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Zusammenfassung 
 

 

 

Das Ziel der Arbeit in der vorgelegten Dissertation ist, mehrere notwendige Technologien für 

ferroelektrische Kondensatoren, die Schlüsselkomponente der FeRAMs zu entwickeln und die 

Eigenschaften von damit hergestellten ferroelektrischen Kondensatoren zu untersuchen. 

Zunächst wird in Kapitel 1 der Zustand der gegenwärtigen Halbleiterspeicherbauelemente 

zusammengefasst und die potenzialen Kandidaten für die Zukunft werden vorgestellt. Eine 

Einführung von ferroelektrischen Materialien und eine Überblick des aktuellen Status der 

FeRAMs werden in Kapitel 2 gegeben. Die folgenden Kapiteln sind fokussiert auf: Kapitel 3, 

Untersuchungen der ferroelektrischen PZT-Dünnschichtabscheidung mit neuen Präkursoren. 

Kapitel 4, Untersuchungen des reaktiven Ionenätzens des Iridium-Elektrodenmaterials. 

Kapitel 5, Untersuchungen der Abscheidung von Iridium als Elektroden in 

drei-dimensionalen Strukturen. Kapitel 6, Realisierung und Charakterisierung von 

drei-dimensionalen ferroelektrischen Kondensatoren. 

 

In dieser Arbeit konnten die unten aufgeführten Zielstellungen erreicht werden:  

 

(1) Ein MOCVD-PZT-Dünnschichtabscheidungs-Prozess auf Ir Substraten mit neuartigen Zr 

und Ti Präkursoren wurde entwickelt. Die PZT-Filme, die bei 450/500/550°C 

abgeschieden wurden, sind ferroelektrisch und die Filme, die bei 500/550°C abgeschieden 

wurden, zeigen gute remanente Polarisationen.  

 

(2) Reaktives Ionenätzen von Iridium mit einer Al-Maske und CF4/O2/Ar Gasmischungen 

wurde entwickelt. Höhere Ätzraten wurden bei erhöhten Substrattemperaturen erreicht. 

Eine hohe Selektivität zwischen Iridium und der Al-Ätzmaske wurde erhalten.  

 

(3) Ein Abscheidungsverfahren für Ir-Dünnschichten auf 3D-Strukturen wurde unter 

Verwendung von plasmaunterstützter MOCVD entwickelt. Bei ausreichender Qualität der 

Ir-Schichten für die Anwendung als Elektroden von 3D-Kondensatorstrukturen wurden 

annehmbare Kantenbedeckung und Oberflächenmorphologie erreicht.  
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Zusammenfassung 

(4) Ir/PZT/Ir ferroelektrische Kondensator-Stapel auf 3D-Strukturen wurden realisiert. Die 

3D-Kondensatoren zeigen gute ferroelektrische Eigenschaften, die mit 2D-Kondensatoren 

vergleichbar sind, haben aber höhere Leckströme als 2D-Kondensatoren und neigen bei 

Zykel-Testen stärker zu Ausfällen. 

 

Nach Zusammenfassung der Ergebnisse dieser Arbeit können einige Schlussfolgerungen für 

die künftige Arbeit gegeben werden:  

 

Obwohl die bei 450°C abgeschiedenen PZT-Filme ferroelektrisch sind, sind ihre remanenten 

Polarisationen zu niedrig. Weitere Verbesserungen ihrer Qualität sind erforderlich. Eine 

weitere Reduzierung der Abscheidungstemperatur erhöht die Kompatibilität zu 

herkömmlichen CMOS-Prozessen. Um mit anderen Speicherbauelementen zu konkurrieren, 

ist auch eine Reduzierung der Schichtdicke von PZT unter 50nm in 3D-Kondensatoren 

erforderlich. Ungleichmäßige Pb Gehalte, inhomogene Mikrostrukturen und teilweise 

kristallisierte Phasen in PZT-Filmen können für die ferroelektrischen Eigenschaften schädlich 

sein. Dies sind wichtige Fragen, die vor einer Massenproduktion noch gelöst werden müssen.  

 

Ein reaktives Ionenätzverfahren für Ir wurde in dieser Studie entwickelt. Weitere 

Untersuchungen mit Ir/PZT/Ir-Stapel sind notwendig, um die Kompatibilität mit PZT-Filmen 

zu gewährleisten. Es erscheint auch lohnenswert, Al2O3-Dünnfilme als Hartmaske für das Ir 

Ätzen mit CF4/O2 Gasmischungen zu untersuchen.  

 

Obwohl die in dieser Arbeit entwickelte Abscheidungstechnik von Ir Dünnschichten für 

3D-ferroelektrische Kondensatoren anwendbar ist, sind weitere Verbesserungen der 

Kantenbedeckung erforderlich. Die Abscheidung von Ir durch ALD kann eine Alternative zu 

MOCVD sein, um eine bessere Kantenbedeckung zu erreichen.  

 

Die Gründe für die in dieser Arbeit beobachteten relativ hohen Leckströme der 

3D-ferroelektrischen Kondensatoren müssen weiter untersucht werden. Außerdem, sollten 

komplexere Elektroden mit leitfähigen Oxiden wie SrRuO3 und LaNiO3, in den 

3D-Kondensator-Stapel integriert werden, um die langzeitstabilität der Speicherstrukturen zu 

erhöhen. 
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Abstract 
 

 

 

The aim of this work in the thesis is to develop several necessary technologies for 

ferroelectric capacitors, the key component of FeRAMs, and to investigate the properties of 

ferroelectric capacitors manufactured in this work. At first, the status of present 

semiconductor memory devices is summarized and the potential candidates for the future are 

introduced in Chapter 1. An introduction of ferroelectric materials and a review of the status 

of FeRAMs are given in Chapter 2. In the following chapters the effort is focused on the 

following topics, Chapter 3: Investigation of PZT ferroelectric thin film deposition with novel 

precursors, Chapter 4: Investigation of reactive ion etching for the iridium electrode material, 

Chapter 5: Investigation of the deposition of iridium as electrodes in three-dimensional 

structures, Chapter 6: Realization and characterization of three-dimensional ferroelectric 

capacitors. 
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1  Introduction of Semiconductor Memory Devices 
 

 

 

1.1  Storage Media for Modern Life 
 

Integrated-Circuit (IC) technology has changed the life of human beings very much 

since the 70’s in the last century. Nowadays cell phones, computers, multimedia products and 

many other devices and equipments, which base on IC technology, have played an important 

role in our daily life.  

 

In order to achieve the functions of these equipments and devices, storage components 

are usually indispensable in the whole system. There are many types of storage components. 

Hard disk, CD and DVD, which work according to magnetic or optical characteristics of 

materials, have usually lower cost but larger equipment dimensions. DRAM, SRAM and 

Flash which base on IC technology, have higher storage density, and, therefore, have smaller 

dimensions but higher cost.  

 

Different types of storage components can satisfy criteria of different applications. In 

the example of computer, hard disk has substituted floppy disk since decades of years to be 

the main system storage device in computer because it has much larger capacity, faster 

read/write speed and better reliability than floppy disk. The operating system, software 

programs and user data are usually saved in hard disks.  

 

Hard disk cannot fulfill the demand of all kinds of memory function because its speed 

(access time and data transport rate) is much slower relative to system operation speed. In 

order to enhance the performance of computer, DRAM and SRAM are also necessary in 

addition to hard disk. They can operate in higher speed than hard disk and are used as buffer 

between hard disk and CPU (central processing unit) or between many other components in a 

computer. DRAM and SRAM are so-called volatile memories. The data in DRAM/SRAM 

will be lost after the power is turned off. If it’s necessary to keep the data in DRAM/SRAM, 

1 



Chapter 1  Introduction of Semiconductor Memory Devices 

they must be transferred to nonvolatile storage device, for example hard disk, before 

power-off.  

 

It is very usual to transfer data between computers. A removable storage medium is 

necessary for such a demand. A hard disk is very sensitive to shock and vibration, so it’s not 

suitable to be used as removable storage medium. A floppy disk, as mentioned above, has 

only small capacity, low read/write speed and bad reliability, is already out of date. DVD, CD 

and Flash memory devices are state-of-the-art as removable storage mediums. Besides, DVD 

and CD have replaced video tape and audio tape to be the main storage mediums of movies 

and music.  

 

In recent years, portable devices, such as cell phone, mp3 player, digital camera, PDA, 

etc., are more and more popular. These products demand high capacity of memories with high 

storage density, low power consumption and nonvolatile property as criteria.  

 

Flash memory chips are so far the primary candidate as storage medium for these 

portable devices. Flash memory is nonvolatile memory, so continuous power consumption is 

not necessary for data conservation. However, there are other disadvantages. First, a Flash 

memory can only be rewritten for about 105 to 106 times. There will be a reliability problem 

in some applications. Second, writing data takes much longer time than for other 

semiconductor type memories. In addition, the cost of a Flash memory is much higher than 

for other storage mediums such as hard disk, DVD and CD. 

 

Scientists and engineers are always looking for a universal memory device. It must be 

nonvolatile and must have low power consumption, high speed, good reliability, high storage 

density and low cost. Many candidates have been researched and developed to fulfill these 

criteria. Among them, FeRAM (Ferroelectric Random Access Memory), MRAM (Magnetic 

Random Access Memory), PCRAM (Phase Change Random Access Memory) are more 

popular and have more potential to be the universal memory device. 

 

This thesis is focused on FeRAM. The effort is concentrated on the ferroelectric thin 

film deposition and the realization of a 3-dimensional ferroelectric capacitor, which is the key 

structure in a FeRAM. 
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Chapter 1  Introduction of Semiconductor Memory Devices 

 

1.2  Current Status of Semiconductor Memory Devices 
 

Nowadays the most commonly used semiconductor memory devices are SRAM, 

DRAM and Flash. They play different roles in different applications. 

 

 

1.2.1  SRAM 
 

An SRAM (Static Random Access Memory) cell consists of 6 transistors – two CMOS 

inverters stand back-to back with two additional transistors for input/output control (Figure 

1.1). Two CMOS inverters (transistors P1/N1 and P2/N2) form a latch to keep complement 

logic levels 0 and 1 in each inverter. The two additional control transistors (N3, N4) are 

turned off except during read and write operations. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     
WL 

VDD 

VSS 

BL BLB 

Figure 1.1  SRAM memory cell. 

P1 P2 

N1 N2 
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In write operation, BL (bit line) and BLB (bit line bar, conjugated bit line) are kept in 

complement logic level 0 and 1, N3 and N4 are turned on through WL (word line). The logic 

state in latch will be overwritten by BL and BLB. In read operation, BL and BLB are 

precharged. After turning on N3 and N4, the data in latch will cause charge redistribution in 

BL and BLB. A sensing amplifier, which is connected to both BL and BLB detects the 

voltage difference between BL and BLB after charge redistribution and reads out the data in 

cell. 

 

Such a SRAM memory cell in Figure 1.1 uses six transistors, which occupy a quite 

large chip area. It’s so-called 6T-SRAM. There is an alternative 4T-SRAM, in which two 

PMOS transistors P1 and P2 are replaced by two poly-Si resistors. Poly-Si resistors can be 

made over MOS transistors therefore the cell area can be reduced but at the expense of higher 

power consumption. 

 

A permanent power VDD is necessary to keep the data in latch. The data will be lost 

without power supply, so SRAM is a volatile memory device. It seems that SRAM has the 

highest operation speed than other semiconductor memory types. This is the reason why it can 

survive in the market in spite of its large cell area.  

 

Further information about SRAM is available in reference. [1.1]–[1.4] 

 

 

1.2.2  DRAM 
 

A DRAM (Dynamic Random Access Memory) memory cell has an NMOS transistor 

as a switch and a capacitor for data storage (Figure 1.2). The electrical charge stored in 

capacitor represents the logic level of this cell. 

 

The write operation is very simple. Switch transistor N1 is turned on by WL, capacitor 

C1 is charged or discharged by the voltage between BL and PL to write data 0 or 1. In read 

operation, BL is precharged and then N1 is turned on. There is charge redistribution between 

capacitor C1 and BL. A sensing amplifier, which is connected with BL, can detect the voltage 

change of BL to read out the data in cell. It should be noticed that, after read operation the 
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data stored in capacitor is disturbed because of charge redistribution. Such a read operation is 

a destructive read operation. It’s necessary to rewrite the data back into the capacitor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

An ideal DRAM cell should always keep the charge in the capacitor. In reality there is 

a leakage current through the dielectric of the capacitor or through the p-n junction of the 

source node of the NMOS transistor at capacitor side. The charge in the capacitor will be lost 

after a certain time. A “refresh” procedure is necessary, which reads all the cells in the whole 

memory and rewrites their data back. The common refresh period is every 64ms. Of course, 

the data will be lost after turning off the power. DRAM is a volatile memory, too. 

 

Further information about DRAM is available in reference. [1.1]–[1.4] 

 

 

1.2.3  Flash Memory 
 

A Flash memory cell consists of only one transistor, but the transistor is not a normal 

transistor. A Flash transistor has an extra floating gate between the normal gate and the 

substrate (see Figure 1.3). 

 

     

PL 

BL 

Figure 1.2  DRAM memory cell. 

WL 

C1 

N1 
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The floating gate can be charged and discharged during “program” and “erase” 

operations. A charged floating gate increases the threshold voltage (Vt) of this transistor so 

that this transistor cannot be turned on with the same WL voltage, which is used to turn on 

transistors with discharged floating gate. Different Vt’s caused by charged/discharged floating 

gate represent logic levels 0 and 1. 

 

 

 

 

 

 

 

 

 

 

 

 

In read operation, BL is precharged and a voltage is added to control the gate through 

WL. If the floating gate is discharged, the transistor is turned on. BL is discharged through the 

transistor. If the floating gate is charged, the transistor cannot be turned on. BL will not be 

discharged. The charged/discharged BL causes difference on sensing amplifier and the logic 

level in the cell can be detected. To write data into a Flash cell is a little more complicated 

than in a SRAM and a DRAM. There are dielectric films above and under the floating gate 

and these dielectric films are insulators. Only with a very high voltage a tunnel current can 

occur and flows through the dielectric film to charge/discharge the floating gate. The write 

operation is divided into “program” and “erase” operations. In program operation, electrons 

tunnel from the substrate into the floating gate with very high WL voltage or both high WL 

and BL voltages. The floating gate is charged and Vt becomes higher. This cell is 

programmed to 0. In erase operation, either VSS or VBB voltage is kept very high. The electron 

charge in the floating gate can tunnel through the dielectric film into the substrate. Vt becomes 

lower and this cell is erased to 1.  

 

Because a tunnel current is usually very small, such a program/erase operation takes 

very long time compared with write operation in SRAM and DRAM. In addition, the 

     

VSS 

BL 

Figure 1.3  Flash memory cell. 

WL 

Floating gate 
N1 

VBB 

Control gate 

6 



Chapter 1  Introduction of Semiconductor Memory Devices 

dielectric film degrades with program/erase cycles. The state-of-the-art Flash product has the 

endurance of around 106 program/erase cycles. This is much less than over 1015 read/write 

cycles of SRAM and DRAM.  

 

In spite of the disadvantages mentioned above, Flash has a superiority that SRAM and 

DRAM don’t have. The charged electron can stay in the floating gate even when the power is 

turned off. The data in memory cell can be kept without power. A Flash memory is a 

nonvolatile memory. This is the reason why Flash dominates the memory component market 

of portable equipment such as cell phones and mp3 players. 

 

Further information about Flash is available. [1.2][1.3][1.5] 

 

 

1.3  Emerging Memory Technologies 
 

Several technologies are under development to carry out the next generation 

semiconductor memory devices. Several criteria must be fulfilled, such as nonvolatile 

capability, low power consumption, high storage density, high speed, good reliability and low 

cost. The most promising candidates are Ferroelectric Random Access Memory (FeRAM, 

also FRAM), Magnetic Random Access Memory (MRAM) and Phase Change Random 

Access Memory (PCRAM). 

 

 

1.3.1  FeRAM 
 

The function of Ferroelectric Random Access Memory (FeRAM) bases on a capacitor 

with a ferroelectric thin film as dielectric layer. [1.6]–[1.8] Ferroelectric materials can be 

polarized by external electric fields. After the external electric field is removed, a portion of 

polarization remains in ferroelectric materials, which is called remanent polarization and 

shown as +Pr and −Pr in Figure 1.4. 

 

In a ferroelectric capacitor, the external voltage, which is associated with an external 

electric field mentioned above, can be in positive or negative direction. That means the 
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polarization of a ferroelectric film is bidirectional. After reset the external voltage to zero, the 

remanent polarization induces complementary charges in the capacitor electrodes. Remanent 

polarization and induced complementary charges interact with each other and form a stable 

state that the remanent polarization can be kept for a long time. This characteristic can be used 

to define 0 and 1 states for memory application.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 1.4  Ferroelectric capacitor polarized by an external voltage. 
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The structure of a FeRAM memory cell is similar to a DRAM memory cell. In the 

simplest way, it consists of an NMOS transistor as a switch and a ferroelectric capacitor for 

data storage (Figure 1.5). 

 

The read/write operation of FeRAM is similar to that of DRAM. The only difference 

is that in DRAM the 0 and 1 states are decided by stored charge but in FeRAM they depend 

on polarization direction of the ferroelectric capacitor. During write operation, the switch 

transistor N1 is turned on by WL, a positive or negative voltage bias is added on capacitor CF 

by setting the voltage between BL and PL to change the polarization direction for writing data 

0 or 1. After writing, the voltage bias between BL and PL is set to zero again and the switch 

transistor is turned off. The ferroelectric capacitor is kept at positive/negative remanent 

polarization with complementary charges in the electrodes. In read operation, BL is 

precharged and then N1 is turned on. There is a charge redistribution between capacitor CF 

and BL. The polarization direction of CF can affect the charge redistribution and cause 

different final voltage on BL according to different polarization direction. A sensing amplifier 

which is connected with BL can detect the voltage change of BL to read out the data in cell. 

During read operation, the polarization of the ferroelectric capacitor is disturbed. A rewrite 

operation is necessary. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 1.5  FeRAM memory cell,   (a) Architecture, (b) Circuit diagram. 
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Because the structure and operation of a FeRAM are very similar to those of a DRAM, 

it’s not difficult to implement mature DRAM technology on development of FeRAM. This is 

an advantage that the learning curve of developing FeRAM can be reduced. FeRAM has 

superiority than other emerging memory technologies. 

 

 

1.3.2  MRAM 
 

A variety of Magnetic Random Access Memory (MRAM) technologies have been 

explored over a period of many decades. [1.7][1.9][1.10] The state-of-the-art MRAM cell has a 

magnetic tunnel junction (MTJ) as memory cell. A simplified MTJ structure is shown in 

Figure 1.6. A ferromagnetic layer is deposited on an antiferromagnetic layer. The interaction 

between ferromagnetic layer and antiferromagnetic layer causes an offset on the magnetic 

hysteresis curve of the ferromagnetic layer. It becomes a “pinned” ferromagnetic layer. An 

insulating layer is sandwiched between this pinned ferromagnetic layer and another free 

ferromagnetic layer. This insulating layer is very thin, so that a tunnel current can flow 

through under voltage bias. This layer works as a tunnel barrier.  

 

 

 

 

 

 

 

 

 

 

 

The relation between magnetization directions of the two ferromagnetic layers can 

affect tunnel resistance of the MTJ. When both layers are parallel magnetized, the resistance 

is lower. When both layers are anti-parallel magnetized, resistance becomes higher. The 

change of the tunnel resistance caused by the relative magnetization direction is called tunnel 

     

Pinned ferromagnetic layer 
Antiferromagnetic layer 

Tunnel barrier layer 
Free ferromagnetic layer 

Current 

Figure 1.6  MTJ structure 
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magnetoresistance (TMR). Figure 1.7 shows the hysteresis curve of tunnel magnetoresistance 

vs. external magnetic field. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The architecture of a MRAM cell is shown in Figure 1.8(a). A bit line (BL) goes over 

MTJ and is in contact with the MTJ. A write word line (write WL), which is perpendicular to 

the bit line, goes direct under the MTJ with a separation spacing. The pinned layer of the MTJ 

is magnetized along write word line direction in manufacture procedure and will not be 

changed during operation. When current flows through BL and write WL, magnetic field 

arises around BL and write WL. This magnetic field can change the magnetization of the free 

layer.  

 

In write operation, the switch transistor N1 is turned off by read WL and there is a 

current flowing through BL and write WL. With assistance of the magnetic field of write WL, 

the free layer can be magnetized by BL either parallel (“1” state) or anti-parallel (“0” state) to 

the magnetized direction of the pinned layer. 

