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Abstract: The availability of biomass is strongly influenced by seasonality, which can affect the production 
of biofuels, biogas, and bio- based products in the downstream bioenergy supply chain. Rapeseed, 
maize silage, sugar beet, wheat, and grass from grassland are the most popular energy crops; they play 
a significant role in the German bioenergy strategy and are being discussed extensively in the current gas 
shortage context. Most models in the literature assume yearly temporal resolution for these energy crops, 
which can negatively impact the accuracy of results. This problem is increasingly relevant under weather 
conditions that are varying increasingly due to climate change; in this study we therefore employ the 
extended bioenergy optimization model (BENOPTex) to explore the impact of seasonality on the optimal 
deployment of biomass from energy crops in bioenergy production in the German heat, power, and transport 
sectors, which typically show high dependency on fossil fuels. First, we increased the model’s temporal 
resolution using available datasets and documents. Next, the varying availability factors were embedded 
in the optimization model, considering the no- storage policy for energy crops in accordance with the just- 
in- time philosophy. Finally, the outcomes of the BENOPTex with annual resolution were contrasted with the 
results including the effects of seasonality, while considering various objective functions. We demonstrated 
a shift toward the consumption of woody biomass until 2045 due to its longer shelf life and improved 
storability. The energy demand stemming from summer leisure travel was also anticipated to exceed the 
bioenergy system’s capacity. The insights provided here might be interesting for policymakers who design 
roadmaps for bioenergy development with a more resilient energy supply. © 2024 The Authors. Biofuels, 
Bioproducts and Biorefining published by Society of Industrial Chemistry and John Wiley & Sons Ltd.
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Introduction

E
fforts to mitigate climate change have encouraged 
the use of renewable resources to replace fossil 
counterparts. The Paris Agreement lays the foundation 

for accelerated action plans to rectify targets from previous 
pacts (e.g., the Kyoto protocol). For instance, it demands 
that at least 40% of new electricity supplies should be from 
renewable electricity by 2040. However, some countries have 
chosen higher proportions – as much as 63%. There are also 
debates regarding the viability of 100% renewable energy 
(RE).1 As a leading actor, Germany has taken appropriate 
measures to transform its energy system so that the share of 
renewable electricity will be at least 80% by 20302,3 (beyond 
the 2030 target in the Paris Agreement), and is constantly 
reviewing and updating its targets. To meet the demand for 
clean energy, Germany relies primarily on hydroelectric 
power, wind turbines, solar photovoltaics, and bioenergy; 
however, the amount of energy produced by intermittent 
renewable sources can fluctuate over time due to their 
variable nature. Capturing the temporal aspect of these 
intermittent sources is an indispensable part of energy system 
modeling, providing insights regarding the synergy between 
these sources in order to enhance the flexibility of energy 
systems. As Germany transitions toward the use of higher 
proportions of intermittent renewables, it should therefore be 
prepared to cope with a multitude of problems in both supply 
and grid stability by 2050.4

Over the past decade, the consumption of renewable 
energy sources (RES) has been increasing worldwide, with 
biomass accounting for approximately 10% of total global 
primary energy demand.5,6 In 2021, bioenergy production 
from organic waste, forestry, and agricultural feedstock 
accounted for approximately 59% of RE consumption in the 
EU.7 According to the International Energy Agency, under 
the 2 °C scenario, bioenergy will account for 17% of the 
cumulative emissions savings until 2060.8,9 To keep global 
warming below the target of a 1.5 °C increase in average 
global temperatures, the International Panel on Climate 
Change claims that primary bioenergy use should range 
from 40 to 310 EJ/year.10 This underscores the importance of 
bioenergy as a key component of the global energy mix in the 
future. It is likely that the energy system of the future will rely 
heavily on RES, with biomass playing a critical role in niche 
applications. Biomass can be directly combusted to generate 
electricity and heat or serve as a feedstock for biorefineries 
to produce biofuels. An energy mix with a high reliance on 
intermittent sources needs storable energy, which biofuels 
can provide, to generate heat and power on demand.11 
Energy carriers in various states (i.e., liquid, solid, or gas) 

can be derived from biomass to cater for the requirements of 
different markets.

A multistage supply chain is involved in the generation 
of bioenergy, beginning with the collection of residues, 
byproducts, and wastes, and the cultivation of energy 
crops. Depending on local conditions and the desired final 
product, biomass is then mechanically processed, stored, 
transported, and converted into secondary energy carriers 
(e.g., biomethane and biofuels). A wide range of biomass 
resources can be used for energy purposes (e.g., forest wood, 
straw, cereals, liquid manure), most of which are affected 
directly by seasonality.12 The availability of biomass, which 
can influence prices,13 is highly dependent on the seasons and 
the region. Incorporating a high temporal–spatial resolution 
is therefore vital to capture the biomass allocation realistically. 
Considering a yearly time resolution in most transportation 
and energy system studies, there is a gap in the literature to 
investigate the impact of seasonality on bioenergy supply and 
demand. Assuming a yearly resolution ignores the seasonality 
of its production and implicitly means that biomass is always 
available on demand, which may involve perfect and free 
storage conditions.

