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Non-invasive optoacoustic imaging of
glycogen-storage and muscle degeneration
in late-onset Pompe disease
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Pompe disease (PD) is a rare autosomal recessive glycogen storage disorder
that causes proximal muscle weakness and loss of respiratory function. While
enzyme replacement therapy (ERT) is the only effective treatment, biomarkers
for disease monitoring are scarce. Following ex vivo biomarker validation in
phantom studies, we apply multispectral optoacoustic tomography (MSOT), a
laser- and ultrasound-based non-invasive imaging approach, in a clinical trial
(NCT05083806) to image the biceps muscles of 10 late-onset PD (LOPD)
patients and 10 matched healthy controls. MSOT is compared with muscle
magnetic resonance imaging (MRI), ultrasound, spirometry, muscle testing
and quality of life scores. Next, results are validated in an independent LOPD
patient cohort from a second clinical site. Our study demonstrates that MSOT
enables imaging of subcellular disease pathology with increases in glycogen/
water, collagen and lipid signals, providing higher sensitivity in detecting
muscle degeneration than current methods. This translational approach sug-
gests implementation in the complex care of these rare disease patients.

Pompedisease (PD) is a rare, autosomal-recessivemetabolicmyopathy
caused by mutations in the gene that encodes for acid alpha-
glucosidase (GAA)1–3. Regularly, GAA catalyzes the hydrolysis of gly-
cogen to glucose, but in PD, its impaired activity results in a general-
ized build-up of glycogen in metabolic active organs, such as heart,
muscle and liver4,5. The disease progress is variable in age of onset,
severity of organ involvement and degree of myopathy6. There is a
differentiation in infantile (IOPD) and late-onset (LOPD) forms based
on cardiac involvement, age of onset and residual enzyme activity7.
IOPD patients may have less than 1% GAA activity, therefore, quickly
develop severe symptoms, such as cardiac involvement, resulting in a
highmortality rate by year one if untreated1,8. Children and adults with

LOPD have residual enzyme activity below 30%, leading tomore slowly
progressive limb-girdle typeweakness and respiratory insufficiency9,10.
Replacement therapies (ERT) are available, leading to a slower pro-
gression of cardiac and musculoskeletal involvement, prevention of
deterioration of pulmonary function and increasing survival11–14.
However, an early initiation of treatment may positively impact the
overall treatment response15.

The diagnosis of PD is usually established by confirmation of GAA
deficiency, and confirmed by genetic testing16,17. Furthermore, PD
patients require regular clinical follow-up monitoring, especially to
assess the response to ERT8,9,17–20. While rapid determination of GAA in
dried blood spots is possible, enzymatic analysis is unable to
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discriminate betweenpatientswith PD and those individuals harboring
pseudo deficiency mutations. In this regard, a tetraglucose oligomer
(Glc(4)) in the urine and maltotetraose (Hex4) in plasma may hold
promise as a biomarker to identify PD patients from individuals har-
boring pseudo deficiency mutations21 and even to assess response to
ERT22,23. However, the interpretation of the values is not trivial and
must be considered with respect to the individual age of the patient18.
Therefore, follow-up is mostly ensured by clinical and functional tests,
which are essentially dependent on the individual patient’s active
cooperation and performance1. More recently, magnetic resonance
imaging (MRI) studies in LOPD demonstrated significant correlations
between muscle involvement and function24–26 or efficacy of enzyme
replacement therapy and degree of lipomatous muscle alterations27.
Moreover, it clearly identifies the proximal to distal involvement pat-
tern of the disease25. Particularly in young patients, MRI has attribu-
table risks for the requirement of sedation or difficult positioning for
patients with respiratory impairment. Therefore, there is an unmet
need for non-invasive techniques to better andmoreobjectively assess
disease involvement directly in the muscles of PD patients with the
lowest burden possible. In this regard, multispectral optoacoustic
tomography (MSOT) may be used to quantitatively image subcellular
tissue composition and visualize disease-specific muscle changes28–31.
MSOT applies the principle of “light in and sound out” through short-
pulsednear-infrared laser emissionandultrasounddetection, enabling
it to retrieve deep-tissue information32–37. The mechanism of thermal
expansion-based optoacoustic imaging (OAI) is that optical energy is
absorbed by tissue chromophores, such as hemoglobins, lipids, water
or collagens, causing localized heating and expansion, generating
detectable acoustic pressure waves38. In this work, we show that in
LOPD patients, MSOT enables imaging of subcellular disease pathol-
ogy with increases in glycogen/water, collagen and lipid signals, pro-
viding higher sensitivity to detect muscle degeneration than current
methods.

Results
Phantom imaging reveals optoacoustic properties of glycogen
To identify a possible specific glycogen spectrum, we first aimed to
determine whether we could visualize its spectrophotometric
absorption. An increase in glycogen concentration did not change the
specific peak of the photometric spectrum with the investigated
wavelengths (Fig. 1A). We could observe an increase of absorption
starting from 910 nm, as described in the literature for H2O

39. After
subtracting H2O background, there is a flat spectrum curve remaining,
with only an absolute absorption shift between 2% and 7% glycogen
(Fig. 1B). In contrast, D2O does not show an increase of absorption
within the observed wavelengths (Fig. 1C) and after subtraction of D2O
background it showed similar curves as compared toH2O experiments
(Fig. 1D), which indicates no specific spectrophotometric absorption
of glycogen.

