
 
 
 
 

Continuous fluidized bed crystallization  
 
 
 
 

Dissertation 
zur Erlangung des akademischen Grades 

 
 
 

Doktoringenieur 
(Dr.-Ing.) 

 
 
 
 

von Dipl. Chem. Daniel Binev 

geb. am 09.11.1975 in Pleven, Bulgarien 

 

genehmigt durch die Fakultät für Verfahrens- und Systemtechnik 

der Otto-von-Guericke-Universität Magdeburg 

 

Promotionskommission:  apl. Prof. Dr. Heike Lorenz     (Vorsitz) 

           Prof. Dr.-Ing. Andreas Seidel-Morgenstern  (Gutachter) 

           Prof. Dr.-Ing. Ulrich Teipel     (Gutachter) 

           Prof. Dr.-Ing. Stefan Heinrich    (Gutachter) 

 

 

eingereicht am: 03.11.2014 

Promotionskolloquium am: 30.01.2015 



 
 

ii 

  



 
iii 

Schriftliche Erklärung 

 

Ich erkläre hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter 

und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe.  

Die aus fremden Quellen direkt oder indirekt übernommenen Gedanken sind als 

solche kenntlich gemacht. 

Insbesondere habe ich nicht die Hilfe einer kommerziellen Promotionsberatung in 

Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar 

geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem 

Inhalt der vorgelegten Dissertation stehen. 

Die Arbeit wurde bisher weder im Inland noch im Ausland in gleicher oder 

ähnlicher Form als Dissertation eingereicht und ist als Ganzes auch noch nicht 

veröffentlicht. 

 

 

Magdeburg, ________________________ 

 

 

________________________ 

(Unterschrift) 



 
 

iv 

  



 
v 

Abstract 
 
In this work, systematic studies on the continuous crystallization were conducted 

in a fluidized bed crystallizer. The impact of the inlet flow rates on the crystal size 

distributions was studied under the influence of a continuous generation of seed 

crystals using ultrasound (US). The experiments were conducted with three 

industrially relevant substances (fine chemicals) in a newly developed pilot-plant 

setup, featuring a conical shaped fluidized bed crystallizer possessing seven 

outlets. These substances differ in their crystal shape and in other essential 

chemical and physical properties (e.g. solubility equilibria, metastable zone 

widths etc.). By changing the inlet fluid flow rate, the desired crystal size 

distribution was shifted and eventually concentrated to a certain product outlet 

position. The size of the product crystals could be significantly influenced by the 

sizes of the initially added seed crystals. The application of US to trigger de-

agglomeration and to provide seeds by crystal breakage was used as an 

alternative to the classical application of wet milling. A pilot-plant setup 

comprising two coupled fluidized bed crystallizers was constructed. In this pilot-

plant unit continuous selective (“preferential”) crystallization of two ternary 

systems was performed successfully. 

In order to quantify the process in steady state, a Richardson-Zaki force balance 

model and a simplified dynamical population balance model were formulated and 

applied. The first model allows estimating average positions of a particle with 

respect to the height of the fluidized bed. It is limited only to constant particle 

diameters. The simplified dynamic model does not only provide information with 

respect to the fluidization of the particle but provides full particle number 

distribution at every time and position in the fluidized bed crystallizer.  

Primarily, the thesis provides a proof of concept and a feasibility study regarding 

the application of two coupled fluidized bed crystallizers for kinetically controlled 

continuous selective crystallization in the metastable region of the phase diagram 

of the components of interest. 
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Kurzzusammenfassung 
 
In dieser Arbeit wurden systematische Untersuchungen zur kontinuierlichen 

Kristallisation in einem Wirbelschichtskristallisator durchgeführt. Der Einfluss des 

Einlassvolumenstroms der fluiden Phase auf die Kristallgrößenverteilung 

kontinuierlicher Erzeugung von Impfkristallen mit Ultraschall (US) wurde 

untersucht. Die Versuche erfolgten mit drei industriell relevanten Substanzen 

(Feinchemikalien) in einer in Rahmen dieser Arbeit aufgebauten Pilotanlage. 

Herzstück der Anlage ist ein konusförmiger Wirbelschichtkristallisator, der mit 

sieben Produktauslässen ausgestattet ist. Die untersuchten Substanzen 

unterschieden sich in ihrer Kristallform und in anderen wichtigen chemischen und 

physikalischen Eigenschaften (z.B. Löslichkeitsgleichgewichte, metastabile 

Zonen etc.). Durch Veränderung der Durchflussrate konnte die Kristallgrößen-

verteilung verschoben und an bestimmten Produktauslass-positionen konzentriert 

werden. Die Größe der Produktkristalle wurde wesentlich durch die Größe der 

am Anfang zugegebenen Impfkristalle beeinflusst. Der Einsatz von US konnte 

erfolgreich für die De-Agglomeration und die Kristallzerkleinerung als Alternative 

zur klassischen Anwendung der Nassvermahlung demonstriert werden. Eine 

weitere Pilotanlage wurde konstruiert, die mit zwei gekoppelten 

Wirbelschichtskristallisatoren ausgestattet wurde. In dieser Anlage konnte eine 

kontinuierliche selektive („bevorzugte“) Kristallisation von einem chiralen und 

einem achiralen  ternären Systemen erfolgreich durchgeführt. 

Um den Prozess im stationären Zustand quantitativ zu beschreiben, wurden das 

auf Kräftebilanzen basierende Richardson-Zaki-Modell und ein vereinfachtes 

dynamisches Populationsbilanzmodell formuliert und eingesetzt. Ersteres 

ermöglicht die Vorhersage der Position eines Teilchens mit einer bestimmten 

Größe in der Wirbelschicht, ist aber auf konstante Partikeldurchmesser begrenzt. 

Das detailliertere dynamische Modell erlaubt Aussagen bezüglich der 

Fluidisierung der Partikel und Vorhersagen zur Partikelanzahlverteilung zu jeder 

Zeit und an jeder Höhe im Wirbelschichtkristallisator. 

Wesentliches Ergebnis dieser Arbeit ist ein „Proof of Concept“ bezüglich der 

Anwendung von zwei miteinander gekoppelten Wirbelschichtkristallisatoren für 

die kinetisch kontrollierte, kontinuierliche selektive Kristallisation zweier 

Komponenten in metastabilen Bereich des Phasendiagramms. 
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1. Introduction 
 
Both in the chemical and in the pharmaceutical industry, crystallization is a 

proven method of product purification and product design. Product properties 

such as the purity of the crystals, the crystal size distribution and the crystal habit 

are thereby significantly influenced by the crystal growth process. Hence crystal 

growth in the presence of impurities is for several decades an important issue in 

crystallization research. Moreover the impurities affect not only the crystal purity, 

but have in general significant influence on the substance properties and the 

crystal habit. In medicine it has been known for some time that two enantiomeric 

forms of a chiral substance may have completely different pharmacological 

effects when administered to living organisms. Often the enantiomer with the 

desired physiological impact has a "mirror image" showing no effect or even 

being harmful. Therefore enantiomers with high purity are becoming more and 

more important for pharmaceutical products needed to have the desired medical 

effect and to minimize the undesirable side effects. Hence the research should be 

emphasized on the direct production of pure enantiomers. This can be done for 

example through synthesis of only one of the two enantiomeric forms, or by the 

separation or purification of racemic or non-racemic mixtures. Moreover the 

strong similarity of the two enantiomers at molecular level and possible 

interactions between the two isomers (especially for chiral compound-forming 

systems) make their purification a special case of the enantioselective 

crystallization process. For a certain type of them and especially conglomerate-

forming systems a rather straightforward technique can be applied. Usually the 

crystal production is batch-wise realized, where the crystallization process is 

kinetically determined [Myerson2002, Hoffman2005]. Hence for conglomerate-

forming systems a novel technique of this process can be applied by coupling 

together two batch-crystallizers and while exchanging the mother liquor between 

them, simultaneously yielding both enantiomers [Elsner2007, Elsner2009, 

Elsner2011]. 

One of the possible ways to increase productivity and quality of the product while 

maintaining a continuous crystallization process is to use fluidized bed 
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crystallizers. The performance of such separation process is elaborated and 

technically proved with some industry relevant amino acid systems, forming 

simple eutectic [Midler1975, Midler1976]. The process concept is based on the 

idea that a defined quantity of crystals, placed under appropriate conditions 

inside a fluidized bed crystallizer, behaves as a fluid due to the uprising solution 

flow. To keep the continuity of the process, seeds have been constantly 

generated by ultrasonic comminution of the crystals at the bottom of the 

crystallizer. Despite the increasing number of publications on crystallization-

based enantioseparation, the crystallization in fluidized bed in general is little 

studied so far and in particular there is lack of enough quantitative experimental 

data needed to create a general conceptual model [Perry1997, Tai1999, 

Mullin2001, Yang2003, Epstein2003, Tung2009]. However, acquiring more 

experimental data could permit in connection with the knowledge of the 

appropriate thermodynamic data to optimally design and control the 

enantioselective crystallization process from the point of productivity and product 

quality. Motivated by this knowledge gap, it is the intention of this study, based on 

systematic study of some chiral model systems and through targeted 

enantioselective crystallization to extend the knowledge by contributing to this 

topic.  

The objectives of this thesis are to demonstrate and evaluate crystallization 

process, where product crystals with high purity and tight crystal size distributions 

are continuously and robustly obtained by maintaining a fluidized bed crystallizer 

in a steady state regime. Moreover, the “proof of principle” of the kinetically 

controlled continuous selective preferential crystallization process should be 

demonstrated in two coupled fluidized bed crystallizers for selected ternary 

systems. In order to run the process continuously, the necessary seeds provision 

should be by a fragmentation of already grown crystals externally of the 

crystallizer using ultrasonic comminution. 

The thesis is structured as follows: 

In the following chapter 2, a theoretical background is given, concerning all 

aspects relevant for this thesis. Along with an introduction to enantiomers and 

racemates, the crystallization basics are summarized. This includes solubility 

equilibria and crystallization kinetics, the production of single enantiomers using 
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crystallization and preferential crystallization in particular. Another section is 

dedicated to special crystallization techniques available for increased recovery of 

enantiomers like continuous crystallization in single and coupled batch 

crystallizers. The chapter is concluded with the principle of the fluidized bed and 

its application, where in detail the crystallization mechanism along with a basic 

scheme and the simple force balance model of the process are illustrated. 

In chapter 3, the experimental and characterization techniques and methods as 

well as the experimental and analytical setups used are described. The first part 

of the chapter includes a description of the model substances used, followed by 

preliminary experiments on their solubility and MSZW. A novel fluidized bed 

reactor setup is introduced with a detailed description of its operational parts. The 

operating conditions of the single fluidized bed crystallizer are then described 

along with the initial start-up. Further, information is provided about the 

construction of the second more advanced experimental setup, featuring two 

coupled fluidized bed crystallizers. In the last part of the chapter, a description of 

the analytics used is given along with the corresponding experimental conditions. 

The results of the experiments and their detailed discussion are comprised in 

chapter 4. Before this, in the beginning of the chapter, a simplified dynamical 

population balance model is introduced, which combines crystallization kinetics 

with fluidization process. In the preliminary experiments given afterwards, the 

solubility and metastable zone widths of the model substances are given as well 

as results regarding the generation of seeds by ultra-sonication. Further in 

chapter 4.4, results from the influence of selected parameters on the crystal size 

distribution in the single fluidized bed crystallizer are presented. A comparison of 

the collected experimental results is made with the results from the introduced in 

chapter 2.3.4 simple force balance model. An experimental “proof of principle”, 

comprising the continuous preferential crystallization of two ternary systems in 

two coupled fluidized bed crystallizers, is provided in chapter 4.5. 

Finally, concluding remarks and recommendations are given in chapter 5.
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2. Theoretical background 
 
The object of this chapter is to outline some important aspects of the 

crystallization theory and practice, along with some relevant topics, emphasizing 

some special chiral substances and their purification. Particular attention has 

been paid to recently developed processing methods, including some, yet to be 

proved adaptable to the large-scale production of crystals. 

2.1 Crystallization as a process to separate mixtures 

 
The need for efficient high-throughput techniques for the production of pure 

compounds is growing in conjunction with the increasing structural complexity of 

new drug molecules. Hence, the identification and characterization of the different 

kinetic phenomena in the crystallization process, e.g. solubility of the substance, 

nucleation or polymorphism, is relevant for process understanding. Moreover, an 

adequate process modelling gives the possibility to optimize and control the 

crystallization process, thus allowing robust operations and appropriate process 

design. 

Crystallization is a solubility-related process and it represents one of the basic 

processes in the process engineering. That is, a solid crystal or precipitate is 

formed when a solute exceeds its solubility in the solution. The crystallization 

refers also to the separation of solid, crystalline phases from melts or gases. 

Some thermal processes, which involve crystallization, are separation of mixtures 

of substances, purification of materials, recovery of solvents or concentration of 

solutions. The diversity of the crystallization processes is due to the variety of 

material systems, operating conditions and product specifications, such as crystal 

purity, crystal size distribution, and crystal shape.  

The most important mechanisms of crystallization are nucleation and crystal 

growth. Moreover, agglomeration and breakage of crystals are two crucial factors 

in addition to them. Frequently, cooling crystallization is applied as crystallization 

technique and for this reason it will be discussed in detail. Furthermore, fluidized 

beds have been applied successfully. Their principle will be also explained below. 
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2.1.1 Thermodynamics: Solubility equilibria 

2.1.1.1 Solubility phase diagrams 

 
The solubility equilibrium represents the thermodynamic equilibrium between a 

liquid and a solid phase. The equilibrium states are represented in phase 

diagrams. The latter describe the equilibrium and represent the pressure and 

temperature dependence of the solubility equilibria on the composition. The 

binary solution system consists of a solid component to be dissolved and a 

solvent, preferably water. The curve in a phase diagram is the dependence of the 

solution composition of a given substance at a specific pressure on the 

temperature. The diagrams have a different waveform depending on the 

miscibility in the liquid or in the solid state [Predel1982]. 

 
- Binary phase diagrams 
 
The thermal state of one-component systems is completely described through 

three variables: volume or density, pressure and temperature. In two-component 

systems (AB) another variable is added - the composition of the system. This can 

be expressed by the mole fraction or weight percentage of the components A and 

B. Shown are the equilibrium conditions in phase diagrams, the so called melt or 

solubility diagrams. These represent the solid and liquid phases which are in 

equilibrium as a function of the temperature at a specific pressure. In a two-

component system, only the mole input of just one component is necessary for 

the total mole fraction. 

 

χA = 1 − χB 

 
In eq. 2.1, χA is the mole fraction of a component A and χB - the mole fraction of 

component B. The mole fraction χA of the component A in system with N 

components can be calculated using the following equation. 

 

χA =
nA

∑ ni
N
i

 

 

In eq. 2.2, nA is the molar amount of component A and ∑ ni
N
i  is the sum of the 

molar amounts of all N components i [Mullin2001]. The representation of the 

(2.1) 

(2.2) 
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phase diagrams is based on the Gibbs’ phase rule, which determines the number 

of degrees of freedom, i.e. the number of independent variables. 

 
P + F = C + 2 

 
In eq. 2.3, P represents the number of phases, F is the number of degrees of 

freedom, and C is the number of independent components. Since the binary 

systems, involved in the crystallization processes, usually have a pressure of one 

atmosphere (1 atm), which can be considered constant, the phase rule can be 

rewritten:  

 
F = C – P + 1 

 
For binary mixtures of two chemically independent components, C = 2 so that F = 

3 – P. In a single phase (P = 1) condition of such two-component system, two 

variables (F = 2), such as temperature and composition, can be chosen 

independently to be any pair of values consistent with the phase. However, if the 

temperature and composition combination ranges to a point where the 

homogeneous one phase system undergoes a separation into two phases (P = 

2), F decreases from 2 to 1. When the system enters the two-phase region, it 

becomes no longer possible to independently control temperature and 

composition. The phase diagrams differ depending on the miscibility of the 

components in the solid or liquid state and the type of composition of the resulted 

solid phases. Based on that, there are a number of different types of phase 

diagrams representing different cases. 

In fig. 2.1 are shown the most important two-component systems, which are 

completely miscible in the liquid phase [Beckmann2013]. In the diagrams the 

pure components are indicated as A and B, a solution as AB, and mixed crystals 

as AxBy or BxAy. 

(2.3) 

(2.4) 
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Fig. 2.1 A representation of the most common binary melt phase diagrams: a) 
complete solid solution; b) solid solution with a minimum; c) eutectic; d) partial 
solid solution with eutectic; e) compound-forming with eutectic; f) compound-
forming with peritectic. Adapted from [Lorenz2013]. 
 
In fig. 2.1a, the phase diagram represents a complete solid solution formation. 
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inhomogeneous solid solution crystals are formed, which have a concentration 

gradient in their structure from inside to the outside. On the contrary, 

homogeneous solid solution crystals can be formed by slowly cooling the 

solution, because of the balanced concentration differences during the cooling 

process. Besides this simple case, phase diagrams can have maximums or 

minimums. In Fig. 2.1b, a diagram is shown that includes a minimum. Here the 

diagram is formally divided into two areas of the type as in Fig. 2.1a. The solution 

solidifies at the shown minimum as mixed crystals without changing the 

composition. 

In Fig. 2.1c is shown a system having a complete miscibility in the liquid state and 

a complete immiscibility in the solid state. This complete miscibility gap creates 

an eutectic, denoted with point E in the diagram. The characteristic feature here 

is that no mixed crystals are formed, but the components A and B are present in 

the solid state as a heterogeneous mixture. In the two areas marked as A and B, 

pure components A or B respectively are formed during the cooling process until 

the point where the two solubility curves intersect the eutectic line. A mixture of 

crystals of both components forms at this boundary line with the eutectic 

composition. 

Systems considering complete insolubility in the solid state practically hardly 

occur. Predominantly, eutectic systems can be found having high or low solubility 

of the two components into one another. This very common system is shown in 

Fig. 2.1d. In the solid state, the system has a miscibility gap. In the considered 

single-phase regions of the phase diagram mixed crystals of types AxBy and BxAy 

(x > y) are formed. Furthermore, between the two single-phase regions, there is a 

miscibility gap region, where a heterogeneous mixture of the mixed crystals of 

AxBy and BxAy occur. 

Only pure components or mixed crystals as solid phases appear in the systems 

considered so far. However, the two components can often form one or more 

chemical compounds together. Such phase diagram with compound-formation 

(shown as AB) is shown in Fig. 2.1e. The diagram can be formally seen as it 

consists of two phase diagrams of type, shown in fig. 2.1c. 

If a phase transformations takes place in the system, at least one of the phases 

will experience a change in the composition, whereby the composition of the 
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solute in solution does not match that of the solid. This incongruent 

transformation happens at the so-called peritectic point, denoted by P in the Fig. 

2.1f. At this point, the composition of the solid phase and the dissolved solute 

does not stoichiometrically match [Beckmann2013]. 

 
- Ternary phase diagrams 
 
The phase equilibria in ternary systems can be affected by four variables – 

temperature, pressure and the concentration of any two of the three components. 

This fact can be deduced from the Gibbs phase rule. 

 
P + F = 3 + 2 

 
Thus, a one-phase ternary system will have four degrees of freedom. In order to 

represent it graphically on an equilateral triangular diagram, the pressure should 

be considered constant. An exemplarily ternary phase diagram is shown on Fig. 

2.2. 

 

Fig. 2.2 An exemplarily ternary phase diagram with an intersection point m, 
representing the composition of the three substances A, B and C in isothermal 
equilibria. 
 
The vertices of the triangle represent the pure components A, B and C. The 

points on the side of the triangle stand for binary systems – AB, BC and AC, 

while the point m within the triangle represents a ternary system ABC. The scales 

of the component concentration can be any convenient unit, e.g. mass 

(2.5) 
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percentage, like in the example shown. The composition of the whole system is 

defined by specifying at least two compound concentrations and for the third 

compound applies the rule: 

 

χA + χB + χC = 100  
 

Generally, the parallel lines to the sides of the triangle correspond to a constant 

concentration of the component on the opposite triangle corner, e.g. lines 

a1b2, b1c1 and a2c2. The percentage composition of a mixture can thus be based 

on the intersection point determined by two lines. This intersection corresponds 

to the mixing point of the three components. In the case from fig. 2.2, M consists 

of 60% of component A, 10% of component B, and 30% of component C 

[Mullin2001]. 

Usually in a ternary phase diagram, a representation of only one temperature is 

considered, thus it corresponds to an isothermal section, although plotting of 

more isotherms is sometimes useful, especially when comparing solubility 

equilibria at different temperatures.  

A special case of the ternary solubility phase diagrams, found for most of the 

enantiomeric systems, is shown schematically in figure 2.3 [Roozeboom1899]. 

The diagrams represent a mixture of two enantiomers (D and L) added in a 

solvent (S) at a constant pressure and temperature. More information about 

enantiomers can be found in section 2.2. 

 
Fig. 2.3 Ternary solid-liquid phase diagrams of chiral systems, where liquidus is 
shown in green: a) conglomerate-forming; b) compound-forming; c) solid solution-
forming, where 1 – for ideal system, 2 – system with a solubility minimum, 3 – 
system with a solubility maximum [adopted from Sistla2011]. 
 

D L L D D L 

S S S 
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Depending on the chiral system in the ternary phase diagram, various two- or 

three-phase regions are located below the solubility isotherms (shown in green), 

while a one-phase region is located above the solubility isotherms. In these 

multiphase regions various stable crystalline phases can be seen. The pure 

enantiomers (D and L) and pure solvent (S) correspond to the triangle vertices 

and the points on the side of the triangle edges correspond to binary mixtures 

DS, LS and DL. The one-phase region is located above the solubility isotherms in 

all three diagrams. Here, the existing solutions are undersaturated with respect to 

the components L and D. Conglomerate-forming systems are shown in Fig. 2.3a 

and represent the formation of crystal mixtures having a racemic composition. In 

comparison, by the compound-forming systems (shown in Fig. 2.3b) crystals from 

racemic compounds DL are formed as well. In addition, there are two eutectic 

points. The third diagram, shown in Fig. 2.3c, represents a complete solid 

solution formation. Here, both enantiomers integrate into the crystal lattice 

regardless of their mixing ratio. Solid solution formation occurs as an ideal 

system (line 1 in Fig. 2.3c), a system with solubility minimum (curve 2) and a 

system having a maximum solubility (curve 3). 

2.1.1.2 Supersaturation, metastable zone and supersaturation 

 
Solubility is the property of a solid, liquid, or gaseous chemical substance called 

solute to dissolve in a solid, liquid, or gaseous solvent to form a homogeneous 

solution of the solute in the solvent [Hill1999]. The solubility of a substance 

fundamentally depends on the physical and chemical properties of the used 

solute and solvent as well as on temperature, pressure and the pH of the 

solution. The extent of the solubility of a substance in a specific solvent is 

measured as the saturation concentration, where adding more solute does not 

increase the concentration of the solution and begin to precipitate the excess 

amount of solute. Most often, the solvent is a liquid, which can be a pure 

substance or a mixture. Solubility is commonly expressed as a concentration, 

which may have units of mass percent, g/l, molality, mole fraction, mole ratio, and 

other. The solubility of a given solute in a given solvent typically depends on 

temperature. For many solids dissolved in liquid water, the solubility increases 

with temperature up to 100 °C [Hill1999]. This is especially valid for the 
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dissolution of solid organic compounds. A few exceptions exist, such as certain 

cyclodextrins, which possess a negative solubility coefficient (higher temperature 

decreases the solubility) [Filippone2002, Plazanet2006]. 

There are three possible conditions inside a solution, distinguished by the 

dissolution ratio of the solid. The condition, which corresponds to an 

undersaturated solution, is the case when the concentration of the solute is less 

than its solubility in the solvent at a specified temperature. A saturated solution is 

achieved when the concentration corresponds to the maximum solubility and a 

thermodynamic equilibrium at the specified temperature is established. The latter 

is reached when the substance to be dissolved in the solvent can no more 

dissolve. However, if the temperature is lowered, than the solubility of the solute 

is lowered and as a consequence the concentration becomes greater than 

represented by the equilibrium saturation. At these conditions, the solution is 

supersaturated. A diagram, representing the possible conditions in a solution is 

depicted in fig. 2.4. 

The supersaturation of the system is the driving force and is therefore crucial for 

crystallization. It can vary depending on temperature difference, by evaporation of 

solvent or by addition of other soluble substances. The degree of supersaturation 

is dependent on the crystallization kinetics and properties of the material, such as 

nucleation and crystal growth, as well as energy and material transfer. The 

crystallization kinetics is introduced separately in section 2.1.2. 

The saturation and supersaturation are concentration dependent and are strongly 

influenced by the temperature. This means that a saturated liquid phase at a 

certain temperature is in the thermodynamic equilibrium to a certain 

concentration with a solid phase.  

Among the most common expressions of supersaturation are the concentration 

driving force (Δc), the supersaturation ratio (S) and the relative supersaturation 

(σ). These quantities for a component i are defined by: 

 

Δc𝑖 = c𝑖 − c∗
𝑖
 

 

S𝑖 =
c𝑖

c∗
𝑖

 

 

(2.7) 

(2.8) 
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σ =
Δc𝑖

c∗
𝑖

= S − 1 

 

where ci is the solution concentration of the component i, and c*i is the 

equilibrium concentration of the component I at the given temperature. Of the 

above three expressions for supersaturation only Δc is dimensional, unless the 

solution composition is expressed in mole fraction or mass fraction. It is very 

important to quote the temperature, since the equilibrium saturation concentration 

is temperature dependent. For practical purposes, supersaturation is generally 

expressed directly in terms of solution concentration (e.g. molarity (mol / l) or 

molality (mol / kg). 

The state of supersaturation is one of the essential requirements for all 

crystallization operations. Ostwald first introduced the terms “labile” and 

“metastable” solution in 1897, while Miers and Isaac represented 

diagrammatically the metastable zone on a solubility-supersolubility diagram, see 

Fig. 2.4 [Mullin2001]. 

Fig. 2.4 The solubility diagram with an illustration of the metastable zone 
[adapted from Jones2002]. 
 
In the diagram two curves are shown, forming the borders of the metastable 

zone. The lower continuous curve represents the solubility of the given 

substance, while the upper broken curve, also called supersolubility curve, 

represents temperatures and concentrations at which spontaneous crystallization 

occurs. The latter is not well defined and is affected by, amongst other things, the 

rate at which supersaturation is generated, the intensity of agitation and the 
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presence of impurities. The diagram can be therefore divided into three zones 

[Jones2002]: 

1. Stable (undersaturated) zone, where no crystallization could occur and if seed 

crystals of the substance are introduced into solution, then they are dissolved. 

2. Metastable (supersaturated) zone, which lies between the solubility and 

supersolubility curve, where spontaneous crystallization is improbable, although 

secondary and primary heterogenic nucleation could happen. If seed crystals are 

introduced into solution, then they will grow.  

3. Unstable or labile zone above the supersolubility curve, where spontaneous 

crystallization (or nucleation shower) occurs. 

The most common crystallization processes are represented also in fig. 2.4. If a 

solution represented by point A is cooled without loss of solvent (line ABC), 

spontaneous crystallization will occur at point C. For a controlled crystallization 

process, seeds should be introduced between points B and C in the metastable 

zone. Supersaturation can be also achieved by removing some of the solvent 

from the solution by evaporation. The line AB’C’ represents such an operation 

carried out at constant temperature. 

2.1.2 Crystallization kinetics 

 
In order to build up an understanding of the crystallization processes it is 

necessary to become familiar with the concepts involved. Thus, in the following 

are listed a number of subsections describing the crystallization kinetics as: 

nucleation, seeding and crystal growth. The knowledge of these is crucial to 

understand and properly operate the crystallization process. 

2.1.2.1 Nucleation 

 
Supersaturation on his own is not sufficient in order a system to begin to 

crystallize. Before crystals can develop, in the supersaturated solution there must 

be some solid bodies, nuclei or seeds, which then act as centers of 

crystallization. Nucleation may occur spontaneously or it may be induced 

artificially. It can often be induced by agitation, mechanical shock or friction within 

the solution. Some external influences such as electric or magnetic fields, UV-

light, X-rays, sonic and ultrasonic irradiation have also been studied 
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[Khamskii1969]. Recent studies have shown that ultrasonic irradiation can reduce 

the induction time of the nucleation [Patel2009]. Ultrasound has also been used 

to replace seeding in some difficult-to-nucleate systems [Patil2008, 

DeCastro2007]. 

Different nucleation mechanisms can be distinguished based on the origin of the 

forming nuclei (see fig. 2.5). The homogeneous ‘primary’ nucleation can happen 

in solutions, where the molecules arrange themselves in a pattern characteristic 

of a crystalline solid, forming a bulk in which additional molecules deposit as the 

bulk grows into nuclei. In order such nuclei to be generated, a very high 

supersaturation is needed. On the other hand, suspended particles or small 

bubbles can also provide nucleation sites. This is called heterogeneous 

nucleation. Nuclei are often generated in the presence of crystals in the solution 

through friction or attrition. This “secondary” nucleation can occur in a slightly 

supersaturated solution in contrast to “primary” nucleation. 

nucleation 

primary  secondary 

homogeneous       heterogeneous      

Fig. 2.5 Classification of the nucleation phenomena. 
 
The classical theory of nucleation is based on the condensation of vapor to a 

liquid, and this procedure may be extended to crystallization from melts and 

solutions [Gibbs1948]. The free energy changes associated with the process of 

homogeneous nucleation may be considered as a sum of the surface free energy 

(i.e. the energy between the surface of the particle and bulk of the particle) and 

the volume excess free energy (i.e. the energy between a particle and the solute 

in the solution. In order a nuclei to appear a particle with a critical size is required 

with a minimum (or critical) free energy change of transformation per unit volume:  

 

∆G∗ =
4πγrc

2

3
 

 

(2.10) 
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It can be seen, that the behavior of the newly created spherical nucleus depends 

on its size and can either grow or dissolve. The critical size rc, therefore, 

represents the minimum size of a stable nucleus, at which particles smaller than 

rc will dissolve, and these bigger than rc will continue to grow. The interfacial 

tension (or surface energy) γ between the developing crystalline surface and the 

supersaturated solution is included. 

