
DISSERTAT ION

zur Erlangung des akademischen Grades 

angenommen durch die Fakultät für Informatik 
der Otto-von-Guericke-Universität Magdeburg 

von

geb. am            in       

Gutachterinnen/Gutachter 

Magdeburg, den                          

Fine-Grained Open-World Recognition 
Identifying Retail Products in Supermarkets

Doktoringenieur (Dr.-Ing.)

M.Sc. Marco Filax

15.06.1989 Staßfurt

Prof. Dr. rer. nat. Frank Ortmeier
Prof. Dr.-Ing. Thomas Leich
Prof. Dr. rer. nat. Gunther Notni

19.07.2024



Filax, Marco:
Fine-Grained Open-World Recognition
Identifying Retail Products in Supermarkets
Dissertation, Otto-von-Guericke University Magdeburg, 2024.



i

Abstract
Computer-aided visual perception refers to the recognition of objects in images.
It is one of the fundamental problems in computer vision research, where an
algorithm must predict the label of objects in images. Relevant studies have
often aimed to predict the likeliest predefined labels, which have already been
determined during the dataset’s acquisition. More research needs to be conducted
with open datasets without obligating the closed dataset requirement (i.e., having
a complete set of labels during the implementation).
Decades of research were required to predict the likeliest label of an object in an
image with sufficient accuracy for everyday use. Although the currently available
and often data-driven approaches work reasonably well, their ability to predict
labels of objects is similar to that of a three-year-old child. These labels have
a broad complexity, such as differentiating mammals (e.g., dogs or cats). More
fine-grained objects (e.g., different dog breeds) pose new challenges to existing
approaches because minute differences separate one object label from another.
The combination of both problems, namely the fine-grained recognition of objects
in images and recognition without the assumption of a predefined set of labels, is
called a fine-grained open-world recognition problem. This dissertation investigates
the current state of the art in fine-grained open-world recognition (i.e., retail
product recognition) and aims to improve its accuracy. We propose approaches
for overcoming the shortage of fine-labeled datasets by exploiting metaknowledge
of the environment and demonstrate how these approaches can be applied to
acquire datasets at a significant scale. Furthermore, we evaluate the current state
of the art in class-agnostic detection approaches for densely crowded scenes and
propose extensions that increase their accuracy. We also propose approaches for
recognizing the identifier of fine-grained retail products in real-world scenarios
and extend our approach by reducing manually required annotations. Finally,
we examine the orchestration of the newly proposed approaches and compare
their performance with similar approaches proposed during the journey of this
dissertation.
Our fine-grained open-world recognition results demonstrate that the proposed
orchestration, which we call Figaro, improves the accuracy in different datasets.
We significantly increase the mean average precision and mean average recall in
most evaluated datasets, with none containing previously known but fine-grained
objects. Furthermore, we demonstrate that our approach is significantly more
efficient than related works. Our results indicate that Figaro is more than 60 times
faster than the approach it is compared with. Overall, our results demonstrate
that exploiting metaknowledge helps to solve different problems individually,
including data acquisition, object detection, and object recognition.
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Zusammenfassung
Computergestützte visuelle Wahrnehmung umfasst die Erkennung von Objekten
auf Bildern. Es beschreibt eines der fundamentalsten Probleme der Forschung im
Bereich der Computervisualistik, wobei die Bezeichnung eines Objektes in einem
Bild durch einen Algorithmus vorhergesagt werden muss. Relevante Studien legen
dabei besonderen Wert auf die Bestimmung des wahrscheinlichsten Bezeichners
aus der Menge der vordefinierten Bezeichner, die bereits häufig bei der Zusammen-
stellung des zugrunde liegenden Datensatzes festgelegt wird. Es bedarf weiterer
Forschung mit offenen Datensätzen, welcher nicht dieser Einschränkung bei der
Erstellung des Datensatz unterlagen.
Es bedurfte jahrzehntelanger Forschung, um den wahrscheinlichsten Bezeichner
von Objekten in Bildern mit hinreichender Genauigkeit vorhersagen zu können.
Zwar sagen bisherige, häufig datengetriebene Algorithmen vorbestimmte Beze-
ichner gut voraus, jedoch häufig nur ähnlich wie Kleinkinder. Dabei haben die
Bezeichner eher eine grobauflösende Komplexität, wie beispielweise die Unter-
scheidung unterschiedlicher Säugetiere (zum Beispiel Hunde und Katzen). Die
feingranulare Unterscheidung von Objekten, wie beispielsweise die Bestimmung
unterschiedlicher Hunderassen, ist dabei häufig nicht möglich da sehr feine visuelle
Unterschiede zwei Bezeichner voneinander abgrenzen.
Wir bezeichnen in dieser Arbeit diese beiden Probleme, die Unterscheidung von
feingranularen Objekten in Bildern und die Erkennung von vorher unbekannten
Objekten, als feingranulare, offene Objekterkennung. Diese Dissertation unter-
sucht den aktuellen Stand der Wissenschaft hinsichtlich der feingranularen, offenen
Erkennung von Produkten und fokussiert auf die Verbesserung der Genauigkeit.
Wir entwickeln neue Methoden, um effizient große Datensätze erheben zu können,
wobei wir uns Metawissen über die Umgebung zu Nutze machen. Außerdem un-
tersuchen wir den aktuellen Stand der Wissenschaft zur Detektion von Objekten
in überfüllten Szenen und entwickeln Erweiterungen, um deren Genauigkeit zu
erhöhen. Wir beschreiben von uns entwickelte Methoden zur effizienten Erken-
nung feingranularer Produkte auf Bildern. Wir entwickeln diese außerdem weiter,
sodass sie mit deutlich weniger manuellen Annotationen trainiert werden kön-
nen. Schließlich untersuchen wir das Zusammenspiel dieser Einzellösungen und
evaluieren diese im Vergleich zu einem ähnlichen Algorithmus, der im Verlauf
dieser Dissertation vorgeschlagen worden ist.
Unsere Ergebnisse zeigen, dass wir die Genauigkeit auf unterschiedlichen Daten-
sätzen durch das Zusammenspiel der von uns vorgeschlagenen Algorithmen deutlich
verbessern konnten. Wir zeigen, dass wir die Genauigkeit und die Sensitivität
deutlich auf den getesteten, offenen Datensätzen verbessern konnten, ohne un-
seren Algorithmus auf diese abzustimmen. Außerdem zeigen wir die 60-fache
Verbesserung der Effizienz mit der von uns vorgeschlagenen Methoden. Insgesamt
demonstrieren wir in dieser Dissertation, dass die Ausnutzung von Metawissen
über die Umgebung positive Effekte auf die einzelnen Teilprobleme haben kann.
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1. Introduction
Dear Youth
What was your one big plan?
You made us believe we had the world in our hands
We left home with nowhere to go
Facing our fears as we brave the unknown

The Ghost Inside. “Dear Youth (Day 52)” Dear Youth,
Epitaph Records, 2014

Object Category
Detection

While object category detection is trivial for human beings, it has been a fun-
damental problem in computer vision for decades (Zhang et al., 2013; Jiao et
al., 2019; Liu et al., 2020; Zaidi et al., 2022; Zou et al., 2023). General object
category detection – or generic object class detection, often shortened to object
detection – describes the problem of determining the label of object instances
within an image (Zhang et al., 2013). An object instance is typically described
through a pixel location and axis-aligned extents (Everingham et al., 2010) or
a pixel-accurate segmentation mask (Zhang et al., 2013). The instance’s label
is commonly represented by a numeric identifier that maps to a list of category
names.

Object ClassificationState-of-the-art methods (cf. (Zhang et al., 2013; Jiao et al., 2019; Liu et al.,
2020; Zaidi et al., 2022; Zou et al., 2023)) typically tackle the label’s decision
in a classification manner. The decision is based on the most probable class
from a set of predefined classes (Bendale and Boult, 2015), typically assigned
using the log-categorical probability (Prince, 2012). Scheirer et al. (2013) found
that researchers assume that they have labeled examples from classes to train
the classifier. Nine years later, Zaidi et al. (2022) argued that allocating classes
identified in advance is still a common practice.

Open-World
Recognition

Unfortunately, knowing the complete set of classes in advance may not always be
possible (Scheirer et al., 2013; Bendale and Boult, 2015; Geng et al., 2021). This
pitfall is crucial when considering decision-making in real-world scenarios, such as
security-oriented face verification or autonomous driving. In real-world scenarios,
listing all of the classes to be identified during the decision-making algorithm’s
implementation is often infeasible (Scheirer et al., 2013). However, in academia
closed datasets are used to implement, train, and evaluate new approaches, which
are then considered to generalize to unseen data. But a generalization error occurs
(Mehryar et al., 2018), where object detectors are trained and evaluated on finite
datasets. Additionally, unseen, so-called negative object categories are typically
not modeled during training (Scheirer et al., 2013). Including all negative classes
during training seems infeasible since the number of unimportant elements in the
real-world scenario is vast. Thus, recognizing an object’s class in an open world is
challenging.

https://open.spotify.com/track/5DtfTqxAYMg76AQgFaHqq3


2 1. Introduction

Fine-Grained
Recognition

While the previously referenced methods aim to detect common objects, similar
to three-year old children who start to identify objects in their field of view (Zaidi
et al., 2022), fine-grained recognition aims to distinguish objects on a subordinate
category level – that is, objects with the same general category (Xie et al., 2015;
Krause et al., 2016; Zhao et al., 2017; Gebru et al., 2017; Fu et al., 2017; Bai
et al., 2018; Wang et al., 2020b; Santra et al., 2022). In this field of research,
common examples cover but are not limited to the separation of different bird
species (Ge et al., 2018; Li et al., 2019; Do et al., 2019), car models (Wang et al.,
2019; Musgrave et al., 2020a), or products at a stock-keeping unit (SKU) level
(Sakai et al., 2023). This class of problems is characterized by the observation
that objects of a different subordinate category tend to look reasonably similar
(i.e., they have a low inter-class variance).

1.1 Fine-Grained Open-World Recognition
Fine-grained recognition in an open world intensifies the aforementioned problems:
this is because objects are only separable by a relatively low visual inter-class
variance; furthermore, the number of unimportant object classes is vast since
the application domain is typically narrow (e.g., the recognition of different bird
species). This poses additional hurdles not only to the recognition itself but
also to dataset acquisition. Furthermore, objects’ appearances vary due to scale,
viewpoint, background, and visual occlusion (Zhao et al., 2017), making it difficult
for humans or computers to distinguish fine-grained objects. In this dissertation,
we address these hurdles.

Goal We aimed to assess existing methods critically and extend the current state of
the art to recognize fine-grained objects in an open world while evaluating
their domain-specific generalization capabilities. We additionally aimed to extend
methods to acquire datasets at scale by using metaknowledge of the environment
to train, validate, and evaluate methods within the scope of this dissertation.
Finally, we also aimed to evaluate the injection of similar metaknowledge into the
fine-grained open-world recognition methods.

Challenges We identified the following four significant challenges for fine-grained open-
world recognition:

(i) the difficulties in acquiring datasets at a reasonable scale;

(ii) the influence of metaknowledge induced into the problem;

(iii) the ability to recognize previously unseen fine-grained objects; and

(iv) the ability to generalize to data drifts in the particular application domain.

In the following subsections, we discuss these challenges separately.
Data Acquisition Datasets are the foundation of the tremendous progress made in object recognition

(Xu et al., 2015; Cui et al., 2018). Acquiring data at a reasonable scale is
challenging, error-prone, and exhausting. This is especially true in fine-grained
recognition tasks since small visual differences separate one class from another.
Depending on the given application domain, human experts are often required to
distinguish the particular subordinate category from among many (Li et al., 2019;
Radford et al., 2021); for example, an ornithologist may be required to recognize
the actual bird species, or an aero engineer may be required to categorize aircraft
models precisely. Sun et al. (2017) found that expanding the size of datasets
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improves the accuracy of deep neural models. Thus, it is essential to craft datasets
of a larger size while also being efficient. This dissertation aimed to expand
the body of knowledge to acquire datasets efficiently. We relied on assistive
technologies, such as a modern head-mounted display (HMD), to increase the
efficiency of labelers. Through this dissertation, we shed light on the following
research objective:

RO-D: Data Acquisition
To create and evaluate new methods for annotat-
ing fine-grained data at scale and provide datasets
to the research community for comparing detec-
tion and recognition approaches.

MetaknowledgeBesides the pure data hunger of modern computer vision approaches, careful
feature crafting and data annotation significantly boost a model’s accuracy. Fine-
grained annotations are then induced into the approach to further increase its
capabilities, such as through inducing domain-specific knowledge into the loss
function (Diao et al., 2022) or reducing the significance of labels (Zhang et al.,
2023) acquired using weakly supervised methods (Sun et al., 2021). Through
this dissertation, we aimed to broaden the insights regarding how annotations
could be induced into the problem formulation. Therefore, we investigated how
metaknowledge of the environment of the fine-grained objects to be identified
can be used to lower the hurdles of data acquisition and increase the capabilities
of the used method. Therefore, we formulated the following research objective:

RO-M: Metaknowledge
To improve the evidence on how metaknowledge
of the environment increases the accuracy of fine-
grained recognition systems and reduces the man-
ual labeling efforts during a dataset’s creation.

RecognitionSince the accuracy of a particular domain-specific problem is one of the most
effective metrics for measuring the impact of new approaches, attempting to
increase this particular metric is natural. However, we aimed not only to increase
accuracy but also to reduce the labeled data required to surpass the state of the
art. A significant body of knowledge already exists on how multiple examples
(Hsieh et al., 2019; Jiaxu et al., 2021; Köhler et al., 2023) of an object can be
used to allow its general recognition. We sought to recognize fine-grained objects
with as little training data as possible while being as accurate as possible. Thus,
we recognized previously unseen fine-grained objects with only a single example
image at inference time. Accordingly, we defined the following research objective:

RO-R: Recognition
To recognize novel fine-grained objects based on
their visual appearance from only a single example
image at inference time.

GeneralizationTypically, the generalization capabilities of proposed methods are addressed within
the scope of a single dataset (Jakubovitz et al., 2019), such as through splitting it
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into training and test sets to quantize the empirical error (Mehryar et al., 2018).
However, the concrete generalization error is unknown since the test examples
are drawn from an unknown distribution (Mehryar et al., 2018). Throughout this
dissertation, we aimed to shed light on the generalization error by expanding the
number of examples on which methods are tested. We assessed the quality of
methods across various datasets of the same application domain, which requires
the capability of recognizing previously unknown visual concepts, such as new
fine-grained object classes. This is a crucial task because numerous models struggle
with generalizing across different datasets, as they are only trained and evaluated
on a single dataset. Accordingly, we formulated the following research objective:

RO-G: Generalization
To measure and increase generalization capabil-
ities of approaches for fine-grained open-world
problems.

While we defined our research goals in general, we need to draw connections to
the concrete research questions based on a particular application domain. In the
following section, we introduce the chosen application domain.

1.2 Retail Product Recognition

Although general object classification (He et al., 2016a; Huang et al., 2017; Szegedy
et al., 2017; Radford et al., 2021) can be applied in various areas, some applications
still require an understanding of the fundamental mechanics (Radford et al., 2021).
Among other aspects, recognizing the subordinate category of objects requires
the attention of scientists.

Fine-Grained
Recognition

Fine-grained object recognition differs from general classification tasks in the
specificity required to distinguish individual categories. Fine-grained classification
is typically characterized by distinguishing subordinate classes within larger object
categories (Xie et al., 2015; Krause et al., 2016; Zhao et al., 2017; Gebru et al.,
2017; Fu et al., 2017; Bai et al., 2018; Wang et al., 2020b; Santra et al., 2022).
Examples include the precise identification of bird species (Ge et al., 2018; Li
et al., 2019; Do et al., 2019), the identification of car types (Wang et al., 2019;
Musgrave et al., 2020a), and the concrete classification of individual SKUs in
hypermarkets (Sakai et al., 2023).

Open-World
Recognition

Technologically, most fine-grained and general recognition approaches still predict
the actual label of an image in a classification manner (Zhang et al., 2013; Jiao
et al., 2019; Liu et al., 2020; Zaidi et al., 2022; Zou et al., 2023). Thereby,
these methods predict the likeliest category based on a predefined set of classes.
However, it is often impossible to allocate the entire set of classes in advance
(Scheirer et al., 2013).

Fine-Grained
Open-World
Recognition

With this dissertation, we aim to address both problems in combination. We refer
to this class of problem as a fine-grained open-world recognition problem.
While a significant body of knowledge exists for both problems (Zhao et al., 2017;
Geng et al., 2021; Wei et al., 2022), we found few studies (cf. Chapter 7) in which
the subordinate category of objects is predicted under the assumption that the
set of classes is not closed. We found that this particular problem class more
accurately represents the real world. Typical classification approaches sample a
subset of object classes that are detected from the complete set of all (possible)
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classes. It is only natural to restrict the sampled subset to classes relevant to the
particular application domain; for example, in an application for biologists who
want to classify different breeds of dogs, it seems natural to select all known breeds
as possible object classes. Accordingly, an “other” synthetic class might be added
to the total set. The selection of a subset, however, induces the possibility that
potential data biases are present. Presenting wolves to our potential application
for biologists might cause this problem to manifest: the detection approach would
probably predict a particular dog breed in these images, although they would be
irrelevant.

Application DomainFine-grained recognition problems are typically bound to an application domain.
Modern general recognition models – such as CLIP proposed by Radford et
al. (2021), which recently received incredible attention from the broad public –
struggle with different fine-grained recognition tasks (Radford et al., 2021). The
consensus is that a task-specific model should be used to recognize the fine-grained
object categories. Similarly, we based our research on an exemplary application
domain.

Fine-Grained
Product Recognition

The choice of the particular domain is relevant since data acquisition is a mandatory
but often tedious task. Especially in fine-grained open-world problems, in which it
might be possible to constantly expand the set of labeled categories, it is vital to
acquire accurate ground truth easily. Fine-grained problems often require experts
to annotate objects since the subordinate object categories might be difficult for
nonexperts to distinguish, such as the fine-grained nuances of different breeds of
dogs. Thus, we chose an application domain in which most humans are (at least
partially) experts – namely fine-grained product recognition. Many people are
well trained in separating different SKUs, since more than 30% of the total private
spending in Germany was on retail in 2021 (Statista, 2023). On average, 35.8% of
the total private spending was on retail in the European Union (Statista, 2023).
These figures reflect the fact that people frequently purchase various products,
which means that they must easily differentiate the fine-grained SKUs. Thus, we
chose this application domain for our research.

Open-World Product
Recognition

Recognizing retail products at the SKUs level is a challenging, fine-grained,
open-world recognition task. We identified four significant properties that
underscore why standard classification approaches do not work in this application
domain:

1. The visual appearance of products changes over time. Layouts of existing
retail products change because shoppers determine their purchase decision
typically at the point of sale (Rettie and Brewer, 2000). Garber et al.
(2000) found that attention-drawing through visual appearance increases the
probability of purchases. Therefore, visual layouts of products play a crucial
role in shoppers’ decision-making, such as for catching the eye of customers
(Creusen and Schoormans, 2005). Therefore, producers change the appear-
ance of products continuously. This implies that standard classification
approaches would need to be fine-tuned frequently.

2. The number of SKUs is vast. Large retail stores in Germany shelve up to
50, 000 different products each (Hahn Gruppe et al., 2021). Open Food
Facts1, a crowdsourced database intended for food data, listed more than
200, 000 products in Germany at the time of writing this thesis. Commonly
used academic datasets for general recognition typically consist of only 1, 000

1https://de.openfoodfacts.org/ visited on 11/16/2023.

https://de.openfoodfacts.org/
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classes (Deng et al., 2009). Modern fine-grained academic datasets consist
of 10, 000 different classes to be distinguished (Krause et al., 2016; Grant
Van Horn, 2021; Yuan et al., 2021; Lutio et al., 2021).

3. Products fluctuate rapidly. The absolute number of SKUs (i.e., classes to
be distinguished) is not fixed at inference time. This is because different
companies issue new SKUs over time. Lu et al. (2022) highlighted that
product variety at the SKUs level is critical for store operation since holding
undesired items increases waste. Atzberger et al. (2016) concluded that a
large variety has a crucial impact on customers’ decisions. The practical
relevance of this problem was described recently by Hahn Gruppe et al.
(2021). The authors reported that retailers had to remix products due to
the coronavirus pandemic, which underlines the constant change in SKUs.

4. The virtual and real visual appearances of products differ . Typically, there
are different types of images of products. First, products appear in the real
world, such as when they are placed on shelves. Different visual changes
are introduced if they are imaged through a video camera, such as shading,
illumination changes, or geometric distortion. Second, producers typically
provide a few product images for the web, typically to promote the product
and inform customers about ingredients and nutrition. Both subdomains
overlap in object categories but share significant visual drifts regarding
features. Therefore, applying a classifier for one domain to the other is
challenging.

Fine-Grained and
Open-World

These four properties underline the overall complexity of the problem: Recog-
nizing retail products is a fine-grained open-world recognition task.
Nevertheless, it differs from common research problems in that the closed set
assumption does not hold (i.e., the set of object categories to be distinguished is
fixed). Using standard fine-grained classification approaches is impossible since
they typically predict the class of image patches in a one-hot encoding manner.
Since the categories to be recognized change constantly, it would be inefficient to
deploy classification approaches because traditional classifiers would need to be
retrained and fine-tuned constantly. This conclusion renders fine-grained product
recognition necessary for reassembling a fine-grained open-world task, which
demonstrates the need for new, different views on the underlying problem to solve
it.

1.3 Research Questions
This dissertation assesses methods for recognizing fine-grained products in an
open-world setting. We introduced our research objectives in Section 1.1 and
needed to select an application domain to refine our goals since our research
was bound to annotated data. This section adds more details on our research
objectives by defining research questions with respect to our application domain.

1.3.1 RO-D Data Acquisition
With the research objective for data RO-D, we aimed to provide valuable datasets
to the community, thereby allowing others to develop new fine-grained detection
and recognition methods and compare them. Furthermore, acquiring datasets
at scale is an exhausting task that commonly binds many resources. Thus, we
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created and evaluated different approaches to ease the hurdles of data acquisition.
We formulated the following research questions to achieve our research objective:

RO-D1 How do weakly labeled retail product datasets differ from strongly super-
vised datasets?

Weakly Labeled DataAcquiring data is error-prone and exhausting. One approach for mitigating
this hurdle is to rely on weakly labeled data. Weakly labeled data is
characterized by not every data pair (e.g., an observation and its label)
being strongly supervised (Zhou, 2018). With this question aimed to compare
weakly supervised datasets with traditional datasets of fine-grained products.

RO-D2 Do labelers that use geometric or visual information during annotation
build large datasets faster?

Accelerate
Acquisition

Since acquiring data at scale is exhausting, we further sought to determine
whether metaknowledge is suitable for accelerating this laborious work. We
leveraged metaknowledge (i.e., geometrical information about the environ-
ment or the visual appearance of objects) to build large datasets with limited
human resources.

1.3.2 RO-M Metaknowledge
Fine-grained recognition problems differ from general recognition problems in
that subordinate image labels are to be predicted. The fine-grained recognition
approach represents an expert in recognizing different objects within a broader
object category, such as an expert in recognizing bird species. This observation
leads to assumptions about the broad object category; similar to the observation
that birds are typically found in the wild, (retail) products are typically found in
supermarkets. We exploited this metaknowledge to overcome various problems.
Thus, we formulated the following research questions to achieve the research
objective for knowledge RO-M:

RO-M1 What is the impact of exploiting metaknowledge of scenes to acquire
data?

Visual InformationWe based our research on retail product recognition, which allowed us to
exploit metaknowledge. We observed that producers tend to brand their
products, which results in many products appearing to look similar (Garber
et al., 2000). With this research question, we aimed to exploit such and
other metaknowledge.

RO-M2 What is the impact of using geometric information to detect and recognize
objects?

Geometric
Information

Products within markets are densely populated on shelves (Goldman et al.,
2019), forming almost planar structures in the environment. With this
research question, we exploited the observation to reduce degrees of freedom
during image acquisition. We evaluated whether this impacts the detection
of individual product instances and the recognition of different SKUs.

1.3.3 RO-R Recognition
Recognizing different retail products is a challenging, fine-grained, open-world
recognition problem. During this dissertation’s journey, other researchers have also
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explored this application domain (cf. Chapter 7). We aimed to expand the current
state of the art and push the boundaries of fine-grained open-world recognition.
Therefore, we strongly emphasized the recognition of previously unknown object
instances, which primarily focuses on SKUs that were not known during the
implementation of the approaches. We formulated the following research questions
to meet the research objective for recognition RO-R:

RO-R1 To what extent can novel fine-grained products not known at training
time be recognized?

Novel Objects Many researchers have addressed general, fine-grained problems (Xie et al.,
2015; Krause et al., 2016; Zhao et al., 2017; Gebru et al., 2017; Fu et al.,
2017; Bai et al., 2018), particularly retail recognition (Wang et al., 2020b;
Santra et al., 2022), with traditional classification approaches. We had
already explained why traditional classification approaches do not work in
this domain and assumed that other domains face similar issues (cf. security
systems that grant access based on face recognition). We explored the
possibilities of recognizing previously unseen SKUs.

RO-R2 Are learned or traditional methods better suited to recognizing SKUs?
Traditional and

Learned Methods
Both traditional (Merler et al., 2007; Marder et al., 2015; Tonioni and Di
Stefano, 2017) and learned methods (Tonioni et al., 2018; Fuchs et al., 2020b;
Sakai et al., 2023) exist for recognizing fine-grained products. Many works
have been published in both fields. However, to our knowledge, no one has
compared existing methods in the fine-grained domain of retail product
recognition. This research question summarizes our efforts to compare both
fields.

RO-R3 To what extent does geometric skew influence fine-grained recognition?
Geometric Skew Imaging objects through a camera introduces different transformations that

might change the visual appearance of an object. Among many factors,
geometric skew is one that can significantly distort appearance. While
studies have addressed the influence of geometric skew on the recognition of
general objects (Morel and Yu, 2009; Yu and Morel, 2009), little is known
in the fine-grained domain, particularly in retail. Therefore, we aimed to
research the impacts of geometric skew.

RO-R4 How can the recognition of fine-grained objects in an open world be
improved?

Better Recognition Fine-grained object recognition is challenging since minute differences sep-
arate one categorical label from another. However, when placed under an
open-world assumption (i.e., by recognizing previously unknown fine-grained
objects), the difficulty of the underlying problem increases. This research
question summarizes our efforts to more accurately recognize fine-grained
objects in an open-world problem setting. Here, we aimed to improve the
current state of the art w.r.t. accuracy and efficiency.

RO-R5 How can we extend fine-grained recognition approaches to require less
supervision during training while performing reasonably well in the wild?

Less Supervision Data acquisition is laborious and exhausting in many application domains,
specifically fine-grained application domains, but the total size of the datasets
used significantly influences the later-trained recognition methods. Strongly
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supervised methods require a vast amount of labeled data to achieve high
accuracy. We sought to explore how well models trained with reduced
supervision perform in the wild. Thus, in this dissertation, we propose
new methods for overcoming the lack of data and evaluating their accuracy
against their counterparts trained with full supervision.

1.3.4 RO-G Generalization

The generalization of learned approaches is often directly assumed from the
method’s performance on a particular test set (Goodfellow et al., 2016), which
is sampled from the same distribution as the training set. Often, the dataset
is split into training and test parts before researchers examine any newly pro-
posed approach (Goodfellow et al., 2016). By contrast, it is commonly assumed
(Goodfellow et al., 2016) that the accuracy of the approach degrades when used
in uncontrolled environments. Throughout this dissertation, we separate the
fine-grained identification of objects into two disjoint parts, namely detecting
possible candidates and predicting (“recognizing”) their actual identifying class.
With the research objective for generalization RO-G, we aimed to examine the
generalization capabilities of different approaches individually and as a whole.
Thus, we formulated the following three research questions:

RO-G1 To what extent can pretrained detectors generalize to new datasets?
Generalized
Detection

Detection describes the prediction of the region within an image that depicts
a single object. Deep neural networks are often used to predict these
candidates, which have been trained and evaluated on a specific dataset.
With this question, we aimed to explore how well methods predict fine-
grained objects on other datasets.

RO-G2 To what extent can recognition approaches generalize to new datasets?
Generalized
Recognition

Like detecting possible candidates, predicting an object’s (fine-grained) label
is often supported through deep neural networks, which are again trained
and evaluated based on a particular data distribution. We aimed to explore
how well these trained networks generalize to other datasets and thereby
approximate their performance in the real world.

RO-G3 How accurately can fine-grained objects be recognized when dramatic
shifts in the data distribution occur?

Unseen DatasetsFinally, we aimed to examine the generalization capabilities of both steps
in combination. While the previous research questions addressed both
subproblems individually, we aimed to address both problems jointly with
this research question. Therefore, we set up rigorous tests and evaluated
related works as well as ours on data acquired from a different country. Thus,
we dramatically substituted the distribution of objects since the distribution
of minutiae features that are arguably required to separate fine-grained
objects has changed.

Combining
Objectives

The following section describes how the individual questions fit into the different
chapters. We defined a recognition pipeline called “Fine-grained recognition”.
The Figaro pipeline exemplified the different research goals and allowed us to
combine and, hence, evaluate the individual research questions.
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1.4 Contributions

This dissertation tackled the research objectives introduced in the previous section.
With RO-D, we aimed to research how semi-automatic approaches can be used
to lower the hurdles for fine-grained dataset acquisition. We sought to push the
fine-grained recognition of previously unknown objects using a single example in
RO-R. Furthermore, we sought to exploit metaknowledge to reach both of these
research objectives, and thus, to also improve the evidence of how metaknowledge
can be induced in RO-M. With RO-G, we sought to quantify generalization
capabilities in an open world. Although it might have been feasible to research
these objectives individually, we chose to research them in a single scenario. In
the following subsections, we present our efforts in the data collection required to
implement and evaluate the approaches described in this dissertation as well as a
pipeline (which we call Figaro) that tied our scientific efforts into an approach.

1.4.1 Fine-Grained Datasets

Problem Some of the building blocks in this dissertation build upon statistical models,
which implies that data at a sufficient scale is inevitable. We propose the following
semi-automatic methods for gathering data for fine-grained open-world problems
efficiently.

DGen The first semi-automatic approach, DGen, reduces manual efforts by using video
streams in combination with a simultaneous localization and mapping (SLAM) ap-
proach. The approach automatically acquires a (sparse) model of the environment
and tracks the camera’s movement over time. DGen supports offline annotation
refinements, which are projected into the camera’s field of view throughout the
video sequence. A single refinement can extract different views of the fine-grained
product, which decreases manual effort. DGen was proposed in (Filax et al., 2019)
and is described in more detail in Section 3.1.

Annotron The second semi-automatic approach, Annotron, reduces manual efforts by exploit-
ing a different form of metaknowledge – namely products that densely populate
shelves. We identified potential objects automatically and traced these candidates
throughout the sequence. A human worker then labels the whole candidate trace
with a single interaction. We further structured the annotation procedure to
reduce the overall time. Annotron was proposed in (Filax et al., 2022) and is
described in detail in Section 3.2.

Comparison We proposed two datasets that contain fine-grained retail products of a reasonable
size using both semi-automatic approaches. Throughout this dissertation, we
refer to the dataset collected with DGen as MDGv1, and the dataset collected
with Annotron as MDGv2. Furthermore, we manually annotated a small set of
images (which we refer to as MDG-manual) using traditional labeling methods
(cf. Section 3.3). We compare all datasets with the state of the art in Section 3.4.

Contribution We directly addressed the RO-D and RO-M with these works: semi-automatic
annotation approaches, a traditional dataset, and a comparison with the state
of the art. We found that the semi-automatic approaches significantly ease the
hurdles during acquisition, and we demonstrate their practical applicability in
later chapters.
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Start Image Acquisition

Environmental Sensing Rectification

Product DetectionProduct RecognitionReprojectionEnd

Figure 1.1: The flowchart of the Figaro pipeline comprises six different steps. These are
explained briefly in their corresponding sections in Section 1.4.

1.4.2 Recognizing Retail Products

Fine-Grained
Recognition Pipeline

Besides resolving the data hunger of statistical models, we aimed to recognize
retail products at the SKU level. We tied our efforts into a single recognition
pipeline since this addressed multiple research objectives simultaneously. We
outlined our pipeline as “Fine-grained recognition”, which consists of six steps
that must be solved. Figure 1.1 depicts Figaro at a glance, following standard
flowchart syntax. First, we acquire an image with a camera-like sensor. We
further capture a model of the environment and decrease its complexity through
fitting geometric primitives if needed. In the next step of Figaro, we unwarp
(i.e., rectify) geometric distortions to ease recognition. Then, we localize possible
object candidates in a dedicated detection step. These candidates are recognized
by matching them with a database, which holds only a single image (acquired from
the internet) per fine-grained object. Finally, we reproject found SKUs back into
the camera’s viewport to relax real-time constraints. In the following subsections,
we discuss every step in more detail and outline the individual contributions to
our research objectives.

Image Acquisition

ProblemWe conducted research in the domain of computer vision. Therefore, acquiring an
image of the scene was inevitable. We assumed that the image was taken with
a camera, a smartphone, or a similar technology, such as HMDs. Similarly, we
were able to calculate the camera’s position in space through SLAM approaches
(Durrant-Whyte and Bailey, 2006; Bailey and Durrant-Whyte, 2006; Fuentes-
Pacheco et al., 2015).

ContributionGenerally, we consider the physical imaging of a scene to be well-researched;
thus, we did not focus on the actual image acquisition. Furthermore, through
a preliminary literature review, we found that several SLAM approaches are
available. Thus, we did not focus our research on SLAM either.
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Environmental Sensing

Problem Often, rather extreme viewpoints occur when viewing scenes in the retail domain,
as illustrated in Figure 1.1. The camera is positioned almost perpendicular to the
shelves, looking down the aisle. These rather extreme viewpoints might degrade
the object recognition results.

Metaknowledge We aimed to overcome these hurdles by inducing metaknowledge of the environ-
ment into Figaro, and this next step acquired a spatial model. We acquired the
model using either SLAM approaches (which rely on images or additional sensor
readings) or based on the raw camera stream. Generally, we exploited the obser-
vation that products densely populate shelves resembling almost planar surfaces
and proposed different methods for exploiting this observation. We reduced the
complexity of the spatial model for fast processing and fit 3D primitives into
the spatial model. We evaluated different approaches to detecting 3D primitives,
such as planes, through 3D sensor readings and 2D line segments in the image
space (acquired from metaknowledge). The proposed image-only-based approach
is discussed in depth in Section 4.1.1. Our work using 3D sensor readings to form
a point cloud and detect planar structures is discussed in Section 4.1.2.

Contribution This step of Figaro served as the basis for the RO-M. We thereby partially
addressed RO-R. We evaluated the performance of the proposed planar surface
detection using only images and additional 3D information.

Rectification

Problem This step of Figaro exploits the previously acquired environmental model. Rather
extreme viewpoints, as depicted in Figure 1.1, introduce substantial geometric
distortions to the imaged products, which increases the difficulty of fine-grained
open-world recognition.

Rectification “Rectification” bundles ideas in Figaro to reduce degrees of freedom that arise in
the image acquisition step. In Sections 4.1.1 and 4.1.2, we describe the work that
we conducted to overcome extreme distortions during detection. This included an
image-based approach and an approach that incorporated metaknowledge of the
scene to unwarp the geometric distortion of the scene. In Section 5.4, we describe
our experiments with fronto-parallel views in a recognition setting.

Contribution This step indirectly contributed to the RO-M and partially to the RO-R. We
investigated how and to what extent these canonical scenes increase the capabilities
of subsequent detection and recognition methods.

Product Detection

Problem Detecting products at the instance-level is a challenging problem since products
are densely packed (Goldman et al., 2019). Images of objects close to each other
pose challenges to many detectors since it is difficult to determine where one
object ends and the other begins.

Detection Other researchers have already addressed the detection problem in the retail
application domain (Bigham et al., 2010; Thakoor et al., 2013; Liciotti et al., 2014;
Hsieh et al., 2019; Santra and Mukherjee, 2019; Osokin et al., 2020; Goldman
et al., 2019; Rong et al., 2020; Pietrini et al., 2022). We initially proposed two
methods in (Filax et al., 2017) and (Filax and Ortmeier, 2018), of which the
first relies on pure 2D images data and the latter strongly relies on additional
sensor readings. We discuss both approaches in Section 4.1.1 and Section 4.1.2.
Section 4.1.3 outlines a sliding window approach (SWA) that relies on additional
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sensor readings. We compare other state-of-the-art methods in Section 4.2 and
quantify the influence of induced metaknowledge with them.

ContributionThis step of Figaro generates possible object candidates, which are identified in
the next step. We proposed methods to extended the current state of the art. We
evaluated whether the current state of the art meets requirements that arise from
the RO-R and RO-G. Furthermore, we found that inducing metaknowledge of the
scene into state-of-the-art methods of this application domain can increase the
detection capabilities, directly addressing the RO-M.

Product Recognition

ProblemThis step of Figaro predicts the label of a previously detected candidate patch.
Since the application domain dictates a fine-grained open-world problem and the
set of classes is not finite, standard classification approaches cannot be deployed.
Instead, research is required to recognize previously unseen SKUs at scale.

RecognitionThis step of Figaro builds upon two papers (Filax et al., 2021; Filax and Ortmeier,
2021) and is discussed in depth in Chapter 5. We describe the proposed recognition
approach in Section 5.1 and evaluate it in Section 5.2. Section 5.3 demonstrates
its applicability in the real world, assuming that the set of classes to be recognized
is partially disjoint from those used during training. We discuss the influence of
metaknowledge in Section 5.4 before extending the approach in Section 5.5 to
significantly require less annotated data.

ContributionThis dissertation focuses, in more significant parts, on the actual recognition
problem. We proposed a new approach for fine-grained open-world product
recognition at the SKU level in retail scenes. Through various experiments, we
fulfilled the RO-M, RO-R, and partially RO-G.

Reprojection

ProblemThe previous steps of Figaro might not operate under all circumstances in real
time. We recover the real-time property of Figaro in this step.

Figaro in the WildGenerally, we deployed standard computer vision approaches to recover real-time
capabilities. Using its trajectory, we reprojected recognized retail products into
the camera’s field of view. Since this particular task reflects state of the art
methods, we do not focus on it in this dissertation.

ContributionNevertheless, we assess the real-time capabilities of Figaro in Chapter 6 and
discover that Figaro outperforms the current state of the art in terms of accuracy
and by a large margin in terms of computational efficiency. We underline the
unique features of Figaro in Chapter 7. We contributed with these chapters to
RO-G, RO-M, RO-R, and partially RO-D.
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2. Background
Running circles, old habits die hard
Each lesson learned never seemed to get too far
Call me reckless, call me stuck in my ways
I’m torn between the remedies for everything

Polaris. “The Remedy” The Mortal Coil,
SharpTone Records, 2017

This chapter briefly summarizes the mathematical foundations used in this dis-
sertation. We recapitulate SLAM algorithms and provide evidence that they are
frequently built into consumer electronics equipped with cameras (cf. Section 2.1).
Furthermore, we recall various object detection methods and specifically emphasize
the class-agnostic detection problem, that is, the localization of regions within
an image that depicts some object (cf. Section 2.2). Finally, in Section 2.3, we
recall the current state-of-the-art object recognition, namely the prediction of the
object identifier detected previously.

2.1 Fundamentals

Generally, we follow the notation proposed by Prince (2012) and denote scalars
with small and capital letters, namely α, a, or A. We represent vectors with bold
small letters (e.g., e), and matrices with bold capital letters (e.g., H). Functions
are represented using their full name or a shortened version, such as log(x) for
the logarithm of the scalar variable x, followed by their parameters (or variables)
in parentheses. We denote the parameters of a model, which we consider to be a
specific function, with Greek letters, such as θ. Applying this function, with its
parameters, is denoted by f(θ). We represent sets with calligraphic letters, such
as C. Often, we explicitly denote the elements of a set in curly brackets, such as
C = {x, y, z}.

2.1.1 Camera Model
Throughout this dissertation, we abstract the camera with the pinhole camera
model (Hartley and Zisserman, 2004) to simplify various methods. This model is
typically called a first-order approximation of mapping a 3D scene to a 2D image
because it neglects the radial distortion or blurring of unfocused objects caused
by lenses and finite-sized apertures. It is a fundamental concept for various tasks,
such as image processing, computer graphics, and 3D reconstruction.

Figure 2.1The pinhole camera model is depicted in Figure 2.1. The model is derived from
a physical pinhole camera, except that a virtual image plane is placed in front
of the optical center (Hartley and Zisserman, 2004). Thus, the image is upright,
not upside-down, but mathematically equivalent to the proper pinhole camera

https://open.spotify.com/track/63GJDO5mxiFP1ZQEpdUWRd
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Figure 2.1: The pinhole camera model (Hartley and Zisserman, 2004) is typically used to
represent the visual projection of the world onto the image plane.

(Prince, 2012). We denote the optical center as F c. The camera model further
consists of a principal axis that intersects at the principal point with the virtual
image plane. Rays from a world point p′ pass through the virtual image plane to
F c and intersect with the virtual image plane at p. The camera model contains
even more parameters, such as the focal length f , which describes the distance of
the virtual image plane and F c along the principal axis. However, we omit some
of these parameters since they are unnecessary for understanding the homography.
We refer interested readers to the excellent works of Hartley and Zisserman (2004)
and Prince (2012) for a more detailed description of the general pinhole camera
model.

2.1.2 Homography

A homography H is a 3× 3 projective transformation that can map points in a
plane to any other points while preserving linearity constraints (Prince, 2012). H
defines the transformation that maps points from one coordinate system (e.g.,
one image) to another (e.g., another image). Although H is presented via a 3× 3
matrix with nine entries, it only contains eight degrees of freedom and is therefore
estimated to be up to scale (Hartley and Zisserman, 2004). A homography
preserves the geometric properties of points and lines; that is, if applied to a
set of points or straight lines in one image, it maps those points to lines to the
corresponding points of lines in another image without distorting their relative
positions.

Figure 2.2 Figure 2.2 depicts an example configuration. Two pinhole cameras – F 1 and
F 2 – observe a planar surface with four different points P ′ = {p′, q′, r′, s′}. Both
cameras observe these points and transform P ′ → Pc whereas c ∈ {1, 2}. The
homography H relates P1 and P2 (Hartley and Zisserman, 2004); that is, it maps
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Figure 2.2: A homography H is a mathematical transformation that relates the projective
transformation between two different perspectives of the same planar 3D scene (Hartley
and Zisserman, 2004).

P1 (in homogeneous coordinates) to P2. As shown in Figure 2.2, p1 is transformed
by H to p2 (up to the scale λ) as follows:

λp2 = Hp1 =

h11 h12 h13
h11 h22 h23
h31 h32 h33

 x1
y1
1

 . (2.1)

Prince (2012) illustrated the H as a linear transformation to a bundle of rays in
3D. P2 is found where the transformed rays strike the virtual image plane of F 2
(i.e., where the homogeneous component is one).

