endpoints

PFS and OS. A treatment arm is dropped after the interim analysis if the predicted probability of

success is low. Ultimately, this means that a treatment arm is deselected if its effect on disease

progression and/or survival is disappointing. As discussed in chapter 1, such modifications in-

troduce bias in the estimates of the retained treatment arm. The paper then describes how test

statistics calculated from the two stages of the trial can be combined to yield valid inference on

the selected treatment. Four methods originally developed for non-time-to-event data (König et

al., 2008) are adapted to the survival analysis case. Di Scala and Glimm discuss the conditions

under which these methods keep the FWER and compare the operating characteristics of the

adjustment methods by simulation.



Chapter 4

Multivariate methods

4.1 Foundations

Chapter 1 already discussed some communalities and differences between multiple compari-

son procedures and multivariate statistical methods. This chapter focusses on the application

of multivariate statistics in clinical trials.

From a mathematical point of view, multivariate analysis is a broader field than multiple

comparison procedures. It encompasses a very wide range of methods like multivariate anal-

ysis of variance, principle components analysis, factor analysis, multiple-dimensional scaling

and more. An important sub-division is between parametric (Anderson, 2003; Srivastava and

Khatri, 1979; Srivastava, 2002) and non-parametric multivariate analysis (Puri and Sen, 1971).

Regarding statistical testing, parametric multivariate analysis and multiple endpoint analy-

sis are both based on the same joint multivariate distributions of test statistics. Furthermore,

multiplicity in clinical trials is often generated by multiple measurements per sample unit which

is precisely the situation that led to the development of multivariate analysis.

In contrast to multiple testing procedures, multivariate analysis is less concerned with state-

ments about elementary hypotheses. Often, these are not even considered at all. For example,

Hotelling’s classical T 2-test for two samples yij , j = 1, . . . , ni, i = 1, 2 from p-dimensional nor-

mal distributions N(µi,Σ), i = 1, 2, with unknown covariance matrix Σ (Hotelling, 1931) only

considers the global null hypothesis H0 : µ1 − µ2 = 0. This line of research does not attempt

to make statements about the individual components µij , j = 1, . . . , p, of µi. Furthermore, this

test and its MANOVA generalizations are affine-invariant. For Hotelling’s T 2-test this means

that its power depends on the true mean and variances only via the Mahalanobis distance

27



CHAPTER 4. MULTIVARIATE METHODS 28

const(µ1 −µ2)′Σ−1(µ1 −µ2) (where const is a scalar function of the sample sizes in the treat-

ment groups) and thus any linear transformation YC of the original observations Y =
(
y′ij

)
(arranged in an n × p-matrix) with a positive definite p × p matrix C leads to the same test as

the untransformed data Y. Loosely speaking, these tests are looking for deviations from H0 in

any direction. From a mathematical point of view, this seems a natural requirement. Assume

for example, that in a clinical trial patients are randomized to two different treatments, and that

responses to treatment are the changes of various biomarkers due to treatment. Hotelling’s

T 2-test tests whether there are any differences between the two treatments at all, without any

preferences for certain ways in which such differences may arise. However, this has two con-

sequences which limits usefulness in practical applications:

1. The aim of a clinical trial is usually to demonstrate or refute a ”treatment benefit”. There-

fore, it is usually desired to have more power for certain alternatives (e.g. for µ2j−µ1j > 0

for all j = 1, . . . , p if this implies a treatment benefit on all endpoints) than for others.

2. The methods tend to become unstable as the dimension p increases (Läuter, 1992).

Again loosely speaking, there are too many directions in which deviations from H0 can

occur. In consequence, the power for detecting deviations from H0 is spread across too

big a space of alternative parameter values. If the sample size n is smaller than the di-

mension p, maintaining affine-invariance even becomes impossible and hence these tests

exist only if n > p.

The second of these issues has been called the ”curse of dimensionality” (Bellman, 1957).

Several authors have addressed it by developing ANOVA-type test statistics for the mean vector

µ which avoid estimation of the entire covariance matrix Σ, see e.g. Srivastava (2007, 2009),

Srivastava and Du (2008), Box (1954) and Dempster (1958, 1960). In the subsequent sections

of this chapter, we will however focus on a different approach that tackles both issues in parallel.

In case of few variables p, the advantages of multiple comparison procedures compared

with multivariate tests usually outweigh their disadvantages. As discussed in chapter 3, multiple

comparison procedures allow statements about individual endpoints. However, even if such

statements are not relevant, for small dimensions power differences between the T 2-test and

a Dunnett- or Bonferroni-test are small and the parameter constellations where the T 2-test has

higher power than the Dunnett-tests are in parts of the alternative space that are not relevant.

Figure 4.1 gives an illustration for p = 2. It displays rejection regions for two test statistics
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t1 and t2 that have distribution t = (t1, t2)′ ∼ N(µ,Σ) where Σ =

 1 0.5

0.5 1

 is known.

H0 : µ = 0 is to be tested. Then the obvious simplification of Hotelling’s T 2-test is Scheffé’s

test which rejects H0 if t = t′Σ−1t ≥ χ2
1−α(2), where χ2

1−α(2) is the (1 − α)-quantile of the

χ2-distribution with 2 degrees of freedom. The graph displays the rejection regions of this test

and the Bonferroni-adjusted two-sided test for H0 (which rejects if max(t1, t2) > u1−α/2 where

u1−α/2 is the (1 − α/2)-quantile of the standard normal distribution). The rejection region of

the T 2-test consists of all points outside the ellipse. The Bonferroni-adjusted test’s rejection

region is given by all points outside of the box. We see that the area covered by the ellipse is

generally smaller (hence, the T 2-test rejects ”more” in general). However, if we restrict attention

to the positive orthant t1 > 0, t2 > 0, then there is relative little difference between the rejection

regions and there are even values of (t1, t2) where the Bonferroni test rejects, but the T 2-test

does not.

Of course, the probability mass associated with regions in this plot - and thus the true

power of those tests - depends on the true means µ. Still, the graph illustrates nicely that the

simple Bonferroni adjustment may serve our purpose well, in particular when we suspect that

treatment effects are positively correlated and roughly share the same direction of deviation

from H0, as is often reasonable to assume in practice.

Figure 4.1: Rejection regions of Bonferroni’s and Scheffé’s test in case of p = 2
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4.2 Contributions

4.2.1 Comparison of multiple and multivariate tests in case of two hypotheses

(publication 5 in Appendix)

In the example just discussed, there is a test statistic t that rejects H0 if and only if t > c,

where c is such that PH0(t > c) = α. Furthermore, this test statistic t has a representation

t = f(t1, . . . , tp), where ti is a test statistic for endpoint i and f(.) is some function Rp → R

defined on all possible values of ti. The condition t > c is equivalent to t = (t1, . . . , tp)
′ ∈

S(c) ⊂ Rp, where S(c) is a set of points in Rp leading to rejection of H0. For low dimensions

like p = 2 or 3, we can define a shape for the rejection region S (e.g. all values outside of a

rectangle or of an ellipse), and then calculate its boundaries in such a way that the condition

PH0(t = (t1, . . . , tp)
′ ∈ S) ≤ α is kept. For p = 2, this is done in Su, Glimm, Whitehead

and Branson (2011). Figure 4.2 is taken from the publication and shows the rejection regions

considered. The paper deals with ”one-sided” decisions: all rejection regions are unbounded

in the upward direction on each axis.

Figure 4.2: Rejection regions of several directional multivariate tests in case of p = 2

The rejection regions (shaded) of six possible procedures for testing two elementary
hypotheses (with α = 0.025): (a) Bonferroni; (b) Simes; (c) combined; (d) restricted Simes; (e)

consonant combined; (f ) restricted consonant combined.

The paper investigates the properties of these multivariate tests. In the multivariate normal

case, the probability that the observed vector of test statistics (t1, t2) is in the rejection region
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depends on its bivariate normal distribution, i.e. on the true unknown means and the correlation

between the test statistics. If we assume knowledge of these quantities, the power of the

suggestions can be calculated. It is obvious that no choice of rejection region can be optimal

simultaneously for all parameter constellations. Hence, the paper investigates which choice of

rejection region is advantageous under what assumed constellation of true parameter values.

Furthermore, it investigates how well the methods perform if they are applied asymptotically

to the log odds ratio estimated from binary data. As an example, it considers the success rate of

a new cardiovascular treatment and a control treatment as judged by the modified Rankin scale

(mRS) and the National Institute of Health Stroke Scale (NIHSS). The observational vector from

every patient can take one of the four values (0, 0); (0, 1); (1, 0) or (1, 1) depending on whether

the treatment was successful or not according to mRS and NIHSS, respectively. From this

data, the correlation between the log odds ratios for comparing new treatment and control can

be calculated. Regarding type I error control, simulations in the paper indicate that no type I

error inflation arises from treating the estimated correlations as if they were the known ones in

this context.�

The directional decisions mentioned in Su et al. (2011) are an important aspect of multivari-

ate analysis. In the univariate situation of a single endpoint, the decision problem addressed

by a statistical test is either H0 : µ ≤ 0 versus A : µ > 0 or H0 : µ = 0 versus A : µ 6= 0,

corresponding to a one- or a two-sided test, respectively. Sometimes, the one-sided case is

written in a simplified way as H0 : µ = 0 versus A : µ > 0. This somewhat imprecise practice

arose, because most practically applied tests are either likelihood-ratio tests of H0 versus A

(e.g. the t-test) or are asymptotically equivalent to it. The likelihood ratio test of parameter θ is

in general defined as maxH0
ll(θ)

maxA ll(θ) where ll(θ) is the likelihood1. In the typical univariate setting,

maxH0 ll(θ) occurs at µ = 0. Hence, the univariate tests of H0 : µ = 0 versus A : µ > 0 and

H0 : µ ≤ 0 versus A : µ > 0 are identical, rendering the distinction between them irrelevant.

The important aspect here, however, is that there are only two directions in which the pa-

rameter µ can deviate from 0. In multivariate statistics, there is an infinity of directions. There-

fore, no uniformly most powerful test exists and various suggestions are superior to each other

depending on where the true parameter values µ are. As mentioned, Hotelling’s T 2 test and

its MANOVA generalizations like Wilks’ Λ and the Hotelling-Lawley trace statistic are affine-
1θ may contain nuisance parameters. For example, in case of the t-test, θ = (µ, σ2)
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invariant: All directions are treated equal, only the distance from H0 decides about the strength

of evidence against H0.

4.2.2 Spherical tests

In clinical trials, however, research questions are often ”one-sided”: We would usually like to

know whether a new treatment is better than the standard-of-care. This desire has prompted

a lot of research on directional multivariate tests as generalizations of the one-sided univariate

test. A class of such tests, called spherical tests, has been suggested by Läuter (1996) and

Läuter, Glimm, and Kropf (1996, 1998). To simplify the discussion, we will consider spherical

two-sample tests of H0 : µT − µC = 0 in the model ȳi ∼ N (µi,Σ) , i = T,C from chapter 2.

Spherical tests are based on a low-dimensional score derived from the original p-dimensional

data. If this score is one-dimensional, it takes the form d′ (ȳT − ȳC). Läuter, Glimm and Kropf

(1996) show that this can be treated like the mean from a univariate normal distribution, i.e.

tested by a standard t-test. The test is exact, that is, under H0, the type I error is exactly α

(although the variance of d′ (ȳT − ȳC) is estimated), if the calculation of d is based on the total

sums-of-products matrix G = (Y− 1nȳ
′)(Y− 1nȳ

′)′ derived from the observed data, where Y

is the n × p-matrix of observations y′i and ȳ is the vector of overall means per variable, calcu-

lated across treatment groups. Different ways of calculating d allow to tailor the test for power

against specific alternatives. Two important variants are the standardized-sum test which uses

d = Diag(G)−1/21p, another the principal-components (PC) test where d is the eigenvector

pertaining to the largest eigenvalue λ of G. The latter test motivated by the assumption of a

one-factor model (Läuter, 1992). In this model, the variables are differently scaled represen-

tations of an unobserved latent variable which can be imagined as the unobserved common

cause of the measurements on the individual variables. Glimm and Läuter (2002) have given

a proof of admissibility of the principal-components test in the class of spherical tests. The

latter paper is essentially a summary of the most important results from my PhD thesis (Glimm,

1999).

The concept leads to a very flexible class of tests useful in many situations. Läuter, Glimm

and Kropf (1996) discuss the one- and the two-sample test of means, one-way ANOVA and

tests for multiple correlation. The range of possibilities is exhaustively explored in a more

theoretical paper by Läuter, Glimm and Kropf (1998).
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4.2.3 Spherical tests in multivariate linear models with mixed effects (publica-

tion 6 in Appendix)

Glimm (2000) describes how spherical tests can be constructed in complex multivariate linear

models with mixed (i.e. fixed and random) effects. The paper uses a general representation

of multivariate analysis-of-variance (MANOVA) models with fixed effects describing the influ-

ence of fixed covariates (e.g. treatment group or sex) on the population-average response and

random effects describing correlations between the measurements from different patients - in

addition to the correlation that exists between the measurements of different variables from

the same patient. Such random effects can, for example, be used to describe the impact of

a random sample of centers who participate in a large clinical trial, and where patients who

are treated in the same center show a similar response because they are treated by the same

physicians or with the same equipment.

The paper shows how spherical tests for the variance components (i.e. the variation in

the responses which is due to the random effects) can be constructed from generalizations

of Cochran’s theorem (see e.g. Searle, 1971, for Cochran’s theorem). The paper illustrates

the construction of such tests with a generic example of a clinical trial where a multivariate

response per patient is observed repeatedly in time. Tests for time trend, for correlation due

to random effects and for compound-symmetric correlation in time are derived as examples for

applying the principle. Furthermore, the paper contains a short set of simulations that compare

several spherical tests with each other and with Wilks’ Lambda-test. In the simulation, the

spherical tests turn out to be vastly superior to Wilks’ Lambda test. This, however, could have

been easily predicted from the simulation setup in this case. The key objective of the paper was

to present the general principle for constructing spherical tests in complex MANOVA models,

not an exhaustive investigation of their performance in different scenarios.

4.2.4 A stable multivariate test with high power for the positive orthant (publi-

cation 7 in Appendix)

In spherical test theory, score weights d can be derived in many different ways depending on

needs of a practical application. Glimm, Srivastava, and Läuter (2002) discuss how a stable

multivariate test can be derived for the situation where high power is intended against the

alternative that all components δi of δ = µT − µC are larger or equal to 0 with at least one
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equality, but no preference can be given to any specific direction inside the positive orthant

δi ≥ 0 for all i = 1, . . . , p.

For ease of exposition, the authors investigate the one-sample case, i.e. the test of H0 :

µ = 0 from data X =
(
x′j

)
j=1,...,n

with xj ∼ N(µ,Σ) stochastically independent. This is no

real restriction, as the derivations in the two-sample case are almost identical. The suggested

tests use test statistics ū2 =
∑p

i=1 max(0, ui)
2 based on the components of u = (ui) =

√
nAx̄

where A is a matrix root of G−1 = (X ′X)−1, i.e. some matrix which fulfills A′A = G−1,

and x̄ is the multivariate mean of the sample. Tang et al. (1989) had derived similar tests,

but assuming that Σ is known, whereas this paper deals with the situation where Σ must be

estimated. The paper derives the null distribution of ū2 (which is independent of the concrete

choice of A) and discusses the choice of A so as to render ū2 unique and attain properties like

scale- and order-invariance. The suggested tests perform well in simulations compared to the

conditional likelihood-ratio test by Wang and McDermott (1998) and a bootstrap-based method

called M -test by Srivastava, Hirotsu, Aoki, and Glimm (2001). �

It is important to emphasize that directional multivariate tests like the ones just discussed

have high power for specific alternatives and low power for others, but ultimately, they are tests

for the point null hypothesis H0 : µ = 0, not for composite hypotheses comprising sets of

values of µ. They are constructed as tests of this H0 against specific alternatives A. If the

true parameter value is outside of both H0 and A, then these tests allow no conclusion. For

example, if a directional multivariate test of H0 : µi = 0 versus A : µi ≥ 0 (with at least one

inequality) rejects H0, then we cannot conclude that there is also sufficient evidence against

µi ≤ 0 for all i. In general, almost all directional multivariate tests as well as the very closely

related tests for restricted alternatives (Schaafsma and Smid, 1966; Perlman, 1969, Wang and

McDermott, 1998; Sen and Silvapulle, 2005) share this property which does not occur in the

univariate case. Most theoretical research regarded this as a curiosity (e.g. Silvapulle, 1997).

In many biological applications focussed on finding differences between gene expressions in

microbial communities, say, it does not matter, as the direction of differences is of minor interest,

and power considerations are decisive for the choice of a directional test. In many clinical trials

applications, however, this lack of interpretability is viewed as a serious disadvantage.
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4.2.5 Multivariate tests keeping the type I error for null hypotheses covering

entire regions of the parameter space (publication 8 in Appendix)

Glimm and Läuter (2010) address this topic and derive multivariate directional statistical tests

that allow conclusions beyond the rejection of µ = 0. They discuss one directional test based

on Hotelling’s T 2-test and two variants of spherical tests. All three suggestions test H0 : µ ≤ 0

(i.e. all components µi of µ are smaller than 0) versus A : µi > 0 for at least one component µi

of µ. Hence, no ”blind spots” are left in the parameter space of µ.

Again, it is easiest to describe the methodology for the one-sample case with data X =(
x′j

)
j=1,...,n

, xj ∼ N(µ,Σ). (Section 4 of the paper gives the analogous results for the two-

sample comparison.) The directional Hotelling test rejectsH0 if no point µ0 = (µ0i)i with µ0i ≤ 0

is inside the region

C1−2α(x,G) ∪ {µ0 with
p∑
i=1

µ0i − xi√
gii

> 0},

where

C1−2α(x,G) = {µ0 with
(n− p)n

p
(µ0 − x)′G−1(µ0 − x) < F1−2α(p, n− p)}

is a confidence ellipsoid around the observed multivariate average responses x = (x̄i)i=1,...,p,

1
n−1G = 1

n−1

∑n
j=1 (xj − x) (xj − x)′ is the estimate of the covariance matrix Σ and gij are its

elements. Glimm and Läuter give an algorithm to check this condition.

The other two suggestions are modifications of the standardized sum test which in this

context rejects H0 : µ = 0 if

t0 =
√
n− 1

√
nx′d0

√
d0′Gd0

≥ t1−α(n− 1) (4.1)

where t1−α(n− 1) is the (1−α) quantile of the t-distribution with n− 1 degrees of freedom and

d0 =

(
1√

gii+nx2i

)
i=1,...,p

. The paper describes how the weight vectors d and the matrix G that

play a role in this test can be modified to convert it into tests of the more general hypothesis

H0 : µ ≤ 0.

Glimm and Läuter (2010) give an application to a trial for an osteoporosis treatment against

placebo with three endpoints: change in joint space width, a functional and a pain score. In this

case, rejection of H0 allows to conclude that the treatment is different from placebo and that it

improves the patients’ condition with respect to at least one of the three endpoints.
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The suggested tests are scale-invariant, i.e. the test decision is not influenced by the mea-

surement scale chosen for the variables. Glimm and Läuter conclude that, in comparison with

multiple testing approaches, these tests have most power if the treatment effect is roughly

equally strong in all variables, for example, if all variables are subject to an underlying common

treatment effect. If the treatment effect is not ”evenly spread” across all variables in this way, but

rather there is a single variable with a strong treatment effect, then multiple testing procedures

are superior. �

In summary, the publications investigated in this chapter so far discuss ways of increasing

power for directional alternatives while maintaining type I error control for a global test of H0.

Interpretational difficulties following rejection of H0 remain an issue. Due to this, multivariate

tests (irrespective of whether they are the classical affine-invariant ones, spherical tests, or test

with restricted alternatives) are rarely applied in clinical trials of the later phases II-IV. In these

phases, there are few relevant endpoints, usually we are interested in statements about single

endpoints, and even if we are not, the power of multiple test procedures for the rejection of the

globalH0 is usually competitive with that of multivariate tests. Thus, FWER-controlling methods

serve the requirements of these trials well.

The picture changes in case of many variables. Here, FWER control becomes a very severe

burden on the power of the statistical tests. This problem may sometimes be exacerbated by

inefficient adjustment (e.g. the use of Bonferroni adjustment), but in essence, it is the FWER

criterion (3.1) itself that becomes almost impossible to fulfill if many hypotheses are investigated

simultaneously.

Luckily, as already discussed in chapter 1 the criterion usually gets less and less compelling

as the number of variables increases. As an example that was already discussed, in gene

expression analysis there is little point in investigating the expression levels from DNA snippets

in isolation. Instead, one would like to know if, for example, diseased and healthy tissue displays

any differences at the genetic level at all. If this is the case, researchers further hope to identify

groups of relevant genes that behave similarly or antagonistic.

Regarding the first of these two research questions, the spherical tests from section 4.2.2

are useful for the global hypothesis H0 of no differences between multivariate measurements

from different populations. Glimm, Heuer, Engelen and Smalla (1997) describe an application

to the comparison of the catabolic profiles from microbial communities in different types of soil.
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In this application, each soil sample is characterized by its utilization of 95 sole-carbon sources

of the BIOLOG identification system. Kropf et al. (2004), Eszlinger et al. (2005), Smalla et

al. (2007) and Ding et al. (2012) give further applications in microbiology. Kropf (2000) and

Schuster, Kropf and Roeder (2004) give some medical applications.

The second question regarding the identification of differentially expressed groups of vari-

ables is discussed informally in these publications. To this end, the contribution of the variables

to the score weights d of the spherical tests is investigated.

4.2.6 Multivariate tests for high-dimensional genomics data (publication 9 in

Appendix)

Mathematically more rigorous approaches are considered by Läuter, Glimm and Eszlinger

(2005). They describe methods that first group genes into sets with correlated expression

levels, rank these sets and then test for significant differences between diseased and healthy

tissue. Läuter, Glimm and Eszlinger consider both methods that are based on the theory of

spherical tests and resampling methods. More precisely, assume that the gene expression

data is collected in a n × p-matrix X =
(
x′j

)
j=1,...,n

and we want to test the p-dimensional

mean µ = 0, corresponding to no gene expression. The tests are based on the test statistic

B =
nd′x̄x̄′d

d′XX ′d
. (4.2)

If X is multivariate normally distributed and µ = 0, then B ∼ Beta(1
2 ,

n−1
2 ). The weight vector

d can be determined by one of the methods described in Läuter, Glimm and Kropf (1998). To

create sets of genes, the correlation of each gene with each other gene is calculated. Each

gene i in turn acts as a ”pivot”. If the correlation is above a threshold c, the gene k is put into

the pivot set S(i) of gene j. At the end of the process, the pivot sets are sorted by importance

based on a criterion that includes the number of genes in the set and their ”total correlation”

x′ixk, where xi is the n-dimensional vector of expression levels from gene i. The sets S(i) are

then tested in order of importance with the test statistic B applied to all genes in the set. The

process is continued until the first non-significant result is attained. Läuter, Glimm and Eszlinger

show that this approach keeps the FWER in the following sense: If a set does not contain any

differentially expressed gene, then this set will be identified as significant with probability α at

most. In this sense, the strategy provides a compromise between the global tests originally
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suggested by Läuter et al. (1996, 1998) and multiple test procedures that keep the FWER on

the level of single genes. Note also that differential expression is the focus of interest, so on

the level of a single gene, a two-sided decision is desired.

The paper also discusses methods that do not necessarily require the assumption of a mul-

tivariate normal distribution. To this end, a variant of the resampling procedures discussed in

chapter 2.2 is suggested, using the sum
∑

k∈S(i)Bi of Beta-statistics Bi =
nx̄2i
x′
ixi

as test statis-

tics for the sets S(i) with x̄i being the average of the expression level observations from gene

i. Finally, the paper introduces a rotation test strategy that can be used in cases where sample

sizes are too small for the resampling-based methods to work reliably. These latter methods

require that the data has a left-spherical distribution under H0 which means that the distribu-

tion of C ′ (X − 1nµ
′) must be the same as that of X − 1nµ

′ for all orthogonal p × p-matrices

C (Fang and Zhang, 1990). The multivariate normal distribution of X with independent rows

xj ∼ N (0,Σ) is a special case of a left-spherical distribution.

The methods are applied to data from 14 patients with thyroid diseases. The dataset con-

tains expression patterns from tissue samples of cold thyroid nodules and the normal surround-

ings. The differences between the logarithmic expression values of nodular and surrounding

tissue are analyzed in 148 of the originally screened 12 625 genes. Both methods identify a few

highly correlated groups of genes with a total of 8 and 9 genes, respectively, partly represented

repeatedly in the identified subsets.

The method of grouping, sorting and testing genes in this way is refined by Läuter, Horn,

Rosolowski, and Glimm (2009). In this paper, the identification of candidate gene sets is done

on 6374 genes from 108 patients suffering from Burkitt’s lymphoma or diffuse large B-cell lym-

phomas (DLBCL), whereas the testing of the identified genes is performed on data from 10

biological replicates of c-myc overexpressing cells and 10 control cultures. The selection al-

gorithm yields 99 significant maximum sets of genes, 68 of which follow the direction of c-myc

expression changes in the cell experiments while 31 respond reciprocally. The paper then fo-

cusses on graphical displays for characterizing the gene expression from the 108 patients in

8 non-overlapping sets with a total of 240 identified genes. It turns out that the sets allow a

clear distinction between Burkitt and non-Burkitt patients. The biological interpretation of the

identified gene expressions is also discussed.�

It should be acknowledged here that these methods of testing variables after having ar-
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ranged them into groups by their correlations are less popular than the false discovery rate

(FDR) controlling procedures of Benjamini and Hochberg (1995). The latter have produced a

vast amount of follow-up literature (Benjamini and Yekutieli, 2001; Storey, 2002; Meinshausen

and Bühlmann, 2006; Speed et al., 2003; Efron, 2010; van der Laan and Dudoit, 2007). These

methods originated from research on multiple testing. The FDR criterion is a relaxation of the

FWER criterion: Rather than requiring that no true hypothesis must be rejected, it only requires

that the expected fraction of true hypotheses among the rejected hypothesis must be limited

to α, where α is usually chosen to be 5%. Thus, a concession is made to the huge number of

hypotheses that typically occur in genomics. Like FWER, FDR is a concept and thus may be

implemented in many different ways. Almost all of the suggested procedures, including Ben-

jamini and Hochberg(1995)’s original approach, treat the hypotheses in isolation; they do not

attempt to exploit relations between different variables.



Chapter 5

Estimation

5.1 Foundations

The previous chapters concentrated on statistical testing in the presence of multiple endpoints.

However, point and interval estimation of treatment effects are also affected by multiplicity. For

example, suppose that an investigator tests several doses of an experimental drug against a

control treatment and then reports only the result from the dose group which performed best.

It is obvious that the reported result has a stochastic tendency to look ”better than it should”.

However, it also turns out that this informal statement is surprisingly hard to formalize math-

ematically. To illustrate this claim, let us assume that xi ∼ N(µi, σ
2
i ), i = 1 . . . , p represent

the stochastically independent average responses to p different doses of an experimental treat-

ment. A large response corresponds to a favorable treatment effect. First of all, the distribution

of the response from dose k with xk := max(xi) depends on all parameters µi, σ2
i , i = 1, ..., p:

If µk = µk − µi → ∞ for all i 6= k, the distribution of xk converges to N(µk, σ
2
k), whereas for

µi/σi = µ1/σ1 for all i = 1 . . . , p, the distribution is neither normal nor even symmetric. Hence,

if in truth one of the doses yields a much better treatment effect than all other doses, there is

very little bias in the reported best result, whereas the bias is large if in reality all doses have

the same effect. Furthermore, it has been shown by Putter and Rubinstein (1968) (see Cohen

and Sackrowitz, 1989) that no unbiased estimate of max(µi) exists if µ1, . . . , µp are unknown

parameters that have to be estimated from the data.

Unbiased estimation of the effect of a selected treatment is possible, if additional responses

to the selected treatment are obtained in a second step of sampling. A typical example would

be a clinical trial where participating patients are randomly allocated to one of several doses

40
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of the experimental treatment (or a control treatment) in stage 1. At the end of stage 1, the

average response to the experimental treatment is calculated and one of the doses is selected.

In stage 2 of the trial, additional patients are randomly allocated to the selected dose and

the control treatment and finally, the responses to the selected dose and the control are com-

pared. Clinical trials performed in this manner are called adaptive clinical trials. Such trials have

been discussed extensively in the statistical literature (Bauer, 1989; Bauer and Köhne, 1994;

Proschan and Hunsberger, 1995; Lehmacher and Wassmer, 1999; Müller and Schäfer, 2001,

2004; Bretz, König, Brannath, Glimm, and Posch, 2009 1). These publications also describe

other design modifications (like sample-size re-estimation or subpopulation selection). They

are primarily focussed on the impact of design modifications on error rates of statistical tests,

less on the impact on point and interval estimation.

5.2 Contributions

5.2.1 Unbiased estimation of the effect of a selected treatment in a two-stage

clinical trial (publication 10 in Appendix)

Based on work by Cohen and Sackrowitz (1989), Bowden and Glimm (2008) derived a uni-

formly minimum variance conditionally unbiased estimate (UMVCUE) of the selected treatment

effect in a two-stage adaptive design with a treatment arm selection at interim. In this situation,

the maximum-likelihood estimate (MLE) of the selected treatment arm ”ignores the selection”,

and thus will usually be biased (see e.g. Bretz, König, Brannath, Glimm, and Posch, 2009, sec-

tion 6). The UMVCUE is defined as an estimator of the effect of the selected treatment which

is unbiased conditional on the order of treatments, as determined by the mean effect estimates

from stage 1. Among all estimators of this kind, it has minimum variance. Since conditional

unbiasedness is a stronger requirement than unconditional unbiasedness, the UMVCUE is also

unconditionally unbiased. It is given by

θ̂(i) =
σ2

2X(i) + σ2
1Y

σ2
1 + σ2

2

− σ2
2√

σ2
1 + σ2

2

φ (Wi,i+1)− φ (Wi,i−1)

Φ (Wi,i+1)− Φ (Wi,i−1)
(5.1)

1Regarding the last of these publications, I was primarily responsible for section 6 which discusses estimation of
the treatment effect after treatment arm selection or sample size re-estimation in an adaptive trial.
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where Ws,i = 1
σ2
1

(
σ2
2X(s)+σ

2
1Y√

σ2
1+σ2

2

−
√
σ2

1 + σ2
2X(i)

)
, X(0) := ∞ and X(k+1) := −∞ and k is the

number of treatments at the start of the trial. Here, X(j) denotes the effect estimate of the

treatment with the j-th largest observed effect after the interim analysis (Xi ∼ N(θi, σ
2
1) for

all i = 1, . . . , k). Y ∼ N(θ(i), σ
2
2) is the stage-2-effect estimate of the selected treatment and

φ(.) and Φ(.) are the density and the distribution function of the standard normal distribution,

respectively. The formula gives a conditionally unbiased estimate for all explicitly selected

treatments, i.e. it can be applied for rules that specify to carry the best, best two etc. treatments

into stage 2. It can also be applied if the treatment with the largest effect is not among those

continued into stage 2. If only the best treatment is selected at interim and the variance remains

constant (i.e. σ2
1 = σ2

2), the formula simplifies to

θ̂(1) = Z/2− 1√
2

φ(W )

Φ(W )
(5.2)

with Z = X(1) + Y and W =
√

2(Z/2−X(2)). This shows that the UMVCUE consists of the

MLE Z/2 minus a correction term for the bias from treating X(1) as if it had been selected at

random (and not due to its high value).

The paper presents these results in general for random variables Xi and Y . As a special

case, Xi and Y could be the observed mean responses from several patients. Then σ2
1 would

be the variance of the observed stage-1-means, i.e. σ2
1 = σ2

ε
n1

, in case of equal stage 1 sample

sizes n1 per treatment group and a common error variance σ2
ε across treatments and stages.

Similarly, σ2
2 =

σ2
1ε
n2

for stage 2. However, the result would (asymptotically) also hold for any

other estimate selected from asymptotically normally distributed treatment effect estimates,

e.g. if this is obtained from an ANOVA model with several groups and possibly other covariates.

Bowden and Glimm also compare the mean-squared error (MSE) of the UMVCUE and

the MLE and suggest a method to derive confidence intervals. It turns out that the UMVCUE’s

unbiasedness comes at a high price: In terms of the MSE, the MLE is superior to the UMVCUE.

The choice of method thus depends to a large extent on the importance researchers are willing

to place on unbiasedness.

Bowden and Glimm (2013) generalized the two-stage UMVCUE to multistage adaptive trials

that start with k treatment arms and drop some of them at each stage until only one arm is

tested at the final stage.
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5.2.2 Shrinkage estimation of the selected treatment (publication 11 in Appendix)

Bowden, Glimm, and Brannath (2013) discuss an alternative Bayesian approach to estimat-

ing the effect of a selected treatment. This latter approach leads to an estimate which is no

longer unbiased, but superior in terms of mean-squared error to the UMVCUE, the maximum-

likelihood estimate and several other estimates that have been suggested in the literature (e.g.

the conditional maximum-likelihood estimate of Bebu, Luta and Dragalin, 2010).

5.2.3 A confidence region for the mean of multidimensional data (publication

12 in Appendix)

Regarding interval estimation, Läuter and Glimm (2005) have used data compression methods

very similar to those used in the PC-test (see section 4.2.2) to calculate confidence regions

for the mean vector µ of the multivariate normal model X =
(
x′j

)
j=1,...,n

, xj ∼ N(µ,Σ),

x̄ =
∑n

j=1 xj . A weight vector d is calculated as the eigenvector corresponding to the largest

eigenvalue of the sums-of-products matrix G =
∑n

j=1 (xj − x̄) (xj − x̄)′. Läuter and Glimm

show that the set of values µ0 which fulfill

√
nx̄′d−

√
λF1−α(1, n− 1)

n− 1
<
√
nµ′0d <

√
nx̄′d+

√
λF1−α(1, n− 1)

n− 1

provide a conservative (1−α)-confidence region for µ. This region is a hyperdisc in the space of

p variables. This means that there is no limit on the individual components µi of µ. Rather, the

region is limited in the directions where most of the variation in the data occurs. The method

is also not scale-invariant. As a consequence, this method of deriving confidence regions

should only be used if individual variables are not of interest in isolation, and if all variables are

measured on the same scale. The paper also presents results for testing multivariate data with

hypotheses having µ 6= 0, generalizations of the weight vector d to a weight matrix D, and

application of principal components inference in combination with the selection of variables.



Chapter 6

Discussion

The papers presented here all deal with continuous multivariate data obtained from experi-

ments in the life sciences. The task of summarizing the evidence on a feature of interest (for

example the treatment effect in a clinical trial or differences between microbial communities in

an agricultural experiment) when this feature manifests itself in many dimensions (several vari-

ables/endpoints/biomarkers, repeated measures in time or space) is a challenge to statistical

inference.

In clinical trials assessing a treatment effect in multiple endpoints, it seems natural to focus

on endpoints where the treatment effect is largest. This is not an illegitimate or unreasonable

strategy per se. However, we must remain aware that reporting the maximum response is a

special case of a summary of multivariate data. As illustrated in example 1, its stochastic be-

havior is affected by the other endpoints in the experiment. In the example, seemingly clear

evidence in favor of a treatment effect in a selected channel turned out to be far less convinc-

ing when the result was adjusted for that selection. Chapter 3 discusses such methods for

multiplicity adjustment in the context of statistical tests. We note that the maximum response

from several endpoints is rarely consciously perceived as a summary of multivariate data by

scientists attempting to interpret the results from a clinical trial. However, as has been demon-

strated, proper statistical adjustments have to be made when the multiple endpoints correspond

to several research questions which are tackled simultaneously in a clinical trial. This is partic-

ularly important if there is no clear prioritization of objectives and if each research question is

of individual importance.

Of course, the summary of multivariate responses does not necessarily have to be via the

selection of a single endpoint. Especially in case of many, possibly closely related endpoints,
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like gene expressions or EEG channels, they may not represent distinct research questions of

interest. In such cases, it is advantageous to look for other ways of summarizing the data, e.g.

by comparing linear combinations of the results. Again, if the weights of the linear combinations

are derived from the data, a multiplicity issue arises. Furthermore, efficient ways of summariz-

ing the multivariate data (e.g. statistical tests having a high power for detecting certain relevant

deviations from a hypothesis of no treatment effect) require multivariate statistical techniques.

The papers in chapters 4 all deal with this.

In clinical trials, the focus is usually on finding or refuting evidence for a significant treatment

effect. Therefore, the papers in chapters 3 and 4 are concerned with statistical tests. However,

as already mentioned in chapter 1, point and interval estimation are also affected by multiplicity.

This is the topic in the papers of chapter 5.

In the foreword, I had made an appeal for a well-stacked toolbox. I hope that the papers

compiled in this work have added some tools for the proper handling of multiplicity to the bio-

statistician’s toolbox.
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Zusammenfassung

Diese kumulative Habilitationsschrift umfasst 12 wissenschaftliche Publikationen, welche die

statistische Analyse multipler Endpunkte in den Biowissenschaften, insbesondere in kontrol-

lierten klinischen Studien, zum Gegenstand haben.

Multiple Endpunkte treten in einer klinischen Studie auf, wenn die Wirkung einer Behand-

lung durch mehrere Messgrößen beschrieben wird, welche simultan, ohne klare Prioritisierung

analysiert werden sollen. Diese Situation ist in der Medizinstatistik allgegenwärtig. Eine wis-

senschaftlich korrekte Analyse multipler Endpunkte muss der Multiplizitätsproblematik Rech-

nung tragen, welche dadurch zum Ausdruck kommt, dass z.B. der geschätzte Behandlungsef-

fekt des ”besten” Endpunktes eine Verzerrung aufweist, dass simultane statistische Tests das

nominelle Fehlerniveau nicht einhalten usw., sofern keine Adjustierung der statistischen Anal-

ysemethodik vorgenommen wird.

Der zusammenfassende Text stellt zunächst eine Reihe von Situationen aus realen klinis-

chen Studien vor, in welchen die Multiplizitätsproblematik behandelt werden muss. Ein Schwer-

punkt liegt hierbei auf den konfirmatorischen statistischen Tests, welche für die zulassungsrel-

evanten Phase III-Studien von zentraler Bedeutung sind. Es werden jedoch auch Beispiele aus

anderen Phasen der klinischen Entwicklung diskutiert.

Auf ein Kapitel zu gemeinsamen statistischen Grundlagen folgen die zwei zentralen Kapitel

der Arbeit. Kapitel 3 umfasst Arbeiten zu multiplen Vergleichsmethoden. Diese Methoden sind

geeignet für die Analyse einiger weniger Endpunkte, welche alle von individueller Bedeutung

sind, wie z.B. verschiedene klinische Endpunkte einer Phase III-Studie. Kapitel 4 behandelt

Verfahren aus der multivariaten Statistik. Solche Verfahren können auch im Falle einer großen

Anzahl von Endpunkten eingesetzt werden. Sie sind allerdings weniger geeignet, wenn Aus-

sagen über einzelne Endpunkte gewünscht werden. Ihre Bedeutung liegt daher eher im Bereich

der exploratorischen klinischen Studien in Phasen I und II (z.B. der simultanen Analyse vieler

Laborparameter), aber auch im Bereich der Genexpressionsanalyse.
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Während die Arbeiten in Kapiteln 3 und 4 statistische Tests behandeln, werden in Kapitel 5

zwei Arbeiten zur Adjustierung von multiplen Effektschätzungen bzw. simultanen Konfidenzin-

tervallen diskutiert.
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Läuter, J. and Glimm, E. (2005): A theorem on the principal components inference. Statis-

tics 39, 207-219.
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Multiple and Repeated Testing of Primary,
Coprimary, and Secondary Hypotheses

Willi MAURER, Ekkehard GLIMM, and Frank BRETZ

In confirmatory clinical trials the Type I error rate must

be controlled for claims forming the basis for approval

and labeling of a new drug. Strong control of the family-

wise error rate is usually needed for hypotheses related

to the primary endpoint(s). For hypotheses related to sec-

ondary endpoint(s) which are only of interest if the cor-

responding “parent” primary null hypotheses have been

rejected, less strict error rate control might be sufficient.

We review and extend procedures for families of primary

and secondary hypotheses when either at least one of the

primary hypotheses or all coprimary hypotheses must

be rejected to claim success for the trial. Such families

of hypotheses arise naturally from comparing several

treatments with a control, combined noninferiority and

superiority testing for primary and secondary variables,

the presence of multiple primary or secondary endpoints

or any combination thereof. We show that many of the

procedures proposed in the literature follow a common

underlying principle and in some cases can be improved.

In addition we present some general results on Type I

error rates for the different families and subfamilies of

hypotheses and their relation to group-sequential testing

of multiple hypotheses.

Key Words: Closed testing; Confirmatory trial; Familywise error

rate; Gatekeeping procedure; Graphical approach; Simes’ test.

1. Introduction

In confirmatory clinical trials it is common practice

to control the Type I error rate for claims forming the

basis for approval and labeling of a new drug. Regula-

tory guidance and practice ask for a strong control of

the familywise error rate (FWER), at least for the hy-

potheses related to the primary endpoints. That is, given

a family of n null hypothesesF = {H1, . . . ,Hn}, the prob-
ability to falsely reject at least one true null hypothe-

sis should be bounded by α under any configuration of

true and false null hypotheses. Hypotheses related to the

secondary endpoint(s) serving only for the qualification

of an established primary effect are mainly of interest if

the corresponding “parent” primary null hypotheses have

been rejected before. Efficient control of Type I error

rates can be challenging when families of primary and

secondary hypotheses are to be considered or when there

are coprimary endpoints which must all be significant for

a successful claim. Such families of hypotheses arise nat-

urally when additional multiplicity stems from compar-

ing several treatments with a control, combined noninfe-

riority and superiority testing for primary and secondary

variables, the presence of multiple primary or secondary

endpoints or any combination thereof. Depending on the

context, hypotheses may be arranged in a hierarchy with

some hypotheses being equally important and others be-

ing formally tested only conditional on the rejection of

more important ones. Some of the arising issues have

been discussed by Hung and Wang (2009, 2010) and

Bretz, Maurer, and Gallo (2009a).
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Multiple and Repeated Testing of Primary, Coprimary, and Secondary Hypotheses

An example of a procedure that takes into account

such partial orderings is given by first testing the fam-

ily of primary hypotheses with a method controlling the

FWER at level α , followed by testing only those sec-
ondary hypotheses for which the “parent” hypotheses

have been rejected before. Bretz et al. (2009a) mentioned

that such procedures control the Type I error at level

α neither for the union of primary and secondary hy-

potheses nor for the secondary hypotheses alone, even

if the testing procedure conditionally controls the FWER

at level α for the secondary hypotheses. They also give
upper bounds of Type I error rates (without proof) for

the special case of one descendant secondary hypothe-

sis per primary hypothesis. For this and similar cases, it

may be sensible to control the FWER separately for the

families of primary and secondary hypotheses as well

as for their union or other Boolean functions of them.

In this article, we derive upper bounds for the resulting

error rates for a more general situation than considered

by Bretz et al. (2009a) and discuss how the tightness

of these bounds depends on distributional assumptions

and logical interdependencies of the hypotheses. We also

show that the scenarios for which the upper bounds are

attained are closely related to those arising in repeated

testing problems of primary and secondary hypotheses in

group sequential trials (Glimm, Maurer and Bretz 2010;

Tamhane, Mehta, and Liu 2010).

Testing procedures that control the FWER for the

family of all hypotheses under consideration and account

for partial ordering or logical dependencies are increas-

ingly discussed in the literature. Many of them, in par-

ticular so-called gatekeeping procedures, are based on

closed testing procedures using Bonferroni tests for the

intersection hypotheses. For some of the cases where

the underlying logical dependence structure is that of a

family of primary hypotheses where each of its mem-

bers is the “parent” of logically associated secondary

hypotheses gatekeeping test procedures have been pro-

posed by several authors, for example, Dmitrienko, Of-

fen, and Westfall (2003); Hommel, Bretz, and Maurer

(2007). Bretz, Maurer, Brannath, and Posch (2009b) pro-

posed sequentially rejective graphical approaches that are

flexible and easy to communicate. It was shown by Bretz,

Maurer, and Hommel (2010) how this approach can be

applied to the situation of multiple tests with primary

and secondary endpoints. In this article we give a formal

definition of desirable properties (succession and consis-

tency) of test procedures for the logical dependence of

primary hypotheses with descendant secondary hypothe-

ses and show how they can be generated by means of the

graphical approach. In extension of proposals by Quan,

Capizzi, and Zhang (2009) we also show how some of

the arising test procedures can be further improved by

exploiting the correlation of the test statistics or a high

likelihood of similar effects. The special case of multi-

ple coprimary endpoints that all must show a statistically

significant effect for the trial to be successful in a mul-

tiple and/or repeated hypotheses testing situation will be

considered as well and a novel test procedure based on

the Simes test is presented.

2. Families of Primary and Secondary

Hypotheses

In the following we consider testing a family of hy-

potheses F that can be partitioned into a primary family
Fp and a secondary family Fs, that is, F = Fp∪Fs, and
Fp∩Fs = ∅. Note that Fp and Fs are simply sets of the
corresponding labels (or names) of the hypotheses. For

example, if Hp,1 : μ1 = 0 and Hs,1 : μ2 = 0 happen to
coincide in a concrete model, for example, because the

correlation between the respective test statistics is 1, then

they are still treated as two distinct elements of F .
We assume that for each hypothesis Hp,i ∈Fp there is

a unique set of “descendant” secondary hypotheses Fs(i),
i ∈ N, where N = {1, . . . ,n} denotes the index set of pri-
mary hypotheses. We denote by n the number of distinct
primary hypotheses, irrespective if this relates to number

of treatments, number of endpoints or other categories,

depending on the application. Further, we assume that

each secondary hypothesis in Fs must have at least one
“parent” primary hypothesis, that is, Fs = ⋃ni=1Fs(i). A
secondary hypothesis Hs(i), j ∈ Fs(i) is only of interest (in
a confirmatory sense) if one of the respective “parent”

primary hypothesis Hp,i is rejected. The erroneous re-
jection rate of the primary null hypotheses needs to be

controlled at level αp (= α , say). In the sequel, we de-
scribe several configurations of primary and secondary

hypotheses satisfying the above conditions. Each case is

illustrated by a design option satisfying different objec-

tives for the following common example of a trial to be

planned in ophthalmology.

Example: A 6-month multicenter, parallel group,

double-masked phase III study is planned in patients

with quiescent, noninfectious uveitis for comparing an

experimental compound administered on top of standard

of care treatment versus standard of care (immunosup-

pressive and anti-inflammatory treatment) for maintain-

ing uveitis suppression when reducing systemic immuno-

suppression. The following endpoints are considered pri-

mary or secondary depending on the objectives and de-

sign of the trial:

P1: Recurrence of active uveitis within the treatment pe-
riod (binary composite endpoint based on the oc-

currence of S2 or S3).
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Statistics in Biopharmaceutical Research: Vol. 3, No. 2

P2: Change in best corrected visual acuity from baseline.

S1: Change in immunosuppressive medication score
from baseline to 6 month.

S2: Decrease in best corrected visual acuity of more than
10 ETDRS letters in either eye (binary).

S3: An increase in vitreous haze of at least two steps (bi-
nary).

1. One primary and one or more secondary end-
points in multiple treatments. Assume that n ≥ 2
treatments (e.g., n doses) are tested for superiority
against control for a single primary endpoint and

m≥ 1 secondary endpoints. The one-sided primary
null hypotheses Hp,i, i = 1, . . . ,n, state that the ef-
fect of treatment i on the primary variable is not
larger than that of control. The rejection of at least

one of these hypotheses is assumed to be a pre-

requisite for a “positive” study. The family Fs(i) of
descendant secondary null hypotheses of Hp,i con-
sists of the one-sided null hypotheses of nonsupe-

riority of treatment i in the m secondary variables.
Hence, Fs(i)

⋂Fs(i′) = ∅ for i �= i′. We assume that
rejection of at least one of the primary and associ-

ated secondary hypotheses is necessary for a posi-

tive study that may allow additional label claims. A

similar test situation arises if the multiple compar-

isons refer to different, possibly overlapping sub-

groups of the analysis population.

Example: The effect of three dose regimens is

compared to standard of care with respect to the

only primary endpoint P1. Key-secondary end-
points are S1 and S2.

2. Multiple primary and multiple secondary end-
points. Here, we assume n multiple primary end-
points (usually n = 2) where at least one of them
needs to be significant for a positive study. Each

primary endpoint has its own set of descendant

secondary hypotheses. This situation may occur,

for example, when the primary endpoints are com-

posites of different events and the descendant sec-

ondary endpoints are the components of the par-

ent primary composite endpoint. Different primary

variables may have a common secondary variable

as descendant such that Fs(i)
⋂Fs(i′) �= ∅ for some

i �= i′.

Example: Only one dose regimen is compared to

standard of care. However, two primary endpoints

P1 and P2 with descendant secondary endpoint(s)
each are considered. The trial is successful if for

at least one of them superiority over standard of

care can be shown. The descendant secondary end-

points of P1 are its components S2 and S3. The only
descendant secondary endpoint of P2 is S2.

3. Primary and secondary comparisons of multiple
endpoints. As in case 2 there are n multiple pri-
mary endpoints (usually n = 2) where at least one
of them needs to be significant for a positive study.

The hierarchy of primary and secondary hypothe-

ses, however, is given by a clear order of impor-

tance in the comparison of two treatment arms vs.

one control or of one test treatment vs. two con-

trols (e.g., placebo and an active control). As in

case 1, then Fs(i)
⋂Fs(i′) = ∅ for i �= i′. The par-

ticular situation of two doses vs. control where the

comparison of the higher dose with control on the

n endpoints is considered as the primary one was
discussed, for example, by Quan et al. (2009).

Example: In addition to a dose of primary inter-

est a lower dose is tested in the trial. The lower

dose might be recommended for use if it is effi-

cacious and causes less safety problems than the

higher dose. As in Case 2 for each dose (the pri-

mary higher dose and the secondary lower dose)

two primary endpoints, P1 and P2, are assessed.

4. Noninferiority and superiority testing of multiple
endpoints and/or multiple treatment arms. The
hierarchy of primary and secondary hypotheses

arises naturally from noninferiority being a prereq-

uisite for showing superiority over the same con-

trol. Given there are hypotheses related to multi-

ple (primary) endpoints or multiple treatment arms

to be tested, the family of primary hypotheses

consists of those related to noninferiority and the

secondary hypotheses are those related to superi-

ority. Generally there is at most one descendant

(secondary) hypothesis to each parent (primary)

hypothesis and vice versa; see Hung and Wang

(2010) for further discussion.

Example: The experimental treatment is not ad-

ministered on top of standard of care but the

three doses mentioned in Case 1 alone are com-

pared to standard of care (immunosuppressant plus

steroids) on one primary variable P1 with the aim to
show noninferiority (primary hypotheses) or even

superiority (secondary hypotheses) with respect to

standard of care.

5. Repeated testing of a primary and a secondary hy-
pothesis. One primary hypothesis Hp and one sec-
ondary hypothesis Hs are tested repeatedly at n−1
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Multiple and Repeated Testing of Primary, Coprimary, and Secondary Hypotheses

interim and a final analysis in a group sequential

trial. Formally one can consider the up to n tests
of the two hypotheses as being related to different

hypotheses Hp,i and Hs,i, i = 1, . . . ,n. Practically,
one is only interested in the “overall” hypotheses

Hp =
⋂n
i=1Hp,i and Hs =

⋂n
i=1Hs,i, that is, the re-

jection of one of the hypotheses Hp,i at any of the
n analyses leads to the rejection of Hp. Similarly,
the rejection of Hs,i at any of the n analysis leads
to the rejection of Hs. Since the Type I error rate
for an overall (primary or secondary) hypothesis is

bounded by the FWER of the respective family, the

general results on error rate control for various test

procedures presented in the next section apply also

to the situation of repeated testing of primary and

secondary hypotheses. Since in this case up to n
tests at the n interim analyses are done in a strictly
sequential manner starting with i= 1 and an over-
all hypothesis is rejected as soon as a rejection is

possible at one of the interim analyses with a po-

tential stop of the entire trial, the general results

can be refined, taking also into account the partic-

ular correlation structure between the test statistics

at different information fractions. This case was

extensively discussed by Glimm et al. (2010) and

Tamhane et al. (2010).

Example: One dose of the experimental drug is

compared to standard of care on a primary and a

secondary endpoint (P1 and S1) in a group sequen-
tial design with one interim analysis.

3. Consistent Tests and Error Rates for

Families of Primary and Secondary

Hypotheses

Care has to be taken when applying gatekeeping pro-

cedures to avoid properties which are unnecessary or

seem to be “against common sense,” see, among others,

Hung and Wang (2009) for examples. To avoid proce-

dures that suffer from such deficiencies we require the

following properties:

(a) a secondary hypothesis can only be rejected if at

least one of its parent primary hypotheses is re-

jected, and

(b) the retention of a secondary hypothesis cannot pre-

clude the rejection of a primary hypothesis.

We call procedures that satisfy conditions (a) and (b) con-
sistent and procedures that satisfy condition (a) succes-
sive. In Section 4 we investigate successive procedures
in more detail. In the following we introduce three test

procedures S j, j = 1,2,3. S1 and S2 are consistent, S3
has only property (b). Afterwards we give boundaries of

Type I error rates for the various families of hypotheses.

All three procedures have in common that the primary

family Fp is tested with a testing procedure controlling
the FWER at level αp. We focus on closed test proce-
dures because of their desirable properties (Bauer 1991)

but this is not a prerequisite for the results we are pre-

senting in the sequel.

Assume that trial results are available and the test

procedure on the primary hypotheses is performed. Let

rFp⊆Fp be the set of primary hypotheses that have been
rejected and cFs = ⋃(Fs(i) : Hp,i ∈ rFp) denote the set
of secondary hypotheses with rejected “parent” primary

hypotheses (i.e., the candidate set for rejection).
In the sequel we denote by Hp,i a primary hypothesis,

Hs, j a secondary hypothesis and by Hs(i), j a secondary
hypothesis that is a descendant of Hp,i.

S1: Test all secondary hypotheses Hs, j ∈ cFs using a
closed test procedure on cFs at level αs. Retain
all secondary hypotheses with retained primary hy-

potheses.

S2: Test each Hs, j ∈ cFs at level αs and retain sec-
ondary hypotheses with retained primary hypothe-

ses.

S3: Test each Hs, j ∈ Fs at level αs, irrespective of
whether or not a primary hypothesis is rejected.

Let Rj(H) denote the event that a null hypothesis H is
rejected with strategy S j, j= 1,2,3, andWj(F) the event
that a true null hypothesis from the family F is rejected
with strategy S j. If no null hypothesis in F is true, we
setWj(F) = ∅. Let P(W (F)) denote the probability that
the eventW occurs for a given scenario of true and false

hypotheses in family F . Note that max(P(W (F))) is the
FWER for a hypotheses family F , where the maximum
is taken over all possible scenarios of true and false hy-

potheses.

All three test procedures above have the property that

the test decisions of the secondary hypotheses do not in-

fluence those of the primary hypotheses. Hence,

P(Wj(Fp))≤ αp, j = 1,2,3, (1)

that is, for the family of primary hypotheses the FWER

is protected at level αp. For a given scenario of true and
false hypotheses and trial results, rejection of a hypoth-

esis Hs, j with strategy S1 implies rejection with strategy
S2, which in turn implies rejection with S3. Consequently,

R1
(
Hs(i), j

) ⊆ R2
(
Hs(i), j

)
⊆ R3

(
Hs(i), j

)
, i ∈ N,Hs(i), j ∈ Fs(i)
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and hence

W1 (Fs) ⊆ W2 (Fs) ⊆ W3 (Fs)
for any fixed scenario of true and false primary and sec-

ondary hypotheses. With F = Fp∪Fs this implies
W1(F)⊆W2(F)⊆W3(F).

Let m denote the number of different hypotheses in
Fs. Then by the above implications, we have

P(W1(Fs))≤ P(W2(Fs))≤ P(W3(Fs))≤ mαs. (2)

Further, as F = Fp∪Fs,
P(W3(F)) = P(W3(Fp)∪W3(Fs))≤ αp+mαs.

due to the Bonferroni inequality.

If each primary hypothesis has at least h> 0 descen-
dant secondary hypotheses and every secondary hypoth-

esis has only one parent primary hypothesis, this upper

bound can be tightened for the more restrictive proce-

dures S1 and S2 to

P(W1(F))≤ P(W2(F))≤max(mαs,αp+(m−h)αs),
(3)

see Appendix A.1 for a proof.

For αp ≤ αs the inequality (3) reduces to

P(W1(F))≤ P(W2(F))≤ mαs. (4)

Intuitively one would expect that these inequalities

are strict, that is, that the FWER for the family of sec-

ondary hypotheses is strictly smaller than that for the

combined families of primary and secondary hypotheses

and that the FWER for applying the more stringent pro-

cedure S1 is strictly smaller than that induced by proce-
dure S2. However, this is not always the case. Assum-
ing mαs ≤ 1, it is always possible to construct exam-
ples where the boundaries are tight (i.e., (3) holds as

an equality), even for strategy S1. Such constructions are
based on cases where all primary variables are linked in

a non-stochastic way such that a significant test result in

one of them implies that all other primary tests are non-

significant with probability 1. Of course, situations like

that are degenerate borderline cases of real testing prob-

lems and will never occur in practice.

For the more realistic case of (asymptotically) multi-

variate normal test statistics associated with Fp and Fs,
there are parameter constellations where boundary (3) is

(asymptotically) tight for n = m = 2. For m,n > 2 and
αp ≤ αs, there is no parameter setting for which the up-
per bound mαs is reached, but (3) is almost tight without
additional restrictions on the parameters of the normal

distribution and for small m. Appendix A.2 investigates
some corresponding scenarios.

3.1 Testing Two Primary Hypotheses With One De-

scendant Secondary Hypothesis Each

We consider the situation of testing two primary

hypotheses with one descendant secondary hypothesis

each. It is also the most elementary situation where the

inequalities above are not trivial and where the tightness

of the boundaries can be investigated. In the sequel we

assume αp = αs = α . Hence the two primary hypothe-
ses are tested with some closed test at multiple level α .
Procedure S1 tests the family cFs with a closed test also
at level α , whereas procedure S2 allows testing each sec-
ondary hypothesis in cFs at level α .
From Equation (1) it follows

P(Wj(Fp))≤ α, j = 1,2, (5)

and from (3) and (4)

P(W1(Fs))≤ P(W1(F))≤ P(W2(F))≤ 2α (6)

for any scenario of true and false hypotheses in F .
These boundaries are tight, that is, there exist scenar-

ios for which P(W1 (Fs)) = 2α . Hence, together with the
above inequalities,

maxP(W1(Fs)) = maxP(W1(F))
= maxP(W2(F)) = 2α, (7)

where the maximum is taken over all possible scenar-

ios of true and false hypotheses and correlations between

the test statistics. To show this, assume that the vector

of test statistics (Tp,1,Ts,1,Tp,2,Ts,2)′ for the primary and
secondary hypotheses, respectively, follows a multivari-

ate normal distribution

N

⎛
⎜⎜⎝
⎛
⎜⎜⎝

μp,1
μs,1
μp,2
μs,2

⎞
⎟⎟⎠ ,
⎛
⎜⎜⎝
1 ρ τ ρτ
ρ 1 ρτ τ
τ ρτ 1 ρ

ρτ τ ρ 1

⎞
⎟⎟⎠
⎞
⎟⎟⎠ , (8)

where τ = corr(Tp,1,Tp,2) = corr(Ts,1,Ts,2) denotes the
correlation between the primary and the secondary test

statistics, respectively, and ρ = corr(Tp,i,Ts,i), i = 1,2,
denotes the correlation between the primary and the de-

scendant secondary test statistic. Note that the assump-

tion of corr(Tp,1,Ts,2) = corr(Tp,2,Ts,1) = ρτ is equiva-
lent to conditional independence of Tp,1 and Ts,2 given
either Tp,2 or Ts,1.
Consider the specific scenario that the alternative hy-

potheses hold for the primary hypotheses (i.e., μp,i >
0, i = 1,2), whereas for the secondary hypotheses both
null hypotheses hold (i.e., μs,i = 0, i = 1,2). As a repre-
sentative for a procedure that has the properties S1 we
assume that the primary hypotheses are tested with a

Bonferroni-Holm test (Holm 1979) at level α .
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Multiple and Repeated Testing of Primary, Coprimary, and Secondary Hypotheses

If only one primary hypothesis is rejected, the sin-

gle descendant secondary hypothesis is tested at level α .
Otherwise, if both primary hypotheses are rejected the

two descendant hypotheses are tested with a Bonferroni-

Holm test at level α .
If now the primary test statistics are completely

negatively correlated (i.e., τ = −1) and the secondary
test statistics are completely positively correlated with

their parent primary test statistics (ρ = 1, i = 1,2) then
P(W1 (Fs)) = 2α for all scenarios where μp = μp,1 =
μp,2 > 0 are in the interval uα/2− uα ≤ μp ≤ 2uα , i =
1,2, where uα denotes the (1−α)-quantile of the stan-
dard normal distribution. For these means of the primary

test statistics, the rejection probability πp,i = P(Tp,i ≥
uα), i = 1,2 of a primary test is between Φ(uα/2− 2uα)
and 1−α . The lower bound of this interval is slightly
below 2α for the usually used significance levels α . A
proof of this is given in the Appendix A.2 together with a

general formula to compute the FWER of the secondary

hypotheses when the above test procedure is used. If

the Bonferroni-Holm procedure is replaced by the sim-

ple Bonferroni procedure, P(W1 (FS)) = 2α even holds
for uα/2 − uα ≤ μp ≤ uα/2 + uα , showing that regard-
ing the rejection probability for a secondary hypothesis,
a Bonferroni-Holm adjustment of the primary tests does
not yield a uniformly more powerful procedure than the

simple Bonferroni method.

Clearly the assumption of completely negatively cor-

related primary test statistics is impossible for some of

the configurations described in Section 2. For example,

if the correlation τ between the primary test statistics is
induced by the design and, as for the situation in case 1,

determined by the relative size of the control group ver-

sus that of the active groups, then τ > 0. Therefore the

above result only shows that it is impossible to tighten

the boundaries without taking into account the trial de-

sign and making further assumptions on the joint distri-

butions of the endpoints and the associated test statistics.

The different cases we considered in Section 2 can be

further detailed for the case of two primary and two sec-

ondary hypotheses together with values or ranges for the

correlations between test statistics, see Table 1.

1. One primary with one descendant secondary end-
point for two comparisons. (a) Comparison of two
treatment arms of size ntrt versus a control arm
of size nctrl. (b) Comparison of active versus con-
trol in two subgroups with sample sizes n1, n2, re-
spectively, and a common size ncomm. If the sub-
groups are disjoint, then ncomm = 0. If one of the
subgroups (1, say) is a subset of the other, then

ncomm = n1. In this latter case, the correlations
ncomm/

√n1 ·n2 in Table 1 become
√
ncomm/n2.

2. Two primary endpoints with a secondary endpoint
each.

3. A primary and secondary comparison of two
equally important endpoints with correlation τ .
For the comparisons the same assumptions (a) and

(b) are made as for case 1.

4. Noninferiority (primary) and superiority (sec-
ondary) testing for (a) two endpoints of equal im-
portance with correlation τ , (b) two treatment arms
vs. control, and (c) two subgroups. Here the corre-

lation ρ between the noninferiority and the supe-
riority test is 1 if the same analysis population is

used for the two tests (e.g., the “full analysis set”)

Table 1. Ranges for ρ and τ under the different cases detailed in the text. ρ = correlation between primary and descendant secondary test statistics
and τ = correlation between primary and between secondary test statistics.

Case ρ τ

1a −1≤ ρ ≤ 1 nctrl/(ntrt+nctrl)
1b −1≤ ρ ≤ 1 ncomm/

√n1n2
2 −1≤ ρ1,ρ2 ≤ 1 −1≤ τ1,τ2 ≤ 1

3a nctrl/(ntrt+nctrl) −1≤ τ ≤ 1
3b ncomm/

√n1n2 −1≤ τ ≤ 1

4a 1 or 0≤ ρ < 1 −1≤ τ ≤ 1
4b 1 or 0≤ ρ < 1 nctrl/(ntrt+nctrl)
4c 1 or 0≤ ρ < 1 ncomm/

√n1n2
5a −1≤ ρ ≤ 1 √

I1
5b

√
ncomm/ntot

√
I1

5c 1
√
I1
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Figure 1. FWER of procedure S1 on Fs, that is, P(W1(Fs)) with αs = αp = 0.025, as a function of πp,i for α = 0.025 and selected values of ρ
and τ .

or 0 ≤ ρ ≤ 1 if the set for noninferiority is a sub-
population of the population used for the superior-

ity test (e.g., the per protocol population).

5. Group sequential testing of a primary and a sec-
ondary hypothesis with one interim analysis. The
correlation τ between the test statistics depends
on the information fraction I1 available at the in-
terim analysis. For example, if ntot is the total sam-
ple size or number of events and nint the respec-
tive number available at the interim analysis then

I1 = nint/ntot. For the primary/secondary hierarchy
we can consider here (a) a primary and secondary

endpoint, (b) the total population and a subpopula-

tion, and (c) noninferiority and superiority testing

in the same population.