To examine the optoacoustic properties of glycogen, we used a
preclinical imaging system designed for small animal imaging40. Using
this setup, H2O and 2% glycogen in H2O were detected, while D2O and
2% glycogen in D2O had no specific signal increase (Fig. 1E). Next, we
transferred this to a clinical imaging system28,41, which detected higher
signal values when glycogen was added into H2O, especially starting at
910 nm and a pronounced peak at 980nm (Fig. 1F). The H2O, D2O and
glycogen in D2O showed similar curve progression. To validate the
transferability of our in vitro glycogen findings into an actual muscle,
we developed an ex vivo muscle phantom. Using a 3D-printed mold
filled with minced meat, we started diluting it in H2O and successively
added glycogen. We increased the glycogen content in 50% steps in
relation to the calculated concentration in pure meat and imaged it
using the clinical system.Our comparison showsan increasinglyhigher
signal over several single wavelengths (SWLs), including 830 nm,
850nm, 980 nm, 1030nm, and 1080 nm for increasing concentrations

of glycogen (Fig. 1G, H). This suggests that glycogen, although not
detectable as a pure substance, offers an optoacoustic imaging target
in the clinical setting due to its potentially high-water binding capacity.

Implementation of a clinical trial to study MSOT imaging
As reported previously, MSOT was capable of characterizing muscular
remodeling with high sensitivity in neuromuscular diseases28,30,42.
Given our in vitro findings in glycogenmodels, we hypothesized that it
is possible to rapidly quantify LOPD-specific muscle involvement
already in less affected proximalmuscle groups. To perform an in vivo
study of the MSOT imaging approach, we implemented a clinical trial.
After regulatory approval and prospective registration to the clinical
trial register, we included a total n = 10 healthy volunteers (HV), which
were gender and age-matched to n = 10 LOPD patients (Fig. 2A).
Besides clinical standard assessment, all patients were imaged using
MSOT (Fig. 2B) and the resulting data was processed (Fig. 2C). The
meanage ± SDwas41.2 ± 14.2 years inHVcompared to 40.6 ± 12.1 years
in the LOPD patients’ cohort. In each group, 5 [50%] subjects were
females. Eight (80%) of the LOPD patients received enzyme replace-
ment therapy (ERT) with Alglucosidase alpha (Myozyme®, Sanofi).
Four (40%) of LOPD patients needed nocturnal ventilation support. To
determine the degree of disease, all HV completed the Rasch-built
Pompe-specific activity scale (R-Pact), Quick Motor Function Test
(QMFT), Medical Research Council (MRC), Up and Go test (TUG). 9 HV
completed 6-Min Walk test (6-MWT) (one patient was not able to
perform 6-MWT). 10 LOPD patients performed the R-Pact, QMFT and
MRC, 9 LOPD patients performed TUG and 6-MWT (one patient was
not able to perform 6-MWT and TUG due to his disease progression).
Overall scores were significantly lower in LOPD patients (matched
n = 10 HV vs. n = 10 LOPD patients: R-Pact: 36.0 ±0.0 vs. 29.3 ± 10.1,
P =0.0156; QMFT: 64.0 ±0.0 vs. 46.7 ± 16.1, P = 0.0078; MRC:
180.0 ± 0.0 vs. 149.5 ± 35.3, P =0.0078; TUG: 1.7 ± 0.4 s vs. 3.7 ± 3.0 s,
P =0.1421; 6-MWT: 671.3 ± 116.6m vs. 560.3 ± 87.2m, P =0.0736). The
standard assessments are given in Table 1.

Standard ultrasound and magnetic resonance imaging in LOPD
Next, we investigated whether B-Mode ultrasound (US) or magnetic
resonance imaging (MRI) was capable of determining biceps muscle
involvement in PD (Fig. 3A). For US, a total of n = 40 independent scans
of the biceps muscle of HV (n = 20) and LOPD patients (n = 20) were
evaluated. In HV, all 20 (100%) muscles were rated normal by an
experienced and certified clinical investigator. Given the variability of
the clinical phenotype, blinding was not fully feasible for all patients.
By comparison, only 13 (65%) of the LOPD patients’ biceps scans were
rated normal, with 7 (35%) showing an overall pathological rating
(Table 2).

Next, a comparison of the greyscale level (GSL) of the muscles
between the diseased and the healthy subjects was performed43. The
values were retrieved for two different regions of interest. One ellip-
soidal in the center of the muscle and one polygonal ROI outline the
major proximal portionof themuscle. The totalmean valueper patient
showed no significant difference both in elliptic (84.0 ± 9.5 arb.units
vs. 93.4 ± 13.1 arb.units, P = 0.17, Fig. 3B) and polygonal ROIs (80.6 ± 7.8
arb.units vs. 90.2 ± 11.8 arb.units, P =0.1, Fig. 3C).

As MRI fat fraction is supposedly one of the most sensitive
methods to detect muscle involvement, all subjects underwent anMRI
of the bicepsmuscle. Signal intensities of in-phase and fat-only images
were used to estimate the fat fraction (FF) as a surrogate marker for
muscle atrophy in accordancewith the pathophysiology of PD. In total,
n = 20 datasets of the respective right biceps of HV and LOPD patients
were evaluated. Overall, no difference in the fat fraction as surrogate
for muscle involvement was found between HV and LOPD patients
(9.7 ± 2.2% vs. 14.3 ± 14.1%, P =0.38, Fig. 3D). These findings are in
accordance with clinical phenotype and previous studies showing a
less pronounced muscle involvement in LOPD25.
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Fig. 1 | Multimodal derivation of spectral information for glycogen reveals
specific signatures for clinical imaging. A Photometric absorption spectra
between 700 and 980nm for pure H2O, and H2O with 2% and 7% glycogen,
respectively (left). Photometric absorption spectra with subtracted H2O back-
ground (right). B Photometric absorption spectra between 700 and 980nm for
pure D2O, and D2O with 2% and 7% glycogen, respectively (left). Photometric
absorption spectra with subtracted D2O background (right). C Averaged optoa-
coustic signal in the preclinical imaging system from 700 to 1100nm for pureH2O,
pureD2O, and 2% glycogen inH2O andD2O, respectively.DAveragedoptoacoustic

