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Computational screening of materials with extreme gap
deformation potentials
Pedro Borlido1,2, Jonathan Schmidt 3, Hai-Chen Wang 3, Silvana Botti 1✉ and Miguel A. L. Marques3✉

In this work, we present a large-scale study of gap deformation potentials based on density-functional theory calculations for over
5000 semiconductors. As expected, in most cases the band gap decreases for increasing volume with deformation potentials that
can reach values of almost −15 eV. We find, however, also a sizeable number of materials with positive deformation potentials.
Notorious members of this group are halide perovskites, known for their applications in photovoltaics. We then focus on
understanding the physical reasons for so different values of the deformation potentials by investigating the correlations between
this property and a large number of other material and compositional properties. We also train explainable machine learning
models as well as graph convolutional networks to predict deformation potentials and establish simple rules to understand
predicted values. Finally, we analyze in more detail a series of materials that have record positive and negative deformation
potentials.
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INTRODUCTION
In the beginning of the 1970s it was empirically found that the
band-gap of cubic semiconductors with the NaCl structure is
inversely proportional to the square of the lattice constant, i.e.,
that the band-gap should be proportional to V−2/31,2, where V is
the volume of the unit cell. This variation of the band gap with
respect to the volume is commonly measured by the deformation
potential

Ξgap ¼ V
dEgap
dV

¼ dEgap
d lnðVÞ : (1)

One can equally define a response function with respect to the
pressure P as

aP ¼ dEgap
dP

¼ � Ξgap
K

; (2)

that is trivially related to Ξgap by the bulk modulus
K ¼ �dP=d lnðVÞ. Later works studied deformation potentials of
several other semiconductors, e.g., for wurtzite AlN, GaN, and
InN3,4. A more complete list of deformation potentials can be
found in ref. 5 (including a large number of zincblende and
wurtzite semiconductors) and in ref. 6.
Theoretical models have been developed to explain the

chemical trend of the values of deformation potentials in binary
semiconductors with diamond and zincblende crystal structures7.
A simple tight-binding model considers the minimum of the
conduction band (CBM) consisting of anti-bonding s states and
the maximum of the valence band (VBM) consisting of p bonding
states. In that case, one expects a blue shift of the CBM with
decreasing volume due to (i) stronger repulsion for the anti-
bonding states with decreasing bond length and (ii) larger kinetic
energy. The second effect should be identical for different
systems, however one expects that the magnitude of (i) decreases
for materials with anions with deeper s-levels, like halogens. For
the VBM, the kinetic effect is similar, but the p bonding states shift

to lower energies for shorter bonds. Therefore, due to the
cancellation of these two effects, one expects a smaller absolute
value of the valence term ΞVBM with respect to that of the
conduction term ΞCBM

7, with the following definition of the
valence and conduction deformation potentials

ΞCBM=V BM ¼ V
dECBM=V BM

dV
¼ dECBM=V BM

d lnðVÞ ; (3)

where ECBM/V BM are the energies of the conduction band
minimum and the valence band maximum, respectively. Following
this model, and using Ξgap= ΞCBM − ΞVBM, one can explain the
experimentally observed trend of increasing gap with decreasing
volume mentioned above.
Of course, one should keep in mind that this model was

developed for a particular family of materials, and cannot be easily
generalized to arbitrary semiconductors. In fact, the existence of
exceptions has been already known for a long time. For example,
in lead chalcogenides the V−2/3 scaling of the band gap is not
verified8,9: in fact the value of the band gap decreases going from
PbS, to PbTe, and then to PbSe10,11, even though the lattice
constant of PbTe is much larger than the one of PbSe.
The large amount of studies on deformation potentials is not

surprising considering the importantance of the variation (or the
stability) of the band gap in heterostructures inside modern opto-
electronic devices, such as LEDs and transistors. One of the most
basic sources of strain comes from lattice mismatch at interfaces
or from different thermal expansion coefficients. In such cases
large deformation potentials can be an undesirable property. In
fact, in an epitaxial configuration the different lattice parameter of
the materials needs to be accommodated, introducing strain in
the junction3. Strain, besides being a possible source of structural
defects, can modify some fundamental properties of the materials
such as the position of the valence-band maximum and
conduction-band minimum, and consequently the band gap. This
effect must be carefully considered in situations where gap tuning
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is imperative, as in InGaN/GaN photovoltaic devices and LEDs12.
For some applications a controlled mismatch might actually be
desired, giving origin to the so-called strain engineering13.
Strain engineering is attracting growing attention, particularly

for 2D materials14 that exhibit large deformation potentials and
better tolerance to mechanical strain than their bulk counterparts.
For example, in tunneling field effect transistors made of MoS2/BN
heterojunctions15 quantum band-to-band tunneling replaces
thermal injection, with tunneling currents depending directly on
the band-gap size. As a consequence, the on–off switching is
considerably faster than in conventional field effect transistors.
Because the size of the band gap can be tuned by the application
of strain, strain engineering is a promising way of adjusting the
properties of such devices. Controlled strain can also induce
indirect–direct band-gap transitions in semiconductors, for
example in SiGe alloys16. If the material has a large gap
deformation potential this would imply enabling, e.g., light
emission by strain and changing in a controlled way the color of
the emitted light. Previous investigations also showed that the
gap variation with respect to strain plays a key role in acoustic
carrier scattering (see ref. 17 and references therein), with
important consequences, e.g., for thermoelectrics.
To the best of our knowledge, there is no systematic