Biomass, as feedstock, can be stored reliably for short 
and medium durations at a modest cost and requiring little 
technical knowledge, unlike gaseous fuels, which need 
proper infrastructure to store and transfer. However, as the 
bioenergy share in the energy mix increases, so does the 
need for long- term storage. Unfortunately, biomass storage 
for a long duration can result in its degradation, which can 
have multiple negative consequences, such as greenhouse 
gas (GHG) emissions, loss of feedstock and energy, and 
economic losses.14 This degradation may occur due to 
various factors, such as microbial activity, moisture content, 
and exposure to oxygen, leading to the breakdown of the 
biomass into less valuable components. There are two major 
storage practices: dry storage and wet storage systems. Dry 
storage systems pose a higher risk of microbial degradation 
of biomass if they provide favorable conditions for enzymatic 
activity or microorganism growth.15 Exceeding the moisture 
threshold in field- side storage of corn stover has been found 
to cause substantial losses in dry matter due to microbial 
degradation.16

Although wet storage systems are more efficient in 
long- term storage, they are more expensive than their dry 
counterparts. It is therefore crucial to exercise the just- in- 
time (JIT) management philosophy and lean manufacturing 
principles17 to mitigate these adverse effects by removing 
the need for storage. The application of JIT in managing 
biomass supply chain has been discussed previously in the 
literature. For instance, using an optimization model, Sun 
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et al.18 compared the JIT and regular delivery options of 
sorghum biomass feedstock. The authors concluded that the 
nonensiling options are competitive when the biomass yield 
and equipment rate are stochastic. With the lean philosophy 
in mind, Brue19 studied the technoeconomics of in- field 
harvest operations using data from a cellulosic ethanol 
biorefinery.

Lean manufacturing calls an action ‘Waste’ when no value 
that customers will be willing to pay for is added to the final 
product. There are seven wasteful manufacturing practices: 
Overproduction, waiting, transportation, inappropriate 
processing, excessive inventory, unnecessary motion, and 
defects. In this article, we concentrate on storage. Eliminating 
the need for long- term storage means that energy crops 
can be transformed immediately into final products when 
available, and should be consumed shortly after (i.e., a pull 
production system instead of a push system), which requires 
modeling at higher temporal resolution.

Since the 1970s, techno- economic energy system models 
have been employed extensively to study energy systems, 
using different spatial and temporal resolutions.20 The 
MARKet ALlocatio (MARKAL) model21 was designed 
to have fixed length time periods, whereas TIMES22 
benefits from flexible time slices. The flexible time slices 
enabled modelers to formulate flexible technologies. Using 
TIMES, Aliabadi et al.23 modeled bioenergy in eight time 
slices, distinguishing day and night in each season for 
each year in Turkey; however, the biomass potential is set 
annually. Tuck et al.24 studied the potential distribution 
for four groups of bioenergy crops in monthly time 
resolution under future climate conditions using a simple 
Fortran program, ignoring the downstream consumption 
pathways. TIMES- DK, a complete Danish energy system 
model covering the long- term investments required for 
technological development, was provided by Balyk et al.25 
Each year (from 2010 to 2050) consists of 32 non- sequential 
time slices, representing seasonal, weekly (working/non- 
working days), and daily (4 categories) variations. Using 
TIMBRA (The Integrated Market allocation Energy flow 
optimization System—BRAzil), Lap et al.26 examined 
how the domestic final energy mix was affected by GHG 
emissions related to land use change, under the influence 
of Brazil’s bioenergy demand. Even though the study spans 
a period between 2010 to 2050, it is divided into 5- year 
segments.

Millinger et al.27 proposed the bioenergy optimization 
(BENOPT) model, which formulates processes from source 
to end- of- service, allowing a detailed life- cycle GHG and cost 
assessments for optimal biomass and hydrogen allocations 
across sectors. However, it is important to note that the 

BENOPT model is not spatially explicit and functions mostly 
on yearly basis.

In Musonda et al.,28 a model of biomass crop cultivation, 
conversion processes, and sectoral demands was developed as 
part of a deterministic bottom- up linear optimization model. 
Biomass utilization through 2020 to 2050 was optimized 
based on GHG abatement and cost minimization in an 
annual time frame for bioenergy, biofuels, and biochemical 
technologies.28 In Millinger et al.,29 a study was conducted 
to formulate the competitiveness between conventional and 
advanced biofuels for road transport in Germany over the 
medium to long term. The results suggest that conventional 
bioethanol and biodiesel were the most cost- competitive 
biofuels throughout the study period. The main feedstock 
for bioethanol is sugar beet and rapeseed for biodiesel. 
These energy crops could remain important sources for the 
transportation market even though there is fierce competition 
between advanced and conventional biofuels. As a result, a 
higher time resolution will enhance the development of the 
model significantly by incorporating the impact of energy 
crops’ seasonality on resource availability, land use, GHG 
abatement, and market barriers.