signal in the clinical imaging system from 700 to 1100nm for pure H2O, pure D2O,
and 2% glycogen in H2O and D2O, respectively. E Averaged optoacoustic signal in
the clinical imaging system from700 to 1100nm for puremincedmeat andminced
meat of the same origin with increasing glycogen concentrations. Values are given
as mean values of scan data with negative signal intensities set to 0 or given as
mean values of the top 10% of signal intensities per scan. The data represent one of
two independent experiments with similar results. This figure was created with
BioRender.com released under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 International license.
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MSOT enables visualization of biceps muscle involvement
For all subjects, MSOT imaging was completed, and data was post-
processed using two independent scans of each biceps muscle for the
final analysis. In total, n = 80 scans (n = 40 of HV, n = 40 of LOPD) were
included, and signals, both SWLs and MSOT parameters (MSOT-
derived lipid signal, MSOTlip; MSOT-derived collagen signal, MSOTcol),
were compared between groups. Figure 4A shows exemplary imaging
results. Given the heterogeneity of the disease manifestation, each
muscle was regarded as an individual data point. Therefore, n = 20
matched muscle regions were compared. The optoacoustic spectrum
derived from 12 SWL showed overall higher values for PD patients
compared to HV (Fig. 4B). MSOTlip provided better performance to
distinguish HV from LOPD than clinical parameters (body mass index,
BMI) or fat fraction derivedbyMRI (Fig. 4C). Spectral unmixing derived
higher MSOTcol (1727 ± 555.5 arb.units vs. 2152 ± 674.0 arb.units,
P =0.0029), MSOTlip signals (1267 ± 356.6 arb.units vs. 2713 ± 1732
arb.units, P <0.0001), while in this approach SWL (800, 930, 980nm)
signals remained unchanged (Fig. 4D–H). However, the exact measure
also depends on the proportion of the signal that is quantified (Sup-
plementary Figs. 1–4). By separating patients with regard to disease
severity based on QMFT, one can observe decrease of MSOTcol and
increasing MSOTlip quantification, possibly resembling the fibro-fatty
degeneration of the muscle (Fig. 4I, J). MSOTlip demonstrated the
strongest correlation to the other investigated clinical standard
assessment (Fig. 4E).

Proofing applicability and validity of MSOT using
multicenter data
For better inter-device, -center and -examiner comparability, a similar
investigation using an identical imaging approach on LOPD patients
was conducted at a second center. This center produced n = 3 datasets
from n = 3 individual LOPD patients, including duplicate scans of the
right and left bicepsmuscle using the same imaging device. First, both
centers independently analyzed the second center data and retrieved
nearly identical results (Fig. 5A, B). Next, we compared the patient

cohorts (n = 10 vs. n = 3 LOPD patients) and compared the spectra
(Fig. 5C, D). Most likely these are influenced by heterogeneity of the
disease. When using spectral unmixed MSOTcol, we observed similar
increased higher values in LOPD patients in both datasets (Fig. 5E). For
MSOTlip, we found larger differences in both centers (Fig. 5E).

MSOT requires minimal scanning times
The investigation time for MRI depends on several factors, including
the specific region of the body, patient-related considerations such as
disabilities, patient cooperation,movement artefacts and repetition of
imaging sequences. For the right biceps muscle scan time for T1
sequence requires 07:28min, for T2 sequence 05:28min. Additional
time is needed to localize and optimize the scanning region, resulting
in a minimal total scan time of 13:32min.

In contrast, MSOT exhibits significantly shorter scan times. On
average, one MSOT scan takes approximately 10 s. For the purpose of
our study,we took twoscansper bicepsmuscle This notabledifference
in investigation time highlights the advantage of MSOT in clinical use.

Discussion
The findings presented here provide a rationale for a novel, non-
invasive, radiation-free, and easy-applicable imaging modality to
visualize disease-specific muscle patterns in LOPD patients. From a
clinical perspective, we demonstrate the feasibility of MSOT to detect
tissue remodeling caused by glycogen and its related higher water
content. In the clinical imaging setup, glycogen in H2O has higher
MSOT signals and a pronounced peak at 980nm compared to pure
H2O. Studying muscle-mimicking phantoms, we found similar optoa-
coustic signal behavior correlating to the concentration of glycogen.
Considering these results, we hypothesize that the current clinical
optoacoustic system most likely visualizes glycogen-bound water.
Taking this into consideration, we retrieved increased lipid and col-
lagen signals as a sign of muscle degeneration in clinical subjects—also
likely affected by the high glycogen-bound water in the muscle tissue.
In contrast to our MSOT imaging findings, clinical routine US or MRI

Fig. 2 | Study flowchart imaging approach and quantification of scan results.
A Consort flowchart diagram of the study. B Schematic and photographic repre-
sentation of MSOT imaging approach. The imaging probe emitting pulsed laser
light was held onto the distal third of the upper arm, scanning the biceps muscle.
C Localization of appropriate scan was performed on ultrasound B-mode images.

These were used to post-process optoacoustic spectral information. MSOT multi-
spectral optoacoustic tomography, MRI magnetic resonance imaging, ROI region
of interest, R-Pact Rasch-built Pompe-specific activity score. Thisfigurewas created
with BioRender.com released under a Creative Commons Attribution-
NonCommercial-NoDerivs 4.0 International license.
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techniques were not feasible to visualize similar features in LOPD
patients. Moreover, MSOT imaging is easily transferable to a second
clinical center providing comparable imaging results. This unpins the
utility and potential for MSOT for future non-invasive treatment
monitoring in PD patients.

