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A B S T R A C T

Time Delay Stability (TDS) is an established tool for analyzing the interaction between physiological systems
in the human organism. Time series are measured with sensors from different organ systems and are analyzed
pairwise. Each pair is characterized by a TDS link strength and by combining these to a network, insights into
underlying physiological mechanisms can be obtained. Computing TDS is based on heuristic computations
with multiple open parameters. In the past, research groups working with TDS have implemented their own
algorithms in different programming languages, which posed the risk of differences between implementations
and parameters, leading to a lack of reproducibility. Therefore, we propose a reference implementation written
in Python 3, entitled TDSpython (TDSpy) that we make publicly available via the Python Package Index (PyPI).
In this paper, we give a comprehensive description of the implementation, demonstrate its usage on publicly-
available sleep research data, and evaluate its suitability by reproducing published studies. In addition, we
apply TDSpy to data from comatose patients, emphasizing its generalizability.
ode metadata
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Legal Code License MIT license
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. Motivation and significance

The analysis of different physiological time series acquired in par-
llel finds wide application in health monitoring. Signals can either
i) measure the same organ system and thereby improve accuracy in
ase one of the signals is distorted or (ii) measure different organ
ystems. An example for the first use case is heartbeat detection with
ifferent modalities to improve robustness to noise [1], while examples

∗ Corresponding author at: Department of Medical Informatics, University Medical Center Göttingen, Göttingen, Germany.
E-mail address: nicolai.spicher@med.uni-goettingen.de (N. Spicher).

of the second use case are freezing of gait detection in Parkinson’s
disease based on brain and motion data [2–4] or characterization of the
coordination between heart and brain activity during sleep [5,6]. While
many methods from the field stem from traditional signal processing
without any learning, machine learning methods become increasingly
popular in the field, e.g. graph neural networks [7] or convolutional
neural networks [8].
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Fig. 1. Structure of TDSpy consisting of two parts with the first being for time series preprocessing, i.e. feature extraction. Extracted features are time series as well and can also
be directly loaded if users want to use other implementations. The second part is the implementation of TDS as described in Section 1.1. The library requires six (without feature
extraction) or eight input parameters (with feature extraction) shown in Tbl. 3.
Since its inception in 2012 [9], the framework of TDS has become
a popular method for the quantification of dynamical interactions be-
tween multivariate time series, e.g. EEG, ECG, EMG, electrooculography
(EOG) or respiration signals. These measurements contain information
representing the state of different organ systems and TDS measures the
degree of connectivity between the different organs, i.e. their network
organization.

TDS has been applied successfully to data from different fields of
research – e.g. overnight sleep studies – and revealed distinct pat-
terns in the network organizations with respect to sleep stages [9,10].
Moreover, a dependency between network characteristics and age as
well as gender was shown [11] and disease-specific changes were
revealed, e.g. in patients suffering from obstructive sleep apnea [12],
narcolepsy [13], or insomnia [14]. Furthermore, it was used for an-
alyzing interactions of brain waves and muscle activity [15,16] and
modified TDS methods were proposed [17,18].

In the past, TDS has been used by various groups from diverse
contexts using their own implementations. There is an open-source im-
plementation available (https://github.com/somnonetz/physiological-
networks-tds) but it is written in MATLAB, a proprietary software asso-
ciated with license fees, and also requires several toolboxes associated
with additional costs. The authors are not aware of any other open-
source implementation. Hence, the aim of this work is to establish a
well-documented and easy-to-use implementation of TDS.

1.1. Background: Time delay stability

TDS is a quantitative measure of the coupling between organ sys-
tems. They are measured with different sensors resulting in time series
and two systems are assumed to have be coupled if the changes in
one time series lead to corresponding changes in the other, and vice
versa. These changes might appear after a certain time delay, hence
periods with a stable time delay between two time series indicate
a physiological coupling between the underlying organ systems. To
account for the diversity in sensor types (e.g. sampling rate, bit depth),
TDS typically does not process raw time series (e.g. ECG) but derived
time series containing features (e.g. HR).