Using Irish TIMES, Yue et al.30 probed optimal pathways 
toward 100% RE by 2050. While the Irish TIMES model 
considers 12 time slices in the power sector (i.e., four 
seasons, each comprised of day, night, and peak), the biomass 
potential has a yearly time resolution. In PRIMES,31 the 
production of biomass feedstock for bioenergy is modeled 
via competing technologies with different cost- supply curves 
with annual time resolution.

Using a technology- rich optimization model, Jordan et al.32 
studied the role of cultivated biomass with annual resolution 
in the German energy system, with a special focus on the heat 
sectors. The authors show that the strategic decision to grow 
energy crops will influence directly future transformation 
strategy, especially for high- temperature industrial heat 
applications.

As scientists request that the temporal resolution of 
intermittent renewable sources be increased for better 
management of energy systems, the role of variability in the 
availability of biogenic materials is becoming increasingly 
important.33 The annual resolution of biomass feedstock 
is a universal limitation of many energy system models 
because information regarding biomass potential is retrieved 
from the energy balances of the corresponding countries. 
Unfortunately, acquiring more refined data is not always 
straightforward, as there are laws (e.g., the EU General Data 
Protection Regulation34) in place to safeguard data at different 
levels. To cope with this issue, we take an alternative approach 
in this study. Recognizing that every plant undergoes distinct 
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growth stages from seed to fruit at precise times within 
specific environmental conditions, we have adopted a unique 
approach based on the natural vegetation cycle to further 
dissect the yearly biomass availability into shorter, more 
refined time slices.

The vegetation period is the part of the year when plants 
actively grow and develop. It varies in length depending 
on the region and is affected by genotypic differences and 
climate changes. C3 and C4 plants have evolved different 
photosynthesis cycles to adapt to hot and dry environmental 
conditions. Both plant types are important biomass sources 
but C4 plants may provide higher annual biomass than C3 
and other woody plants due to more efficient photosynthetic 
pathways.35 Native European plants and grasses have been 
extensively studied for their potential as efficient bioenergy 
sources under different climate conditions. In this article we 
therefore evaluate the bioenergy production potential of the 
critical bioenergy plants based on data from their specific 
vegetation phases in different regions of Germany. We study 
the impact of seasonality on the downstream of the bioenergy 
supply chain when the storage is eliminated. To the best of 
the authors’ knowledge, this study is the first of its kind to 
consider a refined temporal resolution in an optimization 
setting for investigating the effect of seasonality on biomass 
availability.

The remainder of the article is organized as follows. The 
next section describes our assumptions and the modeling 
approach. We then present the results and discuss the impact 
of seasonality on various feedstocks. Finally, we draw some 
conclusions from the study.

Material and methods

Energy systems can be analyzed either using top- down 
or bottom- up approaches.36 Optimization and simulation 
models from the bottom- up approaches and equilibrium 
models from the top- down approaches are well known 
methods. Optimization models aim to determine 
the optimal mixture of technologies that can achieve 
a certain target with a minimum cost or emissions, 
respecting technical and political constraints. Historically, 
optimization models are preferred in the literature as they 
can take into account the evolution of technologies through 
time and provide straightforward recommendations to 
policymakers.

Equations (1) and (2) present the standard form of energy 
system optimization models (ESOMs), where the objective 
function, f (x), and constraints, gj(x), can be nonlinear for 
a vector of decision variables x; however, most ESOMs are 
formulated in a linear form37 due to the complexity of the 

problem, which means that f (x) = c. x where c is a vector 
of cost coefficients, and g(x) = A. x − b where A is a matrix 
representing technical constraints, and b is a vector for the 
resource limitations:

To accomplish the techno- economic analysis considering 
seasonality, we employ the extended bioenergy 
optimization (BENOPTex) model.38 The BENOPTex model 
is a perfect foresight optimization model that integrates 
detailed process and techno- economic- political factors, 
such as capital and operational expenditures, and GHG 
emissions across sectors with life cycle considerations 
in mind. The optimization model is mathematically 
formulated in GAMS and used in interaction with 
MATLAB for visualization and scenario generation. Given 
the available resources, such as the available land, the GHG 
abatement level, and energy crops, BENOPTex finds the 
cost- optimal solution.

