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Abstract

This thesis is devoted to the study of the reflection length function on infinite non-affine
Coxeter groups. Infinite non-affine Coxeter groups are Coxeter groups that do not split
into a direct product of spherical and Euclidean reflection groups. Reflection length is well
understood for direct products of spherical and Euclidean reflection groups and there exist
formulas in this case (see [Car72; Bre+19]). Whilst the reflection length is bounded on this
type of Coxeter group, the reflection length function is unbounded on infinite non-affine
Coxeter groups shown by Kamil Duszenko (see [Dus12]). Apart from this, very little is
known about the reflection length in infinite non-affine Coxeter groups. In this work, we
investigate the asymptotic behaviour of the reflection length function on infinite non-affine
Coxeter groups to identify repetitive patterns and to prove global geometric results. For
this, we use the rich duality of combinatorics and geometry inherent to Coxeter groups.

The geometric and combinatorial foundations of Coxeter groups are discussed in the
second and third chapters.

In Chapter 4, we present a new proof of the unboundedness of the reflection length func-
tion on infinite non-affine Coxeter groups. This proof is based on the Brooks construction
for acylindrically hyperbolic groups.

As a first main result, we prove a formula for the reflection length of powers of Coxeter
elements in a universal Coxeter group of arbitrary rank in Chapter 5. The formula allows us
to deduce results about the minimal word length for a given reflection length and vice versa
in universal Coxeter groups. These results are proved combinatorially with the properties
of the reflection length function and a result by Matthew J. Dyer in [Dye01].

The sixth chapter deals with infinite non-affine Coxeter groups that are discrete groups
generated by finitely many hyperplane reflections in the n-dimensional hyperbolic space. The
action of such a Coxeter group induces a tessellation of the hyperbolic space. For a fixed
fundamental domain, there exists a bijection between the tiles and the group elements. The
second main result describes points in the visual boundary of the n-dimensional hyperbolic
space for which every neighbourhood contains tiles of every reflection length. For the proof
of this result, we show that two disjoint hyperplanes in the n-dimensional hyperbolic space
without common boundary points have a unique common perpendicular. This generalises a
result of David Hilbert in [Hil13].

The last main result shows that the reflection lengths of the sequence of growing powers of
a Coxeter element tend to infinity for Coxeter groups with sufficiently large braid relations.
To obtain this result, we compare the reflection length function of an arbitrary Coxeter
group and the reflection length function of the universal Coxeter group of the same rank in
the last chapter. By applying a solution to the word problem for Coxeter groups, we derive
a lower bound for the reflection length in an arbitrary Coxeter group. For Coxeter groups
corresponding to a Coxeter matrix with equal non-diagonal entries, sharp upper bounds for
the reflection length of the powers of Coxeter elements are established.
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Zusammenfassung

Diese Arbeit befasst sich mit dem Studium der Spiegelungslänge in unendlichen nicht-
affinen Coxetergruppen. Unendliche nicht-affine Coxetergruppen sind Coxetergruppen, die
nicht das direkte Produkt von sphärischen und euklidischen Spiegelungsgruppen sind. Die
Spiegelungslänge ist in direkten Produkten von sphärischen und euklidischen Spiegelungs-
gruppen gut verstanden und es existieren Formeln in diesem Fall (siehe [Car72; Bre+19]).
Während sie beschränkt auf diesem Typ Coxetergruppe ist, ist die Spiegelungelänge unbe-
schränkt auf unendlichen nicht-affinen Coxetergruppen gemäß eines Resultats von Kamil
Duszenko (siehe [Dus12]). Darüber hinaus ist wenig bekannt über die Spiegelungslänge in
unendlichen nicht-affinen Coxetergruppen. Ziel dieser Arbeit ist es Methoden für die Er-
forschung des asymptotischen Verhaltens der Spiegelungslänge in unendlichen nicht-affinen
Coxetergruppen zu entwickeln, repetitive Muster aufzudecken und globale geometrische Re-
sultate über die Spiegelugnslänge zu beweisen. Dafür nutzen wir die vielfältige Dualität von
Kombinatorik und Geometrie der Coxetergruppen.
Die geometrischen und kombinatorischen Grundlagen für Coxetergruppen werden im zweiten
und dritten Kapitel zusammengefasst.
In Kapitel 4 wird ein neuer Beweis der Unbeschränktheit der Spiegelungslänge in unendlichen
nicht-affinen Coxetergruppen vorgestellt, der auf der Brooks Konstruktion für azylindrische
hyperbolische Gruppen beruht.
Als erstes Hauptresultat, beweisen wir eine Formel für die Spiegelungslänge der Potenzen
der Coxeterelemente in universellen Coxetergruppen beliebigen Ranges in Kapitel 5. Re-
sultate über die minimale Wortlänge für eine gegebene Spiegelungslänge und umgekehrt
leiten wir daraus ab. Diese Ergebnisse werden kombinatorisch mit den Eigenschaften der
Spiegelungslängenfunktion und einem Theorem von Matthew J. Dyer in [Dye01] bewiesen.
Das sechste Kapitel befasst sich mit unendlichen nicht-affinen Coxetergruppen, die diskrete,
von endlich vielen Hyperebenenspiegelungen im n-dimensionalen hyperbolischen Raum er-
zeugte Gruppen sind. Die Wirkung einer solchen Coxetergruppe induziert eine Parket-
tierung des hyperbolischen Raums. Es existiert eine Bijektion zwischen den Kacheln und den
Gruppenelementen für einen festen Fundamentalbereich. Das zweite Hauptresultat ist die
Identifikation spezieller Punkte auf dem visuellen Rand des n-dimensionalen hyperbolischen
Raums, für die alle ihre Umgebungen Kacheln beliebiger Spiegelungslänge beinhalten. Für
den Beweis dieses Resultats zeigen wir, dass zwei disjunkte Hyperebenen im n-dimensionalen
hyperbolischen Raum ohne gemeinsame Randpunkte eine eindeutige gemeinsame Senkrechte
haben. Dies verallgemeinert ein Resultat von David Hilbert in [Hil13].
Das letzte Hauptresultat ist, dass die Spiegelungslängen der Folge von wachsenden Poten-
zen eines Coxeterelements gegen unendlich strebt in Coxetergruppen mit genügend großen
Zopfrelationen. Um dieses Resultat zu beweisen, wird im letzten Kapitel die Abbildung der
Spiegelungslänge einer beliebigen Coxetergruppe mit der Abbildung der Spiegelungslänge der
universellen Coxetergruppe gleichen Ranges verglichen. Mit einer Lösung des Wortproblems
für Coxetergruppen leiten wir eine untere Schranke für die Spiegelungslänge in beliebigen
Coxetergruppen ab. Für Coxetergruppen mit dem gleichen Eintrag überall abseits der Di-
agonalen in der Coxetermatrix werden scharfe obere Schranken für die Spiegelungslänge der
Potenzen der Coxeterlemente bewiesen.
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1. Introduction

1.1 Coxeter groups

Coxeter groups are named after Harold Scott MacDonald Coxeter, who investigated finitely
generated groups with an abstract presentation of the form

〈s1, . . . , sn | s2
i = (sisj)

mij = 1 , ∀i, j ∈ {1, . . . , n}, mij ∈ N≥2 ∪ {∞}〉

in the article [Cox34] from the year 1934. The article was motivated by his study of the
symmetry groups of regular convex polytopes, which are generated by reflections. This
translates to the condition s2

i = 1 in the abstract presentation above and justifies why
he called these discrete groups generated by reflections. In [Cox34] and a subsequent work
[Cox35], he classified all finite groups that admit a presentation of this specific form and also
classified all discrete groups of isometries of the n-dimensional Euclidean space generated by
reflections. On account of Coxeter’s preliminary work on these groups, groups that admit
a presentation as above were named Coxeter groups by Jacques Tits, who also made great
contributions and further formalisations in [Bou02] (see [Vin72; Hum90; Ell+03]).

Coxeter groups appear in many contexts in mathematics such as Lie theory, the theory
of buildings, algebra, combinatorics and topology. They have a versatile nature in the sense
that it is often possible to describe properties of Coxeter groups and related objects geomet-
rically as well as combinatorially. Both of these approaches date back to the beginnings of
the study of Coxeter groups. Important instances of Coxeter groups are geometric reflection
groups. These include finite groups generated by reflections like the groups of symmetries of
regular convex polytopes. More generally, discrete groups generated by reflections across the
sides of a polytope with additional local finiteness properties in the n-dimensional sphere
Sn, the n-dimensional Euclidean space En or the n-dimensional hyperbolic space Hn are
geometric reflection groups. Not all Coxeter groups are geometric reflection groups (see
[FT05]). Nevertheless, there are different constructions of geometric objects for every Cox-
eter group W like the geometric representation or the Coxeter complex, on which W acts as
a discrete group with reflection-like generators. Figure 1.1 shows a white polytope in H2 in
the Poincaré disc model on the left. The reflections across the hyperplanes containing the
sides of the polytope generate the projective general linear group over the integers PGL2(Z).
The intersecting angles of the lines containing the sides of the polytope determine the rela-
tions between the generators of the group. On the right, the Coxeter complex of PGL2(Z)
is displayed embedded in the Poincaré disc model for H2.

Finite and Euclidean geometric reflection groups are classified by Coxeter as mentioned
above. The classification is a list of finite and Euclidean reflection groups that do not split
into a direct product of geometric reflection groups. Finite and Euclidean reflection groups
are well understood due to their geometric nature and classification. Coxeter groups can be

1



Chapter 1. Introduction

Figure 1.1: Generating polytope marked white and Coxeter complex embedded in H2 in the
Poincaré disc model of hyperbolic reflection group PGL2(Z).

divided generally into direct products of finite reflection groups, direct products of Euclidean
reflection groups and finite reflection groups, and all Coxeter groups that are not of these
two types. The latter are called infinite non-affine Coxeter groups. One example of an
infinite non-affine Coxeter group is PGL2(Z). Infinite non-affine Coxeter groups are much
less understood than the direct products of finite and Euclidean reflection groups. They are
either hyperbolic reflection groups or they are not geometric reflection groups.

However, all Coxeter groups are generated by involutions, reflection-like elements, and
reflections play a central role in geometric reflection groups. The natural question arises
of which other elements of a Coxeter group act like reflections on the associated geometric
realisations, besides the standard generators. The answer is that an element acts as a
reflection if and only if it is conjugated to a standard generator. Hence, elements that are
conjugated to a standard generator are called reflections. Reflections are involutions and
the set of reflections is a generating set of the Coxeter group.

The study of Coxeter groups together with the set of reflections as a generating set
goes back to David Bessis (see [Bes03]). This approach has recently yielded significant
outcomes in the research of Artin groups like the solution of the word problem and the
K(π, 1) conjecture for affine Artin groups (see [PS21; MS17]). For a summary of this so-
called dual approach to the K(π, 1) conjecture, we refer the reader to [Pao21]. Additionally,
this dual approach is also connected to the Chavalley-Bruhat order and Kazhdan-Lusztig
polynomials (see [Dye01; Dye91; KL79]).

1.2 Reflection length

Every generating set of a group has an associated length function. The reflection length is
the function

lR : W → N0

that maps every element of a Coxeter groupW to the minimal number of reflections sufficient
to factor this element. The identity has reflection length 0 and reflections have reflection
length 1.

2



1.2. Reflection length

Figure 1.2: Geometric interpretation of reflection length in the Coxeter complex of PGL2(Z)
and full reflection length pattern in the Poincaré disc model.

In Figure 1.2, we fix a top-dimensional simplex N in the Coxeter complex of the Cox-
eter group PGL2(Z) and label it with the identity. Consider the map w 7→ w(N) for w
in PGL2(Z). It induces a bijection between the top-dimensional simplices of the Coxeter
complex and the elements in W . The reflection length of w ∈ W is equal to the minimal
number of reflections across hyperplanes needed to reflect w(N) to N. To reflect the blue
simplex N to N, reflections across the three red hyperplanes are needed. On the right side in
Figure 1.2, a full pattern of coloured simplices according to their reflection length is shown.
For an explanation of the colouring see Paragraph 1.4.1.

The reflection length function of finite and Euclidean reflection groups is well understood.
In fact, for these groups, formulas for the reflection length exist. In the finite case, Roger
William Carter proved in [Car72] that the reflection length of an element in a finite Coxeter
group is equal to the dimension of a subspace associated to the action of the element on
the geometric realisation mentioned above. Joel Brewster Lewis, Jon McCammond, T. Kyle
Petersen and Petra Schwer established a formula of a similar form that applies to all affine
Coxeter groups (see [Bre+19]). These are direct products of Euclidean reflection groups. It
is based on the fact that affine Coxeter groups split into a semidirect product of the normal
subgroup of translations and a finite Coxeter group. Before, McCammond and Petersen
showed in [MP11] that the reflection length is bounded on these Coxeter groups.

Contrarily, the reflection length is an unbounded function on infinite non-affine Coxeter
groups. This result is due to Kamil Duszenko and its proof is non-constructive (see [Dus12]).
Very little is known beyond this result about the behaviour of the reflection length function
on infinite non-affine Coxeter groups. An infinite non-affine geometric reflection group is a
hyperbolic reflection group. Thus, infinite non-affine geometric reflection groups are in many
instances of a higher geometric complexity than finite and Euclidean reflection groups. The
only way known to compute reflection length in this case, by the time of writing, is by
exhaustive search. Therefore, the computation of the reflection length of elements with a
large word length is resource-costly.

3



Chapter 1. Introduction

Duszenko’s theorem immediately raises questions. Which elements of an infinite non-
affine Coxeter group have a large reflection length? What do sequences of elements with
growing reflection length look like? What form does a formula for the reflection length have
in these groups? How do the word length and the reflection length relate to one another?
What is the minimal word length for a fixed reflection length and vice versa? This thesis is
dedicated to the investigation of the reflection length in infinite non-affine Coxeter groups
and the initial steps towards the answers to these questions.

1.3 Results and Methods

We summarize the main results presented in this thesis. Some of them appear in [Lot24a]
and [Lot24b]. These articles are the bases of Chapter 6 and Chapter 7.

We give an alternative proof for Duszenko’s Theorem stated as Theorem 4.1.3 in Sec-
tion 4.2. The outline of this proof was communicated to the author by Andreas Thom.
It is based on the fact that irreducible infinite non-affine Coxeter groups are acylindrically
hyperbolic (see Theorem 4.2.9). This result is known to experts. However, we could not find
a published proof of this fact. This is why, we include a proof. The outline of which was
communicated to the author by Anthony Genevois. The second ingredient of the alternative
proof of Duszenko’s Theorem is a generalisation of the Brooks construction to acylindrically
hyperbolic groups (see [BBF19]).

In connection to the conjecture that the reflection length is unbounded on infinite non-
affine Coxeter groups in [MP11], McCammond and Petersen mention that they found a
formula for the reflection length of the n-th power of a Coxeter element in a universal
Coxeter group with three generators without giving a proof. A Coxeter element is a product
of all standard generators in a Coxeter group. The universal Coxeter group of rank n is the
Coxeter group with n generators s1, . . . , sn and no relations (mij = ∞) except s2

i = 1. In
Chapter 5, we establish a formula for the powers of the Coxeter elements in a universal
Coxeter group with arbitrary rank.

Theorem 1 (Formula for powers of Coxeter elements). In a universal Coxeter group Wn of
rank n ≥ 2, the following formula holds

lRn((s1 · · · sn)λs1 · · · si) = λ · (n− 2) + i,

for λ ∈ N0 and 1 ≤ i ≤ n.

The property of the Coxeter group being universal plays a major role in the proof of
this theorem. Using this theorem, we deduce formulas for the functions that describe the
minimal word length for a fixed reflection length and the minimal reflection length for a
fixed word length in universal Coxeter groups. These results are obtained by repeated use
of the properties of the reflection length function and a technical result by Matthew J. Dyer
in [Dye01].

From Theorem 1, we know that the reflection lengths of the sequence of powers of a
Coxeter element in a universal Coxeter group are unbounded. Moreover, there are formulas
to compute the reflection length for the elements in these specific sequences. On the other
hand, the sequences of powers of Coxeter elements do not have unbounded reflection length
in all infinite non-affine Coxeter groups. Counterexamples are infinite non-affine Coxeter

4



1.3. Results and Methods

groups of rank 3 with two commuting standard generators. So for all infinite non-affine
Coxeter groups that are not universal, the result above does not give more than a hint of
how a sequence of elements with unbounded reflection length might look like.

The next result is about infinite non-affine hyperbolic reflection groups. Considering only
hyperbolic reflection groups allows geometric tools to be used to investigate the reflection
length at a global level in the hyperbolic space Hn. More precisely, it is investigated where
top-dimensional simplices are located in the Coxeter complex that correspond to elements
with large reflection lengths. We find points on the visual boundary of the compactification
of Hn for which every neighbourhood contains simplices of every reflection length.

Theorem 2 (Boundary points close to arbitrary reflection length). Let (W,S) be a hyperbolic
reflection group with fundamental domain P in Hn. Let R be the set of reflections in W .
Let U be a neighbourhood in Hn of a point ξ in ∂Hn. Suppose ξ satisfies one of the following
conditions:

(i) ξ is a common point of two parallel hyperplanes Hr, Hr′ with r, r′ ∈ R.

(ii) ξ is an endpoint of the common perpendicular of two ultra-parallel hyperplanes Hr, Hr′

with r, r′ ∈ R.

For every k ∈ N, there exists w ∈W with lR(w) = k such that the domain wP is contained
in U .

In contrast to the combinatorial methods used to obtain Theorem 1, this theorem to-
gether with its proof has a strong geometric flavour. One main ingredient of its proof is that
two disjoint hyperplanes in the n-dimensional hyperbolic space without common boundary
points have a unique common perpendicular. If two hyperplanes do not have common bound-
ary points they are called ultra-parallel. We obtain the following result about hyperbolic
geometry, which may be of interest regardless of our application.

Theorem 3 (Ultra-parallel Theorem for subspaces). Every pair of ultra-parallel geodesic
subspaces in Hn has a common perpendicular. A pair of distinct hyperplanes in Hn is ultra-
parallel if and only if it has a common unique perpendicular. Every hyperplane intersecting
both hyperplanes at a right angle contains this perpendicular.

This generalises the result of David Hilbert in [Hil13] that any two ultra-parallel geodesic
lines in H2 have a common perpendicular.

Theorem 2 does not delimit regions close to the boundary ∂Hn where large reflection
length occurs. It describes neighbourhoods where large reflection length surely occurs. This
is without the description of the form of elements with large reflection lengths. The next
results are a step towards answering the question about the form of elements with high
reflection length. We establish a connection between the reflection length function lR on an
arbitrary Coxeter group and the reflection length function lRn on a universal Coxeter group
of the same rank through the solution of the word problem for Coxeter groups.

Theorem 4 (Lower bound for rank n). Let w be an element in a Coxeter system (W,S) of
rank n represented by an S-reduced word s = u1 · · · · · ·up. Further, let s̃ be a word obtained
from s by omitting all letters in a deletion set D(s). Let m be the minimal number of
braid-moves necessary to transform s̃ into the identity. The reflection length lR(w) in W is
bounded from below:

lRn(ωn(s))− 2m ≤ lR(w).

5



Chapter 1. Introduction

For the powers of Coxeter elements in the universal Coxeter group, there exists a formula
for the reflection length (see Theorem 1). Therefore, the powers of Coxeter elements are the
first candidates to find unbounded reflection length in other Coxeter groups as well. Using
this lower bound and counting special subwords in the powers of a Coxeter element, the
next result follows.

Theorem 5 (Power sequences with unbounded reflection length). Let (W,S) be a Coxeter
system of rank n and let M = (mij)i,j∈I denote its Coxeter matrix. Further, let w be a
Coxeter element in W . Then,

(i) if n = 3 and min{mij | i 6= j, i, j ∈ I} ≥ 5, or

(ii) if n ≥ 4 and min{mij | i 6= j, i, j ∈ I} ≥ 3,

we have
lim
λ→∞

lR(wλ) =∞.

So in Coxeter groups with sufficiently large braid relations, the sequence of powers of a
Coxeter element has unbounded reflection length.

A Coxeter group with n generators corresponding to a Coxeter matrix with non-diagonal
entries all equal to k is called single braided and denoted with Wn

k . For single braided
Coxeter groups, sharp upper bounds for the reflection length of the powers of Coxeter
elements can be established using Theorem 4 and combinatorially counting specific subwords.

Theorem 6 (Upper bound for single braided power sequences in rank 3). Let (W 3
k , S) be

a single braided Coxeter system with k ≥ 3. The reflection length of elements of the form
(s1s2s3)λs1 · · · sr in (W 3

k , S) with 1 ≤ r ≤ 3 and λ ∈ N0 is bounded from above by

lR(ω((s1s2s3)λs1 · · · sr)) ≤ λ+ r − 2 ·
⌊
λ+ 1r≥2

k

⌋
.

Theorem 7 (Upper bound for single braided power sequences in higher rank). In a single
braided Coxeter system (Wn

k , S) with n ≥ 4, the reflection length of the element represented
by the word s = (s1s2 · · · sn)λs1 · · · sr with 1 ≤ r ≤ n and λ ∈ N0 is bounded from above by

lR(ω(s)) ≤ λ(n− 2) + r − 2 · 1(λ+1r≥2)≥k ·
(

1 +

⌊
λ− k + 1r≥2

k − 1

⌋)
.

We conjecture that the bounds given in Theorem 6 and Theorem 7 are equal to the
reflection length.

1.4 Structure

This thesis is organised as follows. Chapter 2 contains a summary of the foundations of
Coxeter groups and geometric reflection groups with examples. The focus is on the duality
between abstract group theory and the geometric objects related to Coxeter groups. In
Chapter 3, we state the main definitions and theorems related to word length and reflection
length in Coxeter groups. In particular, the word problem for Coxeter groups and the
properties of the reflection length are explained. Furthermore, the aforementioned formulas

6



1.4. Structure

for the reflection length in finite and affine Coxeter groups are discussed. Chapter 4 deals
with the theorem of Duszenko and its proof. Our alternative proof is presented, too. As an
ingredient, it is proved that irreducible infinite non-affine Coxeter groups are acylindrically
hyperbolic.

The remaining chapters contain our results. The fifth chapter is devoted to the study of
the reflection length function of universal Coxeter groups. Theorem 1 is proved. Further,
we deduce results regarding minimal word length for a fixed reflection length and vice versa.
Theorem 2 and Theorem 3 are stated and proved in Chapter 6 among other geometric
flavoured results about infinite non-affine hyperbolic reflection groups. In Chapter 7, we
study the relation between the reflection length function of an arbitrary Coxeter group and
the reflection length function of the universal Coxeter group of the same rank. The proofs
of Theorem 4 as well as of Theorem 5 are to be found in this chapter. Furthermore, this
chapter contains the proofs of Theorem 6 and Theorem 7. At the end of Chapter 7, we
state Conjecture 7.3.1 about the general relation between the reflection length function of
an arbitrary Coxeter group and the reflection length function of the universal Coxeter group
of the same rank. Finally, we give an outlook for further research and follow-up questions.
In Appendix A, we present the SageMath code that we use to compute the reflection length
in some examples throughout this work.

1.4.1 Colouring of the reflection length

The reflection length is encoded by the same colour scheme in all images in this work. The
colours are totally ordered in ascending order of wavelength in the light spectrum. A small
reflection length corresponds to a colour with a small wavelength and a large reflection
length corresponds to a colour with a high wavelength. For example, reflection length 1 is
represented by the colour and reflection length 3 is represented by the colour . One
exception is reflection length 0, which is represented by the colour black.
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2. Coxeter groups and reflection
groups

This chapter contains some foundations of the theory of Coxeter groups and their geometry.
For a more profound treatment of this topic, we refer the reader to [AB08], [Hum90], [Tho18]
and [BB05]. The majority of this chapter is compiled from these sources. First, the definition
and some examples of Coxeter groups are given. After discussing geometric reflection groups
and their classification, we introduce geometric constructions for abstract Coxeter groups.
The last section deals with roots and their relation to affine Coxeter groups.

2.1 Abstract Coxeter groups

Definition 2.1.1. A group W with a finite set of generators S = {s1, . . . sn} that admits a
presentation of the form

W = 〈S | s2
i = (sisj)

mij = 1 ∀i, j ∈ {1, . . . , n}, mij ∈ N≥2 ∪ {∞}〉,

is called Coxeter group. The pair (W,S) is called Coxeter system. The cardinality |S| is called
the rank of the Coxeter group or Coxeter system, respectively. The relations (sisj)

mij = 1

with mij ∈ N≥2 are called braid relations. The elements in W that can be expressed by
words, in which each generator appears exactly once, are named Coxeter elements (e.g.
s1 · · · sn).

Definition 2.1.2. Let (W,S) be a Coxeter system. For a subset S′ ⊆ S, the subgroup
W ′ generated by S′ is called standard parabolic subgroup and again a Coxeter group. A
conjugate of a standard parabolic subgroup is called parabolic subgroup.

As a convention, we omit the ∞-relations, when writing out a presentation explicitly.
Every element w in a Coxeter system (W,S) can be written as a product w = u1 · · ·up of
generators in S with ui ∈ S for all 1 ≤ i ≤ p.

Example 2.1.3. The simplest example of a Coxeter group is a group generated by a sin-
gle involution. It is isomorphic to Z/2Z and can be interpreted geometrically as a group
generated by a single reflection across a point on the real line R.

Example 2.1.4. (Symmetric groups) The symmetry group of the (n− 1)-dimensional sim-
plex is the group Sym(n). It is generated by n − 1 reflections and admits the following
presentation

Sym(n) = 〈{s1, . . . , sn−1} | s2
i = (sjsj+1)3 = 1 for 1 ≤ i ≤ n− 1, 1 ≤ j ≤ n− 2〉.

9
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Figure 2.1: A 2-dimensional simplex with all and a 3-dimensional simplex with some coloured
reflection axes.

Hence, symmetric groups of all finite ranks are Coxeter groups. Figure 2.1 displays a 2-
dimensional simplex with all reflection axes and a 3-dimensional simplex with some reflection
axes. The two reflections across the red and blue axes on the left generate Sym(3) and the
three reflections across the green, blue and purple axes on the right generate Sym(4).

Coxeter groups can be of finite and infinite cardinality as the next example shows.

Example 2.1.5. (Dihedral groups) Define the dihedral group Dm to be the group with
presentation

Dm := 〈s1, s2 | s2
i = (s1s2)m = 1 for i = 1, 2〉,

for an integer m ≥ 2. The dihedral group Dm has order 2m. Geometrically, the dihedral
groups can be understood as the isometry groups of regular m-gons in the Euclidean plane
E2 (regular means that the sides are isometric). So in fact, with our last example, we already
introduced the group D3, which is isomorphic to Sym(3). The two generators correspond
to two orthogonal reflections across lines l1 and l2 through the centre of the m-gon such
that the intersecting angle between the lines is π

m . This is shown in Figure 2.2 for m = 3.
Further, Dm acts on the unit sphere S1. The intersections of S1 with the images of the lines
reflected across each other divide the sphere into 2m isometric segments as shown in the
figure. We obtain a 2m-gon by connecting the adjacent intersections, which are points, with
lines in E2. This illustrates why Dm is a subgroup of D2m. In the figure, it can be seen that
D6 contains D3 as a subgroup. The product of the two reflections s1s2 is a rotation of the
angle 2π

m about the origin. The relation (s1s2)m = 1 follows thereby. In total, the group
Dm consists of m orthogonal reflections and m rotations of 2kπ

m with 0 ≤ k < m about the
origin.

The only infinite Coxeter group of rank 2 is the infinite dihedral group D∞. It is generated
by two involutions, whose product has infinite order:

D∞ := 〈s0, s1 | s2
i = 1 for i = 1, 2〉.

It is isomorphic to a subgroup W of isometries of the real Euclidean line E1 generated by
the reflections s0 : x 7→ −x and s1 : x 7→ 2 − x across the points 0 and 1. The element
s0s1 is a translation by 2 to the left and therefore 〈s0s1〉 ∼= Z (see Figure 2.3). The group
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l1

l2π
3

S1

Figure 2.2: Reflections of the dihedral group D3 with generators l1 and l2 and the action on
S1.

W contains the reflection across every integer in E1. For z ∈ Z, the reflection across z is a
conjugate of s0 if z is even and otherwise a conjugate of s1. Hence, the points in the orbits
of the points 1 and 0 under the action of W result in a tessellation of E1 into unit intervals
(see Figure 2.3).

For further examples of finite Coxeter groups and their combinatoric interpretation, we
refer the reader to [BB05].

s0 s1

0 1 2 3 4−1−2−3−4

Figure 2.3: Action of the infinite dihedral group D∞ on E1, orbit of 0 marked blue and orbit
of 1 marked red.

It can be difficult to read off properties of the group from an abstract presentation like
in the definition of a Coxeter group above. Different presentations can lead to isomorphic
groups. For a Coxeter system (W,S), let ω(s) be the element in W represented by s ∈ S. A
classical and important statement about the presentation of a Coxeter group is the following.

Lemma 2.1.6 ([BB05, Proposition 1.1.1]). Let (W,S) be the Coxeter system and si, sj ∈ S
be two distinct standard generators. Then, the following hold:

(i) ω(si) 6= ω(sj) in W .

(ii) The order of ω(sisj) in W is mij.

11



Chapter 2. Coxeter groups and reflection groups

Coxeter systems are generally encoded in the literature by finite loop-free graphs and an
edge labelling that is either a natural number greater than 2 or infinity.

Definition 2.1.7. Let (W,S) be a Coxeter system of rank n. The Coxeter graph (or Coxeter
diagram) Γ has the vertex set S and the edge set E := {{si, sj} | si, sj ∈ S, i 6= j,mij ≥ 3}.
The edge labelling function m : E → N≥3 ∪ {∞} is given by m({si, sj}) = mij . The
convention when drawing these graphs is to leave out 3 as a label. Note that vertices
corresponding to generators that commute are not connected by an edge. The Coxeter
matrix of (W,S) is the matrix (mij)i,j∈[n] with mi,i := 1 for all indices i ∈ [n] = {1, . . . , n}.

Remark 2.1.8. The information encoded in the Coxeter matrix or Coxeter graph is equivalent
to the Coxeter presentation from Definition 2.1.1. Lemma 2.1.6 implies that every Coxeter
graph and every Coxeter matrix determines a unique Coxeter group up to isomorphism (see
[BB05, Theorem 1.1.2]).

Example 2.1.9. The Coxeter graphs of the dihedral groups Dm and Sym(4) are the fol-
lowing.

m

s1 s2 s1 s2 s3

The instances of Coxeter groups given above include finite groups of any rank and an
infinite group D∞ of rank 2. The property of having solely ∞-relations can be transferred
to higher-rank Coxeter groups.

Example 2.1.10. (Universal Coxeter groups) The universal Coxeter group Wn of rank n is
defined by the complete graph Kn with n vertices and the constant labelling mij = ∞ for
all i 6= j ∈ {1, . . . , n}. It admits the presentation

Wn = 〈{s1, . . . , sn} | s2
i = 1〉.