To explain the amount of energy, ∆G∗, necessary to form a stable nucleus, the 

rate of nucleation, B°, must be taken into account. It represents the number of 

nuclei formed per unit time per unit volume and can be approximated by a power 

law function of the supersaturation, also referred as the Meirs model: 

 

B° = kn(c − c∗)j 
 

In the equation 2.11, k0 is the rate constant and it is usually a function of the 

temperature T, whereas the exponent j is referred to as the ‘order’ of the overall 

nucleation rate. From equations 2.10 and 2.11 it can be seen that three main 

variables govern the nucleation rate – temperature T, degree of supersaturation 

Δc, and surface energy γ [Randolph1988]. 

2.1.2.2 Crystal growth 

 
In a supersaturated solution a formation of stable nuclei can grow into crystals as 

soon as they reach a specific critical size. By the crystal growth process, the 

supersaturation is reduced as the dissolved molecules of the substance are 

deposited on the crystal surface at a rate proportional to the difference in 

concentration between the crystal surface and the bulk in the solution. There are 

many theories in the literature for crystal growth description, including the 

adsorption-layer theory, where crystals grow layer by layer. According to Gibbs, 

the surface-energy theory is based on the principle that the total surface free 

energy of a crystal in equilibrium with its surroundings at a constant temperature 

and pressure would be a minimum for a given volume. [Gibbs1948] The crystal 

growth is exemplarily shown including several steps on fig. 2.6 

(2.11) 
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Fig. 2.6 Kossel’s model of a growing crystal surface, showing flat surface (A), 
steps (B), kinks (C), surface-adsorbed growth units (D), edge vacancies (E), and 
surface vacancies (F) [adopted from Mullin2001].  
 
According to Kossel’s model, the crystal growth can be schematically 

represented with the following steps: (1) Transport of the molecule from the liquid 

phase to the liquid-solid phase boundary; (2) Adsorption of the molecule on the 

crystal surface with a possible desolvation; (3) Transport to an eventual layer by 

surface diffusion including further desolvation; (4) Assembly on the surface, thus 

enlarging the layer; (5) Integration on the surface and final desolvation 

[Kossel1934]. 

According to diffusion-reaction theory from the work of Noyes and Whitney, for 

the crystallization can be proposed [Noyes1897]:  

 
dm

dt
= kmA(c − c∗) 

 

where m is mass of solid deposited in time t; A is surface area of the crystal; km 

is coefficient of mass transfer; c and c* are the concentration of the 

supersaturated and saturated solutions respectively. On the assumption that the 

molecules have to diffuse from the solute to the growing crystal face, the 

equation 2.12 could be rewritten in the form: 

 
dm

dt
= kdA(c − ci) 

 

A 

A 

A 

B 

B 

C D 

E 

F 

1 

2 

3 
4 

(2.12) 

(2.13) 

5 
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where kd is coefficient of mass transfer by diffusion and ci is solute concentration 

in the solution at the crystal surface. A first-order ‘reaction’ equation then 

represents the arrangement of the solute molecules into the crystal lattice: 

 
dm

dt
= krA(ci − c∗) 

 

where kr is a rate constant for the surface reaction (integration) process. 

Equations 2.13 and 2.14 are not easy to apply in practice, because they involve 

interfacial concentrations, which are difficult to measure. A general equation can 

be then written, which eliminates the term ci: 

 
dm

dt
= KGA(c − c∗)g 

 

where KG is an overall crystal growth coefficient. The exponent g is referred to as 

the ‘order’ of the overall crystal growth process. If g = 1 and the surface reaction 

(eq. 21) is also first-order, than the interfacial concentration ci can be eliminated 

by combining equations 2.13 and 2.14 into: 

 

KG =
kdkr

kd + kr

 

 
The overall crystal growth rate is then given as [Mullin2001]:  

 

RG =
1

A
.
dm

dt
= KG(c − c∗)g 

 
The Gibbs-Volmer theory or the adsorption layer theory is based on 

thermodynamic considerations. According to these considerations, the solute is 

not immediately integrated in the crystal lattice but forms an adsorbed layer 

around the crystal. Between this layer and the volume of the solution, a dynamic 

equilibrium is formed. During the growth process, loose lattice components from 

the adsorption layer are moving to the active sites in the crystal lattice (e.g. kinks, 

vacancies or steps). Under ideal conditions, they form a whole new level on the 

crystal surface [Mullin2001]. 

(2.14) 

(2.15) 

(2.16) 

(2.17) 
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Further kinematic theories may also be mentioned, but for the purpose of this 

work, they are not relevant and more detailed information can be found in the 

literature [Mullin2001]. 

2.1.3 Polymorphism 

 
By the production of fine chemical via crystallization it is not uncommon that the 

newly formed crystalline phase is metastable, e.g. a polymorph. Some of them 

can rapidly transform to a more stable phase, while others can exhibit apparent 

stability for a long time. Some transformations are reversible (enantiotropic), 

while others are irreversible (monotropic) [Mullin2001]. Polymorphism is of great 

importance due to its effect on some physical characteristics of the crystal lattice 

such as melting point, flowability, vapour pressure, bulk density, chemical 

reactivity, apparent solubility and dissolution rate, and optical and electrical 

properties. Thus, polymorphism can affect drug stability, manipulation, and 

bioavailability [Bernstein2002]. For example, the solubility of different polymorphs 

of the same compound reflects the differences in free energy between their 

respective crystalline states, which are different for each polymorph. Thus, the 

solubilities of these various crystal forms can vary in a broad range. Differences 

in solubility between crystalline forms of a pharmaceutical can lead to differences 

in bioavailability of solid dosage forms if the bioavailability is dissolution limited. In 

some cases, the metastable phase may have more desirable properties than the 

stable one, e.g. by the pharmaceutical product ritonavir, the stable polymorph 

form II is virtually inactive compared to the alternative metastable form I due to its 

poor solubility and lower bioavailability. Moreover, the “inactive” polymorph was 

subsequently found to convert the metastable and therapeutically effective 

polymorph into the stable but not so effective form on contact, due to its lower 

energy and greater stability [Bauer2001]. 

Two of the substances, used in this work, exhibit different polymorphic forms. 

More information about substances used can be found in chapter 3, section 3.1. 

2.1.4 Cooling crystallization 

 
The selection of a crystallization method and the proper design of a crystallizer 

depend on the type of supersaturation to be produced (cooling, evaporative, 
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drowning out, chemical reaction), the mode of operation (continuous or batch), 

the desired crystal size distribution and median crystal size, and the purity of the 

product [Mersmann2001]. Cooling crystallization is commonly practiced for 

solutions in which solubility is a strong function of temperature. Cooling alone can 

achieve the desired degree of crystallization when solubility is sufficiently low at 

the end of the cooling operation.  

A high proportion of the industrial crystallization is carried out in batch processes. 

This process is mainly used when producing smaller quantities, the product is 

frequently changed or high product purities are required. With a batch process 

both the quality assurance and the quality control of the final product can be 

ensured [Mersmann2001]. 

In comparison to batch process, continuous crystallization is used when larger 

amounts of product have to be produced. As for the pharmaceutical industry 

usually only small quantities are produced, it finds less application here. In both 

process variants presented below the supersaturation is created by cooling. 

2.1.4.1 Batch crystallization 

 
In the operation of batch crystallizers, maintaining a constant supersaturation of 

the solution in the crystallizer can be challenging. If the supersaturation varies 

along the process, it could result in lowering the quality of the product and 

spreading the crystal size distribution. To ensure a constant product quality, it is 

essential that the process conditions are identical at the beginning of the 

crystallization. For the optimal adjustment of the concentration supersaturation, 

the following applies:  0 < Δc < Δcmetastable, in order to avoid the dissolution of the 

seed crystals and uncontrolled nucleation. To keep the solution homogeneously 

mixed in a batch crystallizer, stirrers are used, which can lead to secondary 

nucleation due to breakage of the crystals. Higher stirrer speed has higher impact 

energy and thus the collision probability of the crystals is increased. An example 

system for batch crystallization is shown in fig 2.7.  
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Fig. 2.7 Scheme of a batch crystallizer, filled with crystal suspension. 
 
In the case of a one-component system, a saturated solution of the component is 

filled in the crystallizer and cooled until nuclei are formed through the 

supersaturation formed. The homogeneity of the solution is provided by a stirrer, 

while the temperature of the jacketed crystallizer is ensured by a thermostat. At 

the end of the process, the crystal suspension is fluxed through the valve into a 

solid-liquid separation facility (e.g. suction filter, centrifuge), where the product 

crystals are separated from the mother liquor. This merely simple setup and the 

easy adjustment of the process parameters make the batch-crystallization 

processes interesting for the industry. Quite the contrary, its application in the 

case of two- or more component systems like enantiomer separation is 

complicated. More information on the classical preferential crystallization process 

and enantiomer purification can be found in section 2.2. 

2.1.4.2 Continuous crystallization 

 
The crystallization process is run continuously when the crystallizer is integrated 

in a large production plant that is also operated continuously. The most important 

advantage of continuously operated crystallizers is the fact that the mean 

supersaturation is a function of the mean residence time:  

 

τ =
Vsus

V̇
 

 

where Vsus is the suspension volume and V̇ is the flow rate of the product 

suspension removed from the crystallizers. This means that the optimal 

(2.18) 
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supersaturation can be easily maintained by a certain flow V̇ for a given volume 

Vsus. 

However, it is also important that the crystallization process occurs in the 

metastable region in order to avoid an unwanted nucleation. The reduction of the 

supersaturation takes place mainly through crystal growth. In general, a large 

crystal surface and thus a high number of particles are desirable. 

The continuous crystallization processes can have different variants of 

realization. It is possible to use a batch-crystallizer in order to operate 

continuously. A typical example is shown in Fig. 2.8 

 

Fig. 2.8 Scheme of a continuous crystallization setup. 
 
The feed tank is filled with a saturated solution of the substance to be 

crystallized. It should contain no solid particles in order to avoid nucleation and 

contamination, when solution is transported to the crystallizer. A filter could be 

used between the tank and the crystallizer if necessary. The crystallizer is 

operated isothermally at a lower temperature that the feed tank. Hence, the 

solution is cooled and becomes supersaturated. Because of the supersaturation 

of the solution, the substance crystals can grow, and over time part of them are 

collected from the bottom of the crystallizer and separated from the mother liquor 

in a filter. The mother liquor is then refluxed back to the feed tank and the 

resulted product crystals can be removed. The constant inflow of fresh solution 

from the feed tank and the constant takeout of a crystal suspension from the 
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bottom of the crystallizer assures almost constant supersaturation level and thus 

“quasi-steady state” can be established. 

2.1.5 Seeding 

 
The addition of solid particles of the desired substance to a crystallization 

medium is known as seeding. It is often only reliable way to obtain the desired 

phase [Beckmann2000]. Controlling the crystallization process via seeding relies 

on the potential of the crystal surfaces to promote secondary nucleation, while 

avoiding heterogeneous nucleation mediated by unknown contaminants 

[Mullin2001]. In this case, the supersaturation is mainly degraded by crystal 

growth. Furthermore, some advantages result for the operation of the 

crystallizers, where by addition of seed crystals incrustation can be avoided, and 

thus lowering the spontaneous nucleation rate. In continuous crystallizers an 

improved startup behavior is observed, which as a result is shorter than the 

corresponding batch process. A further advantage of using seeds is the reduction 

of the contingency of spontaneous nucleation, thus seeding can be efficiently 

employed for chiral resolution of enantiomers during crystallization [Jacques1994, 

Sheldon1990]. 

The factors affecting the seeding effectiveness include addition timing and 

method, seed surface properties, seed CSD, and the rate of supersaturation 

generation [Paul2005]. A reproducible production of the seed crystals is crucial 

for the crystallization process in order to achieve constant product quality. This 

also applies for the product particle size. Furthermore, the addition of the seeds 

into the crystallizer must be realized in a way that the relevant process 

parameters do not change. Moreover, the solution must be in the crystallizer in a 

corresponding state, wherein the seed crystals will not dissolve in the solution, 

but grow instead. The corresponding temperature of the process should be 

observed. Otherwise, by a further temperature reduction nucleation can be 

triggered, which results in product quality or a temperature increase, which can 

lead to dissolution of the seeds – also not desired. 

For an optimal process control the necessary amount (or mass) of seed crystals 

used should be about 0.1 to 3% of the expected product yield mass 
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[Heffels1999]. According to the same authors, the size of the seeds used should 

be about 10 to 30% of the desired product size. 

The optimum amount of seed crystals can be calculated: 

 

mseed =
mfinal. Lseed

3

Lfinal
3 − Lseed

3  

 
In the equation 2.19, the mseed represents the mass of the seeds needed. It is 

calculated using the desired product size Lfinal, a specified seed crystal size Lseed 

and the expected product mass mfinal [Beckmann2000]. 

 
- Exploitation of ultrasound 

 
The possibility to accelerate the crystallization process by applying ultrasonic 

(US) waves on the supersaturated solution has undergone serious development 

over the past years. Moreover, the US cavitation effect can initiate spontaneous 

crystallization without the need to introduce foreign material (e.g. seeds) and 

prevents agglomeration of the crystals. Moreover, the possible impurity 

introduction from seeding or mechanical milling can be avoided in the solution. 

This technique can be used, where extreme high purity is needed, like 

pharmaceutical and food industry [Dennehy2003, Ruecroft2005].  

Ultrasonic processing in simple terms is the application of sound waves in the 

frequency range of 20 kHz–1 MHz which is above the range of human hearing. 

Ultrasound is used principally to influence the initial nucleation stage of 

crystallization. Principally, US creates cavitation in the solution, where each 

cavitation event consists of first the formation of small gas or vapor bubble 

followed by its quick collapse. The shock wave from the local high pressure of the 

cavitation collapse can accelerate the motion of the molecules in the liquid and 

increase molecular impacts so as to initiate nucleation. Cavitation event serves 

as a means of generating nuclei due to high local supersaturation level to new 

crystal formation and growth. Ultrasound can reduce the induction time at low 

supersaturation levels and can narrow the metastable zone width. Therefore, the 

effect of ultrasound on nucleation is stronger than that of high supersaturation 

level [DeCastro2007, Vironea2006]. 

(2.19) 
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US can also be used to break up crystals into smaller fragments in order to 

produce seeds. The process of crystal breakage affects the average particle 

sizes and size distributions both through reducing the size of existing crystals and 

by creating secondary nucleation sites [Zeiger2011]. The crystal break up can 

occur either by fracture or erosion. Erosion refers to particle size reduction due to 

the loss of primary particles from the surface of the agglomerate, whereas 

fracture is the partitioning of the original agglomerate into several smaller 

agglomerates. Which breakage mechanism dominates may depend on the 

applied ultrasonic intensity and it is certainly a function of material properties 

[Kusters1994, Marković2008]. 

Several studies have been reported related to the kinetics and mechanism of US-

facilitated breakage [Kusters1994, Hill1995, Raman2011]. Recently, Bari and 

Pandit have proposed a generic approach on solving PBE with a given CSD data 

to estimate the breakage kinetics [Bari2014]. The authors have obtained an 

empirical relation for the specific rate of breakage suggesting that rate is 

proportional to square root of the ultrasonic power. 

Teipel and Mikonsaari have investigated the influence of the US on the size 

reduction of some organic and inorganic crystals [Teipel2002]. An important 

observation is that two of the organic crystals, hexogen (RDX) and octogen 

(HMX), are polymorphic substances, which did not change their form during the 

experiments. The authors have observed that US has almost no effect on 

breaking up inorganic materials (e.g. NH4NO3 and NaCl) and significant effect on 

the size reduction of the crystals with organic origin. 

2.2 Enantiomers and their isolation 

 
In this section of chapter 2 is elaborated the importance of purification of some 

special chemicals, called enantiomers. Furthermore, the preferential 

crystallization as a resolution method is introduced, where two possible 

techniques are given and compared. 

2.2.1 Enantiomers and racemic mixtures 

 
The amino acid molecule can be seen as a typical example of an enantiomer. It is 

an organic acid, which has at least one amino group (-NH2) and one carboxyl 
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group (-COOH) in its molecule. Most of them are α-amino acids. In this case, the 

amino group and the carboxyl group are connected to the same carbon atom. In 

some cases β-amino acids can also be found, where the carboxyl group is 

connected to the first carbon atom and the amino group to the second carbon 

atom [Greenstein1961]. 

Further, in addition to the carbon backbone, amino acids may contain additional 

functional groups like -COOH, =NH, -OH, or -SH. In figure 1 is shown the general 

formula of an α-amino acid, where R represents the rest structure or side chain. 

 

Fig. 2.9 A general formula of an amino acid in its (1) unionized and (2) 
zwitterionic forms. In the formula R represents the rest structure. 
 
There are a lot of known aminoacids, but only 22 of them are so called 

proteinogenous [Hertweck2011]. They are the main component of the proteins, 

and therefore are found in every living organism. They are involved in the 

structure and function of cells in the body. Depending on how the structure and 

functional groups of the amino acids are built, they have a different effect on the 

proteins formed by them. 

The human organism cannot synthesize itself some of the α-amino acids it 

needs. These are called essential amino acids and they must be supplied 

through food intake. Essential amino acids are valine, leucine, isoleucine, lysine, 

phenylalanine, methionine, tryptophan and threonine. Amino acids are generally 

chiral molecules (except glycine), since they have four different substituents on 

the carbon atom in the figure 1 (-NH2, -H, -COOH groups and rest structure). 

Hence, enantiomers are stereoisomers or chemical compounds, which behave 

mirrored in their spatial structure. The word comes from the Greek Enantios, 

meaning the opposite. They are also called optical isomers due to the fact that 

they cannot be superimposed onto their mirror image or their structure cannot be 

brought into congruence with its mirror image by translation or rotation. Its 
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molecular formula and the linking of atoms are consistent with both versions, see 

figure 2.10. This particular type of isomerism is called chirality. The term comes 

from the Greek cheir, which means hand. Chirality is usually possible only for 

atoms with at least four binding arms. The left and right hand can be used as an 

example of a chiral system or a pair of enantiomers [Meierhenrich2008]. 

 

Fig. 2.10 An illustration of the chirality by analogue with the human hands. The 
dashed line represents the plane mirror. 
 
In figure 2.10, the left and right hands metaphorically represent a pair of 

enantiomers. The dashed vertical line between the two hands represents a 

mirror. It can be seen from the figure, the two hands are shown superimposed, or 

the two molecules cannot be brought into alignment by side-inversion of either of 

the shown structures. 

A specific feature of the enantiomers is that they have the same chemical and 

physical properties, like melting and boiling points, densities, solubilities and also 

same X-ray diffraction spectra. The only way to distinguish them is their different 

optical activity. They rotate the plane of linearly polarized light clockwise ((+)-

enantiomer) or counterclockwise ((-)-enantiomer), where the turning angle is 

indicated by α. Accordingly, the (+)-enantiomer stands for the dextrorotatory form 

and (-)-enantiomer - the levorotatory form. When measured by a polarimeter, 

they rotate the plane of polarization of the linearly polarized light in each case by 

the same amount in the opposite direction. This property of the different direction 

of rotation is used for differentiation of enantiomers. 

As a further possibility for enantiomer differentiation, e.g. saccharides and amino 

acids, the D / L system (Fischer projection) can be used. In the Fischer projection 

D is dexter, meaning right-handed, L stands for laevus and is left-handed. 
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As a third possibility can be used the nomenclature system proposed by Cahn, 

Ingold and Prelog (CIP) [Cahn1966]. Like in the Fischer system, the enantiomers 

are differentiated from each other with letters (S) or (R). The abbreviations again 

come from the Latin, whereby R stands for rectus and means right and S - for 

sinister, which means left. 

Another term of importance is a 50:50 mixture of enantiomers, which is generally 

called a racemate. In this 1:1 mixture of (+)- and (-)-enantiomer, the optical 

activity of the individual substances compensates. By the same right- and left-

handed shares a racemate is optically inactive and has a rotation angle α of 0°. 

The distinction between the two enantiomers is of great importance since they 

react differently in chemical reactions. Even when used as pharmacological 

agents enantiomeric substances can have different effects. Thus, one form has 

the desired effect, while the other may be indifferent, toxic or cause adverse 

effects. As an example, penicillamine can be used, which (S) form (D-

enantiomer) is used to treat copper poisoning and the (R) form is toxic 

[Kuchinskas1957, Crawhall1979]. Another example is thalidomide – one 

stereoisomer was the beneficial agent for preventing morning sickness by 

pregnant women, while the other causes serious birth defects [Miller1999]. 

The enantiomers may also differ in taste or odor, however. In 1886, Piutti found 

that D-asparagine had a sweet taste, while L-asparagine was tasteless 

[Greenstein1961]. Leitereg et al. confirmed differences in odor for the purified 

limonene enantiomers. The (R)-(+)-limonene has the odor of orange and (S)-(-)-

limonene has the odor of lemon [Leitereg1971]. 

Since the enantiomers possess different activities and effects, the presence of a 

counter enantiomer is unwanted, which makes their purification of great 

importance. One way to produce optically pure enantiomers is by using biological 

processes like fermentation [Leuchtenberger2005] or chemical synthesis 

[Coppola1987]. Still by the enantiomer production impurities can accumulate in 

the resulted product or some chemical synthesis lead to production of racemic 

solutions, where the ‘impurity’ of the unwanted enantiomer is 50%. For many 

industrially bulk-produced organic chemicals a purity of >95% is often accepted 

as ‘pure’. For some special chemicals a purity of >99% may be demanded. For 

purities >99.9% the term ‘ultra-pure’ is frequently applied. For many chiral 
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products, an enantiomeric purity of around 98% can be accepted, since the 2% of 

the other enantiomer has little or no effect on the activity of the product 

[Mullin2001]. 

To avoid unwanted side effects from the impurities present in the resulting 

solutions, commonly crystallization is used for further purification purposes. 

2.2.2 Preferential crystallization of simple eutectic systems 

 
Crystallization is a very powerful technique and permits enantiomers that behave 

as conglomerates to be resolved from their racemic mixtures. Besides 

crystallization, the resolution of enantiomers can be achieved by various 

methods, like microbiological methods, kinetic enzymatic resolution, and 

chromatography [Jacques1994]. Some of the recent studies show that of growing 

importance are methods that permit the continuous production of pure 

enantiomers, such as the combination of continuous chromatographic processes 

and subsequent crystallization [Kaemmerer2013, Swernath2013], chiral-

membrane-based separation techniques, [Xie2008, Gou2011] and polymers 

imprinted with chiral templates [Wattanakit2014]. Although all these techniques 

show high chiral discrimination, they are not yet applicable for the large-scale 

resolution of enantiomers. Therefore, large-scale separations are still typically 

achieved by classical crystallization methods. In the case of an enantioseparation 

process, direct crystallization can be performed in two main ways, i.e. preferential 

and simultaneous crystallization [Jacques1994]. The preferential crystallization 

process as a method for resolution of racemates has great potential and real 

economic importance in both pharmaceutical and chemical industries. However, 

profound understanding of the underlying fundamentals processes such as 

thermodynamics and kinetics of this technique in the crystallization process is 

needed. To optimize the resolution technique, the behavior of chiral crystals 

under varied conditions must be understood [Li1997]. The resolution of 

enantiomers by preferential crystallization is a kinetically controlled separation 

process that is terminated before thermodynamic equilibrium is attained. This 

technique is also known as resolution by entrainment [Jacques1994]. Although 

most of preferential crystallization process can be applied conveniently to 

conglomerate system, there are few cases where it has been used for racemic 
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compound systems. Lorenz el al. have illustrated the possibility of preferential 

crystallization for such systems starting with a solution having approximately 

eutectic composition, which consists of the racemic compound and one of the 

pure enantiomers [Lorenz2006b]. 

In preferential nucleation the nucleation rates of both enantiomers are different. 

This process concept is a variant of the so called auto seeded polythermal 

programmed preferential crystallization process [Coquerel2007, Czapla2008]. 

The most important aspect of this process is the “auto seeding”, or generation of 

seed crystals inside the crystallization vessel. This behavior can be attained by 

addition of a suitable additive that selectively inhibits nucleation of one of the 

enantiomers. This promotes the other enantiomer to nucleate. Ndzié et al. 

demonstrated a successful enantiomeric resolution of (±)-5-Ethyl-5-

Methylhydantoin by means of preferential nucleation [Ndzié1998].  

By the simultaneous crystallization, the process consists of seeding the racemic 

supersaturated solution with comparatively large seeds of one of the enantiomers 

which eventually grows larger. At the same time, the spontaneous crystallization 

of the counter enantiomers by the small seeds will create small crystals which 

can be separated from the larger enantiomeric crystal by sieving [Jacques1994]. 

Resolution by entrainment is based on the differences in solubility of the 

racemate and the pure enantiomers [Li1997]. 

Resolution of racemic conglomerates by preferential crystallization is the easiest 

and cheapest method available for the generation of pure enantiomers 

[Jacques1994]. 

2.2.2.1 Preferential crystallization in a batch crystallizer 

 
Two different principles of preferential crystallization for the batch process exist, 

the isothermal and polythermal process management [Jacques1994, 

Coquerel2007, Elsner2009]. In this work only isothermal process control is used, 

so further explanations on polythermal process management as well as recent 

publications on the subject can be found elsewhere [Polenske2009, Czapla2010, 

Levilain2010, Elsner2011]. 

The enantiomeric separation of racemic mixtures by means of preferential 

crystallization is carried out in the three-phase region of the ternary phase 
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diagram. This is administered by the addition of seed crystals of a pure 

enantiomer in a supersaturated racemic solution. Hence, a crystallization setup 

with only one crystallizer (like shown in fig. 2.7) is not efficient, because only one 

enantiomer can be separated, thus the concentration of the other will increase in 

the solution, resulting a spontaneous nucleation and contamination of the 

product. Yet, the process is manageable if the crystallization of the one 

enantiomer is terminated after some period of time by taking out the product 

crystals. Then the residual solution is heated in order to dissolve all solid particles 

and after temperature is lowered and supersaturation is again built, seeds of the 

counter enantiomer can be added. The principle for such cyclic batch process is 

illustrated on a ternary phase diagram, see figure 2.11. 

 

Fig. 2.11 Example of a cyclic preferential crystallization process of a 
conglomerate-forming chiral system in a ternary phase diagram.  
 
A solution, consisting of the two enantiomers present in racemic composition, is 

saturated at a certain equilibrium temperature (Ts) in a batch-crystallizer (point 

E). The solution is cooled to a crystallization temperature (Tc), and thus 

supersaturation is achieved in the solution (point 1). The temperature difference 

between the Ts and Tc has to be chosen such that point 1 remains in the 

metastable region (area plotted in green). This is necessary to avoid 

spontaneous nucleation of counter-enantiomer, which can happen if the 
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temperature goes below TN. The crystallization process is initiated by adding 

seed crystals of one enantiomer to the crystallizer (e.g. D-enantiomer). A high 

driving force for crystallization of the D-enantiomer will occur in the beginning, 

when the degree of supersaturation is still high. Over time, as the liquid phase 

becomes poorer with the D form, the system faces greater instability and 

crystallization of the L-enantiomer arises at point 2. Before reaching this state, 

the crystallization should be stopped and the product crystals collected. Then 

racemate is added in the system, which is indicated by the line 2-3 along with an 

increase of the temperature to Ts. At point 3 L-enantiomer seeds are added after 

the system is cooled to temperaure Tc. Because of the high driving force the L-

enantiomer will crystallize preferably until point 4 is reached, where crystallization 

of D-enantiomer arises. Again the crystallization should be stopped by collecting 

the L-enantiomer product crystals, then racemate is again added and the 

temperature is increased to Ts (point 5). The cyclic preferential crystallization 

process is closed with adding again seeds of the D-enantiomer, cooling the 

system to Tc and further crystallization until point 2 is reached. By this procedure, 

the two enantiomers can be obtained as pure products cyclically, where a 

maximum difference in the crystallization rates between the two enantiomers can 

be achieved between points 3 to 1 and 5 to 1 (Elsner2009, Polenske2009). 

Ideally the process could be operated infinitely. In practice there are certain 

limitations. Due to the recycling of the mother liquor, impurities will accumulate. 

This can lead to alteration of the crystallization kinetics or changes of the system 

solubility, which directly impacts the cyclic crystallization process and can lead to 

fluctuations or even its termination [Czapla2010]. 

2.2.2.2 Continuous preferential crystallization in coupled crystallizers 

 
In this chapter section will be summarized the theoretical basis on the continuous 

preferential crystallization, which is of particular relevance for this work. The 

preferential crystallization process can be realized in two coupled crystallizers, 

connected in series or parallel. The scheme of such coupled crystallizers is 

shown in Fig. 2.12.  
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Fig. 2.12 Scheme of a continuous crystallization setup for racemate separation, 
realized in two crystallizers. With red / blue arrows is represented the parallel / 
serial operation. Black arrows are used by the both operations. 
 
In the feed tank a saturated solution of the racemic mixture of the both 

enantiomers is placed. The solution is pumped through filters in order to keep it 

particle-free and to avoid unwanted nucleation and contamination. In both 

crystallizers the solution is cooled to the crystallization temperature and seed 

crystals of the corresponding enantiomer are added. Because of the 

supersaturation of the solution, they grow, and over time are collected from the 

bottom of the crystallizers and separated from the mother liquor in a filter. In the 

case of serial operation the suspension taken out from crystallizer I should be 

filtered, then the solution heated to dissolve eventual solid, and then the clear 

solution is poured into crystallizer II. The advantages of the parallel operation 

over the serial one is that the enantiomer ratio in the solution is close to 1:1, thus 

avoiding the unwanted nucleation of the counter enantiomer. Moreover, 

continuous parallel operation can be maintained without contaminating the 

second crystallizer with crystals of the counter-enantiomer from the first one. The 

mother liquor from crystallizer II can be eventually refluxed back to the feed tank 

in the case of parallel operation or pumped into crystallizer I, thus realizing a 

cyclic process in the case of serial operation [Tung2009].  