Let 𝑥 and 𝑦 be two time series derived from two different organ
systems where each consists of 𝑁 values. We split both time series in
windows of 𝐿 samples with the windows overlapping by 𝑀 samples,
resulting in a number of 𝑁𝐿 = ⌊

𝑁−𝐿
𝐿−𝑀 ⌋ + 1 windows. Subsequently,

amples in each window are normalized separately to zero mean and
nit standard deviation.

The cross-correlation 𝐶𝜈
𝑥𝑦(𝜏) of two windows 𝑥𝜈 and 𝑦𝜈 with 𝜈 =

1, 2,… , 𝑁𝐿 is computed via

𝐶𝜈
𝑥𝑦(𝜏) =

1
𝐿

𝐿
∑

𝑖=1
𝑥𝜈𝑖 × 𝑦𝜈𝑖+𝜏 , (1)

where × denotes element-wise multiplication and 𝜏 denotes the lag of 𝑦𝜈
to 𝑥𝜈 . For the following analysis, the value of 𝐶𝜈 (𝜏) is not of interest but
𝑥𝑦

2 
instead the position where the cross-correlation reaches its maximum:

𝜏𝜈 = argmax
𝜏

|𝐶𝜈
𝑥𝑦(𝜏)|. (2)

This position is the delay where both time series are best matching and
the basic idea of TDS is to measure the stability in 𝜏𝜈 over time using
a windowing approach. Hence, the series of 𝜏𝜈 is split in windows of
�̂� samples with the windows overlapping by �̄� samples. It is checked
whether the delay values 𝜏𝜈 in a window stay ’’approximately’’ stable
over multiple windows. The stability criterion can be manually defined
by two variables, 𝜂 and 𝜁 . 𝜂 indicates a threshold between two 𝜏𝜈 values
in the window so they are assumed to be stable and 𝜁 indicates a
threshold ratio how many of the 𝜏𝜈 values need to be stable so the whole
window is assumed to be stable.

The output is a binary time series 𝑇𝐷𝑆𝑥,𝑦 of length 𝑁𝐿 − �̂�, where
1 denotes a stable connection and 0 a unstable one. The so-called ‘‘link
strength’’ 𝑙𝑇𝐷𝑆 (𝑥, 𝑦, 𝑠) between two time series in a certain stage 𝑠 is
then computed as a fraction of stable connections

𝑙𝑇𝐷𝑆 (𝑥, 𝑦, 𝑠) =
∑

𝑣(𝑠) 𝑇𝐷𝑆𝑥,𝑦(𝜈(𝑠))
𝑁𝐿(𝑠)

, 𝜈(𝑠) = 1, 2,… , 𝑁𝐿(𝑠), (3)

with 𝑁𝐿(𝑠) denoting the number of samples assigned to the state 𝑠.

2. Software description

We propose TDSpy1 written in Python3, a popular programming
language with simple syntax which is the de-facto standard in data sci-
ence and follows a free-software license. The main objective of TDSpy
is to equip the users with a well-documented, easy-to-use and validated
implementation of the previously introduced concept. In the following,
we give detailed information on its implementation and testing and
demonstrate its usage on a freely-available sleep study. In order to
evaluate how far TDSpy reproduces previous findings, we apply it to
data of the SIESTA sleep study used in previous publications [9,11]
and compare results qualitatively and quantitatively.

2.1. Implementation

TDSpy builds upon a number of de-facto standard and free-to-use
Python libraries given in Tbl. 1. Fig. 1 gives an overview of the structure
of the library: It consists of two parts, use-case specific functions for
loading and preprocessing data (Fig. 1: light gray area) and the main
part of TDSpy which is a consolidated and validated implementation
of TDS described in Section 1.1 (Fig. 1: dark gray area). Regarding
the preprocessing part, users can decide whether to use TDSpy for
importing raw time series and feature extraction (Option 1) or if they
want to use other feature extraction implementations (Option 2).

