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Abstract: Spatial information about plant health and productivity are essential when assessing the
progress towards Sustainable Development Goals such as life on land and zero hunger. Plant health
and productivity are strongly linked to a plant’s phenological progress. Remote sensing, and since the
launch of Sentinel-1 (S1), specifically, radar-based frameworks have been studied for the purpose of
monitoring phenological development. This study produces insights into how crop phenology shapes
S1 signatures of PolSAR features and InSAR coherence of wheat, canola, sugar beet. and potato
across multiple years and orbits. Hereby, differently smoothed time series and a base line of growing
degree days are stacked to estimate the patterns of occurrence of extreme values and break points.
These patterns are then linked to in situ observations of phenological developments. The comparison
of patterns across multiple orbits and years reveals that a single optimized fit hampers the tracking
capacities of an entire season monitoring framework, as does the sole reliance on extreme values. VV
and VH backscatter intensities outperform all other features, but certain combinations of phenological
stage and crop type are better covered by a complementary set of PolSAR features and coherence.
With regard to PolSAR features, alpha and entropy can be replaced by the cross-polarization ratio for
tracking certain stages. Moreover, a range of moderate incidence angles is better suited for monitoring
crop phenology. Also, wheat and canola are favored by a late afternoon overpass. In sum, this study
provides insights into phenological developments at the landscape level that can be of further use
when investigating spatial and temporal variations within the landscape.

Keywords: crop monitoring; agriculture; C-band; open data cube; growing degree days

1. Introduction

In recent years, the concept of essential variables (EVs) has been introduced to assess
progress towards Sustainable Development Goals across policy domains [1]. EVs that
capture the progress of the agricultural domain are currently defined by the Group on
Earth Observations Global Agricultural Monitoring (GEOGLAM) [2]. In this catalogue,
phenology—more specifically, the current crop stage—is listed as an EV. It has been estab-
lished that phenology provides crucial information for crop management because it strongly
relates to plant productivity and growth. Furthermore, certain stages of the crop lifecycle
are highly sensitive to meteorological conditions [3–6]. In the context of an increasing
frequency of and more extreme weather events, as well as complex topics such as climate
adaption and resilience, this kind of information is in high demand [7–9]. Consequently,
Earth observation data and products have been widely researched in the field of agriculture
as a potential source of such information. This field has been dominated by multispectral
optical sensors such as Landsat or the Moderate Resolution Imaging Spectroradiometer
(MODIS) for a long time. However, spaceborne synthetic aperture radar (SAR) data have
been researched increasingly during the last decade, either as an additional or an alternative
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data source, as SAR provides textural or structural instead of spectral information and it
is independent of weather and illumination conditions [8,10]. More specifically, the start
of the European Sentinel-1 mission in 2015 caused an increase in research activities using
SAR data for various applications [9,11,12]. In the context of tracking crop phenology, three
major forms of analysis have been established: machine learning classifiers, such as random
forest or deep learning [13,14], stochastic or statistical modeling [15,16] and time series
metrics (TSMs) [17–19].

The study at hand focuses on TSMs, more specifically extreme value and break point
analysis. For description, a crop phenology classification scheme has been established by
Biologische Bundesanstalt für Land und Forstwirtschaft, Bundessortenamt und CHemische
Industrie (BBCH) The BBCH scale categorizes plant growth according to micro and macro
stadia [20]. In this case the phenological development of the following crops is tracked:
wheat, sugar beet, canola, and potatoes. These crops cover a wide range of physiognomic
properties and management requirements (e.g., irrigation of potatoes); thus, a more general
assertion can be framed. Hence, this study offers a wider perspective of the signal–target
interaction during the crop lifecycle than studies that focused only a specific crop type
or crop family [15,17,21]. Moreover, the addition of InSAR coherence (hereafter referred
as “coherence”) to polarimetric features, as suggested by Lobert et al. [14], might lead to
improvements in monitoring crop phenology, since coherence might be more sensitive to
early stages of the plant lifecycle due to the temporal decorrelation of the signal caused
by the emergence of crops. In the context of a multiannual approach, we also address the
dilemma outlined by Harfenmeister et al. [22] that the chronological occurrence of TSMs,
especially break points, cannot be reliably used to allocate phenological development by
SAR time series. Hence, we introduce agrometeorological data, namely, growing degree
days (GDDs) [23], as an artificial baseline for calibrating and validating the occurrence of
TSMs and their associated progress of plant growth. GDDs contribute to the assessment of
reliability by adding information on thermal growth potential to the occurrence of TSMs.
Apart from these gaps, the mission ending malfunction of Sentinel-1B produced a new
aspect: integrating multiple orbits to conserve a comparatively dense time series. As of
January 2022, it is no longer possible to rely on the six-day repetition rate, provided by the
twin constellation [24] over our study area. Hence, we used data from the existing archive
to track phenological development simultaneously across different orbits. Recently, such an
idea was addressed over wheat fields and sunflower plantations [25–27], but the focus was
either on deriving biophysical parameters or investigating the intensity of the backscatter
only. Hence, this study aims at generating information regarding if and how these orbits
differ in their response towards phenological development of multiple crops and S1 InSAR
and PolSAR features. The current assumption is a negligible difference as soon as there is a
certain volume of biomass on the fields [13,25–27].

Since all of the abovementioned issues are highly dependent on how the respective
time series are generated, and especially on the usage of smoothing algorithms and their
parametrization, a density-based framework across multiple parametrizations of a single
smoothing algorithm is used in this study. Such stacking of different degrees of smoothing
helps to mitigate the inevitable loss of information of highly smoothed time series. Thus,
entire periods, instead of points, which cause a phenologically induced signal change, are
revealed. The fundamental hypothesis of such an approach is as follows: extrema and
break points, which originate from events that drastically shape a crop-specific time series,
remain visible throughout various intensities of smoothing.

Here, we employed the frequently used “locally estimated scatterplot smoothing”
(LOESS). This decision was based on two factors. Firstly, Cai et al. (2017) [28] stated
that there is no mayor difference between locally weighted smoothing techniques. Sec-
ondly, commonly applied smoothing techniques in studies related to phenology are locally
weighted (e.g., Whittaker [29], Savitzky-Golay [30], LOESS [17,18]). Considering the stack-
ing of different smoothing degrees and the small differences between the individual algo-
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rithms, it is assumed that our approach produces representative crop signatures, despite
employing only LOESS.