The FWER can only reach the upper bound of 2α
if τ = −1. Unfortunately, a substantial lowering of this
bound is usually not attainable in practice. For example,

if strategy S1 is applied using the Bonferroni-Holm pro-
cedure and if

(i) τ = 0, that is, the two primary test statistics are in-
dependent,

(ii) the local power of the primary test at level α
2
is α ,

that is, P(Tp,i ≥ uα/2) = α ,

(iii) ρ = 1, that is, the primary and secondary variables
are perfectly correlated,

then the general result (A.4) in Appendix A.2 implies

that P(W1(Fs)) ≈ 2α − 2α2 for typically used test lev-
els. Hence, P(W1(Fs)), P(W1(F)) and P(W2(F)) can be

close to 2α in realistic situations for Cases 1b, 2, 4a, and
4c.

Figure 1 displays P(W1(Fs)), the actual FWER for
the family of secondary hypotheses under procedure S1
using Bonferroni-Holm tests at level α = 0.025 for the
primary hypotheses and for the family of secondary hy-

potheses with rejected primary hypotheses. Note that in

this case P(W1(Fs)) = P(W1(F)) since the primary hy-
potheses are assumed to be false. The FWER is plotted

in dependence of the rejection probability πp,i of the pri-
mary hypotheses (assuming α = 0.025) and for selected
correlations ρ and τ between and within primary and
secondary endpoints. Note that the structural correlation

τ = 0.5 occurs, for example, in cases (1a) and (4b) if
treatment arm and control arms are of the same size and

for cases with subgroup analyses or interim analyses if

ncomm/
√n1n2 = 0.5 or I1 = 0.25, respectively. The val-

ues of the FWER have been computed using expression

(A.3) in the Appendix by means of numerical integration

methods described in Genz and Bretz (2009) and imple-

mented in many statistical software packages like R or

SAS.

4. Partially Hierarchical Testing

Procedures Protecting the FWER

The results presented in the preceding section show

that there is no substantial reduction of the upper bound

for the FWER if unconditional testing of the secondary

hypotheses (procedure S3) is replaced by testing only
secondary hypotheses with rejected primary hypotheses.

Nevertheless such consistent procedures can be of inter-
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Multiple and Repeated Testing of Primary, Coprimary, and Secondary Hypotheses

est if the main goal is to protect the FWER for the fam-

ily of primary hypotheses at given level αp because they
allow us to perform an exhaustive closed test on the pri-

mary hypotheses independent of the secondary hypothe-

ses and hence have a high power to reject all false pri-

mary null hypotheses. In this section we will explore

procedures that protect the FWER for the family F of
primary and secondary hypotheses and which are consis-

tent as well. As all parallel gatekeeping procedures, they

entail a small price to pay, because secondary hypothe-

ses can be tested without prior rejection of all primary

hypotheses. This slightly reduces the power to reject all

false primary hypotheses. However, the power to reject at

least one false primary hypothesis can be as high as for

any of the procedures discussed in Section 3.

4.1 Consonant and Successive Bonferroni-based

Closed Testing Procedures

Consider the problem of testing k = n+m elemen-
tary primary and secondary hypotheses H1, . . . ,Hk and
let K = {1, . . . ,k} denote the associated index set.We
assume that the elementary hypotheses satisfy the free

combination condition, that is, for any subset I ⊆ K the
simultaneous truth of Hi, i ∈ I, and falsehood of the re-
maining hypotheses is a possible event. The only situa-

tions considered in Section 2 where this might not apply

are Cases 4 and 5, for Case 4 given that noninferiority and

superiority are tested on the same analysis population and

hence superiority implies noninferiority. In this situation,

however, the result below still apply since the nesting of

primary hypotheses within secondary hypotheses is fully

exploited when a procedure is consistent.

Applying the closure principle (Marcus, Peritz, and

Gabriel 1976) leads to testing the intersection hypothe-

ses HI =
⋂
i∈I Hi, I ⊆ K. For each intersection hypothesis

HI we assume a set of levels ααα(I) = {αi(I), i ∈ I} such
that 0 ≤ αi(I) ≤ α and ∑i∈I αi(I) ≤ α where α is the

intended significance level of the test for the combined

family of primary and secondary hypotheses. In the se-

quel we assume that ∑i∈I αi(I) = α , I ⊆K, that is, the in-
tended level is exhausted for all intersection hypotheses.

The relative weights wi(I) = αi(I)/α, i ∈ I ⊆ K quantify
the relative importance of the hypotheses Hi included in
the intersection HI .
We assume that each intersection hypothesis is tested

with a weighted Bonferroni test, that is, we reject HI
if pi ≤ αi(I) for at least one i ∈ I. This defines the
class B of all closed testing procedures that use weighted
Bonferroni tests for each intersection hypothesis. Many

standard multiple testing procedures belong to the class

B, such as the weighted Bonferroni-Holm procedure

(Holm 1979), fixed sequence tests (Maurer, Hothorn,

and Lehmacher 1995; Westfall and Krishen 2001), fall-

back procedures (Wiens 2003; Wiens and Dmitrienko

2005), and Bonferroni-based gatekeeping procedures

(Dmitrienko, Offen, and Westfall 2003; Hommel, Bretz,

and Maurer 2007). In the sequel we will assume addi-

tionally that all tests for the intersection hypotheses are

exhaustive.

A closed test is consonant if for any intersection hy-

pothesis HJ that can be rejected, there is an index j ∈ J
such that for any I ⊆ J with j ∈ I the intersection hy-
pothesis HI can be rejected (Gabriel 1969). Hommel et
al. (2007) showed that for weighted Bonferroni tests the

consonance property is equivalent to the condition that

for all I ⊆ J ⊆ K the sets ααα(I) obey the monotonicity
condition αi(I)≥ αi(J), i∈ I. Closed test procedures that
use weighted Bonferroni tests for each intersection hy-

pothesis and satisfy the above monotonicity condition

lead to sequentially rejective test procedures of at most

k steps, which can be performed as follows: Start testing
the global intersection hypothesis HK ,K = {1, . . . ,k}. If
it is rejected, there is an index i ∈ K as described above
such that Hi is rejected. At the next step, one continues
testing the (reduced) global intersection HK\{i} of the re-
maining, not yet rejected hypotheses, and so on, until the

first nonrejection. In case the free combination condition

does not hold, defining separate level-α tests for all in-

tersection hypotheses (including those that are equal to

others) and applying the closed testing principle results

in a valid but potentially unnecessarily conservative pro-

cedure.

For a closed test procedure the succession property

(property (a), Section 3) can be stated as follows: For

a given index set I ⊆ K = {1,2, . . . ,k} let I(p) = I ∩N
be the index subset of the primary hypotheses Hi, i ∈ I,
where as before N = {1, . . . ,n} denotes the index set
of all primary hypotheses. Further, let I(s) denote the
respective index subset of the secondary hypotheses.

Hence, I(p)∪ I(s) = I and I(p)∩ I(s) = ∅. In addition let
I(s′)⊆ I(s) denote the index set of secondary hypotheses
that are descendants of primary hypotheses Hi, i ∈ I(p).
Then a closed test is successive if the level α test de-

cisions for HI , I ⊆ K, do not depend on hypotheses Hi,
i ∈ I(s′). For the class B succession can be expressed
as follows: The test procedure defined by ααα(I) is suc-
cessive if αi(I) = 0 for all i ∈ I(s′), I ⊆ K. These two
statements are not difficult—but somewhat intricate—to

prove. The idea of proof is the same as for proving via the

closed testing principle that a strictly hierarchical (or se-

rial gatekeeping) procedure controls the FWER at level

α . Despite the restrictions imposed on the 2k − 1 level
sets ααα(I) by applying exhaustive, consonant, and succes-
sive Bonferroni-based tests, there is still a large degree

of freedom for choosing the levels. If one is presented a

procedure defined by ααα(I), it is difficult to recognize the
basic principle behind the choice of ααα(I); on the other
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hand if logical dependencies or orders of relative impor-

tance are given, it is not easy to construct a test procedure

ααα(I) that takes them into account.
One way to overcome that difficulty is using algo-

rithmic, graph-based approaches to sequentially rejec-

tive Bonferroni procedures (Bretz et al. 2009b; Burman,

Sonesson, and Guilbaud 2009). We will concentrate on

the approach by Bretz et al. (2009b), since here the rep-

resentation of the partition into primary and secondary

hypotheses and successive tests turns out to be particu-

larly intuitive and transparent. It will also allow a better

understanding of the price to pay for the stringent con-

trol of the FWER for the combined families of primary

and secondary hypotheses, compared to the more liberal

procedures discussed in Section 3.

4.2 Sequentially Rejective Graphical Procedure for

Successive Bonferroni-Based Closed Tests

Before we describe the specifics of the graphical

approach applied to our situation of successive testing

of primary and secondary hypotheses, we illustrate the

method by means of a (simple) example with k = 4 hy-
potheses: H1,H2 are the primary and H3,H4 the sec-
ondary hypotheses, where H3 is the only descendant of
H1, and H4 is the only descendant of H2. Since we do
not want to reject a secondary hypothesis until its par-

ent primary hypothesis is rejected we set the initial lo-

cal levels α3 = α4 = 0. The four elementary hypothe-
ses are represented by vertices of a graph with associated

weights representing the local significance levels. In our

case we have chosen α1 = α2 = α/2, that is, the two
primary hypotheses are considered as equally important.

If one of them can be rejected at α/2, this level is first
shifted entirely to its descendant secondary hypothesis.

If this can be rejected at level α/2, its level is shifted and
added to the level of the remaining, nonparent primary

hypothesis which in turn now can be tested at full level

α . After the potential rejection of this second primary hy-
pothesis, its descendant secondary hypothesis then can be

tested at level α . This particular gatekeeping procedure
can be interpreted as a Bonferroni-Holm test applied to

the hierarchical pairs of primary and secondary hypothe-

ses (H1,H3) and (H2,H4).
This procedure can be fully described by the graph

given in Figure 2(a) and an algorithm for sequentially

updating it. The elementary hypotheses are represented

in the graph by vertices with associated weights repre-

senting the local significance levels. The weight gi j asso-
ciated with a directed edge between any two vertices Hi
and Hj indicates the fraction of the (local) significance
level at the initial vertex (head) that is added to the sig-

nificance level at the terminal vertex (tail) if the hypoth-

esis Hi at the head is rejected. More formally, the initial

local significance levels ααα = (α1, . . . ,αk) are interpreted
as weights of the k vertices with∑ki=1αi≤α and the k×k
transition matrix G = (gi j) defines the weights of all di-
rected edges. As a convention, edges with weight 0 are

not drawn. In addition, regularity conditions hold for the

initial matrix. Expressed in terms of the weights on the

directed edges, the sum of the weights with tail on node

Hi is restricted by 1 for i ∈ K and there are no elemen-
tary loops (edges where head and tail coincide), that is,

gii = 0, i ∈ K.
To illustrate the sequentially rejective graphical

procedure, Figure 2 displays two graphs with exam-

ple rejection sequences. Given the initial graphs in

the left column, we have the significance levels ααα =
(α/2,α/2,0,0) for both graphs and the transition ma-
trices

G=

⎛
⎜⎜⎝
0 0 1 0

0 0 0 1

0 1 0 0

1 0 0 0

⎞
⎟⎟⎠ and G=

⎛
⎜⎜⎝

0 1/2 1/2 0

1/2 0 0 1/2
0 1 0 0

1 0 0 0

⎞
⎟⎟⎠

for the graphs (a) and (b), respectively.

Let pi denote the unadjusted p-values for Hi, i ∈ K.
Bretz et al. (2009b) have shown that the following algo-

rithm determines a unique sequentially rejective (conso-

nant) procedure with FWER controlled at level α .

0. Set I = K.

1. Select an i such that pi ≤ αi. If no such i exists
stop, otherwise reject Hi. If |I|= 1 stop.

2. Update the graph:

I→ I \{i}

α j→
{

α j+αigi j, j ∈ I,
0, otherwise.

If |I|= 1 go to Step 1.

g j�→
{ g j�+g jigi�

1−g jigi j , j, � ∈ I, j �= �,g jigi j < 1
0, otherwise.

3. If |I| ≥ 1, go to Step 1; otherwise stop.
SAS/IML code that can be easily adapted to a partic-

ular initial graph is provided in Bretz et al. (2010).

As an example for the update steps, possible rejec-

tion sequences are given for the two initial graphs in Fig-

ure 2. They result from assuming the unadjusted p-values
(p1, . . . , p4) = (0.01,0.03,0.02,0.08) and α = 0.05. In
both cases H1,H2, and H3 can be rejected, though in dif-
ferent sequences. Note that in case more than one hypoth-

esis could be rejected at a particular step, the algorithm

guarantees that the sequence of rejection has no influence

on the test decision (Bretz et al. 2009b).
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Multiple and Repeated Testing of Primary, Coprimary, and Secondary Hypotheses

Figure 2. Graphs for two successive sequentially rejective procedure with example rejection sequences.

The succession property for families of primary hy-

potheses with descendant families of secondary hypothe-

ses (as introduced in Section 4.1) can be generated easily

by the following property of the initial graph (i.e., I=K):
Let Kp be the index set of all primary hypotheses, Ks
the index set of all secondary hypotheses, S(i), i ∈ Kp,
the index set of descendants of Hi, and P( j), j ∈ Ks the
index set of (primary) parents of Hj. The consonant se-
quentially rejective procedure generated by a graph G =
(ααα,G) is successive if

(i) α j = 0, j ∈ Ks and
(ii) gi j = 0 for any j ∈ Ks, with i ∈ Kp and j /∈ S(i) or

where i ∈ Ks, i �= j, and P(i) �= P( j).
In other words: If a graph initially has weights 0 on

all secondary hypotheses (vertices) and the only edges

with positive weight leading into a secondary hypothe-

sis (node) are those originating at its parent primary hy-

potheses and there are no edges leading from a secondary

hypothesis to another secondary hypothesis that has not

the same parents, then the rejection algorithm generates a

successive procedure. A proof of this statement is given

in Appendix A.3. An example of such a graph is given

in Figure 3 with three primary hypotheses each with a

descendant family of secondary hypotheses. The latter

may be empty or have more than one member; differ-

ent families also may contain identical hypotheses. Only

one edge is drawn from a primary hypothesis to a de-

scendant family in order not to overload the picture; for

concrete cases the number of edges would be that of the

members in the descendant family. Weights on the edges

have been omitted; an edge drawn in Figure 3 means that

it may have a positive weight, whereas edges not drawn

must have weight 0.

It is instructive to verify the succession property in

the two graphs of Figure 2. In order for a successive test-

ing procedure to be also consistent according to defini-

tion (b) (Section 3) the retention of a secondary hypothe-

sis cannot preclude the rejection of a primary hypothesis.

This can be easily achieved in testing procedures defined

by the graphical approach: The procedure is consistent if

in the initial graph it is successive and for any primary

hypothesis (vertex) Hi the initial weight αi is either pos-
itive or there is a directed path with positive weights on

the edges leading from another primary hypothesis (ver-

tex) Hi′ with positive weight α ′i to Hi. The two example
procedures given in Figure 2 hence are consistent.

For the case of two primary variables with one de-
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Figure 3. Concept of graph for partly hierarchical sequentially rejective procedure.

scendant secondary hypothesis each, another property

can be verified in Figure 2: Irrespective of the rejection

sequence at most two local significance levels can be pos-

itive at any rejection stage. This can be used to further

improve the procedure by applying a generalization of

the Simes (1986) test to the intersection hypotheses and

also to construct powerful procedures in case all copri-

mary endpoints must be declared significant in order to

achieve a success in a multiple comparison situation, as

shown in the next section.

4.3 Improving Sequentially Rejective Procedures by

Generalized Simes Tests

As mentioned under Case (3) in Section 2, Quan et

al. (2009) considered the situation where the hierarchy

of primary and secondary hypotheses is given by a clear

order of importance in the comparison of two treatment

arms vs. one control or of one test treatment vs. two con-

trols (e.g., placebo and an active control). The n end-
points are considered as equally important. The proce-

dure to test the 2n hypotheses they proposed, translated
into our notation, is as follows:

(i) Reject all hypotheses Hp,i ∈ Fp and all Hs,i ∈ Fs if
pp,i ≤ α and ps,i ≤ α , i= 1, . . . ,n;

(ii) reject Hp,i if pp,i ≤ αi and reject Hs,i if pp,i ≤
αi and ps,i ≤ αi, i = 1, . . . ,n where αi ≥ 0 and
∑ni=1αi = α .

Part (ii) applies the Bonferroni inequality to the par-

tial hierarchical tests Hp,i → Hs,i where each pair is
tested—starting with the primary hypothesis—at level

αi. The graphical representation of Part (ii) of this pro-
cedure is a graph with exactly one edge with weight 1,

leading from each primary to the descendant secondary

hypothesis, and ααα = (α1, . . . ,αn) as initial weights on the

(primary) vertices (see Figure 4 with n= 3). Hence, Part
(ii) protects the FWER at level α . However, it can be
uniformly improved by adding edges in the graph lead-

ing from the secondary hypotheses to primary hypotheses

that are not their parents. Part (i) of the procedure exploits

a generalized Simes inequality. The possibility to replace

a weighted Bonferroni test in a gatekeeping procedure

by a weighted Simes test has already been suggested by

Dmitrienko, Offen, and Westfall (2003) and refined by

Chen, Luo, and Capizzi (2005). To fully exploit the in-

creased power of the Simes test, however, it would be

necessary to check all 2k− 1 intersection hypotheses to
determine which elementary hypotheses can be rejected.

If only part of the Simes inequality is exploited one still

can preserve the sequentially rejective nature of the con-

sonant tests generated, for example, by the graphical ap-

proach, as we will show in the sequel.

As described by Quan et al. (2009) for a set of hy-

potheses FI = {Hi, i ∈ I}, I ⊆ K, the intersection hypoth-
esis HI can be rejected when for some j ∈ I

p( j) ≤
j

∑
i=1

α(i), (9)

where p( j) are the ordered p-values of the hypotheses in
FI and α( j) are the corresponding local significance lev-
els. Kling (2005) showed that this weighted Simes pro-

cedure controls the Type I error rate if the univariate test

statistics are positive regression dependent which, for ex-

ample, is the case if the test statistics follow a multi-

variate normal distribution with nonnegative correlations.

Assuming that positive regression dependence of the uni-

variate test statistics holds, the following generalization

of the procedure of Quan et al. (2009) protects the FWER

at level α . Let B be a closed and exhaustive weighted
Bonferroni procedure of level α and S(B) an extended
procedure that rejects a hypothesis Hi ∈ F if B rejects
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Multiple and Repeated Testing of Primary, Coprimary, and Secondary Hypotheses

Figure 4. Graphical representation of Part (ii) in the procedure by Quan et al. (2009) for n = 3.

Hi, or if locally all hypotheses Hi ∈ F can be rejected at
level α . Then S(B) protects the FWER at level α as well
and is uniformly more powerful than B. A proof of this
statement is given in Appendix A.4.

This extension of weighted Bonferroni procedures

can be applied in particular to sequentially rejective and

successive procedures. The succession property remains

preserved by the additional possibility to reject all hy-

potheses if they are locally significant at level α . We
use the test procedure defined by the initial graph in Fig-

ure 2(a) to illustrate in which situations this extension al-

lows to reject more hypotheses than the method proposed

by Quan et al. (2009).

Assume that there are two primary endpoints to be

tested in a multiple comparison of a high dose and a

low dose against a control. It is sufficient that at least

one of the two endpoints can be rejected and a (sec-

ondary) lower dose hypothesis on the two endpoints is

rejected only if the respective high dose hypothesis could

be rejected. Under the same assumptions for the ini-

tial levels as in the example from Section 4.2, where

α1 = α2 = α/2= 0.025 for the two primary hypotheses
with the assumed same outcome, that is, (p1, . . . , p4) =
(0.01,0.03,0.02,0.08), the method of Quan et al. (2009)
allows to reject H1 and H3, whereas the graphical proce-
dure allows to reject in addition H2. In general the above
procedure allows to reject any hypothesis that is rejected

by the procedure of Quan et al. (2009).

For the above case with only four hypotheses the ne-

cessity that the test statistics are positive regression de-

pendent can be relaxed. Brannath, Bretz, Maurer, and

Sarkar (2009) have shown that for one-sided testing of

two hypotheses a weighted trimmed Simes test can be

used which protects the level α even if the correlations

between the test statistics are negative. Let H1 and H2
be two hypotheses, α1,α2 ≥ 0 with α1 + α2 = α and

p1, p2 respective univariate (one-sided) p-values. Then
the trimmed version of the weighted Simes test allows

to reject H1 ∩H2, irrespective of the correlation of the
multivariate normal or t-distributed test statistics if

(a) p1 ≤ α1 and p2 < 1−α2
or (b) p2 ≤ α2 and p1 < 1−α1 (10)

or (c) max(p1, p2)≤ α .

There is a small price to be paid in order to use condi-

tion (10), namely that a hypothesis cannot be rejected if

the observed effect in the other hypothesis is significant

in the wrong direction. The motivation for trimming the

Simes test is similar to the consistency requirement intro-

duced by Alosh and Huque (2010). They considered the

problem of testing a primary and a secondary endpoint

and proposed a trimming strategy to avoid similar inter-

pretation problems for the overall outcome of the trial

when outcomes on different endpoints or doses are con-

tradictory.

Despite the fact that the validity of the trimmed Simes

test has only been derived for two hypotheses, it can be

well applied to our situation with four hypotheses (two

primary and two secondary hypotheses). The most gen-

eral generating graph with the succession property for the

situation where the initial α-levels for the two primary
hypotheses are both positive is given in Figure 5; see also

Bretz, Maurer, and Hommel (2010).

It is easy to check that for any rejection sequence at

most two of the remaining hypotheses can have positive

weight since if a hypothesis is rejected in the sequence,

one hypothesis with positive weight is removed and its

weight is shifted to at most one hypotheses with weight

0. Figure 2 illustrates this property. Hence the trimmed

Simes procedure can be applied to all intersection hy-

potheses with more than one hypothesis in the intersec-

tion. To simplify the resulting closed test we suggest to
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Figure 5. General graph for a successive sequentially rejective procedure for two primary hypotheses H1,H2 with positive initial weight and
respective descendant secondary hypotheses H3,H4.

replace the condition for exclusion of contradictory re-

sults by the following—somewhat more conservative—

condition pi < 1−α, i= 1, . . . ,4. Given two primary hy-
potheses with one distinct descendant hypothesis each,

the resulting test procedure is then as follows:

(i) Retain all four hypotheses if pi ≥ 1−α for any

i ∈ {1, . . . ,4};
(ii) reject all four hypotheses if pi < α for all i ∈
{1, . . . ,4};

(iii) if neither (i) or (ii) applies, perform a closed

successive weighted Bonferroni-test, for example,

based on a successive graphical approach as given

in Figure 5.

Condition (i) above is the price to pay for the additional

possibility to reject all four hypotheses in Step (ii) irre-

spective of the correlations between the test statistics.

Given that true opposing effects are unlikely and ob-

served contradictory results would anyway prevent an

overall claim of success, the small loss in power is more

than compensated by the additional possibility (ii) to re-

ject all four hypotheses. Power comparisons that quali-

tatively also apply to our case of four hypotheses can be

found in Brannath et al. (2009).

4.4 Improving Multiple Comparison Procedures

With Coprimary Endpoints by Generalized

Simes Tests

In many indications regulatory guidance asks for sta-

tistically significant results in two endpoints for achiev-

ing a successful claim. Alzheimer’s disease is a typical

example where the respective CHMP guideline (2008)

asks for significant differences in each of two primary

variables which assess cognitive functions and activities

of daily living, respectively. In these cases we have an

intersection-union testing situation, that is, given two hy-

potheses Hi and Hj related to two different endpoints we
have to reject the hypothesis Hi ∪Hj by rejecting both
individual hypotheses at level α . If the trial design has
multiple treatments to be compared to a control, the test-

ing situation is very similar to the one with primary and

descendant secondary hypotheses. We arbitrarily con-

sider one of the primary endpoints as primary and the

other as secondary. In order to achieve statistical signif-

icance in both endpoints we do not lose anything when

requesting that the designated primary hypothesis has to

be rejected before the secondary one. If the two end-

points are equally important, however, the respective hy-

potheses should be sequentially tested at the same level.

When using the graphical approach to define the Bon-

ferroni part of the testing strategy, edges leading from a

parent to a descendant hypothesis then should have full

weight. As an example, consider the initial graph of Fig-

ure 2(a). The aim is to reject at least one of the pairs of

hypotheses H1,H3 and H2,H4. We denote the two com-
parisons by A and B, respectively, and by HA = H1 ∪H3
and HB = H2∪H4 the two union-hypotheses to be tested
and the initial α-levels by αA and αB instead of α1 and
α2, respectively. Then we can construct a level α-test by
applying the generalized Simes test described in Section

4.3 to the hypotheses H1, . . . ,H4 and reject HA if both H1
and H3 are rejected and reject HB if both H2 and H4 are
rejected. This leads to the following test procedure which

protects the multiple level α = αA+αB :

(i) Retain HA and HB if pi ≥ 1 − α for any i ∈
{1, . . . ,4};

(ii) reject HA and HB if pi < α for all i ∈ {1, . . . ,4};
(iii) reject HA if max(p1, p3) ≤ αA or reject HB if

max(p2, p4)≤ αB.

It is instructive to express this procedure in terms

of the univariate test statistics Ti, i = 1, . . . ,4. Let TA =
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min(T1,T3) and TB =min(T2,T4) be test statistics for the
hypotheses HA and HB, respectively. Let uα be (1−α)-
quantiles of the distribution of Ti, i= 1, . . . ,4 under their
respective null hypotheses. Then rejecting, for example,

HA if TA > uα is a valid level-α test. Given that the origi-
nal test statistics Ti fulfill the conditions for a generalized
Simes test mentioned in Section 4.3, then the above pro-

cedure implies that this is also the case for TA and TB. The
test procedure is then as follows:

(i) Retain HA and HB if min(TA,TB)≤−uα ;

(ii) reject HA and HB if min(TA,TB)> uα ;

(iii) reject HA if TA > uαA , reject HB if TB > uαB .

Note that if one is still interested in the elementary

hypotheses Hi, the generalized Simes procedure on the
graphical approach initially described allows a refine-

ment of the test decisions. Given the example of test re-

sults in Section 4.2 on can reject H1,H2, and H3, that is,
HA and a “part” of HB. The above procedure would only
allow to reject HA. This refinement can be particularly
helpful, if the two endpoints are not equally important.

5. Discussion

In confirmatory clinical trials we are increasingly of-

ten confronted with multiple testing situations involving

several hypotheses of varying degree of importance. One

reason is that in many indications effective treatments

are available thus leading to trials with more than one

comparator and/or more than one dose or treatment reg-

imen in phase III. Often the multiplicity is further in-

creased by the presence of more than one endpoint. In

the last decade gatekeeping testing procedures have been

developed that allow to take into account partially or-

dered hierarchy structures among the hypotheses. In this

article we concentrate on a frequently occurring hier-

archy structure where the hypotheses can be classified

into primary (e.g., relevant for gaining approval) and sec-

ondary hypotheses (e.g., relevant only for additional la-

bel claims). Often the primary hypotheses are linked in a

parent/descendant relation to one or more secondary hy-

potheses. We have listed five different situations where

this type of partial ordering occurs naturally. We suggest

two desirable properties for such testing procedures: suc-

cession and consistency.

Due to the different importance of primary and sec-

ondary hypotheses a control of the familywise Type I er-

ror rate at different levels αp and αs for the primary and
secondary hypotheses families Fp and Fs might be of
interest. In the first part of the article, we show that the

unconditional FWER for Fs can be considerably larger
than the conditional one when applying procedures with

only conditional control of the FWER. In the second part

of the article we investigate the consequences of control-

ling the FWER at a given significance level α , in partic-
ular when using consonant exhaustive Bonferroni-based

closed test procedures. Conditions for such test proce-

dures to be also consistent are given. We show that the

graphical approach to sequentially rejective testing pro-

cedures by Bretz et al. (2009b) is an intuitively appeal-

ing and transparent way to define and compare such pro-

cedures. The succession and consistency properties can

easily be translated into properties of the graphs that de-

fine the procedure.

It also can be shown that in practically relevant sit-

uations the Bonferroni procedures can further be im-

proved by exploiting the generalized Simes inequality or

the trimmed Simes inequality described by Brannath et

al. (2009). This is discussed in the final part of the arti-

cle where we show that such an extension in general is

more powerful than the pure Bonferroni-based method.

The succession properties of the underlying graphs lend

itself to an application in testing situations where regu-

latory guidance asks for statistically significant results in

two endpoints for achieving a successful claim. We show

that the trimmed Simes procedure then can be used in

multiple comparison situations where in at least one com-

parison for both endpoints statistically significant results

have to be achieved.

Appendix

A.1 Proof of Equation (3) for Upper Boundary of

FWER

Let Fp denote the family of n distinct primary hy-
potheses, of which each member has at least h ≥ 1 dis-
tinct secondary hypotheses such that there are m≥ n sec-
ondary hypotheses in family Fs. Again F denotes the
union of the two families with n+m members which we
denote byHi, whereHi=Hp,i, i∈N andHj =Hs, j−n, j=
n+1, . . . ,n+m. We further assume that a secondary hy-
pothesis can have only one parent primary hypothesis.

We need to show, that for procedure S2 the inequality

P(W2(F))≤max(mαs,αp+(m−h)αs) (A.1)

holds.

Proof : We define a closed test procedure C with
the properties that (i) C rejects a hypothesis H ∈ F =
Fp ∪ Fs whenever S2 rejects and (ii) the probability
P(WC(F)) to reject a true null hypotheses with proce-
dure C for any given scenario of true and false hypothe-
ses is controlled at level max(mαs,αp+(m− h)αs). We
construct C by defining a test for the intersection hy-
potheses HI of all subsets FI ⊆ F , where I is the index
set of the hypotheses Hi ∈ FI , that is, HI = ⋂i∈I Hi. For
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a given index set I ⊆ {1,2, . . . ,n+m} let I(p) = I ∩N
be the index subset of the primary hypotheses in FI and
I(s) be the respective index subset of the secondary hy-
potheses; hence I(p)∪ I(s) = I and I(p)∩ I(s) = ∅. With
HI(p) =

⋂
i∈I(p)Hi, let S2,p be the closed test at level

αp defined by S2 on the primary hypotheses and S2,I(p)
the respective test on the intersection hypotheses HI(p).
With FI(s∗) denoting the set of secondary hypotheses in
FI(s) which are not descendants of primary hypotheses
in FI(p), C is defined as follows: Reject HI if S2,p rejects
HI(p) or if any of the hypotheses in FI(s∗) can be rejected
at level αs. If I(p)= ∅, then the probability to erroneously
reject HI is bounded by mαs. If there is at least one pri-
mary hypothesis in FI there are at most m−h secondary
hypotheses in FI(s∗) and hence the Type I error rate is
bounded by (αp+(m− h)αs), due to the Bonferroni in-
equality. Hence all of the intersection tests are bounded

by max(mαs,αp+(m− h)αs) and therefore this is also
the case for the FWER of procedure C.
It remains to be shown that C has also property (i)

from the beginning of the proof. Assume that hypothe-

sis Hi is rejected by procedure S2. If Hi is a primary hy-
pothesis, then all intersection hypotheses of primary hy-

potheses HI(p) where HI(p) ⊆Hi are rejected by S2 which
implies the rejection of HI(p) ∩HI(s) ⊆ Hi by C. Hence
by the closed testing principle also procedure C rejects
Hi. If Hi is a secondary hypothesis that is rejected by S2
locally at level αs then also one of the parent primary hy-
potheses of Hj, say Hp, j, must have been rejected by S2.
Hence all intersection hypotheses HI where HI ⊆ Hi can
be rejected by C, either because Hp, j is also a member
of HI or, if this is not the case, because the rejection of
the elementary secondary hypothesis Hi by S2 allows the
rejection of HI byC.

A.2 FWER for Strategy S1 for Two Primary and
Secondary Hypotheses with Bonferroni-Holm

as Closed Test

Let Rp,1 = {Tp,1 ≥ uα/2} ∩ {Tp,2 ≥ uα/2}, Rp,2 =
{uα/2 > Tp,1 ≥ uα}∩{Tp,2 ≥ uα/2} and Rp,3 = {Tp,1 ≥
uα/2}∩ {uα/2 > Tp,2 ≥ uα} be the three disjoint events
that lead to the rejection of both primary hypothe-

ses. Similarly Rs,1 = {Ts,1 ≥ uα/2} and Rs,2 = {Ts,1 <
uα/2,Ts,2 ≥ uα/2} are the two disjoint events that can
lead to rejection of at least one secondary hypothe-

sis. With strategy S1 and using Bonferroni-Holm as the
multiplicity-adjustment method, the probability P(Rs) =
P
(
Rs,1∪Rs,2

)
to reject at least one secondary hypothesis

is then

P(Rs) = P
(
Tp,1 ≥ uα/2,Tp,2 < uα ,Ts,1 ≥ uα

)
+P
(
Tp,1 < uα ,Tp,2 ≥ uα/2,Ts,2 ≥ uα

)
+P
({Rp,1∪Rp,2∪Rp,3}⋂{Rs,1∪Rs,2}).

(A.2)

The first two expressions are the probabilities that exactly

one primary and its descendant secondary hypotheses are

rejected. The third expression can be written as the sum

of probabilities of six mutually disjoint events that are in-

tersections of events of the type T ≥ u or T < u for which
numerical evaluation is available.

If the test statistics are jointly normally distributed

with E(Ti,1) = E(Ti,2); i = p,s, ρ = corr(Tp, j,Ts, j), j =
1,2, τ = corr(Ti,1,Ti,2); i = p,s and conditional indepen-
dence of Tp,1 and Ts,2 given either Tp,2 or Ts,1, then this
formula simplifies to

P(Rs) = 2P
(
Tp,1 ≥ uα/2,Tp,2 < uα ,Ts,1 ≥ uα

)
+2P
(
uα/2 > Tp,1 ≥ uα ,Tp,2 ≥ uα/2,Ts,1 ≥ uα/2

)
+2P
(
uα/2 > Tp,1 ≥ uα ,Tp,2 ≥ uα/2,Ts,1

< uα/2,Ts,2 ≥ uα/2
)

+P
(
Tp,1 ≥ uα/2,Tp,2 ≥ uα/2,Ts,1 ≥ uα/2

)
+P
(
Tp,1 ≥ uα/2,Tp,2 ≥ uα/2,Ts,1

< uα/2,Ts,2 ≥ uα/2
)
. (A.3)

For ρ = 1, τ = 0, E(Tp,1) = E(Tp,2) = uα/2−uα , we

have P
(
Tp,1 ≥ uα/2

)
= P
(
Tp,1 ≥ uα/2,Ts,1 ≥ uα

)
= α .

Hence under these assumptions, the probability to reject

exactly one primary hypothesis at level α/2 and its de-
scendant secondary hypothesis at level α is 2α(1−α) =
2α − 2α2. This rough approximation does however not
take into account the event that both primary hypotheses

are rejected. More exactly, (A.3), then becomes

P(Rs) = α+αP
(
Ts,1 < 2uα −uα/2

)− α2

4
. (A.4)

To show the change from the above approximation, for

α = 0.05, this is 2α − 2.09 ·α2 and for α = 0.025, it is
2α−2.11 ·α2.
For ρ = 1, τ =−1, μp = E(Tp,1) = E(Tp,2)≤ uα/2+

uα and E(Ts,1)=E(Ts,2)= 0, we note that due to τ =−1,
it follows Tp,2 = 2μp−Tp,1, all terms in (A.3) except the
first one being 0. Hence, (A.3) further simplifies to

P(Rs) = 2P(Ts,1 >max(uα/2−μp,μp−uα ,uα)).

In the range uα/2− uα ≤ μp ≤ 2uα , and for α < 0.303
the maximum is uα , such that (A.3) simplifies to P(Rs) =
2P(Ts,1 ≥ uα) = 2α .

A.3 Graphical Procedures With Succession Prop-

erty

(Sketch of the proof of the following statement from
Section 4.2) The consonant sequentially rejective proce-
dure generated by a graph G = (ααα,G) is successive if for
any secondary hypothesis Hj (i) α j = 0, j ∈ Ks and (ii)
gi j = 0 for any j ∈ Ks, with i ∈ Kp and j /∈ S(i) or where
i ∈ Ks, i �= j, and P(i) �= P( j).
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Proof : We have to show that an initial graph with

this property generates (via the algorithm given in Sec-

tion 4.2) a successive test procedure, that is, secondary

hypotheses are rejected only if a parent primary hypoth-

esis has been rejected. To this end we show that the test

procedure is successive if at any stage in the rejection se-

quence the updated graph (without already rejected hy-

potheses) has the following property S: With I ⊆ K de-
noting the set of indices of not yet rejected hypotheses, Ip
and Is the index sets of not yet rejected primary and sec-
ondary hypotheses, respectively and S(i), i ∈ Ip, the in-
dex set of descendants of Hi, and P( j), j ∈ Is the parents
of Hj. Additionally let Is′ = ∪(S(i); i ∈ Ip) ⊆ Is denote
the index set of secondary hypotheses with (not yet re-

jected) parent primary hypotheses, and (ααα(I),G(I)) the
resulting graph on the remaining set of hypotheses, then

(i) α j = 0, j ∈ Is′ and
(ii) gi j = 0 for any j ∈ Is′ , with i ∈ Ip and j /∈ S(i) or

where i ∈ Is, i �= j, and P(i) �= P( j).
If at a certain step in the rejection sequence the graph

has property S, only secondary hypotheses with already
rejected primary parent can be rejected due to the first

condition (i.e., the procedure is successive at that stage).

Assume a primary hypothesis is now rejected and I is
reduced (by one index) to I−. Then the first property
α j(I−) = 0, j ∈ I−s′ still holds because by condition (ii)
the level of the rejected hypothesis cannot be shifted to

a secondary hypothesis Hj with a (nonrejected) parent in
I−p , that is, where j ∈ I−s′ . If a secondary hypothesis is re-
jected then by the second part of condition (ii) the level

of this hypothesis cannot be shifted to a secondary hy-

pothesisHj with not yet rejected primary parent hypothe-
ses, since in this case I−(s′) = I(s′). Therefore, again
α j(I−) = 0, j ∈ I−s′ on the reduced set I−. Similar reason-
ing also shows—by applying the update algorithm to the

transition matrix G—that property S is invariant under
sequential rejection. Clearly the initial graph has prop-

erty S because Ks=Ks′ and hence by complete induction
the statement is proven.

A.4 Generalization of the Procedure by Quan et al.

(2009)

(Short proof of the following statement from Section
4.3) Let B be a closed and exhaustive weighted Bonfer-
roni procedure of level α and S(B) an extended proce-
dure that rejects a hypothesis Hi ∈ F if B rejects Hi, or if
locally all hypotheses Hi ∈ F can be rejected at level α .
Then S(B) protects the FWER at level α as well and is
uniformly more powerful than B.
Proof : Let I ⊆ K be a subset of size s of the in-

dex set of all hypotheses in F and HI the respective in-
tersection hypothesis. Let ααα(I) be the set of local lev-
els αi(I), i ∈ I. Then Hi can be rejected by procedure

B if pk ≤ αk(I) for at least one k ∈ I. If instead of
the weighted Bonferroni test the weighted Simes test is

used, then Hi can be rejected as well. To see this, as-
sume that pk = p( j)(I) for some j ∈ {1, . . . ,s} and hence
p( j)(I) ≤ αk(I) = α( j)(I) ≤ ∑ j

i=1α(i)(I). Therefore, by
definition, also the weighted Simes test rejects HI . With
p(s) = max(pi), i ∈ I, HI can also be rejected if inequal-
ity (9) holds for j = s, that is, if p(s)(I) ≤ ∑si=1α(i)(I) =
∑i∈I αi(I) = α , or—equivalently—if pi ≤ α for all i ∈ I.
The above statement then follows by applying the closed

test principle.
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The confirmatory analysis of pre-specified multiple hypotheses has become common in pivotal
clinical trials. In the recent past multiple test procedures have been developed that reflect the relative
importance of different study objectives, such as fixed sequence, fallback, and gatekeeping proce-
dures. In addition, graphical approaches have been proposed that facilitate the visualization and
communication of Bonferroni-based closed test procedures for common multiple test problems, such
as comparing several treatments with a control, assessing the benefit of a new drug for more than one
endpoint, combined non-inferiority and superiority testing, or testing a treatment at different dose
levels in an overall and a subpopulation. In this paper, we focus on extended graphical approaches by
dissociating the underlying weighting strategy from the employed test procedure. This allows one to
first derive suitable weighting strategies that reflect the given study objectives and subsequently apply
appropriate test procedures, such as weighted Bonferroni tests, weighted parametric tests accounting
for the correlation between the test statistics, or weighted Simes tests. We illustrate the extended
graphical approaches with several examples. In addition, we describe briefly the gMCP package in R,
which implements some of the methods described in this paper.

Keywords: Dunnett test; Gatekeeping procedure; Min-p test; Non-inferiority; Truncated
Holm.

1 Introduction

Multiple test procedures are often used in the analysis of clinical trials addressing multiple objec-
tives, such as comparing several treatments with a control and assessing the benefit of a new drug
for more than one endpoint. Several multiple test procedures have been developed in the recent past
that allow one to map the relative importance of the different study objectives as well as their
relation onto an appropriately tailored multiple test procedure.

A common strategy to reduce the degree of multiplicity is to group the hypotheses into primary
and secondary objectives (O’Neill, 1997). Test procedures accounting for the inherent logical
relationships include fixed sequence tests (Maurer et al., 1995; Westfall and Krishen, 2001), gate-
keeping procedures (Bauer et al., 1998; Westfall and Krishen, 2001; Dmitrienko et al., 2003) and
fallback procedures (Wiens, 2003; Huque and Alosh, 2008). Li and Mehrotra (2008) introduced a
more general approach for adapting the significance level to test secondary hypotheses based on the
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finding for the primary hypotheses. Alosh and Huque (2009) introduced the notion of consistency
when testing for an effect in the overall population and in a specific subgroup. The authors extended
this consistency concept to other situations (Alosh and Huque, 2010), including how to address
multiplicity issues of a composite endpoint and its components in clinical trials (Huque et al., 2011).
Hung and Wang (2009, 2010) considered some controversial multiple test problems, with emphasis
on regulatory applications, and pointed out illogical problems that may arise with recently devel-
oped multiple test procedures.

In this paper, we focus on graphical approaches which have been introduced independently by
Bretz et al. (2009) and Burman et al. (2009). The key idea is to express the resulting multiple test
procedures by directed, weighted graphs, where each node corresponds to an elementary hypothesis,
together with a simple algorithm to generate such graphs while sequentially testing the individual
hypotheses. Using graphical approaches, one can explore different test strategies together with the
clinical team and thus tailor the multiple test procedure to the given study objectives. So far, the
description of these graphical approaches has focused on Bonferroni-based test procedures. In this
paper, we investigate extensions of the original ideas. In particular, we discuss in Section 2 how a
separation between the weighting strategy and the test procedure facilitates the application of a
graphical approach beyond Bonferroni-based test procedures. In Section 3, we illustrate these ideas
with different test procedures. We start with a brief review of Bonferroni-based test procedures and
subsequently describe parametric graphical approaches that account for the correlation between the
test statistics as well as graphical approaches using the Simes test. In Section 4, we describe the
gMCP package in R which implements some of the methods discussed in this paper and illustrate it
with a clinical trial example using a truncated Holm procedure. Concluding remarks are given in
Section 5.

2 Graphical weighting strategies

Consider the problem of testing m elementary hypotheses H1,y,Hm, some of which could be more
important than others, e.g. primary and secondary objectives. Let I ¼ f1; . . .;mg denote the asso-
ciated index set. The closure principle introduced by Marcus et al. (1976) is commonly
used to construct powerful multiple test procedures. Accordingly, we consider all non-empty
intersection hypotheses HJ ¼ \j2JHj ; J � I . We further pre-specify an a-level test for each
HJ. The resulting closed test procedure rejects Hi; i 2 I ; if all intersection hypotheses HJ with
i 2 J � I are rejected by their corresponding a-level tests. By construction, closed test procedures
control the familywise error rate (FWER) in the strong sense at level aA(0,1). That is, the prob-
ability to reject at least one true null hypothesis is bounded by a under any configuration
of true and false null hypotheses (Hochberg and Tamhane, 1987). In fact, closed test procedures
have certain optimality properties whenever the FWER has to be controlled (Bauer, 1991). In what
follows, we assume that the hypotheses H1,y,Hm satisfy the free combination condition (Holm,
1979). If this condition is not satisfied, the methods in this paper still control the FWER at level a,
although they can possibly be improved because of the reduced closure tree (Brannath and Bretz,
2010).

One important class of closed test procedures is obtained by applying weighted Bonferroni tests
to each intersection hypothesis HJ. For each JDI assume a collection of weights wj (J) such that
0 � wjðJÞ � 1 and

P
j2J wjðJÞ � 1. With the weighted Bonferroni test we reject HJ if pj � ajðJÞ ¼

wjðJÞa for at least one jAJ, where pj denotes the unadjusted p-value for Hj. Hommel et al. (2007)
introduced a useful subclass of sequentially rejective Bonferroni-based closed test procedures. They
showed that the monotonicity condition

wjðJÞ � wjðJ
0Þ for all J 0 � J � I and j 2 J 0 ð1Þ
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ensures consonance, i.e. if an intersection hypothesis HJ is rejected, there is an index jAJ, such that
the elementary hypothesis Hj can be rejected as well. This substantially simplifies the
implementation and interpretation of related closed test procedures, as the closure tree of 2m�1
intersection hypotheses is tested in only m steps. Many common multiple test procedures satisfy (1),
see Hommel et al. (2007) for examples.

Bretz et al. (2009) and Burman et al. (2009) independently derived graphical representations and
associated rejection algorithms for important subclasses of the Hommel et al. (2007) procedures. The
graphical representations and rejection algorithms in these two articles are different, though under-
lying ideas are closely related; see Guilbaud and Karlsson (2011) for some comparative examples.
Using the graphical approach of Bretz et al. (2009), the hypotheses H1,y,Hm are represented by
vertices with associated weights denoting the local significance levels a1,y,am. In addition, any two
vertices Hi and Hj are connected through directed edges, where the associated weight gij indicates the
fraction of the (local) significance level ai that is propagated toHj onceHi (the hypothesis at the tail of
the edge) has been rejected. A weight gij5 0 indicates that no propagation of the significance level is
foreseen and the edge is dropped for convenience. Figure 1 shows an example.

While the original graphical approaches were introduced based on weighted Bonferroni tests, we
propose here to dissociate the underlying weighting strategy from the employed test procedure. The
benefit of such an approach is the enhanced transparency by (i) first deriving suitable weighting
strategies that reflect the given study objectives (and which can be communicated to the clinical
team) and (ii) subsequently applying appropriate test procedures that do not necessarily have to be
based on Bonferroni’s inequality.

Graphical weighting strategies are conceptually similar to the graphs proposed by Bretz et al.
(2009). They essentially summarize the complete set of

Pm
i¼1 i ðmi Þ ¼ m2m�1 weights determining the

full closure tree. A weighted multiple test can then be applied to each intersection hypothesis HJ,
such as a weighted Bonferroni test, a weighted min-p test accounting for the correlation between the
test statistics, or a weighted Simes test; see Section 3 for details. Weighting strategies are formally
defined through the weights wi (I), iAI, for the global null hypothesis HI and the transition matrix
G5 (gij), where 0rgijr1, gii 5 0, and

Pm
j¼1 gij � 1 for all i, jAI. We additionally need to determine

how the graph is updated once a vertex is removed. This can be achieved by tailoring Algorithm 1 in
Bretz et al. (2009) to the graphical weighting strategies as follows. For a given index set JDI, let
Jc 5 I \ J denote the set of indices that are not contained in J. Then the following algorithm de-
termines the weights wj(J), jAJ. This algorithm has to be repeated for each JDI to generate the
m2m�1 weights for the full closure.

Algorithm 1 (Weighting Strategy)

(i) Select jAJc and remove Hj

(ii) Update the graph:

I ! Infjg; Jc ! Jcnfjg

w‘ðIÞ !
w‘ðIÞ1wjðIÞgj‘; ‘ 2 I

0; otherwise

�

g‘k!

g‘k1g‘jgjk
1�g‘jgj‘

; ‘; k 2 I ; ‘ 6¼ k; g‘jgj‘o1

0; otherwise

(

(iii) If |Jc|Z1, go to step (i); otherwise w‘ðJÞ ¼ w‘ðIÞ; ‘ 2 J, and stop.

As shown by Bretz et al. (2009), the weights wj(J), jAJ are unique. In particular, they do not
depend on the sequence in which hypotheses Hj ; j 2 Jc; are removed in step (i) of Algorithm 1. Note
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that Algorithm 1 requires specifying the weights wj(I) for the global intersection hypothesis HI and
the elements of the transition matrix G. This leads to the specification of m1mðm� 1Þ ¼ m2

parameters if
P

j2I wjðIÞ � 1 and
Pm

j¼1 gij � 1 or m� 11mðm� 2Þ ¼ m2 �m� 1 parameters ifP
j2I wjðIÞ ¼ 1 and

Pm
j¼1 gij ¼ 1, for all i, jAI.

Example 1

As an example, assume a primary family of two hypotheses F 1 ¼ fH1;H2g and a secondary
family of two hypotheses F 2 ¼ fH3;H4g. The hypotheses H1 and H2 could denote, for example, the
comparison of low and high dose with a control, for either a primary endpoint, a non-inferiority
claim, or an overall population. Accordingly, the hypotheses H3 and H4 would then denote the
comparison of the same two doses with a control, for either a secondary endpoint, a superiority
claim, or a pre-specified subgroup. Figure 1 visualizes one possible weighting strategy. It is moti-
vated by a strict hierarchy within dose: the secondary endpoint will only be assessed if efficacy was
shown previously for the primary endpoint (so-called successiveness property; see Maurer et al.,
2011). If for one of the doses efficacy can be shown for both the primary and the secondary
endpoint, the associated weight is passed on to the other dose. Therefore we have I ¼ f1; 2; 3; 4g,
w1ðIÞ ¼ w2ðIÞ ¼ 0:5 for the primary hypotheses and w3ðIÞ ¼ w4ðIÞ ¼ 0 for the secondary hy-
potheses, which implies that no secondary hypothesis can be rejected until a primary hypothesis is
rejected and propagates its weight. The associated transition matrix is

G ¼

0 0 1 0
0 0 0 1
0 1 0 0
1 0 0 0

0
BB@

1
CCA:

The graph in Figure 1 together with Algorithm 1 from above fully specify the 32 weights of the
full closure tree, as summarized in Table 1. This table parallels the weight tables introduced by
Dmitrienko et al. (2003). Note that the weights wjðJÞ; j 2 Jc; are formally not defined and expressed
by ‘‘–’’ in Table 1. Figure 2 displays the updated graphs resulting from Figure 1 after removing H1,
H2, H3, or H4. The four updated graphs in Figure 2 correspond to the four rows in Table 1
containing the weights for the three-way intersection hypotheses. Removing any two hypotheses
results in six possible two-way intersection hypotheses and the two vertexes are connected by two
directed edges, each with weight 1 (graphical display omitted here). Note that Figure 2 displays the
principle of recalculating the weights by updating the graphs. It is possible and also necessary to
remove hypotheses with weight 0 (in this example H3 and H4 with w3ðIÞ ¼ w4ðIÞ ¼ 0) in order to
compute the respective weights for the larger intersection hypotheses.

Note that Figure 1 displays only one possible weighting strategy. Many other weighting strategies
are possible and perhaps more reasonable, depending on the given context. We refer to Bretz et al.
(2011) for a generic discussion about testing two families F 1 and F 2 with two hypotheses each.

Figure 1 Weighting strategy for two hierarchically ordered endpoints and two dose
levels.
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3 Test procedures

In Section 2, we proposed to dissociate the underlying weighting strategy from the employed test
procedure and gave a generic description of the former, illustrated with an example. In this section

Table 1 Weights for the intersection hypotheses derived from Figure 1.

Intersection hypothesis Weights

H1 H2 H3 H4

H1\H2\H3\H4 0.5 0.5 0 0
H1\H2\H3 0.5 0.5 0 –
H1\H2\H4 0.5 0.5 – 0
H1\H2 0.5 0.5 – –
H1\H3\H4 0.5 – 0 0.5
H1\H3 1 – 0 –
H1\H4 0.5 – – 0.5
H1 1 – – –
H2\H3\H4 – 0.5 0.5 0
H2\H3 – 0.5 0.5 –
H2\H4 – 1 – 0
H2 – 1 – –
H3\H4 – – 0.5 0.5
H3 – – 1 –
H4 – – – 1

DC

A B

0

Figure 2 Updated graphs resulting from Figure 1 after removing (A) H1, (B) H2,
(C) H3, and (D) H4.
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we give details on different test procedures that could be employed to test the intersection
hypotheses, including weighted Bonferroni tests, weighted min-p tests accounting for the correlation
between the test statistics, and weighted Simes’ tests.

3.1 Weighted Bonferroni tests

The weighted Bonferroni test introduced in Section 2 is the simplest applicable test procedure,
leading to the original graphical approaches by Bretz et al. (2009). Applying the Bonferroni test
leads to simple and transparent test procedures that are often easier to communicate than alter-
native, potentially more powerful approaches. As a matter of fact, the Bonferroni test is often
perceived to provide credible trial outcomes in clinical practice. Most importantly in the context of
the graphical weighting strategies considered here, applying the Bonferroni test leads to shortcut
procedures as long as the monotonicity condition (1) is satisfied. That is, one can start with a graph
as shown in Figure 1 and sequentially test the m hypotheses as long as individual null hypothesesHi,
i AI, are rejected. Based on Algorithm 1 from Section 2, we give in the following a similar algorithm
that accounts for the weighted Bonferroni tests, thus leading to the sequentially rejective multiple
test procedures described in Bretz et al. (2009):

Algorithm 2 (Weighted Bonferroni Test)

(i) Select a jAI such that pjrwj(I)a and reject Hj; otherwise stop.
(ii) Update the graph:

I ! Infjg

w‘ðIÞ !
w‘ðIÞ1wjðIÞgj‘; ‘ 2 I

0; otherwise

�

g‘k!

g‘k1g‘jgjk
1�g‘jgj‘

; ‘; k 2 I ; ‘ 6¼ k; g‘jgj‘o1

0; otherwise

(

(iii) If |I|Z1, go to step (i); otherwise stop.

Similar to Algorithm 1, the results in Bretz et al. (2009) ensure that the decisions of the resulting
sequentially rejective multiple test procedures remain unchanged regardless of the actual rejection
sequence. That is, if in step (i) of Algorithm 2 more than one hypothesis could be rejected, it does
not matter with which to proceed. Although Algorithms 1 and 2 have a similar update rule in
step (ii), they differ in the way that the index sets are updated. While Algorithm 2 starts with the
global index set I and reduces it sequentially as long as hypotheses are rejected, Algorithm 1
removes, for each JDI, consecutively all indices from I that are not contained in J until the set J is
obtained. Note that performing a closed weighted Bonferroni test procedure using the weights from
Algorithm 1 leads to exactly the same test decisions as performing a sequentially rejective multiple
test procedure with Algorithm 2 based on the same starting weights.

Figure 3 gives an example of a Bonferroni-based sequentially rejective multiple test procedures
for the weighting strategy proposed in Example 1. Assume, for example, the unadjusted p-values
p1 5 0.01, p2 5 0.005, p3 5 0.1, and p4 5 0.5. Then we can reject both H1 and H2, but none of the
other hypotheses. Figure 3 displays the initial graph together with a possible rejection sequence. As
mentioned above, the final decisions on which hypotheses to reject do not depend on the particular
rejection sequence. That is, with the initial graph from Figure 3 we would obtain the same decisions,
regardless of whether we first reject H2 and then H1, or vice versa.
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Many standard approaches from the literature can be visualized using Bonferroni-based
graphical test procedures, including the weighted or unweighted Bonferroni–Holm procedure
(Holm, 1979), fixed sequence tests (Maurer et. al, 1995; Westfall and Krishen, 2001), fallback
procedures (Wiens, 2003), and gatekeeping procedures (Bauer et al., 1998; Westfall and Krishen,
2001; Dmitrienko et al., 2003). Adjusted p-values and simultaneous confidence intervals can be
calculated as well, although the resulting simultaneous confidence intervals are known to be of
limited practical use, as they are often non-informative; see Strassburger and Bretz (2008), Guilbaud
(2008, 2009) and Bretz et al. (2009) for details. Bretz et al. (2011) provided SAS/IML code to
perform the resulting Bonferroni-based sequentially rejective multiple test procedures. In Section 4,
we describe the gMCP package in R, which offers a convenient graphical user interface (GUI) for
these approaches.

One general disadvantage of Bonferroni-based approaches is a perceived power loss, motivating
the use of weighted parametric tests that account for the correlation between the test statistics or the
use of weighted Simes tests. We discuss these alternative test procedures in Sections 3.2 and 3.3,
respectively.

3.2 Weighted parametric tests

If for the intersection hypotheses HJ ; J � I , the joint distribution of the p-values pj, jAJ, are known,
a weighted min-p test can be defined (Westfall and Young, 1993; Westfall et al., 1998). This test
rejects HJ if there exists a jAJ such that pj � cJwjðJÞa, where cJ is the largest constant satisfying

PHJ

[
j2J

fpj � cJwjðJÞag

 !
� a: ð2Þ

If the p-values are continuously distributed, there is a cJ such that the rejection probability is
exactly a. Determination of cJ requires knowledge of the joint null distribution of the p-values and
computation of the corresponding multivariate cumulative distribution functions. If the test sta-
tistics are multivariate normal or t distributed under the null hypotheses, these probabilities can be
calculated using, for example, the mvtnorm package in R (Genz and Bretz, 2009). Alternatively,
resampling-based methods may be used to approximate the joint null distribution; see Westfall and
Young (1993).

If cJ 5 1 in (2), the weighted parametric test reduces to the weighted Bonferroni test. This fully
exhausts the level if and only if the joint distribution of continuously distributed p-values with
strictly positive density function over (0,1)m satisfies

PHJ
ðfpj � cJwjðJÞag \ fpi � cJwiðJÞagÞ ¼ 0

initial graph rejected rejected

Figure 3 Graph for sequentially rejective procedure with example rejection sequence.

900 F. Bretz et al.: Graphical approaches for multiple comparison procedures

r 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



for all i 6¼ jAJ, because then all events are pairwise disjoint and PHJ
ð [j2J fpj � cJwjðJÞagÞ

¼
P

j2J PHJ
ðpj � cJwjðJÞaÞ. Otherwise, cJ41 and the weighted parametric test gives a uniform im-

provement over the weighted Bonferroni test from Section 3.1.
If not all, but some of the multivariate distributions of the p-values are known, it is possible to

derive conservative upper bounds of the rejection probability that still give an improvement over the
Bonferroni test. Assume that I can be partitioned into l sets Ih such that I ¼ [lh¼1Ih and Ii \ Ih ¼ ;
for i 6¼ h ¼ 1; . . .; l. We assume that for each h5 1,y,l the joint distribution of the p-values pi; i 2 Ih,
is known, but the joint distribution of p-values belonging to different Ih is not necessarily known.
Now, let JDI and choose the maximal critical value cJ such that

Xl
h¼1

PHJ

[
k2Ih\J

fpk � cJwkðJÞag

 !
� a: ð3Þ

By the Bonferroni inequality, the left-hand side in (2), which cannot be computed if the full joint
distribution is unknown, is bounded from above by the left-hand side in (3), whose computation
requires only the knowledge of the joint distribution of the p-values in Ih\J, separately for each
h5 1,y,l. Thus, any cJ satisfying (3) will also satisfy (2), leading to a conservative test for the
intersection hypothesis HJ.

It follows immediately from Eq. (1) that these parametric approaches are consonant if

cJwjðJÞ � cJ 0wjðJ
0Þ for all J 0 � J � I and j 2 J 0: ð4Þ

For p-values following a joint continuous distribution with strictly positive density function
over (0,1)m this is also a necessary consonance condition. This condition is often violated by the
weighted parametric tests above. Consider, for example, the Sidak (1967) test for three hypotheses
with initial weights 1/3. Assume that for the test of the intersection of any two hypotheses the
weights are 1/3 and 2/3. For a5 0.05, the critical value cJwj (J)a5 0.01695 for all three hypotheses
in the first step. For all J0 with |J0|5 2, we have cJ 0wjðJ

0Þa ¼ 0:01686 for the hypothesis Hj with the
weight 1/3 in the second step, violating (4). This phenomenon is even more pronounced for positive
correlations. If in the previous example the correlations are all 0.5 (corresponding to a Dunnett test
in a balanced one-way layout with known variance), we have cJwjðJÞa ¼ 0:0196 and
cJ 0wjðJ

0Þa ¼ 0:0182.
If the consonance condition (4) is met, a sequentially rejective test procedure similar to the

Bonferroni-based graphical tests from Section 3.1 can be defined.

Algorithm 3 (Weighted Parametric Test)

(i) Choose the maximal constant cI that satisfies either (2) or (3) for J5 I.
(ii) Select a jAI such that pj � cIwjðIÞa and reject Hj; otherwise stop.
(iii) Update the graph:

I ! Infjg

w‘ðIÞ !
w‘ðIÞ1wjðIÞgj‘; ‘ 2 I

0; otherwise

�

g‘k!

g‘k1g‘jgjk
1�g‘jgj‘

; ‘; k 2 I ; ‘ 6¼ k; g‘jgj‘o1

0; otherwise

(

(iv) If |I|Z1, go to step (i); otherwise stop.

For any specific multiple test procedure defined by a given graph, the consonance condition can
be checked. If the consonance condition is not met, the weighting strategies introduced in Section 2
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remain applicable, although the connection to a corresponding sequentially rejective test procedure
is lost. In this case, Algorithm 3 no longer applies and one has to go through the entire closed test
procedure. For a given weighting strategy, this procedure is uniformly more powerful than the
associated Bonferroni-based procedure from Section 3.1. Note that adjusted p-values for each
hypothesis Hi can be obtained by computing p-values for each intersection hypothesis HJ with iAJ
(given by the lowest local level for which the respective intersection hypothesis can be rejected) and
then taking the maximum over them.

Before illustrating Algorithm 3 with two examples, we notice that Eq. (2) does not provide the
only possible definition of a weighted parametric test. Instead of using cJwj(J)a as the critical values
for pj, jAJ, we could also use some other function fJ (wj (J),a) fulfilling fJðwjðJÞ;aÞ � wjðJÞa for all
jAJ and all dependence structures of the p-values. For example, if Tj ¼ F�1ð1� pjÞ is the test
statistic corresponding to the p-value of a z-test for Hj, then finding an eJ such that

1� PHJ

[
j2J

fTj � F�1ð1� wjðJÞaÞ � wjðJÞeJg

 !
¼ a

would also define a test which is uniformly more powerful than the corresponding weighted Bon-
ferroni test. A related approach to account for correlations in weighted multiple testing procedures
defined by the graphical approach was considered in Millen and Dmitrienko (2011).

Example 2

We revisit the weighting strategy from Example 1. Assume that the joint null distribution
of the p-values p1, p2 for the two primary dose-control comparisons as well as the joint null
distribution of the p-values p3, p4 for the two secondary comparisons are known. Applying the
standard analysis-of-variance assumptions with a known common variance, we have a bivariate
normal distribution, where the correlation is determined only by the relative group sample sizes. In
practice, the correlation between primary and secondary endpoints is typically unknown and thus
the joint distributions of the pairs ðpi; pjÞ; i ¼ 1; 2; j ¼ 3; 4 are also unknown. Therefore, (2) cannot
be computed and cJ cannot be determined directly. Setting I1 ¼ f1; 2g and I2 ¼ f3; 4g, the joint null
distribution of the test statistics for the hypotheses in I1 and I2 is known and the constants cJ can be
determined by (3). Note that cJ depends on a and on the weights. Table 2 shows the local sig-
nificance levels for both (A) the closed weighted Bonferroni test procedure and (B) the closed
weighted parametric test procedure, assuming a5 0.025 and equal group sample sizes.

Using, for example, the mvtnorm package in R, one can call

> myfct o- function(x, a, w, sig) {
1 1 - a - pmvnorm(lower = -Inf, upper = qnorm(1-x�w�a), sigma = sig)
1 }
> sig o- diag(2)�0.5 1 0.5
> uniroot(myfct, lower = 1, upper = 9, a = 0.025, w = rep(0.5, 2),
1 sig = sig)$root
[1] 1.078306

to compute cJ 5 1.0783 for J ¼ f3; 4g as well as for all J � f1; 2g and cJ 5 1 otherwise.
In other words, H3\H4 and all intersection hypotheses that include H1 and H2 are
tested with unweighted Dunnett z tests. However, intersection hypotheses containing H1\H4 or
H2\H3 are tested with an unweighted Bonferroni test. As a consequence, the resulting family of
tests is not consonant. For example, cf1;2;3;4gw1ðf1; 2; 3; 4gÞa ¼ 0:013540:0125 ¼ cf1;4gw1ðf1; 4gÞa,
violating condition (4). Nevertheless, for a given weighting strategy, the closed test
procedure based on parametric weighted tests dominates the associated procedure based on
weighted Bonferroni tests. For example, if p1 ¼ 0:0131; p2 ¼ 0:1; p3 ¼ 0:012, and p4 5 0.01, the
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weighted parametric test procedure rejects H1 and H3, whereas the Bonferroni test rejects none. In
Section 4, we revisit this numerical example and describe the gMCP package in R, which implements
the closed weighted parametric test procedure (B). Related gatekeeping procedures addressing the
problem of comparing several doses with a control for multiple hierarchical endpoints were
described, among others, by Dmitrienko et al. (2006), Liu and Hsu (2009), and Xu et al. (2009).