1 https://pypi.org/project/TDSpy/

https://github.com/somnonetz/physiological-networks-tds
https://github.com/somnonetz/physiological-networks-tds
https://github.com/somnonetz/physiological-networks-tds
https://pypi.org/project/TDSpy/
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Table 1
External dependencies of TDSpy .
Library Version Usage License

edfrd 0.7 read European Data Format (EDF)-files LGPL-3.0
Matplotlib 3.7.0 visualization of results as matrix based on PSF License
Neurokit2 0.2.3 heart and breathing rate computation MIT license
networkx 3.9 visualization of results as graph 3-clause BSD license
NumPy 1.24.2 data matrix representation, processing BSD
pandas 1.5.3 read comma-separated values (CSV)-files New BSD License
pytest 7.2.1 unit testing MIT license
SciPy 1.10.1 cross correlation New BSD License
Table 2
Overview of main functions of TDSpy .
Part Function Usage Section

Preprocessing read_all_EDF_channels read all channels of a file in EDF 2.1.1
feature_extraction extract features from raw time series 2.1.2

TDS cross_correlation cross-correlation analysis of all signal pairs 2.1.3
getStability compute TDS of cross-correlation results 2.1.4

Visualization plot_graph plot results as a graph 2.1.5
plot_matrix plot results as a matrix 2.1.5
2
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The main TDS computation is performed in two steps which are
ross correlation (xcc) between two time series followed by TDS quan-
ification, following the description in Section 1.1. Finally, the library
ffers different visualization methods. In the following, each part of the
ibrary is introduced with a focus on the implementation details.

The available functions are summarized in Tbl. 2 with the most
elevant variables being shown in Tbl. 3. We provide default values
xtracted from [9] and users can adjust them to their specific needs.

.1.1. Data import
TDSpy offers to load time series data in CSV format or EDF (https:

//www.edfplus.info/). The first module is based on the pandas li-
brary [19] and the second on the edfrd library [20] which both are
freely-available via PyPI. They can be used to (i) load raw time series
data which is then processed in the next step for feature extraction or
(ii) load features already extracted with external algorithm. Next to the
time series data for TDS processing, users can provide an optional CSV
file containing labels for signal segments. These labels can be used to
split the analysis with respect to time, e.g. for different stages of an
xperiment.

.1.2. sfe : signal feature extraction and resampling
In this step, feature time series are derived from raw time series

oaded in the previous step. This step is optional and users can decide
o load their own already extracted and re-sampled features. In the
election of the feature extraction methods, we decided to use basic
ethods. Our rationale was to provide robust and generic methods with
bottom baseline performance. Users are invited to implement more

ophisticated or specific methods.
To make time series comparable for later analysis, feature time

eries are resampled to a uniform rate, i.e. have the same number of
ata points per time interval. Following [9], we use a sliding window
pproach with a duration (wl_sfe) and a shift parameter (ws_sfe)
hich are applied to all extracted time series.
TDSpy offers signal extraction methods for EEG, ECG, EMG, EOG,

nd respiratory time series, following the suggestions in [9]: As differ-
nt brain waves indicate different physiological states, we separate the
EG signal into different frequency bands. Per default the EEG data
s split into 5 different frequency bands, 𝛿 waves 𝑓𝛿 = [0.5, 3.5) Hz,

waves 𝑓𝜃 = [4.0, 7.5) Hz, 𝛼 waves 𝑓𝛼 = [8.0, 11.5) Hz, 𝜎 waves
𝜎 = [12.0, 15.5) Hz and 𝛽 waves 𝑓𝛽 = [16.0, 19.5) Hz. Regarding
CG time series, channels are processed individually with the continu-
us HR being extracted using the nk.ecg_process function of the
eurokit2 library. The muscular (EMG) and ocular activity (EOG) is
xtracted by computing the variance of the respective time series. The
ontinuous breathing rate is derived from a respiratory signal using

k.rsp_rate of the Neurokit2 library. a

3 
.1.3. xcc : cross-correlation analysis
This step realizes cross-correlation analysis of all pairs of time

eries (Section 1.1: 𝐶𝜈
𝑥𝑦(𝜏)). At first, all possible pairs of time series

re identified. Subsequently, xcc of each combination is computed
sing a sliding window. Both time series are split into windows of
l_xcc duration (Section 1.1: 𝐿) with a shift of ws_xcc (Section 1.1:
− 𝑀). Within each window, both time series are normalized using

he standardized z-score. For computing the correlation between both
ormalized time series, functions scipy.signal.correlate and
cipy.signal.correlation_lags provided by the scipy library
re used. Finally, the index of the maximum amplitude of the resulting
orrelation signal (Section 1.1: argmax𝜏 |𝐶𝜈

𝑥𝑦(𝜏)|), representing the delay
etween two time series is detected for all combinations of time series.