Estimating HCorresponding sets of points are required to estimate H . This is typically achieved
using the direct linear transform (DLT) algorithm (Hartley and Zisserman, 2004) or
a RANSAC variant (Prince, 2012). While the first requires only four corresponding
points, the latter is more robust to outliers. Hartley and Zisserman (2004)
describes the DLT algorithm as solving the homogeneous equation P1 = HP2.
They proposed linearly solving the equation by reformulating it as the vector
cross product P1×HP2 = 0. Furthermore, they reformulated the vector product
as a set of three equations through simple matrix multiplication. Solving these
equations reveals that only two are linearly independent. Thus, the result is up
to scale (Hartley and Zisserman, 2004).

2.1.3 Feature Detection and Matching
Feature detection and matching are vital fundamentals for various computer
vision tasks. Many applications, such as image-stitching (Szeliski, 2007), 3D
reconstruction (Favalli et al., 2012), or synthetic view generation (cf. Section 2.1.2),
strongly rely on precise pixel locations of the same point in different images.
Feature points and their correspondences are typically accurately tracked using
local search techniques and matched based on visual appearance. Approaches
that aim to achieve this are typically split into at least the following three steps:
feature detection, feature description, and feature matching (Szeliski, 2011).

DetectionFeature detection is commonly seen as the problem of identifying meaningful
pixel locations that are resilient to viewpoint changes and, therefore, reliably
found in different views. The core assumption is that significant contrast changes
are more accessible to localize. Therefore, features are often found near an
object’s edges (i.e., corners or lines) (Szeliski, 2011). Commonly used feature
detection frameworks are Harris corners (Harris and Stephens, 1988) or Difference
of Gaussian (Brown et al., 2005).
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Description Since previously identified meaningful points in an image shall be matched to
points in another image, we must describe the visual content around those points.
Since the local appearance of a feature might change in orientation or scale, or due
to (affine) deformations, feature descriptions must be resilient to these changes
(Szeliski, 2011). Feature descriptors have been researched for decades. Thus, it is
no surprise that numerous feature descriptors have been proposed (Lowe, 2004;
Brown et al., 2005; Mikolajczyk and Schmid, 2005; Bay et al., 2006; Rublee et al.,
2011; Leutenegger et al., 2011). Among them, scale-invariant feature transform
(SIFT) (cf. Section 2.2.1) is considered the de facto standard.

Matching Once features are found and described, we want to find correspondences in two
images of the same objects. Identifying these correspondences is commonly called
as feature matching. The most straightforward matching strategy, according
to Szeliski (2011), is to set a maximum distance threshold with the standard
Euclidean distance of two features. However, this approach might be error-prone
since the definition of the ideal fixed threshold is complex because the useful
range of the threshold might vary in different regions of the feature space (Lowe,
2004; Mikolajczyk and Schmid, 2005). Therefore, ratio tests are often deployed,
such as those proposed in (Lowe, 2004; Mikolajczyk and Schmid, 2005). Lowe
(2004) proposed a commonly used de facto standard that evaluated the Euclidean
distance ratio of the nearest and second nearest neighbor. However, the rapid
computation of feature correspondence must still be improved. Thus, it is the
state of the art to induce a geometric alignment step (Szeliski, 2011) into the
feature matching procedure, such as by using a RANSAC approach.

2.1.4 Simultaneous Localization and Mapping

SLAM describes a group of algorithms that enable the crucial capabilities of
modern self-driving cars, drones, robots, or HMDs. SLAM enables them to
navigate and explore their surroundings without relying on prior maps (Macario
Barros et al., 2022; Abaspur Kazerouni et al., 2022). Therefore, SLAM has a wide
range of applications, including robotics, but has recently enabled augmented and
virtual reality applications on modern HMDs and smartphones. A conceptual
overview of SLAM approaches is depicted in Figure 2.3. In the following subsection,
we describe each step individually.

Sensors Systems that use SLAM approaches often rely on a combination of different sensors
to perform the SLAM algorithm (Abaspur Kazerouni et al., 2022). This can
include (multiple) cameras, LIDARs, depth sensors, sonars, GPS sensors, inertial
measurement units, wheel encoders, lasers, or similar sensors (Abaspur Kazerouni
et al., 2022). If multiple sensors are used, the acquired data must be fused through
techniques like sensor calibration, data association, and probabilistic filtering
algorithms (Haghighat et al., 2011).

Feature Detection The data collected through these sensors are typically rather complex, and thus,
SLAM systems often aim to reduce the complexity of the data by detecting robust
markers in the data stream. At least in terms of images, these are often referred
to as features. Commonly used visual features (cf. Section 2.1.3) include but
are not limited to SIFT (Lowe, 2004), SURF (Bay et al., 2006), ORB (Rublee
et al., 2011), BRISK (Leutenegger et al., 2011), and more (Abaspur Kazerouni
et al., 2022). The feature type used is based on the concrete implementation of
the SLAM system.

Localization This step estimates the SLAM system’s local pose within its environment (i.e.,
its position and orientation at a given timestep). Based on the previous system’s
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Start Sensors Feature Detection Localization
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Figure 2.3: General flowchart of SLAM systems, following the standard flowchart syntax.

state, the SLAM approach estimates the system’s current state (Aulinas et al.,
2008). However, in SLAM, the system often starts with little to no prior knowledge
of its location. Thus, the initial pose is typically considered the nominal pose (i.e.,
the camera center is equal to the origin of the coordinate system).

Loop ClosureAs the SLAM system moves throughout the environment, it might revisit a
previously visited location. Detecting revisits of prior locations allows the SLAM
system to correct errors that accumulate over time and improve the accuracy of
both the map and the system’s pose estimate. This approach is known as "loop
closure" (Abaspur Kazerouni et al., 2022).

MappingFinally, before the SLAM systems formally revolve into a loop, the environment
map is built based on the previously found features. The map can have various
formats, including 2D or 3D grids, point clouds, or feature-driven maps (Abaspur
Kazerouni et al., 2022). The goal is to identify and record the locations of objects,
obstacles, and landmarks in the environment.

State of the ArtAbaspur Kazerouni et al. (2022) and Macario Barros et al. (2022) have compared
various approaches in comprehensive and extensive lists. Furthermore, many
products that require a real-time SLAM approach are already available at the
time of writing this dissertation, such as Microsoft’s HoloLens 22, Intel’s RealSense
Depth Camera D4573, and Meta’s Meta Quest 34. Moreover, we argue that modern
smartphones often also allow users to track their environment using built-in sensors.
Thus, we conclude that SLAM as-is has matured into a consumer-grade solved
approach already available in many consumer handheld devices. Therefore, we
chose not to focus on this research area.

2.1.5 Neural Networks

In 2012, artificial neural networks began to change the many domains in computer
vision dramatically (Zou et al., 2023) through drastic accuracy improvements across
various datasets and object detection challenges, such as VOC075 and VOC126

or the first iteration of the “common objects in context” (COCO) challenge7.
Fine-grained visual recognition in an open world is no exception to this dramatic
change. Artificial neural networks (e.g., a convolutional neural network (CNN))
aim to loosely model the neurons in our brains that are trained through vast
amounts of examples (i.e., the experience) to fulfill the purpose (i.e., a task)
encoded in the goal function (Goodfellow et al., 2016). Goodfellow et al. (2016)
found that the model’s performance in a task is typically measured through a
performance measure (i.e., an accuracy metric; cf. Sections 2.2.3 and 2.3.3). CNNs
are a specific branch of models designed to learn robust and (high-level) feature

2https://www.microsoft.com/en/hololens visited on 10/10/2023.
3https://www.intelrealsense.com/depth-camera-d457/ visited on 10/10/2023.
4https://www.meta.com/us/en/quest/quest-3/ visited on 10/10/2023.
5http://host.robots.ox.ac.uk/pascal/VOC/voc2007/ visited on 10/11/2023.
6http://host.robots.ox.ac.uk/pascal/VOC/voc2012/ visited on 10/11/2023.
7https://cocodataset.org/#detection-2015 visited on 10/11/2023.

https://www.microsoft.com/en/hololens
https://www.intelrealsense.com/depth-camera-d457/
https://www.meta.com/us/en/quest/quest-3/
http://host.robots.ox.ac.uk/pascal/VOC/voc2007/
http://host.robots.ox.ac.uk/pascal/VOC/voc2012/
https://cocodataset.org/#detection-2015
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representations of images to achieve the desired goal (Zou et al., 2023). Over the
last decade, often used principles (i.e., commonly used building blocks) have been
established in research. In the following subsection, we briefly cover some of the
most important works.

Principles We do not cover the mathematical fundamentals behind many of the following
concepts. Instead, we refer interested readers to the excellent works of Prince
(2012) and Goodfellow et al. (2016). Khan et al. (2020) summarized various
architectures of CNNs, while Li et al. (2022) compared common building blocks
for several tasks. In the following, we briefly describe the essential building blocks
of CNNs.

Hidden Layer Generally, neural networks are divided into different layers (Goodfellow et al.,
2016; Li et al., 2022). While the first layer is typically referred to as the input or
visible layer (Goodfellow et al., 2016), the last layer of an artificial neural network
is called the output layer. In between, we typically use a (large) number of hidden
layers that extract different (visual) features of the previous layer and thus also the
image (Goodfellow et al., 2016). In contrast to classical feature-driven computer
vision, the values of the different neurons (i.e., the weights) are not manually
designed. Instead, the model weights are derived based on the data presented to
the model during the training phase (Goodfellow et al., 2016).

Fully-Connected
Layer

Goodfellow et al. (2016) offered a brilliant analogy to neurons in neural networks:
A single neuron within a neural network layer can be thought of as a vector-
to-scalar function. Thus, the (connected) predecessors define the new value of
a neuron (based on weights and an activation function). Since a single neuron
is typically insufficient for representing complex features, multiple neurons are
grouped into a layer fully-connected to the predecessor layer. We typically refer
to these as fully-connected layers (Goodfellow et al., 2016).

Convolutional Layer The essential factors of artificial neural networks in computer vision are con-
volutions. Many modern architectures make heavy use of convolutions in their
neural architecture. Inspired by visual perception (Hubel and Wiesel, 1962),
convolutional layers take advantage of the local connectivity of pixels (Li et al.,
2022). Each neuron of a convolutional layer does not need to be fully connected to
the neurons in the previous layer. Instead, only a small number of neurons have an
impact on the response of a particular neuron. Furthermore, weights are typically
shared across the particular layer (Li et al., 2022), which dramatically reduces
the total number of trainable parameters and thus accelerates the training.

Backpropagation The weights of a neural network are found through vast amounts of data by
regulating the change in weights according to the goal function (Khan et al.,
2020). The models’ weights are adjusted to reduce the relative error between
the model prediction and ground truth. Typically, backpropagation (Khan et al.,
2020) is used to minimize the error. The derivatives are calculated starting at the
final output layer. The weights are adjusted based on a negative multiple of this
derivative. This is done layer by layer until the input layer is reached.

The ResNet
Architecture

A vast number of architectures exist for CNNs. Khan et al. (2020) compared
different architectures in depth. Among many different architectures, in this
dissertation, we often use architectures based on ResNet (He et al., 2016a). He et
al. (2016a) introduced the concept of residual learning in CNNs. The architecture
is adopted to include skip connections that perform identity mappings. These
are then merged with the current layer’s output. He et al. (2016a) thus proposed
a new architecture type that could include hundreds of layers. Through these
skip connections, additional layers become more manageable since they are less
likely to suffer from the vanishing gradient problem (Bynagari, 2020) and achieve
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better accuracy in the task since, through numerous layers, higher-level feature
representations can be found.

ApplicationsNeural networks have been applied in a variety of different domains. These include
object detection (Liu et al., 2020; Zou et al., 2023), object classification (Li et al.,
2018; Singh and Singh, 2020), image segmentation (Minaee et al., 2021), face
recognition (Masi et al., 2016; Zhao et al., 2019), and medial image analysis
(Litjens et al., 2017; Haskins et al., 2020). In the following two sections, we
describe essential concepts relevant to object detection (cf. Section 2.2) and
recognition (cf. Section 2.3).

2.2 Object Detection

Zou et al. (2023) recapitulated object detection as a vital computer vision task
that attempts to find instances of visual objects in digital images. Essentially, this
research field aims to answer the following question: “What objects are where?”
(Zou et al., 2023). Since various surveys (Zhou et al., 2019; Zhu et al., 2019;
Zou et al., 2023) are available in the literature that describe the fine nuances
that separate one specific approach from the other in detail, we summarize the
main research directions in this section. Furthermore, we emphasize class-agnostic
detection of objects, and then Section 2.3 focuses on recognizing the detected
object’s class.

2.2.1 Non-Neural Object Detection

Non-neural object detection approaches use handcrafted features to describe the
visual content of relevant points within an image. These features have already been
discussed in Section 2.1.3. Thus, this section summarizes essential extensions to
the standard feature detectors relevant to some future sections of this dissertation.

SIFT

SIFT (Lowe, 2004) features are computed using the gradients in a 16× 26 window
around the detected keypoint with an appropriate level of the Gaussian pyramid
to ensure scale invariance. A fall-off function downweighs the gradient magnitudes
to reduce the influence of the gradient far from the center. Next, a histogram is
formed by binning the gradient orientations. The gradient orientation histogram
is then further reduced to decrease the effects of location and dominant orientation
misestimation, which results in a 128-dimensional non-negative raw version of a
SIFT descriptor. Finally, the vector is normalized, clipped to 0.2 per scalar value,
and renormalized to further harden it to other photometric variations (Lowe,
2004). Features are matched against each other based on their Euclidean distance,
and matches are rejected if they fail the distance ratio test. Lowe (2004) proposed
accepting a possible feature correspondence as a match only if the distance ratio
between the best and second best match is smaller than 0.8; otherwise, these
correspondences are eliminated (Lowe, 2004).

ASIFT

ASIFT (Morel and Yu, 2009; Yu and Morel, 2009) extends the standard SIFT
approach. Morel and Yu (2009) identified a vital drawback of the vanilla approach,
namely that it operates solely in the image space and neglects geometric distortion
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Figure 2.4: ASIFT (Morel and Yu, 2009; Yu and Morel, 2009) proposed an affine camera
model that parameterizes the camera’s extrinsic parameters (here α, Θ, Φ, and Ψ) with
respect to the (planar) object and its normal. They proposed sampling different virtual
views to harden SIFT against affine transformations.

introduced through strong viewpoint change. The number of correspondences
found with SIFT saturates if the object to be detected is imaged under strong
viewpoint changes (Mikolajczyk and Schmid, 2005; Morel and Yu, 2009; Yu
and Morel, 2009). Thus, the authors proposed increasing the number of found
correspondences by allocating virtual views of the object under recognition. The
core idea is depicted in Figure 2.4. Yu and Morel (2009) proposed an affine camera
model that parameterizes the camera’s position with respect to the (planar) object
it views and its normal. They assumed that the camera is placed far away from a
planar object. The normal of the plane and the optical axis form the angle Φ.
The optical axis then forms the second angle Θ; Ψ denotes the camera’s roll and
α some scale (i.e., distance of the camera to the planar object)

Method ASIFT (Morel and Yu, 2009; Yu and Morel, 2009) aims to achieve affine in-
variance by sampling various virtual views of the object under recognition. It
was demonstrated that SIFT is scale (here α) invariant (Morel and Yu, 2008).
Further, SIFT is known normalize camera rotations (here Ψ). Therefore, ASIFT
simulates various virtual viewpoints over a view hemisphere per image (i.e., by
using different combinations of Θ and Φ). These virtual views of the object under
recognition are used to detect, describe, and match SIFT features, as described
in Section 2.1.3. ASIFT finally greedily selects the two viewpoints that generate
the most correspondences. ASIFT is assumed to roughly double the computation
time of standard SIFT through an efficient implementation and a sparse sampling
of Θ and Φ.

Others

Various SIFT extensions (Yan Ke and Sukthankar, 2004; Mikolajczyk and Schmid,
2005; Lodha and Xiao, 2006; Abdel-Hakim and Farag, 2006), methods for reducing
computational complexity (Bay et al., 2006), and numerous other feature descrip-
tors (Rublee et al., 2011; Leutenegger et al., 2011; Abaspur Kazerouni et al., 2022)
have been proposed – far more than could be discuss in detail in this dissertation,
which is especially cumbersome since we based our work (cf. Chapter 4) mainly on
SIFT. Thus, we refer interested readers to recent surveys that have summarized
different object detection methods based on manually designed features (Wu et al.,
2020; Jiang et al., 2021; Zou et al., 2023).
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2.2.2 Neural Object Detection
Object detection has been subject to research over the last decades (Wu et al.,
2020; Zou et al., 2023). Various detectors have been evaluated broadly, especially
in the well-known PASCAL VOC detection challenges (Everingham et al., 2015).
However, non-neural object detection reached a plateau in 2010, and in 2012, neural
networks dramatically increased the performance of object detection approaches
(Zou et al., 2023).

ParadigmsIn the past decades, two detection paradigms have been established in the literature
– namely two-stage and one-stage detectors (Wu et al., 2020; Zou et al., 2023).
Two-stage detectors are characterized by having two different parts. The first
part typically aims to generate proposals, while the second part classifies these
proposals in an n + 1 manner; n + 1 since a virtual class is used to represent
background (i.e., invalid proposals identified in the first stage of the detector).
Important milestones of two-stage detectors include R-CNN (Girshick et al., 2014),
SPP-net (He et al., 2015), Fast R-CNN (Girshick, 2015), Faster R-CNN (Ren
et al., 2015), and R-FCN (Dai et al., 2016). By contrast, one-stage detectors do
not rely on proposals that have to be rejected afterward. Instead, they typically
consider all pixels as possible objects and classify each region of interest as a
background or a target class. Important milestones of one-stage detectors include
YOLO (Redmon et al., 2016), SSD (Liu et al., 2016), RetinaNet (Lin et al., 2017),
YOLOv2 (Redmon and Farhadi, 2017), and CornerNet (Law and Deng, 2018).
While one-stage detectors are typically faster than two-stage detectors during
inference, two-stage detectors are typically more accurate than one-stage detectors
(Wu et al., 2020).

Neural Detection Components

Note that these methods typically include solving two individual problems –
namely identifying the region of interest within an image, and then predicting the
region’s most likely class. Next, we emphasize modern object detection networks’
detection components (i.e., class-agnostic object detection). We follow (Wu et
al., 2020), who identified four different detection components and summarized
significant works. Recognition methods are discussed in Section 2.3.

Traditional MethodsTraditional methods for detecting regions of interest are based on low-level visual
cues, such as colors or edges. Wu et al. (2020) identified three sub-groups, the first
of which aims to predict an “objectness” score according to different heuristics.
Alexe et al. (2012) used multiple low-level properties, including saliency, color
contrast, and edge density, to predict the “objectness” of a region of interest.
Rahtu et al. (2011) extended the approach using cascaded learning to increase
efficiency. The second sub-group is based on merging “superpixels”. Typically,
selective search (Uijlings et al., 2013) is used to acquire an initial set of proposals,
which are then hierarchically segmented (Felzenszwalb and Huttenlocher, 2004)
or merged based on a learned heuristic (Manen et al., 2013). The third sub-group
avoids hierarchical segmentations by using multiple seed regions. Each region is
segmented into foreground and background. These methods either use a set of
overlapping segments initialized with different seeds (Carreira and Sminchisescu,
2012) or rely on selective search (Endres and Hoiem, 2014).

Anchor-Based
Methods

The second large neural detection component family generates region proposals
based on anchors. Ren et al. (2015) proposed Region Proposal Networks, a
supervised method for generating object proposals based on deep convolutional
feature maps. Multiple initial estimates of bounding boxes in various sizes
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and aspect ratios are considered for each location in the feature map. These
initial proposals are refined based on the corresponding weights using a (binary)
classification layer and a regression layer (Ren et al., 2015). Since then, many
extensions have been studied; for example, Liu et al. (2016) extended the approach
to predict categorical class labels, various design choices of the initial anchors
(Zhang et al., 2017; Zhu et al., 2018; Newell et al., 2016; Xie et al., 2019). Even
data-driven anchor initializations have been studied (Redmon and Farhadi, 2017;
Zhang et al., 2018b; Yang et al., 2018).

Keypoint-Based
Methods

The third large neural detection component family uses keypoints to generate
object candidates. This family is separated into two types, those that rely on the
corners of objects and those that rely on the center points of objects. Corner-
based methods generate object proposals by predicting bounding boxes (i.e., the
top-left and bottom-right or top-right and bottom-left corners of the bounding
box) from a feature map (Law and Deng, 2018; Tychsen-Smith and Petersson,
2017). Center-based methods predict the center point of objects and regress their
height and width based on the feature map (Zhou et al., 2019; Zhu et al., 2019).

Other Methods Finally, there are other proposal generation methods that do not rely on anchors or
keypoints. Lu et al. (2016), for instance, uses a particular heuristic that relies on
recursively divided regions and predicts a zoom indicator (indicating the division
of the region) and an adjacency score (indicating the “objectness”) per region.

2.2.3 Evaluation Metrics
Different evaluation metrics have been established to measure the performance of
various detectors. The following subsections define the most common metrics used
for binary detectors. We follow the notation and definitions given in (Goodfellow
et al., 2016) and (Padilla et al., 2020). Metrics used in conjunction with non-binary
classifiers are discussed in Section 2.3.3.

Principles Evaluating binary detectors involves evaluating the correct and incorrect predicted
locations of objects in all images under test. Related works distinguish different
principles Padilla et al. (2020) defined the following principles:

True Positive (TP ): A prediction of an approach that correctly predicted a
ground truth object.

False Positive (FP ): A prediction of an approach that incorrectly predicted a
nonexistent object.

False Negative (FN): An object that the detector has not detected.

Note that, as highlighted in (Padilla et al., 2020), the concept of a “True Negative”
cannot be applied since typically an infinite number of bounding boxes exist (i.e.,
detections) that should not be detected within an image.

Intersection over Union

Identifying correct and incorrectly predicted ground truth objects in an image
inevitably requires precisely defining what correct and incorrect mean. An extreme
solution would be to define correctness as a precise overlapping of detection and
ground truth. However, this is typically considered overly complicated for training
purposes. Thus, Intersection over Union (IoU) is used to ease the difficulty and
allow neural detectors to converge smoothly. In this work, we focus on bounding
boxes, which are axis-aligned rectangles that determine the outer bounds of an
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object in an image. Bounding boxes are typically described by two points, namely
the center point and the extends. If a detector predicts the bounding box, we
would assume that some confidence score is also predicted. IoU is typically defined
in context with two bounding boxes, namely the predicted detection and the
corresponding ground truth bounding box (Padilla et al., 2020). For two bounding
boxes, B and B′, the IoU is defined as follows:

IoU (B, B′) =
|B ∩B′|
|B ∪B′|

. (2.2)

The predicted bounding box can be correct if the IoU is larger than a predefined
threshold t. Computing the number of TP s, FP s, and FNs is then bound to the
chosen t. A lower t might be lenient toward loose detectors, whereas a higher t
might favor tight detectors.

Recall and Precision

RecallPadilla et al. (2020) concluded that for the problem of object detection, recall and
precision are typically used to measure a detector’s performance. Recall is defined
as the fraction of correctly detected objects within an image for the total number
of predicted objects (Goodfellow et al., 2016); therefore, it describes the ability of
a detector to predict all objects in an image (Padilla et al., 2020). Speaking in
relation to the previously established basic principles, recall is defined as follows:

recall =
TP

TP + FN
. (2.3)

PrecisionIn contrast to recall, precision describes the ability of a detector to predict only
the relevant objects in an image (Padilla et al., 2020). Precision is defined as
the fraction of correctly detected objects within an image concerning the total
number of objects depicted in it (Goodfellow et al., 2016). Therefore, precision is
calculated as follows:

precision =
TP

TP + FP
. (2.4)

ComparisonAn excellent binary detector achieves high recall rates (i.e., by detecting every
object within an image) and high precision rates (i.e., by precisely detecting
objects within an image). Comparing two detectors with two slightly different
evaluation metrics is challenging since the detectors might be superior in only a
single metric. Therefore, it is best to use only a single metric to compare different
works.

Average Precision

precision × recallDefining a single metric to compare multiple detectors w.r.t. precision and
recall can be achieved by obtaining the precision-recall diagram. Said diagram is
obtained by calculating precision and recall at different confidence score thresholds
(Padilla et al., 2020). Here, the rationale is provided by comparing the precision
of detectors at different recall levels (which are acquired using different confidence
thresholds). If the confidence of a detector is high, then the precision will typically
be high, but many positives may be missed, resulting in a low recall. Conversely,
if the detector accepts many positives, which would increase the recall, many
negatives might be accepted, resulting in a higher FP count and thus a lower
precision. If a good detector achieves high recall and precision values at different
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confidence scores, the area under the precision-recall curve increases. However,
geometric solutions to this problem are difficult to compare; instead, numerical
solutions are favorable

AP11 Therefore, Everingham et al. (2010) proposed an approximation by averaging the
precision at eleven different recall levels. This metric (Everingham et al., 2010)
was successfully used in the well-known PASCAL VOC challenge8. This average
precision (AP11) is defined as follows:

AP11 =
1
11

∑
R

precisioninterp(r, t) (2.5)

with r ∈ R = {0, 0.1, ..., 1} and precisioninterp(r, t) = maxr̃:r̃≥r precision(r̃, t).
AP11, therefore, describes the average maximum precision of a detector at eleven
different recall levels. The evaluation of the PASCAL VOC challenge fixed the
IoU threshold at t = 0.5 (Everingham et al., 2010).

AP Unfortunately, AP11 weights a very tight detection with IoU > 0.95, identical to
a loose TP detection of IoU < 0.55. Thus, the evaluation might be lenient to a
detector and favor loose detections over tight detections. With the well-known
COCO challenge, AP11 was further refined9. In contrast to Everingham et al.
(2010), the authors proposed using multiple IoU thresholds. Furthermore, the
different recall thresholds were extended. The average precision AP is defined as
follows:

AP =
1
|T |

∑
T

1
|R′|

∑
R′

precisioninterp(r, t), (2.6)

with t ∈ T , T = {0.5, 0.55, ..., 0.95}, r ∈ R′, and R′ = {0.0, 0.01, ..., 1.0}. Thus,
ten IoU thresholds with 101 different recall thresholds are used. Furthermore, for
faster computation in the challenge, the publicly available implementation focuses
on the 100 top-scoring detections per image.

Average Recall

Similarly, the COCO implementation for the average recall (i.e., AR) also uses
the 100 top-scoring detections per image. The COCO consortium defined the
average recall averaged over ten different IoU levels (i.e., t ∈ T ). As stated on
the challenges website, the consortium aims to measure the AR as proposed in
(Hosang et al., 2016). Hosang et al. (2016) defined AR as follows:

AR =
1
|T |

∑
T

2
n

n∑
i=1

max (IoU (gt(i))− t, 0), (2.7)

where n is the total number of ground truth annotations and gt(i) is a function
that returns the ground truth annotation with the index i and its closest predicted
detection in the 100 top-scoring detections. Padilla et al. (2021) highlighted that
the COCO implementation uses a slightly approximated variant of Equation (2.7).
However, this approximated variant is commonly reported in various works that
have proposed and evaluated different detectors. Thus, we follow the current state
of the art and rely on the publicly available COCO implementation.

8http://host.robots.ox.ac.uk/pascal/VOC/ visited on 10/23/2023.
9https://cocodataset.org/#detection-eval visited on 10/23/2023.

http://host.robots.ox.ac.uk/pascal/VOC/
https://cocodataset.org/#detection-eval 
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2.3 Object Recognition
We have already discussed the basic principles of class-agnostic object detection
in Section 2.2. Now, this section introduces the basic concepts of class-aware
object recognition. Similar to object detection, object recognition has been
researched for decades (Javed and Shah, 2002; Gehler and Nowozin, 2009). First,
we discuss the properties of one of the default image understanding use cases in
the computer vision area: image classification (cf. Section 2.3.1). Afterwards,
we examine representation learning (cf. Section 2.3.2). Finally, we summarize
essential evaluation metrics (cf. Section 2.3.3).

2.3.1 Image Classification

One of the core tasks in computer vision is image classification, which we consider
a precursor to object recognition tasks. The problem of image classification is
typically framed under the assumption of having a fixed set of (general) semantic
labels, such as cat, dog, car, and plane. An image classification approach then
aims to predict the most likely class label, given an input image. The image is
generally assumed to depict an object of a class given in the fixed set of labels
(Goodfellow et al., 2016).

Softmax ClassifiersOften, multinomial logistic regression (i.e., the softmax classifier) (Goodfellow
et al., 2016; Xu et al., 2016) is deployed to formulate the classification problem to
predict the probability distribution ŷ of a set of labels y over an input image x,
such that

ŷ =
ef (θ,x)y∑
j ef (θ,x)j

, (2.8)

where f(θ, x) is the penultimate output of a CNN with the weights θ.
State of the ArtOver the past decade, softmax classifiers have been deployed in various state-

of-the-art image classification neural models. These examples include AlexNet
(Krizhevsky et al., 2017), Inception (Szegedy et al., 2015), all VGG (Simonyan
and Zisserman, 2015) and ResNet (He et al., 2016a; He et al., 2016b) variants, and
DenseNet (Huang et al., 2017), among many others. Unfortunately, the underlying
assumption of having a fixed known set of labels poses various challenges to image
classification approaches (Kirchheim et al., 2022; Masana et al., 2022), such as
unknown labels that have to be distinguished from those that are task-relevant
(Kirchheim et al., 2022) or additional classes that were not available at the initial
training time (Masana et al., 2022). Instead, we believe that standard softmax
classifiers suffer from various problems in practical use cases.

2.3.2 Representation Learning

Representation learning differs from standard image classification such that a
finite, fixed set of known object categories or labels is unnecessary (Scheirer et al.,
2013). Instead, these approaches aim to capture the posterior distribution of the
underlying explanatory factors for the observed data (Bengio et al., 2013), such
as by learning lower-dimensional representations of the data that make it easier
to extract useful information w.r.t. the usefulness of the information in the given
use case. Thus, standard softmax-based classification methods are typically not
used here.

PriorsInstead, Bengio et al. (2013) concluded that representation learning follows
general-purpose priors. Some of these priors are often exploited to "classify"
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images. Generally, approaches are designed such that the probability mass of
input data of the same categorical label concentrates near the same regions. These
regions have a much smaller dimensionality than the original space where the
data live (Bengio et al., 2013). This allows for natural clustering by assigning
labels based on data embedding onto learned manifolds. The scientific community
believes that local variations on the manifold tend to preserve the category because
the learned embedding function translates meaningful features in the original data
space onto different locations on the lower-dimensional manifold. Thus, similar
features are mapped onto close regions on the learned manifold.

Embedding Function Representation learning is typically considered the task of learning a function
f(θ, x) : Rn×n×3 → Rd that maps a higher-dimensional representation Rn×n×3

(i.e., the input data) into a lower-dimensional manifold. f(θ, x) is the embedding
function, (i.e., a neural network) which is parameterized by a set of weights θ. Rd

represents the manifold with dimensionality d. The vanilla representation learning
approach is typically trained using different examples.

Loss Function The core idea is to ensure that input points of the same categorical labels map to
close points on the manifold, whereas input data of different categorical labels
should map to more distant points on the manifold. These concepts are typically
called triplets with anchors xa, positives xp (same label as xa), and negatives xn

(different label as xa). The triplet loss (Schroff et al., 2015) is defined as follows:

Ltriplet(θ, m) =
∑
a,p,n

ya=yp ̸=yn

[m + ||f(θ, xa)− f(θ, xp)||22 − ||f(θ, xa)− f(θ, xn)||22]+. (2.9)

m is a hyperparameter – the margin parameter – that describes the desired
distance between positive and negative image pairs in the embedding space, and
[m + •]+ is a rectifying hinge function. As highlighted by Hermans et al. (2017),
the sampling strategy for forming triplets plays a crucial role during the training
phase.

Application Representation learning has been successfully applied in different application
domains (Masi et al., 2018). Security-oriented face recognition is often considered
a classic example of representation learning. Here, a fixed set of known individuals
that are to be recognized is not suitable from a practical point of view since, in
contrast to many celebrity-oriented face datasets, the set of individuals fluctuates
over time. Masi et al. (2016), and Zhao et al. (2019) have further demonstrated
that it is common practice to align the face during preprocessing, which increases
the overall verification accuracy.

2.3.3 Evaluation Metrics

We have already discussed the standard metrics used in class-agnostic detection
problems in Section 2.2.3. Now, this section expands the current description so
that multiclass recognition and multiclass detection approaches can be compared
with standard metrics from the literature. We discuss two types of metrics, the
first of which is typically used in pure recognition (i.e., accuracy) and retrieval
(i.e., precision@k, and recall@k) settings, while the second type is typically used
in object recognition approaches (i.e., approaches require a detection step). The
metrics of the second type are mean average precision (mAP) and mean average
recall (mAR).
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Accuracy

The definition of accuracy is ambiguous between different fields of research. In
this dissertation, we follow the following definition:

accuracy =
1
n

n−1∑
i=0

1(ŷi = yi), (2.10)

where n is the total number of data samples and ŷi is the prediction for the data
sample yi. This accuracy definition is consistent with the standard implementation
available in large software packages used in standard Python packages10 and the
common view in this area of research (Goodfellow et al., 2016).

Precision At k

precision@k is often used in retrieval problems (Buckley and Voorhees, 2000;
Manning et al., 2008), such as for measuring the performance and relevance
of results predicted by a search engine. The core idea is that the relevance of
correctly retrieved results degrades based on their order. Only the quality of the
top-k samples is measured – that is, the precision at the cut-off level defined by k
(Buckley and Voorhees, 2000). Manning et al. (2008) defined precision@k as the
fraction of relevant items retrieved over the total number of retrieved items for a
given query. Since this notation, however, is laborious, we argue that it should be
represented using the principles defined in Section 2.2.3. Manning et al. (2008)
clarified that the number of relevant retrieved items can be considered as TP .
Thus, precision@k is defined as follows:

precision@k =
topk(TP )

k
, (2.11)

whereas topk(•) cuts off the query results at position k. Manning et al. (2008)
highlighted that this metric has the benefit of not requiring knowledge about
the total set of relevant retrievals. Similar to the accuracy, we averaged the
precision@k across all data samples.

Recall At k

Similarly, recall@k is also used in retrieval problems (Buckley and Voorhees, 2000;
Manning et al., 2008). However, it requires knowledge of how large the total
number of relevant objects is for a particular query (Manning et al., 2008). Again,
recall@k is defined based on the top-k retrieved samples. Manning et al. (2008)
defined recall@k as the fraction of relevant items retrieved over the number of
relevant items. Accordingly to the previous metric, recall@k is defined as follows:

recall@k =
topk(TP )

TP + FN
. (2.12)

TP + FN denotes the number of relevant items to a given query. It might be
challenging in standard retrieval settings to define the relevant items to a user-
defined query precisely (Manning et al., 2008). However, suppose that metric is
used in an image recognition problem, such that the fine-grained recognition of
the actual object identifier given a query image taken by a user. Then, we could
calculate the total number of relevant database entries if ground truth annotations
are given.

10https://scikit-learn.org/stable/modules/model_evaluation.html visited on 10/23/2023.

https://scikit-learn.org/stable/modules/model_evaluation.html
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mAP

The aforementioned metrics only apply to non-detection problems, such as pure
image retrieval tasks based on query images. Since our work is in the fine-grained
open-world recognition domain, we also must deal with the detection portion of
the problem. Commonly used metrics include mAP and mAR. As described in
(Padilla et al., 2021) and in the documentation of the COCO framework, mAP is
defined as the average of the average precision (cf. Equation (2.6)) calculated for
each object class individually. Thus, mAP is defined as follows:

mAP =
1
C

C∑
i=1

APi, (2.13)

where APi is the AP value for the i-th class, and C is the number of all ob-
ject categories. The AP is calculated across 101 different IoU thresholds (cf.
Section 2.2.3). Throughout the dissertation, we refer to the mAP, defined in
Equation (2.13), as mAP@[0.50:0.05:0.95] for the sake of precise communica-
tion. For ease of understanding, the COCO consortium proposed reporting the
mAP@[0.50:0.05:0.95] for two individual IoU thresholds, namely 0.5 and 0.75.
These variants are mAP@[0.5] and mAP@[0.75]. The first creates backward com-
patibility with the PASCAL VOC challenge (although the mAP@[0.50:0.05:0.95]
calculation in COCO is slightly more precise) and the seconds represents a stricter
metric. Throughout this dissertation, we follow the well-known COCO11 frame-
work, relying on the publicly available implementation. Furthermore, we follow
the current state of the art and report mAP@[0.50:0.05:0.95], mAP@[0.5], and
mAP@[0.75] based on the COCO implementation whenever applicable.

mAR

We again follow the COCO implementation and calculate the mAR as described
in (Padilla et al., 2021). The mAR is calculated as the average of the mAR for
each class. After that, mAR is defined as follows:

mAR =
1
C

C∑
i=1

ARi, (2.14)

where C is the set of all object categories and ARi is the mAR (cf. Equation (2.7))
for every ground truth annotation per object category. Throughout this disser-
tation, we follow the current state of the art and report mAR@[0.50:0.05:0.95]
based on the COCO implementation whenever applicable.

11https://cocodataset.org/ visited on 07/17/2023.

https://cocodataset.org/
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3. Datasets
A system of complete control
The pressure builds
It wraps its hands around your throat
A constant battle
A silent war of mind and soul
Parkway Drive. “Vice Grip” Ire,
Epitaph Records, 2015

Datasets laid the foundation for recent advances in computer vision. This is not
just rooted in the training data but also in the ability to measure and compare
the performance of predictors based on previously collected ground truth. Sun
et al. (2017) demonstrated that accuracy increases on a logarithmic scale with
the dataset size. Thus, it is vital to acquire datasets at scale to solve a particular
problem efficiently.

Fine-Grained
Datasets

Acquiring datasets for fine-grained recognition problems is challenging since ground
truth data are costly. Fine-grained recognition typically refers to recognizing a
particular class of visually similar entities, such as determining the difference
between different breeds of crows. Due to the slight visual differences of objects
in fine-grained domains, manually annotating ground truth identifiers typically
requires a significant amount of time.

Fine-Grained Retail
Datasets

Recognizing grocery products is a fine-grained recognition problem since the
intra-class variance of visual differences is reasonably high (e.g., comparing the
differences of a particular product due to promotions) and the inter-class variance
of different products is small. This is because product packaging, in general, plays
a critical role in consumers’ buying decisions (Rundh, 2013). Producers design
their product packaging to facilitate branding since their products must catch a
customer’s eye at the point of sale (Creusen and Schoormans, 2005). Products
from the same brand tend to look similar. Determining the concrete SKU for a
given image patch in a crowded scene requires one to examine small visual cues.
Thus, determining these differences is laborious and error-prone.

Labeling
Fine-Grained
Datasets

As shown in Figure 3.1, some products share large visual similarities, which makes
it difficult to distinguish them and find the true class identifiers. Thus, a labeler
must identify the correct visual concept from an enormous list of reference classes
(e.g., with reference images), which contain multiple (almost) similar-looking
products that he or she can only distinguish by small visual cues. The labeler
could use meta-data of the domain (if available), such as a full-text search based
on the product’s name, which he or she had to identify manually in the image
patch. Nevertheless, he or she is confronted with an extensive list containing
similar-sounding names.

Density of Retail
Scenes

Furthermore, scenes in the retail domain are densely packed. Similar-looking
products typically crowd the complete image since similar products are placed

https://open.spotify.com/track/0AHHDAHFRaT82UVw5fMr1R
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Figure 3.1: Differentiating products is a fine-grained visual task. Crowded scenes and
low visual inter-class variance require significant manual annotation efforts. We propose
DGen and Annotron, two tools that lower these hurdles in fine-grained domains based on
two different intuitions.

side by side. Figure 3.1 serves as an example of that domain. The labeler must
manually identify more than 100 different products in this image. Labelers would
typically annotate vast numbers of such images. This would imply a laborious
task since these images also contain vast numbers of products. Thus, acquiring a
complete, fine-grained dataset from the retail domain at scale typically requires
enormous staffing.

Structure Semi-automatic approaches could assist the labeler and dramatically reduce
manual efforts. We tackled the RO-D and RO-M and deployed different semi-
automatic approaches to lower the previously discussed hurdles. In the following
sections, we present two approaches: the first exploits 3D information about the
scene (cf. Section 3.1), while the second utilizes metaknowledge (cf. Section 3.2).
In Section 3.3, we present a traditionally collected dataset. Section 3.4 compares
our work with publicly available retail datasets, and we then list threats for
validity in Section 3.5. Lastly, Section 3.6 concludes this chapter.

3.1 Dataset Generation with DGen

This section builds upon (Filax et al., 2019) presented at ICPRAM12.

Retail Datasets at
Scale

Acquiring a dataset at scale for a new fine-grained recognition problem is time-
consuming and error-prone. Varol and Kuzu (2014) estimated that it takes
approximately one and a half minutes to identify every product within a single
image of a tobacco shelf. We reason that the annotation time grows with the
number of products in the database since the time for searching the correct
product also increases. We concluded that three working days are required to
label 1, 000 images in a similar setting. Therefore, building a dataset with 50, 000
or more completely annotated images with only a single labeler is not economical.
However, scaling the number of labeling experts also means a more significant
up-front investment.

12https://icpram.scitevents.org/?y=2019 visited on 12/10/2023.

https://icpram.scitevents.org/?y=2019
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Start
Calibrate System

Annotate Primitives Record Sequences

Refine Annotations
Extract AnnotationsEnd

Figure 3.2: The DGen workflow at a glance. The core idea is to use a SLAM approach
while sampling video sequences of objects of interest. We annotate 3D primitives manually
before recording the videos. Fine-grained annotations can then be acquired through
labeling a single frame and later reprojected onto the 3D primitives to sample multiple
views of the fine-grained objects of interest. We can, optionally, sample videos with a
higher-quality camera, which requires a particular calibration phase

Dataset GeneratorIn this section, we present our approach for annotating images semi-automatically.
We use SLAM to acquire a continuously linked stream of images and minimize
labeling efforts by annotating objects in 3D. We inherit the ability to project
the 3D annotations onto the 2D image frames and reduce the time-consuming
labeling efforts. The presented tool, DGen, builds on Microsoft’s HoloLens (V1),
an off-the-shelf (OTS) HMD. The collected data is publicly available13.