 

In read operation, the switch transistor N1 is turned on. A small voltage on BL causes 

a current flowing through MTJ and N1. A sensing amplifier connected with BL can sense the 

current at different TMR caused by different magnetization states of the MTJ. 
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Figure 1.7  Tunnel magnetoresistance vs. magnetic field 
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In recent years, a new generation of MRAM has been developed with switching the 

magnetization of the free layer by using a high current direct through the MTJ rather than 

using the external magnetic field caused by BL and write WL. The write WL is not necessary 

any more. Therefore the cell structure can be simplified and easily scaled down. The new 

generation is called Spin-Torque-Transfer MRAM (or Spin-Transfer-Torque MRAM, 

STT-MRAM).  

 

The MTJ of STT-MRAM is similar to a traditional field-switch MRAM. When 

electrons flow from the pinned layer to the free layer, the electrons will become 

spin-polarized according to the magnetization of the pinned layer. If the tunnel layer is thin 

enough, this electron current will keep spin-polarized when it flows into the free layer. If the 

current density is high enough (about 107–108 A/cm2), the interaction between spin-polarized 

electrons and free layer can cause magnetization switching of the free layer to align parallel to 

the magnetization of the pinned layer. In the reversed process when electrons flow from the 

free layer to the pinned layer, the magnetization of the pinned layer will not be influenced. 

But some electrons are reflected by the pinned layer with antiparallel direction and flow back 

to the free layer. The interaction between reflected electrons and the free layer causes 

magnetization switching of the free layer to align antiparallel to the pinned layer. [1.11][1.12] 

 

     

Figure 1.8  MRAM memory cell,   (a) Architecture, (b) Circuit diagram. 
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With this property of interaction between pinned layer, free layer and spin-polarized 

electron current, the magnetization of the free layer can be switched either parallel or 

antiparallel to the pinned layer by a current flowing directly through the MTJ. The 

characteristic curve of TMR versus current is also hysteretic. 

 

In write operation of a STT-MRAM, depending on whether “1” or “0” should be 

written, a high current pulse flows through the MTJ either in positive or negative direction to 

switch the magnetization of the free layer to be parallel or antiparallel to the pinned layer. In 

read operation, a small current should be used to sense the MTJ status in order not to disturb 

the magnetization of the free layer. [1.13][1.14] 

 

 

1.3.3  PCRAM 
 

In the late 1960s it was found that chalcogenide glass exhibited a reversible change in 

resistivity upon a change between polycrystalline and amorphous phases. Chalcogenides are 

alloys that contain an element in the Oxygen/Sulfur family of the Periodic Table, for example, 

GeSbTe (GST). This kind of materials is called phase change materials. Phase change 

materials have been already used in rewriteable CDs and DVDs because different laser 

heating procedures can induce transition between polycrystalline and amorphous phases of 

these materials and cause different surface roughness and optical reflection rate. Phase 

Change Random Access Memory (PCRAM) makes use of resistive difference between 

polycrystalline and amorphous phases of phase change materials. 

 

The concept of phase change memory manufactured with IC technology is carried out 

by proper heating and cooling of the material, which is made as a variable resistor in series 

with a transistor in a memory cell. The architecture of a PCRAM cell is shown in Figure 1.9. 

The I-V characteristic of such a phase-change resistor is shown in Figure 1.10. An 

amorphous phase change material has a resistance a few orders higher than that in the 

polycrystalline phase. The I-V characteristic of the amorphous phase is initially ohmic with 

high resistance. But when the voltage increases over a threshold Vth, the current rises swiftly 

with a voltage snap-back and the resistance becomes lower and lower until it becomes the 

same as the resistance of the polycrystalline phase. The beginning of resistance change is a 
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pure electronic phenomenon, but with increasing current the phase transition from amorphous 

into crystalline will happen since Joule heating is high enough to cause crystallization. With 

further increasing of current the material will finally melt.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 1.9  PCRAM memory cell, (a) Architecture, (b) Circuit diagram. 
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Figure 1.10  Current-Voltage characteristics of a phase-change element. 
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The memory device is programmed by the application of a current pulse of appropriate 

magnitude and duration shown in Figure 1.11. A short pulse of a high current is used to melt 

the material, which is then allowed to cool quickly enough to “freeze in” the amorphous state 

with high resistance. It’s the so-called RESET operation. The SET operation is the reverse 

process, in which a longer pulse with lower current is used to heat the material to a 

temperature below the melting point, but at which crystallization could occur rapidly.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A voltage which is much lower than the programming voltage is used to read the 

memory cell in order not to disturb the data in the cell. 

 

In the RESET operation, the resistance of the polycrystalline phase is usually very 

small, so a rather high current is necessary to switch the material from the polycrystalline to 

     

Figure 1.11  Operating principle of phase-change memory. 
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the amorphous phase. Scaling down can help to reduce the electric energy and, therefore, the 

current load necessary for the phase changes. The interaction between neighbored PCRAM 

cells may become an undesired problem. 

 

Further information about PCRAM is available. [1.15]–[1.17] 

 

 

1.4  Reviews and Perspectives 
 

The structure of the FeRAM is similar to the DRAM except that the FeRAM is 

nonvolatile; so it doesn’t need refresh. The merits of FeRAM are that FeRAM technology 

could be developed with small modification of DRAM circuit and process, and the read/write 

current of the cell capacitor is much smaller in comparison with PCRAM and MRAM. There 

are still some barriers to make FeRAM really competitive to DRAM, Flash, MRAM and 

PCRAM. The thickness of the ferroelectric film in a FeRAM capacitor is still kept around 

50–100nm and is difficult to reduce. The area density of the remanent polarization of a 

ferroelectric film is not large enough. Therefore, it is difficult to scale down the capacitor size. 

The read/write endurance is usually only up to 1013 cycles [1.18] and is not high enough for 

usual application such as main memory in computers with 10 years life time. So a FeRAM is 

limited to some certain applications such as RF ID card [1.19] or nonvolatile cache. In 2009 

Toshiba demonstrated a 128Mbit FeRAM which is compatible to DDR2 DRAM. [1.18] This 

FeRAM used 0.13μm design rules, had a 0.28×0.30=0.084μm2 ferroelectric capacitor in each 

memory cell. In 2014, commercialized FeRAM chips up to 4Mbit have been available since 

many years on the product lists of several companies such as Cypress, TI, Fujitsu and Lapis. 

The FeRAM of Cypress has an endurance of 1014 read/write cycles. Microcontrollers with 

embedded FeRAM up to 64KByte are available from TI and are guaranteed with a minimum 

endurance of 1015 cycles. 

 

The first commercially available MRAM device is Freescale’s 4Mbit, 1-transistor, 

1-MTJ MRAM in 2006, which is manufactured with 0.18μm design rules. [1.20] In 2009 NEC 

announced a 32Mbit, 2-transistors, 1-MTJ MRAM with 90nm design rules. [1.21] Both of them 

use conventional field-switch technology. A conventional field-switch MRAM has an 

unlimited write endurance and fast read/write time but needs very high write current (over 

16 



Chapter 1  Introduction of Semiconductor Memory Devices 

1mA/bit [1.21]) and the necessary write current increases with scaling down. The additional 

write word line or 2-transistor scheme also makes cell structure complicated and difficult to 

scale down. In the year of 2014 MRAMs are provided up to 64Mbit by several manufacturers 

such as Everspin, Aeroflex, Honeywell and Crocus.  

 

New generation STT-MRAMs have a simpler structure than field-switch MRAMs. 

The switching of data depends on current density flowing through the MTJ and it can be 

reduced by scaling down. The necessary write current is still at a high level between 50 to 

300μA. [1.22][1.23] According to publications, the write endurance is proved to be over 1012 

cycles. [1.24] But the high density current during writing may be a concern to damage the MTJ 

and to cause endurance issues. Furthermore, the thermal stability of the free layer could also 

cause the problem of retention with continuing scaling down. In 2010 Toshiba announced a 

64Mb STT-MRAM with 65nm design rules, which has a write current around 49μA. [1.22] 

Until 2014 STT-MRAM is still not yet in mass production. 

 

The RESET operation of a PCRAM needs a pulse with a high current around 

100–900μA in order to melt the phase change material. [1.25] The SET operation needs a lower 

current but a longer pulse time of a few hundreds nanoseconds to heat the phase change 

material to a temperature high enough for the transition to the polycrystalline phase but keeps 

the temperature low enough to prevent it to melt. These characteristics are weak points of the 

PCRAM. A high current pulse means not only high power consumption during operation but 

also a concern about reliability of the electrode/heater material itself and of the interface 

between phase change and electrode/heater materials. The superiority of the PCRAM is that 

the phase change material can be integrated into a contact/via hole. Therefor a PCRAM has a 

smaller cell size and a higher memory capacity than a MRAM and a FeRAM. In 2010 Hynix 

demonstrated a 1Gbit PCRAM with 84 nm design rules. Its SET current is about 80μA with 

300ns pulse time and its RESET current is between 140–200μA with 30ns pulse time. The 

write endurance is about 108 cycles. [1.26] At the end of 2012, Samsung presented their 20nm, 

8Gb PCRAM at ISSCC. [1.27] Earlier in July of 2012, Micron announced the mass production 

of their 45nm, 1Gb PCRAM for mobile devices. [1.28] But after a year this product became not 

available any more.  

 

Many factors, such as non-volatility, low power consumption, high speed, good 

reliability, high storage density and low cost, must be taken into account in order to evaluate 
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semiconductor memory devices. Table 1.1 shows the comparison between SRAM, DRAM, 

Flash, FeRAM, MRAM and PCRAM. 

 

 

 

 

 

 

 

 

 

 

 

 

There are many publications about the universal memory. [1.25][1.29]–[1.31] Many 

candidates including those mentioned above are discussed but the final winner is still 

unknown until now. 
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2  Ferroelectric Materials 
 

 

 

2.1  Ferroelectricity 
 

The “ferro” part in the name of ferroelectricity doesn’t mean the presence of iron in 

the ferroelectric materials. Rather it arises from some properties analogous to ferromagnetism, 

for example, the spontaneous electric polarization vs. spontaneous magnetization, the 

hysteresis loop of ferroelectric materials vs. ferromagnetic materials, the domain structure, 

etc. 

 

In order to introduce ferroelectricity, it’s worth to introduce pyroelectricity and 

piezoelectricity, too. Pyroelectricity is a characteristic of some crystals which show 

spontaneous electrical polarization when they are heated or cooled. As a result of temperature 

change, positive and negative charges are induced on the opposite sides of the crystals. The 

electric polarization exists only below a certain temperature called Curie temperature. When a 

pyroelectric material is heated above Curie temperature, it is paraelectric. That means, it can 

be electric polarized under an applied external electric field, but after removing the external 

field, the polarization returns to zero again. After cooling down the crystal below Curie 

temperature, a spontaneous polarization in the crystal occurs even if there is no external 

electric field. The value of the spontaneous polarization depends on the temperature and it 

suddenly falls to zero on heating the crystal above the Curie temperature. It’s called the 

pyroelectric effect. Usually, applying an external electric field cannot change the spontaneous 

polarization of pyroelectric materials. If the magnitude and direction of the spontaneous 

polarization can be reversed by an external electric field, then such crystals are said to show 

ferroelectric behavior. Hence ferroelectric materials are a subgroup of pyroelectric materials. 

 

Piezoelectricity is a property of some materials which can be polarized by applying 

mechanical stress, resulting in a charge density on their surface. This phenomenon is known 

as direct piezoelectric effect. There is also a reversed effect, converse piezoelectric effect, 

which describes the strain that is developed in a piezoelectric material due to the applied 
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electric field. All the pyroelectric materials, including ferroelectric materials are a subgroup of 

piezoelectric materials. 

 

 

2.2  Ferroelectric Domains and Hysteresis Loop 
 

Ferroelectric crystals possess regions in which spontaneous polarization is uniformly 

oriented. These regions are called ferroelectric domains. The boundary between two domains 

is called domain wall. The width of ferroelectric domain walls is in the order of a few 

nanometers. It should be noted not to mistake domain wall for grain boundary in 

polycrystalline materials. Ferroelectric domain walls separate domains with different 

directions of polarization. 

 

The polarization orientation in ferroelectric crystals is not arbitrary but depends on the 

crystal structure. For example, in ferroelectric tetragonal BaTiO3, the possible orientations are 

any of the six ‹001› directions in its paraelectric cubic unit cell. There is a small elongation 

along polarization direction with a little contraction perpendicular to it and the cubic cell 

becomes tetragonal. This gives two kinds of relation between the orientations of neighboring 

domains: (1) If the orientations of neighboring domains are antiparallel (180°), their domain 

wall is called 180° domain wall. (2) If the orientations of neighboring domains are 

perpendicular (90°), their domain wall is called 90° domain wall, which exists in ferroelectric 

tetragonal BaTiO3. In ferroelectric rhombohedral BaTiO3, the possible polarization 

orientations are any of the eight ‹111› directions in its paraelectric cubic unit cell. Hence there 

can be 180°, 109° and 71° domain walls.  

 

The directions, along which the polarization will develop, depend on the electrical and 

mechanical boundary conditions imposed on the material. Ferroelectric domains form in order 

to minimize the total energy in whole system including domain wall energy and the 

dipole-dipole interaction energy which are internal, and the electrostatic energy from 

compensating charges and the elastic interaction energy from boundary constraints which are 

external. [2.1] In addition, vacancies, dislocations and dopants can also influence domain 

formation. 
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A very important characteristic of ferroelectric materials is their hysteresis loop of 

polarization vs. external electric field which is shown in Figure 2.1. The domain structures 

under different external electric fields are also shown in insets. If we assume that all the 

domains orient randomly at initial state without external electric field, then the net 

polarization is zero and the crystal state is at point A (origin). As the external electric field 

increases, the domains start to align in the direction of the electric field. When the electric 

field increases to point B, all of the domains are switched to the nearest possible orientation 

toward the electric field, the polarization is saturated. Further increasing the electric field 

doesn’t switch any domain more and the crystal behaves like a normal dielectric. An 

extrapolated line intersects the polarization axis at Ps, which is called saturation polarization.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 2.1  Hysteresis Loop of Ferroelectric materials. 
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The polarization decreases but doesn’t fall to zero when the electric field decreases to 

zero at point C. Some of the domains still remain aligned toward the positive direction. The 

crystal shows a remanent polarization +Pr even if the external electric field is removed. With 

further decreasing the electric field to point D some domains begin to be switched to negative 

direction and the net polarization falls to zero. The electric field required to reduce 

polarization to zero is defined as coercive field −Ec. If the electric field decreases more to 

point E, all domains are switched to the negative direction and the polarization saturates at 

negative direction. With the electric field returning to zero at point F, a remanent polarization 

−Pr still exists which is similar to the situation in the positive direction. Further increasing of 

the electric field to +Ec at point G makes polarization to zero again. 

 

The insets shown in Figure 2.1 are only a simplified illustration of domain 

reorientation. It is not easy to study detailed mechanism of domain switching by direct 

observation of ferroelectric domains, especially dynamically in real time. Nevertheless, 

domain behavior and switching dynamics is always an attractive topic for scientists. [2.2]–[2.6] 

This topic is very complex and it seems there is no universal mechanism which would be 

valid for polarization reversal in all ferroelectrics.  

 

A polarization switching is called homogeneous polarization switching if the entire 

ferroelectric material switches to opposite direction simultaneously at a certain threshold 

electric field which is called intrinsic coercive field Eci. However, based on Landau’s 

mean-field theory, [2.7] the estimated Eci values should be on the order of a few MV/cm for 

most known ferroelectric materials. These values are much higher than the experimental 

results of coercive field Ec, which are typically around 100kV/cm. That means, homogeneous 

polarization switching is probably not the general case in usual polarization switching. In 

many researches it is believed that the usual polarization switching is inhomogeneous and is 

initiated by nucleation of domains, which have the polarization along the switching field, and 

is followed by growth of these domains through domain wall motion. [2.8]–[2.10] The complete 

process of inhomogeneous polarization switching is illustrated in Figure 2.2. The initial state 

is assumed as a polarized single domain. Nucleation occurs under application of an external 

electric field. It is thought that nucleation occurs inhomogeneously at particular sites where 

material defects exist, which can reduce the energy barrier for nucleation. And such defects 

are thought to occur frequently at electrode/ferroelectric material interfaces of ferroelectric 

capacitors. In the next step, the nucleated domains grow parallelly to the external electric field 

24 



Chapter 2  Ferroelectric Materials 

in a needle-like geometry from one electrode/ferroelectric material interface through the 

ferroelectric material to the interface at the other side. This step is called forward growth. 

After forward growth, domains spread also sideways, known as lateral growth. During lateral 

growth, coalescence of domains happens and finally the whole ferroelectric material is 

switched to a single domain and the switching is complete. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.3  Perovskite Oxides 
 

There are many kinds of materials with ferroelectric properties, for example, 

perovskite oxides, bismuth oxide layer structured compounds, tungsten bronze type 

compounds, organic polymers, etc. Perovskite oxides are the most studied family of 

ferroelectric materials. 

     

Figure 2.2  Inhomogeneous polarization (P) switching process 
induced by an external electric field (Eex) in a 
ferroelectric thin film capacitor. 
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The name “perovskite” comes from the mineral perovskite CaTiO3 because of the 

similar structure. Perovskite oxides are a very large family with the structure ABO3, where A 

and B represent a cation element, respectively. The valence of A cations may be from +1 to 

+3 and of B cations from +3 to +6. The physical properties of the entire family are extremely 

diverse. Some of them are ferroelectric. Some others of them are superconductive or ion 

conductive. The ideal perovskite structure has a simple cubic lattice and a basis of 5 atoms. 

As shown in Figure 2.3(a), if A atom is taken at the corner of the cube, B atom will locate at 

the center and there is an oxygen atom at the center of each face. Alternatively in Figure 

2.3(b), if the B atom is taken at the corner, the A atom is at the center and the O atoms are 

located at the midpoint of each edge. Each A atom is surrounded by twelve equidistant O 

atoms and each B atom by six O atoms. B atom and its six oxygen first neighbors form an 

octahedron, in which B atom locates at the center and O atoms at six corners. As shown in 

Figure 2.3(c), the lattice can be regarded as octahedra connected at their corners to a 

3-dimensional simple cubic structure with their interspaces occupied by A atoms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It’s very usual that many perovskite structures can be regarded as a distortion of ideal 

perovskite cubic structure. In 1926 Goldschmidt provided an empirical criterion for the 

stability of an ideal perovskite structure, based on the rules he had previously derived for 

     

Figure 2.3  The unit cell of ideal ABO3 cubic perovskite. 
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ionic binary compounds. [2.11]–[2.13] His model is based on the concept of ionic radius and the 

following rules:  

(i) a cation will be surrounded by as many anions as can touch it, but not more;  

(ii) all the anions must touch the cations and the anion–cation distance is obtained 

as the sum of their ionic radii. 

 

The perovskite structure is determined by the size of the oxygen octahedra containing 

the B atoms, while the A atoms must fit the holes between the octahedra. Following the rules 

of Goldschmidt, this condition provides a relation between ionic radii for ideal cubic 

perovskite structure: 

 

)(2 OBOA rrrr +=+            (2.1) 

 

where rA, rB, rO are the ionic radii of A atom, B atom and oxygen atom, respectively. In 

general case, this will not always be satisfied. The deviation can be described through a 

tolerance factor t defined as follows: 

 

)(2 OB

OA

rr
rrt
+

+
=             (2.2) 

 

Goldschmidt has shown that the perovskite structure is formed when the condition 

expressed by Equation (2.1) is satisfied (t ≈ 1).  

 

For a critical value t=1, the cubic paraelectric phase is stable. This unique case can be 

found in SrTiO3, which has an ideal cubic perovskite structure at room temperature and 

doesn’t show ferroelectricity down to the absolute 0 K. 