In this work, continuous preferential crystallization in two parallel connected 

fluidized bed crystallizers is realized isothermally. The process is illustrated on a 
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ternary phase diagram in figure 2.13, while a detailed description of the 

experimental setup can be found in section 3.3 of this thesis. 

 

Fig. 2.13 Ternary phase diagram example of a continuous preferential 
crystallization process of a conglomerate system, isothermally realized in two 
parallel coupled fluidized bed crystallizers. 
 
A solution, consisting of the two enantiomers present in racemic composition, is 

saturated at a certain equilibrium temperature (Ts) in a feed tank (point E, fig. 

2.13). The solution is simultaneously pumped into two fluidized bed crystallizers, 

where it is cooled to a crystallization temperature (Tc), and thus supersaturation 

is achieved (point E’). To initiate the process, seeds of the two enantiomers are 

introduced in the two crystallizers respectively, while fresh racemic solution is 

constantly added from the feed tank. The crystallization driving force for both 

enantiomers is equal and thus the enantiomer ratio in the solution remains close 

to 1:1 in both crystallizers. 

In comparison with the coupled batch crystallizers, the fluidized bed 

crystallization process possesses some advantages. The constant 

supersaturation, generated in the crystallizers during the whole process ensures 

its robust control, stable crystal growth and uniform product crystal sizes. 

Moreover, the risk of contamination through nucleation of the counter enantiomer 

is very low due to the constant upward flow and thus the carrying of the formed 
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nuclei out of the crystallizer is ensured. Due to the upward flow, the crystal mixing 

and heat transfer in the fluidized bed process are more uniform in comparison 

with the batch one [Tung2009]. 

Some of the major draw-backs of the fluidized bed process are the need of an 

increased crystallizer vessel and the use of pumping power to ensure stable 

crystal fluidization. Moreover, the current lack of understanding the process 

makes the eventual scale-up from pilot-plant very difficult. This can lead to higher 

initial capital costs including longer investigation times. 

2.3 Crystallization in fluidized bed 

 
In this section of the thesis, information about fluidized bed crystallization process 

is given as an alternative to the stirred tank crystallizers. At first, the general 

principle of the process is clarified and its interrelation with the fluid 

hydrodynamics, which is strongly dependent on the crystallizer geometry. 

Furthermore, the behavior of the fluidized particles in an upward flow is 

discussed, along with their segregation in correlation with the respective particle 

size distribution and particle density. In a separate subsection, the application of 

the fluidized bed process is elucidated with an emphasis on its conjunction with 

the crystallization process. Recent studies in the current state of the 

mathematical modelling of the fluidization process conclude this section, followed 

by the classical force balance considerations, proposed by Richardson and Zaki. 

2.3.1 Principle and hydrodynamics 

 
Fluidized bed crystallization is a process, where a solution is circulated through a 

crystallizer in which seed crystals are suspended by the up-flowing fluid. The flow 

rate is such that the crystal will not settle nor flow out of the crystallization vessel 

and the supersaturation will remain constant with time [Myerson2001]. 

Fluidization is the preferred mode of operation for many physical or chemical 

processes. This method provides several advantages over the other methods of 

operation such as good solids mixing providing uniform temperature throughout 

the reactor, high mass and heat transfer and easy solids handling. Fluidized state 

of a fluid-solid system is achieved when the solid particles weight is entirely 
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balanced by the solid-fluid interaction forces. This complete support is obtained 

for a fluid velocity greater than the minimum fluidization velocity. 

The fluidized bed crystallization process possesses a very complex 

hydrodynamic behavior since a wide range of particles are employed and the 

liquid upflow velocity has to be such that the fines do not leave the crystallizer; at 

the same time, the larger particles must be kept suspended for growth, to yield 

the desired size crystals. Under fluidized bed conditions, particles tend to 

segregate according to their size/density in a multi-particle system. For particles 

denser than the fluidizing medium, larger/heavier particles populate at the bottom 

of the crystallizer and the smaller/lighter particles accumulate near the top of the 

bed [Seibert1998]. 

The crystallizer geometry design is the core of the process, upon which the 

fluidization of the crystals, their size distribution and process productivity depend 

[Tung2009]. Hence, fluidized bed crystallizers are generally conical at the bottom 

and tubular at the top. A generic scheme of a fluidized bed crystallizer setup is 

shown in fig. 2.14. 

 

Fig. 2.14 Scheme of a fluidized bed crystallization setup [Tung2009]. 
 
In a fluidized bed crystallizer, the simultaneous progress of two processes, 

fluidization and crystallization, yield very complex phenomena which requires 

comprehensive experimentation of the process hydrodynamics, to help design an 

efficient crystallizer. As the supersaturated solution flows upward through a 

fluidized bed crystallizer, the solution contacting the bed relieves its 
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supersaturation on the growing crystals and subsequently the supersaturation 

decreases along the upward direction. As a result, crystals near the bottom grow 

faster than those near the top of the crystallizer. Such behavior results in the 

variation of particle size with height. When the bed is composed of particles of 

different sizes, the particle size distribution is influenced by two opposite 

phenomenon: classification and dispersion [Tavare1990]. 

Due to the complex hydrodynamic behavior of the particle mixtures, the reported 

studies on the fluidization of multiparticle systems are only limited to very simple 

situation, like fluidization of binary systems with particle differing in size or 

density. Al-Dibouni et al. measured the particle size distribution at various heights 

within the bed and came to a conclusion that classification dominates in a bed 

having the ratio of the largest to the smallest particle diameter greater than 2.2 

[Al-Dibouni1979]. The variation of size distribution with height could be accurately 

predicted by assuming perfect classification of the particles in bed. With the 

variation of particle sizes with height, bed voidages also vary along the height of 

the crystallizer. Bed expansion is an important parameter required for sizing the 

crystallizer, which is a significant factor affecting the total cost of the process.  

2.3.2 Segregation  

 
Knowledge of bed material segregation is necessary to properly operate the 

crystallizer with a two-phase system. Segregation in fluidized beds occurs for 

several reasons including size segregation, density segregation and flow regime 

segregation. Classification results from the movement of particles of different 

weights; a large particle among the smaller one tends to reach the bottom part of 

the bed, whereas a smaller particle, between larger ones, rises. At the same 

time, dispersion is induced by irregular motions of the solid. Perfect classification 

and perfect mixing of the solid in fluidized bed are the two extreme situations. 

More often, a mixing zone is created between the two layers of classification 

particles, allowing partial classification within the bed. For simplicity, design 

methods for fluidized bed crystallizers are generally based on the perfect size 

classification [Nývlt1970]. 

Many studies have investigated size segregation of particles with equal density 

and different diameters [Hoffman1993]. The resulting trend from these studies is 
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that particles of large diameter segregate to the lower regions of the fluidized 

bed, while smaller diameter particles segregate to the upper regions. Other 

studies have investigated density segregation of particles with similar diameters 

and different densities [Nienow1980]. Studies have also been performed on the 

role of flow regime in segregation [Zhang2009]. The work of Formisani et al. 

suggested that segregation occurs even in completely fluidized beds with fully 

mixed particles [Formisani2001, Formisani2008]. Nienow et al. writes that the 

flow regime determines the extent of segregation in the fluidized bed 

[Zhang2009, Nienow1980]. Currently little is known about predicting the extent of 

segregation or predicting particle distributions in fluidizing beds [Howley2002]. 

2.3.3 Application 

 
The first industrial application of a chemical reactor employing a fluidized bed of 

particles which is set in boiling motion by a rising current of gas for a coal 

gasification process was done by the German chemist Fritz Winkler 

[Winkler1926]. The application of this principle has revolutionized many industrial 

processes of solids treatment and in many cases made them work more 

successfully. Fluidized bed gasification, combustion and activation of 

carbonaceous material are important examples of how this type of reactor is used 

in coal technology. Nowadays, the industrial application of this technology 

extends well beyond coal. Liquid–solid fluidized beds are used in chemical 

industry, hydrometallurgy, food technology, biochemical processing and water 

treatment. A variety of operations, such as crystallization, ion exchange, 

adsorption as well as chemical reaction, can be conducted in liquid–solid fluidized 

beds. They have a number of advantages as a chemical reactor since they 

operate essentially at isothermal conditions. In addition, the solid particles, if used 

as catalysts, can be readily added to or withdrawn from the system for 

regeneration. The successful scale up, design and operation of liquid fluidized 

beds mainly depend on the accurate prediction of the behavior and features of 

the system, such as phase holdups and their distributions, flow patterns, and 

mixing levels of the individual phases. At present the understanding of liquid 

fluidized systems is far from complete because of the complex interactions 

among the phases. There is insufficient quantitative information about flow 
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patterns, phase holdups, solids mixing and circulation, which are all important to 

the estimation of heat and mass transfer rates for heterogeneous reactions 

[Fan1989]. 

Continuous crystallization methods are commonly used in the industry for the 

manufacture of mass-produced inorganic and organic chemicals, such as 

potassium chloride, ammonium sulfate, sodium sulfate, sugar, and acetylsalicylic 

acid [Myerson2001, Hofmann2005, Glasby1968]. The advantage of the 

continuous process management consists in ensuring a stationary operation and 

the associated stability of the crystallization conditions, consistent product quality, 

for example in terms of purity, particle size and particle size distribution. Usually 

in the field of fine chemicals, the products are manufactured in batches, where 

the production with respect of high system flexibility and gaining pure solid target 

product from the solution is carried out by batch crystallization. Critical is the 

necessary start-up, which can result from batch to batch of product quality 

variations [Randolph1988]. A particular difficulty is the "solids handling" related 

seeding process to initialize the crystallization. Ensuring reproducible seeding 

conditions, in particular the seed quality (surface area, crystal size and shape) is 

not trivial. 

Crystal growth in a liquid fluidized bed is an industrially established process. The 

system involves liquid fluidization of seeded crystals, grown by moderately 

supersaturated solution to the solute to be precipitated. In fluidized bed 

crystallizers, the particles undergo considerably less attrition and breakage than 

in circulating suspensions crystallizers. This type of crystallizer is thus, well suited 

for the crystallization of large crystals. The most common type of crystallizer of 

this kind is Krystal (Oslo or Jerimiassen) crystallizer [Perry1997]. Mullin and his 

coworkers have extensively studied the operating conditions of this type of 

system [Mullin2001], as well as by many others [e.g. Tai1999, Epstein2003, 

Tung2009]. Most studies involve the crystallization of inorganic salts from 

aqueous solutions. Fluidized-bed crystallizers can be operated in both the batch 

mode and the continuous mode, with bottom discharge of the enlarged crystal 

product [Yang2003]. Due to the longer residence times and degree of 

supersaturation, the suspended crystals can reach bigger sizes in comparison 

with these from the batch process [Tung2009]. 
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The removal of fluoride in a fluidized bed crystallizer by crystallization on the 

surface of sand grains has been studied as an alternative to chemical 

precipitation. Water recycling is required in order to decrease the fluoride 

concentration under the acceptable levels [WHO1994]. The combination of a 

fluidized bed crystallizer and a sand filter bed in the process has been able to 

achieve a reduction in the formation of fines for technical applications. Under 

these conditions, process efficiencies close to 80% and pellets with calcium 

fluoride content higher than 97%, which are able to be reused as raw material in 

several applications, have been obtained [Aldaco2006]. 

A fluidized‐bed crystallizer was employed in the study to remove lead from the 

synthetic wastewater by crystallization of metal carbonate precipitates on 

surfaces of the sand grains. For the influent concentration up to 40 mg/L, lead 

removal efficiency reached 99% and the effluent concentration was less than 1 

mg/L when the system was operated with a series of optimum conditions. In 

addition, the stable operation in terms of lead removal and solution turbidity was 

observed after a 380‐minute operation. Analysis of the composition of crystals 

deposited on the sand grains surface showed that nearly 99% was lead salt 

[Chen2000]. 

The feasibility of phosphate removal from the supernatant of anaerobically 

digested sludge by struvite (MAP, MgNH4PO4) crystallization in a fluidized-bed 

crystallizer was studied by Battistoni et. al. [Battistoni1997]. Quartz sand was 

used as seed material. The combination of quartz sand as seed material and air 

stripping avoids the use of chemicals to reach appropriate pH values for struvite 

crystallization. All the phosphate is crystallized as MAP and no precipitate is 

formed when external continuous aeration is adopted. 

 
Fluidized bed crystallization of APIs and enantiomers 
 
The crystallization of acetylsalicylic acid (aspirin) from absolute alcohol in a 

fluidized bed crystallizer has been reported by Glasby et al. [Glasby1968]. Ogawa 

et al. have studied the growth of L-alanine crystals in a fluidized-bed crystallizer 

under the influence of a magnetic field [Ogawa2009]. Microscopic observations of 

the results of crystallization revealed that the c-axes of the L-alanine crystals 
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moving in the solution were parallel to the direction of the applied magnetic field. 

Moreover, it was found that the orientation of the fine crystals adhered to the 

surface of the growing crystals and the surface topography of the crystals could 

be controlled by applying a magnetic field in the fluidized-bed crystallizer 

[Ogawa2009].  

In chapter 11 of his book, Tung et. al. have presented a kinetic separation of 

enantiomers in heavily seeded, all-growth, limited residence time fluidized bed 

crystallizers, using a continuous (steady-state) process for tight control of 

supersaturation, unchanging with time. The utilization of the fluidized bed 

crystallizers helps to avoid the need for heavy-magma, high-flux filtration 

equipment. [Tung2009]. The continuous kinetic resolution of stereoisomers was 

put into production, using production-scale fluidized bed crystallizers in 1967, 

using ultrasonic cleavage of seed particles to maintain the continuity of the 

crystallization process [Midler1970]. The process was investigated by Michael 

Midler Jr., who have extended the application of the fluidized bed crystallization 

by coupling two crystallizers (tubular crystallizers with conical lower part) together 

in serial or in parallel mode, thus a preferential crystallization of some 

conglomerate forming systems could be performed (DL-N-acetyl aminonitrile and 

DL-acetamido-(p-hydroxyphenyl)-propionitrile, both soluted in methanol). The 

necessary seed crystals are continuously produced in situ by means of ultrasonic 

comminution. The resulted product crystals had a purity of over 97%, based on 

polarized light rotation measurements [Midler1975, Midler1976]. This system 

design has shown the potential for the targeted control of particle size, while 

supporting an automated generation of seed crystals, which eliminates the 

problems of non-reproducibility of the seeding process. 

This thesis was inspired by Midler’s works and is based on the concept to 

investigate the possibility of continuous separation of enantiomers on one hand 

and the simultaneous product design (crystal size and shape, purity, 

polymorphism, etc.) on the other. The principle of this method should be 

applicable also to other isomer separations (assuming they have a eutectic in the 

system), thus increasing its potential for broader deployment.  
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2.3.4 Force balance model for evaluation of particle position 

 
A large amount of work has been done on developing models for gas-solid 

fluidized beds (e.g. population balance modelling for continuous fluidized bed 

spray granulation) [Heinrich2002]. Only a few researchers have attempted to 

develop models for fluidized bed crystallizers. This may be due to the complex 

nature of the fluidized bed crystallizer and the limited application of this type of 

crystallizer for the realization of the crystallization processes. Frances et al. 

developed a model for a continuous fluidized bed crystallizer, based on the 

description of the fluidized bed as a multistage crystallizer [Frances1994]. The 

model was developed in order to take into account the segregation and particles 

mixing within the bed, while providing better prediction of the mean size of the 

product. Influences of various parameters on ammonium sulphate crystallization 

in a fluidized bed crystallizer were simulated by Belcu and Turtoi [Belcu1996]. 

The model was developed based on a phenomenological approach and the 

results found strong influence of the equipment geometry. Shiau et al. developed 

a theoretical model for a continuous fluidized bed crystallizer, assuming that the 

liquid phase moves upward through the bed in plug flow and the solid phase in 

the fluidized bed is perfectly classified [Shiau1999]. The model describes the 

variations of crystal size and solute concentration with vertical position within the 

crystallizer and also allows one to study the effects of various operating 

parameters, such as the feed rate and height / diameter ratio, on the performance 

of a continuous fluidized bed crystallizer. Later, the same investigators performed 

a study on the interactive effects of particle mixing and segregation on the 

performance characteristics of a batch fluidized bed crystallizer [Shiau2001]. In 

this model, the liquid phase is again assumed to move upward through the bed in 

plug flow and the solid phase is represented by a series of equal-sized ideal 

mixed beds of crystals. 

It is attractive to know the steady state position of a particle size distribution in a 

fluidized bed crystallizer. The Richardson-Zaki correlation was found to be 

effective in predicting the bed expansion characteristics of a fluidized bed of 

mono-sized spherical particles [Gibilaro2001, Richardson1954]. It comprises a 

formulation of the conservation equations for mass and momentum in a fluidized 
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suspension, and applications of these equations to the prediction of system 

behavior in steady state. A starting point for the examination of the mechanism of 

the fluidization process, which involves the suspension of a large number of solid 

particles in an upward flowing fluid, is the simple case of the single particle with 

fixed diameter. The fluidization process of the particle is essentially based on 

force balance considerations. Herby the forces acting on a single particle are 

depicted in Fig. 2.15 

 
Fig. 2.15 Single particle in a suspension with important forces acting on it. 
 
As seen from figure 2.15, important forces acting on a fluidized particle with a 

diameter L are the fluid-particle interaction force fp and the particle effective force 

fe. Under equilibrium conditions, they are equal and the particle position can be 

quantified: 

 

fp + fe = 0 

 

The fluid-particle interaction force fp can be represented as the buoyancy force, 

fb, and the total drag force, fd, in the following form: 

 

fp = fb + fd =
πL3

6
gρf + 3πufLµf 

 

                                      Fluid flow 
             (superficial velocity, uf) 

fp 

fe 

(2.20) 

(2.21) 

L 

particle 
segregation 
velocity, up 
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where L is the particle diameter, g is the standard Earth gravity, uf represents 

fluid superficial velocity; ρf and µf are fluid density and fluid viscosity, 

respectively. 

The description of the particle effective force, fe, includes the gravity force acting 

on the particle and the buoyancy force, fb: 

 

fe = fg + fb = −
πL3

6
(ρp − ρf)g 

 
From both equations it can be seen that in equilibrium conditions the drag force 

equals the gravity force but with opposite sign, i.e. fd = - fg. 

If a low fluid flow rate is considered around a sphere, where the fluid streamlines 

follow its contours (the so called creeping flow regime, or laminar flow), then the 

empirical relation for the drag force can be expressed dimensionless by 

introducing the drag coefficient, CD, which is [Gibilaro2001]: 

 

CD =
fd

(ρfuf
2/2)(πL2/4)

=
24µf

ufρfL
=

24

Rep

 

 

where Rep is the Reynolds number. It is defined as the ratio of inertial 

forces to viscous forces and consequently quantifies the relative 

importance of these two types of forces for given flow conditions 

[Gibilaro2001]. 

At equilibrium, the drag force can be rewritten in order to include the particle 

segregation velocity, up: 

 

CD =
4

3

gL

up
2

(ρp − ρf)

ρf

 

 

From equations 2.23 and 2.24 can be seen that CD is a function of Rep and 

hence of up. So equation 2.24 can be solved for up, which for the laminar flow 

regime has the following form: 

 

(2.22) 

(2.23) 

(2.24) 

(2.25) 
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up =
(ρp − ρf)gL2

18µf

 

 
The above expression for the segregation (or terminal) velocity of a single particle 

can be expressed in dimensionless form, thereby introducing the Archimedes 

number, Ar, which can be used in further characterization of the fluidized state: 

 

Ar =
ρf(ρp − ρf)gL3

µf
2  

 
Consider a defined volume with height H and a cross-sectional area A, 

representing a fluidized bed of uniform particles. In order to consider the forces 

acting, one must take into account the total energy content of the fluid entering 

and leaving, as well as the dissipation of this energy brought by the individual 

particles. Thus, the hydrodynamics of such fluid includes the so called 

unrecoverable pressure loss due to particle-fluid frictional iterations, which rises 

with the bed height. Moreover, the fluid superficial velocity, uf, depends on the 

fraction of the bed cross-section, A, free from particles, which is the void fraction, 

ε, available for flow. Combining all these factors and including tortuosity and the 

friction factor, for the unrecoverable pressure loss can be written [Gibilaro2001]: 

 

∆P = (
18

Rep

+ 0.33)
Hρfuf

2

L
(1 − ε)ε−4.8 

 
where, the power value of –4.8 will be explained later. This convenient relation 

between the particle drag and the unrecoverable pressure loss is a revised 

version of the known Ergun equation [Ergun1949]. It is applicable over the full 

expansion range,   1 > ε ≥ 0.4. In contrast, the standard Ergun equation is 

applicable only for normal packed beds with ε ≈ 0.4 and deviates with increase of 

the void fraction. 

Richardson and Zaki have done an extensive experimental investigation of the 

fluidized bed behavior [Richardson1954]. Their large amount of observations can 

be described by the following empirical equation: 

 

uf = upεnRZ 

(2.26) 

(2.27) 

(2.28) 
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The parameter nRZ was found to correlate with the particle Reynolds number. A 

more convenient relation enables nRZ to be evaluated from the Archimedes 

number: 

4.8 − nRZ

nRZ − 2.4
= 0.043Ar0.57 

 

nRZ =
4.8 + 0.1032Ar0.57

1 + 0.043Ar0.57
 

 

Under viscous conditions (Ar << 1), the value for nRZ is 4.8 and under inertial 

flow conditions (Ar >> 1) nRZ = 2.4, thus the border conditions for nRZ are set. 

Concluding this section, the primary forces acting on a fluidized particle can be 

identified as the gravity, buoyancy and the drag forces. Thus, for single particle 

suspension an effective weight, We, of a particle can be defined as the net effect 

of gravity and buoyancy in correlation with particle diameter: 

 

We = fg + fb = −
πL3

6
(ρp − ρf)gε 

 

This relation shows the effective weight of an average fluidized particle under 

equilibrium conditions is proportional to the void fraction. 

For the complete drag force adopted for all flow regimes can be written: 

 

Fd =
πL3

6
(ρp − ρf)g (

uf

up

)

4.8
nRZ

ε−3.8 

 

The consistency of the equations for We and Fd can be confirmed at equilibrium 

conditions (where both are equal), thus, yielding the Richardson-Zaki relation: 

 

We + Fd = 0 
 

−
πL3

6
(ρp − ρf)gε +

πL3

6
(ρp − ρf)g (

uf

up

)

4.8
nRZ

ε−3.8 = 0 

 

After truncating the equal terms, equation 2.34 can be reduced to:  

(2.31) 

(2.32) 

(2.33) 

(2.34) 

(2.29) 

(2.30) 
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ε4.8 = (
uf

up

)

4.8
nRZ

 

 

From equation 2.35 it is easily seen, that solving for uf after unifying the power 

values gives the Richarson-Zaki equation 2.28. 

The application of equation 2.28 is only valid at steady state operation of the 

fluidization process, thus allowing the estimation of a position of particles with 

certain diameters, depending on the experimental process parameters and 

crystallizer geometry.  

In order to take into account the difference between the assumed spherical 

particles and real crystal shapes, a sphericity parameter, Ѱ, can be introduced. It 

was defined by Wadell as the ratio of the surface area of a sphere, which has the 

same volume as the particle, to the surface area of the particle [Wadell1935]:  

 

Ѱ =
√π(6Vp)

23

Ap
 

 
where Vp and Ap are the particle volume and particle area respectively. Hereby, 

the calculated particle diameter, L, has to be multiplied by the sphericity 

parameter, Ѱ, to achieve the predicted mean particle size, d50, to be compared 

with corresponding experimental values of component specific measured CSD 

i.e. d50 = L. Ψ. 

From equation 2.36 can be seen, that Ѱ is dimensionless and can have values 

between 0 and 1, meaning that particle forms similar to a sphere will have 

sphericity parameter closer to 1 and particles with long, needlelike forms will have 

a sphericity parameter closer to 0. 

This simplified balance force model will be applied in chapter 4.4.1.4 to predict 

the steady state position of crystals in the fluidized bed crystallizer and to 

compare calculated data with experimental measurements. Since the model 

comprises only the segregation of a single particle in the fluidized bed, an 

extension to the model is introduced in chapter 4.1, where the crystallization 

dynamics and size distributions are is considered in addition.  

(2.35) 

(2.36) 
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Main goal of this thesis is to extend essentially the knowledge for the 

crystallization process in fluidized bed by conducting systematic experimental 

work in a specially designed experimental setup for selected challenging 

separation problems, which will be described in the next chapter.
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3. Experimental 
 
The chapter is divided into three sections. In the first section 3.1, an overview of 

the physical and chemical properties of the investigated glutamic acid, 

asparagine and aminobenzoic acid model systems is given. The second section 

provides detailed information about the methods, procedures and experimental 

setups used. In the last section, the basics and application of the analytical 

techniques and instruments used are explained. 

3.1 Selected model compounds 

 
The materials, used in this work, can be separated into two groups. In the first 

one are the two aminoacids - asparagine and glutamic acid. They are chiral 

conglomerate-forming compounds and therefore are optically active substances. 

The other group is represented by the isomers of the aminobenzoic acid. It is a 

stereomeric system exhibiting simple eutectic, showing constitutional isomerism. 

Furthermore, the safety precautions for the substance handling have to be taken 

into account and are thus described in this section. 

3.1.1 Glutamic acid 

 
Glutamic acid system consists of two enantiomers, namely D-glutamic acid and 

L-glutamic acid as a racemic mixture. From them only the L-enantiomer finds 

application and can be naturally found. L-Glutamic acid is a nonessential alpha-

amino-acid, daily needed in the human metabolism. It is important for the protein-

buildup and it is part of the polypeptide chain. In small amounts, L-glutamic acid 

can be produced by the body itself, but the majority is obtained as a nutrient from 

the food. In the living cells of certain tissues, glutamic acid acts as energy source 

and is responsible for detoxification processes [Plaitakis2001]. Furthermore, it 

acts as an important neurotransmitter between nerve cells for the stimulus 

extension [Yamada2005, Robinson1987]. Naturally, L-glutamic acid is available 

from protein-rich foods, such as grain, curd, soybeans, tomatoes, chicken meat 

and milk. While bound glutamic acid has no effect on the taste, free glutamic acid 

acts as a flavor enhancer. Therefore it is used in the food industry as a food 
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additive, abbreviated as Glu or E620 [EU2011]. The flavor enhancer is mainly 

used for production of ready meals such as canned soups and broths, but can be 

found in small amounts in all processed foods. Total consumption of glutamate 

from food in EU ranged from 5 to 12 g/day. A maximum intake of 16 g/kg body 

weight is regarded as safe. Thus, the general use of glutamate salts as a food 

additive can be regarded harmless for the human [Beyreuther2007]. 

L-Glutamic acid is produced mainly by fermentation, where over 15 registered 

patents on the subject were applied from Ajinomoto Co., Inc. in the last 3 years 

(2011-2013). The 2-aminopentanedioic acid is an alpha-amino-acid and has two 

mirror image forms – L- (S-) and D- (R-). In fig. 3.1 the two structural formulas of 

glutamic acid enantiomers are shown. 

 

Fig. 3.1 Structural formula of the glutamic acid enantiomers. Dashed line 
represents mirror plane. 
 
The glutamic acid substance is a white powder with a molecular formula 

C5H9NO4, which is the same for both enantiomers. The physical and chemical 

material properties of the two enantiomers are identical and some of them are 

summarized in Table 3.1. 

 
Table 3.1 Physical and chemical properties of the glutamic acid enantiomers at 
25 °C, 100 kPa [Chemspider591].  

Molecular formula C5H9NO4 

Molar mass 147.13 g/mol 

Appearance white crystalline powder 

Density 1.54 g/cm3 (20 °C) 

Melting point 205 °C decomposition 

Solubility in water see chapter 4, section 4.1 

Rotation angle α (at 20°) 34.5 º (10 mol in 2N HCl) 

Toxicity (LD50 oral by rats) > 30000 mg/kg 

   

L-(+)-glutamic acid 

D-(-)-glutamic acid 
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Although the physical and chemical properties of the both enantiomers are the 

same, they are different in taste. The taste of the L-form of glutamic acid is sweet 

to sour, while the D-form is neutral in taste [Kawai2012]. 

L-Glutamic acid crystals have two polymorphic forms. Its α-form has a crystal 

morphology comprising a prism with bipyramid terminations, while the more 

stable β-form is needle-like [Mougin2002]. For the D-glutamic acid only one 

literature source could be found, where the crystal habit of the crystals comprises 

a prism, when recrystallized from ethanol [Kofler1957]. 

For the investigations in this work, D-Glu, L-Glu and DL-Glu from Alfa-Aesar were 

used with a purity of 99%. The enantiomer excess (ee) content was proved with a 

HPLC and showed 100 ee% for the both enantiomers and 0 ee% for the 

racemate. 

3.1.2 Asparagine monohydrate 

 
The alpha-amino-acid asparagine is isolated from the juice of asparagus for the 

first time from which it is named [Vauquelin1806]. In nature, mostly L-asparagine 

occurs especially in protein-containing plants such as soy, potatoes and cereal 

grains, as well as in animal sources beef, eggs and seafood. The human 

organism is, however, also being able to synthesize L-asparagine. Therefore, it is 

one of the nonessential amino acids. Under the influence of the enzymes 

transaminase and asparagine synthetase, it is synthesized in the liver from 

oxaloacetate [Cooney1970]. Asparagine is used in the human body as a nitrogen 

transport and to carry away the toxins. The L-enantiomer is used medically in 

cases of low blood pressure, kidney problems, or liver damage. The peptide 

fullicin includes a D-asparagine residue shows higher bioactivity compared to 

fullicin containing the L-enantiomer [Meierhenrich2008]. Asparagine or 2-amino-

3-carbamoylpropanoic acid is a proteinogenic amino acid and is abbreviated with 

Asn or N. It is an optically active molecule, having two mirror enantiomers, shown 

in fig 3.2. The amino acid is present as L-Asn or D-Asn. Other names for the L-

enantiomer are (S)-Asn or (+)-Asn, while for the D-enantiomer corresponding are 

(R)-Asn or (-)-Asn [Meierhenrich2008]. 
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Fig. 3.2 Structural formula of the asparagine enantiomers. Dashed line 
represents mirror plane. 
 