3.1.1 DGen: The Dataset Generator

Figure 3.2 depicts the DGen workflow, which consists of five process phases.
Calibrate System is an offline calibration phase, which is mandatory if the video
sequences to be sampled are collected with an additional higher quality camera (i.e.,
a Logitech Brio14) as built into the HoloLens. Before sampling the video sequences,
we used the inbuilt interactions of the HoloLens to annotate 3D primitives as
described in Annotate Primitives. We recorded videos of the objects of interest
in Record Sequences. In Refine Annotations, we refined the 3D primitives with
fine-grained annotations. We reprojected 2D annotations of individual frames into
3D, which allowed us to export the coarse and fine-grained annotations in Extract
Annotations. In the following subsections, we describe every phase in detail.

Calibrate System

Calibrating DGen is mandatory for finding the relative transform between both if
an additional camera is attached to the HoloLens. We first needed to determine the
intrinsic parameters of the cameras following the single-view calibration method
defined in (Zhang, 2000). Afterward, we used the fundamental matrix (Faugeras
et al., 1992; Hartley et al., 1992) to find the extrinsic parameters. This matrix
describes the relative transformation from one camera to another. The only
requirement for finding the fundamental matrix is a fixed relationship between
these two cameras, which we achieved by using a 3D-printed camera mount
attached to the HoloLens. We could project 2D points from the HoloLens’ camera
space to the second camera’s image space and back with proper calibration.

13https://bitbucket.org/cse_admin/md_groceries visited on 12/10/2023.
14https://logitech.com/product/brio visited on 12/10/2023.

https://bitbucket.org/cse_admin/md_groceries
https://logitech.com/product/brio
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Annotate Primitives

This phase of the DGen workflow is the basis for generating any annotations in
the later phases. The core idea is to annotate objects of interest in 3D space.
We propose labeling rather general annotations in place, relying on the built-in
sensors of the HoloLens for ease of use. Using the gaze input of the user, we
projected a ray onto the 3D model of the environment. The user can then use
hand input to annotate 3D primitives in space. However, we restricted ourselves to
labeling 3D planes due to the underlying structure of shelves in supermarkets. If
the user finishes manually labeling any (static) object in space, we would continue
to record video sequences of the environment.

Record Sequences

Modern object recognition approaches typically require multiple samples of any
object they need to recognize at test time. These data-driven approaches rely on
the broad accessibility of data to learn some classifiers. Therefore, it is necessary
to sample different shots of any object by variating external factors (e.g., the
viewpoint, position, and surrounding background). We aimed to sample multiple
sequences of the environment. We manually incorporated different internal and
external variations while recording by changing the viewpoint over time. We
recorded videos, 3D annotations, and the trajectory of the HoloLens in this phase.

Refine Annotations

In this phase, we refined the previously coarsely annotated 3D primitives. Gener-
ally, this phase is optional and performed offline. We refined the 3D primitives by
slicing these coarse annotations into smaller, fine-grained annotations with the
problem of fine-grained grocery recognition in mind. We annotated objects manu-
ally in a single frame and sampled subsequent frames over time. The annotations
were gathered by viewing the recorded sequences, similar to default labeling tasks.
We achieved this capability by raycasting, which refers to projecting a ray through
the virtual camera center onto the 3D primitives and the user annotations onto the
3D shape primitive. By clicking on the image screen, we first reprojected the clicks
onto the previously gathered 3D coarse primitives to calculate their intersection in
3D space. With these and the previously recorded camera trajectory, we sampled
different views of the annotated object from the complete video sequence. This
efficiently decreased the annotation time dramatically since it was not required to
annotate individual views.

Extract Annotations

This phase is an automated process for extracting coarse and fine-grained an-
notations. The core idea is to forward-project the acquired 3D annotations
(fine-grained or coarse) into the image space (Hartley et al., 1992). We computed
the axis-aligned bounding box for every annotation in every image. These views
of each object instance could be further processed to determine the contribution
by estimating the novelty of each generated bounding box. This could be achieved
by calculating the average image of an object instance over time. If a reasonable
difference is acquired (i.e., defined by some threshold), it is considered a new view.
We envision even more metrics, such as those based on deformation, viewpoint,
blur, or illumination. However, these would need to be tailored to the desired
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Figure 3.3: Example images of grocery products collected from real.de.

application. In this dissertation, we acquired every extracted image patch of every
annotation in the complete sequences.

3.1.2 The Magdeburg Groceries Dataset (MDGv1)

We used DGen to acquire a dataset. The MDGv1 dataset is publicly available13 to
allow other researchers to reproduce our results. The data consist of the following
two parts: first, we collected images of products from the web, and second, we
annotated frames with fine-grained and coarse annotations of the products and
their categories obtained with DGen.

Iconic Product Images

Iconic ImagesWe automatically downloaded images from the web, which served as the basis
for fine-grained annotations. These were ordered in a taxonomy, which we also
collected from the website. All images were rescaled to a resolution of 220× 220
pixels. We collected 23, 360 images as annotated web links with a taxonomy to
reflect real-world product categories in typical grocery stores. Categories are
linked with “is-a” relations, similar to WordNet (Fellbaum, 1998). We collected
942 different categories in total, with 24.8 products on average. Figure 3.3 depicts
five different images of this part of the dataset, which were taken under ideal studio
conditions, meaning that the light setup was controlled, and the background was
omitted. Furthermore, Figure 3.3 reveals the fine-grained nature of the underlying
problem: some products look similar since they are just distinguishable by minor
labels and small visual cues, while others look enormously different since they
belong to another subcategory.

Annotated Images Obtained with DGen

The second part of the dataset was constructed from 48 video sequences. In the
following subsections, we examine the different phases of the DGen workflow.

Calibrate SystemWe followed the proposed DGen workflow to record the second part of the dataset.
We attached a Logitech Brio 4K to the HoloLens and calibrated the system as
proposed in Section 3.1.1. This is necessary for recording higher-resolution frames.
While the HoloLens (V1) can record videos with 1, 280× 720 pixels, the Logitech
Brio can record frames in with a resolution of 3, 840× 2, 160 pixels. Examples are
presented in Figure 3.4. By recording high-resolution image data, we addressed
the fine-grained nature of the problem: we expect the slightest visual cues to be
able to truly differentiate products.

real.de
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Figure 3.4: Example images extracted from different video sequences, which show that
we did not enforce any viewing constraints.

Annotate Primitives We conducted our experiments in three different real15 stores. In total, we
annotated 83 3D primitives – 3D planes that mimic shelves. These were annotated
with the inbuilt capabilities of the HoloLens. Specifically, we used the head-gaze
and commit interaction metaphor to annotate.

Record Sequences We recorded in three different real stores for approximately four hours per store.
We recorded 48 video sequences in total. With 83 annotated primitives, we
recorded 1.7 shelves per sequence on average. Every sequence consisted of 953
frames on average. While recording the shelves, we acquired their position (as
coarse 3D primitives) and the trajectory of the HoloLens. We attempted to mimic
natural shoppers’ behavior while recording the videos. We did not enforce any
particular constraints on the viewpoint of the HoloLens while the shopper searched
for a particular retail product. The whole second part of the dataset consisted of
41, 955 frames.

Refine Annotations The DGen workflow allows annotations to be refined offline. We used this
possibility to acquire fine-grained annotations of the objects within the shelves
and labeled them offline. We achieved faster convergence in our labeling activities
than in the default annotation approach. We annotated only a single bounding
box for every product in the sequences. Since we recorded the trajectory of the
HoloLens and registered a camera for it, we were able to project annotations from
one frame to another. Thus, we extracted multiple views of the same instance
from a single annotation, given that it was recorded over multiple frames. We used
a full-text search on the product names crawled from the web (cf. first part of
the dataset) to identify as many products as possible. We were unable to identify
every product in the store as the database did not seem to hold the complete set
of products available in real stores. The second part of the dataset was built from
1, 523 manually annotated products. Four labelers annotated the products on 17
shelves in ten sequences, spending nine hours on task in total.

Extract Annotations This phase extracts the (manually labeled) annotations. Since any annotation in
DGen is built upon 3D annotations, we reproduced these annotations throughout
a complete video sequence, thereby extracting the online coarse annotations and
the offline fine-grained refinements. The 1, 523 manually acquired, fine-grained
SKUs could be used to extract 755, 309 bounding boxes from 12, 768 images.
Examples are depicted in Figure 3.5. We only used sequences recorded in a
single store due to synchronization issues that arose from the use of an additional
camera to the HoloLens. Since the trajectory sampled from the HoloLens and
the frames recorded with the Logitech camera were not perfectly synchronized,
we introduced small offsets to the ground truth position of the Logitech in space.
While this is generally not an issue if the query time is reasonably short, it
becomes critical if objects are further away from the camera. These degrade the
precision of any points reprojected into image space if the 3D distance between

15https://real.de/ visited on 02/10/2021.

https://real.de/
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Figure 3.5: Fine-grained annotations from the dataset labeled with the DGen workflow.
On average, 59 products per frame are mapped to the set of products.

that point and the camera is sufficiently large. Based on the average time that we
needed to annotate a single fine-grained product with DGen, we estimated that
it would require approximately 4, 400 hours to label 755, 309 bounding boxes in
the default approach. In contrast to the required nine hours, we concluded that
DGen significantly reduces manual labeling time.

3.2 Dataset Generation with Annotron

This section builds upon (Filax et al., 2022) presented at WSCG16.

Substantial efforts are required to acquire data at scale, although we have seen
that using consecutively recorded images increases the effectiveness of labelers.
This is because linking iconic and real-world images still relies on manual visual
or full-text search – and thus significant efforts are required. In this section, we
explore using neural networks to cluster consecutive detections based on a large
set of reference images. We aimed to generate candidate traces (i.e., traces of
a particular object over time) and aid labelers by identifying potential matches
based on their visual similarity. We extended the previously acquired dataset
with DGen by identifying 1, 188 different SKUs. We were able to link these to
446, 500 individual bounding boxes.

AnnotronWe used Annotron, our semi-automatic image annotation system, which is designed
to allow a fast and continuous annotation workflow. We evaluated Annotron by
acquiring fine-grained instance-level annotations. To do so, we exploited the
underlying structure of the previous section’s dataset, since the previous version
contained label noise (cf. Section 3.1.2).

Clustering Candidate
Traces

The Annotron approach relies on candidate streams – traces of a particular object
over time – to extract different views of that object. We relied on pretrained
detectors (preferably tailored to the particular domain) to generate these traces
automatically. Candidate traces were then used to extract embeddings from every
sample. These lower-dimensional image patch encodings were finally used to
form groups of similar-looking image patches. Using nearest neighbors (i.e., the
nearest set of reference classes of a candidate stream), we allowed the labeler
to efficiently acquire the actual class of the candidate stream because the list
of possible matches was dramatically reduced. Furthermore, we supported the
reverse approach by gathering the nearest candidate streams for every reference
class to identify previously unseen classes.

16https://www.wscg.cz/ visited on 12/10/2023.

https://www.wscg.cz/
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3.2.1 Annotron: Annotation of Candidate Traces

We followed a two-staged idea in Annotron. Similar-looking image patches were
automatically accumulated in candidate streams in the first process stage (cf.
Automated Preprocessing). Furthermore, we clustered these candidate streams,
as well as reference images, to form nearest neighbors. In the second process
stage (cf. Object Labeling), the labeler manually determined the actual class of
every candidate stream. We grouped candidates and reference images to reduce
the amount of time invested. This approach and the combination of multiple
consecutive patches dramatically reduced the search space of the labeler – that is,
the time invested for every candidate stream and the total number of required
manual interventions.

Automated Preprocessing

Core Idea This fully automated stage is designed to build a database that assists the later
manual stage of Annotron. We aimed to determine visually similar classes by
acquiring a lower-dimensional representation of the visual context in every patch
under consideration. These findings were later presented to the labeler in an
ordered manner to maximize the yield per manual interaction. The preprocessing
is depicted in Figure 3.6. First, we detected bounding box candidates using
pretrained object detectors on every real-world image. These were then linked
across the consecutive frames of every video sequence. Built candidate streams
and reference images were fed into a (pretrained) encoding network to acquire
a high-level representation of the visual content. Next, we performed cluster
analysis methods to estimate the visual similarity of candidate streams with each
other or all reference images. The nearest neighbors were collected into a data
structure, guaranteeing fast access in Annotron.

Generate Candidates First, we generated possible object candidates on the
video sequences since multiple objects were on every frame due to the nature
of the underlying problem. We relied on pretrained detectors. The detector is
not required to predict a particular class for every object it detects. It instead
generates a set of possible object candidates for every frame. Furthermore, it
does not need to be tailored to the concrete domain; however, if it is tailored to
the domain, the number of FP detections is significantly reduced. We consider
bounding boxes to be the most common candidate shape required. Thus, we used
a product detector to acquire axis-aligned bounding box predictions.

Trace Candidates We traced found object candidates across consecutive frames
to reduce the manual interaction of the labeler. The core idea was to trace similar
regions since these should depict the same object over time. The differences found
in bounding boxes between two subsequent images should overlap by large portions,
since we operated on video sequences and consecutive frames were sampled at
a reasonable frame rate (i.e., 24 – 30 Hz). We relied on the well-known overlap
measure IoU to trace object candidates across consecutive frames. We used the
IoU as discussed in Section 2.2.3 and traced object candidates by maximizing
the IoU of the two consecutive bounding boxes B and B′. We greedily paired
bounding boxes based on a watershed algorithm while maximizing the IoU and
iteratively tracing objects through the complete video stream. We empirically
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Figure 3.6: Dataflow of the fully-automated preprocessing module (first process stage)
in Annotron. We used lower-dimensional embeddings of reference images and candidate
traces to identify visually similar objects. These were later presented to the labeler.

found this approach to produce sound, precise results on video streams, especially
in grocery recognition.

Create Embeddings The previously found candidates and the complete
database of reference images described many data points (i.e., image patches)
from the grocery product domain. These had to be manually referenced to their
actual product class. Vast numbers of traced candidates must be assigned to
a class, in what could be described as finding a needle in a haystack. Since
identifying the needle is tedious and error-prone, we aimed to assist the labeler by
reducing the amount of hay (i.e., the search space). The core idea was to identify
similar-looking reference images for every candidate trace. We, therefore, aimed to
cluster all reference images w.r.t. every image of a candidate trace. We searched
for visual similarity because we assumed that the set of most similar-looking
reference images contained the class of a trace.
Describing the visual similarity of image patches is a common problem in different
computer vision tasks. Various fields have addressed this problem, such as face
recognition (Schroff et al., 2015; Deng et al., 2019; Wang and Deng, 2018) and
person recognition (Hermans et al., 2017; Sun and Zheng, 2019; Bai et al.,
2020a). Generally, approaches that sufficiently solve this problem attempt to
compute a lower-dimensional vectorized representation of the visual content. The
solutions are typically designed to evaluate these embeddings, for example, if two
embeddings are similar, the two images have similar visual content. Embedding
networks are typically tailored to a particular domain. Bendale and Boult (2016),
Vemulapalli and Agarwala (2019), and Vo and Hays (2019) have demonstrated
that generic classification networks could be converted to embedding networks
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without additional training by removing the network’s classification head and
using the penultimate output as embeddings. However, for the domain of retail
recognition, we have already demonstrated that specifically tailored networks exist
(Tonioni and Di Stefano, 2019; Filax et al., 2021; Filax and Ortmeier, 2021). In
Annotron, we used a specialized embedding network trained with the previous
dataset. Otherwise, we would use a pretrained generic classification without its
classification head, as described above.

Visual Similarities Finally, we evaluated the visual similarity of reference
images and candidate traces and find the most similar-looking pairs (i.e., we
found the nearest neighbors in the mutual embedding space). By selecting the
top-k nearest neighbors, we encoded the assumption that similar-looking products
typically belong to the same genuine SKU.

Intra-Stream
Similarity

Since a single candidate stream consists of multiple image patches, which might
change over time due to viewing angle, it is clear that the top–k nearest neighbors
do not need to be constant over the complete candidate stream (i.e., time).
We exploited this observation by capturing the occurrence statistics of nearest
neighbors and ranking the top–k nearest neighbors.

Inter-Stream
Similarity

Furthermore, we acquired the inter-similarity of candidate streams to allow users
to quickly identify similar-looking objects on the shelves. This could, for instance,
be helpful if the intra-class similarity in the reference and real-world domains is
extensive. Here, we used the center of the embeddings of the complete streams
(i.e., the mean embedding of a candidate stream), since we generally assumed that
the visual appearance of a product is constant. We gathered the nearest found
neighbors in a data structure that relies on identifies for fast access during the
manual annotation stage.

Object Labeling

The second process stage of Annotron consists of manual work: the actual labeling.
A labeler links the real-world image patches with their actual reference image.
We aimed to assist the labeler, who annotates many images—which is a time-
consuming and monotonous task. To do so, we sought to reduce the number of
reference images that he or she must scan to find the true identifier. The core
idea is to display the previously computed nearest neighbors to the labeler since
we assumed that the actual reference image looks similar to the real-world patch
and the nearest neighbors have been computed based on their visual similarity. In
addition, we aimed to present the individual labeling tasks in an ordered manner
depending on whether the labeler wants to increase the observations of a particular
class or detect unseen objects.

Benefits With the described fully automated preprocessing stage, we gained four benefits in
the manual stage. First, we generally operated on candidate streams. A candidate
stream (ideally) depicts the same objects at different points in time. An individual
manual interaction links multiple image patches simultaneously, dramatically
increasing the number of linked patches per interaction. Second, by clustering
the reference images according to their visual similarity to candidate streams,
we dramatically reduced the overall search space, which accelerated the manual
interventions. Third, since we operated on candidate streams while clustering,
we were able to rank the nearest neighbors based on their occurrence frequency
to reduce manual search times between manual interactions. Furthermore, we
maintained robustness against similarity errors by allowing labelers to easily find
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similar-looking candidate streams once an error has been corrected with a full-text
search.

Distinguishing
Labeling Tasks

These benefits are achievable due to the preprocessing stage, but they must also
be considered during manual labeling. The manual interaction tool had to be
designed to maximize the yield gained from the aforementioned benefits. Using
clustered candidate streams and references allowed us to distinguish the following
two different tasks of labeling activities: identifying new visual concepts and
increasing the number of observations. The first task describes the identification
of new classes of candidate streams, while the second describes the linking of more
candidate streams with an already-known reference image. Both subtasks enabled
us to differentiate the individual tool support. In the following subsections, we
present both tasks in detail and elaborate on the design choices for each one.

Identifying Visual Concepts This subtask aims to identify previously unseen
reference classes. Therefore, the labeler must link reference images and detections
in real-world images by detecting their interconnection by eye. The OTS approach,
at best, achieves this through a full-text search of the reference class names, which
the labeler must read manually in the real-world image. This approach is typically
considered error-prone due to the fine-grained nature of the grocery recognition
problem, in which the names of reference concepts are also similar.

Tool SupportAnnotron provides enhanced tool support. We provided efficient support, which
reduces manual interactions by preselecting image patches and identifying visually
similar image regions. Presenting visually similar-looking concepts reduces the
number of full-text queries since the search space also reduces. A labeler must
choose from a dramatically reduced set of reference images using metaknowledge
through validating product attributes (e.g., quantity, color, size, and package).
This dramatically increased the labeling speed.

Ranking Candidate
Streams

We employed a greedy strategy to further increase the yield of manual interactions
and aimed to maximize the throughput of a labeler by ranking candidate streams.
We propose two different sorting metrics for ranking the previously computed
candidate streams, which are defined as follows:

Tracking Stability: We assumed candidate streams with the most prolonged
stable tracking to be the most relevant. Given a candidate stream ci ∈ C,
we defined the metric mt as mt(ci) = −|ci|.

Embedding Stability: We sorted the candidate streams according to their
visual stability. We assumed that a candidate stream that depicts a particular
concept available in the set of reference images will lead to stable nearest
neighbors in the embedding space of reference images. Given a candidate
stream ci with multiple nearest reference concepts Nci in the embedding
space, we defined the metric me as me(ci) =

|Nci |
|ci| .

Both metrics are used to sort the candidate streams presented to the labeler.
While tracking stability aims to maximize yield per click, embedding stability aims
to reduce possible errors. The labeler is therefore equipped with two different
sorting mechanisms and can choose the metric that fits the particular data.

Increasing Observations of Concepts The second subtask aims to increase
the number of labeled patches by linking more candidate streams to their actual
positive reference image. We thus aimed to find different views of that concept. In
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the default labeling approach, one cannot distinguish this subtask from the first
and is bound to rely on the human eye and full-text searches, which are prone to
errors

Tool Support Annotron provides enhanced tool support. We specifically designed and tailored
the tool to the secondary goal, thus maximizing the yield per manual interaction.
The core idea is simple – namely presenting visually similar candidate streams
when the labeler inspects a particular reference concept. He or she can link the
candidate stream to the current reference class with a single interaction. Note that
if they hover over a particular stream, they can inspect individual frames of that
stream. Due to the underlying nature of the problem, which can be considered
a domain adaptation problem, it is not necessarily plausible to assume that the
visual similarity of candidate streams and reference images must always depict
an actual positive relationship. Reference images and candidate patches can
look somewhat different because of the inherited domain drift that occurs due to
variations during image capture (i.e., the difference between controlled and natural
illumination). It is therefore vital to manually identify the correct reference image
for every candidate stream. To increase the number of observations per concept,
we proposed two different similarity measures that adhere to the visual drift of
both domains.

Similarity Measures We propose describing visual similarity based on two different intuitions: first, one
might assume that domain drift does not occur if the domain is not changed. We
compare this similarity of a candidate stream to other candidate streams. Second,
one might assume that the domain drift is not as strong as expected. This might
happen, for instance, if the encoding model is tailored to the general domain of
grocery products or natural and reference images to look similar. We named this
similarity of a candidate stream to a reference concept. Since we were unable to
exclude both views in advance, we implemented both in Annotron. We define
these similarity measures as follows:

Similarity to other candidate streams: We describe the visual distance of
two candidate streams using the center of their hyperspheres in the embed-
ding space. These are formed with all embeddings of each candidate stream.
We use the mean of all embeddings µ of a candidate stream ci ∈ C, which is
defined, following (Hassen and Chan, 2020), as µi =

1
|ci|

∑|ci|
j zj , whereas

zj is the embedding of an image in the candidate stream. We measure the
distance of candidate streams as distance(ci, cj) = ||µi −µj ||22.

Similarity to reference concepts: We describe the visual distance of a candi-
date stream and a reference image using the center µi of the embedding
hypersphere of the candidate stream ci and the embedding zr of reference
image r. We define the distance as distance(ci, zr) = ||µi − zr||22.

Implementation We implemented tool support for both subtasks in Annotron. The status page is
presented in Figure 3.7. We evaluated the usage of Annotron by extending the
dataset acquired by DGen.

3.2.2 The Magdeburg Groceries Dataset 2 (MDGv2)

In this section, we evaluate Annotron in the fine-grained domain of retail product
recognition. We describe the automatic preprocessing module’s design choices
and offer insights into the labelers’ work with Annotron.
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Figure 3.7: Annotron is implemented as a web service. At startup, various statistics are
displayed.

Preprocessing

Annotron consists of two process stages: a manual labeling stage and an automatic
preprocessing stage. The latter requires design decisions, which are described in
detail in the following paragraphs.

Generate CandidatesUsing the pretrained neural network from (Rong et al., 2020), we followed the An-
notron approach and predicted bounding boxes for every frame (cf. Section 3.2.1).
The pretrained detector was trained with the SKU-110K dataset (Goldman et al.,
2019) – a dataset from the retail product domain but collected in Israel. The
detector was designed to be class-agnostic; it does not predict any class for the
detections. Note that we accepted bounding boxes with a prediction confidence
of 0.5 or higher.

Trace CandidatesThe next phase in the Annotron workflow aims to track predicted bounding boxes
over time. Detections were mapped from one frame to the next to connect these
possible product localizations over multiple frames. We selected possible matches
(i.e., interconnected bounding boxes) to achieve this goal using the IoU . We
calculated the IoU of every bounding box with all overlapping bounding boxes in
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(a) Annotron structures the annota-
tion workflow and sorts candidate
streams based on their embedding
stability.

(b) Annotron depicts all image
patches of a stream and the (sorted)
nearest neighbors based on visual
similarity.

(c) Annotron depicts visually similar candidate streams for reference class
2193.

Figure 3.8: Different views of Annotron provide specialized support for different annotation
tasks.
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the consecutive frame (cf. Section 2.2.3). Then, we iteratively selected matches
by maximizing the IoU . This was achieved in a watershed manner: if multiple
bounding boxes on the consecutive frame overlapped with a particular detection
of the current frame, we selected the match with the highest IoU . We accepted
possible matches only if their IoU was higher than 0.5 to be resilient to outliers.

Create EmbeddingsThis phase of the Annotron workflow aims to assist labelers during their manual
interaction. The core idea is to generate embeddings of the visual content of
the previously calculated candidate traces and the database. We again used a
pretrained network to generate these embeddings with the weights of (Filax et al.,
2021). The network architecture was based on ResNet50 (He et al., 2016a) with
the classification head removed while a 128-dimensional full-connected layer was
attached. The outputs of this model compared the visual content with a standard
Euclidean distance metric. Note that the input patches were resized to 128× 128
pixels.

Visual SimilaritiesIn the last preprocessing phase of Annotron, we identified the visual similarities
by comparing the previously calculated embeddings. We used an approximated
k-nearest neighbor variant17 to retrieve the k = 50 nearest neighbors. We gathered
the matching candidate stream identifiers in a separate database for fast access
during the manual annotation stage of Annotron.

Manual Annotation Stage

In this stage, the labeler must link as many reference classes to candidate streams
as possible. Annotron (cf. Figure 3.7) is designed to assist the labeler by providing
soft benefits, such as increased progress monitoring. Given a structured goal, such
as a comparison to MDGv1 (Filax et al., 2019), we could visualize the current
progress. While we identified 871 SKUs in the original dataset, which we labeled
with four labelers, we were now able to identify 1, 188 SKUs with Annotron with
a single labeler. While the overall task – identifying products on real-world store
shelves – remained unchanged, we could only conclude that the enhanced tool
support of Annotron enabled the single labeler to identify 30% more SKUs than
in MDGv1. Furthermore, we must highlight that MDGv1 comprises 755, 309
individual annotated bounding boxes. The final MDGv2 dataset consisted of
447, 159 annotated image patches. This fact renders the labeler twice as effective
as in the original work.

Structured WorkflowThe core contribution of Annotron lies in separating the manual labeling stage
into two different subtasks. In the following subsections, we describe the unique
view of Annotron that allowed the labeler to be more effective than in the original
work.

Task 1: Identify Visual Concepts

The first manual subtask links unseen reference images to real-world shelves. The
labeler has to identify an SKU within the list of candidate streams and manually
link them. Annotron is designed to assist the user by ordering the list of candidate
streams. Figure 3.8a depicts the user interface. Here, candidate streams are
sorted based on their embedding stability. We thus maximized the yield per single
interaction: Since the visual structure seems stable, it is valuable to assume that
investigating these candidate streams might generate new links. If the user quickly

17https://github.com/spotify/annoy visited on 12/10/2023.

https://github.com/spotify/annoy
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identifies an SKU within the stream, a single click will redirect him to the second
view.

Annotate Candidate
Streams

Figure 3.8b depicts the annotation view of the Annotron. The user can quickly
scroll through all images of the complete candidate stream to ensure that the
object tracking was corrected. On the right-hand side of this view, Annotron
depicts a distinct list of nearest neighbors based on the visual similarity of real-
world patches and reference images. Note that these patches are sorted based on
their number of occurrences: the reference images predicted the most would be
displayed at the top. The labeler links the reference class and candidate stream
with a single click. Afterward, he or she is automatically redirected to the next
annotation view according to the previously selected candidate stream sorting.

Task 2: Increase Observations of Concepts

The second manual subtask consists of increasing the number of linked candidate
streams and finding different views of a product in the data. Annotron lets the
labeler quickly link new candidate streams to an SKU once a reference image has
been linked. Figure 3.8c depicts the user interface. At the top, general meta-data,
including name, identifier, and quantity, are depicted. Then Annotron displays
already-linked candidate streams. We then depict visually similar (calculated
based on the previously found embeddings) candidate streams based on the already
linked candidate streams. Visually similar candidate streams w.r.t. the original
reference image are depicted. While hovering over the previews, the labeler can
quickly scroll through the candidate stream and manually ensure that the object
tracking is stable. A single click relates the stream to the current reference image.
Reloading this page allows users to update the list of visually similar candidate
streams.

Domain Drift The example depicted in Figure 3.8c demonstrates why differentiating “visually
similar” is necessary: while similar w.r.t. the reference depicts FP s, visually similar
w.r.t. already tagged candidate streams yields accurate matches. This is due to
the domain drift introduced through the different image acquisition methods, and
it underlines why semi-automatic labeling (i.e., using fixed thresholds) might not
work in retail products.

3.3 A Manually Labeled Dataset

To assess the quality of Figaro in a real-world setting, we manually labeled a
subset of the MDGv2 by hand. In this dissertation, we call the resulting dataset
MDG-manual. We identified the sharpest images of the MDGv2 dataset and
removed near duplicates manually. These were processed by a single labeling
expert using Label Studio18. The MDG-manual dataset has two different dataset
splits called recognition and detection. While the recognition split is intended to
verify the function of Figaro itself, the detection split is used to assess the function
of different detection modules. For the recognition split, we manually identified 45
different products on 36, resulting in 192 annotated axis-aligned bounding boxes
through a single expert. Figure 3.9 depicts three different examples from this
dataset. This subset consists of various incredibly challenging viewports of the
original dataset. Note that the original resolution of the images is retained: we
operated on images with a size of 3, 840× 2, 160 pixels. All products annotated

18https://labelstud.io/ visited on 02/13/2023.

https://labelstud.io/
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Figure 3.9: Four examples from the recognition split of MDG-manual. The ground truth
is depicted as blue axis-aligned bounding boxes. Bounding boxes belong to different
categories. Note that the SKUs are taken from the MDGv2 test set, and therefore, they
were not used to train Figaro.

through the labeler were selected from the test set of MDGv2. No overlap existed
with the original training set. All axis-aligned bounding boxes were annotated
based on a pure visual search through the labeler – annotations in this challenging
setting are especially costly.

ObservationsTo assess the quality of the detection module itself, we annotated this dataset with
product-level bounding boxes. A single expert manually linked visible products on
the central shelf. In contrast to the recognition split of the MDG-manual dataset,
this dataset did not have any SKU identifiers. All annotations in the detection
split have the same class – namely product. Labeling occurred similarly, a single
expert labeled 36 images using LabelStudio. This took roughly 6.5 hours. In total,
5, 638 bounding boxes were annotated.

3.4 Other Datasets of Retail Products

This section compares datasets for fine-grained product recognition. We identified
various datasets (Merler et al., 2007; Zhang et al., 2007; Varol and Kuzu, 2014;
George and Floerkemeier, 2014; Singh et al., 2014; Jund et al., 2016; Georgakis
et al., 2016; Song et al., 2016; Goldman et al., 2019; Osokin et al., 2020; Bai
et al., 2020b; Yuan et al., 2021) that depict retail products. Given the problem
definition in Chapter 1, we performed a literature overview to identify datasets
that fulfill the requirements that arise from it. The following requirements arise:

Availability: Datasets need to be available. Since we aimed to evaluate ap-
proaches on real-world data, gaining access to the dataset is necessary.

“In vitro” data: We aimed to design Figaro to use easily accessible images
(i.e., images taken under studio conditions) to present the product on a
manufacturer’s webpage. Since these images are, under ideal conditions,
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Figure 3.10: Four examples from the detection split of MDG-manual. The images of both
splits are identical. Annotations differ significantly, the detection does not have any class
information.

typically readily available on the web, we could continuously enlarge the set
of recognizable retail products.

“In situ” data: Another goal of this thesis was to address the RO-R, which was
to determine retail products in supermarkets; therefore, data were required
that depict grocery products on shelves. Note that these images significantly
differ from general natural images of grocery products: While the lighting
conditions are typically controlled, retail products are densely populated on
shelves.

Fine-grained annotations: We required fine-grained annotations, which are
typically difficult to generate due to low intra-class variance and relatively
large inter-class variance. Thus, we required fine-grained SKU-level annota-
tions of grocery products for both dataset splits. Coarse classes (i.e., food,
beverage, or hair dye) would be insufficient since multiple SKUs fall into
these categories. Datasets that only provide coarse-grained annotations
cannot be used to determine the accurate product identifier.

Datasets Unfortunately, not all previously identified datasets fulfill the requirement of
providing “in vitro” data. Although (Varol and Kuzu, 2014; Jund et al., 2016;
Song et al., 2016; Bai et al., 2020b; Yuan et al., 2021; Peng et al., 2020; Cai et al.,
2021; Chen et al., 2022) are available and provide “in situ” data and fine-grained
annotations, they do not include “in vitro” data (i.e., images of products queried
from the web). Singh et al. (2014) and Georgakis et al. (2016) have collected “in
vitro” data, but unfortunately not in supermarkets. While both datasets provide
additional information (i.e., depth information), Singh et al. (2014) depicted 125
SKUs in a studio-like environment while Georgakis et al. (2016) did so in a kitchen
scene. Neither have provided “in vitro” data. Klasson et al. (2019) provided “in
vitro” images of 81 different SKUs, some taken within supermarkets, but the
products were taken off the shelves and held by hand during imaging. Similarly,
Zhang et al. (2007) placed SKUs on the supermarket floor. Wang et al. (2020b)
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Dataset “In Vitro” “In Situ”
Identifier Subset Year SKUs Samples Distractors Images Annotations SKUs/Image
Grozi-120 (Merler et al., 2007) - 2007 120 5.63 0 50, 850 11, 194 0.22
Grocery Products (George and Floerkemeier, 2014) - 2014 3, 325 1 5, 271 680 0 0
GP-180 (Tonioni and Di Stefano, 2017) - 2017 181 1 0 70 948 13.54
CAPG-GP (Geng et al., 2018) - 2018 102 1.74 0 234 3, 804 16.26
SKU-110K (Goldman et al., 2019) - 2019 0 0 0 11, 743 1, 730, 996 147.41
HoloSelecta (Fuchs et al., 2020b) - 2020 109 0 0 295 10, 035 34.02
OS2D (Osokin et al., 2020) total 2020 610 1 0 277 6, 817 24.61

diary - 166 1 0 11 786 71.45
paste-f - 259 1 0 91 4, 861 53.42
paste-v - 259 1 0 91 3, 478 38.22
val-new-cl - 185 1 0 84 622 7.40
val-old-cl - 158 1 0 60 518 8.63

MDGv1 (Filax et al., 2019) - 2019 871 1 22, 418 12, 768 755, 309 59.16
MDGv2 (Filax et al., 2022) total 2022 1, 189 1 22, 101 23, 880 447, 159 14.71

train - 1, 035 1 22, 101 23, 378 399, 893 13.01
test - 154 1 0 13, 391 47, 176 3.52

MDG-manual detection 2023 0 0 0 36 5, 638 156.61
recognition 2023 45 1 0 36 192 5.33

Table 3.1: We summarized significant properties of these datasets concerning their “in vitro” and “in situ” split. While the “in vitro” data represent
individual images of grocery products taken under studio conditions, the “in situ” data represent grocery products on shelves. Note that there are a variety
of other datasets available in the literature that do provide neither “in vitro” nor “in situ” data. See the text for details.
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proposed a large dataset covering the three domains of “in vitro” and “in situ”
images and real images of products in a softbox. The dataset comprises 263
different SKUs and is publicly available; unfortunately, however, it provides only
cropped “in situ” images. Thus, the detection of the different products cannot
be assessed. Some papers (Karlinsky et al., 2017; Franco et al., 2017; Sinha and
Byrne, 2022; Sakai et al., 2023) have claimed to fulfill our requirements, but the
datasets were not publicly available at the time of writing this thesis. We list the
properties of datasets that fulfill all requirements in Table 3.1 and related works
that describe other datasets in Chapter 7.

Grozi-120 Dataset The Grozi-120 dataset (Merler et al., 2007) has 1, 352 “in vitro” images of 120
different products and 29 video sequences, or roughly 50, 850 “in situ” image
frames. In these videos, the authors annotated 11, 194 individual bounding boxes.
All video sequences were sampled on the same day in the same store, of which
only a subset is annotated with fine-grained annotations. The Grozi-120 dataset,
however, was the first publicly available dataset in the grocery product recognition
domain. Unfortunately, it is small, so it could not be used to learn a decent
classifier in 2007 (Merler et al., 2007).

Grocery Products
Dataset

The Grocery Products dataset (George and Floerkemeier, 2014) comprises 8, 596
“in vitro” images. The original work used 3, 325 images of different SKUs to train
a particular model. Other SKU images were not annotated in the “in situ” set
and and were thus considered distractors. Furthermore, this dataset has 680 “in
situ” images taken in five supermarkets. Initially, the Grocery Products dataset
did not provide instance-level bounding box annotations. The authors grouped
similar products on shelves in a single bounding box annotation. Nevertheless,
this dataset has been adopted with fine-grained annotations by other authors.

GP-180 Dataset Tonioni and Di Stefano (2017) refined the original “in situ” set with 948 fine-grained
instance-level annotations for 181 SKUs. The authors additionally collected further
meta-data in specific planograms. This meta-information summarizes the expected
product layout of a shelf, which might be used to enhance recognition results, as
proposed in (Tonioni and Di Stefano, 2017).

CAPG-GP Dataset The CAPG-GP dataset, proposed by Geng et al. (2018), is another dataset that
provides both “in vitro” and “in situ” images. The authors collected 102 grocery
products, depicting 178 different SKUs. Every SKU is depicted by exactly one
iconic image collected from the internet. Unfortunately, these are grouped into 102
classes. Geng et al. (2018) collected 234 “in situ” images in two stores depicting
3, 804 products. Using this dataset would require one to manually relabel the
proposed bounding boxes with their SKU identifier.

SKU-110K Dataset The SKU-110K dataset (Goldman et al., 2019) provides 11, 743 “in situ” images
with many instance-level bounding box annotations. Although the paper claims to
provide 110, 712 different SKU-level annotations, all 1, 730, 996 bounding boxes are
labeled as objects and provide no fine-grained classes. Furthermore, the authors
did not include “in vitro” data. Nevertheless, this dataset dramatically influences
the grocery product detection area due to its use in a detection challenge19 in
conjunction with the CVPR 2020.

HoloSelecta Dataset Fuchs et al. (2020b) proposed a dataset that depicts vending machine products.
The authors labeled 109 fine-grained SKUs in 295 images. In total, more than
10, 000 instances were labeled. Unfortunately, the authors did not provide “in
vitro” data. They published meta-data, such as nutrition facts, brand, price, and
GTINs. Thus, one might be able to acquire “in vitro” data.

19https://retailvisionworkshop.github.io/detection_challenge_2020/ visited on 12/10/2023.

https://retailvisionworkshop.github.io/detection_challenge_2020/
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OS2D DatasetThe OS2D dataset (Osokin et al., 2020) provides 610 “in vitro” SKUs and 277 “in
situ” images. Many of these images overlap with the original Grocery Products
dataset (George and Floerkemeier, 2014). The authors manually refined a subset
of their “in situ” images. In particular, the val-new-cl and val-old-cl subsets
were taken from the original “in situ” images (George and Floerkemeier, 2014).
“In vitro” images were taken if available or queried from the web. The authors
manually collected the subsets of diary and paste-f, while paste-v is a subset
of paste-f, in which the ground truth images of “in situ” are identical. paste-v,
whoever, comprises "easier" and therefore fewer annotations.

MDGv1 DatasetThe original version of the Magdeburg Grocery Dataset (MDGv1) (Filax et al.,
2019) was described in Section 3.1.2. MDGv1 comprises 871 images of different
SKUs and 22, 418 distractors (each another SKU). Furthermore, it comprises
12, 768 images extracted from 20 video sequences of a single grocery store. It
also provides additional product information, such as various attributes, weight,
quantity, and name. Initially, 871 SKUs were linked to a subset of frames, which
were acquired through the default approach: Multiple labelers attempted to
link reference and real-world images by performing full-text searches over the
product’s name. Later, these annotations were reprojected from one frame to
another using the camera’s trajectory. The quality of these reprojected annotations
was not assured through manual interference. Unfortunately, MDGv1 has a few
inaccuracies, such as some position of bounding boxes in the dataset not begin
precise. Moreover, since bounding boxes were reprojected over time through the
internal measurements of the HoloLens and the whole system had synchronization
issues that originated through the addition of the external web camera, bounding
boxes of more distant objects tended to drift strongly. Therefore, there exists
some room for improvement, especially regarding the localization of products.
This makes MDGv1 the perfect basis to revisit.

MDGv2 DatasetMDGv2 comprises 1, 189 different SKUs and 22, 101 distractors already present
in MDGv1. These “in vitro” images are a subset of MDGv1 since 70 SKUs were
no longer available online. MDGv2 comprises 22, 880 “in situ” images of three
different grocery stores. Most of these images are a true subset of the original
MDGv1 dataset, but some were sampled from sequences of two stores, which
we recorded in parallel to the original work. 447, 159 SKU-level bounding box
annotations were semi-automatically extracted. While 351, 246 bounding boxes
could be linked to products, 95, 913 were linked to the “in vitro” database because
these SKUs were not available. Furthermore, MDGv2 proposes a dataset split:
two disjoint sets at the instance level. Thus, there is no class overlap in the data.
1, 035 “in vitro” images of SKUs are linked to 304, 070 fine-grained bounding box
annotations in the training subset, and 154 SKUs are linked to 47, 176 fine-grained
annotations in the test set. This implies that some “in situ” shelf images depict
train and test SKUs. Nevertheless, since train and test sets are disjoint, this does
not pose any issues.

MDG-manual
Dataset

MDG-manual describes another smaller subset taken from the initial MDGv1
dataset. It provides two annotation variants: the recognition split provides SKU-
level annotations on 36 “in situ” images of 45 SKUs with one “in vitro” example
each. The detection split provides more “in situ” annotations, which are not
SKU-related. Similar to the SKU-110K dataset, these 36 images are labeled with
a single class.

Comparison “In Vitro” ImagesWhen we compared other datasets (see Table 3.1) that are fine-
grained, publicly available, and with “in vitro” and “in situ” images, we found
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MDGv1 and MDGv2 to have the most significant number of images of different
SKU levels. Grocery Products (George and Floerkemeier, 2014) have 3, 325 images
of different SKUs, but MDGv1 and MDGv2 contain 23, 289 different SKUs, of
which only up to 1, 189 are linked to the “in situ” subset. This substantial number
(factor seven) of iconic “in vitro” images stands out in the related work. To the
best of our knowledge, we are unaware of a similar number of iconic images.

“In Situ” Images MDG-manual and SKU-110K are the two datasets with the highest number of
annotations per image on average. While our dataset outperforms SKU-110K
slightly, it is substantially smaller. Thus, we assume that our MDG-manual
dataset might provide an additional test set that is completely disjointing from
the SKU-110K. It might serve as the ideal basis for quantifying the generalization
capabilities of detection approaches.