In sum, this study addresses the following issues centered around crop monitoring
via SAR time series: (i) combining information obtained from time series of different
smoothing intensities [28] (ii) as well as different S1 viewing geometries, ergo, relative
orbits in a singular conceptual framework without angle normalization. Furthermore,
(iii) the variance in chronological occurrences of break points and extreme values [21]
is investigated. This study addresses these issues by (i) estimating the density of TSM
occurrences by stacking time series of different smoothing intensities at the field level and
aggregating the findings to derive landscape-wide (the extended DEMMIN site covering an
area of 25 km by 25 km) patterns. Here, the time series analyses are conducted separately
for each orbit generating insights into (ii) orbit-related discrepancies within the patterns
at landscape level. In regard to the issue of chronological occurrence, a GDD baseline is
introduced for calibration and validation. This provides a temporal coordinate system
consisting of day of year and thermal growth potential. Because this approach aims at
generating systematic insights into the relationship of crop phenology and the inherent
randomness of SAR signals [31], the study encompasses seven S1 features, three relative
orbits, and an observation period of five years [31].

2. Materials and Methods
2.1. Study Area, and In Situ Data

The area of interest is located in northeastern Germany in the federal state of Meck-
lenburg West Pomerania (Figure 1, MV). An average annual precipitation of 550 mm and
perennial humidity in combination with a mean air temperature of 8.3 ◦C designate its
climate as temperate Middle-European [32]. The study area surrounding the Durable Envi-
ronmental Multidisciplinary Monitoring Information Network (DEMMIN) is characterized
by a low elevation gradient of ca. 120 m, because its landscape is dominated by ground
moraines. Such terrain of low complexity is ideal for SAR-based analysis, because the
terrain is less likely to cause signal interferences [33]. Information on parcel delineation
and crop type in the DEMMIN area were extracted from a dataset of the German integrated
administration and control system (InVeKoS) of Mecklenburg West Pomerania for the civil
years of 2017 to 2021. In regard to crop type, the data were assembled for wheat, sugar
beet, canola, and potatoes. The InVeKoS-framework separates starchy potatoes from other
potatoes [34], but for the purpose of this study, this distinction was deemed noncritical
in relation to the phenological development. Additionally, only parcels of a relevant size
were selected to minimize the influence of pixel contamination by neighboring land use
or cover [14]. The thresholds for relevant sizes were set to 3 ha for wheat, canola, and
sugar beet and 2 ha for potatoes because there are significantly less fields above 3 ha where
potatoes were cultivated. For each year, around 550 fields of wheat, 350 fields of canola,
150 fields of sugar beet, and 10 fields of potato were observed.

Phenological in situ observations were available from the voluntary-based observer
framework of the German weather service (DWD) [35]. As the area of interest is poorly
covered by this monitoring setup, the average occurrence date by federal state was used as
a source for validation data in combination with the corresponding GDD summation. Any
phenological developments that were recorded by DWD were translated to the BBCH [20]
scale to enable a comparison with other studies that also use this classification scheme
for measuring the progress of crop lifecycles. The translation and assignment of DWD
observations to crop types and BBCH codes resulted in a list of phenological stages, shown
in Table 1.
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winter crops. It marks the likely start of the next growing season and, thus, a likely end of 
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ment practices regarding, for example, stubble fields and straw covers. 
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Table 1. Translation of phenological stages into BBCH codes by crop type.

Phenological Development BBCH Code Crop Types

Germination 0 Sugar beet, potato
Leaf development 10 Sugar beet, potato
Stem elongation 30 Winter wheat

Canopy closure (90%) 39 Sugar beet, potato
Heading or inflorescence 50 Winter wheat, winter canola

Flowering 60 Winter canola
End of flowering 69 Winter canola
Yellow ripening 87 Winter wheat

Harvest 99 Winter wheat, canola

The authors are aware of potential limitations with regard to observation periods
corresponding to civil years and availability of in situ data. Therefore, references to BBCH
0 and BBCH 10 for winter crops serve as general points of orientation within phenological
progress of the civil year and not as actual validations to the onset of the actual stage of
winter crops. It marks the likely start of the next growing season and, thus, a likely end of
cultivation of catch crops. This is necessary to identify phases that are more vulnerable to
noise or strong variations such the growing period of catch crops, varying soil management
practices regarding, for example, stubble fields and straw covers.
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2.2. Growing Degree Data

Growing degree is defined as the number of temperature degrees above a certain
threshold base temperature and is a commonly used tool to describe the development of
biological processes, including crop phenology [23]. The integral (summation) of these
numbers over a day is used to describe crop growth for that specific day, generating a
growing degree day, or GDD. By assigning a GDD value to each TSM occurrence and in
situ observation, the idea behind crop maturity can then be used to describe progress in
subsequent analysis of the results of this study.

Nevertheless, there has always been some criticism that this linear relationship does
not consider an upper temperature limit of plant growth, consequently leading to artefacts,
especially when extreme temperatures and variable conditions are observed [36–38]. Hence,
a more complex method is chosen in this study, which was proposed by Zhou and Wang
(2018) [38] to account for these shortcomings. Our observation period contains years of
extreme drought in Germany [17,21]; thus, selecting a more sophisticated method was
deemed necessary. In this case, an hourly temperature time (HTT) is calculated and it
encompasses four parameters: Tu is the upper limit of temperature above which no plant
growth is assumed due to intense heat stress. Topt is the optimal temperature, where
maximum growth occurs, and Tbase is the base temperature that is needed to induce growth.
Finally, Th represents the hourly measurement of air temperature [38].

HTT =


0, Th < Tbase[

Th−Tbase
Topt−Tbase

][
Tu−Th

Tu−Topt

] Tu−Topt
Topt−Tbase

∣∣∣∣∣ Tbase ≤ Th ≤ Tu

0, Tu < Th

(1)

The actual data on air temperature, which is measured two meters above ground and
provided by DWD for 2017–2021, were acquired as an interpolated raster derived from the
agrometeorological network of DEMMIN. The native spatial resolution of the dataset is
250 m × 250 m per pixel, its temporal resolution is one hour, and it was interpolated by
employing ordinary kriging. Further details are provided by the DWD [39].

The GDD time series is the sum of daily mean of HTT (see Equation 2) over a specific
timeframe (e.g., growing season or civil year). Furthermore, the GDDs constitute the second
layer of validation data, because each occurrence of a TSM and each in situ observation
are linked to their corresponding GDD values. Hereby, the distance between in situ
observations and TSM occurrence is also described by the difference in thermal potential
of plant growth. The calculations of corresponding GDD values are conducted on an
open data cube platform (ODC) [40,41] using Python. Table 2 lists the specification of all
the thresholds of temperature by crop type. These specifications were derived from the
literature, which is also included in the table.