Currently, the first-line treatment in PD (IOPD and LOPD) is
enzyme replacement therapy (ERT). In order to increase uptake, it is
glycosylated withmannose-6-phosphate (M6P), which binds to cation-
independent mannose-6-phosphate receptors (CIMPR) on cell
membranes44–46. This allows affected tissue cells to take up the exo-
genous enzyme and increase their capability to degrade glycogen,
subsequently clearing the excessive glycogen storages11,47. However,
the affection of endocytic and autophagic pathways and the devel-
opment of GAA-antibodies have a significant impact on trafficking and
processing of ERT and subsequent therapeutic response48. As a con-
sequence, the majority of patients show improvement or stabilization
of respiratory andmuscular functions, with more prominent effects at
earlier stages of disease49,50. Laboratory biomarkers, including the
assessment of GAA activity in dried blood spots or the analysis of Glc4
and Hex4, are applicable but not widely available or standardized
across different centers21–23. Common tools tomonitor PD patients are
function-related, rely on active cooperation, may show a learning
effect, and thus may not be sufficiently objective enough51–53. More-
over, therapeutic monitoring is currently becoming even more
important because, in addition to new ERTs47,54, genetic interventions

for PD patients are also on the horizon55,56. Second, early identification
of LOPD patients in newborn screening programs may require more
precise phenotyping57.

Imaging technologies may offer the advantage of directly asses-
sing changes in muscle structure and composition. The quantification
of intramuscular fat or fat fraction (FF) has been shown to provide a
solid correlation with muscle function and clinical outcomes in
adults24,25,58–60. Less consistent results, as demonstrated in our study,
facilitated the development of more sophisticated muscle MRI
sequences, including diffusion tensor imaging26 or glycogen
spectroscopy61,62. Even without the presence of significantly increased
fatty infiltration, these techniques can depict structural changes26.
However, MRI may have several disadvantages, such as high costs,
limited availability, lack of (inter-center) protocol standardization, and
long examination time coupled with strict positioning of the patient.
With progress in standardization and further clinical translation63,64 as
shown in this study, MSOT may enable easy-applicable imaging phe-
notyping of PD patients. The capability of MSOT has already been
explored in gastroenterology41,65–68, rheumatology69, cardiovascular70

and cancer medicine71 or more specifically in muscle applications42

such as Duchenne muscular dystrophy28 and spinal muscular
atrophy30. In this study, we assume that we were able to depict and
quantify themuscle remodelingwith localized glycogen accumulation,
subsequently leading to fibro-fatty replacement and muscle atrophy.
The spectral unmixed parameters, MSOTlip and MSOTcol, support our
hypothesis that MSOT is capable of detecting such processes in the
affected muscle.

In conclusion, MSOT holds great potential to become a sensitive
imaging technology for diagnosing, phenotyping and monitoring
patients with LOPD. With the increasing importance and availability of
gene therapy, early treatment is vital. The findings of this work suggest
the implementation of MSOT imaging into the comprehensive and
complex care of these rare disease patients and could possibly reduce
other more invasive procedures in the future. The next step should be
a follow-up study including pediatric patients (both with IOPD
and LOPD).

Nevertheless, this study has several limitations to consider. It is
constrained by a small and heterogeneous sample size, which is
attributed to the rarity of PD patients and the diversity in its clinical
manifestations. Furthermore, MSOT is influenced by optical absorbers
such as melanin, making it suitable primarily for individuals with
lighter skin color and holds a maximum penetration depth of
approximately 2.5 cm restricting MSOT application in certain cases
and regions of the body. Further work is needed to develop a PD-
specific methodology to evaluate disease-specific muscle involvement
at different stages of the disease that relate to clinical findings.
Moreover, optoacoustic imaging systems are still a novel imaging
approach that have to be further improved and standardized64.
Unmixing algorithms, reconstruction technique and analysis have to
be enhanced to improve the quality of data64,72.

Methods
Study design and subjects
A prospective, monocentric clinical study was conducted after
receiving approval from the local ethics committee of the University
Hospital Erlangen (UHE), Germany (reference: 21-238_1-B) and regis-
tration at clinicaltrials.gov (ID NCT05083806). This trial was per-
formed according to the Declaration of Helsinki, and all subjects
provided written informed consent. All investigations were performed
at a single visit per participant. Inclusion criteria were confirmed
Pompe disease (PD) independent from current therapy with an age
over 18 years. Exclusion criteria were pregnancy, tattoo in skin area to
be examined, contraindications for MSOT, MRI and for healthy
volunteers (HV) any signs of myopathy. All participants were investi-
gated between May 17, 2022, and March 30, 2023. A compensation of

Table 1 | Characteristics of LOPD patients and healthy
volunteers

HV n = 10 LOPD n = 10

Female, (%) 5 (50) 5 (50)

Male (%) 5 (50) 5 (50)

Age, years 41.2 ± 14.2 40.6 ± 12.1

Weight, kg 73.9 ± 11.9 65.0 ± 17.3

Height, cm 176.2 ± 0.1 172.3 ± 0.1

BMI (kg/m2) 23.6 ± 2.2 21.6 ± 4.0

Ambulatory (%) 10 (100) 9 (90)

ERT (%) 0 (0) 8 (80)

Nocturnal ventilation
support

0 (0) 4 (40)

Lung function

FEV1 (%) 100.8 ± 11.8 68.2 ± 23.5

FVC (%) 104.9 ± 9.7 62.6 ± 21.4

Functional testing

R-PACT 36.0 ± 0.0 29.1 ± 10.4

QMFT 64 ±0.0 46.7 ± 16.1

6MWT (m) 671.3 ± 116.6 560.3 ± 87.2

TUAG (s) 1.7 ± 0.4 3.7 ± 3.0

MRC

UB

Proximal 5.0 ± 0.0 4.3 ± 0.1

Medial 5.0 ± 0.0 4.5 ± 0.1

Distal 5.0 ± 0.0 4.7 ± 0.0

LW

Proximal 5.0 ± 0.0 3.9 ± 0.1

Medial 5.0 ± 0.0 4.1 ± 0.1

Distal 5.0 ± 0.0 4.5 ± 0.1

Values are mean ± standard deviation (SD).
LOPD late-onset Pompe disease, HV healthy volunteer, BMI body mass index, ERT enzyme
replacement therapy, FEV1 forced expiratory volume, FVC functional vital capacity, R-Pact
Rasch-built Pompe-specific activity score,QMFTquickmotor function test,6MWT6-minwalking
test,TUAG timed up-and-go test,MRCMedical ResearchCouncil score,UBupper body, LB lower
body, SD standard deviation.