Every element is represented by a unique reduced word of letters in S (see [BB05, p. 4]). In
rank 2, W2 is the infinite dihedral group D∞.

Definition 2.1.11. A Coxeter groupW is called irreducible (reducible) if the corresponding
Coxeter graph is connected (is not connected).

Lemma 2.1.12 (see [Hum90, p. 129]). Let (W,S) be a Coxeter system. Let Γ1, . . . ,Γr be
the connected components of the Coxeter graph with corresponding subsets S1, . . . , Sr ⊆ S.
Then W is the direct product of the standard parabolic subgroups WS1 , . . . ,WSr and each
Coxeter system (Wi, Si) is irreducible.

2.2 Geometric reflection groups

As mentioned above, the definition of a Coxeter group evolved from studying discrete groups
of isometries of geometric objects generated by reflections. This section deals with the
geometric approach to Coxeter groups. Geometric reflection groups are defined and partially
classified in this section. Basic concepts of Riemannian geometry are assumed. The first
two chapters in [BH99] and Chapter 6 in [Dav08] are the basis of this section.

We introduce the three complete, simply connected, Riemannian n-manifolds of constant
sectional curvature −1, 0 and 1. These three manifolds admit totally geodesic submanifolds
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of codimension 1. The only three irreducible symmetric spaces that admit such submani-
folds are Sn, En and Hn. This follows from the classification of symmetric spaces by Élie
Cartan (see [Car26]). This fact is important because every totally geodesic submanifold of
codimension 1 can be associated with a geometric reflection. These submanifolds are called
hyperplanes. For each hyperplane H in a metric space Xn, the complement Xn \H has two
open connected components. The associated (closed) half-spaces H+ and H− are the unions
of the connected components with H. The reflection across H maps one half-space to the
other.

Since the Riemannian structure is not needed to define reflection groups, we define the
manifolds as metric spaces and keep the Riemannian structure in the background.

Definition 2.2.1. Let (X, d) be a metric space and I ⊆ R be an interval.

1. A geodesic line in X is an isometry λ : I → X with I = (−∞,∞).

2. A geodesic ray in X is an isometry λ : I → X with I = [a,∞).

3. A geodesic segment in X is an isometry λ : I → X with I = [a, b].

We write λ ⊆ X instead of λ(I) ⊆ X.
The metric space (X, d) is called geodesic space if for every pair of points, x, y in X there

exists a geodesic segment λ : [a, b] → X with λ(a) = x and λ(b) = y. If for every pair of
points the images of all geodesic segments is equal, we call X a uniquely geodesic space.

The Euclidean n-space. Let d2 be the metric corresponding to the Euclidean scalar
product 〈X,Y 〉2 =

∑n
i=1 xiyi, where X = (x1, . . . , xn), Y = (y1, . . . , yn) ∈ Rn. We denote

the vector space Rn equipped with the metric d2 with En. It is

d2(X,Y ) =

(
n∑
i=1

(xi − yi)

) 1
2

.

The subset of the form (A,B) := {A+ t(B − A) | t ∈ R} for A,B ∈ En is the geodesic line
containing the points A and B and En is a uniquely geodesic space. Choose 0 ≤ t ≤ 1 to
obtain the geodesic segment [A,B]. Let [C,A] and [C,B] be two geodesic segments with
A,B,C ∈ En and abbreviate the distances d := d2(B,C), e := d2(A,C) and f := d2(A,B).
According to the law of cosines, the angle γ between these segments at the point C is

γ = cos−1 d
2 + e2 − f2

2de
.

A hyperplane in En is an affine subspace of codimension 1. A half-space in En is an affine
half-space. Every hyperplane H induces an isometry of En. Namely, the reflection rH across
H. Fix a point P in H and let u be an orthogonal unit vector (with respect to the scalar
product). Then, the reflection rH can be defined as

rH(A) := A− 2〈A− P, u〉2u

for all A ∈ En. The hyperplane H is the set of fixed points of rH .

13
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The n-sphere. The n-dimensional sphere is denoted by Sn and it is embedded in En+1

in the following way: Sn := {x ∈ Rn+1 | 〈x, x〉2 = 1}, where 〈·, ·〉2 is the Euclidean scalar
product from the last paragraph. For two points A,B ∈ Sn, the metric d on Sn is defined as
d(A,B) = cos−1〈A,B〉2. The metric space (Sn, d) is a geodesic space. The intersection of Sn
with a 2-dimensional vector subspace of En+1 is called great circle. The great circles in Sn are
the geodesic lines. The shortest path between two distinct points A,B ∈ Sn (or paths if A
and B are antipodal) is contained in the great circle corresponding to the subspace spanned
by A and B. Let [C,A] and [C,B] be two geodesic segments in Sn with A,B,C ∈ Sn and
abbreviate the distances g := d(B,C)2, e := d(A,C)2 and f := d(A,B)2. According to the
spherical law of cosines, the angle γ between these segments at the point C is

γ = cos−1 cos f − cos g cos e

sin g sin e
.

The intersection of Sn with an n-dimensional vector subspace of En+1 is a hyperplane in
Sn. Similarly, a half-space in Sn is the intersection of a linear half-space in En+1 with Sn. A
hyperplane H ⊆ Sn is isometric to Sn−1 with the induced metric for Sn. The corresponding
reflection rH is defined as the isometric reflection across the hyperplane in En+1 spanned by
H restricted to Sn. With the definition of a hyperplane reflection in En+1 and the properties
of symmetrical bilinear forms, the well-definedness of this restriction follows.

2.2.1 The hyperbolic n-space

We introduce two model spaces for the hyperbolic n-space, both of which we use in the
further course of this work. First, the hyperboloid model which is embedded in Rn+1 equipped
with a symmetric bilinear form in a similar way as the sphere. The strength of this model
is that it can be fully exhausted with linear algebra. On the other hand, the Poincaré ball
model is useful for visualizing the hyperbolic n-space and using tools from geometry.

The hyperboloid model. Let En,1 be the real vector space Rn+1 equipped with the
symmetric bilinear form 〈·, ·〉−1 of type (n, 1) (n positive and 1 negative eigenvalues). We
define

〈X,Y 〉−1 :=
n∑
i=1

xiyi − xn+1yn+1,

whereX = (x1, . . . , xn+1), Y = (y1, . . . , yn+1) ∈ Rn+1. The n-dimensional hyperboloid model
is the upper sheet of a hyperboloid and defined as follows:

Hn := {v = (v1, . . . , vn+1) ∈ En,1 | 〈v, v〉−1 = −1, vn+1 > 0}.

The bilinear form induces a metric d(x, y) = cosh−1(−〈x|y〉−1) for x, y ∈ Hn. We always
consider Hn as a metric space. Non-empty intersections of 2-dimensional subspaces of En,1
with Hn are the geodesic lines in Hn. For two geodesic lines γ1 and γ2 intersecting in a point
p ∈ Hn, there exist unit vectors ui ∈ En,1 with 〈ui|p〉−1 = 0 and such that ui is contained in
the 2-dimensional subspace of En,1 according to γi. The hyperbolic angle between γ1 and
γ2 is the unique number α ∈ [0, π] with α = cos−1(〈u1|u2〉−1).

Hyperplanes are defined as non-empty intersections of n-dimensional subspaces of En,1
with Hn. They are isometric to Hn−1 equipped with the induced metric from Hn. For a
hyperplane H, we denote the corresponding subspace in En,1 with VH . We have two (closed)
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half-spaces V +
H , V

−
H ⊆ En,1 with V +

H ∪ V
−
H = En,1 and H± = V ±H ∩Hn with H+

i ∪H
−
i = Hn.

Every hyperplane H induces an isometry on Hn, the reflection rH across H:

rH : Hn → Hn ; x 7→ x− 2〈uH |x〉−1uH , (2.2.1)

where uH is the unique (modulo sign) unit vector orthogonal to VH in En,1 with respect to
the bilinear from 〈·|·〉−1. The fixed point set of rH is exactly H and one half-space is mapped
to the other one. The points at infinity in this model correspond to the set of 1-dimensional
subspaces of points x ∈ En,1 with 〈x|x〉−1 = 0.

The Poincaré ball model. In the Poincaré ball model, the points of the hyperbolic
space are represented by points in the open unit ball Dn in the Euclidean n-space En.
There exists a homeomorphism Dn → Hn by which the metric on Hn can be pulled back
to Dn. Geodesic lines are the intersections of Dn with lines and circles in En that meet the
boundary ∂Dn = Sn−1 in a right angle. The angle between two segments issuing from a
point is equal to the Euclidean angle between the segments. Let Ên := En ∪ {∞} denote
the one-point compactification of En. The hyperplanes in this model are the intersections of
Dn with (n−1)-dimensional spheres in Ên that intersect Sn−1 orthogonally. If a hyperplane
H is the intersection of an (n− 1)-dimensional sphere containing ∞ with Dn, the reflection
on H is the reflection on H as an (n − 1)-dimensional subspace in En restricted to Dn.
Otherwise, the hyperplane H is represented by a sphere S with radius r and centre c. In
this case, the reflection across H is iS , the inversion on S in the one-point compactification
Ên restricted to Dn:

iS : Ên → Ên ; x 7→ r2

||x− c||2
· (x− c) + c. (2.2.2)

The points at infinity in this model are the points in Sn−1.

Remark 2.2.2. The points at infinity in both models are also called ideal points.

2.2.2 The action of the group of isometries Iso(Xn)

The goal is to connect the abstract definition of Coxeter groups to geometry. Let Xn denote
either Sn, En or Xn. Before restricting our considerations to discrete groups of isometries
of Xn generated by reflections across hyperplanes, we state the following important results
about the general group of isometries of Xn.

Theorem 2.2.3 (see [BH99, Proposition 2.18]). Let γ be an isometry of Xn.

(i) If γ is not the identity, then the set of points that it fixes is contained in a hyperplane.

(ii) If γ acts as the identity on a hyperplane H, then γ is either the identity or the reflection
rH through H.

(iii) γ can be written as the composition of n + 1 or fewer reflections through hyperplanes
in Xn.

Let O(n) denote the group of orthogonal matrices contained in the general linear group
GLn(R). These are the real n × n-matrices A that satisfy ATA = 1, where AT is the
transpose of A. Moreover, we define the group O(n, 1) to be the subgroup of GLn+1(R)
consisting of the matrices that leave invariant the bilinear form 〈·|·〉−1. Thus, the elements
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of O(n, 1) preserve the hyperboloid {x ∈ En,1 | 〈x|x〉−1 = −1} but possibly exchange
the sheets. Equivalently, a matrix A ∈ GLn+1(R) is contained in O(n, 1) if and only if
ATJA = J , where J is diagonal matrix with diagonal (1, . . . , 1,−1). Let O(n, 1)+ ⊆ O(n, 1)
be the index-two subgroup of elements that preserve the upper sheet Hn (see [BH99, pp. 29-
30]).

Theorem 2.2.4 (see [BH99, Proposition 2.24]). The groups of isometries of Xn are the
following:

(i) Iso(En) ∼= Rn oO(n),

(ii) Iso(Sn) ∼= O(n+ 1),

(iii) Iso(Hn) ∼= O(n, 1)+.

In all three cases, the stabilizer of a point is isomorphic to O(n).

Here, o denotes the semi-direct product.

Definition 2.2.5. Suppose a group G acts on a topological space Y . A closed subset A ⊆ Y
is a strict fundamental domain for the G-action if each G-orbit intersects A in exactly one
point. The action of G is called cocompact if the quotient space Y/G is compact.

Definition 2.2.6. Let G be a discrete group. A G-action on a Hausdorff space Y is proper
(or properly discontinuous) if the following three conditions are satisfied:

(i) Y/G is Hausdorff.

(ii) For each y ∈ Y , the stabilizer Gy = {g ∈ G | gy = y} is finite.

(iii) Each y ∈ Y has a Gy-stable neighbourhood Uy such that gUy ∩ Uy = ∅ for all
g ∈ G−Gy.

A simple example is the following.

Example 2.2.7. Consider the real Euclidean line E1 and the reflections s0 and s1 across
the two points 0 and 1 as illustrated in Example 2.1.5. The group generated by {s1, s2}
is the infinite dihedral group D∞. Every closed interval [n, n + 1] with n ∈ Z is a strict
fundamental domain for the action of D∞ on E1.

2.2.3 Convex polyhedra and geometric reflection groups

An important connection between Coxeter groups and convex polyhedra is established in
this section. A convex polyhedron with simple combinatorial properties yields a Coxeter
group that is a discrete subgroup generated by reflections of the group of isometries of
the underlying space. The polyhedron is a strict fundamental domain of the action of the
Coxeter group on the underlying space.

Definition 2.2.8.
Let Xn be one of the three spaces Sn, En or Hn.

1. An n-dimensional convex polyhedron P in Xn is an intersection of finitely many closed
half-spaces in Xn having a non-empty interior.

2. An n-dimensional convex polytope P ′ in Xn is a convex and compact intersection of
finitely many closed half-spaces in Xn with non-empty interior.
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Figure 2.4: Two convex polyhedra in H2 in the Poincaré disc model marked white, with
finite volume on the left and infinite volume on the right.

Remark 2.2.9. We always assume in the following text without further mention that no half-
space in the definition above contains the intersection of all other half-spaces. With this
assumption, the half-spaces are uniquely determined by the polyhedron (see [VS88, p. 104]).

Remark 2.2.10. We follow the denotation in [VS88] and use the word polyhedron instead
of polytope to distinguish between a finite intersection of half-spaces and the convex hull of
finitely many points. This is not the same in our setting. By the Weyl-Minkowski Theorem
(see [Wey35]), a bounded convex polyhedron in the Euclidean space is the convex hull of
finitely many points and vice versa (see [VS88, p.104]). The distinction between polyhedron
and polytope is particularly important in Hn for us. Here, there exist unbounded polyhedra
of finite volume and unbounded polyhedra with infinite volume (see Figure 2.4).

The following definition is a restriction on the combinatorial structure of a polyhedron
in Xn.

Definition 2.2.11. Let P = ∩i∈IHεi
i be a convex polyhedron in Xn with εi ∈ {+,−}.

1. An (n − k)-dimensional face of P is an intersection contained in P of k hyperplanes
in {Hi | i ∈ I} with 1 ≤ k ≤ n. A 0-dimensional face is called vertex.

2. The convex polyhedron P is called simple in its (n − k)-dimensional face F if F is
contained in exactly k (the least possible number) (n − 1)-dimensional faces. This
implies that it is simple in any face containing F . The convex polyhedron P is called
simple if it is simple in each of its faces.

Remark 2.2.12. A bounded polyhedron is simple if it is simple in its vertices. This is why, the
simplicity for polytopes can also be defined in the following way: An n-dimensional polytope
P ′ is called simple if for every vertex v ∈ P ′ the intersection of a sufficiently small sphere
centred at v with P ′ (this is commonly referred to as the link of v) is an (n−1)-dimensional
simplex (see for example [Dav08, Definition 6.3.8.]).
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Definition 2.2.13. Let H1 and H2 be two intersecting hyperplanes in Xn, which bound
half-spaces Hε1

1 and Hε2
2 with Hε1

1 ∩H
ε2
2 6= ∅. Further, let ui be the inward-pointing unit

vector in the orthogonal complement of Hi at a point x ∈ H1 ∩ H2. The dihedral angle
along H1 ∩H2 is defined as ](Hi, Hj) := π − cos−1〈u1, u2〉, where 〈·, ·〉 is the bilinear form
of the underlying space En or En,1 for Xn.

Definition 2.2.14. A convex polyhedron (polytope)

P =
⋂
i∈I

Hεi
i

with εi ∈ {+,−} is called a Coxeter polyhedron (Coxeter polytope) if the dihedral angle
](Hi, Hj) is a submultiple of π for all intersecting hyperplanes Hi, Hj with i, j ∈ I, i 6= j.
We call a hyperplane Hi wall if the closure P and Hi intersect.

Remark 2.2.15. We may assume that all the hyperplanes Hi are walls (see Remark 2.2.9).
The hyperplanes of non-adjacent faces of a Coxeter polyhedron do not intersect. Every
Coxeter polyhedron is simple (see [VS88, Theorem 1.8.]).

The following theorem establishes an important connection between geometry and Cox-
eter groups.

Theorem 2.2.16 (see [VS88, pp. 199-200]). Let P =
⋂
i∈I H

εi
i be a Coxeter polyhedron in

Xn with n ≥ 2 and W (P ) the group generated by the isometric reflections {si | i ∈ I} across
the walls of P . Under these assumptions, the following holds:

(i) W (P ) is a discrete subgroup of Iso(Xn) generated by hyperplane reflections.

(ii) W (P ) acts properly on Xn.

(iii) P is a strict fundamental domain for the W (P )-action on Xn.

(iv) W (P ) is a Coxeter group with defining relations s2
i = 1 for all i ∈ I and (sjsk)

mjk = 1

for intersecting Hj and Hk with dihedral angle ](Hj , Hk) = π
mjk

.

(v) The stabilizer W (P )x of any point x ∈ P (including points at infinity if Xn = Hn) is
generated by reflections across the walls of P containing x.

Corollary 2.2.17. The fundamental domains wP with w ∈ W (P ) cover the space Xn and
there is a bijection between W (P ) and the set of fundamental domains wP . Namely,

w 7→ wP with w ∈W (P ).

Remark 2.2.18. A few remarks on the theorem above:

1. The dimension 1 is explicitly excluded in the theorem because the 1-dimensional sphere
S1 allows hyperplanes (here points) that do not intersect while the product of corre-
sponding reflections s1s2 has finite order. This concerns precisely the finite dihedral
groups Dm (see Example 2.1.5). The group action of Dm on S1 has a closed interval
of length π

m as a strict fundamental domain and is generated by the two reflections
across the points that bound this interval. The action induces a tessellation of S1 by
copies of this polytope as to be seen in Figure 2.2 (see [Tho18, p. 9]).
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2.2. Geometric reflection groups

Figure 2.5: Tessellations of E2 induced by the three Euclidean triangle groups.

2. The infinite dihedral group D∞ can be obtained analogously to the theorem by taking
an interval P as the polyhedron in E1 or H1.

3. As seen in Theorem 2.2.4, the isometry group Iso(Xn) is a Lie group. Thereby, the
theorem gives examples of Coxeter groups that are discrete subgroups of Lie groups.
The isometry groups Iso(Sn) ∼= O(n+ 1) are compact. Thus, any discrete subgroup of
Iso(Sn) is finite and so are the groups W (P ) in the theorem for Xn = Sn (see [Tho18,
p. 9]).

Definition 2.2.19. A geometric reflection group is a discrete subgroup of Iso(Xn) generated
by finitely many reflections across the (n − 1)-dimensional faces of a Coxeter polyhedron.
The reflection group is called spherical, Euclidean (also affine) or hyperbolic as Xn is equal
to Sn, En or Xn, respectively.

Remark 2.2.20. Geometric reflection groups are Coxeter groups according to Theorem 2.2.16.

Example 2.2.21 (Dihedral groups). All finite and infinite dihedral groups (Example 2.1.5)
are geometric reflection groups as to be seen from the Figures 2.2 and 2.3.

Example 2.2.22 (Triangle groups). Let (p, q, r) be a triplet of integers with 2 ≤ p ≤ q ≤ r.
There exists a triangle P in X2 with vertex angles π

p ,
π
q and π

r . The angle sum z = π
p + π

q + π
r

determines if X2 is S2 (z > π), E2 (z = π) or H2 (z < π). The spherical triples are (2, 2, r) as
well as the three triplets (2, 3, 3), (2, 3, 4) and (2, 3, 5) that correspond to irreducible Coxeter
groups. The latter three are the symmetry groups of the Platonic solids. The first of the
three triplets stands for the symmetry group of the tetrahedron, (2, 3, 4) abbreviates the
symmetry group of the cube and octahedron and the last triplet is the symmetry group of
the dodecahedron and icosahedron.

There are three Euclidean triplets and infinitely many hyperbolic ones (see [Tho18,
Example 1.12]). The three Euclidean triplets are (3, 3, 3), (2, 4, 4) and (2, 3, 6), which are all
irreducible (see [Tho18, pp.10-11] and [Dav08, p. 86]).

Figure 2.5 shows the tessellations induced by the three Euclidean triangle groups. The
tessellations of the spherical group (2, 3, 5) and the hyperbolic group (3, 4, 4) in the Poincaré
disc model are depicted in Figure 2.6.
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Chapter 2. Coxeter groups and reflection groups

Figure 2.6: Tessellation of S2 induced by the triangle group (2, 3, 5) on the left and tes-
sellation of H2 in the Poincaré disc model induced by the triangle group (3, 4, 4) on the
right.

Example 2.2.23 (Polygon groups). A spherical polygon P in S2 with m vertices and angles
αi at the vertices that satisfies αi ≤ π

2 and
∑
αi > (m − 2)π has maximally 3 vertices.

Thus, all reflection groups acting on a sphere S2 with a polygon as a fundamental domain
are triangle groups. The exterior angle sum of an Euclidean polygon is 2π. Hence, the
angles αi of an m-gon P in E2 satisfy

∑
αi = (m−2)π. The interior angle sum of a Coxeter

polytope is smaller than the exterior angle sum. This implies m ≤ 4. So, apart from the
Euclidean triangle groups, the only other possibility for P is a rectangle. For every m-tupel
of angles ( π

m1
, . . . , π

mm
) satisfying

∑m
i=1

1
mi

< m − 2, there exists a convex m-gon in H2

with this interior angles and a corresponding reflection group. There exists a right-angled
hyperbolic m-gon P in H2 for every m > 4. Two reflections corresponding to adjacent sides
of P commute while the product of two reflections of non-adjacent sides of P has infinite
order. Such two reflections generates an infinite dihedral group.

In total, any m-tupel of angles yields a geometric reflection group acting on X2 with
an m-gon with these angles as a fundamental domain. With finitely many exceptions it is
X2 = H2 (see [Dav08, pp. 86-87]).

Example 2.2.24 (Polyhedra groups). Let P = ∩i∈IHεi
i be a polyhedron in Hn such that

any pair of hyperplanes in the set of walls {Hi | i ∈ I} has an empty intersection. The
corresponding reflection groupW (P ) is the universal Coxeter group of rank |I| from Example
2.1.10.

Remark 2.2.25. The last Example illustrates in particular that different Coxeter polyhedra
can yield the same abstract Coxeter group. However, different Coxeter polyhedra in Xn
imply different group actions on Xn.
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2.2.4 Classification of geometric reflection groups

Spherical and Euclidean reflection groups are completely classified and therefore well under-
stood. This allows us to distinguish between Coxeter groups that behave like finite and affine
reflection groups and the ones that do not. The former groups split into direct products of
spherical and Euclidean reflection groups.

On the other hand, the classification of general hyperbolic reflection groups is not com-
plete. A reason for this is the existence of non-trivial unbounded polyhedra in Hn because
parallelism is not a transitive relation for hyperplanes in Hn. Hyperbolic reflection groups
and polyhedra are not completely classified yet.

Geometric reflection groups are Coxeter groups and as such they have a Coxeter graph.
For the classification of irreducible finite and irreducible Euclidean reflection groups, the
Coxeter graph is commonly used (see Definition 2.1.7).

2.2.4.1 Classification of spherical and Euclidean reflection groups

Coxeter classified spherical and Euclidean reflection groups in [Cox34] and [Cox35]. The
listing of the Coxeter graphs corresponding to the irreducible spherical and Euclidean re-
flection groups is to be found in Table 2.1. There are two columns of Coxeter graphs. The
left column shows the list of Coxeter graphs associated with the irreducible finite reflection
groups and the right column shows the list of graphs associated with the irreducible affine
reflection groups. The different types of spherical and Euclidean graphs are denoted by
letter abbreviations.

The first line of the left column contains the graphs of type An. These graphs correspond
to the symmetric groups of any finite rank. Graphs of the dihedral groups are A2,B2,G2

and I2(m). In the right column, the graph of the infinite dihedral group D∞ can be seen in
the first line. The three Euclidean triangle groups from Example 2.2.22 are represented by
the graphs of types Ã2, C̃2 and G̃2.

Definition 2.2.26. We classify Coxeter groups in the following way:

1. A Coxeter group is called spherical or finite if it is the direct product of spherical
reflection groups.

2. A Coxeter group is called affine if it is the direct product of Euclidean reflection
groups.

3. An infinite non-affine Coxeter group is a Coxeter group that does not split into a
direct product of spherical and Euclidean reflection groups.

Remark 2.2.27. Every finite Coxeter group is the product of finite reflection groups (see
[Hum90, p. 133]).

Definition 2.2.28. An infinite non-affine Coxeter system (W,S) is called minimal if every
proper standard parabolic subgroup of W is a direct product of spherical and Euclidean
reflection groups.

Remark 2.2.29. Every infinite non-affine Coxeter group has a minimal infinite non-affine
standard parabolic subgroup; it is any standard parabolic subgroup minimal with respect
to inclusion among the infinite non-affine ones.
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Spherical graphs Euclidean graphs

An(n≥1)
∞

Ã1

4Bn(n≥2) Ãn(n≥2)

Dn(n≥4)
4

B̃n(n≥3)

E6

4 4
C̃n(n≥2)

E7
D̃n(n≥4)

E8
Ẽ6

4
F4 Ẽ7

6
G2 Ẽ8

5
H3

4
F̃4

5
H4

6
G̃2

m
I2(m) , m = 5 or m ≥ 7

Table 2.1: Coxeter graphs of irreducible spherical and Euclidean reflection groups.

2.2.4.2 Classification of hyperbolic reflection groups.

Different aspects of the classification of hyperbolic reflection groups are discussed briefly in
this paragraph.

Simplices as fundamental domains. We call a geometric reflection group W (P ) sim-
plicial reflection group if the polyhedron from Theorem 2.2.16 is an n-dimensional simplex
∆n. The next theorem is an implication of Lannér’s Theorem in [Lan50] and combines a list
of results of Chapter V in [Bou02]. It states that minimal infinite non-affine Coxeter groups
can be represented as simplicial hyperbolic reflection groups.

Theorem 2.2.30 (see [Dus12, Proposition 2.1]). Every minimal infinite non-affine Coxeter
system (W,S) can be faithfully represented as a discrete reflection group acting on the hy-
perbolic space Hn, where n = |S| − 1. The elements of S act as reflections with respect to
codimension-1 faces of a simplex ∆ (some of the vertices of ∆ might be ideal).
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Example 2.2.31. Every infinite non-affine Coxeter group with exactly three generators
that does not split into a direct product of Coxeter groups is isomorphic to a hyperbolic
reflection group with a simplex as a fundamental polygon (with possibly ideal vertices).

Remark 2.2.32. Minimal infinite non-affine Coxeter groups are sometimes called hyperbolic
Coxeter groups in standard literature about Coxeter groups like in [Bou02] and [Hum90].
However, a hyperbolic reflection group does not have to be a hyperbolic Coxeter group.
Hyperbolic Coxeter groups are exactly the hyperbolic reflection groups that have a simplex
as a fundamental domain (see [Hum90, pp. 140-141]).

The minimal infinite non-affine Coxeter groups are completely classified due to the work
of Folke Lannér in [Lan50], Jean-Louis Koszul in [Kos67], Nicolas Bourbaki in [Bou02] and
Michel Chein in [Che69] (see [Hum90, p. 141] and [VS88, p. 204]). They only exist in ranks
from three up to ten and for each rank higher than three there exist only finitely many.
These simplicial hyperbolic reflection groups can be divided into the ones with compact
fundamental domains and the ones with non-compact fundamental domains. The former
ones exist only in ranks 3, 4 and 5 (see [Hum90, pp. 141-144]). A list of the compact and
non-compact simplicial hyperbolic reflection groups is to be found in Section 6.9 in [Hum90].

Coxeter polyhedra as fundamental domains. There is not much known in general
about hyperbolic reflection groups with a general Coxeter polyhedron as a fundamental
domain. Compact as well as finite volume fundamental domains exist only until certain
dimensions. Compact hyperbolic Coxeter polytopes do not exist in dimensions higher than
29 by a result of Èrnest Borisovich Vinberg in [Vin81]. Finite volume hyperbolic Coxeter
polyhedra do not exist in dimensions higher than 995 (see [Kho86; Pro87]).
Remark 2.2.33. Since geometric reflection groups are Coxeter groups, the question of whether
all Coxeter groups are geometric reflection groups is immediate. This is proven to be wrong.
There exist infinite non-affine Coxeter groups that cannot be embedded as discrete subgroups
generated by hyperplane reflections in Iso(Hn) for any n ∈ N (see [FT05]). To our knowledge,
there are no general criteria for Coxeter groups that specify when the group is isomorphic
to a hyperbolic reflection group.

2.3 Geometric constructions for Coxeter groups

Not every Coxeter group is a geometric reflection group as described in the last remark.
Nevertheless, there exist constructions of geometric objects for every Coxeter group such
that the Coxeter group acts as a group generated by reflections on the according geometric
objects. In this context, the term reflection is weakened such that the generators might not
correspond to orthogonal reflections in Rn.

We discuss two constructions: the geometric representation by Tits and the basic con-
struction. The latter leads to the Cayley graph, the Coxeter complex and the Davis complex
of a Coxeter system.

2.3.1 The geometric representation

The following theorem is due to Tits (see [Bou02, pp. 89-90]). It is based on a construction
for a Coxeter system (W,S) that yields a faithful representation as a group generated by
linear transformations. Each of these linear transformations fixes a hyperplane pointwise in
a vector space V over R and sends an associated non-zero vector to its negative.
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Theorem 2.3.1 (see [Tho18, p. 35]). Let (W,S) be a Coxeter system with Coxeter matrix
(mij)i,j∈[n] and S = {s1, . . . , sn}. There exists a faithful representation

ρ : W → GLn(R),

such that

(i) for all si ∈ S, the image ρ(si) = σi is a linear involution with a hyperplane as a fixed
point set;

(ii) for all distinct si, sj ∈ S, the product σiσj has order mij.

This representation is called the geometric representation of W . Other names for it in
the literature are standard representation or Tits representation.

Let (W,S) be a Coxeter system. The construction of this representation starts with a
vector space V over R with a bijection between its basis {e1, . . . en} and the finite generating
set S. Therefore, we haveGL(V ) ∼= GLn(R). To have the angle between ei and ej compatible
to mij , define a symmetric bilinear form B in the following way:

B(ei, ej) =

{
− cos π

mij
if mij ∈ N

−1 if mij =∞.

It is B(ei, ei) = 1 and B(ei, ej) ≤ 0 if i 6= j. The image σi : V → V of the generator si from
the theorem is defined as the linear map

σi(v) = v − 2B(ei, v)ei.

The fixed point set of σi is the subspace Hi = {v ∈ V | B(ei, v) = 0} orthogonal to ei with
codimension 1 (a hyperplane). Moreover, σi is an involution, reverses ei and preserves the
bilinear form B.