The asparagine substance is a stable white crystalline powder with a molecular 

formula C4H8N2O3, but it is moisture-sensitive. By the production of the 

asparagine enantiomers through crystallization, a monohydrate is formed. There 

are no known polymorphs found in the literature. Furthermore, the physical and 

chemical material properties of the two enantiomers are identical and some of 

them are summarized in table 3.2. 

 
Table 3.2 Physical and chemical properties of the asparagine enantiomers at 25 
°C, 100 kPa [Chemspider231]. 

Molecular formula C4H8N2O3 

Molar mass 132.12 g/mol 

Appearance white crystalline powder 

Density 1.54 g/cm3 (20 °C) 

Melting point 235 °C decomposition 

Solubility in water see chapter 4, section 4.1 

Rotation angle α (at 20°) 34.5 º (10 mol in 2N HCl) 

Toxicity (LD50) no data available 

 
As by the glutamic acid enantiomers, the asparagine enantiomers differ by the 

optical rotation measurements of the polarized light, resulting in an equal value, 

but with opposite sign. The asparagine enantiomers differ also in taste, as L-

asparagine tastes bitter and D-asparagine is sweet [Meierhenrich2008]. 

For the investigations in the thesis, D-asparagine monohydrate, L-asparagine 

monohydrate and DL-asparagine monohydrate from Alfa-Aesar were used with a 

purity of >98 %. The enantiomer excess (ee) content was proved with a HPLC 

and showed 100 ee% for the both enantiomers and 0 ee% for the racemate. 

 

L-(+)-asparagine 

D-(-)-asparagine 
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3.1.3 Aminobenzoic acid 

 
Aminobenzoic acid is an aromatic amino-acid with the formula C6H4(NH2)(CO2H). 

The molecule consists of a substituted benzene ring, with two functional groups, 

a carboxylic acid and an amine.  Hence, it has three positional isomers shown in 

fig. 3.3, where the prefixes ortho, meta and para are commonly used to indicate a 

1,2- or 1,3- or 1,4- positions respectively. For the investigations in the thesis, only 

ortho- and para-aminobenzoic acid have been used. 

 

Fig. 3.3 Structural formula of the aminobenzoic stereomers. 
 
Ortho-aminobenzoic acid, or anthranilic acid, was first obtained as a 

decomposition product from indigo [Fritsche1839]. It is usually produced from 

phthalic anhydride via sodium phthalamate, followed by oxidative decarboxylation 

(the Hofmann reaction) by the addition of sodium hypochlorite solution and final 

acidification [Maki2000]. In appearance, anthranilic acid is a yellow solid, 

although some samples may appear white. It is sometimes referred to as vitamin 

L1 and has a sweet taste. The major use of ortho-aminobenzoic acid is as an 

intermediate for dyes and for saccharin production. As its occurrence suggests, it 

is an intermediate for indigo synthesis. In the dairy industry it enhances the milk 

production of cows. 

Para-aminobenzoic acid is widely found in baker's yeast and brewer's yeast and 

it is a factor (Vitamin B10) in vitamin B complex. It enhances the growth of various 

microorganisms, and it is essential to the anaerobic metabolism of some bacteria. 

It is also known as bacterial vitamin H1 and is antagonistic to sulfonamide drugs. 

It darkens slightly on exposure to air or light. Para-aminobenzoic acid is used 

principally in the pharmaceutical industry. Other applications are as a cross-

linking agent for polyurethane resins, dyes, and feedstock additives. The 

ortho-aminobenzoic acid 
(OABA) 

meta-aminobenzoic acid 
(MABA) 

para-aminobenzoic acid 
(PABA) 
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conventional method of producing para-aminobenzoic acid is the reduction of 4-

nitrobenzoic acid. A two-stage Hofmann degradation reaction of terephthalic acid 

is an alternative production source [Maki2000]. 

The main chemical and physical properties of the aminobenzoic acid stereomers 

are given in table 3.3. The stereomers of the aminobenzoic acid have been 

known to form several polymorphs. For the ortho-aminobenzoic acid there are 

three known polymorphs found in the literature: form I [Brown1985] (orthorhombic 

with space group P21cn), form II [Boone1977] (orthorhombic with space group 

Pbca), and form III [Takazawa1986] (monoclinic with space group P21/c), while 

for para-aminobenzoic acid two polymorphs are known, identified as needle-

shaped α and prism-shaped β form [Tripathi1996]. 

 
Table 3.3 Physical and chemical properties of the aminobezoic acid stereomers 
C7H7NO2 at 25 °C, 100 kPa [Chemspider222, Chemspider953]. 

 ortho-aminobezoic acid para-aminobenzoic acid 

Molar mass 137.14 g/mol 

137.14 g/mol Appearance yellow powder white-gray solid 

Density 1.367 g/cm3 (20 °C) 1.374 g/cm3 (20 °C) 

Melting point 144-147 °C 185-188 °C 

Solubility in water see chapter 4.2 

Toxicity (LD50 oral by rats) 5410 mg/kg 2850 mg/kg 

 
For the investigations in the thesis, ortho-aminobenzoic acid and para-

aminobenzoic acid from Merck were used with a purity of >99 %.  

3.2 Methods, procedures and experimental setups 

 
In this section, detailed description of the planning and execution of the 

experiments carried out is given. In the first part, the preliminary experiments are 

described, which include solubility, metastable limit measurement, and seed 

preparation of the used substances. For generation of seeds, ultrasonic cleavage 

of the crystals of the used substances in batch and continuous mode is 

explained. Furthermore, systematic crystallization experiments in a single 

fluidized bed are described, including studies of the application of different flow 

rates, influence of the ultrasonic waves on the product CSD, and different seed 

sizes. The steady state principle of the fluidized bed was proofed along with the 
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continuous ultrasonic seed generation. A special emphasis is given on the 

construction and operation of the experimental setups, which represent the core 

of this work. Finally, continuous preferential crystallization experiments of 

asparagine monohydrate enantiomers and aminobenzoic acid isomers in coupled 

fluidized bed crystallizers are described.  

3.2.1 Preliminary experiments 

3.2.1.1 Solubility equilibria and metastable zone width 

 
In this subsection, methods and procedures regarding solubility equilibria, as well 

as metastable limit measurements of the following pure substances will be 

described: 

- DL-glutamic acid monohydrate (DL-glu.H2O), D-glutamic acid (D-glu) and 

L-glutamic acid (L-glu); 

- DL-asparagine monohydrate (DL-asn.H2O), D-asparagine monohydrate 

(D-asn.H2O) and L-asparagine monohydrate (L-asn.H2O); 

- ortho-aminobenzoic acid (OABA) and para-aminobenzoic acid (PABA). 

As a solvent, deionized water was used. Different concentrations of some of the 

above listed pure substances in water are used for measuring the solubilities and 

determination of the metastable zone width. The latter were carried out in the 

Crystal16TM reactor in the temperature range between 60°C and 5°C. Studies on 

the primary nucleation were also made in the Crystal16TM reactor. In both cases, 

the polythermal method was applied, which is described in subsection 3.2 of this 

chapter. A constant cooling rate of 3 K/h and constant stirring of 450 min-1 for 

polythermal and 250 min-1 for the isothermal experiments were applied. 

Generally, the nucleation time is a function of the cooling rate and the current 

solution temperature. Thus, in order to optimize and save time, used by the 

solubility measurements, several temperature programs were adapted. In all 

programs the suspension is heated in order to dissolve the solid particles and 

then a constant cooling rate is applied. More details about the programs are listed 

in the Appendix A1.  

For the construction of the ternary phase diagrams, the solubilities of some 

mixtures of the pure substances as well as samples of the pure components were 
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also studied using the isothermal gravimetrical method, combined with HPLC 

measurements.  

The samples with defined mass and composition were inserted in vials and 

subsequently 10 g of distilled water was added. The vials were heated above the 

expected saturation temperature to completely dissolve the solids, and then 

tempered at predefined temperatures under stirring for 24 hours to guarantee an 

equilibrated saturated solution with an excess of crystals. The predefined 

temperatures for asparagine mixtures are 20°C and 40°C; for aminobenzoic acid 

mixtures are 20°C, 35°C and 50°C. The temperatures for the samples of the pure 

substances OABA and PABA: 20°C, 35°C, 40°C, 45°C, 50°C, and 60°C; and for 

the pure substances L-asn.H2O, D-asn.H2O and DL-asn.H2O: 10°C, 20°C, 30°C, 

40°C, 50°C, 60°C, and 70°C. After establishment of equilibria, samples from the 

fluid phase were taken through a 0.45 µm filter by using a syringe, and were 

analyzed for composition by HPLC. Afterwards, the phases were separated by 

filtration by using a vacuum filter with porosity 4 (16 µm mesh) and after drying at 

a room temperature the solid phases were analyzed by HPLC and XRPD. 

The results from polythermal and isothermal methods were compared with each 

other, further combined and discussed in chapter 4.2. 

It is important to determine the width of the metastable zone in the crystallization 

setup in order to get maximum efficiency of the crystallization process with 

respect to nucleation. Two series of experiments were conducted and the results 

are discussed in chapter 4.5.1 and 4.5.2 for the first and second series of 

experiments respectively. 

A 50:50 mechanical mixture of OABA and PABA (first series) and DL-asparagine 

monohydrate (second series) were dissolved in water and the respective 

solutions were saturated at 35°C. After starting the circulation of the solutions in 

the crystallization setup, the temperature of both crystallizers was set to specific 

values, lower than 35°C, while the ultrasonic bath was operated at the saturation 

temperature. Thus, the influence of the cavitation effect on the formation of nuclei 

is greatly suppressed. The detection of the nucleation was done with a 

densitometer by measuring the density of the solutions, while considering the 

time since the start of the experiment. The nucleation is detected by the negative 
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peak of the density measurements, resulting in concentration change. The time of 

the event is recorded as nucleation time, tnucl. 

3.2.1.2 Seed preparation by sieving 

 
For the experiments, seeds of the pure substances L-Glu, D-Glu, L-Asn.H2O, D-

Asn.H2O, OABA and PABA were prepared by sieving, using sieve 68-90 µm on a 

Retsch AS200 digit sieve apparatus. The material to be sieved is taken from its 

original package and used as it is. It was filled into the upper sieve (90 µm). The 

sieve apparatus was turned on and the sieving was continued until enough 

material was collected in the middle sieve (68 µm). Then, the sieve fraction of 68-

90 µm was collected and used further in experiments. Generally, the seeds were 

given once at the beginning of the experiment to initiate the crystallization 

process. The unused material was collected in its original package. The seed 

sizes were additionally characterized using laser diffraction (CILAS 1180L, 

Quantachrome GmbH & Co. KG) and photographs were taken using microscope 

Axioscope 2 (Carl Zeiss AG). 

3.2.1.3 Ultrasound-forced breakage of crystals 

 
From the literature it was elucidated, by the continuous operated crystallization 

processes, an important parameter is the permanent seed addition. In this work, 

continuous seed generation through break-up of the product crystals was applied, 

realized in an ultrasonic water bath outside the crystallizer. To study the crystal 

breakage process by using ultrasound, special experimental setups are 

constructed, see Fig. 3.4. Three series of experiments were conducted in each 

setup by using L-Glu, L-Asn.H2O and OABA crystals respectively. In the batch 

experimental setup, the comminution of crystals was followed up by continuous 

inline measuring of their chord length distribution. The construction of the second 

setup (Fig. 3.4b) was necessary in order to reproduce the results in the same 

experimental setup section, as used in the crystallization facility. 

The batch experimental setup (Fig. 3.4a) consists of a tempered ultrasonic (US) 

water bath and an immersed glass reactor in such way, that the level of the 

suspension in the reactor is below the water level in the US bath. A FBRM probe 

was inserted in the reactor along with a temperature sensor Pt-100. A mechanical 
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stirrer was used for homogenization of the suspension. An at 25°C saturated 

aqueous solution of the respected substance was prepared and filtered in order 

to remove all solid particles. The solution was poured in the reactor and 

temperature of the US bath was set at 25°C. A predefined amount (5 g) of 

already produced crystals of the substances studied was suspended in the 

reactor. Before starting the ultrasonic device, the FBRM probe was started to 

measure the crystal chord length distribution in the suspension. After 5 min, the 

US comminution was started using predefined percentage (100%, 50% and 10%, 

or 480, 240 and 48 W respectively) of the unit US output power for a total of 30 

min. 

 

 

 

 
 

Fig. 3.4 Experimental setup for ultrasonic break-up of crystals in a) batch mode 
and b) continuous mode. 
 
The experimental setup in fig. 3.4b consists of a tempered ultrasonic (US) water 

bath, tempered glass crystallizer and laser diffractometer. The experimental 

conditions were the same as these from the batch experiments. The saturated 

solution from the crystallizer is transported through a hose with a defined length 

and wall thickness into the US bath and subsequently into the laser diffractometer 

with the help of the peristaltic pump. The pump is embedded in the diffractometer 

FBRM probe 

Ultrasonic 

bath 
glass reactor 

Pt-100 

Ultrasonic 

bath 

glass reactor 

Laser 

diffractometer 

a) 

b) 
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and not shown in the figure. A predefined amount (5 g) of already produced 

crystals from the respected substance was suspended in the crystallizer and their 

PSD measured without turning the US bath on. A sequence of experiments 

followed, where the suspension is continuously transported through the setup, 

whilst the US power was turned on for a defined period of time followed by 

immediate measurements of the PSD. The US output power was adjusted at 

10% (48 W) of the maximum unit power for all the experiments. For calculation of 

the residence time of the crystals in the US bath by the experiments done in 

continuous mode, the following equation was used  

 

τUS =
VUS

V̇US

 

 

where VUS is the total volume of the hose inside the US bath and V̇US is the 

suspension flow. 

The experiments in both setups were done three times and fairly reproducible 

results were obtained, discussed in section 4.3 of this thesis.  

3.2.2 Experiments in single fluidized bed crystallizer 

3.2.2.1 Equipment used and description of the process 

 
The crystallization process was studied in newly developed and novel equipment, 

comprising one FBC. The basic idea comes from a patent, realized in 1975 by 

Michael Midler Jr. [Midler1975] with some improvements from our side. 

The fluidized bed crystallizer has a total volume of 0.8 l and it is divided into two 

sections. The bottom part of the FBC has conical shape. The smallest diameter is 

15 mm at the entrance. It increases up to a height x=515 mm, where the diameter 

is 30 mm, and remains constant in the tubular upper part. The conical geometry 

of the crystallizer offers the possibility of classifying the fluidized particles, and, 

more importantly, the withdrawal of a crystal suspension at a certain height, 

characterized by a narrow size distribution. For the withdrawal of crystal 

suspension, seven outlets has been provided along the height x=1150 mm of the 

FBC, where outlet I is at x=165 mm and outlet VII at x=765 mm with 100 mm 

pitch between outlets. A detailed scheme of the FBC is given in Fig. A1.1. 

(3.1) 
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A scheme of the experimental setup with all the components necessary for the 

crystallization process is shown in fig. 3.5, while a photograph is given in fig. 3.6. 

The numbering of the common equipment’s parts are the same in both figures. 

 

Fig. 3.5 Scheme of the fluidized bed equipment.  
 
The equipment consists of a double jacketed feed tank (1), which is the solution 

reservoir with a volume of 2 l, a gear pump (2), a double jacketed home-made 

tubular fluidized bed crystallizer (5), a double jacketed home-made glass filer (4), 

three peristaltic pumps (3, 6, 10), an ultrasonic bath (9) and a stirrer (11). The 

connecting pipes between the feed tank and crystallizer are electrically heated, 

while the rest are thermo-isolated. Water bath thermostats (not shown in the 

figure) provide the necessary conditions for the process to be isothermally 

conducted with temperature control through thermocouples PT 100 (standard 

deviation ±0.1 °C). A polarimeter (7) and a densitometer (8) are used to monitor 

the ratio of the enantiomers and the solution concentration respectively 

throughout the crystallization process. 

An at 50°C saturated solution, containing undissolved solid particles of L-glu 

(saturated suspension, 2.13 wt.%) is located in the double jacketed, heated 

1) Jacketed feed tank (saturated solution reservoir, 2 l) 

2) Gear pump Ismatec MCP-Z 

3) Peristaltic pump (Heidolph Pump Drive 5201) 

4) Jacketed glass filter 

5) Jacketed tubular fluidized bed crystallizer (0.8 l) 

6) Peristaltic pump (Heidolph Pump Drive 5201) 

7) Polarimeter (IBZ Messtechnik, P3002) 

8) Densitometer (Mettler Toledo DE40) 

9) Ultrasonic bath (Bandelin Sonorex Digital 10P) 

10) Peristaltic pump (Heidolph Pump Drive 5201) 

11) Stirrer (Heidolph RZR 2021) 

12) Glass filter (ROBU glass, porosity 4) 

I-VII Product outlets 
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reservoir (1). The homogenization of the solution is provided through an electric 

stirrer with a constant stirring rate of 250 min-1 (11). The solution is pumped into 

the bottom of a FBC (5) with the aid of a gear pump (2) at a constant flow rate 

through a glass filter (12). The porosity of the filter is chosen such, that on one 

side it ensures a constant solution flow, and on the other - the solid particles (>16 

µm) remain in the feed tank. The clear, saturated solution is cooled inside the 

FBC to 45°C in order to become metastable or supersaturated (c/c* = 1.19), while 

it flows from bottom to the top. The double jacket of the crystallizer maintains the 

temperature in the whole crystallizer volume constant. After leaving from the top 

of the crystallizer, the solution is fed back into the feed tank, where it is enriched 

by dissolution of the excess solid feed and thus becomes again saturated. A 

continuous flow circulation of the working solution is thus realized, where 

constant supersaturation in the FBC and constant saturation in the feed tank are 

maintained.  

For collecting the product crystals, seven identical outlets are provided at the wall 

of the FBC. They are situated along the height of the FBC at equal distances 

between them, having Roman numbers (I - VII) increasing from bottom to the top. 

The same Roman numbering is used further in the discussion of the results in 

chapter 4. 

Product crystals are collected in a novel jacketed glass filter (4) on a round 

paper-filter (Whatman 589/2). The collected filtrate is transported back to the feed 

tank by a peristaltic pump (3). A detailed scheme of the home-made glass filter is 

given in fig. A1.3. 

The monitoring of the crystallization process takes place in a separate loop, 

where solid-free solution is pumped from the top of the FBC through a HPLC-filter 

by a peristaltic pump (6) and transported via a polarimeter (7) and a densitometer 

(8). The measurement values are continuously recorded with intervals of 1 min 

for the optical rotation and 5 min for solution density. 

During the crystallization process, the large and heavy crystals and crystal 

agglomerates are continuously taken from an outlet at the bottom side of the FBC 

and transported by a peristaltic pump (10) into a heated ultrasonic bath (9), 

where a crystal comminution through ultrasonic waves takes place. Thus, seed 

crystals are continuously generated for the crystallization process. The 
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suspension is afterwards pumped back into the FBC together with the feed flow. 

This continuous seed-generation loop assures that the crystallization process 

runs continuously by providing the therefore needed seed crystals, while taking 

out bigger crystals and crystal agglomerates from the bottom of the FBC avoiding 

the clogging of the latter.  

 

Fig. 3.6 Photograph of the equipment test setup, used to study the crystallization 
in fluidized bed. The numbering from figure 3.5 is used. 

3.2.2.2 Crystal size distribution measurements 

 
Throughout the duration of all experiments, crystal size distributions (CSD) were 

tracked and constantly measured. In order to evaluate the latter, three techniques 

were used and compared with each other: light microscopy, FBRM and laser 

diffraction. This subsection of chapter 3 focuses on the procedures, adopted for 

the necessary CSD measurements. Sieving was used only for preparation of 

seed crystals and is described in subsection 3.3.1.3 of this chapter. The CSD 

measurements, done with FBRM and laser diffraction are all volume based 

(crystal size volume distribution). 

For microscopic analysis, product sample crystals were stochastically taken from 

the product batch immediately after the end of each experiment, rinsed with cold 

1 

2 

3 
4 

5 

6 

7 

8 

9 

11 



Experimental Ch. 3 

 

 
63 

ethanol and dried at room temperature. The latter were put on a microscopic 

glass slide without further preparation and the slide was examined under a light 

microscope. Crystal size measurements were done using the computer software 

provided (AxioVision 4.6.3) on at least 10 crystals of each sample, while 

microscopic photographs were taken. For the evaluation, the mean crystal size 

was used, based on the sum of the sizes, divided to the number of 

measurements. 

The sample crystals, taken as a suspension by using a 10 ml syringe from the 

crystallizer outlets throughout the crystallization process, were immediately 

filtrated, rinsed with cold ethanol and dried at room temperature. The dry crystals 

were then subject to already described light microscopy. 

For the measurements, done with the FBRM probe, no special procedures were 

taken. Some of the measurements were performed at the outlets of the fluidized 

bed crystallizer for inline crystal size tracking during the crystallization process. 

The measurements of the final product size distributions were performed at 25°C 

in a saturated solution of the respected substance. Hence, 5 grams of product 

crystals were then suspended and measured for 10 min under a constant stirring 

and temperature observation. From the apparatus software, the crystal chord 

length distribution was recorded and used as it is further in results and discussion 

part of the thesis. 

For the measurements of the CSD, done with laser diffractometer CILAS 1180L 

in liquid mode, a saturated solution of the substance to be measured was 

prepared and used as a carrier medium. At the beginning of each measurement, 

a background signal was first measured and then the sample was introduced into 

the small volume unit. The latter was preferably used instead of the built-in 

sample container, because of the small volume of carrier medium used (120 ml, 

instead of 500 ml), and the need to measure small volume samples. For 

determination of the CSD during the crystallization process, a 10 ml syringe was 

used to take a 3-4 ml suspension sample probes from the outlets of the fluidized 

bed crystallizer, which were immediately introduced into the carrier medium. The 

created suspension was homogenized and after that measurement can be 

started. Every sample CSD was determined 3 times with almost no change in the 

measured values. A mean CSD was then created from the latter and used in the 
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discussion part of this thesis. After each measurement, the sample holder, tubing 

and measurement sample cell were rinsed with distilled water and ethanol to 

assure that the next measurement is not contaminated. 

For size distribution measurements of the seeds and product crystals by laser 

diffraction, samples were prepared as already described in the procedure for light 

microscope measurements. The dried crystals were introduced into the carrier 

medium, the suspension was homogenized and then CSD was measured 3 times 

for each sample. A mean CSD was then calculated and used in the discussion 

part of this thesis. 

3.2.3 Experiments in coupled fluidized bed crystallizer 

 
In order to conduct a continuous preferential crystallization, coupled FBC 

equipment is constructed, comprising two FBCs operated simultaneously in 

parallel mode. This experimental setup can be seen as a combination of two 

single FBC setups, sharing a common feed tank. Moreover, both fluidized bed 

crystallizers have the same geometry as the one, used in the single FBC setup, 

except that only one outlet was left for the product takeout. The position of the 

product outlet along the height of the crystallizer was considered, based on the 

experimental results done in the single FBC. Other identical parts in both FBC 

setups are the glass filters, gear and peristaltic pumps, US bath, and the 

analytical equipment (polarimeter and densitometer). A scheme of the equipment 

is shown in fig. 3.7, while a photograph of a part of the equipment is presented in 

fig. 3.8. 
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Fig. 3.7 Scheme of the coupled fluidized bed equipment. 
 
The numbering of the common equipment’s parts are the same in both figures. 

As seen from the figures, the setup configuration does not differ from the single 

FBC one. A detailed explanation of the equipment parts are already elucidated by 

the description of the single FBC. All connecting pipes are thermo-isolated, 

except these, connecting the top of the crystallizer and the feed tank, which are 

electrically heated. Two couples of polarimeters (7) and densitometers (8) are 

used to monitor the ratio of the enantiomers and the solution concentration of the 

each crystallizer respectively throughout the crystallization process. In order to 

prevent the usage of a long tubing, while maintaining lower risks of unwanted 

substance nucleation and high temperature deviations, the whole crystallization 

equipment is built as compact as possible. In order to quickly filtrate the product 

crystals, a vacuum pump (ILMVAC MP 601 E, not shown in fig. 3.7) was 

connected to the respected filter outlet situated at the middle part of each filter.  

 

1) Jacketed feed tank (saturated solution reservoir, 6 l) 

2) Gear pump Ismatec MCP-Z 

3) Peristaltic pump (Heidolph Pump Drive 5201) 

4) Ultrasonic bath (Bandelin Sonorex Digital 10P) 

5) Jacketed glass filter  

6) Jacketed tubular fluidized bed crystallizer (0.8 l) 

7) Polarimeter (IBZ Messtechnik, P3002) 

8) Densitometer (Mettler Toledo DE40) 

9) Stirrer (Heidolph RZR 2021) 

10) Glass filter (ROBU glass, porosity 3) 
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Fig. 3.8 Photograph of the equipment, used for the continuous preferential 
crystallization experiments. The numbering from figure 3.7 is used. Additional 
parts are: 11) Electromagnetic valve (Sirai S105) and 12) Heated tubing 
(Hillesheim, H100 T1/08). 
 
A saturated racemic suspension (eg. DL-asparagine), containing undissolved 

solid particles of the substance is located in the double jacketed, heated reservoir 

(1). The homogenization of the solution is provided through an electric stirrer with 

a constant stirring rate of 250 min-1 (9). The solution is simultaneously pumped 

into the bottom of the two FBCs (6) with the aid of gear pumps (2) at a constant 

flow rate through glass filters (10). The porosity of the filters is chosen such, that 

on one side ensures a constant solution flow, and on the other - the solid 

particles (>40 µm) remain in the feed tank. The clear, saturated solution is cooled 

inside each FBC to an appropriate temperature so it becomes metastable or 

supersaturated, while it is flowed through from bottom to the top. The double 

jackets of the crystallizers maintain the temperature almost constant (± 0.2 K) in 
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the whole crystallizer volume. After leaving from the top of the crystallizer, the 

mother liquor is recycled back in the feed tank through electrically heated pipes. 

Hence, the recycled solution is tempered to the reservoir temperature, thus 

dissolving the small crystals, taken out from the FBC with the fluid flow. The 

returned mother liquor is saturated in the feed tank. A double continuous flow 

circulation of the working solution is thus maintained, where constant 

supersaturation in the FBCs and constant saturation in the feed tank are 

maintained. 

For collecting the product crystals, an outlet is provided at the wall of the FBC, 

corresponding to outlet III from the single FBC setup (see fig. 3.5). An 

electromagnetic valve (Sirai S105) connected with two optical sensors ensures 

the automated product extraction from the FBC. The volume of the extracted 

suspension is thus always constant (~ 75 ml) and the offtake process is realized 

in about 2 seconds. Likewise by the single FBC setup, the product crystals are 

collected in a jacketed glass filter on a round paper-filter. 

The monitoring of the crystallization process is already described in the previous 

subsection. 

Likewise by the single FBC setup, during the crystallization process, big crystals 

and crystal agglomerates are continuously taken from an outlet at the bottom side 

of the each FBC and transported by a peristaltic pump into a heated ultrasonic 

bath, where a crystal break-up through ultrasonic waves takes place. The 

suspension transport to and from US device is situated behind the heated tubing 

(12) and glass filters (see fig. 3.8). The separate representation of the latter in fig. 

3.7 is done for clarity purposes. The ultrasonic comminution process is explained 

in detail in subsection 3.3.1.3. 

3.3 Analytical techniques 

 
Acquiring reliable information during the crystallization process and on the final 

product is of a great importance. The properties of the product are highly 

dependent on the quality of the seeds used, the presence of a specific 

polymorphic form and the crystal size distribution. In order to characterize the 

investigated material systems, precise measurements of the solution 

concentration and density, product purity, crystal size distribution, or to 
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characterize the crystal polymorph or its form, special analytical techniques and 

tools were employed. In this section of the thesis a detailed description on the 

analytical devices used will be given. The function and operation of these 

measurement techniques are presented in the following sections of this chapter.  

 
- Solubility and MSZW measurements 

 
The proper realization of the crystallization is based on the solubilities, c*, of the 

substances involved in the process. One of the techniques used in this thesis is 

the polythermal method, based on multiple heating - cooling runs, thus dissolving 

the solids in the solvent with the temperature increase and further crystallizing it 

with the temperature decrease. A multiple-reactor system Crystal16TM (Avantium, 

The Netherlands) was used for this purpose, measuring the turbidity of the 

solution based on the cloudiness or haziness of a fluid caused by suspended 

solids that are generally invisible to the naked eye. It consists of four 

independently thermostated aluminum reactor blocks encased in a bench top 

setup, which are heated and cooled by a combination of Peltier elements and a 

cryostat, where the necessary heating and stirring rates were predefined using 

the apparatus software. An exemplary scheme of the principle is shown in Fig. 

3.9a. The reproducibility of the solubility measurements was studied carrying out 

at least 3 runs under same conditions. The measured sample solutions / 

suspensions are inserted in HPLC–vials with a maximal volume of 1 ml. Magnetic 

stirrer is also inserted in every vial in order to ensure a proper homogenization. 

 

 Fig. 3.9 a) Schematic representation of the Crystal16TM principle; b) example of 
turbidity measurement. 
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The turbidity was recorded per individual reactor and as seen from fig. 3.9b the 

disappearance of last crystals (“clear point”, point B) or the appearance of the 

first crystals (“cloud point”, point A) can be detected. Respectively, both 

intersection points are used to identify the saturation temperature Tsat and 

crystallization temperature Tnucl of the measured sample. Thus after measuring 

several samples of one substance, the solubility as well as metastable zone width 

can be specified as the area between the saturation temperatures and 

crystallization temperatures.  