.1.4. tds : time delay stability analysis
This part of the library accepts the delay values computed by xcc

nalysis and computes their stability in a sliding window approach
epicted in Fig. 2. The delay values are processed using a window of
ength wl_tds (Section 1.1: �̄�) and shift ws_tds (Section 1.1: �̄�−�̄�),
eginning on the first delay value. For each window, the stability delays
re evaluated using two variables: td_tds (Section 2: 𝜂) defines the
hreshold between delays, i.e. the vertical spread of the window, and
r_tds (Section 2: 𝜁) defines the ratio threshold of how many delays
re inside td_tds (dark blue points) vs. outside (green points). If
he ratio is larger than a defined threshold (tr_tds), this window is
ssumed to be stable and marked with a value of 1. Otherwise, it is
arked with a value of 0.

An optional vector (Section 1.1: 𝑠) can be submitted containing
nformation on different stages during acquisition of the experiment.
f no vector is submitted, the link strength is computed for the whole
ignal. If a vector is submitted, a link strength value is computed for
ach stage.

.1.5. Visualization
TDSpy provides two different ways to visualize results: A matrix

isualization and a graph visualization depicted in Figs. 3 and 4,
espectively. Using matplotlib, the link strengths between time
eries are plotted as a matrix with an entry in the matrix representing
he coupling between the time series marked in the respective row
nd column in percent. The matrix is symmetric and has values equal
o 100% on the diagonal. The colormap and its range can be freely
hosen. Based on the library networkx, TDSpy offers a visualization
f the network, drawing an edge between the nodes if the link strength
s greater than a user-defined threshold. In [9] a threshold of 7% is
roposed based on surrogate data analysis which acts as standard value.
s other works suggested other thresholds [10], this value can be freely

djusted.

https://www.edfplus.info/
https://www.edfplus.info/
https://www.edfplus.info/
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Table 3
Key variables of TDSpy defining either window lengths (wl_*), window shifts (ws_*) or thresholds.
Part Sym. Variable Usage

Pre-processing wl_sfe window length of signal feature extraction (sfe) in seconds (default: 2 s)
ws_sfe window shift of sfe in seconds (default: 1 s)

Time
Delay
Stability

𝐿 wl_xcc window length of xcc in seconds (default: 60 s)
𝑀 ws_xcc window shift of xcc in seconds (default: 30 s)

�̄� wl_tds number of delays analyzed in a TDS window (default: 5)
�̄� ws_tds number of delays shifted between two TDS windows (default: 1)
𝜂 td_tds threshold for differences between delays (default: 2)
𝜁 tr_tds threshold for ratio between number of delays in-/outside of td_tds (default: 80%)
Fig. 2. Computation of TDS: A window with fixed length (wl_tds) and height (td_tds) is shifted over the delay values 𝜏𝜈 . For the first and the second window (dashed gray
and black lines, respectively) all delay values are within td_tds (dark blue points), and therefore these windows are assumed to be stable. For the last window (black line), one
delay value (green point) is outside td_tds, resulting in a ratio of stability 4∕5 = 80%. If this value is greater or equal than tr_tds, the window is also assumed to be stable.
Fig. 3. Matrix visualization of a healthy subject (22 years, female) in light sleep from
the SIESTA sleep database. Colors indicate the percentage of windows quantified as
stable out of all windows during light sleep. Colormap: viridis, Range: [0,50].

2.1.6. Testing
We provide several tests for verification of all essential functions

of the source code using the pytest and numpy.testing libraries.
Real data was used to check if file reading and processing works
as expected. Moreover, synthetic data was used to test if the out-
put of a function is of the correct type (isinstance) and value
(numpy.testing.assert_equal). For example, to test the cross
correlation analysis (Section 2.1.3) a synthetic signal and a displaced
copy were generated and the result compared to the expected result.
Whenever possible, signals with random noise were used to increase
robustness and tests were repeated multiple times (@pytest.mark.
repeat()).
4 
Fig. 4. Graph visualization of the same data: HR is extracted from ECG, Resp from
the airflow signal, chin and leg motion from EMG, and the eye activity from EOG.
Furthermore, five EEG frequency bands are shown. The threshold is set to 7% as defined
in [9].