investigation of gap deformation potentials for a large class of
crystal structures and a variety of chemical compositions. As such,
at the beginning of our investigation we did not know what
makes a material ’normal’, nor we knew what are the ’exceptional’
materials that exhibit extreme values of deformation potentials.
We decided therefore to answer this open question by performing
calculations of gap deformation potentials for ~5300 semiconduc-
tors and insulators. The obtained dataset is then used for machine
learning regression of deformation potentials and to understand
which physical and chemical characteristics are correlated with
extreme values of this property.
The remainder of this paper is organized as follows. In

section “Results and discussions” we discuss the calculated
deformation potentials. First we try to understand the data by
analyzing the correlations between the deformation potentials
and other properties of the systems. We then develop machine
learning models capable of interpreting and predicting the data
and we analyze in more detail some specific materials that we
found to have exceptional values for the deformation potentials,
followed by a short conclusion. In section “Methods” we present
the details of the calculations involved, along with a description of
the dataset used.

RESULTS AND DISCUSSIONS
Volume deformation potentials
The variation of the band gap with the volume depends on two
factors: the variation of the cell volume and the change in the
internal parameters (ui, including both the position of the atoms in
the unit cell, the cell angles and ratio between the cell
parameters), i.e.,

dEgap
d lnðVÞ ¼

∂Egap
∂ lnðVÞ þ

X

i

∂Egap
∂ui

∂ui
∂ lnðVÞ : (4)

The first term is rather straightforward to calculate, and is
therefore well suited for high-throughput studies. The second
term requires geometry optimizations of both the cell parameters
and positions of the ions at constant volume (or pressure) and is
much more involved to calculate. We also know that, for group IV,
III–V, and II–VI semiconductors, the effect of the second term is
about 2% of the first term7, meaning that it can (to some extent)
be disregarded. However, this behavior is not general, and we can
expect that for some systems the second term gives a more
noticeable contribution to the deformation potentials. As it will be

discussed later, the size of the error is relevant for small to
medium deformation potentials but it does not change the
qualitative description of the largest deformation potentials in
our set.
With this in mind, we decided to use a two step approach. First,

we screen all systems using only the first term of Eq. (5) as an
estimator of the deformation potential

eΞgap ¼ ∂Egap
∂ lnðVÞ : (5)

We calculate this value using a two-point finite difference
approximation to the derivative, obtained by straining the
material isotropically and keeping the internal coordinates of
the atoms unchanged. To strain the materials we compress lattice
vector by 1%, i.e., after shrinking the new lattice vectors are simply
a0i ¼ aið1� γÞ, with γ= 0.01. By construction this is equivalent to a
reduction in the volume of approximately 3γ= 0.03 while keeping
the cell shape (angles and relative sizes of lattice vectors) constant.
Of course this approach does not take into consideration, at least
at this stage, the possible anisotropic response of the crystal, that
can be quite relevant to its physics. Therefore, for all interesting
compounds we validate the results by performing a full
calculation of Ξgap. In the following, we will see that this
procedure just leads to a couple of false positives in the list of
’exceptional’ materials.

Distribution of values
In Figs. 1 and 2 we present distributions of estimators of the
deformation potential (in gray, as given by Eq. (5)), and in Table 1
we show the statistical measures that characterize them. As we
can see, the overall distribution is not centered at zero, but at
−1.9 eV. Furthermore, the curve is highly skewed towards
negative values of eΞgap. Consequently, for the majority of materials
the bandgap increases when they are compressed, which is the
commonly expected behavior. We can also see that for negative
deformation potentials, the curve has a fat tail, that extends up to
−15 eV, while for positive values, the curve goes much faster to
zero. From a visual inspection of the plot we can define ’normal’
materials those crystalline compounds that have a deformation
potential between around −5 and 3 eV, while we can define
’exceptional’ materials those that exhibit values smaller than
−10 eV or larger than 4 eV (this last approximately defined from
the range of relative frequencies below 0.5%).

Fig. 1 Histogram of deformation potential estimator. Histograms
of the estimators of the gap deformation potential (eΞgap) for
different chemical systems (All, Chalcogenides, and Others as
defined in the main text). The values are calculated within the PBE
approximation.

P. Borlido et al.

2

npj Computational Materials (2022)   156 Published in partnership with the Shanghai Institute of Ceramics of the Chinese Academy of Sciences

1
2
3
4
5
6
7
8
9
0
()
:,;



To make a preliminary analysis of how the chemistry influences
the deformation potentials, we also plotted the distribution for
subgroups of materials containing oxides, halides, oxyhalides,
chalcogenides, and the remainder materials (see Figs. 1 and 2). We
can see that the fat tail for negative values of eΞgap is mostly due to
oxides, halides, and oxyhalides, with oxides yielding the largest
contribution. On the other hand, materials with large positive
values are almost exclusively halides. In any case, the maximum of
the distribution seems to be rather insensitive to the chemistry,
and we find in all subgroups materials with positive and negative
values of the deformation potentials.
We plot in Fig. 3 a density plot of PBE band gaps as a function of

the corresponding deformation potential. Most data points are
concentrated in the region of band gaps smaller than around 2 eV
with a slow decay (fat tail) for larger band gaps. From the plot, we
can see that there exists only a weak correlation between the two
quantities, so we do not expect the band gap to be a good
indicator of the magnitude (or of the sign) of eΞgap.
Finally, we would like to discuss the accuracy of our results in

comparison to experimental values. Unfortunately, it is hard to
find a large variety of experimental values for the hydrostatic
deformation potentials in the literature. Most of the available
values are for simple semiconductors and their alloys (which we
do not consider here). The few materials for which we can

compare our estimator to reported experimental values are in
Table 2. Since these compounds are mostly cubic with direct gaps,
the estimator should match the real value of Ξ. We see that the
PBE results are in very good agreement with experiment, with a
tendency to overestimate the deformation potentials. We
emphasize, however, that the set of materials in Table 2 is very
small, and that this behavior may not hold for other more
complicated compounds.