Remark 2.3.2. For an irreducible Coxeter system (W,S) of rank n, we can read off from the
bilinear form B ifW is a spherical or Euclidean reflection group. B is positive definite if and
only if W is finite. An element si of S corresponds to a reflection across a codimension-1
face Fi of a simplex in Sn−1 such that two different faces Fi and Fj intersect in a dihedral
angle π

mij
.

The bilinear form B is positive semidefinite of corank 1 if and only if W is an Euclidean
reflection group. An element si of S corresponds to a reflection across a codimension-1 face
Fi of either

1. an interval in E1 if n = 2 (for W = D∞), or

2. a simplex in En−1 if n ≥ 3 such that two different faces Fi and Fj intersect in a
dihedral angle π

mij

(see [Dav08, Theorem 6.8.12]).

The geometric representation has some crucial implications, of which the most important
ones for us are the following.

Corollary 2.3.3. A Coxeter group of rank n is isomorphic to a discrete subgroup of GLn(R).
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The next implication of the geometric representation states the existence of a finite index
subgroup of a group-theoretic property. In general, a group G is called virtually P for a
property P if there exists a finite index subgroup H ⊆ G satisfying P.

Definition 2.3.4. A group G is called torsion-free if the identity element is the only element
in G with finite order.

Definition 2.3.5. A group is residually finite if, for each g ∈ G \ {e}, there exists a finite
group Hg and a homomorphism ϕ : G→ Hg such that ϕ(g) 6= 1.

The next corollary is a direct implication of Selberg’s Lemma in [Sel60] and Malcev’s
Theorem in [Mal40]. These are both results about groups that have a faithful representation
onto GLn(R) for n ∈ N. Such groups are called linear groups.

Corollary 2.3.6. Coxeter groups are virtually torsion-free and residually finite.

2.3.2 The basic construction

The basic construction is a method to recover an action of a group G on a space X from
the quotient X/G and the structure of its stabilizers {Gx ⊆ G | x ∈ X} in X/G . It leads
to many examples and is very useful in geometric group theory. The basic construction
is reproduced here partially as it is described in [BH99]. However, for Coxeter groups, it
already goes back to Tit’s works [Tit75] and [Tit86]. It is classical for geometric reflection
groups and dates back even further for this type of group (see [Kos65; Vin72]).

For Coxeter groups, modern literature like [Dav08] and [Tho18] introduce the basic con-
struction to construct the Cayley graph, Coxeter complex and the Davis-Moussong complex.
In this text, the basic construction is restricted to the action of Coxeter groups on topologi-
cal spaces. Thus, most of the technical details in the general basic construction are left out.

Let (W,S) be a Coxeter system. For a topological space X, we construct a geometric
object U(W,X), on which W acts as a group generated by reflections. The first step is the
next definition.

Definition 2.3.7. A mirror structure on a connected Hausdorff space X is a family (Xs)s∈S
of non-empty, closed subspaces Xs. For each x ∈ X define S(x) to be the following subset
of S:

S(x) := {s ∈ S | x ∈ Xs}.

We assume that there exists an x̃ ∈ X such that there exists no s ∈ S with x̃ ∈ Xs. So
the set S(x̃) is empty.

Example 2.3.8. The next two examples are important for the construction of concrete
geometric objects from the basic construction.

1. Let X be a star graph with valence |S| and leaves {vs ∈ X | s ∈ S}. Define the mirror
structure as Xs := vs. The case of three leaves is displayed in Figure 2.7 on the left.

2. Let X be the n-dimensional simplex with |S| = n + 1. The codimension-1 faces
{Fs ⊂ X | s ∈ S} are a mirror structure (Xs = Fs). This situation is displayed in
Figure 2.7 for |S| = 3. More generally, the codimension-1 faces of a simple convex
polytope P are a mirror structure on P .
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Xa Xb

Xc

X
Xa Xb

Xc

X

Figure 2.7: Mirror structures for S = {a, b, c} of a star graph on the left and a 2-dimensional
simplex on the right.

The construction of U(W,X) is as follows: After defining what the mirrors in X are,
the reflection on a mirror is imitated by glueing copies of X along mirrors together in a
way that respects the braid-relations between the corresponding generators in S. For every
group element w ∈W , there exists a copy of X. This is exactly the image of the copy of X
associated with the identity under the action of w.

Write WS′ for the standard parabolic subgroup generated by S′ ⊆ S with
W∅ = {1} (see Definition 2.1.1). Define the equivalence relation ∼ on W ×X as

(w, x) ∼ (w′, x′) :⇔ x = x′ and w−1w′ ∈WS(x).

Definition 2.3.9 (Basic construction). Equip the productW×X with the product topology,
where W has the discrete topology. We write U(W,X) for the quotient space

U(W,X) := (W ×X)/∼ .

The equivalence class of an element (w, x) is denoted with [w, x].

Since W is equipped with the discrete topology and X is a Hausdorff space, the equiv-
alence classes are closed. Left multiplication with an element w is a well-defined automor-
phism on U(W,X). For every w ∈ W , the map i : X → U(W,X) with x 7→ [w, x] is an
embedding. The image of {w}×X in U(W,X) under the projection p : W ×X → U(W,X)
is called chamber and denoted with wX. The chamber 1X is called fundamental chamber.
There is a bijection between W and the set of chambers. The orbit space U(W,X)/W is
homeomorphic to X and 1X is a strict fundamental domain for the W -action on U(W,X)
(see [Dav08, p. 65]).

The next theorem illustrates, how the whole space Xn can be recovered topologically
from a geometric reflection group W on Xn with a fundamental polytope P .

Theorem 2.3.10 (see [Dav08, Theorem 6.4.3.]). Let P =
⋂
i∈I H

εi
i be a Coxeter polytope

in Xn with n ≥ 2 and W (P ) the group generated by the isometric reflections {si | i ∈ I}
across the walls Fi of P . With the mirror structure (Fi)i∈I on P , the group action of W (P )
on Xn induces a homeomorphism

U(W (P ), P )→ Xn with [w, p] 7→ w(p).
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Remark 2.3.11. Note that the assumptions of the theorem above are a special case of the
assumptions in Theorem 2.2.16.

For a more detailed discussion of properties of the basic construction we refer the reader
to Section 4.3 in [Tho18].

The following examples contain the geometric constructions associated with a Coxeter
system most popular in literature besides the geometric representation: the Cayley graph,
the Coxeter complex and the Davis complex.

Example 2.3.12 (Cayley graph).

1. Let (W,S) be a Coxeter system. Define X to be the topological cone

X := S × [0, 1]/{(s, 0) | s ∈ S}

over S. The mirror structure on X is defined as ((s, 1))s∈S . With the basic construc-
tion, a space U(W,X) homeomorphic to the Cayley graph of (W,S) is obtained.

2. Let (W,S) be the triangle group with Coxeter graph

4

4 4

.

The standard parabolic subgroupWS(x) for x ∈ X is non-empty if and only if x = (s, 1)
for some s ∈ S. In this case, WS(x) is {1, s} and otherwise WS(x) is trivial. The
definition of the equivalence relation implies

(w, (s, 1)) ∼ (w′, (s, 1))⇐⇒ w−1w′ ∈ {1, s} ⇐⇒ w = w′ or w′ = ws.

So if x = (s, r) for s ∈ S and r ∈ [0, 1), then [w, x] = {(w, x)}. In the other case where
x = (s, 1) for s ∈ S, we have [w, x] = {(w, s), (ws, s)}. Hence, the space U(W,X) is
obtained by gluing together the chambers wX and wsX along the mirror (s, 1) for all
w ∈W .

Example 2.3.13 (Coxeter complex).

1. Let (W,S = {s1, . . . , sn}) be a Coxeter system of rank n. Denote the (n − 1)-
dimensional simplex with ∆n−1. Since ∆n−1 has n codimension-1 faces {F1, . . . , Fn},
a mirror structure (∆n−1

s )s∈S on ∆n−1 can be defined by ∆n−1
si := Fi. The basic

construction yields to a simplicial complex U(W,∆n−1), which is called the Coxeter
complex of (W,S).

If W is finite, U(W,∆n−1) is homeomorphic to an (n− 1)-dimensional sphere. If W is
infinite, the Coxeter complex of (W,S) is contractible (see [Dav08, p. 68] and [Ser71,
pp. 340-342]).
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2. For the triangle group with Coxeter graph

4

4 4

,

the simplex ∆n−1 is a 2-dimensional simplex. The standard parabolic subgroup WS(x)

for x ∈ ∆n−1 is non-empty if and only if x ∈ Fi for some i ∈ {1, . . . , n}. If the point
x = Fi ∩Fj ∈ ∆2 is the intersection of two distinct faces Fi and Fj , then the standard
parabolic subgroup WS(x) = 〈si, sj〉 ∼= D4 is a dihedral group and the point x in
the following eight different chambers w∆n−1, wsi∆n−1, wsisj∆n−1, wsisjsi∆n−1,
wsisjsisj∆

n−1 = wsjsisjsi∆
n−1, wsjsisj∆n−1, wsjsi∆n−1 and wsj∆n−1 is identified

to one point in U(W,S) for every w ∈W .

SinceW is a minimal infinite non-affine Coxeter group, it can be faithfully represented
as a discrete reflection group acting on H2, where the elements of S act as reflections
across the codimension-1 faces of a 2-dimensional simplex (see Theorem 2.2.30). So
the Coxeter complex U(W,∆2) can be pictured as the tessellation of H2 generated by
the hyperplane reflections corresponding to the generators in S. Figure 2.8 shows the
tessellation in the Poincaré disc model associated with W . The different colours of
codimension-1 faces of the 2-simplices indicate different corresponding generators in
the mirror structure.

Remark 2.3.14. A priori, there is no metric defined on the Coxeter complex. For irreducible
spherical and affine Coxeter groups, the Coxeter complex is metrisable in a way that allows
to identify it with tessellated sphere or tessellated Euclidean space, respectively (see [Tho18,
p. 52]). From Theorem 2.2.30, we know that minimal infinite non-affine Coxeter groups are
simplicial hyperbolic reflection groups. This allows the conclusion that a minimal infinite
non-affine Coxeter group of rank n with a compact simplex as a fundamental domain has
a Coxeter complex that, metrised properly, is isometric to Hn−1. More generally, for a
geometric reflection group W with a simple convex polytope P as a fundamental domain in
Xn, the space U(W,P ) is homeomorphic to Xn (see Theorem 2.3.10). Thus, every simplicial
Coxeter group with a compact fundamental domain has a Coxeter complex homeomorphic
to the underlying metric space Xn.
Remark 2.3.15. As illustrated by Figure 2.8, the Cayley graph U(W,X) and the Coxeter
complex U(W,∆n−1) are always dual to each other for a Coxeter system (W,S). This is due
to their construction. It is important to fix a Coxeter group W together with a generating
set S since both constructions depend not only on the group but also on the generating set.

Example 2.3.16 (Davis complex).

1. Let (W,S) be a Coxeter system. Define the partially ordered set

S := {T ⊆ S | T 6= ∅, WT is finite}

and let L(W,S) denote the corresponding simplicial complex. L(W,S) is called the
nerve of the Coxeter system (W,S). The vertices vs of L(W,S) are in bijection with
the generators in S. The cone K of the barycentric subdivision Lb of L(W,S) is a
connected Hausdorff space. We equip it with a mirror structure (Ks)s∈S such that Ks

is the union of the closed simplices in Lb with vertex vs. For a subset ∅ 6= T ⊆ S the
intersection ∩t∈TKt is non-empty if and only if WT is finite. This implies that WS(x)

is finite for all x ∈ K. The basic construction yields the Davis complex U(W,K).
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1∆2

s2∆2

s3∆2

Figure 2.8: Cayley graph in grey and Coxeter complex with white simplices and coloured
codimension-1 faces of the triangle group (4, 4, 4) embedded in H2 in the Poincaré disc
model.

2. For the triangle group (4, 4, 4) from above, the nerve L := L(W,S) is the hollow
triangle with vertices {vs1 , vs2 , vs3}. The cone K over the barycentric subdivision of
L is the barycentric subdivision of a 2-dimensional simplex. The standard parabolic
subgroup WS(x) for x ∈ K is non-empty if and only if x ∈ Ks for some s ∈ S.
The intersection of two different mirrors Ksi ∩ Ksj contains exactly one point xij .
The point xij is the point that subdivides the 1-dimensional simplex corresponding
to {si, sj} ⊆ S in the barycentric subdivision of L. Just analogously to the Coxeter
complex for this Coxeter system, the point xij in the following eight chambers wK,
wsiK, wsisjK, wsisjsiK, wsisjsisjK = wsjsisjsiK, wsjsisjK, wsjsiK and wsjK
is identified to one point in the Davis complex U(W,K) for every w ∈W . This is why
in this case, the Davis complex is the barycentric subdivision of the Coxeter complex.
The coloured and grey edges together with the white simplices in Figure 2.8 are the
Davis complex of the triangle group (4, 4, 4).

Remark 2.3.17. Comparing the construction of the Cayley graph and the Davis complex
with the basic construction, we see that the Cayley graph is included in the Davis complex
of the same Coxeter system as the 1-skeleton of the Davis complex.

Remark 2.3.18. The Coxeter complex as well as the Davis complex can also be defined as the
geometric realisations of abstract simplicial complexes. The simplicial complex underlying
the Coxeter complex of a Coxeter group W , for example, is the poset of cosets of the form
w〈A〉 with reverse inclusion ordering, where w ∈ W and A ( S. For more details, we refer
the reader to Chapter 7 in [Dav08].

The Davis complex is also called Davis-Moussong complex since Gabor Moussong proved
that it can be equipped with a piecewise Euclidean metric so that it has non-positive cur-
vature.
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Theorem 2.3.19 (see [Mou88, Theorem A]). Let (W,S) be an arbitrary Coxeter system.
The Davis complex Σ of (W,S) equipped with its canonic piecewise Euclidean metric is
CAT(0).

Remark 2.3.20. This especially means that a Coxeter group acts by isometries properly
discontinuously and cocompactly on a CAT(0) space, its Davis complex.

Moussong’s theorem has further consequences. One of these is the following result, which
is used later.

Theorem 2.3.21 (see [Dav08, Theorem 12.3.5.]). Let W be a virtually abelian irreducible
Coxeter group. Then W is either finite or a cocompact Euclidean reflection group.

2.4 Roots

In a geometric reflection group, each reflection corresponds to a hyperplane, across which
it reflects all points of the underlying space. This is inherent from Definition 2.2.19. A hy-
perplane is an affine codimension-1 subspace and uniquely determined by its 1-dimensional
orthogonal complement. It is sometimes more convenient to build the connection between
group theory and geometry or linear algebra via directional vectors contained in this com-
plement rather than working with the corresponding hyperplanes.

The affine 1-dimensional orthogonal complements get permuted by the according Coxeter
group W just as the hyperplanes corresponding to the reflections in W do. We associate to
every such complement two directional vectors α and −α.

Historically, roots and root systems emerged from Lie Theory. There is a connection
between certain finite Coxeter groups and semisimple Lie algebras. The content of this
section is taken from [Hum90], [Deo82] and [Deo86].

Definition 2.4.1. Let (W,S) be an arbitrary Coxeter group and V be a vector space over
R with basis B := {αs | s ∈ S}. Consider the W action w(v) = ρ(w)(v) from the geometric
representation (see Subsection 2.3.1). The root system ΦW of W is the orbit of B under the
W -action: ΦW := {w(αs) | s ∈ S,w ∈W}.

Remark 2.4.2. The root system exclusively contains unit vectors since W preserves the bi-
linear form B on V . Furthermore, the root system is symmetric, ΦW = −ΦW because
s(αs) = −αs for all s ∈ S. A root α ∈ ΦW can be factored uniquely into a linear com-
bination α =

∑
s∈S rsαs with rs ∈ R, where all scalars rs have the same sign (see [Deo82,

Proposition 2.1]).
Every group that has a representation over R and a corresponding root system satisfying

this condition and two additional technical conditions is a Coxeter group. This is another
characterisation of Coxeter groups (see [Deo86]).

Definition 2.4.3. A root α is called positive (negative) if rs ≥ 0 (rs ≤ 0) for all s ∈ S in
the unique linear combination α =

∑
s∈S rsαs. We denote the set of positive roots with Φ+

W

and the set of negative roots with Φ−W .

Lemma 2.4.4 (see [Hum90, Section 5.4]). For a Coxeter group W , the union of positive
and negative roots is the whole root system: Φ+

W ∪ Φ−W = ΦW .
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Definition 2.4.5. Let V be an Euclidean vector space with a root system Φ. A subset
U ⊆ V is called root space if it is the span of the roots it contains: U = 〈U ∩ Φ〉. Since Φ
is a finite set, there are only finitely many root spaces. The set of all root spaces in V is
called root space arrangement and denoted with Arr(Φ) = {U ⊂ V | U = 〈U ∩ Φ〉}.

Definition 2.4.6. The root dimension dimΦ(A) of a subset A ⊆ V is the minimal dimension
of a root space in Arr(Φ) that contains A. It is defined for every A ⊆ V because V is a root
space itself.

2.4.1 Affine reflection groups and root systems of finite Coxeter groups

All affine Coxeter groups have a certain structure that relates them strongly to a corre-
sponding finite Coxeter group and its root system. An affine Coxeter group W acts on an
Euclidean vector space V such that a finite reflection subgroup W0 ⊆ W is isomorphic to
the spherical subgroup generated by all reflections in W that fix the origin in V .

Definition 2.4.7. For λ ∈ V , the isomorphism tλ(x) = x + λ for all x ∈ V is called
translation.

The following theorem is a composition of several results (see [Hum90, Chapter 4],
[Bou02, §2, Chapter VI] and [IM65, pp. 7-10]).

Theorem 2.4.8. Let (W,S) be an affine Coxeter system. The group T of translations in W
is a normal subgroup. The quotient W0 := W/T is a finite Coxeter group. W is isomorphic
to the semidirect product T oW0.

Remark 2.4.9. The resulting finite Coxeter system (W0, S0) always has only entries of the
form mij = 2, 3, 4 and 6 besides the diagonal (i 6= j) in its Coxeter matrix. This type of
finite Coxeter group is called crystallographic or Weyl group (see [Hum90, Chapters 2.8 and
2.9]).

The root system ΦW0 of the finite Coxeter system (W0, S0) is contained in a Euclidean
vector space V equipped with a symmetric bilinear form B (see Paragraph 2.3.1). The vector
space V has dimension |S0|. For each root α ∈ ΦW0 and k ∈ Z, define an affine hyperplane

Hα,k := {a ∈ V | B(a, α) = k}.

Let sα,k be the reflection across Hα,k defined as

sα,k(a) = a− (B(a, α)− k)
2α

B(α, α)
.

Then, W is the group generated by all reflections sα,k for α ∈ ΦW0 and k ∈ Z. This induces
a W -action on the space V .

Remark 2.4.10. Starting with a crystallographic Coxeter group, it is possible with the steps
above to construct a group generated by reflections across affine hyperplanes in a Euclidean
space. The resulting group is always an affine Coxeter group (see [Bou02, Proposition 9, §2,
Chapter VI]).

Remark 2.4.11. Note that the construction above is distinct from the geometric representa-
tion for affine W and the corresponding root system.
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3. Word length and reflection length

This chapter covers the fundamental combinatorics of the word length and the reflection
length in Coxeter groups. Before defining the reflection length function on a Coxeter group,
some combinatorial theory of Coxeter groups is necessary. We introduce the word length
in Coxeter groups and discuss the word problem. In Section 3.3, reflections and the com-
binatorial theory of the reflection length function on Coxeter groups are examined. Lastly,
formulas for the reflection length in finite and affine Coxeter groups are presented.

Some passages of this chapter are taken with minor deviations from the author’s works
[Lot24b] and [Lot24a]. A general reference for the topics discussed in this chapter is [BB05].

3.1 Words and group elements

Let (W,S) be a Coxeter system for this section. It is sometimes important to distinguish
between words over the alphabet S and the elements they represent in the group W .

Definition 3.1.1. The free monoid (S∗, ·) is the set of finite words consisting of letters in
S together with concatenation of words as an operation on S∗. A word s = u1 · · ·up in S∗

is abbreviated with a bold variable. Let ω : S∗ →W be the canonical surjection that maps
a word to the corresponding group element. We write ω(s) for the element in W that is
represented by the word s. In fact, for the equivalence relation ∼ generated by insertion
and deletion of words (sisj)

mij and sisi, the quotient S∗/ ∼ is a group isomorphic to the
Coxeter group W (see [BB05, p. 3]).

The first questions that may arise from the distinction between words and elements are
if si 6= sj in S implies ω(si) 6= ω(sj) in W and if the order of ω(sisj) in W is mij for i 6= j.
To both questions, the answer is positive (see Lemma 2.1.6).

In general, for every group G with generating set Y , there exists an associated statistic
lY : G 7→ N0. The map lY counts for every g ∈ G the minimal number of elements in
Y ∪ Y −1 that suffice to factor g.

Definition 3.1.2. For a group G with generating set Y , set Ȳ := Y ∪ Y −1. The according
length function lY is defined as

lY : G→ N0 ; g 7→ min{n ∈ N0 | g ∈ Ȳ n}

with Ȳ n = {y1 · · · yn ∈ G | yi ∈ Ȳ }. The identity element 1 ∈ G has length 0.

The next two sections are about the two most important generating sets for Coxeter
groups and the corresponding length functions.
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3.2 Word length

The standard generating set S in a Coxeter system (W,S) induces a statistic lS on W
according to Definition 3.1.2.

Definition 3.2.1. In a Coxeter system (W,S), every standard generator s ∈ S is an in-
volution. The length function lS : W → N0 corresponding to S is called the word length.
Minimal standard generator factorisations of an element w ∈ W with respect to the word
length are called S-reduced.

Remark 3.2.2. Geometrically, the word length lS(w) of an element w in a Coxeter system
(W,S) is the length of the shortest path between the vertices corresponding to 1 ∈ W and
w ∈ W in the Cayley graph. Since the Cayley graph and the Coxeter complex of the same
Coxeter system are dual, the word length is the minimal number of simplices between the
simplex corresponding to 1 ∈ W and the simplex corresponding to w ∈ W in the Coxeter
complex of (W,S) (see Examples 2.3.12, 2.3.13 and Remark 2.3.14).

The next example illustrates that the word length depends strongly on the braid relations
in W .

Example 3.2.3. Fix a finite set of generators S = {s1, . . . , sn} and consider the word
s = s1s2s3s2s3 ∈ S∗. In the following enumeration of Coxeter groups Wi with generating
set S and canonic projection ωi : S∗ →Wi, let liS be the word length in Wi.

1. Let (W1, S) be the universal Coxeter system with no braid relations. Since there are
no consecutive subwords sisi in s, the factorisation s = s1s2s3s2s3 is S-reduced in W1

and the word length is l1S(ω1(s)) = 5.

2. For the Coxeter system (W2, S) that contains only the braid relation (s2s3)2 = 1

in its Coxeter presentation, the factorisation s = s1s2s3s2s3 is not S-reduced. We
have ω2(s2s3s2s3) = 1. A single generator is different from the identity. Hence, an
S-reduced factorisation is ω2(s) = s1 and the word length is l2S(ω2(s)) = 1.

In this context, the following theorem is crucial for the later consideration of the powers
of Coxeter elements.

Theorem 3.2.4 (see [Spe09, Theorem 1]). Let W be an infinite, irreducible Coxeter group
and let s1, . . . , sn be any ordering of generators in S. Then the word (s1 · · · sn)λ is S-reduced
for any λ ∈ N.

Two important conditions connected to the word length lead to a characterisation of
Coxeter groups. Let W be a group generated by a set S of distinct involutions in W .

Notation 3.2.5. A hat over a letter in a word means omitting this letter:

u1 · · · ûi · · ·un = u1 · · ·ui−1ui+1 · · ·un.

Deletion Condition 3.2.6. The tuple (W,S) satisfies the Deletion Condition if the fol-
lowing holds: If lS(ω(u1 · · ·uk)) < k for a word u1 · · ·uk ∈ S∗, then there exist indices i < j
such that ω(u1 · · ·uk) = ω(u1 · · · ûi · · · ûj · · ·uk).

Exchange Condition 3.2.7. The tuple (W,S) satisfies the Exchange Condition if the
following holds: For w ∈ W and s ∈ S and every S-reduced factorisation ω(u1 · · ·up) = w
of w, either lS(sw) = p+ 1 or there exists an index i such that w = ω(su1 · · · ûi · · ·up).
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The next theorem is a characterisation of Coxeter groups and illustrates how the word
length is connected to the presentation of a Coxeter system.

Theorem 3.2.8 (see [Hum90, Sections 1.7 and 4.6]). Let W be a group generated by a set
S of distinct involutions in W . The following statements are equivalent:

(i) The tuple (W,S) is a Coxeter system.

(ii) The tuple (W,S) satisfies the Deletion Condition.

(iii) The tuple (W,S) satisfies the Exchange Condition.

The Deletion Condition implies the next corollary.

Corollary 3.2.9 (see [BB05, p.17]). Let (W,S) be a Coxeter system.

(i) For a factorisation w = ω(u1 · · ·up) with ui ∈ S of an element w ∈ W , an S-reduced
expression for w is obtained from u1 · · ·up by omitting an even number of letters in
the word u1 · · ·up.

(ii) For two S-reduced expressions w = ω(u1 · · ·up) = ω(u′1 · · ·u′p), the set of s ∈ S ap-
pearing in the first expression is equal to the set of letters that are appearing in the
second expression

(iii) No generator s ∈ S can be expressed just with the other generators in S \ {s}. This
means that S is a minimal generating set for W .

Before treating the computability of the word length, there is a more fundamental clas-
sical problem of whether the identity can always be distinguished from other elements in a
group.

3.2.1 The word problem

For groups that are given by a finite generating set and relations, like Coxeter groups are,
Max Dehn introduced three fundamental problems. The first of these problems is the word
problem. The word problem is the question of whether there exists an algorithm that decides
for every element s ∈ S∗ if ω(s) = 1 in W (see [Deh12]). This is equivalent to the existence
of an algorithm that decides if two words in S∗ represent the same group element. If there
exists an algorithm for a group G then G has a solvable word problem.

It is well known that the word problem in Coxeter groups is solvable. In this section,
we state a specific theorem by Tits in [Tit69] leading to a solution to the word problem.
This solution also provides a way to compute the word length of every element in a Coxeter
group. Before stating the result, some definitions are necessary.

Definition 3.2.10. A subword of a word s = u1 · · ·up over the alphabet S is a product
ui1 · · ·uiq with 1 ≤ i1 < · · · < iq ≤ p. A subword is consecutive if the subsequence i1, . . . , iq
is consecutive.

Definition 3.2.11. We distinguish two types of relations in the definition of a Coxeter
group. Substituting the consecutive subword sisi with the empty word e in a word is called
a nil-move. For mij ∈ N, let bij be the word of length mij consisting only of alternating
letters si and sj starting with si. Substituting a consecutive subword bij with the subword
bji in a word in S∗ is called a braid-move.
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Remark 3.2.12. Let a and b be two elements in S∗ and si, sj ∈ S. From the relations of the
type s2

i = 1, the following nil-move can be derived

ω(a · sisi · b) = ω(a · b).

Equivalent to a braid relation (sisj)
mij = 1 is the braid-move

ω(a · bij · b) = ω(a · bji · b).

Braid-moves do not change the length of a word. Braid-moves on subwords bij of even
S-length do not change the number of letters of a certain type in a word. Braid-moves on
subwords of odd S-length change the number of letters of a certain type by ±1.

Theorem 3.2.13 (see [Tit69, Theorem 3]). Let (W,S) be a Coxeter system and w be an
element in W .

(i) For every word s ∈ S∗ with ω(s) = w, there exists a finite sequence of nil-moves and
braid-moves that transforms s into an S-reduced expression for w.

(ii) For every pair of S-reduced expressions for w, there exists a finite sequence of braid-
moves that transforms one of the S-reduced expressions into the other.

The second statement is due to Hideya Matsumoto (see [Mat64]). It is also called the
Matsumoto property of a Coxeter group.

Corollary 3.2.14. The numbers of letters in two words s and s′ representing the same
element ω(s) = ω(s′) = w ∈W have the same parity.

Remark 3.2.15. For a fixed word s ∈ S, it is possible to enumerate algorithmically all words
obtainable from s via nil-moves and braid-moves. Thus, it is decidable if s is S-reduced and
Theorem 3.2.13 is a solution to the word problem in Coxeter groups (see [AB08, p. 86]). So
the theorem above also yields an algorithm to estimate the word length of any element in a
Coxeter group.

3.3 Reflection length

One of the simplest types of isometries of a metric space are reflections across hyperplanes.
A classical result is that the group of isometries Iso(Xn) is generated by reflections across
hyperplanes and every isometry can be factored into maximally n+ 1 reflections (see Theo-
rem 2.2.3). Geometric reflection groups are finitely generated discrete subgroups of Iso(Xn).
This motivates the question of which elements in geometric reflection groups are reflections.
More generally with regards to Section 2.3, the question is which elements of a Coxeter
group act as reflections on the geometric representation and the basic construction. Once
these questions are answered, we study the length function of the set of reflections in this
section.
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3.3.1 Reflections in Coxeter groups

Reflections are involutions and orientation reversing. Therefore, a reflection in a Coxeter
group should be expressed by an odd number of generators, which act as reflections.

From the geometric representation of a Coxeter system (W,S), we deduce the defini-
tion of the set of reflections in W : By the definition of the geometric representation (see
Paragraph 2.3.1), every generator si ∈ S corresponds to a reflection σi across a hyperplane
Hi = {v ∈ V | B(ei, v) = 0}. Let R ⊂W be the set of elements in W that act as reflections
across hyperplanes on V . This means that ρ(r) is a reflection in V for all r ∈ R.

Let si ∈ S be a generator and r ∈ R be a reflection distinct from si such that ρ(r)
is a reflection across a hyperplane Hr with a unit vector αr generating the orthogonal
complement of Hr with respect to the bilinear form B. Hence, the hyperplane Hr can be
written as Hr = {v ∈ V | B(αr, v) = 0}. The image of Hr under σi is

σi(Hr) = {σi(v) | v ∈ V and B(αr, v) = 0}
= {v ∈ V | B(αr, σi(v)) = 0}
= {v ∈ V | B(σi(αr), v) = 0}.

The second equation is true since σi is an involution by definition. The image ρ(W ) preserves
the bilinear form B and this implies the third equation. In conclusion, the vector σi(αr)
is orthogonal to σi(Hr). The reflection across σi(Hr) is equal to σi ◦ ρ(r) ◦ σi. This is the
motivation for the following definition.

Definition 3.3.1. For a Coxeter system (W,S), a conjugate r of a generator in S is called
reflection. The set of reflections in W is

R := {wsw−1 ∈W | w ∈W, s ∈ S}.

Remark 3.3.2. Note that if the Coxeter group is infinite, the set of reflections R is infinite,
too. In literature, the pair (W,R) is sometimes called dual Coxeter system. This originates
from [Bes03], where Garside monoids associated with certain Artin groups are investigated.