3. Illustrative examples

3.0.1. Validation with public data
As a benchmark for the usefulness of the proposed library, we

demonstrate its ’’out-of-the-box’’ usage on publicly-available polysom -
nography file provided by the St. Vincent’s University Hospital/Uni-
versity College Dublin Sleep Apnea Database (ucddb) [21] available as
an EDF file and a CSV file which contains the sleep stages following
Rechtschaffen and Kales rules. The database contains polysomnography
recordings from adult subjects with suspected sleep-disordered breath-
ing and we select the first subject (id: ucddb002, male, BMI: 33.9,
AHI: 23, duration: 6.2 h). For the analysis with TDSpy , we follow option
1 depicted in Fig. 1, i.e. we compute the features from the raw time
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series. The sample code in Listing 1 demonstrates the usage of TDSpy
or computing results for the wake stage.

isting 1: TDSpy applied to data from ucddb sleep apnea database
import neurokit2 as nk
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# TDSpy functions
from TDSpy.sn_TDS import sn_TDS_no_feature_extraction as TDS
from TDSpy.feature_extraction.sn_getEEGBandPower import

↪ sn_getEEGBandPower
from TDSpy.feature_extraction.sn_getVariance import sn_getVariance
from TDSpy.tools.sn_plotTDS import plot_TDS
from TDSpy.tools.edf_reader import read_all_EDF_channels

# Preparation: Please download these files:
# https://physionet.org/content/ucddb/1.0.0/ucddb002.rec
# https://physionet.org/content/ucddb/1.0.0/ucddb002_stage.txt

def main():
sleep_stage = 0 # wake
dur = 16000 # seconds

# Read EDF
data_dict, data_dict_sampling_rate = read_all_EDF_channels("ucddb002.

↪ rec", startrecord=0, endrecord=dur)

# Read sleep stages
stages = pd.read_csv("ucddb002_stage.txt", header=None)
stages = stages.to_numpy()

# Read only single stage
stage_idx = np.where(stages == sleep_stage)[0]
stage_idx = stage_idx[stage_idx < dur/30]

# Process single ECG channel
ecg_signal = nk.ecg_process(data_dict[’ECG’], sampling_rate=

↪ data_dict_sampling_rate[’ECG’], method=’neurokit’)
hr_signal_resampled = nk.signal_resample(ecg_signal[0][’ECG_Rate’],

↪ sampling_rate=data_dict_sampling_rate[’ECG’],
↪ desired_sampling_rate=1, method="interpolation")

# Process single RESP channel
rsp_rate = nk.rsp_rate(data_dict[’Flow’], sampling_rate=8, method="

↪ trough")
rsp_signal_resampled = nk.signal_resample(rsp_rate, sampling_rate=

↪ data_dict_sampling_rate[’Flow’], desired_sampling_rate=1,
↪ method="interpolation")

# Process single EMG channel
emg_signal = data_dict[’EMG’]
emg_var = sn_getVariance(emg_signal, sf=data_dict_sampling_rate[’

↪ EMG’])

# Process single EOG channel
eog_signal = data_dict[’Lefteye’]
eog_var = sn_getVariance(eog_signal, sf=data_dict_sampling_rate[’

↪ Lefteye’])

# Process single EEG channel
eeg_signal = data_dict[’C3A2’]
fpb, _ = sn_getEEGBandPower(eeg_signal, sf=data_dict_sampling_rate[’

↪ C3A2’], bandlimits=np.array([[0.5, 4, 8, 12, 16], [3.5, 7.5,
↪ 11.5, 15.5, 19.5]]))

# Compute TDS
data_dict = {’HR’: hr_signal_resampled, ’Resp’: rsp_signal_resampled, ’

↪ Chin’: emg_var, ’Eye’: eog_var, ’Delta’: fpb[:,0], ’Theta’: fpb
↪ [:,1], ’Alpha’: fpb[:,2], ’Sigma’: fpb[:,3], ’Beta’: fpb[:,4]}

tds, combination, stages = TDS(data_dict=data_dict)

# Plot result
nk.signal_plot(pd.DataFrame(data_dict), subplots=True)
plt.show()

# Limit to sleep stage
tds = tds[:,stage_idx[:−1]]

# Matrix plot
plot_TDS(tds, combination)

if __name__ == ’__main__’:
main()
5 
Table 4
Quantitative analysis of differences to [9] and [11]. We analyzed the difference in TDS
values (percentages) for all pairs of physiological systems.