Continuing with the example, one can enforce consonance via an appropriate modification
of the weighting strategy from Figure 1. To achieve consonance, we introduce additional
edges with weight d (see Figure 4) such that the weight for H1 (resp. H2) is sufficiently increased to
satisfy the monotonicity condition (4) when testing the intersection hypotheses H1\H4 and
H1\H3\H4 (resp. H2\H3 and H2\H3\H4). If d � d�: ¼ cf1;2;3;4g � 1 the resulting closed
test procedure is consonant and Algorithm 3 can be used to perform the test. In the above
example with a5 0.025, the lower bound is d�5 0.0783. Setting d5 d�, we obtain the local sig-
nificance levels for procedure (C) in Table 2. Note that because of the special weighting strategy
employed in this example, these local significance levels are obtained with the regular Dunnett and
univariate z tests.

The lower bound d� depends on the correlation between the test statistics for H1 and H2. Because
cf1;2;3;4g increases with the correlation, this also holds for d�. In the limiting case that the sample
size ratios of the dose groups and the control group tend to infinity, the correlation tends
to 1. Consequently, cf1;2;3;4g ¼ 2, such that d�5 1 and the graph is degenerated for all a40. On the
other hand, if the above sample size ratios tend to 0, the correlation tends to 0 and d� ¼
2ð1� ð1� aÞ1=2Þ=a� 1 in limit.

Note that by enforcing consonance, the resulting multiple test procedure based on weighted parametric
tests is no longer uniformly better than the associated Bonferroni-based test procedure which does not
account for the correlations. That is, for a given weighting strategy, the closed test procedure based on
parametric weighted tests may fail to reject certain hypotheses that otherwise are rejected by the asso-
ciated procedure based on weighted Bonferroni tests. For example, if p1 ¼ 0:01; p2 ¼ 0:1; p3 ¼ 0:012,
and p450.01, the initial graph from Figure 3 rejects H1 and H3, whereas the consonant weighted
parametric test procedure from Figure 4 with d50.0783 rejects only H1.

Table 2 Local significance levels (in %) of A: weighted Bonferroni (B: parametric, C: consonant
parametric with d5 0.0783) test for the example from Figure 1 and a5 0.025.

Intersection hypothesis Local significance levels (in %)

H1 H2 H3 H4

H1\H2\H3\H4 1.25 (1.35,1.35) 1.25 (1.35,1.35) 0 (0,0) 0 (0,0)
H1\H2\H3 1.25 (1.35,1.35) 1.25 (1.35,1.35) 0 (0,0) –
H1\H2\H4 1.25 (1.35,1.35) 1.25 (1.35,1.35) – 0 (0,0)
H1\H2 1.25 (1.35,1.35) 1.25 (1.35,1.35) – –
H1\H3\H4 1.25 (1.25,1.35) – 0 (0,0) 1.25 (1.25,1.15)
H1\H3 2.50 (2.50,2.50) – 0 (0,0) –
H1\H4 1.25 (1.25,1.35) – – 1.25 (1.25,1.15)
H1 2.50 (2.50,2.50) – – –
H2\H3\H4 – 1.25 (1.25,1.35) 1.25 (1.25,1.15) 0 (0,0)
H2\H3 – 1.25 (1.25,1.35) 1.25 (1.25,1.15) –
H2\H4 – 2.50 (2.50,2.50) – 0 (0,0)
H2 – 2.50 (2.50,2.50) – –
H3\H4 – – 1.25 (1.35,1.35) 1.25 (1.35,1.35)
H3 – – 2.50 (2.50,2.50) –
H4 – – – 2.50 (2.50,2.50)
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Example 3

Consider again Example 1, but assume that H1,H2 are two non-inferiority hypotheses (say, for
low and high dose against control) and H3,H4 are two superiority hypotheses (for the same two
doses). We again make the standard analysis-of-variance assumptions with a known common
variance and let a5 0.025. Bonferroni-based graphical approaches for combined non-inferiority
and superiority testing were described in Hung and Wang (2010) and Lawrence (2011). In the
following, we exploit the fact that the correlations between the four test statistics are known.
Therefore, the complete joint distribution is known and we can apply (2). Note that if wj (J)5 0 for
some jAJ, the joint distribution degenerates. In our example it thus suffices to calculate bivariate or
univariate normal probabilities.

Assume first that the same population is used for all four tests. For simplicity, assume further that
the group sample sizes are equal. Then the correlation between the non-inferiority and superiority
tests within a same dose is 1; all other correlations are 0.5. Therefore, cJ 5 1.0783 for
J ¼ f1; 2g; f1; 4g; f2; 3g, and f3; 4g. Otherwise, cJ 5 1 and condition (4) is trivially satisfied. That is,
consonance is ensured and one can apply Algorithm 3. This leads to a sequentially rejective multiple
test procedure, where at each step either bivariate Dunnett z tests or individual z tests are used. This
conclusion remains true if the common variance is unknown and Dunnett t tests or individual t tests
are used.

To illustrate the procedure, let a5 0.025 and assume the unadjusted p-values p1 5 0.01, p2 5 0.02,
p3 5 0.005, and p4 5 0.5. Following Algorithm 3, we have p1 � cIw1ðIÞa ¼ 0:0135 and can reject H1.
The update step then leads to the weights in Figure 2(A). Next, p3 � 0:0135 and we can reject H3.
This leaves us with H2, H4 and the weights w2ðf2; 4gÞ ¼ 1, w4ðf2; 4gÞ ¼ 0. Therefore, H2 is now tested
at full level a. Because p2ra, we reject H2 and the procedure stops.

We now consider the situation that two different populations are used. Assume that the per-
protocol population (PP) is used for non-inferiority testing and the intention-to-treat population
(ITT) for superiority testing, where PP is a subpopulation of ITT. Let ni denote the ITT sample size
for group i, where i5 0 (1,2) denotes placebo (low dose, high dose). Let further n�i � ni denote the
PP sample size for group i. Finally, let Ti denote the test statistic for Hi; i ¼ 1; . . .; 4; and r(Ti,Tj) the
correlation between Ti and Tj. With this notation,

rðT1;T2Þ ¼ rðT3;T4Þ ¼
n1

n01n1

� �1=2
n2

n01n2

� �1=2

which reduces to 0.5 if n0 5 n1 5 n2. Further,

rðT1;T3Þ ¼
n01n1

n0n1

� �1=2
n�0n
�
1

n�01n�1

� �1=2

and rðT2;T4Þ ¼
n01n2

n0n2

� �1=2
n�0n
�
2

n�01n�2

� �1=2

;

Figure 4 Graphical display of weighting strategy for a consonant weighted parametric
test procedure.
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which both reduce to ðn�0=n0Þ
1=2 for n0 ¼ ni and n�0 ¼ n�i , i5 1,2. Finally, rðT1;T4Þ ¼

rðT1;T3ÞrðT3;T4Þ and rðT2;T3Þ ¼ rðT2;T4ÞrðT3;T4Þ, which both reduce to 1=2ðn�0=n0Þ
1=2 for n0 ¼

n1 ¼ n2 and n�0 ¼ n�1 ¼ n�2. In this simplest case of equal group sample sizes within PP and ITT we
thus have, assuming n�0=n0 ¼ 0:9 as an example

cJ ¼
1 for J ¼ f1; 3g; J ¼ f2; 4g and J ¼ fig; i ¼ 1; . . .; 4
1:0783 for J ¼ f3; 4g and for all J � f1; 2g
1:0706 otherwise

8<
:

As a consequence, the resulting family of tests is no longer consonant, although the
differences in the resulting local significance levels are small. For example,
cf1;2;3;4gw1ðf1; 2; 3; 4gÞa ¼ 0:013540:0134 ¼ cf1;4gw1ðf1; 4gÞa, violating condition (4). Similar to
Example 2, we can enforce consonance by applying the graphical test procedure from Figure 4 with
d5 0.0071.

Finally, we note that this multiple test procedure is immediately applicable to testing for a
treatment effect at two different dose levels in an overall population and, if at least one dose is
significant, continue testing in a pre-specified subpopulation. This could apply to testing, for ex-
ample, in the global study population and a regional subpopulation or in the enrolled full popu-
lation and a targeted genetic subpopulation.

3.3 Weighted Simes tests

Generalization of the original Bonferroni-based graphs from Section 3.1 also apply when the
correlations between the test statistics are not exactly known, but certain restriction on them are
assumed. A typical case in practice is to assume (or show) that the test statistics have a joint
multivariate normal distribution with non-negative correlations. In this case, the Simes test is a
popular test. Here, we discuss the use of a weighted version of the Simes test for the intersection
hypotheses HJ ; J � I .

The unweighted Simes test, as originally proposed by Simes (1986), rejects HI if there exists a jAI
such that pðjÞ � j=ma, where pð1Þ � � � � � pðmÞ denote the ordered p-values for the hypotheses
Hi; i 2 I . The Type 1 error rate is exactly a if the test statistics are independent and it is bounded by
a if positive regression dependence holds. This follows from Benjamini and Yekutieli (2001), who
showed false discovery rate control for a related step-up procedure under positive regression
dependence on the test statistics. Note that this condition is not always easy to verify or even justify
in practice.

The weighted Simes test introduced by Benjamini and Hochberg (1997) rejects HI if for some jAI
pðjÞ �

Pj
i¼1 aðiÞ, where aðiÞ ¼ wðiÞa and wðiÞ denotes the weight associated with pðiÞ. An equivalent

condition is to reject HI if for some jAI

pj �
X
i2Ij

ai ¼ a
X
i2Ij

wi ð5Þ

where Ij ¼ fk 2 I ; pk � pjg. This weighted Simes test reduces to the original (unweighted) Simes test
if wi ¼ 1=m; i 2 I . Kling (2005) showed that the weighted test is conservative if the univariate test
statistics are positive regression dependent for any number of hypotheses. This, for example, is the
case if the test statistics follow a multivariate normal distribution with non-negative correlations
and the tests are one-sided (Benjamini and Heller, 2007).

For given weights wj(J), JDI, and assuming positive regression dependence among the univariate
test statistics for all m hypotheses Hi, iAI, the weighted Simes test can be applied to all intersection
hypotheses HJ, JDI. By means of the closure principle the resulting multiple test procedure rejects
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Hi, iAI, at level a if for each JDI with iAJ, there exists an index jAJ such that

pj � a
X
k2Jj

wkðJÞ ð6Þ

where Jj ¼ fk 2 J; pk � pjg. This follows from the application of condition (5) to all subsets J�I,
and the fact that any subset of m positive regression dependent test statistics is also positive
regression dependent. Related gatekeeping procedures based on the Simes tests were described,
among others, by Dmitrienko et al. (2003) and Chen et al. (2005).

If all weights are equal, the above procedure reduces to the procedure by Hommel (1988), which
is known not to be consonant. In case of unequal weights, a corresponding sequentially rejective test
procedure is not available and one may have to go through the entire closed test procedure using
weighted Simes tests for each intersection hypotheses. Nevertheless, for a given weighting strategy,
this procedure is uniformly more powerful than an associated Bonferroni-based procedure from
Section 3.1. This follows from the fact that any hypothesis rejected by the closed weighted Bon-
ferroni test procedure can also be rejected by the corresponding closed weighted Simes test pro-
cedure; see, for example, the Appendix in Maurer et al. (2011).

Although full consonance is generally not available for Simes-based closed test procedures, we
can still derive a partially sequentially rejective test procedure which leads to the same test decision
as the closed test procedure defined in (6). In the following, we assume that the weights are ex-
haustive, i.e.

P
k2J wkðJÞ ¼ 1 for all subsets JAI.

Algorithm 4 (Weighted Simes Test)

(i) If pi4a for all iAI, stop and retain all m hypotheses.
(ii) If pira for all iAI, stop and reject all hypotheses.
(iii) Perform the Bonferroni-based graphical test procedure from Section 3.1. Let Ir denote the

index set of rejected hypotheses and Icr its complement in I . If jIcr jo3, stop and retain the
remaining hypotheses.

(iv) If jIcr j � 3 consider the weights wiðI
c
r Þ; i 2 Icr , and the transition matrix G defined on Icr as

the new initial graph for the remaining hypotheses. Compute the weights wk(J) for all
J � Icr with Algorithm 1.

(v) Reject Hi; i 2 Icr , if for each J � Icr with iAJ, there exists an index jAJ such that

pj � a
X
k2Jj

wkðJÞ: ð7Þ

With step (ii), all hypotheses Hi, iAI can be rejected if pjra for all jAI. This follows from
the fact that for each J there is always a largest pj, jAJ, such that Jj 5 J and therefore
a
P

k2Jj
wkðJÞ ¼ a

P
k2J wkðJÞ ¼ a. Hence condition (6) holds for all JDI and therefore for all Hi,

iAI. Note that if the weights are not exhaustive, step (ii) may no longer be valid and should be
skipped.

The stopping condition in step (iii), jIcr jo3, is explained as follows. Assume first that jIcr j ¼ 1, i.e.
one hypothesis is left, say Hi. If pioa, one would have rejected already all hypotheses in step (ii) and
stopped the procedure because for all other hypotheses than Hi necessarily pjra. Therefore, pi4a
and one cannot rejectHi. Similarly, if jIcr j ¼ 2, the respective p-values cannot be both smaller than a.
Also if only one of them, say pi, is smaller and the other is larger than a, then pi4wiðI

c
r Þa, since

otherwise the Bonferroni test in step (iii) would have rejected Hi. In that case the Simes test cannot
reject Hi either and hence both remaining hypotheses must be retained.

Algorithm 4 is essentially looking first for outcomes that are easy to verify (steps (i) and (ii)) or
where sequential rejection of the hypotheses is possible (step (iii)). Only then one needs to compute
for all remaining hypotheses and their subsets the weights and apply the closed weighted Simes
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procedure as given in (6). It can happen though that no hypotheses can be rejected in the first three
steps and that one has to perform step (iv) with the full set of all m hypotheses. Note that one could,
of course, start immediately with step (iv) on the full hypotheses set. The resulting decisions
are identical to those obtained with Algorithm 4, because for any given weighting strategy, any
hypothesis rejected by the closed weighted Bonferroni test procedure is also rejected by the asso-
ciated closed weighted Simes test procedure.

Similar to the case that knowledge about the joint distribution of the p-values is partially missing
(as discussed in Section 3.2), we consider now the case that positive regression dependence cannot
be assumed between all m test statistics. Let Ih; h ¼ 1; . . .; l � m, be a a partition (i.e., I ¼ [lh¼1Ih and
Ih \ Ii ¼ ; for h 6¼ i) such that for each family of hypotheses Hi; i 2 Ih, positive regression depen-
dence between the respective test statistics holds. Then we can reject HJ ; J � I , if for some j and h
with j 2 Jh ¼ Ih \ J

pj � a
X
k2Jh;j

wkðJÞ ð8Þ

where Jh;j ¼ fk 2 Jh; pk � pjg. This procedure controls the Type I error rate at level a for any in-
tersection hypothesisHJ. This is seen as follows. The weighted Simes test is applied separately to each
of the partition sets Jh of J. With the definitions for Jh and Hh;j above, for a fixed h 2 f1; . . . ;lg, the
probability of the event that there exists a jAJh such that pj � a

P
k2Jh;j

wkðJÞ, is less than or equal to
a
P

k2Jh
wkðJÞ by the weighted Simes test. Hence the probability that this happens in any of the

partitions Jh is less than
Pl

h¼1 a
P

k2Jh
wkðJÞ ¼ a

P
k2J wkðJÞ ¼ a by means of the Bonferroni in-

equality. For a given partition Ih; h ¼ 1; . . .; l; with ‘‘local’’ regression dependence within the disjunct
subsets of associated test statistics, condition (7) in the algorithm hence can be replaced by (8).

We conclude this section with an example. For the weighting strategy from Example 1, the
resulting closed weighted Simes test will reject more hypotheses than the related closed weighted
Bonferroni test only if all four p-values are less than or equal to a (Maurer et al., 2011). The latter is
not the case for the numerical example in Section 3.1, because, for example, p3 5 0.140.0255 a and
hence no further hypothesis can be rejected. However, if we had instead, for example, p3 5 0.015
and p4 5 0.022, the closed weighted Simes test would reject all four hypotheses, two more than with
the closed weighted Bonferroni test. Generally speaking, the weighted Simes test has power ad-
vantages over alternative weighted test procedures if the effect sizes are of similar magnitude.

4 gMCP package in R

The gMCP package (Rohmeyer and Klinglmueller, 2011) in R (R Development Core Team, 2011)
currently implements the Bonferroni-based graphical approach from Section 3.1 and the closed
weighted parametric tests from Section 3.2. R is a language and environment for statistical
computing and graphics (Ihaka and Gentleman, 1996). It provides a wide variety of statistical
and graphical techniques, and is highly extensible. The latest version of gMCP is available
at the Comprehensive R Archive Network (CRAN) and can be accessed from http://cran.
r-project.org/package5gMCP/. In the following, we give only a brief illustration of the gMCP
package. We refer to the installation instructions at http://cran.r-project.org/web/
packages/gMCP/INSTALL and the accompanying vignette for a description of the full func-
tionality (Rohmeyer and Klinglmueller, 2011).

4.1 Weighted Bonferroni tests with gMCP

We consider the cardiovascular clinical trial example from Dmitrienko and Tamhane (2009) to
illustrate the implementation of the Bonferroni-based graphical approach from Section 3.1 in
the gMCP package. The trial compared a new compound with placebo for two primary and two
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secondary endpoints. Consequently, we have two families of hypotheses F 1 ¼ fH1;H2g and
F 2 ¼ fH3;H4g.

Dmitrienko and Tamhane (2009) used this example to illustrate the truncated Holm procedure
described in Dmitrienko et al. (2008) and Strassburger and Bretz (2008). Given multiple families of
hypotheses in a pre-specified hierarchical order, the key idea of truncated tests is to avoid propagating
the complete significance level within a family until all its hypotheses are rejected in order to proceed
testing the next family in the hierarchy. Instead, once at least one hypothesis is rejected in a given
family, a fraction of the significance level is reserved to test subsequent families of hypotheses. In
principle, truncation can be applied to any of the test procedures discussed in Section 3.

In the cardiovascular study example, the hypotheses in F 2 are only tested, if at least one
of the hypotheses in F 1 are rejected. We assume that F 1 is tested using the truncated Holm procedure
with truncation parameter gA[0,1]. Let p(1)op(2) denote the ordered p-values with associated hypotheses
H(1) and H(2). Consequently, H(1) is tested at level a/2. If H(1) is rejected, H(2) is tested at level
a/21g(a/2). The family F 2 is then tested with the regular Holm procedure either at level (1–g)a/2 or at
level a, depending on whether only one or both hypotheses in F 1 are rejected, respectively.

The gMCP package offers a GUI to conveniently create and perform Bonferroni-based graphical
test procedures, such as the one for the test procedure above. To this end, we invoke in R the gMCP
package and subsequently call the GUI with

> library(gMCP)
> graphGUI()

Different buttons are available in the icon panel of the GUI to create a new graph. The main
functionality includes the possibility of adding new nodes as well as new edges connecting any two
selected nodes. In many cases, the edges will have to be dragged manually in order to improve the
readability of the graphs. The associated labels, weights, and significant levels can be edited directly in
the graph. Alternatively, the numerical information can be entered into the transition matrix and other
fields on the right-hand side of the GUI. Figure 5 displays the complete test procedure for the cardi-
ovascular study example using the gMCP package: The truncated Holm procedure for F 1 with trun-
cation parameter g and the regular Holm procedure for F 2. Note that we can immediately improve that
test procedure by connecting the secondary hypotheses H3 and H4 with the primary hypotheses H1 and
H2 through the e-edges introduced in Bretz et al. (2009). We refer to the vignette of the gMCP package
for a description of how to construct e-edges with the GUI (Rohmeyer and Klinglmueller, 2011).

The GUI offers the possibility to perform sequentially Bonferroni-based test procedures defined
through a graph like the one displayed in Figure 5 and in addition to calculate adjusted p-values as
well as simultaneous confidence intervals. To illustrate this functionality, we consider Scenario 1
from Dmitrienko and Tamhane (2009) and assume the unadjusted p-values p1 5 0.0121, p2 5 0.0337,
p3 5 0.0084, and p4 5 0.0160, which are entered directly into the GUI. By clicking on the corre-
sponding button in the icon panel and and specifying g5 0.5, one obtains in this example the
adjusted p-values 0.024, 0.045, 0.045, and 0.045 for the four hypotheses H1, H2, H3, and H4,
respectively. These adjusted p-values are identical to those reported in Dmitrienko and Tamhane
(2009). Accordingly, one can reject all four hypotheses at level a5 0.05. Simultaneous confidence
intervals can be obtained as well from the GUI after entering additional information on effect
estimates and standard errors. Finally, the user may perform the sequential test procedure by
clicking on the green triangle in the icon bar. By doing so, the ‘‘Reject’’ buttons in the lower right
become activated and one can step through the graph as long as significances occur.

4.2 Weighted parametric tests with gMCP

The gMCP package provides also a convenient interface to perform graphical test procedures
without the GUI using the R command line. We illustrate this with the closed weighted parametric
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tests from Section 3.2 and revisit Example 2. We first define the related transition matrix G and the
weights wi(I), iAI, through

> G o- matrix(0, nr=4, nc = 4)
> G[1,3] o- G[2,4] o- G[3,2] o- G[4,1] o- 1
4w o- c(1/2, 1/2, 0, 0)

The function matrix2graph then converts the matrix G and the vector w into an object of type
graphMCP

> graph o- matrix2graph(G, w)
> graph
A graphMCP graph
Overall alpha: 1
H1 (not rejected, alpha=0.5)
H2 (not rejected, alpha=0.5)
H3 (not rejected, alpha=0)
H4 (not rejected, alpha=0)
Edges:
H1 -(1)-> H3
H2 -(1)-> H4
H3 -(1)-> H2
H4 -(1)-> H1

Figure 5 Screenshot of the GUI from the gMCP package. Left: Display of the graphical
Bonferroni-based test procedure for the cardiovascular trial. Right: Transition matrix,
initial weights and unadjusted p-values.
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The gMCP function takes objects of the type graphMCP as its input together with a vector of
p-values and performs the specified multiple test procedure. In particular, one can specify a cor-
relation matrix with the effect that a closed weighted parametric multiple test procedure is per-
formed under the standard analysis-of-variance assumptions with known common variance.

In Example 2 we assumed normally distributed test statistics with a block-diagonal correlation
matrix of the form

1 0:5 NA NA
0:5 1 NA NA
NA NA 1 0:5
NA NA 0:5 1

0
BB@

1
CCA;

where NA reflects the fact that the correlation between the primary and secondary endpoints is
unknown. Accordingly, we let

> cr o- matrix(NA, nr = 4, nc = 4)
> diag(cr) o- 1
> cr[1,2] o- cr[2,1] o- cr[3,4] o- cr[4,3] o- 1/2

and define the unadjusted p-values

> p o- c(0.0131, 0.1, 0.012, 0.01)

Finally, we perform the closed weighted parametric test at a specified significance level a5 0.025,
say, by calling

> res o- gMCP(graph, p, corr = cr, alpha = 0.025)

This returns an object of class gMCPResult providing information on which hypotheses are re-
jected

> res@rejected
H1 H2 H3 H4

TRUE FALSE TRUE FALSE

We conclude from the output that both H1 and H3 can be rejected. We come to the same con-
clusions, if we report the adjusted p-values and compare them with a5 0.025

> res@adjPValues
H1 H2 H3 H4

0.02431856 0.10000000 0.02431856 0.10000000

Alternatively, one can use a sequentially rejective Bonferroni-based test procedure from Section 3.2
by omitting the corr argument

> gMCP(graph, p, alpha = 0.025)@rejected
H1 H2 H3 H4

FALSE FALSE FALSE FALSE

As seen from the output, none of the null hypotheses can be rejected, which coincides with our
conclusions from Section 3.2.
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5 Discussion

This paper shows that the graphical approach introduced by Bretz et al. (2009) can be used to create
and visualize tailored strategies for common multiple test problems. By dissociating the underlying
weighting strategy from the employed test procedure, it is seen that the graphical approach is not
restricted to Bonferroni-based tests. Similarly, the graphs introduced by Burman et al. (2009) define
weights for all intersection hypotheses and the procedures discussed in this paper can be applied
using these weights. Extended graphical approaches include weighted Simes tests and weighted min-
p tests in the sense of Westfall and Young (1993). The latter take into account all or some of the
joint multivariate distributions of p-values. Consonance and the corresponding shortcuts may be
lost, but for any concrete multiple test strategy, consonance can be checked prior to a clinical study.
As shown in this paper, consonance can be enforced and related sequentially rejective graphs
established at least in some simple situations.

Many proposed multiple test procedures in the literature can be expressed with the methods
described in this paper. On the other hand, the methods in this paper also allow one to investigate
alternative procedures that go beyond the published results. But even if the closure principle is very
common in practice, it does not necessarily lead to consonant multiple test procedures. We gave
monotonicity conditions for ensuring consonant graphical weighting strategies, but it is not always
clear when these conditions are met if weighted parametric or Simes tests are used. In principle, one
could enforce consonance following, for example, the approach of Romano et al. (2011), although
the computation of the rejection regions could become tedious. We leave this topic for further
research.
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Hierarchical testing of multiple endpoints in
group-sequential trials
Ekkehard Glimm,∗† Willi Maurer and Frank Bretz

We consider the situation of testing hierarchically a (key) secondary endpoint in a group-sequential clinical trial that is
mainly driven by a primary endpoint. By ‘mainly driven’, we mean that the interim analyses are planned at points in
time where a certain number of patients or events have accrued on the primary endpoint, and the trial will run either
until statistical significance of the primary endpoint is achieved at one of the interim analyses or to the final analysis.
We consider both the situation where the trial is stopped as soon as the primary endpoint is significant as well as
the situation where it is continued after primary endpoint significance to further investigate the secondary endpoint.
In addition, we investigate how to achieve strong control of the familywise error rate (FWER) at a pre-specified
significance level a for both the primary and the secondary hypotheses. We systematically explore various multiplicity
adjustment methods. Starting point is a naive strategy of testing the secondary endpoint at level a whenever the
primary endpoint is significant. Hung et al. (J. Biopharm. Stat. 2007; 17:1201–1210) have already shown that this naive
strategy does not maintain the FWER at level a. We derive a sharp upper bound for the rejection probability of the
secondary endpoint in the naive strategy. This suggests a number of multiple test strategies and also provides a
benchmark for deciding whether a method is conservative or might be improved while maintaining the FWER at a. We
use a numerical example based on a real case study to illustrate the results of different hierarchical test strategies.
Copyright © 2009 John Wiley & Sons, Ltd.

Keywords: closed test procedure; error spending approach; primary endpoint; secondary endpoint

1. Introduction

Confirmatory clinical trials typically include hundreds or thousands of patients and may last for several years. Interim analyses are
often conducted in such large trials because of ethical and economical reasons: (i) patients should not be treated with a new
therapy if the ongoing trial gives no indication for a potential benefit; (ii) clinical trials should not be continued (and decisions
postponed) if a clear tendency favoring a particular treatment evolves. Thus, clinical trial designs that include the possibility for
early decisions may help in reducing the overall costs and timelines of the development program for a new therapy. Repeatedly
looking at the data may inflate the Type I error rate because the primary null hypothesis is tested anew at each interim analysis.
Group-sequential design methodology is commonly used to account for the repeated data analyses and decision making: the
trial can be stopped at any pre-specified interim analysis for either futility or efficacy while controlling the Type I error rate at a
pre-specified significance level �. Most literature on group-sequential designs, however, focuses on two-armed trials and a single
endpoint [1--4]. Extensions of these methods to multi-armed clinical trials and the control of the familywise Type I error rate
(FWER) were investigated, among others, in [5--8].

A related topic, which has been considered much less in the literature, is the application of group-sequential designs to
multiple endpoints. In this paper we consider group-sequential trial designs for testing hierarchically two (or more) endpoints.
That is, the endpoints are tested in a fixed sequence, each at level �, until the first non-significance [9, 10]. Consider, for example,
the simple situation of a two-armed trial with one interim analysis and two endpoints (say, one primary and one secondary
endpoint). Assume that some group-sequential method (for example, [1, 2, 11]) is used to test the primary endpoint at level �. The
question arises at which significance level the secondary endpoint can be tested once the primary endpoint has been declared
significant, at either the interim or final analysis, while controlling the FWER across both endpoints.

Motivated by the fixed sequence test procedure for classical trial designs without interim analyses, a naive strategy is to test
the secondary endpoint at level � whenever the primary endpoint is significant. However, Hung et al. [12] have already shown
that this naive strategy does not maintain the FWER at level �. Using analytical methods, we demonstrate in this paper that the
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size inflation can be substantial. For example, if the interim analysis is performed after 50 per cent of the patients, the actual
Type I error can be as large as 0.08 for �=0.05.

An alternative strategy, which follows from the closed sequential test procedure described by Tang and Geller [6], is to apply an
individual set of group-sequential boundaries separately to each endpoint. That is, if in the example above the primary endpoint
is declared significant using its group-sequential boundary (Pocock, O’Brien-Fleming, . . .), the secondary endpoint can be tested at
its own group-sequential boundary (Pocock, O’Brien-Fleming, . . .) matching to the timepoint, at which the the primary endpoint
was declared significant. In essence, Tang and Geller [6] have shown that if a group-sequential test procedure at level � can be
defined for each intersection hypothesis in a multiple hypothesis testing setting, then the application of the closure principle [13]
leads to a sequential test procedure that protects the FWER at level �. In our case the group-sequential design for the primary
hypothesis is also the test for the intersection hypothesis of the primary and the secondary variables; by construction, the closure
principle results in the hierarchical approach described above.

In this paper we consider the situation of testing a (key) secondary endpoint in a group-sequential clinical trial which is
mainly driven by a primary endpoint. By ‘mainly driven’, we mean that the interim analyses are planned at points in time
where a certain number of patients or events have accrued on the primary endpoint and the trial will run either until statistical
significance on the primary endpoint is achieved at one of the interim analyses or to the final analysis. We consider both the
situation where the trial is stopped as soon as the primary endpoint is significant as well as the situation where it is continued
after primary endpoint significance to further investigate the secondary endpoint. In addition, we investigate the properties of
various multiplicity adjustment methods with respect to power and strong control of the FWER at a pre-specified significance
level � for both primary and secondary hypotheses. Starting point is the derivation of a sharp upper bound for the rejection
probability of the secondary endpoint in the naive strategy mentioned above. This suggests a number of multiple test strategies
and also provides a benchmark for deciding whether a method is conservative or might be improved while maintaining the
overall significance level �.

Different error spending function approaches with local control of the Type I error rate are available for each of the two
endpoints. The reasons for choosing one of them depend on the hierarchical approach chosen. The choice for the primary
endpoint is not primarily guided by statistical power considerations but rather by the wish to stop the trial early only if the
results are so convincing that it could be regarded as unethical to continue the trial. If the interim results are less conclusive it
is preferred to continue the trial to increase the body of evidence and to collect sufficient (long-term) safety data. Hence, the
choice of the error spending function for the primary endpoint is essentially based on the same considerations as in a trial with
only one endpoint. In general, a spending function that allocates less significance level at the interim analysis than at the final
analysis (O’Brien-Fleming type) is preferred over a more balanced spending function (Pocock type). These latter reasons, however,
are not anymore relevant for the secondary endpoint, when stopping of the trial depends on the primary endpoint. In this case
power considerations can be the guiding principle for the choice of the error spending function for the secondary endpoint. As
shown later, using Pocock boundaries for the secondary endpoint is advantageous in many of the situations considered in this
paper.

In Section 2 we introduce different group-sequential test strategies to test hierarchically a primary and a (key) secondary
hypothesis. In Section 3 we derive for the different strategies sharp upper bounds for the probability of rejecting the secondary
hypothesis, when in fact it is true, and discuss various consequences. In Section 4 we report selected results of an extensive
numerical study to investigate the power of rejecting the secondary hypothesis for various combinations of error spending
functions. In Section 5 we use a numerical example based on a real case study to illustrate the different hierarchical test strategies.
Finally, in Section 6 we give concluding remarks.

2. Group-sequential test strategies for primary and secondary hypotheses

As outlined in the Introduction, we focus on testing hierarchically one primary and one secondary endpoint. For simplicity, we
also restrict the description to clinical trials with one interim and one final analysis, resulting in a total of k =2 analyses.

Let Hp :�p�0 denote the one-sided null hypothesis of no effect for the primary endpoint and let Hs :�s�0 denote the
related secondary hypothesis. Let Zp,i and Zs,i denote the test statistics for Hp and Hs, respectively, at the interim analysis
i=1 and the final analysis i=2. Furthermore, let tp,i and ts,i denote respective information fractions at analysis i. For example,
Zp,i and Zs,i may denote the two-sample t-test statistics in case of two normally distributed endpoints or the logrank test
statistics in case of a time-to-event analysis. The information fractions will typically be given by tp,i = ts,i =ni / n, where n denotes
the total number of observed patients per treatment arm and ni denotes the number of patients per treatment arm whose
response is available at the ith analysis. In the time-to-event case, tv,i , v =p, s, denotes the fraction of events accrued on
endpoint v at analysis i relative to the total number of events accrued for the trial. Information fractions may be fixed before
the start of the trial or they may be random variables themselves. We will treat them as fixed in the remainder of this
paper.

For each hypothesis Hv , v =p, s, we define univariate spending functions av(t), t ∈ [0, 1]. We denote by �v =av(1) the significance
level spent up to the final analysis for endpoint v =p, s. Although the significance levels �p and �s are allowed to be different, in
the following we assume �p =�s =� for simplicity. We further denote the respective nominal one-sided rejection boundaries for
the interim and final analysis by uv,i , v =p, s, and i=1, 2. Applying standard error spending approaches [11, 14] implies that the
interim test of the null hypothesis Hv is performed at level �v,1 =av(tv,1). At the final analysis, the rejection boundary uv,2 of the

2
2

0

Copyright © 2009 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 219--228



E. GLIMM, W. MAURER AND F. BRETZ

final test is the solution of

P(Zv,1<uv,1, Zv,2�uv,2)=�−�v,1

under the conditions of Hv . Suppose we convert the critical values into a test level by taking 1−F(uv,i), where F(·) denotes the
marginal cumulative distribution function (cdf) of Zv,i under Hv . The quantities 1−F(uv,i), i=1, 2, are then denoted as nominal level
of the interim and final tests, in contrast to the actual or spent levels �v,1 and �v,2 =�−�v,1. Note that for the first interim analysis,
the nominal and actual levels are the same (i.e. 1−F(uv,1)=�v,1), whereas for the final analysis we have 1−F(uv,2)��v,2, v =p, s.
Pocock [1] and O’Brien and Fleming [2] originally suggested rejection boundary adjustments for the critical values directly, that
is uv,1 =uv,2 (Pocock) and

√
tv,1uv,1 =uv,2 (O’Brien-Fleming). As these quantities can be converted to the actual and/or nominal

levels of an error spending approach in the case of just two analyses (one interim and the final analysis), we will call them ‘Pocock’
and ‘O’Brien-Fleming’ error spending approaches in the remainder of this paper. If, for example, �=0.025 and tp,1 =0.5, then
up,1 =up,2 =2.178 for Pocock error spending. Equivalently, we can state that the nominal level is 1−F(up,1)=1−F(up,2)=0.0147
and that the spent levels are �p,1 =0.0147 and �p,2 =0.0103, respectively.

In practice, there are different possibilities of implementing a hierarchical test procedure in a group-sequential trial. In the
following, we describe various test strategies for the primary and secondary endpoint situation, which accommodate different
study objectives. In order to discuss the properties of the four different strategies, let Rj(H) denote the rejection probability of a
null hypothesis H by one of the approaches j =a, b, c, d described below (irrespective of whether H is true or not). A hypothesis
Hv , v =p, s, is rejected if the respective test statistics Zv,i exceeds the critical value uv,i at either the interim or final analysis. We
note in passing that this excludes the possibility ‘re-testing’. That is, if an endpoint is declared significant at the interim analysis,
it will not be tested again at the final analysis.

(a) Stagewise hierarchical: At the interim analysis the primary hypothesis Hp is tested with critical value up,1. If Zp,1�up,1, we
can reject Hp, stop the trial and test the secondary hypothesis Hs with critical value us,1. Otherwise, the trial continues and the
primary hypothesis Hp is tested with critical value up,2 at the final analysis. If Zp,2�up,2, we can reject Hp and test the secondary
hypothesis Hs with critical value us,2. Consequently, the marginal probability to reject the secondary hypothesis Hs at either the
interim or final analysis using the stagewise hierarchical strategy is

Ra(Hs)=P(Zp,1�up,1, Zs,1�us,1)+P(Zp,1<up,1, Zp,2�up,2, Zs,2�us,2) (1)

(b) Overall hierarchical: Same principle as the stagewise hierarchical procedure except that the trial does not stop if at the
interim analysis Hp can be rejected, but not Hs. In this case the trial continues to the final sample size where Hs is tested again
with critical value us,2. Thus,

Rb(Hs)=Ra(Hs)+P(Zp,1�up,1, Zs,1<us,1, Zs,2�us,2) (2)

(c) Partially hierarchical: Same principle as the overall hierarchical procedure except that Hs can be tested at the final analysis
irrespective of whether Hp has been rejected before. In other words, Hs is only tested at the interim analysis if Hp has been
rejected at that point. If Hs cannot be rejected at the interim analysis, it can be tested again at the final analysis. Such a strategy
could be sensible if the secondary endpoint is actually of prime interest and the primary endpoint is only a surrogate marker to
indicate when the secondary endpoint should be tested. Therefore,

Rc(Hs) = Rb(Hs)+P(Zp,1<up,1, Zp,2<up,2, Zs,2�us,2)

= P(Zp,1�up,1, Zs,1�us,1)+P(Zp,1<up,1, Zs,2�us,2)+P(Zp,1�up,1, Zs,1<us,1, Zs,2�us,2) (3)

(d) Coequal: Primary and secondary hypotheses are tested separately. The trial stops at interim only if both hypotheses can be
rejected. Consequently, the marginal probability to reject the secondary hypothesis Hs using the coequal strategy is

Rd(Hs) = Rc(Hs)+P(Zp,1<up,1, Zs,1�us,1, Zs,2<us,2)

= P(Zs,1�us,1)+P(Zs,1<us,1, Zs,2�us,2) (4)

Owing to their hierarchical nature, strategies (a) and (b) keep the FWER at level � across both endpoints, if proper error
spending approaches, each at level �, are applied separately to both endpoints. Strategies (c) and (d) maintain the Type I error
rate separately for each endpoint, but not the FWER across both endpoints. However, strategies (c) and (d) look very similar to
strategies (a) and (b) and are sometimes put up for discussion in clinical teams. Furthermore, strict control of the FWER may not
always be required in a clinical trial, but still the procedures’ properties with respect to this concept can be of interest to assess
whether the associated severity of Type I error inflation is deemed acceptable. Interestingly, with the results from Section 3.1
upper bounds for the probability of rejecting the secondary hypothesis Hs can be derived which are attained by all four strategies
under the same least favorable parameter configuration.

Copyright © 2009 John Wiley & Sons, Ltd. Statist. Med. 2010, 29 219--228
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It follows from the previous formulas that a rejection of Hs by any strategy implies the rejection of the subsequent ones in
the order given above. That is,

Ra(Hs)�Rb(Hs)�Rc(Hs)�Rd(Hs) (5)

holds irrespective of the multivariate distribution of the vector (Zp,1, Zp,2, Zs,1, Zs,2)′. If Hs is true, inequality (5) describes the relation
between the true level of the respective test and otherwise that of power. Note also that for the primary hypothesis we have

Rj(Hp)=P(Zp,1�up,1)+P(Zp,1<up,1, Zp,2�up,2) (6)

for j =a, b, c, d. Consequently, the marginal rejection probability of the primary hypothesis Hp is the same for all four strategies.
Further strategies are conceivable. For example, a referee mentioned a strategy that ‘looks back’ at the interim results of the

secondary endpoint when the primary endpoint is significant at the final analysis, but not at the interim. Such a strategy would
also keep the FWER. Regarding inequality (5), this strategy would fall between Ra(Hs) and Rd(Hs). Hence, the results from Section 3
also apply to this strategy. We note in passing that such a strategy will less likely be applied in practice, because the power
loss from only doing the final test and not the interim test would be very small, while it would be difficult to find a satisfactory
explanation if a significant interim result is no longer supported by the final analysis.

For the remainder of this paper, we assume that the vector of test statistics (Zp,1, Zs,1, Zp,2, Zs,2)′ follows the multivariate normal
distribution

N
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(7)

where �v =E(Zv,2), v =p, s. Here, � denotes the correlation between the two endpoints and
√

tv,1 denotes the correlation between
the interim tests statistics Zv,1 and the final test statistics Zv,2 for v =p, s. Formula (7) is an obvious generalization of the standard
group-sequential ‘unified formulation’ described in [3, Chapter 3.1] for two correlated endpoints. Asymptotically, the assumption
(7) holds for a wide range of tests statistics, see [3] for details.

As an example, consider the case of a two-armed study comparing an active treatment with placebo with respect to a primary
endpoint Xp and a secondary endpoint Xs. For the active treatment, let �v and �2

v denote the expectations and variances of the
endpoints v =p, s, respectively. For placebo, assume that the expected value is 0 for both endpoints and that the variances are the
same as for the active treatment. Suppose further that the interim analysis is performed after n1 and the final analysis after n patients
per group using a two-sample Z-test. Then we have in the balanced case corr(Xp, Xs)=corr(Zp, Zs)=�,�v = (�v / �v)

√
n / 2, v =p, s,

and t1,p = t1,s =n1 / n.

3. Upper bounds for type I error rates

In this section, we derive sharp upper bounds for the probability of rejecting the secondary hypothesis Hs, when in fact it is true,
for the different hierarchical test strategies introduced in Section 2. In Section 3.1 we provide the analytical results. In Section 3.2
we discuss various consequences of these results.

3.1. Analytical results

Let R0,j(H) denote the probability to reject H if it is true. If Hs (but not necessarily Hp) is true, upper bounds for the probabilities
R0,j(Hs), j=a,. . . , d, can be derived as follows.

We have

R0,d(Hs) = P(Zs,1�us,1)+P(Zs,1<us,1, Zs,2�us,2)

= P(Zs,1�us,1 or Zs,2�us,2)

= 1−P(Zs,1<us,1, Zs,2<us,2)

= 1−�√
ts,1

(us,1, us,2) (8)

where ��(., .) denotes the cdf of the bivariate normal distribution with means 0, variances 1 and correlation � between the two
variables. Hence, due to (5), 1−�√

ts,1
(us,1, us,2) is an upper bound for R0,a(Hs),. . . , R0,d(Hs), which is exact for R0,d(Hs).

We next show that in some cases the upper bound in (8) is attained even for strategy (a), and because of (5) also for the
three other strategies introduced in Section 2. A necessary condition for this is that the probability to reject Hs at the interim
analysis is equal to the unconditional probability, i.e. P(Zp,1�up,1, Zs,1�us,1)=P(Zs,1�us,1). Under the assumption of multivariate
normality of the test statistics given by (7), this requires Zp,1�Zs,1 +up,1 −us,1 with probability 1. Under Hs :�s =0, i.e. �s =0, this
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is equivalent to �=1 and �p�(up,1 −us,1) /
√

tp,1�0. The inequality up,1 −us,1�0 means that the error spending function for the
secondary endpoint is no less than that for the primary endpoint, i.e. the amount spent for the secondary endpoint is at least
as much as for the primary endpoint. This includes, for example, the cases of using the same error spending for both endpoints,
or using O’Brien-Fleming boundaries for the primary and Pocock boundaries for the secondary endpoint.

Assume now that tp,1 = ts,1, as will be the case in most applications. It seems intuitively plausible that R0,a(Hs) is maximized
at �p = (up,1 −us,1) /

√
ts,1. This is indeed the case: With this choice of �p and for �=1 we have

R0,a(Hs) = P(Zp,1�up,1, Zs,1�us,1)+P(Zp,1<up,1, Zp,2�up,2, Zs,2�us,2)

= P(Zs,1�us,1)+P(Zs,1<up,1 −√
ts,1�p, Zs,2�max(up,2 −�p, us,2))

= 1−�√
ts,1

(us,1, us,2) (9)

because up,1�us,1 implies up,2 −�p�up,2�us,2 for tp,1 = ts,1, and Zs,1 =Zp,1 −√
ts,1�p, Zs,2 =Zp,2 −�p due to �=1. Hence, the upper

bound 1−�√
ts,1

(us,1, us,2) from (8) is exact for R0,a(Hs),. . . , R0,d(Hs) under
√

ts,1�p =up,1 −us,1 and �=1.

3.2. Implications

The results obtained in the previous section have a number of interesting consequences.
The naive strategy described in Section 1 and introduced as Strategy 1 in [12] is a special case of the stagewise hierarchical

test strategy (a) with us,1 =us,2 =z1−�, where z� denotes the �-quantile of the standard normal distribution. If the interim analysis
is performed after observing 50 per cent of the patients (i.e. n1 / n=0.5), equation (9) yields R0,a(Hs)=R0,d(Hs)=0.080076 as the
maximum rejection probability for �=0.05 when Hs is true. Note that the formulas (8) and (9) do not contain the critical values
up,1 and up,2 from the primary error spending function. Hence, the value �p = (up,1 −us,1) /

√
ts,1 at which the largest size inflation

occurs with the naive strategy depends on the primary error spending approach, but the magnitude of that inflation does not.
Suppose it is desired to control R0,a(Hs) at level � (=0.05, say). If we set us,1 =us,2 and solve equation (9) for R0,a(Hs)=0.05,

we obtain us,1 =1.8755. This is the (1−0.03036)-quantile of the standard normal distribution. Thus, the condition us,1 =us,2
leads to the group-sequential boundaries from Pocock [1]. Furthermore, we conclude from Section 3.1 that (i) this approach is
uniformly more powerful than Strategy 3 from [12], which essentially performs a Bonferroni test for the secondary endpoint in
case of the stagewise hierarchical strategy (a); (ii) there is no uniform improvement of Pocock’s error spending approach for the
secondary endpoint; (iii) in terms of error spending, there is no gain in testing the secondary endpoint only once: In spite of
R0,a(Hs)� · · ·�R0,d(Hs), the maximum rejection probability under Hs is the same and no relaxation of nominal levels is possible
when performing the stagewise hierarchical strategy instead of the partially hierarchical strategy.

Applying the error spending approach from Pocock [1] to the secondary endpoint is an optimal allocation of the significance
level for the stagewise hierarchical test strategy in a minimax sense: the minimal significance level to be used at an unspecified
timepoint is maximized.

4. Power comparisons

In Section 3 we showed that using an error spending approach for the primary endpoint and a separate, possibly different
error spending approach for the secondary endpoint exhausts the significance level under weak conditions for the stagewise
hierarchical, overall hierarchical and partially hierarchical test strategies. It is obvious that the error spending approaches do not
dominate each other in terms of power, although special results are available in certain situations. For example, we have seen
that using the error spending approach from [1] is optimal in a minimax sense for the stagewise hierarchical strategy. Similarly,
in the borderline case of Zp,i =Zs,i for all i, using the same error spending function for both the primary and the secondary
endpoint is always better than using different error spending functions.

In this section we report selected results of an extensive numerical study to investigate the power of rejecting Hs for various
combinations of error spending functions when applying the stagewise hierarchical strategy (a). Note that the power to reject
Hs for the strategies (b) through (d) is very similar to the power in ordinary group-sequential trials, which has been investigated
extensively elsewhere (for example, in [3]) and is thus not reported here.

We assume normally distributed test statistics following the distribution (7). The power Rj(Hs) for any of the strategies j =a, b, c, d
described in Section 2 depends on the non-centrality parameters �p and �s, the correlation �, the information fractions tp,1 and
ts,1 and the selected error spending approaches. Note that the power calculations can be done analytically and simulations are
not necessary. For example, Ra(Hs) is the sum of a two- and a three-dimensional normal integral, which can be calculated using
the numerical integration methods from [15, 16].

As mentioned in the Introduction, the choice of the spending function for the primary variable is not primarily guided by
statistical power considerations but rather by the wish to stop the trial early only if there is very strong evidence in favor of the new
treatment. Hence, in practice spending functions allocating rather small significance levels at the interim analysis (O’Brien-Fleming
type) are much more popular than balanced spending functions (Pocock type). Consequently, we use O’Brien-Fleming boundaries
[2] for the primary endpoint analysis. For the secondary endpoint, however, the situation is different. When stopping of the trial
depends on the primary endpoint, power considerations can be the guiding principle for the choice of the spending function
for the secondary endpoint.
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Figure 1. Power to reject the secondary hypothesis Hs with the stagewise hierarchical testing procedure (a) for different values of �. Top three curves: �p =4,�s =3.
Bottom three curves: �p =3,�s =2.

For the power calculations below we set tp,1 = ts,1 = 1
2 . For the secondary endpoint analysis we used the error spending function

a(t)=min(�·t�,�)

from Kim and DeMets [14], where � is a tuning parameter. In case of just one interim analysis, � can be calculated such that
the resulting critical values us,1 and us,2 match the suggestions from Pocock (�=0.7668) and O’Brien and Fleming (�=3.2749).
Values of � between these two numbers provide error spending functions which spend more of the significance level at the
interim analysis than O’Brien-Fleming, but less than Pocock. For the comparisons below, we considered all combinations of
�=0, 0.1,. . . , 0.9, 1, �p =2, 3, 4, 5, �s =1, 2, 3, 4, 5, and �=0.7668, 1, 1.5, 2, 2.5, 3, 3.2749.

In Figures 1 and 2 we present selected results of the numerical power study. In each graph we plotted the power to reject
the secondary hypothesis Hs against the tuning parameter � for the stagewise hierarchical strategy (a) and for selected values
of �p,�s, and �. The results for the Pocock error spending function are on the left end of the power curves and that of the
O’Brien-Fleming error spending function on the right end. The graphs are selected to reflect study sample sizes that are usually
used to achieve a reasonably high power for rejecting the primary hypothesis. Note that the conclusions below also hold for the
scenarios not plotted here.

The results from the power study seem to indicate that error spending approaches that spend a larger amount at the interim
analysis are in general more powerful. For example, choosing Pocock’s error spending function has a power advantage over
O’Brien-Fleming’s error spending function in the scenarios of Figure 1, where the magnitude of the power advantage depends
on the magnitude of �p and �s. Even in cases where the O’Brien-Fleming error spending function is known to be nearly optimal
(high correlation, similar effect), the power gain is small, if any. To investigate this effect in more detail, we calculated the power
when choosing O’Brien-Fleming’s approach under its optimal conditions (�=1 and �p =�s) and under small deviations thereof.
It becomes evident from Figure 2 how quickly the power advantage is lost as either the correlation drops or the mean effects
differ. Note that in case of �s>�p, the secondary hypothesis is rejected with (conditional) probability 1 if the primary hypothesis
is rejected, the correlation between primary and secondary test statistic is 1, and the error spending approach is such that
more Type I error is spent for the secondary than for the primary endpoint. This is the reason for two completely flat curves in
Figure 2.

The results are in line with [12], who concluded that using the O’Brien-Fleming error spending for both the primary and
secondary endpoint is often less powerful than a Bonferroni test for the secondary endpoint. As mentioned in Section 3.2, using
Pocock’s approach instead of the Bonferroni test is even more powerful. From the results of this power study, we further conclude
that the Pocock error spending approach generally performs well when compared with other error spending approaches (i.e.
other values of �).

5. Numerical example

In this section we use a numerical example based on a real case study to illustrate the results of the different hierarchical test
strategies introduced in Section 2. In a controlled clinical trial comparing a new respiratory drug with an active control for the
chronic obstructive pulmonary disease (COPD), the primary endpoint was the difference between the treatments in standardized
area under the curve (AUC) of the forced expiratory volume in one second (FEV1) after 12 weeks of treatment. The difference in
trough FEV1 was considered as a key secondary endpoint.

An interim analysis was planned after 50 per cent of patients had completed the study with the option to stop early for
efficacy. One-sided tests of superiority for the new treatment were considered for both hypotheses. The standardized test statistics
Zv,i , i=1, 2, for the two hypotheses Hp and Hs can be considered as asymptotically N(0, 1)-distributed. It was planned to control
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Figure 2. Power to reject the secondary hypothesis Hs with the stagewise hierarchical testing procedure under different scenarios. Top: �p =�s =3 and
�=0.2, 0.5, 0.8, 0.9, 1. Bottom: �=1 and different values for �p,�s .

the FWER at level �=0.025. The study sample size was determined such that a simple Z-test without any adjustments would
yield approximately 92 per cent power for the primary and 86 per cent power for the secondary endpoint. This resulted in the
recruitment of 542 patients per treatment arm. Note that a power of 92 per cent corresponds to a non-centrality parameter of
�p =�−1(0.975)−�−1(1−0.92)=3.37 for AUC and �s =3.04 for trough FEV1 at the final analysis. Note also that in the actual trial
covariate adjusted analyses were conducted. As these details are not important for the discussion below, we continue with the
simplified analyses.

Suppose now that O’Brien-Fleming boundaries were used for the primary analysis and Pocock boundaries for the secondary
analysis. We would conclude sufficient evidence of a benefit in AUC, if at the interim analysis Zp,1�2.80, or if at the final analysis
Zp,2�1.98. As noticed before, these rejection boundaries for the primary hypothesis Hp hold for all four hierarchical test strategies
discussed in Section 2. For the secondary endpoint, the significance boundary is 2.18 at both the interim and final analyses.
The rejection of the secondary hypothesis Hs of course depends on the selected hierarchical test strategy from Section 2. To
illustrate the different strategies, we discuss them below under two scenarios: (i) the situation of stochastic independence between
the primary and secondary endpoint and (ii) the case where the correlation between primary and secondary endpoint is 0.8.
Furthermore, we make the simplifying assumption that the conditions, under which the power calculations were conducted, are
correct and correspond to the true differences between the new treatment and the active control.

(a) Stagewise hierarchical: With this strategy, the trial is stopped as soon as the primary endpoint is significant. This strategy would
be applied if superior efficacy in the primary endpoint alone is important enough to stop the trial (and apply for market approval of
the new drug immediately, say). Efficacy of the secondary endpoint would be of substantial additional benefit (for example, for an
extended label claim). The probability of rejecting the primary hypothesis Hp at interim is P(Zp,1�2.80)=1−�(2.80−√

0.5 ·3.37)=
33.8%. Conditionally on rejecting Hp, the probability of success in the secondary endpoint is P(Zs,1�2.18)=1−�(2.18−√

0.5 ·3.04)=
48.9% in the independent case. In the correlated case, this probability increases to P(Zs,1�2.18|Zp,1�2.80)=P(Zp,1�2.80, Zs,1�2.18) /
P(Zp,1�2.80)=87.7%. If the trial continues to the end and is significant in the primary endpoint, the conditional power of the
secondary endpoint is P(Zs,2�2.17)=1−�(2.17−3.04)=80.6% in the independent case. In the correlated case, this value is almost
identical: P(Zs,2�2.17|Zp,1<2.80, Zp,2�1.98)=80.7%. Overall, the power for the secondary endpoint given by formula (1) is 63.3
per cent in the independent case and 76.5 per cent when the correlation between AUC and trough FEV1 is 0.8.
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(b) Overall hierarchical: Here, the trial would continue even after significance of the primary endpoint at the interim analysis.
This would be done if a formal claim of efficacy in trough FEV1 is important enough to warrant continuation of the trial. In this
case, the overall probability of rejection for the secondary endpoint would be 74.6 per cent (see equation (2)), as opposed to 63.3
per cent for strategy (a) in the independent case. For the correlated case, the corresponding power values are 79.8 per cent and
76.5 per cent, respectively. There is a possibility here that a significance for the primary endpoint at interim is ‘lost’ when AUC is
re-analyzed at the final analysis. The probability of this event, however, is remote (0.09 per cent in the scenario considered here).
If it occurred, it may be an indication that the two trial stages are not homogeneous.

(c) Partially hierarchical: This strategy would allow a final test for the secondary hypothesis Hs even if the primary hypothesis
Hp is not rejected at all. The power for the secondary endpoint increases to 81.2 per cent in the independent case and 81.3
per cent in the correlated case, see formula (3). By construction, the FWER for both AUC and trough FEV1 would not be controlled
by this approach. This strategy would probably not be appropriate for the case study considered here.

(d) Co-equal: The difference between this strategy and strategy (c) is that Hs is additionally rejected in the following case:
Hp is not rejected at interim, Hs is rejected at interim, but Hs would not have been rejected at the final analysis. Equation (4)
gives a power of 82.3 per cent for trough FEV1. Of course, there is no difference in this power between the correlated and the
uncorrelated case here. This strategy may be appropriate if, for example, it is clear from the onset that the trial will be continued
to the final analysis for exploratory reasons, and trough FEV1 is just one of many secondary endpoints that are investigated
without strong FWER control.

An interesting side aspect of this trial was that the clinical team also looked into the possibility of conducting an interim
analysis after a fixed number of patients had completed 4 weeks of treatment to decide upon stopping or continuing recruitment.
The primary (AUC FEV1 after 12 weeks) and secondary (through FEV1 after 12 weeks) endpoints would remain the same, but the
4-week readout of AUC would be used to decide whether the study should continue to its second stage or not. In either case,
monitoring of all enrolled patients would be continued until completing 12 weeks of treatment.

One way of applying a group-sequential design while controlling the FWER strongly at level � is as follows. Assume that if
recruitment continues, the number of patients available at the final analysis (12 weeks of treatment) is n, whereas if the trial
stops early, this number is n1<n. Mathematically, this is equivalent to a design where an interim analysis based on the primary
12-week endpoint is conducted at an information fraction of t1 =n1 / n. Applying this strategy to our case study, we may use,
for example, Pocock’s boundaries up,i , i=1, 2, for the primary endpoint, based on the information fraction n1 / n. If recruitment is
stopped, monitoring continues for the first-stage cohort of patients to collect the complete 12-week data and the final analysis
of the n1 patients is performed with the Pocock boundary up,1. Otherwise, the trial continues and we are allowed to perform
the final analysis of the n patients based on the Pocock boundary up,2. (Note that in this case we theoretically can also perform
an additional formal interim analysis for the primary endpoint when n1 patients have completed 12 weeks of treatment. In
practice, however, this option would probably not be used, as the benefit of such a late interim analysis will be outweighed
by its operational cost, when n patients have already been recruited anyway.) For the secondary endpoint we would apply the
stagewise hierarchical test strategy (a). That is, the secondary hypothesis Hs is tested at its own group-sequential boundaries us,i ,
i=1, 2 which are also calculated based on the information fraction n1 / n. Rejection of the primary hypothesis Hp decides if and
when the secondary test is done.

In our case study, one option was to perform the interim analysis after 80 per cent of the patients had completed 4 weeks of
treatment. In that case, a recruitment stop would have reduced the sample size only moderately, but the operational advantages
might have been worthwhile (being able to tell centers early when to stop recruitment, when to start data cleaning, etc.). If
n1 / n=0.8, the critical value for both analyses (with either n1 or n patients) is 2.11. Owing to the high correlation between the
two test statistics, the power loss relative to a trial without the option to adjust for a recruitment stop is rather small. In the
scenarios discussed here, even under an early recruitment stop a lower bound of the power is 1−�(2.11−√

0.8·3.37)=82% and
1−�(2.11−√

0.8·3.04)=73% for AUC and trough FEV1, respectively. This calculation provides a lower bound, because it simply
gives the probability of significance for separate interim analyses at 80 per cent of the information, ignoring the decision rule for
stopping recruitment and the correlation between 4- and 12-week response.

6. Discussion

Hierarchical testing of a primary and a secondary hypothesis in a group-sequential setting gives rise to interesting questions
(and surprising answers) beyond the usual considerations regarding Type I error rate control and power. It follows from Tang
and Geller [6] that hierarchical group-sequential testing with separate error spending functions at level � for the primary and
secondary hypotheses protects the FWER strongly at level �. For this to be true it is only necessary that the secondary hypothesis
Hs is tested whenever the primary hypothesis Hp is rejected. That is, if Hp has been rejected at an interim analysis, Hs can be
tested on partial data at that interim analysis as well and again at the final analysis, if it was not significant before. We call this
the overall hierarchical testing strategy. However, in practice the more restrictive stagewise hierarchical testing strategy is often
applied, where the trial is stopped early if Hp can be rejected at the interim analysis, irrespective of whether the secondary
hypothesis can be rejected or not.

This raises two questions. First, can the rejection boundaries for the stagewise hierarchical testing strategy be relaxed compared
with the one based on a separate error spending approach for each hypothesis? Second, can the secondary hypotheses be
tested at full level �, either at interim or at the final analysis, since Hs is tested only once in the stagewise hierarchical testing
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strategy? The answer to both questions is negative. In this paper, we show that if the nominal rejection levels for Hs are assumed
to be the same for the interim and final analysis, the nominal significance levels given by Pocock’s error spending function
(which are smaller than �) are sharp upper bounds. Nevertheless these levels are larger than � / 2 obtained from the Bonferroni
inequality, which has been proposed previously to protect the Type I error rate in this situation. We also show that in general the
boundaries given by any error spending approach for the secondary hypothesis cannot be relaxed simultaneously. We provide
cases of parameter values for the joint distribution of primary and secondary test statistics which lead to full exhaustion of the
significance level �, even for the most restrictive of the four test strategies considered, the stagewise hierarchical strategy.

The choice of the error spending function for the primary hypothesis as well as the timing of the interim analyses and the
maximum sample size are governed by the same criteria as in any clinical trial with a single hypothesis (overall power, expected
sample size, minimum number of patients required for safety assessment, etc.). However, the situation is more complex for the
secondary hypothesis Hs, as it depends on the error spending function chosen for the primary hypothesis Hp and the selected
stopping strategy. For the overall hierarchical strategy, there is no fundamental difference between the criteria governing the
choice of the error spending function for the primary and secondary hypothesis. Hence, the same error spending functions may
be used for them, or a larger significance level will be used for Hs at the interim analysis in order to increase the chance of
stopping the trial early. For the stagewise hierarchical strategy this choice, however, is more important since if Hp is rejected at
interim, but Hs is not, there is no second chance to test Hs again.

The power study from Section 4 confirmed and quantified this result for the case of an O’Brien-Fleming spending function for
Hp. We show that in this situation the choice of Pocock’s spending function for Hs is a good choice, because in most cases it
leads to a more powerful procedure compared to other choices of error spending functions for Hs.

In this paper we restrict the discussion to hierarchical tests of one primary and one secondary endpoint in a two-stage design.
It is of interest to consider also group-sequential trials with more than one interim analysis. Here, both the stagewise and the
overall hierarchical strategy with any choice of error spending function at level � for the primary and the secondary hypothesis
will control the FWER at level �. In this situation, however, the probability boundaries for the stagewise hierarchical approach are
not sharp anymore. It is an open question whether more powerful procedures can be derived.

Tamhane et al. [17] have independently worked on problems similar to the ones discussed in this paper and came to similar
conclusions and recommendations with respect to the stagewise hierarchical approach. They as well as the authors of this paper
presented their preliminary results—though with different focus and derivations—at the 6th International Conference on Multiple
Comparison Procedures in Tokyo (2009). Details of their derivations and results are presented in [17].

The situation of testing one primary and one secondary endpoint repeatedly and hierarchically in a group-sequential design
shares some common features with the situation of comparing two treatments with a control on a primary and a secondary
endpoint in a fixed-sample trial. Related test procedures have been critically reviewed by Hung and Wang [18] and further
discussed with respect to error rates of the secondary hypotheses by Bretz et al. [19]. The evaluation of the sharpness of the
rejection boundaries and of power is subject of ongoing research.
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Time-to-event analysis with treatment
arm selection at interim
L. Di Scala*† and E. Glimm

This paper discusses the application of an adaptive design for treatment arm selection in an oncology trial, with
survival as the primary endpoint and disease progression as a key secondary endpoint. We carried out treatment
arm selection at an interim analysis by using Bayesian predictive power combining evidence from the two end-
points. At the final analysis, we carried out a frequentist statistical test of efficacy on the survival endpoint. We
investigated several approaches (Bonferroni approach, ‘Dunnett-like’ approach, a conditional error function
approach and a combination p-value approach) with respect to their power and the precise conditions under
which type I error control is attained. Copyright © 2011 John Wiley & Sons, Ltd.

Keywords: adaptive design; Bayesian statistics; oncology; treatment selection

1. Introduction

This paper discusses an adaptive oncology phase II/III trial with time-to-event (TTE) analysis for
survival. The trial comprises an interim analysis for selecting one of two originally tested treatment
regimens. We suggest an approach that combines interim decision making based on Bayesian predictive
power with adjustment methods that control the type I error rate of the final efficacy decision (selected
treatment versus control) at the prespecified level ˛. The approach allows for the selection of one treat-
ment at the interim, on the basis of efficacy results or other, external considerations, a stop for futility
and/or efficacy at interim or continuation with both treatment arms. Decision making at the interim anal-
ysis is improved by incorporating information on progression-free survival (PFS) as an additional TTE
endpoint.

We introduce the trial in Section 2. Section 3 reviews the basics of the group-sequential log-rank test.
Subsequently, Section 4 discusses the interim decision-making methodology, and Section 5 introduces
several adjustment methods used for type I error control. We investigated various combinations of these
methods and versions of the decision-making rules in extensive simulation studies. We summarize the
results in Section 6, followed by the final discussion in Section 7.

2. The trial

The trial investigates a targeted therapy in the advanced lung cancer setting, administered as an oral
agent. Phase I dose-finding studies had established acceptable safety for two different doses/regimens:
daily and weekly administration. The daily regimen is assumed to guarantee constant inhibition of mark-
ers downstream of the therapeutic target. The weekly schedule, however, might show a better safety
profile while still delivering sufficient marker inhibition.