Conclusion Our datasets have the most significant number of fine-grained (SKU-level) bound-
ing box annotations. The SKU-110K dataset comprises more bounding boxes,
but they share the same product class. We could not find the original variant
of this dataset with fine-grained annotations as stated in the original paper by
Goldman et al. (2019). Furthermore, we found other datasets that contain a
substantial number of “in situ” crops of products at an SKU level, namely those
of Wang et al. (2020b) and Chen et al. (2022). These, however, either do not
favor bounding boxes (Wang et al. (2020b)) or do not provide “in vitro” images
(Chen et al. (2022)). Thus, we concluded that MDGv1 and MDGv2 have the most
significant number of fine-grained bounding box annotations linked to “in vitro”
examples. With these properties, we can design approaches that aim to recognize
products from only a single “in vitro” example.

3.5 Threats for Validity

In this chapter, we have constructed datasets for the particular task of retail
product recognition. Thus, we designed approaches for tackling problems that
generally arise during data acquisition. In this section, we summarize the threats
for validity that might have occurred.

Construction Validity

Semi-Automatic
Data Collection

In Section 3.1 and Section 3.2, we proposed two different semi-automatic data
collection methods. Due to the nature of semi-automatic approaches, there was
potential bias in the collected data. On the one hand, synchronization issues arose
during the collection of the MDGv1 dataset. The pose of the camera and captured
images were not necessarily synchronized. This might have induced inaccuracies
in the position of axis-aligned bounding boxes. On the other hand, we used a
pretrained embedding function to cluster candidate traces while collecting the
MDGv2 dataset. An error might have been introduced, preventing the labeler
from identifying visual concepts. Since we could identify more classes with this
approach, we assume that this error might be negligible.

Completeness In Section 3.4, we identified various similar datasets focused on the retail product
domain. Although we performed the literature analysis as conscientiously as
possible, a possibility exists that the list of related works is incomplete.
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Internal Validity

Annotation BiasIn Section 3.3, we manually annotated a complete dataset based on the “in situ”
images of MDGv1. A single expert labeled the data. Any measurements of the
acquisition times and the data itself might therefore be subject to bias.

External Validity

Domain SpecificityThe data collected in this chapter are specific to the retail domain. We induced
metaknowledge of the scene as well as the capturing system. All experiments
were performed in a single domain. This drawback might limit our conclusions to
domains and capture systems with different properties
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3.6 Summary

This section comprises the main findings of this chapter and relates them to
the research objectives presented in Section 1.1. This chapter summarizes an
essential aspect of scientific work with empirical approaches, namely that data
are fundamental to train, validate, and evaluate methods. Thus, this chapter has
described one of the fundamental concerns of this thesis and thus partially fulfills
two research objectives – namely the RO-D and RO-M.

Content

DGen Section 3.1 described DGen, a method initially proposed in (Filax et al., 2019)
for acquiring fine-grained datasets at scale while relying on metaknowledge of the
environment. DGen relies on SLAM approaches to acquire an environmental model
and the camera’s trajectory. We approximated the world as 3D primitives and
recorded these during data acquisition. Next, we refined these coarse annotations
with fine-grained annotations of products. These 2D annotations were reprojected
into the environmental model to extract other views of the same object at a
different point in time. We demonstrated the applicability of the DGen workflow
and generated a dataset, which we called MDGv1, with more than 755, 309 “in
situ” annotations. We identified 871 different SKUs linked to “in vitro” images.

Annotron Section 3.2 described Annotron, a semi-automatic image annotation method pro-
posed in (Filax et al., 2022). Here, we exploited a different kind of metaknowledge,
namely products densely packed on shelves. We detected objects with a pre-
trained detector and the previously recorded video sequences. Then, we grouped
consecutively found objects and traced candidates across time without additional
environmental readings. Furthermore, we exploited pretrained neural networks
and grouped similar-looking SKUs. We implemented an intuitive interface that
presents possible matches to a labeler to acquire ground-truth annotations of
objects tracked over time. With this method, we efficiently generated a second
large-scale dataset of retail products. In contrast to MDGv1, we perceived fewer
individual bounding box annotations while identifying more SKUs.

MDG-manual Since these two approaches fall into the group of semi-automatic annotation
algorithms and we sought to assess the quality of detection and recognition
approaches, we manually labeled another dataset to overcome any trust issues
that arise with semi-automatic annotations. Since these generally mean not fully
supervising the data acquisition, there might be some flaws in the ground truth.
Section 3.3 described the manually labeled dataset and provided insights into the
statistics of the MDG-manual dataset.

Comparison Section 3.4 listed different strongly related datasets. They were acquired through
a continuous literature review and are required to adhere to different requirements,
such as the availability of “in situ” and “in vitro” images. We compared the
various properties of these datasets with those proposed by us. We found that
our datasets outperformed the state-of-the-art ones in various aspects, typically
related to the size and density of the data. Thus, the proposed semi-automatic
methods work reasonably well at capturing large-scale datasets of retail products.

Contributions

RO-M1 During this dissertation, we published two approaches to acquiring datasets at
scale. Both approaches exploit different metaknowledges to reduce the effort
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during acquisition. With only a few annotators, we generated two datasets
that surpassed the current state of the art, as demonstrated in Section 3.4. We
concluded that metaknowledge can be exploited to acquire datasets at scale. We
demonstrated that geometric information, in the form of an environmental model
and the camera’s trajectory, and the visual similarity of objects can be used to
acquire data at scale.

RO-D2This chapter has also provided insights into the manual effort required to annotate
fine-grained datasets. The annotation of MDGv1 took nine hours (as described
in Section 3.1), while the (vanilla) annotation of MDG-manual took less than
seven hours (as described in Section 3.3). Thus, the semi-automatic labeling
approach required roughly 40% more time and investment. This is, however, not
due to the increased efforts; rather, it is because MDGv1 contains significantly
more fine-grained “in situ” annotations, which require the most labeling time.
Using metaknowledge in the form of geometric and visual information enables
researchers to gain significantly larger datasets.

RO-D1Finally, we addressed RO-D1 in Section 3.4. Using the two semi-automatic
approaches, we acquired two datasets that can be used to train, validate, and
compare approaches for fine-grained retail product recognition. Furthermore, we
manually labeled a subset of images to acquire solid ground truth using traditional
annotation methods. We compared our datasets with the current state-of-the-
art ones and found that the semi-automatically acquired datasets surpassed the
related datasets in terms of size and data density. We argue that this is mainly
due to the semi-automatic approaches since they efficiently reduce the laborious
manual search for similar-looking objects.
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4. Detection
Another valley
Another mountain to climb
Searching for peace, with the chaos inside
Under the pressure
Under the weight of the sky
Marching with madness but there’s hope in our eyes

Fit for a King. “The Path” The Path,
Solid State Records, 2020

Detection and
Recognition

We divide the overall problem of retail product recognition into two global steps.
Specifically, similar to other works (Girshick, 2015; Ren et al., 2015; Lin et al.,
2017), we distinguish between the detection and recognition of objects. While
recognition describes the problem of predicting the actual class of an image patch
(i.e., by predicting a particular class identifier taken from a previously given
database), detection describes the problem of predicting image patches that depict
one object (i.e., by predicting the position and extent of an axis-aligned bounding
box). Detection is therefore considered the problem of predicting multiple regions
within a single image that depict precisely one object of interest.

Retail Product
Detection

General object recognition is a complex problem in itself. Early works (Lowe,
2004; Bay et al., 2006; Bay et al., 2008; Morel and Yu, 2009; Leutenegger et al.,
2011; Rublee et al., 2011; Alcantarilla et al., 2012) often aimed to identify possible
matches within two images of the same object. The core idea is typically to rely
on stable extremal regions (e.g., linear edges or corners) and extract a stable
embedding, which is then matched to a database. Due to the low hardware
requirements, these approaches have been used in many problems, such as SLAM
(Durrant-Whyte and Bailey, 2006; Bailey and Durrant-Whyte, 2006; Fuentes-
Pacheco et al., 2015). Recent works (Redmon et al., 2016; Girshick, 2015; Ren
et al., 2015; Liu et al., 2016; Redmon and Farhadi, 2017; Lin et al., 2017; Tian
et al., 2019) have addressed the problem with neural networks. While these are
an excellent basis for investigating their potential for retail product detection,
product detection is challenging. Products (i.e., the objects to be detected) on
shelves typically appear densely packed. Numerous products crowd the scene in
stores due to a fixed shelf space (Hansen et al., 2010). Furthermore, products are
typically designed to be reasonably colorful. Both facts make it difficult – even
for humans – to distinguish the boundaries of neighboring products.

StructureIn this chapter, we examine the possibilities of modern detection approaches in
the global setting of this thesis. We distinguish two global variants – namely
approaches that rely on neural networks and approaches that rely on classical
feature engineering. Section 4.1 describes three different non-neural approaches,
while Section 4.2 describes and extends data-driven approaches from the literature.

https://open.spotify.com/track/1zkdINXJTDhqKaFL0kjIT8
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Then, Section 4.3 lists threats for validity. Lastly, Section 4.4 summarizes the
content of this chapter.

4.1 Non-Neural Retail Product Detection
Non-neural detection approaches rely on human-designed features to detect objects
of interest. While various feature detectors exist (Lowe, 2004; Bay et al., 2006;
Bay et al., 2008; Morel and Yu, 2009; Leutenegger et al., 2011; Rublee et al., 2011;
Alcantarilla et al., 2012), the de facto standard in the field of study is SIFT (Lowe,
2004) features. These approaches aim to detect local points of interest that are
robust to changes during imagery (e.g., edges or corners). Unfortunately, these
approaches are not robust against the projective transformation that can occur
during imagery (Morel and Yu, 2009; Yu et al., 2008; Filax and Ortmeier, 2018).
In the following subsections, we present three approaches for overcoming this issue.
Section 4.1.1 recapitulates our approach for overcoming geometric distortion while
relying on images only, and Section 4.1.2 presents our approach that additionally
uses a 3D environmental model. Since products are placed densely on a shelf, a
SWA could be used to predict product candidates in general. We propose another
approach that relies on higher-level features of the scene and heavily exploits
metaknowledge of the environment. The approaches (cf. Section 4.1.3) exploit
the observation that retail products are arranged on shelves.

4.1.1 QuadSIFT: Quadrilateral SIFT

This section builds upon (Filax et al., 2017) presented at WSCG20.

Feature matching approaches have been successfully applied to a variety of
applications, such as recognition (Lowe, 1999), visual odometry (Nistér et al.,
2006), image stitching (Brown and Lowe, 2007), and tracking (Donoser et al., 2010).
Feature matching algorithms have three phases, namely detection, description,
and matching. Various methods exist for detecting features, including Maximally
Stable Extremal Regions (Matas et al., 2002), Scale Invariant Feature Transform
(SIFT) (Lowe, 2004), and Speeded Up Robust Features (SURF) (Bay et al., 2008).
In the description phase, visual information about features is extracted. During
the matching phase, descriptors of two features are compared by calculating their
distance (i.e., the Euclidean distance for SIFT features).

Geometric Skew The aforementioned methods produce good results since they are designed to rely
on the robust properties of objects. However, strong geometric distortion, such as
that introduced through viewpoint change during imagery, can violate robustness.
Morel and Yu (2009) and Yu and Morel (2009) have demonstrated that SIFT, the
de facto standard, does not provide relevant results if the tilt is larger than 60◦.
The authors have demonstrated that the descriptions of features vary significantly
under substantial geometric distortion.

Metaknowledge We overcame this hurdle by increasing the capabilities of SIFT by reversing
slanted views of almost planar objects. This is well suited to retail stores where
aisles are often arranged in grid layouts (Newman and Cullen, 2002), since shelves
typically run parallel. Imaging these shelves through a camera while looking down
an aisle creates a strong geometric skew of the shelves. Our approach, which
we call QuadSIFT, focuses on almost planar and rectangular objects in artificial

20https://www.wscg.cz/ visited on 01/13/2023.

https://www.wscg.cz/
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F 1
F 2

H2 H1

compare

Figure 4.1: The QuadSIFT approach detects quadrilaterals – slanted views of planar
rectangles imaged through a camera. We compute the homography to map the found
quadrilaterals to squares and detect, describe, and match SIFT features. The figure is
adopted from (Filax et al., 2017).

environments. We exploited the weak Manhattan world assumption (Saurer
et al., 2012) and aimed to find rectangular objects in an image by searching
for quadrilaterals, which we identified using the line segment detector (LSD)
(Gioi et al., 2010). We determined a transformation that unwarps the geometric
distortion of each quadrilateral by mapping it onto a square. Then, we assessed
the theoretic applicability of the algorithm in a toy example by matching different
slanted views of a planar magazine. The experiment was designed to compare
QuadSIFT, SIFT (Lowe, 2004) and ASIFT (Morel and Yu, 2009; Yu and Morel,
2009).

QuadSIFT

This subsection summarizes our extension to the well-known SIFT (cf. Sec-
tion 2.2.1) approach. We attempt to unwarp the geometric distortion of truly
rectangular objects by detecting quadrilateral structures within an image. The
overall idea of QuadSIFT is illustrated in Figure 4.1. It identifies distorted rect-
angles imaged through a camera, and estimates a homographic transformation
that unwarps the found quadrilateral to a rectangular patch, and then applies
the SIFT approach. In the following, we summarize the QuadSIFT approach
by tackling the problems that arise. First, we describe how line segments are
detected. Second, we summarize our approach to grouping line segments into
distorted rectangular structures – namely quadrilaterals. Third, we describe their
transformation into rectangular image patches. Finally, we detect, describe, and
match SIFT features.

Line Segment Detection Various approaches exist for detecting line segments,
including non-neural methods and methods that heavily rely on neural networks.
Back in 2017, we relied on non-neural methods, namely Hough Lines (Duda and
Hart, 1972), probabilistic approaches (Kiryati et al., 1991), the Binary Descriptor
(Zhang and Koch, 2013), or the LSD (Gioi et al., 2010; Grompone von Gioi et al.,
2012) to name a few, to detect lines in unknown scenes. Through a preliminary
empirical test, we used the OpenCV implementation of the LSD (Gioi et al., 2010;
Grompone von Gioi et al., 2012) to detect line segments of a reasonable length,
as described in (Filax et al., 2017).
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Figure 4.2: The relaxed collinearity RC(ab, cd) is the sum of the heights of every triplet
of segment points.

Group Line Segments Next, we hardened the detector against anomalies by
grouping nearly collinear line segments using agglomerative clustering (Chidananda
Gowda and Krishna, 1978). We proposed a specialized relaxed collinearity property
that can be used as the required distance metric. Determining the collinearity of
two line segments is usually a Boolean operation – whether or not two line segments
are collinear. However, if one views a perfectly rectangular object from extreme
viewpoints, especially if the camera is positioned close to the observed surface,
then one experiences a series of problems, which are illustrated in Figure 4.2. The
perfectly planar edges of the sheet were transformed and cluttered into multiple
smaller line segments. These line segments (i.e., depicted at the paper’s bottom
edge) were not collinear. Thus, a relaxed collinearity property was required. We
considered every triplet of line segment endpoints to be a triangle. If two line
segments are nearly collinear, then the height of the four triangles would be
reasonably small. The proposed metric is depicted in Figure 4.2: ab and cd, two
line segments, have the endpoints a, b, c, and d. These define four triangles,
namely △(abc),△(abd),△(cda), and △(cdb). If RC(ab, cd) is reasonably
small, then we consider two line segments almost parallel and combine them into
a single line segment.

Quadrilateral Detection Given stable line segments, possible rectangle can-
didates must be selected. Thus, we selected valid candidates with non-self-
intersecting convex quadrilaterals that consisted of four non-intersecting line
segments. Selecting these rectangle candidates requires line segments to be
grouped. Unfortunately, using vanishing points does not produce valid results
in many Manhattan-world situations, as illustrated in Figure 4.3. We used a
RANSAC approach (Fischler and Bolles, 1981) to overcome this issue, where we
selected four line segments from the set of detected segments and evaluated their
intersecting points. Specifically, we computed all intersections of the four lines
and evaluated the overlap ratio of line segments and the computed intersections.
The approach is depicted in Figure 4.4. Given the four line segments ab, cd, ef ,

Figure 4.3: Although a slanted view of a sheet of paper is perfectly rectangular, the
opposite edges are not of a similar length. The angles of adjacent line segments vary
significantly. Figure taken from (Filax et al., 2017).
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Figure 4.4: Given the four line segments ab, cd, ef , and gh we computed their inter-
sections a′, b′, c′, d′, and e′. We eliminated outliers by evaluating the overlap ratio of
detected line segments ab, cd, ef , and gh and “virtual” line segments (i.e., a′b′, a′c′,
or b′c′).

and gh we computed all intersection points a′, b′, c′, d′, and e′ from the lines←→
ab, ←→cd, ←→ef , and ←→gh. (a′, b′, d′, e′) represents a valid quadrilateral. (a′, b′, c′, e′),
for instance, does not represent a valid quadrilateral since b′ and c′ lie on ←→ab.
We identified valid quadrilateral points with the overlap ratio of a detected line
segment ab and a virtual line segment a′c′.

Homography Estimation We estimated the homography that transforms four
points (cf. Section 2.1.2; i.e., the intersections found in the previous step) into
a rectangular set of points to unwarp the geometric transformation introduced
through imaging. Given a valid quadrilateral in an image, which defines four
intersection points, we estimated four rectangular points. Hua et al. (2006)
estimated a rectangle, whereas the aspect ratio of the physical rectangle must
be known in advance. It is, however, only possible to know the aspect ratio in
advance if the physical rectangle is known during test time. We chose to unwarp
quadrilaterals into squares with lengths of 500 pixels since the given use case
permitted such assumptions.

Feature Description Finally, we used SIFT (Lowe, 2004) to detect features in
the unwarped quadrilaterals. Descriptors were matched by applying Lowe’s ratio
test, where the nearest distance of the best match for a descriptor is smaller than
k = 0.8 times the second-best match for that descriptor, then the best match is
considered valid.

Experiments

ImplementationWe implemented QuadSIFT in C++ and used the OpenCV21 implementation of
LSD (Gioi et al., 2010; Grompone von Gioi et al., 2012). We detected quadrilaterals
as described before and used a greedy strategy to select a single quadrilateral as
a candidate by maximizing the candidate area. We then unwarped the distortion

21https://opencv.org/ visited on 01/23/2023.

https://opencv.org/
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Figure 4.5: We executed the three algorithms on t2 and measured their performance by
evaluating their matching capabilities while matching magazine images. More correspon-
dences imply easier feature matching.

and detected, described, and matched features as described above. Finally, we
compared QuadSIFT with ASIFT22 (Morel and Yu, 2009; Yu and Morel, 2009)
and SIFT (Lowe, 2004).

Configuration We tested QuadSIFT with the test set proposed by Morel and Yu (Morel and Yu,
2009; Yu and Morel, 2009). This dataset covers differently zoomed and slanted
images of a magazine; we focused on subsets called t2 and t4 which depict the
same magazine in strongly slanted and tilted views. Images were taken with a
view hemisphere over these images to measure the tilt in degrees. We followed the
notation of Morel and Yu (2009); thus, we note the tilt angle as Φ. We measured
the quality of all three approaches with the number of feature correspondences
discovered. A higher number of corresponding features indicated that the proposed
approach handled geometric distortion introduced through imaging with a camera
better.

Experiment on t2: Figure 4.5 depicts the results of our experiments with
t2. Here, an image of a magazine was matched to differently rotated magazines.
Rotation is denoted as Φ. Both SIFT extensions outperformed the standard
implementation. However, when Φ < 50, ASIFT was able to match more
features than QuadSIFT. If the rotation of the magazine was sufficiently large
(i.e., Φ >= 50), then QuadSIFT produced slightly more correspondences than
ASIFT. Furthermore, we concluded that QuadSIFT is faster than ASIFT in the
original paper.

Experiment on t4: Morel and Yu (2009) and Yu and Morel (2009) have
proposed another test set similar to t2. The main difference is that the camera’s
viewpoint was moved downward, resulting in a view frustum closer to the magazine
plane and higher geometric distortion. A comparison of the algorithms is presented

22http://demo.ipol.im/demo/my_affine_sift/ visited on 01/23/2023.

http://demo.ipol.im/demo/my_affine_sift/
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Figure 4.6: We executed the experiment on t4 similar to t2. We again observed that
QuadSIFT outperformed the state of the art in extreme configurations.

in Figure 4.6. While both SIFT extensions outperformed the base implementation,
QuadSIFT started to outperform ASIFT slightly earlier.

Applicability

“In Vitro” ImagesBased on these two tests, we concluded that QuadSIFT finds correspondences in
extreme scenes and performs on par with the state of the art. This is especially
interesting since we observed QuadSIFT to be faster than ASIFT. The main
disadvantage of QuadSIFT is the performance loss if the perspective is not that
extreme, especially if Φ <= 50. In the original paper (Filax et al., 2017), we
demonstrated that this is mainly due to the setting of the algorithm: we chose
to unwarp the found quadrilateral into a square of 500× 500 pixels. This, in
combination with the overall structure of SIFT (Lowe, 2004), limits the number
of possible found correspondences due to the feature pyramid in SIFT. Increasing
the square’s edge length would increase the number of found correspondences.
Furthermore, as we demonstrated in the original paper (Filax et al., 2017), knowing
the aspect ratio of the object being under tested would help.

“In Situ” ImagesIn the context of this thesis, however, QuadSIFT is not applicable in the real world.
The proposed heuristic for finding quadrilaterals in densely placed scenes, such as
scenes from retail stores, fails to produce satisfactory results. Nevertheless, we
concluded that the core idea does work – namely that reducing degrees of freedom
(i.e., by projecting a geometrically transformed object into its canonical form)
boosts detection results. This was demonstrated through the toy example with the
magazine, which directly supports RO-R3. These promising findings motivated us
to continue researching in this direction by preserving the original object’s aspect
ratio through an environmental model. These findings, therefore, support RO-M2:
If QuadSIFT is able to use the geometric information of the environment, it can
significantly increase the number of found feature correspondences. This finding
also addresses: RO-R3. Strong geometric skew might prevent the recognition of
objects.
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4.1.2 VI-SIFT: Viewpoint-Invariant SIFT
This section builds upon (Filax and Ortmeier, 2018) presented at
VISAPP23.

With VI-SIFT, we proposed another extension of SIFT (Lowe, 2004), which ex-
ploits the observation that man-made environments are rich in planar structures,
such as walls, windows, shelves, or paintings. We exploited the capabilities of
modern OTS head-mounted displays, such as Microsoft’s HoloLens, to detect
planar objects in the environmental model acquired through the built-in sensors.
Planar regions with this spatial observation of the camera are reduced to rectan-
gular shapes. Imaging the environment through a camera induces a projective
transformation of objects into the view plane of the image. We recovered a front-
parallel (or canonical) view, called the viewpoint-invariant plane, by unwarping
the geometric distortion through a homographic transformation of a genuinely
rectangular shape and preserving the aspect ratio of the physical objects. Finally,
we detected, described, and matched SIFT features on the viewpoint-invariant
planes. This section summarizes our efforts with this approach and focuses on its
applicability in a grocery store.

VI-SIFT

We strongly relied on SLAM approaches (Durrant-Whyte and Bailey, 2006; Bailey
and Durrant-Whyte, 2006; Fuentes-Pacheco et al., 2015). Currently, the capabili-
ties are already built into modern HMDs. Devices such as Microsoft’s HoloLens use
multiple cameras, an inertial measurement unit, and time-of-flight depth sensors
to track the user’s head movements over time. These data streams are also used
to build a map of the environment as the devices move through space. Although
the concrete SLAM used by Microsoft’s HoloLens is not publicly available, we
found that HoloLens produces a reasonably good model of the environment in
a preliminary experiment. We leveraged these new capabilities of HoloLens and
extended the capabilities of non-neural detection approaches.

Approach Figure 4.7 depicts an outline of VI-SIFT, which consists of five steps. The first
two steps acquire the necessary output data of the SLAM approach. Next, we
identified planar structures in the environmental model, described as 3D rectangles.
These were used to unwarp the distortion induced through imaging, resulting in
viewpoint-invariant planes. Finally, the resulting viewpoint-invariant planes were
used to compute SIFT features. In the following paragraphs, we explain every
step in detail.

1. Acquisition of Environmental Model: First, we continuously acquired
a model of the environment, preferably with built-in sensors. Since we built
VI-SIFT with HoloLens in mind, we used the HMD’s multi-modal tracking.
We used the onboard SLAM of the system to poll the spatial model, a
triangular approximation of the actual environment, continuously.

2. Acquisition of Images: Similar to the model of the environment, we
continuously acquired frames of the built-in web camera of the HoloLens.
These frames were registered to the camera’s position in space, which is
crucial since we used this information to leverage any time constraints by
projecting found correspondences in later steps.

23https://visapp.scitevents.org/?y=2018 visited on 01/13/2023.

https://visapp.scitevents.org/?y=2018
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Figure 4.7: VI-SIFT: We use an environmental model acquired through the camera and
image frames to detect planar rectangular structures. These were mapped to canonical
views and used to compute SIFT features.

3. Acquisition of Planar Structures: Third, we aimed to reduce the
complexity of the perceived environment. We followed the weak Manhattan
world assumption (Saurer et al., 2012), in which the environment is assumed
to be a mixture of vertical planes, and identified planar regions within the
model. We found planar surfaces in the model by estimating the curvature
of every vertex in the mesh using publicly available code24. Next, we
generated potential planes by flood-filling over the smoothed curvatures. If
the curvatures were sufficiently small, we assumed neighboring vertices to
be planar. Plane candidates were then further refined by determining their
plane equations and extended if their mathematical representation is similar.
We enforced rectilinearity by determining an oriented bounding box for the
leftover candidates.

4. Viewpoint-Invariant Planes: Since the model grew continuously, we
considered only visible planes as viewpoint-invariant candidates. This
was necessary because SIFT features are computed based on the visual
appearance of objects. We determined the subset of visible planes by casting
multiple rays from the camera center through the image plane. Visible planes
intersected with these rays. Then, we estimated a homography (Hartley and
Zisserman, 2004) that unwarped the two-dimensional coordinates of visible
planes into their rectangular shape (cf. Section 2.1.2). The rectangular
shape (i.e., a set of four corresponding vertices in 2D space) was calculated
based on the physical aspect ratio of the plane. Since the homography
is typically defined up to scale (Hartley and Zisserman, 2004), VI-SIFT
introduced a hyperparameter. We fixed the scale of the viewpoint-invariant
planes to the physical size of the corresponding 3D plane and 20 dots per
inch.

5. Computation SIFT Features: In the last VI-SIFT step, we detected
and described SIFT (Lowe, 2004) features. We used the publicly available
SIFT implementation in OpenCV using the default (brute force) matching
strategy. This included Lowe’s ratio test, where the best matching descriptor
is accepted as a match if its distance to the second best matching descriptor
is smaller than k times that distance. In contrast to Lowe, we considered a
match valid if k ≤ 0.6.

ExperimentsWe evaluated the practicable applicability of VI-SIFT using an experiment from the
domain of this thesis, namely by comparing products from a German supermarket.

24https://github.com/Microsoft/MixedRealityToolkit visited on 01/24/2023.

https://github.com/Microsoft/MixedRealityToolkit
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Figure 4.8: Quantitative summary of the experiment with Lego: We detected a particular
object under challenging perspectives (i.e., |Φ| >= 30◦). VI-SIFT outperformed the
other methods in various experiments. Note that VI-SIFT failed to detect the object at
Φ ≊ −70◦ since it could not detect a 3D plane.

We compared VI-SIFT with ASIFT (Morel and Yu, 2009; Yu and Morel, 2009), a
similar extension of SIFT (Lowe, 2004).

Experiments

We tested VI-SIFT (Filax and Ortmeier, 2018) in a local supermarket and ex-
perimentally chose two different shelves. Images were taken with Microsoft’s
HoloLens Version 1, and therefore, they had a resolution of 1, 280× 720 pixels. We
compared SIFT (Lowe, 2004), ASIFT (Morel and Yu, 2009; Yu and Morel, 2009),
and VI-SIFT by evaluating various image frames. To preserve the comparability
of all approaches, we converted every image to grayscale since ASIFT is intended
to be used on grayscale images. The most crucial experiment in the original
paper involved detecting a particular object on a randomly selected shelf. We
examined every approach’s capabilities by counting the total correspondences
found. Qualitative examples were depicted in Figure 4.9. Note that we aimed to
find objects from somewhat degenerate viewpoints. We measured this as an offset
(Φ), tilt, from the normal of the shelf in degrees. Every row in Figure 4.9 depicts
the same test case but with different algorithms. VI-SIFT could also produce a
valid result from even the most degenerate viewpoint (cf. last row).

Qualitative Examples Additionally, we examined VI-SIFT quantitatively. The results are presented in
Figure 4.8. We again measured the absolute number of matching correspondences
found. As indicated, VI-SIFT outperformed the other approaches in every test,
except for Φ ≊ −70◦. In this particular test, VI-SIFT could not extract the plane
segment of interest, and therefore, it failed with an exception. Nevertheless, we
concluded that VI-SIFT was capable of detecting objects in the supermarket if
they were imaged through a camera from degenerative viewpoints.
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Figure 4.9: Examples from the experiment. Every row depicts the same image, but with different algorithms. The number in brackets denotes the total
number of correspondences found by the given algorithm.
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Applicability

VI-SIFT directly supports RO-M2. In a small example, we demonstrated that VI-
SIFT can distinguish retail products, namely different Lego sets. We demonstrated
that a training-free solution exists to recognize the fine-grained differences between
retail products. Furthermore, we demonstrated that we could determine the correct
identifier of products in degenerative viewpoints, which provided us with insights
into RO-R3. Since ASIFT and VI-SIFT rely on the SIFT pipeline, we implicitly
demonstrated that using metaknowledge to reduce the number of parameters,
especially by producing a viewpoint-invariant plane, increases the detection results.

Constraints Although we found that VI-SIFT can determine products from degenerative
viewpoints, relying on SIFT imposes complex problems while matching features.
Many non-neural feature detection approaches (Lowe, 2004; Bay et al., 2006; Bay
et al., 2008; Morel and Yu, 2009; Leutenegger et al., 2011; Rublee et al., 2011;
Alcantarilla et al., 2012) have the goal of detecting as many discriminative features
as possible. Generally, these features are handed to a matching algorithm to find
strong matches that differentiate well from the rest. These feature descriptions
are then typically used to identify the nearest neighbors. Next, most algorithms
deploy a filtering step in which the number of feature correspondences is reduced
to omit outliers. Most commonly, a filtering step like Lowe’s ratio test (Lowe,
2004) is deployed: two features are considered to be a positive match if their
distance is significantly smaller than the distance of the descriptor of the second
nearest neighbor. Other approaches use a particular heuristic (Sattler et al.,
2009; Tuytelaars and Gool, 2000; Shah et al., 2015; Bian et al., 2017) to reject
potentially invalid feature correspondences based on geometrical or heuristic
reasoning. Unfortunately, while these methods aim to reduce correspondences
they are vulnerable to reoccurring patterns.

Feature Recognition Supermarket scenes contain a significant number of reoccurring patterns. This is
especially true for retail products since producers aim to brand their products.
Thus, different SKUs share a significant number of reoccurring labels and thus
reoccurring features. The difference of nearest neighbors of feature points in
products and features in an image might be spoiled through these reoccurring
elements. A decent feature descriptor is invariant to the location of a feature
detected in an image, producing similar descriptions for similar visual regions.
Since producers are branding products, such as with logos or similar visual
elements like pets, we assume that the nearest neighbor selection of (local) feature
descriptors is infeasible because the commonly placed assumption that features
are randomly distributed in the descriptor space (Shah et al., 2015) no longer
holds. Searching for a product in a crowded scene, such as a hypermarket, boils
down to the well-known search for a needle in a haystack. Therefore, we concluded
that we should abandon object detection based on human-made features. These
general-purpose detectors do not use metaknowledge about the problem.

4.1.3 SWA: Sliding Window Approach

This section exploits metaknowledge of the application domain, as we propose
a SWA that assumes that products are densely stacked on shelves. Hundreds of
products are placed side-by-side across multiple meters. This observation leads to
the following intuition: Generating product candidates uniformly across an image
produces higher recall rates than in a general detection setting. With this in mind,
we sought to evaluate using an SWA. Instead of sliding a window randomly across
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Figure 4.10: Sliding window approach at a glance.

an image, we incorporated metaknowledge of the scene, namely the position of
the individual racks on that shelf.

ApproachThe core idea of the SWA is that products are placed densely on shelves. We
aimed to sample multiple product candidates based on individual shelf racks. The
approach is depicted in Figure 4.10. First, we detected shelves with a model of
the environment. Next, we determined the individual shelf racks through line
segment detection on the image data. Finally, we synthesized various product
candidates for the shelf racks. The individual steps are described individually in
detail in the following paragraphs.

1. Shelf Detection: The first step required metaknowledge of the environment
to be incorporated into the image. Here, we relied on higher-level information
about the environment. Products in supermarkets are arranged on shelves.
As a proof-of-concept, we used this observation and employed a similar
idea as in VI-SIFT (cf. Section 4.1.2), where we assumed shelves to be
quasi-planar. Densely placed products on shelf racks form an almost planar
structure in the 3D environment of the camera. Already-bought items form
minor defects in this 3D model, but store managers position their assortment
after strategic decisions (Frontoni et al., 2017) and aim for a full display to
reduce out-of-stock events (Gruen et al., 2002). Thus, we detected planes in
the 3D model and unwarped any geometric distortion, as in VI-SIFT. After
detecting planes, we further abstracted them as rectangular and unwarped
the geometric transformation to acquire a viewpoint-invariant plane. Note
that various methods exist to unwarp the geometric transformation in this
setting. Some employ quadrilaterals (cf. Section 4.1.1), while others rely on
clustering line segments based on their vanishing points (Schaffalitzky and
Zisserman, 2000; Ramalingam and Brand, 2013). We chose VI-SIFT here
simply due to the availability of source code, since we aimed to implement
a proof-of-concept.

2. Rack Segmentation: Next, we identified racks in the shelves. When the
distortion of an imaged plane into a viewpoint-invariant plane was unwarped,
all shelf racks were transformed to be horizontal. This dramatically reduced
efforts to localize shelf racks in images. We searched for horizontal line
segments in the viewpoint-invariant plane. As a proof-of-concept, we used
the OpenCV implementation of the LSD (Gioi et al., 2010; Grompone
von Gioi et al., 2012) and searched for nearly horizontal lines. The found
lines were ordered based on their position in the image. This gave an
ordered set, of which two consecutive lines represented a shelf rack on the
viewpoint-invariant plane. It is also possible to use a sophisticated approach
for this step, such as in (Chen et al., 2020), to increase the precision of the
rack segmentation approach. However, doing so is optional since we are
only interested in a proof-of-concept. A preliminary exploration exposes an
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insufficient generalization of (Chen et al., 2020). Due to the lack of training
data, we relied on a non-neural approach.

3. Candidate Prediction: We sampled various bounding box candidates with
the found shelf racks. However, this had to be parametrized, as height, width,
and step size influence the theoretically achievable mAP. Since we operated
on viewpoint-invariant planes that were defined up to scale, we controlled
all of these parameters up to scale. We overcame the scale ambiguity by
identifying viewpoint-invariant planes and defining all hyperparameters
based on physical dimensions. We incorporated the minimal bounds of
products in our database, such as the minimum height and minimum width
of products in their display on shelves. Similarly, we used the maximum
bounds of products. Additionally, we sampled candidates with multiple
values in between to achieve higher precision. The step sizes (in both
cases) needed to be selected such that they are reasonably small (otherwise,
mAP would degrade) and as large as possible (otherwise, the number of
candidates, and thus the computation time of the later recognition, would
grow dramatically).

4. Rewarp Candidates: Found candidates were transformed into the original
image space. We inverted the homography found before, which unwarped the
imaged physical plane into a viewpoint-invariant plane, and applied it to the
bounding box candidates. This transformed the previously generated axis-
aligned rectangles into quadrilaterals. We finalized the result by computing
the axis-aligned bounding box of these quadrilaterals.

Experiment

We implemented the SWA in Python and experiment with MDG-manual. The
first step of the SWA consisted of the detection of possible shelves. We detected
shelves identically to VI-SIFT (Filax and Ortmeier, 2018) and unwarped the
geometric distortion using a homography, which we calculated based on the
physical dimensions of the detected shelves. The scale was fixed to 50 dots per
inch. In the second step, we identified racks on the viewpoint-invariant planes.
We slightly blurred images to filter small line segments using the normalized
box filter with a kernel size of 11 before we detected line segments using the
LSD (Gioi et al., 2010). We selected almost horizontal line segments and roughly
grouped detections to reduce possible oversensitivity. The third step comprised
the generation of product candidates. We sampled product candidates based on
a heuristic; that is, we sampled products with a width ranging from 1 to 30 cm
with a step size of 2.5 cm and a height ranging from 10 to 50 cm with a step
size of 5 cm. Fourth, we sampled candidates along the found racks every 5 cm.
We also sampled candidates on the vertical axis every 5 cm to detect stacked
products. The heuristic was chosen based on a brief overview of possible ground
truth annotations of the MDGv2 dataset. Finally, in step four, we rewarped the
bounding box candidate onto the original image plane by inverting the previously
computed homography.

Results In total, we sampled 767, 977 candidates on the MDG-manual dataset. The detec-
tion split of MDG-manual comprised 36 images annotated with 5, 638 bounding
boxes. We observed that the SWA significantly oversampled the ground truth.
This is because the generation of bounding boxes was not bound to any visual
features of the products in the rack.
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Applicability

Implementing a sliding window-based approach in the previous experiment was
simple. We used a significant amount of metaknowledge of the scene to tune hyper-
parameters for this algorithm, addressing the RO-G in general and, in particular,
RO-M1. We concluded that it is generally possible to use this metaknowledge of
densely packed scenes to design and implement an approach capable of detecting
some objects. Nevertheless, a significant number of hyperparameters, such as the
height and width of bounding boxes, must be chosen based on the data. These
algorithms do not generalize well to unknown scenes since products’ minimal and
maximal extents are typically not known in advance. This leverages the number
of possible search windows significantly and further increases the execution time.
This exhaustive search for products on shelf racks is a significant drawback since
real-time constraints cannot be achieved, especially in limited hardware situations.
To overcome the hurdles of nonneural approaches, we examined neural network-
based methods, which aim to detect individual product instances in supermarket
scenes.

4.2 Neural Retail Product Detection

Neural networks have succeeded in many computer vision fields (Krizhevsky et al.,
2017). These include object detection, object classification, image captioning, and
image synthesis. Recently other researchers have drawn attention to the problem
of retail product detection (Bigham et al., 2010; Thakoor et al., 2013; Liciotti
et al., 2014; Hsieh et al., 2019; Santra and Mukherjee, 2019; Varadarajan et al.,
2019; Goldman et al., 2019; Osokin et al., 2020; Rong et al., 2020; Pietrini et al.,
2022). The task of detecting products in supermarket scenes is summarized by
predicting the axis-aligned bounding box coordinates of individual products on
shelf racks. In this section, we summarize a recent works in this domain.

Pretrained Product Detectors

Detecting products in supermarket scenes is challenging. Products crowd the
scene in retail stores since they are densely arranged on shelves to maximize the
number of products per square meter. This imposes hurdles for general object
detectors to overcome. Thus, OTS detection networks typically predict bounding
box candidates that contain multiple products (Goldman et al., 2019). Therefore,
specialized neural detectors are required to minimize these effects. A wide variety
of studies have already addressed this problem (Bigham et al., 2010; Thakoor
et al., 2013; Liciotti et al., 2014; Hsieh et al., 2019; Santra and Mukherjee, 2019;
Varadarajan et al., 2019; Goldman et al., 2019; Osokin et al., 2020; Rong et al.,
2020; Pietrini et al., 2022). While some have relied on a human in the loop
(Bigham et al., 2010), others have required specialized environmental sensors
(Liciotti et al., 2014). Although (Osokin et al., 2020) was highly interesting,
their approach requires examples of the individual products to be detected (cf.
Chapter 6), and thus, cannot be used in a pure detection setting. In the following
paragraphs, we present related works that have addressed the problem of product
detection on shelves.

SKU-110KGoldman et al. (2019) proposed a detection network tailored explicitly for retail
scenes. The authors proposed using a ResNet50 (He et al., 2016a) backbone
followed by three output layers. The first layer, a detection head, produces
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Method mAP@[0.50] mAP@[0.75] mAP mAR
SKU-110K 61.4% 18.2% 26.9% 31.6%
DPOD 68.7% 13.6% 26.7% 36.1%
DenseDet 79.4% 30.4% 38.1% 45.0%
SWA 0.0% 0.0% 0.0% 0.4%
U-SKU-110K 21.5% 6.9% 9.0% 16.0%
U-DPOD 65.8% 21.9% 29.2% 38.1%
U-DenseDet 68.6% 39.2% 38.5% 45.0%

Table 4.1: Evaluation of different grocery product detectors on the MDG-manual dataset.
While the proposed SWA cannot produce satisfactory results, other state-of-the-art
approaches that use viewpoint-invariant planes (cf. approaches denoted with “U-”)
produce better results than their original variants. An exception to this claim is U-SKU-
110K. See the text for details.

bounding box coordinates in 4-tuples. The second layer, a classification head,
predicts a confidence level. The last layer, a novel SoftIoU head, estimates the
overlap between each predicted bounding box and the (unknown) ground truth.
These three output layers are fed into an EMMerger unit that filters overlapping
detection clusters. The authors provided code25 as well as a pretrained model.
Goldman et al. (2019) also proposed a large dataset for training their network
(cf. Section 3.4) which was used in a detection challenge26, that was held in
conjunction with CVPR2020. Although its results seemed promising, none of the
networks’ trained weights were available at the time of writing this thesis.

DenseDet Rong et al. (2020) also used the SKU-110K dataset to assess the problem. The
authors proposed using another base network, namely ResNeXt-101(Xie et al.,
2017), a cascaded R-CNN head (Cai and Vasconcelos, 2018), and a weighted
bi-directional feature pyramid (Tan et al., 2020). Furthermore, they proposed
altering the training procedure by relying on a modified random crop augmentation
and an optimized sampling procedure. Source code27 and weights are available.

DPOD Cho et al. (2022) proposed a similar approach to detecting products on store
shelves. The authors observed that retail product scenes are densely populated
with typically small-sized objects. They proposed a framework based on a weighted
Hausdorff distance and hard negative-aware anchor attention. The authors
published code28 as well as weights.

Summary Since multiple networks as well as trained weights are available, we assessed
which of them performed best on previously unseen data. Therefore, we used the
available weights to evaluate the performance of these networks on the detection
split of the MDG-manual dataset.