The BENOPTex model optimizes the allocation of 
dispatchable renewable energy carriers across sectors in the 
energy system using two objective functions: maximizing 
the GHG abatement level and minimizing the total system 
cost across multiple decades from the base year (i.e., 2020) 
until 2050. First, the model finds the optimal solution 
that maximizes the GHG abatement level. Then, it uses a 
portion (~99.5%) of the first objective function as the GHG 
abatement level requirement while minimizing the total 
system cost. Doing so ensures that alternative solutions 
with exorbitant system costs are filtered out. To summarize, 
our approach consists of multiple stages: reading data 
from databases in MATLAB and generating c, A and b
, running the optimization model in GAMS with the first 
objective function (i.e., maximizing the GHG abatement 
level), introducing a new constraint for the minimum 
acceptable level of the GHG abatement, run the model 
with the second objective function (i.e., minimizing total 
system cost), and finally collecting results and plotting 
them in MATLAB. Aliabadi et al.39 discuss our approach 
to decreasing the runtime by accelerating each of the steps 
mentioned above.

Our database contains annual information regarding the 
available residues and wastes in Germany.40,41 The available 
land to plant energy crops is assumed to decrease from 2.40 
million hectares (Mha) in 2020 to 2.16 Mha in 2050. The 
optimization model endogenously decides the appropriate 

(1)
min f (x)

s. t.

(2)gj(x) ≥ 0 , ∀ j ∈ J
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quantities of energy crops to be grown on the designated 
lands, given the energy demand requirements of each year. 
In Germany, wheat is considered the most common crop;42 
thus, the final price of other energy crops is calculated such 
that their profit margins are on par with the wheat profit 
margin as the benchmark.43 The electricity price has been 
calculated in the Renewable Energy Mix (REMix) model,44 as 
described in Aliabadi et al.45 REMix approximates day- ahead 
electricity prices using the merit order of thermal power 
plants’ dispatch,46 ignoring the strategic bidding behavior of 
power- generation companies.47,48 BENOPTex adds tariffs and 
levies on top of the market- cleared price, considering sectors 
(e.g., residential or industry).

We further improved the temporal resolution of energy 
crops using harvesting time windows and amounts as 
described in Fig. 1. The monthly harvest data and yields for 
different energy crops, including rapeseed,49 maize silage, 
and wheat,50,51 field grass from arable land,52 grassland,53 
miscanthus,54,55 and sugar beet,56,57 are extracted and 
normalized to a yearly total of 100%. Poplar is harvested from 
January, and is commercially available until mid- October;58 
one can therefore assume that the poplar wood quality and 
properties are less affected by storage time in comparison 
with other biomass types. We also differentiate field grass 
from grassland in our model, as the harvested biogas 

substrate from the permanent grassland can have a different 
harvest pattern from the arable land field grass (see https:// 
www. effiz ientd uengen. de/ gruen land/ ). Finally, the techno- 
economic parameters of each energy crop are derived from 
Belau.59

We modified the mathematical constraints and introduced 
new four- dimensional decision variables in BENOPTex to 
take seasonality into account. Equation (3) sets an upper 
bound on the availability of each energy crop based on 
harvest time and annual potential (ṁtifc). Equation (4) 
imposes the condition that the total consumption over time 
slices be equal to the annual use of the respective energy crop 
over entire cost categories (c ∈

{

cheap, average, premium)
}

:

E is the set of energy crops in our model. ṁdtif  is a 
temporally resolved decision variable showing the total 
amount of energy crop f ∈ E used by technology i at time 
slice d of year t  in petajoules (PJ). Mdf  is a parameter that 
describes the availability of energy crop f  at time slice d as 
a percentage. This percentage has been interpolated based 

(3)
∑

i

ṁdtif ≤Mdf ×
∑

i,c

ṁtifc ∀ t, f ∈ E, d

(4)
∑

d

ṁdtif =
∑

c

ṁtifc ∀ t, i, f ∈ E

Figure 1. Percentage of energy crops available in Germany on a monthly basis.
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on the monthly production of energy crops in Fig. 1. As is 
evident, ṁdtif  increases the number of decision variables 
significantly.

Equation (5) links the consumed feedstock in each time 
slice to the final product �dtis considering the efficiency of 
technologies:

R and ℰ are sets for the residues and electricity, respectively. 
�tfi is a parameter describing the efficiency of technology i at 
year t  in converting feedstock f  to the final product. D is the 
set of time slices; hence, ∣ D ∣ is the number of time slices in 
a year. m̃tif  represents the imported feedstock f  at year t  for 
technology i. m̂dti denotes consumed fossil fuel in time slice 
d of year t  by technology i. Equation (5) implicitly assumes 
that residues and imported feedstock are available uniformly 
throughout the year.