As development approaches phase II planning, the possibility of an adaptive phase II/III study is
explored, with the aim of embedding treatment selection into a confirmatory trial for testing the efficacy
of the combination of the targeted therapy plus the standard of care (SoC; chemotherapy in this context)
versus SoC alone. In oncology, phase II designs have historically been single-arm, multistage studies
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with tumor shrinkage as the primary endpoint. These designs are inappropriate in the combination set-
ting, as the presence of the combination partner as active comparator is crucial in properly quantifying
treatment benefit. In addition, tumor shrinkage is not an appropriate indicator of treatment benefit of a
targeted therapy such as the one investigated here, as the agent would generally be expected to delay
tumor growth rather than lead to its disappearance. A TTE endpoint such as PFS, that is, time from start
of therapy to tumor progression or death due to any cause (see RECIST guidelines [1]), is often selected
as the phase II endpoint for targeted agents. In addition, regulatory agencies recommend that approval
should generally be sought by testing efficacy in overall survival (OS) as this is the ‘universally accepted
direct measure of benefit’ [2], whereas PFS is based on tumor measurements and is thus subjective.

Table I. Expected PFS and OS in advanced NSCLC.

Indication SoC PFS SoC OS PFS benefit OS benefit
(months) (months) (%) (%)

First line NSCLC 3.5–5 7.5–10 20–50 20–50

Note: NSCLC, non-small cell lung cancer; OS, overall survival; PFS, progression-free survival; SoC,
standard of care.

Figure 1. Design schema.

Interim Analysis Final Analysis

Early stop for efficacy
OS only*

Stop study
(success)

Early stop for futility
based on predictive power

of final success
(PFS, OS combined)**

Stop study
(failure)

Yes

Yes

No

No

Treatment arm selection
based on predictive power

of final success
(PFS, OS combined)**

Continue with
sel. treatment arm

and control Final efficacy test
OS only*

* type I error control ** Bayesian decision rule

Figure 2. Interim decision flow chart.
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Therefore, the proposed trial has OS as the primary endpoint and PFS as a key secondary endpoint.
The trial is event driven; that is, both interim and final analysis would be carried out after prespecified
numbers of observed OS events.

Table I provides an overview of the PFS/OS expectations for non-small cell lung cancer patients
with the currently available therapies. The gap between progression and survival expectations would
make a phase II trial with an OS endpoint operationally unfeasible and significantly delay development
timelines. Therefore, a design that includes

� a phase II part with treatment selection and confirmation of the selected treatment’s efficacy and
� a PFS endpoint that would shorten time to treatment selection but an OS endpoint in phase III

was considered by the trial team as a viable option to investigate. A schema is provided in Figure 1, and
Figure 2 shows in detail how interim decisions are made.

Regarding the validity of PFS as a surrogate endpoint for survival, it is widely professed in the clinical
literature that a delay of progression by treatment corresponds to a simultaneous lengthening of time to
death [3]. Furthermore, death is regarded as a progression event by definition. Hence, both endpoints
will be influenced by the treatment in a similar way; that is, a prolongation of PFS with a corresponding
prolongation of post-progression survival is likely (the simulations performed in Section 6 also explore
scenarios where PFS is not a surrogate of survival).

3. Group-sequential log-rank test

This section lays the foundation of subsequent investigations by outlining the joint distribution of a
group-sequential log-rank test that is performed on two treatment regimens. Assume that a one-sided
test of treatment effect rejects if the value of the log-rank test statistic is ‘large’.

Let t�
k

be the time at which an event has occurred in group j D 1; 2; C where 1 and 2 denote the
treatments and C the control group. For simplicity, let us assume that all event times are distinct such
that

ıkj D

�
1 if an event occurred in group j at time t�

k
0 otherwise

: (1)

Let ti ; i D 1; 2 denote the time of interim and final analysis and di the number of uncensored events
that occurred until ti . The statistic of the log-rank test for a single treatment j D 1; 2 at time ti is given
by

lij D

Pdi
kD1

.ıkj � pkj /qPdi
kD1

pkj .1� pkj /

(2)

where pkj D
rkj
rk

, rkj is the number of patients at risk in group j at time t�
k

and rk is the total number
of patients at risk at t�

k
.

We assume that the two test statistics li1 and li2 are treated separately in the sense that the total number
of patients at risk is set to rk D rkj CrkC at time t�

k
for the comparison of groups C and j and that sum-

mation is only over those event times t�
k

where the event occurred either in C or in j . For convenience
of notation, we define

pkj D

� rkj
rkjCrkC

if the event occurred in group j or C at time t�
k

0 otherwise

such that summation in (2) can be carried out over all event times. If the survival distributions in the
three groups are identical and groups are equal in size, the expected value of pkj is 1/2 in this separate
analysis.

The asymptotic joint distribution of
�
li1
li2

�
is

N

  
ii1�1

ii2�2

!
;

�
1 vi1;i2

vi1;i2 1

�!
(3)
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with �j being the log hazard ratio between treatment j and control (�1 D �2 D 0 under the null

hypothesis H0), iij D
qPdi

kD1
pkj .1� pkj /,

vi1;i2 D

Pdi
kD1

�kqPdi
kD1

pk1.1� pk1/ �
Pdi
kD1

pk2.1� pk2/

(4)

where the correlation is derived from the fact that conditional on
˚
rkj
�
jD1;2;C

, we have

�k WD Cov.ık1; ık2/DE ..ık1 � pk1/.ık2 � pk2//D pk1pk2 �
rkC

rk1C rk2C rkC
:

From this, it is easy to write down the joint asymptotic distribution of .l11; l12; l21; l22/’. However, in
the TTE context, it is more convenient to use the so-called independent increment structure: let

Ql2j D
i2j l2j � i1j l1jq

i22j � i
2
1j

: (5)

Then it follows from the standard theory for linear transformations of the multivariate normal distribution
that asymptotically,0

BBBB@
l11

l12

Ql21

Ql22

1
CCCCAÏN

0
BBBBB@

0
BBBBB@

i11�1

i12�2q
i221 � i

2
11�1q

i222 � i
2
12�2

1
CCCCCA ;
0
BBB@

1 v11;12 0 0

v11;12 1 0 0

0 0 1 v�21;22

0 0 v�21;22 1

1
CCCA

1
CCCCCA (6)

with v�21;22 D
Pd2
kD1

�k�
Pd1
kD1

�kq
i2
21
�i2
11
�
q
i2
22
�i2
12

.

In contrast to the analysis of non-time-dependent data such as normal endpoints or rates, the statis-
tics l1j and Ql2j are not simply the ‘stage-1’ and ‘stage-2’ test statistics, respectively, calculated from
observations before and after the interim. It can be shown that a naive calculation of test statistics just
splitting into events before and after the interim leads to an invalid analysis. We will discuss this aspect
in Section 5.

Without treatment arm selection, a group-sequential approach with the possibility to stop early for
efficacy if at least one treatment is statistically significantly superior to control could be implemented as
follows. Critical values c1 and c2 have to be determined in such a way that

P rH0 .max.l11; l12/> c1/D ˛1 and (7)

P rH0 .max.l11; l12/ < c1;max.l21; l22/> c2/D ˛ � ˛1 (8)

where ˛ is the overall test level and ˛1 < ˛ is the ‘level spent’ at the interim. It is easy to obtain c1 and
c2 from (3) and (6) by numerical integration, for example, using the methods described in [4].

The concrete value of ˛1 is determined as some function of the information fraction I1j
I2j

where

Iij D i2ij . In later sections, we use the ˛-spending approach by Lan and DeMets [5]. In event-driven
trials, I2j is usually approximated by the total number of events to be collected divided by 4 (which is
the expected value of I2j under the null hypothesis of equal event rates in all treatments). The interim
˛1 is then calculated from the ratio of actually observed events to this estimate of I2j . The final critical
value c2 is re-calculated after all data were obtained such that (8) is met (see, e.g. [6, Chapter 3.7]). Note
that these calculations are carried out based on the overall events observed, assuming H0, not on the
actually observed information fractions, which depend also on how all events split onto the treatment
groups. Here, we also follow this general idea. However, treatment selection requires some modifications
of the general approach. These are detailed in Section 5.

Only the so-called non-binding futility bounds are considered in this paper. The ‘˛ reclaim’, which is
a consequence of binding futility bounds, is mathematically easy to handle but generally discouraged by
health authorities.

The generalization to a stratified log-rank test is straightforward but not discussed here.
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4. Interim decision making

The aim of this paper was to modify the group-sequential approach outlined in Section 3 to accommo-
date the three possible interim decisions as shown in Figure 2, that is, stop for efficacy, stop for futility
and selection of a treatment arm to continue into stage 2 of the trial. The control arm is continued to the
end of the trial and not subject to any interim decision.

The stop for efficacy will be based on a conventional group-sequential ˛-spending rule for the pri-
mary OS endpoint. For the other decisions, it is desired to exploit information available from a surrogate
endpoint, that is, PFS, as an indicator of subsequently increased risk of death.

4.1. Early stop for efficacy

Because efficacy claims are ultimately based on benefit in OS, the decision to stop the trial early for effi-
cacy can only be based on OS information. Following common practice in event-driven TTE trials, an
O’Brien–Fleming type Lan–DeMets ˛-spending approach is used (see, e.g. [6, p. 148, formula (7.3)]):
the trial is stopped early if the log-rank test at interim is significant at level ˛1, which will be calculated
from the function

˛.t/D 2� 2ˆ.
u1�˛=2
p
t
/

at t equal to the expected value of the accrued information ratio I1S=I2S where S denotes the selected
treatment, ˆ.�/ the cumulative distribution function of the standard normal distribution and u˛ its ˛-
quantile. Early efficacy is claimed if max.l11; l12/ > c1 where c1 is the critical value defined in (7).
Alternatively, it would also be possible to simply fix an ˛1 < ˛ as deemed appropriate.

The expected value of I1S=I2S is approximated by

2
3
d�1

d�2 �
d�
1

3

(9)

where d�i is the total number of events after stage i . The trial will be planned for fixed d�2 and d�1 .
Hence, (9) is the ratio of expected number of events under H0 in the selected treatment arm and the
control arm. Other ways of approximating the information fraction are conceivable. The approximation
of the information fraction is only used to calculate ˛1 according to the selected ˛-spending approach.
It is not used to calculate Ql2S , which is carried out via formula (5).

Simulations indicate that the impact of different ways of approximating the information fraction under
H0 on both ˛-level control and power is negligible. This is unsurprising, as the various estimates of
information fraction are very similar, vary in a rather narrow range and only marginally influence critical
values in this range.

4.2. Hybrid Bayesian framework for interim decision making

An early stop for efficacy can only be justified with clear-cut evidence from the primary endpoint. Sub-
stituting lacking evidence on OS with evidence from PFS is risky in the context of a submission-relevant
trial and requires assumptions on the link between the two. In contrast, stopping for futility or treatment
arm selection does not directly affect efficacy claims. Hence, it is desired to improve decision making at
interim on these two aspects by ‘borrowing strength’ from observed PFS events.

To achieve this, Bayesian tools are suggested. In particular, Bayesian predictive probabilities will be
calculated for both the futility decision and the treatment arm selection.

4.2.1. Predictive power calculation and its use. In a Bayesian framework, the log-hazard ratios �ij are
considered as random variables with a prior distribution. The location of their prior distribution reflects
the knowledge about the expected magnitude of the treatment effect, whereas the covariance reflects the
(un)certainty expressed regarding such prior knowledge. Bayesian inference of the treatment effects is
based on the posterior distribution. This is defined as the conditional distribution of the �ij ’s given the
observations coming (in this setting) from stage 1 of the trial.

Because of the confirmatory nature of the trial, a traditional statistical test of treatment effect is carried
out. Thus, the suggested hybrid Bayesian/frequentist approach is not based on direct inference using the
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posterior distribution of �ij ’s but rather on the predictive distribution of their estimates O�ij . The predic-
tive distribution relates the estimates O�ij to the posterior and is obtained by integrating the conditional
distributions O�ij given �ij by the posterior distribution of �ij . Thus, one obtains the distribution of new
estimates O�ij when both prior information on �ij and old estimates (in this case, through stage 1) are
available. Brannath et al. [7] used a similar approach in the context of confirmatory clinical trials. For
more information on this methodology see, e.g., [8] or [9].

In the context of the trial discussed here, the approach works as follows: O�1j D
l1j
i1j

and O�2j D
Ql2jp
I2j�I1j

are estimates of the log-hazard ratios for one of the considered endpoints (either OS or PFS).

According to formula (3), their asymptotic joint covariance is I�11 D

 
I�111 v11;12i

�1
11 i
�1
12

v11;12i
�1
11 i
�1
12 I�112

!
.

Assuming that
�
�1
�2

�
has the prior distribution N.�0; I�10 /, the posterior distribution of

�
�1
�2

�
given

� O�11
O�12

�
is

 
�1

�2

! ˇ̌̌
ˇ̌
 
O�11
O�12

!
�N

 
.I0C I1/

�1

 
I0�0C I1

 
O�11
O�12

!!
; .I0C I1/

�1

!
:

Because the interim decision should be driven by the first stage data and not much influenced by any
prior assumptions about the putative treatment effects, a vague prior is used by letting I0! 0 [10]. Thus,
the posterior simplifies to  

�1

�2

! ˇ̌̌
ˇ̌
 
O�11
O�12

!
�N

  
O�11
O�12

!
; I�11

!
: (10)

In line with the general asymptotic approach to the analysis of survival data, this assumes I1 to be known.

The predictive distribution is defined as the conditional distribution of
� O�21
O�22

�
given

� O�11
O�12

�
. A simple

application of the convolution theorem for normal distributions shows that 
O�21
O�22

! ˇ̌̌
ˇ̌
 
O�11
O�12

!
�N

  
O�11
O�12

!
; I�11 C

�
.I21 � I11/

�1 v

v .I22 � I12/
�1

�!
; (11)

with v D
v�
21;22p

.I21�I11/.I22�I12/
D

Pd2
kD1

�k�
Pd1
kD1

�k
.I21�I11/.I22�I12/

(see formula (6)) in case of the vague prior.
Considering the two treatments j D 1; 2 separately, the predictive probability that the final log-rank

statistic lies above some fixed threshold c is obtained from (11) as

P r
�
Ql2j > c

ˇ̌̌
O�1j

	
Dˆ

�
i1j

i2j

�
c �

p
I2j � I1j O�1j

	�
: (12)

The resulting predictive power (12) is calculated at interim for both treatments and for both PFS and
OS. It is the probability of a successful trial (i.e. a significant trial, irrespective of ‘correct’ treatment arm
selection), given the interim results and a vague Normal prior for the true log-hazard ratios �j ; j D 1; 2.
Only one of the four predictive probabilities corresponds to ‘reality’: the one for OS and the selected
treatment. The predictive probability for OS in the deselected treatment arm corresponds to a ‘what if’
scenario; the predictive probabilities for PFS correspond to ‘virtual’ tests of PFS, which play no role
in the final decision on the primary endpoint but are used for decision making. The calculation of the
PFS predictive probability requires additional approximations of expected events (whereas the total and
interim number of cases is fixed for OS). Details are found in Appendix A.2. Appendix A.1 shows how
the threshold c in (12) is selected in the concrete application.

The suggested approach makes a number of simplifying assumptions. In particular, it considers sep-
arate marginal prior (and hence posterior) distributions of PFS and OS. More sophisticated approaches
might attempt to consider some joint prior distribution of the hazard ratios of PFS and OS. This was not
carried out here mainly because of two reasons: (i) setting up a reasonable multivariate prior for PFS
and OS jointly in the absence of strong prior beliefs is a very difficult task and (ii) a relatively crude rule
serves our purpose well enough, as this is only used for selecting a treatment to be continued into stage 2
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and not for the ultimate decision about treatment efficacy and/or effect size. In addition, it should be con-
sidered that (maybe counter-intuitively) the correlation between PFS and OS in the bivariate exponential
distribution assumed in simulations does not have a large impact on the power of the final statistical test
(in contrast to the ratio of their respective hazard ratios; see Section 6.2).

Denote the four marginal predictive probabilities by probj;OS ; probj;PFS ; j D 1; 2. In the
following, we suggest ways of combining them for the futility and the selection decision.

4.2.2. Stop for futility. The general idea of the futility check is to stop the trial if the chance of success
measured via predictive probabilities is too slim. Two thresholds are thus prespecified at study start. The
trial is stopped for futility if maxj .probj;OS / < tOS and maxj .probj;PFS / < tPFS .

4.2.3. Treatment arm selection. To select a treatment arm, evidence from PFS and OS is combined via
the utility function

utilj D wj � probj;PFS C .1�wj / � probj;OS : (13)

The weightwj governs the relative importance that we assign to the corresponding endpoints and should
reflect not only the hierarchy between the two endpoints but also the actual number of events accrued
up to the interim analysis. In Section 6, different suggestions for the weights wj are investigated via
simulation, one of which is

wj D
d1j;PFS

d1j;PFS C 2 � d1j;OS
(14)

where d1j;PFS and d1j;OS denote events (progressions and deaths, respectively) in treatment arm j up
to interim (stage 1). Deaths are thus weighted twice.

It must be noted here that type I error rate violations can arise as a ‘side effect’ of treatment arm
selection, if the selection of a treatment arm implies a non-prespecified change in the recruitment rate
[11]. This can happen if, for example, the possibility of keeping only one or both treatment arms after
the interim analysis is left open, but the recruitment rate is fixed irrespective of the number of continued
treatment arms, such that in a retained arm, it is higher if the other arm is dropped. For such a design,
asymptotic type I error control cannot be guaranteed. The problem is avoided if the recruitment rate of
any retained arm follows a prespecified rule. An easy way to enforce this is to require that only one
treatment arm is carried forward into stage 2.

It should also be noticed that this is a potential problem for ordinary non-adaptive group-sequential
TTE trials as well. From a theoretical perspective, asymptotic type I error control via the independent
increments argument is valid, if any change in the recruitment rate after the interim analysis is stochas-
tically independent of the observed value of the test statistic. In practice, a change of the recruitment
rate after the interim analysis is usually accepted if there are convincing operational reasons explaining
it (e.g. slower or faster recruitment rates than anticipated or delays in feedback from centres, etc.).

5. Final decision making: adjustment for interim treatment selection

If stage 2 of the design is performed, a final decision must be reached regarding efficacy of the selected
treatment. In this context, the group-sequential log-rank test discussed in Section 3 will be used with an
adjustment for the selection. There is an extensive literature on adjustments for treatment arm selection
(e.g. [12–15]), but relatively little has been written about the intricacies associated with applying these
general approaches in the context of TTE analysis. In addition, these methods are often slightly different
in their aims: some focus on establishing efficacy for the best treatment, which does not necessarily have
to coincide with the selected treatment (e.g. [14]).

Also, some approaches require that only the most efficacious treatment is selected at interim and/or
that exactly one treatment is selected. In contrast, in what follows, we investigate a number of approaches
that do not require to select the most efficacious treatment at interim (e.g. if safety concerns suggest to
go with a marginally less efficacious but clearly better tolerable treatment). The approaches are dealt
with in Sections 5.2 to 5.5. Section 5.1 sets the scene.
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3073



L. D. SCALA AND E. GLIMM

5.1. Approximations of missing information: expected events, correlations and weights between stages

In the following, let us assume that treatment 1 is selected at interim. Obviously, we do not have a
value for Ql22 or for v�21;22 from the joint distribution (6). However, for an adjustment of the final test, an
approximation of the correlation v�21;22 under the null hypothesis of no treatment effect is needed. Under
this null hypothesis and with equal sample sizes in all three groups, we expect that pkj � 1=2, and thus,
pkj .1� pkj /� 1=4. Hence, the approximation of the correlation becomes

v�21;22 D
.d2 � d1/

1
2
1
2
1
3q

2
3
1
2
1
2
.d2 � d1/

q
2
3
1
2
1
2
.d2 � d1/

D
1

2
:

Here, we need to set di D di1C diC , excluding the non-selected treatment.
Simulations indicate that it makes almost no difference if we use these simplified approximations or

more complicated ones based on the actually observed data. As briefly touched upon in Section 4.1,
similar to the approximations of the information fraction, this is not surprising. In addition, the approx-
imation is needed under H0 anyway, such that it is unclear in what sense a ‘data-driven approximation’
should be ‘better’.

5.2. Conservative Dunnett approach

Using the results from the previous subsection for the calculation of critical values, this approach works
as follows:

(1) At interim, calculate l11 and l12 and c1 from (7). Reject H0 if max.l11; l12/> c1.
(2) If max.l11; l12/ < c1, drop the worse treatment where ‘worse’ may mean ‘less efficient’ or ‘less

safe’ or something similar. At the final analysis, calculate l2S where S is the selected treatment.
Reject H0, if l2S > c2 where c2 is calculated to fulfil (8).

This approach is asymptotically conservative, as it compares l2S with a critical value that is ‘intended’
for the maximum of two test statistics.

5.3. Bonferroni approach

This approach is almost the same as the conservative Dunnett approach in Section 5.2. The only differ-
ence is that rather than using the critical value c2 for the final test, the normal quantileˆ�1.1�.˛�˛1/=2/
is used. Thus, only the ‘stage-2-˛’ is split by the Bonferroni method. ˆ�1.1 � .˛ � ˛1/=2/ is always
larger than c2; hence, this approach is more conservative than the Dunnett approach in Section 5.2. Its
primary purpose is to provide a benchmark for assessing the magnitude of a potential power loss from
using a very simple adjustment method for the final comparison.

5.4. Conditional error function approach

König et al. [12] have developed a conditional error function (CEF) approach for selecting treatments at
an interim analysis. We will adapt this approach to the situation at hand.

In case of only two treatments, one of which is selected at interim, the approach can be summarized
as follows:

(1) After stage 1, calculate the two test statistics l11 and l12. If max.l11; l12/ > c1, we stop early for
efficacy. Otherwise, obtain the conditional probabilities

q12 D P rH0.max.l21; l22/> c2jl11; l12/ (15)

and

qS D P rH0.l2S > cS jl1S / (16)

where S 2 f1; 2g denotes the selected treatment. Here, c2 and cS are chosen such that they fulfil
(8) and

P rH0 .max.l11; l12/ < c1; l21 > cS /D ˛ � ˛1, respectively:

As mentioned previously, it is not difficult to obtain c2 and cS by a numerical search.
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(2) At the final analysis, Ql2S is calculated as in (5), and the corresponding p-value p2S is obtained. If
p2S < min.q12; qS /, superiority of the treatment over control is concluded; otherwise, H0 cannot
be rejected.

To calculate the quantities q12 and qS , the approximation of v�21;22 in Section 5.1 is plugged into the
distribution (6). The null distribution is then derived using standard results for conditional multivariate
normal distributions (see, e.g. [16, Theorem 3.2.4]):s

d2

d2 � d1

 
l21

l22

!
�

s
d1

d2 � d1

 
l11

l12

! ˇ̌̌
ˇ̌
 
l11

l12

!
ÏN

  
0

0

!
;

�
1 0:5

0:5 1

�!
:

Hence,

q12 D 1�ˆ0:5

0
@
s

d2

d2 � d1
c12 �

s
d1

d2 � d1
l11;

s
d2

d2 � d1
c12 �

s
d1

d2 � d1
l12

1
A

and

qS D 1�ˆ

0
@
s

d2

d2 � d1
cS �

s
d1

d2 � d1
l1S

1
A

where ˆ�.�; �/ denotes the cumulative distribution function of the bivariate standard normal distribution
with correlation � between the two variables.

König et al. [12] show that this CEF approach is uniformly more powerful than the conserva-
tive Dunnett method in Section 5.2. However, it must be kept in mind that with the CEF approach
(asymptotic) ˛-level control is guaranteed only if Ql2S is stochastically independent of l11 and l12. This
assumption may be violated if some feature of patients recruited before the first interim analysis impacts
l2S (or, equivalently, Ql2S ) without being accounted for by the adjustment of the final analysis. As an
example, this can happen, if the selection of a treatment arm at stage 1 is not only based on the observed
values of l11 and l12 but also on progression events.

The conservative Dunnett approach (Section 5.2) and the Bonferroni approach (Section 5.3) are not
affected by this problem. The key difference is that these two approaches do not explicitly use the
(asymptotic) distribution of l2S but rather replace it (conservatively) by that of max.l21; l22/.

5.5. Combination p-value approach

This approach [17] requires that we fix weights w1 > 0 and w2 > 0, w21 C w22 D 1 before the
final analysis. Furthermore, we define the p-values p1;12 D 1 � ˆ0:5 .max.l11; l12/;max.l11; l12//,

p1S D 1�ˆ.l1S / and p2S D 1�ˆ
�
Ql2S

	
where S denotes the selected treatment.

The null hypothesis of no differences between treatment and placebo is rejected if either p1;12 6 ˛1
after stage 1 orw1 �ˆ�1.1�max.p1;12; p1S //Cw2 �ˆ�1.1�p2S /> c2 where, in analogy with formulae
(7) and (8), c2 is chosen such that under H0,

1�ˆw1
�
ˆ�1.1� ˛1/; c2

�
D ˛ (17)

is kept. If ˛1 D 0 (i.e. if there is only a selection at interim, no potential stop for efficacy), then
c2 D ˆ�1.1 � ˛/. A natural choice for w21 and w22 would be w21 D

d1
d2

and w22 D 1 � d1
d2

or some
other approximation of expected information fractions in the two stages.

This approach is very similar to, but not identical with, the CEF approach in Section 5.4. Although the
combination p-value approach can be converted into a CEF approach [18], this does not yield the CEF
approach used here. Like the CEF approach, the combination p-value approach requires stochastic inde-
pendence of Ql2S from .l11; l12/, such that the same caveats as in Section 5.4 apply regarding potential
type I error violations.

6. Simulations

This section investigates the operating characteristics of the planned trial by simulations. The scenarios
range from optimistic via realistic to ‘approximately worst case’. Both power and type I error control
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are investigated. First, the set-up and the assumptions of the simulations are described, then results are
reported and discussed. Comparisons are made across the decision-making criteria of Section 4 and the
methodologies described in Section 5 for treatment arm selection. As a benchmark, a standard sequential
design without treatment arm selection is considered.

6.1. Design assumptions and simulation set-up

The design assumptions are based on the concrete clinical context of the trial. Hence, a total number
of 1000 patients is recruited with the final analysis occurring after 600 deaths. The randomization ratio
is 1:1(:1) in Stage 2 (1). The null hypothesis for efficacy testing is H0 W log.HazardRatio/ D 0, which
is tested as a one-sided hypothesis with ˛ D 5%. The level of proof tPFS , tOS for the futility stop
(Section 4.2.2) is set to 35%. Furthermore, it is assumed that a single site recruits an average of 0.5
patients every month for a total accrual period of 25 months. Regarding entry of centres into the trial,
a staggered recruitment scheme based on projections for the trial is implemented. Minimum follow-up
time is assumed to be 6 months.

The interim analysis time point is set at an information rate (IR) of either 20% or 30% of the final OS
events. The final test for efficacy is conducted on OS only. All four approaches of Sections 5.2 to 5.5
(conservative Dunnett (CD) test, Bonferroni (Bonf) approach, CEF approach and combination (Combi)
p-value approach) are investigated.

Several ways of combining PFS and OS events into a decision criterion according to the general strat-
egy outlined in Section 4.2.3 are considered. These are described in the succeeding section together
with the corresponding simulation results. Regarding the simulation of interim decision making, the
information ratio for PFS is estimated from the simulated number of PFS events in every simulation run.

With respect to data generation within the simulation, observed progression and survival times are
assumed to arise from a Moran–Downton bivariate exponential distribution [19]. This distribution
depends on the hazard ratios of each endpoint and the correlation between them. Many variations of
these parameters were investigated. Selected results are presented in Section 6.2.

6.2. Simulation results

All subsequently reported results are based on 10,000 simulation runs per scenario.
Figure 3 (top) shows the power of the suggested approaches for various scenarios. In addition to the

fixed assumptions given in Section 6.1, these use a correlation of 0.4 between PFS and OS test statistic,
nominal type I error ˛ D 5%, IR D 30% and the combined selection rule (13) with fixed weights 1=3
and 2=3 for PFS and OS, respectively. The hazard ratios for PFS and OS were prespecified according to
the targeted treatment benefit shown in Table I: median OS for control was assumed to be 7.5 months
and the median OS for the better treatment 10 months in the strong effect scenario and 8.5 months in
the weak effect scenario. The effect of the remaining (worse) treatment arm is set ‘halfway’ between
‘better’ and control (e.g. to median OS 8.75 months if median OS is 10 months for the better treatment
corresponding to a hazard ratio of 0.857 for the worse treatment). Both of these OS scenarios were
repeated with different assumptions about PFS: median PFS for control was set to 3.5 months and the
targeted median for PFS for the better treatment was set to (3.5, 4, 4.5, 5) months with the same halfway
interpolation for the other treatment as for OS.

As an informal comparison with a benchmark design, a three-arm non-adaptive group-sequential
phase III trial without treatment arm selection at the interim analysis is considered. With respect to
the number of events observed at final, the benchmark design considers 400 events for each arm thus
reflecting the 600 events of the simulated three-way designs with treatment arm selection.

As one possibility, a simple Bonferroni adjustment (i.e. testing both treatment arms at the split level
˛=2) was considered. This option is sometimes used in practice because of its simplicity (e.g. [20]). For
this purpose, EAST v.5.0 ([21]; Cytel, Inc., Cambridge, MA, USA) was used, which allows to specify
the same staggered recruitment scheme as in the simulations carried out, using a one-sided ˛-level of
2.5% and two-arms only (active versus control). The resulting design would have a power of around
82% and a maximum accrual of around 1000 patients. This design did not foresee a stop for futility.

Alternatively, we also simulated the use of a Dunnett-type test in this non-adaptive benchmark design.
For this, we applied the same futility stopping rules that were used for the adaptive designs. The power
of this second benchmark option depends on the assumed PFS and OS hazard ratios, the correlation
between PFS and OS and the futility rule used. For the situation shown in Figure 3 (top panel, left), it
ranges from 80% to 84%. Similarly, in other scenarios, the power is somewhat lower than that of the
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Figure 3. Progression-free survival (PFS) versus chance of success at final analysis across methods. Correct
selection D selection of better arm and rejection of null; any selection D rejection of null; dotted horizontal line

at ˛-level or indicating benchmark design power.

treatment-selection designs. The differences in power primarily depend on the true hazard ratios. It is
smaller when there is no treatment effect on PFS but a strong one on OS. When hazard ratios are similar
in PFS and OS, the power gain of the treatment-arm-selecting designs over the Dunnett-type benchmark
is typically 2% to 3% in the scenarios investigated.

Figure 3 shows that under the strong effect scenario (top panel, left), the methods achieve good power
(above 80%) with a substantial gain over the benchmark approaches. As expected, the power increases
monotonously with PFS benefit. Under both scenarios (left and right top panel), the CEF and the combi-
nation p-value approaches provide very similar results and are consistently better than the conservative
Dunnett and the Bonferroni approaches. Obviously, there is some positive probability that the less effec-
tive treatment is picked at interim and still the demonstration of a significant treatment effect at the final
analysis is achieved. The solid and dashed lines in Figure 3 illustrate the difference between the corre-
sponding two power concepts. The difference between these powers is only a minor concern. If treatment
effects are substantially different, the probability of selecting the inferior treatment and achieving signif-
icance is low. If, however, the difference in effect size is small, selection of the ‘right’ treatment is not
of particular concern.

Figure 3 (bottom, left) is based on the same assumptions as Figure 3 (top) except that the median
OS under the treatments is set to 7.5 months—the same as for the control. Hence, the graph shows the
actual type I error rates in these scenarios when H0 holds true. The error seems to be generally con-
trolled (irrespective of the correlation between PFS and OS). The CEF and the combination p-value
approaches are the most liberal, whereas the Dunnett and the Bonferroni approaches reveal the expected
slight conservatism under the null hypothesis.

To see the extent of the potential type I error violation discussed for the CEF and the p-value combi-
nation approaches in Section 5, Figure 3 (bottom, right) shows simulation results under a null scenario
that attempts to approximate a ‘worst-case scenario’ where deaths follow progression with a fixed, non-
stochastic time lag and the interim time point is placed such that progressions have already occurred in
every patient at interim. This implies that the exact order of stage 2 deaths from stage 1 recruits who
survive the interim time point is already determined at interim. As another feature of this worst-case
scenario, the treatment arm corresponding to the better log-rank test on PFS is the one always chosen at
interim. For this scenario, theoretical calculations suggest that the true rejection probability of the design

Copyright © 2011 John Wiley & Sons, Ltd. Statist. Med. 2011, 30 3067–3081
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could go up to a maximum of approximately 7%. As expected, this extremely pessimistic boundary is
never reached in any of the simulations carried out: even in the case of a very strong correlation between
PFS and OS (� D 0:9), the simulated rejection rate never exceeded 5.6%. This statement also holds for
simulations of the other weighting rules for combining OS and PFS events and for the IR of 30 %. In all
these null simulations, the futility stop was turned off.

Figure 4 provides a comparison of interim criteria for treatment arm selection. The criteria are
as follows: PP(PFS) D predictive power of PFS only, PP(OS) D predictive power of OS only,
PP(PFS,OS)FW D predictive power of weighted average of OS and PFS with fixed weights (2/3 and
1/3, respectively), PP(PFS,OS)OWD predictive power of weighted average of OS and PFS with weights
based on observed number of events (see formula (14)) and LOG-RANK D selection based on the log-
rank test for OS. The combination p-value approach is used here. Results for the other approaches are
very similar.

Figure 4 shows that the Bayesian predictive power tool allows to borrow strength at interim across
the endpoints PFS and OS by combining them explicitly into a single utility index thus obtaining clear
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advantages over the single endpoint. The combined (PFS,OS) interim decision rule fares better than a
decision based on survival alone and also fares better than a decision based on progressions alone.

Finally, Figure 5 provides additional insight into the case of a strong arm 1 effect (in both OS and PFS)
and the role of the inferior arm 2 as it varies across a range of OS and PFS values. It quantifies the trade-
off between the chance of declaring efficacy at the final analysis and the probability of wrong selection
at interim (i.e. the probability of arm 2 selection). The size of the boxes in the figure is proportional to
the probability of arm 2 selection. The categories (null, almost null,. . . ,strong) of arm 2 treatment effects
represent hazard ratios of 1.00, 0.94, 0.88, 0.83, 0.79 and 0.75, respectively, corresponding to median
OS times of 7.5 to 10 months in steps of 0.5 month.

Obviously, if the arm 2 OS effect is strong, then the probability of selecting the wrong treatment is
high, but there is no consequence on power, as both arms contribute to it. Slightly more surprising, power
is worst if the arm 2 OS effect is almost null or very weak. In these situations, the trade-off between false
selection and low power is at its worse. In general, independent of the arm 2 OS value, a mismatch
between the PFS and the OS effect is always detrimental.

Regarding the correlation between PFS and OS, additional simulations show little impact of the cor-
relation on the power in the range of realistic correlations between 0.2 and 0.8. These results are thus not
presented in detail.

7. Discussion

In this paper, we investigate adaptive design options for an oncology phase II/III trial. It is seen
that the use of Bayesian decision-making tools, combined with methods that control the type I error
of the ultimate efficacy test, leads to designs that are substantially more efficient than conventional,
non-adaptive approaches.

Care is needed when implementing adaptive designs in the TTE context. The ‘independent increments
structure’ needed in ‘Cox-type’ survival analyses is not a trivially obvious property here. It can be vio-
lated in rather subtle ways (see, e.g. [22]). In essence, the problem arises from patients who are recruited
before the interim analysis but are under investigation beyond the interim analysis time point. If design
modifications at interim are based on information from such patients, then this information must either
be stochastically independent of the primary endpoint or the influence of the information on the final
analysis of the primary endpoint must explicitly be accounted for. Both of these solutions are difficult
to attain. For example, in the oncology set-up explored in this paper, safety information, progressions
and the like will usually be correlated with expected remaining survival time and thus not be stochas-
tically independent of survival. In several publications on adaptive designs for TTE trials (e.g. [23], in
the context of sample size re-estimation), this is not mentioned. Hence, these publications work with the
implicit assumption that any interim modification of the trial is based exclusively on the observed value
of the primary test statistic.

Here, the study foresees treatment arm selection of one out of two treatment arms. Thus, the potential
for violation of the true type I error rate due to interim decisions is limited. Regarding the meth-
ods described in Section 5, the two conservative approaches (Bonferroni and conservative Dunnett)
do not entail any (asymptotic) ˛-level violation (except the potential of an ‘indirect’ violation via the
recruitment rate as discussed in Section 4.2.3). In contrast, for the CEF and the p-value combination
approaches, the possibility cannot be ruled out. To address this concern, thorough investigations of the
true type I error rates were carried out via simulation, including very pessimistic scenarios that were
deliberately designed to expose any ˛-level violation. The results were reassuring: ˛-level violation
occurs in extreme scenarios but is very minor (at most 5.6% and at nominal 5%). Thus, the use of the
CEF and the p-value combination approaches is regarded as acceptable here. They have power advan-
tage over the two other methods. In simulations, the CEF and the p-value combination approaches are
virtually indistinguishable with respect to power. A preference for either of them is difficult to express.
The p-value combination may be preferred for simplicity and the CEF approach for slightly higher flex-
ibility and elegance. If one is concerned about potential challenges regarding type I error violations,
the conservative Dunnett approach provides an attractive alternative, as it suffers only from a moderate
power loss relative to the two ‘non-conservative’ approaches.

Regarding the approximations of information fractions, asymptotic distributions of the log-rank test
statistics, the approach suggested here is not fundamentally different from the conventional TTE anal-
ysis. The very good convergence of the log-rank test to its asymptotic normal distribution is well
known, and these results extend to the bivariate normal distribution of the related log-rank tests for two
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treatments (e.g. [24]). Likewise, the log-rank test is reasonably robust against non-proportional hazards,
as long as one treatment is consistently better than the other. Still, all derivations in Sections 3 and 5 are
asymptotic, so some additional simulations are advisable when using similar methodology for a different
trial.

Regarding the interim decision rules, it seems worthwhile to incorporate additional information like
PFS by way of a Bayesian predictive power calculation as outlined in Section 4. The results are easy
to communicate. There is a worthwhile power gain in case of a treatment benefit on both PFS and OS.
According to the performed simulations, this result is not much affected by the correlation between the
PFS and the OS endpoint. Only if PFS and OS are affected differently by the treatment (e.g. if time to
death is prolonged by the treatment but time to progression is not), there is no gain (and maybe even a
minor power loss) from including PFS in decision making. However, this latter situation will not occur
in practice, as it is hardly conceivable that a cancer treatment prolongs time to progression but reduces
time to death, or vice versa. If, however, treatment effects on PFS and OS are in the same direction, but
of different magnitude, there is still some power gain from a decision making which includes PFS.

Another approach for the treatment arm selection at interim, which tries to overcome the issue of
patients recruited before interim contributing to post-interim decisions, is to split patients into a stage 1
and a stage 2 recruits statistic. Following this approach, one would know both test statistics only at the
end of the trial. This of course would preclude a possible stop for efficacy at interim and was therefore
not investigated here.

The proper implementation of flexible designs in phase II/III trials is somewhat more intricate in the
TTE situation than in conventional trials. Of course, closely monitoring study conduct so as not to intro-
duce any operational bias (e.g. at the time when interim decisions are communicated) requires careful
planning and implementation [25]. The difficulties are, however, not insurmountable. In important trials,
the gains from making the effort can be substantial.

APPENDIX A. Computational and methodological details

A.1. Technical details concerning Section 4.2.1

In Section 4.2.1, c has been introduced as a given constant. To avoid arbitrarily setting this to some
number, the following approach is adopted. In Section 5.4, we have derived

q12 D 1�ˆ0:5
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d2 � d1
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To claim efficacy after stage 2, we must have �Ql2S < ˆ�1.min.q12; qS // (S denotes selected
treatment and ˆ�1.˛/ the standard normal ˛-quantile). Thus, it seems intuitively appealing to use
c Dˆ�1.min.q12; qS //.

Mainly for convenience, the expected information ratio (9) is used instead of d1
d2

in the calculation of
q12 and qS . As d1 and d2 are known at interim (d1 D d1S Cd1C is observed and d2 D d2S Cd2C Cd1
is the planned number of total events minus the observed number of events in the deselected arm), these
values could also be used.

A.2. Approximating expected events and information fraction for progression-free survival

As briefly mentioned in Section 4.2.1, the calculation of the predictive probability for PFS requires
some additional approximations of expected numbers of progression events. This is necessary, because
the trial is planned such that interim and final analyses happen after certain, fixed numbers of deaths have
occurred. This means that the number of progression events at these time points is random and thus needs
to be approximated for the incorporation of a ‘virtual test’ on PFS that is used in the treatment arm selec-
tion as outlined in Section 4.2.3. Formula (12) requires an approximation of the PFS information fraction
i1j
i2j

, and wj in Section 4.2.3 requires a closely related approximation of progression events d1j;PFS .
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In Section 4.1, we described how the OS information fraction is approximated. Here, we only outline
the basic idea that was implemented to obtain a similar approximation for PFS: in formula (9), we are
replacing the d�i ’s by the expected number of progression events at time i , assuming that progression
events from all three treatment groups follow the same exponential distribution with common intensity
rate �PFS . This is carried out for the expected time point of the interim and the final analysis, which
in turn is calculated from a corresponding assumption of exponentially distributed death times with a
different intensity rate �OS .

Again, these approximations are only used to determine the information fraction for the virtual PFS
test and the weights in the utility function utilj in Section 4.2.3. The corresponding test statistics are
calculated exactly the same way as for OS by using the approaches described in Section 5. This means
that our approximations of expected progression events can be quite rough: they only impact treatment
selection and not the confirmatory efficacy decision on OS.
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An evaluation of methods for testing
hypotheses relating to two endpoints in a
single clinical trial
Ting-Li Su,a Ekkehard Glimm,b JohnWhitehead,a* andMike Bransonb

The issues and dangers involved in testing multiple hypotheses are well recognised within the pharmaceutical industry. In
reporting clinical trials, strenuous efforts are taken to avoid the inflation of type I error,with procedures such as theBonferroni
adjustment and itsmanyelaborations and refinementsbeingwidely employed. Typically, suchmethods are conservative. They
tend to be accurate if themultiple test statistics involved aremutually independent and achieve less than the type I error rate
specified if these statistics are positively correlated. An alternative approach is to estimate the correlations between the test
statistics and to perform a test that is conditional on those estimates being the true correlations.
In this paper, we begin by assuming that test statistics are normally distributed and that their correlations are known. Under

these circumstances, we explore several approaches to multiple testing, adapt them so that type I error is preserved exactly
and then compare their powers over a range of true parameter values. For simplicity, the explorations are confined to the
bivariate case. Having described the relative strengths and weaknesses of the approaches under study, we use simulation
to assess the accuracy of the approximate theory developed when the correlations are estimated from the study data rather
than being known in advance and when data are binary so that test statistics are only approximately normally distributed.
Copyright © 2012 JohnWiley & Sons, Ltd.

Keywords: Bonferroni; clinical trials; multiple hypotheses; O’Brien test; Simes test

1. INTRODUCTION

Whereas classical theory of design and analysis of clinical trials
addresses comparisons of one experimental treatment with one
control treatment in respect of one patient response, the real-
ity of many studies is more complicated. The evaluation of sev-
eral patient responses leads to simultaneous testing of several
hypotheses. Many approaches have been suggested to reconcile
preservation of type I error with a multiplicity of inferences to
be drawn.
The problem of testing the general null hypothesis H0: � D 0

against restricted alternatives, where the parameter vector � D
.�1, : : : , �p/0, has been tackled from different perspectives both
in the multiple testing literature and in the literature on multi-
variate statistics. Common multiple testing approaches are the
Bonferroni adjustment, or the variation due to Simes [1]. Discus-
sions of thesemethods are available [2,3], and recently, Bretz et al.
[4] introduced a general graphical approach for representing
many multiple testing procedures in an intuitive way.
A simple multivariate approach is to test whether a specific lin-

ear combination of the �i is equal to zero [5]. More sophisticated
are likelihood-ratio tests against the alternative that all �i � 0 and
at least one �i > 0, which have been developed assuming that
the covariance matrix of the estimates of the �i is known [6] or
unknown [7]. Silvapulle and Sen [8] give an overview of meth-
ods suggested for tests against restricted alternatives such as
0 < �1 < �2 < : : : < �p. Another approach uses the unrestricted
alternative � ¤ 0 but constructs tests to have high power against
specific alternatives such as �1 D � � � D �p > 0 [9–11]. When the

alternative is unrestricted, rejection of H0 might occur due to data
supporting an alternative other than that for which high power
has been set [12], but modifications to avoid this problem can be
made [13].
In this paper, we consider the following situation that gives rise

to the simultaneous testing of two null hypotheses. Patients are
randomised between two treatments, E and C. They are assessed
according to two different endpoints. The parameter �i denotes
the advantage of E over C in terms of the i-th of these end-
points. We investigate the properties of the Bonferroni, Simes
and O’Brien approaches and modifications to them, but instead
of relying on the conservative properties of these procedures,
use estimated correlations to sharpen their efficiency. In doing
so, we follow Senn and Bretz [14] who explore the relationship
between the power of a Bonferroni procedure and the value of
the correlation coefficient. We restrict attention to the case in
which twohypotheses are to be tested. In large samples, statistical
hypothesis tests are often based on asymptotically normally dis-
tributed test statistics. Given such normality, we investigate ‘exact’
results for corresponding multivariate normal distributions.
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Intrinsically, conservative procedures are adjusted to have a pre-
cise prespecified type I error level so that fair comparisons of
power can be made. Our objective is to identify which proce-
dures have the greatest power to detect specific types of depar-
ture from the null hypothesis. Having made comparisons in the
ideal situation of test statistics with exact normal distributions,
we investigate the validity of the conclusions when the data are
binary using simulation.

2. SPECIFICATION OF SIX POTENTIAL
TESTING PROCEDURES

We will follow the closed-testing procedure, which begins with
a test of the null hypothesis H0,12: �1 D �2 D 0. This means that E
has no effect on either response. If that null hypothesis is rejected,
then we proceed to test the individual hypotheses H0,1: �1 D 0
and H0,2 : �2 D 0. If each rejection is made at the one-sided level
˛, then the procedure maintains the multiple type I error rate,
that is

(i) P(reject H0,12 | (�1, �2/ = (0,0) )� ˛;
(ii) P(reject H0,1 |(�1, �2/ = (0, �2/)� ˛, for any value of �2;
(iii) P(reject H0,2 |(�1, �2/ = (�1, 0) )� ˛, for any value of �1

hold simultaneously. Hence, the procedure maintains control of
the family-wise error rate in the strong sense [2, 3, 15].

The component tests could be based on score statistics. Denote
the efficient score statistic for �i by Zi and its null variance by Vi ,
i D 1, 2. In large samples, Zi is normally distributed with mean �iVi

and variance Vi . Alternatively, Wald tests of H0,i are based on the
maximum likelihood estimate O�i and its standard error se. O�i/. AsO�i se. O�i/

2 is normally distributedwithmean �ise. O�i/
2 and variance

se. O�i/
2, the statistics Zi and Vi could be replaced by O�i se. O�i/

2 and
se. O�i/

2 in what follows. Let corr(Z1, Z2/ D �. Treating V1 and V2 as
fixed, it follows that corr( O�1, O�2/ D � as well. The value of � can be
estimated from the study data for various response types [16–18].
The test of H0,i will reject if Zi=

p
Vi � ˚�1.1� ˛/ or equiva-

lently if the one-sided p-value pi D 1� ˚.Zi=
p

Vi/ � ˛, i D 1, 2.
Possible procedures differ in terms of how H0,12 is tested. Six
possible procedures are shown in Figure 1. Figure 1(a) shows a
conservative Bonferroni test constructed for the case ˛ D 0.025.
The joint null hypothesis H0,12 will be rejected if pbon � 0.025,
where pbon D 2min(p1, p2). As ˚�1.1� 0.0125/ D 2.2414, it
follows that H0,12 will be rejected if either Z1 � 2.2414

p
V1

and Z2 � 2.2414
p

V2 or Z2 � 2.2414
p

V2 and Z1 � 2.2414
p

V1 or
Z1 � 2.2414

p
V1 and Z2 � 2.2414

p
V2. This is the shaded rejec-

tion region in Figure 1(a). Following the closed test procedure,
if in addition Zi � 1.9600

p
Vi , then H0,i will be rejected. This is

equivalent to the Bonferroni–Holm procedure [19].
Figure 1(b) shows a Simes test that will reject H0,12 if psim �

0.025, where psim D minf2min.p1, p2/, max.p1, p2/g. Rejection
occurs if Z1 � 2.2414

p
V1 and Z2 � 1.9600

p
V2 or if Z2 �

2.2414
p

V2 and Z1 � 1.9600
p

V1 or if Z1 � 1.9600
p

V1 and Z2 �

(a) (d)

(b)

(c)

(e)

(f)

Figure 1. The rejection regions (shaded) of six possible procedures for testing two hypotheses (with ˛ D 0.025). (a) Bonferroni; (b) Simes; (c) combined; (d) restricted Simes;
(e) consonant combined; (f ) restricted consonant combined.1
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1.9600
p

V2. The rejection region is indicated in Figure 1(b), and it
strictly contains that of the Bonferroni test, so that the Simes test
shownmust be more powerful than the Bonferroni test.
Figure 1(c) shows a combined test that is based on the test

statistic Z1 C Z2 and is an asymptotic version of the approach of
O’Brien [5]. Under H0,12, Z1 C Z2 is normally distributedwithmean
0 and variance V1 C V2 C 2�

p
.V1V2/, where � D corr.Z1, Z2/.

Thus, H0,12 is rejected if Z1CZ2 � 1.9600
pfV1CV2C2�p

.V1V2/g,
as shown in Figure 1(c). If in addition Zi � 1.9600

p
Vi , then

H0,i will be rejected. The test of H0,12 will not be strictly con-
servative, as � has to be estimated from the study data. By the
Neyman–Pearson Lemma, the combined test (considered alone)
is the most powerful test of H0,12: �1

p
V1 D �2

p
V2 D 0 vs H1,12:

�1
p

V1 D �2
p

V2 > 0.
A further modification of the Simes test is shown in Figure 1(d).

Recall that E is being assessed according to two responses and
rejection of H0,12 will lead to a decision to investigate it further. If
the trial in question is a phase II study, this will mean proceeding
to phase III. If the trial in question is phase III, this will mean seek-
ing a licence or promoting adoption of the treatment in practice.
It may be that such a positive decisionwould be taken only if H0,12
were rejected and Z1 � 0 and Z2 � 0. Thus, any indication that the
experimental treatment is inferior to the control in either assess-
ment of efficacy will be fatal to its progress. Brannath et al. [20]
have shown that this modification of the Simes test (without the
additionalmodifications of k discussed in Section 3)maintains the
type I error in the presence of unknown correlation between the
two test statistics, whereas the original Simes test keeps it only
under the assumption that the correlation is larger than 0. Often
such a restriction would apply, although Z1 and Z2 might be com-
pared with small positive or small negative values rather than 0
(here the value 0 is retained for illustration). This procedure will
be referred to as the restricted Simes test.
Returning to the combined test shown in Figure 1(c), it can be

seen that it is possible to reject H0,12 while not rejecting either
of H0,1 or H0,2. This property is called dissonance (and its oppo-
site consonance) [21, 22]. By contrast, the Bonferroni and Simes
tests are consonant. Figure 1(e) shows a modified form of the
combined test in which rejection of at least one of H0,1 and H0,2
is required to reject H0,12 and the diagonal boundary is moved
downwards and to the left to compensate and preserve type I
error. This is referred to as the combined consonant test. Figure 1(f )

shows a version of this procedure that is restricted to rejection
only if in addition Z1 and Z2 � 0.

3. PROPERTIES OF THE TESTING
PROCEDURES

In this section, wewill investigate the six testing procedures intro-
duced in Section 2, except that the Bonferroni procedure will be
restricted to rejection of H0,12 only if both Z1 and Z2 � 0. In each
case, the value of � is treated as known, and the values of V1 and
V2 are each set at 1. The value of ˛ is set at 0.025, and the critical
values for rejection of H0,1 and H0,2 taken to be 1.96. The critical
values for rejection of H0,12 are denoted by k for each procedure,
with k replacing 2.24

p
V1 and 2.24

p
V2 in Figure 1(a) and (b) and

being shown directly in Figure 1(c)–(f ).
Table I shows the results of searching for suitable values of k

on basis of numerical integration of the bivariate normal distri-
bution over each rejection region, for 11 given values of �. When
� D 0, and indeed for all values of � 2 .0, 0.0145/, the restricted
Bonferroni and restricted Simes procedures coincide and will
reject if either Z1 or Z2 � k, and both Z1 and Z2 � 0, where
k � 1.9600. For � D 0, k D 1.9488. The values of k differ between
these two procedures for other tabulated values of �. The reduc-
tions to k shown for the Simes procedures itself, relative to the
conservative value of k D 2.2414 that is traditionally applied, are
modest unless � is close to 1. Dunnett and Tamhane [23] have
suggested this approach and have generalised it to more than
two comparisons.
The last three columns of Table I show the intercepts of the

diagonal boundary (also denoted by k) for the three versions of
the combined test, computed for the selected values of �. When �

is small, the restricted consonant combined test becomes conserva-
tive, and when � D 0, the use of the critical value k D 1.96 results
in a rejection rate of ˛ � .1=2/˛2. The restriction makes very little
difference for larger values of �.
In cases where V1 D V2 D V , with V ¤ 1, the aforementioned

results apply for the critical value k
p

V , with k as tabulated in
Table I. Often, with the two null hypotheses relating to two end-
points for each study subject, the information measures V1 and
V2 will indeed take similar values. When they do not, or when we
have reason to believe that �1 is substantially different from �2,

Table I. Critical values (k) for six joint testing procedures with exact type 1 error and various values of known correlation (�).

� Restricted Bonferroni Simes Restricted Simes Combined Consonant combined Restricted consonant combined

0.0 1.9488 2.2414 1.9488 2.7718 2.2962 1.9600*
0.1 2.0202 2.2405 2.0204 2.9071 2.5053 2.4149
0.2 2.0788 2.2387 2.0802 3.0364 2.7058 2.6740
0.3 2.1247 2.2356 2.1281 3.1603 2.8966 2.8862
0.4 2.1579 2.2308 2.1639 3.2796 3.0770 3.0743
0.5 2.1778 2.2234 2.1871 3.3948 3.2465 3.2460
0.6 2.1841 2.2125 2.1968 3.5061 3.4048 3.4048
0.7 2.1758 2.1963 2.1919 3.6140 3.5517 3.5517
0.8 2.1520 2.1711 2.1706 3.7188 3.6870 3.6870
0.9 2.1081 2.1275 2.1275 3.8207 3.8103 3.8103
0.9999 1.9605 1.9607 1.9607 3.9200 3.9199 3.9199

*When � D 0, the critical value k D 1.9600 leads to a conservative test in this case.
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the simple test statistic Z1 C Z2 used in the combined procedures
might be replaced by c1Z1C c2Z2 for suitable constants c1 and c2.
The six testing procedures can also be compared in terms of

power. We again assume that V1 D V2 D 1, and allow �1 and �2 to
range between 0 and 6. This setting provides a reasonable range
of powers: the results can be scaled to give the properties of the
tests for other values of V1 and V2. Figures 2 and 3 shows plots
of the powers of these tests when � D 0.2 and � D 0.8, respec-
tively. It can be seen that the Simes test is less powerful than the
combined test when �1 D �2, this being more marked for the
higher correlation. In fact, as stated in Section 2, the combined
test is most powerful in this setting. This comparative feature can
still be seen in the restricted versions of the tests when � D 0.8.
Numerical results are presented in Table II, for � D 0.5 aswell as for
� D 0.2 and 0.8, and this allows more precise comparisons to be
made. The results in Table II follow fromnumerical integration and
not from simulation. The restricted tests have little power when
�1 or �2 D 0, which is intended, as power in this case is actually

the risk of type I error. In principle, they should gain power else-
where as a result. In practice, this occurs in regions where power
is already high, and so it is of limited value. For example, in Table II
see the row for � D 0.2, �1 D 3 and �2 D 4. The powers of the
Simes and restricted Simes tests are 0.987 and 0.990, respectively.
Imposing the restriction indeed enhances power but not to any
meaningful extent. Even for these values, the restricted conso-
nant combined test is not as powerful as the unrestricted version.
An advantage of imposing the restriction can also be seen for the
row of Table II in which � D 0.5, �1 D 3 and �2 D 3, but oncemore
the gain is slight.

4. EVALUATION IN THE CONTEXT OF BINARY
DATA

In this section, we study the characteristics of multiple testing
using the statistics Z and V when the two correlated endpoints are

Restricted Bonferroni Simes

Restricted Simes Combined

Consonant combined Restricted consonant combined

Figure 2. Power plots for the restricted Bonferroni, Simes, restricted Simes, combined, consonant combined and restricted consonant combined tests when V1 D V2 D 1 for
�1 and �2 between 0 and 6 when the correlation � D 0.2.1

1
0
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Restricted Bonferroni Simes

Restricted Simes Combined

Consonant combined Restricted consonant combined

Figure 3. Power plots for the restricted Bonferroni, Simes, restricted Simes, combined, consonant combined and restricted consonant combined tests when V1 D V2 D 1 for
�1 and �2 between 0 and 6 when the correlation � D 0.8.

binary. Assume for each endpoint, the results of a two-treatment-
arm comparison study can be summarised as shown in Table III.
The advantage of the experimental treatment over the control
can be expressed as the log-odds ratio:

� D log

�
pE.1� pC/

pC.1� pE/

�
, (1)

where pE and pC denote the success probabilities on the experi-
mental and control treatments, respectively. Taking an approach
based on the conditional likelihood given the total number of
successes, S, the efficient score statistic for � , Z, and Fisher’s
information, V, are given respectively [24] by

Z D nCSE � nESC
n

and V D nE nCSF

n2.n � 1/
. (2)

Asymptotically, for large samples and small � , conditional on
the value of S, Z � N.�V , V/. When there are two binary endpoints

B1 and B2 leading to two score statistics Z1 and Z2, the covariance
C between them is

C D nEnC.nS12 � S1S2/

n2.n � 1/
, (3)

where S1 and S2 now denote the total number of successes
according to the two endpoints B1 and B2, respectively, and S12
denotes the number of patients who have succeeded according
to both endpoints [16–18]. The correlation between Z1 and Z2 is
thus � D C=

p
.V1V2/.

The results presented in Section 3 are based on test statistics
with an exact bivariate normal distribution with known correla-
tion. Asymptotically, these resultswill be valid in the case of bivari-
ate binary data, and to evaluate their accuracy for moderate and
small sample sizes, a simulation investigation was conducted. The
starting pointwas amodel based ondata reported in Bolland et al.
[25]. That paper concerned results from 1372 patients who suf-
fered from stroke andwere randomised between an experimental
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Table II. The power of the testing procedures for various values of �1, �2 and �.

� �1 �2 Restricted Bonferroni Simes Restricted Simes Combined Consonant combined Restricted consonant
combined

0.2 0 3 0.433 0.779 0.433 0.491 0.566 0.418
4 0.491 0.961 0.491 0.733 0.797 0.487
5 0.500 0.997 0.500 0.898 0.931 0.499

1 3 0.720 0.794 0.720 0.733 0.767 0.718
4 0.824 0.963 0.824 0.898 0.926 0.821
5 0.840 0.997 0.840 0.972 0.983 0.840

2 3 0.869 0.853 0.870 0.898 0.890 0.884
4 0.959 0.972 0.960 0.972 0.976 0.962
5 0.976 0.998 0.976 0.995 0.997 0.976

3 3 0.952 0.938 0.953 0.972 0.963 0.962
4 0.990 0.987 0.990 0.995 0.993 0.992
5 0.998 0.999 0.998 0.999 0.999 0.998

4 4 0.998 0.997 0.998 0.999 0.999 0.999
5 1 1 1 1 1 1

5 5 1 1 1 1 1 1

0.5 0 3 0.455 0.782 0.454 0.410 0.443 0.385
4 0.496 0.962 0.496 0.637 0.668 0.477
5 0.500 0.997 0.500 0.823 0.844 0.498

1 3 0.714 0.787 0.714 0.637 0.662 0.651
4 0.826 0.962 0.826 0.823 0.844 0.793
5 0.841 0.997 0.841 0.934 0.944 0.836

2 3 0.821 0.823 0.824 0.823 0.827 0.827
4 0.951 0.966 0.951 0.934 0.942 0.937
5 0.976 0.997 0.976 0.981 0.985 0.971

3 3 0.909 0.908 0.913 0.934 0.930 0.930
4 0.978 0.978 0.979 0.981 0.982 0.982
5 0.997 0.998 0.997 0.996 0.997 0.996

4 4 0.993 0.993 0.993 0.996 0.996 0.996
5 0.999 0.999 0.999 0.999 0.999 0.999

5 5 1 1 1 1 1 1

0.8 0 3 0.490 0.796 0.489 0.352 0.359 0.350
4 0.500 0.966 0.500 0.559 0.566 0.475
5 0.500 0.998 0.500 0.750 0.756 0.499

1 3 0.754 0.797 0.750 0.559 0.565 0.565
4 0.838 0.966 0.837 0.750 0.756 0.748
5 0.841 0.998 0.841 0.885 0.889 0.831

2 3 0.807 0.806 0.805 0.750 0.754 0.754
4 0.957 0.966 0.956 0.885 0.889 0.888
5 0.977 0.998 0.977 0.958 0.960 0.957

3 3 0.872 0.875 0.875 0.885 0.885 0.885
4 0.970 0.970 0.970 0.958 0.959 0.959
5 0.997 0.998 0.997 0.988 0.988 0.988

4 4 0.985 0.986 0.986 0.988 0.988 0.988
5 0.998 0.998 0.998 0.997 0.997 0.997

5 5 0.999 0.999 0.999 1 1 1

treatment (the drug citcoline) and a control treatment (placebo).
Assessments made 12 weeks after randomisation included their
scores according to the modified Rankin scale (mRS) and the

National Institutes of Health Stroke Scale (NIHSS). These were
dichotomised as success (mRS � 1, NIHSS � 1) or failure. Table IV
presents the proportions of subjects in Table III of Bolland et al.1

1
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Table III. Results from a comparison of two treatments
based on a single binary endpoint.

Endpoint Experimental Control Total

Success SE SC S
Failure FE FC F
Total nE nC n

Table IV. Probabilities of each joint outcome from trials of
citicoline.

NIHSS

Experimental Control

Success Failure Success Failure

mRS Success 0.1610 0.0634 0.1286 0.060
Failure 0.0532 0.7224 0.0464 0.765

with each joint outcome on mRS and NIHSS. In this paper, only
the results from the control group will be used: those for the
experimental group are shown for completeness. The simulations
that follow are made under a global null hypothesis in which
all subjects followed the joint distribution given for the control
subjects in Table IV.

In each simulated trial, patients were randomised in a 1:1 ratio,
and seven total sample sizes n D 24, 50, 100, 200, 500, 1000
and 2000were investigated. Each scenario was replicated 100 000
times with the exception of n D 100 where 1 000 000 replica-
tions were run. For each simulated dataset, an estimate of the
correlation, �, between the score statistics for mRS and NIHSS was
found, and using this value as if it were the truth, a critical region
was derived using a search procedure as described in the previ-
ous section. The null hypotheses H0,12, H0,1 and H0,2 were then
tested using each of the procedures under consideration. The pro-
portions of rejections of H0,12, of (H0,12 and H0,1) and of (H0,12
and H0,2) are given in Table V, together with the average of the
estimates of � over all runs.
Despite the high correlation between the two measures of

patient outcome, there remains a small chance of observing a
positive outcome on onemeasure and a negative outcome on the

Table VI. Probabilities of each joint outcome for simulation
under the alternative.