Generalization Capabilities

This section assesses the quality of publicly available product detection approaches
and compares them with the SWA (cf. Section 4.1.3). It also assesses whether the
proposed SWA approach can produce enough product candidates. Furthermore,

25https://github.com/eg4000/SKU110K_CVPR19 visited on 02/15/2023.
26https://retailvisionworkshop.github.io/detection_challenge_2020/ visited on 02/15/2023.
27https://github.com/Media-Smart/SKU110K-DenseDet visited on 02/15/2023.
28https://github.com/CVML-Detection/Densely-packed-Object-Detection-via-Hard-Negative-

Aware-Anchor-Attention visited on 02/15/2023.

https://github.com/eg4000/SKU110K_CVPR19
https://retailvisionworkshop.github.io/detection_challenge_2020/
https://github.com/Media-Smart/SKU110K-DenseDet
https://github.com/CVML-Detection/Densely-packed-Object-Detection-via-Hard-Negative-Aware-Anchor-Attention
https://github.com/CVML-Detection/Densely-packed-Object-Detection-via-Hard-Negative-Aware-Anchor-Attention
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this section examines the capabilities of state-of-the-art detection frameworks on
previously unseen data designed explicitly for product recognition. Finally, it
aims to address RO-M2.

DetectorsAnswering RO-M2 is necessary since many factors, such as training procedures,
regularization strategies, or the data itself, influence the generalization capabilities
of a neural network (Jakubovitz et al., 2019). Therefore, it was also necessary
to assess the performance of all approaches on different data. While the trained
detectors, SKU-110K, DPOD, and DenseDet, differ in their architecture and
weights, the authors have claimed good performance on the SKU-110K test set
(i.e., 49.2%, 52.5%, and 58.7% mAP). We evaluated the three approaches on the
challenging MDG-manual dataset (cf. Section 3.3). Furthermore, we evaluated
the use of a non-neural approach.

MDG-manual
Dataset

The experiment was deployed as follows. We relied on all manually labeled images
of the detection split of the MDG-manual dataset. All labeled product identifiers
were set to “product” in this split. Class information was not relevant to this
experiment. Images are then passed to SKU-110K, DPOD, and DenseDet. Their
predictions were compared to the ground truth using the COCO framework.

MetaknowledgeAdditionally, we assessed the use of metaknowledge by unwarping geometric
distortion using the VI-SIFT approach. We transformed found 3D planes into
viewpoint-invariant planes. As seen in the previous section, viewpoint-invariant
planes can increase the overall accuracy of non-neural approaches. This seems
plausible since non-neural feature descriptions are built upon the pixel values of the
image plane. We assessed whether learned detectors also benefit from a reduced
number of free parameters (i.e., unwarped distortion). The viewpoint-invariant
planes were then passed to SWA, SKU-110K, DenseDet, and DPOD. The found
detections were retransformed into the original image space. The results are
denoted as SWA, U-SKU-110K, U-DenseDet, and U-DPOD in Table 4.1. We used
identical viewpoint-invariant planes to allow a fair comparison.

Qualitative ExamplesFigures 4.11 to 4.13 depict different examples from the detection split of the
MDG-manual dataset. We depict the ground truth annotations in blue, while the
predictions of the networks are shown in gray. We only depict predictions if the
confidence was greater than 0.5. Furthermore, we considered a prediction correct
if the IoU with the ground truth was larger than 0.5.

SWAThe results of our experiment are presented in Table 4.1, where mAP denotes the
mean average precision (specifically mAP@[0.50:0.05:0.95]) across various IoU
ranges (cf. Section 2.3.3). The SWA failed to produce good results due to the
metric, as mAP relies on the 300 top predictions. These are selected based on
some confidence scores. Since the SWA does not produce any confidence score,
our COCO implementation considers the first 300 predictions29 per image.

Learned DetectorsThe pretrained detectors were observed to performe reasonably well. However, the
average recall was dramatically reduced compared with the original SKU-110K
dataset. We concluded this was mainly due to a drift in the dataset: while the
original SKU-110K dataset mainly contains (mostly) fronto-parallel shelves, our
MDG-manual dataset comprises much more challenging variants (cf. Section 3.3).

SKU-110KFigure 4.11 depicts the results for SKU-110K and U-SKU-110K. Almost every
bounding box prediction of U-SKU-110K is significantly larger than the ground
truth. Since we could control the actual size of the object (i.e., based on the
three-dimensional size of the shelf), we assume that the chosen scale (here 50 dots
per inch) significantly drifted from the SKU110K dataset. We also assume that

29Following Osokin et al. (2020), we consider the 300 top predictions to account for the higher
count of products per image.
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(a) DenseDet (b) U-DenseDet

(c) DPOD (d) U-DPOD

(e) SKU-110K (f) U-SKU-110K

Figure 4.11: Qualitative example of DenseDet, U-DenseDet, DPOD, and U-DPOD on the
image frame with id=“bk-05-215”. The ground truth is depicted as blue bounding boxes.
Predictions of each network are shown in gray, but only if the predicted confidence score
was greater than 0.5. Correct predictions (IoU > 0.5) are shown in green. Note that
U-DenseDet and U-DPOD produced significantly more and better results for relatively
small products (right hand side of each image), whereas U-SKU-110K failed to produce
good results in this image.

the encoder architecture of SKU-110K was firmly fitted to the original dataset.
Thus, changing the scale of the MDG-manual dataset should have enhanced the
overall quality of the U-SKU-110K predictions. However, optimizing a given
network is not within the scope of this chapter.

Influence Of
Metaknowledge

In addition, we observed an increase in mAP when DenseDet and DPOD were
applied. The mAR also decreased significantly in the case of DPOD. Figures 4.12
and 4.13 indicate that U-DPOD and U-DenseDet produced significantly more
detections for distant products. This claim is supported by the observation that
mAP@[0.75] significantly increased for both U-variants. Since we only changed
the way we presented images to the networks, we conclude that the increased
performance of both variants was due to viewpoint-invariant planes. We thus
significantly reduced the challenges of this problem, as natural changes in the
scale of products on a shelf were reduced. While products in the original image
were more distant from the camera and appeared smaller, we observed that using
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(a) DenseDet (b) U-DenseDet

(c) DPOD (d) U-DPOD

(e) SKU-110K (f) U-SKU-110K

Figure 4.12: Qualitative example of DenseDet, U-DenseDet, DPOD, and U-DPOD on the
image frame with id=“bk-03-45”. The left-hand side of the figure depicts state-of-the-art
approaches. The right-hand side of the figure depicts the proposed unwarped extension.
Correct retail product detections are shown in green. Note how the proposed extension
significantly increased the ratio of correctly detected retail products that are more distant
from the camera.

viewpoint-invariant planes leveraged this hurdle. These fronto-parallel projections
ensured that all products on the shelf were scaled according to their natural scale.
We thereby significantly reduced at least a single degree of freedom. We concluded
that using the proposed approach, namely the fronto-parallel projection of skewed
shelves on images, increases the quality of product proposals acquired from a
retail product detection approach.

4.3 Threats for Validity

This chapter has examined different object detection methods that are particularly
well suited for fine-grained object detection. All approaches examined in this
chapter were designed and implemented with the greatest care. In this section,
we summarize threats for validity that might have occurred.
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(a) DenseDet (b) U-DenseDet

(c) DPOD (d) U-DPOD

(e) SKU-110K (f) U-SKU-110K

Figure 4.13: Qualitative example of DenseDet, U-DenseDet, DPOD, and U-DPOD on an
image frame with id=“sft-10-160”. Images are ordered as before. This is one of the most
challenging examples from the MDG-manual dataset. Products significantly varied in
scale across the entire shelf. U-DenseDet produced the best results.

Construction Validity

Environmental
Approximation

We discussed two non-neural approaches in Section 4.1, published during this
dissertation. In both cases, we aimed to assess the accuracy gain induced by
encoding metaknowledge in (fine-grained) recognition problems. In particular, we
attempted to increase the accuracy by approximating the environmental model
(either through image features, cf., Section 4.1.1 or by approximating the envi-
ronmental model, cf., Section 4.1.2). While we measured the accuracy directly
by counting the SIFT correspondences, we did not address the environmental ap-
proximation directly. Nevertheless, we did abandon classical detection approaches
since most matching strategies seemed unfeasible in a fine-grained, often repetitive,
problem setting.

Internal Validity

Computational
Efficiency

Section 4.1.3 briefly described another non-neural approach that uses metaknowl-
edge of the scene. The approach is tailored to the retail domain, in which products
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are placed densely on shelves. The SWA exploited this observation and slid a
window across every shelf rack. We rejected methods similar to this proof-of-
principle since, due to its nature, it does not provide some confidence in prediction.
We might have been too restrictive since others might have overcome this issue.
However, we argue that the computational efficiency is still questionable.

External Validity

Influence of ScaleSection 4.2 summarized different neural network-based approaches to predicting
the location of products in images. We extended the excellent work of others by
encoding metaknowledge in the form of an environmental model into the problem.
We removed the geometric skew introduced while imaging the shelves. The warping
was, however, solvable up to scale, which introduced another hyperparameter. We
did not further investigate the influence of scale.
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4.4 Summary

In this chapter, we have summarized our efforts in fine-grained open-world retail
product detection. The term detection describes the problem of predicting the
exact location of individual objects within the image. We argue that this problem
is challenging since products are densely arranged on a shelf and viewpoints are
often degenerated.

Content

Feature-Based
Detection

In Section 4.1, we described three feature-based detection approaches that exploit
metaknowledge of the environment to lower the hurdles of extreme viewpoint
changes. While two of three approaches were built upon SIFT (Lowe, 2004)
features, the third approach essentially is a sliding window approach (cf. Sec-
tion 4.1.3).

QuadSIFT QuadSIFT, originally proposed in (Filax et al., 2017), exploits the visual contents
of the environment by determining quadrilaterals (using found line segments) in
the image, which are finally unwarped into a square These fronto-parallel squares
are then used to detect, describe, and match SIFT features. In Section 4.1.1,
we demonstrated that QuadSIFT outperformed standard SIFT from extreme
viewpoints, but we concluded that the required line segment detection is not
applicable in retail environments.

VI-SIFT To overcome this issue, we proposed the VI-SIFT approach in (Filax and Ortmeier,
2018) and described it in detail in Section 4.1.2. VI-SIFT follows a similar idea:
We unwarp the perspective distortion of degenerated viewpoints into canonical
views, which we call viewpoint-invariant planes. In contrast to QuadSIFT, VI-
SIFT does rely on primitives found in a model of the environment. While we
effectively overcame the detection issues, we concluded that SIFT features are
not applicable in crowded scenes.

Neural Detection Neural detectors efficiently overcome the issues of feature-based approaches. Sec-
tion 4.2 summarized state-of-the-art detectors that are tailored to the retail
domain. We concluded that these seem more promising based on the literature
review’s scope. However, we found that their generalization capabilities must be
verified.

Generalization We verified the generalization capabilities of available neural product detectors
in Section 4.2 with a subset of the MDG-manual dataset. We compared these
approaches to a SWA, which relied purely on metaknowledge of the environment.
Our results revealed that all tested neural product detectors generalized to un-
seen data, although some seemed tailored to their training datasets’ properties.
We found that the SWA did not work. Furthermore, we extended the neural
approaches through the core idea of VI-SIFT, where we unwarped the input data
to viewpoint-invariant planes. We found that using this metaknowledge increased
the accuracy of the challenging dataset.

Contributions

RO-R3 This chapter contributes to various research questions. Among others, we ad-
dressed RO-R3 in Section 4.1 and Section 4.2. Our results demonstrate that strong
geometric skew dramatically influences the capabilities of detection approaches.
Strong geometric skew prohibits recognizing objects in degenerative scenes. Detec-
tors, either feature-based or neural, might fail to detect an object. Non-detected
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objects cannot be recognized in the later stages of the Figaro approach. Designing
the detection stage of Figaro to be resilient to geometric skew is mandatory.

RO-M2Section 4.2 assessed the quality of pretrained detectors tailored to the retail
domain and evaluated the influence of external parameters, such as geometric
skew. We demonstrated in Table 4.1 that reducing geometric skew could increase
mAP@[0.75], mAP, and mAR. Except for U-SKU-110K, we increased the ca-
pabilities of all detectors by a significant margin. RO-M2 can be answered by
stating that reducing the geometric skew for detection could significantly increase
accuracy and recall.

RO-G1The experiment described in Section 4.2 demonstrated that pretrained neural
detectors could perform well, even under highly challenging environmental condi-
tions. They outperformed an artificial approach, precisely the SWA, by a large
margin in accuracy and recall. We conclude that RO-G1 could be answered to a
significant extent.

RO-R2Section 4.1 demonstrated that non-neural recognition pipelines are not well suited
to detecting and recognizing fine-grained objects at scale. Furthermore, we argued
that recognition with non-neural pipelines is ill-posed due to many repetitive
visual elements. A SWA is insufficient as well. RO-R2 addressed the complete
recognition pipeline, of which the detection of potential candidates is a building
block. We concluded that learned detector modules provide promising results since
the reliable detection of possible candidates is mandatory for good recognition
results.
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5. Recognition
I can feel ’em watching me while I’m learning to survive
Staring at my broken will that I’m too tired to hide
So many demons I can’t escape
Burning my bridges to light the way
I can feel ’em watching me but I’ll make it out alive
I’m learning to survive

We Came as Romans. “Learning to Survive” Cold Like War,
SharpTone Records, 2017

This chapter builds upon (Filax et al., 2021) presented at VISAPP30

and (Filax and Ortmeier, 2021) presented at MVA31.

Detection and
Recognition

We divided the problem of this dissertation into two global steps – namely the
detection and the recognition of products. We define the detection of retail
products as the prediction of regions within an image that depicts a single SKU.
The previous chapter recapitulated our efforts in detecting products in crowded
scenes. This chapter now focuses on the recognition of retail products (i.e., given
a detection, the prediction of their product identifier).

ClassificationA typical setting in this context is to predict the class of an image region. This
automatically implies that all products to be recognized must be known at training
time. We instead argue that imposing this strong constraint spoils the overall
problem. The recognition of retail products includes three differences that separate
it from other default recognition tasks.

Products ChangeFirst, the visual appearances of SKUs change over time since visual packaging is
used to increase sales. This is because more than 70% of purchase decisions are
made at the point of sale (Rettie and Brewer, 2000). It is not surprising that the
appearance of products is, in general, an active area of research (Mumani and
Stone, 2018). Since the visual presentation of SKUs changes over time, (trained)
recognizers must adhere to this fact. Vanilla classifiers (i.e., softmax classifiers)
do not support evolving visual representations.

Products are
Numerous

Second, the number of potential classes to be distinguished is vast. Large retailers
in Germany stock up to 50, 000 different products each (Hahn Gruppe et al., 2021).
Standard academic datasets, such as the well-known ImageNet dataset (Deng
et al., 2009) (benchmark), typically comprise 1, 000 classes. Modern fine-grained
academic datasets consist of 10, 000 different classes to be distinguished (Krause
et al., 2016; Grant Van Horn, 2021; Yuan et al., 2021; Lutio et al., 2021). Possible
recognition modules must be designed such that they are potentially able to
distinguish products at scale.

30https://visapp.scitevents.org/?y=2021 visited on 03/06/2023.
31https://www.mva-org.jp/mva2021/ visited on 03/06/2023.

https://open.spotify.com/track/0fr7Nl49mFbf6nXXca6YwO
https://visapp.scitevents.org/?y=2021
https://www.mva-org.jp/mva2021/
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Products Fluctuate Third, the number of classes (i.e., SKUs) grows continuously. Retailers constantly
issue new products. Hahn Gruppe et al. (2021) highlighted that allocating shelf
space, including many products, is crucial to customers and their buying decisions.
Therefore, it is not surprising that retailers remix their assortment continuously,
just as in the COVID-19 pandemic (Barton et al., 2022). A trained recognition
module must therefore acknowledge the changing products to be recognized.

Products Differ Fourth, virtual and real images of products differ significantly. Producers often
provide a few images of their products for the web (i.e., to promote their products
and inform customers about nutrition, ingredients, and other properties). Since
these images are typically easily accessible, it seems natural to exploit those “in
vitro” or iconic images to recognize “in situ” images of real products. Unfortunately,
both types of images significantly differ regarding their visual appearance.

Problem Definition These four properties require further research compared with the current state
of the art. We address the recognition problem of retail products as an open-set
problem (Bendale and Boult, 2016). This includes separating the training classes
from the test classes – that is, training and test categories are disjoint. A well-
known example is face matching (Schroff et al., 2015) where unseen individuals
must be distinguished during test time. Standard (fine-grained) classification
approaches cannot operate under the open-set assumption since they cannot
distinguish unseen classes.

Core Idea Therefore, the core idea for differentiating retail products is based on examples.
We use easily accessible images of retail products to describe a particular SKU.
These are translated through our recognition module into an embedding space.
The set of all database examples describes the total number of products that
can be distinguished. Recognizing retail products then translates to a similarity
problem, where any region within an image (i.e., acquired through a detection
network) is translated into the same embedding space. In this embedding space,
we search for the nearest neighbor of our database samples. If the nearest neighbor
is less distant in the embedding than a threshold, it formulates our prediction.
We automatically acquire the ability to classify unknown examples at training by
simply embedding a new SKU into the embedding space.

Structure In this chapter, we report the results of our method for distinguishing retail
products. Section 5.1 recapitulates the proposed approach in detail. We describe
the de facto standard mining strategy used in the training step and recapitulate a
new method that we proposed during the journey of this dissertation. Afterward,
we assess both mining strategies in Section 5.2. Next, in Section 5.3, we investigate
the performance of the best embedding function in a real-world context. Section 5.4
extends the method by evaluating the influence of 3D geometric skew. Section 5.5
summarizes our efforts to address the underlying domain adaptation problem since
we operate on iconic images as examples in the database. We dramatically reduced
the number of annotated training examples necessary to train an embedding
function. Section 5.6 describes related works, while Section 5.7 lists threats for
validity. Lastly, we conclude the chapter in Section 5.8.

5.1 Recognizing Products with Examples

State-of-the-art classification approaches cannot be used to ensure that product
recognition works at scale since the appearances of products change over time,
the number of SKUs is vast, and it continuously grows. Such approaches would
therefore require a running (perhaps rather complex) continuous integration
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Figure 5.1: A Barnes-Hut-SNE (Maaten, 2013) visualization of the test set of MDGv1
that depicts SKUs that were unknown at training time. The two-dimensional reduction
of the embedding space Rd demonstrates that similar images are mapped into clusters.
This allows us to identify unknown products at test time by comparing an image under
test with the embeddings in a database.

pipeline in which the underlying classifier is constantly updated. We concluded
that we would tackle this problem differently by using a per-example approach, in
which the set of products to be recognized is described using a single image per
class. We thus gain the ability to add, update, or remove classes as needed. The
core idea is to allocate class predictions through the mathematical description of
the similarity of an image under test concerning its visual similarity to a particular
database probe. The classification problem is modeled as a similarity problem in
which the most similar database entry depicts the classification result.

Overall ApproachIn this section, we recapitulate our work (Filax et al., 2021) initially presented at
VISAPP21. We proposed a retail product recognition system that is built similarly
to face recognition systems. We used metric learning to distinguish retail products.
We aimed to design a neural network that embeds the visual appearance of every
product into a lower-dimensional embedding space. The network shall embed two
visually similar images of the same SKU, less distant, into the embedding space
as two images of different SKUs. To preserve the fine-grained visual differences



84 5. Retail Product Recognition

that arise from the fine-grained visual similarities of retail products, we proposed
employing an online triplet mining strategy.

Visualization of the
Embedding Space

An application of the learned image patch embedding is presented in Figure 5.1.
All samples depicted through the Barnes-Hut-SNE (Maaten, 2013) visualization
are taken from the test set of MDGv1. Every class was assigned a random color
border to visualize the ground truth. Similar-looking images of retail products are
mapped into dense clusters in this visualization. While two clusters of differently-
looking SKUs are scattered, clusters that depict similar-looking products form
clusters closely related in the embedding space. All SKUs were unknown at
training time. Keeping this fact in mind underlines the power of the proposed
approach; that is, to evaluate if two patches depict similar objects, while it is not
necessary to be aware of the identifier behind both objects.

Visual Similarity We recognize retail products in the configuration of an open-set problem (Scheirer
et al., 2013), in which a finite, fixed set of known products does not exist. Instead,
we assumed that the set of products to be recognized varies over time. The
recognition module must identify classes that were unknown during training time.
Thus, we created a recognition method that relies on visual similarity, where we
compared examples acquired from the web with cropped images of products from
the store. Our method comprised the following overall steps to solve the problem:
We designed an embedding function that encodes the visual appearance into the
embedding space. To do so, we then needed to define the training goal – namely
the loss function. Finally, we formulated mini training batches from which we
could learn, which was done using an online triplet mining strategy (Wu et al.,
2017). In the following, each step is individually presented.

Embedding Function

We aimed to learn an embedding function f(θ, x) : Rn×n×3 → Rd, which translates
the high-dimensional input data (e.g., images) into a lower-dimensional embedding
space (cf. Section 2.3). The embedding function f(θ, x), parameterized by θ, was
trained such that images (i.e., elements drawn from Rn×n×3) were mapped to
points on the embedding space Rd. Similar-looking SKUs were transformed into
metrically close points in Rd, whereas differently-looking products (i.e., images
that depict different SKUs) were transformed into metrically distant points in Rd.
We further required the embedding function to be resilient to various noises, such
as geometrical transformations of color shifts that occur naturally during imagery.

Network
Configuration

In the original paper (Filax et al., 2021), we adopted a neural network proposed
in (Deng et al., 2019). We chose a ResNet-50 (He et al., 2016a) base network
(initialized with pretrained weights), removed its final classification layer, and
replaced its average pooling layer with a maximum pooling layer. Then, we added
a batch normalization (Ioffe and Szegedy, 2015) layer, a dropout (Srivastava et al.,
2014) layer with a dropout rate r such that 0 ≤ r < 1.0, a fully connected layer
with d neurons, and another batch normalization layer.

Loss Function

Since the embedding function was based on a neural network that needed to
be tuned to our domain, we needed to define a particular training goal. We
again followed face recognition approaches that learn from triplets, as discussed
in Section 2.3.2. As described in Section 2.3.2, m is a margin parameter, a
hyperparameter that describes the desired distance between positive and negative
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image pairs in the embedding space. Triplets are formed as (xa, xp, xn). The
anchor is denoted as xa, drawn from Rn×n×3. A positive sample (i.e., an image of
the same class as the anchor) is denoted as xp. The negative sample xn represents
an image of a different class than the anchor. In our case, xa and xp depict the
same SKU, whereas xn is an image of another SKU. We use “in virto” images as
anchors and use “in situ” images as positives and negatives.

RationalThe distance of two samples is subject to their visual similarity. Given two images
of the same SKU, we wanted their embedding to be close in the embedding space.
We expected their embedding to be different, like images that depict visually
similar SKUs (e.g., canned dog and cat food). However, if we were to consider
two images that depict different SKUs of the same brand and only differ in flavor
or quantity, we would expect their embedding to be different, but nearly similar.
Thus, it is necessary to design triplets carefully such that training converges.

Triplet Mining
The number of possible triplets grows cubically with the number of samples in
the database (Hermans et al., 2017). This fact is especially challenging if the
default triplet loss is deployed as described in Equation (2.9). It ultimately hinders
training from converging quickly since many triplets remain uninformative during
later epochs. Hermans et al. (2017) proposed sampling triplets such that they
constantly remain informative during the training cycle. To achieve this, one
would have to examine the visual similarity of the sample patches constantly. This,
however, seems to be computationally demanding. Instead Hermans et al. (2017)
and Wu et al. (2017) have proposed to approximating this property through an
online sampling.

Moderate TripletsTraining the embedding function requires sampling mini-batches from the training
data. Hermans et al. (2017) and Wu et al. (2017) have proposed sampling moderate
triplets. The main idea relies on the previously described observation: Sampling
easy triplets (i.e., triplets in which xa and xp depict strongly differently looking
SKUs) increases the yield during training at the early stages of the training cycle.
Sampling hard triplets (in which xa and xp depict visually similar but different
SKUs) becomes necessary in later stages. Moderate triplets – a combination
of easy and hard triplets – are beneficial as they provide hard enough to reach
good performance while simultaneously being sufficiently easy to allow the model
to converge. They represent the hardest among a mini-batch during training,
according to Hermans et al. (2017) and Wu et al. (2017)

Online MiningWe followed the idea of Hermans et al. (2017) and deployed an online triplet
sampling during training. This required the loss function to be updated slightly.
In the original paper, we set m = 0 and relied on a different hinge function –
namely the softplus. Our loss function is described as follows:

L(θ,B) =
Y∑

i=1

o∑
a=1

[log(1 + exp(m + max
p=1..o

(Df (x
i
a, xi

p))− min
j=1..Y
n=1..o

i ̸=j

(Df (x
i
a, xj

n))))] (5.1)

where b ∈ B is a mini-batch, Df (x
i, xj) = ||f(θ, xi)− f(θ, xj)||22, Y is the set of

classes, and o is the number of images in a mini-batch of every class.
Batch ConstructionHermans et al. (2017) and Wu et al. (2017) have demonstrated that mining

moderately complex triplets is vital for achieving good convergence. We proposed
a new mining strategy to sample a mini-batch b ∈ B from the database. Generally,
mini-batches are constructed after separating the dataset into training, validation,
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and test sets. This is commonly achieved by splitting the dataset into three disjoint
sets across all classes Y . We argue that the test set should be completely disjoint
from the others while the rest should be sliced into disjoint sets but element-
wise. We observed that this preserves the ability to perform cross-validation
since the three sets are disjoint. However, this simultaneously allows us to train
the embedding function with more classes. We can construct more informative
mini-batches during the complete training cycle in fine-grained retail recognition.

Image Database Let the database be given by

T = {(x, y) | x ∈ X ∧ y ∈ Y} (5.2)

where X ⊂ Rn×n×3 is the set of image patches of retail products, and Y is the set
of all SKUs.

Test Set Since the SKUs change over time, their number continuously grows, and we did not
want to validate state-of-the-art evaluation protocols, we preserved a set of classes
for testing. We split all classes Y into two disjoint sets – Yt and Yl – such that
Y = Yt ∪Yl and Yt ∩Yl = ∅. The test set Yt was preserved for the sole purpose
of testing, while the latter, Yl, was used to train and validate the embedding
function. All images were also split into disjoint sets, Xt and Xl, since every x ∈ X
belongs to exactly one class, y ∈ Y . The test set is Tt = {(x, y) | x ∈ Xt ∧ y ∈ Yt}.
The remaining part Tl is defined as Tl = {(x, y) | x ∈ Xl ∧ y ∈ Yl}.

Training Set Note that some works use the remaining data Tl to train the embedding function.
Using the Tt to tune hyperparameters increases the risk of overfitting and is
therefore considered bad practice. We further argued that Tl should be split into
two disjoint sets for training and validation.

Triplet Mining over Y The standard mining strategy slices the data Tl into
two disjoint sets, used for training and validation purposes, over Y. Here Yl, is
split into Ytrain and Yval, whereas Ytrain ∩ Yval = ∅. All images that belong to
Ytrain are used to train the embedding function. The remaining samples, which
belong to Yval, are used to tune hyperparameters. Ttrain and Tval are defined as
Ttrain = {(x, y) | x ∈ Xl ∧ y ∈ Ytrain} and Tval = {(x, y) | x ∈ Xl ∧ y ∈ Yval}.

Standard Triplet
Mining

Ttrain and Tval were then used to sample mini-batches. Thus, o images were drawn
from s different classes, whereas o ≥ 2. Every first randomly sampled image of
a class was used as an anchor, and the remaining o− 1 drawn samples acted as
positives and negatives. A training batch, Btrain, was constructed as follows:

Btrain =
s⋃

j=1

{
(xi, yj) | xi ∈ Xl ∧ yj ∈ Ytrain ∧ 0 < i < o

}
(5.3)

and a validation batch, Bval, as follows:

Bval =
s⋃

j=1

{
(xi, yj) | xi ∈ Xl ∧ yj ∈ Yval ∧ 0 < i < o

}
. (5.4)

Triplet Mining over X Hermans et al. (2017) and Wu et al. (2017) have
demonstrated that mining informative moderate triplets from mini-batches is
beneficial. Combining large batch sizes and many classes is necessary to create
informative triplets over the complete training cycle. We observed that if the
total number of classes grows (i.e., by using all available classes from Tl), this
allowed us to sample more informative triplets. We therefore proposed splitting
the dataset Tl differently from the previously discussed state of the art.
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Better Data SlicingWe proposed splitting Tl over X instead of over Y . As denoted in Equation (5.2),
the complete dataset consisted of Y classes, of which every class Yi comprised
multiple x ∈ Xi with Xi ∈ Xl and Class(xi) = Yi. We exploited this property to
sample from Xl. We split all images that belonged to Yl into disjoint sets, such
that Ttrain = {(x, y) | x ∈ Xtrain ∧ y ∈ Yl} and Tval = {(x, y) | x ∈ Xval ∧ y ∈ Yl}
whereas Xl = Xtrain ∪ Xval and Xtrain ∩ Xval = ∅. Precisely, we sampled mini-
batches by drawing s classes and drawing o ≥ 2 images of every class. We
constructed training batches (Btrain) and validation batches (Bval) such that

Btrain =
s⋃

j=1

{
(xi, yj) | xi ∈ Xtrain ∧ yj ∈ Yl ∧ 0 < i < o

}
(5.5)

and
Bval =

s⋃
j=1

{
(xi, yj) | xi ∈ Xval ∧ yj ∈ Yl ∧ 0 < i < o

}
. (5.6)

StructureIn the following sections, we report on different experiments that we conducted to
evaluate if the proposed approach can be used to distinguish fine-grained objects.
Furthermore, we evaluated if the proposed triplet mining strategy increases the
accuracy of the f(θ, x), sought evidence that metaknowledge further increases the
accuracy, and tried to reduce the need for time-consuming data annotations.

5.2 Product Recognition at Scale
We assessed the claim of the proposed triplet mining strategy with experiments
on three databases in (Filax et al., 2021). All experiments followed the same test
protocol, with disjoint classes for testing and training. Thus, we were left with two
disjoint sets: Tt and Tl. The test set Tt was fixed for a fair comparison. Throughout
the experiments, we varied the training and validation splits according to the
previously described mining strategies. Specifically, we trained multiple embedding
functions by splitting Tl over Y and over X . We framed the experiments as a
standard retrieval task and used recall@k with k = {1, 2, 4, 8} for measuring the
performance (cf. Section 2.3.3).

ExperimentWe trained three embedding functions per dataset in a cross-folded manner. All
image patches were resized to 128× 128 pixels for the sake of computational
efficiency. We used the Euclidean distance to measure the distances in the
embedding space. The majority of hyperparameters remained fixed and were
derived from related works. We used a ResNet-50 (He et al., 2016a) as the base
network, initialized with ImageNet weights and fine-tuned during training. After
the last convolutional layer, we removed all layers and added a global max pooling
layer. Following (Deng et al., 2019), we constructed the embedding network with
batch normalization, dropout, fully connected, and a second batch normalization
layer. The dropout rate was fixed at r = 0.6. The embedding dimension was set
to d = 256. Throughout all of the experiments, the embedding networks were
trained with Adam (Kingma and Ba, 2015), a batch size of s = 170, k = 3, and a
learning rate of 5× 10−4 without decay. We used state-of-the-art augmentations
for all images, such as scaling, shifting, and the addition of noise.

DatasetsWe used three datasets to perform the experiments: Stanford Online Products
(Song et al., 2016), AliProducts (Cheng et al., 2020), and MDGv1 (Filax et al.,
2019). Stanford Online Products (Song et al., 2016) contains 120, 053 images
of 22, 634 fine-grained classes, of which we preserved 3, 671 classes for testing.



88 5. Retail Product Recognition

recall@k

1 2 4 8
Stanford Online Products

mining over X 58.05% 64.36% 69.31% 73.88%
mining over Y 57.45% 63.51% 68.63% 73.52%

AliProducts
mining over X 78.04% 85.22% 88.07% 89.38%
mining over Y 76.50% 84.39% 87.61% 89.35%

MDGv1
mining over X 70.72% 82.56% 87.50% 90.97%
mining over Y 65.08% 77.35% 84.29% 88.64%

Table 5.1: recall@k in % from the test set Tt. We report the average recall@k over
k = [1, 2, 4, 8] of three embedding functions trained in a three-fold cross-validation. The
proposed mining over X strategy outperformed the standard mining over Y strategy.

AliProducts (Cheng et al., 2020) holds 2, 700, 772 images with 50, 030 SKUs. We
also preserved 3, 671 SKUs for testing. MDGv1 contains 871 classes, of which
we preserved 171 classes for testing. MDGv1 further contains web images, which
we used as anchors. To account for the different configurations, we trained the
embedding networks for 200, 800, and 1, 000 epochs for the Stanford Online
Products, AliProducts, and MDGv1 datasets, respectively. We used the same
hyperparameters for both experiment series (i.e., mining strategies) for a fair
comparison.

Mining Strategies We trained six embedding networks per dataset. Three embedding functions
were trained with the standard mining strategy over Y, and the other three were
trained using the proposed mining strategy over X . We split the dataset Tl as
described in Section 5.1. Tl was split into three disjoint folds in a cross-folded
manner, whereby we combined two folds as Ttrain and used the remaining fold as
Tval w.r.t. the mining strategy.

Results Table 5.1 depicts the average recall@k of 18 embedding functions trained on the
three datasets. The results demonstrate that using triplets to recognize previously
unknown, fine-grained objects works well. All trained embedding functions were
able to predict the actual class of an unknown SKU from the test set significantly
more accurately than randomly selecting a particular class. We concluded that the
proposed method (i.e., recognizing retail products based on a few examples) works
reasonably well. This is especially of interest since we considered the underlying
problem to be a fine-grained open-set problem.

Comparison of
Mining Strategies

The proposed mining strategy, mining over X , outperformed the standard mining
strategy, mining over Y, on every dataset. recall@1 was the most challenging
configuration, we saw an almost 5% yield using the proposed mining configuration.
Given the data in Table 5.1, we concluded that the proposed mining strategy can
generate more informative triplets. This is due to the experiment’s configuration:
Since all hyperparameters are fixed in both configurations, they had to have
originated in the only remaining difference. The proposed mining strategy offers
more classes to train on as the default variant. We concluded that the gain w.r.t.
recall@k comes from the increased ability to form more informative triplets.
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Figure 5.2: We report the average recall@k for various dataset splits of the best f(θ, x)
on the MDGv1 dataset. These splits consider the number of unknown SKUs by adding
known SKUs from Tval at different rates. The metrics decrease based on the number of
unknown products at test time.

5.3 Recognition in the Wild

We previously argued that retail recognition should be considered a fine-grained
open-set problem. However, if the open-set problem had been framed in the real
world, we would have evaluated the embedding functions in a rather degenerated
condition in the previous section. Although it is feasible to assess the accuracy of
the embedding functions scientifically, it does not necessarily mimic real-world
situations. A strict evaluation protocol underestimates the actual performance in
the wild. This is due to the observation that Y fluctuates over time. The complete
training set Tval still contains some SKUs to be recognized during deployment,
although new products are sold by retailers or producers who create special
offers that might change the visual appearance of products. We await better
performance since the hyperparameters of the embedding function are typically
chosen based on Tval. Thus, we argue that a strict protocol underestimates the
actual performance of learned embedding functions in the wild.

Experimental DesignWe conducted another experiment with the best embedding function f(θ, x)
trained on the MDGv1 dataset. The embedding network was trained with the
proposed mining over X strategy. We sampled various dataset splits of Tt and
Tval in 10% steps. Thus, we varied the actual percentage of known and unknown
SKUs during deployment. Since recognizing retail products is a fine-grained
problem, the concrete performance varies based on the complexity of the problem.
Because the resulting dataset might contain more complicated than easier SKU
combinations (i.e., by oversampling a particular product category), we repeated
the experiment 100 times (for each percentage step). This led to a total of 1, 001
experiments. Thus, we accounted for the different complexity levels and imitated
moderate hardness.
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Results The results are presented in Figure 5.2. We again report recall@k for k =
{1, 2, 4, 8} to preserve the internal validity of both experiments. Throughout all of
k, the total recall level seemed to be linked to the rate of unknown products in the
sampled subset. We considered recall@1 to be the metric with the most practical
relevance. If almost all products are known that need to be distinguished during
deployment time, the recognition system would reach results of more than 95%.
The results would degrade if substantial rates of known products are omitted.
Thus, we concluded that the strict evaluation protocol, as deployed in the previous
section, underestimates the actual performance of a recognition system in the wild
because, in the real world, some known SKUs are typically to be expected.

Applicability Our experiments demonstrated that the proposed methodology, which uses an
example-based approach to recognize retail products, works sufficiently well. While
it can recognize previously unseen products, it can also operate at the consumer-
grade level, primarily if a significant number of SKUs are known. Traditional
classification approaches are condemned to predict invalid results for unknown
SKUs. We concluded that the proposed methodology can distinguish known and
unknown retail products sufficiently well.

5.4 Geometric Skew in Product Recognition

Retail product recognition, a challenging problem by itself, can become even
more complex in certain situations, especially if customers look down aisles to
acquire a broad overview of the contents while determining the shelf position of
products they want to purchase. To solve the problem of retail product recognition
sufficiently, we must also address situations like this. Pointing a camera directly
down an aisle creates substantial geometric distortions for any products imaged on
these shelves. This is especially interesting if these real-world images of products
on shelves are matched against iconic, typically canonical, product images acquired
from the web. Unfortunately, related works have considered the problem of retail
product recognition typically in almost fronto-parallel scenes (cf. Chapter 7). To
the best of our knowledge, although the influence of reasonable viewpoint changes
– at least for other applications – has been addressed (Swystun and Logan, 2019;
Sun and Zheng, 2019), the substantial influence of significant viewpoint changes
under real-world constraints had not yet been addressed for the given scenario.

Experimental Design In this experiment, we synthesized fronto-parallel views of products under the
assumption that an environmental model was available. We generated these views
by reprojecting skewed bounding boxes into a rectangular shape using the approach
described in Section 4.1.2. These canonical product images were compared with
web images of products, which typically also depict a canonical view. We followed
the previously discussed solution. We used the MDGv1 dataset and the embedding
function f(θ, x) described in Section 5.1, and we trained f(θ, x) as described in
Section 5.2 to conduct this experiment. All hyperparameters are described in
detail in the original paper (Filax and Ortmeier, 2021). With the experiment,
we assessed the necessary embedding dimensionally by varying the number of
neurons in the penultimate model layer. We compared the proposed approach with
embedding functions that were trained similarly, except that they were presented
with the original skewed product images during training and validation.

Results The results of our experiments are presented in Table 5.2. We followed the same
evaluation protocol as in the previous experiments and report the average recall@1
of embedding functions trained in a three-cross-folded training cycle with the
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Embedding Dimension d

512 256 128 64
Fronto-Parallel 68.3% 67.6% 64.9% 61.1%
Skewed 65.6% 66.8% 62.8% 61.9%

Table 5.2: This table summarizes the average recall@1 of the experiments in Section 5.4.
We followed the same evaluation protocol as in Section 5.2 and trained multiple networks
in a three-cross-folded manner. We retained a set of 171 products during this step. In
this table, we compare models. The best results are highlighted in bold.

standard triplet mining over Y. The highest mean average per embedding depth
of each experiment is highlighted in bold text. In 75% of our experiments, the
proposed synthetic fronto-parallel view approach resulted in a higher average
recall@1. Thus, we observed that the frontal view synthesis can help to improve
the overall accuracy; however, it seems that there is more to research. In two
cases, namely for the embedding dimensions of 256 and 64, the difference in both
experiments was reasonably small (0.8%).

5.5 One-Shot Retail Product Recognition

In the previous sections, we demonstrated that metric learning is suitable for
recognizing fine-grained objects. Furthermore, we demonstrated that it is also
necessary to recognize previously unknown products. Moreover, in Chapter 3, we
demonstrated how laborious data acquisition is.

Triplet MiningHermans et al. (2017) demonstrated that the concrete mining procedure is vital
for metric learning problems. In their paper, the authors argued that collecting
informative batches is required throughout the complete training process. This
effectively means sampling triplets that depict similar-looking products in later
training stages since retail product recognition is a fine-grained task. Many
products share large visual portions since producers facilitate branding. In later
stages, product images that are difficult to distinguish must be mined.

RationalThis section focuses on overcoming this problem: Today, many producers inform
potential customers about manufacturing processes, nutrition facts, recipes, or
similar information on their web page. Thus, they typically depict their products.
Since these images are easily (and often automatically) accessible through modern
search engines, we see their potential use: Vast images depict different products
to be recognized. These images are typically reasonably well labeled. Using
them would dramatically increase the number of SKUs, and therefore triplets, an
embedding function f(θ, x) can be learned from.

Domain AdaptationUnfortunately, these “in vitro” images are typically taken in controlled environ-
ments. They depict the product under controlled lighting conditions and often
with a white background. This does not reflect the actual visual appearance of the
“in situ” product in the real world. Furthermore, many iconic images can be found
online in the same controlled environment, either in the same product shoot or
even the same rendering. Both facts combined heavily support the overfitting of
f(θ, x) on the “in vitro” image domain. Shorted training data might be overcome
with data augmentation strategies, but domain adaptation requires an adapted
loss function.
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Approach We based our work on the previously described concept (Section 5.1). We
trained an embedding function f(θ, x) that mapped images x ∈ Rn×n×3 into the
d-dimensional embedding space Rd. The core idea is that images of different
domains, either taken in supermarkets or from the internet, are mapped into a
mutual embedding space. Images in both domains differ regarding various external
conditions (e.g., lighting situations). This problem class (i.e., compensation
methods that reduce performance degradation through knowledge transfer into
different domains) is commonly considered the problem of domain adaptation.

Deep CORAL Loss Sun and Saenko (2016) and Sun et al. (2017) have proposed the Deep CORAL
loss, a correlation alignment for unsupervised domain adaptation. The core idea
is to minimize the source and target domain covariances. The Deep CORAL loss
is defined as follows:

Lcoral(θ,Bsource,Btarget) =
1

4d2 ||C(θ,Bsource)−C(θ,Btarget)||2F (5.7)

with || • ||2F is the squared Frobenius norm. The covariance matrix of a domain is
given by

C(θ,Bdo) =
1

g− 1 (f(θ,Bdo)
T f(θ,Bdo)−

1
g
(IT f(θ,Bdo))

T (IT f(θ,Bdo))) (5.8)

where do is the domain, g is the number of x in every mini-batch b ∈ Bdo, and I
is the identity matrix.