Article https://doi.org/10.1038/s41467-024-52143-6

Nature Communications |         (2024) 15:7843 5

www.nature.com/naturecommunications


300 Euro/participant was granted. The gender of LOPD patients and
their matched controls was self-reported. The mean age ± SD was
41.2 ± 14.2 years in HV compared to 40.6 ± 12.1 years in the LOPD
patients’ cohort. In each group, 5 [50%] subjects were self-reported
females.

For the inter-device, -center and -examiner comparison, the second
site received an approval from the local ethics committee of the Uni-
versity Medical Center Göttingen (UMG), Germany (reference2/7/22).
The inclusion and exclusion criteria followed the original approval of
the University Hospital Erlangen.

Phantom development and imaging
Spectrophotometer imaging. Absorption spectrum was measured
every 10 nm in the range of 680–980 nmusing the spectrophotometer
SpectraMaxM2e (Molecular Devises, San Jose, USA). Six samples (H2O,
2% glycogen in H2O, 7% glycogen in H2O, D2O, 2% glycogen in D2O, and
7% glycogen in D2O) were measured separately.

In vitro phantom imaging studies. For in vitro imaging experiments, a
phantom was custom-built by dissolving 2% agarose (Biozym LE

Agarose, Biozym Scientific GmbH, Hessisch Oldendorf, Germany) in
heated D2O (Euriso-Top, St-Aubin Cedex, France). The warm fluid was
filled into a cylindrical mold leaving two wells, each of 3mm in dia-
meter. After cooling down, the phantom solidified, leaving two sepa-
rate holes within the phantom. Four samples: H2O, D2O, 2% glycogen
(from bovine liver ≥85%, Sigma-Aldrich, St Louis, USA) in H2O, and 2%
glycogen in D2O were each mixed with 1.5% agarose at 37 °C. Each
phantom was filled with two different samples, either with H2O and
glycogen inH2OorD2Oandglycogen inD2O.Before injecting thewarm
fluid into the phantomholes, the phantomwas placed on ice. This way,
the warm and fluid samples cooled down and solidified quickly as they
were injected. Next, imaging was performed from 660nm to 1300nm
in 5 nm steps using a preclinical MSOT inVision Echo system (iThera
Scientific, Munich, Germany). This system is also capable of acquiring
interleaved US images for the coregistration of imaging data. Data was
analyzed using viewMSOT software (version 4.1, iTheraMedical GmbH,
Munich, Germany). A region of interest (ROI) was drawn around the
sample inclusions using the US image for local guidance. Mean signal
intensity in the ROI at eachwavelengthwas quantified and then plotted
into an optoacoustic spectrum. We transferred this setup to a clinical
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Fig. 3 | Standard muscle imaging by ultrasound and magnetic resonance ima-
gingdoes not showdiscernabledifferences inbicepsmuscles of LOPDpatients.
A Ultrasound images (top row) and In-Phase (middle row) and Fat-Phase (bottom-
row) MRI of the biceps muscle. From left to right, HV, mildly, moderately and
severely affected LOPD patients. Elliptic (blue) and polygonal (yellow) ROI used in
RUCT images and circularROI used in Fat-PhaseMRI for quantification.BMeanGSL
values of matched HV vs. LOPDpatients using an elliptic ROI.CMeanGSL values of
matched HV vs. LOPD patients using a polygonal ROI. Each independent muscle
region was scanned twice. Results represent 80 datasets from n = 40 independent
biceps muscle regions (n = 20 HV/n = 20 LOPD) in n = 20 biologically independent
subjects (n = 10 HV and n = 10 patients with LOPD). Each filled dot represents one
MSOT signal per mean biceps muscle region (4 datasets from n = 2 independent
independent muscle regions from one biologically independent subject). HV are
represented with green and LOPD patients with violet dots. D ROIs in MRI images
were manually placed in transversal slices of the right biceps brachii muscle cor-
responding to the position ofMSOT evaluation. Results represent 20 datasets from

n = 20 independent biceps muscle regions (n = 10 HV/n = 10 LOPD) in n = 20 bio-
logically independent subjects (n = 10HVandn = 10patientswith LOPD). Eachfilled
circle represents the fat fraction in percent per tissue signal per mean right biceps
muscle (1 dataset from n = 1 independent muscle region from one biologically
independent subject). HV are representedwith green and LOPDpatientswith violet
dots. To display differences in fat fractions, mean values from HV were subtracted
from LOPD patients. One black dot represents one calculated ratio. Confidence
intervals represent 95%CI ranging from−4.957 to 14.16, effect size (R2) 0.1164,mean
of differences (LOPD – HV) 4.6, SD of differences 13.36, SEM of differences 4.225.
Two-tailed dependent samples t-tests (matched for age and sex) were used for
statistical analysis. If the assumption of normal distribution was violated, a Wil-
coxon signed-rank was used. P ≤0.05 was considered statistically significant. HV
healthy volunteer, LOPD late-onset Pompe disease patient, ROI region of interest,
RUCT reflected ultrasound computed tomography, MRI magnetic resonance
imaging.
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MSOT Acuity Echo system (iThera Medical, Munich, Germany). An
identical phantom was established using the same materials but filled
into a box-shaped mold. Thus, we improved the contact area for the
handheld probe. The four samples (H2O, D2O, 2% glycogen in H2O, and
2% glycogen in D2O) were processed and injected according to the
steps above. Thereafter, the phantom was imaged from 660nm to
1300nm in 10 nm steps. The same examiner analyzed the data and
drew the ROI as described above.