Mean of abs. error Std. of abs. error

Subset 1: Bashan et al. [9] 1.59 1.63
Subset 2: Krefting et al. [11] 0.07 0.13

Fig. 5 shows the resulting network visualizations for the stages
wake, light sleep, and deep sleep. Our results are very similar to the
findings reported in [9]. One can clearly see a transition during sleep
with the highest number of links during wakefulness, lower numbers of
links in light sleep and the lowest number in deep sleep. The dominance
of the brain–brain links during deep sleep with links to the eyes and
chin and furthermore, the missing links to respiration in light sleep [9]
can be observed.

3.0.2. Validation via reproduction
In addition, we use TDSpy to replicate earlier works that ana-

yzed the SIESTA sleep database [22,23]. It contains 600 polysomnog-
raphy recordings of 197 healthy subjects and 97 subjects showing
high-prevalence sleep disorders, e.g. sleep apnea, insomnia, and mood
disorders. The data was recorded from 1997 to 2000 in eight European
sleep centers with all subjects giving informed consent.

We compare our results to the results reported in the landmark pa-
per [9] introducing TDS and the other is a work focusing on the analysis
of age and gender effects during sleep [11]. Hence, we analyze two
subsets of the SIESTA sleep database. Subset 1: The first paper [9] used
a subset of the SIESTA database by selecting 36 healthy young subjects
(18 female, age range 20–40). They applied TDS to the EEG, ECG, EOG,
EMG, as well as the respiration data. Subset 2: The second paper [11]
considered the 197 healthy controls (103 females, age range 20–95), of
the SIESTA database. After excluding twelve noisy PSG recordings, 385
recordings remained for analysis. For processing the SIESTA data, we
focus the analysis on the computation of TDS and not the preprocessing
of the raw time series. Hence, we use the preprocessed time series
from [9,11] and follow option 2 depicted in Fig. 1. For the analysis
with TDSpy , the default parameters of the algorithm are used as shown
in Tbl. 3.

First, we analyze results qualitatively. Fig. 6 shows the comparison
between the results reported in [9] and computed using TDSpy . The
values for the left matrix were provided by the authors of [9]. As can
be seen, both matrices follow a similar overall trend with low link
strengths for Resp and leg EMG and high link strengths between the
different EEG bands. Rather high differences can be observed for the
𝜃–𝛼 link with a mismatch around 6% and the leg–chin link around 4%.
Fig. 7 shows the comparison to the results described in [11] (Subset 2).
The two panels are visually quasi-identical.

Tbl. 4 gives an overview of the differences for both datasets as a
quantitative analysis. The agreement is nearly perfect for subset 2, since
the mean absolute deviations of the TDS percentages are merely 0.07%
points with a standard deviation of the absolute error only slightly
larger. These mean absolute deviations are two orders of magnitude
smaller than the standard threshold for a significant link set at 7%
in [9] (see Section 2.1.5). For subset 1, the deviations are much smaller
than this threshold, although the application of TDSpy sometimes yields
smaller values than reported [9].

3.0.3. Validation via dataset from a different domain
In order to analyze if TDSpy is useful beyond sleep datasets, we

apply it to data from another medical domain. We apply TDSpy to
data from a patient of the iCARE database [24,25] which provides
continuous EEG data from coma due to hypoxic-ischemic brain injury
involving patients with cardiac arrest. We select the first 8 h of data
from the patient being reported as having a Cerebral Performance
Category (CPC) score of 1, i.e. having good neurological function and
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Fig. 5. Graph visualization for a single subject with the threshold for link strength being defined as 7% according to [9]. Graphs are computed for the stages wake (left), light
sleep (right), and deep sleep (below). The results can be reproduced using the source code provided in Listing 1.
Fig. 6. Results for Subset 1 reported in [9] (left) and processed using TDSpy (right). Colormap: viridis, Range: [0,50].
independent for activities of daily living. Interestingly, results show
very similar behavior to TDS results reported in [10] for healthy
subjects. Strong coupling and symmetry can be observed in the left and
right hemispheres.