Integration We adopted the work proposed by Sun and Saenko (2016) and Sun et al. (2017)
and include the Deep CORAL loss in the previously described loss function. Our
total loss for domain adaptation is given by

LDA(θ,Bsource,Btarget) = αL(θ,Bsource) + βLcoral(θ,Bsource,Btarget) (5.9)

where α and β are two additional hyperparameters32. Since the loss function is
designed to operate in multiple domains, we supplied images of two domains. The
first domain, which we named source, is the domain of “in vitro” product images
taken from the web. Since the underlying dataset only contains a single image
per product, we heavily augmented the positive (i.e., xp) and negative (i.e., xn)
anchors. The second domain, labeled target, contained “in situ” product images
taken in stores. Note that the Deep CORAL loss is designed for unsupervised
domain adaptation (cf. Equation (5.7)). Thus, we did not require any class labels
for the target domain. Instead, we fed random images of products into f(θ, x)
during training.

More Triplets We were able to use a substantially larger set of SKUs and thereby increase the
number of informative triplets through the proposed extension of the loss function
published initially in (Filax et al., 2021), since we could rely on SKUs that are
not presented in real-world annotations. We thus aimed to achieve two different
goals: First, we aimed to increase the overall performance using a larger set of
classes in a metric learning problem setting. We sought to evaluate whether using
a larger set of classes, which inherits an increased problem complexity, increases
the accuracy of the method. Through the fine-grained nature of retail product
detection, it is reasonable to assume that more products look almost similar,
which might increase the number of informative triplets at later training stages.

Reduce Labeling
Efforts

Second, we aimed to reduce the necessity of manual annotations dramatically.
We eliminated the need to annotate data in the target domain since the loss

32Without loss of generality: one parameter might be omitted via setting the other to 1.0.
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function depicted in Equation (5.7) relies on second-order statistics and does
not require class labels. As highlighted in Chapter 3, annotating fine-grained
labels of real-world data in the retail domain is a laborious and error-prone task.
Overcoming this hurdle would increase data availability dramatically.

Implementation

We reimplemented the concept proposed in Section 5.1 using PyTorch33 for faster
prototyping. We based our implementation on the excellent framework proposed
by Musgrave et al. (2020b) to reduce the risk of bugs by reusing a well-tested
code base. We used another well-tested library for the overall similarity search
proposed by Johnson et al. (2021). At the time of implementing this experiment,
we had already published Annotron in (Filax et al., 2022), and we consistently
used the MDGv2 for all following experiments.

HyperparametersMost hyperparameters were identical to the previous experiments. We used
the same pretrained base network (He et al., 2016a) fine-tuned using the Adam
optimizer (Kingma and Ba, 2015). In contrast to the previous work, we used
an input size of 256× 256 pixels, fixed the embedding dimensionality to 64, and
removed dropout and batch normalization layers. Through a preliminary guided
hyperparameter optimization, we found that this architecture led to slightly
better results. However, for a fair and consistent comparison, we reevaluated the
previously described concept, including the loss described in Section 5.1.

Data AugmentationSince the MDGv2 dataset only comprises a single iconic image per SKU, we
heavily relied on data augmentation to ensure good generalization capabilities of
the learned embedding function. However, selecting the best data augmentation
strategy is not trivial. We included various data-augmentation strategies in our
experiments. We implemented three different augmentation pipelines, which we
named “Easy”, “Medium”, and “Hard” (cf. Listings A.1 to A.3 respectively).
The augmentation pipelines are depicted in detail in Chapter A. Furthermore,
we evaluated the use of the AutoAugment approach, particularly the “ImageNet”
variant proposed by Cubuk et al. (2019) and “TrivialAugment” proposed by
Müller and Hutter (2021). Since the embedding functions await normalized
images, we added squared padding, resizing to the input dimensions, and the
standard normalization procedure at the end of every augmentation.

Augmented ExamplesFigure 5.3 depicts randomly sampled augmented images. The first column of this
figure depicts an unchanged iconic product image taken from the MDGv2 dataset.
The second column depicts five augmented examples, which were augmented using
the “Easy” strategy. In the third column, the “Medium” strategy was used to
augment the iconic images. In the fourth column, “Hard” examples are depicted.
After that, examples are depicted that were augmented using AutoAugment
(Cubuk et al., 2019). The “ImageNet” variant was used. In a preliminary analysis,
we found that the CIFAR10 and SVHN variants did not produce sufficiently
well-trained embedding functions. Therefore, we omit them from our experiments.
The last column depicts the results of the TrivialAugment (Müller and Hutter,
2021) strategy. It is not trivial to select a particular augmented strategy. The
chosen augmentation strategy impacts the performance of any trained embedding
function. We included all augmentation strategies in our analysis.

Experimental DesignWe designed the experimental study as follows: Various embedding functions
were trained using only iconic images, we augmented positive and negative iconic
examples using the previously described augmentation strategies. Accordingly, β

33https://pytorch.org/ visited on 03/29/2023.

https://pytorch.org/
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Original “Easy” “Medium” “Hard” “ImageNet” “TrivialAugment”

Figure 5.3: Augmentation schemes have a dramatic impact on the performance of
embedding functions. The first column of this figure depicts five iconic examples from the
MDGv2 dataset. Each subsequent column depicts an augmented example of the different
augmentation schemes (from left to right: “Easy”, “Medium”, “Hard”, “ImageNet” (Cubuk
et al., 2019), and “TrivialAugment” (Müller and Hutter, 2021)).

was set to zero. We compared these pure iconic baselines to their fully-supervised
equivalents, which were trained using the standard methodology proposed in
Section 5.1. But, we retrained the supervised method using the MDGv2 dataset
since the models were previously trained on the MDGv1 dataset (cf. Section 5.1),
because the MDGv2 datasets seems to be more accurate.

Influence of β Since the impact of the proposed LDA is unknown, we additionally trained
various embedding functions with the proposed adopted loss. Hence, we trained
embedding functions with various data augmentation strategies and with various
β ∈ {0.0, 0.25, 0.50, 1.0, 10.0, 50.0, 100.0, 1000.0, 10000.0}. Throughout all of our
experiments with the LDA, α remained fixed at 1.0.

Results

Table 5.3 presents the main results of our experiments. The first column depicts
the augmentation strategy used to train the embedding function. The second
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Augmentation Training Labels
Iconic + Real-World Iconic

β = 0 β = 10
Easy 87.06% 60.95% 64.79%
Medium 86.83% 66.59% 70.73%
Hard 86.34% 65.27% 71.03%
ImageNet 87.69% 39.93% 36.73%
TrivialAugment 89.23% 45.22% 49.20%

Table 5.3: This table compares different augmentation strategies (first column) and their
influence on the fully-supervised recognition method (second column). The influence was
measured using the precision@1 metric. The third column lists the results of embedding
methods trained only using iconic images, for which no “in situ” data were available.
The last column depicts the proposed method of using (unlabeled) real-world images to
mitigate domain drift.

column depicts the precision@1 of the test set of the MDGv2 dataset, which
was achieved after training the embedding functions with the approach described
in Section 5.1. Note that no class overlap exists between the training and test
sets of the MDGv2 dataset, which meant that classes that were to be recognized
through our approach were unknown during testing. The third column depicts the
precision@1 of embedding functions trained only using the iconic images of the
MDGv2 dataset (i.e., with only a single image per class) The last columns depict
the results of embedding functions trained with LDA (cf. Equation (5.9)). The
different experiments demonstrated that the recognition of products is possible,
even with a relatively small amount of annotated data (cf. third and fourth
columns of Table 5.3). All embedding functions enabled the recognition method
to distinguish fine-grained products substantially more accurately than random
guessing.

Influence of
Augmentation

The concrete augmentation strategy, however, dramatically impacted the recogni-
tion quality. We observed a difference of 26.66% and 34, 3% in precision@1 of
the best versus the worst augmentation strategy. Although a noticeable difference
is to be expected through the choice of the concrete augmentation strategy, we
were astonished by their actual impact. This is especially remarkable since, in the
original approach, the augmentation strategy did not have a substantial impact
(a difference of less than 3% precision, cf. second column of Table 5.3). We
assumed that the domain adaptation capabilities of embedding functions trained
only using iconic images are bound to constructing the augmentation pipeline and
its correlation to image defects in the real world.

Influence of LcoralWe report an average precision gain of roughly 2.9% in Table 5.3 using Lcoral. If
we suppressed outliers, the precision gain increased to roughly 4.6%. Since the
precision gain throughout all experiments was reasonably prominent, we concluded
that Lcoral does have a positive impact but requires more research. Therefore, we
needed to evaluate the influence of β.

Influence of βFigure 5.4 depicts the influence of β on the precision of the recognition module.
We trained different embedding functions with varying β. With the augmentation
strategies defined by this thesis, namely “Easy”, “Medium”, and “Hard”, we
observed that the optimal β tended to be near 10. Other augmentation strate-
gies, such as “TrivialAugment” and “ImageNet” produced degraded results. We
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Figure 5.4: We examined the influence of Lcoral with varying β. α was fixed at 1.0. The
results demonstrated a positive impact of Lcoral throughout almost all augmentation
strategies.

assumed that our proposed augmentation strategies induce visual changes that
seemed to capture the defects of the real world. The experiment demonstrated
that the optimal β is strongly related to the deployed augmentation strategy.

Conclusion From our experiments, we concluded that the training of embedding functions,
trained on “in vitro” images only, is possible. This dramatically lowers the
boundaries for constructing fine-grained recognition approaches for retail products.
Furthermore, we concluded that Lcoral positively impacts the precision if β is
chosen carefully with regard to the augmentation strategy.

5.6 Related Work
This section briefly discusses related works that specifically have focused on the
actual recognition of retail products. A broader discussion of similar works is to
be found in Chapter 7.

Non-Neuronal
Recognition

Merler et al. (2007) published one of the earliest related works. The authors
collected a complete dataset that contained synthetic and real-world product
images. All images were collected in a single supermarket. Since then, extensions
to the standard SIFT approach have been published. Mittal et al. (2018) proposed
a hierarchical recognition module in which logos are classified using SIFT, and the
descriptors are then refined to identify the complete product. Spatial information
of shelves was used by (Baz et al., 2016; Tonioni and Di Stefano, 2017). However,
we concluded that artificial recognition approaches, such as SIFT (Lowe, 1999),
are insufficient for this fine-grained problem.

Classifiers Learned classifiers have gained increased attention as more datasets (cf. Chapter 3)
have become available. George and Floerkemeier (2014) have trained a CNN
to predict the class of equally sized image grids and have used standard SIFT
to localize the concrete products. Similarly, Simonyan and Zisserman (2015),
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Karlinsky et al. (2017), and Franco et al. (2017) have used artificial detection
methods and trained classifiers to predict the class of a particular image patch.
Franco et al. (2017) proposed exploiting the observation that retail products
are typically packed and therefore have corners before potential patches are
passed into a learned classifier. Since then, additional properties have been used
to enhance the classification results, such as scene text (George et al., 2015;
Xiong and Grauman, 2016) or multiple views of products (Bastan and Yilmaz,
2018). Other works (Klasson et al., 2019; Goldman and Goldberger, 2020; Wang
et al., 2020a) have formulated the problem in a similar classification setting.
Klasson et al. (2019) evaluated pretrained CNNs to distinguish iconic images
of 81 products and products in hypermarket stores. Furthermore, the authors
established the first body of knowledge using variational autoencoders and super
vector machines for fine-grained classification. Their results suggest that using
metaknowledge, a textual product description, might increase the overall accuracy.
Wang et al. (2020a) proposed a self-attention mechanism that relies on the region
confusion mechanism (Chen et al., 2019). The proposed classification network
used augmented samples to classify different views of products from the RPC
dataset (Wei et al., 2019). However, both works have focused on pure classification.
Goldman and Goldberger (2020) trained an image classifier on a broader – but
unfortunately private – dataset with 972 different products. The images in this
dataset come from various realograms (i.e., observed planograms in stores, typically
fronto-parallel shelf layouts); therefore, the dataset does not contain iconic product
images. Although was trained in a classification setting, the authors demonstrated
that a preceding embedding layer could be used to distinguish products.

Classifiers are
Insufficient

All of these works share a property – namely that recognition is framed as a
classification problem in which every class to be predicted must be known in
advance. These approaches cannot identify previously unknown products if the
dataset used to train them does not contain samples of this particular class. We
argued in Chapter 1 that this property does not meet practical requirements.

Fine-Grained
Recognition

Lately, other works have been published that also overcome these issues. Tonioni et
al. (2018) and Tonioni and Di Stefano (2019) have proposed, simultaneously to us,
learning an embedding function to estimate the visual similarity of image patches
in a retail recognition setting. Both works brilliantly identified the underlying
problem. Like us, the authors used triplets to train f(θ, x). Unfortunately, they
did not publish their dataset. A similar approach was recently published by Sinha
et al. (2022).

Geometric SkewWe are unaware of any works that have addressed the influence of geometrical
deformations in the fine-grained retail recognition problem frame (cf. Section 5.4).
In a broader scope, this has been studied primarily for artificial features (Morel
and Yu, 2009; Yu and Morel, 2009; Zhang et al., 2012; Cai et al., 2013). It has
also been addressed with learned neural networks in some works. Swystun and
Logan (2019) investigated the influence of small geometrical deformation using
synthetic views. More significant deformations were, for instance, studied by (Sun
and Zheng, 2019). A complete dataset was synthesized in which different avatars
were rendered in various locations. To the best of our knowledge, there is no body
of knowledge in the domain of retail recognition that covers aspects of metric
learning and geometrical skew.

Weakly-Supervised
Product Recognition

We are not the first to realize that weakly labeled “in vitro” data might solve
prominent data collection issues for fine-grained recognition settings. This, how-
ever, requires researchers to overcome the arising domain adaptation problem
(cf. Section 5.5). Wang et al. (2020b) proposed aligning different domains using a
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zero-sum game in a min–max optimization manner, where products are recognized
using a classification approach. The authors further collected more than 24, 000
images of 200 fine-grained SKUs. Sakai et al. (2023) used triplets to recognize
different products, similar to the approaches that we proposed, but they used
a slightly different loss, namely the additive margin softmax loss (Wang et al.,
2018). Sakai et al. (2023) proposed relying on product images from the web to
recognize previously unseen examples on shelves. To mitigate overfitting, we
mirrored iconic images horizontally and applied the “AugMix” augmentation
strategy (Hendrycks et al., 2019). The domain adaptation problem was, however,
not directly modulated into the training goal. The authors collected a dataset
that comprised 377 SKUs (awaiting an overlap in the different subsets reported
in the paper) and 2, 863 product images on shelves. Although the works of Wang
et al. (2020b) and Sakai et al. (2023) seem promising, no public data are available
for evaluating our methods, nor have model weights been published to evaluate
their excellent works on our data.

5.7 Threats for Validity

Empirical computer vision relies primarily on statistically present features in
datasets. Various threats for the validity of any experiment based on these
properties arise. This section summarizes essential threats to the individual
experiments.

Construction Validity

Training and
Validation

In Section 5.2, we presented an experiment that altered the triplet mining strategy.
We examined the mean performance of various embedding functions f(θ, x) on
unseen data. In our mining strategy (i.e., mining over X ), we allowed overlap
between validation and training classes (not individual instances). Thus, embed-
ding functions could be trained on more classes than with a standard mining
strategy. This increases the possibility that more challenging triplets are built
during training, which hardens the learned embedding function. We must highlight
that the proposed mining strategy is intended to rely on this property.

Fronto-Parallel
Projection

With the experiment described in Section 5.4, we assessed the influence of geo-
metric skew during recognition by transforming the underlying data into fronto-
parallel image patches. The transform was computed through manually annotated
viewpoint-invariant planes. We assume that performance would degrade if real-
world plane detectors were used.

Internal Validity

Data Inconsistences The experiments described in Sections 5.2 to 5.4 were conducted using the MDGv1
dataset. As described in the original paper (Filax and Ortmeier, 2018) and
Section 3.1, this dataset suffers from label noise. A relevant number of bounding
boxes may be miss-labeled due to synchronization issues. We assume that the
overall performance of the embedding functions trained with this dataset could be
better if the data were cleaned manually. Thus, we underestimate the performance
of all embedding functions trained on MDGv1.

Minimizing
Inconsistences

Through the use of MDGv2 in the experiments described in Section 5.5, we
attempted to minimize these effects. However, MDGv2 was semi-automatically
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composed. With this approach, labeling noise can also occur but should not be
vital. Standard techniques can be applied to minimize labeling noise.

External Validity

Construction BiasAll experiments described in this chapter built on the MDGv1 and MDGv2
datasets. Since both rely on the same set of test classes held out during training,
our results might suffer from a construction bias. Although these classes were
randomly chosen, the overall difficulty of the problem is related to the inter-class
variance of the chosen dataset split.

Comparison to
Others

The comparison of other approaches is challenging. Guimarães et al. (2023)
highlighted that many other approaches are trained and evaluated on other
datasets. These datasets are typically collected differently from the data used by
us. Furthermore, embedding functions, trained with slightly different training
goals, are difficult to compare since metrics typically differ across datasets.
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5.8 Summary

This chapter has summarized our work on the recognition of retail products in a
fine-grained open-world setting. The term recognition describes the problem of the
actual class of a previously detected product. We argue that this is challenging
since objects to be distinguished during inference are unknown during training.
The work presented in this chapter built upon our papers (Filax et al., 2021) and
(Filax and Ortmeier, 2021).

Content

Recognizing Products With the work presented in this chapter, we were able to recognize unknown
objects. Generally, we mean that the different fine-grained classes in the training,
validation and test sets are disjoint. Because of this, traditional classification
approaches cannot be used. Section 5.1 presented our approach, which builds on
the assumption that visually similar objects belong to the same SKU.

At Scale We evaluated the proposed concept in various scenarios. Section 5.2 evaluated
our approach using the MDGv1 dataset. We demonstrated that “in vitro” images
of products can be used to recognize unknown, fine-grained SKUs.

In the Wild Section 5.3 framed the problem in a more realistic scenario, where some products
known at training time had to be recognized in the real world. We experimented
with various known and unknown configurations and quantified the impact of
unknown products at test time w.r.t. the number of known SKUs during training.
We found that recognition accuracy increased with the number of previously
known objects.

When skewed We investigated the influence of geometric skew on the recognition problem in
Section 5.4. We unwarped the geometric skew that arose while imaging products
through a camera into canonical views during training and testing. We found a
slight increase in accuracy.

Without Labels We addressed the underlying domain adaptation problem in Section 5.5 and
removed any fine-grained “in situ” annotations of products during training. Ta-
ble 5.3 demonstrates that training embedding functions purely on iconic images is
possible. We thus increased the possible number of different objects known during
training significantly. Furthermore, Figure 5.3 demonstrates that an adopted loss
function increases the precision.

Related Work and
Conclusion

Section 5.6 discussed related works and identified the possible drawbacks and
benefits of other methods. We concluded this chapter by listing possible threats
for validity (cf. Section 5.7) and providing this summary.

Contributions

RO-R1 One of this dissertation’s leading research objectives was to measure the extent to
which novel, previously unknown, fine-grained objects can be recognized through
a computer. This chapter has described our approach to solving this problem. We
proposed a method that relies on metric learning to distinguish fine-grained retail
products. Furthermore, we demonstrated that it is possible with consumer-grade
quality (cf. Section 5.3).

RO-G2 We trained various embedding functions on different datasets and evaluated
their performance rigorously. Section 5.2 demonstrated that multiple previously
unknown, yet fine-grained, products can be distinguished. We concluded that the
intra-dataset generalization capabilities are sufficient.
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RO-R4We demonstrated that we could improve the recognition capabilities by slightly
changing the triplet mining strategy during training. Section 5.2 recapitulated a
roughly 5% gain without annotating a single additional image.

RO-M2Section 5.4 evaluated the influence of geometric skew while recognizing fine-
grained objects. We proposed using fronto-parallel views of products on shelves
directly into the training cycle and found that this approach positively impacts
the recognition capabilities of embedding functions.

RO-R3Even though our results indicated that the presence of geometric skew does not
hinder the detection, we assessed the impacts of geometric skew on the recognition
in Section 5.4. Our experiments indicated that a fronto-parallel projection of
product images increases the performance of trained embedding functions by a
small margin.

RO-R5Finally, Section 5.5 further reduced the required labeling efforts. We removed
the burden of fine-grained real-world annotations by extending our previous work.
Although we still required bounding box-level “in situ” annotations of objects, we
removed any fine-grained SKU-level labels during training. Our results indicated
a slight performance loss, but this could be mitigated through the precise selection
of augmentation strategies.
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6. Figaro
We still believe
We are the ones, who stay awake
While the world sleeps
Because we still believe
We are the ones, who will achieve
What the world dreams
Because we still believe
Stick to Your Guns. “We Still Believe” Diamond,
Sumerian Records, 2012

Detection and
Recognition

While Chapter 4 focused on detecting product candidates in crowded scenes
observed from challenging viewpoints and Chapter 5 evaluated their recognition
under the assumption that only a single “in vitro” image is given for novel products,
this chapter bridges both approaches into a single, two-staged methodology. We
additionally exploit metaknowledge of the environment to increase the accuracy
of our method since we assume, as discussed in Chapter 1, that reducing degrees
of freedom improves performance.

Fine-Grained
Open-World
Recognition

With the proposed method, we efficiently solve the problem of fine-grained open-
world recognition in retail product recognition. This chapter summarizes our
efforts to prove this claim. We experiment with multiple datasets to generate the
evidence. Our method is summarized under the name Figaro. Figaro has already
been depicted and described in Figure 1.1. The Figaro approach is split into the
following steps:

1. Image acquisition encapsulates state-of-the-art methods for acquiring an
image of the scene.

2. Environmental sensing is an optional step that encapsulates the acquisition
of 3D sensor readings of OTS-HMDs.

3. Rectification describes our approach for removing degrees of freedom during
image acquisition. Our contribution was described in Chapters 4 and 5.

4. Item detection focuses on predicting candidate products in crowded scenes.
Our contribution was described in Chapter 4.

5. Item recognition encapsulates predicting (novel) SKU-level identifiers. Our
contribution was described in Chapter 5.

6. Reprojection bundles state-of-the-art methods to reproject identified prod-
ucts into the field of view if Figaro was deployed on an HMD.

Large-scale data and our contribution in acquiring the datasets required to train,
validate, and evaluate parts of Figaro were described in Chapter 3.

https://open.spotify.com/track/4pCg6Ac4IyMyOUl6W8ZqQx
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Contribution The sole purpose of this chapter is to evaluate Figaro in depth. Since we addressed
some of the proposed approaches in their respective chapters independently, with
this chapter we aim to assess the capabilities of Figaro as a whole. Thus, we aim to
push the accuracy of Figaro through a comprehensive hyperparameter search. We
evaluate the capabilities of Figaro in comparison with a state-of-the-art approach.
Next, we assess the influence of the proposed metaknowledge induction (i.e., using
viewpoint-invariant planes) by comparing Figaro with and without metaknowledge.
Then, we assess the generalization capabilities of Figaro by comparing Figaro
and a state-of-the-art approach on different datasets. Finally, we compare the
efficiency of the state of the art and Figaro in different experiments.

6.1 Hyperparameters

Hyperparameters can have a dramatic impact on a trained model. In this section,
we report our experiments that pushed accuracy through classical hyperparameter
optimization.

Study Design The core idea of our experiments was to increase the accuracy of Figaro. We
omitted further hyperparameter experiments with the first stage of the approach.
The product candidate detection builds upon a pretrained model, which was
already optimized in a challenge34 that was held in conjunction with the well-
known CVPR conference in 2020. Thus, we concentrated on Figaro’s second
architectural stage – namely the fine-grained open-world SKU recognition module.
Chapter 5 proposed two different methods for training: While the first (throughout
this chapter we refer to the first method as “Supervised”) requires large-scale
annotated data, the second (throughout this chapter we refer to the second method
as “One-Shot”) builds upon “in vitro” images. In this study, we aimed to push
the boundaries of the recognition module. Since the final accuracy of the Figaro
approach is still bound to the detected candidates, we assess Figaro as a whole in
Sections 6.2 to 6.4.

General Findings We have already tested the recognition module in various experiments described
in Chapter 5. Throughout these experiments, our general architecture, given the
ResNet-50 (He et al., 2016a) base model, is defined as follows. After the last
convolutional layer, we removed all layers and added a global max pooling layer.
Next, optionally, a dropout layer was added before activations were fed into the
fully connected embedding layer. We reused our most recent implementation, as
described in Section 5.5, and the most recent dataset variant (i.e., the MDGv2
dataset).

Experimental Design Given these coarse design choices, we implemented our experiment such that
every optimization was bound to roughly one month of computation time. The
hyperparameter optimization was executed as a grid search35. The hardware
setup of the machine training the embedding functions is described as follows:
Both optimizations were executed on a single machine with four Nvidia A100-
PCIE-40GB36, two AMD EPYC 754237 32-Core Processors, and 1, 008 GB DDR4
RAM. Every optimization used only a single A100 GPU during training for easier

34https://retailvisionworkshop.github.io/detection_challenge_2020/ visited on 12/22/2022.
35https://optuna.readthedocs.io/en/v2.0.0/reference/generated/optuna.samplers.

GridSampler.html visited on 07/07/2023.
36https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-

Prduct-Brief.pdf visited on 07/07/2023.
37https://www.amd.com/en/products/cpu/amd-epyc-7542 visited on 07/07/2023.

https://retailvisionworkshop.github.io/detection_challenge_2020/
https://optuna.readthedocs.io/en/v2.0.0/reference/generated/optuna.samplers.GridSampler.html
https://optuna.readthedocs.io/en/v2.0.0/reference/generated/optuna.samplers.GridSampler.html
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/Data-Center/a100/pdf/A100-PCIE-Prduct-Brief.pdf
https://www.amd.com/en/products/cpu/amd-epyc-7542
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Configuration
Parameter Supervised One-Shot
Margin m 0.1, 0.2, 0.3, 0.4, 0.5 0.1, 0.2, 0.3, 0.4, 0.5
Dimensionality d 128, 256, 512 128, 256, 512
Augmentation Easy (Listing A.1) Medium (Listing A.2)
Strategy Medium (Listing A.2) Hard (Listing A.3)

Hard (Listing A.3)
ImageNet (Cubuk et al., 2019)

TrivialAugment (Müller and Hutter, 2021)
Dropout Rate r 0.1, 0.2, 0.3
Loss Factor β 1.0, 5.0, 10.0

Table 6.1: We varied different parameters in our grid-based hyperparameter optimization.
The study was designed so that both optimizations had one month of computation time
each. See the text for further details.

reproducibility. Given these specifications, we extensively optimized embedding
functions based on the hyperparameters in Table 6.1.

HyperparametersThe margin parameter m (cf. Equation (5.1)) typically significantly impacts the
performance of the learned embedding function. Thus, it is logical to include
different values in our hyperparameter optimization. Similarly, the embedding
dimension might have an impact. We also included three different values per
experiment. We already found, as described in Section 5.5, that the augmentation
strategy dramatically impacts the accuracy of the trained embedding function.
Thus, including different embedding functions in our hyperparameter search was
natural. We used the augmentation strategies as described in Section 5.5 – that
is, we used the implementation strategies named “Easy,” “Medium,” “Hard,”
“ImageNet” (Cubuk et al., 2019), and “TrivialAugment” (Müller and Hutter, 2021)
in the fully supervised experiments. Since we already found that the one-shot
configuration (cf. Section 5.5) of “Medium” and “Hard” augmentation strategies
(cf. Figure 5.4) outperformed “Easy,” “ImageNet,” and “TrivialAugment,” we
removed the latter from the hyperparameter optimization and for the sake of
computational effectivity.

Dropout and βThe remaining two parameters were disjoint in both experimental configurations.
While the dropout rate r did have an influence (cf. Chapter 5), we chose to
include three different rates in the hyperparameter optimization. Furthermore,
we found that β (not available in the supervised approach) influences LDA. Thus,
we included three different values while α remained fixed at 1.0.

6.2 Optimization
This section summarizes the results of our hyperparameter optimization. We report
the results, measured in precision@1 (cf. Section 2.3.3), of both experiments.
The first experiment maximized the accuracy of trained embedding functions in a
completely supervised setting (i.e., manually annotated “in vitro” and manually
annotated “in situ” images were used for training). The second experiment
maximized the accuracy in a one-shot setting (i.e., only a single “in vitro” image
per product was given). We used the same test set to evaluate the trained
embedding functions (i.e., with “in vitro” and “in situ” images).

DataMDGv2 was used for every experiment. A total of 1, 035 SKUs, with a single “in
vitro” image and multiple “in situ” images, were used in the supervised setting to
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Figure 6.1: This figure depicts the top–75 results of our hyperparameter optimization.
The first four columns denote the hyperparameters: the margin parameter m, the dropout
rate r, the used augmentation strategy, and the embedding dimension d. The last column
denotes the precision@1.

train the embedding functions. By contrast, 23, 136 SKUs with only a single “in
vitro” image were used to train the embedding functions in the one-shot setting.
“In vitro” images of 154 different SKUs were matched against “in situ” images
during testing in both cases.

Supervised Configuration

Figure 6.1 depicts the four hyperparameters used in our experiment and the top–75
results (i.e., the precision@1 of the MDGv2 dataset). The first axis depicts the
margin parameter m. The second axis denotes the dropout rate r. The third axis
depicts the augmentation strategy applied during training on “in situ” images.
The fourth column denoted the model embedding dimension (i.e., the number of
neurons in the last layer of f(θ, x)). A complete list of these results can be found
in Table A.1.

Margin m Our results indicated that the margin m did influence the final embedding functions’
performance. This influence, however, was rather subtle. Our results demonstrated
that a smaller margin m resulted in better precision@1. m ≥ 0.4 degraded the
precision of the best model by 1.2%.

Dropout Rate r Similarly, the dropout rate r subtly influenced the final embedding functions’
performance. We observed that r = 0.0 produced the best results; r = 0.1
degraded the best embedding functions’ performance by 1.0%.

Augmentation
Strategy

We found that TrivialAugment (Müller and Hutter, 2021) had the most significant
impact of all hyperparameters. Although the second-best augmentation strategy,
“Medium” (Listing A.2), degraded the performance of the embedding functions by
1.8%. The top-20 embedding functions were trained with TrivialAugment (Müller
and Hutter, 2021).



6.2. Optimization 107

m β Augmentation d precision@1

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

0.50

2

4

6

8

10

Hard

Medium

150

200

250

300

350

400

450

500

69

70

71

72

73

74

75

76

Figure 6.2: This figure depicts the top–75 results of our hyperparameter optimization
in the one-shot configuration. The first four columns denote the hyperparameters: the
margin parameter m, the domain β, the used augmentation strategy, and the embedding
dimension d. The last column denotes the precision@1.

Embedding
Dimension d

The embedding dimension d did not significantly impact the embedding functions’
performance. Although we were to expected a higher-dimensional embedding
space to encode the visual appearances of retail products more accurately, we
concluded that the different SKUs can easily be represented with a 128-dimensional
embedding space.

One-Shot Configuration

Figure 6.2 depicts the four hyperparameters optimized in our experiment in
a one-shot configuration. The first axis again depicts the margin parameter
m. The second axis denotes β (i.e., the contribution of the domain adaptation
regularization Lcoral). The third axis denotes the augmentation strategy. The
fourth axis handles the dimensionality of the embedding function. The last axis
depicts the precision@1 of the trained embedding function. Similar to our first
experiment, we provide a comprehensible overview of all results in Table A.2.

Margin mThe margin parameter m again only had a subtle impact on the precision@1. In
contrast to the previous experiment, the precision@1 peaked at m = 0.2. The
best performance, however, was significantly lower (76.0%) than in the supervised
experimental configuration (92.7%).

Factor βFurthermore, β did not seem to have an enormous impact on the results, which
was expected since our first, smaller optimization found that β produced the best
results between 1 and 10. For an in-depth comparison of the impact of β, see
Section 5.5.

AugmentationSimilar to our first comparison, our results suggested that both augmentation
strategies, namely “Hard” (Listing A.3) and “Medium” (Listing A.2), produced
the highest results. But, their performance was similar.
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Without Metaknowledge With Metaknowledge
Metric Supervised One-Shot Supervised One-Shot
mAP@[0.5] 58.8% 40.6% 41.8% 35.3%
mAP@[0.75] 28.7% 19.5% 27.6% 21.6%
mAP 31.3% 21.9% 27.4% 22.0%
mAR 41.0% 34.1% 37.8% 36.8%

Table 6.2: This table assesses the influence of metaknowledge with a full-fledged Figaro
approach, including two different recognition heads on the MDG-manual dataset. We
observed contradictory results.

Embedding
Dimension d

The best result in this experiment was achieved with d = 256 (i.e., 76.0%), while
d = 128 produced slightly lower precision@1 (i.e., the best embedding functions
with d = 128 resulted in 74.1%).

Conclusion This hyperparameter optimization demonstrated the capabilities of the recognition
stage of Figaro. We demonstrated that we could recognize products that were not
known during training in both configurations. We underline that the recognition
of retail products is also possible without any labeled “in situ” examples. Fur-
thermore, we quantized the loss of precision@1 when doing so. Our optimization
suggested that the number of SKUs might be further extended to increase the
capabilities of learning embedding functions, since an increase in the embedding
dimension did not necessarily increase the capabilities of the learned model. This
suggests that the current architecture, built upon a ResNet-50 (He et al., 2016a)
is not saturated.

6.3 Influence of Metaknowledge
This section summarizes our experiments conducted to assess the capabilities of
the Figaro approach. We aimed to compare the influence of metaknowledge by
unwarping the perspective distortion introduced by imaging the shelves through
a camera. We followed the approach discussed in Chapter 4. We used the
MDG-manual dataset as the basis for our experiments.

Detection We deployed the full-fledged approach of Figaro: a two-staged architecture with
two different approaches for detection and recognition. We used the best detection
model found in our experiments in Chapter 4 – namely DenseDet. If applicable,
we unwarped the geometric skew described in the same chapter.

Recognition We compared both configurations for the recognition stage of the previous experi-
ment, namely supervised and one-shot. Hyperparameters were selected according
to the optimization discussed in Section 6.2. The following parameter set in
the supervised training configuration achieved the highest precision@1 of 92.7%:
m = 0.1, r = 0, d = 128, and “TrivialAugment” (Müller and Hutter, 2021).
In the one-shot configuration, the following parameter set achieved the highest
precision@1 of 76.0%: m = 0.2, β = 10, d = 256, and “Hard (Listing A.3)”.

Evaluation Metric In contrast to the previous recognition experiments, in which we assessed precision@1,
we changed the evaluation metric because detection also plays an important role
here. Thus, we report mAP@[0.5], mAP@[0.75], mAP, and mAR. Generally, we
followed the COCO (cf. Section 2.3.3) protocol with an extended set of considered
patches (i.e., the top 300 detections) to account the higher number of products
per image (Osokin et al., 2020). For an in-depth discussion of these metrics, we
refer interested readers to Chapter 2.
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ResultsTable 6.2 depicts the results of our evaluation. “With metaknowledge” denotes
the fine-grained SKU-level split of the MDG-manual dataset. However, “with-
out metaknowledge” denotes the same split with one exception, namely that
any geometric distortion is removed since the input data is normalized through
viewpoint-invariant planes. After detecting and recognizing fine-grained retail
products, we reprojected the viewpoint-invariant planes back into the original
image space for a fair comparison. Generally, we observed contradictory results.

mAP@[0.5]We observed a degradation of mAP@[0.5] for both training configurations of the
recognition module. While metaknowledge decreased mAP@[0.5] by 17.0% in
the supervised training configuration, mAP@[0.5] decreased by only 5.3%. This
degradation is plausible since our pure detection experiment with the same MDG-
manual dataset (cf. Table 4.1), reported a similar degradation (i.e., a degradation
of 10.8%). We conclude that the detection module contributed the most to the
performance loss.

mAP@[0.75]In the original detection experiment (see Chapter 4), we found the opposite effect
– namely an accuracy increase of 8.8% mAP@[0.75]. In the complete comparison
(cf. Table 6.2), we observed a degradation of 1.1% in the supervised setting and
an increase of 2.1% in the one-shot example. This indicates that the embedding
function might overfit the training data in the supervised setting.

mAPSince mAP is averaged over multiple IoU thresholds and we expected an increase
of 0.4% due to the pure detection experiment. We were somewhat surprised that
in both configurations of the SKU-level evaluation a degradation was denoted.
In the supervised experiment, the result decreases by 3, 9%, and in the one-shot
configuration, the result increases slightly by 0.1%.

mARRegarding recall, our experiments in a pure detection experiment revealed no
significant impact on the mAR using viewpoint-invariant planes since the mAR
was constant (c.f. Table 4.1). Including the recognition module in our experiment,
we again observed mixed results: While using viewpoint-invariant planes increased
the mAR by 2.7% in the one-shot configuration, it decreased the mAR by 3.2%
in the supervised configuration. Thus, we found another piece of evidence for a
slightly overfitted supervised configuration.

ConclusionGenerally, we observed mixed results. Our results suggested that the supervised
configuration overfitted slightly, and the one-shot configuration seemed to general-
ize better since mAP@[0.75], mAP, and mAR increased when viewpoint-invariant
planes were used. This is consistent with our pure detection configuration, as
shown in Table 4.1. We concluded that additional experiments are required to
assess the generalization capabilities of the Figaro approach as a whole.

6.4 Generalization Capabilities

We assessed the generalization capabilities of the Figaro approach by changing
the statistics of the underlying test data. Thus, we evaluated our approach using
a completely different dataset to assess the fine-grained open-world recognition
capabilities of our approach. Evaluating our approach with another dataset poses
new challenges, since the visual features of the new products are substantially
different than in our training dataset.

(Osokin et al., 2020)The OS2D dataset (Osokin et al., 2020) provides 610 “in vitro” SKUs and 277
“in situ” images. It was described in depth in Section 3.4 and shared a significant
overlap with the dataset proposed by George and Floerkemeier (2014). Two
subsets, val-new-cl and val-old-cl, were taken from the “in situ” data of George
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val-old-cl val-new-cl dairy paste-v paste-f MDG-manual
OS2D (v2-train)
mAP@[0.50] 71.3% 76.2% 57.0% 56.9% 52.4% 30.2%
mAP@[0.75] 42.2% 47.7% 18.7% 19.1% 17.9% 10.1%
mAP 41.5% 44.4% 27.1% 26.5% 24.3% 11.3%
mAR 50.2% 52.2% 37.1% 33.2% 30.6% 15.3%
Figaro Supervised
mAP@[0.5] 56.0% 54.8% 50.6% 60.7% 54.8% 58.8%
mAP@[0.75] 43.5% 40.0% 34.9% 36.1% 33.0% 28.7%
mAP 38.4% 35.9% 32.3% 34.7% 31.4% 31.3%
mAR 51.3% 46.8% 38.6% 42.3% 38.3% 41.0%
Figaro One-Shot
mAP@[0.5] 56.8% 59.0% 50.6% 57.8% 52.5% 40.6%
mAP@[0.75] 42.8% 40.3% 36.9% 35.5% 32.7% 19.5%
mAP 38.2% 37.6% 33.3% 33.3% 30.3% 21.9%
mAR 48.5% 46.7% 38.5% 40.0% 36.1% 34.1%

Table 6.3: This table lists the results of our comparison of Figaro and OS2D (v2-train).
Note that none of the fine-grained SKUs were known during training. Figaro is capable
of surpassing the state of the art.

and Floerkemeier (2014). The remaining three subsets, diary, paste-v, and paste-f,
were collected by Osokin et al. (2020).

OS2D (v2-train) Osokin et al. (2020) proposed a method for achieving something similar to ours.
They proposed a system that recognizes previously unknown retail products from
only a single (iconic) image. Therefore, we consider their work to be the state
of the art. Their approach was been trained on val-old-cl. Hyperparameters
were optimized based on val-new-cl. As described in Chapter 7, to the best of
our knowledge, their approach is the only one that publishes code and weights.
Thus, we used their best model, OS2D (v2-train), to compare approach with our
approach. Since their evaluation metric slightly differed, we reproduced their
results and reevaluated them with the COCO protocol (cf. Chapter 2).

Evaluation Protocol Similarly, we used the best embedding functions according to our hyperparameter
optimization (cf. Section 6.2). Since no 3D data were given in the OS2D dataset,
we executed Figaro without the viewpoint-invariant planes. For a fair comparison,
we ran all evaluation scripts of both methods on the same machine with an Intel
i7-10700K38 CPU, 64 GB RAM, and a single Nvidia RTX 2080 Ti39 running
Windows 10. OS2D (v2-train) required significantly more VRAM for processing a
single image than our GPU provided (i.e., more than 11 GB VRAM). Thus, we
adopted the datascale parameter of OS2D (v2-train) and set datascale = 2, 000
to reduce the VRAM footprint.

Results Table 6.3 summarizes the results of our experiments with the OS2D dataset.
Following the evaluation protocol of the previous section, we report mAP@[0.5],
mAP@[0.75], mAP@[0.50:0.05:0.95], and mAR@[0.50:0.05:0.95]. We list these
metrics, following Osokin et al. (2020), for every subset individually. Further-

38https://www.intel.com/content/www/us/en/products/sku/199335/intel-core-i710700k-
processor-16m-cache-up-to-5-10-ghz/specifications.html visited on 07/17/2023.

39https://www.nvidia.com/content/geforce-gtx/GEFORCE_RTX_2080Ti_User_Guide.pdf visited on
07/17/2023.

https://www.intel.com/content/www/us/en/products/sku/199335/intel-core-i710700k-processor-16m-cache-up-to-5-10-ghz/specifications.html
https://www.intel.com/content/www/us/en/products/sku/199335/intel-core-i710700k-processor-16m-cache-up-to-5-10-ghz/specifications.html
https://www.nvidia.com/content/geforce-gtx/GEFORCE_RTX_2080Ti_User_Guide.pdf
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more, we list the performance of OS2D (v2-train) on our MDG-manual dataset.
Generally, Figaro could overcome the state of the art.

val-old-clThe val-old-cl subset was used for training OS2D (v2-train). According to
mAP@[0.5] and mAP@[0.50:0.05:0.95], OS2D (v2-train) could predict many retail
products correctly, but their bounding boxes did not overlap precisely. This is also
visible in the mAP@[0.75], in which detections must overlap at a ratio of at least
0.75. According to this metric, Figaro surpassed the reference implementation on
its training data, although we did not fine-tune our approach to this dataset.

val-new-clThe val-new-cl subset was used to select the hyperparameters of OS2D (v2-train).
Thus, OS2D (v2-train) was awaited to produce good results. This became evident
through the comparison with both Figaro approaches: Although Figaro in both
recognition configurations produced stable results compared with the val-old-cl
split, our approach was outperformed by OS2D (v2-train). Nevertheless, our
approach predicted solid results on another completely unknown dataset.

diaryThe diary subset did not influence the weights or hyperparameters of OS2D
(v2-train). Thus, a slight decrease across all metrics became visible. By contrast,
Figaro yielded stable results regardless of the recognition configuration. While the
mAP@[0.5] of OS2D (v2-train) dropped by roughly 15− 20%, our approach only
lost 5− 12% in the same metric. While this performance loss seemed feasible since
the diary subset contains significantly smaller objects and is significantly more
challenging, our approach seemed to generalize better to the changed dataset.

paste-*Similar results were observed in the paste-f and paste-v splits of the OS2D dataset.
Our approach outperformed the state of the art in all four metrics. Moreover,
Figaro’s slightly worse one-shot recognition configuration surpassed the state of
the art significantly.