Correlations
We further investigate the correlation of the estimator of the gap
deformation potential with other materials properties. This is
important in view not only of the interpretation of the results, but
also of the machine learning models that we develop in the next
section. We considered possible correlations with the volume of
the unit cell, the band gap, several elastic properties (bulk and
shear moduli, Poisson ratios obtained from Materials Project
database), the space group of the crystal structure, the net charges
of the atoms, and the mean hole (m�

h) and electron (m�
e) effective

masses. Concerning the calculations of charges, we applied both
Bader18,19 and DDEC620 analysis, while to get effective masses we
interpolated the eigenvalues at regular k-points using Boltz-
Trap221,22. Furthermore, we considered a series of properties of
the chemical elements that compose each compound using

Fig. 2 Histogram of deformation potential estimator (cont.).
Histograms of the estimators of the gap deformation potential
(eΞgap) for different chemical systems (Oxides, Halides and Oxyhalides
as defined in the main text). The values are calculated within the PBE
approximation.

Table 1. Statistical analysis of distribution.

Set All Oxi. Hal. Oxyha. Chalc. Other

Size 5338 1277 1693 246 1452 670

Mean (eV) −1.86 −3.36 −1.46 −2.68 −1.20 −1.17

σ (eV) 2.79 3.14 2.77 2.44 2.05 2.49

Skewness −0.73 −0.77 −0.40 −1.04 −0.03 −0.76

Kurtosis 4.22 3.52 3.39 4.05 3.30 3.92

1st Q. (eV) −3.26 −4.71 −3.00 −3.68 −2.49 −2.61

Median (eV) −1.67 −2.84 −1.22 −2.17 −1.40 −0.75

3rd Q. (eV) −0.05 −1.35 0.33 −0.83 0.30 0.74

Statistical measures of the estimator of the deformation potential for the
full set (All), oxides (Oxi.), halides (Hal.), oxyhalides (Oxyhal.), chalcogens
(Chalc.) and remaining (Other) materials of the set. 1st Q. and 3rd Q are the
first and third quantiles of the distribution.

Fig. 3 eΞgap vs. gap heat map. Density plot of eΞgap with respect to
the band gap. The values are calculated within the PBE
approximation.

Table 2. Comparison to experimental data.

Material ID eΞgap (eV) Exp. (eV)

GaP mp-2490 −0.72 (−8.18) – (−9.9)

GaAs mp-2534 −7.30 −8.5

InP mp-20351 −5.42 −6.4

ZnS mp-10695 −4.37 −4.0

ZnSe mp-1190 −3.98 −5.4

CdTe mp-406 −2.97 −3.4

CdS mp-2469 −2.23 −3.1

CdSe mp-2691 −2.08 −3.0

AlN mp-661 −8.98 −7.1/−9.5

Comparison between experimental values and estimated deformation
potentials. All experimental values were obtained from refs. 5,6,75 and
references therein. For GaP we show the deformation potential for the
direct gap in parenthesis.
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Matminer23. We used for each property the maximum, minimum,
average and standard deviation of the values of the constituent
elements, as is common in machine learning applications24.
In Table 3 we list the Spearman25 and Pearson25 correlation

coefficients between the deformation potential eΞgap and various
materials properties. We only list properties for which at least one
correlation coefficient is larger than 0.2. A full list can be found in
the Supplementary Information.
The first thing to notice is that we do not find any strong

correlation between the value of deformation potential and any
other property. The largest value we find in Table 3 is the
Spearman anticorrelation with the effective hole mass, yielding
the value −0.42. This is most likely due to outliers reducing the
Pearson correlation while leaving the Spearman correlation
unchanged. Therefore, we can conclude that outliers, materials
with exceptionally large (positive) deformation potentials have
abnormally low hole effective masses. As we will see in the
following, this happens because most of the materials with record
positive deformation potentials are halide perovskites that have,
indeed, untypically low hole masses26. We think that hole effective
masses are important as their value depends strongly on the
localization of bonding electrons, and therefore on the specific
bond type and bond length, e.g. through changes of the
hybridization of atomic states building the top valence. In this
sense, hole effective masses are correlated with both bond
lengths and band widths (and indirectly with band-gap sizes). In
view of these considerations we can motivate that hole masses
can be good features to predict deformation potentials.
Next we find correlations with the mean value of the row of the

periodic table and of the atomic mass, that effectively describe the
position in the periodic table of the constituent elements. These
are generally known to be effective descriptors in composition-
based machine learning models as they reveal a lot about the
electronic structure of the elements. Only then do we arrive at the
correlation with the unit cell volume and anti-correlation with the
band gap. We also find that DDEC6 charges are anti-correlated

with the deformation potential, much more than Bader charges.
This can be attributed to the fact that they attempt to represent
accurately the electrostatic interaction in materials, while Bader
charges do not achieve this objective27. The (Hill’s averaged) bulk
modulus and shear modulus also make an appearance in Table 3
but they show a very weak correlation. This is not unexpected as
several mechanically similar materials with widely differing
electronic properties exist in the dataset.