 

When t > 1, the structure is imposed by the A–O distance and the B atom is too small 

for the oxygen octahedron. The cations and anions move off the high-symmetry positions and 

the positive and negative charge center are no longer coincident, so that the structure will 

develop a small polar distortion, leading to the occurrence of displacive-type ferroelectricity 

in the crystal such as in BaTiO3.  
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Conversely, when t < 1, the A atom is too small in comparison to the hole between the 

oxygen octahedra. The A atom cannot effectively bond with all 12 neighboring O atoms, so 

coupled tilts and rotations of oxygen octahedral framework can occur. These perovskite 

oxides are in general not ferroelectrics because different tilts and rotations of BO6 octahedra 

still preserve the inversion symmetry. Some exceptions may be found in the bismuth oxide 

layer structured ferroelectrics, which will be discussed later. If t is only slightly less than one, 

rotations and tilting of the oxygen octahedra will be favored (as in SrTiO3 and CaTiO3); for 

even smaller t the compound will favor a strongly distorted structure with only 6 neighbors 

for the A atom as in LiNbO3. If the value of t is very different from unity, then the 

perovskite-type structures will be unfavorable relative to another of the known ABO3 

structure types. 

 

 

2.4  Barium Titanate BaTiO3 
 

A very good typical example for ferroelectric perovskite is barium titanate, BaTiO3. 

Barium titanate is the first identified perovskite oxide which is ferroelectric. The formal 

valences are +2 for Ba and +4 for Ti, exactly balancing the negative total valence of the 

oxygens. At high temperature, it has a paraelectric cubic perovskite structure. At 403 K, it 

transforms from a cubic phase to a ferroelectric tetragonal phase, as shown in Figure 2.4(a). 

This phase remains stable until 273 K, where there is a second transformation to a 

ferroelectric phase of orthorhombic symmetry. The last transition occurs at 183 K. The 

low-temperature ferroelectric phase is rhombohedral. In the successive ferroelectric phases, 

the polar axis is aligned respectively along the ‹001›, ‹101› and ‹111› directions 

corresponding to the direction of the atomic displacements with respect to their position in the 

cubic reference structure. Each transition is accompanied by small atomic displacements, 

dominated by displacement of the Ti ion relative to the oxygen octahedron network, and a 

macroscopic strain. [2.11] From a crystal chemical view, the volume inside the TiO6 octahedron 

for the central Ti4+ ion is larger than the actual size of the Ti4+ ion. As a result, the series of 

phase transformations takes place to reduce the Ti cavity size. Certainly, the radii of the 

involved ions impact the tendency for forming ferroelectric phases; thus both PbTiO3 and 

BaTiO3 have ferroelectric phases, while CaTiO3 and SrTiO3 do not. [2.14] 
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In the paraelectric cubic phase of BaTiO3, the energy of the Ti4+ ion in terms of its 

position along the c axis takes the form of a single well with the minimum at the cubic center 

(Figure 2.5(a)). So the Ti4+ ion stays at the cubic center without spontaneous polarization. 

But in the ferroelectric tetragonal phase of BaTiO3 the energy takes the form of two wells 

along the c axis (Figure 2.5(b)). The Ti4+ ion must stay at one of the wells away from the 

center and that means a spontaneous polarization. An applied electric field in the opposite 

direction to the polarization may enable a Ti4+ ion to pass over the energy barrier between the 

two wells and so reverse the direction of the polarity at that point.  

 

     

Figure 2.4  Properties of BaTiO3, (a) Lattice constants,  
(b) Spontaneous polarization,           
(c) Relative permittivity. 
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A similar mechanism is available for changes of polarity through 90° but in this case 

there is an accompanying dimensional change because the polar c axis is longer than the 

non-polar a axis (Figure 2.4(a)). Switching through 90° can also be induced through the 

ferroelastic effect by applying a compressive stress along the polar axis without an 

accompanying electric field. But mechanical stress does not induce 180° switching. [2.15]  

 

It should be noticed that although in Figure 2.5(b) a two-well form of the energy of 

the Ti4+ is shown, that doesn’t mean only Ti4+ cations move during polarization reversal. 

Actually all the cations and anions have different displacements caused by polarization 

reversal. [2.15]–[2.18] Figure 2.6 is an illustration of the ionic displacement in the BaTiO3 

tetragonal unit cell at room temperature. In addition to Ti4+ cations, Ba2+ cations have also a 

Energy 

Ti4+ Position 

     

Figure 2.5  Comparison of cubic and tetragonal BaTiO3 perovskite. 
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displacement relative to the O2− anions and even some of the O2− anions have a displacement 

relative to other O2− anions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.5  Lead Titanate (PT) and Lead Zirconate Titanate (PZT) 
 

Lead Titanate (PbTiO3, PT) is ferroelectric, has a structure similar to BaTiO3 with a 

higher Curie temperature (490°C). PbTiO3 is difficult to fabricate in bulk form because it 

undergoes a large volume change during temperature change beyond Curie temperature. The 

transition between the cubic phase (c/a=1.00) and the tetragonal phase (c/a=1.065) leads to 

large strain. Hence, a piece of PbTiO3 ceramic can crack into fragments during fabrication. 

Therefore, PT materials are prepared usually with modification by proper dopants. 

 

Although PbTiO3 is similar to BaTiO3, there are many important differences between 

the two materials. The tetragonal lattice distortion in PbTiO3 is much larger than in BaTiO3. 

The lattice constants of PbTiO3 at room temperature are a = 3.900Å and c = 4.153 Å. [2.19] 

This gives a value of c/a = 1.065 while it is only 1.01 in BaTiO3. Another difference is that 

Figure 2.6  Ionic displacements in BaTiO3. [2.16] 
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BaTiO3 has a sequence of ferroelectric phases (tetragonal-orthorhombic-rhombohedral), while 

only the tetragonal ferroelectric phase seems to be present in PbTiO3. 

 

Perovskite oxides can easily form solid solutions. Ba/Sr in BaxSr1-xTiO3 or Zr/Ti in 

PbZrxTi1-xO3 (0<x<1) are very common examples. Such a change in cations can lead to a shift 

of the transition temperature as well as the appearance/disappearance of the phase, etc. Lead 

zirconate titanate (PbZrxTi1-xO3, PZT) is a binary solid solution of PbZrO3 (PZ) and PbTiO3 

(PT) which are soluble in any mixing ratios. Isovalent Ti4+ and Zr4+ occupy B sites of 

perovskite randomly. PbZrO3 is antiferroelectric and has an orthorhombic perovskite structure. 

In antiferroelectric materials, for every polarized dipole there is always a coupled antiparallel 

dipole in the neighborhood. Therefore, the macroscopic net polarization is zero. With a small 

amount substitution of Zr by Ti in PbZrO3, the resulting PbZrxTi1-xO3 becomes ferroelectric 

with a rhombohedral structure. Figure 2.7(a) shows the phase diagram of PZT with different 

Zr/Ti compositions. There is a nearly vertical boundary at the middle of the phase diagram 

with a Zr/Ti composition about 52/48 at room temperature. This boundary is called 

morphotropic phase boundary (MPB). On the Zr-rich side of the MPB, PZT is rhombohedral 

and on the Ti-rich side PZT is tetragonal. Near this boundary, rhombohedral and tetragonal 

phases can coexist. The lattice constant is also dependent on the Zr/Ti ratio, which is shown in 

Figure 2.7(b). 

 

The polarization of PZT with a composition at the morphotropic phase boundary 

becomes easier because there can be 14 possible orientations (six ‹001› directions of the 

tetragonal phase and eight ‹111› directions of the rhombohedral phase). Many physical 

properties show anomalous behavior near the MPB. For example, dielectric and piezoelectric 

constants have peak values here. But for the remanent polarization, some studies show peaks, 

some not. [2.22]–[2.24] The ferroelectric rhombohedral phase is divided into two regions: the low 

temperature region and the high temperature region. In the high temperature region, there are 

cation displacements along [111]. In addition, the oxygen octahedron tilt is found in the low 

temperature region. [2.25][2.26] In recent studies, an additional narrow region of the monoclinic 

phase near the MPB in the temperature range of 20–300K is found. [2.27][2.28]  
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Figure 2.7  (a) Phase diagram of PbZrxTi1-xO3, “F” = ferroelectric,  
      “A” = anti-ferroelectric, “P” = paraelectric, “O” = orthorhombic,  
      “R” = rhombohedral, “T” = tetragonal, “C” = cubic [2.20] 
    (b) Lattice constant of PZT at room temperature. [2.21] 
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2.6  Bismuth Layer Structured Ferroelectric Materials 
 

The bismuth layer structured ferroelectric (BLSF) materials were discovered in a 

comprehensive study of bismuth compounds by Bengt Aurivillius in 1949. [2.29] The 

ferroelectric nature of these materials was discovered about a decade later. [2.30][2.31] This 

family of compounds (also named the Aurivillius phases) has the general formula 

(Bi2O2)2+(An-1BnO3n+1)2−. Their structure can be regarded as a regular stacking of rocksalt 

(Bi2O2)2+ slabs with n perovskite oxygen octahedra. “n” is sometimes called “Aurivillius 

parameter”. Here A can be mono-, di- or trivalent ions or a mixture of them (Na+, Sr2+, Pb2+, 

Bi3+, etc.), B can be Ti4+, Ta5+, Nb5+, etc. Examples include Bi2WO6 (n = 1), SrBi2Ta2O9 (n = 

2) and Bi4Ti3O12 (n = 3). Additional members can also be generated by allowing stacking with 

perovskite blocks of different n sizes. It is shown by many studies that BLSFs with even n 

only exhibit Ps along the a-axis but those with odd n can have a minor Ps along the c-axis or a 

major Ps along the a-axis. [2.32]–[2.35] 

 

Figure 2.8 shows the crystal structure of SrBi2Ta2O9 (SBT, n=2) as an example. SBT 

has a tetragonal structure and is paraelectric at high temperature. Below its Curie temperature 

at about 300°C, it becomes orthorhombic with lattice parameters a=0.5531nm, b=0.5534nm, 

c=2.498nm at room temperature. Because the difference between a and b is very small, its 

orthorhombic structure is sometimes regarded as pseudo-tetragonal. There are two oxygen 

octahedra between bismuth oxide layers. Ta occupies the center of the octahedra and Sr 

occupies the interspaces between the octahedra. It should be noted that the perovskite layers 

in neighborhood are not aligned together along the c-axis. In Figure 2.8, the P1/P2 octahedra 

are aligned to the Sr atom adjacent to the Q1/Q2 octahedra and vice versa. Therefore a unit 

cell of SBT includes two perovskite layers between three bismuth oxide layers. 

 

The spontaneous polarization originates from rotation and tilt of the octahedra. When 

the octahedra tilt and rotate along the a-axis, a net polarization along the a-axis can occur. 

There are glide planes (mirror + translation) perpendicular to the b-axis between neighboring 

octahedral rows, so there is no net polarization along the b-axis. For BLSFs with even n, there 

are also mirror planes perpendicular to the c-axis between adjacent octahedra, for example 

between P1, P2 and between Q1, Q2 in Figure 2.8. Hence the net polarization along the 
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c-axis becomes zero, too. But for BLSFs with odd n, such mirror planes don’t exist. A 

non-zero net polarization along c-axis is possible. [2.32][2.36]–[2.39] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Bismuth titanate (Bi4Ti3O12, BIT) is a prototype member of BLSF materials with n=3. 

Each perovskite layer of BIT comprises three layers of corner-sharing TiO6 octahedra. At 

high temperature, the compound is paraelectric with tetragonal structure. Below the Curie 

temperature (~675°C), the structure is ferroelectric and can be described as a subtle 

monoclinic distortion of an essentially orthorhombic symmetry (a=0.5448nm, b=0.5411nm, 

c=3.283nm at 25°C). 

 

 

Figure 2.8  Crystal structure of SBT. 
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2.7  Ferroelectric Capacitor for FeRAM Applications 
 

Ferroelectric capacitors are the hearts of a FeRAM. The characteristic of ferroelectric 

capacitors plays the most important role for the performance of a FeRAM. 

 

 

2.7.1  Two- and Three-Dimensional Ferroelectric Capacitors 
 

At the beginning of the development of FeRAMs, a ferroelectric capacitor was 

integrated into a FeRAM memory cell by putting a two-dimensional parallel-plate 

ferroelectric capacitor on the field oxide directly adjacent to the cell transistor and making 

contact to top/bottom electrodes from the upper side. Such a memory cell is called offset cell 

and is shown in Figures 2.9(a) and (c). The advantage of an offset cell is that the capacitor is 

made before contact formation and metallization in the process flow. Because deposition and 

post-deposition treatment of the ferroelectric film are usually under high temperature and high 

oxidizing ambience, making the ferroelectric capacitor before contact formation and 

metallization can prevent degradation of contacts/vias and metal interconnections. A serious 

drawback of the offset cell is the very large cell area. This kind of structure is only suitable 

for noncritical applications with low cell density and low memory capacity. 

 

In order to reduce cell size and to achieve a high cell density and a high memory 

capacity, the ferroelectric capacitor must be stacked above the cell transistor such as the one 

shown in Figures 2.9(b) and (d). The ferroelectric capacitor is usually stacked on top of a 

contact plug and under the first metal layer, but it’s also possible to be stacked at higher layer. 

The requirement to realize a stacked ferroelectric capacitor is, at first, a suitable conductive 

oxygen barrier layer between contact plug and bottom electrode to protect the top side of the 

contact plug against oxidation and then to keep the contact plug at low electrical resistance. 

Some bottom electrode materials are inert to oxidation and can also work as oxygen barrier to 

protect the contact plug. In addition, a suitable diffusion barrier layer between contact plug 

and bottom electrode of the ferroelectric capacitor as well as between contact plug and 

source/drain of the cell transistor is necessary to prevent interdiffusion of materials from both 

sides at high temperature. These diffusion barrier and oxygen barrier layers protect the 

interconnection between bottom electrode and cell transistor during the deposition and 
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post-deposition treatment of ferroelectric film against high temperature and high oxidizing 

ambience and ensure the electrical function of the ferroelectric memory cell. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

As the devices of integrated circuits are being scaled down more and more, the 

dimension of the ferroelectric capacitor is also forced to be miniaturized along with other 

devices on the chip. Meanwhile, the miniaturized ferroelectric capacitor must still have 

enough remanent polarization to provide enough signal difference between “0” and “1”. This 

situation causes a dilemma that a two dimensional parallel-plate ferroelectric capacitor cannot 

fulfill the demand of miniaturization and enough signal strength at the same time. The same 

problem has happened in DRAM development about 25 years ago; and the solution was to 

     

(a)                                (b) 
 
 
 
 
 
 
 
 
 
 
 
 
(c)                                (d) 
 
 
Figure 2.9  FeRAM memory cell with parallel-plate ferroelectric capacitors.  

(a)(c) offset cell, (b)(d) stacked cell. [2.40]–[2.42]  

37 



Chapter 2  Ferroelectric Materials 

use three-dimensional capacitor structures to obtain more area from vertical sidewalls. [2.43][2.44] 

The same solution may be applicable for FeRAMs. 

 

Up to now, all the FeRAM chips in mass-production use two-dimensional 

parallel-plate capacitors as storage node. Three-dimensional ferroelectric capacitors are still 

under development. Figure 2.10 shows two simple examples of three-dimensional structures 

for ferroelectric capacitors: cup-type and pin-type. In these examples bottom electrode, 

ferroelectric film and top electrode are defined with separate lithography process steps but it’s 

possible to reduce necessary lithography steps by optimization of the real structure and 

process design. In DRAM technology there are also fin-type and crown-type structures which 

may be choices for FeRAMs, too. [2.44] 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In order to realize a three-dimensional ferroelectric capacitor, a conformal deposition 

of the ferroelectric layer is absolutely necessary. For bottom/top electrode layers, a conformal 

deposition is not indispensable but still preferred. Characteristics and operating conditions of 

ferroelectric capacitors have a strong relation with ferroelectric film thickness. Only 

conformal ferroelectric films can ensure a reliable function of ferroelectric capacitors. Figure 

2.11 shows a prototype of a three-dimensional cup-type ferroelectric capacitor made by 

Samsung. 

     

Figure 2.10  Three-dimensional structures of ferroelectric capacitor.  
     (a) cup-type, (b) pin-type. [2.45] 

(a) (b) 
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2.7.2  Reliability Issues of Ferroelectric Capacitors 
 

As the most important part of a memory cell in a FeRAM, ferroelectric capacitors are 

polarized over million, billion even much more cycles in their whole lifetime. Their properties 

degrade during polarization cycles. Figure 2.12 shows the relation of remanent polarization 

of PZT film with switching cycles. It can be seen that after 104 cycles the remanent 

polarization begins to decrease and remains only 30% of the initial value after 107 cycles. 

Such a degradation after cycling is called fatigue. The loss of remanent polarization after 

repeated read/write cycles of ferroelectric memory cells causes a serious problem for sensing 

amplifier to distinguish between “0” and “1” of a memory cell. That means, a limited lifetime 

of FeRAM is strongly related to the fatigue property of the ferroelectric materials. 

 

 

 

     

Figure 2.11  Completed Ir/PZT/Ir trench capacitor with hole 
diameter 0.18μm. (TEM image) [2.46] 
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Polarization fatigue can be considered with following possible factors: (i) reduction of 

the effective electrode area, (ii) reduction of the effective electric field and (iii) degradation of 

the ferroelectric film itself that makes polarization switching more difficult.  

 

With a non-optimized process, electrode delamination or burn-out can be found after 

cycling. [2.48][2.49] Because the available electrode area becomes smaller, the effective capacitor 

area is smaller and therefore the remanent polarization becomes smaller. 

 

In some studies it is supposed that appearance and growth of a thin 

low-dielectric-constant interface layer between electrode and ferroelectric material during 

cycling is responsible for fatigue. [2.50]–[2.52] As the interface layer grows with cycling, the 

effective external field seen by the ferroelectric material decreases and eventually becomes 

insufficient to switch the domains. 

 

Many models are proposed to explain the fatigue phenomenon under the aspect of 

degradation of the ferroelectric film itself. Among them are: (1) Domain wall pinning, (2) 

Nucleation inhibition, (3) Local phase decomposition. 

     

Figure 2.12  An example of polarization fatigue in a PZT film with 
Pt electrodes. [2.47] 

40 



Chapter 2  Ferroelectric Materials 

 

Warren et al. [2.53] and Scott et al. [2.54] thought, during read/write cycling, more and 

more domain walls are pinned. A domain is not switchable any more if it’s surrounded by 

pinned domain walls. So, the remanent polarization degrades. It is believed that electronic 

charge trapped at domain walls and ionic defects such as oxygen vacancies are responsible for 

domain wall pinning. 

 

Tagantsev et al. [2.55] proposed another model related to the nucleation inhibition. In 

this model it is assumed that polarization switching begins with nucleation seeds of reversed 

domains near the ferroelectric/electrode interface. These nucleation seeds are blocked during 

cycling by accumulated ionic or electronic defects, which can be created by charges injected 

from the electrode or by charges that can arrive from the bulk of the material as a result of 

electromigration by electric stressing during cycling. 

 

The local phase decomposition model is proposed by Lou and his colleagues. [2.56] 

They showed that PZT thin films undergo a local phase decomposition from the perovskite 

structure to a pyrochlore-like phase (possibly containing Ti/Zr–O clusters) near an electrode 

during bipolar electrical fatigue. This local phase decomposition is initiated by 

switching-induced charge injection from an electrode. Because the decomposed region 

becomes pyrochlore and has a lower dielectric constant, the effective electric field applied to a 

ferroelectric region is reduced. Furthermore, the most probable locations where phase 

decomposition occurs are the domain nucleation sites. The collapse of nuclei and the decrease 

of the available nucleation sites during electrical cycling also make switching more difficult. 

 

The hysteresis characteristic of ferroelectric capacitors is not always symmetric to 

both polarization states. Sometimes one polarization state is preferred to the other one, 

especially, after the ferroelectric material has been polarized and kept without external electric 

field for a long time. A shift of the hysteresis loop along the electric field axis with unequal 

coercive field for each polarization state can be observed. This phenomenon is called imprint 

which is shown in Figure 2.13. Imprint results in asymmetric switching and incomplete 

polarity reversal. The consequences are read/write failures if imprint is not controlled within a 

range which is acceptable by the sensing amplifier for correct read/write operations. 
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Several models have been proposed to explain the imprint phenomenon. [2.57]–[2.59] 

Warren and his colleagues proposed that defect dipoles associated with oxygen vacancies and 

acceptor ions are responsible for imprint. Mobile oxygen vacancies are very usual in 

perovskite crystals. The defect dipoles form an internal electric field in the ferroelectric 

materials and can be reoriented under an external electric field but much more slowly than 

ferroelectric switching. This internal electric field caused by defect dipoles is the origin of 

imprint. [2.60]–[2.63] Domain pinning caused by charge trapping near domain walls is also 

thought to be a possible mechanism to result in imprint. [2.64][2.65] In another model, Abe et al. 

proposed that a non-switching layer, which possesses irreversible polarization, is present 

between the bottom electrode and the ferroelectric layer in order to release lattice misfit stress 

in the early stage of the heteroepitaxial growth. The voltage shift of the hysteresis loop is 

caused by this layer. [2.66][2.67] A similar model has also been proposed by Grossmann et al., in 

which a residual depolarizing field causes charge emission from an electrode into the film or 

charge separation in the interior of a surface layer between electrode and ferroelectric film. If 

these charges are trapped at the interface between the ferroelectric and the surface layer they 

would also cause an internal bias. [2.59]  

 

In addition to fatigue and imprint, retention is also an important property of 

ferroelectric materials, which relates to the ability of maintaining the polarization state in 

     

Figure 2.13  Imprint. 

normal with imprint 

Electric Field 

Po
la

ri
za

tio
n 

∆Ec 

∆Pr 

42 



Chapter 2  Ferroelectric Materials 

absence of an external electric field. Retention failure means the loss of remanent polarization 

after certain duration without an external electric field. For the application as nonvolatile 

memory, the data in the memory cells should persist for a long enough time without supply of 

external electricity. The usual industrial criterion for retention is longer than 10 years. 