MDG-manualWhile using the OS2D (v2-train) approach on our manually defined MDG-manual
dataset, we observed the hardness of the collected dataset. OS2D (v2-train)
significantly dropped across all metrics. By contrast, Figaro accomplishes stable
results. No degradation of the accuracy was evident.

ConclusionWe concluded this experiment by observing that the proposed approach generalized
well to unseen datasets. This is especially interesting since the statistics of the
fine-grained visual appearances strongly diverge: The val-old-cl and val-new-cl
subsets depict “in situ” products taken in Swiss supermarkets, while the remaining
subsets of OS2D depict products with Cyrillic script. Thus, the distribution of
fine-grained visual features, such as the used script, significantly differs. However,
our results remained stable. Therefore, we concluded that Figaro generalizes well
to unseen datasets.

6.5 Efficiency

In this section, we assess the efficiency of Figaro, quantify the computational
burden through Figaro in combination with viewpoint-invariant planes, and
examine the scalability capabilities of Figaro. We assessed these properties in three
dedicated experiments. The experiments were executed in the same configuration
and on the same hardware as the previous experiments. We evaluated Figaro on
six different datasets, namely val-old-cl, val-new-cl, dairy, paste-v, paste-f, MDG-
manual, and the test set of MDGv2. Furthermore, we compared our approach
with the state of the art (i.e., OS2D (v2-train)).
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Figure 6.3: We compared the average run time per image of Figaro and the state of the
art. We observed that Figaro was significantly faster across all datasets.

Run Time per Image

In the first experiment, we evaluated the average run time spent while predicting
a single image across different datasets. We measured the time required to predict
the individual datasets per approach and averaged the results based on the number
of images per dataset. For a fair comparison, we compared OS2D with Figaro
without using additional metaknowledge. Figure 6.3 depicts the average run time
required for a single image of the different datasets.

Figaro Figaro required, on average, 0.67 seconds across all tests. In almost every test,
Figaro required less than one second per image. However, in our experiments
with dairy and MDG-manual, Figaro required more than one second (i.e., 2.92
and 1.68 seconds). This, however, was due to the prototypical implementation
of Figaro with PyTorch’s eager mode. This allows fast development, but at the
price of higher computational burdens during the compilation of execution graphs.
Since dairy and MDG-manual have significantly fewer images, we also measured
the execution graph compilation during our tests. With larger dataset sizes, this
effect reduced until it was not measurable.

OS2D OS2D required, on average, 45.15 seconds across all tests. The individual differ-
ences between the datasets seemed to correlate, in contrast to our approach, to
the total number of database classes per test. This is plausible since the overall
approach relies on evaluating whether the individual SKU is present in the image.
Therefore, feature embeddings were computed and correlated for every detection
per class. Furthermore, as discussed later in this section, we could not list the
results on the most extensive test set (i.e., MDGv2) since the computation did
not finish within 24 hours.

Result From this experiment, we found that Figaro significantly outperformed OS2D. This
is not only because the average precision and average recall across different datasets
were at least comparable and even – depending on the dataset – significantly
better but also because of the observation that Figaro was 67 times faster than the
current state of the art. Therefore, we concluded that Figaro predicts fine-grained
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Figure 6.4: We compared the average run time per step in Figaro with and without
additional metaknowledge. Using viewpoint-invariant planes significantly increased the
run time of Figaro.

SKUs in an open world at least as accurate while being significantly faster than
the current state of the the art.

Run Time per Step in Figaro

In the second experiment, we sought to gain insights into the computational
efficiency of the different steps of Figaro. As discussed in Section 1.4.2, Figaro
comprises the following six steps: Image Acquisition, Environmental Sensing,
Rectification, Product Detection, Product Recognition, and Reprojection. This
experiment compared the influence of the individual steps on the run time. The
configuration (i.e., software, hardware, and measurement method) was identical
to the previous experiment. In contrast to the previous experiment, we com-
pared Figaro with and without additional metaknowledge (i.e., the application of
viewpoint-invariant planes). We report the result based on the most extensive
available test set, MDGv2, in Figure 6.4.

FigaroWithout additional metaknowledge, Figaro required, on average, 0.67 seconds on
the MDGv2 dataset. The largest time was required to detect product candidates,
namely 0.52 seconds on average, while 0.15 seconds were required to embed the
candidates and recognize the product’s identifier.

Figaro with
Metaknowledge

Figaro with metaknowledge in the form of viewpoint-invariant planes required
significantly more run time (i.e., 1.95 seconds). Unwarping the geometric distortion
in the images added 1.02 seconds per image. Since viewpoint-invariant planes
were considered individual “images,” the time spent detecting products increased
to 0.76 seconds. Moreover, 0.16 seconds, on average, were spent on recognizing
products. Warping found products back into the original image space took on
average 0.01 seconds.

ResultUsing metaknowledge in Figaro increased the average run time, as it was almost
tripled when comparing the 0.67 seconds of the vanilla Figaro variant with the
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Figure 6.5: This figure depicts the total run time of all approaches on the test set of
MDGv2. Tests with Figaro were executed on the same machine with the same configuration
as in the previous tests. We observed that Figaro ran significantly faster than the current
state of the art.

1.95 seconds of the extended variant. However, using metaknowledge in Figaro
was still faster than the state of the art.

Scalability

In the third experiment, we compared how Figaro and the state of the art scaled
with larger datasets. We compared OS2D and both variants of Figaro using the
largest test set available when writing the dissertation – namely MDGv2. Said test
set comprises 13.391 images of shelves in hypermarkets. The results are depicted
in Figure 6.5.

Figaro Our prototype of Figaro required roughly 2.5 hours to detect, embed, recognize,
and reproject products in the 13.391 images of MDGv2. This variant of Figaro
turned out to be the fastest among the three. Our results matched the average
run time per image, as discussed in the previous experiments.

Figaro with
Metaknowledge

The variant of Figaro with metaknowledge required 7.88 hours in total. Similar to
the previous experiment, the proposed use of viewpoint-invariant planes increased
the run time by a factor of three. Although the total run time increased, it was
significantly shorter than the current state of the art.

OS2D Unfortunately, we were unable to compute results on the largest test set since
OS2D did not finish within 24 hours. Thus, we estimated the runtime. On
average, OS2D required 45.15 seconds per image. With the substantially smaller
MDG-manual dataset, OS2D achieved an average of 38.63 seconds per image.
Since the MDG-manual image format is identical to the MDGv2 variant, we chose
the latter average run time per image for this estimate. OS2D would require
143.68 hours to process all 13.391 images.

Conclusion These experiments demonstrated that our prototype of Figaro, in any of the
two configurations, is much more efficient than the current state of the art. We
concluded that Figaro generalizes well to other datasets, is capable of recognizing
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previously unknown SKUs, achieves a higher mean accuracy and a higher mean
recall on the majority of used datasets, and requires significantly less run time
while doing so.

6.6 Threats for Validity
We assessed the capabilities of our approach for fine-grained open-world recognition
in the application domain of retail products. Although we designed the experiment
with immense care, we list possible concerns in this section.

Construction Validity

MDGv2All (embedding) neural networks evaluated in this chapter were trained using
the MDGv2 dataset. Since, as described in Chapter 3, it was annotated in a
semi-automatic manner, MDGv2 may comprise labeling noise, reducing our ability
to find the best generalizing neural networks in Section 6.4.

Parameter
Optimization

In Section 6.2, we performed a classical grid search to optimize the hyperparameters
of embedding functions, which we trained in different data configurations. This
parameter selection was based on previous experiments (cf. Chapter 5) and further
undocumented experiments. The selection might bias the proclaimed optimal
solution. It is possible that our results do not reflect the actual optimum.

Internal Validity

DatascaleIn our experiments, we aimed to provide fair evaluation settings. Thus, we
reproduced the results of Osokin et al. (2020) and tested their work with the
same evaluation method. We had to adopt a single hyperparameter of OS2D
(v2-train) and set the datascale to 2, 000. Otherwise, we would not be able to fit
the approach into a single GPU with 11 GB VRAM. The parameter is originally
tuned to the different datasets. However, we chose not to tailor a particular
approach to a particular dataset for a fair comparison.

External Validity

Retail ProductsAll data used to train and evaluate Figaro were from the retail domain. Since
we only relied on data from this application domain, the hyperparameter set-
tings might vary significantly in other domains. However, we assume that the
generalization capabilities of Figaro in the application domain and our findings,
in general, are plausible and durable since we experimented with three different
datasets.
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6.7 Summary

This chapter has recapitulated experiments with our prototype of Figaro on mul-
tiple datasets in a fine-grained open-world configuration. Since we strived solving
this problem as optimally as possible, we optimized available hyperparameters.

Content

Hyperparameters Section 6.1 repeated the individual steps of the Figaro approach initially described
in Section 1.4. With these in mind, we described the hyperparameter study and
justified design choices. Furthermore, we summarized why assessing the approach
in two general configurations – specifically why assessing the recognition module
as supervised and in a one-shot configuration – is necessary.

Optimization Section 6.2 listed the results of one month of hyperparameter optimization per
configuration. We discussed the influence of the individual parameters in detail.
Furthermore, we summarized the best set of hyperparameters for every experiment
configuration.

Influence of
Metaknowledge

In Section 6.3, we evaluated the best-parametrized versions of Figaro in two
configurations in an experiment that assessed the influence of viewpoint-invariant
planes. Although we had already evaluated this influence individually in Chapter 4
and Chapter 5, we reevaluated the influence as a whole since a significant number
of hyperparameters had changed. Our results indicated that the overall assumption
needed to be tightly induced into the training situation of both steps individually
to increase accuracy and recall over all different metrics. Without that, we could
only demonstrate an increase in a subset of evaluation metrics.

Generalization
Capabilities

We assessed the generalization of our approach in Section 6.4. We experimented
with significantly different-looking fine-grained products and evaluated our pro-
posed approach on various evaluation metrics. Furthermore, we compared our
results with a state-of-the-art approach. Since subsets of the data were collected
in different countries, we could ensure that a substantial number of products
were unknown. Figaro produced stable results (i.e., similar mAP@[0.50:0.05:0.95]
and mAR@[0.50:0.05:0.95]) across different subsets. Therefore, our approach
generalizes to fine-grained open-world problems.

Efficiency We further addressed the efficiency of the proposed approach in Section 6.5. We
compared our prototypical implementation with the current state of the art in
different experiments. These experiments demonstrated the real-time capabilities
of Figaro, which required, on average, only 0.67 seconds per image, which is 67
times faster than the current state of the art.

Conclusion Our experiments revealed that Figaro recognized previously unseen, fine-grained
SKUs. Furthermore, Figaro also generalized well to unseen data while achieving
real-time run times. Finally, it achieved higher precision and recall rates on
various datasets than the state of the art. We concluded this chapter by critically
assessing threads for validity in Section 6.6 before outlining this chapter and its
contributions.

Contributions

Introduction This chapter built upon the many contributions achieved in the previous chapters.
We do not relist them all here. Instead, we focus on the four significant research
goals that were achieved in this chapter.
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RO-G1Section 6.4 proved that the detection module of Figaro generalized to unseen data.
We demonstrated that the detection module can detect products on images from
different datasets. We thus demonstrated the extent to which pretrained detectors
generalize to new datasets.

RO-G2RO-G2 focused on the recognition of previously class-agonistically detected prod-
ucts. Section 6.4 demonstrated that the proposed recognition module of Figaro
was able to recognize products from different datasets on a fine-grained SKU
level. Furthermore, we quantized how well our proposed recognition module could
generalize to unseen data.

RO-G3In this chapter, we experimented with datasets collected in three countries. One of
those datasets primarily consisted of products with different scripts, which led us
to observe that their visual appearance significantly differed. Section 6.4, therefore,
contributed to answering RO-G3. We quantized and discussed the extent to which
the proposed approach generalized to new datasets with significant distribution
shifts.

RO-M2We separately evaluated the impact of viewpoint-invariant planes on the detection
(cf. Chapter 4) and recognition (cf. Chapter 5) of fine-grained objects. Section 6.3
evaluated the impact jointly. In contrast to our experiments in Chapter 5, in
which we induced fronto-parallel views directly into the training cycle, we did not
adjust the training cycle in our experiments in this chapter. Instead, we relied on
viewpoint-invariant planes only during inference.
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7. Related Work
All these cracks in my heart like all these cracks in the street
When I’ve been walking so much I swear I can’t feel my feet
But I don’t buckle, no matter the pressure
No matter the wind, the rain, no matter the weather
I am forever
Lionheart. “The Truth” Welcome to the West Coast,
Fast Break Records, 2014

This chapter summarizes related works in the context of retail product recognition
in supermarket scenes. In particular, we emphasize methods tailored to the
domain of retail products that are able to detect and predict the identifiers of
previously unseen products at the SKU level.

ConstraintsThis chapter emphasizes works that have aimed to solve both subtasks – namely
the detection of regions within an image that depicts a single product and the
recognition of the product’s SKU identifier. All side tasks that arise during research
on this problem have been handled in individual chapters in this dissertation.
Readers interested in a detailed discussion of the state of the art on the individual
subtask are asked to consult the respective chapters.

MethodWhile researching this topic, we searched various research platforms, such as
Google Scholar40, arXiv41, Scopus42, and the former Microsoft Academic43, for
related works that have tackled a retail product recognition problem. This allowed
us to keep up with the current state of the art. We snowballed through the
references of papers of interest to build an excessive list of related works. This
chapter summarizes open challenges and our findings from this literature review.

7.1 Challenges of Product Recognition

Researchers typically build their work on the shoulders of giants, and so do
we. To the best of our knowledge, we identified three recent surveys of other
researchers in fine-grained retail recognition. This section briefly covers their
findings, summarizes the proclaimed open challenges, and describes our view.
Note that there are more retail-related surveys (e.g., (Grewal and Levy, 2007)
or (Rivera et al., 2021)) that do not address the underlying computer-aided
recognition problem and are therefore not discussed here.

Santra and
Mukherjee (2019)

Santra and Mukherjee (2019) identified three different key applications of such
retail product recognition systems. First, such a vision system might be able to

40https://scholar.google.de/ visited on 07/03/2023.
41https://arxiv.org/ visited on 07/03/2023.
42https://www.scopus.com/search/form.uri visited on 07/03/2023.
43https://academic.microsoft.com/ visited on 11/19/2021.

https://open.spotify.com/track/3fh7YVmcEEXFssBPiZoAvw
https://scholar.google.de/
https://arxiv.org/
https://www.scopus.com/search/form.uri
https://academic.microsoft.com/
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generate the current inventory of the store with ease, as proposed in (Gothai et al.,
2022). Second, it might correlate and validate the current product display with
the planogram, as proposed in (Tonioni and Di Stefano, 2017). Lastly, it might
provide value to the user experience (e.g., by augmenting reality, as proposed in
(Fuchs et al., 2020b)). Thus, Santra and Mukherjee (2019) concluded that such a
vision system must recognize products robustly with high accuracy in real time.
They further identified seven different issues that need to be addressed by future
researchers. The fine-grained classification of products at SKU level is still an
open issue. Gaps between products cannot be identified. Novel products (i.e.,
which were unknown during the system’s design) cannot be distinguished. The
visual deviation of “in vitro” and “in situ” product images is poorly addressed. No
attempts to identify vertically stacked products have been made. Image variations
due to illumination changes and specular effects are not well-researched. Moreover,
detecting products on shelves captured in non fronto-parallel images has not been
addressed.

Impact This dissertation addresses four of these seven issues directly. We evaluated
different detection methods on non fronto-parallel images of shelves in Chapter 4.
Chapter 5 and Chapter 6 focused on the fine-grained recognition of novel products
at SKU level.

Wei et al. (2022) Three years later, Wei et al. (2022) surveyed different fine-grained image analysis
methods. This survey generally addressed fine-grained image analysis; however,
in particular, it also addressed product recognition in various parts. Wei et al.
(2022) summarized the current state of the art well and identified the following
nine directions: fine-grained image analysis lacks a decent definition of what
fine-grained actually is. Although different datasets are available, large-scale
fine-grained datasets are needed. Existing approaches typically target the analysis
problem in a two-dimensional problem setting, and thus, the influence of 3D
information is no well understood. The surveyed methods lack robustness to real-
world changes, such as viewpoint, scale, post, deformations, and clutter. Learned
feature embeddings are not interpretable. Modern fine-grained image analysis
methods require vast amounts of annotated data, and learning embedding functions
that require only a few examples are not well-researched. Fine-grained hashing
methods seem poorly understood, although these might significantly boost the
retrieval. The models of fine-grained image analysis methods are still designed by
researchers instead of automating the architectural design. Finally, more realistic
problem settings are required, which address problems such as domain adaptation,
long-tailed distributions, scale variations, knowledge transfer, and open-world
settings.

Impact This dissertation tackles six directions identified by Wei et al. (2022). We described
our efforts to acquire large-scale, fine-grained datasets through semi-automatic
approaches in Chapter 3. Chapter 4 evaluated the robustness of modern detec-
tion approaches in real-world settings (e.g., problems like substantial viewpoint
changes). Chapter 5 addressed two directions: first, we evaluated the accuracy of
embedding functions trained with only a single example per class. Second, we
addressed realistic problems mentioned by Wei et al. (2022), such as domain adap-
tation in an open-world problem setting. Chapter 6 summarized our structured
hyperparameter search for reducing the need for hand-designed neural network
architectures. Throughout Chapters 3 to 6 we addressed the influence of additional
3D information.

Guimarães et al.
(2023)

Guimarães et al. (2023) revisited the fine-grained product recognition problem
and surveyed the current state of the art. The authors emphasized user experience
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as a driving force in this field of research. Besides the available retail product
datasets, current methods, including artificial feature-based and neural methods,
were reviewed. Additionally, Guimarães et al. (2023) reviewed text-based meth-
ods as additional knowledge to exploit textual information on typical products.
The authors found the following four significant difficulties during retail product
recognition: In-store images often suffer poor image quality due to blurring and
perspective distortion. Novel products are regularly added, rendering standard clas-
sification approaches ineffective. The vast number of different products challenges
researchers while developing suitable datasets. Lastly, Guimarães et al. (2023)
found that the difference between “in vitro” and “in situ” product images induced
a domain shift that needs to be addressed by researchers.

ImpactThis dissertation addresses all four major difficulties identified by Guimarães
et al. (2023). Chapter 3 covered our efforts to overcome the dataset shortage
through two semi-automatic labeling approaches. Chapter 4 tackled the image
quality problem by unwarping perspective distortion introduced through viewpoint
change. Chapter 5 described how our approach recognizes novel products with a
single example. Furthermore, we addressed the inherited domain shift induced
through “in vitro” and “in situ” data.

ConclusionThese three recent surveys underline that fine-grained open-world retail product
recognition is a challenging task, and one that is far from being sufficiently solved.
Different researchers have identified common challenges addressed throughout
this dissertation, which underlines the importance of our work. The commonly
identified challenges depict knowledge shortages, which this dissertation sheds light
on. We further argue that the proposed approaches might be adapted to other
domains. However, we have addressed all of the previously discussed knowledge
shortages, which render fine-grained retail product recognition an open issue for
scientists.

7.2 Literature Review

Existing surveys (Santra and Mukherjee, 2019; Wei et al., 2022; Guimarães et al.,
2023) are relatively recent and extensive. However, we found a few additional
works that have not been discussed in the recent reviews. For the sake of the
self-consistency of this work, we include a full-fledged literature review.

PropertiesThis dissertation aims to provide a decent knowledge base on a fundamental
computer vision problem – namely the fine-grained recognition of open-world
problems. This dissertation emphasizes retail product identification – that is,
recognizing fine-grained products at the SKU level in crowded scenes (i.e., on
supermarket shelves) requires two different problems to be solved. First, methods
need to predict individual products in the scene, which is called detection. Second,
methods must predict the SKU identifier of previously found image sub-regions,
which is called recognition. We identified works in this domain and evaluated
whether these papers address both or at least one of the particular subtasks.
Furthermore, we structure related works according to what are, in our opinion,
relevant properties. These are strongly related to the research goals defined in
Chapter 1. We examine whether the proposed approaches fulfill the following
properties:

Retail Dataset describes authors introducing a new dataset with their method.
As previously described, recent surveys (Santra and Mukherjee, 2019; Wei
et al., 2022; Guimarães et al., 2023) have concluded that larger datasets are



122 7. Related Work

required. We generally share this analysis and aim to identify works that
propose retail datasets. This property is related to our work described in
Chapter 3.

Product Detection summarizes the capability of approaches to predict instance-
level retail product candidates for a given image. This property is related
to our work described in Chapter 4.

Product Identification describes the capability of the proposed approach to
distinguish different products. This property is related to our work described
in Chapter 5.

Classification summarizes the property of methods using standard classification
to identify products. Thus, the inevitable necessity is that all fine-grained
SKUs need to be known during implementation. Methods that share this
property violate the open-world assumption and are less relevant to this
dissertation (cf. Chapter 5).

Few-shot describes the capability of methods to identify SKUs from only a few
examples. We generally consider “a few” to be less than ten examples. The
one-shot capability summarizes an extremum in which only a single example
is sufficient for recognizing SKUs. This property is related to our work
described in Chapter 5.

Domain Adaptation describes the efforts of authors to design methods that
overcome the deviation in visual appearance of images of the same SKU
taken under different conditions. Examples from the fine-grained open-world
retail recognition application are visual differences between images taken in
supermarkets and studio conditions. The latter “in vitro” product images
often look strongly visually different from those (i.e., “in situ”) in the stores.
This deviation is mainly due to these images being renderings of the actual
products or being taken in strongly controlled environments. This property
is related to our work described in Chapters 5 and 6.

Metaknowledge summarizes exploiting any additional information other than
images alone. The list of possibilities includes text, brands, logos, and
additional sensor readings. This property is related to our work described
in Chapters 4 to 6.

Table 7.1 lists our classification of the previously defined properties and sorts
the individual works in a shared context, where “✓” denotes that the property is
considered in the paper under review, whereas “✗” denotes that the problem or
property is not addressed in this work. Furthermore, we summarize the type of
proposed method in the paper: “#” stands for non-neural approach (i.e., methods
that rely on classical feature engineering); “ ” stands for a neural approach (i.e.,
data-driven approaches); and “G#” symbolizes a hybrid approach, since the authors
use both methodologies. The following subsections summarize the relevant related
works depicted in Table 7.1.

Non-Neural Approaches
Non-neural approaches rely on traditionally engineered features to detect or
recognize products. These approaches are characterized by the fact that the
deployed features (i.e., numerical representations of the visual content) are typically
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Merler et al. (2007) # ✓ ✓ ✓ ✗ ✓ ✓ ✗

Winlock et al. (2010) # ✗ ✓ ✓ ✓ ✗ ✓ ✗

Higa et al. (2013) # ✗ ✓ ✓ ✗ ✗ ✗ ✗

Thakoor et al. (2013) # ✗ ✓ ✓ ✗ ✗ ✗ ✓

Varol and Kuzu (2014) # ✓ ✓ ✗ ✓ ✗ ✗ ✓

Marder et al. (2015) # ✗ ✓ ✓ ✗ ✓ ✓ ✓

Yörük et al. (2016) # ✗ ✓ ✓ ✗ ✓ ✓ ✗

Baz et al. (2016) # ✗ ✓ ✓ ✓ ✗ ✓ ✓

Brenner et al. (2016) # ✗ ✓ ✓ ✗ ✗ ✗ ✓

Alhalabi and Attas (2016) # ✗ ✓ ✓ ✗ ✗ ✗ ✓

Tonioni and Di Stefano (2017) # ✓ ✓ ✓ ✗ ✓ ✗ ✓

Zientara et al. (2017) # ✗ ✓ ✓ ✗ ✗ ✗ ✓

George and Floerkemeier (2014) G# ✓ ✓ ✓ ✓ ✗ ✓ ✗

Franco et al. (2017) G# ✗ ✓ ✓ ✓ ✓ ✓ ✗

Karlinsky et al. (2017) G# ✓ ✓ ✓ ✗ ✓ ✗ ✓

Geng et al. (2018) G# ✓ ✓ ✓ ✓ ✓ ✗ ✓

Gothai et al. (2022) G# ✗ ✓ ✓ ✗ ✗ ✗ ✗

Santra et al. (2022) G# ✗ ✓ ✓ ✓ ✓ ✓ ✓

Goldman and Goldberger (2017)  ✗ ✗ ✓ ✓ ✗ ✗ ✓

Tonioni et al. (2018)  ✗ ✓ ✓ ✗ ✓ ✓ ✗

Varadarajan et al. (2019)  ✓ ✓ ✗ ✗ ✗ ✗ ✗

Fuchs et al. (2019)  ✓ ✓ ✓ ✓ ✗ ✗ ✗

Klasson et al. (2019)  ✓ ✗ ✓ ✓ ✗ ✗ ✗

Goldman et al. (2019)  ✓ ✓ ✗ ✗ ✗ ✗ ✗

Tonioni and Di Stefano (2019)  ✗ ✗ ✓ ✗ ✓ ✓ ✓

Baz et al. (2019)  ✗ ✗ ✓ ✗ ✓ ✗ ✓

Srivastava (2020)  ✗ ✗ ✓ ✓ ✗ ✗ ✓

Wang et al. (2020a)  ✗ ✗ ✓ ✓ ✗ ✗ ✓

Goldman and Goldberger (2020)  ✗ ✗ ✓ ✓ ✗ ✗ ✓

Osokin et al. (2020)  ✓ ✓ ✓ ✗ ✓ ✓ ✗

Wang et al. (2020b)  ✓ ✗ ✓ ✓ ✗ ✓ ✓

Fuchs et al. (2020b)  ✓ ✓ ✓ ✓ ✗ ✗ ✗

Ciocca et al. (2021a)  ✗ ✗ ✓ ✓ ✗ ✗ ✓

Ciocca et al. (2021b)  ✗ ✗ ✓ ✗ ✓ ✓ ✓

Sinha et al. (2022)  ✗ ✓ ✓ ✗ ✓ ✓ ✗

Sinha and Byrne (2022)  ✓ ✗ ✓ ✗ ✗ ✗ ✗

Pietrini et al. (2022)  ✓ ✗ ✓ ✗ ✓ ✓ ✗

Sakai et al. (2023)  ✓ ✗ ✓ ✗ ✓ ✓ ✗

Table 7.1: This table lists the properties of 38 related works. See the text for details.
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deterministic, interpretable, and calculated based on a particular method. In the
following, we describe all of the non-neural methods depicted in Table 7.1.

Merler et al. (2007) The first considerable work was written by Merler et al. (2007). The authors
collected a dataset with iconic and real-world product images in a supermarket.
Fortunately, the authors published their data, which allows others to extend their
work. Multiple traditional feature descriptors were assessed with this dataset.
Merler et al. (2007) concluded that none of the tested approaches work sufficiently
well and that larger datasets are required.

Winlock et al. (2010) Winlock et al. (2010) extended the work of Merler et al. (2007) by mainly relying
on SURF (Bay et al., 2006) features. In contrast to the previous publication, a
mosaic of the complete shelf is used. Based on SURF feature descriptors, the
authors deployed probabilistic feature matching.

Higa et al. (2013) Higa et al. (2013) proposed using BRIGHT (Iwamoto et al., 2013) features in
combination with RANSAC feature matching. They proposed to detect and
identify similar objects (i.e., SKUs in shelves) using grid voting of the object
center points.

Thakoor et al. (2013) Thakoor et al. (2013) relied on an HMD to narrow regions of interest in the user’s
field of view. Here again, SIFT (Lowe, 2004) and SURF (Bay et al., 2006) were
compared.

Varol and Kuzu
(2014)

Varol and Kuzu (2014) collected a custom dataset that is still available to other
researchers. The authors proposed detecting products with boosted classifiers
using HOG features. These detections were enhanced by constraints distilled from
the shelf geometry. The authors deployed DenseSIFT (Ce Liu et al., 2011) and a
multi-class support vector machine to identify the different SKUs.

Marder et al. (2015) Marder et al. (2015) operated on a custom dataset that is not publicly available.
The authors relied on planograms to detect products: planograms are registered
to query images using normalized cross-correlation and further refined through
Vote Map (Fritz et al., 2005), HOG (Dalal and Triggs, 2005), or BOW (Lazebnik
et al., 2006). These refined detections are then identified at the SKU level by
thresholding the saliency map by its median value w.r.t. iconic product images.

Yörük et al. (2016) Yörük et al. (2016) evaluated the use of SURF (Bay et al., 2006) features and
proposed a Hough transformation to detect and recognize SKUs simultaneously.
Here, the core idea was employing a Hough voting scheme based on feature-aligned
affine transformations (i.e., by reinterpreting the interest point location encoded
in a SURF descriptor). The proposed approach was evaluated based on the
refined data provided by Merler et al. (2007). These refinements, however, are
not publicly available.

Baz et al. (2016) Baz et al. (2016) relied on SIFT (Lowe, 2004) features to detect and recognize
fine-grained objects. The authors induced metaknowledge into the problem. Using
a chain-structured model, they proposed incorporating the underlying spatial
arrangement of products, similar to the planograms used by (Marder et al., 2015).
In the paper, the authors evaluated two methods for representing the graph
structure on a private dataset. Later, the authors extended their work with neural
descriptors in (Baz et al., 2019).

Brenner et al. (2016) Brenner et al. (2016) deployed a human-in-the-decision-loop approach to assist the
visually impaired. The authors used a non-neural system based on SURF (Bay
et al., 2006) features to detect and recognize products within the field of view of
an HMD. The system continuously monitored the webcam feed. While the system
detected no object of interest it guided the user move around the room. If the
system was reasonably confident that the object of interest was within the frame,
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it instructed the user to “reach out”. Between these two extremes, the system
continuously instructed the user on how to move to obtain a better viewing angle.

Alhalabi and Attas
(2016)

Alhalabi and Attas (2016) deployed a product recognition system based on optical
character recognition (Wang and Belongie, 2010) and SURF (Bay et al., 2006)
features. Their proposed system consisted of three cameras mounted to a shopping
cart. With a privately collected dataset, the authors evaluated their approach.

Tonioni and Di
Stefano (2017)

Tonioni and Di Stefano (2017) tested a wide variety of human-made features to
detect and recognize products in the dataset proposed by George and Floerkemeier
(2014). Since the original dataset does not support product-level annotations,
Tonioni and Di Stefano (2017) extended it with fine-grained annotations. Since
manually crafted features are unreliable, the authors proposed a graph-based
consistency check with a predefined planogram.

Zientara et al. (2017)Zientara et al. (2017) proposed a system similar to that of Brenner et al. (2016).
The proposed system used an HMD to track and identify shelves of interest and a
glove to recognize individual products. In both cases, SURF (Bay et al., 2006)
features were used. Additionally, they used a remote human viewer to increase
the accuracy.

Hybrid Approaches
Hybrid approaches rely on engineered features and neural networks to detect and
recognize products. In contrast to pure non-neural approaches, hybrid methods
also use neural networks and extensive data during some stages. Here, we describe
all hybrid methods denoted in Table 7.1.

George and
Floerkemeier (2014)

George and Floerkemeier (2014) proposed using a CNN to reduce the search space
by predicting coarse classes on shelf images in equally sized image grids. Next,
DenseSIFT (Ce Liu et al., 2011) was used to localize (groups of) products. This
work also proposed a larger, publicly available dataset used in many other works.

Franco et al. (2017)Franco et al. (2017) proposed another hybrid approach that relies on the corner
points of products and feature embeddings of potential product images. First, every
potential product corner spawns four possible product candidates, of which some
are rejected through a specific heuristic. Next, these candidates are recognized
using embeddings obtained from a pretrained AlexNet (Krizhevsky et al., 2017) or
a BOW approach (Lazebnik et al., 2006). The authors compared their approach
with the data provided by Merler et al. (2007) and another private dataset.

Karlinsky et al.
(2017)

Karlinsky et al. (2017) deployed DenseSIFT (Ce Liu et al., 2011) to detect
candidate bounding boxes across the image. These were passed into an altered
VGG-f (Chatfield et al., 2014) network to acquire embeddings of the detections.
These embeddings could then be used to track objects over time.

Geng et al. (2018)Geng et al. (2018) proposed another hybrid approach that uses recurrent SIFT
(Lowe, 2004) features of products during detection. Here, the authors proposed
exploiting major recurrent patterns to detect logos in shelf scenes, which allowed
them to extract the whole product. The recurrent patterns were further exploited
during product recognition. The patterns were translated into attention maps to
boost binary classifiers for product recognition. Geng et al. (2018), unfortunately,
grouped different SKUs into a coarse class.

Gothai et al. (2022)Gothai et al. (2022) aimed to detect and recognize products (i.e., to count them).
The authors chose a YOLOv544 model to detect products, which was finetuned on
the SKU-110K dataset (Goldman et al., 2019). The recognition module seemed
to emphasize brand logos. Unfortunately, the paper missed essential details (e.g.,

44github.com/ultralytics/yolov5 visited on 06/30/2023.

github.com/ultralytics/yolov5
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how the ground class labels were acquired since the SKU-110K dataset is class
agnostic).

Santra et al. (2022) Santra et al. (2022) focused on recognizing products w.r.t. the domain shift
between “in situ” and “in vitro” product images. They embedded their work in an
R-CNN to detect products. The paper itself strongly focused on the recognition
problem and aimed to embed the visual appearance of products while exploiting
part-level cues. This was achieved by automatically extracting regions of interest,
similar to (Geng et al., 2018). The classification network was trained on an
in-house dataset. Santra et al. (2022) evaluated their approach on the in-house
dataset and the datasets of (Merler et al., 2007), (Zhang et al., 2007), and (George
and Floerkemeier, 2014).

Neural Approaches

Neural approaches rely entirely on deep neural networks to detect and recognize
products. These approaches are typically characterized by the use of different
network architectures and loss functions. In the following, we describe the neural
approaches depicted in Table 7.1.

Goldman and
Goldberger (2017)

Goldman and Goldberger (2017) proposed an approach for recognizing retail
products if their location within the image is already known. The authors assumed
that the spatial relation between products holds informative knowledge about a
product class: Based on conditional random fields, the authors proposed modeling
sequences of observed features of a shelf rack. With these and embeddings of
specifically trained embedding functions, Goldman and Goldberger (2017) achieved
impressive results. Unfortunately, the dataset and model weights are not publicly
available. Later, Goldman and Goldberger (2020) proved their solid work with
extended experiments.

Tonioni et al. (2018) Tonioni et al. (2018) proposed a two-staged system quite similar to ours: First, a
one-stage detector (Redmon and Farhadi, 2017) is deployed to acquire product
candidates. Second, these are fed into an embedding function. Iconic and real-
world product images are compared using a k nearest neighbors similarity approach.
Tonioni et al. (2018) found that the visual differences (cf. Chapter 6) between
product images in both domains require more research.

Varadarajan et al.
(2019)

Varadarajan et al. (2019) compared the detection capabilities of different class-
agnostic detection models on different datasets. The authors trained a Faster
R-CNN (Ren et al., 2015) on a private dataset. Their work can be considered a
first effort to assess the quality of class-agnostic detection models.

Fuchs et al. (2019) Fuchs et al. (2019) evaluated the use of different CNNs for fine-grained SKU-
level product classification on a custom dataset. These data were made publicly
available (Fuchs et al., 2020a) and comprise various products in vending machines.
Later, in (Fuchs et al., 2020b), the original work was embedded into a real-world
application tailored to vending machines. Here, the authors further evaluated
augmenting nutrition information onto real-world vending machines and their
impacts on customers’ choices.

Klasson et al. (2019) Klasson et al. (2019) fine-tuned various CNNs on a custom dataset. Here, products
were taken off a shelf and classified in an fine-grained manner. Unfortunately, this
dataset does not comprise any bounding boxes, which makes it difficult to use the
excellent data for comparison.

Goldman et al.
(2019)

Goldman et al. (2019) introduced a large-scale dataset that comprised more than
11, 000 real-world images in different supermarkets. Furthermore, more than
1.7 million instance-level bounding boxes were published. Unfortunately, these
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annotations are class-agnostic, although the original paper and the dataset’s
name imply otherwise. Other works have often used the provided data: We refer
interested readers to a detection challenge45 held in conjunction with the CVPR
2020. Besides the vast dataset, the authors also proposed a new method for
product detection in these crowded scenes, which relies on a Soft-IoU layer and an
EM-Merger unit. The Soft-IoU layer aims to estimate the Jaccard index between
unknown ground truth and the detected bounding boxes, while the EM-Merger
unit aims to resolve overlapping detection based on Soft-IoU scores.

Tonioni and Di
Stefano (2019)

Tonioni and Di Stefano (2019) published another outstanding work in fine-grained
SKU-level product recognition. They emphasized the visual differences between
iconic “in vitro” and real-world “in situ” images of products. Tonioni and Di
Stefano (2019) deployed a metric learning approach and evaluated the use of
hierarchical label information for boosting accuracy. Furthermore, they deployed
a generative adversarial network to reduce the domain drift between “in vitro”
and “in situ” product images.

Srivastava (2020)Srivastava (2020) assessed the quality of neural networks for fine-grained product
recognition. The author proposed fine-tuning a RestNext101 (Xie et al., 2017)
network in a classification setting on the dataset proposed by Geng et al. (2018).
Furthermore, Srivastava (2020) exploited small visual cues of products by propos-
ing a local concept accumulation that focuses on smaller parts. Their experiments
suggested that this hypothesis held as gains in multiple (smaller) datasets were
reported.

Wang et al. (2020a)Similar to the previous work, Wang et al. (2020a) forced a fine-grained classification
network to underline smaller cues to differentiate products. The authors extended
the approach proposed in (Chen et al., 2019), which aimed to destruct and
reconstruct images during classification. Wang et al. (2020a) proposed replacing
the original adversarial learning model with a self-attention generative adversarial
network Zhang et al. (2018a). Their experiments showed promising results.

Osokin et al. (2020)Osokin et al. (2020) proposed a one-shot detection and recognition approach for
fine-grained product retrieval. The fine-grained product recognition problem was
placed into a similar problem setting. The authors aimed to recognize products
on shelves based purely on their “in vitro” images. Since their approach does not
enforce any classification methods, it is suitable for use in an open-world setting.
Osokin et al. (2020) proposed using a pretrained feature extractor (i.e. a Resnet-50
(He et al., 2016a)), for computing dense feature maps of test images. Based on
precomputed feature encodings of query images, they acquired roughly correlated
candidates in the test images (Rocco et al., 2017) using the same feature extractor.
Afterward, they proposed spatially aligning query and test images, as proposed
in (Jaderberg et al., 2015). Osokin et al. (2020) demonstrated their approach on
multiple datasets, including datasets of the retail domain. Since the source code
and model weights are publicly available, we compared our work with theirs in
Chapter 6.

Wang et al. (2020b)Wang et al. (2020b) proposed another approach for fine-grained product classifica-
tion while tackling the domain adaptation problem that arises while comparing “in
situ” and “in vitro” product images. The authors proposed a domain adaptation
module for predicting the probabilities of a test image belonging to the source
domain using a discriminator. The discriminator plays a zero-sum game with the
feature encoder and can therefore be optimized in a min-max fashion. Additionally
Wang et al. (2020b) aimed to capture fine-grained visual cues of the products

45https://retailvisionworkshop.github.io/detection_challenge_2020/ visited on 12/22/2022.

https://retailvisionworkshop.github.io/detection_challenge_2020/
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under classification. Unfortunately, they did not embed any detection stage into
their approach. The proposed dataset only comprised cropped product images,
which prohibits the excellent data from being used in a detection setting.

Ciocca et al. (2021a) Ciocca et al. (2021a) published a paper about fine-grained product retrieval based
on the “in vitro” data of Klasson et al. (2019). Here, the authors compared
multi-task classification learning and metric learning. While the latter supports
open-world retail recognition, the former cannot be used in our problem setting.
They proposed using a DenseNet-169 (Huang et al., 2017) feature encoding,
which was trained in a classification setting. Furthermore, they proposed using
specialized data augmentation strategies to overcome their baseline. Unfortunately,
the concrete augmentation strategies they deploy to tackle the domain drift were
not precisely defined.

Ciocca et al. (2021b) Ciocca et al. (2021b) extended their previous work (Ciocca et al., 2021a) to the
use of “in situ” product images to recognize (fine-grained) products in the real
world. Here, they evaluated different network configurations in an open-world
setting. This work supports fine-grained open-world recognition but does not
include detection within its problem formulation.

Sinha et al. (2022) Sinha et al. (2022) presented a two-stage neural pipeline for detecting and recogniz-
ing products in the fine-grained open-word retail domain. The authors deployed a
Faster R-CNN (Ren et al., 2015) with a ResNet-50 (He et al., 2016a) backbone for
class-agnostic product detection. For recognition, Sinha et al. (2022) deployed a
metric learning approach similar to ours (cf. Chapter 5). In contrast to our work,
however, they used a fine-tuned ResNet-16 (He et al., 2016b) as an embedding
function. Sinha et al. (2022) relied on 768-dimensional feature embeddings since
they concatenate the two (global max pooled) last feature maps of the ResNet-16
model. Although the proposed method can handle the underlying domain shift,
the authors did not focus on it in their work.

Sinha and Byrne
(2022)

Sinha and Byrne (2022) focused on the fine-grained recognition of products
without focusing on the detection problem. The authors proposed a method
that relies on metric learning, similar to the approach described in Chapter 5.
In this work, the authors relied on a fine-tuned ResNet-50 (He et al., 2016a)
embedding function, which encoded the visual appearance of products into a
5, 632-dimensional embedding space. The authors demonstrated the combability
of the approach with the Intel Neural Compute Stick 246. The model was trained
and evaluated on an in-house dataset.

Pietrini et al. (2022) Pietrini et al. (2022) proposed another method for fine-grained retail recognition
in an open world. The two-staged architecture of the model first aims to class-
agnostically detect products. Then it aims to recognize the product at the SKU
level. Detection was handled through a pretrained SKU-110K (Goldman et al.,
2019). Recognition was proposed using a metric learning approach similar to
ours (cf. Chapter 5) but using different backbones. The recognition models were
trained with an in-house dataset that comprised 14, 426 different SKUs, almost as
many as were proposed in the MDGv2 dataset. The training and testing datasets
were class-disjoint in the experiments, making this work the most similar to ours.
Unfortunately, neither data nor weights are publicly available.