Machine learning
To better understand our results, we trained a simple explainable
machine learning model to predict deformation potentials. We
used model agnostic supervised local explanations (MAPLE)28 in
combination with random forests29. MAPLE models provide local
explanations, feature selection, locally linear models and at least
the accuracy of random forests28. As features we used all material
and chemical properties that we considered in the previous
section.
Using ten-fold cross-validation we achieved a mean absolute error

of 0.83 ± 0.04 eV. This error should be compared to the mean
absolute value and standard deviation of the cross-validation test
sets of 2.54 and 2.74 eV. This means that the machine learning
model has only a limited predictive capability for the deformation
potential, which is perhaps expected due to the rather weak
correlations found in Table 3. Also, the features selected (auto-
matically) by MAPLE as the most relevant for the prediction (see
Table 4) are not surprisingly found in Table 3. In view of these
results, we conclude that simple chemical intuition, embodied in our
interpretable machine learning models, is insufficient to satisfactorily
explain the nature of the deformation potential of a material.
We also trained a machine learning model with better

representation ability, to check if a more complex model is
capable of reproducing the deformation potentials. We used a
crystal graph convolutional network30 with embedding size of 64
for the atomic representations before pooling, 128 after pooling,
and three message passing steps. The network was trained for
1000 epochs with Adam31, a learning rate of 0.01 and a batchsize
of 64. As we tested larger and smaller network sizes with no
improvement to the results, all other parameters were left at their
default values in the CGCNN implementation by Xie et al. We used
a split of 0.8/0.1/0.1 for training, validation, and testing, and the
model with the best validation error was selected for testing. The
mean absolute error for the training set at the end of the training
was varying between 0.2 and 0.35 eV for different runs. This
corresponds to roughly half the validation error, leading to an

Table 3. Correlation analysis.

Features Spearman Pearson

Effective m�
h −0.42 −0.01

Band gap −0.32 −0.35

Maximum atomic number −0.27 −0.25

Maximum DDEC6 charge −0.25 −0.29

Shear modulus −0.24 −0.20

Std DDEC6 charge −0.21 −0.22

Std electronegativity −0.20 −0.20

Mean DDEC6 charge −0.20 −0.21

Bulk modulus −0.19 −0.21

Mean row 0.41 0.41

Mean atomic mass 0.40 0.39

Volume of unit cell 0.34 0.33

Minimum melting point 0.30 0.26

Minimum row 0.28 0.30

Minimum atomic mass 0.26 0.27

Maximum atomic mass 0.26 0.25

Min thermal conductivity 0.23 0.10

Maximum row 0.22 0.21

Mean melting point 0.21 0.18

Spearman and Pearson correlation coefficients between deformation
potentials eΞgap and various materials properties. We show only features
for which the absolute value of either coefficient is >0.2.

Table 4. Feature importance.

Feature Importance

Mean row 538

Effective m�
h 534

Volume of unit cell 346

Mean atomic mass 104

Maximum DDEC6 charge 52

Maximum Mendeleev number 28

Minimum melting point 21

Band gap 12

Minimum atomic mass 12

Minimum thermal conductivity 10

Minimum row 8

Std. DDEC6 charge 8

Mean of the feature importance of all features with a non-zero feature
importance during at least one of the cross-validation runs.
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acceptable level of overfitting. The final mean absolute error for the
test set was 0.81 eV, not significantly better than the error obtained
with MAPLE. Therefore, we assume that no sufficient data was
available for the CGCNN model to improve its performance over the
MAPEL model. Although the error is considerable, the machine is still
able to efficiently identify the exceptional materials (according to
the definition given before), based only on the structure. To
demonstrate this we checked which materials from Table 5 were
present in the test set and confirmed whether they were correctly
predicted as compounds with a high absolute deformation potential
by the CGCNN model. We repeated this process for four more
random data set selections finding that, in the three cases when
materials from Table 5 were present, 4 out of 6, 4 out of 4, and 3 out
of 4 were correctly identified as ’extreme’ materials. We also
averaged the test errors of these five runs to arrive at an MAE of
0.82 ± 0.05 eV. The data and code to reproduce the machine
learning models are available at https://github.com/hyllios/utils/tree/
main/models/gap_deformation_potentials.

Specific materials
After having performed an overall analysis of the results, we select
the materials with highest absolute eΞgap for further analysis. We

start by computing the full deformation potential, Ξgap, i.e.
including the effects of the change in internal parameters under
pressure, for the 15 materials with the largest (positive) and the 15
materials with the lowest (most negative) deformation potentials.
In practice this was done by straining isotropically the lattice
vectors by ±1%, and by performing a geometry optimization at
fixed volume. For each optimized structure, we obtained the
respective band structure via interpolation, using the Boltz-
Trap221,22 package. From the resulting values of the band gap at
the three volumes (strained, stretched, and fully optimized) we
computed Ξgap, using both the PBE and mBJ approximations for
the exchange-correlation functional. The resulting values are
shown in Table 5 together with the corresponding Materials
Project ID for an unequivocal identification of the material.
By comparing the values of ΞPBE to the values of the eΞgap we see

that these are quite close for the vast majority of the materials,
showing that eΞgap is on average a good estimator of the
deformation potential. There are some exceptions, however, and
we find a few false positives in the table, the most striking of
which are LiAsF6, LiPF6, Tl3AsF6, and Rb3SbF6. This is not
unexpected, as there are materials where we can observe a
strong variation of internal parameters with pressure32,33.
We also see that in most cases the PBE and mBJ approximations

lead to similar values for the deformation potential, with

Table 5. Full deformation potential for specific entries.