 
- Laser diffraction 

 
In the crystallization processes, one of the important product parameters is the 

crystal size distribution. In this thesis several methods were applied for 

measurement of particle size distributions. One of the methods is based on laser 

diffraction analysis. CILAS 1180L (Quantachrome GmbH & Co., Germany) was 

used as a laser diffraction analyzer for the determination of the particle 

distributions within a measurement range from 0.04 to 2.500 µm, while 

maintaining an extremely small footprint. 

The function of the laser diffractometer is relatively simple. The measurement 

principle is based on the diffraction of the laser beams by the particles. When a 

particle occurred on the laser beam path, the beam is bent according to particle 

size and the resulting ring patterns are referred to as Fraunhofer's diffraction 

rings. Large particles possess a pattern with large Fraunhofer diffraction rings 

and narrow diffraction angles, while small Fraunhofer diffraction rings and large 

diffraction angles are generated by the detection of small particles. Thus, to 

characterize the size of a particle, it is exploited in the software evaluation, that 

the size of the diffraction angle is inversely proportional to particle size. The 

structure of a laser diffraction device is shown in the following Figure 3.10. 
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Fig. 3.10 Principle of laser diffraction device CILAS 1180L for particle size 
determination combined with software interface [adapted from Xu2002]. 
 
The device consists of several light sources (lasers) and a lens system for 

widening the narrow laser beams. This ensures that the entire sample can be 

illuminated. The substance to be measured is located in a measuring cell, which 

consists of a frame made of glass. The laser beams are combined and passed 

through a Fourier lens to a detector system. Recording the diffraction pattern is 

carried out with suitable software, which is also used to calculate the particle size 

distribution. 

The calculation of the particle size is relatively complex, since the sample 

consists of not only one particle, but delivers a full set of data from different 

particle sizes. Thus, a superposition of the different diffraction patterns is 

characterized, referred to as interference. Through the software, the particle sizes 

are determined by an algorithm through iteration from possible particle sizes, and 

thus the interference pattern can be calculated. This process is repeated until the 

calculated pattern coincides with the one, derived from the measurement. 

The output of the particle sizes is carried out by a distribution curve (so called q3 

distribution) in which the volume is given in % of the particle size in microns. 

Along with the distribution, different populations of particles can be represented. If 

it is a mono-modal curve, the sample contains only one particle population. 

However, if the curve is bi- or multimodal, it consists of several particle 

populations. Furthermore, some specific parameters can be specified, based on 

the particles diameter, alternative to the graphical representation of the 

measurement result. One of them is the mean diameter d50 of the particle 

population. It specifies at which particle size 50% of the particles are smaller than 

Computer 

Laser 

45° Detector 

CCD 

Lasers 
Lens Particle 

cell 



Experimental Ch. 3 

 

 
71 

the delivered result. Further parameters are d10 as a measure of the small 

particles and d90 for the large particles in the measured substance. If both 

parameters, d10 and d90, are close together, the particle size distribution is narrow 

[Xu2002]. 

 
- Density 

 
In order to optimally conduct a crystallization process, changes of the 

concentration of the targeted material in the solution should be regularly 

monitored and registered within the process course. This can be achieved by 

using several methods. In this thesis, the determination of the solution density, ρf, 

was realized with a densitometer (Mettler Toledo DE40). The solution density 

determination depends on the measurement temperature and the solution 

concentration. The principle of measurement of the density measuring device is 

based on the electromagnetically induced vibration of a U-shaped glass tube with 

a defined volume and it is shown in figure 3.11. The tube vibrations correspond to 

an oscillation period and this period is referred to as To, where the frequency f [s-

1] is the number of periods per second, see eq. 3.2. 

 

Fig. 3.11 Measuring cell of a densitometer. 

 

𝑓 =
1

𝑇𝑜
 

 
The glass tube possesses a characteristic or natural frequency, which changes 

when the tube is filled with a gas or liquid. The frequency of the tube is a function 

of the sample mass. Thus, when the mass increases, the frequency decreases. 

As seen in fig. 3.11, a magnet is connected to the tube, which through the 

oscillator generates an electric signal from the tube vibrations. The so generated 

signal is detected by the vibration meter. The oscillation period is specified with 

the following eq. 3.3. 

Magnet 

Oscillator 

Vibration 
meter 

U-shaped glass tube with well-defined volume 

(3.2) 
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𝑇𝑜 = 2π√
ρfVt + mt

Kc
 

 

where ρf is the solution density in the tube, Vt is the tube volume, mt – the mass 

of the tube and Kc is a measuring cell constant. Equation 3.3 can be rewritten in 

order to evaluate the density 

 
ρf = a𝑓2 + b 

 

where a and b are constants, determined by the mass, structure, and elasticity of 

the tube. As these tube properties can be different for every device, the constants 

must be determined by calibration measurements of air and water at a specific 

temperature. As the density of both at this specific temperature is already known, 

the constants a and b can be calculated. 

By the continuous density measurements, the values for the oscillation period 

can slightly vary, because of the permanent flow through the measuring cell. 

Thus a mean value of the frequency f is taken based on at least three values 

calculated with eq. 3.2.  

 
- Focused Beam Reflectance Measurement (FBRM). 

 
A useful in-line tool for measuring not only crystal size distributions, but also 

crystal growth and metastable zone width (detection of nucleation) in the 

crystallizer, a FBRM probe (FBRM 400S, Mettler Toledo) was used. FBRM is an 

abbreviation for Focused Beam Reflectance Measurement. The measuring 

principle of the in-line probe is based on the reflection of a focused, rotating laser 

beam in a circular orbit from the crystals in the crystallizer and the detection time 

of the resulting reflection. The scheme of the probe and the measurement 

principle are shown in figure 3.12. The measurement range of the equipment 

used is between 0.5 µm and 2000 µm. 

(3.3) 

(3.4) 
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Fig. 3.12 Measurement principle and a profile of a FBRM probe. 
 
The laser beam illustrated in figure 3.12 is rotating on a circular path. Meanwhile, 

it samples at a constant rate moving particles at the probe window. The reflected 

laser pulses from the surface of the individual particle is then counted by a 

special optical system and a transmitter From the speed of the rotating optics (2 

m/s) and the measured reflection time, the chord length of the reflecting crystal 

can be calculated. This allows for a sufficient number of crystals in the crystallizer 

the determination of a crystal population characteristic chord length distribution. 

The measured chord length distribution is affected by a variety of factors, like: 

crystal shape and size, hydrodynamic conditions at the probe window, 

homogeneous mixing of the particle sizes in the crystallizer as well as the 

position and the angle of the probe in it. The evaluation of measured chord length 

distribution and transforming it into a particle size distribution is realized through a 

comparison with alternative sizing techniques, such as laser diffraction and 

microscopy.  

 
- High-Performance Liquid Chromatography (HPLC) 

 
The determination of the purity of the initial substances and the product crystals 

is performed through HPLC measurements using HPLC 1200 Series equipment. 

HPLC is an abbreviation for High-Performance Liquid Chromatography. In this 
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physicochemical separation process, a sample is separated to its components 

along a column, filled with adsorbent. Moreover, the substances involved can be 

identified, quantified, and thus, the purity can be determined. 

The basic setup of a HPLC system is shown in figure 3.13. Before the 

measurement, the solid substance to be investigated is dissolved in an 

appropriate solvent to form a homogeneous liquid phase. It is then injected 

together with the mobile phase (eluent, responsible for transport) in a separation 

column with the help of a pump (see Fig. 3.13). The temperature-controlled 

column contains a stationary phase, where the separation process is carried out 

isothermally. After the separation, the sample components are collected as they 

emerge from the column. A detector analyzes the emerging stream by measuring 

a property, which is related to concentration and the chemical composition. For 

example, the refractive index or ultra-violet absorbance is measured. At the end 

of the process a chromatogram is built, based on the collected information from 

the detector by using a PC recorder. After the detection, the substances are 

collected in a waste reservoir. 

 

Fig. 3.13 Principle setup of a HPLC device. 
 
The separation of the components is based on the specific interactions with the 

adsorbent in the chromatographic column. The spherical porous adsorbent 

material usually consists of chemically easily modifiable silica gel particles with a 
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mean size of 4 to 10 µm. In the case of the separation of chiral substances, like 

enantiomers, the filling of the column should be made from an optically active 

material [Mayer2004]. 

The HPLC measurement conditions of the substances used in this work are 

shown in table 3.4. 

 
Table 3.4 Measurement conditions and chromatographic columns used in this 
work. 

Substance Asparagine Glutamic acid Aminobenzoic acid 

Equipment Agilent HP 1100 Agilent HP 1100 Agilent HP 1200 
Detector DAD DAD UV 

HPLC column Astec Chirobiotic T Astec Chirobiotic T Kinetex C18 
Mobile phase EtOH / H2O  

     30 / 70 
 

MeOH / H2O / 
HCOOH 
       80 / 20 / 0.02 

ACN / H2O 
    80 / 20 

Stationary 
phase 

Teicoplanin / silica 
gel 

Teicoplanin / silica 
gel 

reverse C18 with 
TMS Flow rate 0.5 ml/min 0.5 ml/min 0.5 ml/min 

Injection 5 µl 20 µl 1 µl 
 

- Polarimetry 
 
Optically active samples, such as solutions of chiral molecules, often exhibit 

circular birefringence. It causes rotation of the polarization of plane polarized light 

as it passes through the sample. Thus, polarimetry can be used for the 

quantitative determination of angle of rotation of such optically active substances. 

In this work, for the tracking of the optical rotation, a digital automatic online 

polarimeter P3002 of the company IBZ Messtechnik was used. The dependence 

of the specific optical rotation [α]γ
T at a wavelength γ and a temperature T is 

defined with the following eq. 3.5. 

 

[α]γ
T =

α

lc
 

 

where α is the optical rotation angle of the sample, l – length of the sample tube 

and c – mass concentration of the sample. As seen from eq. 3.5, in the presence 

of just one enantiomer in the solution, concentration measurements are possible 

by this measurement method at a constant temperature. During the 

measurement, the rotation angle changes the linearly polarized light of the 

chemical sample. This property is referred to as intrinsic property of chiral non-

racemic compounds or mixtures. By the polarimeter each enantiomer can be 

(3.5) 
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determined or the crystallization can be monitored. The measurement principle of 

a polarimeter is shown in fig 3.14. 

 

Fig. 3.14 Measurement principle of a polarimeter for determining the angle of 
rotation. 
 
As can be seen in figure 3.14, the polarimeter is composed of a light source, 

which radiates ordinary light; a polarizer, which polarizes the light so it has only 

one plane of vibration; a sample tube, where the plane polarized light is rotated 

by the substance solution; an rotatable analyzer, which, combined with the 

detector, measures the rotation angle α by the maximum light passage through 

the analyzer. In preferential crystallization, the continuous measurement of the 

ratio of both enantiomers in the solution is of great importance in order to achieve 

optimum results for process productivity and product purity. By the measurement 

of solutions of enantiomers, if the analyzer rotates through its adjustment to the 

right, then the enantiomer, referred to as right-handed and designated with a (+), 

is in excess in a solution. On the contrary, if the rotation of the analyzer is to the 

left, the enantiomer in excess is left-handed and designated with (-). Generally, 

for estimation of enantiomer excess (%) in a solution, the following equation can 

be applied [Soderberg2012]: 

 

ee% =
specific rotation of the solution

specific rotation of the pure enantiomer
x100 
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- Ultraviolet–visible spectrophotometry 
 
A robust method for offline as well as online tracking of concentration changes 

along the crystallization process is UV-visible spectroscopy. In this thesis, an 

ultraviolet detector (Knauer, K-2501) was used to monitor the continuous 

crystallization of o-aminobenzoic acid. In solution, it is well known for absorbing 

the UV-light [Takara2005]. Most of the absorption in the ultraviolet spectroscopy 

occurs due to π-electron transitions or n-electron transitions. When these 

electrons are irradiated with light energy, that is more or equal to the energy, 

needed for a possible electronic transition within the molecule, then some of the 

light energy would be absorbed by the molecule and the electrons would be 

promoted to the higher energy state orbital. The UV-spectrometer can record this 

degree of absorption at different wavelengths and can plot the absorbance 

versus wavelength (a spectrum plot). The wavelength at which the sample 

absorbs the maximum amount of light is known as λmax. For example, in fig. 3.15 

is shown the spectrum of ortho-aminobenzoic acid, recorded on a GenesysTM 6 

UV-VIS spectrophotometer (Thermo Electron Corp.). Aqueous solutions of 

aminobenzoic acid have light brown to dark brown color, depending of the 

sample concentration and have a λmax of 310 nm. 

 

Fig. 3.15 UV-absorbance spectra for ortho-aminobenzoic acid (0.1 wt.%). 
 
For the dependence of the light absorbance and sample concentration, the Beer–

Lambert law can be applied: 

 

A = log10 (
I0

I
) = Kε. c. ls 
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in the equation A is the measured absorbance, I0 is the intensity of the light at a 

given wavelength, I is the transmitted intensity, ls is the pathlength through the 

sample, and c is the concentration of the sample. The constant Kε is the 

extinction coefficient, which is specific for each solvent and wavelength used 

[Hill1999]. 

 
- X-ray powder diffraction  

 
Some of the fine chemicals, used in the industrial production, occur as 

polymorphs of the mere molecule, solvates and hydrates, molecular salts and co-

crystals [Beckmann2013]. Thus, it is of great importance to know not only the 

exact nature of the material in the process, but also its stability with time, the 

variability of its chemical and physical properties as a function of the crystal form, 

etc. The search for and characterization of crystal forms is therefore a crucial 

step in the development of new chemicals. Powerful solid-state techniques, such 

as hot stage microscopy, differential scanning calorimetry, thermogravimetric 

analysis and X-ray diffraction can be used to get information about the solid state 

properties of the substance. The screening method used in this thesis is X-ray 

powder diffraction (XRPD). It is a rapid analytical technique primarily used for 

phase identification of a crystalline material and can provide information on unit 

cell dimensions. Before the analysis, the material should be finely ground and 

homogenized. The X-ray diffractometer consist of three basic elements: an X-ray 

tube, a sample holder, and an X-ray detector, see fig. 3.16.  
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Fig. 3.16 Principle of the X-ray diffraction measurement. [adapted from 
Scoog2007]. 
 
X-rays are generated in a cathode ray tube by heating a filament to produce 

electrons, accelerating the electrons toward the sample by applying a voltage, 

thus bombarding it with electrons. When electrons have sufficient energy to 

dislodge electrons of the sample, characteristic X-ray spectra are produced. It is 

required to produce monochromatic X-rays needed for diffraction, using specific 

wavelengths, characteristic of the target material (Cu, Fe, Mo, Cr). Copper is the 

most common target material for single-crystal diffraction, with Cu Kα radiation = 

1.5418Å. The sample is rotated in the path of the collimated X-ray beam at an 

angle θ while the X-ray detector is mounted on an arm to collect the diffracted X-

rays and rotates at an angle of 2θ. For typical powder patterns, data is collected 

at 2θ from ~5° to 70°, angles that are preset in the X-ray scan [Braga2009]. 

The XRPD patterns for all substances used were measured with an X’ Pert Pro 

Diffractometer (PANanalytical GmbH, Germany) using CuKα radiation and an 

X’Celerator detector. The patterns were recorded in a 2Θ range of 3–40°, with a 

step size of 0.0167° and a counting time of 50 s per step. Powder patterns for the 

substances used in this thesis are given in Appendix A2. 
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4. Results and discussion 
 
This chapter is separated into six sections. In the first section 4.1, a simplified 

dynamic model of the crystallization process in a fluidized bed is proposed as a 

basis for future work. The results from the solubility of the pure substances in 

water are elucidated in the second section 4.2, where own measured data are 

compared with known results from the literature. In section 4.3, results from the 

seed generation by using ultrasonic crystal breakage will be shown. In section 

4.4, results from crystallization experiments done in a single fluidized bed 

crystallizer will be presented. The discussion will begin with the fluidized bed 

process and will be extended by implementing selected data from sections 4.2 

and 4.3. The influence of feed rate, seed size, and ultrasonic crystal breakage on 

the crystal size distributions will be discussed in the following subsections. In 

section 4.5, continuous preferential crystallization of asparagine monohydrate 

and aminobenzoic acid in two coupled fluidized bed crystallizers will be 

discussed. The experimental results, concerning residence time, crystal size 

distributions and solution concentration development, will be compared with 

results from the simplified dynamic model. Based on the conducted experiments 

in both experimental setups, recommendations for possible improvements of the 

equipment applied are suggested in section 4.6. 

4.1 Simplified dynamic model of the fluidized bed crystallization process 

 
In chapter 2.3.4, it was shown the position of a single spherical particle in 

dependence on its diameter can be calculated from the steady state force 

balance model. It was assumed that the diameter of the fluidized particle was 

constant, i.e. no growth or dissolution takes place. If a crystallization process is 

added to fluidization process, then it can be assumed the fluidized particle (or as 

in our case, the fluidized crystal) increases its volume (or diameter) due to the 

mass transfer of the substance from the up-flowing solution to the crystal surface. 

Rahaman et al. have proposed a model, where crystallization kinetics is 

combined with crystallizer hydrodynamics [Rahaman2014]. The model takes care 
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of supersaturation generation, crystal growth and crystal segregation. Randolph 

and Larsen developed a method of modeling continuous crystallizers in which the 

growth rate is independent of size and the slurry is uniformly mixed 

[Randolph1988]. Such crystallizers are often referred to as the mixed-suspension 

mixed-product removal (MSMPR) type. 

In our case, during the process seed crystals are generated from ultrasonic 

fragmentation of crystals and crystal agglomerates. The main effects being 

reflected in the population balance model are crystal growth, segregation due to 

different particle sizes, particle withdrawal to the ultrasonic attenuation, and reflux 

of small particles from the ultrasonic attenuation. The following model results in a 

two dimensional population balance model for the particle size distribution n(x, L) 

as proposed within the cooperation with the group of Dr. Stefan Palis and Prof. 

Achim Kienle [Palis2013]. In a first step the crystal fraction is characterized by 

one internal coordinate, the characteristic length, L, and one external coordinate, 

x, associated with the crystallizer geometry. For the segregation, the Richardson-

Zaki steady state force balance model is applied. The ultrasonic attenuation 

model is derived assuming quasi-stationary operation and a defined particle size 

distribution of the size reduced particles. For the liquid fraction, i.e. the solution, 

plug-flow along x is assumed resulting in a one dimensional partial differential 

equation for the solution concentration. 

In order to simplify the crystallization modeling the following assumptions are 

made: 

 1D model in axial direction, 

 V̇ = const, plug flow, 

 isothermal conditions, 

 nonporous, spherical particles, 

 size-independent growth rate, 

 no nucleation, no breakage, no agglomeration, 

In Fig. 4.1 is shown a scheme of a model crystallizer with height H and cross-

section A. The fluid (or the liquid solution) flows at a constant flow rate V̇ and has 

concentration c* at the bottom of the crystallizer (x=0). The solution leaves the 

crystallizer from the top (x=H) with a concentration cH
∗ < c∗. Seed crystals with 
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diameter L° are given at the top of the crystallizer (x=H) and product crystals with 

diameter Lp > L° are withdrawn at the side of the crystallizer (x=xp). At the bottom 

of the crystallizer crystals with diameter LUS are withdrawn, comminuted in an 

ultrasonic bad and brought back as seeds of size LUS
o . The crystal sizes in the 

crystallizer are limited by the condition L° < L < LUS. 

 

Fig. 4.1 A scheme of the model crystallizer. 
 

The crystallizer diameter, d, corresponds to the one from the experimental setup 

(see details in chapter 3.2.2 and in Fig. A1.1), and its distribution is given by 

 

d(x) = {

d(xm) − d(x = 0)

xm

x + d(x = 0),    for    x ≤ xm

                                           d(xm),   for  H > x > xm

 

 

where d(𝑥𝑚) = 30 mm, d(𝑥 = 0) = 15 mm, xm = 515 mm, xp = 365 mm, and 

H = 1100 mm. 

The behavior of the solid phase with time, i.e. the particle number distribution, n, 

in the fluidized bed crystallizer can be described by the following population 

balance [Randolph1988] 

(4.1) 
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∂n(x, t)

∂t
= −

∂(G(x)n(x))

∂L
− ṅprod + ṅseg(x) + ṅbm(x) − ṅout,us + ṅin,us 

 

where ṅprod is the particle flux due to product removal, ṅseg is the particle flux 

due to segregation, ṅbm is the particle flux due to back mixing, ṅout,us and ṅin,us 

are the particle fluxes to and from the ultrasonic attenuation, and G is the local 

growth rate depending via the locally changing liquid phase concentration and the 

position x: 

 

G(x) = k(c(x) − c∗) 

 
Assuming no nucleation and solid free fluid flow from the pump the following 

boundary conditions hold.  

 

n(x = 0, L, t) = 0 

 

n(x, L = 0, t) = 0 

 
The liquid phase can be described by the following partial differential equation for 

the concentration c.  

 

∂c

∂t
= c

∂uf

∂x
+ uf(𝑥)

∂c

∂x
−

4

3
 π ∫ (

L

2
)

2 ∂G

∂L
 dL 

∞

0

  

 
Here, the first two terms account for convective flux due to fluid flow and the third 

term for the decrease of concentration due to particle growth. At the lower 

boundary, the concentration can be assumed to be constant, i.e. c(x = 0) = c∗. 

The solid phase, present in the liquid-free part of the crystallizer, expressed by 

the fraction (1 −  ε)Vcr, can be quantified evaluating the overall growth and total 

particle quantity, N: 

 

∂ms

∂t
= NVcr(1 − ε)ρp

4

3
 π ∫ (

L

2
)

2 ∂G

∂L
 dL 

∞

0

 

(4.2) 

(4.3) 

(4.4) 

 

(4.5) 

 

(4.7) 

(4.6) 
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After a modification, equation 4.7 can be used for the estimation of the particle 

flux due to product removal, ṅprod, at the product outlet at a specific height, xp, 

 

∂mp(xp)

∂t
= NcrV̇cr(1 − ε)ρp

4

3
 π (

Lp

2
)

2

 

 

where V̇cr represents the taken out product suspension volumetric flow rate and 

Ncr is the particle quantity in the product suspension. It was empirically assumed 

to be one third of the total particle quantity, N (Ncr = N/3). 

In order to derive the particle flux due to segregation ṅseg, the Richardson-Zaki 

force balance model is used by taking into account equation 2.28 and assuming 

quasi-stationary particle motion (or equilibrium conditions). Then for the fluid flow 

can be assumed: if up > uf a particle with radius L will sink, otherwise for up < uf 

a particle with radius L will rise. Due to variations in the effective area Aeff(x) in 

the conical section (x ≤ xm), the fluid velocity uf varies in this section 

 

uf(x) =
V̇

Aeff(x)
 

 

The effective area Aeff(x) depends simply on the crystallizer geometry and the 

bed voidage, ε.  

 

Aeff(x) = A(x) − A(x, ε) = A(x) − π ∫ L2n(L, x, t)dL
∞

0

 

 

Using the single particle velocity uP(x, L), the particle flux due to segregation can 

be calculated as 

 

ṅseg =
∂uP(x, L)n

∂x
 

 
In order to account for local back mixing inside the fluidized bed, a diffusion-like 

particle flux has been included.  

 

(4.9) 

(4.10) 

(4.11) 

(4.8) 
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ṅbm = D
∂2n

∂x2
 

 

where D is the diffusion coefficient of the studied substance. 

For the seed generation in the ultrasonic bath, it can be assumed that no particle 

growth or dissolution occurs in sufficiently large residence time, thus a certain 

constant particle size distribution can be achieved. In a first step the ultrasonic 

attenuation can be modeled as a mass conserving size reduction process, given 

by  

 

nus(L) = N exp (−
LUS − LUS

0

G τUS

) 

 
where τUS is the mean residence time in the US-bath. Equation 4.13 describes an 

exponential increase of the total particle density due to the comminution of 

crystals in the US-bath in accordance with their residence time and linked with 

the growth rate. In general, bigger crystals have longer residence times and vice 

versa. Furthermore, it was assumed that the size of the generated from US seed 

crystals is equal to the size of the initial seeds LUS
0 = L0. 

Hence, the particle flux from the ultrasonic attenuation being supplied to the 

crystallizer at height x = 0 is given by 

 

ṅin,us =
∫ L3∞

0
ṅout,us d L 

∫ L3 nus
∞

0
 d L 

   nus(L)δ(x = 0), 

 

where δ is the Dirac delta distribution and ṅout,us is the particle flux withdrawn 

from the crystallizer at height x = 0  

 

ṅout,us = Kusδ(x = 0)n(x, L, t). 

 
 

The introduced model was solved numerically in Matlab® using simple explicit 

finite differences to approximate the derivatives. To ensure numeric precision, the 

number of grid points was varied in a broad range and no significant differences 

were found. Computational results for the solution concentration development 

(4.13) 

(4.12) 

(4.14) 

(4.15) 
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(eq. 4.6) in the crystallizer as well as total and recovered crystal product mass 

(eqs. 4.7 and 4.8 respectively) with time were derived. In order to use the 

proposed model there are parameters, which should be determined 

experimentally. Concerning the physical properties (e.g. crystal density) of the 

substance, these are already known and can be taken from the literature. On the 

contrary, some parameters like substance solubility are more complex and 

depend on the physical and chemical properties of the solute and solvent as well 

as on temperature, pressure and the pH of the solution.  

To quantify the studied process in particular, profound knowledge of the solubility 

equilibria along with the metastable zone width (MSZW) of the substance to be 

crystallized is needed. 

4.2 Solubility equilibria and metastable zone width determination 

- Solubility equilibria and MSZW of the glutamic acid system 
 
Solubilities of D-glu, L-Glu and DL-glu.H2O in water were determined by using a 

polythermal method (described in chapter 3.3.1.1) in the temperature range 20°C 

– 65°C. The dependence of the saturation concentrations as a function of 

temperature is represented in Fig. 4.2. The concentration entity is given in mass 

percent (wt.%). It represents the mass of the substance multiplied by 100 and 

divided by the mass of the solution. 

 

 

Fig. 4.2 Solubility of L-glu, D-glu, DL-glu and DL-glu.H2O as a function of 
temperature (wt.% - weight percent) (own and literature data). 
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It can be seen from the figure, a positive slope of the solubility curves is 

observed, i.e. the solubility of the species increases in an exponential 

dependence on the temperature. The measurements of L-glu and D-glu solutions 

fit almost perfectly to literature data and show identical progression. On the 

contrary, the literature data presented for DL-glu show a considerable difference 

in absolute values. In a comparison of the solubility data of the pure enantiomers 

and DL-glu.H2O data from Dalton and Schmidt, it can be noted that the solubility 

of the DL-form is greater than the corresponding values for the enantiomer form. 

They also reported that they have obtained DL-glu.H2O by racemizing D-glu with 

barium hydroxide in an autoclave [Dalton1933]. Our solubility measurements of 

DL-glu.H2O are in very good agreement with the results from Dalton and Schmidt, 

while the results published by Apelblat for the glutamic acid racemate are used 

later for constructing the Van’t Hoff plot. A single probe of an aqueous solution of 

both enantiomers with 50:50 ratio was measured at 50°C by using an isothermal 

method (described in chapter 3.3.1.1). The result for the measured by HPLC 

saturation concentration (3.91 wt.%) fit almost perfectly with the data from 

Apelblat. 

As seen in fig. 4.2, the solubilities of the enantiomers are lower than the 

solubilities of the racemate in the glutamic acid system. For the ideal case, the 

solubility of the conglomerate racemic solution equals the sum of the solubilities 

of the single enantiomers. In our case, with increase of temperature, the solubility 

ratios between the racemic mixture (data from Apelblat) and the pure 

enantiomers change from ~1.78 at 10°C to ~1.84 at 65°C. A comparison with 

solubility data from Dalton and our measurements of DL-glu.H2O with the 

glutamic acid enantiomers show ratios from 2.45 at 10°C to 2.19 at 65°C between 

the DL-form and the pure enantiomers. The van’t Hoff plot (shown in Fig. 4.3) 

gives a good linearization and the slopes for the 3 species are very similar. 

The trend lines, shown in figure 4.3, correspond to the solubility data of DL-glu, 

D-glu and L-glu, and are represented as a natural logarithm of the molar 

concentration of the respective substance versus the absolute reciprocal 

temperature. Based on the data, the van’t Hoff equation can be written by using 

the two parameters, A and B, listed in Table 4.1. 
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Fig. 4.3 Van’t Hoff plot of D-glu, L-glu and DL-glu.  
 

ln(xeq) = A.T-1 + B 
 
Table 4.1 Parameters for the equation 4.16 for the glutamic acid system. 

Substance A = ΔH / R B = ΔS / R 

DL-glu.H2O 
D-glu 
L-glu 

- 3546.6 
- 3764.6 
- 3945.8 

5.8622 
5.7296 
6.2774 

 
In the table, ΔH / ΔS represent the change of the molar enthalpy / entropy in the 

solution over a temperature range and R is the gas constant. Based on the 

parameter A estimated (the slope of the respected trend line), the molar 

enthalpies of solution can be calculated from the equation 4.18. The estimated 

molar enthalpies for DL-glu, L-glu and D-glu are shown in table 4.2 and 

compared with the literature data. 

 
Table 4.2 Calculated molar enthalpies ΔH (kJ/mol) for the glutamic acid system, 
compared with literature data measurements at 298.15 K. 

Substance this work Apelblat1997 Dalton1933 

DL-glu 
D-glu 
L-glu 

29.5* 
31.3 
32.8 

27.3 
- 
30.2 

23.9 – 25.9* 
25.4 
25.3 

* The molar enthalpies shown are for DL-glu.H2O 
 
From the table it can be seen that the calculated values are in fair agreement. 

Still, our results are more close to these, reported by Apelblat et al.  

(4.16) 
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Essential information, needed for the optimal realization of the crystallization, is 

the estimation of the metastable zone width. In Fig. 4.4 are depicted the results 

from the polythermal experiments, done with Crystal 16TM. 

The MSZW of the single enantiomers is broad with a ΔTmax > 20 K between the 

solubility and supersolubility curves for saturation concentrations below 55°C. 