NIHSS

Experimental Control

Success Failure Success Failure

mRS Success 0.1268 0.0732 0.0172 0.1828
Failure 0.2555 0.5445 0.0005 0.7995

Table V. Proportions of rejections in 100 000 (*1 000 000 for n D 100) replicate simulations under the global null scenario.

n 24 50 100* 200 500 1000 2000

Average estimated 0.6321 0.6396 0.6417 0.6427 0.6430 0.6432 0.6432
Method Proportion O� < 0 0.0213 0.0010 0.0000 0 0 0 0

Restricted Bonferroni Reject H0,12 0.0166 0.0227 0.0246 0.0253 0.0255 0.0249 0.0249
Reject H0,1 and H0,12 0.0093 0.0130 0.0140 0.0144 0.0144 0.0141 0.0144
Reject H0,2 and H0,12 0.0101 0.0133 0.0141 0.0146 0.0145 0.0144 0.0139

Simes Reject H0,12 0.0164 0.0230 0.0242 0.0252 0.0256 0.0246 0.0252
Reject H0,1 and H0,12 0.0107 0.0147 0.0155 0.0161 0.0164 0.0157 0.0165
Reject H0,2 and H0,12 0.0112 0.0151 0.0156 0.0162 0.0164 0.0159 0.0160

Restricted Simes Reject H0,12 0.0170 0.0230 0.0245 0.0252 0.0255 0.0247 0.0252
Reject H0,1 and H0,12 0.0109 0.0146 0.0157 0.0162 0.0163 0.0157 0.0164
Reject H0,2 and H0,12 0.0116 0.0151 0.0158 0.0162 0.0164 0.0160 0.0161

Combined Reject H0,12 0.0197 0.0235 0.0245 0.0254 0.0250 0.0244 0.0251
Reject H0,1 and H0,12 0.0111 0.0137 0.0147 0.0155 0.0153 0.0147 0.0153
Reject H0,2 and H0,12 0.0116 0.0145 0.0150 0.0151 0.0153 0.0151 0.0154

Consonant combined Reject H0,12 0.0189 0.0234 0.0246 0.0252 0.0251 0.0244 0.0252
Reject H0,1 and H0,12 0.0119 0.0147 0.0156 0.0164 0.0162 0.0155 0.0162
Reject H0,2 and H0,12 0.0124 0.0154 0.0159 0.0160 0.0161 0.0160 0.0163

Restricted consonant combined Reject H0,12 0.0189 0.0234 0.0246 0.0252 0.0251 0.0244 0.0252
Reject H0,1 and H0,12 0.0119 0.0147 0.0156 0.0164 0.0162 0.0155 0.0162
Reject H0,2 and H0,12 0.0125 0.0154 0.0159 0.0160 0.0161 0.0160 0.0163

Original Bonferroni Reject H0,12 0.0140 0.0201 0.0209 0.0225 0.0226 0.0219 0.0219
Reject H0,1 and H,12 0.0077 0.0112 0.0117 0.0128 0.0127 0.0125 0.0127
Reject H0,2 and H0,12 0.0084 0.0117 0.0118 0.0128 0.0127 0.0124 0.0120

Original Simes Reject H0,12 0.0156 0.0214 0.0222 0.0236 0.0239 0.0229 0.0234
Reject H0,1 and H0,12 0.0103 0.0139 0.0145 0.0153 0.0155 0.0149 0.0155
Reject H0,2 and H0,12 0.0108 0.0143 0.0146 0.0154 0.0156 0.0150 0.0151
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other, leading to a negative estimate of correlation. This happens
infrequently (the proportions of runs involved indicated in the
‘Proportion O� < 0’ row) except when n D 24 or when the overall
success rate is small. When the estimated correlation is negative,
the critical region for this simulation was found as if two out-
comes are uncorrelated. The restricted consonant combined test
is conservative in this situation, as it cannot be adjusted by low-
ering the critical region to achieve the desired type I error when

� is very small or 0. It is possible for there to be zero information
(V D 0) about the treatment effect from one of the two outcomes
in a small sample size study; for example, all the enrolled patients
succeed or else all fail. In this case, a treatment effect cannot
be claimed for this measure, neither can a combined treatment
effect be claimed, and so we do not reject H0,i or H0,12. The con-
sonant combined and restricted consonant combined tests give
very similar results, showing differences only when the sample

Table VII. Probabilities of each joint outcome used in the simulation study.

� �1 �2 n Np mRS NIHSS

Experimental Control

Success Failure Success Failure

0.2 5 50 0.2 Success 0.1268 0.0732 0.0172 0.1828
Failure 0.2555 0.5445 0.0001 0.7995

50 0.6 Success 0.5726 0.0274 0.2434 0.3566
Failure 0.3171 0.0829 0.0669 0.3331

100 0.2 Success 0.1162 0.0838 0.0278 0.1722
Failure 0.2403 0.5597 0.0157 0.7843

100 0.6 Success 0.5362 0.0638 0.2798 0.3202
Failure 0.2870 0.1130 0.0970 0.3030

500 0.2 Success 0.0944 0.1056 0.0496 0.1504
Failure 0.1904 0.6096 0.0656 0.7344

500 0.6 Success 0.4702 0.1298 0.3458 0.2542
Failure 0.2372 0.1628 0.1468 0.2532

2000 0.2 Success 0.0835 0.1165 0.0605 0.1395
Failure 0.1606 0.6394 0.0954 0.7046

2000 0.6 Success 0.4396 0.1604 0.3764 0.2236
Failure 0.2149 0.1851 0.1691 0.2309

500 0.03 Success 0.0107 0.0193 0.0027 0.0273
Failure 0.0450 0.9250 0.0016 0.9684

0.5 2 4 50 0.2 Success 0.2128 0.0913 0.0272 0.0687
Failure 0.1541 0.5419 0.0059 0.8981

50 0.6 Success 0.6911 0.0432 0.2689 0.1968
Failure 0.1552 0.1104 0.0848 0.4496

100 0.2 Success 0.1937 0.0830 0.0463 0.0770
Failure 0.1422 0.5811 0.0178 0.8589

100 0.6 Success 0.6351 0.0614 0.3249 0.1786
Failure 0.1494 0.1542 0.0906 0.4058

500 0.2 Success 0.1566 0.0789 0.0834 0.0811
Failure 0.1126 0.6519 0.0474 0.7881

500 0.6 Success 0.5517 0.0920 0.4083 0.1480
Failure 0.1349 0.2214 0.1051 0.3386

2000 0.2 Success 0.1387 0.0792 0.1013 0.0808
Failure 0.0968 0.6853 0.0632 0.7547

2000 0.6 Success 0.5161 0.1058 0.4439 0.1342
Failure 0.1276 0.2505 0.1124 0.3095

500 0.03 Success 0.0256 0.0185 0.0053 0.0106
Failure 0.0276 0.9283 0.0015 0.98261

1
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size is small (n � 100) as then estimated correlations could some-
times be zero or negative. Also shown in the table are results from
the original, unmodified versions of the Bonferroni and Simes pro-
cedures, in which k is set at the value 2.2414, for comparison. As
intended, these procedures are conservative in their preservation
of the type I error rate.
The average correlation between Z1 and Z2 for the simulation

results shown in Table V is 0.643. Both original Bonferroni test
and original Simes are conservative, with null rejection rates for
H0,12 strictly less than 0.025. For the remaining tests, type I error
rates are close to 0.025, except when n D 24 when they drop
below 0.02. It would appear that in realistic situations, it could
be safe to plug in an estimated correlation and then make use
of that value as if it were the true correlation. The proportion of
runs in which the global null hypothesis and one of the marginal
null hypotheses is rejected reaches around 0.015 for the large
sample sizes.
By simulating under the global null hypothesis, it has been

demonstrated that the probability of rejecting H0,12 is close to
the target type I error rate of 0.025. Simulations have also been
conducted under alternative hypotheses in order to check pre-
dictions of power. Returning to Table II, we find asymptotic values
for power when V1 D V2 D 1, � D 0.2, 0.5 or 0.8 and �1 and �2
range between 0 and 6, and we now construct binary scenarios
that lead to test statistics with approximately normal properties
that correspond to some of the rows in Table II. This allows us to
check simulated powers against theoretical values.

To illustrate how the binary scenarios are constructed, sup-
pose that the outcome probabilities are as shown in Table VI.
Marginal success rates according to mRS are 0.2 on both exper-
imental and control so that �1 D 0. Marginal success rates accord-
ing to NIHSS are 0.3823 on experimental and 0.0177 on control
so that �2 D 3.5365. For both scales, the average success rate
over the two treatment groups is 0.2. Suppose that responses
on n D 50 patients, equally divided between experimental and
control, are observed. Under this model, the score statistic Z1
will approximately follow the N.0, V1/ distribution and Z2 the
N.�2V2, V2/ distribution, where V1 D V2 � .1=4/ � 50 � 0.2 �
0.8 D 2. Now consider the transformation Z�

i D Zi=
p
2 so that

Z�
i � N.��

i V�
i , V

�
i /, where V�

i D Vi=2 and ��
i D �i

p
2, i D 1, 2.

Then V�
1 D V�

2 D 1, ��
1 D 0 and ��

2 D 3.5365 � p
2 D 5.

The correlation between Z1 and Z2 is given by � � . Np12 � Np1 Np2/=pfNp1 Np2.1� Np1/.1� Np2/g, where Np1 and Np2 are the probabili-
ties of success according to mRS and NIHSS, respectively, and
Np12 is the probability of success according to both mRS and
NIHSS simultaneously, averaged over the two treatments. Hence,
� D .0.072�0.2�0.2/=f0.2.1�0.2/g D 0.2. Notice that the trans-
formation to Z�

i is considered only to demonstrate that the prop-
erties of the testing procedures should achieve the values shown
in the third row of Table II. It is not used in the testing procedures
themselves, which are carried out using only the available data in
the manner described in Section 3 with � replaced by its estimate
given by the variance and covariance estimates of equations (2)
and (3) of this section.

Table VIII(a). Proportions of rejections in 100 000 replicate simulations under the scenarios specified in Table VII, �1 D 0; �2 D 5;
� D 0.2.

n 50 50 100 100 500 500 2000 2000
Np 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6

Average estimated � 0.2064 0.2054 0.2007 0.2008 0.1998 0.1998 0.1998 0.2000
Proportion O� < 0 0.1079 0.0798 0.0388 0.0228 0.0000 0 0 0

Restricted Bonferroni Reject H0,12 0.4727 0.4864 0.4915 0.4980 0.4971 0.4971 0.5023 0.4964
0.500 Reject H0,1 and H0,12 0.4724 0.4864 0.4915 0.4980 0.4971 0.4970 0.5023 0.4964

Reject H0,2 and H0,12 0.0145 0.0161 0.0168 0.0169 0.0188 0.0181 0.0188 0.0184
Simes Reject H0,12 0.9193 0.9890 0.9781 0.9941 0.9956 0.9965 0.9968 0.9973
0.997 Reject H0,1 and H0,12 0.9192 0.9890 0.9781 0.9941 0.9956 0.9965 0.9968 0.9973

Reject H0,2 and H0,12 0.0240 0.0252 0.0252 0.0252 0.0255 0.0248 0.0251 0.0244
Restricted Simes Reject H0,12 0.4725 0.4864 0.4915 0.4980 0.4971 0.4971 0.5023 0.4964
0.500 Reject H0,1 and H0,12 0.4724 0.4864 0.4915 0.4980 0.4971 0.4970 0.5023 0.4964

Reject H0,2 and H0,12 0.0241 0.0252 0.0252 0.0252 0.0255 0.0248 0.0251 0.0244
Combined Reject H0,12 0.5514 0.7906 0.7362 0.8493 0.8697 0.8876 0.8889 0.8932
0.898 Reject H0,1 and H0,12 0.5507 0.7905 0.7360 0.8493 0.8696 0.8876 0.8888 0.8932

Reject H0,2 and H0,12 0.0241 0.0252 0.0252 0.0252 0.0255 0.0248 0.0252 0.0244
Consonant combined Reject H0,12 0.6501 0.8537 0.8100 0.8975 0.9104 0.9232 0.9245 0.9285
0.931 Reject H0,1 and H0,12 0.6501 0.8537 0.8100 0.8975 0.9104 0.9232 0.9245 0.9285

Reject H0,2 and H0,12 0.0242 0.0252 0.0252 0.0252 0.0255 0.0248 0.0252 0.0244
Rest consonant combined Reject H0,12 0.4500 0.4821 0.4859 0.4961 0.4963 0.4964 0.5017 0.4959
0.499 Reject H0,1 and H0,12 0.4498 0.4821 0.4859 0.4961 0.4963 0.4963 0.5016 0.4959

Reject H0,2 and H0,12 0.0242 0.0252 0.0252 0.0252 0.0255 0.0248 0.0252 0.0244
Original Bonferroni Reject H0,12 0.9184 0.9887 0.9780 0.9940 0.9955 0.9964 0.9967 0.9973

Reject H0,1 and H0,12 0.9182 0.9886 0.9780 0.9940 0.9955 0.9964 0.9967 0.9972
Reject H0,2 and H0,12 0.0109 0.0124 0.0120 0.0119 0.0129 0.0123 0.0126 0.0126

Original Simes Reject H0,12 0.9186 0.9887 0.9781 0.9940 0.9956 0.9964 0.9967 0.9973
Reject H0,1 and H0,12 0.9185 0.9887 0.9781 0.9940 0.9956 0.9964 0.9967 0.9973
Reject H0,2 and H0,12 0.0240 0.0252 0.0252 0.0252 0.0255 0.0248 0.0251 0.0244
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The values in Table VI have been chosen to convert the score
statistics into scaled versions of the case depicted in the third row
of Table II. Consequently, the powers of the restricted Bonferroni,
Simes, restricted Simes, combined, consonant combined and
restricted consonant combined tests should take the values pre-
dicted in that table: namely 0.500, 0.997, 0.500, 0.898, 0.931 and
0.499, respectively. Simulations based on 100 000 replicates led to
rejection of H0,12 using these tests in the following proportions of
runs: 0.472, 0.894, 0.471, 0.550, 0.650 and 0.449. In those simula-
tions, the average estimated correlation between score statistics
was 0.2062.
Extensive simulations along these lines have been carried out

on the basis of the rows of Table II in which (a) � D 0.2, �1 D 0,
�2 D 5 and (b) � D 0.5, �1 D 2, �2 D 4. Scenarios leading to
scaled versions of these situations, for various samples sizes, are
shown in Table VII: these have been constructed with Np D 0.2 or
0.6. Rejection rates for these scenarios are given in Table VIII(a).
As for the simulations under the alternative hypothesis, there is a
small chance of observing a negative estimate of correlation, and
the proportion of runs in which this happened is indicated in the
table: it was more frequent for small sample sizes.
In Table VIII(a), below the name of each test, the theoretical

power for rejecting the global null hypothesis H0,12 is written in
bold. For Table VIII(a), these values are taken from the third row
of Table II (� D 0.2, �1 D 0, �2 D 5), and for Table VIII(b) from the
23rd row of Table II (� D 0.5, �1 D 2, �2 D 4). It can be seen that in
general, these target powers are achieved for sample sizes of 500

and 2000, except when the overall success rate is 0.03. Powers for
sample sizes of 50 are generally poor, whereas those for 100 are
better, but still substantially below the higher target values. The
alternative values chosen in Table VIII(a) are such that restricted
procedures are intended to lose power, as one marginal null is
true. For the nonrestricted procedures, it is unusual for the closed-
test procedure to fail to reject a null hypothesis that would be
rejected by a naive marginal test, but this is very common for the
restricted procedures. The greater theoretical power for reject-
ing the global null possessed by the Simes and the consonant
combined tests are reflected in the good performance of these
methods across the sample sizes, with the Simes test performing
particularly well even in the smaller sample sizes. The alterna-
tive chosen for Table VIII(b) is one in which restricted and non-
restricted tests should achieve similar powers. This is borne out in
the simulation results. The restricted methods always show lower
power than their nonrestricted counterparts, but this reflects their
greater conservatism under the global null hypothesis. The alter-
native does not involve equal values for �1 and �2, and so it is not
the ideal situation for a combined test. Table II shows that the
combined test has better theoretical properties than the Simes
test or the other approaches when �1 D �2 > 0, and Table VIII(a)
shows that in moderate to large samples of binary data those
properties are attained. Thus, it can be anticipated that simu-
lations under alternatives with equal treatment effects would
favour the combined approach. Also shown in Tables VIII(a) and
VIII(b) are results from the original, unmodified versions of the

Table VIII(b). Proportions of rejections in 100 000 replicate simulations under the scenarios specified in Table VII, �1 D 2; �2 D 4;
� D 0.6.

n 50 50 100 100 500 500 2000 2000
Np 0.2 0.6 0.2 0.6 0.2 0.6 0.2 0.6

Average estimated � 0.4965 0.4996 0.4987 0.5000 0.4996 0.5002 0.5000 0.4999
Proportion with O� < 0 0.0031 0.0001 0.0000 0 0 0 0 0

Restricted Bonferroni Reject H0,12 0.8489 0.9285 0.9116 0.9405 0.9444 0.9490 0.9495 0.9522
0.951 Reject H0,1 and H0,12 0.8319 0.9222 0.9045 0.9365 0.9413 0.9464 0.9472 0.9497

Reject H0,2 and H0,12 0.3578 0.4072 0.3979 0.4187 0.4241 0.4248 0.4272 0.4314
Simes Reject H0,12 0.8574 0.9427 0.9214 0.9542 0.9589 0.9627 0.9642 0.9665
0.966 Reject H0,1 and H0,12 0.8489 0.9399 0.9181 0.9524 0.9575 0.9614 0.9631 0.9653

Reject H0,2 and H0,12 0.4444 0.4897 0.4829 0.5030 0.5101 0.5111 0.5154 0.5160
Restricted Simes Reject H0,12 0.8516 0.9287 0.9117 0.9406 0.9447 0.9491 0.9497 0.9524
0.951 Reject H0,1 and H0,12 0.8423 0.9256 0.9081 0.9385 0.9431 0.9478 0.9485 0.9511

Reject H0,2 and H0,12 0.4452 0.4900 0.4832 0.5032 0.5102 0.5112 0.5155 0.5161
Combined Reject H0,12 0.8383 0.9122 0.8903 0.9237 0.9253 0.9309 0.9333 0.9341
0.934 Reject H0,1 and H0,12 0.8163 0.9050 0.8814 0.9185 0.9215 0.9272 0.9300 0.9308

Reject H0,2 and H0,12 0.4487 0.4913 0.4851 0.5043 0.5109 0.5119 0.5162 0.5166
Consonant combined Reject H0,12 0.8498 0.9234 0.9026 0.9336 0.9345 0.9398 0.9413 0.9424
0.942 Reject H0,1 and H0,12 0.8366 0.9187 0.8968 0.9304 0.9322 0.9377 0.9394 0.9405

Reject H0,2 and H0,12 0.4491 0.4915 0.4853 0.5043 0.5110 0.5120 0.5162 0.5167
Rest consonant combined Reject H0,12 0.8464 0.9169 0.8989 0.9278 0.9300 0.9356 0.9365 0.9378
0.937 Reject H0,1 and H0,12 0.8332 0.9122 0.8931 0.9246 0.9277 0.9334 0.9346 0.9360

Reject H0,2 and H0,12 0.4491 0.4915 0.4853 0.5043 0.5110 0.5120 0.5162 0.5167
Original Bonferroni Reject H0,12 0.8450 0.9374 0.9157 0.9509 0.9557 0.9597 0.9615 0.9639

Reject H0,1 and H0,12 0.8279 0.9309 0.9083 0.9468 0.9524 0.9568 0.9590 0.9613
Reject H0,2 and H0,12 0.3300 0.3760 0.3668 0.3899 0.3986 0.4000 0.4029 0.4062

Original Simes Reject H0,12 0.8520 0.9401 0.9192 0.9528 0.9573 0.9610 0.9629 0.9651
Reject H0,1 and H0,12 0.8441 0.9375 0.9161 0.9510 0.9560 0.9598 0.9619 0.9640
Reject H0,2 and H0,12 0.4438 0.4895 0.4827 0.5030 0.5100 0.5111 0.5154 0.51601
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Bonferroni and Simes procedures. It was seen in Table V that
these approaches gave more away in terms of conservatism of
type I error rates than their modified counterparts. Despite this
finding, the gain in power due to the modification is slight for the
range of values explored here, throughout the range of sample
sizes considered.

5. CONCLUSIONS

In this paper, we explore the following strategy for testing multi-
ple hypotheses. Devise an exact procedure for the case in which
test statistics are exactly normally distributed with known corre-
lations. Base that actual tests on approximately normal test statis-
tics, and substitute the estimated correlations between them as
if they were known values, making no allowance for their estima-
tion. Six testing procedureswere evaluated in the case of bivariate
tests. The principal differences lay between the restricted tests,
in which rejection of the global test statistic is allowed only if
there are at least positive trends towards each of the alternative
hypothesis of a positive treatment effect. Imposition of such a
restriction has a marked effect on the power surface, when plot-
ted against the two actual treatment effects. Power is reduced
when one treatment effect is small or zero and enhanced when
the treatment effects are both positive and roughly equal. How-
ever, in well powered studies, the power in this region will already
be large, and so the gain in applying a restricted test will be insub-
stantial. In practice, restricted testing procedures would not be
chosen to increase power but because of a scientific belief that
a negative effect on one measure of treatment advantage cannot
be outweighed by a large advantage in the other. When such con-
siderations apply, the messages of this paper are that an accurate
test procedure can be carried out and that for moderate to large
sample sizes, little power will be lost in the alternative regions
of interest.
The strategy of conducting tests that depend on the correla-

tion between test statistics, and using the estimated correlation
without allowance for that estimation, has been found to be valid.
Type I error rates are closely achieved in large sample sizes and
conservatively bounded in smaller sample sizes or when success
rates are small. The choice between a Simes approach and a com-
bined approach depends on the alternative that is anticipated: if
the effect sizes �1 and �2 are likely to be equal to one another,
then the combined tests have the greater powers. However, the
advantages seen relative to conventional procedures based on
Bonferroni or Simes tests are modest. It should be added that
these conclusions are based on limited explorations of bivari-
ate binary tests. Although it would appear to be more satisfying
to base tests on correlation values seen in the data, it must be
admitted that although no invalidity appears to occur, the gains
in doing so are only small.
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Summary

This paper deals with the application of spherical tests in balanced multivariate mixed models. A
general representation of the univariate mixed model, given by Hocking (1985), is adapted to the
multivariate case and it is demonstrated how spherical tests, introduced by Läuter (1996), can be
applied to test hypotheses about the covariance structure and the means. The methods are illustrated by
an example. A simulation experiment shows the superiority of spherical tests over traditional methods,
if the multivariate data arise from a factor structure.

Key words: Spherical tests; Balanced mixed models; Variance components.

1. Introduction

Some years ago, Läuter has introduced the concept of spherical tests for multivariate
linear hypotheses (Läuter, 1996). The idea was first introduced for tests of the mean
vectors from multivariate normal distributions. Subsequently, Läuter and co-workers
have extended the concept with respect to several aspects (Läuter, Glimm, andKropf,
1996, 1998; Kropf, Läuter, and Glimm, 1997; Kropf and Glimm, 1996; Kropf and
Läuter, 2000). The basic concept has also been picked up by other researchers. Fang
et al. (1998), Fang and Liang (1999), Liang and Fang (2000) and Liang et al. (2000)
have used it to derive tests of multivariate normality. Their techniques can be regarded
as nonparametic spherical methods. The theoretical work by Läuter, Glimm, and
Kropf (1998) provides a general framework for the construction of tests for amultitude
of statistical models. Not all of these opportunities have been exploited. This paper is
intended to demonstrate how spherical tests can be used to test hypotheses in multi-
variatemixedmodels. The emphasis is on tests about the covariance structure.

2. Theoretical Foundations

The spherical tests treated in this paper are all based on the following theorem 2.1
which is a slightly simplified special case of theorem 2 by Läuter et al. (1998).

Biometrical Journal 42 (2000) 8, 937–950



Theorem 2.1: Let

X � Nn�p Q; In �Fð Þ
be a matrix of n independent observations from p-dimensional normal distribu-
tions. Let E be a fixed n� f -matrix with E0E ¼ If and E0Q ¼ 0. Let the p� q-
matrix D be a Borel function of X0PX, where P is an idempotent, symmetric
n� n-matrix with PE ¼ E, q � min ðp; f Þ and D such that rank ðE0XDÞ ¼ q with
probability 1. Let F0 Zð Þ be a Borel function defined for all full-rank f � q-ma-
trices Z. Finally, let Y ¼ E0XD and FðXÞ ¼ F0ðY � ð

ffiffiffiffiffiffiffiffi
Y 0Y

p
Þ�1Þ, where ffiffiffiffi

A
p

is any
root of the non-singular q� q-matrix A, i.e.

ffiffiffiffi
A

p
is a q� q-matrix withffiffiffiffi

A
p 0 ffiffiffiffi

A
p ¼ A.

Then the distribution of FðXÞ does not depend on p; D; E; P, Q and F.
Theorem 2.1 provides the basis for exact multivariate level-a tests in a variety

of situations. The proof of the theorem is a straightforward modification of the
proof of theorem 2 given by Läuter et al. (1998). Using this theorem, Läuter et
al. (1996, 1998, 1999) have investigated hypotheses on the mean of normal obser-
vations and tests of correlation between normal samples. Kropf and Läuter

(2000) have derived further tests for the correlation problem, while Fang and
Liang (Fang and Liang, 1999; Liang et al., 2000) have concentrated on tests for
multivariate normality.
Here, we are concerned with observations from balanced multivariate mixed

models. These models are straightforward multivariate extensions of well-known
univariate mixed models, such as the split-plot design. Hocking (1985), chapter 9,
discusses those univariate models in detail.
The situation investigated here may stem from an experiment with k factors,

some of which may be fixed and some of which are random. It is assumed that
p-dimensional observations are obtained for each combination of those factors. Let
ai denote the number of levels of the ith factor, i ¼ 1; . . . ; k. Complete balance

implies that there are n observations on each of the
Qk
i¼1

ai combinations, so there is

a total of N ¼ n � Qk
i¼1

ai p-dimensional observations.

Let X � NN�p Q;Sð Þ be the N � p-matrix comprising those observations in its
rows. The random factors in the experiment cause correlations between some ob-
servations and hence imply a certain covariance structure, whereas the fixed ef-
fects have a bearing on the mean of different observations. To characterize the
statistical models arising from this situation, some notation has to be introduced.
First of all, we define the set T ¼ f1; . . . ; k; 12; . . . ; ðk � 1Þ k; 123; . . . ; 123 � � � kg
of possible combinations of indices of the k factors in the experiment. Just to
avoid confusion, it is assumed that no factor occupies more than a single digit in
those combinations, such that 123 stands for factors 1, 2 and 3, not for factors 1
and 23, say. Let T0 ¼ T [ f0g. T0 represents all the main effects and interaction
effects in the balanced mixed model. We further assume that T1 is the subset of
fixed effects, T2 the subset of random effects, T1 [ T2 � T0, T1 \ T2 ¼ ;. Let us
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denote the overall mean by m, the effects of the fixed factors by Bj and the multi-
variate variance components from the random effects by Si. Then the models in-
vestigated in this paper are characterized by the mean structure

Q ¼ E Xð Þ ¼ 1Nm
0 þ P

j2T1

MjB
0
j ; ð1Þ

and the covariance structure

S ¼ IN � S0 þ
P
i2 T2

Vi � Si: ð2Þ

Vi and Mj are the design matrices of the model. Vi, i 2 T2 is defined by

Vi ¼ TðiÞ
1 � � � �TðiÞ

k � 1n1
0
n ð3Þ

with

TðiÞ
l ¼ Ial if l 2 i

1al1
0
al

if l 62 i

�
; ð4Þ

where “l 2 i“ is used to indicate that the single digit l appears in the sequence of
digits i. As an example, if i ¼ 13 2 T2, then V13 ¼ Ia1 � 1a21

0
a2
� Ia3 � 1a41

0
a4
�

� � � � 1ak1
0
ak
� 1n1

0
n.

In the same vein, Mj ¼ ZðjÞ
1 � � � � � ZðjÞ

k � 1n with

ZðjÞ
l ¼

Ial�1

�10al�1

� �
if l 2 j

1al if l 62 j

8<
:

for j 2 T1.
In this derivation, the variance components Si are generated by random effects

in the model and thus are bound to be positive definite. We note in passing that
this is not necessarily the only situation from which such a covariance structure
may arise and hence the positive definiteness is not an imperative condition. Of
course, S has to be positive definite. An aspect that does not occur in univariate
mixed models is the fact that all of the variance components have to be sym-
metric. This implies complete interchangeability of the p variables. As a character-
istic feature of the outlined model, covariance and mean parameters do not inter-
fere. This property is important for the existence of exact tests, as will be
illustrated in the following.

Example 2.1: Suppose, p observations are made on each of s randomly se-
lected patients at t time points. It is assumed that in the course of a cure, say, the
responses change with time and that each patient has an individual response level,
such that observations from the same patient at different times are correlated.
However, it is also assumed that this correlation remains the same for any two
times. This is called the compound-symmetry structure. In terms of the more gen-
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eral model outlined above, we have X ¼ X0
1; � � � ;X0

t

� �0
with

X � Nst�p 1stm
0 þ It�1

�10t�1

� �
� 1s

� 	
B1; Ist � S0 þ 1t1

0
t � Is � S2

� �
:

Note that n ¼ 1, since there is just one observation per patient and time. Further-
more, T1 ¼ f1g and T2 ¼ f2g.
Tests and estimates of the parameters in the mixed models introduced in this

section are based on quadratic forms calculated from the data. To derive the dis-
tributions of these quadratic forms, a canonical representation of the covariance
structure is needed:

S ¼ Am �Lm þ A0 �L0 þ
P
i2 T

Ai �Li ;

where

Ai ¼ GðiÞ
1 � � � � � GðiÞ

k � 1

n
1n1

0
n ;

GðiÞ
l ¼

Ial �
1

al
1al1

0
al

if l 2 i

1

al
1al1

0
al

if l 62 i

8><
>: ; i 2 T ;

Am ¼ 1

N
� 1N10N ; A0 ¼ IN � P

i2 T
Ai � Am ;

and

L0 ¼ S0 ; Li ¼ S0 þ n � P
j2 T; i	 j

a*j Sj; Lm ¼ S0 þ n � P
i2T

a*i Si ;

with a*i ¼
Q
l 62 i

al; a*i ¼ 1 if i ¼ 12 � � � k. For example, with k ¼ 3 factors,

L23 ¼ S0 þ n � a1 � S23 þ nS123. These expressions are exactly analogue to the
ones given by Hocking (1985), definition 9.3, for the univariate case.
The advantage of this canonical form over the initial representation lies in the

projection matrices Ai; i 2 T , A0 and Am. Since these fulfill Ai1Ai2 ¼ 0; i1 6¼ i2,
a well-known extension of Cochran’s theorem (see e.g. Ahrens and Läuter,
1981, p. 24, or Rao, 1973, ch. 8b.2, (ii) and (iii), p. 535ff.) can be used to
derive independent, unbiased estimates of the canonical variance components
Li:

Theorem 2.2:
i) X0AiX � Wp Li; rank ðAiÞð Þ for all i 2 T0 � T1.
ii) X0Ai1X and X0Ai2X are independent, i1 6¼ i2; i1; i2 2 T0.

This theorem is a straightforward extension of theorems 9.8 and 9.9 by Hock-

ing (1985).

&
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Example 2.2: [example 2.1 continued] Since S1 ¼ 0 and S12 ¼ 0 by the model
definition, we have

L0 ¼ L1 ¼ L12 ¼ S0; L2 ¼ Lm ¼ S0 þ t � S2 ;

A0 ¼ 0; A1 ¼ It � 1

t
1t1

0
t

� �
� 1

s
1s1

0
s ;

A2 ¼ 1

t
1t1

0
t � Is � 1

s
1s1

0
s

� �
;

A12 ¼ It � 1

t
1t1

0
t

� �
� Is � 1

s
1s1

0
s

� �
:

Consequently,

X0A2X � Wp L2; s� 1ð Þ; X0A12X � Wp L12; ðt � 1Þ ðs� 1Þð Þ :
and these two quadratic forms are stochastically independent.

3. Spherical Tests

3:1 Tests of the variance components

To test the hypothesis that a variance component Si is zero, one has to select two
quadratic forms X0Ai1X and X0Ai2X, i1; i2 2 T0 � T1, in such a way that the same
covariance parameters occur in their respective Wishart distributions under the null
hypothesis, but ones that differ by a multiple of Si in case of the alternative.
Usually, but not always, this is possible. One can then apply one of the usual

multivariate tests, e.g. Wilks’ L with L ¼ X0Ai2Xj j
X0ðAi1 þ Ai2Þ Xj j to test the hypothesis.

In example 2.2, L12 ¼ S0 is the covariance parameter corresponding to X0A12X
and L2 ¼ S0 þ t � S2 pertains to X0A2X, so these are the two quadratic forms
suitable for the test of no intra-patient correlation, H0 : S2 ¼ 0.

Theorem 2.1 can be applied to the function F0ðZÞ ¼ Z0 0 0
0 Ir2

� �
Z










 defined

for ðr1 þ r2Þ � q-matrices Z with any pre-selected q � min ðp; r2Þ, where
r1 ¼ rank ðAi1Þ, r2 ¼ rank ðAi2Þ and 0 denotes appropriately sized matrices of
zeros. Let E with E0 ¼ E0

1;E
0
2

� �
, where El is an rl � N-matrix, be any root of the

(usually singular) N � N-matrix Ai1 þ Ai2 , i.e. E0
1E1 ¼ Ai1 , E0

2E2 ¼ Ai2 and
EE0 ¼ Ir1þr2 , since A0

i1
Ai2 ¼ 0; i1 6¼ i2. The theorem states that

FðXÞ ¼ D0X0Ai2XDj j
D0X0ðAi1 þ Ai2Þ XDj j has the same null distribution as Wilks’ L,

L ¼ Gj j
H þ Gj j, for independent quadratic forms H � WqðIq; r1Þ and G � WqðIq; r2Þ,

if D is any Borel function of X0ðAi1 þ Ai2Þ X.

&
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Example 3.1: [example 2.2 continued] Suppose q ¼ 1, such that D is a vec-
tor, D ¼ d. Läuter et al. (1996, 1998) have proposed several rules for obtaining
a d. One of these is the so-called Principal-Component (PC-)rule: d is the eigen-
vector corresponding to the largest eigenvalue l of X0ðA2 þ A12Þ Xd ¼
Diag ðX0ðA2 þ A12Þ XÞ dl. Then d0X0A2Xdj j

d0X0ðA2 þ A12Þ Xdj j has a Wilks’ L-distribution
under H0 which is equivalent to

ðt � 1Þ � d
0X0A2Xd

d0X0A12Xd
�H0 Fðs� 1; ðt � 1Þ ðs� 1ÞÞ : ð5Þ

The PC-test of H0 : S2 ¼ 0 is based on this statistic.
Due to theorem 2.1, spherical tests like this one are exact level-a tests. The

problem here is to find an appropriate spherical test with satisfactory power proper-
ties. The following provides a heuristic argument for the PC test which has proved
to be powerful in the context of mean and correlation hypotheses (Glimm and
Läuter, 2000).
The argument involves the assumption of a single latent variable, y, say, under-

lying the p variables in X. Suppose that for each of the N observations there is
such an underlying, unobserved variable yi. Summarizing the yis into the vector y,
we obtain

y � N 1NmðyÞ þ
P
j2T1

MjbðyÞ j ; s0IN þ P
i2T2

siVi

� �
;

X ¼ yJ0 þ U

with U � NN�p 0; In �Kð Þ independent of y, where J is a p-dimensional vector of
factor loadings and K is a positive definite diagonal matrix of individual errors for
each of the p variables. These conditions define a one-factor model. The vector y
is often called the vector of factor scores. Läuter (1992) has examined this model
in detail. He has also used it to derive the PC test for hypotheses about the means
of multivariate normal observations (Läuter, 1996; Läuter et al., 1996). The
one-factor model implies

X � NN�p 1NmðyÞJ
0 þ P

j2T1

MjbðyÞjJ
0 ;

�

IN � ðKþ s0JJ
0Þ þ P

i2 T2

ðVi � siJJ
0Þ
�
:

We thus have S0 ¼ Kþ s0JJ
0, Si ¼ siJJ

0 and any test of Si ¼ 0 is reduced to a
test of si ¼ 0. Note that the same error structure K and the same vector of factor
loadings J apply to each of the N observations so that every observation reflects
the latent variable in the same way. The latent variable itself follows a univariate
mixed model with the same structure as that of X. Hence, we are looking for an
approximation of y as the basis for a test of the variance component si.

&
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The best linear approximation of y in case of known K; J is proportional to
K�1J (see, for example, Anderson, 1984, ch. 14.7). K�1J is also a solution of
the generalized eigenvalue problem

Lid ¼ Kdl ð6Þ
for each i 2 T0 � T1: Since

Li ¼ S0 þ n
P

j2 T; i	 j
a*j Sj ¼ Kþ s0 þ n

P
j2 T; i	 j

a*j � sj
� �

JJ0; i 2 T0 � T1 ;

one eigenvalue of (6) is 1þ s0 þ n
P

j2 T; i	 j
aj* � sj

� �
� J0K�1J, while the p� 1

others are all 1. If si 
 0 for all i 2 T2, K�1J corresponds to the largest eigen-
value of (6). Concerning the test of Si ¼ 0 with Li1 and Li2 ; i1; i2 2 T0 � T1,
such that Li1 �Li2 / Si, the corresponding quadratic forms X0Ai1X and X0Ai2X
both have central Wishart distributions, so E X0ðAi1 þ Ai2Þ Xð Þ is proportional to
Kþ c � JJ0, where c is a positive real number. Thus, K�1J can be approximated
by the eigenvector d pertaining to the largest eigenvalue l of

X0ðAi1 þ Ai2Þ Xd ¼ K̂Kdl ; ð7Þ
if we can replace K by a satisfactory estimate K̂K.
Several factor analytic methods are available for the estimation of K (see, for

example, Bartholomew and Knott, 1999, chapter 3). However, it has to be kept
in mind that these must be applied to Q ¼ X0ðAi1 þ Ai2Þ X or a “larger” matrix in
order to keep the conditions of theorem 2.1. Läuter et al. (1999) present several
proposals for the estimation of K. As a further possibility, an iterated principal
factor algorithm may be applied. This starts with the eigenvalue decomposition of
R ¼ Diag ðQÞ�1

2 Q Diag ðQÞ�1
2. The first step in the iteration gives

K̂K ¼ Diag ðR� f1e1e
0
1Þ, where f1 is the largest eigenvalue of R and e1 is the

corresponding eigenvector. In the second step, the same calculation is done with
R� K̂K instead of R, giving a new estimate K̂K and so on, until convergence is
achieved. There are several ways to justify this algorithm. Bartholomew and
Knott (1999), p. 53ff., give some of them. In rare cases, the algorithm will lead
to negative estimates in the diagonal of K̂K. The estimate obtained after the first
step will be positive definite with probability 1.

Example 3.2: [example 3.1 continued] For every patient i and every time j,
there is an underlying, unobserved variable yij. In vector notation, we have

y � N 1st � mðyÞ þ
It�1

�10t�1

� �
� 1s

� 	
bðyÞ1; s0It � Is þ s21t1

0
t � Is

� �
;

X ¼ yJ0 þ U; U � Nst�pð0; Ist �KÞ :
For each time and each patient the matrix of individual error variances K of the
p variables is always the same. Furthermore, the same vector J of factor load-
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ings is in effect at each time. From example 2.2, A2 þ A12 ¼ It � ðIs � 1
s 1s1

0
sÞ,

such that

E X0ðA2 þ A12Þ Xð Þ ¼ Pt
i¼1

E X0
iðIs �

1

s
1s1

0
sÞ Xi

� �

¼ tðs� 1Þ � Kþ ðs0 þ s2Þ JJ0� �
;

showing that this is indeed proportional to Kþ c � JJ0 with some c > 0. In this
case, s2 ¼ 0 would be tested by

ðt � 1Þ � d0X0 1

t
1t1

0
t � Is � 1

s
1s1

0
s

� �� �
Xd

d0X0 It � 1

t
1t1

0
t

� �
� Is � 1

s
1s1

0
s

� �� �
Xd

�H0 Fðs� 1; ðt � 1Þ ðs� 1ÞÞ

with d as the eigenvector corresponding to the largest eigenvalue from

Qd ¼ K̂Kdl ;

where Q ¼ Pt
i¼1

X0
i Is � 1

s
1s1

0
s

� �
Xi and K̂K has been derived from the iterative

principal factor estimation method mentioned above, applied to
Diag Qð Þ�1=2Q Diag Qð Þ�1=2: It is noteworthy that Q is proportional to the sum of
the estimated covariance matrices for each of the t times. The same coefficient
vector d is used at every time point to calculate the corresponding score vector
Xid.
If a one-factor model seems inappropriate, the reasoning leading to (6) and (7)

can easily be extended to situations, where the observations stem from q > 1
latent factors leading to corresponding q-dimensional spherical tests as outlined at
the beginning of this section.
E X0ðAi1 þ Ai2 þ

P
j
AijÞ X

� �
/ Kþ c � JJ0 with some c > 0 still holds for any

ij 2 T0 (in case of si 
 0 for all i), even if X0AijX does not have a central Wishart-
distribution. In that case, c is a weighted sum of si ’s plus a weighted sum of
squared components from the mean structure. According to theorem 2.1, an exact
level-a test is still obtained, if X0ðAi1 þ Ai2Þ X is replaced by some
X0 Ai1 þ Ai2 þ

P
j
Aij

� �
X on either side of (7).

3:2 Tests of the mean structure

Theorem 9.8 by Hocking (1985) can easily be extended to state that X0AjX has a
non-central Wishart-distribution:

X0AjX � WpðLj; rank ðAjÞ; B0
jX

0L�1
j XBjÞ

&
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for all j 2 T1, where B0
jX

0L�1
j XBj is the non-centrality parameter. To test the hy-

pothesis H0 : Bj ¼ 0, an i 2 T0 � T1 with Li ¼ Lj has to be selected. A spherical
test of H0 could then, for example, be based on

rank ðAiÞ
rank ðAjÞ

d0X0AjXd

d0X0AiXd
�H0 Fðrank ðAjÞ; rank ðAiÞÞ ;

where d is a function of X0ðAj þ AiÞ X. It turns out that under the assumptions made
in section 2, page 22f., namely that of “matching” covariance and mean structure
(T1 \ T2 ¼ ;), such an i 2 T0 � T1 always exists for each j 2 T1 and that the techni-
que amounts to a test of the hypothesis that the mean of some independent contrast
from the data is zero. Since spherical tests of means have been treated elsewhere
(Läuter, 1996; Läuter et al., 1996, 1999), this is not pursued any further here, but
only the example is continued to demonstrate how this works in a simple case.

Example 3.3: [example 3.2 continued] To test the hypothesis H0 : B1 ¼ 0 of no

time effect, A1 ¼ It � 1

t
1t1

0
t

� �
� 1

s
1s1

0
s and A12 ¼ It � 1

t
1t1

0
t

� �
� Is � 1

s
1s1

0
s

� �
are chosen, since L1 ¼ L12. With d calculated from

X0ðA1 þ A12Þ X ¼ X0 It � 1

t
1t1

0
t

� �
� Is

� �
X by the iterated principal factor meth-

od or one of the proposals from Läuter et al. (1999), the test is based on

ðs� 1Þ � d
0X0A1Xd

d0X0A12Xd
�H0 Fðt � 1; ðt � 1Þ ðs� 1ÞÞ :

This procedure actually uses an ordinary F-test for the equality of t � 1 means
with s observations on each mean. It is based on t � 1 independent time contrasts
from each of the patients.

4. Some Relations with Tests from other Contexts

This section is intended to show how some miscellaneous results obtained for
certain, relatively simple multivariate linear models fit into the framework outlined
in sections 2 and 3. The following will be based on the continued example 2.1
from the previous sections. As an additional restriction, it will be assumed that
patients are only observed at t ¼ 2 times.

4:1 Testing independence of two potentially correlated samples

Looking at A2 ¼ 1

t
1t1

0
t � Is � 1

s
1s1

0
s

� �
and A12 ¼ It � 1

t
1t1

0
t

� �
� Is � 1

s
1s1

0
s

� �
in case of just two times, it is immediately realized that the

&
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“time-parts” of these matrices to the left of the Kronecker-product have roots
1ffiffiffi
2

p ð1; 1Þ0 and
1ffiffiffi
2

p ð1;�1Þ0, respectively. Consequently, the test of S2 ¼ 0 (see

example 3.1) tests an equality-of-variance hypothesis for the sum
Xþ ¼ ðð1; 1Þ � IsÞ X and the difference X� ¼ ðð1;�1Þ � IsÞ X of the observations
from the two times. Läuter (1999) has pointed out this fact. In this case, (5) is
the test statistic for the usual, well-known test of equality of variances for two
independent normal samples (see, for example, Lehmann, 1986, chapter 5.3) ap-
plied to the derived “score samples” Xþd and X�d. Example 3.2 gives a possible
derivation of d. It may be noted in passing, that for the Q given there, we have

Q ¼ 1

2
X0
þ Is � 1

s
1s1

0
s

� �
Xþ þ X0

� Is � 1

s
1s1

0
s

� �
X�

� �
. The test requires com-

pound symmetry. In contrast to the univariate case (p ¼ 1), where any 2� 2-cov-
ariance matrix S with Diag ðSÞ / I2 is “automatically” compound symmetric, this
is a restriction here, because it requires the off-diagonal block S2 to be symmetric.
If we are not willing to assume compound symmetry or if the variances at the

first and second time are not the same, we can still test the hypothesis of indepen-
dence between the two times by a spherical test of correlation between X1 and X2,
using X1d and X2d. These tests have been described by Läuter et al. (1998),
page 1979ff., and Kropf (2000), ch. 5.3.3. Since they do not exploit compound
symmetry, they are less powerful in its presence than the variance component
tests. In addition, it is unclear how they could be extended to the case of t > 2.

4:2 Testing the compound-symmetry assumption

For t ¼ 2, s > 2, a test of the compound symmetry assumption is available. This
test is easier to derive for the rearranged

X1;X2ð Þ � Ns�2p 1s m0
1;m

0
2

� �
; Is � S11 S12

S0
12 S22

� �� �
ð8Þ

instead of X. Using the definitions of Xþ and X� from section 4.1,

Xþ;X�ð Þ � Ns�2p 1n m0
1 þ m0

2;m
0
1 � m0

2

� �
;

�
In � S11 þ S22 þ S12 þ S0

12 S11 � S22 � S12 þ S0
12

S11 � S22 þ S12 � S0
12 S11 þ S22 � S12 � S0

12

� �

is obtained from (8). If compound symmetry holds, S11 ¼ S22 and S12 ¼ S0
12,

thus Xþ and X� are independent. Consequently, a spherical test of correlation
between Xþ and X� can be used to check the hypothesis.
The derivation of spherical correlation tests has been described by Läuter et al.

(1998) and is not fully repeated here, but some aspects are important for the calcu-
lation of the coefficients D. Application of spherical tests for correlation amounts
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to the application of a usual test for canonical correlation 0 to the scores XþDþ
and X�D�, where Dþ and D� are coefficient matrices derived in accordance with
theorem 2.1. The derivation is based on the conditional distribution of X� given

Xþ. Let E; EE0 ¼ Is�1; E
0E ¼ Is � 1

s
1s1

0
s be a matrix that eliminates the means.

Conditional on Xþ, the matrices

H ¼ X0
�E

0EX0
þ X0

þE
0EXþ

� ��1
X0

þE
0EX0

� ;

G ¼ X0
�E

0ðIs�1 � EXþ X0
þE

0EXþ
� ��1

X0
þE

0Þ EX�

are independent with distributions

H j Xþ �H0 Wpð2ðS11 � S22Þ; pÞ ;
G Xþj �H0 Wpð2ðS11 � S22Þ; n� p� 1Þ :

Concerning the application of theorem 2.1, H þ G ¼ X0
� Is � 1

s
1s1

0
s

� �
X� is the

“smallest” suitable basis for the calculation of score coefficients D�. If we choose
rank ðD�Þ ¼ q� ¼ 1 and determine some d� from that matrix, this leads to a test

using a statistic
n� p� 1

p
� d

0
�Hd�
d0�Gd�

�H0 Fðp; n� p� 1Þ. This is, however, not re-

commendable. Note that Dþ ¼ Ip here, and that this is actually a test of multiple
correlation zero between X�d� and Xþ. Since the derivation could as well be
made for Xþ given X� and since Xþ and X� are simple linear transformations of
the same p variables, there seems to be no reason why one should treat Xþ and
X� differently.
As Xþ is considered fixed, we may also use X0

� Is � 1

s
1s1

0
s

� �
X�

þ X0
þ Is � 1

s
1s1

0
s

� �
Xþ to calculate D� and we may actually apply the same

weights Dþ ¼ D� to Xþ, too. Since

1

2
� X0

� Is � 1

s
1s1

0
s

� �
X� þ X0

þ Is � 1

s
1s1

0
s

� �
Xþ

� �

¼ X0 I2 � Is � 1

s
1s1

0
s

� �� �
X ¼ X0

1 Is � 1

s
1s1

0
s

� �
X1 þ X0

2 Is � 1

s
1s1

0
s

� �
X2 ;

the latter method is consistent with the tests proposed in section 3 (see Q in exam-
ple 3.2). This approach is intuitively much more appealing. In case of a one-factor
model or other situations in which the scores capture an anticipated deviation from
the null hypothesis, it is far more powerful than the method described before (this
can be deduced from simulations by Glimm, 1999, for spherical tests of correla-
tion in comparison with the test of multiple correlation), whereas in other cases,
the canonical correlation will be superior.
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Thus, it is preferable to calculate just one coefficient matrix D ¼ Dþ ¼ D�

from X0
1 Is � 1

s
1s1

0
s

� �
X1 þ X0

2 Is � 1

s
1s1

0
s

� �
X2 and apply it to both Xþ and X�.

As an example, suppose d is calculated by the iterated principal factor method from

X0
1 Is � 1

s
1s1

0
s

� �
X1 þ X0

2 Is � 1

s
1s1

0
s

� �
X2 with q ¼ 1. We can then apply an

ordinary test of correlation 0 to the scores Xþd and X�d. The Bravais-Pearson corre-

lation coefficient is

r ¼
d0X0

� Is � 1

s
1s1

0
s

� �
Xþdffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

d0X0
� Is � 1

s
1s1

0
s

� �
X�d � d0X0

þ Is � 1

s
1s1

0
s

� �
Xþd

s

with ðs� 2Þ � r2

1� r2
�H0 Fð1; s� 2Þ.

Under the one-factor model, S12 ¼ S0
12 is a consequence of S12 ¼ s2 � JJ0.

Given that the one-factor model holds, the test examines if the individual error
matrix K remains unchanged in time.
As a final remark, it is noteworthy that theorem 2.1 allows us to calculate the

coefficients D from X0X (compare the final remark in section 3.1 on page 28). If
that is done, the same scores XD can be used for every hypothesis test from
sections 3 and 4. For the continued example 2.1, this means that the tests given in

examples 3.2, 3.3 and section 4 can be applied with d calculated from
Pt
i¼1

X0
iXi by

the iterated principal factor method, say, instead of the various d’s from different

matrices given in those places.

4:3 Simulations

A small simulation experiment was run to get an impression of the power of the
proposed tests. For this purpose, data corresponding to example 2.1 was simulated
using SAS/IML with s ¼ 12; t ¼ 2; p ¼ 4. Following example 3.2, it was as-
sumed that the four variables in X arise from a latent variable y with mean
mðyÞ1 ¼ 2 at time 1, mðyÞ2 ¼ 4 at time 2, and variance components s0 ¼ 3, s2 ¼ 5.
The factor loadings J and the matrix K of individual error variances were ran-
domly chosen in each of the replicates of the simulation experiment with J from
an Nð2 � 1p; IpÞ-distribution and the diagonal elements ji of K as squares of inde-
pendent realizations from an Nð2; 1Þ-distribution. The experiment was replicated
100000 times. In each replication, the variance component test (example 3.2), the
test of mean (example 3.3), a test of independence of X1 and X2 (section 4.1) and
the test of the compound-symmetry assumption (section 4.2) were done.
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The iterated principal factor (IPF) method described on page 27 was used to calcu-
late coefficient vectors d. In case of a negative estimate of ji, the corresponding
value was set to 0.0001 and the cycle was resumed until the convergence criterion
was met. Each of the tests was run in two versions, one using X0X, the other
using the corresponding “smallest” matrix for the problem (e.g. X0ðA2 þ A12Þ X
for the variance component test) as the basis for coefficient calculation from an
eigenvalue problem like (7). In addition, the analogous two versions of the ordin-
ary PC-test using Diag ðX0XÞ or Diag ðX0ðAi1 þ Ai2Þ XÞ, respectively, in (7) instead
of K̂K, were also calculated. Wilks’ L tests for variance component S2 ¼ 0 and for
equality of means at the two times were included for comparison.
Table 4.1 shows the average p-values from this experiment. It is obvious that

the spherical variance component tests are vastly superior to Wilks’ L-test. The
PC-test with principal factor iteration seems a little better than the ordinary PC
test. Use of the “full” sums-of-product matrix X0X instead of the “small” one does
not seem to make any difference for the PC-test with principal factor iteration.
This is not surprising in the light of the discussion in section 3.1, which shows
that the expected values of these two matrices have the same eigenvectors. As was
anticipated, the test of correlation between X1 and X2 is inferior to the variance
component test in this situation, although it is still superior to Wilks’L test. Since
we have compound symmetry in this simulation, the test of compound symmetry
from section 4.2 just shows the expected result.
Finally, the test for equality of means at the two times reveals the same pattern

as the test of the variance component: The spherical tests are superior to Wilks’ L
in this situation, the PC-test with principal factor iteration seems a little better than
the ordinary PC-test.

Acknowledgments

The author is grateful to the two referees for their constructive comments that
helped to improve the paper. Thanks are also due to Professor Muni Srivastava for
his support of this work.

Biometrical Journal 42 (2000) 8 949

Table 4.1

Average p-values for spherical tests from simulation with 100000 replicates

Test PC-test/IPF method ordinary PC-test Wilks’L

Matrix small full small full

var.comp. 0.0581 0.0580 0.0623 0.0658 0.2832
correlation 0.1094 0.1094 0.1170 0.1227 �
comp.symm. 0.5003 0.5005 0.5002 0.5002 �
mean 0.0698 0.0678 0.0714 0.0770 0.1715
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ABSTRACT

In this paper, we consider tests for the hypothesis that the
mean vector is zero against one-sided alternatives when the
observation vectors are independently and identically distrib-
uted as normal with unknown covariance matrix. The exact
null-distribution of the tests is derived. The tests generalize the
centre-direction test proposed by Tang et al.[1] for known
covariance. In addition, the modification is order- and scale-
invariant. Power comparisons with some other tests are pre-
sented. It can be shown that the null distribution of the test
statistic holds for data arising from any elliptical distribution,
not just the normal distribution.

Key Words: Multivariate tests; Restricted alternatives;
Order alternatives

589

Copyright & 2002 by Marcel Dekker, Inc. www.dekker.com

COMMUN. STATIST.—SIMULA., 31(4), 589–604 (2002)



©2002 Marcel Dekker, Inc. All rights reserved. This material may not be used or reproduced in any form without the express written permission of Marcel Dekker, Inc.

MARCEL DEKKER, INC. • 270 MADISON AVENUE • NEW YORK, NY 10016

1. INTRODUCTION

This paper deals with tests of the means in the statistical model

X � Nn�p 1nl
0, In ��

� �
, ð1Þ

where� denotes theKronecker product, 1n is a vector of n ones, In is the n� n
identity matrix, l an unknown parameter vector and � a positive definite
covariance matrix. The rows of the matrix X form a sample of n independent
observations from a p-dimensional normal distribution with covariance
matrix� ¼ ð�ijÞi, j¼1,..., p and mean l ¼ ð�iÞi¼1,..., p. If no knowledge of l and�
is assumed, the uniformly most powerful invariant test of H0 : l ¼ 0 is
Hotelling’s T2 test (see e.g., Srivastava and Khatri,[2] Theorem 4.3.1).
However, practical considerations often imply restrictions on either l or �
or on both. Several authors have investigated tests ofH0 with various restric-
tions on themodel (1) (Kudo,[3] Nüesch,[4] Schaafsma and Smid,[5] Perlman,[6]

Robertson, Wright and Dykstra,[7] O’Brien,[8] Tang et al.,[1] Follmann,[9,10]

Läuter et al.,[11–13] Wang and McDermott,[14] McDermott,[15] Srivastava
et al.[16]).

A lot of attention has been given to tests of H0 where the alternative
is restricted to A : �i � 0 for all i ¼ 1, . . . , p with at least one strict inequal-
ity. Tests for such one-sided hypotheses are often needed in practice, for
example in clinical trials, where sucess of a treatment is judged by the
treatment’s impact on several response features simultaneously. Kudo[3]

and Nüesch[4] have given the likelihood-ratio test for this problem assum-
ing � is known. Perlman[6] derived the likelihood-ratio test for unknown
�. Wang and McDermott[14] derived a conditional likelihood ratio test by
obtaining improved critical values from the conditional distribution of the
likelihood-ratio test statistic given the total sums-of-products matrix X

0
X.

Unfortunately, all of these tests are very cumbersome in application, since
i) the calculation of the maximum likelihood estimate of l under the
restriction �i � 0 is difficult and may require iterative search in case of
p � 4 and ii) the distributions of the test statistics are unknown and
depend on �, even under H0, or, in Wang and McDermott’s case, on
X

0
X. Therefore, several authors (Tang et al.,[1] Fraser et al.,[17]

Follmann,[9,10] Srivastava et al.[16]) have looked for alternatives to the
likelihood-ratio test.

In this paper, we follow an idea of Tang et al.[1] The hypothesis H0 is
tested by a statistic depending on the original data matrix X via a trans-
formation XA

0. Tang et al.[1] developed their method for the case of known
�. Section 2 outlines the motivation behind Tang’s approach and explains
how it can be modified to be applicable for the case of unknown �.
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Section 3 gives a modified method that is scale- and order-invariant.
In Section 4, the null distribution and power of the resulting tests are
investigated.

2. MOTIVATION OF ORTHOGONAL CONTRAST TESTS

Tang et al.[1] have proposed to test the hypothesis H0 : l ¼ 0 vs.
A : l � 0 by means of contrasts zi ¼

ffiffiffi
n

p
a
0
i �xx, i ¼ 1, . . . , p, where

�xx ¼ 1
n
X

0
1n and the coefficient vectors A ¼ ða1, . . . , apÞ

0 fulfill A
0
A ¼ �
1.

This leads to XA
0
� Nn�p 1nl

0
A

0, In � Ip
� �

, i.e., the contrasts zi ¼
ffiffiffi
n

p
a
0
i �xx

are independent with variance 1 and mean 0 under H0. We may combine
the contrasts in various ways to test the null hypothesis. Tang et al.[1]

propose to use
P

imaxiðzi, 0Þ
2. They also derived the null distribution of

this statistic, which is a special case of the chi-bar-squared distibution. As
Tang et al.[1] noted, A is not unique and its choice affects the power of the
ensuing test.

If � is unknown, one might consider replacing � by its usual estimate.
However, several authors have shown by simulation that this approach
leads to extremely liberal tests (see for example Reitmeir and
Wassmer[18]). Yet, the idea of producing independent contrasts can be
applied to G ¼ X

0
X instead of �. This results in some root A of G


1, i.e.,
an A that fulfills A

0
A ¼ G


1. Läuter et al.[12] have pointed out that XA
0 is

distributed according to the so-called left-spherical uniform n� p-
distribution (Fang and Zhang,[19] Chapter 3) under H0.

Tests of H0 : l ¼ 0 can be based on the components of

u ¼ ðuiÞ ¼
ffiffiffi
n

p
A �xx ð2Þ

in the same way as they are based on zi in the case of known �. For
example, Läuter et al.[13] have proposed to apply Tang’s statistic, i.e.,
reject H0 : l ¼ 0, if

�uu2 ¼
Xp
i¼1

ðmaxð0, uiÞÞ
2

ð3Þ

is larger than a critical value. However, they only considered one certain
choice of A and did not derive the distribution of �uu2.

In order to devise powerful tests from these premises, we
have to make a choice of A. This problem is considered in the following
section.
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3. CHOICE OF THE ROOT OF G

3.1. Centre-Direction Coefficients

Tang et al.[1] propose to choose A in such a way that the so-called
centre direction of the p column vectors of A coincides with the centre
direction of the positive orthant. The general aim is to replace the ‘‘original’’
coefficient vectors e1, . . . , ep, ðe1, . . . , epÞ ¼ Ip, which are the edges of the
alternative space fl 2 R

p : �i � 0g, by A with A�A
0
¼ Ip, such that A is

‘‘as close as possible’’ to Ip. The centre direction cM of a p� p-matrix M

is defined as the p-dimensional vector (of length 1) that has the same angle
with each of the column vectors ofM, i.e., DiagðM0

MÞ
� �
1=2

M
0
cM / 1p. The

above mentioned centre direction condition from Tang et al.[1] requests that
cA ¼ 1ffiffi

p
p 1p. Hence, in addition to

A
0
A ¼ G


1, ð4Þ

A has to fulfill

A
0
1 DiagðA0

AÞ
� �1=2

1p / 1p: ð5Þ

This additional restriction still does not make the choice of A unique if
p � 3. Tang et al.[1] give an algorithm that leads to an arbitrary solution
of (4) and (5). Since this algorithm gives different results for different order-
ings of columns in X, they propose an ordering of the columns of �
1

(the equivalent here is an ordering of G

1) before the application of the

algorithm. This removes dependence on order, but since the ordering is
based on the magnitude of the variance estimates of the variables in X, it
introduces scale-dependence.

In this paper, we propose to obtain A by a procedure that yields a
scale- and order-invariant solution:

First, U with U
0
U ¼ G


1 is obtained by any method for the cal-
culation of a root of a positive definite matrix, for example by the
well-known Cholesky-composition. Let Q1 ¼ ðq1, . . . , qpÞ be any orthogo-
nal matrix with q1 / U

0
1 DiagðG
1
Þ

� �1=2
1p and Q2 ¼ ðq

�
1, . . . , q

�
pÞ be any

orthogonal matrix with q
�
1 / 1p. Then A0 ¼ Q2Q

0
1U fulfills (4) and (5).

This approach is due to Tang et al.[1] Their solution is obtained, if U is
from Cholesky-decomposition, Q1 is calculated by Gram-Schmidt-ortho-
gonalization of q1, e2, . . . , ep, Q2 by Gram-Schmidt-orthogonalization of
q
�
1, e2, . . . , ep.
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Now, let us consider the partition

Q
0
2A0 DiagðA

0
0A0Þ

� �
1=2
Q2¼Q

0
1U DiagðG
1

Þ
� �
1=2

Q2¼
a11 a

0
12

að0Þ21 Að0Þ22

� 	

and let E�1=2E0 be from the eigenvalue decomposition A
0
ð0Þ22Að0Þ22 ¼ E�E

0,
where , is the diagonal matrix of eigenvalues and E the matrix of corre-
sponding eigenvectors. Then

A ¼ Q2
a11 a

0
12

E�1=2E0
A


1
ð0Þ22að0Þ21 E�1=2E0

� 	
Q

0
2 DiagðA

0
0A0Þ

� �1=2
: ð6Þ

This solution is unique with probability 1. It does not depend on the choice
of Q1 and Q2.

A from (6) is also the matrix that maximizes tr A DiagðA0
AÞ

� �
1=2
 �
subject to the restrictions (4) and (5). Among all coefficients with the
‘‘right’’ centre direction, these are the ones that maximize the sum of the
cosines with the edges ei of the positive orthant. In this sense, A is closest to
Ip. This assertion is proved in Proof 1 of Appendix A. Proof 2 of Appendix
A shows that the approach is order- and scale-invariant.

3.2. Other Coefficients

The centre direction is just one possible criterion for defining ‘‘close-
ness’’ of Ip and A. Matrices A of coefficients that fulfill (4) but not (5) also
might be taken into consideration. One obvious choice for A would be the
symmetric, positive definite root of G


1 without the restriction of the centre
direction. This choice maximizes trðAÞ as well as trðAGÞ. It can be obtained
as E�

1
2E

0 from the usual eigenvalue decomposition G

1

¼ E�E
0.

Since this approach does not give a scale-invariant solution, it will
usually be better to use

A ¼ E�1=2E0 DiagðG
1
Þ

� �1=2
ð7Þ

where the eigenvalue decomposition

DiagðG
1
Þ

� �
1=2
G


1 DiagðG
1
Þ

� �
1=2
¼ E�E

0
ð8Þ

is used. This choice maximizes trðA DiagðG
1
Þ

� �
12
Þ and is scale-invariant. In

comparison to the method described in the previous subsection, the same
criterion is maximized without the restriction of a given centre direction.
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Scale-invariance is also reached by standardizing X to X DiagðGÞð Þ

1=2

and obtaining E�
1
2E

0 from the eigenvalue decomposition of the inverse of
the correlation matrix

DiagðGÞð Þ
1=2

G

1 DiagðGÞð Þ

1=2
¼ E�E

0: ð9Þ

In that case, the test statistic would be

ffiffiffi
n

p
E�1=2E0 DiagðGÞð Þ


1=2 �xx: ð10Þ

L€auter et al.[13] have considered the so-called left-symmetric root of G,
which is defined as the matrix B with maximum product

Qp
i¼1 bii of its

diagonal elements bii among all matrices that fulfill B
0
B ¼ G. A matrix

that fulfills (4) is obtained from setting A ¼ B
0
1. The left-symmetric root

is scale-invariant and sign-invariant in the sense that by changing the sign of
a variable, only the sign of the corresponding column in B is affected. Läuter
et al.[13] give a simple iterative algorithm that can be used to calculate the
left-symmetric root. The other proposals from this section are also easy to
implement on computer with any package that provides eigenvalue decom-
position, such as SAS/IML.