Material MP-ID GapPBE GapmBJ
eΞgap (eV) ΞPBE (eV) ΞmBJ (eV)

GeO2 mp-470 1.19 3.54 −13.71 −10.21 −11.45

Sr2AlSbO6 mp-1208835 1.84 3.27 −12.92 −11.01 −11.39

SrSnO3 mp-546973 0.94 2.95 −12.75 −12.34 −12.80

Sr2GaSbO6 mp-6065 0.68 2.60 −12.57 −11.20 −11.71

Al2O3 mp-1143 5.85 7.55 −12.50 −11.99 −12.47

BaSr(SnO3)2 mp-1227736 0.62 5.70 −12.34 −11.95 −12.22

BaGe(PO4)2 mp-1095485 4.09 8.98 −12.34 −6.12 −8.11

TeWO6 mvc-5676 1.25 2.21 −12.25 −13.18 −14.27

LiAlO2 mp-8001 6.17 8.05 −12.25 −9.59 −9.07

SrGe(PO4)2 mp-1101981 4.02 6.11 −12.24 −5.86 −3.35

PNO mp-38975 5.14 6.42 −12.02 −7.78 −10.09

LiAsF6 mp-9144 5.00 7.12 −11.91 −1.90 −1.72

AlSbO4 mp-676861 1.52 3.04 −11.80 −8.42 −8.55

GaBO3 mp-1078259 3.77 5.96 −11.76 −11.95 −12.63

LiPF6 mp-9143 7.52 10.31 −11.70 −3.19 −2.03

Hg mp-1184554 0.31 0.59 5.75 7.40 5.83

CsSnCl3 mp-1070375 1.05 2.13 5.36 3.17 6.76

CsSnBr3 mp-27214 0.79 1.36 5.14 2.38 2.72

Tl3AsF6 mp-1238924 3.16 4.75 5.07 1.19 −0.11

RbSnBr3 mp-998157 0.97 1.59 4.91 5.16 7.96

RbSnCl3 mp-998156 1.54 2.82 4.75 9.32 12.83

TlGeBr3 mp-998153 1.51 2.21 4.65 4.73 6.25

K2InSbBr6 mp-1112183 0.24 0.48 4.57 6.80 6.64

Cs2TlSbF6 mp-1112563 2.50 4.95 4.54 3.55 6.63

SnS mp-559676 0.39 0.72 4.54 2.05 3.08

Rb2InSbBr6 mp-1114390 0.31 0.55 4.53 6.77 6.87

K2InSbCl6 mp-1112017 0.69 1.30 4.51 6.92 10.11

Rb3SbF6 mp-1237359 3.69 5.08 4.50 −1.69 −2.54

LiAuS mp-29829 1.57 2.32 4.50 4.81 5.30

CsGeBr3 mp-570223 0.79 1.23 4.49 1.66 7.72

Values of the volume deformation potential for the materials with the highest absolute values of the estimator eΞgap . We show the materials project ID, the
band gap calculated with both the PBE and the mBJ approximations, the estimator eΞgap, and the deformation potential calculated with PBE and mBJ.
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discrepancies that often lie below 1 eV. However, it turns out that
for some systems, and in particular few systems with extreme
positive deformation potentials, these functionals yield different
results. This happens for CsSnCl3, RbSnBr3, RbSnCl3, Cs2TlSbF6,
K2InSbCl6, and CsGeBr3. At the moment, it is not clear what is the
source of this difference, nor which functional is best, due to the
lack of experimental results for the deformation potentials of
these specific systems.
In the following we analyze in more detail the compounds

included in Table 5. Band structures and state-resolved densities
of states for all these materials can be found in the Supporting
Information.

a. GeO2 Rutile germanium oxide is a well-known material
which, thanks to its optical properties34 finds applications in
lens and optic-fiber manufacturing35. It has been the focus
of several studies in the literature, being sometimes
described as an ’ultra-wide band gap’ material34,36, present-
ing a direct gap of 4.68 eV37. The sensitivity of the electronic
properties of GeO2 with respect to pressure is also known. In
ref. 38 a PBE (G0W0) value of −13.05 eV (−17.30 eV) for Ξgap
was found by studying the gap variation with volume (at
fixed c/a ratio), which is in good agreement with our
estimator of −13.71 eV. Note, however, that the assumption
of constant c/a ratio is not representative of the actual
response of the material under pressure39. In fact, relaxing
this assumption decreases the PBE value by around 25%
(see Table 5).

b. SrSnO3, BaSrðSnO3Þ2, Sr2AlSbO6, and Sr2GaSbO6 Gathering
SrSnO3, BaSr(SnO3)2, Sr2AlSbO6 and Sr2GaSbO6 we obtain a
group of perovskites and double perovskites with large
deformation potentials, some of which were already reported
in the literature40,41. Besides SrSnO3, we remark that also
BaSnO3 appears in our study with a considerable deformation
potential (eΞgap ¼ �11:69 eV). In refs. 40,41 it was already
recognized that SrSnO3 and BaSnO3 exhibit a very large
variation of the band gap with volume, while the gap is not
very sensitive to other types of strain. This behavior could be
well modeled using a Fermi gas, and therefore the authors
describe the strong variation of the gap as a signature of
simple s-electron behavior in these complex oxides41.
The mixing of Sr with Ba leads to the mixed perovskite BaSr