Ex vivo muscle mimicking phantom. To develop an ex vivo muscle-
mimicking phantom, we used ground beef as a tissue substitute.
Similar to the phantom described before, a custom-built phantomwas
established from 2% agarose (Biozym LE Agarose, Biozym Scientific
GmbH, Hessisch Oldendorf, Germany) dissolved in distilled water,
which was filled in a custom, 3D-printed mold. The mold was devel-
oped using Autodesk Fusion 360 (V2.0.14567, Autodesk GmbH,
München, Germany) and a 3D printer (Form 2, Formlabs. Inc, Somer-
ville,MA, USA) utilizingWhite Resin V4 (Formlabs. Inc, Somerville,MA,
USA)65. The phantom main body measured 96*46*40mm, which cov-
ered and sealed a recess of 76 × 26 × 20mm. This remaining recess was
subsequently filled with ground beef and glycogen at increasing con-
centrations. The initial weight of minced meat was 20 g (= 100%),
which was diluted in 20ml of H2O. We assumed that the glycogen
content of minced meat is equal to 2%, which equals 0.4 g (= 100%)
glycogen in 20 g of meat. Next, glycogen was gradually added into
H2O, starting from0.2 g (= 50%) up to 1.2 g (= 300%). Added to the 20 g
minced meat, which we assumed included 0.4 g glycogen, this added
up to a maximum glycogen content of 1.6 g, which was equivalent to
400% of the initial glycogen concentration of pure minced meat. For
all experiments, the MSOT imaging probe (MSOT Acuity CE, iThera
Medical, München, Germany) was secured, fixed in a bracket, and

coupled to the agarose phantom using transparent ultrasound gel
(Aquasonic Clear, MDSS GmbH, Hannover, Germany).

Study flow
The patients with diagnosed PD were compared to sex- and age-
matched HV. All study participants underwent clinical standard
assessments, ultrasound,MSOT andMRI imaging. For clinical standard
assessment, all subjects completed a PD-specific questionnaire (R-
PAct-Scale), motor function tests as well as a lung function testing. A
co-registered Reflected-Ultrasound Computed Tomography (RUCT)
provides US-like (B-mode) images and allows for guidance during
MSOT imaging. MRI was performed of the right biceps in accordance
with the previous marking. At the second MSOT site (UMG), the
patients with PD received the MSOT imaging at the same anatomical
localization following the UHE protocol.

Clinical standard assessments
The Rasch-built Pompe-specific activity (R-PAct) scale is a patient-
based questionnaire to specifically quantify the impact of PD on
daily life and social participation53. Briefly, it is composed of 18 items
of increasing difficulty (from “comb hair” to “running”) assessed on a
rating scale ranging from (0) “unable to perform” to (1) “able to
perform, but with difficulty” to (2) “able to perform with no diffi-
culty”. The scale provides external validity, reliability and good
discriminating ability. The Quick Motor Function Test (QMFT)
comprised 16 items, requiring each subject to complete each item to
their best ability and were rated on a scale from 0 (no muscle con-
traction) to 4 (normal movement), resulting in a maximum score of
64 points51. QMFT is sensitive for proximal muscle strength and
differences in disease severity. As non-specific functional tests, we
used MRC scale, timed-up-and-go-test and 6min walking test.
Muscle strength according to the MRC scale was evaluated bilat-
erally in the proximal regions of the upper and lower body (shoulder
and hip flexion, extension, abduction, adduction, internal and
external rotation), as well as in the medium (elbow and knee flexion,
extension), and distal regions (hand, finger, feet and toe flexion,
extension, abduction, adduction) of the body. A total score was
obtained by adding up scores between 0 (no muscle contraction) to
5 (normal strength) of all 18 assessed muscle functions bilaterally,
leading to a maximum of 180 points. For TUAG (Timed Up-and-Go
Test), participants were seated on a stationary chair and timed from
standing up to completing a single step73. The 6-min-walk test
(6MWT)measures the distances covered in 6min; the use of walking
aids as needed was permitted74.

Lung function
Conventional spirometry was completed in seated position by all
subjects to quantify lung function. Parameters of interest, such as VC
(vital capacity) and FEV1 (forced expiratory volume in 1 s), were
assessed considering age, sex and weight. Each patient underwent a
minimum of three measurements, and an average value was
calculated.

B-mode ultrasound
All B-mode ultrasound images were acquired and analyzed by a single
DEGUM-certified sonographer (J.J., German Society for Ultrasound in
Medicine (DEGUM), level III sonographer) using theMindray, Zonare ZS
3 (Zonare Medical System Inc, Mountain View). All muscles were eval-
uated for muscle texture (coarse-, medium-, fine-granuled), echogeni-
city (hyper-, hypo-, echogenic), distribution pattern (in-, homogeneous,
focal) andHeckmatt scale (echogenicity ofmuscle and bone; grade 1–4:
1 = normal muscle echo, 2 = increased muscle echo while bone echo is
still distinct, 3 = increasedmuscle echo and reducedbone echo, 4 = very
strong muscle echo and complete loss of bone echo)30,75,76.

Table 2 | B-mode ultrasound results of biceps muscle regions

Ultrasound scoring HV (n = 10 indivi-
duals,
n = 20 scans)

LOPD (n = 10
individuals,
n = 20 scans)

Echogenicity Hypo-echogenic 16 (80%) 7 (35%)

Isoechogenic 4 (20%) 4 (20%)

Hyperechogenic 0 9 (45%)

Muscle texture Coarse-granular 3 (15%) 1 (5%)

Medium-granular 3 (15%) 4 (20%)

Fine-granular 14 (70%) 15 (75%)

Distribution
pattern

Focal 0 1 (5%)

Inhomogeneous 4 (20%) 6 (30%)

Homogeneous 16 (80%) 13 (65%)

Heckmatt scale 1 20 (100%) 18 (90%)

2 0 2 (10%)

3 0 0

4 0 0

Pathological No 20 (100%) 13 (65%)

Yes 0 7 (35%)