Generally, it is accepted that retention loss is caused by a depolarization field, which remains 

in ferroelectric films after the external voltage on the electrodes of ferroelectric capacitors is 

removed. The depolarization field exists because polarization induced bound charges at the 

surface of the ferroelectric material near electrodes are not completely compensated by free 

charges in conducting electrode. This field causes the relaxation of remanent polarization. 
[2.68][2.69]  

 

 

2.7.3  Materials for Ferroelectric Capacitors 
 

Up to now only PZT and SBT are used as ferroelectric materials for the fabrication of 

FeRAM either for mass production or for prototype demonstration. 

 

Although BaTiO3 is the first discovered ferroelectric perovskite oxide and is well 

investigated, it is not suitable for the application in nonvolatile memories as dielectric layer 

of ferroelectric capacitors. First of all, a BaTiO3 thin film has a much lower remanent 

polarization than its bulk form, and in some researches BaTiO3 thin films are even 

paraelectric. [2.70]–[2.72] Besides, the Curie temperature of bulk single crystal BaTiO3 is around 

130°C, and at 0°C there is a phase transition between tetragonal and orthorhombic phases. 

Near these transition temperatures the properties such as spontaneous polarization and 

relative permittivity show anomalous behavior and the read/write operation of a FeRAM can 

be disturbed if BaTiO3 is used in the ferroelectric capacitor. The operation temperature of a 

FeRAM made of BaTiO3 is, therefore, limited to be impractical.  

 

There is an exception that strained heteroepitaxial SrRuO3/BaTiO3/SrRuO3 structures 

or similar structures are found to be ferroelectric and exhibit a higher remanent polarization 

than bulk single crystal BaTiO3. [2.73][2.74] This may give hope to BaTiO3 thin films in the 

future to be used in FeRAMs. 
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Extensive researches have been carried out for PZT not only because of its superior 

ferroelectric properties but also because of its superior piezoelectric properties. PZT has a 

higher remanent polarization, needs lower process temperature than other materials. These 

merits are very important to realize the production of FeRAMs. Higher remanent polarization 

(15–55μC/cm2) means a smaller capacitor is necessary and a higher memory density and 

memory capacity are achievable. A lower process temperature (400–600°C) makes PZT more 

compatible than other candidates to be integrated into conventional CMOS process 

technology on Si.  

 

However, PZT undergoes serious fatigue after about 104 read/write cycles when 

metallic electrodes such as Pt are used. [2.75][2.76] This problem has been solved recently by 

using metal-oxide electrodes and will be discussed in the next section. Another problem is the 

environmental issue of toxic Pb in PZT. Scientists and engineers are still looking for a better 

candidate to replace PZT because of its toxicity. 

 

SBT has its advocates because it has some important properties that PZT doesn’t have. 

SBT has no fatigue problem, which exists on PZT with Pt electrode. After up to 1012 

read/write cycles SBT shows almost no degradation of remanent polarization. [2.75]–[2.79] SBT 

is not toxic, so there is no environmental problem with SBT. But the remanent polarization of 

SBT is usually only 5–15μC/cm2, which is much lower than for PZT. Furthermore, higher 

process temperatures (700–850°C) are necessary for crystallization of SBT. Such high 

temperatures make it difficult to integrate SBT into a conventional CMOS process. A 

comparison between PZT and SBT is shown in Table 2.1 

 

 

 

 

 

 

 

 

 

 

 

Table 2.1  Comparison between PZT and SBT. 

 
 PZT SBT 

Crystal structure ABO3 Perovskite Bismuth-Layered Perovskite 

Process temperature 400~600°C 700~850°C 

Remanent 
polarization 15~55μC/cm2 5~15μC/cm2 

Fatigue Poor (Pt electrode) 
Good (metal oxide electrode) Good 
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There are a few ferroelectric materials which can be potential candidates to be used in 

ferroelectric capacitor of FeRAMs. Bismuth titanate (Bi4Ti3O12, BIT) is a member of the 

BLSF materials. Bulk single crystal BIT has a larger remanent polarization (~50µC/cm2) [2.80] 

and a lower crystallization temperature (~650°C) than SBT. However, unlike SBT, BIT thin 

films show fatigue and have a much lower remanent polarization than its bulk form. [2.81] 

Some researchers suggested Lanthanoid and/or higher-valent cation substitution for Bi and Ti 

sites, for example, lanthanum-substituted bismuth titanate ((Bi4-xLax)Ti3O12, BLT). The 

improvements of remanent polarization and fatigue have been shown in several studies. 
[2.82]–[2.86]  

 

Bismuth ferrite (BiFeO3, BFO) is a new potential candidate in FeRAM application. 

The lattice structure of the single crystal BFO is rhombohedrally distorted perovskite. When 

the remanent polarization of an epitaxial BFO thin film was shown to be over 50µC/cm2 in 

2003, [2.87] it became one of the most attractive factors in addition to its lead-free composition 

for FeRAM application. The usual remanent polarization of BFO ranges from 50µC/cm2 to 

100µC/cm2 and in some research can be even up to 150µC/cm2.[2.88] Unfortunately, very high 

leakage currents are a serious problem of BFO. The very high remanent polarization can only 

be measured at very low temperature with liquid nitrogen cooling. Many efforts such as 

impurity substitution with rare earth or transition metal elements have been tried to improve 

leakage current and other properties of BFO and some of them seem to be promising. [2.89]–[2.92] 

Further studies for process development and properties improvement are still necessary in 

order to realize the application of BFO in FeRAMs. 

 

 

2.7.4  Electrodes of Ferroelectric Capacitors 
 

The selection of electrode materials is a challenge for ferroelectric capacitor 

applications. Many criteria must be fulfilled in order to obtain the required ferroelectric 

function of the capacitors:  

 

1. The electrode materials must be inert under oxidizing environment and high temperature 

during processing, especially during the deposition process of the ferroelectric film. Or if 

it’s not inert, the oxidized electrode material must be electrical conductive. Formation of 
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an insulating layer of the oxidized electrode material with a low dielectric constant can 

cause a reduced performance of the ferroelectric capacitor. 

2. The electrode material may not react with the materials above and under the electrode. It is 

especially important to prevent the reaction between the ferroelectric film and the electrode. 

Otherwise degradation of the ferroelectric film can happen. 

3. The electrode material should work as a diffusion barrier against oxygen which may diffuse 

from environment through the electrode into the contact/via material which is under the 

bottom electrode or over the top electrode. In addition, it should also work as a diffusion 

barrier to prevent the interdiffusion between ferroelectric film and contact/via material 

which is under the bottom electrode or over the top electrode. 

4. The lattice mismatch between the electrode material and ferroelectric material must be 

taken into account. A smaller lattice mismatch is preferred in order to minimize 

mechanical strain and improve crystallization of the ferroelectric film. 

 

Many electrode materials have been investigated according to the requirements 

mentioned above. They can be classified into two categories: metal based and conductive 

oxide based. Metal based materials include platinum, [2.75][2.93] iridium [2.94]–[2.97] and 

ruthenium. [2.98]–[2.100] Conductive oxide based materials include rutile-type conductive oxides 

such as iridium oxide IrO2 [2.101]–[2.103] and ruthenium oxide RuO2 [2.104]–[2.106] and 

perovskite-type conductive oxides such as strontium ruthenate SrRuO3 (SRO), [2.103][2.107][2.108] 

lanthanum nickel oxide LaNiO3 (LNO), [2.109]–[2.113] lanthanum strontium cobalt oxide 

La(1-x)SrxCoO3 (LSCO), [2.76][2.114]–[2.116] lanthanum strontium manganese oxide La(1-x)SrxMnO3 

(LSMO), barium ruthenate BaRuO3, barium lead oxide BaPbO3 (BPO), and superconducting 

YBa2Cu3O(7-x) (YBCO). [2.117]–[2.119]  

 

At the early stage of developing ferroelectric capacitor, platinum (Pt) was the most 

widely used electrode for PZT, SBT and other ferroelectric films. Even under high 

temperature Pt is still relative inert to oxygen. This was very beneficial because annealing at 

very high temperature (600–850°C) for crystallization of PZT, and especially SBT was 

necessary at that time. Another advantage of Pt is that Pt has a small lattice mismatch with 

PZT (~ –2.9%). 

 

However Pt has disadvantages, too. Because of a high mechanical strain between Pt 

bottom electrode and substrate, hillocks form in the Pt film under high temperature and can 
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cause short-circuits. [2.120][2.121] Usually Ti is used as adhesion layer between Pt and the 

substrate in order to reduce strain and improve adhesion. It is found that Ti can diffuse 

through Pt to the electrode/ferroelectric film interface and form TiO2 and Pt3Ti under high 

temperature and oxidizing environment. The ferroelectric capacitor is, therefore, degraded. 

Oxygen can also diffuse from the ferroelectric film or environment through Pt to the adhesion 

layer and the contact/via materials. Adhesion layer and contact/via materials are hence 

oxidized, resulting in a higher resistance. Furthermore, it was also found that Pb in PZT films 

penetrates the Pt electrode and reacts with other materials. PZT films become Pb-insufficient 

and thus degrade.[2.102][2.120][2.122] All these phenomena show that Pt doesn’t work well as a 

diffusion barrier. 

 

In addition, during the back-end process of modern CMOS technology, which includes 

metallization, inter-metal-dielectrics deposition and passivation, wafers are often exposed to 

reducing ambience with hydrogen. Pt electrodes act as an effective catalyst to activate 

deoxidization of ferroelectric films and cause degradation of the remanent polarization. 
[2.123]–[2.125]  

 

The most serious problem of ferroelectric PZT capacitor with Pt electrode is fatigue. 

In many studies fatigue can happen after only 104 read/write cycles.[2.75][2.94][2.102][2.104] This 

value is too low for memory application, in which a capability of at least 1012 to 1015 

read/write cycles should be fulfilled. 

 

Iridium has been considered as a candidate for electrodes for ferroelectric capacitors 

because it’s thermally more stable than Pt. Ir doesn’t react with Silicon and oxygen at high 

temperature. Ir itself acts as diffusion barrier to prevent diffusion of oxygen and Pb. [2.126]–[2.128] 

Improved fatigue properties of PZT ferroelectric capacitor with Ir electrodes was also shown 

by several studies.[2.94][2.101][2.129]  

 

Ruthenium, Ru is another candidate for electrodes for ferroelectric capacitors. It has a 

merit that Pt and Ir don’t have: Ru can be etched in a dry etching process. For Pt and Ir dry 

etching is difficult. The effect of Ru electrodes on fatigue properties is controversial. Some 

studies show improvement, some not. [2.98][2.99]  
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The use of conductive oxide electrodes has been suggested by many researchers in 

order to solve the polarization fatigue problem with Pt. The improvement is demonstrated 

with many types of conductive oxide electrodes such as IrO2, RuO2, LNO, LSCO and SRO. 

Figure 2.14 shows some results of early studies.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The phenomenon that PZT films with conductive oxide electrodes instead of metal 

electrodes do not fatigue after cycling gives an idea that oxygen vacancies may play an 

important role. It is believed that conductive oxide electrodes act as sinks for oxygen 

vacancies and prevent their accumulation at the PZT/electrode interface. Smaller 

concentrations of oxygen vacancies at the interface result in a reduced injection of electronic 

carriers from the electrodes into the ferroelectric film, and consequently reduce pinning of 

     

(a) (b) 

(c) (d) 

SrRuO3/PZT/SrRuO3/Pt 
Pt/PZT/SrRuO3/Pt 

Figure 2.14  Fatigue properties of PZT and PLZT with various electrode 
materials: (a) IrO2, [2.102] (b) SRO, [2.108] (c) LNO, [2.112]   
(d) LSCO. [2.114] 
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domain walls and fatigue. [2.47] This model of oxygen vacancies for fatigue phenomenon is 

supported by a study of Auger microprobe at the interface of Pt/PZT.[2.130] It was found that 

after cycling the oxygen concentration in PZT near the Pt electrode decreased in comparison 

to that before cycling. 

 

In addition to the function of oxygen vacancy suppression, IrO2 as top electrode shows 

a further advantage: it works as a hydrogen barrier against the reducing ambience in back-end 

processes to prevent degradation of the ferroelectric film. [2.131]–[2.133]  

 

At the interface between electrode and PZT, structural discontinuity can generate 

defects which contain plenty of dangling bonds, vacancies and trapped charges and cause 

degradation of the ferroelectric properties. Perovskite-type conductive oxide electrodes are 

supposed to have inherent advantage that they have a well matched structure and chemistry 

with regard to the ferroelectric perovskite PZT. They can promote nucleation and 

crystallization of PZT better than rutile-type IrO2 and RuO2. Many research results of LNO, 

LSCO and SRO are available. Among them, SRO is the most popular candidate in recent 

studies because SRO has a smaller lattice mismatch with PZT (~ –2.7%) than LNO (~ –5.4%) 

and LSCO (~ –5.2%). 

 

However, it was found that PZT ferroelectric capacitors with conductive oxide 

electrodes, especially RuO2 and SRO, have a higher leakage current density than with Pt 

electrodes.[2.103][2.105][2.107][2.134] Two models have been proposed to explain the higher leakage 

current density of PZT capacitors with conductive oxide electrodes. The first one supposes 

that the higher leakage current density is caused by a lower Schottky barrier height between 

PZT and the conductive oxide electrodes.[2.51][2.103] The charge carrier injection through the 

PZT/electrode interface is higher if the Schottky barrier height is lower and consequently a 

higher leakage current density occurs. The second model supposes the existence of an 

impurity phase in the PZT film, which forms a leakage path through the PZT film.[2.104][2.135] 

This model is supported by other studies, which showed outdiffusion of Ru and Sr from SRO 

into PZT with SIMS analysis.[2.128] In another study, a pyrochlore phase, which was assumed 

to be conductive Pb2Ru2O7-X, was found in PZT under TEM.[2.105][2.136][2.137]  

 

The state-of-the-art ferroelectric capacitors use generally a combination of SRO, Ir and 

IrO2 as multilayer electrode to optimize the ferroelectric properties of PZT and to prevent 
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oxidation and interdiffusion of the materials which are in contact with the ferroelectric 

capacitor.[2.138][2.139]  

 

 

2.7.5  Etching Process of Ferroelectric Capacitors 
 

Reactive ion etching (RIE)/plasma etching is widely used in modern IC technology to 

form device structures, connections between devices and various patterns which are defined 

by photo lithography. However, applying this method to the formation of ferroelectric 

capacitors encounters many difficulties. Halogen-containing gases are often used in plasma 

etching processes to form volatile compounds of etched materials. Unfortunately, halides of 

the electrode materials Ir, Pt and many ferroelectric materials have high melting and boiling 

points, and, therefore, have low volatilities. The melting and boiling points of halides of some 

electrode and ferroelectric materials are shown in Table 2.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.2  Melting points and boiling points of halides of 
electrode and ferroelectric materials. [2.140]–[2.145] 

 
Compound mp (°C) bp (°C)   Compound mp (°C) bp (°C) 

PtF4 600 -   PbF2 855 1290 
PtF6 61.3 69.1   PbF4 ~600 - 
PtCl2 581 -   PbCl2 501 954 
PtCl3 435 -   PbCl4 -15 50 
PtCl4 370 -   PbBr2 373 914 
PtBr2 250 -      
PtBr3 200 -   ZrF4 932 912 
PtBr4 180 -   ZrCl2 727 1292 

     ZrCl4 437 331 
IrF3 250 -   ZrBr4 450 357 
IrF6 44 53      
IrCl2 >733 -   TiF3 1200 1400 
IrCl3 763 -   TiF4 284 - 
IrCl4 ~700 -   TiCl2 1035 1500 

     TiCl3 440 960 
     TiCl4 -24 136.5 
     TiBr2 >500 - 
     TiBr3 39 230 
     TiBr4 38 234 
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Low volatility of the etching products means low etching rates. In comparison to 

plasma etching of silicon with CF4, the etching product SiF4 has a melting point at –90.2°C 

and a boiling point at –86°C. It is apparent that iridium, platinum and PZT are more difficult 

to etch with reactive plasma than other usual materials in IC technology. The consequences 

are low etching rates, low sidewall slopes of etched structures and many etching residues. If 

the process parameters are not optimized, their etching rates are even lower than those of 

mask materials used for etching. [2.146]–[2.154]  

 

Figure 2.15 shows some typical examples of electrode and ferroelectric materials after 

RIE processes. It can be seen in Figures 2.15(a) and (b) that fences form on top of the etched 

sidewall. Because of a low etching rate, higher DC bias and additional Ar gas are often used 

in RIE to enhance the etching rate by physical ion sputtering. The drawback is the 

redeposition of sputtered nonvolatile etching products on sidewalls of the etching mask and 

etched material. Redeposition on mask sidewalls causes the fence formation seen in Figures 

2.15(a) and (b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 2.15  Electrode and ferroelectric materials after reactive ion 
etching. (a) Ir/IrO2, [2.155] (b) Pt, [2.156] (c) capacitor 
stack, [2.157] (d) complete ferroelectric capacitor. [2.158] 

(a) (b) 

(c) (d) 

Fence 

Fence 

Ir/IrO2 
PZT 

Ir 
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Redeposition on sidewalls of etched material results in sidewalls with lower slopes and 

deviations of structure dimensions. In RIE processes, not only the material which is supposed 

to be etched but also the mask material can be etched by reactive ions on both upper and 

lateral sides. Mask thickness and lateral dimensions decrease during etching. If the lateral 

dimension of an etching mask decreases very much during etching, the sidewall of etched 

material will have a low slope. In an ideal etching process, the selectivity (etching rate of 

target material/etching rate of mask) should be high enough to ensure a high slope sidewall. In 

the case of a ferroelectric capacitor, because of low selectivity, the sidewall slope is usually 

lower than 75° (Figures 2.15(c) and (d)). This causes a wasted area at the capacitor edge and 

makes scale down of ferroelectric capacitors more difficult. 

 

A further problem can happen if the whole capacitor stack is etched at one time with a 

single mask process: redeposition of conductive etching residues from the electrodes onto 

sidewalls of ferroelectric material causes leakage currents between top and bottom electrodes. 
[2.159][2.160] A suitable dry/wet cleaning process is, therefore, necessary to remove such residues 

and prevent leakage. [2.160][2.161]  

 

In some studies, it is also shown that RIE processes cause both high leakage currents 

and degradation of the remanent polarization even when there is no conductive residue on the 

sidewall. This degradation should be attributed to plasma damage, which includes 

bombardment of energetic charged particles on sidewalls of ferroelectric layers and charge 

accumulation on top electrodes. Bombardment of sidewalls by energetic charged particles 

changes the crystal structure and the composition of ferroelectric materials near the sidewall 

region. Charge accumulation on the top electrode can induce a high internal field in the 

ferroelectric film, causes charge injection and trapping. The ferroelectric film is hence 

degraded. [2.162]–[2.165] An annealing process after etching should be used to re-establish 

ferroelectric properties. 