(SnO3)2 that displays a eΞgap intermediate between the one of
the two parent phases. A similar behavior can also be verified
in other mixed perovskites, e.g. KNbO3 (−1.94 eV), NaNbO3

(−4.60 eV), and KNa(NbO3)2 (−2.49 eV). This observation hints
to the possibility of tuning deformation potentials of materials
via cation mixing.
For other double perovskites such as Sr2AlSbO6 and

Sr2GaSbO6, the parent ternary perovskites SrSbO3 and SrAlO3

are thermodynamically unstable (energy above hull larger
than 50 meV/atom), while the structure of SrGaO3 is not
included in Materials Project. Therefore, their eΞgap are not
calculated in the present work. Another related double
perovskite, Ba2InSbO6, also displays a highly negative
deformation potential of eΞgap ¼ �11:17 eV.
For these perovskites, the values of eΞgap differ slightly

between antimonates and their stannate counterparts. How-
ever, there is a clear trend of less negative eΞgap in double
perovskites going down group III from Al to In. Moreover,
when substituting Sr with heavier Ba, the absolute value of
eΞgap also decreases. This indicates that in (double) perovskites
that share a common anion and have cations in the same
elemental group, the heavier the cation the less negative is
eΞgap. Similar trends are found in ref. 42 for ABX3 halide
perovskites.

c. Al2O3 α-Al2O3 is the alumina polymorph corresponding to the
mineral corundum. As sapphire it finds applications as a

window material in high pressure experiments, while its
doped counterpart ruby is used as a pressure indicator in
diamond anvils. Previous calculations of gap versus pressure43

already remarked its extraordinary behavior: a volume gap
deformation potential of −12.51 eV was estimated in good
agreement with the present results. The values of eΞgap for
isomorphic α-Ga2O3 and α-In2O3 are respectively −10.45 and
−6.83 eV, indicating that the deformation potential increases
from Al to In, in agreement with the trend in perovskites
discussed above.

d. BaGeðPO4Þ2 and SrGeðPO4Þ2 BaGe(PO4)2, SrGe(PO4)2 are
germanium double orthophosphates with crystal structures
resembling that of the mineral yavapaiite (KFe(SO4)2, space
group C2/m). They can be used as ceramic materials for
microwave applications44. These two compounds turn out to
have much lower absolute values of Ξgap than of eΞgap, and
therefore do not exhibit exceptional values of the deformation
potential.

e. TeWO6 TeWO6 crystallizes in the Fm3m space group and
exhibits a record negative deformation potential (among the
materials we studied). The R3 phase of TeWO6 (the same as
LiAsF6 and LiPF6) has a less negative eΞgap of −7.57 eV. It is also
interesting to remark that there are some tellurium double
perovskites with a large negative eΞgap, such as CaTeBa2O6

(−11.20 eV) and MgTePb2O6 (−11.18 eV). However the gaps of
their tungsten counterparts are much less sensitive to
compression, e.g. CaWBa2O6 (−3.36 eV) and MgWPb2O6

(−2.02 eV).
f. LiAlO2 Lithium aluminate (α-LiAlO2) is one of the most efficient

tritium breeding materials due to excellent performance
under high radiation. The pressure-induced gap change of
various phases of LiAlO2 has been investigated using DFT,
yielding an estimated Ξgap of −8.1 eV45, in good agreement
with our results.

g. LiAsF6 and LiPF6 Lithium hexafluorophosphate and lithium
hexafluoroarsenate are commonly used as the main conduct-
ing lithium salt in carbonate-based electrolytes for Li-ion
batteries46. Similarly to TeWO6, these two compounds crystal-
lize in the R3 space group. It turns out that there is a strong
interplay between pressure and internal coordinates in these
systems, leading to a strong decrease of the value of the
deformation potential when these effects are taken into
account. For example, in some classes of semiconductors it
was already observed in literature that the band gap is more
sensitive to changes of internal parameters (e.g., selective
changes of bond lengths) than to volume changes. A typical
example is Cu(In,Ga)(S,Se)2 and more in general ABC2
chalcopyrites32,47, or Cu2ZnSnS4 and Cu2ZnSnSe433, whose
gaps are known to be strongly dependent on small variations
of internal parameters. In these systems it is well understood
that changes of the internal parameters, e.g. changes of bond
distances, have an effect on the band gap as the valence band
is made of p–d hybridized states, where p electrons come
from the anion and d electrons from the cation participating
in the bond. A change of bond length has a strong impact on
the hybridization and therefore on the valence band width,
leading to significant band gap variations.

h. PON Phosphorus oxynitride, PON, is an isoelectronic analog of
SiO2. Like the latter, it has a complex P−T phase diagram, and
the selected structure is a high-pressure α-quartz-like phase48.
The gap of α-quartz SiO2, on the other hand, is much less
sensitive to the volume change (eΞgap =−7.57 eV). This can
can be explained again by the fact that the p–p interaction is
stronger between P/N and O than that between Si and O.

i. AlSbO4 Aluminum antimonate can be seen as an analog to
aluminum phosphate (AlPO4) and arsenate (AlAsO4) for which
eΞgap =−7.12 and −8.76 eV, respectively. Going from P to Sb,
the p–p and s–s coupling with O is slightly weaker, but with a
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stronger p–d interaction between Sb–O and As–O. As such, ΞV
BM can be much higher, leading to a more negative eΞgap.