4. NULL DISTRIBUTIONS AND POWER OF

ORTHOGONAL CONTRAST TESTS

4.1. The Null Distribution of �uu2

Theorem 1. For n � pþ 1 and any A that fulfills (4), the distribution of
�uu2 from (3) has the pdf

f �uu2 ðrÞ ¼
1

2p

Xp
1
k¼0

p

k

� 	 �
n

2


 �
�
p
k

2

� 	
�
n
pþk

2

� 	 � r
p
k
2 
1

ð1
 rÞ
n
pþk
2 
1, r2 0,1ð �

P �uu2¼ 0
� �

¼
1

2p
ð11Þ

The proof of this theorem is given in Appendix A, Proof 3. The the-
orem shows, that the distribution of �uu2 is a mixture of Beta-distributions.
The quantiles of the distribution of �uu2 can be obtained by a simple
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Taylor-series expansion: To a first-order approximation, we have

�� � ��, 0 þ
1
 �
 F

�uu2
ð��, 0Þ

f
�uu2
ð��, 0Þ

, ð12Þ

where �� is the 1
 �-quantile of the distribution of �uu2, F
�uu2
ð�Þ is its

distribution function, F
�uu2
ð��Þ ¼ 1
 �, and ��, 0 is an approximation

of ��. Many statistics software packages, like SAS, provide quantiles
of the Beta-distributions, such that for given ��, 0, (12) can easily be cal-
culated. A corresponding SAS-program is given in Glimm and
Srivastava.[20]

In any practical application, it is even easier to obtain the p-value from
the observed value �uu20 of �uu

2, since many statistics software packages provide
the distribution functions Fp
k

2 ,
n
pþk
2
ð�Þ of Bðp
k

2
, n
pþk

2
Þ-distributions. It is

obvious from (11) that the p-value is

1

1

2p


1

2p

Xp
1
k¼0

p
k

� 	
Fp
k

2 ,
n
pþk
2

�uu20
� �

, �uu20 > 0:

4.2. Simulations

In this subsection, empirical powers of the orthogonal contrast tests
applying statistic (3) with the root A of G


1 calculated by

1. (7) and (8) (test ‘‘std.’’ in Tables 1–4) and by
2. (6) (test ‘‘CDmax’’ in Tables 1–4)

are compared with those of theM-test by Srivastava et al.[16] and Wang and
McDermott’s conditional likelihood-ratio test. The conditional likelihood-
ratio test uses Perlman’s likelihood-ratio statistic

nbll0
W


1bll
1þ n x 
bllð Þ

0
W
1 x 
bllð Þ

, ð13Þ

where bll is the maximum likelihood estimate of l from (1) under the
restriction A : �i � 0 and W ¼ X

0
In 


1
n
1n1

0
n

� �
X. Wang and

McDermott[14] derive the conditional distribution of (13) given the
observed X

0
X. They also provide an algorithm for obtaining the p-value

of the conditional likelihood-ratio test by numerical integration. The max-
imum likelihood estimate bll can be obtained by an iterative algorithm
provided by Wollan and Dykstra.[21]
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The M-test uses the statistic M ¼ max t0, t1, . . . , tp
� �

with ti ¼ffiffiffi
n

p
a
0
ix=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a0iWai=ðn
 1Þ

p
, where a1, . . . , ap are the column vectors of ðX

0
XÞ


1

and a
0
0 ¼ ð

ffiffiffiffiffiffi
g11

p
, . . . ,

ffiffiffiffiffiffi
gpp

p
Þ X

0
X

� �
1
; gii being the i-th diagonal element of

X
0
X: Hence, this test compares the direction of the observed mean vector

with that of several vectors corresponding to various departures from the
null hypothesis. Critical values for this test are obtained from a parametric
bootstrap.

The simulation results are given in Tables 1–4. Tables 1–3 use
the same situations as Srivastava et al.,[16] Tables 2–5. For convenience, the
covariance matrices used in Table 3 are reproduced in Appendix B. The
situation investigated in Table 1 has first been studied by Wang and
McDermott.[14]

Empirical power values for the orthogonal contrast tests 1. and 2. are
based on 100 000 replications. Simulation results for coefficients from the
three other methods described in subsection 3.2 were very similar to those
for test 1, whereas for the centre-direction coefficients according to Tang’s
original proposals they were close, but predominantly slightly inferior to
those for test 2. Hence, the corresponding empirical powers are not
reported. For p ¼ 2, all scale-invariant tests from Section 3 are the same.
In general, the differences in power between all of the considered tests were

Table 1. Empirical Power of Multivariate Tests for Positive Mean, p¼ 3, n¼ 17

� 	2 l Std. CDmax M, bootstr. CLRT


0.25 0.3 (0,0,0.5)0 0.519 0.521 0.506 0.504

1.5 (0.5,0.5,0.5)0 0.995 0.995 0.992 0.994

0 0.25 (0,0,0.5)0 0.410 0.410 0.393 0.401

0.75 (0.5,0.5,0.5)0 0.904 0.905 0.860 0.875

0.25 0.278 (0,0,0.5)0 0.407 0.402 0.423 0.407

0.5 (0.5,0.5,0.5)0 0.776 0.776 0.723 0.701

0.5 0.375 (0,0,0.5)0 0.471 0.459 0.491 0.506

0.375 (0.5,0.5,0.5)0 0.665 0.665 0.574 0.564

0.75 0.7 (0,0,0.5)0 0.680 0.640 0.754 0.759

0.3 (0.5,0.5,0.5)0 0.577 0.577 0.456 0.448

�: constant correlation between any two variables.
	2: Mahalanobis distance l0�
1l.

std.: statistic (3) with scale-invariant root.

CDmax: statistic (3) with centre-direction contrastsþmaximum trace.

M, bootstr.: M-test with critical value from parametric bootstrap.

CLRT: conditional likelihood-ratio test by Wang and McDermott.[14]
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always small for this situation. Therefore we have not included these results
either.

The empirical powers for Wang and McDermott’s conditional like-
lihood-ratio test are taken from Srivastava et al.[16] Critical values for this
test depend on X

0
X, such that they have to be obtained as a part of every

application. For the M-test, critical values depend on �. Calculation of the
empirical power of the M-tests in Tables 1–4 requires bootstrap sampling
within each simulation step. Due to this, only 3000 replications were done.
Consequently, these results are somewhat less reliable than the other entries
in the tables. To gain insight into this, simulations were also performed for
the null case. The empirical powers for the M-tests with the bootstrap were

Table 2. Empirical Power of Multivariate Tests for Positive Mean, p¼ 4, n¼ 40

� l Std. CDmax M, bootstr. CLRT


0.3 (1,1,1,1)0 0.846 0.847 0.898 0.902

(1,0,0,0)0 0.836 0.837 0.855 0.863

(1,2,0,0)0 0.843 0.844 0.881 0.876

(1,2,3,4)0 0.846 0.846 0.901 0.891

(1,1.1,1.2,1.3)0 0.848 0.848 0.893 0.891

(1,1.2,1.4,1.6)0 0.848 0.848 0.901 0.890

0 (1,1,1,1)0 0.849 0.849 0.801 0.831

(1,0,0,0)0 0.765 0.763 0.754 0.765

(1,2,0,0)0 0.797 0.800 0.720 0.780

(1,2,3,4)0 0.841 0.842 0.763 0.821

(1,1.1,1.2,1.3)0 0.850 0.851 0.812 0.829

(1,1.2,1.4,1.6)0 0.848 0.848 0.803 0.821

0.5 (1,1,1,1)0 0.848 0.848 0.789 0.769

(1,0,0,0)0 0.674 0.661 0.750 0.706

(1,2,0,0)0 0.690 0.690 0.603 0.718

(1,2,3,4)0 0.800 0.804 0.594 0.763

(1,1.1,1.2,1.3)0 0.845 0.845 0.776 0.768

(1,1.2,1.4,1.6)0 0.844 0.844 0.755 0.770

0.9 (1,1,1,1)0 0.848 0.848 0.796 0.719

(1,0,0,0)0 0.590 0.568 0.734 0.673

(1,2,0,0)0 0.551 0.544 0.560 0.680

(1,2,3,4)0 0.638 0.644 0.470 0.710

(1,1.1,1.2,1.3)0 0.832 0.833 0.677 0.724

(1,1.2,1.4,1.6)0 0.794 0.798 0.574 0.726

Means l are standardized such that 	2¼0.25. Otherwise, legend of Table 1 applies.
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between 0.040 and 0.068 for � ¼ 0:05, whereas for all other tests they were
between 0.049 and 0.051.

The tables show that the tests based on the statistic (3) compare
favourably with the M-test. Only on the edges of the alternative space,
they have lower power than the M-test. In the interior of the alternative
space, they are superior and they outperform theM-tests in most situations
given in Table 1–4 without having severe power deficiencies anywhere. The
power differences between the orthogonal contrast tests using statistic (3)
are small.

Table 3. Empirical Power of Multivariate Tests for Positive Mean,

p¼ 4, n¼ 40

� l Std. CDmax M, bootstr.

�1 (1,1,1,1)0 0.842 0.837 0.733

(1,0,0,0)0 0.710 0.666 0.768

(1,2,0,0)0 0.716 0.745 0.594

(1,2,3,0)0 0.759 0.746 0.626

(1,2,3,4)0 0.803 0.800 0.692

(1,1.2,1.4,1.6)0 0.833 0.826 0.706

�2 (1,1,1,1)0 0.842 0.836 0.753

(1,0,0,0)0 0.672 0.646 0.742

(1,2,0,0)0 0.763 0.703 0.637

(1,2,3,0)0 0.690 0.655 0.639

(1,2,3,4)0 0.798 0.807 0.626

(1,1.2,1.4,1.6)0 0.838 0.836 0.745

�3 (1,1,1,1)0 0.840 0.839 0.669

(1,0,0,0)0 0.673 0.624 0.747

(1,2,0,0)0 0.739 0.695 0.697

(1,2,3,0)0 0.711 0.758 0.498

(1,2,3,4)0 0.812 0.815 0.517

(1,1.2,1.4,1.6)0 0.836 0.839 0.633

�4 (1,1,1,1)0 0.845 0.846 0.742

(1,0,0,0)0 0.628 0.641 0.729

(1,2,0,0)0 0.655 0.675 0.544

(1,2,3,0)0 0.716 0.720 0.533

(1,2,3,4)0 0.785 0.779 0.588

(1,1.2,1.4,1.6)0 0.845 0.845 0.759

�: covariance matrices from Srivastava et al.,[16] Table 4 (see

Appendix B). Otherwise, legend of Table 2 applies.
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5. CONCLUSIONS

The main purpose of this paper is to improve on the idea by Tang
et al.[1] of centre-direction coefficients. The additional requirement of a
maximum trace subject to the centre-direction removes the ambiguity in
their calculation and facilitates invariance with respect to the order of the
variables as well as with respect to their scale.

The method, but also Tang’s original approach as well as some related
techniques for obtaining orthogonal contrasts can be adapted to the case of
unknown � utilizing the total sums-of-products matrix X

0
X. The resulting

tests have null distributions that are much easier to obtain than that of
previously developed tests. They also perform well in terms of power.
Comparing the orthogonal contrast methods from subsection 3.1 and 3.2
with each other, the differences in power appear marginal. In accord with
intuition, there are weak indications that the centre-direction tests perform
better if l is close to the centre of the positive orthant, whereas the tests
from subsection 3.2 are superior if l is close to the edges of the orthant.
However, in general the performances are very similar. In the light of this

Table 4. Empirical Power of Multivariate Tests for Positive Mean,

p¼ 6, n¼ 17

� l Std. CDmax M, bootstr.

0 (1, . . . , 1)0 0.464 0.471 0.321

(1,1,1,0,0,0)0 0.357 0.376 0.211

(1,0, . . . , 0)0 0.273 0.277 0.237

(1, . . . , 6)0 0.429 0.441 0.264

0.2 (1, . . . , 1)0 0.469 0.473 0.285

(1,1,1,0,0,0)0 0.297 0.313 0.133

(1,0, . . . , 0)0 0.232 0.230 0.211

(1, . . . , 6)0 0.398 0.411 0.190

0.5 (1, . . . , 1)0 0.473 0.477 0.310

(1,1,1,0,0,0)0 0.228 0.239 0.109

(1,0, . . . , 0)0 0.201 0.196 0.211

(1, . . . , 6)0 0.334 0.345 0.155

0.9 (1, . . . , 1)0 0.473 0.476 0.320

(1,1,1,0,0,0)0 0.149 0.153 0.083

(1,0, . . . , 0)0 0.172 0.161 0.198

(1, . . . , 6)0 0.197 0.203 0.095

Legend of Table 2 applies.
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conclusion, the test based on (9), (10) and the one based on (7), (8) have the
advantage on being easiest to implement on a computer.

APPENDIX A

Proof 1. All matrices A
� that fulfill (4) and (5) are of the form A

�
¼ QA0

with Q¼Q2
1 0
0 Qp
1


 �
Q

0
2, where Qp
1 is any orthogonal ð p
 1Þ � ð p
 1Þ-

matrix. We have A
0
0Q

0
QA0 ¼ A

0
0A0 ¼ G


1 for all Q and

trðQA0 DiagðG

1
Þ

� �
1=2
Þ ¼ tr

1 0
0 Qp
1

� 	
Q

0
2A0 DiagðG


1
Þ

� �
1=2
Q2

� 	
:

Thus, trðQA0ðDiagðG

1
ÞÞ

1=2

Þ ¼ tr a11 a
0
12

Qp
1að0Þ21 Qp
1Að0Þ22Þ


 �
. Note that a11 and

a12 are the same for every matrix that fulfills (4) and (5).

Obviously, trðQA0ðDiagðG

1
ÞÞ

1=2

Þ is maximized, if trðQp
1Að0Þ22Þ is at
a maximum. This maximum is attained for the symmetric, positive definite
root E�1=2E0 from the eigenvalue decomposition of A

0
ð0Þ22Að0Þ22 (cf. Ahrens

and Läuter,[22] (2.57)). The corresponding orthogonal transformation that
transforms Að0Þ22 into E�1=2E0 is Qp
1 ¼ E�1=2E0

A

1
ð0Þ22. Consequently,

Q
0
2A DiagðG
1

Þ
� �
1=2

Q2 ¼
a11 a

0
12

E�1=2E0
A


1
ð0Þ22að0Þ21 E�1=2E0

� 	

provides the A that maximizes trðQA0ðDiagðG

1
ÞÞ

1=2

Þ subject to the con-
ditions. Since G has p distinct eigenvalues with probability 1, the root
E�1=2E0 is unique with probability 1. This shows that A is also uniquely
determined with probability 1.

Proof 2. For XD � Nn�pð1nl
0
D,D0

DÞ, where D is a fixed positive definite
diagonal matrix, the corresponding total sums-of-products matrix is
GD ¼ D

0
X

0
XD ¼ D

0
GD with AD ¼ AD


1, �xx0
D ¼ 1

n 1
0
nXD. We thus haveffiffiffi

n
p

AD �xxD ¼
ffiffiffi
n

p
A �xx, so that the test statistic is unaffected by the scale of

measurement of the individual variables. An analoguous argument regard-
ing order-invariance applies, if D is a permutation matrix.

Proof 3. Under H0, we have the two independent statisticsffiffiffi
n

p
�xx � Nð0,�Þ, W ¼ X

0
X 
 n �xx �xx0

�Wpð�, n
 1Þ:

The joint pdf of
ffiffiffi
n

p
�xx and W is proportional to
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Wj j
n
p
2 
1exp tr 


1

2
�
1

ðW þ n �xx �xx0
Þ

� 	� 	
:

Thus, the joint pdf of
ffiffiffi
n

p
�xx and X

0
X ¼ W þ n �xx �xx0 is proportional to

X
0
X

�� ��n
p2 
1
� 1
 n �xx0

ðX
0
XÞ


1 �xx
� �n
p

2 
1
exp tr 


1

2
�
1

X
0
X

� 	� 	
,

since jXX
0

 n �xx �xx0

j ¼ jXX
0
j � ð1
 n �xx0

ðX
0
XÞ


1 �xxÞ. Now, A
0
A ¼ ðX

0
XÞ


1 and
u ¼

ffiffiffi
n

p
A �xx. The Jacobian of the transformation from

ffiffiffi
n

p
�xx to u is

jA
0
Aj


1=2
¼ jX

0
Xj
1=2, so that the joint pdf of u and X

0
X is proportional to

X
0
X

�� ��n
p
12 � 1
 u
0
u

� �n
p
2 
1
exp tr 


1

2
�
1

X
0
X

� 	� 	
,

and hence the pdf of u is proportional to

1
 u
0
u

� �n
p
2 
1
, u

0
u � 1: ð14Þ

Suppose now, the vector u is partitioned into u
0
¼ u

0
1 u

0
2

� �
, where

u1 ¼ ðui1Þ is a p
 k-dimensional vector, k ¼ 0, . . . , p
 1. Let u2 ¼ ðui2Þ and

v ¼
u2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
 u01u1
p : ð15Þ

The Jacobian of the transformation from u2 to v ¼ ðviÞ is ð1
 u
0
1u1Þ

k=2, so it
follows from (14) that the joint pdf of u1 and v is proportional to

ð1
 u
0
1u1Þ

n
p
2 
1þk

2 � ð1
 v
0
vÞ

n
p
2 
1, u

0
1u1 � 1, v

0
v � 1: ð16Þ

Hence, the pdf of u1 is proportional to

ð1
 u
0
1u1Þ

n
pþk
2 
1, u

0
1u1 � 1: ð17Þ

Since u has a spherical distribution, its distribution function is invar-
iant to permutations of its components. Furthermore, it can be seen from
(15) and (16) that the marginal distribution of u1 and its conditional dis-
tribution given ui2 � 0 are the same. Finally, the additional condition ui1 � 0
changes the density (17) only by the multiplicative constant 2p
k. Thus, (17)
also gives the conditional pdf of the positive components of u

�
¼ ðu�1, . . . , u

�
pÞ

with u�i ¼ maxð0, uiÞ under the condition that k components ui are smaller
than zero.
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From (17), the conditional density of u
�0

u
� given K ¼ k, k ¼

0, . . . , p
 1, is

fu2jK ðrjkÞ ¼
�
n

2


 �
�
p
 k

2

� 	
�
n
 pþ k

2

� 	 � r
p
k
2 
1

ð1
 rÞ
n
pþk
2 
1, r 2 0, 1�ð

by Lemma 3.2.3 of Srivastava and Khatri.[2] Note that this is the density of
the Beta-distribution Bðp
k

2
, n
pþk

2
Þ. Since fu2 ðrÞ ¼

Pp
k¼0 PðK ¼ kÞ �fu2jK ðrjkÞ,

(11) follows from PðK ¼ kÞ ¼ p
k

� �
=2p. œ

Remark. It can be shown that Theorem 1 holds for any X whose pdf is given
by f ð�
1

X
0
XÞ.

APPENDIX B

Covariance matrices used in Table 3

�1 ¼

478:51 249:36 
12:65 90:13

249:36 528:65 145:91 159:80


12:65 145:91 414:47 93:64

90:13 159:80 93:64 189:47

0
BBB@

1
CCCA,

�2 ¼

545:78 213:78 316:44 295:11

213:78 330:88 113:96 120:80

316:44 113:96 1049:45 698:39

295:11 120:80 698:39 753:03

0
BBB@

1
CCCA

�3 ¼

13:6 1:6 6:7 
3:7
1:6 4:0 1:9 3:0
6:7 1:9 7:9 4:1


3:7 3:0 4:1 32:4

0
BB@

1
CCA, �4 ¼

1076 698 708 789
698 1105 597 868
708 597 1056 712
789 868 712 1922

0
BB@

1
CCA
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This paper suggests two directional multivariate tests that aim at establishing superiority of a
treatment over a control in at least one of several endpoints that are assumed to have a multivariate
normal distribution. One of these tests is a one-sided, scale-invariant version of the classical Hotelling
T2-test. The other is based on a summary score with weights derived from the data. Both tests
overcome an important shortcoming of previous ‘‘one-sided’’ multivariate suggestions, namely that
the null hypothesis was restricted to a single point in the multidimensional parameter space. The
derivation of the tests is supplemented by simulations investigating their performance and by the
application in an osteoporosis trial.
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1 Background and motivation

This paper deals with the problem of testing whether at least one of many variables in a multivariate
distribution has a mean which is larger than zero. This problem arises, for example, in clinical trials
where treatment success is assessed by many endpoints and it is desired to establish that at least one
of them shows a positive response to the treatment. The problem has received considerable attention
in recent years (Dunnett and Tamhane, 1992; Tamhane et al., 1996; Cai and Sarkar, 2006; Röhmel
et al., 2006; Chuang-Stein et al., 2007). Some of the papers consider situations in which the cor-
relation structure of the endpoints is either completely known, or has a sparse structure described by
very few parameters, or is otherwise known to be restricted (e.g. assuming that all pairwise cor-
relations are positive). We do not discuss such situations in this paper. Excluding these methods, the
topic can also be approached from a multiple testing perspective by considering univariate tests for
the individual endpoints and combining them on the basis of the closed test procedure (Marcus
et al. 1976) using Bonferroni’s inequality. Undoubtedly, this approach has many advantages.
Namely, it is simple to implement and if there are few variables, the power loss relative to methods
that assume the knowledge of the correlation between endpoints (such as, e.g. Dunnett’s test,
Dunnett 1955) is small. If the primary interest is in the investigation and interpretation of single
variables in isolation, these methods are most appropriate. They are less appropriate and—due to
the inherent conservatism of the Bonferroni adjustment—less powerful, if a deviation from the null
hypothesis of no treatment effect, say, manifests itself in moderate elevations of the values of several

*Corresponding author: e-mail: ekkehard.Glimm@Novartis.com, phone: 141-61-3240173, Fax: 141-61-3243039
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variables without a single dominant one. In such cases, multivariate statistical methods are more
appropriate.

Traditionally, multivariate statistical inference has focused on invariant methods. For example,
Hotelling’s famous T2-test is the uniformly most powerful invariant test for the mean of a
multivariate normal distribution (cf. Anderson 2003). Invariant tests are characterized by the as-
sumption that only the distance of the true parameter value from the null hypothesis, not its
direction, are relevant. The advances of bioinformatics with its huge data sets of correlated vari-
ables, e.g. in gene expression data, have recently brought about a revival of research into multi-
variate statistics, in particular in the case of sample sizes n that are smaller than the number of
variables p. Older research on this topic (Box 1954, Dempster 1958) has recently been expanded
upon by several authors (Srivastava and Fujikoshi 2006, Srivastava and Du 2008) and generalized,
for example, to non-parametric statistics (Munzel and Brunner 2000, Oja and Randles 2004, Bathke
and Harrar 2008). These suggestions are no longer invariant. However, they are so due to technical
limitations, not by purpose. In contrast, our focus in this paper is on purposefully directional
multivariate tests. Furthermore, while some of the methods we explore in the sequel can be applied
in the case of no p, this is only a secondary aspect of the investigations. Rather, potential appli-
cations for the suggested methods will usually have n4p and will also have few variables, maybe up
to 10 at most.

The investigations of this paper were in part inspired by a phase II clinical trial in osteoporosis. In
this trial, several endpoints measured treatment effects on systemic aspects (such as pain relief and
flexibility of joints) and others physiologic aspects (such as joint space narrowing and cartilage
volume). It was of course hoped that a benefit could be established regarding both of these aspects,
but it was unclear if this would be the case and how strong a benefit (if existent) would manifest
itself in the various endpoints. In Section 6, we will discuss the analysis of data from such a trial.
For confidentiality reasons, the numbers in that section are not from the real trial.

For simplicity, we introduce our suggestions for the one-sample case. The two-sample case is a
straightforward extension (see Section 4). In terms of an application, we can think of the response
being a difference between a post-treatment and a baseline measurement in multiple endpoints.
Assume that we observe p response variables on each of n individuals. The data are arranged in an
n� p matrix X. A row of X represents the p responses of an individual; hence, rows are assumed to
be stochastically independent and follow a p-dimensional normal distribution with unknown mean
vector l ¼ ðmiÞi¼1;...;p and unknown covariance matrix R. If there is no treatment effect on any of the
endpoints, we have l 5 0.

Hotelling’s T2-test tests the hypothesis H0 : l 5 0 against the general, ‘‘non-directional’’ alter-
native A : l6¼0. Its power only depends on the Mahalanobis distance l0��1l of l from zero. For
practical applications with ‘‘directional’’ questions, this is often an unsuitable property, as positive
and negative deviations from the null hypothesis are treated equally. Clinical trial applications of
multivariate statistics are often faced with the problem of appropriately generalizing the concept of
the univariate one-sided test. This has led to the derivation of numerous ‘‘directional’’ multivariate
tests. All of these suggestions aim at a restricted alternative hypothesis, some of them explicitly
stating the alternative, others doing so only implicitly (e.g. O’Brien 1984, Läuter 1996). Most
notably, Kudo (1963), Nüesch (1966) and Perlman (1969) have derived the likelihood-ratio (LR)
test of H0 against the ‘‘one-sided’’ alternative A:l40. Other restricted alternatives have also been
considered. Silvapulle and Sen (2004) provide an overview.

Unfortunately, as has been pointed out by Silvapulle (1997), Perlman and Wu (2004) and Röhmel
et al. (2006), the LR test has some serious drawbacks regarding its practical application. First, it is
computationally very demanding. More seriously, the test has an intuitively unappealing property:
It can lead to rejection of the null hypothesis in favor of the alternative, if all observed estimates �xi
of mi are negative. This might happen becauseH0 is restricted to a single point in space, such that the
situation mio 0 is excluded a priori from consideration. Silvapulle (1997) gives a nice illustration of
this shortcoming which also affects many suggestions that have been made to overcome the com-
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putational complications of the LR test (e.g. Schaafsma and Smid 1966, Tang et al. 1989, Tang
et al. 1993, Glimm et al. 2002).

In this paper, we suggest two multivariate tests that strictly keep a for the entire negative orthant.
Thus, they allow to claim a statistically significant positive effect in at least one of the p response
variables. In Sections 2 and 3, respectively, these two tests are introduced. After briefly discussing
the two-sample case in Section 4, the power of the suggestions is compared via simulation in Section
5. In Section 6, the application to data from the osteoporosis trial is presented and discussed.

2 Directional Hotelling test

Follmann (Follmann 1995, Follmann 1996) suggested an alternative to the LR test which is par-
ticularly easy to implement. The method converts Hotelling’s T2-test into a directional test by
requiring the extra condition �x0 � 1p � 0 for rejection, where 1p is a vector of p ones and �x is the usual
least-squares estimate of l. Hotelling’s T2-test accepts H0 : l 5 0 if 0 lies in an ellipsoid with center
�x. By introducing the extra condition, this acceptance region is modified to a half-space and a half-
ellipsoid. The T2-test is performed at level 2a, i.e. with a contracted ellipsoid, to maintain the
preassigned test level a.

Obviously, this approach avoids the case where H0 is rejected with �xio0 for all i5 1,y,p.
However, the issue is not entirely resolved: One cannot conclude from the rejection of H0 : l 5 0

that every ‘‘shifted’’ hypothesisH
l
0 : mi � 0, for all i5 1,y,p where mi are the elements of l, can also

be rejected. In addition, Follmann’s test is not scale-invariant.
We now give a modification of Follmann’s test which (i) renders it scale-invariant and (ii) uses the

extended null hypothesisHorth
0 : mi � 0 for i ¼ 1; . . . ; p. Condition (ii) demands that the test level a is

kept for each fixed vector l of the negative orthant. A weaker version of this test considers the null
hypothesis Hcorn

0 : uiomi � 0 for i ¼ 1; . . . ; p with given fixed values of ui.
If Horth

0 is rejected, we can conclude that not all variables have zero or negative mean values, i.e.
in at least one of the p variables there is a positive response. However, the unique identification of
such a ‘‘positive variable’’ would demand further testing steps, for example, the application of the
closure principle by Marcus et al. (1976).

Let

X ¼

x01ð Þ

..

.

x0nð Þ

0
B@

1
CA � Nn�pð1nl

0; In � �Þ ð1Þ

be the n� p matrix of n individuals, each having observations from p endpoints with
means l ¼ ðmiÞi¼1;...;p and common positive-definite covariance matrix R, where n 4 p. For
the sake of convenience, notation does not distinguish between random variables and their realiz-
ations.

The usual least-squares estimates are �x ¼ ð �xiÞi¼1;...;p ¼ ð1=nÞ �
Pn

j¼1 xðjÞ for l and S ¼

ð1=ðn� 1ÞÞG ¼ ð1=ðn� 1ÞÞ
Pn

j¼1 ðxðjÞ � xÞ ðxðjÞ � xÞ0 for R. A minimum-volume (1�a) confidence
region for l is given by the ellipsoid around �x

C1�að �x;GÞ ¼ fl0 with
ðn� pÞn

p
ðl0 � �xÞ0G�1ðl0 � �xÞoF1�aðp; n� pÞg ð2Þ

where F1�a(p, n�p) is the (1�a) quantile of the F-distribution with p and n�p degrees of freedom.
Hotelling’s T2-test rejects H

l
0 if and only if l=2C1�að �x;GÞ.
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To test the extended null hypothesis Horth
0 , we suggest the modified directed confidence region

C1�2að �x;GÞ [ l0 with
Xp
i¼1

m0i � �xiffiffiffiffiffi
gii
p 40

( )
; ð3Þ

where gij, i, j5 1,y,p, are the elements of the sums-of-products matrix G. This way, a scale-
invariant test arises. Each of the p endpoints is standardized with its corresponding standard
deviation. Region (3) consists of a half-space and a half-ellipsoid (Fig. 1). The corresponding
multivariate test is given by

Procedure I: Horth
0 is rejected if no vector l of the negative orthant lies in confidence region (3).

The probability that l is not in the directed confidence region (3) is exactly a because

(i) the probability of l=2C1�2að �x;GÞ is 2a (for a r 0.5),
(ii) the probability of l=2fl0 with

Pp
i¼1 ðm0i � �xiÞ=

ffiffiffiffiffi
gii
p

40g is 0.5,
(iii) the boundary line of the half-space fl0 with

Pp
i¼1 ðm0i � �xiÞ=

ffiffiffiffiffi
gii
p

40g goes through the
center �x of the ellipsoid such that C1�2að �x;GÞ is cut into two halves with probability mass
(1�2a)/2. Consequently, the region excluded by (3) is 0.5�(1�2a)/25 a.

This reasoning is valid for any dimension p. (ii) holds because the matrix G is stochastically
independent of the mean vector �x. The ‘‘multiple’’ rejection condition for Horth

0 (i.e. requiring that
(3) excludes all l with mi r 0) results in a further reduced significance level for each fixed l in the
negative orthant. Hence, the test of Horth

0 always keeps the significance level a.
In order to reject Horth

0 , procedure I requires that �x 6¼ 0 and
Pp

i¼1 �xi=
ffiffiffiffiffi
gii
p
� 0 hold, such that �x

must not be in the negative orthant. In the following, it is assumed that these conditions are met. In
addition, we need to check that

min
l2neg: orthant

ðn� pÞn

p
ðl� �xÞ0G�1ðl� �xÞ � F1�2aðp; n� pÞ: ð4Þ

Since the quadratic form in this expression is a convex function of l, its unrestricted unique
minimum is at l ¼ �x and its values are monotonously increasing in all directions if one moves away

Figure 1 Confidence region corresponding to the directional Hotelling test for
Horth

0 (Procedure I). The test fails significance, because the ellipse intersects the negative
orthant (p5 2).
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from this minimum. Furthermore, convexity implies that the restricted minimum value in (4) must
be on the boundary of the negative orthant, i.e. at least one element mi must be 0. In addition, this
restricted minimum is unique. Consequently, we can find the minimum of the quadratic form within
the negative orthant by repeating the following steps:

(i) Fix some mi to be 0.
(ii) Obtain the minimum of ðn� pÞn=pðl� �xÞ0G�1ðl� xÞ with this restriction. This may result

in some or all of the non-null mi’s being positive.

We have to do this for all 2p�1 possible combinations of zeros in places of mi’s. The one
(l�, say) that provides the minimum value among the solutions with all components mi r 0 is the
minimum sought in (4). In special cases, this may be l�5 0. The p-value of the test is the solution a�

of

ðn� pÞn

p
ðl	 � �xÞ0G�1ðl	 � �xÞ ¼ F1�2a	 ðp; n� pÞ:

Obviously, we reject Horth
0 if a� r a.

Each of the single minimization problems is easy to solve. If the p variables are partitioned into
two subsets corresponding to

l ¼
l1

l2

� �
; �x ¼

�x1
�x2

� �
; G ¼

G11 G12

G21 G22

� �
;

then the minimum of the quadratic form subject to l2 5 0 is given by l	1 ¼ �x1 �G12G
�1
22 �x2. This

result is obtained from well-known properties of the conditional normal distribution (e.g. Mardia
et al. (1979), Chapter 3).

It follows that in the special case of p5 2, Horth
0 can be rejected if �x 6¼ 0, �x1=

ffiffiffiffiffiffi
g11
p

1 �x2=
ffiffiffiffiffiffi
g22
p

� 0
and none of the three points

l ¼ 0; l ¼
0

�x2 � g21g
�1
11 �x1

� �
; l ¼

�x1�g12g�122 �x2
0

� �

is in the negative orthant as well as in the (1�2a) ellipse.
In comparison with Follmann’s test, our proposal extends the test’s acceptance region by

certain points l in the intersection of ellipsoid and negative orthant (see Fig. 1). Naturally,
this is only possible at the expense of some power. In some cases, the weaker null hypothesis
Hcorn

0 mentioned above can be applied. Namely, if we know in advance that there are lower
limits ui for the parameters mi, we only have to check whether a vector l of the corresponding
negative corner lies in the directed confidence region (3). Thus the power of the test can be
increased.

3 Standardized sum test for Horth
0

Läuter and co-workers (Läuter 1996, Läuter et al. 1996, Läuter et al. 1998) introduced the
concept of spherical multivariate tests. These are exact multivariate tests of H0 : l 5 0 based
on low-dimensional scores calculated from the observed data. Their main advantage is that
they can be used with arbitrarily high dimension p. In particular, p may be larger than the
sample size n. The tests are not affine-invariant. Just like all the tests discussed in the
introduction, however, these tests cannot be considered as tests of Horth

0 . With them it is also
possible that for given data X, H0 is rejected, but H

l0

0 : l ¼ l0is not for some l0 of the negative
orthant.
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Here, we will consider only one class of spherical tests, the so-called standardized sum (SS) tests.
We assume that the covariance matrix R has positive diagonal elements s11,y,spp. Positive defi-
niteness of R is not required. The usual SS test in the one-sided version rejects H0 if

t0 ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffi
n
p

�x0d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d00Gd0

p � t1�aðn� 1Þ ð5Þ

where t1�a (n�1) is the (1�a) quantile of the t-distribution with n�1 degrees of freedom and

d0 ¼ 1=ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gii1n �x2i

q
Þ

� �
i¼1;...;p

. The test is scale-invariant and has high power if all variables have

roughly the same positive deviation from the null hypothesis in their respective scale and roughly
equal correlations with each other (Läuter et al. 1996).

The corresponding test for H
l0

0 : l ¼ l0is

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffi
n
p
ð �x� l0Þ

0dffiffiffiffiffiffiffiffiffiffi
d0Gd
p � t1�aðn� 1Þ ð6Þ

with d ¼ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gii1nðxi�m0iÞ

2
q� �

i¼1;...;p

. Unfortunately, t does not generally increase if the para-

meters m0i decrease. Hence, rejection of H0 does not translate into rejection of H
l0

0 for all l0 of the
negative orthant.

Additional conditions are necessary to establish rejection of Horth
0 . In the following, a corre-

sponding modification of test (5) will be derived. Let x1,y,xp be angles defined for gii40 by

0oxiop; sin xi ¼
ffiffiffiffiffi
gii
p

di; cos xi ¼
ffiffiffi
n
p
ð �xi � m0iÞdi ð7Þ

for i5 1,y,p. Then the test (6) can be written as:

t ¼

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p Pp

i¼1

ffiffiffi
n
p
ðxi � m0iÞdiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp

i¼1

Pp
h¼1 dh

ffiffiffiffiffiffi
ghh
p

rhi
ffiffiffiffiffi
gii
p

di

q ¼

ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p Pp

i¼1 cos xiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPp
i¼1

Pp
h¼1 sin xhrhisin xi

q � t1�aðn� 1Þ: ð8Þ

Here, rhi ¼ ghi
� ffiffiffiffiffiffiffiffiffiffiffi

ghhgii
p

denotes the correlation coefficients from the residual matrix G. Writing
R ¼ ðrhiÞh;i¼1;...;p, cos x ¼ ðcos xiÞi¼1;...;p and sin x ¼ ðsin xiÞi¼1;...;p, (8) becomes

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p ðcos xÞ01pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsin xÞ0 Rsin x
p � t1�aðn� 1Þ: ð9Þ

It is important to note that the parameters m0i are contained in the angles xi, but do not appear
otherwise. The test of Horth

0 is significant if inequality (9) holds for all l0 of the negative orthant.
As can be seen from (7), cot xi ¼ cos xi=sin xi increases and xi decreases for fixed G if �xi � m0i

increases. Hence, the numerator (cos x)01p of the t-ratio increases if l0 is moved from 0 into the
negative orthant.

In contrast, the denominator can decrease or increase with such a move of l0, depending on the
specific values of R and �x. If all rhi and all �xi are non-negative in an application, then xi � p=2 holds
such that (sin x)0R sin x decreases as mi decreases. Therefore, the rejection of l0 5 0 also implies that
the rejection of all l0 in the negative orthant and the test of Horth

0 is finished. If, however, negative
values rhi or negative �xi arise, additional checks are necessary.

Let x0 denote the vector of angles xi for l0 5 0 and let x01 be the modified vector obtained by
replacing all components of x0 which are larger than p=2 by p=2. Likewise, let R1 be the matrix
obtained from R by replacing all negative elements with 0. Then we have the inequality

ðsin xÞ0Rsin x � ðsin x0
1

Þ
0R1sin x0

1
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in the negative orthant. Consequently,

torth ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p ðcos x0Þ01pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

ðsin x0
1

Þ
0R1sin x0

1

q � t1�aðn� 1Þ: ð10Þ

is a sufficient condition for the rejection of Horth
0 (ao 0.5).

To state the test procedure, we rewrite (10) without the angles xi:
Procedure IIa: Reject Horth

0 if

torth ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffi
n
p

x0d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
d0

10G
1

d0
1

p � t1�aðn� 1Þ: ð11Þ

This provides a conservative test (ao 0.5) of Horth
0 . Here, d0

1

is based on d0 with all d0
i ¼

1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
gii1n �x2i

q
replaced by 1

� ffiffiffiffiffi
gii
p

if �xio0 and G1 is G with all negative elements replaced by 0. This is

the desired sharpening modification of the usual SS test (5).
A more conservative simplification of this test is given by
Procedure IIb: Reject Horth

0 if

~torth ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p ðcos x0Þ01pffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

10p R
11p

q ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffi
n
p

�x0d0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
10p R

11p

q � t1�aðn� 1Þ: ð12Þ

Röhmel et al. (2006) have done a more detailed investigation of the case p5 2. They show that in
order to establish significance with level a controlled in the whole negative orthant, it is sufficient to
check the validity of the inequality (6) only for l0 5 0 and additionally, if g12o 0, for the ‘‘vertices’’

l0 ¼
�1

0

� �
; l0 ¼

0
�1

� �
: ð13Þ

This results in the following modification:

Figure 2 One-sided confidence region of the SS test (dotted area) and of the directional
Hotelling test (light-grey half-plane and half-ellipse). Rectangle (dark-grey) corresponding to
a restricted null hypothesis Hcorn

0 .
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Procedure IIc: (p5 2 only) Reject Horth
0 if (5) holds and either g12 Z 0, or (in case of g12 o 0)

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p 11

ffiffiffi
n
p

�x2 d0
2ffiffiffiffiffiffi

g22
p

d0
2

� t1�aðn� 1Þ and

t ¼
ffiffiffiffiffiffiffiffiffiffiffi
n� 1
p

ffiffiffi
n
p

�x1 d0
111ffiffiffiffiffiffi

g11
p

d0
1

� t1�aðn� 1Þ:

ð14Þ

Procedure IIc thus provides an ‘‘optimal testing rule’’ in case of p5 2. In case of a restricted
negative orthant, Procedure IIc can be modified to testing H0 : l0 5 0 with (5) and additionally, if
g12 o0, the vertices

l0 ¼
u1
0

� �
; l0 ¼

0
u2

� �
ð15Þ

instead of (13).
Figure 2 shows the one-sided confidence regions and, correspondingly, the directional rejection

regions of the SS test and the directional Hotelling test from Section 2 for an example with p5 2,
n5 5. In this example, the covariance g12 is negative, and the SS test has a non-monotone beha-
viour: The small rectangle in the corner of the negative orthant belongs to the rejection region of the
SS test so that the corresponding restricted null hypothesis Hcorn

0 is rejected. In contrast, Horth
0

cannot be rejected because parts of the whole negative orthant are intersecting with the SS test
confidence region. The one-sided confidence region of the Hotelling test, a half-plane and a half-
ellipse, does not intersect with the negative orthant. Therefore, the one-sided Hotelling test
rejects H0.

The monotonicity investigations performed here are ‘‘pointwise’’ for fixed values of �x and G, not
taking into account the multivariate distribution at hand. It is conceivable that the one-sided SS test
(5) for H0 : l 5 0 keeps the a-level when applied to normally distributed data without any mod-
ification for any hypothesis l 5 l0 with l0 in the negative orthant. This question has not yet been
settled.

It is also worth noting that in practical applications with few variables and large sample sizes, the
additional checks discussed in this section will very rarely play a role. If all correlations between
variables are positive, no additional check is necessary. In the simulations done by Röhmel et al.
(2006) for p5 2, there was no case where the additional vertex check (13) was necessary due to a
non-monotonicity of the test statistic (5). As Röhmel et al. (2006) also discuss, the reason for this is
that such monotonicities can only arise in cases with strong negative correlations and one variable
having a very large effect.

4 The two-sample case

The previous sections have implicitly covered the two-sample case as well. Suppose there are nk
observations x(jk)�Np(lk, R) in groups k5 1, 2 and inference is concerned with tests of
Horth

0 : l1 � l2 ¼ l0, where l0 is in the negative orthant, and with corresponding confidence regions
for l1�l2. All methods presented in Sections 2 and 3 are based on the complete, sufficient statistics
�x and G. In the two-sample case, these are essentially the same, if we re-define �x as �x :¼ �x1 � �x2 and
G as G : 5G1 1 G2, where �xk ¼

1
nk
�nk
j¼1xðjkÞ and Gk ¼ �

nk
j¼1ðxðjkÞ � �xkÞ ðxðjkÞ � �xkÞ

0. The two-sample
case is thus handled by using these re-definitions in Sections 2 and 3. The only other modifications
necessary are a change of a constant in the total sums-of-products matrix and a change in the
denominator degrees of freedom of F- and t-statistics, respectively. Regarding the former, G1nð �x�
l0Þð �x� l0Þ

0 has to be replaced by G11G21ðn1n2=ðn11n2ÞÞð �x1 � �x2 � l0Þð �x1 � �x2 � l0Þ
0 in other

words, n is replaced by n1n2=ðn11n2). Regarding degrees of freedom, n�1 needs to be changed to
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n11n2�2. The minor modifications this requires in the previous sections can be summarized as
follows:

(i) In Section 2, formula (2), ðn� pÞn=p has to be changed to ððn11n2 � 1� pÞ=pÞn1n2=ðn11n2Þ
and the numerator degrees of freedom of the F-quantile from n�p to n11n2�1�p in
addition to re-definition of �x and G.

(ii) In Section 3, ‘‘n’’ has to be replaced with n1n2=ðn11n2Þ and ‘‘n�1’’ with n11n2�2 in
addition to re-definition of �x and G.

5 Simulation results

This section presents results obtained from comparing procedures I and II from Sections 2 and 3 by
simulation. As mentioned previously, the procedures are not primarily intended for ‘‘huge’’
dimensions as they occur, for example, in microarray analyses with thousands of variables.
First of all, the directional Hotelling test from Section 2 requires n 4 p. The standardized
sum test from Section 3 does not require this, but directional hypotheses like Horth

0 are rarely
relevant in applications with very many variables. The spherical multivariate tests introduced
by Läuter and co-workers (Läuter 1996, Läuter et al. 1996, Läuter et al. 1998) are appropriate for
large p.

We have tried to set up a few simulation scenarios as a compromise between situations that are
likely in practical applications and cases that highlight specific properties of the suggested methods.
Thus, we are restricting our attention to cases where all correlations between variables are positive
and where the direction of deviations from the null hypothesis is the same in all variables. The
results are summarized in the following Tables 1–5. All values are the results of 100 000 simulation
runs.

Tables 1 and 2 investigate the power of the suggested tests in the two-sample case with p5 4
variables. In these two tables, the Mahalanobis distance D2

¼ ðl1 � l2Þ
0��1ðl1 � l2Þ is set to a fixed

value. Table 1 has the results for equally correlated, equally informative variables. Here and sub-
sequently, we use the term ‘‘informative’’ to indicate ‘‘distance from the null hypothesis’’, e.g. in this
case, all variables contribute equally to the Mahalanobis-distance from l1�l2 5 0 (they are ‘‘equally
far apart’’ from the null hypothesis). As expected, the SS test performs very well in this situation.
For the low sample size of n1 5 n2 5 6, the power of the directional Hotelling test suffers from
instability problems that typically occur with the ordinary Hotelling test as well if the dimension is
large in comparison with the sample size.

Table 2 has two equally informative variables and two that simply represent additional ‘‘noise’’
(no group differences and no correlation with each other and the two informative variables). In this

Table 1 Power of two-sample tests, p5 4, a5 0.05, l1�l2 p 1p, � ¼ ð1� rÞ � Ip1r � 1p1p

r n1 5 n2 5 6, D2 5 4 n1 5 n2 5 20, D2 5 1

Direct. T2 SS proc. IIa SS proc. IIb Direct. T2 SS proc. IIa SS proc. IIb

0 0.645 0.892 0.847 0.762 0.903 0.896
0.1 0.628 0.919 0.883 0.755 0.919 0.913
0.2 0.616 0.931 0.897 0.749 0.926 0.920
0.4 0.589 0.941 0.904 0.731 0.925 0.919
0.6 0.554 0.942 0.897 0.716 0.928 0.920
0.9 0.466 0.941 0.883 0.657 0.927 0.918
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case, the SS test and the directional Hotelling test are similar in their performance with the SS test
having slight advantages with highly correlated variables and the directional Hotelling performing a
little better when correlations are low.

Table 3 shows the probability of rejection for the covariances from Tables 1 and 2 if H0 : l1 5 l2

is true. The nominal level a is 5%, but all tests investigated here have to keep a for the composite
hypothesis Horth

0 , not just H0, so it is no surprise that a is not exhausted at l1 5 l2. The tests are
conservative in the sense that they do not exhaust the a-level anywhere. However, when correlations
are high, the SS test procedure IIa comes very close to doing so. In contrast, the rejection prob-

Table 2 Power of two-sample tests, p5 4, a5 0.05, l1�l2p(1 1 0 0)0, correlation p between x1 and
x2, 0 otherwise.

r n1 5 n2 5 8, D2 5 4 n1 5 n2 5 20, D2 5 1

Direct. T2 SS proc. IIa SS proc. IIb Direct. T2 SS proc. IIa SS proc. IIb

0 0.797 0.684 0.596 0.701 0.626 0.602
0.1 0.795 0.709 0.615 0.698 0.649 0.625
0.2 0.797 0.733 0.636 0.702 0.673 0.647
0.4 0.794 0.763 0.655 0.703 0.703 0.675
0.6 0.792 0.786 0.666 0.696 0.731 0.700
0.9 0.773 0.813 0.675 0.678 0.754 0.720

Table 3 Rejection probabilities of two-sample tests under H0: l1 5 l2, p5 4, 5 0.05, n1 5 n2 5 20.

r balanced covariances (as in Table 1) Unbalanced covariances (as in Table 2)

Direct. T2 SS proc. IIa SS proc. IIb Direct. T2 SS proc. IIa SS proc. IIb

0 0.025 0.035 0.033 0.026 0.035 0.033
0.1 0.022 0.044 0.041 0.025 0.036 0.033
0.2 0.019 0.048 0.044 0.024 0.037 0.034
0.4 0.014 0.050 0.046 0.023 0.038 0.035
0.6 0.011 0.049 0.044 0.021 0.039 0.035
0.9 0.005 0.049 0.044 0.018 0.040 0.036

Table 4 Power of two-sample tests, p5 2, a5 0.05, l1�l2 5 (2 0)0, R 5 I2.

n1 5 n2 Direct. T2 SS (5) SS proc. IIc SS proc. IIa SS proc. IIb

2 0.097 0.148 0.101 0.077 0
3 0.333 0.260 0.244 0.190 0.036
4 0.555 0.374 0.370 0.305 0.146
5 0.716 0.470 0.469 0.414 0.255
6 0.827 0.561 0.561 0.507 0.358
7 0.896 0.638 0.638 0.592 0.451
8 0.939 0.704 0.704 0.665 0.535
9 0.966 0.762 0.762 0.726 0.610

10 0.980 0.809 0.809 0.777 0.676
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ability of the directional Hotelling test decreases with increasing positive correlations between the
variables.

Table 4 shows how much power is lost by the orthant-related modifications of the directional SS
test and the corresponding simplifications discussed in Section 3. The special case of p5 2 with one
informative variable and one uncorrelated uninformative variable is considered. For p5 2, the
‘‘optimal’’ procedure IIc is available. This rule has less power than the original SS test (5) alone for
extremely small sample sizes nir5, but test (5) might not keep the level a for the entire negative
orthant. For still very moderate sample sizes of ni45, our simulations did not find any power loss
due to the additional vertex checks. This is in line with Röhmel et al. (2006). In addition, the table
gives the power of the more conservative directional test procedures IIa and IIb. Note that in any
practical application, one would be allowed to do the simplest test procedure IIb first, if it is not
significant, try procedure IIa and if this does not yield significance either, in case of p5 2, finally try
procedure IIc. The purpose of Table 4 is not a power comparison between SS- and directional T2

test. It is clear that in the situation of one informative and one uninformative variable, the SS test is
inferior. The simulation results of the directed T2 test reflect this.

In analogy to Table 3, Table 5 shows the rejection probabilities under H0 in case of two in-
dependent variables with equal variance.

6 Application in a clinical trial

In a phase II clinical trial on an osteoporosis drug with two treatment groups (treatment and
control), it was initially unclear whether the benefit of a new treatment over standard treatment
would primarily be

(i) physiologic improvement of the knee, measured by joint space width (JSW) in mm,
(ii) better pain relief, measured by a pain score, or
(iii) better functional ability, measured by a function score.

Thus, the focus of this phase II trial was to establish a benefit in at least one of these indicators. A
future phase III trial would then focus on the most promising variables.

For the corresponding tests, a level of a5 0.05 was selected. The trial was performed with 32 patients
per group. The three endpoints were investigated as change from baseline after 3 months of treatment.
In all three variables, positive values indicate an improvement. It was expected that the treatment
would yield better results in all three endpoints and that all three endpoints would be positively

Table 5 Rejection probability of two-sample tests under H0: l1 5 l2, R 5 I2, p5 2, a5 0.05.

n1 5 n2 Direct. T2 SS (5) SS proc. IIc SS proc. IIa SS proc. IIb

2 0.027 0.050 0.020 0.012 0
3 0.034 0.050 0.046 0.024 0.003
4 0.037 0.050 0.050 0.030 0.011
5 0.038 0.051 0.051 0.034 0.018
6 0.038 0.050 0.050 0.035 0.022
7 0.039 0.050 0.050 0.037 0.026
8 0.039 0.050 0.050 0.040 0.029
9 0.039 0.049 0.049 0.040 0.031

10 0.040 0.049 0.049 0.042 0.034
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correlated. However, it was suspected that trial duration might be too short for the pain and the
function scores, resulting in large variability of them as well as in a lack of positive treatment effect.

Table 6 shows the results of the trial. It is clear that the three endpoints are not on the same scale.
Only JSW produced a result in accord with expectations. Contrary to expectations, the results of the
two scores turned out to be worse on average in the treatment group than in the control group. The
pooled estimate of the correlation between the three endpoints was

1 0:46 0:61
0:46 1 0:51
0:61 0:51 1

0
@

1
A.

Let �x1 and �x2 denote the treatment and the control mean, respectively, S the pooled covariance
estimate, G5 (n11n2�2)S, and �x ¼ �x1 � �x2the mean difference between treatment and control. The
T2-statistic for H0 : l15 l2 yields a value of

ðn1 þ n2 � p� 1Þ

pðn1 þ n2 � 1Þ

n1n2

n1 þ n2
�x0S�1 �x ¼ 5:37

which is larger than the critical value F1�2a (p, n11n2�p�1)5 2.18. The corresponding p-value is
0.0024. Regarding the required additional checks, we have �x 6¼ 0 and

Pp
i¼1 xi =

ffiffiffiffiffi
gii
p
¼ 0:422 � 0.

Follmann’s criterion �x0 � 1p � 0 fails here due to the different scales of the endpoints.
Finally, investigation of C1�2að �x;GÞ reveals that it does not intersect with the negative orthant.

Consequently, we can conclude that the new treatment is superior to the standard treatment in at
least one of the three endpoints. The minimal value of the quadratic form in the negative orthant is
2.27. It is attained at l0 5 (0, �18.4, �59.5)0. The corresponding p-value of the directed test is
0.0447.

As an additional aspect of the application of the methodology presented here, we must of course
verify that the treatment does not cause harm in one of the endpoints. Here, this was covered by
separate non-inferiority tests on all three endpoints. These are not discussed in this paper. We note,
however, that as a consequence, the directional multivariate tests could have been applied with the
‘‘weaker’’ null hypothesis Hcorn

0 using the non-inferiority margins as ui’s.

Table 6 Observed means and covariances in the osteoporosis trial.

Means Covariance

Treatment JSW Pain score Function score

New 0.43 12.1 63.6 0:38 17:0 43
17:0 2763 3257
43 3257 12042

0
@

1
A

Control 0.08 14.4 83.0 0:17 8:4 20
8:4 2752 2043
20 2043 7572

0
@

1
A

Means : difference
Covariance : pooled estimate

0.35 �2.4 �19.4 0:27 12:7 32
12:7 2758 2650
32 2758 9807

0
@

1
A
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The SS test is primarily designed to have high power against alternatives where all variables have
approximately the same deviation from the null hypothesis in their respective scales. Thus, it is no
surprise that it does not work well in this application. The usual SS test (5) yields a t0 value of 0.639
here. This corresponds to a p-value of 0.2625. The modified SS test procedure IIa is almost identical
with a torth value of 0.638 and a p-value of 0.2629.

7 Discussion

This paper suggests two new multivariate tests for establishing that at least one of several endpoints
in a clinical trial shows a beneficial treatment effect. It therefore fills a gap in existing multivariate
test approaches, since these only consider a ‘‘single point’’ null hypothesis (like H0 : l 5 0 ) which
allows no claim about other undesired parameter constellations (like all mi o 0).

In comparison with multiple testing approaches (like the Bonferroni method), the new tests have
most power if the treatment effect is roughly equally strong in all variables, for example, if all
variables are subject to an underlying common treatment effect. If the treatment effect is not ‘‘evenly
spread’’ across all variables in this way, but rather there is a single variable with a strong treatment
effect, then multiple testing procedures are superior. The SS test in particular has good power if all
variables are equally far away from the null hypothesis and have equal pairwise correlations. This is
well known and investigated for multivariate methods in general (Srivastava 2005). Since in this
respect, the methods suggested here are no different from other multivariate methods, we did not do
extensive simulations of these aspects, but rather concentrated on investigating the price to be paid
for extending the multivariate test decision to the negative orthant. Especially for the SS test, this
price is very small and in the vast majority of concrete examples, there will be no difference between
the unmodified and the modified versions of this test.

In clinical trial applications, a significant result of the new tests allows to conclude that in at least
one endpoint there is a beneficial treatment effect, and not just an effect. The limits of this inter-
pretational extension should be acknowledged. Since a significant result does not rule out the
possibility of a harmful treatment effect in some endpoints, the new suggestions are not appropriate
for confirmatory clinical trials which require a positive effect on all co-primary endpoints. Never-
theless, we believe that the extended conclusions facilitated by the new suggestions are of real,
practically relevant value in earlier phases of clinical development when there still is a number of
candidate endpoints.
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Two multiple procedures for the detection of relevant sets of variables
in a high-dimensional problem are suggested. Multivariate tests for
significance are combined with the search for interpretable multiva-
riate structures. Thus, groups of highly correlated variables are
investigated. The emphasis lies on managing the huge number of
possible subsets, for example, in gene expression analysis. The first
procedure is based on parametric spherical tests and an order
relation of the subsets. The second procedure is a non-parametric
method utilizing Westfall–Young principles.
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1 Introduction

The problem of a high dimension

Willem Schaafsma was among the first who recognized the difficulties of

multivariate analysis connected with a high dimension and with small samples of

the data. He compared the statistician’s situation with ��sailing between Scylla and

Charybdis��: The utilization of all potential variables – Charybdis – leads to a
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poorer performance of the procedures than the use of some appropriate subset of

variables. On the other hand, selection of a promising subset on the basis of the

data often results in an illusion – Scylla – because a good choice of variables is not

attained. One has to avoid Charybdis without coming too close to Scylla

(SCHAAFSMA and VAN VARK, 1979, p. 117). Schaafsma together with his co-authors

has explored many paths to overcome these calamities. For example, he suggested

multivariate tests for ordered alternatives (SCHAAFSMA and SMID, 1966), thus

narrowing the focus of attention in the huge multivariate space on a relevant

subspace. He developed a lot of ingenious mathematical methods to determine a

subset of variables, as small as possible, with a power, as high as possible. Thus,

the deficiencies of the multivariate procedures due to overfitting phenomena can be

contained.

Spherical tests

We have followed yet another strategy in the last ten years (LäUTER, 1996; LäUTER,

GLIMM and KROPF, 1996, 1998). We intended to extract the full information from

the data, without a selection of variables.

For the one-sample testing problem, we will assume n independent p-dimensional

normally distributed data vectors

x0ðjÞ ¼ ðxj1 . . . xjpÞ � Npðl0;RÞ ðj ¼ 1; . . . ; n; n � 2; p � 1Þ: ð1Þ

The null hypothesis to be tested is H0 : l0 ¼ 0. Then the beta statistic

B ¼ d 0�xn�x0d
d 0X0Xd

� B
1

2
;
n� 1

2

� �
ðunder H0Þ ð2Þ

is used, where X is the n � p data matrix of the n rows

x0ð1Þ; . . . ; x
0
ðnÞ; �x

0 ¼ 1
nR

n
j¼1x

0
ðjÞ is the mean vector, and d is a p-dimensional weight

vector, which can data-dependently be represented as a unique function of the total

sums of products matrix X0X. The regularity condition d 0X0Xd > 0 must hold with

probability 1. The covariance matrix R is an unknown p � p positive definite

matrix.

One of the major advantages of this test is that it can handle very large dimensions

p, even if the sample size n is small. In any case, a score vector z ¼ Xd is calculated as

a combination of the p variables, and this vector can exactly be analyzed by the well-

known one-dimensional beta test B ¼ n�z2

z0z � B1�að12 ; n� 1
2 Þ. The method does not

suffer from instability and overfitting. We call it a ��spherical test��, because the theory
of the spherical matrix distributions (FANG and ZHANG, 1990) serves as the basis of

the proof.

The above statements concerning the beta test (2) also remain correct if only the

conditional spherical distribution of X for a given fixed value X0X is considered.

Instead of the B distribution, the F distribution can also be used:
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F ¼ d 0�xn�x0d
d 0ðX0X� �xn�x0Þd=ðn� 1Þ � F ð1; n� 1Þ ðunder H 0Þ: ð3Þ

A widely applied possibility is to determine the weight vector d as the first

eigenvector of the p � p eigenvalue problem

X0Xd ¼ dk; d 0d ¼ 1: ð4Þ
Then, the score vector z ¼ Xd ¼ Pp

i¼1 xidi provides the values of the first principal

component of the data matrix X ¼ (x1. . .xp), where the column vectors xi (i ¼
1,. . ., p) correspond to the p variables. This choice of the weight vector d is most

appropriate, if the variables are highly correlated with each other (see, for example,

simulation results in KROPF, 2000). If the dimension p is larger than the sample size

n, the n � n dual eigenvalue problem

XX0u ¼ uk; u0u ¼ 1 ð5Þ
should be used instead of (4). In this case, the beta test (2) is replaced by

the equivalent formulas �u ¼ 1
n 1

0
nu; B ¼ n�u2, where 1n is the vector consisting of n

ones.

The principle of spherical tests is applicable to all linear models. Selection of

variables can also be carried out in the framework of this general method, because

one may define d as a vector of ones and zeros, of course, as a function of X0X.

Multiple test procedures

Multiple procedures searching for the variables i with mean values li 6¼ 0 can also be

developed on this basis. Unfortunately, some other, well-known procedures of

multiple testing fail if the dimension p is large and the variables have strong

dependencies: The Bonferroni–Holm method (HOLM, 1979) works with extremely

small critical values for the smallest P values. A closed test procedure (MARCUS,

PERITZ and GABRIEL, 1976) cannot be applied in the usual way because the number

of intersection hypotheses is too high. A procedure with a priori ordered hypotheses

(BAUER et al., 1998) would demand that a priori information on the ranks of the

variables is available.

To overcome these difficulties, KROPF (2000) has proposed a Procedure 1 which is

based on the method of spherical tests. The p variables i are sorted according to the

sums of squares x0ixi ¼
Pn

j¼1 x
2
ji (in the diagonal of X0X) by decreasing values. The

procedure keeps the familywise type I error rate in the strong sense (FWER), that is,

if m0 is the actual subset of variables i with mean values li ¼ 0, then some relevant

variables within m0, so-called ��false relevances��, can occur with probability a, at
most. Here, the null set m0 may be any unknown subset of the full set f1, . . . , pg of

variables, a is the prespecified multiple significance level. Procedure 1 is particularly

effective if the p variables have similar variances rii (in the diagonal of R). This can,
for example, be fulfilled if the p variables are repeated measures of the same or

similar responses in time or space. Then, because x0ixi has the expectation
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nðrii þ l2i Þ, the largest sums of squares x0ixi ði ¼ 1; . . . ; pÞ preferably correspond to

the variables with the largest values of l2i .

Procedure 1 (KROPF, 2000; KROPF and LÄUTER, 2002):

� Sort the p variables by decreasing values of x0ixi.
� Carry out the univariate beta tests Bi ¼ n�x2i

x0
i
xi
� B1�a

1
2 ;

n� 1
2

� �
in the order

obtained, as long as significances result. Thus, the relevant variables are

stepwisely found. Stop the process at the first non-significant test if present.

In the procedure, the single beta tests are used without any adjustment, at the

significance level a. KROPF and LÄUTER (2002) have reported examples from gene

expression analysis and computer simulations in which Procedure 1 surpassed the

methods by HOLM (1979) and WESTFALL and YOUNG (1993).

HOMMEL and KROPF (2005) suggested a generalization of Kropf’s method which

allows a continuation of the beta-test steps up to the mth non-significant result.

However, then the single tests have to be carried out at the adjusted level a/m. The

fixed positive integer m must be given in advance.

Another generalization has been proposed by WESTFALL, KROPF and FINOS

(2004). The procedure is based on the Bonferroni–Holm method, but the sums of

squares x0ixi are used for determining additional weights. Thus, the order of the

variables is no longer exclusively based on x0ixi. The univariate P values of the tests

are exploited to modify the order.

In this paper, we are dealing with procedures of multiple testing that refer to sets

of variables. The objective is to find sets of variables for which some deviation from

the null hypothesis l0 ¼ 0, can be proved. Besides, these sets should enable an

interpretation of the multivariate structure and the relation between the variables. In

our applications, sets of correlated variables are determined. Both parametric tests

and permutation tests are considered. The application of the procedures is illustrated

by examples from gene expression analysis. An extension of the methods to

multisample problems concludes the paper.

2 A multiple procedure for searching sets of variables on the basis of parametric

multivariate tests

The general principle

Generalizing Procedure 1, Läuter has proposed a Procedure 2 that searches for

relevant subsets within the full set f1, . . . , pg of variables (KROPF and LÄUTER, 2002).

Here, we will continue and extend these considerations with some more concrete

explanations. We concentrate on methods for managing the multitude of subsets.

Assume a fixed set M of non-empty subsets m ¼ m1, m2, m3,. . . of ordered

variables. Each subset has a unique representation m ¼ fi1, . . . , isg by s different

integer indices of the interval from 1 to p (s � 1). Two subsets are considered as
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different if they consist of different index values or if only the succession of indices

is different in both subsets. The subsets are also called ��models��. The set M of

models can be defined, for example, by all non-empty index sequences without

repetitions.

We start froma random n � pdatamatrixX ¼ (x1 . . . xp) that has amultivariate

distribution with the expectation E(X) ¼ 1nl0 ¼ 1n(l1 . . . lp). Additionally, we

assume that the n rows x0ð1Þ; . . . ; x
0
ðnÞ are stochastically independent and have the

normal distribution Np(l0, R) each, with an unknown positive definite covariance

matrixR (n � 2, p � 1). For anymodelm ¼ fi1, . . . , isg 2 Mand the corresponding

n � s marginal distribution Xm ¼ (xi1. . .xis), a test statistic Fm ¼ Fm(Xm) with the

following property must exist: The conditional marginal test Fm � km, for a given

value of X0
mXm, keeps the level of significance a, that is, PrðFm � kmjX0

mXmÞ � a if

li1 ¼ 0, . . . , lis ¼ 0. The use of the total covariances is necessary, because a general

theorem on spherical tests (LÄUTER, GLIMM and KROPF, 1998) is to be applied.

Furthermore, a data-dependent (conditional) order relation of the models has to

be established: Given the total sums of products matrix X0X, an order

m(1) � m(2) � m(3) � . . . of the models m 2 M must uniquely be defined with

probability 1. More precisely, the relation mg � mh or mh � mg for any two models

mg und mh is already uniquely determined if only the submatrices of X0X
corresponding to the two models, X0

mg
Xmg

; X0
mh
Xmh

and X0
mg
Xmh

, are given.

The following Procedure 2 serves the purpose of finding models m ¼ fi1, . . . , isg
consisting not only of null variables, that is, m 6	 m0 with m0 being the subset with

mean values li ¼ 0. However, the relation li 6¼ 0 need not be fulfilled for every index

i ¼ i1, . . . , is of such a model. The familywise error rate (FWER) is kept again in this

procedure: In the series of all obtained ��relevant models��, some ��false-relevant
models��, that is, models consisting only of variables with li ¼ 0, may appear with

the probability a, at most.

Procedure 2:

� Sort the models m 2 M according to X0X: m(1) �m(2) �m(3) � 
 
 

� Carry out the tests Fm � km in the order obtained, as long as significances result.