The annual energy consumption in the aviation sector 
is adjusted in conformity with the business- as- usual 
scenario considering the impact of the pandemic from 
4D- Race,60 a calculation model that produces air traffic 
emission inventories. For road transportation, we relied on 
the Vector21 model’s output, which simulates and assesses 
various transport technologies within the context of light and 
heavy- duty vehicle fleets.61 Due to the impact of seasonality 
on the consumption pattern of gasoline and kerosene, we 
included constraints (6) and (7) based on the periodic pattern 
in Dembińska et al.62 The authors show that gasoline and 
kerosene consumption in Europe reach their zenith during 
summer; however, this particular consumption pattern 
is not observed in the case of diesel fuel. This disparity is 
understandable considering that diesel finds application in 
other sectors like agriculture and heavy- duty trucks, whereas 
gasoline and kerosene are more correlated to leisure travel. 
Furthermore, for the same reason, the consumption pattern 
for gasoline and kerosene in Europe is at a minimum in 
February.

Equation (6) shapes the temporally resolved bioethanol 
production, �dtis, based on the consumption pattern of 
gasoline. In Eqn (6), MEtOH

d
 is an interpolated parameter 

describing gasoline consumption level at time slice d in 
passenger vehicles 

(

s ∈ SLDV
)

.

Equation (7) ensures that the supply- and- demand balance 
is held for aviation fuel in each time slice. In this equation, i 
represents technologies that can provide sustainable aviation 
fuels and synthetic fuels similar to kerosene. MA

d
 is a parameter 

determining the kerosene consumption pattern for each time 
slice. �ts denotes the annual energy demand in the aviation 
sector (s ∈ SA) in PJ. wtis represents the relative fuel economy 
of fuel produced by technology i at year t for sector s, and w′

ts 
denotes the fuel economy of imported synthetic fuel 

(

�
Imp

ts

)

.
To keep this discussion straightforward, we confined 

ourselves to explaining equations that are directly related 
to our contribution to the current study. However, readers 
should bear in mind that the BENOPTex model has multiple 
objective functions and technical constraints, similar to any 
other optimization model. The general description of terms 
in the objective functions has been presented in Appendix A; 
however, the interested modelers are invited to read Aliabadi 
et al.63 and Millinger et al.27

Results and discussion

Numerical results

For this study, we adjusted all time- related parameters and 
decision variables to a daily resolution. Nonetheless, our 
methodology is generic and can be accommodated to higher 
temporal resolutions. The introduction of four- dimensional 
decision variables has extended the computation time. For a 
daily resolution (d = 365), ṁdtif  and �dtis increase the number 
of decision variables in the model by 4.63 million and 6.03 
million, respectively. While GAMS solved the problem with 
yearly resolution in 640 s, the runtime of the daily model was 
above 16 069 s.

Improving the temporal resolution of the model increased 
the system cost of the optimal solution by 0.19%, while also 
resulting in a 0.12% reduction in the optimal GHG abatement 
level. This highlights a crucial point: models that have 
inadequate temporal resolution may overestimate emission 
reduction capabilities while underestimating logistic-  and 
storage- related costs.

Figure 2 shows the annual distribution of various alternative 
fuels from 2020 to 2050 in the transport sector for two 
settings in the presence or absence of daily resolution. The 
demand for energy in the transportation sector exhibits 

(5)

�

s

�dtis=
�

f∈{E∪ℰ}

ṁdtif×�tfi

+

∑

f∈R,cṁtifc

∣D ∣
×�tfi+

∑

f m̃tif

∣D ∣
×�tfi

+m̂dti×�ti ∀d, t, i

(6)

(

∑

d,i∈ IEtOH

�dtis

)

×MEtOH
d

=
∑

i∈ IEtOH

�dtis ∀dt, s ∈ SLDVs

(7)�ts×MA
d
=

∑

i∈IKER

(

wtis×�dtis

)

+
w�

ts×�
Imp

ts

∣D ∣
∀dt, s∈SA
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a decreasing trend after 2026, attributed to the increased 
efficiency of battery electric and fuel- cell vehicles compared 
to vehicles with internal combustion engines. We can see that 
the production of bioethanol from energy crops is affected 
negatively when the temporal resolution is increased. The 
reduction in bioethanol production from energy crops 

might be attributed to the abundance of these crops in a 
short period, resulting in processing facilities with limited 
capacities struggling to consume them during these brief 
intervals. The right- hand bottom corner magnifies two boxes 
in each plot in order to better exhibit the differences between 
these two settings.