j. GaBO3 Gallium borate is isostructural with calcite CaCO3. The
other calcite-like borates, such as AlBO3 and InBO3 have
smaller magnitude of eΞgap (−4.55 and −8.41 eV, respectively).
This is not the same trend observed for the various group III
compounds discussed above. The difference can be explained
by the fact that in AlBO3 the conduction band maximum is
dominated by p–p anti-bonding states coming from the B–O
interaction, which can considerably lower the deformation
potential of the conduction band maximum in AlBO3.

k. Hg Liquid mercury is metallic in normal conditions, and it even
becomes superconducting at very low temperature. However,
several other phases of mercury have been predicted
theoretically. Taking the Materials Project database49 as a
reference, we can find several structures within a distance of
20meV per atom from the convex-hull of stability. These
range from metals to semiconductors with gaps of up to
almost 1.5 eV. This is in our opinion an indication of the
extreme sensitivity of mercury’s electronic structure to its
crystal structure. It has been noted in the literature50,51 that
the band structure of certain phases of mercury is very
sensitive to pressure (and indeed to calculation parameters),
and that a band gap opens up upon expansion. This is in
agreement with the positive value of the deformation
potential that we find here. This variation was connected to
the change in character of the states close to the Fermi level
that go from p-like to having an increased s-character for
decreasing density51. The reason why mercury comes out as
semiconducting in our calculations is very likely due to the use
of PBE which tends to underbind and therefore leads to larger
lattice parameters. For example, for the R3m (#166) phase, the
trigonal lattice constant is 2.9863Å at 5 K52, while the PBE
gives 3.179Å. In conclusion, if we could experimentally access
expanded phases of mercury, these would likely exhibit
extremely large positive values of the gap deformation
potential.

l. Halide perovskites The system we found with record positive
deformation potential is the halide perovskite RbSnCl3.
Moreover, in the list of exceptional materials with positive
deformation potentials we find a series of perovskites of
composition ABX3, such as {Rb,Cs}Sn{Cl,Br}3 and TlGeBr3, and
their counterparts double perovskites {K,Rb,Cs}2{In,Tl}Sb{F,Cl,
Br}. Of course, the latter can be easily derived from the former
by doubling the lattice (usually resulting in a face-centered
cubic configuration), and performing the isoelectronic mod-
ification 2Sn→ InSb or 2Sn→ TlSb. Halide perovskites are
known to be exceptional materials, excelling as absorbers for
photovoltaic devices, achieving efficiencies of more than
20%53. In recent reviews54,55 it has already been discussed
how the electronic structure and band gap of this class of
materials can be tuned via changes in atomic structure. For
example, iodide perovskites and related compounds show a
very wide range of band gaps from ≈1.2 to ≈4.0 eV55. The
same sensitivity of the band gap can also be observed in
mixed-halide perovskites56. Trends in band gap are often
dictated by structural subtleties involving geometric distor-
tions and the ordering of anions56. Moreover, these materials
have exceptionally small effective hole masses due to a strong
hybridization between the s-states of the B-site element and
the p-states of the halogen near the Fermi energy26. In ref. 54 it
is also noted that a compression of the unit cell (for example,
by chemical substitution, compressive biaxial strain, or high
pressure) narrows the band gap, in agreement with the
positive deformation potential we found here. This is
explained by the fact that compression forces the B- and
X-site ions closer together, enhancing the antibonding
interactions at the top of the valence band, thereby raising

its energy and decreasing the band gap. It is also known that
the variation of the band gap comes predominately from the
variation of the valence band maximum, while the conduction
band minimum has a positive, small variation42. That these
materials exhibit high deformation potentials is even more
extraordinary when we remark that this happens for a large
range of band gaps (see Table 5). This points to the fact that
the unique hybridization of the orbitals between the B- and
X-atoms in these structures makes indeed halide perovskites
materials with extreme properties.

m. Tl3AsF6 and Rb3SbF6These two structures are the pathological
cases of Table 5, since their calculated deformation potential
differs considerably from the screened value. Both materials
share the same hypothetical structure, derived from TlAsF657

and KAsF6. Tl3AsF6 and Rb3SbF6 are, in any case, rather close
to the convex hull of stability58,59, lying respectively at 84 and
94meV/atom above the hull with the PBE approximation, 98
and 94meV/atom with PBE for solids60, and 158 and 135meV/
atom with the SCAN functional61. The electronic band
structure of Tl3AsF6 is rather peculiar, which might explain
the behavior of Ξgap. The valence band is flat and isolated,
with a gap of around 1 eV to the next occupied band. The
valence band is comprised of s−As and p−F states, with the
latter dominating. For the conduction band the situation is
more complicated as PBE and mBJ lead to qualitatively
different results. In PBE, the band gap is indirect, from near N
to F. On the other hand, with mBJ the gap is direct, from Γ to
Γ. The bands are mostly comprised of p orbitals of Tl, As and F
(in decreasing order of DOS magnitude), consistently for both
functionals. The situation for Rb3SbF6 is similar, as it also
exhibits an isolated valence band with similar orbital
decomposition (albeit with Sb taking the place of As). In
addition, the conduction bands are quite differently described
by both functionals.

n. SnS This is the high-temperature orthorhombic β-phase of tin
sulfide (TlI-type, Cmcm, #63)62,63. The λ-type transition
between the low-temperature GeS-type (Pnma, #62) α-phase
and the high-temperature β-phase is essentially due to the
continuous movement of the Sn and S atoms along the [100]
direction63. The Pnma phase can also be seen as a small
distortion of the more symmetric high-temperature Cmcm
crystal structure64. For comparison, our estimated eΞgap for the
α-phase (mp-2231) is 2.0 eV. The high value of our estimator
for this material (eΞgap = 4.54 eV) is considerably reduced to
ΞPBE= 2.05 eV allowing for the internal relaxation of the
structure, a value much closer to the one we obtained for the
α-phase. This is therefore a false positive.