Sakai et al. (2023) Sakai et al. (2023) also focused on recognizing fine-grained products in an open
world while addressing the domain shift problem. Their work is similar to ours,
yet the authors proposed using a different embedding function (Tan and Le, 2019)

46https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-
stick.html visited on 06/30/2023.

https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
https://www.intel.com/content/www/us/en/developer/articles/tool/neural-compute-stick.html
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and an altered additive margin softmax loss. The method was trained and tested
with an in-house dataset. Weights and data are not publicly available.
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7.3 Summary

This chapter has provided a body of knowledge on the current state of the art in
retail product recognition research. We conducted a broad overview of related
works (cf. Section 7.2) in this field and also provided a review of related surveys
(cf. Section 7.1).

Content

Challenges Section 7.1 identified the challenges in fine-grained open-world retail product
recognition. We reviewed three recent surveys that have identified common
challenges. Santra and Mukherjee (2019), Wei et al. (2022), and Guimarães et al.
(2023) have found, for instance, that the domain shift between “in vitro” and “in
situ” data needs more research (cf. Chapter 6), that few-shot fine-grained learning
is still challenging (cf. Chapter 5), that the robustness of full-fledged recognition
approaches is to be increased (cf. Chapter 4), and that large-scale fine-grained
datasets at SKU level are required (cf. Chapter 3). We briefly summarized
relevant related works in Section 7.2. A large number of works focused on the
detection as well as recognition of products.

Detection More recent works have typically relied on neural networks. Multiple authors have
ensured the detection capabilities by implanting their recognition approach in a
two-staged architecture, of which the first stage predicts class-agnostic product
candidates that strongly rely on the data provided by Goldman et al. (2019).
Their study should therefore be considered one of the most relevant works for
retail product detection.

Recognition The majority of the summarized works have emphasized the recognition of products.
We found three significant meta-approaches: Selecting corresponding non-neural
features to identify products, which is typically computationally extensive and
error-prone; classifying previously identified candidates, which prohibits identifying
novel products; and searching for k nearest neighbors in the learned embedding
spaces, which requires encoding the visual appearance.

Dataset Some papers have proposed new datasets, but only a tiny subset is publicly
available. However, most works have relied on private, in-house datasets. We
conclude that the lack of datasets is one of the most urgent problems in this field
of research. The efforts of Chen et al. (2022) seem to address this phenomenon,
but they did not consider the domain adaptation problem.

Classification Many works have deployed some classification method to recognize products. We
argue that classification is unsuitable for retail recognition because the set of
products to be recognized grows continuously.

Single-Shot Only half of the works have supported recognizing novel products from only a
few examples. In recent works, this property has become more evident. We argue
that recognizing products from only a few shots is beneficial since producers often
provide “in vitro” images of their products.

Domain Adaptation Almost half of the literature addresses the domain shift of “in vitro” and “in situ”
images. Often, authors only briefly discuss the fact that these visually differ. We
assume this lack of knowledge is due to “in vitro” images being underrepresented
in datasets, which indicates our work’s significance.

Metaknowledge Some works have exploited the characteristics of retail products. Two main
strategies have emerged, the first of which exploits the spatial information of
products (i.e., products placed beside the candidate), while the second forces
the recognition module to focus on smaller visual differences. No work exploits
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metaknowledge on the environment similar to us to promote recognition from
challenging viewpoints.

Contributions
The core contribution of this chapter is a comprehensive review of the past 15
years of literature in retail product recognition. We briefly discussed a significant
number of recent works and attempted to summarize their most common properties.
Additionally, we summarized the remaining open challenges for approaches in this
field by reviewing three comprehensive surveys. Overall, this chapter puts our
work into context and underlines its importance.

DatasetsSantra and Mukherjee (2019), Wei et al. (2022), and Guimarães et al. (2023) have
found that datasets are the most evident challenge in this domain. Based on
our review, we summarize that a comparative study of existing works is highly
challenging since in-house datasets are often used and the resulting model’s weights
are not publicly shared. Standard datasets form the basis for comparative studies.
Therefore, acquiring datasets at scale is critical (cf. Chapter 3). The efforts of
Chen et al. (2022) addressed this phenomenon, but they did not consider the
domain adaptation problem.

Few-ShotOur literature review found that since 2017 (similar to our first experiments with
this technique for retail product recognition, described in Chapter 5), embedding
function-based product retrieval has gained increasing interest. Recently, multiple
works have been published that underline the robustness of this technique. Thus,
it seems logical that researchers should aim to recognize novel products with fewer
annotated data points. This problem, especially the extremum of single-shot
recognition, is densely connected to domain adaptation.

Domain AdaptationDomain adaptation summarizes the efforts of researchers to use images of different
domains to recognize novel products successfully. The most pragmatic approach in
this application domain is to exploit easily accessible data (i.e., “in vitro” images
provided by producers). These are typically visually distinct from “in situ” images
taken in stores. Our efforts to overcome this hurdle were described in Chapter 6

MetaknowledgeNone of the reviewed works have aimed to exploit the physical information that can
be induced into the detection and recognition problem. However, related research
fields (Morel and Yu, 2009; Yu and Morel, 2009) already used physical information
about the environment to boost accuracy. This underlines the importance of our
work discussed in Chapters 4 to 6.
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8. Conclusion
12 years I’ve fought for this
12 years blood, sweat, and tears
For my family here beside me
True to the ethos held inside me
Life pushes hard, you push back
Time makes its mark, you gotta stand the test
Every dog has its day
We make it count, we find our own way

Parkway Drive. “Dedicated” Ire,
Epitaph Records, 2015

The last chapter concludes the dissertation. We summarize the main chapters (cf.
Section 8.1), highlight the main contributions of our work (cf. Section 8.2), and
identify future work (cf. Section 8.3).

8.1 Summary

Chapter 3In Chapter 3, we focused on datasets, which form the basis for training, vali-
dating, and evaluating data-driven computer vision approaches. We proposed
two approaches that rely on metaknowledge of the application domain, compared
datasets collected with the proposed approaches with a dataset collected using the
traditional method, and discussed the differences between state-of-the-art datasets
from other researchers. The proposed semi-automatic approaches exploited two
observations – namely supermarkets’ spatial layout and the fact that products are
densely packed on shelves – to reduce manual efforts during dataset acquisition.
On the one hand, using geometric information such as the camera’s trajectory
and an environmental model increased the ability of only a few labelers to acquire
large-scale datasets. On the other hand, we also demonstrated that visual similar-
ity allows a single labeler to identify objects that have not been found with the
first approach. Our comparison to datasets captured using traditional methods
demonstrated the capabilities of semi-automatic labeling approaches. Specifically,
we demonstrated that our datasets comprised more different fine-grained objects
and more observations in the wild.

Chapter 4In Chapter 4, we studied methods for class-agnostically detecting the exact
location of fine-grained objects in images of crowded scenes. We focused on the
application domain of retail products and proposed two approaches that rely on
traditional feature descriptors to detect products. Additionally, we compared our
methods with newer approaches that strongly rely on previously collected datasets
to predict the pixel location of products. We discussed various issues with the
traditional methods that prohibit their application in scaling environments and
evaluated the generalization capabilities of pretrained retail product detectors.

https://open.spotify.com/track/467sEVDgETBscsn9OKJ87Q
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Finally, we evaluated the influence of metaknowledge on pretrained detectors by
unwarping geometrically distorted images into fronto-parallel views. We found
that their accuracy and recall could be increased at extreme viewing angles.

Chapter 5 In Chapter 5, we studied identifying fine-grained objects within the retail domain.
We presented our approach for recognizing previously unseen, fine-grained products
in an open world. The approach is designed to recognize objects from only a
single visual example drawn from a significantly different-looking distribution
(i.e., iconic product images). We evaluated the approach with different large
datasets. We studied the influence of metaknowledge and found that using fronto-
parallel images during training and inference boosted its precision. Finally, we
studied methods for reducing the need for labeled data using a domain adaptation
approach and found that the proposed approach recognized novel fine-grained
objects in real-world scenes, with access to only a single iconic example per class
during training.

Chapter 6 In Chapter 6, we studied the previously independently discussed problems (i.e.,
the joint detection and recognition of fine-grained retail products). We evaluated
the proposed Figaro approach’s precision, recall, and efficiency. We compared
our results with those of a recent approach from the literature. Our findings
demonstrated that the methods studied in this dissertation and their prototypical
implementation surpassed the state of the art in many datasets, although many
recognized object classes have been collected in different countries and, therefore,
look substantially different. Furthermore, we demonstrated that our approach
is up to 67 times more efficient. Our experiments demonstrated that the joint
approach can efficiently recognize previously unseen, fine-grained objects in densely
populated scenes.

Chapter 7 In Chapter 7, we studied 15 years of computer-aided (fine-grained) retail product
recognition. We summarized the primary research directions of this field through-
out the years and comprehensively surveyed the properties of approaches proposed
by others to detect or recognize fine-grained products. We learned that none
of the reviewed works have included additional environmental sensor readings
into the detection and recognition problem to identify products from challenging
viewpoints. Furthermore, we found that other researchers have identified various
challenges in this field. Among others, four challenges appeared throughout the dif-
ferent surveys: First, researchers have found that larger, fine-grained datasets (cf.
Chapter 3) are required to facilitate research in this field. Second, the robustness
of full-fledged recognition approaches needs to be increased (cf. Chapters 4 and 5).
Third, the fine-grained recognition of products of which only a few examples are
given at inference (cf. Chapters 5 and 6) is still challenging. Fourth, the domain
shift between real-world (“in situ”) product images and easily accessible web (“in
vitro”) images of products (cf. Chapters 5 and 6) poses manifold challenges to
state-of-the-art methods. We concluded that the comprehensive literature review
underlined the importance of our work since multiple current research questions
have been studied in this dissertation.

8.2 Contributions

RO-D:
Data Acquisition

Our key contributions regarding RO-D are twofold. On the one hand, we gathered
different fine-grained datasets with “in vitro” and “in situ” images of retail
products. Two of the three datasets comprise the largest count of individual
fine-grained SKU-level retail product annotations of all retail datasets found in
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the literature. The last dataset depicts shelves from challenging viewpoints and
was annotated using traditional annotation methods to compare the efficiency of
our second key contribution. On the other hand, we proposed two semi-automatic
methods that induce metaknowledge of the environment to decrease manual efforts
during fine-grained image labeling. We proved the efficiency of our approaches by
comparing the resulting datasets with state-of-the-art datasets from the literature
and the traditionally annotated dataset. Annotations and “in situ” images have
been made publicly available.

RO-M:
Metaknowledge

Our key contributions regarding RO-M are again twofold. On the one hand,
we proposed different methods for reducing the manual labeling efforts during a
dataset’s creation by inducing metaknowledge of the environment into the labeling
procedure. We proposed one approach that relies on the visual appearance of
objects in video streams of crowded scenes and another that relies on a geometrical
approximation of the environment to annotate objects in video streams efficiently.
On the other hand, we proposed using the same concept during the detection and
recognition of fine-grained retail products. We demonstrated that it increases the
recall and accuracy of detection approaches and the precision of a fine-grained
recognition approach.

RO-R:
Recognition

Our key contribution regarding RO-R is the proposal, prototypical implementation,
and rigorous evaluation of a fine-grained product recognition approach that can
recognize products at the SKU level from only a single “in vitro” image. In contrast
to standard classification approaches, we designed the approach to recognize novel,
previously unknown, fine-grained classes. We gained insights into the fine-grained
recognition of almost similar-looking, yet unknown, objects and evaluated our
approach on different large datasets without fine-tuning the recognition method to
each dataset’s characteristics. Additionally, we proposed and compared the domain
adaptation capabilities of our recognition approach by training purely on “in vitro”
images and gained insights into how different augmentation strategies should be
applied. We argue that this contribution reassembles one of the dissertation’s
leading research objectives.

RO-G:
Generalization

Our key contribution regarding RO-G is the rigorous evaluation of the generaliza-
tion capabilities of the individual building blocks of this dissertation as well as
the bigger picture (i.e., the orchestration of all individual blocks). We compared
various class-agnostic retail product detectors in a rigorous experiment with a
dataset that contained hypermarket scenes from challenging camera viewpoints.
Similarly, we evaluated our fine-grained open-world recognition approach on large-
scale datasets and found that SKU-level recognition of novel products without
fine-tuning is possible with consumer-grade accuracy. Finally, we compared the
whole approach, namely detection, recognition, reprojection, and, depending on
the actual experiment configuration, environmental sensing, with the current state
of the art. We found that our approach, which we call Figaro, could surpass the
state of the art in terms of accuracy, recall, and efficiency.

The Big PictureThis dissertation aimed to recognize fine-grained objects in an open world, exem-
plarily placed in the fine-grained retail product recognition application domain.
We argue that we achieved this goal by

1. contributing large-scale datasets that allow others to train, validate, and
evaluate such algorithms;

2. providing insights into the detection of tiny objects in crowded scenes;
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3. contributing a fine-grained recognition approach that can identify “in situ”
products while being trained on only “in vitro” images; and

4. embedding our insights into a full-fledged recognition approach, Figaro,
which we compared with the state of the art with other datasets collected
in different countries.

Figaro’s prototype surpasses the current state of the art while being up to 67
times more efficient.

8.3 Future Work

Figaro We have proposed the blueprint of an approach for fine-grained open-world
recognition tasks that efficiently predicts novel yet unknown object classes based
on a single reference image and exemplarily demonstrated its applicability in the
retail domain. We extensively evaluated the generalization capabilities of Figaro
on various datasets from the same domain since datasets are hard to acquire.
We strongly believe that Figaro generalizes well to other fine-grained open-world
domains, but the concrete proof of this is subject to future work.

Fine-grained
Domains

Throughout the dissertation, we have claimed that retail product recognition is a
fine-grained problem since small inter-class visual nuances differentiate one object
class from another. However, it is currently impossible to determine whether
datasets from one application domain or another contain finer nuances that
separate classes and, therefore, compare the difficulty of a particular domain with
others. To better understand how the methods used in this dissertation separate
fine-grained object classes from each other, it is necessary to determine which
visual nuances separate objects. To our knowledge, it is currently impossible to
qualify these fine-grained nuances, nor is there a broad scientific consensus on
how fine-grained problems need to be in order to be considered fine-grained. A
precise definition could not be found in the literature.

Metaknowledge We induced metaknowledge of the scene into various problems in this dissertation,
often relying on planar approximations of the environmental model to overcome dif-
ferent hurdles. Our results support the hypothesis that using such metaknowledge
increases the capabilities of either detection or recognition approaches. However,
in a joint experiment in which the metaknowledge is not directly induced in the
training cycle of the recognition model, we observed contradictory results. Other
researchers have also evaluated different metaknowledge induction techniques (cf.
Chapter 7), while some opportunities, such as the rotation of canned goods in
our application domain, seem to have been poorly researched. Thus, additional
research is required on how metaknowledge influences the accuracy and recall of
fine-grained open-world recognition problems.
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A. Appendix
Augmentation Strategies
In the following, we depict proposed augmentation strategies implemented in
YAML that reflect standard torchvision47 classes. See Chapter 5 for more details.

Listing A.1: YAML Representation of the augmentation strategy named “Easy”.
- class_name: torchvision . transforms . RandomChoice

params:
transforms:
- class_name: torchvision . transforms . ColorJitter

params: {}
- class_name: torchvision . transforms . ColorJitter

params:
brightness:
- 0.0
- 0.4

- class_name: torchvision . transforms . ColorJitter
params:

contrast:
- 0.0
- 0.2

- class_name: torchvision . transforms . ColorJitter
params:

saturation:
- 0.0
- 1.0

- class_name: torchvision . transforms . RandomChoice
params:

transforms:
- class_name: torchvision . transforms . RandomPerspective

params:
p: 0.75

- class_name: torchvision . transforms . RandomResizedCrop
params:

size:
- 256
- 256

- class_name: torchvision . transforms . RandomAffine
params:

degrees: 45

47https://pytorch.org/vision/stable/index.html visited on 11/14/2023.

https://pytorch.org/vision/stable/index.html
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Listing A.2: YAML Representation of the augmentation strategy named “Medium”.
- class_name: torchvision . transforms . RandomPerspective

params:
distortion_scale: 0.6
p: 0.2

- class_name: torchvision . transforms . RandomPosterize
params:

bits: 2
p: 0.2

- class_name: torchvision . transforms . RandomAdjustSharpness
params:

sharpness_factor: 2
p: 0.2

- class_name: torchvision . transforms . RandomAutocontrast
params:

p: 0.2
- class_name: torchvision . transforms . RandomEqualize

params:
p: 0.2

- class_name: torchvision . transforms . RandomHorizontalFlip
params:

p: 0.2
- class_name: torchvision . transforms . RandomChoice

params:
transforms:
- class_name: torchvision . transforms . ColorJitter

params: {}
- class_name: torchvision . transforms . ColorJitter

params:
brightness:
- 0.0
- 0.4

- class_name: torchvision . transforms . ColorJitter
params:

contrast:
- 0.0
- 0.2

- class_name: torchvision . transforms . ColorJitter
params:

saturation:
- 0.0
- 1.0

- class_name: torchvision . transforms . RandomChoice
params:

transforms:
- class_name: torchvision . transforms . RandomPerspective

params:
p: 0.75

- class_name: torchvision . transforms . RandomResizedCrop
params:

size:
- 256
- 256

- class_name: torchvision . transforms . RandomAffine
params:

degrees: 45
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Listing A.3: YAML Representation of the augmentation strategy named “Hard”.
- class_name: torchvision . transforms . RandomPerspective

params:
distortion_scale: 0.6
p: 0.5

- class_name: torchvision . transforms . RandomPosterize
params:

bits: 2
p: 0.5

- class_name: torchvision . transforms . RandomAdjustSharpness
params:

sharpness_factor: 2
p: 0.5

- class_name: torchvision . transforms . RandomAutocontrast
params:

p: 0.5
- class_name: torchvision . transforms . RandomEqualize

params:
p: 0.5

- class_name: torchvision . transforms . RandomHorizontalFlip
params:

p: 0.5
- class_name: torchvision . transforms . RandomChoice

params:
transforms:
- class_name: torchvision . transforms . ColorJitter

params: {}
- class_name: torchvision . transforms . ColorJitter

params:
brightness:
- 0.0
- 0.4

- class_name: torchvision . transforms . ColorJitter
params:

contrast:
- 0.0
- 0.2

- class_name: torchvision . transforms . ColorJitter
params:

saturation:
- 0.0
- 1.0

- class_name: torchvision . transforms . RandomChoice
params:

transforms:
- class_name: torchvision . transforms . RandomPerspective

params:
p: 0.75

- class_name: torchvision . transforms . RandomResizedCrop
params:

size:
- 256
- 256

- class_name: torchvision . transforms . RandomAffine
params:

degrees: 45
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Hyperparameter Optimization

In the following, we list our results of the hyperparameter optimizations (described
in detail in Chapter 6) for two different configurations.

Supervised Configuration

0.1 0 “TrivialAugment” (Müller and Hutter, 2021) 128 92.7%
0.2 0 “TrivialAugment” (Müller and Hutter, 2021) 512 92.3%
0.1 0.1 “TrivialAugment” (Müller and Hutter, 2021) 256 92.1%
0.2 0 “TrivialAugment” (Müller and Hutter, 2021) 128 92.0%
0.1 0.1 “TrivialAugment” (Müller and Hutter, 2021) 128 91.7%
0.3 0 “TrivialAugment” (Müller and Hutter, 2021) 128 91.7%
0.4 0 “TrivialAugment” (Müller and Hutter, 2021) 512 91.7%
0.1 0 “TrivialAugment” (Müller and Hutter, 2021) 512 91.6%
0.1 0.1 “TrivialAugment” (Müller and Hutter, 2021) 512 91.6%
0.2 0.1 “TrivialAugment” (Müller and Hutter, 2021) 256 91.6%
0.2 0 “TrivialAugment” (Müller and Hutter, 2021) 256 91.5%
0.4 0 “TrivialAugment” (Müller and Hutter, 2021) 128 91.5%
0.1 0.2 “TrivialAugment” (Müller and Hutter, 2021) 512 91.4%
0.3 0 “TrivialAugment” (Müller and Hutter, 2021) 256 91.2%
0.5 0 “TrivialAugment” (Müller and Hutter, 2021) 128 91.2%
0.3 0.1 “TrivialAugment” (Müller and Hutter, 2021) 512 91.2%
0.5 0 “TrivialAugment” (Müller and Hutter, 2021) 256 91.1%
0.2 0.2 “TrivialAugment” (Müller and Hutter, 2021) 128 90.9%
0.3 0.1 “TrivialAugment” (Müller and Hutter, 2021) 256 90.9%
0.2 0.2 “TrivialAugment” (Müller and Hutter, 2021) 512 90.9%
0.3 0.1 “Medium” (Listing A.2) 128 90.9%
0.1 0 “Medium” (Listing A.2) 128 90.8%
0.4 0.1 “TrivialAugment” (Müller and Hutter, 2021) 128 90.8%
0.1 0 “Medium” (Listing A.2) 512 90.6%
0.2 0 “ImageNet” (Cubuk et al., 2019) 256 90.5%
0.2 0 “Easy” (Listing A.1) 512 90.5%
0.5 0 “TrivialAugment” (Müller and Hutter, 2021) 512 90.5%
0.3 0.1 “TrivialAugment” (Müller and Hutter, 2021) 128 90.4%
0.3 0.2 “TrivialAugment” (Müller and Hutter, 2021) 128 90.4%
0.4 0 “TrivialAugment” (Müller and Hutter, 2021) 256 90.3%
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Table A.1: Results of the supervised hyperparameter optimization. See Sec-
tion 6.1 for more details.
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0.2 0 “Hard” (Listing A.3) 128 90.2%
0.2 0 “ImageNet” (Cubuk et al., 2019) 512 90.2%
0.2 0.2 “ImageNet” (Cubuk et al., 2019) 512 90.2%
0.2 0.1 “TrivialAugment” (Müller and Hutter, 2021) 128 90.1%
0.2 0 “Easy” (Listing A.1) 128 90.1%
0.4 0.2 “TrivialAugment” (Müller and Hutter, 2021) 128 90.1%
0.5 0.1 “TrivialAugment” (Müller and Hutter, 2021) 128 90.1%
0.2 0 “Medium” (Listing A.2) 128 90.0%
0.2 0 “Hard” (Listing A.3) 512 89.9%
0.3 0 “TrivialAugment” (Müller and Hutter, 2021) 512 89.9%
0.1 0.2 “TrivialAugment” (Müller and Hutter, 2021) 256 89.9%
0.1 0 “Hard” (Listing A.3) 512 89.8%
0.1 0 “Hard” (Listing A.3) 128 89.8%
0.3 0 “Medium” (Listing A.2) 512 89.8%
0.1 0.2 “TrivialAugment” (Müller and Hutter, 2021) 128 89.8%
0.2 0.1 “Easy” (Listing A.1) 128 89.8%
0.1 0 “Medium” (Listing A.2) 256 89.7%
0.2 0 “Medium” (Listing A.2) 512 89.6%
0.1 0 “TrivialAugment” (Müller and Hutter, 2021) 256 89.6%
0.1 0.1 “Hard” (Listing A.3) 128 89.6%
0.1 0 “ImageNet” (Cubuk et al., 2019) 512 89.5%
0.2 0.1 “Medium” (Listing A.2) 256 89.5%
0.3 0 “ImageNet” (Cubuk et al., 2019) 512 89.5%
0.1 0.1 “Medium” (Listing A.2) 128 89.5%
0.4 0.1 “TrivialAugment” (Müller and Hutter, 2021) 512 89.5%
0.1 0 “Easy” (Listing A.1) 128 89.5%
0.2 0.1 “Easy” (Listing A.1) 256 89.5%
0.2 0.1 “ImageNet” (Cubuk et al., 2019) 512 89.5%
0.2 0 “Medium” (Listing A.2) 256 89.4%
0.1 0.1 “Medium” (Listing A.2) 256 89.4%
0.1 0.1 “Medium” (Listing A.2) 512 89.4%
0.4 0 “Medium” (Listing A.2) 128 89.4%
0.1 0.1 “ImageNet” (Cubuk et al., 2019) 512 89.4%
0.3 0 “Easy” (Listing A.1) 128 89.4%
0.3 0.2 “Medium” (Listing A.2) 128 89.3%
0.4 0.1 “TrivialAugment” (Müller and Hutter, 2021) 256 89.3%
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Table A.1: Results of the supervised hyperparameter optimization. See
Section 6.1 for more details. (Continued)
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0.4 0 “Easy” (Listing A.1) 128 89.3%
0.2 0.1 “Easy” (Listing A.1) 512 89.3%
0.5 0.2 “TrivialAugment” (Müller and Hutter, 2021) 256 89.3%
0.2 0 “ImageNet” (Cubuk et al., 2019) 128 89.2%
0.3 0 “Medium” (Listing A.2) 128 89.2%
0.2 0.1 “Medium” (Listing A.2) 512 89.2%
0.3 0 “Hard” (Listing A.3) 128 89.2%
0.2 0.2 “Medium” (Listing A.2) 256 89.2%
0.3 0.1 “Medium” (Listing A.2) 256 89.1%
0.3 0.1 “Easy” (Listing A.1) 128 89.1%
0.1 0 “ImageNet” (Cubuk et al., 2019) 256 89.0%
0.3 0 “Hard” (Listing A.3) 256 89.0%
0.2 0.1 “Medium” (Listing A.2) 128 89.0%
0.1 0 “Easy” (Listing A.1) 256 89.0%
0.2 0.1 “ImageNet” (Cubuk et al., 2019) 128 89.0%
0.2 0.2 “Medium” (Listing A.2) 128 88.9%
0.1 0.1 “Hard” (Listing A.3) 512 88.9%
0.4 0 “Medium” (Listing A.2) 256 88.9%
0.1 0.2 “Medium” (Listing A.2) 512 88.9%
0.3 0 “Hard” (Listing A.3) 512 88.8%
0.1 0 “ImageNet” (Cubuk et al., 2019) 128 88.8%
0.3 0 “ImageNet” (Cubuk et al., 2019) 128 88.8%
0.1 0.1 “Easy” (Listing A.1) 128 88.7%
0.4 0.2 “TrivialAugment” (Müller and Hutter, 2021) 512 88.7%
0.2 0.1 “TrivialAugment” (Müller and Hutter, 2021) 512 88.6%
0.3 0.2 “TrivialAugment” (Müller and Hutter, 2021) 512 88.6%
0.1 0.1 “Easy” (Listing A.1) 512 88.6%
0.3 0.2 “Medium” (Listing A.2) 256 88.6%
0.5 0 “ImageNet” (Cubuk et al., 2019) 512 88.6%
0.3 0 “ImageNet” (Cubuk et al., 2019) 256 88.5%
0.1 0 “Easy” (Listing A.1) 512 88.4%
0.1 0.1 “Hard” (Listing A.3) 256 88.4%
0.1 0.2 “ImageNet” (Cubuk et al., 2019) 256 88.4%
0.1 0.2 “ImageNet” (Cubuk et al., 2019) 512 88.4%
0.4 0 “ImageNet” (Cubuk et al., 2019) 512 88.4%
0.2 0.2 “Easy” (Listing A.1) 128 88.4%
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Table A.1: Results of the supervised hyperparameter optimization. See
Section 6.1 for more details. (Continued)
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0.5 0.1 “Easy” (Listing A.1) 128 88.4%
0.1 0 “Hard” (Listing A.3) 256 88.3%
0.1 0.1 “ImageNet” (Cubuk et al., 2019) 128 88.3%
0.3 0.2 “Medium” (Listing A.2) 512 88.3%
0.3 0.1 “ImageNet” (Cubuk et al., 2019) 128 88.3%
0.3 0.1 “Easy” (Listing A.1) 256 88.3%
0.4 0 “Easy” (Listing A.1) 512 88.3%
0.1 0.2 “Medium” (Listing A.2) 128 88.2%
0.1 0.2 “Hard” (Listing A.3) 128 88.2%
0.5 0 “Medium” (Listing A.2) 256 88.2%
0.2 0.2 “TrivialAugment” (Müller and Hutter, 2021) 256 88.2%
0.5 0 “Medium” (Listing A.2) 128 88.2%
0.3 0.2 “Easy” (Listing A.1) 256 88.2%
0.3 0 “Easy” (Listing A.1) 512 88.2%
0.5 0.2 “TrivialAugment” (Müller and Hutter, 2021) 128 88.2%
0.3 0.1 “Easy” (Listing A.1) 512 88.2%
0.3 0 “Medium” (Listing A.2) 256 88.1%
0.4 0.1 “Medium” (Listing A.2) 128 88.1%
0.1 0.2 “Medium” (Listing A.2) 256 88.0%
0.4 0 “ImageNet” (Cubuk et al., 2019) 128 88.0%
0.4 0.1 “Medium” (Listing A.2) 256 88.0%
0.4 0.1 “ImageNet” (Cubuk et al., 2019) 256 88.0%
0.2 0.2 “Easy” (Listing A.1) 256 88.0%
0.4 0.1 “ImageNet” (Cubuk et al., 2019) 512 88.0%
0.5 0 “Easy” (Listing A.1) 128 88.0%
0.3 0.1 “Medium” (Listing A.2) 512 87.9%
0.2 0.2 “ImageNet” (Cubuk et al., 2019) 256 87.9%
0.4 0.1 “Easy” (Listing A.1) 256 87.9%
0.2 0.2 “Easy” (Listing A.1) 512 87.8%
0.3 0.2 “Easy” (Listing A.1) 128 87.8%
0.2 0.1 “Hard” (Listing A.3) 128 87.7%
0.3 0.2 “TrivialAugment” (Müller and Hutter, 2021) 256 87.7%
0.5 0.1 “TrivialAugment” (Müller and Hutter, 2021) 512 87.7%
0.5 0 “Easy” (Listing A.1) 512 87.7%
0.4 0 “ImageNet” (Cubuk et al., 2019) 256 87.6%
0.2 0.1 “Hard” (Listing A.3) 256 87.6%
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Table A.1: Results of the supervised hyperparameter optimization. See
Section 6.1 for more details. (Continued)
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0.1 0.2 “Easy” (Listing A.1) 512 87.6%
0.2 0 “Hard” (Listing A.3) 256 87.5%
0.2 0.2 “Medium” (Listing A.2) 512 87.5%
0.3 0.1 “Hard” (Listing A.3) 256 87.5%
0.4 0 “Medium” (Listing A.2) 512 87.5%
0.5 0.1 “TrivialAugment” (Müller and Hutter, 2021) 256 87.5%
0.4 0 “Hard” (Listing A.3) 128 87.5%
0.3 0.1 “Hard” (Listing A.3) 512 87.4%
0.3 0.1 “ImageNet” (Cubuk et al., 2019) 256 87.4%
0.1 0.2 “Hard” (Listing A.3) 256 87.4%
0.1 0.1 “Easy” (Listing A.1) 256 87.4%
0.5 0 “Medium” (Listing A.2) 512 87.4%
0.5 0 “ImageNet” (Cubuk et al., 2019) 128 87.4%
0.4 0 “Easy” (Listing A.1) 256 87.4%
0.4 0.2 “TrivialAugment” (Müller and Hutter, 2021) 256 87.4%
0.3 0.2 “Easy” (Listing A.1) 512 87.4%
0.2 0 “Easy” (Listing A.1) 256 87.3%
0.4 0.2 “Medium” (Listing A.2) 128 87.3%
0.3 0.1 “ImageNet” (Cubuk et al., 2019) 512 87.3%
0.2 0.1 “Hard” (Listing A.3) 512 87.2%
0.2 0.1 “ImageNet” (Cubuk et al., 2019) 256 87.2%
0.4 0.2 “Medium” (Listing A.2) 256 87.2%
0.1 0.1 “ImageNet” (Cubuk et al., 2019) 256 87.2%
0.1 0.2 “ImageNet” (Cubuk et al., 2019) 128 87.2%
0.1 0.2 “Easy” (Listing A.1) 128 87.2%
0.5 0 “Easy” (Listing A.1) 256 87.2%
0.4 0.1 “Easy” (Listing A.1) 512 87.2%
0.3 0.1 “Hard” (Listing A.3) 128 87.1%
0.3 0 “Easy” (Listing A.1) 256 86.9%
0.2 0.2 “ImageNet” (Cubuk et al., 2019) 128 86.9%
0.4 0.1 “Easy” (Listing A.1) 128 86.9%
0.5 0.2 “TrivialAugment” (Müller and Hutter, 2021) 512 86.9%
0.4 0.1 “Medium” (Listing A.2) 512 86.8%
0.2 0.2 “Hard” (Listing A.3) 256 86.7%
0.5 0.1 “Medium” (Listing A.2) 512 86.7%
0.3 0.2 “Hard” (Listing A.3) 128 86.6%
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Table A.1: Results of the supervised hyperparameter optimization. See
Section 6.1 for more details. (Continued)
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0.4 0 “Hard” (Listing A.3) 512 86.5%
0.3 0.2 “ImageNet” (Cubuk et al., 2019) 256 86.5%
0.4 0 “Hard” (Listing A.3) 256 86.4%
0.5 0.1 “ImageNet” (Cubuk et al., 2019) 512 86.4%
0.1 0.2 “Easy” (Listing A.1) 256 86.2%
0.5 0.1 “Medium” (Listing A.2) 256 86.2%
0.5 0.1 “Medium” (Listing A.2) 128 86.2%
0.5 0.1 “ImageNet” (Cubuk et al., 2019) 128 86.0%
0.5 0.2 “Medium” (Listing A.2) 512 86.0%
0.5 0 “ImageNet” (Cubuk et al., 2019) 256 85.9%
0.3 0.2 “ImageNet” (Cubuk et al., 2019) 512 85.9%
0.5 0 “Hard” (Listing A.3) 128 85.8%
0.3 0.2 “Hard” (Listing A.3) 512 85.7%
0.5 0.1 “Easy” (Listing A.1) 256 85.7%
0.4 0.2 “Easy” (Listing A.1) 128 85.7%
0.5 0 “Hard” (Listing A.3) 256 85.6%
0.2 0.2 “Hard” (Listing A.3) 512 85.5%
0.4 0.1 “Hard” (Listing A.3) 512 85.4%
0.4 0.2 “Medium” (Listing A.2) 512 85.4%
0.3 0.2 “ImageNet” (Cubuk et al., 2019) 128 85.4%
0.1 0.2 “Hard” (Listing A.3) 512 85.3%
0.4 0.1 “Hard” (Listing A.3) 128 85.3%
0.4 0.2 “ImageNet” (Cubuk et al., 2019) 512 85.3%
0.5 0.2 “Medium” (Listing A.2) 256 85.2%
0.4 0.1 “Hard” (Listing A.3) 256 85.1%
0.4 0.1 “ImageNet” (Cubuk et al., 2019) 128 85.1%
0.5 0.2 “Medium” (Listing A.2) 128 85.1%
0.4 0.2 “Easy” (Listing A.1) 256 85.0%
0.5 0 “Hard” (Listing A.3) 512 84.8%
0.4 0.2 “Hard” (Listing A.3) 512 84.8%
0.4 0.2 “ImageNet” (Cubuk et al., 2019) 256 84.8%
0.5 0.1 “Easy” (Listing A.1) 512 84.8%
0.5 0.2 “Easy” (Listing A.1) 128 84.8%
0.4 0.2 “Hard” (Listing A.3) 128 84.6%
0.5 0.2 “Easy” (Listing A.1) 256 84.6%
0.2 0.2 “Hard” (Listing A.3) 128 84.5%
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Table A.1: Results of the supervised hyperparameter optimization. See
Section 6.1 for more details. (Continued)



146 A. Appendix

0.4 0.2 “ImageNet” (Cubuk et al., 2019) 128 84.4%
0.4 0.2 “Easy” (Listing A.1) 512 84.3%
0.5 0.1 “ImageNet” (Cubuk et al., 2019) 256 84.2%
0.3 0.2 “Hard” (Listing A.3) 256 83.7%
0.5 0.1 “Hard” (Listing A.3) 256 83.4%
0.4 0.2 “Hard” (Listing A.3) 256 83.3%
0.5 0.1 “Hard” (Listing A.3) 512 83.0%
0.5 0.2 “ImageNet” (Cubuk et al., 2019) 128 83.0%
0.5 0.2 “ImageNet” (Cubuk et al., 2019) 512 82.7%
0.5 0.2 “ImageNet” (Cubuk et al., 2019) 256 82.6%
0.5 0.2 “Hard” (Listing A.3) 128 82.5%
0.5 0.2 “Easy” (Listing A.1) 512 82.5%
0.5 0.2 “Hard” (Listing A.3) 256 81.7%
0.5 0.1 “Hard” (Listing A.3) 128 81.2%
0.5 0.2 “Hard” (Listing A.3) 512 80.8%
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Table A.1: Results of the supervised hyperparameter optimization. See
Section 6.1 for more details. (Continued)
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One-Shot Configuration

0.2 10 “Hard” (Listing A.3) 256 76.0%
0.1 1 “Hard” (Listing A.3) 512 75.8%
0.2 10 “Hard” (Listing A.3) 512 75.2%
0.2 5 “Hard” (Listing A.3) 512 75.1%
0.3 5 “Hard” (Listing A.3) 512 74.8%
0.1 1 “Medium” (Listing A.2) 256 74.8%
0.3 10 “Hard” (Listing A.3) 512 74.8%
0.2 5 “Hard” (Listing A.3) 256 74.6%
0.4 5 “Hard” (Listing A.3) 512 74.3%
0.1 5 “Medium” (Listing A.2) 512 74.2%
0.3 1 “Medium” (Listing A.2) 512 74.2%
0.3 1 “Hard” (Listing A.3) 512 74.2%
0.4 1 “Medium” (Listing A.2) 512 74.2%
0.3 10 “Medium” (Listing A.2) 128 74.1%
0.4 1 “Hard” (Listing A.3) 128 74.1%
0.2 1 “Hard” (Listing A.3) 512 74.0%
0.4 10 “Hard” (Listing A.3) 512 73.9%
0.2 5 “Medium” (Listing A.2) 512 73.8%
0.2 1 “Hard” (Listing A.3) 256 73.8%
0.5 1 “Medium” (Listing A.2) 512 73.8%
0.5 1 “Medium” (Listing A.2) 256 73.8%
0.2 1 “Hard” (Listing A.3) 128 73.7%
0.4 1 “Medium” (Listing A.2) 128 73.6%
0.4 1 “Hard” (Listing A.3) 256 73.6%
0.2 10 “Medium” (Listing A.2) 256 73.6%
0.2 1 “Medium” (Listing A.2) 512 73.5%
0.4 10 “Hard” (Listing A.3) 256 73.5%
0.3 5 “Hard” (Listing A.3) 256 73.5%
0.5 5 “Medium” (Listing A.2) 256 73.5%
0.1 10 “Hard” (Listing A.3) 256 73.4%
0.4 10 “Medium” (Listing A.2) 256 73.3%
0.2 10 “Medium” (Listing A.2) 512 73.2%
0.3 10 “Medium” (Listing A.2) 512 73.1%
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Table A.2: Results of the hyperparameter optimization in
the one-shot configuration. See Section 6.1 for
more details.
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0.1 10 “Medium” (Listing A.2) 256 73.1%
0.4 5 “Medium” (Listing A.2) 256 73.1%
0.3 5 “Medium” (Listing A.2) 128 73.0%
0.2 5 “Hard” (Listing A.3) 128 72.8%
0.3 5 “Medium” (Listing A.2) 512 72.8%
0.4 5 “Medium” (Listing A.2) 512 72.8%
0.2 10 “Hard” (Listing A.3) 128 72.8%
0.3 1 “Medium” (Listing A.2) 256 72.7%
0.3 5 “Medium” (Listing A.2) 256 72.7%
0.2 5 “Medium” (Listing A.2) 256 72.7%
0.1 10 “Hard” (Listing A.3) 512 72.6%
0.3 10 “Hard” (Listing A.3) 256 72.5%
0.1 5 “Hard” (Listing A.3) 256 72.4%
0.5 10 “Medium” (Listing A.2) 128 72.4%
0.4 10 “Medium” (Listing A.2) 512 72.3%
0.3 10 “Hard” (Listing A.3) 128 72.3%
0.1 5 “Hard” (Listing A.3) 512 72.3%
0.3 1 “Medium” (Listing A.2) 128 72.3%
0.2 10 “Medium” (Listing A.2) 128 72.2%
0.3 1 “Hard” (Listing A.3) 128 72.2%
0.5 10 “Medium” (Listing A.2) 256 72.2%
0.5 5 “Medium” (Listing A.2) 512 72.2%
0.1 10 “Medium” (Listing A.2) 512 72.1%
0.3 1 “Hard” (Listing A.3) 256 71.9%
0.4 5 “Hard” (Listing A.3) 256 71.9%
0.5 1 “Hard” (Listing A.3) 256 71.9%
0.3 5 “Hard” (Listing A.3) 128 71.8%
0.5 5 “Hard” (Listing A.3) 256 71.8%
0.1 1 “Hard” (Listing A.3) 128 71.7%
0.5 10 “Hard” (Listing A.3) 512 71.7%
0.4 10 “Hard” (Listing A.3) 128 71.6%
0.4 1 “Hard” (Listing A.3) 512 71.6%
0.3 10 “Medium” (Listing A.2) 256 71.5%
0.4 1 “Medium” (Listing A.2) 256 71.5%
0.2 5 “Medium” (Listing A.2) 128 71.4%
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Table A.2: Results of the hyperparameter optimization in
the one-shot configuration. See Section 6.1 for more

details. (Continued)



149

0.1 5 “Medium” (Listing A.2) 256 71.4%
0.4 5 “Medium” (Listing A.2) 128 71.3%
0.2 1 “Medium” (Listing A.2) 256 71.3%
0.5 5 “Hard” (Listing A.3) 512 71.3%
0.2 1 “Medium” (Listing A.2) 128 71.2%
0.5 1 “Hard” (Listing A.3) 128 71.1%
0.5 5 “Hard” (Listing A.3) 128 71.1%
0.5 1 “Hard” (Listing A.3) 512 71.1%
0.1 1 “Hard” (Listing A.3) 256 71.0%
0.5 10 “Medium” (Listing A.2) 512 70.9%
0.1 1 “Medium” (Listing A.2) 512 70.8%
0.5 1 “Medium” (Listing A.2) 128 70.7%
0.5 5 “Medium” (Listing A.2) 128 70.7%
0.1 5 “Hard” (Listing A.3) 128 70.2%
0.4 5 “Hard” (Listing A.3) 128 70.0%
0.4 10 “Medium” (Listing A.2) 128 69.9%
0.5 10 “Hard” (Listing A.3) 128 69.5%
0.1 5 “Medium” (Listing A.2) 128 69.4%
0.1 10 “Hard” (Listing A.3) 128 69.3%
0.1 1 “Medium” (Listing A.2) 128 69.1%
0.5 10 “Hard” (Listing A.3) 256 68.4%
0.1 10 “Medium” (Listing A.2) 128 67.7%
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Table A.2: Results of the hyperparameter optimization in
the one-shot configuration. See Section 6.1 for more

details. (Continued)
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