Since the standard generators in S are all involutions, every reflection is an involution
and S ⊆ R. So R is a generating set for W , too.

Roots and reflections. From the discussion above, it follows that a reflection r = wsw−1

in W acts as a reflection ρ(r) across a hyperplane Hr on V . If αs is the root of s, then
αr := w(αs) is the root corresponding to r and a unit vector in the orthogonal complement
of Hr. On the other hand, every root α ∈ ΦW corresponds to a reflection rα in W . For
α = w′(αs′), we have rα = w′s′w′−1. The set of all reflections R can also be written as
R = {rα ∈ W | α ∈ ΦW }. The roots α and −α yield the same reflection rα = r−α (see
[Hum90, Section 5.79]).

3.3.2 The reflection length function

As a generating set, the set of reflections R in a Coxeter system (W,S) induces the second
example of a length function lR on W (see Definition 3.1.2). This manuscript is about
reflection length in infinite non-affine Coxeter groups. Before we restrict ourselves to infinite
non-affine Coxeter groups, we state some basic results about reflection length in general
Coxeter groups. This section also contains proofs to be self-contained.
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Definition 3.3.3. The length function lR : W → N0 corresponding to the generating set R
of reflections is called the reflection length. Minimal reflection factorisations of an element
w ∈W are called R-reduced. Sometimes the reflection length is also called absolute length.

Remark 3.3.4. Whether a reflection factorisation is R-reduced, depends strongly on the
relations in the Coxeter group. We have lR(w) ≤ lS(w) for all w ∈ W in an arbitrary
Coxeter system (W,S) because S ⊆ R.
Remark 3.3.5. The reflection length lR(w) is the minimal number of hyperplane reflections
sufficient to reflect the simplex corresponding to w ∈ W onto the simplex corresponding to
1 ∈W in the Coxeter complex of (W,S).

Example 3.3.6. Consider the Coxeter groups W1 and W2 over three generators a, b, c
defined by the following two graphs from left to right:

∞
∞ ∞ ∞

a b c

∞

The element represented by the word w = abcabc in W1 has reflection length 4. An
R-reduced factorisation is abcabc = aba · aca · b · c. In contrast, the element represented
by w in W2 has reflection length 2. This is the minimal possible reflection length because
of parity reasons. An R-reduced factorisation is abcabc = aba · cbc. The elements in both
groups represented by w have word length 6.

In the example, we claim without proof for the moment that the factorisations are R-
reduced. This is also the case for the next geometric example.

Example 3.3.7. Let W be the Coxeter group defined by the Coxeter graph

4 .

Figure 3.1 shows the Coxeter complex of W with some coloured top-dimensional simplices
and numbered black hyperplanes. The reflection length of the element w corresponding
to the 2-dimensional simplex N is 4. According to Remark 3.3.5, the minimal number of
hyperplane reflections to reflect N back to the identity simplex N is 4. One way to reflect N
back is the sequence of reflections across the black hyperplanes indicated by the numbering.
Let ri ∈W be the reflection across the hyperplane Hi. The reflection r1 reflects N to N, r2

reflects N to N, r3 reflects N to N and r4 reflects N to N. A minimal reflection factorisation
for w is w = r1r2r3r4.

The exchange condition in Paragraph 3.2.7 can be strengthened to the next theorem.

Theorem 3.3.8 (Strong Exchange Condition, see [BB05, Theorem 1.4.3]). Let w be an
element in a Coxeter system (W,S) with a factorisation w = ω(u1 · · ·up) (not necessarily
S-reduced) with ui ∈ S for 1 ≤ i ≤ p. For every reflection r ∈ R with lS(rw) < lS(w), there
exists a letter uj ∈ {u1, . . . , up} such that rw = ω(u1 · · · ûj · · ·up).
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H1

H2

H4 H3

Figure 3.1: Geometric reflection factorisation of the simplex N in the Coxeter complex of
the triangle group (3, 3, 4) embedded in H2 in the Poincaré disc model.

The following corollary illustrates the relation between a factorisation of r and an S-
reduced factorisation of w.

Corollary 3.3.9 (see [BB05, Corollary 1.4.4]). If w = ω(u1 · · ·um) is S-reduced and r ∈ R,
then the following are equivalent:

(i) lS(rw) < lS(w),

(ii) rw = ω(u1 · · · ûi · · ·um) for some i ∈ {1, . . . ,m},

(iii) r = ω(u1u2 · · ·ui · · ·u2u1) for some i ∈ {1, . . . ,m}.

The index i in (ii) and (iii) is uniquely determined.

Lemma 3.3.10 (see [Bre+19, Remark 1.3]). In a Coxeter system (W,S), the reflection
length function lR : W → N0 is constant on conjugacy classes.

Proof. Let w be an element inW with R-reduced factorisation w = r1 · · · rq. For an element
w′ = vwv−1 in the same conjugacy class as w with v ∈W , we have

w′ = vr1 · · · rqv−1 = vr1v
−1 · · · vrqv−1

with vriv
−1 ∈ R. So the right term is a reflection factorisation for w′. This implies the

inequality lR(w′) ≤ lR(w). The same argument with reversed roles of w and w′ yields the
equality lR(w) = lR(w′).

The lemma below is elementary for the basic properties of the reflection length function.

Lemma 3.3.11 (see [BB05, Lemma 1.4.1]). For a Coxeter system (W,S), the map s 7→ 1
for all s ∈ S extends to a group homomorphism τ : W → Z/2Z . For all reflections r ∈ R, it
is τ(r) = 1.
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Proof. Let s and s′ be two words representing the same element ω(s) = ω(s′) = w ∈ W .
The numbers of letters in s and s′ have the same parity (see Corollary 3.2.14). Thus, the
rule s 7→ 1 for all s ∈ S directly implies τ(w) = lS(w) mod 2 for all w ∈ W . The map
τ : W → Z/2Z is well-defined because all the relations in the definition of a Coxeter group
have even lengths. Further, τ is a group homomorphism: The numbers lS(ω(uv)) and
lS(ω(u)) + lS(ω(v)) have the same parity for all words u,v ∈ S∗ since the group elements
ω(uv) and ω(u) · ω(v) are equal. Reflections have odd S-length. This is why, τ(r) = 1 for
all r ∈ R.

Corollary 3.3.12. For an element w in a Coxeter system (W,S), its word length lS(w) and
its reflection length lR(w) have the same parity: lS(w) ≡ lR(w) mod 2.

Some more basic properties of the reflection length function can be deduced from the
previous lemma. Analogous results hold for the word length (see [BB05, Proposition 1.4.2]).

Lemma 3.3.13 (see [Bre+19, Remark 1.3]). Let (W,S) be a Coxeter system, u, v ∈W and
r ∈ R.

(i) lR(uv) = lR(vu).

(ii) |lR(u)− lR(v)| ≤ lR(uv) ≤ lR(u) + lR(v).

(iii) lR(uv) ≡ lR(u) + lR(v) mod 2.

(iv) lR(ru) = lR(ur) = lR(u)± 1.

Proof. The first assertion is a direct consequence of Lemma 3.3.10 and the fact that the
standard generators in S are involutions.

Let r1 · · · rp and t1 · · · tq be R-reduced reflection factorisations for u and v, respectively.
Then, r1 · · · rp · t1 · · · tq is a reflection factorisation for uv. Consequently, we obtain the
inequality lR(uv) ≤ lR(u) + lR(v). On the other hand, if the inverse of one R-reduced
factorisation appears in the other R-reduced factorisation at the beginning of v or the end
of u as a consecutive subword, we have |lR(u) − lR(v)| = lR(uv). This proves the second
assertion.

With Lemma 3.3.11, we have τ(w) ≡ lR(w) mod 2 in Z/2Z for all w ∈ W . The third
assertion follows with the group homomorphism property of τ . We have τ(uv) = τ(u)+τ(v)
(see Lemma 3.3.11).

From (i), we know lR(ru) = lR(ur). Substituting v with r in (ii) and (iii) implies the
fourth assertion.

The following lemma allows a crucial restriction for the investigation of reflection length
in Coxeter groups. The reflection length function is additive on direct products. Thus,
for the investigation of the reflection length in Coxeter groups, we only need to consider
irreducible Coxeter groups.

Lemma 3.3.14 (see [MP11, Proposition 1.2]). When (W,S) is a reducible Coxeter system,
S has a non-trivial partition S = S1 t S2 such that every element in S1 commutes with
every element in S2. In this context, W = WS1 ×WS1 and the reflections R in W can be
partitioned as well R = R1 t R2, where Ri is the set of reflections in WSi . An element
w ∈ W can be written as w = w1w2 with wi ∈ WSi . For the reflection length, we have
lR(w) = lR1(w1) + lR2(w2).
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Proof. Let w be an arbitrary element in W with w = r1 · · · rm as an R-reduced reflection
factorisation. Every reflection that is conjugated to an element in Si is contained in Ri, since
reflections can be represented as palindromes of odd length by definition and all generators
in S1 commute with all generators in S2. This is the reason why, we can rewrite r1 · · · rm
as ri1 · · · riprip+1 · · · rim such that ri1 , . . . , rip ∈ R1 and rip+1 , . . . , rim ∈ R2. This is done by
solely commuting reflections in R1 with reflections in R2 and not changing any reflection.
Hence, we have w = w1w2 where w1 = ri1 · · · rip ∈ WS1 and w2 = rip+1 · · · rim ∈ WS2 .
These reflection factorisations are R-reduced because w = r1 · · · rm is R-reduced. Since
W = WS1 ×WS1 , it follows lR(w) = lR1(w1) + lR2(w2).

Sometimes it is useful to rewrite reflection factorisations.

Lemma 3.3.15 (see [MP11, Lemma 3.5]). Let w = r1 · · · rm be a reflection factorisation
of an element w in a Coxeter system (W,S). For any selection 1 ≤ i1 < · · · < ik ≤ m
of indices, there is a reflection factorisation of w of length m whose first k reflections are
ri1 · · · rik . There is another reflection factorisation of w of length m, where the reflections
corresponding to the selected indices are the last k reflections.

Proof. The set of reflections R in W is closed under conjugation by definition. Reflections
are involutions. For r, r′ ∈ R, the elements t = rr′r and t′ = r′rr′ are also in R and we
have rr′ = tr = r′t′. Hence, in any reflection factorisation a consecutive pair of reflections
rr′ may be replaced with the pairs tr or r′t′. This rewriting rule does not change the length
of the factorisation. Iterating this procedure suffices to move successively any subword of a
reflection factorisation into a certain position (see [MP11, p. 716]).

3.3.3 Automorphisms and reflection length

This paragraph discusses briefly how reflections and reflection length behave under group
automorphisms. We restrict ourselves to automorphisms as the current state of research on
isomorphisms between Coxeter groups is still in the early stages.

Lemma 3.3.16. Let ϕ : W → W be an automorphism of a Coxeter group W . Further, let
R be the set of reflections. If ϕ(R) ⊆ R, the automorphism ϕ preserves reflection length:

lR(w) = lR(ϕ(w)) for all w ∈W.

Proof. With the conditions as above, it follows that ϕ(R) = R and ϕ−1 also preserves
reflections (see [Fra01, Lemma 1.33]). Let w be an element in W expressed by an R-reduced
factorisation w = r1 · · · rk with ri ∈ R for 1 ≤ i ≤ k. By applying the automorphism ϕ,
we obtain a reflection factorisation for the image ϕ(w) = ϕ(ri) · · ·ϕ(rk). Thus, we have
lR(w) ≥ lR(ϕ(w)). Consider the inverse ϕ−1 and an R-reduced factorisation for ϕ(w) to
arrive at lR(w) ≤ lR(σ(w)) with the same argument. In total, it is lR(w) = lR(ϕ(w)).

This result has direct consequences for the group of automorphisms of universal Coxeter
groups. Recall that the universal Coxeter group Wn of rank n has no relations between all
distinct generators.

Corollary 3.3.17. Let w be an element in the universal Coxeter group Wn with n ≥ 1 and
let σ be an element in the group of automorphisms Aut(Wn). Then, lR(w) = lR(σ(w)).
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Chapter 3. Word length and reflection length

Proof. From the homomorphism property of σ, it follows σ(R) ⊆ R because in Wn an
element has order 2 if and only if it is contained in R. This is true since there are no braid
relations in Wn.

Remark 3.3.18. William N. Franzsen investigated the group of automorphisms of Coxeter
groups in [Fra01]. An important property in his work is that automorphisms preserve
reflections. Together with the lemma above, Franzsen’s results imply that the group of
automorphisms of a Coxeter group W preserves reflection length if all standard parabolic
subgroups of W are finite or if W is minimal non-affine (see [Fra01, Lemma 4.4 and §4.3]).

A necessary condition for a homomorphism ϕ : W → W ′ between Coxeter groups to
preserve reflection length is to be injective. Otherwise, the reflection length is not preserved
for the non-trivial elements in the kernel of ϕ. Not all Coxeter groups have a group of
automorphisms that preserves reflection length as the following example shows. Injectivity
is especially not a sufficient condition for a homomorphism to preserve reflection length.

Example 3.3.19. Let W be the Coxeter group of rank 3 defined by the Coxeter diagram:

∞
s1 s2 s3

∞

Define the automorphism α : W → W via α(s1) = s1, α(s2) = s2 and α(s3) = s1s3. Note
that the homomorphism α is an endomorphism, since α(s1)α(s3) = s3. Further, it has order
2. Thus, it is an automorphism (see [Fra01, Lemma 5.13]).

3.3.4 Computing reflection length

Every factorisation into generators of an element is a reflection factorisation for this element.
Thus, finding a reflection factorisation is generally easy. However, it can be difficult to prove
the minimality of a reflection factorisation. Since the word problem for Coxeter groups
is solvable, it is possible to decide whether a reflection factorisation represents a certain
element. On the other hand, the set of reflections is infinite in an infinite Coxeter group and
until now there is no dual version known for Theorem 3.2.13 (see [Bes03; Bau+14; Weg20;
WY23] for a dual version of the Matsumoto property).

The theorem below by Matthew Dyer provides an effective way to compute the reflection
length of an element from an S-reduced factorisation. Together with its proof, it is closely
related to the Strong Exchange Condition. The method for computing the reflection length
deduced from this theorem is the only one known, at the time of writing, to compute the
reflection length in an arbitrary Coxeter group of an arbitrary element. So it is essential for
the study of the reflection length in Coxeter groups and we use it for many proofs in this
text.

Theorem 3.3.20 (see [Dye01, Theorem 1.1.]). Let s = u1 · · ·up be an S-reduced expression
in a Coxeter system (W,S). Then, lR(ω(s)) is the minimum of the natural numbers q for
which there exist 1 ≤ i1 < · · · < iq ≤ p such that 1 = ω(u1 · · · ûi1 · · · ûiq · · ·up).

The theorem shows that the reflection length can be understood as a measure of how
many standard generators an element differs from the identity.
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3.3. Reflection length

Example 3.3.21. Consider the Coxeter group W of type Ã2 corresponding to the graph

s1 s2

s3

.

Let w := s1s2s3 ∈ S∗. The reflection length of ω(w4s1s2) is 2. This is to be seen by omitting
the following letters:

s1s2s3s1ŝ2s3s1s2s3ŝ1s2s3s1s2 = s1s2 · s3s1s3s1 · s2s3s2s3 · s1s2

= s1s2 · s1s3 · s3s2 · s1s2 = 1.

Hence, by Theorem 3.3.20 the reflection length is at most 2. Since the word length is even,
this implies lR(w4s1s2) = 2.

The proof in [Dye01] for Theorem 3.3.20 does not use the fact that the word s is S-
reduced. So we state a slightly more general result.

Corollary 3.3.22. Let (W,S) be a Coxeter system and let s = u1 · · ·up ∈ S∗ be a word (not
necessarily S-reduced). Then lR(ω(s)) is the minimum of the natural numbers q for which
there exist 1 ≤ i1 < · · · < iq ≤ p such that 1 = ω(u1 · · · ûi1 · · · ûiq · · ·up).

Corollary 3.3.23 (see [Dye01, Corollary 1.4]). Let (W,S) be a Coxeter system and let
W ′ ⊆ W be a parabolic subgroup. Let R′ = W ′ ∩ R be the set of reflections in W ′. For the
reflection lengths, we have lR(w′) = lR′(w

′) for all w′ ∈W ′.

Definition 3.3.24. In a Coxeter system (W,S), let w = u1 · · ·up ∈ S∗ be a word repre-
senting an element w = ω(w) ∈W . We call a minimal set of indices like in Theorem 3.3.20
deletion set for w. For the cardinality of a deletion set D(w), we have |D(w)| = lR(w).

Example 3.3.25. Consider the Coxeter group W defined by the Coxeter graph

s1 s2

s3

4

44

.

Define w := s1s2s3 ∈ S∗. The reflection length of ω(w5s1s2) is 5 and there are multiple
deletion sets.

1. ω(s1s2ŝ3s1s2ŝ3s1s2s3s1ŝ2s3s1ŝ2s3s1s2) = ω(s2s1 · s1s3s2) has reflection length 1.

2. ω(s1ŝ2s3s1s2ŝ3s1s2ŝ3s1s2ŝ3s1s2s3s1ŝ2) = 1.

Lemma 3.3.26 (see [Lot24a, Lemma 1.24.]). Let w be an element of a Coxeter system
(W,S) represented by a word s = u1 · · ·up ∈ S∗ and let D(s) = {i1, . . . , iq} be a deletion set.
For every proper subset N =( D(s), let w\N be the element represented by the word that we
obtain from s by removing all letters with indices in N . With w′ := w\N , we have

lR(w′) = q − |N | and lR(w\N∪{ij}) = lR(w′)− 1 for all ij ∈ {i1, . . . , iq} \N.
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Chapter 3. Word length and reflection length

Figure 3.2: Coxeter complex of the triangle group (3, 3, 4) with coloured simplices according
to reflection length embedded in H2 in the Poincaré disc model.

Proof. Define the reflection ri := u1 · · ·ui−1uiui−1 · · ·u1. A deletion set D(s) of indices
1 ≤ i1 < · · · < iq ≤ n corresponds to the following minimal reflection factorisation of w:

w = riq · · · ri1 .

A proper subset N ( D(s) is a totally ordered set in1 < · · · < inm with m < q. To remove
all the letters corresponding to the indices inj ∈ N from the word s, we multiply from the
left with rin1 · · · rinm . This results in

ω(u1 · · · ûinj · · ·up) = rin1 · · · rinm · w = rin1 · · · rinm · riq · · · ri1 .

For every rinj exists an rik such that rinj = rik because N ( D(s). Thus, we have

w\N = rin1 · · · rinm · riq · · · ri1 = rin1 · · · rinm · riq · · · rinm · · · rin1 · · · ri1 .

In the reflection factorisation rin1 · · · rinn ·rip · · · rinn · · · rin1 · · · ri1 , all reflections between two
equal reflections rinj can be written as reflections conjugated with rinj . The reflection length
only changes by ±1 when multiplying with a reflection (see Lemma 3.3.13). We conclude
lR(w\N ) = lR(w) − |N |. With the same arguments we obtain lR(w\N∪{ij}) = lR(w\N ) − 1
for every ij ∈ {i1, . . . , iq} \N .

Example 3.3.27. Based on Theorem 3.3.20, we implement an algorithm in Appendix A to
compute the reflection length of arbitrary elements in arbitrary Coxeter groups. With this
algorithm it is possible to colour top-dimensional simplices in the Coxeter complex according
to the reflection length of the corresponding element. An example is displayed in Figure 3.2.
For an explanation of the colour scheme see Paragraph 1.4.1.
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3.4. Reflection length in finite and affine Coxeter groups

3.3.5 Reflection length in reflection subgroups

Subgroups of a Coxeter group generated by a finite subset of the set of reflections have a
reflection length function, too. We show via an example that the reflection length functions
of the Coxeter group and of the subgroup are not equal in general.

The basic object considered in this paragraph is the following.

Definition 3.3.28. A reflection subgroup of a Coxeter group W is a subgroup W ′ ⊆ W
generated by a finite subset T ⊆ R of the set of reflections in W .

Reflection subgroups of Coxeter groups are again Coxeter groups.

Theorem 3.3.29 (see [Deo89; Dye90]). Let (W,S) be a Coxeter system and R be its set
of reflections. A subgroup WT generated by a finite subset T ⊆ R is a Coxeter group with
respect to a canonical set of generators.

Hence, every reflection subgroup of a Coxeter group admits a reflection length function.
The following example shows that the reflection length function of a Coxeter group and a
proper reflection subgroup are not equal on the reflection subgroup in general.

Example 3.3.30. Consider the Coxeter system (W,S) with Coxeter diagram

∞
s1 s2 s3

∞

and the reflection subgroup W ′ generated by s1, s2 and s3s2s3. It is to be seen with Dyer’s
Theorem 3.3.20 that the element w = s1s2s3s2s3s1s2s3s2s3 has reflection length 2 in W .
The element w has an even word length and we have

s1s2ŝ3s2s3s1s2ŝ3s2s3 = 1.

However, the reflection length of s1s2s3s2s3s1s2s3s2s3 is not 2 in the reflection subgroup
W ′. The Coxeter generating set of W ′ is S′ = {a = s1, b = s2, c = s3s2s3} (this follows
with the results in [Dye90]). The order of all products of two generators is ∞. This is why,
W ′ is a universal Coxeter group of rank 3. The word length of (abc)2 is even. Omitting all
possible pairs of generators in (abc)2 does not yield the identity. The reflection length of
(abc)2 is 4. This follows from Theorem 1.

3.4 Reflection length in finite and affine Coxeter groups

The reflection length function on finite and affine Coxeter systems is well understood. The
reflection length is a bounded function on both types of these groups. Moreover, there
exist formulas that connect the reflection length with other geometric statistics. According
to Lemma 3.3.14, the reflection length function is additive on direct products of Coxeter
groups. This is why, it suffices to understand the reflection length function on irreducible
Coxeter systems, which are the spherical and Euclidean reflection groups in the classification
discussed in Section 2.2.4.1. We follow the publications [Car72] by Carter as well as [Bre+19]
by Lewis, McCammond, Petersen and Schwer, in which the main results regarding the
reflection length in finite and affine Coxeter groups are established.
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Each element w0 in a spherical Coxeter group is an orthogonal transformation (see
Theorem 2.2.4). Two subspaces can be associated with an orthogonal transformation of the
Euclidean space Em: The set of vectors v ∈ Em that are fixed by w0 and the set of vectors
µ ∈ Em representing the different movements of w0, These concepts extend to affine Coxeter
groups.

Definition 3.4.1. Let w be an isometry of a real vector space V .

1. The fixed space Fix(w) of w is defined as the kernel Fix(w) := ker(w − 1). It consists
of all points x ∈ V that fulfil w(x) = x. If Fix(w) is not empty, it is an affine subspace
of V .

2. The motion of an element x ∈ V under w is λ ∈ V with w(x) = x+ λ. The move-set
Mov(w) of w is defined as the image Mov(w) := im(w− 1). Equivalently, it is the set
of all λ ∈ V such that there exists x ∈ V with w(x) = x+ λ.

Example 3.4.2. For a reflection r ∈ R in a geometric reflection group W across a hyper-
plane Hr ⊆ En, the fixed space is Fix(r) = Hr. The motion of any x ∈ En under r is λ
orthogonal to Hr, which is a scalar multiple of the root corresponding to r. The move-set
Mov(r) is the line passing through the origin with direction λ.

Remark 3.4.3. If the Coxeter group W is finite, each element w is an orthogonal transfor-
mation and the fixed space and the move-set are orthogonal complements. This does not
hold in general (see [Bre+19, Remark 1.8]).

3.4.1 Reflection length in finite Coxeter groups

The first general result regarding reflection length is about finite Coxeter groups and due to
Carter. We remind the reader that the root αr corresponding to a reflection r = wsw−1 ∈ R
in a Coxeter group W is w(αs) (see Section 3.3.1).

Theorem 3.4.4 (see [Car72, pp.3-4]). Let w be an element in a finite reflection group W .
Its reflection length lR(w) is equal to the codimension of the fixed space Fix(w). A reflection
factorisation w = r1 · · · rk is R-reduced if and only if the roots {αr1 , . . . , αrk} corresponding
to the reflections are linearly independent.

Remark 3.4.5. The finite case harbours a particularly strong duality between the word length
and the reflection length. There are also just finitely many reflections in these groups. The
maximum of the word length lS is exactly |R| and the maximum of the reflection length lR
is exactly |S| (see [Bes03, Section 1]).

Corollary 3.4.6 (see [MP11, Corollary 2.6]). Let W be finite Coxeter group W of rank n
whose geometric representation acts on En by orthogonal transformations. All w ∈W have
reflection length lR(w) ≤ n and for every element wn ∈ W that only fixes the origin in Rn,
we have lR(w0) = n. Precisely, every Coxeter element w1 in W has the maximal reflection
length lR(w1) = n.
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3.4.2 Reflection length in affine Coxeter groups

This section summarizes two results from [Bre+19]. One is a formula for the reflection
length in affine Coxeter groups. The other one is about a factorisation for every element
that behaves well with the reflection length function. To describe the reflection length
function on affine Coxeter groups, it is necessary to understand the relation between affine
Coxeter groups and the associated finite Coxeter group illustrated in Section 2.4.

Let (W,S) be an affine Coxeter system of rank n. W is isomorphic to the semidirect
product T oW0, where T is the normal subgroup of translations in W and W0 := W/T is
a finite Coxeter group (see Theorem 2.4.8).

Definition 3.4.7. An element w′ ∈ W is called elliptic if Fix(w′) 6= ∅. The elliptic part
we of an arbitrary element w ∈ W is its image p(w) = we in W0 under the projection
p : W →W0. The elliptic elements in W are exactly the elements of finite order.

Definition 3.4.8. For an affine Coxeter group W and an element w ∈ W , a factorisation
w = tλ · e, where tλ is a translation and e is an elliptic element, is called translation-elliptic
factorisation of w. The translation tλ is called translation part and e is called elliptic part.

Choose an inclusion map i : W0 →W that is a section of the projection

p : W →W0 = W/T .

Theorem 2.4.8 says that there exists a unique isomorphism between W and T oW0. The
kernel ker(p) is exactly the set of translations inW . The origin 0 ∈ V is the unique point that
is fixed by i(W0). Every element w ∈ W has a unique factorisation w = tλu, where tλ ∈ T
is a translation and u is an elliptic element in i(W0). The image i(we) of the elliptic part
we of w is exactly u. Not all translation-elliptic factorisations come from an identification
of W with T oW0 (see Remark 3.4.13).

Now, we define all statistics necessary to state the formula for reflection length in affine
Coxeter groups.

Definition 3.4.9. When w is an element in a spherical or affine Coxeter group, its move-
set is contained in an Euclidean vector space V that also contains the corresponding root
system Φ. The dimension dim(w) of such an element is defined to be the root dimension
(Definition 2.4.6) of its move-set. In symbols, dim(W ) := dimΦ(Mov(w)). LetW be an affine
Coxeter group acting on an Euclidean space E and let p : W → W0 be its projection map.
For each element w ∈W , we can compute the dimension of w and the dimension of its elliptic
part we = p(w) ∈ W0. We call e = e(w) = dim(we) the elliptic dimension of w. Instead of
focusing on the dimension of w itself, we focus on the number d = d(w) = dim(w)−dim(we),
which we call the differential dimension of w.

Remark 3.4.10. Note that dim(w) = d+ e. Both statistics d(w) and e(w) have a geometric
meaning. An element is a translation if and only if its elliptic dimension is 0 and analogously
an element is elliptic if and only if its differential dimension is 0. Both of these statistics are
computable (see [Bre+19, Remarks 1.36 and 1.37]).
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Theorem 3.4.11 (see [Bre+19, Theorem A]). Let W be an Euclidean reflection group and
let p : W → W0 be the projection onto its associated spherical Coxeter group. For any
element w ∈W , its reflection length is

lR(w) = 2 · dim(w)− dim(p(w)) = 2d+ e,

where e = dim(p(w)) and d = dim(w)− dim(p(w)).

This formula for the reflection length is accompanied by a well-chosen translation-elliptic
factorisation of each element.

Theorem 3.4.12 (see [Bre+19, Theorem B]). Let W be an affine Coxeter group. For
every element w ∈ W , there exists a translation-elliptic factorisation w = tλu such that
lR(tλ) = 2d(w) and lR(u) = e(w). In particular, lR(w) = lR(tλ) + lR(u) holds for this
factorisation of w.

Remark 3.4.13. The translation-elliptic factorisation from the theorem above does not come
from an isomorphism between W and T oW0. It is proven that it is not always possible
to choose u = p(w) in the theorem above, where p : W → W0 is the projection map (see
[Bre+19, Example 2.4]).
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4. Unbounded reflection length in
infinite non-affine Coxeter groups

This chapter deals with two proofs for the unboundedness of reflection length function in
infinite non-affine Coxeter groups. The infinite non-affine case includes all scenarios that
are not covered in the sections before. Jon McCammond and T. Kyle Petersen conjecture
in [MP11] that the reflection length function is unbounded on infinite non-affine Coxeter
groups. The first section briefly discusses the proof of Kamil Duszenko in [Dus12] for the
unboundedness. A new proof for the unboundedness is presented in the second section. Here,
we also give a proof that irreducible infinite non-affine Coxeter groups are acylindrically
hyperbolic.

4.1 Unbounded reflection length

We reproduce Duszenko’s result Theorem 4.1.3 in this section and give an alternative proof
in the next section. Both proofs rely on the existence of an unbounded homogeneous quasi-
morphisms on minimal infinite non-affine Coxeter groups.

Definition 4.1.1. A quasi-morphism of a group G is a map f : G → R such that there
exists a constant D(f) ∈ R, called the defect of f , and

|f(xy)− g(x)− f(y)| ≤ D(f)

holds for all x, y ∈ G. A quasi-morphism f : G→ R is called homogeneous if f(gn) = nf(g)
for all g ∈ G and n ∈ N. A quasi-morphism f : G → R is called anti-symmetric if
f(g−1) = −f(g) for all g ∈ G.

Remark 4.1.2. Homogeneous quasi-morphisms are constant on conjugacy classes (see [Kot04]).

Duszenko states the following theorem.

Theorem 4.1.3 (see [Dus12, Theorem 1.1]). For any infinite non-affine Coxeter group W ,
the reflection length is an unbounded function on W .

Every infinite non-affine Coxeter group has a minimal infinite non-affine Coxeter group
as a standard parabolic subgroup (see Remark 2.2.29). With Lemma 3.3.23, it is sufficient
to prove Theorem 4.1.3 for minimal infinite non-affine Coxeter groups.
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4.1.1 Proof of the unboundedness

The following two definitions are needed to understand the main ingredients of the proof of
Theorem 4.1.3 in [Dus12].

Definition 4.1.4. Let δ > 0. A geodesic triangle in a metric space is said to be δ-slim if
each of its sides is contained in the δ-neighbourhood of the union of the two other sides. A
geodesic space X is said to be δ-hyperbolic if every triangle in X is δ-slim.