Figure 2. The distribution of alternative fuels in PJ in all transport sectors with and without daily time slices. PtL, power- to- 
liquid; FCEV, fuel cell electric vehicle; LCH4, liquefied methane (including biomethane); BtL, biomass to liquids via Fischer–
Tropsch; PBtL, power- to- hydrogen + BtL; LignoMeOH, lignocellulose- based methanol; LignoEtOH, lignocellulose- based 
ethanol; HVO, hydrotreated vegetable oil; FAME, fatty- acid methyl ester; StarchEtOH, starch- based ethanol; and BeetEtOH, 
sugar beet- based ethanol. (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.)
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Figure 3 depicts the daily fuel production of various 
technologies for gasoline and kerosene in 2020, 2030, 
2040, and 2050. It shows that seasonal energy crops 
(e.g., sugar beet) will have a significant role in gasoline 
production until 2030; however, the energy crops that are 
used in conventional biofuels will be replaced by advanced 
technologies that convert lignocellulose to ethanol or 
methanol. In the aviation sector, sustainable aviation fuel 
produced using biomass by BtL and PBtL will gradually 
replace fossil kerosene. Nonetheless, fossil- based kerosene 
will be still needed in the summertime when air travel is at 
its peak. Thus, policymakers could advocate for measures 
that aid in leveling the consumption pattern by distributing 
travel across the entire year. Similar policy measures have 

been implemented in the past to tackle the climate/energy 
crisis in Tehran.64

Figure 4(a) depicts the production of heat in big industries, 
small- scale industries, trade and services, and households, 
and byproduct heat in the power sector. In the early years, 
the heat production variability is higher with heat being a 
byproduct of the Biogas technology, which consumes maize 
silage as feedstock to produce and combust biogas to produce 
electricity. The variability decreases between 2035 and 
2045 as most technologies in this interval consume woody 
biomass and forest residues. However, after 2045, the need for 
biomethane will push the model to employ BioCH4, which 
again uses maize silage as feedstock to produce biomethane 
for heat in small and big industries.

Figure 3. The distribution of alternative fuels for kerosene and gasoline in PJ. The horizontal axes display the day number 
within the specified year.
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Figure 4(b) shows the power production from dispatchable 
and nondispatchable sources. As we move into the future, 
the share of the electricity demand that should be satisfied 
by dispatchable sources will decrease as the solar and wind 
power will satisfy most demands in the shoulder hours and 
dispatchable power will only be needed to fulfill demand in 
peak periods. In 2050, gas and steam turbine peaking power 
plants (GUD) will be the dominant dispatchable option to 
produce electricity, which still uses more than 78% natural 
gas.

Figure 5 illustrates the daily consumption of energy crops 
in Germany from 2020 onward. It presents a clear depiction 
of the transition from conventional energy crops (rapeseed 
and sugar beet) to advanced bioenergy, with a shift toward 
woody biomass (i.e, poplar) as the primary feedstock until 
2045. This transition is driven by the benefits of woody 
biomass, including its longer shelf life and improved 
storability compared with conventional energy crops. 
However, the interest toward woody biomass will be replaced 
by maize silage until 2050. In addition to the overarching 
trend, a discernible periodic pattern emerges within each 
calendar year. Three years (2025, 2035, and 2045) are shown 
as examples in Fig. 5. This cyclic pattern is caused by the 
availability of the required energy crops within each year 
based on the daily demand pattern of the specific fuel type 
(see Fig. 3).

The growing trend in the consumption of maize silage after 
2045 is linked to the Renewable Energy Directive (RED) 
and high biomethane demand for heat, which mandate the 
total utilization of the bioenergy capacity in order to reach at 
least 80% of the GHG quota in the road and rail transport by 
2050. The GHG quota trend is depicted in Fig. 6. As shown, 
the gap between the perceived RED requirements and the 
GHG quota of the optimal solution is narrowing down in two 
sections, corresponding to the technological and managerial 
obstacles in the near future and the distant future.63 The 
pressure on the bioenergy supply chain caused by RED 
requirements will indirectly increase the consumption 
of maize silage for heating purposes in industry, trade, 
commerce, and services. As illustrated in Figure 1 of Aliabadi 
et al.63 the utilization of energy crops for biogas/biomethane 
production for non- transport- related applications is governed 
outside RED, allowing suitable energy crops to be available 
for biofuel production for the transport sector.

Avoided storage emissions

To model different storage strategies, an additional 
set of decision variables is needed in order to take 
into account the delay between the harvest and 
the processing time. This means having another 
∣ E ∣ ∕4 ×

(

|D|2 × |T|2 − |T|2× |D| − |T| × |D|2+ |T| × |D|
)

 

Figure 4. The daily mixture of technologies that produce heat as the main product (in big industries, commerce and trade, 
and residential sectors) and as a byproduct in the power sector in plot (a) and technologies that produce electricity in plot 
(b). KWK_l, large- scale combined heat and power (CHP) using wood; KWK_m, medium- scale CHP using rapeseed; Biogas, 
biogas combustion for electricity production using maize silage; BioCH4, biomethane production for heat production from 
maize silage; Gasif_s, wood gasification plant; KWK_HKW, wood- fired power plant with steam turbine; PelletK_GBD, pellet 
boiler for the residential sector; ScheitVK, log- gasification boiler; PelletK_GHD, pellet boilers for commerce trade service; 
HHS_GHD, wood- chip boiler for commerce and trade services; HHS_IND, wood- chip boiler for industries; GUD, gas- and- 
steam turbine power plant; PZK, paper and pulp + CHP; and KGA, sewage sludge digestion + CHP.
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decision variables, where ∣ E ∣ is the number of energy crops, 
∣ D ∣ is the number of time slices within a year, and ∣ T ∣ is the 
number of years; however, employing the lean philosophy 
(removing storage) not only simplifies the production 
processes but it also streamlines the modeling by removing 
the need for storage.