Table 2. Specifications of lower (Tbase), optimal (Topt), and upper (TU) thresholds of air temperature
with regard to plant growth and calculating HTT.

Crop Type Tbase Topt TU References

Winter wheat 0 21 31 [42,43]
Winter canola 4 25 34 [44]

Sugar beet 7 24 32 [45,46]
Potato 5 22 30 [47,48]

The artificial baseline and the civil year were, as mentioned in the introduction, a
deliberate choice. Not only does this enable the discovery of trackable pre-/post-season
events, but also it corresponds to statistical records at the federal or national level as well
as with the budgeting of state-run institutions in addition to the fiscal year.
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Because the yearly observation periods of this study are civil years, the start of the
GDD summation was set to 1 January in each year. Hence, GDDs are used as an artificial
baseline that offers information on phenological developments based on their thermal
growth potential. Therefore, GDD values are not used in a classical, absolute way to model
plant growth [49]. Instead, they are used as an artificial progress bar (GDDsim) of a year
to calibrate and validate the occurrences of TSMs. This is based on the principle of crop
maturity [15] and the idea that relative progress towards BBCH stages can be described
by their respective GDDsim values. Moreover, by using DOY and GDDsim, a temporal
coordinate system was established to allocate and evaluate timeframes of phenologically
induced signal change.

2.3. Sentinel-1 Time Series

The time series of S1 data, which includes relative orbits 146 (ascending) and 95
and 168 (descending), encompasses the years of 2017 to 2021 and amounts to around
1050 images in total. Because break point analysis and the search for phenologically relevant
extrema require calibration periods before and after an event of interest [22], it was decided
to extend yearly observations to the civil year. Thus, it was ensured that no phenological
development was lost during the calibration phase of the analysis. Additionally, first
indications of the trackability of pre- and post-growing season events could be derived. An
overview of orbit IDs, their viewing geometry, and the respective range of incidence angles
are listed in Table 3.

Table 3. Summary containing range of incidence angles covering the study area, times of overpass,
and flight directions of each relative orbit.

Relative Orbit ID Flight Direction Min. Incidence
Angle (◦)

Max. Incidence
Angle (◦) Local Time of Overpass

146 ascending 30 41 16:52
168 descending 30 41 05:24
95 descending 41 45 05:16

All datasets were acquired in interferometric wide swath mode (IW) and VV/VH
polarization. Because interferometric and polarimetric features were calculated, single
look complex (SLC) [50] was chosen. A combination of the Python library pyroSAR [51],
which provides a parser for the XML-based graph builder, and SNAP (Version 9) was
used to preprocess the data. This was also integrated in an ODC environment [41], which
served as a cloud-based data management and computation platform. The processing
chain for polarimetric features contains terrain flattening [33], multilooking with one look
in azimuth and four looks in range, speckle filtering by a 5 pixel × 5 pixel boxcar filter, and
a range-Doppler terrain correction [52], resulting in a 20 m × 20 m spatial resolution and
gamma nought (GN) backscatter. Since backscatter was scaled to dB, the cross-polarization
(CR) ratio was calculated by VV-VH. Alpha (h2a_alpha) and entropy (h2a_entropy) were
derived from a C-2 Matrix [53]. As for the interferometric (InSAR) coherence, parameters
for multilooking and terrain correction remained the same. The calculation of the coherence
included the removal of the flat Earth and topographical phase by a moving window of
three pixels in azimuth and eleven pixels in range as well as a six-day temporal baseline
and consecutive master images [54]. Shuttle Radar Topography Mission (SRTM) data
(1 arc-second) were used in all steps requiring a digital elevation model. This set of S1
features, consisting of VV/VH backscatter intensity, CR, h2a_alpha, and h2a_entropy, as
well as VV/VH coherence, has been proven to reflect the changes in plant physiognomy
along the crop lifecycle by various studies [17–19,22,30].
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2.4. Multiorbit Time Series Analyses

The framework of this study combines two spatial scales: the field (i.e., micro) level
and the landscape, i.e., a region or any other artificial or (natural) stratum. Here, the latter
refers to the extent of the DEMMIN test site. An overview of the essential steps is provided
in Figure 2. These steps were conducted separately for each year, SAR feature, and relative
orbit of the S1 dataset to provide insights into the temporal patterns of a combined orbit
approach. Details on these steps are presented in the subsequent chapters.
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2.4.1. Field-Based Time Series Generation and Analysis

As mentioned in the introduction, a core hypothesis of this study is that phenologically
induced changes of the crop signature remain prevalent across multiple parametrizations
of a smoothing algorithm [17,18]. In the case of this study, LOESS with tri-cubic weight
and one-degree polynomial regression [17] was employed [55]. When applying LOESS, the
span is the parameter, by which the magnitude of smoothing is substantially changed.

Field-based time series generation encompasses three steps: (i) Applying a sequence of
spans ranging from 0.05 to 0.5 in steps of 0.05. This range covers the majority of smoothing
scenarios from “close to raw data” (0.05) to “strongly oversmoothed” (0.5). (ii) Detection of
TSMs, in this case., break points [56,57], as well as maxima and minima in smoothed time
series. (iii) Generation of TSM occurrence plots with a common bin size of six days (akin
to the revisiting rate of S1) were generated for the derivation of TSM occurrences at the
respective field. Such an operation stacks and unifies the indicated break points as well as
maxima and minima into single series for each TSM (see below). This particular part of the
framework is shown in Figure 3. The figure depicts the generation of a TSM occurrence
plot at the field level, the type of S1 features and crops, as well as the respective relative
orbits and years covered by this study.

This intermediary result is a TSM occurrence plot, illustrating the major windows
of phenologically induced signal change on field level. The TSM occurrence plots for the
extrema were generated separately for minima and maxima. Exemplary, yearly signatures
of each crop type, in this case VV intensity, and their respective extreme values are shown
in Figure 4.