Definition 4.1.5. A finitely generated group is hyperbolic (in the sense of Gromov) if its
Cayley graph is a δ-hyperbolic metric space for some δ > 0. A hyperbolic group is called
elementary if it is finite or virtually infinite cyclic.

The proof of Theorem 4.1.3. The proof of Theorem 4.1.3 relies on a result that every
minimal infinite non-affine Coxeter group admits a surjection onto a non-elementary δ-
hyperbolic group (see [Dus12, Theorem 1.2]). This answers the general question of whether
every infinite non-affine Coxeter group admits a surjection onto a non-elementary hyperbolic
group by Tadeusz Januszkiewicz in [Bri+10] in the special case of minimal infinite non-affine
Coxeter groups. The basis for the proof of this result is that Coxeter groups are virtually
torsion-free (see Corollary 2.3.6) and that minimal infinite non-affine Coxeter groups are all
hyperbolic reflection groups with a possibly unbounded simplex as a fundamental domain
(see Theorem 2.2.30).

Duszenko constructs a simply connected negatively curved space for every minimal in-
finite non-affine Coxeter group on which a quotient of the Coxeter group acts cocompactly
and properly discontinuously. It follows that every minimal infinite non-affine Coxeter group
admits a surjection onto a non-elementary δ-hyperbolic group. Every non-elementary δ-
hyperbolic group G has an unbounded homogeneous quasi-morphism ϕ : G → R. Every
bi-invariant word metric on such a group is unbounded (see [Dus12, Proposition 3.2.] and
[GK11, Lemma 3.7]). The unboundedness of the reflection length on infinite non-affine Cox-
eter groups follows with these results. Here, bi-invariance means invariant under conjugation
like the reflection length is.

4.2 Alternative proof of the unboundedness

In this section, we discuss an alternative proof of the unboundedness of the reflection length
function on infinite non-affine Coxeter groups. It is based on the fact that irreducible infinite
non-affine Coxeter groups are acylindrically hyperbolic (see Theorem 4.2.9). The outline of
this alternative proof was communicated to the author by Andreas Thom. For the proof
that infinite non-affine Coxeter groups are acylindrically hyperbolic, we follow a sketch of a
proof communicated to the author by Anthony Genevois.

Definition 4.2.1 (see [Bow08, p. 284]). An isometric action of a group G on a metric space
X is acylindrical if, for every ε > 0, there exists R,N > 0 such that for every two points
x, y ∈ X with d(x, y) ≤ R, there are at most N elements g ∈ G satisfying

d(x, gx) ≤ ε and d(y, gy) ≤ ε.
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Definition 4.2.2. Two geodesic rays γ, γ′ : [0,∞) → X in a metric space X are called
asymptotic if sup{d(γ(x), γ′(x)) | x ∈ [0,∞)} < ∞. This is an equivalence relation on the
set of geodesic rays. The visual boundary ∂X is the set of equivalence classes of geodesic
rays. We call the elements ideal points and denote them with γ(∞). The union of the space
and its visual boundary is denoted X := X ∪ ∂X.

Remark 4.2.3. Two geodesic rays are asymptotic if and only if their Hausdorff distance is
finite. For Hn, the visual boundary is the same as the Gromov boundary. For further details,
see Section 1.8 in [Gro87].

The following definition is part of the standard classification of groups acting on hyper-
bolic spaces from Gromov (see [Gro87, Section 8.2]).

Definition 4.2.4. Let G be a group acting isometrically on a metric δ-hyperbolic space X.
The limit set Λ(G) of G is the set of accumulation points in ∂X of an orbit G(s):

Λ(G) := G(s) ∩ ∂X.

The group action of G is non-elementary if |Λ(G)| =∞.

Definition 4.2.5 (see [Osi16]). A group G is called acylindrically hyperbolic if it has a
non-elementary acylindrical action on a δ-hyperbolic space.

Remark 4.2.6. Every acylindrically hyperbolic group G is SQ-universal (see [DGO16, The-
orem 8.1]). This means that every countable group can be embedded into a quotient of
G.

Definition 4.2.7. A geodesic line λ(−∞,∞) ⊆ X in a CAT(0) space X has rank-one if it
is not the boundary of a flat half-plane in X. An isometry γ of a CAT(0) space has rank-one
if it has no fixed point and an invariant geodesic line that has rank-one.

The next result is due to Alessandro Sisto in [Sis18] but was reformulated to the following
theorem by Denis Osin.

Theorem 4.2.8 (see [Osi16, Section 8, (d)]). Let G be a group acting properly on a proper
CAT(0) space. If G contains a rank-one element, G is either virtually cyclic or acylindrically
hyperbolic.

Let Σ be the Davis complex of an arbitrary irreducible infinite non-affine Coxeter system
(W,S). From Remark 2.3.20, we know that the elements ofW act cocompactly and properly
discontinuous as isometries on Σ. Further, Σ is CAT(0). Every Coxeter element acts as a
rank-one isometry on Σ (this follows from [CF10, Proposition 4.5]). Hence, every irreducible
infinite non-affine Coxeter group is either virtually cyclic or acylindrically hyperbolic. A
cyclic group is abelian. Virtually abelian irreducible Coxeter groups are characterized by
Theorem 2.3.21. By the definition of infinite non-affine Coxeter groups, we obtain the
theorem:

Theorem 4.2.9. Irreducible infinite non-affine Coxeter groups are acylindrically hyperbolic.

In [BBF19], the Brooks construction is generalised to acylindrically hyperbolic groups.
It defines a family of anti-symmetric quasi-morphisms on the free group F2 of rank two.
These quasi-morphisms are not a bounded distance from a homomorphism. This implies
that these quasi-morphisms are unbounded considering the unbounded distance from the
trivial homomorphism. The extension of the Brooks construction to acylindrically hyperbolic
groups is the next theorem.
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Chapter 4. Unbounded reflection length in infinite non-affine Coxeter groups

Theorem 4.2.10 (see [BBF19, Theorem 2.2]). Let G be an acylindrically hyperbolic group.
Then, there exists a free subgroup F2 ⊆ G such that for every Brooks quasi-morphism L2

there is a quasi-morphism L : G→ R such that L|F2
= L2. Further, there exists an element

w in the subgroup F2 and a quasi-homomorphism L′ : G→ R with L′(wn) ≥ n for all n ∈ N.

Corollary 4.2.11. For every acylindrically hyperbolic group G, there exists an unbounded
homogeneous quasi-morphism ϕ : G→ R.

Proof. We homogenize the quasi-morphism L′ from the theorem by defining

ϕ(x) := lim
n→∞

L′(xn)

n
.

The resulting quasi-morphism ϕ is anti-symmetric and homogeneous. It is not trivial and
unbounded since it has a bounded distance from L′ (see [Cal09, Lemma 2.21]).

We are ready to state the alternative proof.

Proof of Theorem 4.1.3. The finite union of the conjugacy classes of generators in S in a
Coxeter system (W,S) is the set of reflections

⋃
s∈S [s] = R. Every homogeneous quasi-

morphism ϕ : W → R is constant on conjugacy classes (see Remark 4.1.2). Since S is finite,
there exists a constant C such that ϕ(r) < C for all r ∈ R. Hence, for all w ∈W we have

ϕ(w) < lR(w) · (D(ϕ) + C)−D(ϕ)

by applying the quasi-morphism property. This implies that if an unbounded homogeneous
quasi-morphism exists, the reflection length function lR is unbounded on W , too. So it
remains to show that on every minimal infinite non-affine Coxeter group there exists an
unbounded homogeneous quasi-morphism.

According to Theorem 4.2.9, minimal infinite non-affine Coxeter group are acylindrically
hyperbolic. Every acylindrically hyperbolic group admits an unbounded homogeneous quasi-
morphism ϕ : G→ R (see Corollary 4.2.11). With the first paragraph, the alternative proof
is complete.

Many questions arise directly from the general assertion of Theorem 4.1.3 with non-
constructive proofs. Which ones are the elements with large reflection lengths in infinite
non-affine Coxeter groups? Is there a formula for the reflection length in infinite non-affine
Coxeter groups? The remaining part of this work is dedicated to the investigation of the
reflection length in infinite non-affine Coxeter groups and partial answers to these questions.
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5. Reflection length in universal
Coxeter groups

The braid relations are decisive for the factorisation of an element into reflections. This can
be seen by looking at the solution to the word problem for Coxeter groups. The simplest
starting point for the investigation of the reflection length in Coxeter groups is therefore
to consider universal Coxeter groups. These have a minimal number of relations among
all Coxeter groups. In [MP11], McCammond and Petersen mention that the n-th power
of a Coxeter element in the universal Coxeter group of rank 3 has reflection length n + 2
without providing a proof. We generalise this result to arbitrary rank universal Coxeter
groups. Results about the relation between word length and reflection length as well as an
upper bound for the reflection length in Coxeter groups in general follow in Section 5.2 and
Section 5.3.

Some of the results presented in this chapter also appear in the article [DP21] by Brian
Drake and Evan Peters. The results were obtained independently by the author. For a
detailed breakdown of this, see Authorship Comment 5.3.4.

5.1 Formula for powers of Coxeter elements

Recall that the universal Coxeter group Wn of rank n is generated by n involutions in
S = {s1, . . . , sn} and there is no braid relation between two distinct generators (see Ex-
ample 2.1.10). Every element in Wn is represented by a unique reduced word in S∗. This
is a direct consequence of the solution to the word problem in Coxeter groups (see The-
orem 3.2.13). In this section, a formula for the reflection length of the elements of the
form

(s1 · · · sn)λs1 · · · si
with 1 ≤ i ≤ n and λ ∈ N0 is proved. The formula is a simple combination of the variables
n, λ and i.

Since the S-reduced words representing an element are unique for every element in a
universal Coxeter group, it is practical to count generators in words and relate these numbers
to the reflection length. Further, n = 3 is the smallest rank such that Wn is an infinite non-
affine Coxeter group. The reflection length function of the universal Coxeter group Wn is
abbreviated with lRn .

Lemma 5.1.1. For w ∈ W3 with lRn(w) = m ≥ 3, an expression e ∈ S∗ representing w
contains all three different types of generators and these three types each occur in e at least
m− 2 times.
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Chapter 5. Reflection length in universal Coxeter groups

Proof. We prove the lemma by induction. For m = 3 the assumption is true. Consider an
element w ∈ W3 with lRn(w) = m + 1. We assume m ≥ 3. So the S-reduced expression
for w contains all three different types of generators s1, s2 and s3. Otherwise, the reflection
length of w would be maximally 2. If we omit an arbitrary letter in an expression of w, we
obtain a word with reflection length m or m+ 2 (see Lemma 3.3.13). With Theorem 3.3.20
and the induction hypothesis, this word has to contain at least m − 2 generators of every
kind. Since the omitted generator is arbitrary, we obtain that there are at least m + 1 − 2
generators of every kind in an expression for w.

Remark 5.1.2. This lower bound for the number of generators in the reduced expression is
sharp according to the next theorem.

Theorem 1 (Formula for powers of Coxeter elements). In a universal Coxeter group Wn of
rank n ≥ 2, the following formula holds

lRn((s1 · · · sn)λs1 · · · si) = λ · (n− 2) + i,

for λ ∈ N0 and 1 ≤ i ≤ n.

Proof. Dyer’s Theorem 3.3.20 gives us the correct upper bound for every λ and n. The
word (s1 · · · sn)m is reduced. Removing all generators except s1 and s2 yields to the word
(s1s2)λ+1 or (s1s2)λs1 since we are assuming 1 ≤ i ≤ n. In this procedure, in total λ · (n−2)
generators are removed if i ≤ 2. Otherwise, in total λ ·(n−2)+ i−2 generators are removed.
According to Theorem 3.3.20, we have

lRn((s1 · · · sn)λs1 · · · si) ≤ λ · (n− 2) + i.

For an arbitrary n, we prove the formula by induction over λ. It is lRn(s1 · · · si) = i for i ≤ n
with Theorem 3.3.20 because each generator appears once and no nil-moves are possible.
Hence, we assume the formula

lRn((s1 · · · sn)λs1 · · · si) = λ · (n− 2) + i

holds for all natural numbers smaller or equal to λ.
Firstly, we show for λ+ 1 by induction over i:

lRn((s1 · · · sn)λ+1 · s1 · · · si) = lRn((s1 · · · sn)λ+1) + i− 2 for 1 ≤ i ≤ n.

According to Lemma 3.3.13, we have lRn((s1 · · · sn)λ+1 · s1) = lRn((s1 · · · sn)λ+1) ± 1. Re-
moving all generators except s1 and s2 means removing (λ+1) ·(n−2) generators and leaves
the element (s1s2)λ+1 · s1, which is a reflection and therefore has reflection length 1. The
induction hypothesis gives us

lRn((s1 · · · sn)λ+1) = λ · (n− 2) + n = (λ+ 1) · (n− 2) + 2.

Again, with Theorem 3.3.20, we obtain lRn((s1 · · · sn)λ+1 · s1) = lRn((s1 · · · sn)λ+1)− 1.
For i 7→ (i+ 1), we know from Lemma 3.3.13 that multiplying with a reflection increases

or decreases the reflection length by one. We assume the latter now, which means

lRn((s1 · · · sn)λ+1s1 · · · si+1) = lRn((s1 · · · sn)λ+1s1 · · · si)− 1 (5.1.1)
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what is equivalent to

lRn((s1 · · · sn)λ+1s1 · · · si+1 · si+1) = lRn((s1 · · · sn)λ+1s1 · · · si+1) + 1.

Accordingly, there exists an R-reduced expression r1 · · · rp ·si+1 = (s1 · · · sn)λ+1s1 · · · si with
ri ∈ R. By the word property (see Theorem 3.2.13), equivalent words can be transformed
into each other by nil-moves and braid-moves. Since there are no braid relations in universal
Coxeter groups, we obtain r1 · · · rpsi+1 by inserting subwords of the form ss into the reduced
word (s1 · · · sn)λ+1 s1 · · · si (see Theorem 3.2.4). We may assume that all ri are S-reduced
for themselves. This means that the first and the last letter of an inserted subword ss have
to belong to different reflections in the factorisation r1 · · · rp · si+1.

What follows is that one inverse nil-move has to be inserting si+1si+1 at the end, where
the second si+1 is the last reflection in r1 · · · rpsi+1. The first si+1 is not a reflection in
the R-reduced expression. This would contradict the fact that r1 · · · rpsi+1 is R-reduced.
Further, there exists no S-reduced word si+1wsi+1 with w ∈ Wn for r1, since this would
mean an insertion of si+1si+1 at the beginning of (s1 · · · sn)λ+1s1 · · · si and therefore also a
contradiction to r1 · · · rp · si+1 being R-reduced. Hence, the last j reflections rj , rj+1, . . . , rp
in the R-reduced expression are conjugated with si+1 where 1 < j ≤ p. It follows

(s1 · · · sn)as1 · · · si = r1 · · · rj−1 and si+1 · · · sn(s1 · · · sn)bs1 · · · si+1 = rj · · · rp

with 1 ≤ a, b ∈ N and b = λ+ 1− a− 1. In total, we obtain

lRn((s1 · · · sn)λ+1s1 · · · si) = lRn((s1 · · · sn)λ+1s1 · · · si+1si+1)

= lRn((s1 · · · sn)λ+1s1 · · · si+1) + 1

= lRn((s1 · · · sn)as1 · · · si) + lRn(si+1 · · · sn(s1 · · · sn)bs1 · · · si+1) + 1.

From the induction hypotheses, we know that lRn((s1 · · · sn)as1 · · · si) = a · (n− 2) + i since
a < λ + 1. Before we can apply the induction assumption to the other term, we have to
modify it slightly. Since reflection length is invariant under conjugation (see Lemma 3.3.10),
we have

lRn(si+1 · · · sn(s1 · · · sn)bs1 · · · si+1) = lRn(si+2 · · · sn(s1 · · · sn)bs1 · · · si)
= lRn(si+1si · · · s1(s1 · · · sn)b+1s1 · · · si).

The second equality is obtained by inserting the word si+1si · · · s1s1 · · · si+1. It is b ≤ λ and
the induction assumption gives us

lRn(si · · · s1(s1 · · · sn)b+1s1 · · · si) = (b+ 1) · (n− 2) + 2.

Lemma 3.3.13 yields to lRn(si+1si · · · s1(s1 · · · sn)b+1s1 · · · si) = lRn((s1 · · · sn)b+1)±1. Com-
posing everything, we get

lRn((s1 · · · sn)λ+1s1 · · · si) = lRn(r1 · · · rpsi+1)

= lRn((s1 · · · sn)as1 · · · si) + lRn(si+1 · · · sn(s1 · · · sn)bs1 · · · si+1) + 1

= a · (n− 2) + i+ (b+ 1) · (n− 2) + 2± 1 + 1

= (λ+ 1) · (n− 2) + 2 + i+ 1± 1 > lRn((s1 · · · sn)λ+1) + i− 2.
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Chapter 5. Reflection length in universal Coxeter groups

This contradicts the induction assumption for i. Consequently, our assumption in Equa-
tion 5.1.1 is wrong and the following equation is proven

lRn((s1 · · · sn)λ+1s1 · · · si+1) = lRn((s1 · · · sn)λ+1s1 · · · si) + 1.

The induction hypothesis implies for λ+ 1 that

lRn((s1 · · · sn)λ+1 · s1 · · · si) = lRn((s1 · · · sn)λ+1) + i− 2 for 1 ≤ i ≤ n.

Corollary 5.1.3. In a universal Coxeter group Wn of rank n > 1, the following formula for
the reflection length holds

lRn((s1 · · · sn)λ) = λ · (n− 2) + 2

for natural numbers λ ∈ N.

Remark 5.1.4. All parabolic subgroups of a universal Coxeter group are universal Coxeter
groups. Additionally, permuting the generators does not change the formula, because this
induces automorphisms of the universal Coxeter group and the group of automorphisms of
Wn preserves reflection length for all n ≥ 1 (see Corollary 3.3.17). For the same reason,
the formula holds for all elements in the same conjugacy class as the powers of a Coxeter
element. Exploiting automorphisms together with the properties of the reflection length
function possibly leads to formulas for further elements.

Remark 5.1.5. The formula in Theorem 1 is easily computable independent of the input
size. Contrary, the formula proved in [Bre+19] reduces the computation of the reflection
length partially to the computation of the nullity of a vector. This can be reduced to an
NP-complete problem (see [Bre+19, Appendix A]).

Remark 5.1.6. In an arbitrary infinite non-affine Coxeter group, Theorem 1 does not hold
because of the braid-relations. Moreover, the sequence of powers of a Coxeter element pos-
sibly has a bounded reflection length, even though the reflection length function is generally
unbounded by Theorem 4.1.3! To see this, it is sufficient to look at a Coxeter system of rank
3, in which two generators commute like the following lemma shows.

Lemma 5.1.7. Let (W,S = {s1, s2, s3}) be a Coxeter system with two distinct commuting
generators. For λ ∈ N, the powers of the Coxeter element (s1s2s3)λ ∈W have the following
reflection length:

lR((s1s2s3)λ) =

{
2 for even λ
3 or 1 for odd λ.

Proof. Since two generators commute, there are distinct 1 ≤ i, j ≤ 3 with mij = 2. Re-
flection length is invariant under conjugation (see Lemma 3.3.10). Exchanging the two
generators that commute in (s1s2s3)λ does not change the element, since they are adjacent
and commute. This is why, we may assume that m13 = 2 without loss of generality.

Take the following subdivision

(s1s2s3)λ = (s1s2s3)m · (s1s2s3)λ−m,

where m = λ
2 − 1 if λ is even and m = λ−1

2 if λ is odd. Next, we apply the braid-move
s3s1 7→ s1s3 to all consecutive subwords s3s1 in the word (s1s2s3)λ−m. Braid-moves do
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not change the element represented by the word. When λ is even, we obtain the reflection
factorisation

(s1s2s3)m · s1s2s1 · (s3s2s1)λ−m−2 · s3s2s3. (5.1.2)

In this case, it is λ−m− 2 = m. When λ is odd, we obtain the factorisation

(s1s2s3)m−1 · s1s2s3s1s2s1 · (s3s2s1)λ−m−2 · s3s2s3. (5.1.3)

In the latter case, it is λ−m− 2 = m− 1.
From both factorisations, we can read off an upper bound for the reflection length of

(s1s2s3)λ. The first factorisation (5.1.2) is a reflection factorisation and the reflection length
has the same parity as the word length (see Corollary 3.3.12). The word does not represent
the identity, because it is reduced (see Theorem 3.2.4). Hence, it is lR((s1s2s3)λ) = 2 for even
λ. The second factorisation (5.1.3) is not a reflection factorisation. Theorem 3.3.20 gives us
lR((s1s2s3)λ) ≤ 3 by removing the two letters in the middle of the word s1s2s3s1s2s1.

Example 5.1.8. The projective linear group PGL2(Z) over the integers is a Coxeter group
defined by the Coxeter graph

s1 s2 s3

∞

.

Consider the element represented by the periodic word (s1s2s3)λ of all generators. We have
lR((s1s2s3)λ) is equal to 2 if λ is even, and smaller or equal to 3 if λ is odd.

5.2 Minimal word length and minimal reflection length

In this section, the function mn
S : N→ N with

mn
S(m) := min{lS(w) | lRn(w) = m,w ∈Wn}

is investigated. We know that the reflection length increases or decreases by 1 when an ele-
ment is multiplied by a generator (see Lemma 3.3.13). Hence,mn

S grows strictly monotonous.
The formula from Theorem 1 connects the word length and reflection length in the following
way

lRn((s1 · · · sn)λs1 · · · si) = λ · (n− 2) + i = λn+ i− 2λ

= lS((s1 · · · sn)λs1 · · · si)− 2λ.
(5.2.1)

The symmetric group Sym(n) acts onWn by permuting the generators in expressions for
the elements inWn. The action is well defined since for all distinct i, j ∈ {1, . . . , |S|} we have
mij = ∞. The action preserves the reflection length. This follows from Corollary 3.3.17.
The following lemma states that elements of the form (s1 · · · sn)λs1 · · · si have minimal word
length with regard to their reflection length.

Lemma 5.2.1. Let Wn be the universal Coxeter group of rank n and m ∈ N. There exists
an element w ∈Wn of the form w = (s1 · · · sn)λs1 · · · si with 2 < i ≤ n such that lRn(w) = m
and

mn
S(m) = lS(w) = m+ 2λ = λn+ i.
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Proof. For reflection length m ≤ n, words of the form s1 · · · sm are the words of minimal
S-length with reflection length m. Words of this form and other words of the same word
length in a common orbit of the action of Sym(n) are the only ones with this property (this
follows from Theorem 3.3.20).

For a fixed reflection length m′, assume that there exists an element w̃ that has smaller
S-length than the word of the form w = (s1 · · · sn)λs1 · · · si with 2 < i ≤ n and reflection
length m′. According to Corollary 3.3.12, S-length and reflection length have the same
parity. So lS(w̃) ≤ lS(w) − 2. With Theorem 3.3.20, we find an upper bound for the
reflection length of w̃. This upper bound cannot be below m′ according to our assumption.
In the S-reduced expression for w̃ remove all generators except the two most occurring ones.
This way, we remove maximally (n − 2) different types of generators. Let nw̃(si) be the
number of occurrences of the generator si in the reduced expression of w̃. Without loss of
generality, we may assume that s1 and s2 are the generators that occur the most in the
reduced expression for w̃. Thus, we have

n∑
i=3

n(si) ≥ m′ − 2.

So the number of all letters in the reduced expression of w̃ that are not the two most occurring
generators is at least the same as in the reduced expression for w. For w, this number is
m′ − 2 since 2 < i ≤ n. The generator s3 occurs as many times as the two most occurring
generators s1 and s2 in the reduced expression for w. It is (λ+ 1) times. The occurrence of
generators is as equally divided as possible among the generators in the reduced expression of
w. Hence, there exists a generator si with 2 < i ≤ n that occurs at least (λ+1) times in the
reduced expression for w̃, too. This is a contradiction to lS(w̃) ≤ lS(w)− 2. Consequently,
there exists no word with reflection length m′ that has a smaller word length than a word
of the form (s1 · · · sn)λs1 · · · si.

Remark 5.2.2. In the situation of the lemma, let w′ be an element with lRn(w′) = m and
mn
S(m) = lS(w′). The action of Sym(n) on Wn and conjugation do not change the reflection

length. Nevertheless, in general there does not always exist σ ∈ Sym(n) and y ∈ Wn such
that yσ(w′)y−1 = w. For n = 5, we have for example

lRn(s1 · · · s5s1s2s4) = 6 = lRn(s1 · · · s5s1s2s3).

This is true since there is just one letter of type s5 occurring in the S-reduced factorisation
s1 · · · s5s1s2s4. So applying Theorem 3.3.20 leads necessarily to removing this letter. It is

lRn(s1 · · · ŝ5s1s2s4) = lRn(s4s1 · · · s3s4s1s2)

since conjugacy preserves reflection length. Theorem 1 is applicable and we obtain

lRn(s1 · · · s5s1s2s4) = 1 + lRn(s4s1 · · · s3s4s1s2) = 1 + 5.

This is also the reflection length of s1 · · · s5s1s2s3 (see Theorem 1). Note that s1 · · · s5s1s2s3

and s1 · · · s5s1s2s4 are not conjugated to each other in W5.
One consequence of the lemma is an explicit description of the function mn

S by using
the Equation 5.2.1 obtained from Theorem 1 and solving it for lS . The reflection length
grows strictly monotonously if we extend words of the form (s1 · · · sn)λs1 · · · si generator by
generator and leave out i = 1, 2. Thus, the set {j ∈ N | 2 < j ≤ n, (n− 2) divides (m− j)}
is always a singleton.
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Corollary 5.2.3. Define κ(n,m) to be the unique number j ∈ N with 2 < j ≤ n such that
(n− 2) divides (m− j). For the function mn

S : N→ N, we have

mn
S(m) = m+ 2 · m− κ(n,m)

n− 2
.

The reverse question of what the maximum reflection length is for a fixed word length
is also relevant to us. This is especially important with regard to deriving an upper bound
for the reflection length in general Coxeter groups from the formula for reflection length in
universal Coxeter groups. Define the map

mn
R : N→ N k 7→ max{lRn(w) | w ∈Wn, lS(w) = k}.

Lemma 5.2.1 implies an explicit description for the statistic mn
R, too.

Lemma 5.2.4. Define ι(n, k) to be the unique number j ∈ N with 1 ≤ j ≤ n such that n
divides (k − j). For the function mn

R : N→ N with n ≥ 3, we have

mn
R(k) = k − 2 · k − ι(n, k)

n
.

Proof. Let w̃ ∈ Wn be an element with mn
R(lS(w̃)) = lRn(w̃). According to Lemma 5.2.1,

there exists an element (s1 · · · sn)λs1 · · · si ∈Wn with lRn(w̃) = lRn((s1 · · · sn)λs1 · · · si) and
lS(w̃) ≥ lS((s1 · · · sn)λs1 · · · si) for λ ∈ N0 and 2 < i ≤ n.

If lS(w̃) = lS((s1 · · · sn)λs1 · · · si, the explicit description can be obtained from solving
Equation 5.2.1 for lRn . In case lS(w̃) > lS((s1 · · · sn)λs1 · · · si), both word lengths have the
same parity (see Theorem 3.2.13). Extend the factorisation (s1 · · · sn)λs1 · · · si generator
by generator to a word of the same form with word length equal to lS(w̃). We assume
mn
R(lS(w̃)) = lRn(w̃). The only two scenarios, where the extension has a reflection length

equal to lRn(w̃) and not larger, are i = n − 1 and i = n. This holds, because the reflec-
tion length of the elements of the form (s1 · · · sn)λs1 · · · si grows strictly monotonously in
dependency on the word length leaving out i = 1, 2 (see Theorem 1). Consequently, we have
lS(w̃) = lS((s1 · · · sn)λ+1s1) or lS(w̃) = lS((s1 · · · sn)λ+1s1s2). So in this case, there also
exists an element w ∈Wn of the form (s1 · · · sn)λs1 · · · si with mn

R(lS(w)) = lRn(w) and the
assertion follows by solving Equation 5.2.1 for lRn .

The proof contains the result analogous to Lemma 5.2.1 for mn
R.

Corollary 5.2.5. Let Wn be the universal Coxeter group of rank n and k ∈ N. There exists
an element w ∈ Wn of the form w = (s1 · · · sn)λs1 · · · si with 1 ≤ i ≤ n such that ls(w) = k
and

mn
R(k) = lRn(w) = λ · (n− 2) + i.
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5.3 Upper bound for reflection length in general infinite non-
affine Coxeter groups

In general, braid relations shrink the reflection length of an element. By comparing the re-
flection lengths of the elements represented by the same word in an arbitrary and a universal
Coxeter group of the same rank, we obtain upper bounds for the reflection length function
on the arbitrary Coxeter group.

In finite and affine Coxeter groups, upper bounds for the reflection length function are
well known and constants (see Remark 3.4.5 and [MP11]). On the contrary, an upper bound
for infinite non-affine Coxeter group cannot be constant because of Theorem 4.1.3.

Notation 5.3.1. Given a generating set S with n elements, we write ωn for the canonic
surjection S∗ →Wn.

Take an S-reduced word s in an arbitrary Coxeter groupW of rank n corresponding to the
element ω(s). Every reflection factorisation of ωn(s) in Wn is also a reflection factorisation
of the element ω(s) in W .

Lemma 5.3.2. Let (W,S) be an arbitrary Coxeter system of rank n and let R be the set of
reflections in W . For every element v ∈ W represented by an S-reduced word s ∈ S∗, the
reflection length is bounded by

lR(v) ≤ lRn(ωn(s)).

Proof. Let ωn(r1 · · · rl) = ωn(s) be a Rn-reduced reflection factorisation in Wn. The ab-
sence of braid relations in universal Coxeter groups implies that the word r1 · · · rl can be
transformed to s with a sequence of nil-moves and that the words ri ∈ S∗ are palindromes
(see Theorem 3.2.13). So we have ω(ri) ∈ R for all ri and v = ω(r1) · · ·ω(rl).

So Lemma 5.2.4 implies a sharp upper bound for the reflection length function on arbi-
trary infinite non-affine Coxeter groups. For a Coxeter system (W,S) and w ∈W , let W (w)
be the smallest standard parabolic subgroup containing w. With this notation, we obtain a
function of the rank and the word length that is an upper bound for the reflection length.
Recall that ι(n, k) is the unique number j ∈ N with 1 ≤ j ≤ n such that n divides (k − j).

Lemma 5.3.3. Let (W,S) be an arbitrary Coxeter system and w ∈ W . Let n be the rank
of W (w). The reflection length of w is bounded from above by

lR(w) ≤ mn
R(lS(w)) = lS(w)− 2 · lS(w)− ι(n, lS(w))

n
.

Proof. The lemma follows directly from Lemma 5.2.4 applied to the standard parabolic
subgroup W (w). Take a reduced word s representing w in W . Every reflection factorisation
of the element ωn(s) in Wn is a reflection factorisation for w since all relations from Wn also
appear in W (w). The reflection length function on W restricted to W (w) is equal to the
reflection length function on W (w) (see Corollary 3.3.23).