4. Impact

In this work, we proposed TDSpy , an open-source implementation
of TDS that we validated by comparing results to the original paper [9]
and a work that focused on age and gender dependency [11]. The
6 
mismatch to the second work is negligible while the mismatch to the
original publication is higher, reaching the highest mean absolute error
of 4.1 % during wakefulness of the subjects. It thus seems that the
differences are mainly caused by non-stationarities and/or different
correction of measurement errors, both of which are more frequent
during wakefulness than during non-REM sleep. In addition, they might
result from undocumented mitigation strategies in the algorithms used
in [9].

Unfortunately, the original source code is not available anymore,
limiting our possibilities to analyze the source of this mismatch. The
authors reported that the original source code was written in MATLAB
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Fig. 7. Results for Subset 2 reported in [11] (left) and processed using TDSpy (right). Colormap: viridis, Range: [0,50].

Fig. 8. Matrix visualization of the first eight hours of coma of subject 0306 from hospital E (73 years, male) as provided by the iCARE database.
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using its cross-correlation implementation (xcorr()). TDSpy makes
use of the functions correlate() and correlation_lags() pro-
ided by SciPy which might also explain smaller differences. How-
ver, the subset used in the second paper [11] is much larger and also
ncludes the subjects of [9]; hence, we assume that our implementation
s suited for practical usage.

We want to highlight that TDSpy was designed to be lightweight and
eamlessly to integrate into existing analysis pipelines. By providing
ethods for reading data from CSV and especially EDF files, two
ajor file types in biosignal analysis are supported. Further file types,
.g. MATLAB files could be read effortlessly by the already loaded
ibrary SciPy. Regarding output, we offer two popular visualization
ethods with the graph and matrix visualization. Due to the modular
esign of TDSpy , other visualization methods could be added without
uch effort.

The feature extraction step of TDSpy is evidently the one most prone
o errors due to the risk of noisy signals leading to biased features
xtracted. As multimodal signals are often acquired in challenging
nvironments, e.g. during surgery [26], there is the risk of a low signal-
o-noise ratio. Low-/high-/bandpass-filters are outside of the scope of
his library but we add references within the manual link to useful
ibraries such as SciPy, Neurokit2, or MNE.
TDSpy offers for the first time a validated and open-source imple-

entation of the concept of Time Delay Stability analysis. It enables
nswering research questions in the emerging field of multimodal time
eries analysis in the healthcare domain. Examples include the analysis
f data acquired from wearable devices such as smart watches [27]
nd monitoring of patients during surgery [28] or coma [29]. A recent
ork [26] has demonstrated that time series measured during surgery
re feasible for multivariate analysis. The application of TDS to this
ataset will be addressed in future work.

The presented results of applying TDS to the EEG data of co-
atose patients (Fig. 8) shows strong similarity to the work of Bartsch

t al. [10]. However, while this work focused on sleep data and mea-
ured 6 scalp locations only, 22 EEG channels from multiple hundreds of
ubjects in coma are available in the iCARE dataset. While conventional
EG features such as coherence and power bands have already been
nalyzed for CPC prediction [25,29,30], analyzing the dataset w.r.t.
DS coupling could be a promising avenue for future work.

The authors hope that by offering this library, Time Delay Stability
nalysis might also be available to a wider scientific audience and other
ields of research.

. Conclusions

Reproducibility is a cornerstone of good scientific practice but espe-
ially in the field of computational algorithms, it is often not addressed
dequately [31]. As the field of software development is so fast-paced,
orking environments are changing rapidly, rendering source code or
inary tools outdated. Due to lack of standardization, in many cases
elevant parameters are not documented or important detail on the
lgorithms are missing. This could lead to different implementations
epending on the interpretation of the developer and potentially biased
esults. Hence, with TDSpy we aim to contribute to a scientific culture
riven by open and reproducible algorithms.
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