When working with SAR time series in the context of crop monitoring, a high number
of noise-induced extrema can be introduced due to stochastic movement of plants or
weather events such as rainfall or strong winds. Weakly smoothed time series are especially
sensitive to such sources of noise. Therefore, a filter based on the standard deviation along
the temporal dimension was introduced. This filter excludes sequences of extrema, where
the difference between individual extreme values does not exceed the standard deviation.
The filter was applied to reduce the count of non-phenologically relevant extrema (i.e.,
variations exceeding one standard deviation were removed). Similar measures are also
found in other studies [18,30].
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2.4.2. Extraction of Temporal Patterns in TSM Occurrences at the Landscape Level

In the second step (Figure 2), TSM occurrence plots were generated at the landscape
level for each crop type. They display the overall distribution within the targeted area.
Since only greater densities of occurrence are of interest, a threshold-based approach was
used to decide which number of occurrences per field is considered a substantial amount.
This threshold is calculated automatically for each crop type, orbit, year, S1 feature, and
TSM by the sum of the mean and standard deviation of all counts of occurrences that are not
zero. Furthermore, this is also conducted separately for each field in every year. Thereby,
the relevance of TSM occurrences was assessed relative to the growing conditions of a year
and the crop- and orbit-specific effects, and the sensitivity of the S1 features to changes
during the crop lifecycle were considered. Figure 5 displays the general framework of the
analysis at the landscape level.
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As illustrated by Figure 5, the last step of the pattern extraction at the landscape
level encompasses an overlay of TSM occurrences with the crop-specific GDDsim baseline
Thereby, any substantial occurrence of a TSM was assigned to its corresponding range of
GDDsim values.

2.4.3. Derivation of Trackable Phenological Stages

The derivation of trackable phenological stages was accomplished by comparing
the date of occurrence for TSM (tracked) with the dates recorded by DWD (observed).
Such a comparison enables the allocation of phenological stadia by either matching
tracked TSM with the closest DWD observation by difference in days and GDDsim, i.e.,
DOYtracked–DOYobserved or GDDsimtracked–GDDsimobserved. In a subsequent step, these
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differences were then used to evaluate the tracking crop-specific performance of S1 for each
orbit, year, and S1 feature.

Therefore, differences between in situ observations and tracked events were aggre-
gated by mean and standard deviation across all five years for each orbit, S1 feature, and
phenological stage. The computation of mean values generated insights into the general
tendencies of temporal offsets (earlier or later than in situ observation) and the standard
deviation is calculated to measure the variance of these mean temporal offsets. By imposing
a threshold of ten days, or 150 GDDsim on the standard deviation, the reliability of TSMs
derived from an S1 feature was assessed according to its temporal variation across the five
years. The threshold of ten days was defined to resemble the S1A and S1B repetition rates
of a single platform and according to offsets commonly found in the literature [17,21,27].
With a temporal threshold of 10 days, the corresponding threshold of GDDsim was set to
150 assuming a daily accumulation of 15 GDDsim, which coincides with a value of solid
growth potential fitting all investigated crops. This is based on the concept of crop maturity,
which states that each BBCH stage has a corresponding average GDDsim value [15]. Hence,
each TSM occurrence close to that corresponding GDDsim value is most likely caused by
its associated BBCH value. Furthermore, the reliability for the stages represented within
the DWD observations was determined by applying an additional threshold of twelve
days (akin to the repetition rate of a single S1 platform) on the mean offset between TSM
patterns and in situ observations. The aggregation by orbit serves as an indicator as to
which viewing geometry more likely to produce TSMs close to the targeted stages. The
aggregation by BBCH stage, on the other hand may reveal parts of the crop lifecycle, where
the tracking capabilities of this framework are limited. Finally, the aggregation by S1
features highlights those S1 features whose TSMs patterns are most suited for tracking
certain stages of crop development [58].

3. Results
3.1. Major, Phenologically Induced Changes in Crop-Specific Time Series

The first objective of this study focused on the major changes in crop- and orbit-specific
signals. By aggregating the occurrence of TSMs via threshold to the landscape level, a
general pattern was made visible. To check if these patterns represent season-specific
dynamics, an exemplary subset of the pattern derived by break points is illustrated in
Figure 6. Here, the patterns of relevant TSM occurrences for winter wheat in 2018 and
2020 are displayed by their corresponding GDDsim (y-axis) and DOY (x-axis) values.
Furthermore, the vertical and horizontal lines of different style represent BBCH stages
according to their mean GDDsim and DOY values over five years. At first glance, the
combination of all S1 features covers the targeted BBCH stages as well as stages before
BBCH 30 (stem elongation) and during the time between BBCH 99 (harvest) and BBCH
0 (germination). By comparing the two years, four major patterns emerge. (i) Firstly,
the distribution of 2020 (blue dots) is more compact across all S1 features. (ii) Secondly
the wider distributions in 2018 often show orbit-specific tendencies, whereas 2020 mostly
exhibits windows of change originating from multiple orbits. (iii) Thirdly, 2018 and 2020
appear to be on different progressions of GDDsim summation. (iv) Fourth, depending on
the year, certain unique patterns emerge or stages are only covered in one of the two years
(e.g., intensity_cr and h2a_alpha: BBCH 87).
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Figure 6. Orbit-specific patterns of major signal changes at landscape level tracked by break points
according to day of year (DOY; x-axis) and artificial growing degree day (GDDsim) values (y-axis) in
relation to the corresponding five-year mean GDDsim value of BBCH stadia observed by DWD at
landscape level from 2018 and 2020. Exemplary illustration for fields of wheat. Temporal uncertainties
around BBCH stadia are marked by grey areas. Exemplary illustration for fields of winter wheat.

These patterns remain visible to a large degree when observing the distributions
of break point occurrences across the entire observation period, which are depicted in
Figure A1. While the individual progression is harder to track by visual interpretation, the
major time slots of phenologically induced signal change can be found for each S1 feature.
The in situ observations are covered by a combination of all features, and additional win-
dows of signal change for break points were discovered around 250 GDDsim (before stem
elongation) and 4000 GDDsim (between harvest/BBCH 99 and the DOYs corresponding to
germination/BBCH 0 of a new seeding of winter wheat). When inspecting the results of
extreme value analysis, it was discovered that the distribution within individual patterns of
maxima and minima is larger, when compared to the compactness of break points’ distribu-
tion. In regard to maxima (see Appendix A: Figure A2), VV and VH coherence cover mainly
stages around 250 GDDs and between 3000 and 4000 GDDs. h2a_alpha, h2a_entropy, and
CR only display a relevant pattern between BBCH 30 and BBCH 50, covering the timespan
between stem elongation and heading. Maxima of VV and VH backscatter intensities also
cover the time around BBCH 87 (yellow ripening) and partially extend towards BBCH 99
(harvest). When inspecting the relevant minima (see Appendix A: Figure A4), the pattern
of h2a_alpha, h2a_entropy, and CR is inverted by the pattern exhibited by VV and VH
backscatter, except for the part between harvest and germination, which is covered by all
five features. Distinct occurrences of minima in coherence signals were observed for the
time between stem elongation and heading. Additionally, VH coherence depicted a larger
number of year-specific patterns.