From the measurements it can be concluded that crystallization experiments can 

be conducted in relatively high supersaturated solutions with a considerable 

increase in productivity. Hence, for the crystallization experiments of L-glu, 

saturation concentration at 50°C and a moderate supersaturation of 1.19 (Tc = 

45°C) were used and the results are shown in chapter 4.4.  

 

Fig. 4.4 MSZW of L-glu. The solubility / supersolubility curves are depicted with 
solid / dashed lines respectively correspondent to the appropriate polynomial 
equation. Experimental data for solubility / supersolubility is given with circles / 
triangles. The data for D-glu overlaps with L-glu data in the entire temperature 
region shown and it is not depicted.  
 
The MSZW of DL-glu.H2O was also measured, but the results are not 

represented. As DL-glu.H2O is a racemic compound, it cannot be separated into 

single enantiomers by preferential crystallization [Yokota2006]. It can also be 

seen from measured XRPD patterns, (shown in fig. A2.1) there is a considerable 
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difference between the measured samples of DL-glu.H2O and the pure 

enantiomers. 

  
- Solubility equilibria and MSZW of the asparagine monohydrate system 
 
The solubilities of D-asn.H2O, L-asn.H2O and DL-asn.H2O in water were 

determined gravimetrically in the temperature range 10°C – 60°C. In the figure 

4.5 are shown the data from the solubility measurements along with literature 

values, plotted for comparison.  

 

Fig. 4.5 Solubility of the enantiomers and racemic mixtures of asparagine 
monohydrate as a function of temperature (wt.% - weight percent) (own and 
literature data). 
 
The solubility courses for both enantiomers D- and L –asn.H2O are almost 

identical and the dissolved mass increase exponentially with increasing 

temperature. From the data it can be concluded that the solubility of both 

enantiomers in water is equal as expected. The literature values are measured in 

a range from 15 °C to 45 °C and are in very good agreement with our 

measurements. Notable deviations from the exponential course can be seen at 

temperatures above 50 °C. This may be due to the evaporation of the water at 

high temperatures, thus increasing slightly the measured values. Similar with the 

glutamic acid system, the solubility of the DL-asn.H2O exceeds that for the pure 

enantiomers. The measured values show almost double magnitude as these for 
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the single enantiomers. The construction of the van’t Hoff plot (shown in fig. 4.6) 

gives almost perfect linearization.  

 

Fig. 4.6 Van’t Hoff plot of D-asn.H2O, L-asn.H2O and DL-asn.H2O.  
 
 Based on the isothermal solubility measurements of samples, containing defined 

amounts of D-Asn.H2O and L-Asn.H2O in water, the ternary solubility phase 

diagram of the system D-Asn.H2O / L-Asn.H2O / water is constructed with 

solubility isotherms at 20 and 40 °C, (blue and red lines respectively, see Fig. 

4.7). 

It can be seen form Fig. 4.7, the ternary system D-Asn.H2O / L-Asn.H2O / water 

exhibits symmetrical behavior with highest solubility at the eutectic. This means 

that the aqueous solutions of the racemate possess the highest solubility at the 

eutectic. The initial concentration of the samples for the 20 °C isotherm 

determination is given in Fig. 4.7 with green dots. It can be seen, that after 

establishment of equilibria, three of resulted solutions (blue dots) are racemic or 

very close to racemic, while in the other three the ratio of the L-enantiomer 

gradually increases while the respective solubility decreases. The same can be 

observed for the measured at 40 °C samples, where four from the total six 

starting solutions (black points) resulted after equilibria in the eutectic. However, 

by the determination of the 50 °C isotherm, the initial concentrations are closer to 

the measured ones, thus only three samples are measured at the eutectic.  
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Fig. 4.7 Up: Ternary solubility phase diagram of the system D-Asn.H2O / L-
Asn.H2O / water; Down: Upper 20% section of the diagram, shown for clarity. 
Isotherms at 20 and 40 °C are shown with blue and red lines respectively. 
Additionally, the respective colored dashed lines represent tie-lines, separating 
two-phase from three-phase zone. Green and black dots represent initial 
concentration at 20 and 40 °C respectively. Literature data is represented with 
pink dots [Seebach2011]. Axes are in weight fractions. 
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This behavior in the solubility phase diagram concludes that the ternary system 

D-Asn.H2O / L-Asn.H2O / water exhibit simple eutectic. Moreover, XRPD 

diffractogram of the samples from the solid phase with racemic ratio, taken at 20 

and 40 °C unambiguously show that a mechanical mixture of both substances 

has been formed. The XRPD diffractogram is given in Fig. A2.2. 

In order to optimally perform a preferential crystallization experiment, the 

metastable zone width of the asparagine racemic solution was studied. The 

results from the polythermal measurements for determination of the MSZW of 

DL-asn.H2O are shown in figure 4.8. 

 

Fig. 4.8 Solubility and MSZW of DL-asn.H2O. The solubility / supersolubility 

curves are depicted with solid / dashed lines respectively correspondent to the 

appropriate polynomial equation. Experimental data for solubility / supersolubility 

is given with circles / triangles.  

 
The two curves define an expanding metastable region, where ΔT at 

concentration of 5 wt.% is about 7 K and rises up to 14 K at 23 wt.%. This 

suggests that subsequent to the crystallization experiments, a relatively high 

supersaturation levels could be used. Nevertheless, in high supersaturated 

solutions the possibility of spontaneous nucleation cannot be neglected. For this 

purpose, a temperature difference of no more than 8 K appears to be suitable for 

eventual crystallization experiments. 
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- Solubility equilibria and MSZW of the aminobenzoic acid system 
 
The measurements of the solubility and the metastable zone width (MSZW) of 

the aminobenzoic acid system were performed for two out of the three possible 

stereoisomers – ortho-aminobenzoic acid (OABA) and para-aminobenzoic acid 

(PABA). The polythermal solubility measurements of OABA are done in 

temperature range 10 – 50 °C (blue dashes in Fig. 4.9). Isothermal solubility 

measurements of OABA and PABA (in Fig. 4.9 green points and blue crosses 

respectively) are done at temperatures 20, 35, 40, 45 and 50 °C. The results are 

shown along with literature data. Solubility of meta-aminobenzoic acid (MABA) is 

also shown for comparison. It can be clearly seen from the figure, that all three 

isomers exhibit very low solubility in water, which at 50 °C is between 1.2 and 1.4 

wt.%. The pure isomers, having a hydrophobic benzene core, cannot form strong 

interactions with the water, which explains their low solubility in it. On the 

contrary, the carboxyl- and amino- groups can form relatively strong hydrogen 

bonding interactions, thus promoting the solvation of the molecules in the water. 

This is confirmed by He et al., which has published theoretical and experimental 

studies of water complexes of OABA and PABA [He2005]. 

 

Fig. 4.9 Solubility of OABA, MABA and PABA aqueous solutions as a function of 
temperature (wt.% - weight percent) (own and literature data). 
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Hence, the measured solubility values show noticeable differences in 

temperature range below 15 °C and above 35 °C. It must be noted that all three 

isomers of aminobenzoic acid exhibit polymorphic transformations. The data for 

PABA shows that both polymorphs are enantiotropic with a transition temperature 

of 25 °C. Above this temperature the solubility of the alpha-form becomes lower 

than the beta-form and it crystallizes preferentially [Gracin2004]. The MABA has 

two polymorphs, form I is the stable and form II – metastable. The data 

represented in the figure is for the stable form I. Svärd et al. have investigated 

both MABA polymorphs and have shown that metastable form II turns very quick 

to form I in aqueous and methanol solutions [Svärd2010]. Almost similar 

tendency is published for the OABA polymorphs. Jiang et al. have observed that 

at lower temperature the solubility differences between all forms in water are 

relative large, while above 50°C the solubility of form I approaches those of the 

other two forms. The authors have proven that the transformation temperatures 

of form III to form I are probably lower than that of form II to form I. The 

transformation results unambiguously show that below 50 °C forms II and III are 

transforming to form I [Jiang2010]. It can be concluded that form I is the most 

stable form, while forms II and III are metastable below 50 °C. In our case, only 

form I of OABA was crystallized and observed microscopically. For PABA, α-form 

was observed with no appearance of β-form at higher temperatures (above 35°C) 

and at temperatures below 25°C only α-form was crystallized and observed. The 

results from XRPD measurements from the respected crystal samples have 

unambiguously shown, that a polymorph type I of OABA and α-polymorph of 

PABA have been formed.  

Based on the isothermal solubility measurements of samples, containing defined 

amounts of OABA and PABA in water, the ternary solubility phase diagram of the 

system OABA / PABA / water is constructed with solubility isotherms at 25, 35 

and 50 °C, (blue, green and red lines respectively, see Fig. 4.10).  

It can be clearly seen form Fig. 4.10 the ternary system OABA / PABA / water 

exhibits also symmetrical behavior like the case of asparagine enantiomers in 

water. In this case, aqueous solutions of OABA and PABA with 50:50 ratios 

possess the highest solubility at the eutectic. 

 



Ch. 4 Results and discussion 

 

 
96 

 
 

 
Fig. 4.10 Up: Ternary solubility phase diagram of the system OABA / PABA / 
water; Down: Upper 10% section of the diagram, shown for clarity. Isotherms at 
25, 35 and 50 °C are shown with thick blue, green and red lines respectively. 
Additionally, the respective colored thin lines represent tie-lines, separating two-
phase from three-phase zone. Black dots represent initial concentration. Axes are 
in weight fractions. 

0.5 

0.98 

PABA 

0.08 

PABA 

0.96 

water 

0.94 

OABA 

PABA 

0.25 

water 

0.5 

OABA 

0.75 

0.02 

0.75 

 

0.04 

0.25 

 

0.06 

water 

0.92 

 



Results and discussion Ch. 4 

 

 
 

97 

 
The initial concentration of the samples for each isotherm determination was the 

same and it can be seen, that for the determination of the 20 °C isotherm, all 

concentration measurements at equilibria are at the eutectic point. Hence, the 

respective tie-lines delimitate all initial conditions into the three-phase zone of the 

ternary phase diagram. The same can be observed for the measured at 35 °C 

samples, where only one point is observed in the respective two-phase region. 

However, by the determination of the 50 °C isotherm, the initial concentrations 

are closer to the measured ones, thus only three samples are measured at the 

eutectic. This behavior in the solubility phase diagram concludes that the ternary 

system OABA / PABA / water exhibit simple eutectic. Moreover, XRPD 

diffractogram of the samples from the solid phase with 1:1 ratio, taken at 20 and 

50 °C unambiguously show that a mechanical mixture of both substances has 

been formed and no polymorphic transformation is observed. 

The application of the preferential crystallization to separate one isomer in the 

presence of the other in this case should be possible. Therefore, the metastable 

zone width of a solution of both substances was studied. The results from the 

solubility measurements of a 50:50 aqueous solution of OABA and PABA are 

shown in Fig. 4.11.  

 

Fig. 4.11 Solubility and MSZW of a 50:50 aqueous solution of OABA and PABA. 
The solubility / supersolubility curves are depicted with solid / dashed lines 
respectively correspondent to the appropriate polynomial equation. 
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A comparison between the measured data for the pure substances (Fig. 4.9) and 

the values shown in Fig. 4.11, it can be clearly seen, that the solubilities of the 

aqueous solutions of the both substances are twice as high as these for the 

single substance. The estimated broad metastable zone width has a ΔT of about 

18 K at lower temperatures and a value of 15 K at 50 °C. Hence, by the 

determination of the supersolubility curve, the calculated standard deviation is 

2.24, which corresponds to temperature differences up to 5 °C. This could be due 

to the very low solubility of the samples, leading to increased discrepancies by 

the local formation of nuclei.   

 
- Summary 

 
In chapter 4.2, results from the solubilities and MSZW of aqueous solutions of the 

substances used in this thesis were represented and the dependency of the 

concentration on the temperature discussed. Generally, the solubility increases 

with the increase of the temperature. The solubility values for the single glutamic 

acid enantiomers are very close to those for aminobenzoic stereomers at lower 

temperatures (e.g. 0.3 - 0.4 wt.% at 10°C) and with the increase of the 

temperature the difference between the values rapidly increase up to 0.7 – 1.0 

wt.% at 50°C. In comparison to them, the solubility of the asparagine enantiomers 

is almost 4 times higher with values from 1.4 wt.% at 10°C up to 7.6 wt.% at 

50°C. This could be reasoned with the respected molecule structures (see Figs. 

3.1, 3.2 and 3.3), where the benzyl core and the length of the carbon chain are 

the main reasons for the lower solubility of the aminobenzoic acid and glutamic 

acid in water respectively. On the contrary, shorter carbon chain of the 

asparagine along with hydrophilic functional groups (-COOH and -NH2) increases 

the molecule affinity to water and therefore the solubility of the substance. For 

glutamic acid and asparagine monohydrate systems incipient decomposition was 

suspected at temperatures above 65°C indicated by slight coloring of the solution 

samples, which resulted in a slight decrement of the measured values for the 

solid-liquid equilibria. The same trend was also observed in aminobenzoic acid 

system, starting at about 45°C. Based on the solubility measurements and the 

respected MSZW, it can be generally concluded that further crystallization 

experiments could be planned in the temperature region 30°C – 45°C with 
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supersaturation up to 1.5, where the productivity could be relatively high, while 

attaining low nucleation probabilities and keeping the solutions stable with time. 

4.3 Generation of seeds by ultra-sonication  

 
The results from the US crystal breakage consider the effects of four operating 

parameters on the particle size - stirring rate, temperature, solution density and 

sonication power dissipated into the suspension. Furthermore, the sonication 

power was varied stepwise from 48 to 480 W, while stirring rate, temperature and 

suspension density were kept constant during the experiments. An exponential 

increase of the temperature was observed with time when the sonication power 

was increased above 100 W (or 20% of the maximal power of the US-bath). This 

had led to an increase of the solution density values and on one side is an 

indication of dissolution of the crystals and on the other side has strong effect on 

the crystal size distribution. In order to avoid unwanted dissolution, the sonication 

power was kept at 10% of the maximal power of the US-bath and in the following, 

only results from these experiments will be presented and discussed. It should be 

noted that even at 10% of the maximum power, a slight change of the solution 

temperature was detected, increasing with about 4.2 K after 1 h continuous 

sonication. This temperature offset was used further in chapters 4.4 and 4.5. 

The de-aggregation / de-agglomeration effects as well as fracturing of the 

crystals during the ultrasonic treatment of samples of L-glu, L-asn.H2O and OABA 

are presented in Figure 4.12 as calculated mean crystal size versus residence 

time, where two experimental setups were used and compared. The estimation of 

the mean crystal size, d50, from the q3 distribution of the measured CSD is 

explained later in chapter 4.4.1.4. The setup description and the experimental 

procedures can be found in subsection 3.3.1.2 of chapter III. The residence time 

represents the exposure time of the sample to the ultrasonic radiation. 

It can be seen that with time, the mean particle size of all samples is decreasing. 

The biggest reduction of d50 is observed during the first 5 minutes and after that 

just a small changes in particle sizes is recorded for the batch experiments. On 

the contrary, the continuous experiments show constant almost linear reduction 

of the mean crystal sizes. The difference between the results may be due to the 

construction of the experimental setups used. In the continuous setup, the 
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suspension was constantly pumped by a peristaltic pump, which can lead to 

continuous attrition of the crystals in the pump head. 

 

Fig. 4.12 Ultrasonic breakage of crystals of L-asn, L-glu and OABA in time. 
Experiments, done in batch setup are shown with filled circles, while experiments, 
done in continuous set-up are presented in open circles and a line.  
 
The substances can be arranged according to their breakage. It can be seen 

from the figure that crystals from L-asn.H2O break up very quickly from a mean 

size of 167 µm in about a minute to a mean size of 100 µm and then just a slight 

change in the crystal size is observed (after 20 min of US, d50 = 81 µm). On the 

contrary, the crystals from OABA need longer period to break up and their mean 

size change at the whole time interval from a value of 194 µm at the beginning of 

the process up to a value of 102 µm after 20 min. The crystal mean size values 

from L-glu are located between those from L-asn.H2O and OABA. Hence, L-glu 

crystals break up fairly quickly in the first 3 minutes from a mean value of 146 µm 

to sizes about 115 µm and then show almost the same course as the crystals 

from OABA, reaching a value of 82 µm after 20 min of sonication. 

Before and after each experiment, microscopic photographs of the samples are 

taken and the corresponding crystal sizes were measured. In the figure 4.13 are 

shown microscopic photographs of the crystals used before the start of the 

experiment and after 20 min of constant US comminution. 

A comparison of the size values from microscopic photographs with the mean 

crystal sizes from the FBRM measurements shows that both data are in good 
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agreement. The crystals from all substances exhibit good distinguishable faces, 

shapes and sharp angles. After the US break up, it can be noticed that the crystal 

forms are not so clear to distinguish. L-asn.H2O crystals have become more 

spherical with rounded edges, while for OABA crystals a great number of crystal 

fragments can be seen. The usually needlelike crystals of β-L-glu have been 

broken up to small fragments, but with distinguished edges. Some of them have 

multiple cracks on their surface due to the US comminution and this effect could 

be caused by the cavitation. 

 

Fig. 4.13 Microscopic photographs of crystals from L-asn, L-glu and OABA (top 
to bottom). On the left are shown crystal before US comminution, on the right are 
shown crystals after 20 min of US comminution with 10% of the maximal power. 
 
It can be summarized, that bigger crystals and agglomerates can be successfully 

comminuted into smaller crystal fragments under the influence of the ultrasound, 

applying only 10% of the maximum power and a provided residence time of 5 

min. Moreover, the constant attrition from the pump head helps additionally the 
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process and lowering the residence times of the crystals in the US-bath. The thus 

created seeds can be used for the continuous operation of the crystallization 

process. 

4.4 Experiments in a single fluidized bed 

4.4.1 Influence of selected parameters on the crystal size distribution 

 
A novel fluidized bed crystallizer (FBC) was constructed and put into operation for 

the next experiments. Its description and the corresponding experimental 

procedures can be found in chapter 3.3.2. In the current chapter, the influence of 

the flow rate, generation of seeds through US comminution, and the use of 

different seed sizes on the generated product CSDs during the fluidized bed 

crystallization process will be described. On one side, different flow rates of the 

solution flowing through the crystallizer were applied and in detail discussed. The 

rates used were 6, 9 and 12 l/h. In addition, the influence of the continuous 

seeding, provided through ultrasonic comminution in conjunction with the 

crystallization process will be also demonstrated. In the previous subsection it 

was shown that implementation of US crystal breakage on the production of seed 

crystals was successful. The potential of the US bath of generating seeds of 50-

80 µm size was used in the current experiments at 10 % of the maximum power 

(48 W) and its influence was studied on the CSD along the crystallizer height, x. 

The influence of different seed crystal sizes on the product CSDs produced by 

other procedures was also studied. A summary of the conditions, used to perform 

the experiments, can be seen in Table 4.3.  

 
Table 4.3 Experimental conditions used for the fluidized bed crystallization of L-
glu. 

Experimental conditions  Values 

saturation temperature, [°C] 
crystallization temperature, [°C] 

 50 
45 

initial solution concentration, [wt.%]  2.2 
supersaturation, [-] 
seed amount, [g] 
seed sizes, [µm] 
feed flow rates, [l/h] 
ultrasonic attenuation, [kHz] 
ultrasonic output power, [W] 
seed generation flow rate, [l/h] 

 1.2 
1.75 
40 ÷ 80 
6, 9, 12 
35 
48 
2 
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It can be seen from the table, the generated supersaturation of 1.2 is relatively 

low, although the measured width of the metastable zone of L-glu is about 25 °C 

(see section 4.2). Hence, the main goals of the experiments are, as already 

mentioned above, to study the influence of selected parameters, while 

maintaining slight supersaturation levels and avoiding possible nucleation. The 

seed amount value used was calculated from eq. 2.19. 

4.4.1.1 Influence of the feed flow rate 

 
In Fig. 4.14 are shown CSDs of L-glu crystals, obtained at the different outlets of 

the crystallizer. Figures 4.14a, 4.14b and 4.14c refer to flow rates of 6, 9 and 12 

l/h respectively. These experiments were performed without generation of seed 

crystals using the ultrasound. For the experiment conducted with flow rate of 6 

l/h, the mean crystal size (d50) of ~200 µm can be observed at output I and ~50 

µm is measured at output VI. The mean crystal sizes for experiments conducted 

with flow rate 9 l/h have values of ~180 µm at outlet I and ~100 µm at outlet IV 

and for the flow rate 12 l/h d50 is ~220 µm at outlet I and ~150 µm at outlet IV. 

The data show that with increasing flow rate of the L-glu solution in the 

crystallizer from 6 to 12 l/h, the mean crystal sizes at the different outlets rise and 

the CSD gets narrower. This is expected as the drag force of the current flow 

grows with the increase of the flow rate, compared to the almost constant particle 

weight. The difference in crystal sizes at different outlets is significant when using 

a flow rate of 6 l/h and gets smaller with increasing flow rate. At 9 and 12 l/h (Fig. 

4.14b and 4.14c) no CSDs could be measured from samples taken at the outlets 

above the fourth one, because of the lack of the crystal suspension. Almost no 

agglomeration was observed during the experiments, although at a flow rate of 

12 l/h after 6 h incipient agglomeration was detected. At the beginning small 

agglomerates were seen freely floating, but after an hour they grow so big and 

heavy, that they severely restrained the upward fluid flow and thus collapsing the 

crystal bed. The formation of crystals, which looked like long needlelike plates, 

could be a possible reason for the formation of agglomerates, see Fig. 4.15. As 

this experiment was repeated 3 times and the agglomeration occurred at every 

experiment at almost the same time, it can be concluded that at higher flow rates 



Ch. 4 Results and discussion 

 

 
104 

even severe agglomeration could occur and as a result the whole process could 

be obstructed.  

 

 

 

Fig. 4.14 CSDs, represented by the steady state q3 distribution, of L-glu obtained 
at different outlets along the crystallizer height without influence of the US bath at 
flow rates of 6 (a), 9 (b) and 12 l/h (c). The initial seeds used in the experiments 
were sieved using a 45-68 mesh [Binev2011a]. 
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Fig. 4.15 Microscopic image of product crystals of L-glu, taken from outlet I after 
the agglomeration took place in the crystallizer. 

4.4.1.2 Influence of the ultrasound seed generation 

 
In chapter 4.3 was already studied the generation of seed crystals by applying 

power ultrasound on a suspension of bigger crystals and crystal agglomerates. In 

this chapter, the indirect influence of the seed generation loop on the CSD along 

the height of the crystallizer will be studied. In order to be consistent, the 

experimental conditions were kept the same as mentioned in the previous 

chapter. Additionally, seed crystals were continuously introduced into the bottom 

of the crystallizer from the seed generation loop, while at the same time bigger 

crystals and crystal agglomerates were taken from the bottom of the crystallizer. 

The achieved product CSDs of the L-glu crystals are presented in Fig. 4.16. The 

bimodal CSD with maxima at ~100 µm and ~200 µm is to be seen in fig. 4.16a 

and b. This can be due to the influence of the US attenuation, based on the 

continuous breakage of the bigger crystals and therefore the continuous 

production of smaller ones (with sizes around 100 µm) and their insertion in the 

crystallizer. While this process happens at the bottom of the crystallizer, the 

seeds float up through the fluidized bed, dragged by the fluid flow. Thus, when 

taking out samples at the outlets some of the fresh generated seeds are also 

withdrawn. 
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Fig. 4.16 CSDs, represented by the steady state q3 distribution, of L-glu obtained 
at different outlets along the crystallizer height under the influence of continuous 
US seed generation at flow rates of 6 (a), 9 (b) and 12 l/h (c). The initial seeds 
used in the experiments were sieved using a 45-68 mesh [Binev2011a]. 
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As already mentioned in the previous chapter, in all experiments with a flow rate 

of 12 l/h, incipient agglomeration was observed 6 h after the start of the process. 

Nevertheless, samples could be taken out at this point and the CSDs are 

depicted in Fig. 4.16c. The additional maximum around 40 µm from the trimodal 

CSD may be due to small crystals from US comminution and captured within the 

agglomerates or crystal fragments from the agglomerate break up in the 

measuring device (CILAS 1180L). 

In general, the CSD curves between the different outlets in each experiment look 

very similar. Nevertheless at the lowest flow rate the content of the smaller 

particles (~100µm) exceeds the content of bigger ones (~200 µm). Increasing the 

flow rate leads to an increase of the content of the bigger crystals and a reduction 

of the content of smaller ones. This behavior can be attributed to the different 

ratios between the increasing feed rates from 6 to 12 l/h and the constant flow 

rate (~2 l/h) of the seed generation circle.  

For a continuous operating mode and respectively continuously taking out 

crystals with desired specific size from one of the outlets, the continuous seed 

introduction by US crystal breakage is required to keep the crystallization process 

running. 

4.4.1.3 Influence of the various seed sizes 

 
Experiments with three types of seed crystals were conducted with the same 

conditions as already used (see table 4.3). For the experiments 1 and 2, the 

crystals seen in Fig. 4.17a and 4.17b were produced by dry milling of β-

polymorph crystals of L-glu in a mortar. Additionally, the crystals seen in Fig. 

4.17b were sieved using a 38-68 µm sieve. For experiment 3, the crystals seen in 

Fig. 4.17c were produced from already grown β-polymorph crystals of L-glu in the 

FBC, followed by sonication for 1 h in the US bath. Additional samples were 

collected in order to investigate the mean size of the solid particles, flown back to 

the feed tank from the top of the FBC. Hence, the mass of the lost solid phase 

after solid-liquid separation was determined to be about 1.25 g/h and the mean 

size of the crystals was about 45-50 µm, measured with light microscopy. 

In Fig. 4.17d are shown product crystals from experiment 3, achieved with seed 

crystals, generated in the US bath. The measured with laser diffraction CSDs of 
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the seeds and the product crystals, taken from outlet III of the FBC from all three 

experiments are shown in Fig. 4.18. 

        

       
Fig. 4.17 Microscopic images of crystals of L-glu: a) seed crystals produced by 
milling; b) sieved seed crystals, after milling; c) seed crystals produced by US 
comminution; d) achieved product crystals. 
 
It can be noticed, that the values of the mean crystal sizes (d50) of the different 

seeds are close to each other, but the widths of the respective density 

distributions are totally different, as it can also be seen from Fig. 4.18. The widest 

CSD is provided for seed crystals produced by milling without sieving. The 

crystals vary a lot in their sizes and forms (Fig. 4.17a). In Fig. 4.18b is shown, 

that the same seed crystals, but used after sieving, have tighter but bimodal 

CSD. The shoulder or the small fraction at around 15 µm can be assigned to 

crystal fragments, formed by breakage in the sieve apparatus. From Fig. 4.17b is 

clearly seen the difference in the shapes of the seed crystals, which also 

contributes to the CSD width. The CSD of the seed crystals, produced by means 

of ultrasonic attenuation is narrow, monomodal and the crystals are uniform in 

size, as it can be seen in Figs. 4.17c and 4.18c.  

a) b) 

c) d) 
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Fig. 4.18 CSDs, represented as the q3 distribution, of L-glu obtained at a flow rate 
of 9 l/h from outlet III of the crystallizer, using different types of seed crystals: a) 
from seed crystals produced by milling; b) from sieved seed crystals, after milling; 
c) from seed crystals produced by US comminution [Binev2011b]. 
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From Fig. 4.18a it can be seen, that the product CSDs from experiment No.1, 

compared to those in Figs. 4.18b and 4.18c, are definitely wider. This can be 

related to the wider CSD of the seed crystals used. Moreover the mean values for 

characteristic crystal sizes are lower than the respective ones from the 

experiments 2 and 3. However, the obtained CSDs are similar over the whole 

crystallization time. The product CSDs in Fig. 4.18b and 4.18c show a shoulder at 

about 80 µm, i.e. bimodal distributions. It can be related to the continuous 

production of seed crystals in the US bath. Thus with time, a breakage of the 

bigger crystals (product) occurs. The calculated mean seed size d50 from 

respected CSDs, shown in Figs. 4.18b and 4.18c is ~45 µm used in experiment 

No. 2 and ~65 µm used in experiment No. 3. While the conditions are the same 

for the both experiments it can be concluded, that the difference between the 

measured CSDs are probably due to the different seed crystals used 

respectively. Nevertheless, from all experiments, only the stable β-polymorphic 

crystals of L-glu were obtained (Fig. 4.17d). 

4.4.1.4 Comparison with the Richardson-Zaki force balance model 

 
The applicability of the Richardson-Zaki correlation (equation 2.28) with respect 

to the steady state was verified on the example of three substances, L-glu, L-asn 

and OABA by measurements of their local crystal sizes. Hence, the void fraction, 

ε, used in the equation 2.28 was kept constant for all flow rates, and it was 

experimentally determined for each substance. A defined volume of the crystal 

suspension was taken out in a measuring cylinder from outlet III of the 

crystallizer, and then the suspension was filtered in a suction flask with sintered 

glass filter. The ratio of the liquid filtrate volume to the whole suspension volume 

equals the void fraction, ε, for the specified flow rate. The mean values from three 

measurements were calculated to be ε=0.7 for L-glu, ε=0.66 for L-asn, and 

ε=0.78 for OABA, all measured at a flow rate 9 l/h in a saturated at 25°C solution. 

These values were used in the empirical model (equations 2.31 – 2.32) to predict 

the corrected with the sphericity factor (eq. 2.36) mean crystal size, d50, while 

assuming the process is in steady state (eq. 2.33). In order to compare the 

predicted values with the experimental CSD, a mean value of the crystal size, �̅�, 
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can be calculated as the first moment of the distribution of the sizes, L, from the 

q3 distributions of the measured CSDs (Figures 4.14, 4.16, and 4.18).  

 

�̅� =
∫ 𝑞3(𝐿)𝐿𝑑𝐿

∝

0

∫ 𝑞3(𝐿)𝑑𝐿
∝

0

≈
∑ 𝑞3(𝐿𝑖)𝐿𝑖(𝐿𝑖 − 𝐿𝑖−1)1000

𝑖=1

∑ 𝑞3(𝐿𝑖)(𝐿𝑖 − 𝐿𝑖−1)1000
𝑖=1

 

 

The mean value, �̅�, will be used further as the mean crystal size, d50, of the 

respected CSD. 