 

SiO2, W, TiN and TiAlN are used as hard masks instead of photoresist to improve 

selectivity and achieve steeper sidewall. [2.150][2.166]–[2.168] In addition, high temperature etching 

processes have been developed to further increase the etching rate and to reduce nonvolatile 

residues. Because photoresist cannot sustain high temperature processes, a suitable hard mask 

material for high etching temperatures is also necessary. [2.156][2.157][2.159][2.169][2.170] 
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Unfortunately, high temperature etching processes don’t always give advantages. In some 

studies the etching rate is lower at high temperature or capacitor properties degrade due to 

high temperature etching. [2.139][2.148][2.171][2.172]  

 

 

2.7.6  Hydrogen Induced Ferroelectric Degradation 
 

It is found that ferroelectric capacitors are severely degraded if exposed to a reducing 

environment containing hydrogen, which is very usual in back-end processes of CMOS 

technology, for example, conventional interconnection technologies (chemical vapor 

deposition of silicon nitride, silicon oxide and W) and forming gas annealing. As confirmed 

by many researches, the catalytic activity of top electrode materials is closely related to this 

degradation.[2.173][2.174] The mechanism how ferroelectric materials are degraded by hydrogen 

and catalytic electrode materials during anneal is still not completely clarified. In some 

researches destruction of Pb-O bond into metallic Pb in PZT film near the electrode interface 

has been found. The resulting compositional and structural change of PZT is the reason of this 

degradation.[2.175][2.176] Other studies propose the formation of polar OH– bond of hydrogen 

with oxygen in PZT. This polar OH– can suppress switching of ferroelectric materials or 

cause domain pinning by charge trapping. [2.177][2.178] The hydrogen induced degradation of 

SBT and BLT was also investigated in many studies. The study of Han and Ma [2.173] showed 

a loss of the remanent polarization. The studies of Im et al., [2.179] Yoon et al. [2.180] and Noh et 

al. [2.181] showed a higher leakage current. Decomposition of Bi-O bonds into metallic Bi is 

suspected to be the cause of hydrogen induced degradation of SBT and BLT. [2.179]–[2.182]  

 

One solution against hydrogen induced degradation is using materials as top electrodes, 

which have a lower catalytic activity. IrO2 is an excellent candidate as top electrode because it 

doesn’t have a strong catalytic activity, and in addition, it can improve fatigue degradation of 

PZT. The effectivity of IrO2 against hydrogen was already demonstrated in many studies. 
[2.131][2.133][2.183]–[2.185] Another approach is using a hydrogen barrier layer to encapsulate the 

ferroelectric capacitor. This layer should prevent the penetration of hydrogen into the 

ferroelectric film. Al2O3, TiO2 and SiON are commonly used as encapsulating barrier layer 

for ferroelectric capacitors against hydrogen. [2.161][2.186]–[2.190]  
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3  Fabrication of Ferroelectric PZT Thin Films by 
MOCVD 

 

 

 

3.1  Status of PZT Thin Films Deposited by MOCVD 
 

MOCVD is the most promising technology for deposition of ferroelectric thin films in 

comparison with other technologies such as sputter and chemical solution deposition (CSD) 

because it gives better film qualities with respect to electrical and material properties. The 

necessary process temperature (including film deposition and annealing for crystallization) of 

MOCVD is lower than those of sputter and sol-gel methods. Therefore, MOCVD is more 

compatible to backend processes of standard IC process technology. In addition, sputter and 

sol-gel methods are suitable only for two dimensional thin film deposition but MOCVD 

possesses better step coverage for deposition on three-dimensional structures, which is 

important for realization of high density FeRAM. 

 

The deposition temperature of PZT by MOCVD is usually between 550°C and 650°C 

in order to obtain well crystallized thin film and good ferroelectric properties. In some studies 

lower deposition temperatures were used but followed by crystallization annealing at higher 

temperatures. Tokita et al. [3.1] achieved deposition at lower temperatures down to 415°C 

without following crystallization annealing. Their ferroelectric capacitors of 0.1mm diameter 

with deposited 250nm PZT films still show good remanent polarization. In chip level 

manufacturing of Samsung, a deposition temperature over 530°C is necessary because of the 

quality of PZT films. [3.2]–[3.4] Such process temperatures (deposition and annealing) are too 

high for backend processes of standard IC process technology. Further lowering of the 

deposition/annealing temperature is still a goal for a better process compatibility. 

 

Film thickness reduction is also an important topic for scaling down in order to 

achieve high density and high capacity FeRAM. Ultra-thin PZT films are necessary especially 

for good filling into nano-scale three-dimensional capacitor structures. Tybell et al. have 

demonstrated by using atomic force microscopy (AFM), that single crystalline PZT films as 
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thin as 4nm are still ferroelectric. [3.5] Electrical measurements on capacitors of both, single 

crystalline and polycrystalline PZT films thinner than 50nm also showed good ferroelectric 

hysteresis loops. [3.6]–[3.8] Nevertheless, chip level verification showed serious degradation of 

remanent polarization as thickness was reduced below 100nm. [3.3] Therefore, the thickness of 

PZT films in chip level production is usually kept between 70nm–100nm.  

 

 

3.2  MOCVD System and Precursors for PZT Thin Film Deposition 
 

The difference between MOCVD technology and other CVD technologies is that 

metalorganic precursors are used as reactants in MOCVD technology. Because metalorganic 

precursors are usually in liquid or solid form rather than gaseous form, special systems are 

necessary in MOCVD equipment to convert precursors into gaseous form and to transport 

them into the reactor.  

 

Conventionally, a bubbler system is used for precursor delivery in a MOCVD system. 

A simplified bubbler system is illustrated in Figure 3.1(a). The bubbler is heated in order to 

obtain the desired vapor pressure of the precursor. If the precursor is solid at room 

temperature, the heating temperature should also be higher than the melting temperature of 

the precursor. An inert gas is used as carrier gas and is fed through a pipeline which is dipped 

into the precursor under the liquid level, usually near the bottom of the bubbler. Gas bubbles 

form in the precursor, emerge upward and bring the precursor vapor out. The concentration of 

the precursor vapor in the carrier gas depends on many factors such as bubbler temperature, 

bubbler pressure, carrier gas flow, bubble size, bubble quantity, liquid level, and so on. The 

disadvantage of a bubbler system is that the precursor flow is not easy to measure directly and 

is difficult to control. In addition, the precursor in the bubbler degrades with time under high 

temperature.  

 

Some alternative methods are developed to improve precursor handling. One of them 

is called liquid delivery or direct liquid injection. In such a system pure liquid precursors or 

solutions of solid/liquid precursor are contained in isolated bottles. The bottles are similar to 

bubblers but are used in the opposite flow direction. The bottles are pressurized with inert gas 

to transport precursor solutions in liquid form through pipelines to a heated vaporizer. There 
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is an injector, an atomizer or a valve at the end of the pipelines to control precursor flow. 

Precursor solutions are then converted into small droplets or aerosol in order to be easily 

vaporized in the vaporizer. Afterward the gaseous precursor vapor can be transported to the 

location where the chemical reaction of the deposition process happens. The advantage of a 

liquid delivery system is that only a small portion of precursor which is close to reaction will 

be heated and vaporized. The majority of the precursor is kept at room temperature in the 

bottle. This prevents degradation of the precursor caused by high temperature. Figure 3.1(b) 

shows an illustration of a liquid delivery system. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Precursors are also a very important part of MOCVD technology. The properties of the 

precursor can affect, even limit process conditions and qualities of deposited films. An ideal 

MOCVD precursor should have the following properties: [3.9]–[3.12]  

 

1. Adequate volatility to achieve acceptable deposition rates at moderate evaporation 

temperatures. 

2. A sufficiently large temperature “window” between evaporation and thermal 

decomposition to assure precursor not to decompose before arriving at reaction 

location. 

3. Suitable thermal decomposition/reaction temperature, not too high or not too low. 

4. Clean evaporation without residues and clean decomposition without contamination of 

the growing film (e.g. by carbon) 

     

(a) (b) 

Figure 3.1  Handling of precursors in MOCVD technology :   
    (a) Bubbler system and (b) liquid delivery system. 
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5. Compatibility with other precursors in the multi-precursor process. (no pre-reaction 

between precursors, similar evaporation temperature range and similar decomposition 

temperature range) 

6. Long shelf-life, stable in solution for liquid injection MOCVD applications. 

7. Low hazard, low toxicity, nonflammable. 

8. “Manufacturability” (high yield, high purity, low cost). 

 

Usually, most of the precursors can fulfill only parts of these requirements. The 

precursors may often be toxic, unstable against air and moisture. Metal oxide precursors 

generally have a low vapor pressure, need to be heated for better evaporation; therefore, the 

temperature window between evaporation and thermal decomposition is often insufficient. It 

may happen that in a multi-precursor process evaporation and decomposition temperatures of 

each precursor don’t match together or there is a pre-reaction between precursors. Precursor 

selection is always a compromise. 

 

In earlier years tetraethyl lead [Pb(C2H5)4], zirconium tert-butoxide [Zr(OtBu)4] and 

titanium isopropoxide [Ti(OiPr)4] were the most commonly used precursors for PZT thin film 

deposition by MOCVD. The advantage of these precursors is that they are liquids at room 

temperature and their vapor pressures are high enough. Therefore, it is easy to handle them 

either with a bubbler or with a liquid delivery system. But tetraethyl lead is very toxic and 

causes safety and environmental issues. Zirconium tert-butoxide and Titanium isopropoxide 

are air and moisture sensitive. Hydrolysis of these precursors often causes clogging of 

precursor lines and particles on deposited PZT films. 

 

A new Pb precursor bis(2,2,6,6-tetramethyl-3,5-heptanedionato)lead [Pb(thd)2] has 

been used since many years to replace the very toxic tetraethyl lead. Pb(thd)2 is in solid form 

at room temperature and has a melting point at about 130°C. Although in many researches 

this precursor was used with a bubbler system, a liquid delivery system is more suitable for 

this solid precursor. The use of Pb(thd)2, Zr(OtBu)4 and Ti(OiPr)4 for PZT thin film 

deposition was investigated by many researchers. [3.13]–[3.18] However, it was found that 

Zr(OtBu)4 and Ti(OiPr)4 appear to react with Pb(thd)2 when they are prepared in a cocktail 

solution as well as when their vapors meet in the reactor. [3.19][3.20] This causes precursor 

degradation and particle generation and can affect the quality of deposited PZT thin films. 
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Many new Zr and Ti precursors were developed by replacing the alkoxide-ligand by 

other ligands such as thd- or mmp-ligands (1-methoxy-2-methyl-2-propoxy). Zr(thd)4, 

Ti(OiPr)2(thd)2, Zr(OiPr)2(thd)2, Zr2(OiPr)6(thd)2, Zr(OtBu)2(thd)2, Ti(OtBu)2(thd)2, 

Zr(mmp)4, Ti(mmp)4, are all examples of “tailoring” precursors in order to improve their 

compatibility with Pb(thd)2. Many of them still have problems that they are not suitable to be 

integrated into PZT deposition processes. Zr(thd)4 needs a high vaporization temperature 

(>300°C) and high deposition temperature (>600°C), so it doesn’t match well with Pb and Ti 

precursors. [3.21][3.22] Zr2(OiPr)6(thd)2 is found to match better with Pb(thd)2 from the 

viewpoint of vaporization temperature and deposition temperature. But a ligand exchange 

reaction between Zr2(OiPr)6(thd)2 and Pb(thd)2 in a cocktail solution occurs gradually and 

leads to formation of Zr(thd)4. [3.23] In general, Ti(OiPr)2(thd)2 works well with Pb(thd)2. But 

at a lower deposition temperature the deposition rate is limited by Ti(OiPr)2(thd)2. [3.24]  

 

 

3.3  Deposition and Characterization of PZT Thin Films 
 

In this study an AIXTRON Tricent MOCVD system was used for deposition of PZT 

thin films. A simplified schematic diagram of this system is shown in Figure 3.2. The wafer 

for deposition lies on a graphite susceptor in the chamber. The susceptor can be heated up to 

570°C by nine IR lamps under the susceptor. Gaseous reactant flows are introduced through a 

showerhead into the chamber from the upper side of the wafer. The susceptor is rotatable for 

better temperature and reactant flow uniformities.  

 

A liquid delivery system is used together with the AIXTRON Tricent MOCVD system 

for precursor handling. This system is called TriJet and is made by Jipelec. In this system pure 

liquid precursors or solid/liquid precursor solutions are contained in isolated bottles. These 

bottles work like bubblers but are used in the reversed flow direction. They are pressurized 

with N2 to transport precursor solutions in liquid form through metallic pipelines to the 

injectors. The injectors are usual gasoline fuel injectors of cars and are used here to inject 

precursor solutions into the vaporizer. An additional N2 source is used as carrier gas and flows 

beside the injector nozzle together with injected precursor droplets into the vaporizer. Injected 

precursor droplets are heated and vaporized in the vaporizer and then flow to the showerhead. 

O2 is fed to the showerhead as oxidant and mixed with precursor vapor in the showerhead. In 
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the original design of the TriJet system the injection is controlled by setting opening time and 

opening frequency of the injectors without monitoring the actual precursor flows. It was 

found that the experiment results were often unstable and difficult to reproduce. The precursor 

injection was proved to be unstable. The original TriJet system was, therefore, reconstructed 

to cascade with liquid flow meters. The precursor flows are monitored by a microcontroller 

and compared with the setting values. The opening time and opening frequency of each 

injector are adjusted dynamically by the microcontroller in order to keep stable flows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this study, two novel precursors, Zirconium bis(isopropoxy) bis(1-methoxy- 

2-methyl-2-propoxy) [Zr(OiPr)2(mmp)2] and Titanium bis(isopropoxy) bis(1-methoxy-2- 

methyl-2-propoxy) [Ti(OiPr)2(mmp)2] are used together with Pb(thd)2 for PZT thin film 

deposition. Zr(OiPr)2(mmp)2 and Ti(OiPr)2(mmp)2 are manufactured by Sigma-Aldrich. 

Pb(thd)2 is available by Sigma-Aldrich, Strem Chemicals Inc. and many other suppliers. 

Figure 3.3 shows the results of a thermal gravimetric analysis (TGA) for the three precursors 

which are provided by the manufacturer and can be found in literature. Ti(OiPr)2(mmp)2 is the 
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Figure 3.2  Schematic diagram of liquid delivery MOCVD system 
used in this study. 
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most volatile precursor of the three and Pb(thd)2 has the lowest volatility. According to these 

TGA curves the vaporizer temperature should be at least 150°C or higher to ensure a better 

evaporation efficiency of Pb(thd)2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

More detailed experiments were performed to find out the optimum temperatures for 

precursor vaporization. These temperatures actually include the temperature of vaporizer, the 

temperature of the pipeline from the vaporizer to the showerhead and the temperature of the 

showerhead. The deposition rates of the single metal oxide of each precursor at various 

vaporization temperatures with a fixed substrate temperature at 500°C were measured. The 

metal oxide films were deposited on both Si and Ir substrates at the same time. The results are 

shown in Figure 3.4. The deposition rate of PbO with a vaporization temperature between 

170°C and 220°C is similar. At the temperatures higher than 220°C the deposition rate 

decreases more and more with increasing vaporization temperature. It is supposed that at the 

temperature higher than 220°C, the Pb precursor either decomposes in the vaporizer or reacts 

with oxygen in the showerhead before arriving at the surface of the substrate because visible 

depositions are always found on inner surfaces of the vaporizer and inside/outside the 

Figure 3.3  TGA results of Pb(thd)2, Zr(OiPr)2(mmp)2 and 
Ti(OiPr)2(mmp)2. 
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showerhead after a long term operation of many processes. The loss of Pb precursor in the 

vaporizer or in the showerhead causes a decrease of the deposition rate on the substrate. 

Similar results are obtained for Zr and Ti precursors. But they seem to be more thermally 

stable than the Pb precursor. The Ti precursor can resist temperatures up to 230°C and the Zr 

precursor is stable at temperatures up to 250°C. Under the view of precursor handling for the 

process, higher vaporization temperatures are preferred in order to vaporize the precursor as 

soon as possible. The precursor should not accumulate in the vaporizer for a long time before 

it is completely vaporized. Otherwise, the chemical vapor flow of precursors will not match 

with the controlled liquid flow of the precursors. On the other hand, decomposition of 

precursors in the vaporizer and the showerhead caused by overheating should also be 

prevented. Therefore, the compromised vaporization temperature for these three precursors 

was set to 220°C for processes in this study. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The deposition rate of the single metal oxide of each precursor at various substrate 

temperatures ranging from 380°C to 550°C was also investigated. The results are shown in 

Figure 3.5. The deposition rate of PbO on Si substrates increases with increasing substrate 

Figure 3.4  Deposition rate of the single metal oxide of each 
precursor at various vaporization temperatures. 
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temperature from 400°C to 420°C and then keeps almost at a constant value between 420°C 

and 500°C. At a substrate temperature higher than 500°C the deposition rate decreases with 

increasing temperature. In many studies it is supposed that at the high temperature PbO is 

much more volatile and results in the decrease of the net deposition rate at higher temperature. 

In addition, the Pb loss must also be taken into consideration for high temperature annealing 

of PZT thin films. The deposition rate of ZrO2 on Si increases, when substrate temperature 

increases from 380°C to 450°C. Between 450°C and 550°C the deposition rate is almost the 

same. Deposition of TiO2 on Si shows also similar results. But the deposition of ZrO2 and 

TiO2 on Ir substrates is a little different from those on Si substrates. The deposition rates of 

ZrO2 and TiO2 on Ir substrates between 380°C and 550°C are approximately constant. 

Generally speaking, the deposition rates of PbO, ZrO2 and TiO2 have only a weak dependence 

on the substrate temperature between 400°C and 550°C. That means the process in this 

temperature range is rather mass transport limited than surface reaction limited. In order to 

have optimized ferroelectric property, the composition of Pb, Zr and Ti in the PZT films 

should be kept at a certain ratio. A deposition process limited by mass transport is preferred 

for easier composition control with variable precursor flow.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5  Deposition rate of single metal oxide of each 
precursor at various substrate temperatures. 
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It should be noted that the deposition of a ternary metal oxide such as PZT does not 

necessarily have a strong relation with the deposition of the single metal oxides of the three 

elements. Investigation of the deposition for each single metal oxide can only provide indirect 

information to find suitable process parameters by evaluating if they are comparably reactive 

and if the deposition rate is in an acceptable range. 

 

The process conditions were defined according to the results above and summarized in 

Table 3.1. Two kinds of substrates were used in this study for PZT deposition. The first kind 

was p-type silicon wafers of ‹100› direction. The second kind was iridium substrates prepared 

as follows:  

1. A thermal SiO2 film of 200–500nm thickness was formed on the p-type ‹100› silicon 

wafers.  

2. A thin Ti film of 10–20nm was then deposited by e-beam evaporation on the SiO2. This Ti 

film was used to improve the adhesion of the following iridium deposition.  

3. An iridium film of 100nm thickness was then deposited also by e-beam evaporation on 

TiO2 as bottom electrode.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 3.1  Process conditions for PZT deposition. 
 

  Substrate  Ir/Ti/SiO2/Si 

  Si 

  Precursors Pb(thd)2 0.02–0.10M 

 Zr(OiPr)2(mmp)2 0.02–0.10M 

 Ti(OiPr)2(mmp)2 0.02–0.10M 

  Solvent Octane  

  Vaporizer temperature  220°C 

  Showerhead temperature  220°C 

  Gas lines temperature  220°C 

  Carrier gas (N2) flow rate  800–1000sccm 

  O2 gas flow rate  1100–1300sccm 

  Substrate temperature  450–550°C 

  Process pressure  0.5–5.0mbar 
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PZT films with a thickness close to 100nm were deposited at 450, 500 and 550°C on 

iridium and silicon substrates. In order to reduce the maximum temperature in the whole 

process flow, there was no crystallization annealing at higher temperatures after PZT 

deposition. The process temperature of the PZT deposition was the highest temperature in the 

whole process flow.  

 

The film thickness was measured by using a spectroscopic ellipsometer or, sometimes, 

by scanning electron microscopy (SEM). The compositional analysis of PZT films was 

performed by using X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray 

spectroscopy (EDX). Crystal structure of the thin films and their crystallographic orientation 

were examined by X-ray diffraction (XRD) using Cu-Kα radiation and transmission electron 

microscopy (TEM). Surface morphologies of the PZT films were investigated by SEM and 

atomic force microscope (AFM).  

 

For electrical characterization of the samples a further Ir film was deposited as top 

electrode to form an Ir/PZT/Ir capacitor stack. Circular Ir top electrodes were deposited on the 

PZT/Ir by e-beam evaporation through a shadow mask with many holes of various diameters 

ranging from 0.2 to 1mm. An IR heater heated the wafers to 250°C during evaporation. After 

top electrode deposition the samples were annealed at 300–400°C in atmosphere for 30–60 

minutes. Because the whole Ir bottom electrode is covered by the PZT film during the 

deposition process, a small area of the PZT film is etched off with a chemical solution (6% 

HNO3 + 2% HF + 1% HCl) in order to provide electrical contact to the bottom electrode. 