This exemplary display regarding the major signal changes and their relation to
phenological development showcases the depth of the insights that this form of analysis
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can provide. However, describing and discussing minute discrepancies and consistencies
was deemed out of scope for this article. Instead, summary plots such as Figure 7 were
created to illustrate systematic findings across all five years and three relative orbits. Here,
it was shown that break point occurrences of sugar beet exhibit a constant closeness
(according to the threshold defined in Section 2.4.3) to the targeted stages. Crop signatures
of canola also produced relevant occurrences close to the targeted stages, except for 2020.
Especially, the occurrences around the end of flowering remained comparatively constant.
Wheat displayed more variety; here, close patterns across all years were only found for
stem elongation (BBCH 30) and heading (BBCH 50). The development of potato was
also fully captured in 2018. Some of these findings are replicated by corresponding GDD
distribution. For each crop type, several value ranges (see Figure 7, GD.) were identified in
addition to the ones covering the targeted BBCH stages. Signatures of canola generated
break point occurrences around 1000 GDDs and 2700 GDDs. In potato, signatures of
such occurrences were found around 1200 GDDs, 1700 GDDs, and 2200 GDDs. Sugar
beet featured such occurrences between 1500 GDDs and 2000 GDDs. Wheat produced
additional concentrations of break points between BBCH 30 and BBCH 50, as well as
around 3000 GDDs and 4000 GDDs.
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Figure 7. Year-wise count of S1 features producing break points (Y.) that closely track phenological
stages by crop type and by their respective distribution of GDD values (GD.) at the landscape level
which is overlaid by the GDD values of BBCH in situ observations (colored areas).

Maxima (see Figure A4) display a partially similar behavior (Y.), but canola, for
example, produced mostly relevant occurrences around inflorescence (BBCH 50). All BBCH
stages of sugar beet are represented by maxima, and yet canopy closure (BBCH 39) exhibits
the largest S1 feature count. Stem elongation (BBCH 30), heading (BBCH 50), and yellow
ripening (BBCH 87) of wheat exhibit maxima in four out of five years. Potato, in contrast,
did not produce consistently close maxima to any BBCH stage. The GDD distribution (GD.)
of canola also features similar ranges to break points around 700 GDDs and between 2700
and 3000 GDDs.
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3.2. Tracking Reliability and Systematic Offsets

Since the corresponding DOY and GDD values of all TSM occurrences were subtracted
from the corresponding values of the in situ observations and these differences aggregated
over the entire observation period by mean and standard deviation, we were able to discern
systematic and nonsystematic offsets by the thresholds mentioned in Section 2.4.3. The
offsets of orbit and S1 feature that were deemed systematic by the threshold approach
are displayed in Figure 6 by their mean deviation (x-axis) and their variance over time
(standard deviation; y-axis). Furthermore, the results were separated by crop type and
observed BBCH stage.

Figure 8 also illustrates systematic shifts related to orbit geometry. Such clear distinc-
tions were found for inflorescence (BBCH 50) and end of flowering (BBCH 69) of canola,
and harvest of wheat (BBCH 99), as well as for all three stages of potato. Clear preferences
by S1 feature were discovered for yellow ripening of wheat (BBCH 87) as well as end of
flowering of canola (BBCH 69).
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While Figure 8 depicts the entire set of S1 features that produced break point occur-
rences of reliable offset and variance in accordance with the threshold approach described
in Section 2.4.3, Tables 4 and 5 list S1 features and their respective orbits that exhibited
comparatively low variances and offsets for their targeted BBCH stage. For wheat, mostly
intensity and coherence derived from orbits 95 and 146 were listed across all stages. With
regard to canola, the majority of stages was closely tracked by a combination of intensity,
alpha, and entropy, except for VH coherence at the end of flowering (BBCH 69). Sugar
beet and potato, on the other hand, produced break point occurrences in all S1 features.
In the case of sugar beet, VH coherence and intensity as well as alpha and entropy cover
emergence (BBCH 0), whereas leaf development (BBCH 10) was closely tracked by VV
intensity and coherence. Canopy closure (BBCH 39) featured occurrences by alpha, entropy,
CR, and VH intensity.
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Table 4. S1 features and their respective relative orbits producing reliable and comparatively close
break point occurrences for wheat and canola.

Winter Wheat Canola

BBCH Stage S1 Feature Orbit BBCH Stage S1 Feature Orbit

30 intensity_cr 146 50 h2a_alpha 146
coherence_vh 95 intensity_cr 95
coherence_vv 95 intensity_vh 146
coherence_vv 168 60 intensity_vv 95
intensity_vv 95 intensity_vv 168

50 intensity_vv 95 69 h2a_entropy 168
87 intensity_vv 95 intensity_cr 168

coherence_vh 146
intensity_vv 146 99 coherence_vh 146

99 coherence_vv 95 h2a_alpha 95
intensity_vv 146 h2a_entropy 95

h2a_entropy 168
intensity_cr 168

Table 5. S1 features and their respective relative orbits producing reliable and comparatively close
break point occurrences for sugar beet and potato.

Potato Sugar Beet

BBCH Stage S1 Feature Orbit BBCH Stage S1 Feature Orbit

0 coherence_vh 146 0 coherence_vh 146
10 intensity_vv 95 coherence_vh 168
39 intensity_cr 168 h2a_alpha 146

h2a_alpha 146 h2a_entropy 146
intensity_vh 95

10 intensity_vv 95
intensity_vv 146
coherence_vv 146

39 h2a_alpha 168
h2a_entropy 146
h2a_entropy 168
intensity_cr 146
intensity_cr 168
intensity_vh 146

As the same analysis was conducted for maxima and minima, it is evident (comparing
Figures 8 and 9) that maxima track fewer phenological events. In the case of maxima, some
sort of clustering for each relative orbit was observed for emergence (BBCH 0) of sugar beet
as well as stem elongation (BBCH 30) and heading (BBCH 50). In parallel to the analysis of
break points, the maxima of comparatively small mean deviation and variance are listed
in Tables 6 and 7. Maxima in relation to wheat were found for stem elongation (BBCH 30)
and yellow ripening (BBCH 87). The former was closely tracked by CR, alpha, and entropy
derived from orbit 146, and the latter by VH intensity from orbits 168 and 95. Maxima
in canola signatures were only found close to inflorescence (BBCH 50). These could be
produced by alpha, entropy, and CR. Signatures of potatoes exhibited relevant occurrences
of maxima in three stages: emergence (BBCH 0) was tracked by VH coherence from orbit
146, leaf development by VV intensity from orbit 95, and canopy closure (BBCH 39) could
be traced by CR (orbit 168) and alpha (orbit 146). Sugar beet displayed also a stage-specific
selection of S1 features. Maxima close to emergence (BBCH) were found in signatures of
VH coherence of orbits 146 and 168, alpha and entropy of orbit 146, and VH intensity of
orbit 95. Leaf development (BBCH) was tracked by VV intensity from orbit 146 and 95
as well as VV coherence of orbit 146. Canopy closure (BBCH) produced temporally close
maxima in signatures of entropy, alpha, CR, and VH intensity from orbits 146 and 168.
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Figure 9. Orbit, stage, and crop-specific offsets of maxima at landscape level in days, displaying their
mean deviation from in situ observations and temporal variance (standard deviation) by crop type
and BBCH stage, containing only tracked events that were labeled reliable by the threshold approach.