This upper bound is sharp. This is to be seen with Corollary 5.2.5.

60
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Authorship Comment 5.3.4. The results in this chapter were obtained by the author in-
dependently and autonomously. A part of them also got published afterwards by Brian Drake
and Evan Peters in [DP21]. There exists no entry on the distribution service arxiv.org for
the article [DP21]. The author came across this publication before he was able to publish
the results himself. The following findings also appear in [DP21]: Theorem 1 as Lemma 7,
Corollary 5.1.3 as Lemma 6 and Lemma 5.3.3 as Theorem 1. The proofs of Theorem 1
and of Lemma 5.3.3 presented here are different from the ones of Drake and Peters. First,
they prove Lemma 5.3.3 with a generalization of the pigeon-hole principle. Afterwards, they
prove Theorem 1 with the help of this upper bound. Whereas, we prove the formula first to
deduce the upper bound.
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6. Reflection length at infinity in
hyperbolic reflection groups

We exclusively consider infinite non-affine hyperbolic reflection groups in this chapter. We
mean infinite non-affine hyperbolic reflection group when we write hyperbolic reflection
group. The action of such a rank n + 1 Coxeter group induces a tessellation of Hn. Af-
ter fixing a fundamental domain, there exists a bijection between the tiles and the group
elements (see Theorem 2.2.16). We describe certain points in the visual boundary of the
n-dimensional hyperbolic space for which every neighbourhood contains tiles of every re-
flection length (see Theorem 2). Additionally, we show that two disjoint hyperplanes in the
n-dimensional hyperbolic space without common boundary points have a unique common
perpendicular (see Theorem 3). In the first section, we discuss a compactification of Hn

and ultra-parallel geodesic subspaces. Theorem 3 is proved in Section 6.2 and Theorem 2
is proved in Section 6.3. The next section contains results about groups generated by two
parallel hyperplanes in Hn. The last section discusses Theorem 2 in the case where the
fundamental domain of the action of a hyperbolic reflection group is a polytope. Most of
this chapter appeared as the article [Lot24b] by the author.

Let (W,S) be a hyperbolic reflection group with fundamental polyhedron P in Hn,
walls {H1, . . . ,Hm} and generating set S = {s1, . . . , sm}. For w ∈ W and 1 ≤ i ≤ m,
the reflection wsiw

−1 ∈ R acts on Hn as the hyperplane reflection across wHi. For each
polyhedron vP with v ∈W , the minimal number of hyperplane reflections across hyperplanes
in {wHi ⊆ Hn | w ∈W, 1 ≤ i ≤ m} that suffices to reflect vP onto P is exactly the reflection
length of v. This follows from our studies in Chapter 2 and Chapter 3. For a reflection r ∈ R,
we denote the corresponding hyperplane in Hn with Hr.

6.1 Geodesic subspaces and their boundary

To investigate the behaviour of the reflection length far away from the fundamental poly-
hedron, we introduce a compactification of the hyperbolic space Hn and a topology on the
latter.

We remind the reader that the visual boundary ∂X of a CAT(0) metric space X is the
set of equivalence classes of geodesic rays. Fix an origin x0 in X. Two geodesic rays in X
γ1, γ2 : [0,∞) → X originating from x0 are said to be equivalent if there exists a constant
C > 0 such that d(γ1(a), γ2(a)) < C for all a ∈ [0,∞). The resulting boundary ∂X is
independent of the choice of an origin. See Definition 4.2.2 for further details.
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Chapter 6. Reflection length at infinity in hyperbolic reflection groups

Example 6.1.1. In the Poincaré ball model, the visual boundary ∂Hn is exactly the unit
sphere Sn−1. In the hyperboloid model, if two geodesic rays are asymptotic, then the
intersection of the corresponding subspaces in En,1 is a line contained in the boundary of
the light cone {v = (v1, . . . , vn+1) ∈ En,1 | 〈v|v〉−1 = 0, vn+1 > 0} (see [BH99, pp. 262-263]).

We equip X = X ∪ ∂X with the cone topology.

Definition 6.1.2. Fix a point x0 in a CAT(0) metric space (X, d). Let c be a geodesic ray
with c(0) = x0 and let r, ε > 0 be real numbers. Let pr be the projection of X onto the
closed ball B(c(0), r): For x /∈ B(c(0), r), the projection pr(x) is the point in the segment
[x0, x], geodesic ray respectively, with distance r from x0. We define

U(c, r, ε) := {x ∈ X | d(x, c(0)) > r, d(pr(x), c(r)) < ε}.

The sets U(c, r, ε) form a neighbourhood basis for the ideal point c(∞) ∈ ∂X and the set of
all open balls B(x, r) together with all sets of the form U(c, r, ε), where c is a geodesic ray
with c(0) = x0, is a basis of the cone topology on X. The cone topology is independent of
the choice of the point x0.

Now, we turn to geodesic subspaces of Hn of arbitrary dimension in the hyperboloid
model. Geodesic lines in Hn are exactly the non-empty intersections of 2-dimensional vector
subspaces of En,1 with Hn. The m-dimensional geodesic subspaces of Hn are the non-empty
intersections of (m + 1)-dimensional vector subspaces of En,1 with Hn (m ≤ n). These
subspaces are isometric to Hm. For a subspace H ⊆ Hn, we denote the corresponding
subspace in En,1 with VH .

Definition 6.1.3. Two disjoint arbitrary dimensional geodesic subspaces H1 and H2 of
Hn are called ultra-parallel if there exist no geodesic rays γ1 ⊆ H1 and γ2 ⊆ H2 that are
asymptotic. In other words, the subspaces do not have a common point in ∂Hn.

Definition 6.1.4. Two intersecting geodesic subspaces H1, H2 ⊆ Hn are intersecting at
a right angle if their intersection is non-empty in Hn, and there exist non-trivial vectors
u1, . . . , um with m > 0 in the orthogonal complement V ⊥H1

⊆ En,1 such that

〈(VH1 ∩ VH2) ∪ {u1, . . . , um}〉 = VH2 .

A perpendicular of a geodesic subspace H ⊆ Hn is a geodesic line that intersects H at a
right angle as a subspace.

Remark 6.1.5. The definition above is symmetric. By definition, the subspace VH1 is con-
tained in 〈{u1, . . . , um}〉⊥ and we have V ⊥H2

= 〈{u1, . . . , um}〉⊥ ∩ (VH1 ∩ VH2)⊥. So we can
select vectors {v1, . . . , vn} ⊆ V ⊥H2

such that

〈(VH1 ∩ VH2) ∪ {v1, . . . , vn}〉 = VH1 .

Example 6.1.6. Let H1 be a hyperplane and let H2 be a geodesic line with H1 ∩H2 6= ∅
and H2 * H1. The subspaces VH1 ∩ VH2 and V ⊥H1

are 1-dimensional. In this case, H2 is a
perpendicular of H1 if and only if V ⊥H1

⊆ VH2 . Two hyperplanes intersect at a right angle if
and only if the corresponding orthogonal unit vectors are orthogonal to each other.
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Lemma 6.1.7. Let H1, H2 ⊆ Hn be two geodesic subspaces intersecting at a right angle.
For a subspace A ⊆ H1, A and H2 are intersecting at a right angle if

∅ 6= H2 ∩A 6= A

Proof. By definition, there exist non-trivial vectors u1, . . . , um with m > 0 in the orthogonal
complement V ⊥H2

⊆ En,1 such that 〈(VH1 ∩ VH2) ∪ {u1, . . . , um}〉 = VH1 . For the intersection
of the corresponding subspaces, it is VA ∩ VH2 ⊆ VH1 ∩ VH2 and we obtain

〈(VA ∩ VH2) ∪ (VA ∩ {u1, . . . , um})〉 = VA

by intersecting with VA. It is |VA ∩ {u1, . . . , um}| > 0 because H2 ∩A 6= A. This completes
the proof.

6.2 Ultra-parallel theorem for subspaces in Hn

David Hilbert proved the following theorem based on his system of axioms for H2.

Theorem 6.2.1 (see [Hil13, p. 149]). Any two ultra-parallel geodesic lines in H2 have a
common perpendicular.

We extend this theorem to ultra-parallel geodesic subspaces in Hn and prove the equiv-
alence of the existence of a common perpendicular and ultra-parallelism in case both sub-
spaces are hyperplanes. Our proof is different from Hilbert’s proof and includes his theorem.
Therefore, we need the following geometric lemma, which follows from basic Euclidean ge-
ometry.

Lemma 6.2.2. Let Sn be the unit sphere embedded in the (n+1)-dimensional Euclidean space
En+1 and let S1, S2 be two spheres of dimension n or lower intersecting Sn orthogonally.

(i) If S1 and S2 are not intersecting in the closed unit ball Dn+1, the line (C1, C2) through
the centres C1 and C2 of S1 and S2 intersects Sn exactly two times.

(ii) If S1 and S2 are both of dimension n and not intersecting in the open unit ball Dn+1,
S1 ∩ S2 is a point in Sn or empty.

Proof. S1 and S2 intersect Sn orthogonally. This implies that Ci is the intersection of all
tangent spaces of points in Sn ∩ Si for i = 1, 2. On the other hand, Si is the unique sphere
intersecting Sn orthogonally with centre Ci. Thus, if there is just one point on a line through
Ci also contained in Sn, this point is in Si.

The line (C1, C2) intersects Sn maximally two times. Assume that (C1, C2) intersects Sn
exactly once in a point P . According to the first paragraph of this proof, we have P ∈ S1∩S2

and P ∈ Dn+1. Assume that (C1, C2) does not intersect Sn. In this case, there exists a
tangent space T1 of Sn containing C1 separating Sn and C2 and vice versa. Accordingly,
T1 ∩ T2 is non-empty and so is S1 ∩ S2 ∩Dn+1. This proves the first assertion.

Assume that the intersection S1∩S2∩Sn is neither a point in Sn nor empty. So there are
at least two points P1, P2 contained in S1 ∩ S2 ∩ Sn. Thus, the intersection S1 ∩ S2 is either
S1 for S1 = S2 or an (n − 1)-dimensional sphere for S1 6= S2. If n = 1, it follows directly
S1 = S2 and S1 ∩ S2 ∩ Dn+1 6= ∅, because Si intersects Sn orthogonally. For n ≥ 2, an
(n− 1)-dimensional sphere intersecting Sn in two non-antipodal points also intersects Dn+1

non-trivially. So S1 ∩ S2 ∩Dn+1 is non-empty and the second assertion is proven.
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Chapter 6. Reflection length at infinity in hyperbolic reflection groups

In the Poincaré ball model for Hn, the hyperplanes are represented by (n−1)-dimensional
spheres that intersect Sn−1 orthogonally. This is why the following corollary is immanent.

Corollary 6.2.3. Let H1 and H2 be two parallel hyperplanes in Hn. The intersection of
∂H1 and ∂H2 is empty or a point in ∂Hn.

Theorem 3 (Ultra-parallel Theorem for subspaces). Every pair of ultra-parallel geodesic
subspaces in Hn has a common perpendicular. A pair of distinct hyperplanes in Hn is ultra-
parallel if and only if it has a common unique perpendicular. Every hyperplane intersecting
both hyperplanes at a right angle contains this perpendicular.

Proof. The proof of the existence of a unique common perpendicular consists of two parts.
The existence part is shown constructively in the Poincaré ball model and the uniqueness
part follows in the upper hyperboloid model.

Let Ha and Hb be two ultra-parallel geodesic subspaces in Hn. In the Poincaré ball
model, these are represented by spheres Sa and Sb that intersect Sn−1 orthogonally. Since
they are ultra-parallel, Sa and Sb do not intersect in the closed unit ball Dn. Without loss
of generality, we can assume that there exists a hyperplane S through the centre M of Sn−1

such that we have Sa ⊆ S̊+ and Sb ⊆ S̊− for the open half-spaces. If necessary, apply a
translation on the Poincaré ball model. Translations are isometries and preserve Euclidean
angles (see [BH99, Sections 6.5 and 6.11]). We proceed with the following construction.

Let Ma,Ma be the centres of the spheres Sa and Sb. Since we assumed that Sa and Sb
can be separated by a hyperplane throughM , neitherMa norMb is∞. The line (Ma,Mb) in
En intersects Sn−1 in two points Ia and Ib, because Sa and Sb are ultra-parallel (see Lemma
6.2.2). In addition, it intersects Sa and Sb orthogonally since the line contains the centres
of these spheres. If M ∈ (Ma,Mb), the common perpendicular in Hn is represented by the
segment [Ia, Ib].

In case M /∈ (Ma,Mb), the triangle ∆MIaIb is an isosceles triangle and the segments
[M, Ia] and [M, Ib] are contained in a unique plane E ⊆ En. Let X be the middle point of
the segment [Ia, Ib]. Since the angles ]IbIaM and ]MIbIa are equal, the unique tangent
lines to Sn−1 in E at Ia and Ib, as well as the line (M,X), intersect all in a point Q. We
can construct a circle CQ with centre Q through Ia and Ib, because the triangles ∆IaXQ
and ∆IbXQ are congruent. The circle CQ intersects Sn−1 orthogonally since its centre is on
a tangent line. Thus, it represents a geodesic line in the Poincaré ball model. It remains to
show that CQ intersects Sa and Sb orthogonally. The following equations are implied by the
Pythagorean theorem, where rM , ra, rb and rQ are the radii of the corresponding spheres in
En:

r2
M = d(Ia, X)2 + d(M,X)2 (i)

r2
Q = d(Ia, X)2 + d(Q,X)2 (ii)

d(M,Ma)
2 = d(Ma, X)2 + d(M,X)2 (iii)

d(Ma, Q)2 = d(Q,X)2 + d(Ma, X)2 (iv)

d(M,Ma)
2 = r2

M + r2
a. (v)
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Sn−1

E

M

Ma

Mb

X

Q

Ia

Ib

Figure 6.1: Cross section by E

By substituting, we get:

r2
a + r2

Q
(v)
= d(M,Ma)

2 − r2
M + r2

Q
(iii)
= d(Ma, X)2 + d(X,M)2 − r2

M + r2
Q

(ii)
= d(Ma, X)2 + d(M,X)2 − r2

M + d(Ia, X)2 + d(Q,X)2

(iv)
= d(Ma, Q)2 + d(M,X)2 − r2

M + d(Ia, X)2

(i)
= d(Ma, Q)2.

By the Pythagorean theorem, ]IaQaQ is a right angle, where Qa is the intersection of CQ
and Sa in Dn. Analogously, we conclude that ]IbQbQ is a right angle. Hence, the circle CQ
represents a common perpendicular of Sa and Sb and the existence is proven.

To prove the uniqueness, we change to the hyperboloid model. We assume that Ha and
Hb are distinct ultra-parallel hyperplanes. According to Definition 6.1.4, a hyperplane H
and a geodesic line L intersect at a right angle in Hn if there exists v ∈ VL ∩ VH such that
〈{uH , v}〉 = VL, where uH is the unique (modulo sign) unit vector in V ⊥H . From the first
part of this proof, we know that Ha and Hb have a common perpendicular. Let uHa and
uHb be the corresponding unit vectors. The only possibility for a 2-dimensional subspace
that represents a common perpendicular is 〈{uHa , uHb}〉 since we assume the hyperplanes
and their orthogonal complements to be different. It follows that the existing common
perpendicular is 〈{uHa , uHb}〉 ∩Hn and unique.

For the implication in the other direction, assume that Ha and Hb are distinct hy-
perplanes with a unique perpendicular p. Moreover, assume that the hyperplanes are not
parallel and let N be a point in Ha ∩Hb. If p intersects Ha and Hb in a point in Ha ∩Hb, it
follows Ha = Hb directly from Definition 6.1.4, because hyperplanes are maximally dimen-
sional subspaces. This is a contradiction to our assumption that Ha and Hb are distinct. If
p intersects Ha and Hb in points Xa and Xb not in Ha ∩Hb, the lines (Xa, N) and (Xb, N)
intersect with p at a right angle (see Lemma 6.1.7). Two lines which are perpendicular to
the same line are ultra-parallel to one another (see [Cox42, p. 9.63.]). So this case leads to
a contradiction, too. Thus, we may assume that Ha and Hb are parallel or ultra-parallel.
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Additionally, the hyperplanes Ha and Hb cannot be parallel. The argument above for two
lines which are perpendicular to the same line also is applicable to the lines containing the
intersection points Xa and Xb and a common boundary point. So distinct hyperplanes with
a unique common perpendicular are ultra-parallel.

Let H̃ be a hyperplane in Hn intersecting Ha and Hb at a right angle. hence, we have
〈{uHi} ∪ (VHi ∩ VH̃)〉 = VH̃ for i = a, b. This implies uHi ∈ VH̃ for i = a, b. It follows
that every hyperplane orthogonal to two ultra-parallel hyperplanes contains their unique
common perpendicular.

Remark 6.2.4. Once the existence is proven, the uniqueness for hyperplanes also follows with
the proof of Theorem 3.2.7 and Exercise 3.1.9. in [Rat19]. The next corollary follows from
these results, too.

Corollary 6.2.5. Let Ha and Hb be a pair of ultra-parallel hyperplanes in Hn. For the
corresponding unit vectors uHa and uHb the following holds.

(i) The vectors are not contained in the light cone: 〈uH , uH〉−1 > 0 for
H = Ha, Hb.

(ii) The vectors span a hyperbolic geodesic line: 〈{uHa , uHb}〉 ∩Hn 6= ∅.

(iii) The vectors satisfy ||〈uHa , uHb〉−1|| > (〈uHa , uHa〉 · 〈uHb , uHb〉−1)
1
2 , where || · || is the

Euclidean norm.

The uniqueness of the common perpendicular gives us a notion of distance between
hyperplanes in Hn.

Definition 6.2.6. Let Ha and Hb be two hyperplanes in Hn. The distance d̄(Ha, Hb)
between these hyperplanes is defined as follows:

d̄(Ha, Hb) :=

{
d(ρ(a), ρ(b)) Ha, Hb ultra-parallel
0 else,

where d(ρ(a), ρ(b)) is the distance between the intersections ρ(a), ρ(b) of Ha and Hb with
their unique common perpendicular ρ. It is the unique number η(uHa , uHb) such that
||〈uHa , uHb〉−1|| = (〈uHa , uHa〉 − −1 · 〈uHb , uHb〉 − −1)

1
2 cosh η(uHa , uHb) (see [Rat19, Theo-

rem 3.2.8]).

The rest of this section is devoted to the following lemma, which provides a group
theoretic meaning for ultra-parallel in hyperbolic reflection groups with a polytope as a
fundamental domain.

Lemma 6.2.7. Let (W,S) be a hyperbolic reflection group in Hn with Coxeter polyhedron
P . Let {H1, . . . ,Hm} be the hyperplanes corresponding to elements in S and R be the set of
reflections. Further, let Hr1 , Hr2 be two distinct hyperplanes with ri ∈ R.

(i) Hr1 , Hr2 intersect in Hn if and only if there exist si, sj ∈ S with mij <∞ and w ∈W
such that

r1r2 = w(sisj)
kw−1 with k ∈ Z \ {0}.

(ii) If P is a convex polytope, Hr1 , Hr2 are not ultra-parallel if and only if there exist
si, sj ∈ S and w ∈W such that

r1r2 = w(sisj)
kw−1 with k ∈ Z \ {0}.
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Proof. We prove (i). Assume that the hyperplanes Hr1 and Hr2 intersect in Hn. Hence,
there exists w1, w2 ∈W such that Hr1 = w1Hi and Hr2 = w2Hj for some i, j ∈ {1, . . . ,m}.
Further, we have w̃ = w−1

1 · w2 = (sisj)
l with l ∈ Z. Since the intersection Hr1 ∩ Hr2 is

non-empty in Hn, we have mij <∞. It follows that r1 = w1siw
−1
1 and r2 = w1w̃sxw̃

−1w−1
1 ,

where sx ∈ {i, j}. Thus, we obtain

r1r2 = w1siw̃sxw̃
−1w−1

1 = w1(sisj)
kw−1

1

with k ∈ Z \ {0}.
Now, let r1r2 = w(sisj)

kw−1 for some k ∈ Z \ {0}, mij <∞ and w ∈ W . Without loss
of generality, we may assume additionally r1 = s ∈ S (conjugating both sides). Multiplying
with r1 yields r2 = s · w(sisj)

kw−1. Both sides have reflection length 1. It also may be
assumed that k is maximal in the sense that the last letters of a word representing w are
not si or sj . If s /∈ {si, sj}, we have lR(s · w(sisj)

kw−1) = 3 with Theorem 3.3.20. We also
obtain lR(s ·w(sisj)

kw−1) = 3 with the same criterion if we assume that s does not commute
with w. Hence, we get s ∈ {si, sj} and s commutes with w. Let v = sisj · · · be a dihedral
element with S-length k. We have r1 = wsw−1 and r2 = s · w(sisj)

kw−1 = wvsxv
−1w−1

with sx ∈ {si, sj}. The hyperplanes Hi and Hj are intersecting because mij < ∞. Thus,
the hyperplanes Hs and Hvsxv−1 intersect and so do Hr1 and Hr2 . The proof of the second
statement works analogously except that we ignore the condition mij <∞.

6.3 Arbitrary reflection length close to boundary points

After stating a series of lemmata, boundary points with neighbourhoods that contain copies
of the fundamental domain of arbitrary large reflection length are described in Theorem 2,
which is one of the main results of this chapter.

Lemma 6.3.1. Let Sn be the unit sphere in the Euclidean space En+1. For every (n − 1)-
dimensional sphere O in Sn that is not a great circle, there exists a unique n-dimensional
sphere SO in En+1 with

Sn ∩ SO = O

and SO intersects Sn at a right angle.

Proof. We give a sketch of a proof and leave the details to the reader. Given O ⊆ Sn, we
obtain SO by the following construction: Take n + 1 disjoint points p1, . . . , pn+1 in O and
consider the tangent spaces T1, . . . , Tn+1 at this points. These tangent spaces are distinct
hyperplanes in En+1 intersecting in a single point c. The point c is the centre of SO and
together with a point in O it determines SO uniquely.

We recall that Dn abbreviates the open unit ball in En and that Ên abbreviates the
one-point compactification of En (see Chapter 2 for further details).

Corollary 6.3.2. The inversion on a sphere in Ên+1 intersecting Sn orthogonally fixes Sn
and Dn+1 as sets.

Proof. The inversion on a sphere in Ên maps spheres to spheres and preserves the Euclidean
angle between intersecting spheres (see [BH99, Proposition 6.5]). Together with Lemma
6.3.1, this implies the corollary.
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Chapter 6. Reflection length at infinity in hyperbolic reflection groups

The principal significance of the following two lemmata is to draw conclusions from
conditions (i) and (ii) in Theorem 2. These are important ingredients for the proof of
Theorem 2.

Lemma 6.3.3. Let H1 and H2 be two parallel hyperplanes in Hn with a common point
ξ ∈ ∂H1 ∩ ∂H2 ⊆ ∂Hn. Let S = {s1, s2} ⊆ Iso(Hn) be the corresponding reflections across
H1, H2, respectively. For every neighbourhood U of ξ there exists a reflection r in the Coxeter
group 〈S〉 ⊆ Iso(Hn) such that Hr ⊆ U .

Proof. The proof is conducted in the Poincaré ball model. The hyperplanes Hi are repre-
sented by spheres Si in the one-point compactification Ên that intersect the unit sphere Sn−1

orthogonally. We can assume that these spheres have radii ri, centre ci and an antipode ai
to ξ (apply an inversion on the other sphere, in case one sphere contains ∞). Let (Ŝi)i∈N
be the sequence of spheres defined by

Ŝ0 := S2 and Ŝi = iŜi−1
(S1),

where iŜi−1
is the inversion on the sphere Ŝi−1. According to Corollary 6.3.2, the unit sphere

Sn−1 is fixed as a set by all inversions iŜi . All spheres (Ŝi)i∈N contain ξ, because ξ is fixed
by each iŜi . Let ĉi be the centre and r̂i be the radius of Ŝi. The points ξ, ci, , ai, ĉi are
collinear in Ên for all i ∈ N. This follows from the definition of the inversion on a sphere.
We have d2(ξ, ĉi) = r̂i. Given the centre ĉi−1 and the radius r̂i−1, the following equations
hold according to Formula (2.2.2) for an inversion on a sphere:

ĉi =
1

2
· (ξ − iŜi−1

(a1)) + iŜi−1
(a1),

r̂i =
1

2
· d2(iŜi−1

(a1), ξ),

iŜi−1
(a1) =

r̂i−1
2

||a1 − ĉi−1||2
· (a1 − ĉi−1) + ĉi−1.

All iŜi(a1) lay in the segment [ξ, ĉi−1]. Since the sequence (d2(iŜi(a1), ξ))i∈N is monotonously
decreasing and bounded by 0, it converges to 0, the only possible limit.

Hence, by reflecting S1 across Ŝi, we obtain spheres with arbitrary small diameter in En
that contain ξ as i → ∞. The spheres represent hyperplanes corresponding to reflections
in {wsw−1 | s ∈ S,w ∈ 〈S〉} and we find a sufficiently small sphere that represents a
hyperplane Hr contained in U .

Lemma 6.3.4. Let H1 and H2 be two ultra-parallel hyperplanes in Hn and let the corre-
sponding reflections be S = {s1, s2} ⊆ Iso(Hn). Let γ be a geodesic ray contained in the
unique common perpendicular γ̄ of H1 and H2. For every neighbourhood U of γ(∞), there
exists a reflection r in the Coxeter group 〈S〉 ⊆ Iso(Hn) such that Hr ⊆ U .

Proof. Isometries preserve angles and intersection at a right angle of subspaces. Let R be
the set of reflections in 〈S〉. From Formula (2.2.1) in Section 2.2.1 for a reflection on a
hyperplane in the hyperboloid model, it is evident that γ̄ gets fixed as a set by a reflection
across Hr̃ for all r̃ in R. Thus, all hyperplanes in H = {Hr̃ | r̃ ∈ R} have γ̄ as a common
perpendicular.

Just as in the proof of Lemma 6.3.3, we continue in the Poincaré ball model and define a
sequence of spheres. Let Si be the sphere in Ên representing Hi. Without loss of generality,
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we can assume that Si has radius ri, centre ci, intersection xi with the segment [c1, c2] in En
and antipode ai to xi (apply an inversion on the other sphere, in case one sphere contains
∞). Let (Ŝi)i∈N be the sequence of spheres defined by

Ŝ0 := S2 and Ŝi = iŜi−1
(S1),

where iŜi−1
is the inversion on the sphere Ŝi−1. For all Ŝi, a reflection ri ∈ R exists such

that Ŝi represents Hri . Let ĉi be the centre of Ŝi, let x̂i be the intersection of Ŝi with the
segment [c1, c2] in En and let âi be the antipode of x̂i in Ŝi. From the proof of Theorem 3
and from the Formula (2.2.2) in Section 2.2.1, we deduce that all ĉi, x̂i, âi and γ(∞) lay on
the geodesic segment [c1, c2]. Given the points ĉi−1, âi−1, x̂i−1, Formula (2.2.2) implies:

x̂i = iŜi−1
(x1) =

d2(âi−1, x̂i−1)2

4 · ||x1 − ĉi−1||2
· (x1 − ĉi−1) + ĉi−1 ∈ (x̂i−1, γ(∞)),

âi = iŜi−1
(a1) =

d2(âi−1, x̂i−1)2

4 · ||a1 − ĉi−1||2
· (a1 − ĉi−1) + ĉi−1 ∈ (γ(∞), ĉi−1),

ĉi =
1

2
(x̂i − âi) + âi ∈ (γ(∞), âi).

We consider the sequence of distances (d2(ĉi, x̂i))i∈N, where ĉi is outside the closed unit ball
Dn and x̂i is always inside the open unit ball Dn since the inversion on a sphere intersecting
Sn−1 orthogonally is a bijection on Ên and fixes Sn−1 as well as Dn as sets (Corollary 6.3.2).
This sequence is monotonously decreasing and converges to 0 since the sequences of points
(ĉi)i∈N and (x̂i)i∈N both converge to γ(∞). Hence, the sequence of spheres (Ŝi)i∈N contains
elements with arbitrary small radius and centre arbitrarily close to γ(∞) in En. This implies
the existence of a hyperplane Hr in the sequence (Hi)i∈N of hyperplanes corresponding to
(Ŝi)i∈N such that Hr ⊆ U with r ∈ R.

Theorem 2 (Boundary points close to arbitrary reflection length). Let (W,S) be a hyperbolic
reflection group with fundamental domain P in Hn. Let R be the set of reflections in W .
Let U be a neighbourhood in Hn of a point ξ in ∂Hn. Suppose ξ satisfies one of the following
conditions:

(i) ξ is a common point of two parallel hyperplanes Hr, Hr′ with r, r′ ∈ R.

(ii) ξ is an endpoint of the common perpendicular of two ultra-parallel hyperplanes Hr, Hr′

with r, r′ ∈ R.

For every k ∈ N, there exists w ∈W with lR(w) = k such that the domain wP is contained
in U .

Proof. For the point ξ ∈ ∂Hn, let U(c, d, ε) be contained in the neighbourhood U , where c
is a geodesic ray with c(∞) = ξ. In both cases, there exists a hyperplane Hr with r ∈ R
completely contained in U(c, d, ε) by Lemma 6.3.3 and Lemma 6.3.4. So the image rP of
P under r is contained in U . This proves the theorem for reflection length 1. In general,
lR is unbounded on W (see Theorem 4.1.3). Thus, there exists w ∈ W with reflection
length lR(w) = k + 1. In case wP is in the half-space of H−r that is contained in U , the
proof is complete. Otherwise, wP ⊆ H+

r and we reflect wP across Hr to obtain wrP ⊆ U .
The element wr has reflection length n + 1 ± 1 (see [Bre+19, Remark 1.3]). A sequence
(w1P, . . . , wlP ) of adjacent tiles in U between rP and wrP contains tiles wiP of all reflection
lengths lR(wi) between 1 and lR(wr) (see [Bre+19, Remark 1.3]).
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6.4 Hyperplanes not generating a hyperbolic reflection group

In this section, we state three results that we need in the last section of this chapter but
hold in a more general setting.

Lemma 6.4.1. For k ≥ 3, let {Hr1 , . . . ,Hrk} be a set of pairwise parallel hyperplanes in
Hn. If all Hri have a common point ξ in ∂Hn and the group D generated by the reflections ri
across Hri is a discrete subgroup of Iso(Hn), then D is isomorphic as a group to the infinite
dihedral group D∞.

Proof. The uniqueness of ξ ∈ ∂Hn as a common point of ∂Hr1 , . . . , ∂Hrk follows from
Corollary 6.2.3. The hyperplane reflection ri across Hri maps hyperplanes in {Hr1 , . . . ,Hrk}
to hyperplanes with ξ in their boundary because Hri and ∂Hri are fixed pointwise by ri.
Let R be the set of all reflections in the group D = 〈ri | i ∈ {1, . . . , k}〉. The corresponding
hyperplanes all contain ξ in their boundary.