Ferroelectric properties, such as P-V hysteresis loops, of these capacitors were measured by 

using a ferroelectric test module TF ANALYZER 1000 (aixACCT Systems GmbH).  

 

Figure 3.6 shows XRD patterns of as-deposited PZT films which were deposited at 

various substrate temperatures 450, 500 and 550°C with two different compositions. Some 

films have stoichiometric PZT composition with a Zr/Ti ratio close to 30/70. The other films 

contain 50% more Pb than the stoichiometric one. 

 

It can be seen that the stoichiometric PZT film (P1.0Z0.3T0.7) deposited at 450°C has 

very weak (101)/(110) peaks. The PZT film with 50% excess Pb (P1.5Z0.3T0.7) deposited at 

450°C has stronger (101)/(110) peaks than the stoichiometric one. In addition, very weak 

peaks at (001)/(100) and (112)/(211) are also visible. That means PZT films deposited at 
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450°C can be perovskite crystallized and may have ferroelectric properties. Both P1.0Z0.3T0.7 

and P1.5Z0.3T0.7 films deposited at 500°C and 550°C are well crystallized and have clear 

(001)/(100), (101)/(110), (200) and (112)/(211) peaks. Some other peaks such as (002) and 

(102)/(201)/(210) are also visible. Because the Zr/Ti ratio is close to 30/70, the PZT films 

show the characteristic tetragonal splitting of (00l) and (l00) peaks. At the deposition 

temperatures of 500°C and 550°C, no clear relationship between crystallization orientation 

and Pb compositions is found in the XRD measurements. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.7 shows SEM images of two PZT films deposited at 550C with a 

stoichiometric and a Pb-excess composition. The PZT films consist of grains in different size 

with clear facets and edges. It can be clearly seen that the Pb-excess PZT film is much 

rougher and has larger grains than the stoichiometric one. Quantitative analysis of the 

morphology was made by AFM measurement and is shown in Figure 3.8. The 

Figure 3.6  XRD patterns of PZT films deposited at various temperatures 
with various Pb contents. 
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root-mean-square value of surface roughness is 7.1 nm for the stoichiometric PZT film and 

21.4 nm for the Pb-excess PZT film. It is suggested by many researchers that in addition to a 

higher deposition temperature, more Pb also helps for better crystallization and, hence, for 

better ferroelectric properties. Excess Pb plays especially an important role for crystallization 

at lower process temperatures. Therefore, in Figure 3.6 at 450°C the P1.5Z0.3T0.7 film has 

stronger PZT peaks than P1.5Z0.3T0.7. And this is also the reason why in Figure 3.7 and Figure 

3.8 the Pb-excess PZT film is rougher than the stoichiometric one. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 3.7  SEM images of PZT films deposited at 550°C with various compositions. 

(a) Pb/(Zr+Ti)=0.94, Zr/(Zr+Ti)=0.38 

(b) Pb/(Zr+Ti)=1.28, Zr/(Zr+Ti)=0.35 
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A phase separation is found in deposited PZT films. This phenomenon doesn’t happen 

in all samples but is seen in the majority. Figure 3.9 shows some typical examples of 

different phases inspected by SEM. Figure 3.9(a) shows many disk-shape areas on the PZT 

film. These disks consist of many grains and are much rougher than the surroundings. The 

center of the disk is rougher than edge of the disk and there are sometimes cluster of very 

large grains at the disk center. Qualitative EDX measurements of the PZT composition show 

that there is more Pb in rougher disks than in the surroundings. But no clear dependence of 

this disk phase on the process parameters can be found.  

 

Wang and Choi [3.25][3.26] also found such a disk-shape phase in PbTiO3. Their analysis 

with Auger electron spectroscopy (AES) revealed no composition difference between the disk 

region and the surroundings. They concluded that this disk phase must be a result of a partial 

crystallization of PbTiO3, which was embedded in the amorphous matrix.  

 

Figure 3.9(b) shows another type of phase separation. Two different phases form 

randomly on a PZT film and can be distinguished as brighter areas and darker areas in SEM 

working with secondary electron imaging (SEI) mode. This kind of phase separation forms 

more easily on Ir substrates than on Si substrates. The brighter areas are rougher with many 

crystal grains. The darker areas are smoother than the brighter areas and look like amorphous 

(b) Pb/(Zr+Ti)=1.28, Zr/(Zr+Ti)=0.35 

Z rms = 21.4nm 
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1 

2 
3µm 

1µ
m

 

(a) Pb/(Zr+Ti)=0.94, Zr/(Zr+Ti)=0.38 

Z rms = 7.1nm 
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Figure 3.8  AFM surface morphology of PZT films deposited at 550°C with 
various compositions. 
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at the lower process temperature (450°C) on Si substrates. But crystal grains are also visible 

in darker area at 450°C on Ir substrates, and at higher process temperature (500/550°C) on 

both Si and Ir substrates. The difference of brightness in SEM inspection is probably caused 

by different roughness, different crystallization or other factors.  

 

The phase separation of rougher brighter and smoother darker areas shown in Figure 

3.9(b) can also be found in the research of Otani et al. (Figure 11(a) in reference [3.27]) but no 

analysis was focused on this phenomenon in their publication.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9(c) shows a mixture of phase separations shown in Figure 3.9(a) and 

Figure 3.9(b). The rougher disks locate mostly on rougher brighter areas and seldom on 

     

Figure 3.9  Phase separation in PZT films inspected by SEM: (a) disk rougher 
phase, (b) smoother phase (darker area) and rougher phase 
(brighter area), (c) mixture phase of (a) and (b), (d) EDX analysis. 

(a) (b) 

(c) (d) 

Pb/(Zr+Ti)=1.50 
Zr/(Zr+Ti)=0.32 

Pb/(Zr+Ti)=1.71 
Zr/(Zr+Ti)=0.32 
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smoother darker areas. There seems to be some relationship between rougher disks and 

rougher brighter areas. Figure 3.9(d) shows quantitative EDX measurements of PZT 

composition for rougher brighter area and smoother darker area. The white rectangles are 

measured areas. In both areas the ratios of Zr/(Zr+Ti) are the same; but in the rougher brighter 

area the Pb/(Zr+Ti) ratio is 15% higher than that in the smoother darker area. This result 

reveals that the Pb composition may play some certain role for phase separation. 

 

Further analyses of the disk rougher phase with TEM were shown in Figure 3.10. The 

normal phase region of the PZT film shown in Figure 3.10(b) has no apparent grain boundary 

while the disk rougher phase region shown in Figure 3.10(c) consists of many large grains of 

a size ranging from 100nm to 200nm. These grains have round corners without facets.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 3.10  TEM images of the PZT film with disk rougher phase:  
(a) overview, (b) normal phase (region A), (c) disk 
rougher phase (region B). 

(b) (c) 

(a) 

A 

B 
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Selected area electron diffraction (SAED) was performed on both regions for the 

normal phase and the disk rougher phase. The results are shown in Figure 3.11. Both phases 

have almost the same diffraction patterns. Under the qualitative aspect, both phases contain 

the same PZT crystal structures although more Pb was found in disk rougher phase according 

to EDX results and, also, their appearances under TEM and SEM are totally different. 

Because the very rough surface of the disk rougher phase region is combined with a large 

thickness variation of the PZT film, it may cause problems for electrical properties and 

reliability. The formation of such a phase should be avoided.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Electrical characteristics of ferroelectric capacitors such as hysteresis loops and 

current density responses vs. voltage were measured. Figure 3.12 shows the results of 

ferroelectric capacitors with PZT films deposited at 450, 500 and 550°C. It can be seen that 

the capacitors with 500°C PZT and 550°C PZT show good hysteresis curves. The remanent 

polarizations of them reach about 35μC/cm2. In the J-V characteristics, sharp pulses of the 

switch current near ±1V are visible. The capacitor of 450°C PZT has also smaller switch 

current pulses and exhibits a weak remanent polarization about 10μC/cm2. 

     

Figure 3.11  Selected area electron diffraction (SAED) of disk rougher phase 
in PZT films: (a) normal phase (region A), (b) disk rougher 
phase (region B). 

(a) (b) 
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Figure 3.13 shows the hysteresis loops of capacitors with PZT films deposited at 

550°C with different compositions. The one with nearly stoichiometric composition exhibits a 

very low remanent polarization of about 2μC/cm2. Another one with a composition of about 

30% excess Pb exhibits a better hysteresis loop with a remanent polarization at about 

12μC/cm2. Generally speaking, the PZT films with a higher Pb content have higher remanent 

     

Figure 3.12  Hysteresis loops and current density responses of ferroelectric 
capacitors with PZT films deposited at various temperatures. 
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polarizations. The ferroelectric capacitors shown in Figure 3.12 with PZT films deposited at 

450°C and 500°C have compositions with excess Pb and exhibit better remanent polarization 

values than stoichiometric PZT films.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.4  Summary 
 

In this chapter, MOCVD PZT thin film deposition with novel Zr and Ti precursors 

[Zr(OiPr)2(mmp)2 and Ti(OiPr)2(mmp)2] together with Pb(thd)2 was investigated. Process 

conditions for these precursors were optimized. Well crystallized PZT thin films with good 

ferroelectric properties at deposition temperatures between 450 and 550°C could be achieved. 

Phase separation in PZT film was found and has probably a relation to Pb content in the PZT 

films. 

 

 

     

Figure 3.13  Hysteresis loops of ferroelectric capacitors with PZT 
films deposited at 550°C with various compositions. 
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4  Reactive Ion Etching of Iridium Thin Films 
 

 

 

4.1  Considerations for Reactive Ion Etching of Iridium Thin Films 
 

As mentioned in previous chapters, applying RIE technology on formation of 

ferroelectric capacitors still encounters difficulties. Halogen-containing gases, which are often 

used in plasma etching process, form low volatile compounds with electrode materials Ir, Pt 

and many ferroelectric materials. The melting points and boiling points of halides of some 

electrode and ferroelectric materials are shown in Table 4.1. It can be seen that most of the 

halides in the table are nonvolatile at room temperature.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.1  Melting points and boiling points of halides of 
electrode and ferroelectric materials.[4.1]–[4.6] 

 
Compound mp (°C) bp (°C)   Compound mp (°C) bp (°C) 

PtF4 600 -   PbF2 855 1290 
PtF6 61.3 69.1   PbF4 ~600 - 
PtCl2 581 -   PbCl2 501 954 
PtCl3 435 -   PbCl4 -15 50 
PtCl4 370 -   PbBr2 373 914 
PtBr2 250 -      
PtBr3 200 -   ZrF4 932 912 
PtBr4 180 -   ZrCl2 727 1292 

     ZrCl4 437 331 
IrF3 250 -   ZrBr4 450 357 
IrF6 44 53      
IrCl2 >733 -   TiF3 1200 1400 
IrCl3 763 -   TiF4 284 - 
IrCl4 ~700 -   TiCl2 1035 1500 

     TiCl3 440 960 
AlF3 1290    TiCl4 -24 136.5 
AlCl3 192.6    TiBr2 >500 - 
AlBr3 97.5 255   TiBr3 39 230 

     TiBr4 38 234 
 

93 



Chapter 4  Reactive Ion Etching of Iridium Thin Films 

Higher temperature etching process for ferroelectric capacitor is, therefore, necessary 

in order to enhance etching rate. This demand results in a new problem that photoresist is not 

sustainable for high temperature etching. SiO2, TiN and TiAlN have been used as hard masks 

instead of photoresist for high temperature RIE. [4.7]–[4.11] Unfortunately, although the etching 

rates of ferroelectric and electrode materials are improved in high temperature etching 

processes, the sidewall slope of ferroelectric capacitors after etching is still too low because of 

low selectivity between mask materials and ferroelectric/electrode materials.  

 

The halides of aluminum are also shown in Table 4.1. It is found that its fluoride 

(AlF3) has a much higher melting point than fluorides of iridium (IrF3, IrF6) and platinum 

(PtF4, PtF6). This is a hint that it may be possible to use Al or Al2O3 as hard mask with high 

selectivity for reactive ion etching of Ir and Pt under high temperature with fluorine- 

containing chemistries such as CF4, SF6 and NF3. Aluminum is already used as metal wires in 

conventional CMOS process. Al2O3 is also used in FeRAM processes as hydrogen barrier 

layer and is proved to be compatible with conventional CMOS process technology.  

 

Fluorocarbon plasmas have been widely used for Si and SiO2 etching processes. They 

have also been investigated since many years. The mechanism of dissociation of CF4 in the 

plasma is a very complicated procedure. Many kinds of reactions can happen in the plasma 

and many different radicals are generated by electron impact. Equations (4.1) to (4.3) are 

believed to be some of the main reactions happening in the plasma. [4.12]–[4.17] In RIE of Si and 

SiO2, the dissociated fluorine atoms are responsible for etching. They react with Si and SiO2 

surface; form volatile SiF4 which leaves the substrate surface thereafter.  

 

ee 1xx
−

−
− ++→+ FCFCF     (x=2–4)       (4.1) 

FCFCF −
−

− +→+ 1xx e      (x=2–4)       (4.2) 

ee 1xx 2FCFCF −+
−

− ++→+     (x=2–4)       (4.3) 

 

It is well known that the addition of a small amount of O2 into the CF4 plasma can 

enhance the atomic fluorine concentration and therefore enhances the etch rate. The 

mechanism of dissociation becomes more complicated with the addition of O2. Equations 

(4.4) to (4.9) are some of many possible reactions which can happen in the plasma. [4.17]–[4.20]  
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ee2
−− ++→+ OOO              (4.4) 

FCOFOCF +→+ −1xx     (x=1–3)        (4.5) 

2FCOOCF +→+2               (4.6) 

ee2
−− ++→+ FCOFCOF              (4.7) 

2FCOOCOF +→+ 22               (4.8) 

FCOOCOF +→+ 2               (4.9) 

 

Earlier studies have reported that when O2 addition starts increasing from 0%, the 

atomic F concentration also increases up to a maximum at a certain O2 percentage. Further 

increasing of O2 percentage causes a decrease of the F concentration. This decrease is 

probably caused by dilution. A strong relation between F concentration and etch rate of Si and 

SiO2 was also found. [4.12][4.21][4.22] 

 

In addition to the dissociation and reaction of CF4 in the plasma, it should be noted 

that fluorocarbon radicals can form polymers on the substrate surface. The deposited polymer 

layer inhibits the etching by preventing fluorine atoms to reach the Si or SiO2 surface. The 

added O2 reacts with fluorocarbon radicals in the plasma to form CO and CO2 and reduces the 

formation of fluorocarbon polymers. This is another benefit of adding O2 in CF4 plasma. 

Adding argon in plasma is also an alternative to remove the polymers by Ar ion 

bombardment.  

 

The knowledge about RIE of Si and SiO2 with fluorine-containing gases provides 

information about etching of iridium and aluminum with the same kind of gases. In this 

chapter RIE of iridium thin films under elevated process temperatures was investigated with 

thin aluminum films as etching mask and CF4/O2/Ar as etching gases. 

 

 

4.2  Reactive Ion Etching of Iridium Thin Films with Al Mask and 

CF4/O2/Ar Gas Mixture 
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The experiments were conducted in an electron cyclotron resonance (ECR) enhanced 

reactive ion etching system which is shown in Figure 4.1. The ECR plasma was generated at 

the upper side of the chamber and introduced into the process chamber. The wafer was 

located on a resistor heated chuck. A DC bias at −200V was applied to the chuck by an RF 

generator with a matchbox. The total gas flow was kept at 50sccm. The process conditions are 

summarized in Table 4.2. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 4.2  Process conditions for iridium etching. 
 

   Substrate  Al/Ir/Ti/SiO2/Si 
  Ir/Ti/SiO2/Si 
   Substrate temperature  25–350°C 
   Process pressure  0.006–0.013mbar 
   Co-reactant gases  CF4/O2/Ar 
   ECR microwave power  200–600W 
   RF DC bias  −200V 
   RF power (not independent)  20–70W 

 

     

Figure 4.1  Schematic diagram of ECR-RIE system. 
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Iridium substrates used for these experiments were prepared on p-type ‹100› silicon 

wafers. The wafers were thermally oxidized to form 500nm SiO2. A thin Ti film of 20nm 

thickness was then deposited by e-beam evaporation on SiO2 and was used to improve the 

adhesion of the following iridium film. An iridium film of 150nm thickness was then 

deposited also by e-beam evaporation on the Ti film. The lift-off method was used to form Al 

patterns on iridium for use as etching mask. Photoresist was patterned on the Ir-covered 

wafers according to process parameters of the lift-off method. After performing this 

lithography process, a 100nm thick Al film was deposited on the wafers by e-beam 

evaporation. The wafers were afterwards soaked in acetone to remove photoresist and also the 

aluminum deposited on the photoresist. The aluminum which was deposited directly on 

iridium surface was not removed and stayed on the iridium as etching mask. An O2 plasma 

treatment at 300°C for one hour was performed to remove the possible residue of photoresist 

on the surfaces of Ir and Al films. Wafers with 100nm Ir films but without Al etching mask 

were also used in the experiments for rough estimations of the Ir etching rate.  

 

The etch rate was calculated with help of step height measurements by a Dektak 

Profilometer on the edge of Al mask patterns. The Al mask patterns for measurement are 

10/10µm line/space structures. The Al mask thickness d1 was measured at first before etching. 

The samples were then etched in the chamber for t minutes using various process conditions. 

After etching the samples were measured with the Profilometer for the second time and the 

step height determined was d2. The Al etching mask on iridium was then removed by a wet 

etching process with a commercial Al etch solution (73.1% H3PO4 + 2.3% HNO3 + 22.3% 

CH3COOH) at room temperature without damaging the Ir surface because Ir is not attacked 

by any acids including aqua regia. After Al removal, the samples were measured by 

Profilometer for the third time and the step height d3 was obtained. The etch rates of Ir and Al 

were then calculated as follows: 

Ir etch rate = d3/t 

Al etch rate = (d1 + d3 − d2)/t 

Selectivity = Ir etch rate / Al etch rate 

 

In the experiments the influence of various process parameters such as substrate 

temperature, pressure, ECR power and gas mixing ratio on the etch rate was investigated. 
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The influence of the CF4/O2/Ar gas mixing ratio on the etch rate is shown in Figure 

4.2. The samples were etched at 300°C and 0.01mbar with 400W ECR power and the total 

gas flow was kept at 50sccm. In Figure 4.2(a) the CF4 flow rate was fixed at 40sccm and only 

O2 and Ar flow rates were changed. The etch rate decreases when O2 is replaced by Ar. 

Although both Ar and O2 have the effect of reducing polymer deposition, the result shows that 

O2 works better than Ar in the view of enhancing the etch rate. The reason may be the role of 

O2 in enhancing the dissociation of CF4 which results in a higher concentration of fluorine 

radicals.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In Figure 4.2(b) the flow rate of O2 was fixed at 10sccm and CF4/Ar flow rates are 

changed. Increasing the Ar flow rate and decreasing the CF4 flow rate causes a decrease of the 

etch rate. It seems that the gain of etch rate by reducing polymer film growth with Ar ion 

bombardment is smaller than the loss of etch rate caused by replacing an equal amount CF4 by 

Ar. The results of Figures 4.2(a) and (b) indicate that the addition of Ar in the CF4/O2 gas 

mixture may be profitless for Ir etching.  

 

Figure 4.2  Effect of gas flow rates on etch rate of Ir in 
CF4/O2/Ar plasmas. 
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The gas mixing ratio of CF4/O2 without Ar was investigated and the result is shown in 

Figure 4.2(c). The adding of O2 up to 30% (CF4=35sccm, O2=15sccm) results in the highest 

etch rate. A further increase O2 beyond 30% causes a decrease of the etch rate. This 

phenomenon is similar to the results found in earlier studies of Si/SiO2 etching with CF4/O2 

plasmas. [4.12][4.23][4.24] 

 

The influence of the process pressure on the etch rate was also investigated, and the 

results are shown in Figure 4.3. The experiments were carried out at 300°C with an ECR 

power of 400W and gas flow rates CF4=35sccm/O2=15sccm. The results show that the etch 

rate increases with the pressure. Because the working pressure range of the equipment is 

designed to be between 5×10-4 mbar and 1×10-2 mbar, the process pressure in all other 

experiments was kept as a constant at 0.01mbar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The ECR microwave power is also an important factor of the etching process. Figure 

4.4 shows the relation between ECR power and etch rate of Ir. The samples were etched at 

300°C and 0.01mbar with gas flows CF4=35sccm/O2=15sccm. The etch rate of Ir increases 

Figure 4.3  Effect of process pressure on the etch rate 
of Ir in CF4/O2 plasmas. 
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when ECR power increases from 200W and reaches a maximum in the range from 300W to 

400W. Beyond 400W the etch rate decreases with increasing ECR power.  