Table 6. S1 features and their respective relative orbits producing reliable and comparatively close
maxima occurrences for wheat and canola according to their mean offset and variance over the entire
observation period.

Wheat Canola

BBCH Stage S1 Feature Orbit BBCH Stage S1 Feature Orbit

30 intensity_cr 146 50 h2a_alpha 95
h2a_entropy 146 h2a_alpha 146
h2a_alpha 146 h2a_alpha 168

87 intensity_vh 168 h2a_entropy 95
intensity_vh 95 h2a_entropy 146

h2a_entropy 168
intensity_cr 95
intensity_cr 146
intensity_cr 168

The investigation into relevant occurrences of minima yielded the following insights
(illustrated by Figure 10) with regard to the trackability of the targeted stages: In terms
of mean deviation and variance, clear separations by orbit were found for inflorescence
(BBCH 50) of canola, harvest (BBCH 99) of wheat, and, to a certain degree, for leaf develop-
ment (BBCH 10) of sugar beet. Similar to the results of maxima, the number of phenological
stages that were labeled as reliably trackable is less in comparison to break points.
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Table 7. S1 features and their respective relative orbits producing reliable and comparatively close
maxima occurrences for potato and sugar beet.

Potato Sugar Beet

BBCH Stage S1 Feature Orbit BBCH Stage S1 Feature Orbit

0 coherence_vh 146 0 coherence_vh 146
10 intensity_vv 95 coherence_vh 168
39 intensity_cr 168 h2a_alpha 146

h2a_alpha 146 h2a_entropy 146
intensity_vh 95

10 intensity_vv 95
intensity_vv 146
coherence_vv 146

39 h2a_alpha 168
h2a_entropy 146
h2a_entropy 168
intensity_cr 146
intensity_cr 168
intensity_vh 146
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Figure 10. Orbit, stage, and crop-specific offsets of minima at landscape level in days, displaying their
mean deviation from in situ observations and temporal variance (standard deviation) by crop type
and BBCH stage, containing only tracked events that were labeled reliable by the threshold approach.

Minima of comparatively close distance and low variance are listed in Tables 8 and 9.
For heading of wheat, VV and VH coherence of all orbits are the dominant S1 features,
whereas harvest (BBCH 99) is only covered by VH intensity from orbit 168. For canola,
inflorescence (BBCH 50) was tracked by VV coherence (orbit 146) and intensity (orbit 168),
as well as CR (orbit 95). End of flowering (BBCH 69) was covered by alpha and entropy
from orbit 95 and the harvest (BBCH 99) by CR being derived from orbits 95 and 146.
Occurrences of relevant minima were found in potato signatures of entropy for emergence
and leaf development (BBCH 0 and 10). Regarding the development of sugar beet, alpha,
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entropy, and CR were close to emergence (BBCH 0) mostly in all orbits. Leaf development
could be tracked by minima of VV and VH intensity as well as CR via orbits 146 and 168.
Minima in VH coherence were detected close to canopy closure (BBCH 39).

Table 8. S1 features and their respective relative orbits producing reliable and comparatively close
maxima occurrences for wheat and canola.

Wheat Canola

BBCH Stage S1 Feature Orbit BBCH Stage S1 Feature Orbit

50 coherence_vh 95 50 coherence_vv 146
coherence_vh 146 intensity_vv 168
coherence_vh 168 intensity_cr 95
coherence_vv 95 69 h2a_alpha 95
coherence_vv 146 h2a_entropy 95
coherence_vv 168 99 intensity_cr 95
intensity_vv 168 intensity_cr 146

99 intensity_vh 168

Table 9. S1 features and their respective relative orbits producing reliable and comparatively close
maxima occurrences for sugar beet and potato.

Potato Sugar Beet

BBCH Stage S1 Feature Orbit BBCH Stage S1 Feature Orbit

0 h2a_entropy 146 0 h2a_alpha 95
10 h2a_entropy 146 h2a_alpha 146

intensity_vv 168 h2a_alpha 168
h2a_entropy 95
h2a_entropy 146
h2a_entropy 168
intensity_cr 95
intensity_cr 146
intensity_cr 168
intensity_vh 168

10 intensity_cr 146
intensity_cr 168
intensity_vh 95
intensity_vh 146
intensity_vh 168
intensity_vv 146
intensity_vv 168
h2a_alpha 168

h2a_entropy 168
39 coherence_vh 95

coherence_vh 146

4. Discussion
4.1. Discussing Patterns of Major Signal Change

The results of the investigation into patterns of major signal changes revealed and
reaffirmed serveral key aspects of SAR-based time series analyses. This is, to the extent the
authors are aware of, the first systematic study to analyze the relation between C-Band SAR
signals and phenological development of crops in an investigative approach encompassing
three relative orbits, five years, seven S1 features, two types of TSMs, and four different
crop types, as well as their BBCH stages. In addition to that, a novel approach of detecting
windows of phenologically induced change was applied by stacking time series of different
smoothing intensity to estimate the density of TSM occurrences.

Because the coverage of the targeted BBCH stages also implies insights into reliability
and offset, this is discussed in detail in Section 4.2. But apart from the targeted stages,
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the potential to cover additional time windows was demonstrated. Furthermore, the
integration of a GDD baseline provided a second temporal coordinate to evaluate the
tracking reliability of such events. Judging by their DOY values, the example of wheat
signatures contains likely freezing and thawing events around DOY 55 to 67 as well as the
transition into the catch crop stage alongside the reemergence of subsequent winter crops.
Similar observations were made for the other three crop types as well. Potato and sugar
beet also displayed additional TSM occurrences during their development up to the likely
period of harvesting. Such patterns were better discernable for break points as extrema
exhibited larger time windows. This reiterates the need to filter phenologically nonrelevant
extrema [30] or to limit the tracking to specific stages such as flowering of canola [29].