We fix a hyperplane H ∈ H := {Hr | r ∈ R}. Since W is discrete, we can choose
ε, δ ∈ {+,−} such that the intersection of half-spaces Hε ∩ Hδ

1 is neither empty nor a
half-space and contains no other hyperplane in H. We show that the reflections s1 and s
corresponding to H1 and H generateW . Therefore, we assume that there exists an Hri such
that ri cannot be written as a product of s1 and s. There exists an element w ∈ 〈{s, s1}〉
such that

Hri ⊆ wHε ∩ wHδ
1 .

In words, the hyperplane Hri is contained in the intersection of two half-spaces of copies of
H and H1, because Hri contains ξ in its boundary, too. Thus, the hyperplane w−1Hri ∈ H is
contained in Hε ∩Hδ

1 . This contradicts our assumption and we proved 〈{s, s1}〉 = D. Since
H and H1 do not intersect in Hn, ss1 has infinite order and D is isomorphic to D∞.

Lemma 6.4.2. Let {Hr1 , . . . ,Hrk} be a set of pairwise ultra-parallel hyperplanes in Hn with
k ≥ 3 and a common perpendicular %. If the group D generated by the reflections ri across
Hri is a discrete subgroup of Iso(Hn), then D is isomorphic as a group to D∞.

Proof. The hyperplane reflection ri across Hri maps hyperplanes in {Hr1 , . . . ,Hrk} to pair-
wise ultra-parallel hyperplanes with % as their common perpendicular, because ri fixes %
as a set. Let R be the set of all reflections in the group D = 〈ri | i ∈ {1, . . . , k}〉. The
hyperplanes in the set H := {Hr | r ∈ R} are all pairwise ultra-parallel and have % as their
common perpendicular. The rest of the proof is analogous to the one of Lemma 6.4.1.

Lemma 6.4.3. Let (W,S) be a hyperbolic reflection group with fundamental polyhedron P .
Let R be the set of reflections. For every r ∈ R and every ε > 0, there exists rε ∈ R such
that the hyperplanes Hrε and Hr are ultra-parallel and

d̄(Hr, Hrε) > ε.

Proof. It suffices to show that there exists r̃ ∈ R with d̄(Hr, Hr̃) > 0 since we can reflect
these hyperplanes several times on each other to obtain the Hrε . Hyperplane reflections fix
perpendiculars as sets.

The groupW has universal Coxeter groups of arbitrary large rank as reflection subgroups
(see [Edg13]). Let W3 = 〈r1, r2, r3〉 be a universal Coxeter group contained in W as a
reflection subgroup with {r1, r2, r3} ⊆ R as a Coxeter generating set. Hr1 , Hr2 and Hr3 do
not intersect pairwise in Hn, since r1, r2, r3 have pairwise infinite order. Suppose that all Hri
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intersect with Hr in Hn. Otherwise, there would be a hyperplane with a distance greater
than zero to Hr.

Assume that the hyperplanes Hr1 and Hr do not intersect in Hn and have a common
point in ∂Hn. Hr is contained in one half-space Hε

r1 with ε ∈ {+,−}. Each of Hr2 and Hr3 is
also contained in a half-space. Since W3 is not isomorphic to D∞, the hyperplanes Hr1 , Hr2

and Hr3 have no common point in Hn (see Lemma 6.4.1). This implies that there exists
Hrj with j ∈ {2, 3} such that Hrj does not intersect with Hr in the point Hr ∩Hr1 ⊆ Hn

(see Lemma 6.2.3). Hence, Hrj is contained in Hε
r1 , too. The hyperplane’s reflection Hr1rjr1

across Hr1 does not intersect with Hr in Hn.
Let us assume that Hr intersects all hyperplanes Hri in Hn. Since 〈{r1, r2, r3}〉 is iso-

morphic to a universal Coxeter group, the intersection of two distinct non-ultra-parallel
hyperplanes Hri and Hrj , 1 ≤ i, j ≤ 3, is empty and ∂Hri ∩ ∂Hrj = {δ} (see Corollary
6.2.3). There exists a neighbourhood U of δ in Hn such that U ∩Hr = ∅ because Hr in-
tersects all Hri . By Lemma 6.3.3, we obtain hyperplanes in arbitrary small neighbourhoods
of δ ∈ ∂Hn in Hn. This gives us Hr̃ ⊆ U with r̃ ∈ R and Hr̃ is ultra-parallel to Hr. Let
the Hri be pairwise ultra-parallel. According to Lemma 6.4.2, we can assume that Hr is not
orthogonal to Hri . This implies that Hr does not contain the unique common perpendicular
γ of Hri and Hrj (see Theorem 3). Hence, by Lemma 6.3.4 there exists a hyperplane Hr̂

with r̂ ∈ R in a neighbourhood V of an endpoint γ(∞) such that V ∩Hr = ∅. Hr and Hr̂

are ultra-parallel.

6.5 Polytopes as fundamental domains

Lemma 6.5.1. Let (W,S) be a hyperbolic reflection group with a convex polytope P as
a fundamental domain. Let R be the set of reflections in W . The set of ideal points of
hyperplanes

H∞ := {γ(∞) | γ ⊆ Hr geodesic ray, r ∈ R}

is dense in ∂Hn.

Proof. Since W is discrete and the set H∞ is a countable union of spheres homeomorphic
to Sn−2, we have H∞ ( ∂Hn (see Section 6.1). Let ξ ∈ ∂Hn \ H∞ and let c : [0,∞] → Hn

be a geodesic ray with c(∞) = ξ. For ε, r > 0 the sets U(c, s, ε) form a neighbourhood basis
of ξ (see Definition 6.1.2). We fix arbitrary ε, r > 0. In the Poincaré ball model, the set of
the endpoints C(∞) of geodesic rays in

C := {c∗ | c∗ geodesic ray, c∗(0) = c(0), d(c∗(r), c(r)) = ε}

is a sphere in ∂Hn. According to Lemma 6.3.1, there exists a hyperplane E, possibly not
in {Hr | r ∈ R}, with ∂E = C(∞). Let E+ be the half-space such that ξ is in the closure
E+. To prove the lemma, it is sufficient to show that there exists a hyperplane Hr′ with
r′ ∈ R that intersects the half-space E+ non-empty. Then U(c, s, ε) ∩ ∂H ′r 6= ∅ because
hyperplanes as well as Hn are uniquely geodesic subspaces (see [BH99, p. 21]). Since P is
a strict fundamental domain, there exists w ∈ W with E+ ∩ wP 6= ∅. This implies that
there exists a hyperplane Hr′ with r′ ∈ R such that E+ ∩Hr′ 6= ∅ because P is a convex
polytope.
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Notation 6.5.2. Let (W,S) be a hyperbolic reflection group in Hn. Let R be the set of
reflections. We write Ip(W ) for the set of ideal points ξ ∈ ∂Hn, such that there exists
two parallel hyperplanes Hr1 and Hr2 corresponding to r1, r2 ∈ R with ξ ∈ ∂Hr1 ∩ ∂Hr2 .
Furthermore, we write Pup(W ) for the set of ideal points µ ∈ ∂Hn, such that µ is an endpoint
of the common perpendicular of two ultra-parallel hyperplanes Hr3 and Hr4 corresponding
to r3, r4 ∈ R.

Theorem 6.5.3. Let (W,S) be a hyperbolic reflection group in Hn with a convex polytope
P as a fundamental domain. The union Ip(W ) ∪ Pup(W ) is dense in the visual boundary
∂Hn.

Proof. Assume that there exists a point ξ ∈ ∂Hn, real numbers ε, δ > 0 and a neighbourhood
U(c, δ, ε) of ξ such that Ip(W ) ∩ U(c, r, ε) = ∅. Let R be the set of reflections. We
want to show Pup(W ) ∩ U(c, δ, ε) 6= ∅ and begin by proving that there exists an endpoint
ϕ(∞) ∈ U(c, δ, ε) of a geodesic ray ϕ contained in a 1-dimensional intersection of finitely
many hyperplanes in H = {Hr | r ∈ R}. Therefore, we successively follow the implications
for each dimension lower hereafter:

Lemma 6.5.1 states that the endpoints H∞ = {γ(∞) | γ ⊆ Hr geodesic ray, r ∈ R} are
dense in ∂Hn. Hence, there exists a hyperplane Hr with r ∈ R and an ideal point ν such
that ν ∈ ∂Hr ∩U(c, δ, ε). The hyperplane Hr is isometric to Hn−1 (see Section 6.1) and the
intersection ∂Hr ∩ U(c, δ, ε) is a neighbourhood of ν in Hr. We consider hyperplanes in Hr

that are intersections Hr ∩Ht for t ∈ R. There exists w ∈ W such that P ′ = wP ∩Hr is a
polytope in Hr and we can apply Lemma 6.5.1 again as well as analogous arguments in one
dimension lower until dimension one.

Thus, there exists a geodesic line γ in Hn that is the intersection of finitely many hyper-
planes in H and has an endpoint γ(∞) in U(c, δ, ε). The geodesic ray γ contains dimension-
1 faces of infinitely many uP with u ∈ W since P is a polytope and we assume that
Ip(W ) ∩ U(c, δ, ε) is empty. Considering the dimension-0 faces of the uP , this implies that
γ is intersected punctually in intervals of finitely many different lengths by hyperplanes Ht

with t ∈ T ⊆ R with |T | =∞.
In the Poincaré ball model, this setting translates to spheres St with t ∈ T intersecting

the circle Cγ corresponding to γ, where St and Cγ intersect Sn−1 orthogonally for all t ∈ T .
The spheres St intersect Cγ in a finite number of different angles because the only angles that
can occur are inherited from P as it is a convex polytope and a strict fundamental domain.
Thus, we can choose a sphere St′ with t′ ∈ T intersecting Cγ sufficiently close to γ(∞), such
that the intersection St′ ∩ Dn with the open unit ball Dn is contained in U(c, δ, ε). One
half-space Hε

t′ of the hyperplane corresponding to St′ is contained in U(c, δ, ε). For Ht′ exists
a hyperplane Ht̃ ∈ H that is ultra-parallel to Ht′ (see Lemma 6.4.3). The unique common
perpendicular % of Ht and Ht′ , which exists by Theorem 3, has one endpoint %(∞) ∈ Pup(W )
in the boundary ∂Hε

t′ ⊆ U(c, δ, ε). It follows Pup(W ) ∩ U(c, δ, ε) 6= ∅, which completes the
proof.

Theorem 6.5.4. Let (W,S) be a hyperbolic reflection group in Hn with a polytope P as a
fundamental domain. Let R be the set of reflections in W . Let U be a neighbourhood in Hn

of a point ξ in ∂Hn. For every k ∈ N there exists w ∈ W with lR(w) = k such that the
domain wP is contained in U .
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Proof. Theorem 6.5.3 states that there exists a point ν ∈ ∂Hn in U such that ν is either an
ideal point of two parallel hyperplanes corresponding to reflections in R or one endpoint of
a common perpendicular of two ultra-parallel hyperplanes corresponding to reflections in R.
So ν satisfies one of the conditions in Theorem 2 and in every neighbourhood of ν for every
k ∈ N exists wP with lR(w) = k. Since Hn is a metric space, there exists a neighbourhood
U ′ of ν that is completely contained in U and the theorem is proven.

Remark 6.5.5. Theorem 6.5.4 is only true for reflection groups with a polytope as a funda-
mental domain. For reflection groups with polyhedra that are not polytopes as fundamental
domains, the theorem is false as the following example shows.

Example 6.5.6. Consider the hyperbolic reflection group generated by three pairwise ultra-
parallel hyperplanes in Hn. This group is isomorphic to the universal Coxeter group Wn

with three generators. Let w be in Wn and let R be the set of reflections in Wn. Since
there exist neighbourhoods Uw of a point ξw in the boundary of every domain wP such that
Uw ∩ wP = Uw, the only reflection length arbitrarily close to wξ is the reflection length
lR(w).
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7. Powers of Coxeter elements with
unbounded reflection length

For Coxeter groups with sufficiently large braid relations, we prove that the sequence of
powers of a Coxeter element has unbounded reflection length. We establish a connection
between the reflection length functions on arbitrary Coxeter groups and the reflection length
function on the universal Coxeter groups of the same rank through the solution to the word
problem for Coxeter groups. For Coxeter groups corresponding to a Coxeter matrix with
the same entry everywhere except the diagonal, upper bounds for the reflection length of the
powers of Coxeter elements are established. This chapter builds on Chapter 3 in particular.
The first section contains the proofs of Theorem 4 and Theorem 5 including preparatory
lemmata. In Section 7.2, we give sharp upper bounds in Theorem 6 and Theorem 7 for the
reflection length of powers of Coxeter elements that have the same braid relation for all pairs
of distinct generators. The last section contains a conjecture about the general relation be-
tween the reflection length function of an arbitrary Coxeter group and the universal Coxeter
group of the same rank. We also prove the conjecture for reflections in the arbitrary Coxeter
group. This chapter is based on the article with the same title [Lot24a] by the author. Most
of the text is taken from [Lot24a] with minor modifications.

7.1 Comparing reflection length in arbitrary and universal
Coxeter groups

We follow a new approach and compare the reflection length function of an arbitrary Coxeter
group with the reflection length function of the universal Coxeter group of the same rank.
Fix a word s over the alphabet S and compare the reflection length lR(ω(s)) of the element
ω(s) represented by s in the arbitrary Coxeter group and the reflection length lRn(ωn(s)) of
the element ωn(s) represented by s in the universal Coxeter group. The braid relations are
crucial for this. In comparison to the universal Coxeter group, the reflection length of an
element possibly decreases because of the braid relations in an arbitrary Coxeter group.

Recall that a word s always can be transformed into an S-reduced word by a sequence
of nil-moves and braid-moves in a Coxeter system (W,S) (see Theorem 3.2.13).
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Definition 7.1.1. Let (αi)i≤a be a finite sequence of nil-moves and braid-moves to transform
a word s into an S-reduced word in a Coxeter system (W,S). We say that the sequence
(αi)i≤a is braid-minimalistic if the following to conditions are satisfied:

1. The move αi is a braid-move if and only if αi−1◦· · ·◦α1(s) has no consecutive subword
of the form ss for s ∈ S.

2. If αi is a braid-move on a consecutive subword bij , there is no other braid-move αj in
(αi)i≤a on the subword in the same position as bij in s involving the letters si, sj .

This means especially that braid-moves just appear if there are no further nil-moves possible.

Example 7.1.2. Consider the word s := s1s2s1s2s2s3s2s3 and the Coxeter groupW 3
3 of type

Ã2. The first of the following two different ways of reducing s in W 3
3 is braid-minimalistic.

s1s2s1s2s2s3s2s3 7→ s1s2s1s3s2s3 7→ s2s1s2s3s2s3 7→ s2s1s3s2 (7.1.1)

s1s2s1s2s2s3s2s3 7→ s1s1s2s1s3s2s3s3 7→ s2s1s3s2 (7.1.2)

The second one is not braid-minimalistic since the nil-move s2s2 7→ e is not the first move.

Lemma 7.1.3. Let s ∈ S∗ be a word representing an element ω(s) in a Coxeter system
(W,S). There exists a finite, braid minimalistic sequence (α)i≤a of nil-moves and braid-
moves transforming s to an S-reduced expression for ω(s).

Proof. From Theorem 3.2.13, we know that a sequence of nil-moves and braid-moves trans-
forms s to a reduced expression. The braid-minimalistic sequence (α)i≤a is obtained as
follows: Execute nil-moves on s and the resulting words until no more nil-moves are pos-
sible. Either the obtained word is S-reduced or there is a braid-move possible to obtain a
word s′. Again, we know from the solution to the word problem that s′ is transformable to
an S-reduced expression by nil-moves and braid-moves. So we repeat this procedure while
keeping track of the executed braid-moves until we obtain a reduced word. This ensures
that Property (1) from Definition 7.1.1 holds for the obtained sequence. Property (2) in the
definition holds since we keep track of executed braid-moves and do not execute redundant
braid-moves.

Lemma 7.1.4. Let (W,S) be a Coxeter system with presentation 〈S | R〉. Let s ∈ S∗ be a
word with ω(s) = 1. If a braid-minimalistic sequence of nil-moves and braid-moves (αi)i≤a
transforming s into the empty word e contains a braid-move, s contains a subword of the
form (sisj)

mij with (sisj)
mij in R.

Proof. We prove the assertion by induction over the number of braid-moves in (αi)i≤a. If
(αi)i≤a contains exactly one braid-move b12 7→ b21, every letter in b21 is cancelled by a
nil-move with a letter in s outside of b21. Hence, s either contains (s1s2)m12 or (s2s1)m21 as
a subword. Additionally, the braid-move b12 7→ b21 is executed on a subword of (s1s2)m12

or (s2s1)m21 .
Assume that (αi)i≤a contains (n + 1) many braid-moves and is braid-minimalistic. Let

αb be the first braid-move in the sequence. The sequence (αi)b<i≤a transforms the word
s′ := αb ◦ · · · ◦ α1(s) into the empty word and contains n braid-moves. According to the
induction assumption, s′ contains a subword r of the form (sisj)

mij with (sisj)
mij in R.

Braid-moves on subwords of even S-length do not change the number of letters of a certain
type. Braid-moves on subwords of odd S-length change the number of letters of a certain
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type by ±1 (see Remark 3.2.12). In general, a word bij contains at least one si and one
sj . So in case αb is not a braid-move solely on letters of r, we can conclude directly that s
contains a subword of the form (sisj)

mij with (sisj)
mij in R.

Consider the case where αb is a braid-move solely on letters of r. Following the induction
hypothesis, there exists another braid-move αj in (αi)i≤a on a subword of r. Together with
being braid-minimalistic, this implies that one of the braid-moves αb and αj acts on the
first half of (sisj)

mij and the other one on the second half. There exists a letter s in r that
is not touched by αb and is adjacent to a letter touched by αb in r. In αb−1 ◦ · · · ◦ α1(s)
this letter s cannot be adjacent to a letter touched by αb, because this contradicts being
braid-minimalistic. Let s̄ be the consecutive subword of αb−1 ◦ · · · ◦ α1(s) separating s and
a letter that is touched by αb.

If ω(s̄) = 1 via a subsequence of (αi)i≤a, we can apply the induction hypothesis. Cor-
respondingly, s̄ contains a subword of the form (sksl)

mkl with (sksl)
mkl in R. Since s̄ is a

subword of s, the same holds for s.
If there is no subsequence of (αi)i≤a that transforms s̄ into e, there are no nil-moves

within the letters of r. Since ω(s) = 1, the letters in r have to be cancelled by nil-moves
in pairs with letters outside of r. The properties of possible braid-moves on these letters
outside of r imply as before that s contains a subword of the form (sisj)

mij in this case,
too.

We remind the reader of the following notation.

Notation 7.1.5. Given a generating set S with n elements, we write ωn for the canonic
surjection S∗ → Wn. The reflection length function of the universal Coxeter group Wn is
abbreviated with lRn .

Lemma 7.1.6. Let (W,S) be an arbitrary Coxeter system of rank n with a Coxeter presen-
tation 〈S | R〉 and relations R. Further, let lR be the reflection length function on W and
v ∈W be an element represented by an S-reduced word s. If v has no S-reduced expression
that contains subwords of the form (sisj)

mij for all (sisj)
mij in R, the reflection length of v

is
lR(v) = lRn(ωn(s)).

Proof. Let D(s) be a deletion set. Let s′ be the word we obtain from s by deleting the
letters in D(s). It is ω(s′) = 1 in W . According to Theorem 3.2.13, there exists a sequence
of nil-moves and braid-moves that transforms s′ into the empty word.
Under the assumptions, we show that there exists such a sequence without a braid-move.
This implies the lemma because nil-moves are also allowed in Wn and for all a ∈ S∗ we have
lR(ω(a)) ≤ lRn(ωn(a)) (see Lemma 5.3.2).

Fix such a braid-minimalistic sequence (αi)i≤a (see Lemma 7.1.3). We assume that
it contains a braid-move. With Lemma 7.1.4, we conclude that s′ contains a subword of
the form (sisj)

mij with (sisj)
mij in R. Hence, the same holds for s and we arrive at a

contradiction. Correspondingly, the sequence (αi)i≤a contains no braid-moves. This proves
the assertion.
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Definition 7.1.7. The indicator function 1A of a subset A of a set X is defined as

1A : X → {0, 1}; x 7→

{
1 x ∈ A
0 x /∈ A

.

For convenience, we write for example 1{2,3,... }(a) as 1a≥2 for a ∈ Z and do so analogously
in similar cases.

Together with Theorem 1, Lemma 7.1.6 above implies that the reflection length of powers
of a Coxeter element in arbitrary Coxeter systems behaves like in the universal case, if the
power of the Coxeter element is small enough in relation to the braid relations of the Coxeter
group.

Corollary 7.1.8. Let (W,S) be an arbitrary Coxeter system of rank n with standard gener-
ators S = {s1, . . . sn}, reflection length function lR and w = s1 · · · sn. The following equality
holds

lR(ω(wλ · s1 · · · sr)) = lRn(ωn(wλ · s1 · · · sr)) = λ(n− 2) + r

if λ+ 1{r≥2} < min{mij | si 6= sj ∈ S}.

Lemma 7.1.6 shows that if an element has an S-reduced expression without subwords of
the form (sisj)

mij ∈ R, the reflection length of the element represented by an S-reduced word
in an arbitrary Coxeter group is equal to the reflection length of the element represented by
the same word in the universal Coxeter group of the same rank. Now, we consider arbitrary
words. So the corresponding elements in the Coxeter groups may have different reflection
lengths.

Theorem 4 (Lower bound for rank n). Let w be an element in a Coxeter system (W,S) of
rank n represented by an S-reduced word s = u1 · · · · · ·up. Further, let s̃ be a word obtained
from s by omitting all letters in a deletion set D(s). Let m be the minimal number of
braid-moves necessary to transform s̃ into the identity. The reflection length lR(w) in W is
bounded from below:

lRn(ωn(s))− 2m ≤ lR(w).

Proof. We have w(s̃) = 1. Thus, a finite sequence (σ1, . . . , σt) of nil-moves and braid-moves
transforms the word s̃ into the empty word e (see Theorem 3.2.13). There exist no braid-
moves in Wn. So if there exists a sequence of only nil-moves that transforms s̃ into e, we
have wn(s̃) = 1 and therefore lR(x) = lRn(w(s)).

Assume that (σ1, . . . .σt) contains exactly m braid-moves. This translates into a finite
sequence of words

(s1 = s′1bi1j1s
′′
1, . . . , sm = s′mbimjms

′′
m, sm+1),

where s1 is obtained from s̃ by finitely many nil-moves, sl+1 is obtained from sl by applying
the braid-braid move biljl 7→ bjlil and finitely many nil-moves. The last entry sm+1 is
transformable into the empty word only by nil-moves. For the last element of the sequence,
we have ω(sm+1)) = ωn(sm+1) = 1.

On the level of group elements, we have ω(s̃) = ω(si) = 1 and in the universal Coxeter
group Wn

ωn(sl+1) = ωn(sl) · rlr′l,
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where rl, r′l are reflections inWn. Executing a braid-move on a word is equivalent to removing
the first (most left) letter and adding one letter on the right side of bij :

sisj · · · si 7→ ŝisj · · · si · sj .

Removing as well as adding one letter translates to multiplying with a reflection from the left
or right on the level of group elements. Applying Lemma 3.3.13 for every transition between
elements in the sequence ωn(s1), . . . , ωn(sm+1)), we obtain lRn(ωn(s̃)) ≤ 2m. Together with
Theorem 3.3.20, this implies

lRn(ωn(s)) ≤ lR(ω(s)) + 2m,

which is equivalent to the assertion.

Remark 7.1.9. Even though this lower bound is sharp in some cases, it is not in general.
Take for example the Coxeter group W 3

3 of type Ã2 with generating set S = {s1, s2, s3}.
The element v ∈W 3

3 represented by the word

r := s1s2s1s3s1s3s2s1s2 ∈ S∗

has reflection length 1, where lRn(ωn(r)) = 3. This can be seen by removing the letter in
the middle (see Theorem 3.3.20). ForW 3

3 , we obtain the identity. ForWn, we do not. Thus,
the reflection length lRn(ωn(r)) has to be at least 3, because of parity reasons. The sequence
of word transformations is

s1s2s1s3ŝ1s3s2s1s2 7→ s1s2s1 · s2s1s2 7→ s2s1s2 · s2s1s2 7→ e.

The last 7→ includes 3 nil-moves. According to the theorem, we have

lRn(ωn(r))− 2 ≤ lR(v)

and inserting the values leads to 1 ≤ 1. So in this case, the bound is sharp.
On the other hand, in Example 3.3.21 there are 3 braid-moves executed for the element

w4s1s2 ∈ W 3
3 . We know from Theorem 1 that lRn(ωn((s1s2s3)4s1s2)) = 6. Consequently,

the lower bound from the theorem is 0 but the reflection length of w4s1s2 is 2.
Remark 7.1.10. The lower bound also depends on the deletion set D(s). Consider the word
t = s3s1s2s1s3s2s1s2 in a Coxeter group W = 〈{s1, s2, s3} | R〉, in which (s1s2)3 ∈ R and
no braid relation exists with mij = 2. It is lR(ω(t)) = lRn(ωn(t)). The reflection length is
2 because of parity reasons and the following deletion sets

ŝ3s1s2s1ŝ3s2s1s2 and s3s1ŝ2s1s3s2ŝ1s2.

Applying the theorem above with the left deletion set leads to a lower bound of 0 whereas
the right side leads to a sharp lower bound of 2. In the case of the word r from the last
remark, the lower bound cannot be sharpened by a different choice of a deletion set, because
the only deletion set for a reduced word representing a reflection is the letter in the middle.

An immediate question is under which circumstances the lower bound is sharp. Follow-
up questions are if the lower bound is sharp for special deletion sets and if the sharpness
only holds for certain elements. These questions are not discussed further in this work.

The lower bound of Theorem 4 can be improved by the following lemmas. The lemmas
are based on the observation that a finite sequence of braid-moves is in some cases equivalent
to the concatenation with 2 reflections.
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Lemma 7.1.11. Let (W,S) be a Coxeter system. Further, let σ = σn ◦ · · · ◦σ1 be a sequence
of braid-moves on a word s ∈ S∗ with σi : bixiyi 7→ biyixi for xi, yi ∈ S. If the last letter of
biyixi is the first letter of bi+1

xi+1yi+1
for all i ∈ {1, . . . , n− 1}, the execution of σ on the word

s is equivalent to multiplying with two reflections on the group-element level in Wn:

ω(σ(s)) = ω(s), ωn(σ(s)) = ωn(s) · r1 · r2 with ri ∈ Rn.

Proof. Executing the braid move σi is the same as omitting the first letter (letter on the
left side) of bixiyi and extending bixiyi with a letter s ∈ {xi, yi} on the right side. If the
corresponding mij is even, we have bij 7→ si ·bij · si = bji. If the corresponding mij is odd,
we have bij 7→ si · bij · sj = bji. Since the last letter of biyixi is the first letter of bi+1

xi+1yi+1

for all i ∈ {1, . . . , n− 1}, the letter that gets inserted by applying σi is removed by applying
σi+1 for all i ∈ {1, . . . , n−1}. Hence, executing σ in total corresponds to omitting the letter
for σ1 and inserting the letter for σn. On a group-element-level in Wn, this is equivalent to
multiplying with two reflections that are represented by palindromes.

Remark 7.1.12. The lemma is also true if the first letter of biyixi is the last letter of b
i+1
xi+1yi+1

for all i ∈ {1, . . . , n − 1}. This condition reflects the analogous situation from the right to
the left. Whereas, in the presuppositions of the lemma, a letter is “wandering” from left to
right from braid-move to braid-move.

Another situation to be considered is that the first and the last letter of the first braid-
move are involved in following braid-moves in both directions. In this case, the braid-moves
in one direction do not influence the ones in the other direction and can be executed first. So
the lemma can be applied in one direction. Afterwards, the braid-moves in the other direction
are considered. Analogously to the lemma, we obtain that executing the braid-moves in both
directions is equivalent to multiplying with four reflections on a group-element-level in Wn.

Lemma 7.1.13. Let (W,S) be a Coxeter system. Further, define B−2
ij to be the alternating

word consisting of the two letters si, sj ∈ S with word length 2mij − 2 starting with si.
Let s1, s2, s3 ∈ S be distinct. The concatenation of two distinct braid-moves on the word
B−2

12 B
−2
31 :

B−2
12 B

−2
31 7→ s2s3

is equivalent to multiplying with two reflections on the group-element-level in Wn.

Proof. Since both alternating words B−2
12 ,B

−2
31 have even word length and consist exactly

of two distinct letters, B−2
12 ends in s2. Ignoring the first or the last letter of them yields

palindromes of odd word length. Deleting these palindromes is equivalent on a group-
element-level in Wn to multiplying with a reflection for each palindrome. The word that is
left is s2s3.

Remark 7.1.14. With this lemma and Theorem 4 we can derive a sharp lower bound in the
case of Example 3.3.21.

Notation 7.1.15. Let (W,S) be a Coxeter system. We write a word s := u1 · · ·um ∈ S∗
as s = (s(1), . . . , s(m)) with ui = s(i) to keep track of the initial position of a letter while
applying nil-moves and braid-moves. In the process of applying nil-moves and braid-moves,
the i-th position can be filled with the according letter s(i) ∈ S or the empty word e.
A subword s(i1) · · · s(it) is called consecutive if the entries in (s(1), . . . , s(m)) between the
letters s(ia) and s(ia+1) are all filled with e for all a ∈ {1, . . . , n − 1}. With this notation,
nil-moves change two equal consecutive letters to the empty word. A braid-move on a
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consecutive subword s̃ that consists of two alternating letters si, sj ∈ S with length mij

permutes the two types of letters in s̃.

Definition 7.1.16. Two braid-moves in a sequence of nil-moves and braid-moves on a word
s = (s(1), . . . , s(m)) interfere if there exists an i ∈ {1, . . . ,m} such that both braid-moves
change the i-th entry in (s(1), . . . , s(m)). In this case, we say that the braid-moves are
interfering in the index i.

Using this vocabulary and notation, Theorem 4 can be strengthened with the following
lemma.

Lemma 7.1.17. Let (W,S) be a Coxeter system with mij > 2 for all distinct si, sj ∈ S.
For every word s = (s(1), . . . , s(m)) over the alphabet S∗, there exists a finite sequence of
nil-moves and braid-moves (α)l∈L transforming the word into an S-reduced word such that
all pairs of braid-moves in (α)l∈L interfere maximally in one index.