 

Increasing the ECR power increases the density of ions and radicals and causes 

usually an increase of the etch rate. In this experiment the etch rate doesn’t increase 

monotonically with the ECR power but reaches a maximum value at a certain power. In the 

CF4/O2 plasma more fluorine atoms can increase etch rate but more fluorocarbon radicals can 

increase polymer generation and, therefore, decrease the etch rate. It is supposed that there 

exists a competition between F atom etching and fluorocarbon polymer deposition on the 

substrate surface. Increasing the ECR power changes the concentration of F atoms and 

fluorocarbon radicals which enhance etching and polymer deposition, respectively. The net 

effect is a maximum etch rate at an optimum ECR power. If the power is lower than the 

optimum value, the concentration of F atoms increases faster than the concentration of 

fluorocarbon radicals with increasing power. So the etch rate increases with increasing ECR 

power. If the ECR power is higher than the optimum value, the concentration of fluorocarbon 

radicals increases faster than the concentration of F atoms. Hence the etch rate decreases with 

increasing ECR power. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.4  Effect of ECR power on etch rate of Ir in 
CF4/O2 plasmas. 
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The effect of substrate temperature on etch rate and selectivity is shown in Figure 4.5. 

The etch rate of Ir increases in general with increasing temperature. The etch rate is higher 

than about 25nm/min at 350°C and is about five times higher than the etch rate at room 

temperature. The selectivity (Ir/Al) at room temperature is nearly 70. The thickness loss of the 

Al mask after etching (d1 + d3 − d2) is actually only one nanometer and is smaller than the 

measurement precision. Therefore, one can say that the etch rate of the Al mask is negligible 

and the selectivity is very high. At higher temperatures the thickness of the Al masks after 

etching is even a few nanometers higher than before etching. It is probably that a very thin 

polymer redeposition on the Al mask occurs at high temperature etching but it is also possible 

that these results are caused by measurement fluctuations. In comparison to the etch rate of Ir, 

the etch rate of Al mask is very low and the selectivity is very high. Good etching profiles at 

sidewalls of Ir should be achievable as long as the sidewall profile of the Al mask is good 

enough. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.5  Effect of substrate temperature on etch rate of Ir in 
CF4/O2 plasmas. 
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Figure 4.6 shows an Arrhenius plot of the Ir etch rate in CF4/O2 plasmas. The 

temperature dependence of the etch rate seems to be non-Arrhenius. The whole etching 

reaction may consist of several mechanisms including absorption of reactants on the surface, 

surface reaction, inhibition caused by polymer deposition, ion-enhanced reaction, desorption 

of low volatile products from the surface, ion-assisted products/polymer removal from the 

surface, etc. In addition to the surface reaction rate, it is known that deposition of 

fluorocarbon polymer and desorption of low volatile products play also important roles for the 

etch rate in such a system. Due to the influence of so many factors, one can understand that 

the etch rate cannot be characterized by an Arrhenius equation with a single activation energy.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The samples were inspected with SEM after the experiments. A bird’s view and a 

cross-sectional view of the Ir film and the Al mask before etching are shown in Figure 4.7. 

Unfortunately, the sidewall of the Al mask pattern made by the lift-off method is not vertical 

but shows a very low slope. A vertically etched sidewall is usually not possible with such an 

etching mask.  

 

     

Figure 4.6  Arrhenius plot of the etch rate of Ir in CF4/O2 plasmas. 
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The samples etched at 50°C and 350°C are shown in Figure 4.8. Both Ir surface and 

Al surface are clean after etching. No fences or residues on the sidewalls are visible. The 

slope of the etched Ir sidewalls is around 45°. It is found that many hillocks form on the Al 

mask after etching. The reason is still unknown. As the hillock formation happens at low and 

high temperatures, the etching temperature should not be the key issue. 
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Figure 4.7  SEM images of the Ir film and Al mask before etching. 

     

Figure 4.8  SEM images of Ir films and Al masks after etching. 
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(a) As etched at 50°C (b) As etched at 50°C 

(c) As etched at 350°C (d) As etched at 350°C 
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The Ir film etched at 100°C after Al mask removal is shown in Figure 4.9. The whole 

surface, including the etched Ir area, the etched Ir sidewall and the unetched Ir area under the 

Al mask, is clean without any residue. The unetched Ir area under the Al mask is still smooth 

after etching and Al mask removal. That means the location of hillocks shown in Figure 4.8 

should be above the Ir film and the hillocks may not have anything to do with the Ir film 

under the Al mask. 

 

 

 

 

 

 

 

 

 

 

 

 

 

4.3  Summary 
 

Reactive ion etching technology for iridium was developed and the results are shown 

in this chapter. CF4/O2/Ar gas mixtures were used with an aluminum film as hard mask for Ir 

etching at high temperatures. According to the results, the addition of Ar to the gas mixture 

seems to be profitless. The optimum gas mixing ratio is CF4/O2 = 35sccm/15sccm and the 

optimum ECR power is between 300W and 400W. The high process temperature at 350°C 

enhances the Ir etch rate to roughly 25nm/min, about five times higher than the etch rate at 

50°C. All investigated processes at temperatures ranging from room temperature up to 350°C 

exhibit very high etching selectivities. Neither visible residues on the etched surfaces nor 

fences at the etched sidewalls could be detected. The surfaces of Ir and Al were clean after 

etching independent on etching temperature. Nevertheless, many hillocks formed on the Al 

mask after etching and the reason for it is still unknown.  

 

     
unetched Ir 

(Al mask removed) etched Ir unetched Ir 
(Al mask removed) 

etched Ir 

Figure 4.9  SEM images of the Ir film etched at 100°C after Al mask removal. 
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5  Deposition of Iridium Thin Films on 
Three-Dimensional Structures with MOCVD 

 

 

 

5.1  Current Status of Iridium Thin Film Deposition in Three-Dimensional 

Structures 
 

Up to now the commercialized FeRAM products are still made with planar capacitor 

structures. There are only a few studies on three-dimensional structures of ferroelectric 

capacitors and most of them are ferroelectric PZT films with Ir electrodes. Deposition of 

iridium and iridium oxide in three-dimensional structures with MOCVD or ALD (Atomic 

Layer Deposition) were investigated by a few research groups. [5.1]–[5.5] Figure 5.1 shows 

some of the results in published papers. Generally speaking, conformal deposition of fine, thin 

Ir or IrO2 films in three-dimensional trench holes is more difficult than that in trench lines 

especially with high aspect ratio. In this dissertation, iridium thin film deposition in trench 

holes and lines with MOCVD was studied as one of the steps of developing complete 

three-dimensional ferroelectric capacitor. 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 5.1  Deposition of Ir or IrO2 thin films in trench holes and lines 
by (a) PEALD [5.3], (b) MOCVD [5.4], (c) ALD [5.5]. 

(a) (b) (c) 
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5.2  Deposition of Iridium Thin Films on Three-Dimensional Structures 

with Conventional MOCVD 
 

In this study, deposition of iridium thin films in 3D trench structures was first 

developed with conventional MOCVD technology. 3D trench holes of 1µm depth and various 

widths from 0.3µm to 0.6µm were prepared on SiO2/Si substrates which were provided by 

IHP (Leibniz-Institut für innovative Mikroelektronik) in Frankfurt (Oder), Germany. A thin 

titanium nitride (TiN) film of 20–50nm thickness was deposited by MOCVD on the SiO2/Si 

substrates as adhesion layer before Ir deposition.  

 

Figure 5.2 shows a schematic diagram of the deposition chamber for iridium and TiN 

in this study. TiN thin films were prepared using tetrakis(dimethylamido)titanium 

(Ti[N(CH3)2]4, TDMAT) as precursor and NH3 as reactants, N2 gas was used as a carrier gas. 

The precursor flow was precisely controlled between 100–1000 mg/h by a liquid delivery 

system including a liquid flow controller (LFC) with an evaporator in series. The evaporator 

temperature was kept at 100°C. The flows of reactant gas and carrier gas were 100 sccm and 

150 sccm, respectively. TiN was deposited at 300°C substrate temperature with a chamber 

pressure of 3 mbar. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 5.2  Schematic diagram of the conventional MOCVD 
system for TiN and Ir deposition. 
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In a subsequent process, Ir films were deposited on TiN at various substrate 

temperatures ranging from 300°C to 450°C using the same equipment. Ir(EtCp)(1,5COD) 

[iridium(ethylcyclopentadienyl)(1,5-cyclooctadiene)] was used as precursor and was diluted 

in toluene with a concentration of 0.1 M for liquid delivery. Oxygen was used as the 

co-reactant gas. Although oxygen may cause oxidation of the TiN layer, it is necessary for 

decomposition of the Ir precursor. Early experiments showed that no deposition of iridium 

films could be achieved without adding oxygen when Ir(EtCp)(1,5COD) was used as 

precursor. [5.6] The problem of oxidation of TiN must be solved in future studies. Details of 

the process parameters for both TiN and iridium deposition are summarized in Table 5.1. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.3 shows the SEM cross-sectional views of Ir/TiN bottom electrodes in trench 

holes at various Ir deposition temperatures. There is no apparent difference of the Ir 

deposition in trench holes between 450°C and 400°C. Large iridium grains with many facets 

cause a high surface roughness. Grain size ranges from 10nm to 70nm in diameter. The step 

coverage of the deposited Ir films is rather poor, and is estimated to be less than 25%. 

Nevertheless, a full coverage of the structure was obtained. The deposition rate of Ir at 300°C 

is much lower than those at 400 and 450°C. A higher pressure (8mbar instead of 5mbar) was 

Table 5.1  Process conditions for TiN and iridium deposition. 
 

TiN   
 Substrate  SiO2 1μm/Si 
 Substrate temperature  300°C 
 Process pressure  3mbar 
 Evaporator temperature  100°C 
 Precursor  TDMAT 0.1M in toluene 
 Carrier gas  N2 150sccm 
 Co-reactant gas  NH3 100sccm 
   Iridium   
 Substrate temperature  300–450°C 
 Process pressure  5–8mbar 
 Evaporator temperature  180°C 
 Precursor  Ir(EtCp)(1,5COD) 0.1M in toluene 
 Carrier gas  N2 150sccm 
 Co-reactant gas  O2 500sccm 
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used in order to increase the deposition rate. The Ir film deposited at 300°C looks different 

from those at 450°C and 400°C. The grains are bigger but with fewer facets. Such round 

grains are supposed to be less crystalline because of the lower deposition temperature. The 

surface morphology seems to be a little bit smoother than those at 450°C and 400°C. The step 

coverage at 300°C is only a little bit improved. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

(a) 450°C 

(b) 400°C 

(c) 300°C 

Figure 5.3  SEM cross-sectional views of Ir/TiN bottom electrode in SiO2/Si 
trench holes at various Ir deposition temperatures : (a) 450°C,   
(b) 400°C, (c) 300°C. 

Si 

SiO2 
TiN Ir 

110 



Chapter 5  Deposition of Iridium Thin Films on Three-Dimensional Structures with MOCVD 

A bottom electrode should provide a rather smooth surface to ensure a uniform 

deposition of the successive ferroelectric layer. According to the results shown in Figure 5.3, 

the roughness of the deposited Ir films in the trench holes is comparable to the thickness of 

the ferroelectric layer, which is usually about 70–100nm. The thickness uniformity of the 

ferroelectric film in trench holes could be strongly affected by such a roughness and in 

consequence, the ferroelectric properties could be degraded. An improvement of the surface 

morphology of the deposited iridium films is necessary. 

 

 

5.3  Deposition of Iridium Thin Films on Three-Dimensional Structures 

with Plasma Enhanced MOCVD 
 

A MOCVD chamber with plasma enhancement was used for further studies in order to 

improve iridium thin film deposition in three-dimensional structures. A schematic diagram of 

the equipment is shown in Figure 5.4. The same precursor Ir(EtCp)(1,5-COD) as in earlier 

studies was used but with a bubbler system instead of a liquid delivery system. The precursor 

is manufactured by Kojundo Chemical Laboratory Co., Ltd. According to the information 

provided by manufacturer, the melting point of Ir(EtCp)(1,5-COD) is 14 °C. At room 

temperature it is a yellow liquid. The vapor pressure from 333 to 393K can be calculated by 

log10 P= −4329/T+10.58, where P is in mbar and T in K. The pure liquid precursor was heated 

in the bubbler to 100 °C and the precursor vapor was transported with Ar as carrier gas. The 

transport line between bubbler and chamber was kept at 200 °C. The precursor vapor was fed 

into the chamber and flows laterally to the substrate. An oxygen plasma was generated by 

electron cyclotron resonance (ECR) at the upper side of the chamber above the substrate. It 

was introduced into the chamber as oxidant to react with the Ir precursor. Silicon wafers with 

a SiO2 film of 1 µm thickness were used as substrates in this study. Trench holes and trench 

lines of various sizes were generated on SiO2 by photolithography and reactive ion etching. 

Thin Ti and TiN films were then deposited on these wafers and serve as adhesion layers for 

the iridium films. The wafers including the patterning process and the Ti/TiN deposition 

process were provided by IHP (Leibniz-Institut für innovative Mikroelektronik) in Frankfurt 

(Oder), Germany. Iridium thin films with thicknesses of about 50–300 nm were then 

deposited on these substrates under various process conditions. Some experiments were 
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performed with ECR plasmas and some without in order to analyze the effect of the plasma 

enhancement. Details of the process conditions are summarized in Table 5.2.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 5.2  Process conditions for iridium deposition. 
 
General parameters   
 Substrate  TiN 25nm/Ti 20nm/SiO2 1μm/Si 
 Substrate temperature  300–450°C 
 Bubbler temperature  100°C 
 Precursor line temperature  200°C 
 Carrier gas  Ar 
 Co-reactant gas  O2 
   
Conventional MOCVD   
 Process pressure  0.2mbar 
 Ar flow  100sccm 
 O2 flow  100sccm 
   
ECR-PE-MOCVD   
 Process pressure  0.01mbar 
 Ar flow  135–140sccm 
 O2 flow  10–15sccm 
 ECR microwave power  200–350W 
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Figure 5.4  Schematic diagram of ECR-PE-MOCVD system. 

112 



Chapter 5  Deposition of Iridium Thin Films on Three-Dimensional Structures with MOCVD 

 

The crystal structure of the deposited iridium films was analyzed by X-ray diffraction 

(XRD), using a Bruker/AXS D5000 diffractometer. Step coverage and film geometry of the 

iridium films on different structures were evaluated by scanning electron microscopy (SEM) 

with a JEOL JSM-5900. The surface morphology of the films was additionally analyzed by 

atomic force microscope (AFM) using a Veeco Dimension 3100. Electrical resistivity of 

deposited Ir films was measured by four point probe method with a CDE ResMap 168. 

 

Three substrate temperatures, 300 °C, 375 °C and 450 °C were used in various 

processes with and without plasma enhancement. The thickness distribution of the deposited 

Ir films over the wafer was very non-uniform and the distribution pattern varied with 

different substrate temperatures. It was affected by a non-uniform precursor flow from the 

lateral side because of the hardware constraints and was also sensitive to the O2 flow and 

microwave power. Calculation and comparison of the deposition rate between different 

process conditions are therefore impractical. The experiments were performed for different 

process conditions with different process times in order to obtain Ir films that were thick 

enough for analysis at certain regions on the wafers. Generally speaking, the depositions at 

450 °C and 375 °C without plasma enhancement were considerably faster than those with 

plasma enhancement. The reason is supposed to be related to the process pressure. For the 

depositions with plasma enhancement the pressure was much lower than for the 

conventional MOCVD process. At this pressure range the deposition rate decreases with 

decreasing pressure although the plasma can usually enhance deposition. The deposition 

rate also decreases with decreasing temperature. The deposition rate at 300 °C without 

plasma enhancement was too low. No iridium film could be found even after a deposition of 

six hours. Only with plasma enhancement a reasonable deposition rate at 300 °C was 

available. XRD scans (Bragg-Brentano with automatic slit system) of the layers grown 

under different process conditions are shown in Figure 5.5. All the deposited Ir films are 

polycrystalline with the evidence of (111) and (200) peaks. In the process at 300 °C 

substrate temperature with plasma the film is almost randomly oriented according to the 

intensity ratio of (111) and (200) peaks. A further annealing procedure at 450 °C in O2 for 2 

hours does not change the crystallization of the Ir film. At higher substrate temperatures the 

deposited Ir films become more (111) textured, as the results at 375 °C and 450 °C show. It 

can be seen in Figure 5.5 that Ir films grown with plasma enhancement are more (111) 

textured than films without plasma at the same substrate temperature.  
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The XRD pattern of a substrate without the Ir film is also included in Figure 5.5 as 

standard for comparison. TiN (111) and Ti (002) peaks are visible for this sample. These 

two peaks shift more closely to each other after iridium deposition. It seems that the 

deposition process can induce an interdiffusion of Ti and TiN. The higher the process 

temperature is, the closer these two peaks are. A sample of the Ir film deposited at 300 °C 

with plasma enhancement was annealed subsequently at 450 °C and a further peak shift is 

found. Samples grown with plasma enhancement show larger shifts than those without 

plasma enhancement. In the process at 450 °C with plasma enhancement, these two peaks 

merge into a single peak of Ti2N (112). It should be noticed that the standard sample was 

also annealed in O2 at 450 °C but it shows no peak mergence. That means the interdiffusion 

is not induced merely by the process temperature. The influence of iridium film and plasma 

plays also an important role. The influence of temperature together with mechanical stress 

resulting from lattice mismatch between the deposited Ir films and TiN/Ti layers is 

supposed to be a possible reason for the interdiffusion of Ti and TiN layers. The fact that Ir 

Figure 5.5  XRD patterns of iridium films deposited with various 
process conditions. 
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films with plasma enhancement are more (111) textured affects the mechanical stress and, 

therefore, affects the interdiffusion as well. 

 

The deposited iridium films are investigated with SEM. Figure 5.6 shows images of 

cross-sections of deposited Ir films in trench holes. The holes have an oval shape with 

0.3µm width, 0.6µm length and 1µm depth and are cut along the width direction. The aspect 

ratio along width direction is about 3. Figures 5.6(a) and (c) show films deposited at 450°C 

and 375°C without plasma enhancement. The grain size is very large and iridium grows into 

large grains on the sidewalls in the holes before forming a continuous film. Therefore, the Ir 

film is very rough inside the holes and also on the top surface outside the holes. Figures 

5.6(b), (d) and (e) show the results of depositions at 450°C, 375°C and 300°C with plasma 

enhancement. The films on the top surface as well as in the trench holes are obviously 

smoother than those without plasma enhancement. Although the films on the top surface are 

thick enough for electrodes, the films in trench holes are very thin. Especially on the lower 

part of the sidewalls, only discontinuous individual nuclei were grown. The Step coverage 

for all these process conditions is estimated to be less than 0.1. Deposition of a fine, uniform 

and continuous Ir films seems difficult in trench holes with aspect ratios at about 3. 

 

The results of larger trench holes with a size of 0.6µm width × 1.2µm length are 

shown in Figure 5.7. The aspect ratio along width direction is about 1.7. In chemical vapor 

deposition on three dimensional structures, higher aspect ratios can limit the mass-transport 

of active reactants into trench holes. Trench holes with lower aspect ratio have usually 

better deposition performance in the holes than those with higher aspect ratio in the view of 

step coverage and film thickness on bottom and sidewalls. The filling of iridium films in 

these trench holes in Figure 5.7 is improved in comparison to those trench holes in Figure 

5.6. Films without plasma enhancement are still very rough with large grains, but it is 

possible to form continuous films in these trench holes. The benefit of plasma enhancement 

for the surface planarization can be seen here more clearly, especially in comparison to the 

narrower trench holes of Figure 5.6. It is shown in Figure 5.7(e) that the iridium film 

deposited at 300°C with plasma enhancement has a smoother surface with finer grains than 

films with other process conditions. The step coverage is improved to be about 0.2. This is 

still not a conformal deposition but it is acceptable for the application as electrodes in three 

dimensional structures.  