By conducting this analysis in a multiannual framework encompassing various agro-
meteorological conditions, phenological events that shape a crop-specific time series re-
gardless of weather conditions and signal processing were revealed in relation to their
viewing geometry. Hereby, highly active and inactive periods in terms of signal change
were placed into the context of plant lifecycles. In addition, this demonstrated the potential
to reveal parts of said plant lifecycles that are reliably traceable and not covered by the
DWD monitoring framework. This would suggest an added value of Earth-observation-
based monitoring setups for phenological monitoring, because data gaps would be filled.
The multiannual framework also highlighted the clear borders of the calibration periods
required for such an approach. The first local extreme values, which are not at the start
and end of the time series, were found as early as 20 to 25 days into the yearly observation
period break points provided only insights into yearly developments between DOY 50
and 300. This quantification of the calibration periods constitutes a contribution to the
discussion of information availability in time series [21] within the context of civil years.

4.2. Discussing Reliability and Systematic Offsets

As this study uses the DWD statistics on a federal level, the fact that major signal
changes are not necessarily linked to the onset of that particular micro stadium cannot
be fully discarded. Moreover, the results of the temporal thresholding (see Figures 8–10)
showed that signal changes were not necessarily related to the onset of BBCH stages
represented by in situ data. It is considered likely that adjacent micro stadia, in the case of
wheat and stem elongation BBCH 31 or 35, rather than 30 were depicted. This corroborates
the findings by [18,22].

Nevertheless, crop- and stage-specific sets of S1 features that produced close TSM
occurrences were identified. Overall, more stages could be closely tracked by break points
rather than extrema. This is most likely related to the wider range of uncertainty of extrema
and their respective time windows of phenological changes (see Figures A2 and A4).

With regard to break points, the targeted stages of winter wheat were best tracked by
VV intensity and coherence of orbits 95 and 146, reflecting the plant’s vertical structure. The
listing of coherence for stem elongation and harvest (BBCH 30 and 99) demonstrated the
features sensitivity to significant changes in volume of biomass [17,18]. The absence of orbit
168 suggests that tracking wheat phenology might be susceptible to moisture content when
using moderate incidence angles. Otherwise, a clear preference of steeper incidence angles
was only found at heading (BBCH 50). Such a clear overall preference in viewing geometry
was not found for canola. Only stage-specific preferences for the start and end of flowering
(BBCH 60 and 69) were found regarding moderate incidence angles. Here, h2a_entropy
and h2a_alpha, as well as intensity_cr, featured the closest occurrences of break points. The
preference of h2a and CR is most likely related to the complex structure of canola plants,
as they reflect a change in dominant scattering type. Furthermore, VV intensity being the
favorable S1 feature for tracking onset of flowering (BBCH 60) fits the increased sensitivity
of VV polarization to superficial changes of the canopy [29,31]. Some of these findings are
also replicable for sugar beet signatures. First of all, significant changes at the land surface
such as emergence (BBCH 0) or leaf development were captured by coherence. Secondly,
h2a and intensity_cr could be linked to canopy closure, which coincides with the time when
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the plant’s physiognomy is comparatively complex. However, sugar beet favors incidence
angles of moderate range, which is most likely related to its low height in comparison to
wheat or canola. The break points within signatures of potato exhibit a similar behavior,
similar to wheat orbit 95, and to some degree, 146 was favored. A tendency towards steeper
incidence angles was only found at leaf development (BBCH 10).

Results of the extreme value analyses overlap with these observations; however, there
are some notable differences. Heading (BBCH 50) of wheat produced local maxima in
coherence signatures, suggesting that the crop volume was stable enough to increase the
temporal correlation above noise level, regardless of the incidence angle. This particular
occurrence has not been observed by comparable studies [17,19]. A similar observation
was made for inflorescence (BBCH 50) of canola in VV coherence; however, this was only
related to moderate incidence angles. Another, more evident difference was discovered
for sugar beet. Here, extreme values did not show any preference of orbit, but displayed
a similar performance across all viewing geometries. This is most likely related to the
aforementioned finding, that extrema can be produced over larger time windows.

While unequivocal indications for a complementary tracking potential of different S1
features was only found for BBCH 69 of canola and BBCH 0 of potatoes, the increased num-
ber of listings around strong changes in biomass (harvest, stem elongation) or disturbances
of the soil agree with findings of previous studies [14,17,18,59], that InSAR coherence in-
creases the trackability of certain phenological stages. On the other hand, h2a_entropy and
h2a_alpha seem to provide less added value and can be replaced by intensity, especially
CR, in a dual-pol C-Band framework.

Considering the results of break points and extrema in relation to time of overpass,
moisture content within the canopy is rated as a secondary effect. But because the results of
the orbit-wise comparisons of wheat, canola, and sugar beet differ mostly by comparatively
small margins, it is also likely that the increased closeness to in situ observations originates
from a favorable revisiting schedule that is temporally closer to the onsite phenological
developments, especially because this study uses the DWD statistics at the level of federal
state. On top of these issues, the analysis of potato signatures was additionally hampered
by the comparatively small number of fields (twelve fields of potato vs. 500 fields of
wheat), which increases the impact of outliers on a generalized pattern at the landscape
level. Moreover, fields of potato in Demmin are characterized by rather heterogeneous
conditions due to the cultivation of different sorts of potato as well as the application of
sprinkle irrigation. Therefore, the statements made about phenological developments of
potatoes are considered less robust and serve more as a first impression.

Assessing another anticipated shortcoming, the references of DOYs corresponding to
BBCH 0 and BBCH 10 for winter crops as general points of orientation within phenological
progress of the civil year worked well in the chapter on major signal changes, and the
deliberate focus on the civil year ensured the comparability between the progress of all four
crop types. The GDDsim baseline is also affected by this decision, resulting in larger counts of
relevant GDDsim accumulations at the start of this season. Therefore, further studies on that
subject should account for this aspect. Nevertheless, the GDDsim baseline enabled an initial
quantification of relevant TSM patterns which were not covered by the in situ observations. In
addition, each of the TSM occurrences, as well as the in situ observations, are now associated
with a GDDsim value; thus, progress towards a certain BBCH stage or the next occurrence of
relevant TSM patterns is easily quantifiable in subsequent studies on this subject.

Needless to say, this study relies on the availability of information on crop types
and field boundaries, but these are also issues that the Earth observation community has
investigated. Therefore, there are solutions to overcome the lack of information on field
boundaries [60,61] or crop types [62].