Having the optimal solution for both scenarios enables us 
to evaluate the impact of lean manufacturing on the GHG 
emissions from a storage perspective. Figure 7 exhibits 
the difference between the production energy crops in 
the model with and without seasonality. In Fig. 7(a), we 
compare two settings (i.e., annual model and daily model) 
using Ld+1,t,f = Ld,t,f +

∑

iṁdtif −
∑

i,cṁtifc∕ ∣ D ∣ . 
In Fig. 7(b), we focus only on the temporally resolved 
daily model by ignoring the strategy differences, using 
Ld+1,t,f = Ld,t,f +

∑

iṁdtif −
∑

i,dṁdtif∕ ∣ D ∣. Negative 
Ld,t,f  values mean that the uniform daily consumption of the 
annual harvest potential can exceed the availability of energy 
crops, indicating that the difference has to be met with storage 
(see Appendix B). The amplitude of oscillations is the result 
of the agricultural land size dedicated to that specific energy 

crop in each year. The more land we allocate to a specific crop, 
the greater the variation in the outcomes we can expect.

Figure 5. The daily energy consumption of crops until 2050 (in PJ).

Figure 6. The GHG quota trend until 2050 for the temporally 
resolved model. The filled areas reveal the narrowing gaps 
between perceived RED requirements and the GHG quota 
of the optimal solution.
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One can split Fig. 7(a) into two intervals: 2020–2025 and 
2025–2050. In the first interval, which is displayed in the inset 
plot, a periodic behavior is witnessed, meaning that the optimal 
consumption patterns are similar between the daily and 
annual models, and the difference is driven by higher temporal 
resolution; however, beyond 2025, the temporally resolved 
daily model harvests more maize silage and less sugar beet. As 
the periodic behavior does not hold in this case, negative Ld,t,f  
values cannot be utilized as proxies for the inventory. To retrieve 
the periodic behavior, we rely on the value of the daily model 
in Fig. 7(b). The stored energy crops in (B), which correspond 
to the area of the plot (B) below zero, are 5.971 million tonnes 
of fresh matter (MtFM) rapeseed, 704.153 MtFM maize 
silage, 0.324 MtFM wheat, and 142.430 MtFM sugar beet for a 
duration of a day. Employing the average daily emission factors 
for corn stover for a moisture content of 24% and an average 
temperature of 20°C [Table 6.7–8 in Emery65], the additional 
GHG emissions of 100 ± 90.5 MtCO2 eq will be emitted from 
storage places in 30 years. This value is still far less than the 
emission gap between the annual model (with a perfect storage 
system) and the daily model (with no storage), which means 
that establishing a storage system will provide an opportunity 
to avoid consuming far more polluting energy sources in peak 
demand periods.

Conclusions

This study incorporated the natural vegetation cycle of plants 
in an optimization model to enhance the temporal resolution 
for energy crops as feedstock. By employing JIT philosophy, 

the long- term storage of perishable feedstocks is assumed 
to be prohibited. The improved model provides valuable 
insights to farmers and other stakeholders in managing 
available land, considering the downstream of the bioenergy 
supply chain. The enhanced optimization model also enables 
us to capture the effect of seasonality on the availability 
of processing facilities (e.g., in the sugar beet processing 
industry). The results show that excluding long- term storage 
by practicing the JIT philosophy might negatively impact 
the total system cost and emission reduction objectives. 
Thus, the development of new, affordable long- term 
storage techniques should be encouraged. The outcomes 
also reveal that conventional biofuels will be replaced with 
advanced lignin- based biofuels, which are more resistant to 
degradation, in the future. This finding has been corroborated 
by other studies that investigated the competition between 
conventional bioenergy and the food supply chain.66 Finally, 
we demonstrated that, without storage, the high energy 
demand caused by summer leisure travel will surpass the 
bioenergy system’s capacity.