o. LiAuS LiAuS synthesizes in an orthorhombic space (Fddd,
#70)65, in a structure that has been described as composed of
’chicken-wire-like’ layers formed by interweaving (AuS)n�n
threads66. Also of note is that a cubic phase of LiAuS has
been identified as the most interesting strong topological
insulator (together with NaAuS) of all possible half-Heusler
compounds67. It was also found that the band gap (and band
inversion) in this compound changes rapidly, and with a non-
monotonic behavior) with bi-axial strength67. Although we
could not find electronic structure calculations for this
compound in the literature, there are calculations for the
related semiconducting compound NaAuS68. For this com-
pound the top of the valence is composed of s- and d-Au
states hybridized with the p-states of S, while the conduction
band results from a mixture of states from all atoms. As can be
seen in the Supplementary Information, the same is true
for LiAuS.

In conclusion, we presented a large-scale dataset of gap
deformation potentials for a wide variety of semiconductors. This
dataset covers a large portion of the periodic table and is
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representative of the possible crystal structures in which we find
semiconductors. Analysis of the data shows that the distribution of
deformation potentials is peaked at around −2 eV, and quite
skewed towards negative values with a fat tail that extends to
almost −15 eV. We find also a sizeable fraction of systems with
positive deformation potentials, extending to around 5 eV.
Aiming at rationalizing this data, we searched for correlations

between the deformation potentials and several other materials
and compositional properties. We found an anti-correlation with
the effective hole mass and the band gap, and a positive
correlation with the mean row of the periodic table, the mean
atomic mass and the volume of the unit cell. In any case, it turns
out that all correlation coefficients are relatively small. We then
constructed machine learning models designed to interpret and
predict the values of the deformation potentials. The models
exhibited a limited accuracy, showing the difficulty to describe
deformation potentials in terms of simple chemical quantities for a
large set of materials. In any case, the developed models can be
successfully applied for the identification of materials with
extreme values of this quantity.
Finally, we analyzed in more detail some of the exceptional

materials we found. With negative values of the deformation
potential we find exclusively oxides, the record being TeWO6. On
the other side of the spectrum appear mostly halide perovskites,
the record belonging to RbSnCl3. In contrast with the difficulties
mentioned above to establish general correlations, the variation of
the values of the deformation potential within specific families of
materials can usually be explained based on the character of the
valence and the conduction states.

METHODS
Calculations
The initial survey of the dataset was performed with density-functional
theory at the level of the Perdew–Burke–Ernzerhof (PBE) generalized
gradient approximation69. This is arguably the most used approximation
for the ab initio study of solids, but leads to band gaps that are around a
factor of two too small when compared to experiment70,71. To have a more
reliable estimation of the band gaps, we also provide band structures
obtained with the modified Becke–Johnson functional (mBJ)72. This
approximation, when combined with the local-density approximation for
the correlation term, was shown to yield accurate band-gaps70,71. Of
course, this does not mean that deformation potentials are also more
accurate in the mBJ than with the PBE, but we see that both functional
turn out to yield similar results for most of the systems studied (see also
Section I of the Supporting Information). This points to the fact that
deformation potentials appear to be more robust properties than band
gaps with respect to the theoretical approach used.
All calculations were performed within the projector-augmented wave

formalism73, using the Vienna ab-initio simulation package (VASP version
5.4.4)74. We use the set of pseudo-potentials recommended by the
Materials Project database49. In the present work we opted not to include
Hubbard corrections, as general purpose values of U might not transfer
into quality improvements in the band structure and we are not in the
capacity to extensively benchmark these parameters. The effect of this
choice is also minimized thanks to the removal of compounds containing
magnetic elements (see below). The band gaps were calculated as the
difference of the Kohn-Sham eigenvalues from self-consistent calculations.
Our energy cut-off was set to 520 eV and we used a Γ centered k-point
grids with 8000 k-points per reciprocal atom. Inclusion of spin–orbit
coupling leads to an average reduction of the bandgap of 0.1 eV71. Since
this value is much smaller than the typical error coming from the choice of
exchange-correlation functional, we opt to neglect this effect in our
calculations. Moreover, as we consider differences of band gaps at different
strains, we expect the error due to the neglect of spin–orbit coupling to
cancel to a large extent.

Dataset preparation
To build our dataset, we selected semiconductors from the Materials
Project49 containing less than 13 atoms in the unit cell. Using these criteria

we could gather 6552 systems. We then removed all systems containing
magnetic elements (Fe, Ni, Cr, Mn, and lanthanides except La) and
electronic band gap smaller than 0.01 eV, obtaining a dataset including
5338 systems. All ground-state geometries were taken directly from the
Materials Project database49 and were not further optimized. A table
containing the Materials Project ID, together with our calculated gaps and
deformation potentials can be found as Supplementary Information. The
dataset presents a good sampling of the periodic table although the
frequency of each chemical element is not homogeneous (see Supple-
mentary Information). The chalcogens (particularly oxygen) are the most
represented group, followed by the halogens, pnictogens, and alkali
metals. Overall, this distribution is representative of the distribution of
stable semiconductors present in the Materials Project49.
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