4.3. Outlook

This successful investigation into phenologically induced pattern of S1 time series at
the landscape level opens up two major directions for future research.
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On the one side, an allocation of field-level developments within the general pattern
of the landscape is possible. This information can be used to check whether a field is early
or late in its phenological development when compared to the general trend at landscape
level. This would result in a more spatially explicit information than the interpolated
1 km grid of phenological progression provided by DWD. Additionally, a strong deviation
from the landscape level patterns may serve as an indicator for field-specific crop stress
such as lodging or pest infestation. On the other side, an archive of recorded phenological
events and their relation to a growing degree baseline has been established. As pointed
out by Harfenmeister et al. [22], and as was made evident during this study, back-looking
approaches such as break point and extreme value analyses are not easily converted
to a near-real-time application due to their calibration phases that may stretch across
multiple weeks. However, the satellite- and GDDsim-based records of said archive could
be leveraged in a comparative scenario analysis to assess the performance of an ongoing
season. This could be accomplished by a comparison between its S1-based time series and
the accumulation of GDDs with the successfully tracked phenological development of past
seasons. Furthermore, by including weather forecasts, even an outlook may be provided,
as the distance to the next phenological event on record also contains a respective GDDsim
value. Hence, the projected GDD accumulation from the weather forecast can be employed
to estimate the phenological progress of the ongoing season in comparison to the seasons
on record.

Finally, the transferability of the approach in space and time, especially with regard
to the added value of a GDD baseline, as well as the inclusion of spectral information are
deemed sensible objectives for further investigation.

5. Conclusions

This study produced comprehensive insights into how phenology of wheat, canola,
sugar beet, and potato shape their respective S1 signatures in different weather conditions,
their inherent viewing geometry, and regardless of how strongly the time series is smoothed
or processed otherwise. This leads to the following conclusions about TSM analyses:

(i) Break points constitute a better tool for entire-season monitoring, while extrema are
mainly suitable for specific stages, because of the great variations detected in patterns
of extreme values.

(ii) It is therefore crucial to optimize time signal processing for targeted stages or focus
on specific parts of the crop lifecycle when employing extreme value analysis.

(iii) This study demonstrates its suitability for entire-season coverage of the crop life-
cycle, as a single optimized smoothing of time series will inevitably hamper the
capabilities of a monitoring framework to detect certain macro or micro stadia of
crop development.

This approach also generated a designation of reliable S1 features by crop type and
relative orbit for the area of Demmin. An overall great suitability of backscatter intensities
was confirmed, and orbits favorable for tracking specific crop types were discovered. The
most prominent findings are as follows:

(iv) A moderate range of incidence angles between 31◦and 41◦ (orbit 146 and 168) is better
suited than a range between 41◦ and 45◦ (orbit 95) for tracking crop phenology of
sugar beet and wheat, whereas potatoes favor steeper angles. There are, however,
BBCH- and S1-feature-specific exceptions to these tendencies.

(v) Relevant signal changes often corresponded to surrounding micro stadia of the onset
of a macro stadium, instead of the onset itself.

(vi) With respect to times of overpass, only wheat displayed visible tendencies to favor
the late afternoon.

(vii) VV and VH intensity outperformed the other features in terms of overall relia-
bility. There are, however, specific combinations of crop type and BBCH stadia,
where a complementary dataset of PolSAR and coherence provides added value and
increased robustness.
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By adding an artificial GDD baseline, the quantification of progress towards targeted
stages by their thermal growth potential was achieved. This enables the relation of the
established patterns at the landscape level to phenological developments of individual
fields, because every TSM and BBCH stage at the landscape and at field levels were assigned
a corresponding GDD value. This, in turn, sets up objectives of further studies such as the
analysis of spatial patterns in phenological developments within the landscape and the
potential to highlight field-specific anomalies in the crop lifecycle.
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Figure A1. Orbit-specific patterns of major signal changes at landscape level tracked by break points 
according to day of year (DOY; x-axis) and artificial growing degree day (GDDsim) values (y-axis) 
in relation to the corresponding five-year mean GDD value of BBCH stadia observed by DWD at 
landscape level from 2017 to 2021. Exemplary illustration for fields of winter wheat. 

Figure A1. Orbit-specific patterns of major signal changes at landscape level tracked by break points
according to day of year (DOY; x-axis) and artificial growing degree day (GDDsim) values (y-axis)
in relation to the corresponding five-year mean GDD value of BBCH stadia observed by DWD at
landscape level from 2017 to 2021. Exemplary illustration for fields of winter wheat.
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Figure A2. Orbit-specific patterns of major signal changes by maxima by day of year (DOY; x-axis) 
and growing degree day (GDDsim) values (y-axis) in relation to the corresponding five-year mean 
GDDsim value of BBCH stadia observed by DWD at landscape level from 2017 to 2021. Exemplary 
illustration for fields of winter wheat. 

 
Figure A3. Year-wise count of S1 features producing maxima (Y.) that closely track phenological 
stages by crop type and by their respective distribution of GDD values (GD.)at the landscape level 
which is overlaid by the GDD values of BBCH in situ observations (colored areas). 

Figure A2. Orbit-specific patterns of major signal changes by maxima by day of year (DOY; x-axis)
and growing degree day (GDDsim) values (y-axis) in relation to the corresponding five-year mean
GDDsim value of BBCH stadia observed by DWD at landscape level from 2017 to 2021. Exemplary
illustration for fields of winter wheat.
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which is overlaid by the GDD values of BBCH in situ observations (colored areas).



Remote Sens. 2024, 16, 2791 23 of 26Remote Sens. 2024, 16, 2791 24 of 27 
 

 

 
Figure A4. Orbit-specific patterns of major signal changes by minima by day of year (DOY; x-axis) 
and growing degree day (GDDsim) values (y-axis) in relation to the corresponding five-year mean 
GDDsim value of BBCH stadia observed by DWD at landscape level from 2017 to 2021. Exemplary 
illustration for fields of winter wheat. 

 
Figure A5. Year-wise count of S1 features producing minima (Y.) that closely track phenological 
stages by crop type and by their respective distribution of GDD values (GD.)at the landscape level 
which is overlaid by the GDD values of BBCH in situ observations (colored areas). 

Figure A4. Orbit-specific patterns of major signal changes by minima by day of year (DOY; x-axis)
and growing degree day (GDDsim) values (y-axis) in relation to the corresponding five-year mean
GDDsim value of BBCH stadia observed by DWD at landscape level from 2017 to 2021. Exemplary
illustration for fields of winter wheat.
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