This study can be extended in multiple directions. Forest 
residues are also affected by both seasonality and climate 
change. Therefore, one can soft- link vegetation models (e.g., 
FORMIND67 and LPJmL68) with the BENOPTex model to 
provide insights for better forest management. Expanding the 
sectoral coverage can also be encouraged (e.g., chemical and 
pharmaceutical industries). Various storage techniques can 
also be studied with the model. Finally, increasing the spatial 
resolution of the optimization model can improve the quality 
of results by incorporating regional characteristics.38

Figure 7. Energy crop availability differences in tonnes of fresh matters (a) between daily and annual models, and (b) in the 
daily resolved model with/without storage.
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Appendix A

Objective functions

As mentioned earlier, we use two objective functions 
consecutively. Equation (A1) presents a stylized 
representation of the first objective function that maximizes 
the GHG abatement level 

(

zGHG
)

: 

Equation (A1) consists of two positive and four negative 
terms. z1 quantifies avoided emissions by producing 1 PJ 
energy (i.e., bioenergy and synthetic fuels) from various 
technologies through the time horizon from 2020 until 
2050 for different sectors in ktCO2eq/PJ. In z2, emissions 
in different stages of the energy crops supply chain have 
been taken into account: emissions from cultivation-  and 
transportation- related activities. On the other hand, 
for residues in z3, only transport- related emissions are 
considered. In z4, we consider the carbon intensity (in 
ktCO2eq/PJ) of the utilized electricity from the grid. z5 
evaluates the additional CO2 emissions from fossil fuels that 
are captured and used for the production of alternative fuels. 
z5 = 0 as BENOPTex utilizes carbon from organic sources. 
Finally, z6 is the linearization term to double count the use of 
advanced biofuels beyond 2.6% according to the renewable 
energy directives.

The second objective function (zc) minimizes the total 
system cost. zc consists of five terms including the production 
(

z7
)

, investment 
(

z8
)

, consumed feedstock/fuel (including 
domestic z9 and imported z10), and penalty 

(

z11
)

 costs. To be 
in line with REPowerEU,69 we assume that imported synthetic 
fuel is more expensive than domestically produced fuel, 
considering external costs such as reliability and sustainability. 
z11 has a similar role as z6 in the cost function. The detailed 
explanation for z1 to z11 is presented in Appendix A of 
Esmaeili Aliabadi et al.63

Appendix B

Seasonality oscillation

To demonstrate the impact of seasonality on the optimization 
models, Fig. B1 concentrates on the oscillation of rapeseed 
in Fig. 7(b) in the first year. These oscillations resemble the 
economic production quantity (EPQ) models;70 however, the 
rate of changes between two settings is a function of day in 
our case, giving smooth peaks and valleys.

In a continuous time space within each year, the blue area 
(S−

tf
) can be calculated by taking the integral of Ldtf  function 

when its value is nonpositive (Eqn (B1)). The pink area 
(S+

tf
 ) can also be calculated similarly by integrating the Ldtf  

function when its value is non- negative (Eqn (B2)). These 
integrals can be approximated by summing all the Ldtf  values 
over time slices, considering the duration of time slices (i.e., 
the Riemann method).

(A1)

max zGHG=

z1
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

(Avoide demissions)−

z2
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞
(

Energy crops emissions
)

− (Residues emissions)
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

z3

−
(

Emissions from electricity
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
z4

−
(

Additional emissions from utilizedCO2

)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
z5

+
(

Linearizing term
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
z6

(A.2)

minzc =

z7
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Production costs+

z8
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Investment costs

+ Domesticfeed stock costs
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

z9

+

z10
⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞

Imported feedstock∕synthetic fuel

− Linearizing term
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟

z11

Figure B1. The harvest difference between the daily and 
annual temporal resolutions for rapeseed.
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S−
tf
≥ 0 means that the constant harvest assumption 

overestimates the availability of energy crops in the 
respective period ( t̂1); however, the rapeseed harvest time 
in the daily formulation begins from April (d = 100) , 
turning the trend slope gradually from negative 
(�− = −

∑

i,dṁdtif∕ ∣ D ∣ ) to positive (i.e., �+). Assuming 

a smooth function, the trend is at minimum or maximum, 
when �Ldtf∕�t = 0⇒

∑

iṁdtif =
∑

i,dṁdtif∕ ∣ D ∣.
Due to the low temporal resolution of the annual 

model, the availability of energy crops is overestimated 
in S−

tf
 regions, having to be fulfilled from storage. 

The storage facility should be big enough to handle 
I
max
f

= 2S−
tf
∕
(

t̂1 + t̂2
)

 tFM for each energy crop for a short 
duration. The red dashed region in Fig. B1 depicts a system 
that takes into account the rapeseed storage with the amount 
of S−

tf
. Furthermore, S+tf ≥ 0 means the possibility of storage; 

however, it depends on the daily consumption of harvested 
feedstock. All in all, this outcome affirms the inaccuracy of 
annual settings, which require the seasonality effect to be 
taken into account.

(B1)

S−
tf
= −

�

�

1{Ldtf≤0}Ldtf

�

dt≈
−
∑

d

�

1{Ldtf≤0}Ldtf

�

∣D ∣
,∀tf

(B2)S+
tf
=
�

�

1{Ldtf≥0}Ldtf

�

dt≈

∑

d

�

1{Ldtf≥0}Ldtf

�

∣D ∣
,∀tf
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