Proof. Let s = (s(1), . . . , s(m)) be a word over the alphabet S∗. From the solution of
the word problem for Coxeter groups, we know that there exists a sequence (a′k)k∈K that
transforms s = (s(1), . . . , s(m)) into an S-reduced word with some s(i) = e if s is not S-
reduced (see Theorem 3.2.13). If s is already S-reduced, the sequence is empty. Since there
is no braid-move necessary to reduce a word of word length 2, the statement of the lemma
holds if only one or two indices are different from e. Define c := |{i ∈ {1, . . . ,m} | s(i) 6= e}|
to be the number of indices in s that are not filled with the empty word. From here, we
prove the lemma by induction over c.

Let s = (s(1), . . . , s(m)) be a word with |{i ∈ {1, . . . ,m} | s(i) 6= e}| = c + 1. If s
is S-reduced, there exists the empty sequence as a sequence that does not contain pairs of
braid-moves that interfere in more than one index. Otherwise, there exists a finite sequence
(a′k)k∈K of nil-moves and braid-moves that transforms s into an S-reduced word. Assume
that (a′k)k∈K contains two braid-moves a′x and a′y with x < y such that a′y interferes with
a′x in at least two indices. Further, we may assume that no nil-moves are appearing in the
sequence (a′k)k∈K before ax because in this case a nil-move decreases c+ 1 by −2. Following
the induction assumption s can be transformed into an S-reduced word by a sequence of
nil-moves and braid-moves without braid-moves that interfere in more than one index.

Braid-moves are executed on consecutive subwords of s = (s(1), . . . , s(m)). So a′y inter-
feres with a′x in at least two adjacent indices that are both not e. This implies that a′x and
a′y are braid-moves permuting the same two generators si, sj ∈ S, because we have mij > 2
for all distinct si, sj ∈ S. We can assume that a′x and a′y are interfering in less than mij

indices because in this case a′y would just reverse a′x and both braid-moves can be omitted
to obtain a reduced word. Thus, we additionally may assume that there exists a largest
non-empty index ie touched by a′x and a′y that is adjacent to a larger index if solely touched
by a′y (all other cases are symmetric). Since a′y is executed after a′x in (a′k)k∈K , it follows
s(ie) = s(if ) ∈ {si, sj}. This allows us to define a new sequence (al)l∈L of nil-moves and
braid-moves. The fist move a1 is a nil-move that substitutes both adjacent entries s(ie) and
s(if ) with e. The resulting word s′ has c − 1 non-empty indices. The rest of the sequence
(al)l∈L is a sequence that reduces s′ such that all pairs of braid-moves interfere maximally
in one index, which exists by the induction assumption. This completes the proof.

By using the lemmas above, we can derive a lower bound for the reflection length function
from Theorem 4 for some elements. This is without knowing a deletion set, which is stronger
than knowing the reflection length. Consider a specific S-reduced word s for an element w
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in a Coxeter group W and determine the maximal number of non-interfering braid-moves
possible after omitting some letters in s. The lower bounds obtained this way are not sharp
in general. For Coxeter groups with sufficiently large braid relations, it implies that the
powers of a Coxeter element have unbounded reflection length. This leads to the following
Theorem.

Theorem 5 (Power sequences with unbounded reflection length). Let (W,S) be a Coxeter
system of rank n and let M = (mij)i,j∈I denote its Coxeter matrix. Further, let w be a
Coxeter element in W . Then,

(i) if n = 3 and min{mij | i 6= j, i, j ∈ I} ≥ 5, or

(ii) if n ≥ 4 and min{mij | i 6= j, i, j ∈ I} ≥ 3,

we have
lim
λ→∞

lR(wλ) =∞.

Proof. Assume k = min{mij | i 6= j, i, j ∈ I} > 2 because Lemma 5.1.7 implies that
this is a necessary condition for sequences of powers of Coxeter elements with unbounded
reflection length. For λ ∈ N, Theorem 3.2.13 implies that s = (s1 · · · sn)λ is the unique
S-reduced word representing the element wλ. Let s′ be the word obtained from (s1 · · · sn)λ

by removing all letters in a deletion set D(s). There exists a finite sequence (αi)i∈I of
nil-moves and braid-moves on s′ to transform s′ into the empty word (see Theorem 3.2.13).
According to Lemma 7.1.17, we may assume additionally that all pairs of braid-moves in
(αi)i∈I interfere maximally in one index of s = (s(1), . . . , s(λ · n)).

We do not know a concrete deletion set for s nor a sequence of nil-moves and braid-
moves to reduce s′. Hence, it is necessary to consider the lowest lower bound obtainable
with Theorem 4 for the reflection length of wλ. A sequence of interfering braid-moves is
counted as maximally four braid-moves for the lower bound of Theorem 4 (see Lemma 7.1.11
and Remark 7.1.12). Therefore, we consider the maximal number of possible non-interfering
braid-moves on s. Let ξ(λ) be the maximal number of non-interfering braid-moves possible
on (s1 · · · sn)λ. Hence, a lower bound for the reflection length of w is

lRn(ωn((s1 · · · sn)λ))− 2ξ(λ). (7.1.3)

By counting letters, the minimal S-length of a minimal consecutive subword in (s1 · · · sn)λ

containing bij in dependency on mij is

χ(mij) :=

{
mij−1

2 · n+ 1 for odd mij
mij

2 · n− (n− 2) for even mij

for all distinct si, sj ∈ S. The minimal word length of a minimal consecutive subword in s
containing bij as a subword is obtained for j = i+1 (conjugacy yields other minimal cases).

The word length of wλ is λ · n. Assume k = mij with j = i+ 1. Thus, we have

ξ(λ) =
λ · n
χ(mij)

.
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Inserting this in Equation (7.1.3) together with Theorem 1 yields the following lower bound
for the reflection length of wλ:

(λ− 1) · (n− 2) + n− 2 · λ · n
χ(mij)

≤ lR(wλ)

⇔ λn

(
1− 2

χ(mij)

)
− 2λ+ 2 ≤ lR(wλ).

The left term is an unbounded monotonous growing function in the variable λ if and only if(
1− 2

χ(mij)

)
>

2

n
.

By inserting χ(mij), we obtain that this is equivalent to the condition(mij

2
· n− (n− 2)

)
· (n− 2)− 2n > 0 (7.1.4)

for even mij . For odd mij , it is equivalent to the condition(
mij − 1

2
· n+ 1

)
· (n− 2)− 2n > 0. (7.1.5)

This implies that the sequence (lR(wλ))λ∈N diverges towards ∞ if the Inequality (7.1.4) is
fulfilled for even k or if the Inequality (7.1.5) is fulfilled for odd k. Accordingly, the sequence
of powers of a Coxeter element in a Coxeter group of rank 3 has unbounded reflection length
if k ≥ 5. This is to be seen by inserting the corresponding values in the inequality. For
higher-rank Coxeter groups, the reflection length of the powers of a Coxeter element is
unbounded for k ≥ 3. This proves the lemma.

Remark 7.1.18. The theorem above is independent of Duszenko’s Theorem 4.1.3. So it can
be seen as a constructive proof of the unboundedness of the reflection length function on
Coxeter groups whose braid relations are large enough.

The theorem above does not cover all infinite non-affine Coxeter groups. We know that
the reflection length is also an unbounded function on all infinite non-affine Coxeter groups.
It is reasonable to conjecture that the same statement also applies to the exceptions with
all mij > 2. With Theorem 3.3.20, we implemented an algorithm to compute the reflection
length (see Appendix A). This conjecture is supported by all our calculations of the reflection
length for n = 3 and small λ in the exceptional cases. If mij = 2 appears as a minimal braid
relation, the statement of Theorem 5 is false for rank-3 Coxeter groups and and presumably
more complicated for higher ranks. This is illustrated by Lemma 5.1.7 and its proof.

Example 7.1.19. The Coxeter group W defined by the Coxeter graph

s1 s2

s3

4 .

is the infinite non-affine Coxeter group of rank 3 with the smallest braid relations and
no commuting generators up to isomorphism. Table 7.1 shows the reflection length of
ω(s1s2s3)λ as a function of λ. For λ ≤ 2, the reflection length of ω(s1s2s3)λ behaves in
W like lRn(ωn(s1s2s3)λ) according to Lemma 7.1.6. For higher values of λ, it behaves differ-
ently. This is to be seen by comparing the values in Table 7.1 with the values of the formula
in Theorem 1 for λ ≥ 3.
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λ 2 3 4 5 6 7 8 9 10 11 12 15

lR(ω(s1s2s3)λ) 4 3 4 5 4 5 4 5 6 5 6 7

Table 7.1: Reflection length of powers of a Coxeter element.

Example 7.1.20. Figure 7.1 shows four different sections of the coloured Coxeter complex
(see Example 2.3.13) of the triangle group (4, 4, 4) centred around the powers of a Coxeter
element. The colour of a simplex corresponds to the reflection length of the associated group
element. A small reflection length corresponds to a colour with a small wavelength and a
large reflection length corresponds to a colour with a high wavelength (see Paragraph 1.4.1
for an explanation of the colour scheme). Black represents the reflection length 0. The
chamber in the position of the black chamber in the upper left complex corresponds to
e,s1s2s3, (s1s2s3)2 and (s1s2s3)3 from left to right. It can be seen that the surrounding
colours as well as the chamber itself change to larger wave length with increasing λ.

Figure 7.1: Different sections of the Coxeter complex of the triangle group (4, 4, 4) centred
around the powers of a Coxeter element embedded in H2 in the Poincaré disc model.
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7.2 Upper bounds for reflection length in single braided Cox-
eter groups

In this section, we study upper bounds of the reflection length of powers of Coxeter elements
in Coxeter groups corresponding to a Coxeter matrix with the same entry everywhere except
the diagonal. From counting subwords of the form (sisj)

mij and with Theorem 4, we derive
sharp upper bounds for the reflection length of the powers of Coxeter elements in these
Coxeter groups. The proof of the upper bounds is inductive. We distinguish between rank-3
and higher-rank Coxeter groups because the reflection length of powers of elements with
word length 3 behaves differently from the reflection length in higher-rank Coxeter groups.

Lemma 7.1.6 is a first hint that not all braid-moves possible on a word are influencing
the reflection length. Since braid-moves do not change the word length, every letter has to
be deleted by a nil-move. For every consecutive subword of a power of a Coxeter element cλ

on which a braid-move was applied, letters to cancel this subword are to be found already in
the right order in a reduced expression for cλ. This is why, counting half of all possible braid-
moves on a reduced expression of a power of a Coxeter element, is intuitive for estimating
an upper bound for its reflection length. This section shows that this is indeed leading to a
sharp upper bound for the reflection length.

Definition 7.2.1. We call a Coxeter group W single braided and denote it with Wn
k if it

is defined by a complete graph over n vertices with a constant labelling function

m({u, v}) = k ∈ N≥2.

IfW is a single braided Coxeter group of rank n, every element σ in the symmetric group
S(n) defines a reflection length preserving automorphism of W by permuting generators.

Example 7.2.2. The single braided Coxeter group W 3
5 corresponds to the Coxeter graph:

5

5 5

This is neither a finite nor an Euclidean reflection group according to the classification of
these groups.

Let (Wn
k , S) be a single braided Coxeter system of rank n ≥ 3 with a constant edge

labelling m = k ∈ N≥4. Theorem 5 covers all single braided infinite non-affine Coxeter
groups with one exception, W34. This follows directly from the classification of Euclidean
reflection groups.

Corollary 7.2.3. The powers of every Coxeter element in a single braided infinite non-affine
Coxeter system (W,S) have unbounded reflection length if (W,S) is not the single braided
Coxeter system of rank 3 with mij = 4.

Moreover, we can directly extract a lower bound for the reflection length of the powers
of a Coxeter element from the proof of Theorem 5. Sharp upper bounds are given by the
following results.
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Theorem 6 (Upper bound for single braided power sequences in rank 3). Let (W 3
k , S) be

a single braided Coxeter system with k ≥ 3. The reflection length of elements of the form
(s1s2s3)λs1 · · · sr in (W 3

k , S) with 1 ≤ r ≤ 3 and λ ∈ N0 is bounded from above by

lR(ω((s1s2s3)λs1 · · · sr)) ≤ λ+ r − 2 ·
⌊
λ+ 1r≥2

k

⌋
.

Proof. We show the inequality by induction over λ. We assume k to be at least 3. Thus,
for λ ≤ 1 we have

⌊
λ+1r≥2

k

⌋
= 0 and (s1s2s3)λs1 · · · sr has no subword of the form (sisj)

3.

By Lemma 7.1.6 the reflection length lR(ω((s1s2s3)λs1 · · · sr)) is equal to the correspond-
ing reflection length in the universal Coxeter group lRn(ωn((s1s2s3)λs1 · · · sr)) for λ ≤ 1.
Theorem 1 implies

lR(ω((s1s2s3)λs1 · · · sr)) = λ+ r.

Hence, the statement of the lemma is true for λ ≤ 1.
Now, consider (s1s2s3)λ+1s1. Reflection length is invariant under conjugation and invari-

ant under permutation of generators, since we only consider single braided Coxeter groups
(see Lemma 3.3.10). Together with the induction hypothesis, this implies

lR(ω((s1s2s3)λ+1s1)) = lR(ω((s2s3s1)λs2s3)) = λ+ 2− 2 ·
⌊
λ+ 1

k

⌋
.

For the word (s1s2s3)λ+1s1s2, we obtain by conjugation, Lemma 3.3.13 and by the
induction hypothesis

lR(ω((s1s2s3)λ+1s1s2)) = lR(ω(s1s2(s1s2s3)k−2s1s2(s3s1s2)λ+1−(k−1)s3))

≤ lR(ω(s1s2(s1s2s3)k−2s1s2)) + lR(ω((s3s1s2)λ+1−(k−1)s3))

= (k − 2) + λ+ 1− (k − 1) + 1− 2

⌊
λ+ 1− (k − 1)

k

⌋
= (λ+ 1)− 2

⌊
(λ+ 1) + 1− k

k

⌋
= (λ+ 1) + 2− 2

⌊
(λ+ 1) + 1

k

⌋
.

So the lemma holds in this case.
For the reflection length of elements of the form (s1s2s3)λ+1s1s2s3 we have

lR(ω((s1s2s3)λ+1s1s2s3)) ≤ lR(ω((s1s2s3)λ+1s1s2)) + 1

= (λ+ 1) + 2− 2

⌊
(λ+ 1) + 1

k

⌋
+ 1

according to the induction hypothesis and Lemma 3.3.13. This completes the proof of the
lemma.

We state the following theorem analogously to Theorem 6 for single braided Coxeter
groups of rank n ≥ 4.

Theorem 7 (Upper bound for single braided power sequences in higher rank). In a single
braided Coxeter system (Wn

k , S) with n ≥ 4, the reflection length of the element represented
by the word s = (s1s2 · · · sn)λs1 · · · sr with 1 ≤ r ≤ n and λ ∈ N0 is bounded from above by

lR(ω(s)) ≤ λ(n− 2) + r − 2 · 1(λ+1r≥2)≥k ·
(

1 +

⌊
λ− k + 1r≥2

k − 1

⌋)
.
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Proof. The assertion is proved by induction over λ. If (λ+ 1r≥2) is strictly smaller than k,
the theorem is true because of Corollary 7.1.8 and Theorem 1. For the parameters we have
k ≥ 3 and n ≥ 4.

Assume that the statement of the theorem is true for all λ′ < λ and all 1 ≤ r ≤ n with
λ, λ′ ∈ N. For the reflection length of the element w = ω((s1s2 · · · sn)λs1) we have

lR(w) = lR(ω((s2 · · · sns1)λ−1s2 · · · sn))

because conjugacy in general and permuting the generators in a single braided Coxeter group
preserves reflection length (see Lemma 3.3.10). The induction hypothesis gives us

lR(w) = (λ− 1) · (n− 2) + (n− 1)− 2 · 1(λ−1+1)≥k

(
1 +

⌊
λ− 1− k + 1

k − 1

⌋)
= λ · (n− 2) + 1− 2 · 1(λ+1r≥2)≥k

(
1 +

⌊
λ− k
k − 1

⌋)
.

Thus, the theorem is true for λ and r = 1.
To make a second induction argument according to r for a fixed λ, assume that the

statement of the theorem is true for all λ′ < λ and all r′ as well as for λ′ = λ and all r′ with
1 < r′ < r. For the reflection length of the element w = ω((s1s2 · · · sn)λs1 · · · sr), we have

lR(w) = lR(ω(s1 · · · sr(s1 · · · sn)k−2s1s2(s3 · · · s2)λ−(k−1)s3 · · · sn))

because conjugacy preserves reflection length. All exponents are non-negative since it is
(k − 1) ≤ λ (the other case is covered by the induction hypothesis). We obtain the identity
element from the consecutive subword s1 · · · sr(s1 · · · sn)k−2s1s2 if we remove all letters dis-
tinct from s1 and s2 in it. This is true because ω((s1s2)k) = 1 in Wn

k . Hence, we have the
following inequality

lR(w) ≤ (k − 2) · (n− 2) + (r − 2) + lR(ω(s3 · · · s2)λ−(k−1)s3 · · · sn)).

Permuting generators and the induction hypothesis imply

lR(w) ≤ (k − 2) · (n− 2) + (r − 2) + (λ− (k − 1)) · (n− 2) + (n− 2)

− 2 · 1(λ−(k−1)+1)≥k

(
1 +

⌊
λ− (k − 1)− k + 1r≥2

k − 1

⌋)
= λ · (n− 2) + r − 2

− 2 · 1(λ−(k−1)+1)≥k

(
1 +

⌊
λ− (k − 1)− k + 1r≥2

k − 1

⌋)
.

There are two cases to be distinguished. The induction start is done for all words of the
form (s1s2 · · · sn)λ̃s1 · · · sr̃ with (λ̃+ 1r̃≥2) < k. So we assume (λ+ 1r≥2) ≥ k.

In the case where (λ− (k−1)+1) < k, it follows that λ− (k−1) < (k−1). This implies⌊
λ−k+1
k−1

⌋
= 0 and we have

lR(w) ≤ λ · (n− 2) + r − 2

= λ(n− 2) + r − 2 · 1(λ+1r≥2)≥k

(
1 +

⌊
λ− k + 1r≥2

k − 1

⌋)
.
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Otherwise, (λ− (k − 1) + 1) ≥ k and it follows directly

lR(w) ≤ λ · (n− 2) + r − 2− 2 ·
(

1 +

⌊
λ− (k − 1)− k + 1r≥2

k − 1

⌋)
= λ · (n− 2) + r − 2 ·

(
1 +

⌊
λ− k + 1r≥2

k − 1

⌋)
= λ(n− 2) + r − 2 · 1(λ+1r≥2)≥k

(
1 +

⌊
λ− k + 1r≥2

k − 1

⌋)
.

In total, the inequality

lR((s1s2 · · · sn)λs1 · · · sr) ≤ λ(n− 2) + r − 2 · 1(λ+1r≥2)≥k

(
1 +

⌊
λ− k + 1r≥2

k − 1

⌋)
is proved by induction and the proof is complete.

Remark 7.2.4. The question of how to connect the upper and the lower bound remains.
The lower bound that we obtain from the proof of Theorem 5 for elements of the form
w = ω((s1s2 · · · sn)λ) in a single braided Coxeter group Wn

k is

(λ− 1) · (n− 2) + n− 2 · λ · n
k−1

2 · n+ 1
≤ lR(w)

for odd k. The negative term of his lower bound is roughly double the negative term in the
upper bound from Theorem 7

lR(w) ≤ (λ− 1) · (n− 2) + n− 2 · 1λ≥k ·
(

1 +

⌊
λ− k
k − 1

⌋)
(also true for Theorem 6). For the lower bound, the negative part of the term counts
subwords of the form bij of word length k. Whereas for the upper bound, the negative part
of the term counts subwords of the from (sisj)

k of word length 2k.
Our computations of lR(ω((s1s2 · · · sn)λ)) for small λ in different single braided Coxeter

groups show in all instances that the upper bounds established in this section are exactly
the reflection length.

Based on this and Lemma 7.1.6, we conjecture the following:

Conjecture 7.2.5. The upper bounds from Theorem 6 and Theorem 7 are equal to the
reflection length function itself.

7.3 The reflection length in arbitrary and universal Coxeter
groups

The results obtained in this chapter are mostly based on the comparison between the re-
flection length of elements in an arbitrary and in the universal Coxeter group of the same
rank. The statement of the following conjecture implies a complete understanding of the
relationship between the reflection length function on these different Coxeter groups. We
conjecture that for a fixed word s and an arbitrary Coxeter group W , there always exists a
deletion set D(s) such that D(s) is a subset of a deletion set of s in the universal Coxeter
group of the same rank. We prove our conjecture for the special case, where s represents a
reflection in W
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Conjecture 7.3.1. Let W = 〈S | R〉 be a Coxeter group and w ∈ W be an element.
Further, let u1 · · ·up be an S-reduced expression for w in W with ui ∈ S. There exists a
letter s in u1 · · ·up such that omitting it results in

lR(ω(u1 · · · ŝ · · ·up)) = lR(w)− 1 and
lRn(ωn(u1 · · · ŝ · · ·up)) = lRn(ωn(u1 · · ·up))− 1.

A weaker version would be that every element has an S-reduced expression for which
the statement of the conjecture is true. If the reflection length in W is 1, the conjecture is
true. For the proof of this, we need the following definition.

Definition 7.3.2. We define pairs of reduced words (si, s−i) with i ∈ N as words over an
alphabet S with relation s = s−1 for all s ∈ S such that one of the following conditions hold

(i) s−i = s−1
i ,

(ii) for two letters s1, s2 ∈ S we have si ∈ {s1, s2}∗, lS(si) ≥ 2 and

s−i =

{
τ1,2(si) for odd lS(si)

si for even lS(si),

where τ1,2 : S∗ → S∗ exchanges s1 and s2.

For s ∈ S, we define a twisted palindrome of odd word length to be a word

s1 · · · sn · s · s−n · · · s−1,

where (si, s−i) satisfies (i) or (ii) for all 1 ≤ i ≤ n.

Remark 7.3.3. Twisted palindromes are special cases of twisted conjugates of the generators
in S if (W,S) is a universal Coxeter system. Conditions (i) and (ii) are disjoint.

Lemma 7.3.4. Let the word s1 · · · sn ·s ·s−n · · · s−1 be a twisted-palindrome. For the element
t = ωn(s1 · · · sn · s · s−n · · · s−1) represented by this word, the following equation holds:

lRn(ωn(s1 · · · sn · ŝ · s−n · · · s−1)) = lRn(t)− 1,

where the hat over s means omitting s.

Proof. Since the element t has odd word length in Wn, we have lRn(t) = 2k + 1 for k ∈ N0.
We prove the statement by induction over k ∈ N0. For k = 0, lRn(t) is equal to 1 and we know
that s1 · · · sn · s · s−n · · · s−1 is a palindrome since there are no braid relations in Wn. Thus,
we have s−i = s−1

i for all i ∈ {1, . . . , n} and therefore lRn(ωn(s1 · · · sn · ŝ · s−n · · · s−1)) = 0.
In general, if we have lRn(siss−i) ≥ lRn(s) + 2 for a quasi-palindrome s and a pair

of words (si, s−i) like in Definition 7.3.2, it follows that the inequality is an equality. The
reflection length has to increase by an even number because of parity reasons. The reflection
length increases maximally by two since a word of the form sis−i has maximal reflection
length 2.

The pair satisfies condition (ii) from Definition 7.3.2 since the two conditions are disjoint
and conjugacy preserves reflection length (Lemma 3.3.10). To neutralize this effect on the
reflection length of adding a pair of words (si, s−i) in the outlined way, we distinguish two
cases. If the word length of si is odd and hence also the word length of s−i, we remove
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the middle of both words and they vanish completely by applying s = s−1 for all s ∈ S.
Otherwise, if the word length of both is an even number, we remove the first letter in both
cases and obtain a word that is conjugated to s. Conjugation preserves reflection length.
We especially obtain a quasi-palindrome again.

Let lRn(s1 · · · sn · s · s−n · · · s−1) = 2k + 1 + 2. From above, we know that there exists a
pair of words (si, s−i) such that the reflection length is reduced by two after omitting one
letter in each word as described above. Moreover, we obtain an odd quasi palindrome with
reflection length 2k + 1 and we can apply the induction assumption: By deleting the letter
in the middle of the word we decrease the reflection length by 1 again. The deleted letters
are elements in a deletion set of s1 · · · sn · s · s−n · · · s−1 in Wn. According to Lemma 3.3.26,
we have lRn(s1 · · · sn · ŝ · s−n · · · s−1) = 2k + 1 and the induction is complete.

7.4 Outlook

We conclude this chapter with an outlook for further research and follow-up questions.
With regard to Chapter 5, the question arises whether the reflection length of the powers of
Coxeter elements can also be expressed by a simple formula in other cases. Conjecture 7.2.5
displays a possible answer to this question for single braided infinite non-affine Coxeter
groups. Other subfamilies in which it may be possible to obtain results similar to the ones
in Section 7.2 are infinite non-affine triangle groups and higher-rank right-angled infinite non-
affine Coxeter groups with sufficiently many infinity-relations. The consideration of these
subfamilies presupposes a criterion for the reflection length of powers of Coxeter elements
being unbounded. We know from Lemma 5.1.7 that in rank-3 right angled Coxeter groups all
powers of Coxeter elements have reflection length smaller than 4. Let (W,S) be an infinite
non-affine Coxeter system.

Question 1. Is there a general criterion to detect whether the sequence of reflection lengths
of powers of a Coxeter element in W tends to ∞?

This criterion could be for the Coxeter graph of (W,S) for example. In case the reflection
length of the sequence of powers of all Coxeter elements is bounded, which are the elements
with large reflection lengths?

Question 2. If the reflection length of powers of Coxeter elements is bounded, do sequences
of powers of other elements with unbounded reflection length exist?

Given that the reflection length of powers of a Coxeter element in W tends to ∞, is an
equivalent statement to Lemma 5.2.1 true in general? Recall the function mS : N→ N with

mS(a) := min{lS(w) | lR(w) = a,w ∈W}.

Question 3. Let v = s1 · · · sn ∈ W be a Coxeter element. If limλ→∞ lR(vλ) = ∞, does
there exist an element u ∈W of the form u = vλ · s1 · · · si with λ ∈ N0 such that lR(u) = a
and mS(a) = lS(u) = λn+ i for every a ∈ N?

The reverse question about a maximal reflection length for a given word length is also
of interest. This opens up a whole type of questions. How many elements for each reflection
length exist for a fixed word length? Questions like this could be answered if we knew a
two-variable generator function for an infinite non-affine Coxeter group W . This generating
function takes a tuple of natural numbers as an input and gives back the number of elements
in W with word length and reflection length according to the tuple as an output.
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7.4. Outlook

Question 4. Let (W,S) be a infinite non-affine Coxeter system. What precise form does
the two-variable generating function

Φ : N× N→ N; (n,m) 7→ |{w ∈W | lS(w) = n, lR(w) = m}|

have?

A generating function like this is also not known for universal Coxeter groups. By the
time of writing, this question is open for all infinite non-affine Coxeter groups. A starting
point to answer this problem is to determine the distribution of elements with reflection
length 1.

Tits gives a solution to the word problem for Coxeter groups in [Tit69]. This solution to
the word problem is not limited to Coxeter groups with a finite generating set. So once we
know the order of the product of every two reflections in a Coxeter groupW , we can consider
the Coxeter system (W,R) and apply the results of Tits. Then, every reflection factorisation
of an element w ∈ W can be transformed into an R-reduced reflection factorisation by a
finite sequence of dual nil-moves and dual braid-moves. Moreover, two R-reduced reflection
factorisations can be transformed into each other by applying a sequence of dual braid-moves.

Question 5. Given a Coxeter system (W,S), is there a way to determine the infinite Coxeter
matrix of the dual Coxeter system (W,R)?
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A. SageMath code to compute
reflection length

The following SageMath code builds on the mathematics software system SageMath (see
[The20]). We present a function Rlength, with which we can theoretically compute the
reflection length of any element w in an arbitrary Coxeter group W . It is based on Dyer’s
Theorem 3.3.20. The algorithm for the computation of the reflection length works as follows.
Take an S-reduced factorisation s of w. Try all possible combinations of omitting k letters
in s and test if these lead to the identity. Here, k ∈ N is increased step by step.

The code. First, a Coxeter group object G is generated from a Coxeter matrix M . As an
example, we take the Coxeter matrix corresponding to the Coxeter graph

s1 s2

s3 s4

.

Coxeter groups are implemented in SageMath. The set S of standard generators is
generated, too. We define an element x = s1 · · · s4s1s3 for example.

import math
import numpy as np

M = CoxeterMatrix([[1,3,3,3],[3,1,3,3],[3,3,1,3], [3,3,3,1]])

#Generate Coxeter group object G from Coxeter matrix CM
G = CoxeterGroup(M)
S = G.simple_reflections()

x = S[1]*S[2]*S[3]*S[4]*S[1]*S[3]

The function isRlength takes an element w of the Coxeter group G and a natural
number lr as an argument. It tests if lR(w) ≤ lr and returns a boolean value. For each
letter ui ∈ S in an S-reduced word u1 · · ·um ∈ S∗ for w, it is checked if the inequality
lR(ω(u1 · · ·ui−1ûiui+1 · · ·um)) ≤ lr− 1 holds by calling the function isRlength recursively.
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#Takes element w in G and tests if reflection length of w is equal
to lr.
def isRlength(w, lr):

if(lr>1):
GeneratorList=w.reduced_word()
for i in range(len(GeneratorList)):

l2 = copy(GeneratorList)
l2.pop(i)
cutword = product ([S[i] for i in l2])
if(isRlength(cutword, lr-1)):

return true
return false

elif(lr==1):
return w.is_reflection()

else:
return "computation failed: lr<1"

To compute the reflection length, the parity of the word length lS(w) is determined first.
Afterwards, the parameter lr is incremented from 1 or 2 in steps of two, depending on the
parity. In each step, it is checked whether isRlength(w,lr) == true. The first value of lr
for which isRlength(w,lr) equals true is returned. It is the reflection length of w.

#returns reflection length with Dyer-Theorem computation
def Rlength(w):

genlist=w.reduced_word()
if(genlist==[]):

return 0
else:

if(len(genlist)%2==0):
lr=2

else:
lr=1

while((not isRlength(w, lr))):
lr+=2

return lr

Remark A.0.1. The code does an exhaustive search for a deletion set for s in W . To find a
deletion set, the function isRlength is called

lS(w)!

lR(w)!

times with input lr = lR(w). This is why the computation of the reflection length of elements
with a word length of 15 or higher is almost impracticable with the code (on an average
computer).

Example A.0.2. To compute the reflection length of the element s1 · · · s4s1s3 in the Coxeter
system corresponding to the Coxeter graph displayed above, insert the following:

Rlength(x)

The output of this command is 4.
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Remark A.0.3. Since the algorithm to compute the reflection length is a recursion, it is
practical to store results obtained once in a database to accelerate further calculations that
build on these results. The code has the potential to be optimized in terms of its runtime,
as the same sets of indices are tested multiple times to find a deletion set. We know from
Lemma 3.3.26 that the order of the omitted letters is irrelevant.
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Appendix A. SageMath code to compute reflection length
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