Thus, the relevant models m are stepwisely found. Stop the process at the first

non-significant test if present.

The proof of the FWER property of Procedure 2 runs on the same line as the

corresponding proof presented by KROPF and LÄUTER (2002). The main idea is

that a false relevance can only arise through a significance Fm � km with a model

m 	 m0, uniquely determined by the submatrix X0
m0
Xm0

of the null variables. Then,

since X is normally distributed, the matrix Xm, given X0
m0
Xm0

, has a conditional

spherical distribution which coincides with the conditional distribution of Xm,

given X0
mXm (see FANG and ZHANG, 1990, Theorem 3.1.1). Hence, Fm provides an

exact conditional test, that is, a false relevance is possible with probability a,
at most.
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A special implementation of Procedure 2

Let M denote the full set of all possible models m represented by non-empty index

sequences fi1, . . . , isg without repetitions. To sort these models, we first define

so-called essential and unessential models based on the matrix X0X. Subsequently,
only the essential models will play a role. If c is a fixed given value with 0 � c � 1,

then a model m ¼ fi1, . . . , isg is considered ��essential�� if

� x0i2xi2 � x0i3xi3 � 
 
 
 � x0isxis is valid for s � 3,

� the conditions

r2i1i ¼
ðx0i1xiÞ2

x0i1xi1 
 x0ixi
� c ði ¼ i2; . . . ; isÞ ð6Þ

on the squared correlation coefficients are satisfied for s � 2.

Here, the variable i1 is called ��pivot variable��. All models m that are not essential

in the sense of this definition are denoted as ��unessential��. In the special case of c ¼
1, only the models of size s ¼ 1, f1g to fpg, are essential models (with probability 1),

as in Procedure 1.

Now, the order relation of the models corresponding to the general principle is

defined in three steps:

� At first, all essential models get precedence over all unessential models.

� Then, the essential models are sorted by decreasing values of x0i1xi1 
 s.
� Finally, in the groups of essential models with the same pivot variable i1 and the

same size s, a sorting according to the lexical principle based on x0ixi is carried
out. The variables with large values x0ixi precede the variables with small values

(see the example below).

In the essential models, variables with large sums of squares are preferred over

variables with small sums of squares. This enables us to suppress weak variables

within the random noise of the measuring process and to find variables with strong

mean-value deviations from zero. Many researchers have observed that such

strategies work well in practice (see, for example, HASTIE, TIBSHIRANI and FRIED-

MAN, 2001, Section 3.4). The sorting of the unessential models is not specified in

detail, because these models are not included in the testing steps of the procedure. As

test statistic Fm ¼ Fm (Xm) for an essential model m, we will use the spherical beta

test (2) applied to Xm. The s variables of model m are compressed to a one-

dimensional score. To obtain the weight vector d, the eigenvalue problem (4) is

solved for X0
mXm.

In this implementation, models with high total correlations are searched. Note

that high total correlations imply similar mean values of the variables. Models with

many variables (s large) get precedence over models with few variables (s small). This

is motivated by the applications to gene expression analysis we have in mind. The

interest is focused on groups of similarly behaving co-regulated genes rather than on
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isolated genes. Submodels of more comprehensive models are analyzed only if the

latter have already been identified as relevant.

An example from gene expression analysis

The multiple procedures are demonstrated by gene chip data recorded on 14 patients

with thyroid diseases (M. Eszlinger). The expression patterns of 12 625 genes

(Affymetrix GeneChip U95Av2) have been measured in tissue samples of cold thyroid

nodules and the normal surroundings. The differences between the logarithmic

expression values of nodular and surrounding tissue are analyzed. In the following,

we consider only a subset of 148 genes that belong to different signaling cascades that

had been identified by independent biological research. It is likely that these signaling

cascades are involved in the development of cold thyroid nodules. We intend to find

genes that are significantly differentially expressed between the nodular tissue and the

normal surrounding tissue. Furthermore, we want to discover statistical relationships

between the genes. Such multivariate considerations can give insight into biological

pathways and can provide interesting sets of co-regulated genes.

ThematrixX has n ¼ 14 rows and p ¼ 148 columns. If a ¼ 0.05, the univariate tests

at the level a/p according to the Bonferroni method yield two relevant genes: i ¼ 36

(1675_at) and i ¼ 42 (1731_at).Unfortunately, Procedure 1 of this paper does not yield

a relevant gene. In the sequence of genes corresponding to the sums of squares x0ixi,
gene i ¼ 64 (2070_i_at) is first. However, this gene is not significant at level a.

Applying the special implementation of Procedure 2 described above, several

relevant gene sets are found. Thus, the difference between the thyroid nodules and

the surrounding is proved, and at the same time structural knowledge on the genes is

acquired. For a ¼ 0.05 and the correlation bound c ¼ 0.50, that is,

absðri1iÞ � ffiffiffiffiffiffiffiffiffi
0:50

p ¼ 0:7071, the following relevant gene sets are obtained:

m ¼ f42; 30; 52; 40g; x0i1xi1 
 s ¼ 109:63; B ¼ 0:6810; P value ¼ 0:0002;
m ¼ f30; 42; 82g; x0i1xi1 
 s ¼ 94:54; B ¼ 0:6646; P value ¼ 0:0002;
m ¼ f95; 138; 100g; x0i1xi1 
 s ¼ 90:51; B ¼ 0:3074; P value ¼ 0:0320;
m ¼ f42; 30; 52g; x0i1xi1 
 s ¼ 82:23; B ¼ 0:6762; P value ¼ 0:0002;
m ¼ f42; 30; 40g; x0i1xi1 
 s ¼ 82:23; B ¼ 0:6732; P value ¼ 0:0002;
m ¼ f42; 52; 40g; x0i1xi1 
 s ¼ 82:23; B ¼ 0:6251; P value ¼ 0:0005:

The procedure ends with

m ¼ f64g; x0i1xi1 
 s ¼ 65:40; B ¼ 0:0000; P value ¼ 0:9896:

It is seen that the series of relevant sets begins with the ��large�� set

f42ð1731 atÞ; 30ð1591 atÞ; 52ð1879 atÞ; 40ð1709 g atÞg:
Its three ��smaller�� subsets

f42; 30; 52g; f42; 30; 40g; f42; 52; 40g
with lexical order of the variables i2 and i3 (corresponding to the inequality

x030x30 > x052x52 > x040x40) are at the end.
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Some relations are interesting: In this example, there are 6.9 � 10258 non-empty

subsets of genes without repetitions. From these sets, 512 are essential subsets (with

respect to the correlations) and, as we see, six are relevant subsets (with respect to the

significance level a ¼ 0.05).

Some further proposals of implementation

There are many possibilities to restrict the diversity of models within the general

framework provided by Procedure 2. It is important that any additional conditions

must be based on X0X or the corresponding submatrices, respectively.

If the total number of variables provided for the models is to be reduced, then one

can set the additional condition x0ixi � a, where a has a fixed given value. The above

correlation condition r2i1i � c can be strengthend by the positivity condition ri1i > 0

(i ¼ i2, . . . , is). Besides, a relative bound for the sums of squares of the variables i ¼
i2, . . . , is can be specified: x0i1xi1 
 b � x0ixi � x0i1xi1 , where b has a fixed given value

with 0 � b < 1.

The order relation of the essential models m may also be defined, for example,

by sorting for decreasing first eigenvalues k of the matrices X0
mXm. Instead of

the eigenvalue problem (4), the eigenvalue problem X0Xd ¼ Diag(X0X)dk,
d0Diag(X0X)d ¼ 1, which yields a scale-invariant score z ¼ Xd, can be used for the

determination of d and k.

3 A multiple procedure for searching sets of variables on the basis of the

Westfall–Young permutation strategy

The general principle

As in Section 2, we start from a fixed set M of non-empty models m ¼ fi1, . . . , isg.
The random n � p data matrix X consists of n independent rows x0ðjÞ that are

symmetrically distributed with respect to l0:

�ðx0ðjÞ � l0Þ ¼d x0ðjÞ � l0 ðj ¼ 1; . . . ; n; n � 1; p � 1Þ: ð7Þ
This assumption is fulfilled, for example, if x0ðjÞ � Npðl0; RÞ. For each model m ¼
fi1, . . . , isg with the submatrix Xm ¼ (xi1 . . . xis) of X, a test statistic Fm ¼
Fm (xi1, . . . , xis) must be given. Without loss of generality, it is assumed that large

values of Fm correspond to the deviation from the null hypothesis l0 ¼ 0.

The one-sample permutation test is constructed by means of sign commutations of

the rows of X. A convenient way of denoting these sign commutations uses the 2n

diagonal matrices E� with þ1 or �1 in the diagonal. Then, we obtain the

transformed matrices X� ¼ E�X. Under the null hypothesis l0 ¼ 0, all these matrices

X� are equally likely values of the random variable X. Correspondingly, the test-

statistic values F�
m ¼ Fmðx�i1 ; . . . ; x�isÞ of a model m are equally likely and,

consequently, so are the maximum values from all models m, F� ¼ max
m2M

F�
m.

Relevant sets of variables 305

� VVS, 2005



Therefore, the maximum value F ¼ max
m2M

Fm derived from the original data will lie in

the upper a tail of the empirical distribution of all maximum values F� only with

probability a if the null hypothesis is true:

Prð#ðF � F �Þ � 2naÞ � a: ð8Þ
Thus, to perform the exact test for the null hypothesis l0 ¼ 0 at level a, we have to

check the condition

#ðF � F �Þ � 2na: ð9Þ
If the inequality F ¼ max

m2M
Fm � max

m2M
F �
m ¼ F � holds true for 2na commutations at

most, the null hypothesis is rejected. This is the permutation strategy by WESTFALL

and YOUNG (1993) based on the maximum of all test-statistic values. In the litera-

ture, it is referred to as the ��maxT method�� (YANG and SPEED, 2003).

In this way, a multiple procedure can also be obtained. The condition for rejecting

the null hypothesis l0 ¼ 0 by model m is

#ðFm � F �Þ � 2na: ð10Þ
Then, the rejection of some model m will occur with probability a, at most, under

l0 ¼ 0.

Furthermore, the FWER is still kept if any nonempty set m0 of null variables is

supposed. In all cases, the relevance condition (10) is applied to a model m. It is clear

from the above consideration that, at most with probability a, some model m 	 m0

will satisfy the condition #ðFm � F�
0Þ � 2na, where F�

0 ¼ max
m	m0

F�
m is the maximum

value of all models m contained in the null set m0. Then, because of F�
0 � F�,

condition (10) is fulfilled with an even lesser probability. The empirical distribution

of the occurring values F� dominates the real distribution of the values F�
0 given in

m0.

In the following multiple procedure, the 2n fixed �1 diagonal matrices E� may also

be replaced by r random �1 diagonal matrices. If a number r � 2 is prespecified, we

may set E�
1 ¼ In (identity matrix) and obtain E�

2; . . . ; E
�
r by generating independent

random diagonal matrices with uniform distribution on all 2n different diagonal

patterns, that is, ��random sampling with replacement�� is applied. Such random sign

commutations are important if a large sample size n makes it impossible to go

through all 2n commutations.

Procedure 3:

r fixed or random sign commutation matrices E�, as defined in the previous

paragraphs, are supposed. For each of the r transformed matrices X� ¼ E�X
(including the given matrix X), the maximum test-statistic value

F� ¼ max
m2M

F�
m ¼ max

m2M
Fmðx�i1 ; . . . ; x�isÞ of all models m 2 M is calculated. Then a model

m is relevant if the number of commutations fulfilling Fm ¼ Fm(xi1, . . . , xis) � F� is

less than or equal to ra. The corresponding ��adjusted�� P value is P ¼ #ðFm �F�Þ
r .
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An equivalent relevance condition is based on the increasing sequence of the

values F� arising from the commutations: F(1), F(2), . . . ,F(r). We determine the

(1 � a) quantile F�
1�a ¼ FðkÞ, where k is the smallest integer greater than or equal to

r(1 � a). Then, the relevance condition for model m can be written as Fm > F�
1�a.

A special implementation of Procedure 3

In analogy to the implementation of Procedure 2, we will start from the set M of all

non-empty models m ¼ fi1, . . . , isg with different ordered indices i1, . . . , is. The

distinction between essential and unessential models from the former implementa-

tion is also maintained. Provided that a fixed value c with 0 � c � 1 is given, the

class of models with correlation coefficients r2i1i � c ði ¼ i2; . . . ; isÞ is again

considered. We define the test statistic Fm for model m by

Fmðxi1 ; . . . ; xisÞ ¼ Bi1 þ 
 
 
 þ Bis if m is an essential model,
0 if m is an unessential model.

n
ð11Þ

Here, Bi is the univariate beta statistic Bi ¼ n�x2i
x0
i
xi

ði ¼ 1; . . . ; pÞ.
It is an advantage of this implementation that the essentiality conditions are not

affected by the commutations X� ¼ E�X, that is, F�
m ¼ Fmðx�i1 ; . . . ; x�i1Þ ¼ 0 if and

only if Fm ¼ Fm(xi1, . . . , xi1) ¼ 0. Another advantage lies in the existence of a

��supermodel�� for each pivot variable i1, which surpasses all essential models for i1.

The supermodel Mi1
consists of variable i1 and additionally all variables i with

r2i1i � c. The order relationship x0i2xi2 � x0i3xi3 � 
 
 
 � x0isxis must hold. Then, the

inequalities Fm � FMi1
and F�

m � F�
Mi1

are valid for each essential model m ¼
fi1, . . . , isg, and F� ¼ max

m2M
F�
m ¼ max

i1¼1;...;p
F�
Mi1

holds. Thus, the computational

expense of Procedure 3 is much reduced; only the p supermodels are needed to

determine the distribution of F�.

Continuation of the example from the gene expression analysis

This implementation of Procedure 3 is applied to the data by M. Eszlinger. We set

a ¼ 0.05, c ¼ 0.50 and use r ¼ 8192 random commutations. Then the maximum

test-statistic values F� lie in the interval from 0.29 to 3.64. The critical value is

F�
1�a ¼ 1:71. The following three supermodels turn out to be relevant:

M36 ¼ f36; 27; 40; 63g;
FM36

¼ B36 þ B27 þ B40 þ B63 ¼ 0:70þ 0:41þ 0:54þ 0:26 ¼ 1:91;

M40 ¼ f40; 42; 36g;
FM40

¼ B40 þ B42 þ B36 ¼ 0:54þ 0:67þ 0:70 ¼ 1:91;

M42 ¼ f42; 30; 52; 40g;
FM42

¼ B42 þ B30 þ B52 þ B40 ¼ 0:67þ 0:50þ 0:32þ 0:54 ¼ 2:03:

In this case, a reduction of a supermodel to a smaller essential model is not possible

without losing the property of relevance. In every case, the critical limit 1.71 must be
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attained if relevance is desired. The model M42 was already recognized as a relevant

one in the parametric procedure of Section 2.

The results change if the condition of positive correlation between the variables

ri1i > 0 is added. This means that we will search sets of such genes that are all

activated or all deactivated in the thyroid nodules against the surrounding. Then the

values F� run from 0.26 to 2.99. The critical value is F�
1�a ¼ 1:50. We find the

following three relevant supermodels:

M36 ¼ f36; 27; 40; 63g;
FM36

¼ B36 þ B27 þ B40 þ B63 ¼ 0:70þ 0:41þ 0:54þ 0:26 ¼ 1:91;

M87 ¼ f87; 94; 39; 105g;
FM87

¼ B87 þ B94 þ B39 þ B105 ¼ 0:37þ 0:32þ 0:53þ 0:44 ¼ 1:66;

M94 ¼ f94; 39; 87; 105g;
FM94

¼ B94 þ B39 þ B87 þ B105 ¼ 0:32þ 0:53þ 0:37þ 0:44 ¼ 1:66:

Here, we are able to a find a relevant submodel of model M36:

m ¼ f36; 27; 40g; Fm ¼ B36 þ B27 þ B40 ¼ 0:70þ 0:41þ 0:54 ¼ 1:65:

This reduced model is still relevant because Fm > 1.50. It can be seen that the

procedure provides two relevant models that consist of the same variables: M87 and

M94. However, the relevant sets M36 and M87 (or M94) have no common variables.

These sets correspond to different ��factors��.

Further proposals

Procedure 3 can be applied in many different ways. All modifications mentioned in

Section 2 are again possible. In addition, many further variations are available.

If rank numbers are substituted for the observed values, the influence of special

distributions in the data can be decreased. For each variable separately, the absolute

values of the given data are replaced by the corresponding rank numbers, but the

given signs of the data must remain unchanged.

In the framework of the special implementation of Procedure 3, the test statistic

Fm can be defined by means of an arbitrary univariate function f(x) with non-

negative values:

Fmðx1; . . . ; xsÞ ¼ f ðx1Þ þ . . .þ f ðxsÞ if m is an essential model,
0 if m is an unessential model.

�
ð12Þ

For example, the truncated univariate beta statistic

f ðxÞ ¼ B if B � B0,
0 otherwise

n
ð13Þ

or the corresponding 0–1 statistic

f ðxÞ ¼ 1 if B � B0,
0 otherwise

n
ð14Þ
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can be applied, where B ¼ n�x2=x0x and B0 is a fixed truncation point (for example,

B0 ¼ B1�a(1/2, (n � 1)/2), the quantile of the univariate test). A scale-dependent

function f is also possible, for example f ðxÞ ¼ �x2.
More general, the essentiality conditions (see (6)) may also be affected by the

commutations, for example, if the within-sample sums of products matrix

ðX � �XÞ0ðX � �XÞ is used for the determination of the correlation coefficients ri1i
instead of the total sums of products matrix X 0X. The additional restriction

�xi > 0 ði ¼ i1; . . . ; isÞ or only �xi1 �xi > 0 ði ¼ i2; . . . ; isÞ could also be included. Of

course, these extensions increase the computational burden.

In all cases, Procedure 3 keeps the familywise error rate a in the strong sense. Any

restricting conditions, for example ��subset pivotality��, do not play a role (WESTFALL

and YOUNG, 1993; DUDOIT, SHAFFER and BOLDRICK, 2002; DUDOIT, VAN DER LAAN

and POLLARD, 2003).

4 Application of more general rotation tests instead of permutation tests

In the case that the sample size n is small, only few different commutations

represented by corresponding �1 diagonal matrices E� are available. This impairs

the applicability of the sign-commutation strategy in the procedure by West-

fall and Young. However, the more comprehensive class of n � n orthogonal

matrices E� may then be used. LANGSRUD (2004) has also treated such ��rotation
tests��.

Assume an n � p data matrix X that is left-spherically distributed with regard to

the mean-value matrix M ¼ 1nl0, that is,

C 0ðX� 1nl
0Þ ¼d X� 1nl

0 ð15Þ
for each fixed n � n orthogonal matrix C (FANG and ZHANG, 1990). This is fulfilled,

in particular, if X consists of n independent rows x0ðjÞ � Npðl0; RÞ.
In the following, Procedure 3 is again taken as the basis, but arbitrary

orthogonal transformations X� ¼ E�0X are applied. We set E�
1 ¼ In and generate

E�
2; . . . ; E

�
r as independent random matrices each having the n � n spherical

standard distribution. An n � q matrix U has the spherical standard distribution

if it is left-spherically distributed according to (15) with expectation l0 ¼ 0 and

consists of orthogonal column vectors, that is, C 0U¼d U for each orthogonal C

and U0U ¼ Iq must hold.

Under the distributional assumption (15) with l0 ¼ 0, for fixed values of the

matrices E� ¼ E�
1; . . . ; E

�
r and for a given X, all the ��rotated�� matrices X� ¼ E�0X

are X values with the same probability. If the null hypothesis is fulfilled only on the

subset m0, then this property is valid only for the columns of X� corresponding to m0.

This is the mathematical background of this method. All considerations of Section 3

can be transferred to general orthogonal rotations (with the exception that the rank

transformation of the data is not allowed), because X�0X� ¼ X0X. In the case of the
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special implementation of Procedure 3, the ��essential models�� need not be

determined anew for each rotation. It is sufficient for the computer program to

generate n � 1 spherically distributed vectors e� with e�0e� ¼ 1 and then to calculate

the beta statistics B�
i ¼ ðe�0xiÞ2=x0ixi ði ¼ 1; . . . ; pÞ.

5 Comparison of the mean vectors of two groups

The methods treated in Sections 2 to 4 can easily be applied to the comparison of the

means l(1)0 and l(2)0 from two samples. We consider the two samples of

p-dimensional observations

x
ð1Þ0
ðjÞ ¼ ðxð1Þj1 . . . xð1Þjp Þ ðj ¼ 1; . . . ; nð1ÞÞ; ð16Þ

x
ð2Þ0
ðjÞ ¼ ðxð2Þj1 . . . xð2Þjp Þ ðj ¼ 1; . . . ; nð2ÞÞ: ð17Þ

All vectors x
ð1Þ0
ðjÞ � lð1Þ0ðj ¼ 1; . . . ; nð1ÞÞ and x

ð2Þ0
ðjÞ � lð2Þ0ðj ¼ 1; . . . ; nð2ÞÞ are sup-

posed to be independently and identically distributed.

We want to find variables and sets of variables i for which the elements lð1Þi and lð2Þi

of l(1)0 and l(2)0 are different. Let X ¼ ðx1 . . . xpÞ ¼ Xð1Þ

Xð2Þ

� �
denote the n � p data

matrix consisting of n(1) vectors of group 1 and n(2) vectors of group 2 (n ¼ n(1) þ n(2)).

Instead of the matrix X0X in the former presentation, ðX � �XÞ0ðX � �XÞ
is now used as the ��total sums of products matrix��, where �X ¼ 1n�x

0 ¼
1n

1
n ðnð1Þ�xð1Þ0 þ nð2Þ�xð2Þ0Þ is the matrix of the total mean values. For testing the null

hypothesis H0 : l
(1)0 ¼ l(2)0 in the case of the normal distribution of X, the beta

statistic

B ¼ d 0ð�xð1Þ � �xð2ÞÞað�xð1Þ � �xð2ÞÞ0d
d 0ðX� �XÞ0ðX� �XÞd � B

1

2
;
n� 2

2

� �
ðunder H0Þ ð18Þ

is available, with a vector d being a function of ðX � �XÞ0ðX � �XÞ and a ¼ n(1)n(2)/n.

The corresponding univariate version of this test is Bi ¼ að�xð1Þi ��xð2Þi Þ2
ðxi � 1n�xiÞ0ðxi � 1n�xiÞ ¼

að�xð1Þi ��xð2Þi Þ2
x0ixi � n�x2i

. It is necessary for Procedure 1 and 3. The eigenvalue problems (4) and (5)

are replaced by the corresponding eigenvalue problems

ðX� �XÞ0ðX� �XÞd ¼ dk; d 0d ¼ 1; ð19Þ

ðX� �XÞðX� �XÞ0 vð1Þ

vð2Þ

� �
¼ vð1Þ

vð2Þ

� �
k; vð1Þ0 vð2Þ0

� � vð1Þ

vð2Þ

� �
¼ 1: ð20Þ

Then test (18) becomes

B ¼ að�vð1Þ � �vð2ÞÞ2 with �vð1Þ ¼ 1

nð1Þ
10nð1Þv

ð1Þ; �vð2Þ ¼ 1

nð2Þ
10nð2Þv

ð2Þ: ð21Þ
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The ��essential models�� and their order relation are defined by means of

ðX � �XÞ0ðX � �XÞ. Instead of the sign commutations in Section 3, permutations of

the rows of matrix X are applied.

The method of random orthogonal transformations from Section 4 can also be

transferred to the case of two samples. If we suppose X � Nn�p(1nl0, In  R) under
the null hypothesis l(1)0 ¼ l(2)0 ¼ l0, then the matrix X is transformed to mean 0 by a

fixed n � (n � 1) matrix A with A0A ¼ In�1 and A01n ¼ 0 (for example, by a

Helmert matrix): Y ¼ A0X � N(n�1)�p(0, In�1  R). From this, if independent

random (n � 1) � (n � 1) spherically standard distributed matrices E� are used,

the rotated matrices Y� ¼ E�0Y arise, which can be utilized in Procedure 3. In the

computer program, (n � 1) � 1 spherically distributed vectors e� with e�0e� ¼ 1 are

sufficient to simulate the random variation of the beta statistics, that is,

B�
i ¼ ðe�0yiÞ2

y0
i
yi

¼ ðe�0yiÞ2
ðxi � 1n �xiÞ0ðxi � 1n �xiÞ ði ¼ 1; . . . ; pÞ.

6 Conclusion

In this paper, we are suggesting a new solution to an old problem in multivariate

statistics: how to find the essential among many variables. The methods we are

using consist of two steps. First, sets of variables, called ��models��, are defined by

lumping together variables that behave similarly, for example, based on their

mutual correlation. Then, principles from multiple testing theory are applied to

detect the relevant sets while keeping the familywise type I error rate. Thus, the

probability of false identification of relevant genes is strictly controlled. The

strategies proposed can be applied even in situations with a very high dimension

because they can be implemented in ways that entail a relatively low computational

burden. The authors have written computer programs which can be used to

analyze several thousands of variables in gene expression analysis. Of course, a

critical assessment of the results by a scientist from the application field is

necessary.

Each set of variables obtained by the algorithms of this paper has a ��one-factorial��
structure, because it is defined by conditions on the correlatedness to a pivot

variable. Then, the different relevant sets (or the scores derived from them) can

provide a basis for further multivariate investigations, for example, in discriminant

or regression analysis.
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Summary

Straightforward estimation of a treatment’s effect in an adaptive clinical trial can be severely hindered
when it has been chosen from a larger group of potential candidates. This is because selection mechan-
isms that condition on the rank order of treatment statistics introduce bias. Nevertheless, designs of
this sort are seen as a practical and efficient way to fast track the most promising compounds in drug
development. In this paper we extend the method of Cohen and Sackrowitz (1989) who proposed a
two-stage unbiased estimate for the best performing treatment at interim. This enables their estimate to
work for unequal stage one and two sample sizes, and also when the quantity of interest is the best,
second best, or j-th best treatment out of k. The implications of this new flexibility are explored via
simulation.

Key words: Adaptive trial; Selection bias; Point estimation; UMVCUE.

1 Introduction

Conducting biomedical experiments can be exceedingly expensive; therefore it is vital that maxi-
mum information be gleaned from existing research, and that new experiments are designed as
efficiently as possible. In the pharmaceutical setting, this need has led to the development of a
statistical framework to support, where possible, adaptive clinical trials. The advantage of an adap-
tive trial is that the traditional learning and confirming roles of phase II and III studies can be
combined into a single process, thereby making the process of drug development more expedient.
Methodological developments have, for example, given trials the flexibility to stop early due to effi-
cacy or futility, Bauer and Kieser (1999), or to re-assess sample sizes, Posch et al. (2003). For a more
thorough review see Schmidli et al. (2006). A powerful facet of designs of this sort is that trial mod-
ifications need not be pre-defined. Furthermore, with careful utilisation of the closure principle, (Mar-
cus et al., 1976), multiple hypotheses can be simultaneously tested whilst strictly conserving overall
type I error.

A commonly pre-defined two-stage strategy is to firstly select the best performing of several
candidate treatments after an initial interim analysis, and then secondly to test, in isolation, this
treatment against a control. Thall et al. (1988) specifically considered how hypothesis testing could
be implemented in this design for binary data, Stallard and Todd (2003) developed an approach to
dealing with asymptotically normal responses. If uncorrected, point estimates for selected treatments
exhibit a marked bias. However, ‘exact’ bias correction, by which we mean the proposal of un-
biased estimates, has received relatively little attention in the literature. Possible reasons for this are
now given. Firstly, the main focus in pharmaceutical statistics is hypothesis testing, and not point
estimation. Secondly, maximum likelihood point estimates are often biased. However, rather than

* Corresponding author: e-mail: jack.bowden@mrc-bsu.cam.ac.uk, Phone: +44 1223 330385, Fax: +44 1223 330388
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attempting to remove this bias completely, conservatively biased corrections have often been pre-
ferred, see for example Shen (2001) or Stallard and Todd (2005). Overcorrecting for bias will
clearly keep type I error rates low, which naturally fits in with the ethos of industry regulators.
Thirdly, biased estimates often have other desirable qualities, such as a small mean squared error,
Posch et al. (2005).

Our focus in this paper is point estimation, and for that reason we concentrate on the work of
Cohen and Sackrowitz (1989), who proposed an unbiased estimate for the mean of the best perform-
ing treatment. In Section 2 we describe in more detail the two-stage design under consideration,
define three estimators for the selected treatment and decide on a common criteria for rating each
estimator. In Section 3 we propose an extension to Cohen and Sackrowitz’s UMVCUE and in Section 4
we investigate the properties of this estimator through various simulation studies.

2 The Two-Stage Design

The methods in this paper are motivated by considering the following two-stage clinical trial design.
Let Xi � Nðmi;

s2

n1
Þ, i ¼ 1; . . . ; k be the stage 1 outcome measure, expressed as an average over n1

subjects, for experimental treatments T1; . . . ; Tk. For simplicity we will assume that the mi’s are un-
known but the variance s2 is known. All treatments are assessed and assigned a rank order, depending
on the magnitude of their associated statistic. The treatment with the largest stage 1 mean, Xð1Þ, is
then taken forward to a second stage and tested on a new population of size n2. Let the true mean of
this treatment be denoted by mð1Þ. The statistic derived in stage 2 will be referred to as Y and, condi-
tional on the stage 1 treatment selection, follows a Nðmð1Þ; s2

n2
Þ distribution.

Since Xð1Þ is the maximum of k random variables it is no longer normally distributed and conse-
quently E½Xð1Þ� > mð1Þ. Note that mð1Þ is not the maximum of m1; . . . ; mk. It is a random variable that
can take any of the true treatment mean values m1; . . . ; mk. For this reason we believe that, in order to
evaluate the performance of a generic estimator for mð1Þ, say m*ð1Þ, the quantities

bselðm*ð1ÞÞ ¼
Pk
i¼1

E½m*ð1Þ � mi j Xð1Þ ¼ Xi� PðXð1Þ ¼ XiÞ ; ð1Þ

MSEselðm*ð1ÞÞ ¼
Pk
i¼1

E½ðm*ð1Þ � miÞ
2 j Xð1Þ ¼ Xi� PðXð1Þ ¼ XiÞ ð2Þ

are most insightful. (1) and (2) are essentially the weighted bias and mean squared error (MSE) across
all values of mð1Þ, and were first introduced by Posch et al. (2005). They have also been used to
compare the performance of two-stage estimators by Sill and Sampson (2007). No unbiased estimate
for mð1Þ exists based on stage 1 data alone, a result commonly attributed to Putter and Rubenstein
(1968). A more recent and accessible proof of this fact, albeit only for the case k ¼ 2, appears in
Stallard et al. (2008).

2.1 Estimation of m(1)

Obviously, Y is an unbiased estimate of mð1Þ. However, the variance of Y (s2

n2
), is large when one

considers that n1 þ n2 subjects could in principle contribute to mð1Þ’s estimate. For this reason, we will
term Y the ‘inefficient’ estimator. Alternatively, the maximum likelihood estimate (MLE) for mð1Þ

m̂mð1Þ ¼
n1Xð1Þ þ n2Y

n1 þ n2
ð3Þ

a weighted average of the first and second stage estimates, could be used instead. However (3) ignores
the selection mechanism, hence it is biased. Posch et al. (2005) show that when k ¼ 2,
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MSEselðm̂mð1ÞÞ ¼ s2

n1þ n2
for the MLE. They note that this is equal to the MSE for the case when k ¼ 1,

i.e. where no selection bias is possible. Furthermore, using a symmetry argument, Posch et al. show
that this equality holds for k ¼ 1 and 2, when any selection rule, that depends on the difference
between the two treatment estimates X1 and X2, is used.

By conditioning on the stage 1 treatment estimates, Cohen and Sackrowitz (1989) proposed an
unbiased estimator for mð1Þ, which we will call ~mmð1Þ. Assuming that X1; . . . ;Xk and Y have unit var-

iance, that is when s2

n1
¼ s2

n2
¼ 1, Cohen and Sackrowitz’s formula for ~mmð1Þ is

Z=2� 1ffiffiffi
2
p fðWÞ

FðWÞ ð4Þ

where fð:Þ and Fð:Þ are the pdf and cdf of the standard normal distribution. Z ¼ Xð1Þ þ Y and
W ¼

ffiffiffi
2
p
ðZ=2� Xð2ÞÞ. Xð2Þ is defined as the second best performing treatment out of the k treatments

in stage 1. (4) is essentially the MLE (Z=2) minus a correction term. It is an expression for the
expected value of the unbiased second stage data Y , conditional on Z and the order of the stage 1
treatment estimates. The sufficiency and completeness of ðZ;Xð2Þ; . . . ;XðkÞÞ with respect to
ðmð1Þ; . . . ; mðkÞÞ mean that by the Lehmann–Sch�ffe theorem, (4) is the uniformly minimum variance
conditional unbiased estimate (UMVCUE) for mð1Þ. Note that the UMVCUE fulfills a stronger condi-
tion of unbiasedness as that required by formula (1), namely

E½~mmð1Þ �mi j Xð1Þ ¼ Xi� ¼ 0 ; 8i ¼ 1; . . . ; k :

3 Extending the UMVCUE

Cohen and Sackrowitz only specified the UMVCUE for the case of equal variances in the first and
second stage, and also as an estimator for the most extreme out of k statistics. Extending their formula
to unequal variances would provide, for example, the flexibility to conduct an interim analysis at any
point. Furthermore, interest may not always be solely restricted to treatment Tð1Þ and unbiased esti-
mates for the j-th best performing out of k treatments may also be valued. Finally, one may also wish
to select a treatment with a criterion other than its effect size. With this in mind we now propose a
corollary to their original proof.

Let Xi; i ¼ 1 . . . ; k be independently Nðmi; s
2
1;iÞ distributed. Let Yi � NðmðiÞ; s2

2;iÞ. The general, two
stage UMVCUE for the j-th most extreme statistic is given by

~mmðjÞ ¼
s2

2; jXðjÞ þ s2
1;ðjÞYj

s2
1;ðjÞ þ s2

2; j

�
s2

2; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðjÞ þ s2
2; j

q ffðWj; jþ1Þ � fðWj; j�1Þg
fFðWj; jþ1Þ �FðWj; j�1Þg

ð5Þ

where Ws;t ¼ 1
s2

1;ðsÞ

s2
2;sXðsÞ þs2

1;ðsÞYsffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðsÞþs2
2;s

p � XðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1;ðsÞ þ s2
2;s

q� �
, with s ¼ 1; . . . ; k, t ¼ 0; . . . ; k þ 1 and

Xð0Þ :¼ 1 > Xð1Þ � . . . � XðkÞ > Xðkþ1Þ :¼ �1. s2
1;ðsÞ refers to the variance of the ðsÞ largest treat-

ment and not the ðsÞ largest variance.
The proof is very similar to Cohen and Sackrowitz’s. The initial factorisation of XðjÞ and Yj is

different, as are certain limits for integration over these two variables.
Without loss of generality let Q be the event that X1 > . . . > Xk, so that XðjÞ ¼ Xj. To simplify

notation, we will write f instead of fX for the pdf of a random variable X. Otherwise, we will stick to
the convention that capital letters denote random variables and small letters their realizations. The
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joint distribution of Yj and X ¼ ðX1; . . . ;XkÞ given Q has the density

K�1ðmÞ 1
s2; j

f
yj � mj

s2; j

� �
1

s1; j
f

xj � mj

s1; j

� �
IQðxÞ

Qk
i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� �

¼ K�1ðmÞ 1
s2; j

f

s2; j

s1; j
xj þ s1; j

s2; j
yj � mja1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1; j þ s2

2; j

q
0
@

1
A 1

s1; j
f

xj � yjffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1; j þ s2
2; j

q !
IQðxÞ

�
Qk

i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� �

¼ K�1ðmÞ 1
s2; j

f

s2; j

s1; j
xj þ s1; j

s2; j
yj � mja1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1; j þ s2

2; j

q
0
@

1
A 1

s1; j
f

xj �
s2; j
s1; j

xjþ
s1; j
s2; j

yj

a1; j

s2
1; j

s2
2; j

a2; j

0
BB@

1
CCA IQðxÞ

�
Qk

i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� �
;

where a1; j ¼ s1; j

s2; j
þ s2; j

s1; j
and a2; j ¼

s2
2; jffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1; jþ s2

2; j

p . IQðxÞ is the indicator function for the event,

IQðxÞ ¼ f1 > x1 > . . . > xk > �1g and KðmÞ ¼ PmðIQðXÞ ¼ 1Þ. Define the set of k � 1 random vari-

ables Xc
j to be fXi; i ¼ 1; . . . ; k; i 6¼ jg. The pair xc

j and zj ¼ s2; j

s1; j
xj þ s1; j

s2; j
yj are sufficient and complete

statistics for m1; . . . ; mk. Transforming f ðX; Yj j QÞ to f ðX; Zj j QÞ and f ðYj;Xc
j ; Zj j QÞ respectively gives

f ðX; Zj j QÞ ¼ K�1ðmÞ f
zj � mja1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1; j þ s2

2; j

q0@
1
A 1

s2
1; j

f
xj � zj

a1; j

s2
1; j

s2
2; j

a2; j

0
B@

1
CA IQðxÞ

Qk
i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� �
;

f ðYj;X
c
j ; Zj j QÞ ¼ K�1ðmÞ f

zj � mja1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s2

1; j þ s2
2; j

q0@
1
A 1

s2
2; j

f
ðyj � zj

a1; j
Þ

a2; j

 !
IQðxÞ

Qk
i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� �
:

The density f ðXc
j ; Zj j QÞ is obtained from f ðX; Zj j QÞ via the integral

K�1ðmÞ 1
s2

1; j

f
zj � mja1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1; j þ s2

2; j

q0@
1
A IQðxÞ

Qk
i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� � ðxj�1

xjþ1

f
xj � zj

a1; j

s2
1; j

s2
2; j

a2; j

0
B@

1
CA dxj

¼ K�1ðmÞa2; j

s2
2; j

f
zj � mja1; jffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

s2
1; j þ s2

2; j

q0@
1
A IQðxÞ

Qk
i¼1;i 6¼j

1
s1;i

f
xi � mi

s1;i

� �
fFðWj; jþ1Þ �FðWj; j�1Þg :

The distribution of f ðYj j Xc
j ; Z; QÞ ¼ f ðYj;Xc

j ;Z jQÞ
f ðXc

j ;Z jQÞ
is

1
a2; j

f
yj�

zj
a1; j

� �
a2; j

 !

fFðWj; jþ1Þ �FðWj; j�1Þg
I

s2; j

s1; j
zj �

s2; j

s1; j
xj�1

� �
< yj <

s2; j

s1; j
zj �

s2; j

s1; j
xjþ1

� �� �
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and therefore E½f ðYj j Xc
j ; Zj;QÞ� is equal to

1
a2; j

ð s2; j
s1; j

�
zj �

s2; j
s1; j

xjþ1

�
s2; j
s1; j

�
zj �

s2; j
s1; j

xj�1

� yjf
yj �

zj
a1; j

� �
a2; j

 !
dyj

fFðWj; jþ1Þ �FðWj; j�1Þg
:

Using a standard result, (see for example Todd et al. (1966)), thatðT

�1

y
s

f
y� m

s

� �
dy ¼ �sf

T � m

s

� �
þ mF

T � m

s

� �

and additionally noting that

s2

s1
z� s2

s1
x

� �
� z

a1

� �
s2

1

s2
2

¼ z
a1
� x

the expectation reduces to

�a2; jffðWj; jþ1Þ � fðWj; j�1Þg þ zj

a1; j
fFðWj; jþ1Þ �FðWj; j�1Þg

FðWj; jþ1Þ �FðWj; j�1Þ

and we have our result. When treatment Tð1Þ is selected, fðW1;0Þ ¼ FðW1;0Þ ¼ 0, additionally setting
s1;ð1Þ ¼ s2;1 reduces (5) to Cohen and Sackrowitz’s original expression.

3.1 Estimation following a ranking by p-value

Suppose that s2
1; j, j ¼ 1; . . . ; k are all unique and reasonably dispersed. One may prefer to rank

the candidate treatments T1; . . . ; Tk in order of merit according to the statistical significance, rather
than simply the magnitude of their estimated effect. Assuming null hypotheses mj ¼ 0,
j ¼ 1; . . . ; k, with a one sided alternative, mj > 0, the consequence of ranking by ‘p-value’ will be that
xðjÞ 2

xðj�1Þs1;ðjÞ
s1;ðj�1Þ

;
xðjþ1Þs1;ðjÞ

s1;ðjþ1Þ

� �
, and yj 2 s2; j

s1;ðjÞ
zðjÞ � s2; j

s1;ðj�1Þ
xðj�1Þ

� �
;

s2; j

s1;ðjÞ
zðjÞ � s2; j

s1;ðjþ1Þ
xðjþ1Þ

� �� �
. The previous proof

follows through almost identically if we condition on the event Q*: X1
s1;1

> . . . > Xk
s1;k

instead, to leave
formula (5), except that the XðtÞ in Ws;ðtÞ is replaced by

s1;ðsÞXðtÞ
s1;ðtÞ

.

3.2 ‘Drop-and-estimate’ the loser

If one selected the top ðk � 1Þ treatments at interim, then we now have the framework to unbiasedly
estimate their means and also the mean of the dropped treatment mðkÞvia

�mmðkÞ ¼ XðkÞ þ
Pk�1

i¼1
ðXðiÞ � ~mmðiÞÞ :

This follows from the fact that Eð
Pk

i¼1 XðiÞÞ ¼ Eð
Pk

i¼1 XiÞ ¼
Pk

i¼1 mðiÞ ¼
Pk

i¼1 mi. Clearly however
the the variance of �mmðkÞ will be large.

4 Performance of the UMVCUE: Simulation Studies

4.1 Estimating m(1): Varying the interim time

We first consider a two-stage trial involving three candidate treatments T1, T2, T3, with corresponding
means m1, m2, m3 ¼ (0, 1/2, 0). Their estimates have the same variance at stage 1 and stage 2 (s2

1 and
s2

2), and only the treatment with the best estimate is selected after stage 1. Letting s2
1 ¼ 1

n1
and s2

2 ¼ 1
n2
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we fix the final sample size, over the two stages, (n1 þ n2 ¼ N) but the relative size of n1 and n2 is
allowed to vary. This can be viewed as varying the amount ‘Information’ at interim, which we define
as

I ¼ 1=s2
1

1=s2
1 þ 1=s2

2

¼ n1

n1 þ n2
:

Ideally one would hope that the truly best treatment – T2, is selected at interim, but this will not
always occur. For m̂mð1Þ and ~mmð1Þ, the size of the MSE is investigated for varying ratios of s2

1 and s2
2.

Figure 1 (Left) shows, for N ¼ 10, Monte-Carlo estimates for the MSE as I is varied between 0 and 1.
Each estimate is based on 100 000 simulations. The MSE increases dramatically as I increases for the
UMVCUE, but it is relatively stable for the MLE, despite the fact that this quantity includes a consid-
erable proportion of bias. Of course, one must not conclude that it is best to go to interim as early as
possible, since the probability of choosing the right treatment, T2, decreases as I increases. The prob-
abilities given at the foot of this plot indicate, for a particular value of I, the proportion of times that
mð1Þ ¼ m2. For I ¼ 0:1, the correct choice is made less than 50% of the time. When I ¼ 0:9, T2 is
chosen close to 80% of the time.

Making the wrong choice at interim does not affect the bias of the UMVCUE – it will unbiasedly
estimate the mean of whatever treatment is selected, but this is of course not true for the MLE.
Figure 1 (Right) shows, for the same trial trial design as before, how the bias of the MLE is modu-
lated by I as well as the total sample size, N. For a relatively small trial (N ¼ 10) the bias appears to
increase monontonically, albeit more slowly, as I increases. However when the sample size is doubled
the bias appears to be maximised at approximately I ¼ 0:5. For a trial five times larger (N ¼ 50) the
bias is maximised for an I closer to 0.2.

4.2 Estimating m(1): Varying treatment arm sample size

We now investigate the effect of varying the size of each treatment arm on the ability of the MLE and
UMVCUE to estimate mð1Þ. We consider a trial with 2 treatments, T1; T2 with stage 1 mean estimates
drawn from Nðm1;

1
nT1
Þ and Nðm1;

1
nT2
Þ distributions respectively. The total sample size for stage 1 is

fixed to be nT1 þ nT2 ¼ 10, but different numbers of subjects are apportioned to each treatment arm.
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of information at interim, I, is allowed to vary. Right: The bias present in the MLE for
varying I and N.

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



The treatment with the largest stage 1 mean is selected at interim and tested on 10 further subjects, so
that the total sample size of the trial is 20. Rows 1–5 of Table 1 show the results of this simulation
when m1 ¼ m2 ¼ 0 and the ratio of nT1 : nT2 is varied from 9 : 1 to 5 : 5. When both treatments have the
same true mean, a balanced design with 5 subjects in both stage 1 arms appears to be the best option.
As the subject ratio increases the bias in the selected treatment mean rises, which is reflected in
the increased bias of the MLE. The MSE increases as the arms become less balanced, for both the
MLE and the UMVCUE. Rows 6–10 show the results when the true treatment means are different
(m1 ¼ 1, m2 ¼ 0) and the truly best treatment – T1 is assigned a larger number of subjects. As before,
the bias in the MLE increases as the treatment arms become less balanced. However, the MSE of the
MLE is minimised when T1 is assigned to 60% and T2 is assigned to 40% of the subjects. For the
UMVCUE a 70–30% split provides the smallest MSE, and the UMVCUE actually has a smaller MSE
than the MLE for higher imbalances. Rows 11–15 show the results of the same simulation where
more subjects are assigned to the truly worst treatment – T2 in stage 1. This appears to be the worst
case scenario, as the treatment arm imbalance increases the MSE of the MLE and UMVCUE increase.
Although the MLE’s MSE is the smallest there is not much to choose between the two estimators.

4.3 Conditional mean squared error of MLE versus UMVCUE

In the case of two treatments with one selected at interim, Posch et al. (2005) show that MSEselðm̂mð1ÞÞ
equals s2

n1þn2
for the MLE. However, it is easy to show that, conditional on stage 1 treatment selection,

MSEselðm̂mð1Þ jX1 > X2Þ � MSEselðm̂mð1Þ jX1 < X2Þ
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Table 1 Bias and Mean squared error (�100) of the MLE and UMVCUE for
varying treatment arm sample sizes. All figures are the average of 100 000 simu-
lations.

Treatment arm Bias �100
MLE m̂mð1Þ

Mean squared error �100

T1 T2 MLE m̂mð1Þ UMVCUE ~mmð1Þ

m1 ¼ 0 m2 ¼ 0
nT1 nT2

9 1 19.90 15.16 15.26
8 2 13.99 9.23 9.75
7 3 11.40 7.46 8.31
6 4 9.70 6.84 7.96
5 5 8.46 6.69 8.03

m1 ¼ 1 m2 ¼ 0
nT1 nT2

9 1 12.77 13.60 10.07
8 2 6.26 8.02 6.89
7 3 4.02 6.80 6.57
6 4 2.81 6.55 6.73
5 5 2.28 6.66 7.08
4 6 2.85 7.18 7.55
3 7 4.06 8.23 8.59
2 8 6.27 10.48 10.84
1 9 12.67 16.92 17.29
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if m1 > m2. For example, if we assume equal sample size n1 ¼ n2 in both treatments as well as in
stage 1 and 2, and s2=n1 ¼ 1, then

MSEðm̂mð1Þ jX2 > X1Þ ¼
1
2
þ 1

8
dffiffiffi
2
p �

f dffiffi
2
p
� �

F � dffiffi
2
p

� � ð6Þ

and

MSEðm̂mð1Þ j X1 > X2Þ ¼
1
2
� 1

8
dffiffiffi
2
p �

f dffiffi
2
p
� �

F dffiffi
2
p
� �

where m1 � m2 ¼ d. The weighted average of the two MSEs gives

MSEselðm̂mð1ÞÞ ¼ MSEðmð1Þ jX1 > X2Þ �F
dffiffiffi
2
p
� �

þMSEðmð1Þ jX2 > X1Þ �F � dffiffiffi
2
p

� �
¼ 1

2

in this case. Formula (6) shows that the MSE of the MLE increases dramatically, if the wrong selec-
tion is made at interim. This tendency is much reduced with the UMVCUE. Figure 2 shows that the
conditional MSE of the UMVCUE also increases if the wrong choice is made at interim, but not
nearly as quickly as the conditional MSE of the MLE. The figure is based on 2 million simulations of
the described two-treatment scenario (100 000 for each of the twenty d values evaluated) with
s2=n1 ¼ 1.

4.4 Estimation of m( j) and their distribution

For a trial with k ¼ 5 treatments, we investigate the MSE of the UMVCUE when estimating the j-th
best treatment’s mean mðjÞ for j ¼ 1; . . . ; 5. To do this we define, for a generic estimator m*ðjÞ

MSEselðm*ðjÞÞ ¼
Pk
i¼1

E½ðm*ðjÞ � miÞ
2 jXðjÞ ¼ Xi�PðXðjÞ ¼ XiÞ
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Figure 2 Conditional mean squared error of
the MLE and UMVCUE for the case of an
adaptive trial with two treatments, with
means m1 ¼ 0 and m2 ¼ d.

# 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.biometrical-journal.com



in analogy to formula (2). Each stage 1 treatment mean is given an underlying variance of 1
2. All

treatments are effectively selected and a stage 2 statistic is calculated with a variance of 1, so that
I ¼ 2

3. This enables MLE’s and UMVCUE’s for mð1Þ; . . . ; mð5Þ to be obtained. Figure 3 (left) illustrates
the effect of varying the number of treatments that are a priori significantly different from 0 on the
MSE of m̂mðjÞ and ~mmðjÞ. Figure 3 (right) illustrates the effect of varying the magnitude of the difference
between each treatment. Values are again Monte-Carlo estimates based on 100 000 simulations.

Estimation of ~mmð1Þ requires Xð1Þ and only one other stage 1 statistic, Xð2Þ. Cohen and Sackrowitz
regarded this as a negative point, because only a small fraction of the available data is used. Estimat-
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ing ~mmðjÞ for j ¼ 2; . . . ; k � 1 utilises XðjÞ, Xðj�1Þ and Xðjþ1Þ. However, in terms of MSE, the UMVCUE
generally performs worse when used to estimate a treatment from the middle of the ordered range, not
better. A nice feature of these plots is that MSEselð~mmðjÞÞ appears to be maximised when m1 ¼ . . . ¼ mk
(shown by the solid black line in both plots). This makes intuitive sense, and agrees with results in
Sill and Sampson (2007), but no formal proof of this is offered in this paper.

Figure 4 shows the distribution of 20 000 UMVCUE estimates for mð1Þ; . . . ; mð5Þ, for the case when
m1 ¼ . . . ¼ m5 ¼ 0. So that their shape can be seen more clearly, all distributions but for that of ~mmð3Þ
have been shifted to the left or right of 0. All distributions are very well approximated by a normal
distribution. However, the densities of the estimates for ~mmð1Þ and ~mmð5Þ are more peaked, and close
inspection reveals a small amount of asymmetry in their extreme tails. This asymmetry is still present
but less marked for ~mmð2Þ to ~mmð4Þ.

4.4.1 Confidence intervals for m( j)

If we are willing to assume the approximate normality of ~mmðjÞ and also accept that an upper bound for
the variance of ~mmðjÞ is achieved when m1 ¼ m2;¼ . . . ¼ mk, then a conservative a-level confidence
interval for our modified UMVCUE would naturally take the form ~mmðjÞ �F�1ð1� a=2Þ V , where V2

is this maximal variance, and is easily approximated to a high degree of accuracy given k; s2
1; s2

2.
Figure 5 shows the results of a simulation study to assess the coverage of this conservative 95% inter-
val, for different values of m1; ::; m5. When the true difference between each treatment is 0, the cov-
erages for ~mmð1Þ and ~mmð5Þ are just above the nominal level. Conversely, the coverages of ~mmð2Þ to ~mmð4Þ
appear slightly below their nominal level. When there is a small difference between the true treatment
means, all of the estimate’s coverage probabilities appear at, or above, their nominal 95% level.

4.5 Trial data example

We simulate a single two-stage adaptive trial with three active treatment arms and one control arm.
For a single subject, treatment and placebo outcomes were generated from a normal distribution with
true means m1; m2; m3; mc ¼ ð1; 2; 0:5; 0Þ and a common, known standard deviation of s ¼ 7. Fifty
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subjects were assigned to each treatment and control arm in stage 1. The top two stage 1 treatments
(in rank order T2 and T1), were selected and tested along with the control on a further one hundred
subjects. Y1 and Y2 therefore provide unbiased estimates for mð1Þ ¼ m2 ¼ 2 and mð2Þ ¼ m1 ¼ 1 respec-
tively. All observations (4 � 50 from stage 1 and 3 � 100 from stage 2) were used to obtain a pooled
estimate for s of 6.92. Table 2 shows the inefficient stage 2 estimate, the MLE and the UMVCUE for
mð1Þ and mð2Þ, as well as their variances. The variances of the UMVCUE were obtained by simulating
the two-stage scenario 50 000 times. As explained in Section 4.4.1, all treatments were assigned means
of 0 to make the variance estimate conservative. Common stage-1 and stage-2 variances of 6:922/50
and 6:922/100, respectively, were also assumed. Repeated simulation of this trial design with the true
parameter values, m1; m2; m3 ¼ ð1; 2; 0:5Þ, rather than m1 ¼ m2 ¼ m3 ¼ 0 showed that the average bias
in m̂mð1Þ and m̂mð2Þ is approximately 0.2 and 0.02 respectively. The MSE of m̂mð1Þ and m̂mð2Þ were 0.34 and
0.28 respectively. The MSE for ~mmð1Þ and ~mmð2Þ were 0.39 and 0.42 respectively.

Table 2 also shows 95% confidence intervals for the selected treatment-control differences using the
MLE and UMVCUE. As expected, confidence intervals based on the MLE are narrower than those
based on the UMVCUE, but their a-level control is clearly suspect. Using the stage 1 data on all three
treatments plus the UMVCUE’s for the top two treatments as in Section 3.2, an unbiased estimate for
mð3Þ is calculated to be �mmð3Þ ¼ �0:06.

5 Discussion

Standard two stage designs concentrate solely on the best performing treatment at interim, since this
will provide maximal power to prove efficacy at stage 2. When economically feasible, it may prove
prudent to take forward more than one treatment if, for example, at a later date the best performing
treatment exhibits other undesirable properties. Our modified estimator makes unbiased estimation of
multiple selected treatments possible, even if their estimates have varying precision. However, it must
be made clear that treatment selection decisions must either be made in advance of the trial commen-
cing, or only be made conditional on the stage 1 estimate’s rank order at interim for the UMVCUE to
be valid. If other information is allowed to influence which treatments are taken forward, such as their
actual stage 1 values, then the estimators’ properties could be compromised.

We have attempted to explore the strengths and weaknesses of the UMVCUE and the MLE under
various trial designs. In our simulations the MLE generally outperforms the UMVCUE by a clear
margin in terms of MSE, although they tend to increase or decrease together when one particular facet
of the trial is changed. Whether one prefers the UMVCUE over the MLE is a question of how much
the notion of bias matters – in the pharmaceutical setting unbiasedness undoubtedly has a high cur-
rency with industry regulators. The UMVCUE performs particularly poorly relative to the MLE when
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Table 2 Simulated two-stage adaptive trial data.

Treatment Stage 1 Stage 2 MLE UMVCUE
Arm (Variance: S2

100Þ (Variance: S2

150Þ (Variance: V)

T1: m1 ¼ 1 Xð2Þ: 1.70 Y2: 1.16(0.48) 1.34(0.32) 1.37(0.44)
T2: m2 ¼ 2 Xð1Þ: 2.82 Y1: 2.70(0.48) 2.74(0.32) 2.66(0.40)
T3: m3 ¼ 0:5 Xð3Þ: �0.57

Control 0.54(0.32)

95% C.I
mð1Þ � mc (0.40, 3.90) (0.61, 3.78) (0.42, 3.80)
mð2Þ � mc (�1.14, 2.36) (�0.79, 2.38) (�0.90, 2.53)
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there is relatively little unbiased information to ‘Rao-Blackwellise’. That is, when stage 1 of the
trial is larger than stage 2, for a fixed total sample size. This has been previously noted in a simula-
tion study by Sill and Sampson (2007). Although it is not a characteristic of the trial that can be
altered, the underlying values of the parameters m1; . . . ; mk also have a large impact on both estima-
tors’ performance. Simulations suggest that increasing the precision the of truly best treatment’s
stage 1 estimate at the expense of the other treatments can reduce the MSE of both the MLE and
UMVCUE. However, the UMVCUE appears to benefit even more from this. To make use of this
feature it is of course necessary to speculate about the best treatment when allocating the sample
size. This can backfire when the wrong treatment is accidentally up-weighted. Perhaps a more rea-
listic situation in which unequal stage 1 variances would be encountered is if treatment arms started
off balanced, but were affected by differing amounts of subject drop outs. As long as the drop out
data could be assumed to be missing at random, then our modified UMVCUE could be utilised as
normal.

Also noted by Sill and Sampson (2007) is the fact that, all other characteristics being equal, the
MSE of the UMVCUE for mð1Þ is highest when m1 ¼ . . . ¼ mk. Our simulations show that this is also
true for ~mmð2Þ; . . . ; ~mmðkÞ and we exploited this to produce a conservative Monte-Carlo estimate for the
UMVCUE’s variance. Future research on this topic might concentrate on proving that the variance of
the UMVCUE is indeed maximised at m1 ¼ . . . ¼ mk, or better still to obtain an expression for its
actual variance. The UMVCUE’s confidence interval could then be used directly to prove efficacy
over a control treatment, as in Section 4.5. However, it is perhaps asking too much of the UMVCUE
to expect that it can be both a point estimate and an effective basis for hypothesis testing. For exam-
ple, in recent work Sampson and Sill (2005) have shown that an alternative statistic to the UMVCUE
forms the basis of a ‘uniformly most powerful’ test for mð1Þ. It would be interesting to see if this could
be extended to work for an arbitrary mðjÞ also.

It must be noted that ~mmðjÞ can only claim to be the minimum variance unbiased estimate for mðjÞ
marginally, that is when only stage 2 data exists for the j-th largest stage 1 treatment. If for example,
as in Section 4.5, two out of three treatments from stage 1 are carried forward, then the stage 2 infor-
mation on the second best stage 1 treatment, Y2, could also potentially be incorporated into an estima-
tor for mð1Þ. The extra information should lead to a variance reduction. Moreover, rather than condi-
tioning on the full ordering constraint X1 > X2 > X3, unbiased estimators employing less stringent
interim rules, such as X1 > X3, X2 > X3, may also lead to an estimator for mð1Þ with a smaller var-
iance. Future research into these areas would certainly be worthwhile.
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Empirical Bayes estimation of the
selected treatment mean for two-stage
drop-the-loser trials: a
meta-analytic approach
Jack Bowden,a*† Werner Brannathb and Ekkehard Glimmc

Point estimation for the selected treatment in a two-stage drop-the-loser trial is not straightforward because a
substantial bias can be induced in the standard maximum likelihood estimate (MLE) through the first stage
selection process. Research has generally focused on alternative estimation strategies that apply a bias correc-
tion to the MLE; however, such estimators can have a large mean squared error. Carreras and Brannath (Stat.
Med. 32:1677-90) have recently proposed using a special form of shrinkage estimation in this context. Given
certain assumptions, their estimator is shown to dominate the MLE in terms of mean squared error loss, which
provides a very powerful argument for its use in practice. In this paper, we suggest the use of a more general
form of shrinkage estimation in drop-the-loser trials that has parallels with model fitting in the area of meta-
analysis. Several estimators are identified and are shown to perform favourably to Carreras and Brannath’s
original estimator and the MLE. However, they necessitate either explicit estimation of an additional parameter
measuring the heterogeneity between treatment effects or a quite unnatural prior distribution for the treatment
effects that can only be specified after the first stage data has been observed. Shrinkage methods are a powerful
tool for accurately quantifying treatment effects in multi-arm clinical trials, and further research is needed to
understand how to maximise their utility. Copyright © 2013 John Wiley & Sons, Ltd.

Keywords: drop-the-loser trials; empirical Bayes estimation; meta-analysis; temporal coherency

1. Introduction

Two-stage drop-the-loser designs provide a framework for picking the most effective treatment out of
a larger group of candidates and then testing it against a standard therapy in a confirmatory analysis.
Although this design is an efficient way to discover effective treatments, the selection mechanism acts
to inflate the type I error of the final test statistic [1, 2] and can also induce a substantial bias into the
standard maximum likelihood estimate (MLE). With regard to the former, current regulatory authority
guidance (e.g. [3]) is unequivocal that the final analysis must control the type I error rate. With regard to
the latter, whilst acknowledging that estimation bias is a serious issue affecting the validity of adaptive
trials and that bias should be ‘minimised’, there is a distinct lack of guidance and consensus on how
this should be achieved. Research has generally focused on estimators that apply a bias correction to
the MLE. One such class of estimators, referred to as uniform minimum variance conditionally unbi-
ased estimators (UMVCUEs), totally removes the MLE’s bias [4–7]. Others have proposed iterative or
likelihood-based methods that can substantially reduce the bias of the MLE, without being unbiased
[7–9]. Unfortunately, methods that explicitly target bias correction generally lead to an estimator with a
mean squared error (MSE) larger than that of the MLE.
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Carreras and Brannath [10] have recently proposed the use of shrinkage estimation [11] within the
context of a two-stage drop-the-loser trial. In their method, the stage 1 data on all treatments are used to
define a shrinkage estimate for the selected treatment at stage 1. This is then combined with the stage 2
estimate for the selected treatment via a weighted average. Under the assumption that the true treatment
effects are independent and follow a common normal distribution (with any mean and variance), their
estimator is shown to dominate the MLE in terms of MSE, thus providing a very powerful argument for
its use in practice. In this paper, we propose an alternative shrinkage estimation strategy for drop-the-
loser designs. Our approach is, in some ways, a simpler estimation procedure to that of [10] because
it uses all of the available data within a single, standard, shrinkage equation. However, this apparent
simplicity does impose some additional complications, which are discussed at length herein.

In Section 2, we introduce our notation for the two-stage drop-the-loser design. In Section 3, we
describe the general principle of shrinkage estimation, Carreras and Brannath’s original application of
shrinkage estimation to the drop-the-loser trial context, and also present our alternative approach. In
Section 4, we introduce several shrinkage estimators that naturally flow from our alternative formula-
tion, and in Section 5, we evaluate the performance of the existing and alternative shrinkage estimators
for various two-stage drop-the-loser design scenarios. We conclude in Section 6 with a discussion of the
issues raised and point to further avenues of research.

2. The two-stage drop-the-loser design

Let Xi � N
�
�i ; �

2
1

�
, i D 1; : : : ; k, be the effect estimates (MLEs) of k experimental treatments

T1; :::; Tk at the first stage of a two-stage trial. The common variance term, �21 , is assumed to be known.
Assuming that large values indicate the most benefit, the ‘best’ treatment, Ts , s 2 f1; :::kg, is selected
as the one with the top-ranking MLE. That is, Xs DMaxfX1; :::; Xkg. Treatment Ts is taken forward in
isolation for testing on an independent population in stage 2. Let Ys �N

�
�s; �

2
2

�
be the estimate for �s

at stage 2.
Let X0 and Y0 represent the normally distributed treatment effect estimates for the control group at

stages 1 and 2, with mean �0 and variances �21 and �22 , respectively. At the end of the trial, we are inter-
ested in estimating the contrast �s � �0. Because the control group always proceeds to the final stage,
�0 is unbiasedly estimated by its MLE, and we therefore focus our attention on estimation of �s only.
The MLE of �s at stage 2 and its (assumed) variance are given by

O�s D
�22Xs C �

2
1Ys

�21 C �
2
2

; Var . O�s/D
�21�

2
2

�21 C �
2
2

: (1)

Because it ignores the selection of Xs , O�s is positively biased (potentially seriously so), and Var . O�s/ is
also incorrect. We can express the most efficient unbiased estimate for �s as

Q�s D O�s �
�22q
�21 C �

2
2

�

"q
�2
1
C�2

2

�2
1

. O�s �Xr/

#

ˆ

"q
�2
1
C�2

2

�2
1

. O�s �Xr/

# ; (2)

where �.:/ and ˆ.:/ are the standard normal density and distribution functions, respectively, and where
Xr is defined as the second best performing treatment at stage 2, that is, Xr D MaxfX1; :::; Xkg =Xs .
This is referred to as the UMVCUE [4, 6].

2.1. Assessing estimators of �s

For any estimator of �s , ��s , we can express its bias and MSE as

Bias
�
��s
�
D

kX
iD1

E
�
��s ��i jTs D Ti

�
P.Ts D Ti /;

MSE
�
��s
�
D

kX
iD1

E
h�
��s ��i

�2
jTs D Ti

i
P.Ts D Ti /:

(3)
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This form (from Posch [12]) makes clear that at the trial outset, �s is a random variable. By definition,
Bias. Q�s/ = 0, and MSE. Q�s/ is smaller than any other ��s that is also unbiased. This of course does not
mean that MSE. Q�s/ is smaller than any biased estimator; for example, it is generally true that MSE. Q�s/
� MSE. O�s/ (see Section 5 for example). Furthermore, it is commonly agreed that MSE (a measure
equivalent to its variance + squared bias) provides a far better summary of an estimator’s worth than bias
alone.