N = 40 images (n = 20 HV/n = 20 LOPD) were evaluated for echo intensity, muscle texture, dis-
tribution pattern, Heckmatt scale and pathological rating. The investigator (J.J.) assessed
echogenicity (hypo-/iso-/hyperechogenic), muscle texture (coarse-/medium-/fine-granular),
distribution pattern (focal/inhomogeneous/homogeneous) and Heckmatt scale (grade 1–4: 1 =
normalmuscle echo, 2 = increasedmuscle echowhile bone is still distinct, 3 = increasedmuscle
echo and reduced bone echo, 4 = very strongmuscle echo and loss of bone echo) in parallel to
the examination. Additionally, themuscle was evaluated by the overall impression as healthy or
pathological. Categorial variables are provided as numbers and percentages. N = 40 indepen-
dentbiceps scans (n = 20HV/n = 20 LOPD) inn = 20 biologically independent subjects (n = 10HV/
n = 10 LOPD).
HV healthy volunteers, LOPD late-onset Pompe disease.
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Magnetic resonance imaging acquisition and analysis
To derive the fat fraction, all participants underwent an MRI (MAGNE-
TOM Free.Max, 0.55T, Siemens Healthineers, Erlangen, Germany) of
their right upper arm. A dedicated 6-channel surface coil was used
(SiemensHealthineers, Germany). A transversal T1 turbo spin echo (TSE)
Dixon sequence and a transversal T2 TSE Short-TI Inversion Recovery
(STIR) were acquired. For MRI imaging analysis, manually drawn ROIs
were placed in the biceps brachii muscle corresponding to the position
of MSOT evaluation. Signal intensities of in-phase and fat-only images
wereused to estimate the fat fraction (FF). T2TSESTIR imageswere read
by a board-certificated radiologist with 10 years of experience in mus-
culoskeletal imaging for the presence of intramuscular edema.

Multispectral optoacoustic tomography
Imaging was performed by two MSOT-experienced examiners
(A.L.W., R.R.) at UHE and two MSOT-experienced examiners (S.M.,

J.Z.) at UMG using at each site a different hybrid MSOT/RUCT
(Reflected ultrasound computed tomography) imaging system
(MSOT Acuity Echo, iThera Medical GmbH, Munich, Germany). As
described before28,30,41,42,66,77,78, a handheld 2D probe (center fre-
quency: 4MHz, field of view: 40 × 40mm, 256 transducer elements,
spatial resolution: 150 µm) was positioned at a 90° angle, and
transparent ultrasound gel was used for coupling. Laser was set to a
single wavelength (SWL) starting from 700 to 1210 nm (700 nm,
730 nm, 760 nm, 800 nm, 850 nm, 910 nm, 930 nm, 950 nm,
980 nm, 1030 nm, 1080 nm, 1100 nm, 1210 nm, Hb and HbO2

spectrum) with a repetition rate of 25 Hz. Negative pixels were set
to 0. Images required minimal motion of examiners, which was
assisted by a motion bar provided by the software. A minimum
of two images were taken per muscle. All participants wore safety
goggles during the examination, adverse events were accordingly
documented.

Fig. 4 | MSOT quantification in human biceps muscles. A From left to right:
representative MSOT imaging quantification representing anatomic information
(RUCT), unspecific tissue/muscle signal (SWL 800nm), MSOTcol and MSOTlip.
Disease severity of HV vs. LOPD (mildly, moderately and severely) is increasing
from top to bottom cases. BComparison ofMSOT spectral signal values of HV and
LOPD patients from 700 to 1100nm. Each dot represents the mean of a whole
proband group (HV = green, LOPD = violet), bars represent 95% CI. Results
represent 80 datasets from n = 40 independent biceps muscle regions (n = 20 HV/
n = 20 LOPD) in n = 20 biologically independent subjects (n = 10 HV and n = 10
patients with LOPD).C ROCCurve of Top 10% signalsMSOTlip, BMI values andMRI
fat fraction values todistinguishHVand LOPDmuscles.n = 40 independentmuscle
regions (n = 20HV/n = 20LOPD) inn = 20biologically independent subjects (n = 10
HV and n = 10 LOPD). Comparison of Top 10% of signal intensity for SWL 800 nm
(D), 930nm (E), 980nm (F), MSOTcol (G), MSOTlip (H) between HV and LOPD
patients with individual scans as individual data points. Results represent 80
datasets from n = 40 independent biceps muscle regions (n = 20 HV/n = 20 LOPD)
in n = 20 biologically independent subjects (n = 10 HV and n = 10 patients with
LOPD). Each bar displays themean of top 10%MSOT signal of the bicepsmuscle of
a whole proband group with the error bars indicating SD (green bar/dots = HV and
violet bar/dots = LOPD).MSOTsignal comparison fordifferent LOPD severity (HV=