The results from the fluidized bed crystallization of L-glu are summarized in Fig. 

4.19, where the CSDs are represented by the experimental d50 as a function of 

the crystallizer height. Additionally to the experimental data, the predicted values 

for d50 are implemented by straight lines. A correction with the estimated 

sphericity parameter was also implemented on the calculated values shown. The 

presented in the figure error bars include both effects of the types of the seeds 

and the ultrasonic attenuation by the estimation of the mean experimental d50. A 

single experimental d50 value is the size in microns that splits the distribution into 

two areas, where half of the crystal population resides above the value and half 

resides below it. 

   

Fig. 4.19 Experimental (eq. 4.18) and calculated (eqs. 2.31 – 2.33 and 2.36) 
values for d50 of L-glu along the height of the fluidized bed crystallizer at flow 
rates 6, 9 and 12 l/h. Standard deviation error bars include both effects of the 
types of the seeds and the ultrasonic attenuation on the experimental d50. The 
calculated values for d50 are shown as lines; experimental values – with symbols. 
 

 (4.17) 
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It can be seen from the figure that experimental d50 values decrease from outlet I 

(d50 between 110 and 155 µm) until outlet IV (d50 between 72 and 124 µm), while 

keeping almost constant afterwards. This was expected as the fluidized bed 

crystallizer is conical at the lower part, thus the fluid flow velocity decreases with 

increasing diameter. This trend is also verified with the predicted d50 values, 

where the terminal velocity depends on the crystallizer diameter and affects the 

fluid drag force. Good agreement was obtained for flow rates 6 and 9 l/h, while at 

flow rate of 12 l/h, vast agglomeration occurred, leading to disruption of the 

fluidized bed structure inside the crystallizer, thus hindering reliable 

measurements. A comparison with microscopic images showed that at all flow 

rates needle-like crystals of the β-polymorph of L-glu are formed, see Fig. 4.20 

left. It is noted that smaller values for d50 were obtained from the measured CSD 

with laser diffraction in comparison with direct measurements of the crystal sizes 

from the microscopic images, shown in Figure 4.20. Still, the expected deviation 

between the methods is due to the needle-like shape of the crystals of L-glu. 

Moreover, the brittleness of the latter could lead to premature crystal breakage 

due to the suspension transport through the laser diffractometer from the internal 

peristaltic pump.  

 

                                               

Fig. 4.20 Microscopic images of crystals of L-glu, L-asn and OABA from left to 
the right, taken from outlet III of the crystallizer at flow rate of 9 l/h. The 
corresponding calculated sphericity parameters from the crystal shapes are 
schematically given below. 
 
For the determination of the sphericity parameter, Ѱ, of L-glu, the third dimension 

of the crystal was just guessed due to the impossibility of exact measurement. 

Ѱ = 0.47             Ѱ = 0.81         Ѱ = 0.92  



Results and discussion Ch. 4 

 

 
 

113 

Hence, it was possible to derive the crystal dimensions, needed for the 

calculation of the crystal volume for all substances used. 

Another validation of the simplified model was done by comparing predictions of 

the mean crystal sizes with the experimental data for L-asn and OABA. Hence, 

series of experiments were conducted, where the segregation of the crystals of L-

asn and OABA according to their size was studied at outlet III of the fluidized bed 

crystallizer in conjunction with different solution flow rates and continuous US 

comminution. In Table 4.4 are given selected parameters, used for conducting 

the experiments and in the model for calculation of d50.  

 
Table 4.4 Selected parameters, used in the experiments & modeling. 

Experimental conditions L-asn OABA 

saturation temperature, [°C] 
amount of crystals used, [g] 
crystal sizes, [µm] 
feed flow rates, [l/h] 
ultrasonic attenuation, [kHz] 
ultrasonic output power, [W] 
seed generation flow rate, [l/h] 
crystal density, [kg/m3] 

35 
20 
40 ÷ 400 
6 ÷ 15 
35 
48 
18 
1568a 

35 
20 
40 ÷ 400 
6 ÷ 15 
35 
48 
18 
1409b 

a – data from [Lindenberg2011], b – data from [Brown1985] 
 
Before the start of the experiments, a defined amount of crystals was taken from 

the substance storage container and additionally sieved to get a distribution 

between 40 and 400 µm. The experiments were initiated by the dry insertion of 

the resulting fraction into the top of the crystallizer, while the flow rate is shortly 

lowered to 1 l/h to avoid losses from crystals flown out of the crystallizer. After all 

crystals have settled on the bottom of the crystallizer, the flow rate was set to the 

desired lowest value and the US bath was turned on. 

For the observation of the steady state of the fluidized bed at a constant flow rate, 

a FBRM probe was used for inline monitoring of the CSD through the crystallizer 

outlet III by keeping the flow rate constant for 15-20 min. The measured chord 

lengths from all experiments were additionally compared with offline light 

microscope image analyses. In Fig. 4.21 and 4.22 are shown the results from the 

conducted experiments, where the number of particle counted for the different 

fractions as a function of the flow rate for L-asn and OABA respectively.  
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The in-line FBRM monitoring started after addition of the crystals from the top of 

the crystallizer and their complete settling on the bottom. Shortly afterwards, the 

flow rate was increased to 6 l/h and after 5 min the crystals in the fluidized bed 

were in the range of the FBRM probe. The flow rate was kept at 6 l/h for 30 min 

(20 min for OABA) in order to stabilize the rising fluidized bed and to establish a 

steady state regime. 

 

Fig. 4.21 In-line FBRM measurements of the particle counts for L-asn, 
represented in four size fractions, done at outlet III with flow rates 6 – 15 l/h. 

 

Fig. 4.22 In-line FBRM measurements of the particle counts of OABA, 
represented in four size fractions, done at outlet III with flow rates 6 – 15 l/h. 
 

      6 l/h          7.5 l/h       9 l/h      10.5 l/h  12 l/h  

 13.5 l/h    15 l/h  

    6 l/h        7.5 l/h       9 l/h     10.5 l/h     12 l/h     13.5 l/h      

15 l/h  



Results and discussion Ch. 4 

 

 
 

115 

With the step-wise increase of the solution flow rate, followed by a 15 to 20 min 

steady flow, a quick establishment of a steady state regime was observed after 

the adjustment of the next flow rate.  Hence, a decrease in particle counts was 

observed with the increase of the flow rate, while the particle trends for all size 

ranges remained constant, when the flow rate was fixed at a specific value. In the 

case of OABA, vast agglomeration was observed an hour after the start of the 

experiment. This could be traced in Fig. 4.22 by the trend of the particle size 

group 10-50 µm, compared to the same size group from the L-asn experiment. It 

can be clearly seen the deviation of this size group from the general trend of the 

other particle size fractions. It can be further seen from Figure 4.21, the whole 

crystal bed was unstable during the beginning of the measurements with drops 

and rises of the particle size range counts in the case of L-asn. In both 

experiments, the relatively constant trend of the particle size fraction <10 µm 

could be due to the small crystal fragments formed during the continuous 

ultrasonic comminution. 

The steady state data obtained from Fig. 4.21 and Fig. 4.22 were used to 

generate population density distributions for L-asn and OABA, from which median 

crystal sizes (d50) for the given flow rates were estimated for the given flow rates 

by applying equation 4.18. The summarized results for the L-asn and OABA are 

given in Fig. 4.23, where the experimentally evaluated mean sizes (triangles) are 

compared with the predictions of the mathematical model. 

 
Fig. 4.23 Experimental (symbols) and calculated (lines) values for d50 of OABA 
and L-asn. 
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It can be seen from the figure, that with increasing flow rate, the drag force Fd 

(eq. 2.32) exceeds the value of the particle effective weight force We (eq. 2.31). 

Thus, the particles are ‘dragged’ with the flow until both forces have same values 

and the Richardson-Zaki relation (eq. 2.28) is fulfilled. At steady state conditions 

(both forces are equal), particles with a specific volume (size) will occupy the 

crystallizer volume at the point of the measurement. With further increase of the 

flow rate, particles with bigger volume will be dragged in, thus increasing the 

measured mean crystal sizes. As the substances have close values of particle 

densities (see Table 4.4), it was expected that they show similar trend concerning 

their CSDs. On the contrary, at same flow rate, a difference was observed 

between the d50 values of L-asn and OABA. The OABA crystals, being less 

dense than those of L-asn, need a bigger crystal volume (or bigger diameter) to 

compensate in the equations 2.31 and 2.32 and hence this is the affirmation for 

the difference of the measured d50 values for both substances. At lower flow 

rates, the measured d50 values for both substances are very close and tend to 

deviate stronger at higher flow rates. The same tendency can be seen for the 

calculated d50 values. Moreover, the calculated data for L-asn are in a very good 

agreement with the experimental data. On the contrary, the calculated d50 values 

for OABA differ at the whole range of flow rates, especially at higher values. Like 

for the case of L-glu, this can be assigned to the observed formation of crystal 

agglomerates in the crystallizer due to higher particle-particle interactions, which 

supposedly occur at higher flow rates. 

The experimental and predicted mean crystal size values for L-asn and OABA 

were additionally compared with microscopic images of samples, taken from 

outlet IV and shown in Figure 4.24. It can be seen that the plate-like crystals of 

OABA seems to stick together on their big surface. 

Comparing the derived mean crystal sizes with the microscopic images, it can be 

concluded that the results from FBRM measurements and microscopic 

observations are in good agreement, although measurements were conducted at 

two different outlets. 

 



Results and discussion Ch. 4 

 

 
 

117 

 

 
 
Fig. 4.24 Microscopic images of crystals of L-asn (a and b) and OABA (c and d), 
taken from outlet IV at flow rates of 6 l/h (a and c) and 15 l/h (b and d). 
 

4.4.2 Temporal approach to steady state operation 

 
To investigate the development of the CSD as function of time in the fluidized bed 

crystallization of L-glu, two experiments have been conducted at a constant flow 

rate of 9 l/h. In one, samples were collected every hour from outlet III of the 

crystallizer and the CSD was measured offline. In the second experiment, a 

FBRM probe was used for inline measuring of the CSD at outlet III of the FBC. 

Selected results are shown in Fig. 4.25. Figure 4.25a shows the course of the 

CSD, measured offline, while Fig. 4.25b represents the CSD, recorded by the 

inline measurements. The optical rotation and density of the solution with time is 

depicted in Fig. 4.26. 

From figures 4.25a and 4.26 can be seen that after 10-11 h the amount of the 

bigger crystals (~250 µm) and density (respectively concentration) were lowered, 

while the amount of the crystals with size ~100 µm rose. Up to this time point the 

a) b) 

c) d) 
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q3 

(%) 

Time 
(min) 

Crystal Size 

(µm) 

supersaturation of the solution in the crystallizer remains constant (there is 

excess of solid L-glu in the feed-tank). The lowered supersaturation and a 

respectively slower growth rate of the crystals in the crystallizer are due to the 

complete consumption of the solid phase in the reservoir after 10-11 hours.  

 

 

 
Fig. 4.25 The development of CSD of L-glu as a function of time represented as                   
a) offline and b) inline measurements.  
 

 
Fig. 4.26 The course of the relative optical rotation (red symbols) and solution 
density (blue symbols) of L-glu with time. The data corresponds to the 
experiment, where samples were measured offline. 
 
At the same time, strong agglomeration effects were observed visually inside the 

crystallizer, thus disturbing crystal growth. Moreover, the increased sizes of the 

formed agglomerates lead them to the bottom of the crystallizer, where they are 

taken out to the US bath and crushed. Thus the amount of the crystals with size 

~100 µm was raised, creating a bimodal CSD. On the contrary, the values for 

both crystal sizes (~100 µm and ~250 µm) remained constant in the course of the 

a) b) 
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experiment. Therefore they were independent from the time and supersaturation 

respectively, even when the amount of the crystals has changed. 

The measured CSDs shown in figure 4.25b represent the course of the 

crystallization process regarding the L-glu crystal growth in the first 5 hours of the 

experiment. It can be seen that in the first 60 minutes, crystals grow and the 

calculated d50 values shift slightly from ~80 µm at the beginning of the process to 

~200 µm after 60 min. After 1 hour a steady state regarding crystal size is 

established and the measured CSDs have almost the same course. A 

comparison with the previous experiment, where samples were offline measured, 

it can be concluded, that no seed crystals from the US breakage are detected by 

the inline measurements. Moreover, the inline measured CSDs are monomodal 

in comparison to the bimodal CSDs from the offline measurements. This fact may 

be connected with the fluid dynamic of the upward solution and the placement of 

the FBRM probe in the crystallizer. The inline measurements are done in the 

middle of the crystallizer, while by offline sampling, suspension from the whole 

volume above the outlet III was taken out, thus collecting some of the upward 

floating crystal fragments from the US seed generation.  

4.4.3 Summary  

 

In this section, we discussed results from the influence of the feed rate, seed size 

and ultrasonic crystal breakage of L-glu, L-asn.H2O and OABA on the process 

performance in a single fluidized bed crystallizer setup. The experimental data 

were compared with predictions, based on the Richardson-Zaki force balance 

model. The measured CSD of L-glu along the height of the crystallizer as well as 

the calculated d50 show the expected behavior, interrelated to the lower part of 

the crystallizer being conical. The results for L-asn and OABA showed that with 

the increase of the flow rate, the mean crystal sizes of the studied substances 

increase steadily. The Richardson-Zaki force balance model has shown good 

prediction capabilities of the expected size distributions for L-asn and an 

increasing diversity at higher flow rates for OABA, most probably due to crystal 

agglomeration. The simplified assumption of a constant void fraction, ε, with 

changing flow rates might explain the differences between the calculated d50 
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values with the experimentally determined ones. The received information about 

the CSD along the height of the fluidized bed crystallizer is very useful for 

improving the crystallizer’s geometry and the height of the product outlets. The 

influence of the US seed generation and different types of seeds have also 

shown an impact on the product CSD. Thus, bimodal CSD were obtained under 

the influence of the continuous US comminution, leading to unification of the CSD 

along the height of the crystallizer. Thus production of crystals with smaller d50 

was achieved compared to experiments, performed without US attenuation. The 

uniformity of the product crystals and the width of their size distribution are 

directly related to the methods of producing the seed crystals. The use of sieved 

seed crystals followed by ultrasonic attenuation to initiate the crystallization 

process is derived to give optimal results, such as narrow CSD and uniform 

product crystals. The study on the development of the CSD as function of time in 

the fluidized bed crystallization has shown that for L-glu after approximately 1 h 

from the start of the experiment, the crystallization process was in steady state 

concerning the measured CSDs. This means that product crystals with uniform 

CSD can be collected over time from outlet III of the FBC. 

4.5 Experiments in two coupled fluidized beds 

 
In this section, results from the continuous preferential crystallization of OABA 

and PABA from their 50:50 aqueous solutions as well as L-asn.H2O and D-

asn.H2O from their racemic solution will be presented. Before conducting the 

experiments, the results for the MSZW in the crystallization setup for both ternary 

systems will be summarized. The experimentally determined concentration trend 

will be compared with the results from the dynamical model. In order to complete 

this goal and based on the results from the previous section, two fluidized bed 

crystallizers were constructed with the same geometry as the one from the single 

FBC setup. Only one outlet was provided for the product removal at the height of 

the outlet III (xp = 365 mm, see Fig. 4.1) from the single FBC setup. More 

information about the construction and operation of the setup is given in chapter 

3.2.3. 
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4.5.1 Continuous crystallization of aminobenzoic acid stereomers 

 
- Determination of MSZW in the crystallization setup 

 
A summary of the results from the determination of the MSZW of aqueous 

solutions of a 50:50 mechanical mixture of OABA and PABA is shown in Table 

4.5, where Ts is the saturation temperature and Tcr – the temperature of the 

crystallizer.  

 
Table 4.5 Measurements of the nucleation time, performed isothermally in the 
experimental setup under the influence of the ultrasonic attenuation. The 
nucleation time, tnucl, represents the time between the start of the experiment and 
the detection of nucleation in the crystallizer. 

Ts [°C] Tcr [°C] Supersaturation [-] tnucl [h] 

35 
35 
35 

22 
25 
28 

1.81 
1.57 
1.37 

~ 2.5 
~ 6.5 
> 24 

 
It can be seen that at supersaturation values of 1.81 and 1.57 the nucleation took 

place within a short time (2.5 and 6.5 hours respectively). It should be noted, that 

the formation of the nuclei could possibly happen at earlier time, than shown in 

the table. But due to the constant upflow of the solution in the crystallizer (uf = 

10.5 l/h), the newly formed nuclei are easily swept away with the flow and then 

dissolved in the feed tank, thus not triggering a detectable concentration shift. 

The critical size, above which a crystal is not swept away with the flow was not 

measured due to experimental difficulties, but eventually can be calculated. In 

chapter 4.4.1.1, it was experimentally proven that particles with sizes above 60 

µm are definitely not swept away with the flow (9 l/h) and remained in the 

crystallizer. As the residence time of the fluid in the crystallizer is about 257 s at a 

flow rate of 10.5 l/h, an empirical assumption for OABA crystal growth can be 

made taking a supersaturation of 1.57 in account and using eq. 4.3. Thus, the 

calculated minimum size of newly formed at the bottom of the FBC nuclei, not 

flown out from the top of the crystallizer, is equal to 15 µm. In order to minimize 

this possibility, the following preferential crystallization experiments were 

performed at a crystallization temperature of 27 °C, while maintaining a 

supersaturation of 1.43.  
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- Continuous selective preferential crystallization of OABA and PABA  

 
Continuous preferential crystallization in the coupled FBCs was conducted with a 

50:50 mixture of OABA and PABA in water. The start parameters for the process 

are given in Table 4.6, while the results are presented in Table 4.7.  

 
Table 4.6 Experimental conditions for the preferential crystallization experiments. 

saturation temperature                 
crystallization temperature           
solution concentration                  
supersaturation                                 

 

amount of initial seed crystals supply 
seed d50     
feed flow rate   
suspension flow rate            
excess amount of solid in tank (OABA+PABA) 

34.9 °C 
26.8 °C 
1.52 wt.% 
1.43 
76 µm 
8 g 
10.5 l/h 
18 l/h 
10+10 g 

 
Table 4.7 Experimental results from the preferential crystallization experiments 

total product recovery OABA / PABA 
product d50 
purity OABA / PABA 

11.15 / 11.59 g 
175 µm 
97 / 97.9 % 

 
As seen from Table 4.6, the initial concentration of the 50:50 aqueous solution of 

OABA and PABA is 1.52 wt.% at 34.9 °C, while the saturated solution 

concentration at 26.8 °C is about 1.00 wt.%. Thus, the concentration difference at 

26.8 °C is ~ 0.52 wt.%, which corresponds to a theoretical yield of ~ 5.2 g/kg for 

both substances, or ~ 2.6 g/kg per single isomer (yield is equal to the 

concentration difference multiplied by a 1 kg solvent). Recalculated by taking into 

account the amount of solvent used (7460 g) and the excess solid in the feed 

tank (20 g), gives ~ 29.4 g product of each substance at the end of the 

crystallization process (yield = (20 + 7460 * 0.0052) / 2). Hence, the mean 

productivity of the coupled fluidized bed crystallization setup when the process is 

in steady state (see Fig. 4.29 below) is about 4.27 g/(l.h) per isomer. At steady 

state, the productivity per crystallizer volume per hour is given as the excess 

amount of solids in feed tank divided by the time the process is in steady state. In 

our case, a correction factor of 1.28 is used as the actual crystallizer volume is 

0.78 l and the productvity is given per liter (i.e. the total collected mass of single 



Results and discussion Ch. 4 

 

 
 

123 

isomer crystals at the end of the experiment, multiplied by 1.28, and divided by 

the total time the process was in steady state of 3 h). 

As seen from Table 4.7, the collected mass of OABA (11.15 g) and PABA (11.59 

g) is less than the theoretical yield. Hence, the product outlet is 365 mm above 

the bottom of the fluidized bed crystallizer, thus forming a volume of about 125 ml 

filled with crystal suspension, which cannot be collected. Moreover, the loop, 

connecting bottom of the crystallizer with the ultrasonic bath has also a volume of 

120 ml, again filled with crystal suspension. A prediction of the crystal mass in 

this nonrecoverable suspension volume could be made, based on the calculated 

void fraction at the bottom outlet of the crystallizer, by using the equation 

 
ms,cr

∗ = Vcr
∗ (1 − εus)ρp 

 

where ms,cr
∗  is the mass of the remaining crystals in the crystallizer; Vcr

∗  is the total 

volume (Vcr
∗  = 125 + 120 ml) of the crystal suspension, that cannot be recovered; 

and εus is the calculated void fraction at the bottom of the fluidized bed 

crystallizer. The calculated mass value of 16.1 g is in good agreement with the 

value, substracted from the calculated theoretical yield with the experimental 

yield thus resembling the mass of the nonrecoverable crystals from the 

suspension (~ 18 g). The difference of 1.9 g between both values can be due to 

discrepancies in the solid density in the suspension, leading to divergence of the 

values for the void fraction in the bottom of the crystallizer and the one in the 

tubing. To initiate the crystallization process, 8 g of seeds of each substance 

were used. This is about 27% of the expected theoretical product yield. The 

needed seed mass can be calculated using eqation 2.18 and is usually between 

0.1 and 4 % of the expected product mass [Beckmann2000, Heffels1999]. In our 

case, this is not applicable, as more particles are needed in order to form a 

fluidized bed. As already shown in chapter 4.4.2 for the case of crystallization of 

L-glu, the steady state condition is achieved within 1 h after the initiation of the 

crystallization process through seeding as well as steady continuous seed 

generation through the US bath to maintain the growth of the fluidized bed.  

From table 4.6 can be seen, that suspension flow rate is relatively high (18 l/h), in 

comparison with the one (2 l/h) for the crystallization experiments, done with L-

(4.18) 
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glu in the single FBC setup (see chapter 4.4). The need for higher flow rate is due 

to the fast formation of crystal agglomerates in the tubes to/from US bath and to 

avoide their settling in the tubing, thus blocking the suspension flow. Because of 

the higher suspension flow rate, the residence time of the bigger crystals and 

agglomerates in the US seed generation loop is increased. According to the 

results from the US comminution experiments (chapter 4.3), the nessecary 

residence time needed to comminute a suspension of crystals, having a median 

size of ~ 200 µm to the half of it, is 5 to 10 min. With the suspension flow rate of 

18 l/h, the crystals and agglomerates from the bottom part of the crystallizer are 

forced to loop multiple times through the US bath in order to get broken into 

smaller crystals. Thus, the amount of generated seeds per time is lowered, which 

directly impacts the productivity of the FBC setup. 

During the crystallization process, several observations were made. At the 

beginning of the process, the introduced seeds were forming agglomerates inside 

the crystallizer. For this reason, the fluid flow was set to a lower flow rate in order 

to take the agglomerated seed suspension out of the crystallizer to the ultrasonic 

bad, where all the agglomerates were fractured into individual seed crystals. After 

1 hour, crystal agglomerates start to form again, see Fig. 4.27. 

           

Fig. 4.27 Formation of crystal agglomerates inside both fluidized bed crystallizers 
(left: crystallization of PABA, right: crystallization of OABA).  
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Moreover, the incrustration on the internal crystallizer wall clamped the formed 

agglomerates, thus partially obstructing the fluidized crystal bed. As a 

consequence, the detector signals were permanently blocked, which kept the 

product outlet permanently open. As already mentioned in chapter 3.2.3, product 

crystals were collected batchwise (about once per hour). Because of that, the 

automatic takeout of the product crystals was set to manual. During the process, 

the OABA product crystals were collected two times and PABA product crystals – 

three times.  

Important requirements of the crystallization processes are the quality and the 

purity of the product crystals. In figure 4.28, the experimental crystal size 

distributions for the OABA seeds and product crystals are shown along with their 

respected calculated CSDs. The latter are derived from the product crystal size, 

Lp, by applying the cumulative distribution function (CDF). In the figure is shown 

for comparison a microscopic photograph of product crystals.  

 

Fig. 4.28 Left: Experimental (solid line) and calculated (dashed line) cumulative 
CSDs for OABA seed (blue color) and product (red color) crystals. Right: 
Microscopic photograph of the OABA product crystals. 
 
From the microscopic image in fig. 4.28 can be seen that the produced product 

crystals are more or less uniform in size and show relatively narrow CSD. The 

calculated CSDs are in fairly good agreement with the experimental ones. The 

derived values are based on the calculated crystal size, L, and extended to CSD 

using the CDF. The measured experimental CSD include the seed crystals form 

the US loop, seen also in the photograph, hence the difference of the 

experimental cumulative distribution with the predicted one. This was expected 
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as seeds from the US fracturing float from the bottom of the crystallizer to the top 

through the fluidized bed and were captured with the product takeout. The CSD 

of the biggest crystals, found at the bottom of the fluidized bed crystallizer can be 

predicted from the calculated crystal size, taking into account equations 2.31 and 

2.32. These values were used to generate the CSD for the seeds from the 

ultrasonic bath as well as for the tuning of the calculation of the total number of 

crystals in the crystallizer in eq. 4.14. 

A prediction of the crystallization process development was also done by using 

the simplified dynamical model, described in chapter 4.1 with process parameters 

given in Tables 4.6 and 4.8. Along with the prediction of the product CSD, the 

total time when the process is in steady state can be predicted. 

 
Table 4.8 Parameters needed for the mathematical calculations. 

Solution density at 35 °C 
Solution viscosity1 
Standard gravity 
Growth rate of OABA [Temmel2014] 
Total solution volume 

994.6 kg/m3 
6.531*10-4 Pa.s 
9.80665 m/s2 

1.7524*10-7 m/s 
8 l 

1 – the viscosity of water at 40 °C was taken as the solution viscosity 
 
In figure 4.29 are shown the experimental and predicted solution concentration 

changes with time from the preferential crystallization of OABA and PABA in a 

50:50 solution of both substances. It can be seen that the solution concentration, 

that at the start of the process remaines unchanged for 3 hours. In this time 

frame, the solution from the return flow from the FBC is constantly saturated from 

the dissolution of the solid OABA and PABA in the feed tank. After 3 hours the 

mass of the solid substance in the feed tank is depleted, thus the concentration of 

the feed solution drops as well as the supersaturation in the crystallizer. After the 

solution concentration in the crystallizer equals the solubility concentration of the 

substance, the crystallization process stops. Hereby, the measurement of the 

solution concentration during the process was done through a densitometer. The 

collected density values were then converted to weight percent. 

It can be seen, the calculated concentration is in fairly good agreement with the 

experimental one. From the beginning of the process until 2.5 hours both show 

straight line, as the excess of solids in feed tank are not dissolved. After this time 
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the calculated concentration values start to decrease due to the assumptions 

taken into account (see chapter 4.1). 

 

Fig. 4.29 Experimental and calculated (model described in section 4.1) solution 
concentration development of OABA and PABA in the fluidized bed crystallizer 
with time. Conditions are shown in Table 4.6. 
 
The calculated with eq. 4.7 amount of the solids in the crystallizer is substracted 

from the amount of the excess solid in the feed tank. Because the speed of the 

desolvation process is quicker than the crystallization one, no change in the 

solution concentration is calculated. When the amount of the crystallized solid 

exceeds the amount of excess solid in the feed tank, the concentration 

development is then calculated with eq. 4.6. At this point, the fluidized bed 

crystallization process continues in batch mode with respect to the solution 

concentration. The increase of the particle quantity in the crystallizer due to the 

generated seed crystals in the US-bath is empiricaly estimated and its change is 

included in eq. 4.14. Hence, the removal of product crystals is implemented with 

eq. 4.8, thus also making an impact on the particle quantity in the crystallizer and 

indirectly influencing the solution concentration development after depletion of the 

excess solid in the feed tank. After depletion of the excess solids in the feed tank, 

both concentration development curves show almost the same behavior until 
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concentration value of about 1.15. At this point the shift to the lower concentration 

values from the experiment could be eventually due to clogged filter, thus 

contaminating the density measurement. A possible trend of the experimental 

concentration development is shown with the green dashed line. After 6 hours the 

crystallization process is over with only fluidization process running. The total 

time duration of the experiment was almost 17 hours, from which the last 11 

hours only fluidization of the crystal bed took place. In figure 4.30, the measured 

temperatures of both crystallizers, feed tank and US bath are shown (left y-axis), 

along with the concentration development (right y-axis). 

 

Fig. 4.30 Trajectories of the temperature in the both crystallizers, feed tank and 
US bath and solution concentration development with time for the whole 
experiment. 
 
It can be concluded from the figure that except for the time of the concentration 

development after the depletion of excess solid in feed tank, the whole 

experiment was conducted with almost no change of the parameters shown. A 

temperature offset of 4 K was set for the US bath tempering, which was 

estimated during the US seed generation experiments given in chapter 4.3. 

Under continuous ultrasonication, the temperature in the bath slowly rises with 

time due to the local formations of cavities, resulting in high energy implosions. 

This phenomenon is also reported from other research groups [Dennehy2003, 

Ruecroft2005]. 
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4.5.2 Continuous crystallization of asparagine enantiomers 

 
- Determination of MSZW in the crystallization setup 

 
Before conducting the crystallization experiments, a determination of the MSZW 

in the crystallization setup is needed additionally to the measurements done in 

the laboratory (see chapter 4.2). Hence, the stability of the supersaturated 

solution over time was studied under the influence of the ultrasonic attenuation in 

the seed generation loop. The results from the experiments performed at different 

temperatures are shown in Table 4.9. 

 
Table 4.9. Stability of the supersaturated solution under the influence of the 
ultrasonic attenuation expressed as time until nucleation occurs (tnucl). The 
nucleation time, tnucl, represents the time between the start of the experiment and 
the detection of nucleation in the crystallizer. 