3. Shrinkage estimation

The standard motivation for using shrinkage methods is to provide simultaneous, accurate estimation
for a group of parameters, where accuracy is defined via the combined MSE. For example, if we were
interested in jointly estimating the true mean effect of all k treatments �1; :::; �k using only stage 1 data,
then it will generally be true that the combined MSE,

kX
iD1

E
�
.��i ��i /

2
�
; (4)

is far smaller when ��i equals L�Li as opposed to the MLE Xi , where L�Li is Lindley’s estimator [13]:

L�Li D
OBCXi C .1� OBC/ NX (5)

and

OBC Dmax
n
0; 1� OC

o
; OC D

.k � 3/�21Pk
iD1.Xi �

NX/2
; NX D

kX
iD1

Xi=k: (6)

Although shrinkage formula (5) was not originally proposed using a Bayesian argument, it can be easily
understood and shown to be optimal within a Bayesian framework. Assume that a priori �1; :::; �k are
themselves independent and identically distributed (i.i.d) N.�; �2/ random variables and only stage 1
data are available for the k treatments. Given �i , the distribution of its MLE Xi is O�i j�i � N

�
�i ; �

2
1

�
.

The posterior distribution of �i given O�i is then

�i j O�i �N

�
�2

�21 C �
2
O�i C

�21
�21 C �

2
�;

�21 �
2

�21 C �
2

�
: (7)

L�Li can therefore be viewed as an ‘Empirical Bayes’ estimate for the posterior mean of equation (7),

with NX , Xi and OC substituted for �, O�i and
�2
1

�2
1
C�2

, respectively. NX is clearly an unbiased estimate of �,

but it is perhaps less obvious that OC is an unbiased estimate for
�2
1

�2
1
C�2

, regardless of the true value of

�2. If 1� OC gives a negative value, it is replaced by 0 in the definition of OBC. This ‘plus rule’ has been
shown to further reduce the MSE of the resulting estimate L�Li [14].

3.1. Carreras and Brannath’s approach

Hwang [15] explicitly considered estimation of a single mean parameter from a k component system,
where all k components have normally distributed estimates with a common variance and the single
component is identified by having the largest estimate. This is identical to estimating �s using only
stage 1 data in a two-stage drop-the-losers trial. He proved that when the treatment means follow a
N.�; �2/ prior distribution (for any � and �2 > 0), so that their posterior distributions obey equation
(7) and L�Ls is defined by equation (5) with i D s (i.e. drop-the-losers selection), then the dominance
result MSE

�
L�Ls
�
6MSE.Xs/ holds. Within the context of a two-stage drop-the-loser trial, Carreras and

Brannath use Hwang’s result to show that their estimator for �s at stage two

L�CBs D t L�Ls C .1� t /Ys; for t D
1=�21

1=�21 C 1=�
2
2

D
�22

�21 C �
2
2

(8)

analogously dominates O�s from equation (1). Their result relies on the fact that equation (1) is equivalent
to replacing L�CBs in equation (8) with Xs . This also occurs naturally when the shrinkage factor C is set
to 0.
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3.2. An alternative formulation

Carreras and Brannath’s method for estimating �s following a two-stage drop-the-loser trial can itself
be viewed as a two-stage approach. That is, only the stage 1 data are used in the standard shrinkage
estimator L�Ls , and then, stage 2 data on the selected treatment, Ys , are added separately in equation (8)
afterwards. Although L�CBs has the nice dominance property over the MLE, it is useful to consider
whether it can itself be improved upon. For example, why not use all of the stages 1 and 2 data to
define a single shrinkage estimator? Although this sounds straightforward, it does impose some extra
complications. Despite being only truly concerned with estimation of the top-ranking treatment’s mean,
�s , Carreras and Brannath’s method is defined to find shrinkage estimates given k parameter estimates
with a common variance. This means that we are assuming the posterior distribution for �i implied by
(7) (ignoring the stage 2 data), which enables the use of L�Ls from (5). However, if we use all of the data
(including the stage 2 data Ys), we may assume the following set-up:

�i �N
�
�; �2

�
;

O�i j�i �N.�i ; Wi /; where

O�i DXi ; Wi D �
2
1 if i ¤ s or O�i D

�22Xi C �
2
1Yi

�21 C �
2
2

; Wi D
�21�

2
2

�21 C �
2
2

if i D s.

Further assuming that the �i s are stochastically independent and the O�i s are conditionally independent
given �i , then

�i j O�i �N

�
�2

Wi C �2
O�i C

Wi

Wi C �2
�;

Wi�
2

Wi C �2

�
(9)

becomes the distribution with which to construct shrinkage estimates for the �i s. The fact that Wi is not
constant makes specification of single appropriate shrinkage factor C and estimate for the grand mean
� far less straightforward. In Section 4, we will discuss estimation for this new setting, pointing out its
connection with model fitting in the area of meta-analysis.

4. Estimation for the new target

4.1. Direct estimation

Under the framework of equation (9), if the parameters � and �2 were known, the best estimate for �s
is given by

�2

Ws C �2
O�s C

Ws

Ws C �2
� (10)

Furthermore, with infinite data, it is clear that directly replacing � and �2 in this expression with consis-
tent estimates, O� and O�2, would give equation (10). If one assumes that �2 is known, then the variance
of the posterior distribution in (9) also becomes completely known. It is then possible to show that the
MLE for � is

O��2 D

�
�21�

2
2 C �

2�22
�
Xs C

�
�41 C �

2�21
�
Ys C .k � 1/q NX�s

kqC �41
; (11)

where q D �21�
2
2C�

2
�
�21 C �

2
2

�
and NX�s D 1=.k�1/

P
i¤s Xi . �

2 could then be estimated by maximis-
ing the posterior likelihood of (9) with respect to �2 at � D O��2 . See the Appendix for further details.
We will refer to the estimate for �s obtained by directly plugging in the previous estimates to equation
(10) as O�MPLs . Although this approach is fairly crude, it will be interesting to observe the performance
of O�MPLs compared to several ‘legitimate’ shrinkage estimators that are now introduced.

4.2. Shrinkage estimation: Carter and Rolph’s standard prior approach

Carter and Rolph [16] investigate shrinkage methods for jointly estimating the parameters of a k com-
ponent system with unequal variances, as set up in equation (9). We will use it specifically to yield an
estimate for �s in the context of a two-stage drop-the-loser trial of the form
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OBCs O�s C
�
1� OBCs

	
O�; where OBCs Dmax

n
0; 1� OCs

o
; (12)

so as to approximate equation (10). Although not immediately obvious, it can be shown that their sug-
gested approach is equivalent the following procedure. First define a new weight Vi D .Wi C �2/, and
find the value of �2 that solves Q.�2/D k � 1, where

Q.�2/D

kX
iD1

V �1i
�
O�i � O�.�

2/
�2
; for O�.�2/D

Pk
iD1 V

�1
i O�iPk

iD1 V
�1
i

: (13)

IfQ.�2/D k�1 for a �2 < 0, then the estimate is truncated to 0.Q.�2/ is known in the area of medical
meta-analysis as the ‘generalised’ Q statistic [17, 18], and this estimation method for � is known as the
Paule–Mandel method of moments algorithm [19, 20]. Let the estimate for �2 derived in this manner be
equal to O�2PM . The shrinkage factor for �s is then approximated by

OCs D
.k � 3/Ws�

O�2PM CW
�
Q
�
O�2PM

�
C .k � 3/.Ws �W /

; where W D

kX
iD1

Wi=k: (14)

The form of OCs may appear complicated, but it has the nice property that if the Wi s are all equal, then
it reduces to the original OC given in equation (6). In our context, the Wi s can only approach equality as
�22 !1 or as the stage 2 sample size tends to zero. OCs can be inserted into equation (12) along with the
MLE O�s and grand mean O� given by O�

�
O�2PM

�
, to yield a new shrinkage estimator for �s . We will refer

to this estimator as L��
2

s – the ‘�2’ denoting that this parameter is additionally and explicitly estimated.

4.3. Shrinkage estimation: Carter and Rolph’s proportional prior approach

Carter and Rolph [16] also propose an alternative method for applying shrinkage estimation within the
unequal variance context, which usefully avoids an iterative estimation of �2. It relies on the assumption
of a different prior distribution for the treatment parameters, namely �i �N.�;Wi�2/. This asserts that
the prior uncertainty around each treatment’s mean is directly proportional to the variance of its estimate,
O�i . By replacing �2 with Wi�2 in (9), it is clear that this implies the posterior distribution:

�i j O�i �N

�
�2

1C �2
O�i C

1

1C �2
�;

Wi�
2

.1C �2/

�
; (15)

the mean of which becomes an alternative target to estimate. Because this mean does not depend on Wi ,
it suffices to calculate a single shrinkage factor OC using all of the data. This can then, in conjunction with
an estimate for �, be used to estimate �s via equation (12). Turning first to estimation of �: Under the
proportional prior, the unconditional distribution of the estimates is O�i �N

�
�; �2i .1C �

2/
�
. Therefore,

given weights V �i D �
2
i .1C �

2/, the inverse variance weighted average

O�.�2/D

Pk
iD1 V

�1�
i O�iPk

iD1 V
�1�
i

D O�.0/ 8�2:

O�.0/ is referred to in meta-analysis as the ‘fixed-effects’ estimate for �, as opposed to a ‘random-effects’
estimate, of which O�

�
O�2PM

�
is an example. Of course, when �2 is estimated to be 0, they are equal.

Turning now to estimation of �s via OC : It can easily be shown that Carter and Rolph’s approach in
this context is equivalent to choosing:

OC D OC.0/D
k � 3

Q.0/
; where Q.0/DQ.�2 D 0/: (16)

OC.0/ can be seen as a simple generalisation of the OC in equation (6) for the case where the Wi terms are
not constant.Q.0/ is known as Cochrane’s heterogeneity statistic in meta-analysis and is closely related
to the DerSimonian and Laird estimator for �2, �2DL [20]. For example, when Q.0/ > k � 1,

Q.0/� .k � 1/

Q.0/
D

�2DL
�2DLC N�

2
D I 2
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where N�2 is called the ‘typical’ within study variance and I 2 is a popular measure of ‘inconsistency’
(heterogeneity) among studies in a meta-analysis [21]. We will refer to the resulting estimator (which
utilises OC.0/ and O�.0/) as L�0s .

4.4. Incorporating ‘Limiting Translation’

It is well known that shrinkage methods can perform poorly with respect to specific parameter compo-
nents of a larger system, when the magnitude of the specific parameters are among the most extreme.
For this reason, Efron and Morris [22] suggest the use of a ‘Limiting Translation’ (LT) strategy that
constrains one shrinkage estimator to be within a certain distance of the MLE. Efron [14] and Johnson
[23] suggest a practical choice for this constraint of one unit of the MLE’s standard error. The effect of
applying LT to a single extreme parameter component of a larger system, say a �i from �1; :::; �k , is to
dramatically reduce the i’th contribution to the overall MSE of equation (4), at the expense of increasing
the total value of equation (4) by a small margin.

Although from equation (3), we can see that, at the trial outset, �s is not a single parameter but rather a
weighted mixture of all k fixed parameter values �1; :::; �k , the specific values of those parameters may
mean that �s is consistently an outlier. For example, this would certainly be the case if one treatment
was far more effective than any other because it would monopolise the value of �s . We can apply LT to
the shrinkage estimator L�0s by subtracting O�s from equation (12), constraining the result to be 6

p
Ws

and noting that the definition of OC.0/ in equation (16) becomes

OC.0/Dmin



.k � 3/

Q.0/
;

p
Ws

j O�.0/� O�sj

�
: (17)

This estimator will be referred to as L�0s .LT /. LT versions of all other estimators are clearly possible but
are not considered here.

4.5. Some implications of using L�0s

When deriving the form of L�0s , there is no inherent mathematical difficulty in assuming an N.�;Wi�2/
prior distribution (with varying Wi s) for the �i s because the resulting posterior distribution for �i j O�i
remains in the normal family. However, this shrinkage approach does raise certain philosophical ques-
tions when applied in the context of a two-stage drop-the-loser trial. The primary issue is that we do not
know a priori which treatment will be selected. So, assigning the N.�;Ws�2/ prior to �s (for general
values of � and �2) is only possible after we have observed the first stage data. This violates the principle
of ‘Temporal Coherency’ [24] that states that the prior must be specified in advance and constant in time.
Indeed, this principle is overwhelmingly adhered to by practitioners of Bayesian inference in the inter-
est of maintaining scientific objectivity. A consequence of this temporal violation, which becomes most
apparent in Section 5, is that there is no general way to simulate data consistent with the assumptions of
L�0s . To understand this, suppose we wanted to generate trial data consistent with the shrinkage estimator
L��
2

s instead. We simply start by simulating the �i s from an N.�; �2/ density given values for � and �2,
which can then be used to generate the trial data for stages one and two (X1; :::; Xk; Ys). These data can
then be used to specify the distributions O�i j�i and �i j O�i from equation (9). Clearly, we can not follow
an equivalent data-generating procedure when the �i s come from an N.�;Wi�2/ prior density because,
as previously stated, the prior can only be specified after seeing the data. The single exception is when
�2=0 (implying a degenerate normal prior) in which case the �i s all take the value � with probability 1.
This is equivalent to assuming a fixed effects model with only one unknown parameter, �.

Of course, despite these philosophical concerns, we are still free and able to evaluate L�0s in a simulation
study without exactly mimicking the data-generating process it relies upon.

5. Simulation study

We simulate trial data under a two-stage drop-the-loser design in order to quantify the bias and

MSE of four new estimators
�
O�MPLs ; L��

2

s ; L�
0
s and L�0s .LT /

	
for �s , alongside the existing estimators�

L�CBs ; O�s; Q�s
�
. We use the definition of bias and MSE from equation (3), which can be simply and accu-

rately approximated by averaging over all simulations where, in each single case, a treatment Ti out of
k is ranked top at the end of stage 1 so that �s D �i . We chose four different levels of standard error

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013



J. BOWDEN, W. BRANNATH AND E. GLIMM

associated with the stage 1 and 2 estimates, along with four different scenarios for the six unknown
means:

� Scenario I. True means �N.0; 1/;
� Scenario II: True means all 0;
� Scenario III: One true mean D 1, 5 means equal to 0;
� Scenario IV: One true mean D 1.5, 5 means equal to 0.

The underlying distribution of the treatment parameters is a key factor driving the Bayesian motiva-
tion of any shrinkage estimator. Scenario I is compatible with the prior assumptions of L��

2

s and L�CBs .
Scenario II is compatible with the prior assumptions of all shrinkage estimators, despite being non-
stochastic, because it is equivalent to scenario I with �2 D 0. Carreras and Brannath’s dominance result
for L�CBs is valid for scenarios I and II . Scenarios III and IV are not compatible with any shrinkage
estimator. However, all scenarios are compatible with the assumptions of the UMVCUE, in the sense
that it maintains its unbiasedness for any constellation of parameter values.

We show the results for the 16 simulation scenarios in Table I. All reported figures are based on
50 000 simulations. For each simulation scenario, we show the bias and

p
MSE in units of the MLE

O�ss naive standard error,
p
Ws , to make comparisons easier. We do not show the bias of Q� because it is

always zero, except for sampling error. All of the shrinkage estimators generally outperform the MLE
in terms of bias and

p
MSE, the exception being simulation 15, scenario IV. Carreras and Brannath [10]

show theoretically that the MLE is maximally biased when all treatment means are equal. The results
of scenario II supports this. L�CBs and L��

2

s s performances are fairly equal. L�CBs tends to have a smaller
bias than L��

2

s but a larger
p

MSE. The performance of O�MPL
s varies considerably; it is the best estimator

Table I. Bias and mean squared error (MSE) of the various estimands over the 16 scenarios of a two-stage
drop-the-loser trial with k D 6 initial treatments.

�1; �2
Bias

�
��s
� p

MSE .��s /

values O�s L�CBs L��
2

s L�0s L�0s .LT / O�MPL
s Q�s O�s L�CBs L��

2

s L�0s L�0s .LT / O�
MPL
s

Scenario I: true means �N.0; 1/
1.(1,1) 0.63 0.19 0.22 0.11 0.11 �0.17 1.21 1.12 0.97 0.96 0.95 0.94 0.97
2.(2,1) 0.51 0.18 0.29 0.11 0.11 �0.03 1.08 1.08 0.98 0.97 0.92 0.92 0.91

3.
�
1
2 ; 1

	
0.51 0.13 0.14 0.11 0.11 �0.22 1.35 1.08 0.99 0.99 0.98 0.98 1.04

4.
�
1; 12

	
0.40 0.12 0.17 0.00 0.00 �0.14 1.07 1.05 0.99 0.98 0.98 0.98 1.01

Scenario II: true means all 0
5.(1,1) 0.89 0.35 0.45 0.35 0.36 0.16 1.27 1.23 0.92 0.87 0.79 0.79 0.65
6.(2,1) 0.57 0.22 0.39 0.22 0.23 0.12 1.09 1.10 0.97 0.95 0.83 0.83 0.78

7.
�
1
2 ; 1

	
1.14 0.45 0.48 0.45 0.47 0.17 1.64 1.35 0.86 0.84 0.81 0.82 0.58

8.
�
1; 12

	
0.57 0.22 0.39 0.23 0.23 0.12 1.08 1.09 0.96 0.94 0.83 0.83 0.77

Scenario III: one true meanD 1, 5D 0
9.(1,1) 0.78 0.25 0.32 0.21 0.22 �0.03 1.24 1.19 0.94 0.93 0.88 0.88 0.84
10.(2,1) 0.55 0.20 0.36 0.19 0.19 0.08 1.08 1.09 0.97 0.95 0.85 0.85 0.81

11.
�
1
2 ; 1

	
0.59 �0.07 �0.06 �0.10 �0.09 �0.56 1.40 1.14 1.04 1.05 1.05 1.04 1.20

12.
�
1; 12

	
0.50 0.16 0.28 0.11 0.11 �0.02 1.08 1.08 0.98 0.97 0.93 0.93 0.93

Scenario IV: one true meanD 1.5, 5D 0
13.(1,1) 0.64 0.11 0.16 0.05 0.06 �0.24 1.21 1.14 0.98 0.99 0.98 0.98 1.02
14.(2,1) 0.53 0.19 0.33 0.16 0.16 0.04 1.08 1.08 0.97 0.96 0.88 0.88 0.86

15.
�
1
2 ; 1

	
0.21 �0.40 �0.39 �0.43 �0.43 �0.94 1.17 1.04 1.16 1.17 1.19 1.18 1.49

16.
�
1; 12

	
0.40 0.07 0.16 �0.01 �0.01 �0.16 1.07 1.05 0.99 0.99 1.01 1.01 1.04
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in terms of
p

MSE in 8 out of 16 simulations but is sometimes the worst estimator by far (e.g. simula-
tions 11 and 15). Unlike the other shrinkage estimators, it is also negatively biased in general. L�0s and
L�0s .LT / perform similarly and are consistently the most reliable estimators across the 16 scenarios. It is
perhaps surprising that their similarity extends to scenarios III and IV, where one would suspect the LT
strategy would come into play. This implies that the difference between O�s and L�0s is still almost always
less than

p
Ws .

Figures 1–3 show the results of three further simulation studies. In each case, �1 D �2 D 1. Figure 1
shows the scaled bias and

p
MSE of the estimators for a trial with k D 6 treatments, 5 of which have

true mean 0 and one of which has true mean ı, as ı is varied between 0 and 5. In order to highlight
the strength of the selection effect as a function of ı, we also plot the average value of �s (labelled as
‘EŒ�s�’). One can see that the bias of the shrinkage estimators changes sign as ı increases whereas the
bias of the MLE decreases from 0.8 to 0 as ı increases. Of the shrinkage estimators, L�0s and L�0s .LT /
have the smallest bias and MSE (and are indistinguishable) for ı up to 1.8. For ı 6 2.2, the shrinkage
estimators dominate the MLE in terms of

p
MSE. O�MPL

s has the smallest bias of all for ı 6 1.5 but, by

far, has the largest (negative) bias as ı increases. O�MPL
s also has the smallest

p
MSE of all estimators for

small ı, but as ı increases, its MSE increases dramatically.

Figure 1. Bias and mean squared error (MSE) of the estimators as a function of ı. Key: maximum likelihood
estimate (black), UMVCUE (red), L�CBs (red-dashed), L��

2

s (blue-dashed), L�0s (green dashed), L�0s .LT / (green
dot-dashed) and O�MPL

s (orange dot-dashed).
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Figure 2 shows the results of a simulation for k D 6 treatments with mean parameters drawn from a
N.0; �2/ distribution as �2 is varied between 0 and 4 (the choice of � D 0 is clearly unimportant). The
bias of all shrinkage estimators decreases towards 0 as �2 increases, although this happens most rapidly
for L�0s and L�0s .LT / so that they are the least biased. For values of �2 greater than 1, O�MPL

s is consistently
negatively biased. The

p
MSE of the shrinkage estimators appears to asymptote upwards towards

p
Ws

(towards 1 after scaling) as �2 increases, but remain below that of the MLE in this range.
In an effort to separate L�0s and L�0s .LT /, Figure 3 shows the results of a simulation assuming that the

treatment mean parameters are drawn from a N.0; 1/ distribution, but the number of treatments, k, is
varied between 5 and 20. As k increases, the positive bias exhibited by L�0s decreases, quickly becoming
large and negative. L�CBs and L��

2

s do not to suffer in the same way; their biases asymptote towards 0 as k
increases. L�0s .LT / appears to protect L�0s well from its tendency for negative bias beyond k D 10. From
the right-hand panel, one can see that the price L�0s .LT / pays for this bias protection is an increase in
p

MSE. Interestingly, as k increases beyond 15, even the UMVCUE has a smaller
p

MSE than the MLE.

5.1. Summary of findings

Across all simulations, the performance of L��
2

s is most similar to Carreras and Brannath’s original
estimator L�CBs , but the two estimators that performed the best were L�0s and O�MPLs . However, the rea-
sons for the latter’s apparent success are now qualified. Estimation of the heterogeneity parameter �2 is

Figure 2. Bias and mean squared error (MSE) of the estimators as a function of �2. Key: Same as Figure 1.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Figure 3. Bias and mean squared error (MSE) of the estimators as a function of k. Key: Same as Figure 1.

challenging when its true value is small or the number of treatments is small. When k is small or there
is little apparent variation between treatment effect estimates . O�1; :::; O�k/, the estimate for �2 is often
likely to be at or close to zero, even when its true value is larger. This fact is well documented in the
meta-analysis literature, where quantification of the (between trial) heterogeneity parameter is often not
recommended unless the number of studies is sufficiently large (at least 10). Although poor estimation of
�2 impacts L��

2

s and O�MPLs , the latter is most strongly affected because from equation (10) when �2 D 0,
it reduces via equation (11) to the fixed effects estimate for �, O�.0/. However, when the Paule–Mandel
estimate for �2 is zero, L��

2

s does not shrink to exactly O�.0/ because OCs in equation (14) is not equal

to 0. This explains why O�MPL
s performs so well in Scenario II, Table I, and for small values of ı; �2; k in

Figures 1–3 because in these situations, the true value of �s is always close (or equal) to �. Conversely,
it also explains why it performs badly when �s is truly very different from � (e.g. Scenario IV, Table I,
and large values of ı; �2; k in Figures 1–3).

The LT version of L�0s only helped to improve its performance in simulations when the number of treat-
ments rose above 10, which is unrealistically large for most clinical trials settings. It therefore appears
to be an unnecessary extension in this context. However, it could potentially be implemented in a more
sophisticated manner than we have here. For example, the width of the protection region around the
MLE can be tuned to control its bias and MSE, rather than being fixed at a specific value as we did.
Efron and Morris [22] provide the theoretical framework for doing this in a general shrinkage estimation
context, but their method would need to be altered before application to drop-the-loser designs, in order
to account for the selection mechanism. This is a topic for further research. One could also argue that by
shrinking the prior variance for �s after selection, L�0s already contains and in-built form of LT.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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6. Discussion

In this paper, we have reviewed the shrinkage estimation strategy of Carreras and Brannath [10] for
two-stage drop-the-loser designs. As an extension, we propose that rather than using only the first stage
data, the stage two data should also be used to furnish a single shrinkage equation. Although this strat-
egy replaces two formulae with one, evaluation of this single shrinkage formula is much harder because
the variance of its k estimated components are no longer equal. By incorporating the methods of Carter
and Rolph [16] and Efron and Morris [22], we identified several alternative procedures. The alternative
approaches necessitate either explicit estimation of an additional between treatment arm heterogene-
ity parameter �2 (for O�MPLs and L��

2

s ) or a different (and quite unnatural) prior distribution for the
mean treatment effects (for L�0s /. The new methods tend to outperform Carreras and Brannath’s original
estimator, but unfortunately, no equivalent dominance results could be shown.

From looking at the simulations in totality, the estimator that consistently performs well when �s is
close to and far from the overall mean of all treatments is L�0s . Some may object philosophically to its
use in this context because of concerns over Temporal Coherency. However, as Cox [25] states: There
may be certain situations where it is perfectly right to modify one’s prior beliefs as more data become
available. Furthermore, when one’s prior uncertainty about a parameter is allowed to change over time in
a manner proportional to the (increasing) size of the data sample, then the resulting Bayesian inference
starts to approximate a classical significance test [26]. This is exactly what occurs in the drop-the-loser
context when, at the point of selection, the variance of the prior for �s shrinks from �21 �

2 to Ws�2 – for
example, by a factor of 2 when �21 D �22 . It is therefore pertinent to note that the formula for L�0s can
also be arrived at by applying Lindley’s original equal variance shrinkage formula (5) to the standardised
MLEs, O�i=

p
Wi , [16] because they are sufficient test statistics for the null hypothesis �D 0.

We chose to illustrate the different estimation approaches for trials involving five or more treatments.
Apart from O�MPLs , all of the shrinkage estimators discussed in this paper are only defined for k > 4, as
indicated by the factors of .k � 3/ they contain. However, we can crudely apply them for the k D 3 case
by simply replacing these terms with (k � 2) instead – as performed by Carreras and Brannath [10]. We
repeated the simulations shown in Figures (1) and (2) for k D 3 using this crude fix to see how it affected
the performance of the various estimators. The results (not shown) were qualitatively very similar.

Throughout this paper, we have attempted to stress the link between shrinkage estimation in the
adaptive trial context with that of meta-analysis. We have shown that L�0s , which incorporates the fixed
effects estimate O�.0/, works well as an estimator for �s under drop-the-losers selection. It is therefore
interesting to note the following: In meta-analyses that exhibit substantial amounts of between study
heterogeneity, the random effects estimate for � is known to be unreliable when the heterogeneity is
thought to be driven by dissemination bias (i.e. selective reporting and publication of extreme findings)
[18, 27]. In order to address this, it has been advocated that the fixed effects estimate O�.0/ be used as
the preferred measure of overall effect instead [28, 29]. Thus, despite the fact that in the adaptive trial
setting, the parameter of interest is O�s and in meta-analysis, it is the overall grand mean �, when the
data are affected by some form of selection, Carter and Rolph’s proportional prior approach appears to
be an effective solution to both problems.

Bowden and Glimm [30] have extended the idea of a two-stage drop-loser-trial to allow the best
performing treatment to be identified over multiple stages. The motivation for adding further stages of
selection is that one can markedly increase the probability of selecting the truly best treatment (and
subsequently declaring it effective in a confirmatory analysis), whilst keeping trial costs to a minimum.
Many other multi-arm multi-stage (MAMS) designs incorporating treatment selection rules have also
been proposed with a similar motivation in mind, see for example [31, 32]. Because they ignore the
selection process altogether and use all of the data to define a target posterior distribution or shrinkage
equation, O�MPL

s , L��
2

s and L�0s should be simple to apply in any of these contexts. It is not so obvious to
see how Carreras and Brannath’s original estimator, L�CBs , would generalise to the multi-stage context or
if the dominance results that make it attractive in the two-stage case would remain in intact.

A simple, straightforward translation of the shrinkage estimators proposed here to other multi-arm
trial designs is only immediate if the k treatment effect estimates are independent before selection. If,
as in the MAMS design of Royston et al. [33], the treatment effect summarised time-to-event data in
the form of a log-hazard ratio, then the effect estimates would be intrinsically correlated across treat-
ment arms because of their shared control group data. Extending shrinkage estimation to account for
inter-dependence of this sort is another topic for further research.

Copyright © 2013 John Wiley & Sons, Ltd. Statist. Med. 2013
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Appendix A: Details for the calculation of O�MPL
s

Assume without loss of generality that s D 1, so that �1 is the mean of the best performing treatment.
Let Z D .X1; Y1; X2; :::; Xk; / equal the complete vector of data from the two-stage trial. Under the
framework of equation (9), the model induces the unconditional distribution Z � N(�1kC1,†), where

† D

�
†2 0
0

�
�21 C �

2
�

Ik�1

�
; †2 D

�
�21 C �

2 �2

�2 �22 C �
2

�

Assuming that � and �2 are known, then the best linear prediction of �1j� is given in equation (10),
which is equivalent to

�21�
2
1�C �

2
2 �
2X1C �

2
1 �
2Y1

�21�
2
2 C �

2
1 �
2C �22 �

2

The empirical question is how to estimate � and �2 as accurately as possible. If we were to assume
that �2 is known, then † becomes a completely known matrix. Then, it is easily seen from differen-
tiating a

0

†a C �a
0

1kC1 with respect to a and � that the linear combination a
0

Z , which minimises
Var(a

0

Z /D a
0

†a, is given by

aD
†�11kC1

1
0

kC1
†�11kC1

As this also maximises the multivariate normal likelihood, a
0

Z is also equivalent to the MLE for �.
Because † is diagonal, its inverse is trivially

†�1 D

�
†�12 0

0
�
�21 C �

2
��1

Ik�1

�

with

†�12 D
1

�21�
2
2 C �

2
1 �
2C �22 �

2

�
�22 C �

2 ��2

��2 �21 C �
2

�

Hence, we obtain the estimate for O��2 given in equation (11). We then plug O��2 into the log-likelihood
for �2 given �:

l l.�2/D�
1

2

�
logDet.†/C .Z� O��2/

0

†�1.Z� O��2/C .Z� O��2/
	

D
1

2

�
.k � 1/ log

�
�21 C �

2
�
C log

�
�21�

2
2 C �

2
1 �
2C �22 �

2
�

C.Z� O��2/
0

†�1.Z� O��2/C .Z� O��2/
	

and maximise to obtain an estimate for �2
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A method of multivariate data compression and dimension reduction is established, which is based on
principal components and avoids all overfitting effects. This method allows the use of ‘compressed’
data for exact level-alpha tests of hypotheses on the mean vectors. It is a particularity of the method
that the coefficients of the constructed linear scores depend solely on the residual sums of products
matrix; the empirical means are not necessary to determine the compression. Thus, novel and very
simple confidence regions of the unknown multivariate mean vectors are also obtained. The method
can be combined with strategies of selecting variables. Furthermore, multiple testing procedures are
derived, which serve for finding all sets of variables with deviations from the null hypothesis. The
methods are evaluated by computer simulations.

Keywords: Multivariate test; Multivariate confidence region; Exact test; Principal components
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1. Introduction

Principal components serve for data compression and dimension reduction. They have great
importance for the representation and interpretation of measurements [1, 2]. However, prin-
cipal components analysis is usually considered a heuristic method, a method of descriptive
statistics. In most cases, it is not clear whether trustworthy inference regarding the structure
of the mean values can be performed after the compression into principal components. This
paper is devoted to parametric multivariate decisions, which utilize principal components in
a mathematically rigorous way.

Some advance has been made since 1995 by the derivation of the so-called spherical tests
[3–5]. To perform these tests, the given multivariate data vectors x′ = (x1 x2 · · · xp) are
transformed into vectors z′ = x′D of a smaller dimension q by multiplication from the right
with a p × q weight matrix D. Here, D can have a fixed value but, more generally, D may be any
function of the ‘total sums of products matrix’ corresponding to the test problem considered.
For example, if X is an n × p sample matrix of n independent rows x′

(j) (j = 1, . . . , n) with
the p-dimensional normal distribution x′

(j) ∼ Np(μ′, �) and the null hypothesis μ′ = μ′
0
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208 J. Läuter and E. Glimm

should be examined, then W = ∑n
j=1(x(j) − μ0)(x(j) − μ0)

′ is the total sums of products
matrix referring to μ0. One can apply the data compression Z = XD by the q first principal
components using the weight matrix D = (d1, . . . , dq), where d1, . . . , dq are the eigenvectors
with the q largest eigenvalues λ1, . . . , λq of the eigenvalue problem Wd = dλ. Under the null
hypothesis μ′ = μ′

0, the ‘q-dimensional’ Hotelling statistic

T 2 = n(x̄ − μ0)
′D(D′GD)−1D′(x̄ − μ0) (1)

is exactly distributed according to (q/(n − q))F (q, n − q). Here, x̄′ = (1/n)
∑n

j=1 x′
(j) is the

mean vector and G = ∑n
j=1(x(j) − x̄)(x(j) − x̄)′ is the within-population sums of products

matrix. Thus, exact inference for the p-dimensional mean vector μ can be carried out, only
using the q principal components.

It is remarkable that the spherical tests work with the F distribution or with the other dis-
tributions from classical multivariate analysis (like Wilks’ Lambda) in spite of the dimension
reduction and that no α adjustment is necessary as in the well-known multiple testing pro-
cedures. The spherical tests prove to be very effective in many applications, for example, in
clinical trials with multiple endpoints or in high-dimensional gene expression analysis based
on array technology [6–10]. However, this strategy has the obvious drawback that the weight
matrix D and the derived principal components depend on the special null hypothesis (the
value of μ0) which is being considered. The compression from the data matrix X into princi-
pal components must be performed anew for each given null hypothesis. This is unsuitable,
in particular, if confidence regions for multivariate parameters are desired.

To obtain invariance with respect to different null hypotheses, we will now consider
principal components, which result from the residual sums of products matrix G. The com-
pression Z = XDG with the weight matrix DG = (dG1, . . . , dGq) is used, where dG1, . . . , dGq

are the eigenvectors of the eigenvalue problem GdG = dGλG to the q largest eigenvalues
λG1, . . . , λGq . This means, GDG = DG�G with �G being the diagonal matrix of the eigen-
values λG1, . . . , λGq . We will see that these sample-based principal components are an
adequate tool to transform a multivariate testing problem to a smaller dimension. Thus,
the principal components acquire a new important role in addition to their ‘naive’ use for
computational data compression [11, 12].

2. Theorem on the principal components inference

Consider a general multivariate linear testing problem with the n × p data matrix

X =
⎛
⎜⎝

x′
(1)

...

x′
(n)

⎞
⎟⎠ ∼ Nn×p(M, In ⊗ �) (2)

consisting of n independent p-dimensional normally distributed row vectors x′
(j) (j =

1, . . . , n). Here In is the n × n identity matrix and the symbol ⊗ denotes the Kronecker
product. We would like to test the structure of the n × p matrix M of the mean. � is the
unknown covariance matrix of the p variables.

M is supposed to have a linear model structure: we assume that there is an n × fG model
matrix EG with E′

GEG = IfG
and E′

GM = 0. Then the residuals of this model are given by

E′
GX ∼ NfG×p(0, IfG

⊗ �), (3)
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Theorem on principal components inference 209

and the corresponding residual sums of products matrix is

G = X′EGE′
GX ∼ Wp(�, fG), (4)

where Wp denotes the Wishart distribution.
Furthermore, a null hypothesis is defined: we assume that there exists an n × fH matrix EH

with E′
H EH = IfH

and E′
H EG = 0. The null hypothesis puts an additional condition on the

matrix M, namely E′
H M = �0. Here, �0 has a fixed given value. Under this null hypothesis,

E′
H X − �0 ∼ NfH ×p(0, IfH

⊗ �), (5)

and the hypothesis sums of products matrix

H = (E′
H X − �0)

′(E′
H X − �0) ∼ Wp(�, fH ) (6)

is obtained. G and H are stochastically independent.

THEOREM 1 Assume a number of variables p and a number of principal components
q (1 ≤ q ≤ p). Let G and H be two independent Wishart distributed p × p matrices,

G ∼ Wp(�, fG), H ∼ Wp(�, fH ) (� unknown, rank(�) ≥ q, fG ≥ q, fH ≥ 1). (7)

Let DG be the p × q eigenvector matrix and �G be the q × q diagonal eigenvalue matrix of
the eigenvalue problem

GDG = DG�G (8)

pertaining to the q largest eigenvalues λG1, . . . , λGq (D′
GDG = Iq, λG1 ≥ λG2 ≥ · · · ).

Then, the determinant statistic

LambdaG = |D′
GGDG|

|D′
G(G + H)DG| = |�G|

|�G + D′
GHDG| (9)

is stochastically not smaller thanWilks’Lambda distribution�(q, fH , fG),which corresponds
to q variables and fH , fG degrees of freedom of the hypothesis and the residuals, respectively,
see ref. [13, p. 299]. This means

Pr(LambdaG ≤ �α(q, fH , fG)) ≤ α for every α ∈ (0, 1), (10)

where �α(q, fH , fG) is the α quantile of Wilks’ Lambda.

Proof In addition to the eigenvalue problem (8), we consider the corresponding eigenvalue
problem with the total sums of products matrix W = G + H:

WD = D�. (11)

Here, D is the p × q eigenvector matrix and � is the q × q diagonal eigenvalue matrix of
W (D′D = Iq, λ1 ≥ λ2 ≥ · · · ).
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210 J. Läuter and E. Glimm

An important property of the eigenvectors is that they maximize certain determinants:

|�G| = ∣∣D′
GGDG

∣∣ = max
Y

∣∣Y′GY
∣∣ , |�| = ∣∣D′WD

∣∣ = max
Y

∣∣Y′WY
∣∣ , (12)

where Y goes through all p × q matrices with Y′Y = Iq ; see ref. [14, p. 65]. Therefore,
∣∣D′GD

∣∣ ≤ ∣∣D′
GGDG

∣∣ , ∣∣D′
G(H + G)DG

∣∣ ≤ ∣∣D′(H + G)D
∣∣ . (13)

Thus,

LambdaG =
∣∣D′

GGDG

∣∣
∣∣D′

G(H + G)DG

∣∣ ≥
∣∣D′GD

∣∣
|D′(H + G)D| = Lambda. (14)

The Lambda ratio on the right-hand side is distributed according to Wilks’Lambda distribution
�(q, fH , fG). This is a consequence of the general theorems in ref. [5] on spherical tests,
because D is a function of the total sums of products matrix W. We see that LambdaG is
pointwisely not smaller than Lambda. Hence, the theorem is proved. �

Theorem 1 facilitates the application of Wilks’ Lambda test to the compressed
q-dimensional data Z = XDG. A significant value LambdaG ≤ �α(q, fH , fG) indicates that
the p-dimensional null hypothesis E′

H M = �0 has to be rejected at significance level α. In
contrast to the spherical tests derived since 1995, the weight matrix does not depend on the
special null hypothesis. The compression of the data matrix X through the weight matrix DG is
universally valid in the linear model defined by EG for all null hypotheses. The theorem shows
that the search of the combinations of variables which have ‘maximal residual variances’ is
compatible with the multivariate test. However, one can also see that the data compression
depends on the scales of the variables. Changes in the scale of a variable also change the
weight matrix DG. We briefly comment on this in section 6.

The test based on LambdaG is conservative, that is, its error of first kind generally is smaller
than the given value α. However, in situations with highly correlated variables, the deviation
from the given value α is slight.

As far as we could recognize, Theorem 1 cannot be generalized to include other well-known
multivariate test statistics, such as Hotelling’s T 2.

If the null hypothesis has only one degree of freedom (fH = 1) or if only one principal
component is applied (q = 1), then Fisher’s F distribution can be used instead of Wilks’
Lambda distribution. This is detailed in the following corollaries.

COROLLARY 1 Under the assumption of Theorem 1 and if the null hypothesis has only one
degree of freedom, fH = 1, the distribution of the statistic

FG = fG − q + 1

q
tr

(
(D′

GHDG)(D′
GGDG)−1

) = fG − q + 1

q
tr

(
(D′

GHDG)�−1
G

)
(15)

is stochastically not larger than Fisher’s F distribution F(q, fG − q + 1), that is,

Pr(FG ≥ F1−α(q, fG − q + 1)) ≤ α for every α ∈ (0, 1), (16)

where F1−α(q, fG − q + 1) is the (1 − α) quantile of Fisher’s F distribution.

COROLLARY 2 Under the assumption of Theorem 1 and if only one principal component is
used, q = 1, the distribution of the statistic

FG = fG

fH

d′
G1HdG1

d′
G1GdG1

= fG

fH

d′
G1HdG1

λG1
(17)

is stochastically not larger than Fisher’s F distribution F(fH , fG).
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Theorem on principal components inference 211

These corollaries can be proved from Theorem 1 by application of the well-known relations
between Wilks’ Lambda and Fisher’s F distribution in the cases of fH = 1 or q = 1.

Application We consider the one-sample test of dimension p. The given data matrix is
X ∼ Nn×p(1nμ

′, In ⊗ �), where 1n represents the n × 1 vector consisting of ones only. The
corresponding residual sums of products matrix is

G =
n∑

j=1

(x(j) − x̄)(x(j) − x̄)′ = (X − X̄)′(X − X̄) ∼ Wp(�, n − 1) (18)

with x̄′ = 1/n
∑n

j=1 x′
(j), X̄ = 1nx̄′. The null hypothesis μ′ = μ′

0 should be tested. Thus, we
obtain the hypothesis sums of products matrix

H = (X̄ − M0)
′(X̄ − M0) = (x̄ − μ0)1

′
n1n(x̄ − μ0)

′ = n(x̄ − μ0)(x̄ − μ0)
′, (19)

where M0 = 1nμ
′
0. Under the null hypothesis, H ∼ Wp(�, 1).

In the case that only one principal component is used (q = 1), Corollaries 1 and 2 provide
the statistic

FG = (n − 1)n

(
(x̄ − μ0)

′dG1
)2

λG1
, (20)

where dG1 is the eigenvector from the eigenvalue problem GdG = dGλG pertaining to the
largest eigenvalue λG1 with d′

G1dG1 = 1. According to the corollaries, the distribution of FG

under the null hypothesis is not larger than the F distribution F(1, n − 1). Consequently, the
test outcome FG ≥ F1−α(1, n − 1) results in rejection of the p-dimensional null hypothesis.
Once more, we emphasize that the weight vector dG1 does not depend on the special value μ0.

In the following, some simulations of the F test (20) are presented. The simulations refer
to a symmetric parameter structure of four variables, that is, four variables with equal means,
equal variances and equal correlation coefficients between them. The null and the alternative
hypotheses are also assumed to be symmetric:

μ′ = (
μ μ μ μ

)
, μ′

0 = (
μ0 μ0 μ0 μ0

)
, � =

⎛
⎜⎜⎝

1 ρ ρ ρ

ρ 1 ρ ρ

ρ ρ 1 ρ

ρ ρ ρ 1

⎞
⎟⎟⎠ . (21)

We use samples of size n = 12 and a nominal significance level of α = 0.05. Table 1 shows
the incidence of rejecting the null hypothesis for the correlations ρ = 0.20, 0.40, 0.60, 0.90.
These values are presented for �2 = (μ − μ0)

′�−1(μ − μ0) = 1 and for the ‘null condition’
�2 = 0. The latter illustrate the extent of conservatism of this test, that is, they show to what
extent the test really exhausts the nominal significance level α = 0.05. The test has been
replicated in the simulations 100,000 times in each case.

The classical multivariate test, Wilks’ Lambda test, has power 0.5316 for �2 = 1. Hence,
the FG test (20) is superior to the classical test with higher correlations, even though it does
not exhaust the given significance level α.

Table 1. Power values and real level of significance for α = 0.05 and for
different correlations ρ.

Correlation ρ 0.20 0.40 0.60 0.90
Probability of rejection for �2 = 1 0.5326 0.7851 0.8598 0.8796
Probability of rejection for �2 = 0 0.0091 0.0214 0.0364 0.0465
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212 J. Läuter and E. Glimm

3. Principal components inference combined with selection of variables

The data compression method of section 2 may be applied in conjunction with a selection of
variables. We will use again the maximization of the determinants

∣∣Y′GY
∣∣ and

∣∣Y′(G + H)Y
∣∣,

but with other restrictions on the arguments Y.
We will assume an arbitrary set M of subsets m of all p variables (m = m1, m2, m3, . . .).

Each subset (or part) m is characterized by the indices i1, . . . , ip(m) of the corresponding
variables, m = part{i1, . . . , ip(m)}, where p(m) denotes the number of variables contained
in m. For example, we can take the p subsets of single variables (with p(m) = 1), all
subsets m of two variables each (with p(m) = 2), the p ascending subsets m1 = part{1},
m2 = part{1, 2}, . . . , mp = part{1, . . . , p} (with p(m) = 1 to p(m) = p), or all 2p − 1 subsets
m consisting of at least one variable (with 1 ≤ p(m) ≤ p). In our strategy, principal compo-
nents are calculated for each of the given subsets m1, m2, m3, . . . of variables. Subsequently,
the subset with principal components revealing the ‘highest residual variance’ is chosen for
the multivariate test. In many applications, this method leads to a valuable subset of variables
and to a high power of the test.

Let m be a fixed subset of variables and q a fixed number of principal components with
1 ≤ q ≤ p(m). Then corresponding p × q weight matrices Y(m) are defined. These matrices
consist of p(m) ‘essential’ rows, assigned to the variables of m, and of p − p(m) ‘unessential’
rows of zeros only. From all matrices Y(m) of this form, D(m)

G = (d(m)
G1 , . . . , d(m)

Gq ) is the eigen-

vector matrix whose columns d(m)
G1 , . . . , d(m)

Gq are just the solutions of the eigenvalue problem

G(m)d(m)
G = d(m)

G λ
(m)
G pertaining to the q largest eigenvalues λ

(m)
G1 , . . . , λ

(m)
Gq in decreasing order.

Here, G(m) is the p × p sums of products matrix obtained from G by setting to zero all rows
and columns with an index outside m. It is easy to show that D(m)′

G GD(m)
G = D(m)′

G D(m)
G �

(m)
G

holds, where �
(m)
G is the q × q diagonal matrix of the eigenvalues λ

(m)
G1 , . . . , λ

(m)
Gq .

THEOREM 2 Assume several subsets m = m1, m2, m3, . . . of variables with the sizes p(m) and
a number of principal components q with 1 ≤ q ≤ p(m) ≤ p for all m. Let G and H be two
independent Wishart distributed p × p matrices,

G ∼ Wp(�, fG), H ∼ Wp(�, fH ) (fG ≥ q, fH ≥ 1), (22)

and let all p(m) × p(m) submatrices of � corresponding to the subsets m have a rank larger
than or equal to q. Let, for any m, D(m)

G be the p × q eigenvector matrix and �
(m)
G the q × q

diagonal eigenvalue matrix of the eigenvalue problem

G(m)D(m)
G = D(m)

G �
(m)
G (23)

pertaining to the q largest eigenvalues λ
(m)
G1 , . . . , λ

(m)
Gq , where the special normalization

condition

D(m)′
G D(m)

G = 1√
p(m)

Iq (24)

is applied. Select from all given subsets of variables the subset m = mopt with the maximum
value of the assessment criterion

O(m) =
∣∣∣D(m)′

G GD(m)
G

∣∣∣ = 1(
p(m)

)q/2

∣∣∣�(m)
G

∣∣∣ (25)

as the ‘optimum subset’, and let Dopt
G = D

(mopt)

G be the corresponding ‘optimum weight matrix’.
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Theorem on principal components inference 213

Then, the distribution of the statistic

LambdaG =
∣∣∣Dopt ′

G GDopt
G

∣∣∣
∣∣∣Dopt ′

G (G + H)Dopt
G

∣∣∣
(26)

is stochastically not smaller than Wilks’ Lambda distribution �(q, fH , fG).

Proof According to the preceding construction, Dopt
G is the p × q weight matrix with

∣∣∣Dopt ′
G GDopt

G

∣∣∣ = max
Y

∣∣Y′GY
∣∣ , (27)

where Y goes through all p × q matrices having the restrictions, first, to correspond to one
of the subsets m and, secondly, to satisfy the normalization Y′Y = (1/

√
p(m))Iq . Just as

in Theorem 1, we also consider the analogous maximization problem for the total sums of
products matrix W = G + H. The optimum solution Dopt is obtained from the eigenvectors
of the p × p matrices W(m), with zeros in the rows and columns not pertaining to m. Dopt has
the property ∣∣Dopt ′(G + H)Dopt

∣∣ = max
Y

∣∣Y′(G + H)Y
∣∣ , (28)

where Y still satisfies the same restrictions. Then, of course,

∣∣Dopt′GDopt
∣∣ ≤

∣∣∣Dopt ′
G GDopt

G

∣∣∣ and
∣∣∣Dopt ′

G (H + G)Dopt
G

∣∣∣ ≤ ∣∣Dopt ′(H + G)Dopt
∣∣ , (29)

and therefore

LambdaG =
∣∣∣Dopt ′

G GDopt
G

∣∣∣
∣∣∣Dopt ′

G (H + G)Dopt
G

∣∣∣
≥

∣∣Dopt ′GDopt
∣∣

|Dopt ′(H + G)Dopt| = Lambda. (30)

For an arbitrary fixed set of subsets m1, m2, m3, . . . , the optimum weight matrix Dopt is a
function of the total sums of products matrix G + H. Therefore, the general theorems on
spherical tests [5] yield that the Lambda ratio on the right-hand side of equation (30) has
exactly Wilks’ Lambda distribution �(q, fH , fG). Thus, the inequality LambdaG ≥ Lambda
verifies Theorem 2. �

It should be noted that the normalization condition (24) is not imperative for the correctness
of Theorem 2. Any condition D(m) ′

G D(m)
G = c(m)Iq with any value c(m) > 0 depending on the

subsets m could be used. The normalization coefficients c(m) = 1/
√

p(m) are intended to
avoid a trivial preference for extremely large or extremely small subsets of variables. For
example, the coefficients c(m) = 1 would particularly emphasize subsets with many variables
and c(m) = (1/p(m)) would prefer subsets of small sizes p(m).

Theorem 2 does not only provide a result about the p-dimensional test of the means, but also
a characterization of the identified subset of variables. The following Addendum shows that
the randomly selected subset mopt can be regarded as relevant with respect to the deviations
from the null hypothesis if significance is attained. The Addendum does not require that the
null hypothesis is fulfilled for the parameters of all p variables.

ADDENDUM TO THEOREM 2 Consider the assumptions from Theorem 2 with the exception of
the distribution of the hypothesis sums of products matrix H. We now assume a fixed subset
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214 J. Läuter and E. Glimm

of variables m0 with p0 variables, which meets the true null hypothesis. In practice, we do
not need to know m0. H is supposed to be a random positive semidefinite p × p matrix being
independent of G and having the Wishart distribution

H(m0) ∼ Wp(�(m0), fH ), (31)

where H(m0) and �(m0) are the p × p matrices obtained from H and �, respectively, by setting
to zero all rows and columns not pertaining to m0.

If the ‘optimum subset’ mopt and the ‘optimum weight matrix’ Dopt
G are derived as in

Theorem 2 under these modified conditions, then the probability of mopt ⊆ m0 in conjunction
with significance LambdaG ≤ �α(q, fH , fG) is at most α.

Proof It is important to note that the values of D(m)
G ,

∣∣∣D(m) ′
G GD(m)

G

∣∣∣ and

Lambda(m)
G =

∣∣∣D(m) ′
G GD(m)

G

∣∣∣
∣∣∣D(m) ′

G (G + H)D(m)
G

∣∣∣

are determined exclusively by the variables pertaining to m.
At first, consider only those subsets m of variables that are contained in m0. Then, applying

Theorem 2 yields an optimum subset mopt ⊆ m0 and an optimum weight matrix Dopt
G such that

the statistic LambdaG is significant with probability α, at most. Now, if all given subsets m

are taken into account, the maximum of
∣∣∣D(m) ′

G GD(m)
G

∣∣∣ might of course be reached for some

subset m = mopt that is not contained in m0. As this possibility reduces the probability of
selecting mopt ⊆ m0 and then obtaining significance, the Addendum is also proved in the
general case. �

As the consequence of the Addendum, a resulting significance at the identified subset of
variables mopt is interpreted as indication of deviations from the null hypothesis in this set
and, therefore, in all supersets of mopt. To attain significance of any set of variables, all subsets
m contained in it can be utilized. Nevertheless, α adjustment like Bonferroni or Bonferroni–
Holm is not necessary. The method exactly keeps the ‘multiple level’α. Theorem 2 establishes
a new method for the selection of variables, which is based solely on the residual sums of
products matrix G. Knowledge of the mean values is not required.

A particularly interesting case considers only the p single-element sets m1, . . . , mp

corresponding to the variables 1 to p. We have q = 1, and according to Theorem 2, the index
i = iopt with the maximum value of O(mi) = d(mi) ′

G1 Gd(mi)
G1 = gii is determined. Then the test

statistic

LambdaG = giopt iopt

giopt iopt + hiopt iopt

or FG = fG

fH

hiopt iopt

giopt iopt

, (32)

respectively, is calculated. Thus, the p-dimensional test is performed with the formula from a
univariate test. The transition from dimension p to dimension 1 is managed simply by selecting
the variable i with the largest residual sum of squares gii . This alone suffices to render any
α adjustment superfluous. If significance is attained, that is LambdaG ≤ �α(1, fH , fG) or
FG ≥ F1−α(fH , fG), variable iopt can be regarded as relevant. This principle is also used in
section 5 for the construction of a multiple test procedure that identifies all relevant variables.
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Theorem on principal components inference 215

Application. To illustrate the application of Theorem 2, we consider again the one-sample
problem with observations X ∼ Nn×p(1nμ

′, In ⊗ �) and the null hypothesis μ′ = μ′
0. Then,

the matrices G and H are determined by equations (18) and (19). In the case of one principal
component (q = 1), the optimal subset mopt can be selected from the given setsm1, m2, m3, . . .

by Theorem 2 and the statistic

FG = (n − 1)n

(
(x̄ − μ0)

′dopt
G1

)2

dopt ′
G1 Gdopt

G1

(33)

is determined. If FG ≥ F1−α(1, n − 1), we conclude that μi 
= μ0i somewhere within mopt.
We will present some corresponding simulation results. The simulations are done for four

variables and a special parameter structure, where the first two variables contribute gen-
uine information and the other two represent ‘independent noise’. In reality, it is of course
unknown whether such irrelevant variables exist and at which positions they are. The structures
considered here are

μ′ = μ
(
1 1 0 0

)
, μ′

0 = μ0
(
1 1 0 0

)
, (34)

� =

⎛
⎜⎜⎝

1 ρ 0 0
ρ 1 0 0
0 0 1 − ρ 0
0 0 0 1 − ρ

⎞
⎟⎟⎠ = (1 − ρ)I4 + ρ

⎛
⎜⎜⎝

1
1
0
0

⎞
⎟⎟⎠

(
1 1 0 0

)
, (35)

where ρ is the correlation coefficient of the first two variables and 1 − ρ is the ‘specific
variance’ of each variable in the four-dimensional ‘one-factor structure’. It is desired that the
relevant block part{1, 2} is correctly identified.

Just as in section 2, we consider n = 12 and α = 0.05. Table 2 contains the probabilities of
identification of the blocks part{1, 2} and part{3, 4} if all 15 possible subsets of variables m1 =
part{1}, m2 = part{2}, . . . , m15 = part{1, 2, 3, 4} are used. The block part{1, 2} is regarded
as ‘correctly identified’ if mopt = part{1}, mopt = part{2} or mopt = part{1, 2} are selected
and, additionally, significance is attained. The selection is ‘wrong’ if mopt = part{3}, mopt =
part{4} or mopt = part{3, 4} are chosen in connection with significance. For the correlation,
we consider ρ = 0.20, 0.40, 0.60, 0.90. The Mahalanobis distance is fixed as

�2 = (μ − μ0)
′�−1(μ − μ0) = 2(μ − μ0)

2

1 + ρ
= 1. (36)

Table 3 gives the probabilities that arise from restricting attention to the four single-element
sets m1 = part{1}, . . . , m4 = part{4}. In this case, only univariate criteria are used in the
selection procedure (see (32)). Table 3 shows that for large correlations ρ, the relevant block
part{1, 2} is not as well recognized as in case of table 2.

In addition, a comparison to the well-known Bonferroni method based on an α adjustment
is performed in table 3. The Bonferroni method checks the ‘best’ single variable with a signifi-
cance level of α/4. It turns out to be superior to the method based on Theorem 2 in identifying

Table 2. Probability of recognition of the relevant and irrelevant subsets of variables
(�2{1, 2} = 1, �2{3, 4} = 0, with all 15 subsets, α = 0.05).

Correlation ρ 0.20 0.40 0.60 0.90
Probability of significance with mopt ⊆ part{1, 2} 0.3546 0.5578 0.7488 0.8802
Probability of significance with mopt ⊆ part{3, 4} 0.0030 0.0011 0.0001 0.0000
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216 J. Läuter and E. Glimm

Table 3. Probability of recognition of the relevant and irrelevant subsets of variables
(�2{1, 2} = 1, �2{3, 4} = 0, with four subsets of the single variables, α = 0.05).

Correlation ρ 0.20 0.40 0.60 0.90
Probability of significance with mopt ⊆ part{1, 2} 0.3701 0.5545 0.7143 0.8446
Probability of significance with mopt ⊆ part{3, 4} 0.0035 0.0013 0.0002 0.0000
Probability of Bonferroni’s significance in part{1, 2} 0.6405 0.6898 0.7178 0.7237
Probability of Bonferroni’s significance in part{3, 4} 0.0132 0.0121 0.0108 0.0109

part{1, 2} if the correlation is small. However, it is inferior if the correlation is large. Of course,
the selection method of Bonferroni’s method is not only based on the within-population sums
of products. Hence, this comparison is of minor importance for the data compression treated
in this paper. The number of simulation runs for tables 2 and 3 was once again 100,000.

4. Confidence regions of the unknown mean vectors

It is obvious that the tests from sections 2 and 3 can be used to derive confidence regions.
Under the assumptions of Theorem 1, we have

LambdaG > �α(q, fH , fG) (37)

with a probability of at least 1 − α. Hence, the values �0 = E′
H M0 that fulfill

|�G|∣∣�G + D′
GHDG

∣∣ > �α(q, fH , fG) with H = (E′
H X − �0)

′(E′
H X − �0) (38)

define a confidence region for the unknown parameter � = E′
H M at confidence level 1 − α.

Note that the calculation of the confidence region in a concrete application is simplified by
the fact that �G and DG are constants for a given fixed sample X. If we vary �0, then H is the
only term in the inequality (38) that changes.

The confidence region has a particularly simple form in the case of fH = 1 (Corollary 1). In
this case, we have H = hh′, where h′ = x′

H − δ′
0 with x′

H = E′
H X, δ′

0 = �0 = E′
H M0. Then,

the confidence region (38) is characterized by

fG − q + 1

q
(xH − δ0)

′DG�−1
G D′

G(xH − δ0) < F1−α(q, fG − q + 1). (39)

In the p-dimensional space, δ′
0 is in the interior of an elliptic cylinder with center x′

H . If, in
addition, q = 1 is assumed, the condition simplifies to

fG

λG1

(
(xH − δ0)

′dG1
)2

< F1−α(1, fG) (40)

or

x′
H dG1 −

√
λG1F1−α(1, fG)

fG

< δ′
0dG1 < x′

H dG1 +
√

λG1F1−α(1, fG)

fG

. (41)

This confidence region for the parameter δ′ = E′
H M is a ‘hyperdisk’, that is, a region limited

by two parallel hyperplanes. Of course, this is an unbounded region in the p-dimensional
space, but with respect to the most informative directions in this space, the region is very flat.
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Theorem on principal components inference 217

This special case illustrates the fundamental difference between our approach and Hotelling’s
classical elliptical confidence region, which is determined by

fG − p + 1

p
(xH − δ0)

′G−1(xH − δ0) < F1−α(p, fG − p + 1). (42)

Let us consider a sample of size n from the population Np(μ, �).According to equation (41),
the limits of the confidence region for the unknown mean parameter δ′ = √

nμ′ are given by

√
nx̄′dG1 −

√
λG1F1−α(1, n − 1)

n − 1
<

√
nμ′

0dG1 <
√

nx̄′dG1 +
√

λG1F1−α(1, n − 1)

n − 1
. (43)

If, for example, the 8 × 3 sample matrix

X =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0.37 1.28 0.69
1.03 1.29 0.95
0.24 1.92 1.21
1.29 2.83 2.58

−1.30 −0.03 −0.36
0.49 0.50 0.84
0.93 0.19 0.64
0.73 0.82 1.93

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, x̄′ = (
0.47 1.10 1.06

)
(44)

has been observed, a confidence region at level 1 − α = 0.95 is obtained by

√
8x̄′dG1 −

√
λG1 · 5.59

7
<

√
8μ′

0dG1 <
√

8x̄′dG1 +
√

λG1 · 5.59

7
, (45)

that is,

1.21 = 4.43 − 3.22 < 1.35μ01 + 1.76μ02 + 1.75μ03 < 4.43 + 3.22 = 7.65. (46)

Obviously, there is no individual limit on each component of μ0. Rather, constraints apply to
a certain linear combination, which is derived from the within-population sums of products
matrix G.

In a corresponding way, Theorem 2 can be used to derive confidence regions. In this
case, the calculation of the confidence region involves a selection of variables. According
to equation (26), all values �0 = E′

H M0 yielding

∣∣∣Dopt ′
G GDopt

G

∣∣∣
∣∣∣Dopt ′

G (G + H)Dopt
G

∣∣∣
> �α(q, fH , fG) (47)

belong to a confidence region for � = E′
H M.

Suppose that this method is applied to the sets of individual variables m1 = part{1}, . . . ,
mp = part{p} with q = 1. Then, the inequality characterizing the confidence region can be
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written according to equation (32) as

fG

fH

hiopt iopt

giopt iopt

< F1−α(fH , fG), (48)

where iopt is the index of the variable with the largest gii (i = 1, . . . , p). If we consider the
estimation of the mean vector μ from Np(μ, �), this means that

(n − 1)n
(x̄iopt − μ0iopt )

2

giopt iopt

< F1−α(1, n − 1) (49)

or

x̄iopt −
√

giopt iopt F1−α(1, n − 1)

(n − 1)n
< μ0iopt < x̄iopt +

√
giopt iopt F1−α(1, n − 1)

(n − 1)n
. (50)

For the numerical example (44), this yields iopt = 2 and the 0.95 confidence region

0.31 = 1.10 − 0.79 < μ02 < 1.10 + 0.79 = 1.89. (51)

In this special case, one of the variables is selected, and a usual confidence interval is
determined for it.

5. Multiple procedure for finding several relevant sets of variables

Theorem 2 can also be applied to derive a multiple procedure for recognizing all subsets of
variables that deviate from a fixed null hypothesis E′

H M = �0. Once again, let us consider
several subsets of variables m1, m2, . . . . Following Theorem 2, these subsets are first sorted
in decreasing sequence according to the corresponding values of |D(m) ′

G GD(m)
G |, then they are

tested in the resulting order (that is, LambdaG ≤ �α(q, fH , fG) is checked successively). As
soon as the first non-significant result occurs, the procedure is terminated. All sets obtained
up to that point are regarded as relevant.

This procedure indeed keeps the multiple level α. To show this, assume that the null hypoth-
esis is true for a set m0. According to Theorem 2, the first subset m in the succession satisfying
m ⊆ m0 yields significance with a probability of α, at most. This is sufficient for the proof.

We are now applying this procedure to example (44) with the null hypothesis μ = 0 and the
three subsets part{1}, part{2}, part{3}. First of all, the subsets are sorted according to the sums
of squares gii . Subsequently, the steps of the multiple procedure for α = 0.05 are performed:

part{2}: g22 = 6.28, FG = 10.82 ≥ 5.59 (significant),

part{3}: g33 = 5.49, FG = 11.45 ≥ 5.59 (significant),

part{1}: g11 = 4.47, FG = 2.78 < 5.59 (not significant, procedure stops).

(52)

However, this procedure is probably not the best one to find the non-null subsets of variables
in a situation, where the non-centrality �0 has a fixed value. Kropf [8] has proposed a similar
procedure in which the p variables are sorted by the total sums of squares wii = gii + hii

(i = 1, . . . , p). Then, the sample means influence the order of the variables and thus the
power can be increased [9]. The method of principal components inference presented in this
paper is more adequate to applications with uncertain values of �0.
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6. Conclusion

In this paper, some theorems on principal components inference are presented which open new
possibilities of multivariate data compression, of multivariate tests without overfitting effects,
of confidence regions for the multivariate means, of model choice and of multiple procedures
for finding all relevant sets of variables.

Unfortunately, our method of principle components inference crucially depends on the
measurement scales of the given variables. The power of the dimension-reduced tests treated
here and the corresponding confidence regions are influenced by a change in the scales. The
Theorems 1 and 2 are primarily appropriate if all variables have been measured on nearly the
same scale. In a factorial model, it might be desirable to have identical specific variances (for
example, see the one-factor structure of equations (34) and (35)). If these standard conditions
are not met, they may sometimes be reached by a transformation of the original data provided
the corresponding coefficients are known from previous independent experiments. If two or
more samples are to be compared regarding their means, we might be able to exploit the
stochastic independence of the overall means from the sums of products matrices G and H.
This independence implies that we can use the overall means to standardize the data, if these
means can be considered as representations of the individual scales of the single variables.

The procedures presented in this paper tend to give attention to variables or linear combi-
nations of variables with a large residual variation. Thus, relations between the means and the
covariance matrix are necessary for these methods to obtain a high power. Factorial parameter
structures are a class of models with great practical relevance, where this is the case. However,
the main target of this paper remains to find a data compression, which is based solely on the
residual covariances. The level of significance is always strictly kept.
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