black, mild = pink, green =moderate, severe = purple) forMSOTcol (I) andMSOTlip

(J). Results represent 80 datasets from n = 40 independent biceps muscle regions
(n = 20HV/n = 20 LOPD) in n = 20 biologically independent subjects (n = 10 HVand
n = 10 patients with LOPD). Each filled dot shows the mean of top 10% signal of the
biceps muscle of different severity groups and HV (black dots = HV=QMFT= 64,
pink dot = mild LOPD=QMFT 64–49, green dot =moderate LOPD= 48–33, purple
dot = severe PD= 32–0). Statistical difference was tested with Welch’s t-test.
KCorrelationmatrix formaximumMSOT signal intensity of SWL 800nm, 930nm,
980nm and MSOTcol and MSOTlip correlated to reference clinical parameters
including FVC%, FEV1%, BMI, 6MWT, QFMT, ultrasound greyscale levels, fat frac-
tion. Correlations are indicated in the color range from highly negative (blue) to
low negative/positive (green) to highly positive (yellow). Correlations are given by
Spearman correlation coefficient (rs), two-tailed test. P ≤0.05 was considered
statistically significant. n = 20 biologically independent subjects (n = 10 HV/n =
Confidence interval was 95% 10 patients with LOPD). HV healthy volunteer, LOPD
late-onset Pompe disease patient, MSOT multispectral optoacoustic tomography,
RUCT reflected ultrasound computed tomography, ROC receiver operating char-
acteristic curve, FVC functional vital capacity, FEV1 forced expiratory volume, BMI
body mass index, 6MWT 6-min walking test, QMFT quick motor function test.
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Fig. 5 | Multicenter patient cohort comparison proves the applicability and
validity of MSOT approach. A Interrater analysis comparison of MSOT mean
signals for two independent investigators (investigator 1, investigator 2) of two
clinical centers (LOPD center 1, LOPD center 2) independently analyzed the same
MSOT biceps muscle scans (10 datasets from n = 6 independent biceps muscle
regions (n = 3 LOPD) in n = 3 biologically independent subjects). Data collected by
center 2. B Interrater analysis comparison of MSOT top 10% signals for two inde-
pendent investigators (investigator 1, investigator 2) of two clinical centers (LOPD
center 1, LOPD center 2) independently analyzed the same MSOT biceps muscle
scans (10 datasets from n = 6 independent biceps muscle regions (n = 3 LOPD) in
n = 3 biologically independent subject). Data collected by center 2. Dual center
comparison (center 1: n = 10 vs. center 2: n = 3) of mean (C) and top 10% (D) MSOT
signals. Each filled blue circle displays the mean (C) and top 10% (D) of LOPD
patients of center 1, each filled yellow circle displays the mean (C) and top 10% (D)
of LOPD patients of center 2. Results of center 1 represent 80 datasets from n = 40
independent biceps muscle regions (n = 20 HV/n = 20 LOPD) in n = 20 biologically

independent subjects (n = 10HV and n = 10 patients with LOPD). Results of center 2
represent 10datasets fromn = 6 independent bicepsmuscle regions (n = 3 LOPD) in
n = 3 biologically independent subjects. Comparison of meanMSOTcol (E), top 10%
MSOTcol (F), mean MSOTlip (G), and top 10% MSOTlip (H) between HV and LOPD
patients of both centers. Green bar representing HV consists of 40 datasets from
n = 20 independent biceps muscle regions of n = 10 biologically independent sub-
jects. Blue bar representing LOPD Center 1 of 40 datasets from n = 20 independent
biceps muscle regions of n = 10 biologically independent subjects, yellow bar
representing center 2 consists of 10 datasets from n = 6 independent bicepsmuscle
regions (n = 3 LOPD) of n = 3 biologically independent subjects. Ordinary one-way
ANOVA was used for statistical analysis. If the assumption of normal distribution
was violated, a Kruskal–Wallis test was used. Box plots are definedwith aminimum
at the 25th percentile, amaximumat the 75th percentile, center at themedian value
and whiskers at the minimal and maximal data points of each subgroup. MSOT
multispectral optoacoustic tomography, HV healthy volunteer, LOPD late-onset
Pompe disease patient.
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MSOT data analysis
MSOT Imaging data was transferred to a workstation and iLabs soft-
ware (iThera Medical GmbH, Munich, Germany) was used for image
analyses. Briefly, a polygonal region of interest (ROI) was defined and
drawn centrally within the biceps muscle according to its B-mode US
image. The ROI was placed directly under the muscle fascia, excluding
any visible vessels. The size of the ROIs in the HV data was determined
by the 800 nm optoacoustic signal and included only the high-
intensity area to prevent false negative and underrated data. The PD
patients’ ROI size was determined by matching the area of the ROI to
the one used with the matched HV (Max area Difference = 0.72mm²,
Min area Difference = 0.02mm², mean [SD] = 0.26mm² [0.18]). Signal
intensities of the above-named SWLwere recorded aswell as a spectral
analysis to detect the MSOT parameters Hb, HbO2, MSOTcollagen, and
MSOTlipid was performed.

Quantitative ultrasound greyscale scoring
The iLabs software (version 1.3.16, iThera Medical GmbH, Munich,
Germany) was used to extract the MSOT/RUCT images as.png files.
Specifically, only the RUCT imageswere chosen for the greyscale (GSL)
analysis. As described before43, the analysis was conducted using Fiji
software, a distribution of the open-source ImageJ software (V2.1.0/
1.53c). To facilitate this, polygonal ROIs were positioned beneath the
muscle fascia. Afterward, the content within the ROIs was utilized to
examine the GSL, wherein standardized mean, minimum, and max-
imum GSL values were quantified in arbitrary units. For further sta-
tistical analysis, only the mean values of GSL were used to enhance
intermodal comparability.

Statistical analysis
Continuous variables are given as means with SDs and categorical vari-
ables as numbers with percentages. A nonparametric Mann–Whitney
test was used for unpaired comparisons. A nonparametricWilcoxon test
was used to assess differences in HV and paired PD patients. Adjusted P-
values are reported. Prism 10, version 10.1.0 (GraphPad Software) was
used for all statistical analyses. P<0.05 was considered to indicate sta-
tistically significant difference in all analyses.

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
The raw (individual, identifiable patient) data are protected and are not
available due to data privacy laws. Data sharing requests will be con-
sidered on a case-by-case basis. The processed pseudonymized ima-
ging data can be accessed upon request and within the framework of
legal regulations from the corresponding author (equivalent purposes
to those for which the patients grant their consent to use the data).
Access is granted directly after publication for 36months. The contact
is ki-forschung@uk-erlangen.de, and response to request will be pro-
vided within 4–6 weeks. The data will be available for 3 months. The
remaining data of this study are provided in the Supplementary
Information and Source Data file. The study protocols and the statis-
tical analysis plan are provided with this manuscript in the Supple-
mentary information file. Source data are provided with this paper.
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