Ts [°C] Tcr [°C]   Supersaturation [-] tnucl [h] 

35 
35 
35 

20 
24 
27 

1.88 
1.55 
1.37 

1 
3 

> 24 

 
All the experiments were performed isothermally by setting the temperature of the 

crystallizers at the specific value (Tcr) and without seeding. It can be seen that at 

supersaturations of 1.88 and 1.55 the nucleation took place within a short time (1 

or 3 hours respectively). To avoid the unwanted nucleation and thus 

contamination in the continuous crystallization, all following separation 

experiments were performed at a crystallization temperature of 27°C and a 

supersaturation of 1.37 respectively. 

As already pointed out earlier in this subsection, the critical size of a crystal, 

which is not swept away with the flow, can be calculated. Thus, an empirical 

assumption from L-asn.H2O crystal growth can be made, using eq. 4.3, by taking 

a supersaturation of 1.37 into account and further applying the Richardson-Zaki 

relation (eq. 2.28). Thus at a flow rate of 9 l/h (fluid residence time in FBC is 312 

s), the calculated minimum size of newly formed at the bottom of the FBC nuclei, 

not flown out from the top of the crystallizer, is equal to 37 µm. Hence, by the 

chosen supersaturation level of 1.37, it is highly unlikely for the nucleation 

process to occur at the chosen experimental conditions. 
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- Continuous selective preferential crystallization of asparagine 
monohydrate enantiomers 

 
Continuous preferential crystallization of L-asn.H2O and D-asn.H2O from an 

aqueous solution of DL-asn.H2O in coupled fluidized bed crystallizers setup was 

conducted. The start parameters of the process are given in Table 4.10 and the 

results from the experiments are summarized in Table 4.11. The trajectories of 

the solution concentration and relative optical rotation in both crystallizers are 

presented in Figure 4.31. The analytical equipment (densitometer and 

polarimeter) was calibrated prior to the experiments. The measured optical 

rotation is relative to the initial value, which for DL-asn.H2O is equal to zero. The 

time, shown in Fig. 4.31 is relative to the start of the crystallization process (time 

= 0) by adding seeds to both fluidized bed crystallizers. 

 
Table 4.10 Experimental conditions for the preferential crystallization process. 

Saturation temperature                 
Crystallization temperature           
Solution concentration                  
Supersaturation                                 

 

Mass of seed crystals 
Seed d50 (both enantiomers)                   
Feed flow rate   
Suspension flow rate            
Excess of solid DL-asn.H2O in tank 
Solution density at 35 °C 
Solution viscosity at 35 °C [Seebach2011] 
Growth rate of L-asn.H2O

 [Seebach2011] 

35°C 
27 °C 
8.76 wt.% 
1.37 
4 g 
55 µm 
9 l/h 
4 l/h 
80 g 
1031 kg/m3 
8.5*10-4 Pa.s 
1.117*10-6 m/s 

 
Table 4.11 Results from the preferential crystallization experiments. 

Total product recovery L-asn.H2O / D-asn.H2O 
Product d50 (both enantiomers) 
Enantiomer purity L-asn.H2O / D-asn.H2O 

46.2 / 49 g 
184 µm 
97 / 97.9 % 

 
After addition of 4 g of seed crystals of the pure enantiomers in the respected 

crystallizer, the crystallization process was initiated, indicated by a small change 

in the solution density (i.e. concentration) values, detected in both crystallizers. 

Afterwords, a steady state operation was observed confirmed by both analytical 

circles, which show nearly the same values for the solution concentration. 
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Fig. 4.31 Trajectories of the total solution concentration and relative optical 
rotation with time for the preferential crystallization experiment. Solution 
measurements, done in the crystallizer, where L-asn.H2O crystallized are shown 
in blue color and solution measurements, done in the crystallizer, where D-
asn.H2O crystallized are shown in red color. Time axle is zeroed at the point, 
when respected seeds are added to respected crystallizer.  
 
The constancy of the solution concentration shows that the dissolution rate of the 

excess solid DL-asparagine monohydrate in the feed tank is equal to the 

crystallization rate in the crystallizers. The two absolute values for the optical 

rotation are very close, just with the opposite sign. This means that a very small 

excess of the counter enantiomer is detected in the mother liquor. The almost 

constant optical rotation values show that the enantiomer ratio remains stable 

with the time. The two asparagine enantiomers clearly possess equal 

crystallization kinetics. Every hour a 150 ml fraction of the crystallization 

suspension was collected from the product outlets of the crystallizers. After 220 

min the excess racemic solid in the feed tank was completely depleted and the 

supersaturation started to decrease, thus lowering the crystallization rate. After 

further 60 min the crystallization process was stopped (at 4.7 h in Fig. 4.31) and 

residual product crystals were collected. The crystallized product recovery was in 

total 95.2 g (46,2 g of L-asn.H2O and 49 g of D-asn.H2O). The mean enantiomer 

purity of the product enantiomer crystals exceeded 97% (measured by HPLC). A 

productivity of 28 g/(l.h) (or 14 g/(l.h) per enantiomer) was calculated by taking 

into account only the steady state of the crystallization process (i.e. the total 

consumption of solid racemic feed 

(steady state production) 

seeding and 

start of the process 

end of the steady 
state production 
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collected mass of enantiomer crystals at the end of the experiment divided the 

total time the process was in steady state of 3.67 h or 220 min). A comparison 

with the calculated theoretical yield, based on the solubility data of DL-asn.H2O 

for 35°C (8.76 wt.%) and 27°C (6.324 wt.%), shows that about 24.4 g/kg of DL-

asn.H2O can be crystallized (yield is equal to the concentration difference 

multiplied by a 1 kg solvent). Recalculated for the amount of solvent used (7700 

g) plus the excess solid in the feed tank (80 g), gives a total mass of 267.6 g of 

DL-asn.H2O, or ~ 133.8 g of each enantiomer at the end of the process 

(enantiomer yield = (80 + 7700 * (0.0876-0.06324)) / 2). As already mentioned, 

the possible crystal mass recovery of each substance is less than the theoretical 

yield. The reason for this was already elucidated in the discussion of the 

preferential crystallization of ABA. Nevertheless, the residual crystal mass can be 

calculated by applying eq. 4.19 and taking into account the substance respected 

parameters. The calculated value of 76 g (εus = 0.8) of the nonrecoverable 

enantiomer crystals is in fair agreement with the theoretical yield of 87.6 g of the 

remaining amount of crystals (total theoretical yield of 133.8 g substracted with 

46.2 g experimental recovery) for L-asn.H2O. 

From table 4.10 can be seen, that suspension flow rate is relatively low, 

compared to the one used for preferential crystallization of ABA stereomers (4 l/h 

in comparison with 18 l/h, respectively). In this case almost no agglomerates 

were formed and no crystal settling was detected in the tubing. Thus, the 

residence time of the bigger crystals and agglomerates in the US bad is sufficient 

with respect to seed generation.  

Microscopic photographs of the collected L-asn.H2O product crystals as well as 

the experimental crystal size distributions for the L-asn.H2O seeds, L-asn.H2O / 

D-asn.H2O product crystals are shown in Fig. 4.32 together with their calculated 

cumulative CSDs. Again, the calculated CSDs are derived from the calculated 

mean product size, Lp. Obviously besides product crystals, a small portion of 

seed crystals can be noticed as already shown in previous chapter (Fig. 4.28). A 

possible reason for the presence of the seeds generated by ultrasonic 

attenuation is when floating from the bottom of the crystallizer through the crystal 

bed to its top, they were partly captured by the product separation process. The 
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CSD of the product crystals shows that crystals with mean size of ~180 µm are 

collected. 

 

Fig. 4.32 Left: Experimental (solid line) and calculated (dashed line) cumulative 
CSDs for L-asn.H2O seed (blue color), L-asn.H2O / D-asn.H2O product crystals 
(red / violet color respectively). Right: Microscopic photographs of the L-asn.H2O 
product crystals. 
 
In Figure 4.33 are shown the predicted solution concentration development with 

time and compared with the experimentally measured one. The measurement of 

the solution concentration during the process was done through a densitometer. 

The collected density values are then converted to weight percent. For the 

prediction of the solution concentration, the simplified dynamical model presented 

in chapter 4.1 was used with process parameters given in Table 4.10. As already 

elucidated by the disscussion of the preferential crystallization of OABA and 

PABA, the calculated predictions for the preferential crystallization of L- and D-

asn.H2O could be seen as a validation of the mathematical method introduced.  

The predicted solution concentration development is in good agreement with the 

experimentally measured one, as both curves show almost the same behavior. 

From the beginning of the process until about 3.5 hours both show straight line, 

as the excess of solids in feed tank are not dissolved. After this time the 

concentration values start to decrease, after depletion of the excess solids in the 

feed tank. After ~ 5 hours the crystallization process is over with only fluidization 

process running. 
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Fig. 4.33 Experimental and calculated (model described in section 4.1) solution 
concentration development in the fluidized bed crystallizer for the DL-asparagine 
monohydrate solution with time. Conditions are shown in Table 4.10. 
 

4.5.3 Summary 

 
A continuous selective preferential crystallization in two coupled fluidized bed 

crystallizers was conducted in conjunction with a fluidized bed process on the 

example of the two ternary systems OABA / PABA / water and L-asn.H2O / D-

asn.H2O / water at the eutectic point. The resultant product crystals featured high 

purity and sustained a stable and narrow crystal size distribution throughout the 

duration of the process. The productivity of the crystallization process depends 

on the kinetic parameters of the specific substance and for the time, the process 

was in steady state, has shown 4.27 g/(l.h) for the aminobenzoic acid isomers, 

and 14 g/(l.h) for the asparagine enantiomers. For comparison, the productivity of 

L-threonine was 12 g/(kg.h) from the continuous selective preferential 

crystallization in the threonine ternary system in  a coupled batch crystallizer 

setup by applying similar initial conditions (Tcr = 26 °C, Ts = 33 °C, exchange flow 

rate between crystallizers ~ 34 l/h and initial seed mass of 2.5 g) [Elsner2007, 
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Elsner2011]. The build-up of strong agglomeration in both crystallizers and the 

probable seed crystals flowing out from the top of the crystallizers could be the 

main issue for the low productivity of the aminobenzoic isomers in comparison 

with the asparagine enantiomers. By the crystallization of the aminobenzoic acid 

isomers, only polymorphs of type I for OABA and α-form for PABA were produced 

and no polymorph transitions were detected. The introduced simplified 

mathematical model has shown good prediction capabilities of the solution 

concentration development in both cases. Moreover, the predicted product CSDs 

are in very good agreement with the experimentally measured ones. 

It can be concluded that the constructed fluidized bed crystallization setup, 

consisting of two coupled fluidized bed crystallizers, is capable of continuous 

production of substances. Continuous selective preferential crystallization was 

successfully conducted for two ternary systems, forming simple eutectic in their 

solubility phase diagram. 

4.6 Equipment based recommendations 

 
This work aims to expand the current knowledge and to provide a detailed study 

on the continuous production of pure crystals with defined and possibly narrow 

size distribution in a novel crystallization setup, based on the fluidized bed 

technology. 

In order to increase the scale of operation and to further extend the applicability 

of the proposed crystallization method and setup, more investigations are 

required, because current understanding of the actual behavior of the fluidized 

bed process is still limited. Based on the current state of research in this work, 

possible process enhancements and setup improvements can be proposed: 

1. The experimentally collected information about the CSD along the height 

of the fluidized bed crystallizer is very useful for improving the reactors 

geometry and the height of the product outlets. Still comprehensive studies 

on the fluid dynamics inside the FBC are needed. Moreover, the loss of 

the small crystals due to the flow rate could be reduced by enlarging of the 

top part of the crystallizer. Then, the flow rate is reduced, based on the 

Bernoulli's principle, thus increasing the residence time of the crystals in 

the respected crystallizer volume, leading to an increase in their sizes due 
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to crystal growth and thus resulting in an increase of the productivity 

through the reduction of the amount of crystals, flown away from the top of 

the FBC. However, this could lead to accumulation and growth of the 

eventually formed nuclei, which in the case of the selective preferential 

crystallization process is undesirable. The geometry of the whole fluidized 

bed crystallizer could be also further optimized and improved. This 

includes: an increase of the crystallizer diameter; a change of the 

proportion of the conical bottom part to the tubular upper part; an 

integration of the US transmitters in the bottom part of the FBC.  

2. The almost horizontally conducted suspension transport between the 

bottom of the crystallizer and the US bath in its actual assembly is 

incapable of longer operating times due to the formations of agglomerates 

and relatively high chances of blocking the tubing. The implementation of 

an inclination of the suspension transport by lowering the position of the 

US bath against the FBC could lead to accumulation of the suspended 

crystals in the US-bath and therefore increasing their residence time there. 

Thus, only smaller crystals could be transported through the inclined tubes 

and reach the bottom part of the FBC. 

3. The generated seed crystals are supplied at the bottom of the crystallizer, 

thus by the product takeout some of them are withdrawn with the 

suspension, leading to productivity loss and influencing the product size 

distribution. On the other side, longer residence time for the freshly 

generated seeds is needed to reach their critical size and not to be flown 

away from the top of the crystallizer. An inlet of the crystal suspension 

above the product outlet could avoid collecting of the seed crystals with 

takeout flow and when combined with an enlargement of the top part of the 

crystallizer as proposed in point 2, thus enough residence time for seed 

crystals to grow can be assured, as well as increased productivity and 

narrow product size distribution. 

4. In order to keep the crystallization process running, solid raw material 

should be supplied in the feed tank. This leads to a formation of a 

suspension with a variable density and thus to an increasing probability of 

clogging the suction filters with time. As a result, the operation of the gear 
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pump is endangered and fluctuations in the flow rate could be registered. 

In order to overcome this imperfection a second feed tank can be attached 

between the actual feed tank and the tubing from the crystallizers, where 

the dissolution of the solid material could take place. Moreover, the slightly 

undersaturated solution, which may contain fine solid particles, can be 

also collected and used to dissolve the solids. As a result, solid-free feed 

tank could be operated. 

5. By the construction of the double jacketed vacuum filters, its bottom part is 

currently made flat, which could lead to possible formation of crystal 

clusters and agglomerates and thus clogging the filter outlet to the feed 

tank. A reconstruction of the filter geometry in a funnel-like form is 

suggested in order for the mother liquor directly to flow out without a 

possibility of crystal settling. 
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5. Conclusions 
 
In the frame of this work a concept for performing selective crystallization in a 

fluidized bed was studied, where under specific conditions (supersaturation, 

temperature, flow rate, etc.) crystals can increase their size and can be in parallel 

classified due to their distribution along the height of a specifically shaped 

crystallizer. The idea for this work originates from publications of Midler, who 

successfully realized the combination of a continuous crystallization process with 

a fluidized bed regime. The constant generation of seed crystals, needed to 

maintain a growth dominated continuous crystallization process, was realized in 

this work externally through ultrasonic comminution of crystals and crystal 

agglomerates, continuously removed from the bottom of the crystallizer. Product 

crystals with specific sizes could be collected from an outlet at a specific height of 

the crystallizer. A systematic study of the applicability of the joint action of these 

processes with respect to the properties of the product crystal size distribution 

was conducted. 

In the following, the main contributions of this work are summarized: 

1. Three industrially relevant substances have been used for testing the concept. 

Two of them are exhibiting chirality (the chiral systems of glutamic acid and 

asparagine), while the third (aminobenzoic acid) is a stereomeric system, 

featuring three positional isomers.  

2. In order to optimally conduct the crystallization process, fundamental 

preliminary studies of solubility equilibria and metastable zone width of the 

three substances in water were performed using isothermal and polythermal 

methods. The collected data reveal that the solubilities of the substances 

increase with the increase of the temperature, although they remain relatively 

low in comparison with inorganic salts even at high temperatures. Further, 

ternary solubility phase diagrams were constructed for the systems L-asn.H2O 

/ D-asn.H2O / water and OABA / PABA / water. The results indicate that in 

both cases a simple eutectic is formed based on the shape of the solubility 

isotherms, the course of the corresponding tie lines, and particularly on the 
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measured XRPD diffractograms of the resultant solid phases. The type of 

both ternary phase diagrams corresponds to conglomerate-forming systems 

of type I.  

3. In further preliminary experiments devoted to maintain the continuity of the 

crystallization process, the ultrasonic comminution of crystals was studied as 

an alternative to the commonly used wet milling. Two different experimental 

setups were constructed. In the batch experimental setup, the pure crystal 

breakage process was studied and its effectiveness in lowering the mean 

crystal sizes with time was shown. The construction of the continuous 

experimental setup was needed to check the implementation of the ultrasonic 

seed generation, when crystal suspension is continuously transported through 

the ultrasonic bath. Hence, the continuous seed generation has shown even 

better results in comparison with those from the batch process, as the process 

was facilitated by the peristaltic pump used. By applying 10% of the maximum 

power of the ultrasonic bath, a mean residence time of 5 min was 

demonstrated to be sufficient for producing seed crystals of desired size. 

4. Inspired by Midler’s work, a pilot-plant experimental setup having a double 

jacketed glass-made tubular fluidized bed crystallizer with several outlets 

along its height was designed, constructed and applied. For collection of 

product crystals under appropriate conditions, a double jacketed glass-made 

vacuum filter was also designed, constructed and applied. 

5. Crystallization experiments using L-glutamic acid as the model substance 

were conducted in a single fluidized bed crystallizer setup with embedded 

seed generation loop. During the experiments, the influence of the feed rate, 

ultrasonic crystal breakage and type of seeds on the product size distribution 

was studied. Three different feed flow rates were used to study the crystal 

size distribution of L-glu along the height of the crystallizer. It was shown, that 

with increase of the flow rate, the d50 values, calculated from the respected 

CSDs, also increase. As a result, a substantial linear function of the 

increasing mean crystal size was achieved with the increasing volume flow for 

all substances. In addition, the influence of the ultrasonic breakage on the 

total CSD in the crystallizer was studied by using the same flow rates. The 

use of the ultrasonic attenuation has led to unification of the CSD along the 
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height of the crystallizer and production of crystals with smaller d50 (compared 

to experiments without ultrasonic attenuation). It was proven that the 

uniformity of the product crystals and the width of their size distribution are 

directly related to the methods of producing the seed crystals. Further, it was 

proven that the characteristic crystal sizes are maintained over time during the 

process, thus a continuous production of crystals with reproducible size was 

facilitated. 

6. An estimation of the mean sizes of L-glu crystals along the crystallizer height 

could be done with the Richardson-Zaki force balance model. The comparison 

of the calculated results with the experimentally determined mean crystal 

sizes shows good agreement. Moreover, studies on the influence of the 

different crystal shapes on the predictability of the model were conducted by 

performing experiments with different flow rates and inline measuring the 

development of the CSDs of the model substances L-asn.H2O and OABA in 

the fluidized bed crystallizer. A validation of the model was achieved and it 

has shown good prediction capabilities in the case of L-asn.H2O and an 

increasing diversity at higher flow rates for OABA, most probably due to 

crystal agglomeration. It is very difficult to predict and calculate the complex 

mass and heat flows within the bed. The proposed mathematical modelling is 

still simple and depends on various parameters, which are only experimentally 

available. 

7. A pilot plant facility, consisting of two coupled FBCs was constructed with just 

one product outlet and operated. The parallel performance of the kinetically 

controlled continuous selective (“preferential”) crystallization of L-asn.H2O and 

D-asn.H2O as well as OABA and PABA in both crystallizers was realized and 

the process principles were demonstrated. Although strong agglomeration 

was observed in the case of OABA / PABA, high purities of all product crystals 

for both model systems were achieved. The productivity of the pilot plant 

facility varies with the type of the substance used, a steady and continuous 

production for several hours was achieved. A comparison with the coupled 

batch crystallizer setup reveals that the productivities of the continuous 

selective preferential crystallization process of enantiomers in both facilities 

are comparable. 
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8. A dynamical model considering the crystallization process in conjunction with 

the fluidized bed regime is proposed. The model takes care of the 

supersaturation generation with respect to solution concentration, 

temperature, crystal growth, and crystal segregation. The evaluation of the 

solution concentration development for both model systems was thus 

realized. Along with the prediction of the product CSD, the total time when the 

process is in steady state was predicted and proved good agreement with the 

experimental data. 

A short recommendation can be implied for a possible expansion of the 

proposed empirical models, using them as basis for development of a more 

reliable mathematical model of the whole process, including solid-liquid 

equilibria equations, growth kinetics, crystallizer fluid dynamics models, and 

the complete simulation of the crystallizer set-up. Such project is already in 

progress and is supported by the German Research Foundation by the 

program emphasis “Dynamische Simulation vernetzter Feststoffprozesse”. 

9. Suggestions for further improvements of the equipment are finally given, 

based on the results of the experimental study. Thus, further productivity 

enhancements appear to be possible. 
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Nomenclature 
 
 

 

A 

A 

A 

a 

AB 

AxBy 

Ar 

BxAy 

B 

B° 

b 

c 

c* 

ci 

C 

C 

CD 

D 

D 

DL 

d 

d50 

E 

Ea 

ee 

F 

f 

fb 

fd 

Fd 

Symbols 

 

component A 

surface or cross-sectional area (m2) 

absorbance in eq. 3.7 (a.u.) 

constant in eq. 3.3 (-) 

solution of component A and component B 

solid solution of component A in component B 

Archimedes number (-) 

solid solution of component B in component A 

component B 

nucleation rate (-) 

constant in eq. 3.3 (-) 

solution concentration (g/kg, wt.%) 

solution concentration at equilibrium (g/kg, wt.%) 

interfacial concentration (g/kg, wt.%) 

component C (-) 

number of independent components (-) 

drag coefficient (-) 

dextrorotatory enantiomer 

diffusion coefficient (-) 

racemic mixture 

crystallizer diameter (m) 

mean particle diameter (m) 

eutectic point 

activation energy (kJ mol-1) 

enantiomer excess (%) 

number of degrees of freedom (-) 

frequency (Hz)  

Archimedean buoyancy force (kg m s-1) 

total drag force (kg m s-1) 

complete drag force for all flow regimes (kg m s-2) 
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fe 

fp 

g 

G 

G 

H 

I 

I0 

Kc 

Kε 

kn 

kd 

KG 

km 

kr 

L 

L 

l 

ls 

m 

mt 

n 

ṅ 

nA 

ni 

nRZ 

N 

P 

P 

R 

Rep 

RG 

rc 

S 

S 

particle effective force (kg m s-1) 

fluid-particle interaction force (kg m s-1) 

standard gravity (m s-2) 

Gibbs free energy (J or J mol-1) 

linear growth rate (m s-1) 

fluidized bed crystallizer height (m) 

transmitted intensity (W⋅m−2) 

intensity of the light at a given wavelength (W⋅sr−1⋅m−1) 

measuring cell constant in eq. 3.3 (-) 

extinction coefficient in eq. 3.7 (-) 

nucleation rate constant (-) 

coefficient of mass transfer by diffusion (-) 

overall crystal growth coefficient (-) 

coefficient of mass transfer (-) 

rate constant of for the surface reaction (-) 

levorotatory enantiomer 

crystal size (m) 

length of the sample tube in eq. 3.4 (m) 

path length through the sample in eq. 3.7 (m) 

mass (kg) 

tube mass in eq. 3.3 (kg) 

particle number distribution (-) 

particle flux (m s-1) 

mole amount of component A (mol) 

mole amount of component i (mol) 

Richardson-Zaki parameter (-) 

particle quantity (-) 

number of phases (-) 

peritectic point 

universal gas constant (J mol-1 K-1) 

Reynolds number (-) 

overall crystal growth rate (kg m-2 s-1) 

critical size of a nuclei (m) 

solvent 

supersaturation (-) 
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SDT 

T 

To 

T̅ 

Ts 

TN 

Tc 

t 

uf 

up 

V̇ 

Vsus 

Vcr 

Vt 

We 

wt.% 

x 

xm 

xp 

 

 

 

α 

[α]γ
T 

 

δ 

Δc 

ΔG 

ΔGcrit 

ΔP 

ε 

μf 

ρf 

ρp 

τ 

τUS 

standard temperature deviation (°C, K) 

temperature (°C, K) 

oscillation period (s) 

mean temperature (°C, K) 

temperature of solution at equilibrium (°C, K) 

temperature of nucleation (°C, K) 

temperature of crystallization (°C, K) 

time (h) 

fluid superficial velocity (m s-1) 

particle segregation velocity (m s-1) 

flow rate (m3 s-1) 

suspension volume (m3) 

total crystallizer volume (m3) 

tube volume in eq. 3.3 (m3) 

particle effective weight (kg m s-2) 

weight percent (g g-1 in %) 

height along the fluidized bed crystallizer (mm) 

height of the fluidized bed crystallizer, where conical part ends (mm) 

product outlet height of the fluidized bed crystallizer (mm) 

 

Greek symbols 

 

optical rotation (°) 

specific optical rotation in eq. 3.4 (°) 

Dirac delta distribution (-) 

concentration driving force (g/kg, wt.%) 

change in Gibbs free energy (J) 

critical change in free energy (J) 

unrecoverable pressure loss (kg m-1 s-1) 

void fraction (-) 

fluid viscosity (Pa s) 

fluid density (kg m-3) 

particle density (kg m-3) 

residence time (s) 

mean residence time in the ultrasonic bath (s) 
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σ 

γ 

γ 

Ѱ 

χA 

χB 

χC 

 

 

 

bm 

cg 

cr 

eff 

f 

g 

i 

j 

in 

n 

out 

p 

s 

T 

seg 

us 

 

 

 

ABA 

CSD 

D-asn.H2O 

DL-asn.H2O 

D-glu 

DL-glu 

EtOH 

relative supersaturation (-) 

interfacial tension or surface energy (J m-2) 

wavelength in eq. 3.5 (m) 

sphericity factor (-) 

mole fraction of component A (-) 

mole fraction of component B (-) 

mole fraction of component C (-) 

 

Indices 

 

back mixing 

crystal growth 

crystallizer 

effective 

fluid (solution) 

‘order’ of the overall crystal growth 

component i 

‘order’ of the overall nucleation rate 

to the crystallizer from the ultrasonic bath 

Richardson and Zaki parameter 

from the crystallizer to the ultrasonic bath 

particle 

solid 

specific temperature 

segregation 

ultrasonic 

 

Abbreviations 

 

aminobenzoic acid 

crystal size distribution 

D-asparagine monohydrate 

DL-asparagine monohydrate 

D-glutamic acid 

DL-glutamic acid 

Ethanol 
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FBC 

FBRM 

H2O 

HCOOH 

HPLC 

L-asn.H2O 

L-glu 

MeOH 

MSZW 

OABA 

PABA 

PBE 

PSD 

TG-DSC 

US 

XRPD 

 

 

fluidized bed crystallizer 

Focused Beam Reflectance Measurement 

water 

methanoic acid (formic acid) 

High-Performance Liquid Chromatography 

L-asparagine monohydrate 

L-glutamic acid 

methanol 

metastable zone width 

ortho-aminobenzoic acid 

para-aminobenzoic acid 

population balance equation 

particle size distribution 

thermogravimetric differential scanning calorimetry 

ultrasonic 

X-ray powder diffraction 
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Appendices 

Temperature programs, used for determination of MSZW and solubility equilibria. 
 
Temperature program 1 
1. Heating the suspension to 60°C (or over the expected saturation temperature). 
2. Waiting at 60°C for 10 min (to dissolve the remaining solid). 
3. Cooling the solution to 10°C with a rate of 3 K/h. 
4. Keeping the suspension at 10°C for 30 min (to equilibrate the suspension). 
5. Heating the suspension to 60°C with a rate of 3 K/h. 
 
Temperature program 2 
1. Heating the suspension to 40°C. 
2. Waiting at 40°C for 10 min. 
3. Cooling the solution to 5°C with a rate of 3 K/h. 
4. Keeping the suspension at 5°C for 30 min. 
5. Heating the suspension to 40°C with a rate of 3 K/h. 
 
Temperature program 3 
1. Heating the suspension to 50°C. 
2. Waiting at 50°C for 10 min. 
3. Cooling the solution to 35°C with a rate of 20 K/h. 
4. Cooling the solution to 5°C with a rate of 3 K/h. 
5. Keeping the suspension at 5°C for 30 min. 
6. Heating the suspension to 50°C with a rate of 3 K/h. 
 
The reproducibility of the measurements was studied carrying out at least 3 experiments 
under same conditions (or same temperature program). 
 

SDT =  √
1

N − 1
∑(Ti −  T̅)2

N

i=1

 

 
In the equation, the standard deviation of the saturation temperature SDT is given, where 

{T1,T2,…,TN} are the observed temperature values for each measurement and T̅ is the 

mean value of these observations. 
  

(A1.1) 
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Fig. A1.1 Scheme of a fluidized bed crystallizer with seven product outlets 

along its height 
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 Fig. A1.2 Scheme of a fluidized bed crystallizer, used in the coupled FBC-

equipment. 
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Fig. A1.3 Scheme of the vacuum filter 
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DL-asn.H2O 

D-asn.H2O 

L-asn.H2O 

Fig. A2.1 XRPD pattern of asparagine enantiomers and racemate 

DL-glu.H2O 

L-glu 

D-glu 

DL-glu MM 

 

Fig. A2.2 XRPD pattern of glutamic acid enantiomers, a 50:50 mechanical 

mixture of both enantiomers and a racemic compound, which is monohydrate 
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Fig. A2.3 XRPD patterns of: OABA, PABA, and 50:50 mechanical mixtures of 

OABA and PABA, crystals produced at 20°C and 50°C. Crystals from the 

respective storage container measured as reference. XRPD patterns of 

product crystals of OABA and PABA from the continuous preferential 

crystallization are also shown. 

OABA + PABA 20°C 

OABA after PC 

 
PABA ref. 

OABA + PABA ref. 

OABA ref. 

 

 

 

 

 

OABA 20°C 

OABA 50°C 

PABA 20°C 

PABA 50°C 

PABA after PC 

OABA + PABA 50°C 
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Fig. A2.4 HPLC measurements of aqueous solutions of: 

                a) DL-asparagine 

                b) DL-glutamic acid 

                c) A 50:50 mixture of OABA and PABA 

a) 

b) 

c) 

L-asparagine 

D-glutamic 

acid 

L-glutamic 

acid 

D-asparagine 

OABA PABA 
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