 

115 



Chapter 5  Deposition of Iridium Thin Films on Three-Dimensional Structures with MOCVD 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

(c) 375°C, without plasma (d) 375°C, with plasma 

(e) 300°C, with plasma 

(a) 450°C, without plasma 

Ir 

SiO2 

Si 

TiN/Ti 

(b) 450°C, with plasma 

300nm 

Figure 5.6  SEM cross-sectional views of iridium films 
deposited in trench holes of 0.3µm width. 
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A quantitative evaluation of the surface roughness was made by measurements with 

an AFM on the top surfaces near the trench holes. The results are shown in Figure 5.8. They 

also confirm the planarization effect of the plasma. The deposition at 375 °C without plasma 

has the roughest iridium film surface with a root-mean-square value of roughness Z rms of 

     

Figure 5.7  SEM cross-sectional views of iridium films 
deposited in trench holes of 0.6µm width. 

(e) 300°C, with plasma 

(d) 375°C, with plasma (c) 375°C, without plasma 

(a) 450°C, without plasma (b) 450°C, with plasma 

400nm 
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about 18.8 nm. The surface roughness of the iridium film deposited at 450 °C without 

plasma is 14.1 nm. The surface roughness of films grown with plasma enhancement at 

different deposition temperatures ranging from 300 °C to 450 °C is comparable and amounts 

to 5–6 nm. Although the iridium films deposited with plasma enhancement have similar 

levels of surface roughness, the film deposited at 300 °C has much finer grains than those at 

375 °C and 450 °C, as can be seen in Figure 5.8. On the other hand, although plasma 

enhancement has the effect of surface planarization, the grain size of Ir films on the top 

surface looks similar to the Ir films deposited by conventional MOCVD at the same 

temperature. It seems that the grain size of Ir films in this study depends to a high extent on 

deposition temperature but at most marginally on plasma enhancement.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

(a) 450 °C, without plasma 
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Figure 5.8  AFM surface morphology of iridium films. 
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An et al. [5.7] and Tseng et al. [5.8] demonstrated in their studies that plasma treatments 

can cause thin film surface planarization and densification. An et al. attributed the surface 

planarization to a filling of surface pores by surface adatoms that are excited by plasma ions, 

which results in a smoother surface. In order to clarify the effect of plasma in surface 

planarization, our Ir films deposited with conventional MOCVD were processed with a 

further plasma post treatment. The process conditions of the plasma post treatment were the 

same as the process conditions during the plasma-enhanced Ir film deposition but without 

precursor flow. The Ar carrier gas flowed through a bypass line into the chamber. The 

results of AFM measurements show that the surface roughness of Ir films deposited with 

conventional MOCVD did not significantly change after the plasma post treatment. That 

means a pure plasma treatment alone does not affect the planarization of Ir films in this 

study. The surface planarization is, therefore, not caused by pure physical sputtering effects 

of Ar and O2 plasmas. The mechanism of surface reaction chemistry and nucleation in the 

deposition with plasma enhancement may be different from that of conventional MOCVD 

and is supposed to be the cause for planarization. 

 

Figure 5.9 shows the results of a deposition in 0.7µm trench lines. Deposition of 

iridium without plasma enhancement seems to result in smoother surfaces in trench lines 

than in trench holes as can be seen by comparing Figure 5.7(a) and Figure 5.9(a). The film 

deposited at 300°C with plasma enhancement has the finest grain and smoothest film 

morphology in comparison to processes with different conditions. For all process conditions 

the step coverage of the deposited iridium films is better in trench lines than in trench holes. 

 

The electrical resistivity of the deposited Ir films was measured by four point probe 

method and is shown in Figure 5.10. The resistivity of Ir films at various process conditions 

ranges from 7 to 11 μΩ-cm. The Ir films deposited at 375°C have a little higher resistivity 

than the films deposited at 300 and 450°C. Plasma enhancement helps to reduce the 

resistivity. The variation of resistivity is supposed to be the result of combined effects of 

purity, density/porosity and grain size of Ir films. 
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Figure 5.9  SEM cross-sectional images of iridium films 
deposited in trench lines of 0.7µm width. 

500nm 

(a) 450°C, without plasma (b) 450°C, with plasma 

(c) 375°C, with plasma (d) 300°C, with plasma 

Figure 5.10  Electrical resistivity of deposited Ir films. 
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5.4  Summary 
 

Summarizing the results of Section 5.2 and Section 5.3, it can be concluded that the 

iridium thin film deposition with conventional MOCVD without plasma enhancement 

results in very rough iridium films with large grains especially on the sidewall in trench 

holes. Plasma enhancement during the deposition process seems to support planarization of 

the surface and results in smoother films. The deposition of uniform iridium films with fine 

grains in trench holes of 0.3µm width is difficult, but in trench holes of 0.6µm width and 

trench lines of 0.7µm width, iridium films with acceptable step coverage and surface 

morphology are achievable with a sufficient quality for the application as electrodes for 

three-dimensional capacitor structures. 
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6  Fabrication of Three-Dimensional Ferroelectric 
Capacitors 

 

 

 

6.1  Current Status of Three-Dimensional Ferroelectric Capacitors 
 

FeRAM with three-dimensional ferroelectric capacitor structures have been studied by 

institutes and companies since many years. Most of them were based on PZT thin films. 
[6.1]–[6.8] The 3D ferroelectric capacitors based on SBT thin films were also investigated. 
[6.9][6.10] Up to now all the FeRAM chips in mass-production use two-dimensional 

parallel-plate capacitors as storage node. Three-dimensional ferroelectric capacitors are still in 

development. Neither mass-production nor test chip of FeRAM with 3D capacitors is 

available now. 

 

 

6.2  Deposition of Ir/PZT/Ir Thin Films on Three-Dimensional Structures 
 

After developing the technologies for deposition of PZT and Ir thin films which are 

described in Chapter 3 and Chapter 5, the realization of three-dimensional ferroelectric 

capacitors was studied in this chapter.  

 

Silicon wafers with a SiO2 film of 1µm thickness were used as substrates in this study. 

Trench holes and trench lines of various sizes ranging from 0.3µm to 2µm were generated on 

SiO2 by photolithography and reactive ion etching. A Ti film of 20nm thickness and a TiN 

film of 25nm thickness were deposited subsequently on these wafers and serve as adhesion 

layers for iridium films. After some experiments showed that these adhesion layers did not 

work very well, a single Ti layer of 40nm thickness was then used as adhesion layer. The 

wafers including the patterning process and the Ti/TiN deposition process were provided by 

IHP (Leibniz-Institut für innovative Mikroelektronik) in Frankfurt (Oder), Germany. 

According to the optimized results of Chapter 5, iridium thin films as bottom electrode were 

deposited on these substrates at 300°C with ECR plasma enhancement. PZT films with a 

123 



Chapter 6  Fabrication of Three-Dimensional Ferroelectric Capacitors 

thickness about 100nm were then deposited at 450, 500 and 550°C on the iridium films. On 

some samples a further Ir film was deposited as top electrode to form Ir/PZT/Ir stacks. The 

other samples were left without Ir top electrode in order to investigate the surface morphology 

of PZT films. The details of the process conditions are summarized in Table 6.1. Step 

coverage, film geometry and film composition of the PZT/Ir and Ir/PZT/Ir thin film stacks 

were investigated by scanning electron microscopy (SEM), transmission electron microscopy 

(TEM) and scanning transmission electron microscopy (STEM).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 6.1  Process conditions for Ir/PZT/Ir deposition. 
 

   Substrate  Ti/SiO2/Si 
  TiN/Ti/SiO2/Si 
   
Iridium bottom electrode  ECR-PE-MOCVD 
   Precursor Ir(EtCp)(1,5-COD) Pure in bubbler 
   Bubbler temperature  100°C 
   Precursor line temperature  200°C 
   Carrier gas  Ar, 135sccm 
   Co-reactant gas  O2, 15sccm 
   Substrate temperature  300°C 
   Process pressure  0.01mbar 
   ECR microwave power  300W 
   
PZT  MOCVD 
   Precursors Pb(thd)2 0.05M 
 Zr(OiPr)2(mmp)2 0.02M 
 Ti(OiPr)2(mmp)2 0.05M 
   Solvent Octane  
   Vaporizer temperature  220°C 
   Showerhead temperature  220°C 
   Gas lines temperature  220°C 
   Carrier gas  N2, 800sccm 
   Co-reactant gas  O2, 1100sccm 
   Substrate temperature  450/500/550°C 
   Process pressure  5.0mbar 
   
Iridium top electrode  ECR-PE-MOCVD 
   The same as for the iridium bottom electrode 
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For electrical characterization similar wafers were used as substrates but with different 

3D structures. Two chips with different 3D structures were designed for electrical 

characterization. The first chip, 3DA, consists of parallel trench lines with 1µm width, 1µm 

distance and 1µm depth. The second chip, 3DB, consists of parallel trench lines with 2µm 

width, 2µm distance and 1µm depth. Both chips were fabricated on the substrates in 

neighborhood for 3D capacitors together with one additional chip, 2D, without any structures 

for 2D capacitors. All three chips were processed together at the same time in order to analyze 

the difference between 2D and 3D capacitors. For the samples with the purpose of electrical 

characterization, Ir bottom electrodes and PZT ferroelectric films were deposited using the 

same methods and process conditions as mentioned above. The Ir top electrodes were not 

prepared by ECR-PE-MOCVD because otherwise a RIE process for the Ir top electrodes 

would be necessary. Although the reactive ion etching technology of Ir has been developed in 

Chapter 4, it was not applied to our Ir/PZT/Ir stacks because the impact of the RIE process 

on the properties of the PZT films still needs to be investigated in detail. In this work, the Ir 

top electrodes for electrical characterization were prepared by e-beam evaporation at 250°C 

using a shadow mask with many holes of various diameters ranging from 0.2 to 1.0mm. 

Because thin film deposition by e-beam evaporation on 3D structures is strongly anisotropic, 

the samples were tilted to about 15° with rotation in order to enhance deposition at sidewalls 

of the trench lines. After top electrode deposition the samples were annealed at 300–400°C 

in atmosphere for 30–60 minutes before electrical measurements. Because the whole Ir 

bottom electrode is covered by the PZT film during the deposition process, a small area of 

the PZT film is etched off with a chemical solution (6% HNO3 + 2% HF + 1% HCl) in order 

to provide electrical contact to the bottom electrode. Electrical properties, such as P-V 

hysteresis loops and leakage currents, of these capacitors were measured by using a 

ferroelectric test module TF ANALYZER 1000 (aixACCT Systems GmbH) and a Keithley 

6430 source meter. 

 

The cross sections of the 3D PZT/Ir and Ir/PZT/Ir thin film stacks were investigated 

by SEM. Figure 6.1 shows the cross-sectional view of trench holes of width/length/depth 

=0.6µm/1.2µm/1µm. The PZT film was deposited at 450°C on the bottom Ir film. The step 

coverage of the PZT film is estimated to be about 0.4. The top/bottom iridium layers have 

poor step coverage but should be sufficient to work as electrodes.  
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The step coverage of the PZT film and the Ir films in trench lines are much better than 

those in trench holes. The PZT film deposited at 450°C in trench lines of width/distance/depth 

= 0.7µm/0.7µm/1µm has a step coverage of 0.57 (Figure 6.2). For the PZT deposition at 

500°C the step coverage is further improved up to 0.66 (Figure 6.3).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Ir 
PZT 
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Figure 6.1  SEM cross-sectional view of the Ir/PZT/Ir film stack 
deposited in trench holes of 0.6µm width (450°C PZT). 

     

Figure 6.2  SEM cross-sectional view of the Ir/PZT/Ir film stack 
deposited in trench lines of 0.7µm width (450°C PZT). 
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The samples have 3D structures of various dimensions. The step coverage of PZT 

films deposited at 450°C in trench lines of width/distance ranging from 0.7µm/0.7µm to 

2µm/2µm with Ir bottom electrodes is summarized in Figure 6.4. The PZT film thickness on 

top of the line and on bottom of the line strongly depends on the 3D dimensions. It is found 

that the difference of the thickness between top and bottom on 0.7µm/0.7µm (width/distance) 

trench lines is higher than for the other wider trench lines. If the line is wider, the thickness on 

bottom increases but the thickness on top decreases. The deposition on bottom of the trench 

lines depends on the aspect ratio of the structures, which affects mass transport of the 

chemical reactants. A narrower trench line has a higher aspect ratio, which makes mass 

transport more difficult to the bottom region of the lines. Therefore, deposition rate and 

thickness on bottom decrease with decreasing line width/distance. The step coverage becomes 

better on wider lines with a lower aspect ratio. On 1µm/1µm (width/distance) trench lines 

with 1µm depth (aspect ratio = 1) the step coverage reaches a value of 0.8. On 2µm/2µm 

(width/distance) trench lines with 1µm depth (aspect ratio = 0.5) the step coverage is close to 

1. The PZT films are conformal and have uniform thicknesses on tops, sidewalls and bottoms 

of the trench lines of these dimensions.  

 

 

     

Figure 6.3  SEM cross-sectional view of the Ir/PZT/Ir film stack 
deposited in trench lines of 0.7µm width (500°C PZT). 
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Phase separation is also found in PZT films on 3D structures. In Figure 6.5 it can be 

clearly seen that the PZT film on the upper half of the sidewall in the hole and on the surface 

outside the hole looks very rough. The lower half of the sidewall in the hole appears to be 

smoother. A converse result can be found, too, and is shown in Figure 6.6. The PZT film on 

the lower part of the hole is rougher than the upper part and outside. A horizontal distribution 

of smoother/rougher phases happens as well and is shown in Figure 6.7. In Figure 6.8 it can 

be seen that the sidewall of the line exhibits partially the smoother and partially the rougher 

phase. The disk rougher phase lies mostly on the bottom region. But it should be noted that in 

other samples the disk rougher phase can also be seen on the sidewall or the top of the lines. 

According to these results shown in Figure 6.5 to Figure 6.8, it seems that there is no 

consistent relation between the profiles of the 3D structures and the formation of phase 

separation. 3D structures probably have no or only minor effects on the formation of phase 

separation by affecting mass transport of the chemical reactants. There should be other 

aspects which can affect formation of phase separation as well. Therefore, the influence of 3D 

structures becomes insignificant.  

 

 

Figure 6.4  Step coverage of PZT films deposited at 450°C 
in trench lines with Ir bottom electrodes. 
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Figure 6.5  SEM image of PZT phase separation on 3D 
hole structures (vertical distribution). 
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Figure 6.6  SEM image of PZT phase separation on 3D 
hole structures (vertical distribution). 
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In the studies of Samsung, [6.4][6.5][6.8] phase differences of PZT films in trench holes 

were also recognized but their results differ from the results of this work. They found that a 

granular pyrochlore phase is prone to form on the lower part of the sidewalls in trench holes 

while a columnar perovskite PZT phase forms on the upper part of the sidewalls and on top 

surfaces outside the trench holes. The boundary between columnar phase and granular phase 

moved downward if the hole size increased or the process pressure increased.  

     

Figure 6.7  SEM image of PZT phase separation on 3D 
hole structures (horizontal distribution). 
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Figure 6.8  SEM images of PZT phase separation on 3D line structures. 
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STEM EDX line scans were performed to investigate the composition of the PZT 

films along the profile of 3D structures. The atomic composition is calculated with the 

Cliff-Lorimer method. In order to reduce the influence of other elements on composition 

percentage, the results are presented as Pb/(Zr+Ti) and Zr/(Zr+Ti) ratios. The composition of 

PZT films deposited at 500°C on 3D trench holes and trench lines are shown in Figure 6.9 

and Figure 6.10.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 6.9  TEM cross-sectional view of Ir/PZT/Ir stack on 3D trench 
hole structures (width 0.6µm) and results of EDX line scans. 
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The Zr/(Zr+Ti) ratio stays stable close to 0.3–0.4 along the 3D profile on both trench 

hole and trench line structures. The Pb/(Zr+Ti) ratio is stable in some scan sections but very 

unstable in some other sections. There seems to exist a base value of Pb/(Zr+Ti) close to 0.4. 

In unstable regions the ratio varies strongly and can reach a value up to 1.1. By comparing 

TEM images with the line scans, it can be found that the variation of brightness in the images 

     

Figure 6.10  TEM cross-sectional view of Ir/PZT/Ir stack on 3D trench line 
structures (width/distance 0.7µm) and results of EDX line 
scans. 
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matches with the variation of the Pb/(Zr+Ti) ratio. In scan sections E–F, G–H and N–O, the 

regions with higher Pb/(Zr+Ti) ratio are also darker than other regions. The darker brightness 

appears to be caused by more content of heavy Pb atoms in these regions.  

 

Figure 6.11 shows a comparison of the STEM images of C–D and Q–R line scan 

regions with higher magnification. The top surface of PZT is rough in the C–D region but 

rather smooth in the Q–R region. This reveals that the C–D region has a rougher phase and 

the Q–R region has a smoother phase. The PZT film seems to be not well crystalized but 

consists of many small grains. In the C–D line scan region, grain size difference is quite 

obvious. Parts of the region contain large grains in the size between 5nm–10nm. The other 

parts contain finer grains of about 2nm–3nm. The ferroelectric property originates probably 

from these grains. The variation of grain size seems to have a relation with the variation of 

Pb/(Zr+Ti) ratio of the PZT films. A large variation of the grain size along the C–D scan line 

exhibits an unstable Pb/(Zr+Ti) ratio of the PZT films. A homogenous distribution of fine 

grains in the PZT film shows a stable Pb/(Zr+Ti) ratio of about 0.3–0.4 in the Q–R line scan 

region.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 6.11  STEM cross-sectional view of the Ir/PZT/Ir stack on the 
bottom of 3D trench hole and line structures. 
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In Figure 6.11(b) interface layers are visible between PZT and Ir films including top 

Ir and bottom Ir films. The interface layers seem to be PZT but differ from the PZT in middle 

region. Figure 6.12 shows a cross-sectional view of a PZT film in which interface layers are 

more clearly visible. The interface layers have grains a little bit larger than the grains near the 

middle of the PZT film and look darker than the middle region of the PZT film. Sometimes a 

brighter second interface layer can be seen between the first interface layer and the PZT film. 

Contrary, the second interface layer has finer grains and maybe less dense than the middle of 

the PZT film. The EDX line scan across the PZT film reveals that the darker interface layer 

contains much more Pb and less Zr, Ti than the middle of the PZT film. But in the brighter 

interface layer there is a little bit less Pb than in the middle of the PZT film. Although it is 

found that the content of Zr and Ti is smaller in the darker interface layer, the Zr/(Zr+Ti) ratio 

is nearly constant across the whole PZT film. The content of O and Ir does not differ in the 

interface layers. Pb seems to be the only element related to the interface layers.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

It is still unknown how these interface layers form. Because the interface layers are 

visible all over the 3D structures, they may have nothing to do with the 3D structures and 

probably can also be seen in 2D structures. According to the result of line scans across the 

     

Figure 6.12  STEM cross section view of Ir/PZT/Ir stack and EDX line 
scan across PZT film in A–B region. 
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PZT films, this phenomenon seems to be a Pb accumulation in darker interface layers and a 

Pb depletion in the brighter interface layers. At the interface of PZT with the bottom Ir, it 

should be clarified whether the reaction rates of every element are constant during deposition. 

If these three precursors of PZT have different incubation times, an interface layer with a 

different composition can grow initially. At the interface of PZT with the top Ir, there may be 

another reason for the interface layers. A plasma damage may be one of the possible reasons. 

At the beginning of top Ir deposition the Ar plasma may perform a sputter etching effect on 

the PZT film. Such a sputter etching is usually selective depending on the elements.  

Therefore, the composition of PZT at the top surface is modified by the Ar plasma. Because 

the thickness of interface layer is about 20nm–30nm on each side, the influence of the 

interface layers on the ferroelectric properties may be very high and has to be taken into 

consideration. 

 

Generally speaking, no dependence of the PZT composition on the 3D profile can be 

found according to the results shown in Figure 6.9 and Figure 6.10. The Pb composition is 

very non-uniform in the view of sub-micrometer dimensions. The ferroelectric capacitors in 

FeRAMs must have dimensions less than 0.5µm in order to compete with other memory 

devices. The non-uniformity may involve a large diversity of switching charges between 

memory cells resulting in function failures of FeRAMs. 

 

 

6.3  Electrical Characterization of Three-Dimensional Ferroelectric 

Capacitors 
 

As mentioned before, two kinds of 3D capacitors consisting of parallel trench line 

structures of width/distance/depth = 1µm/1µm/1µm and 2µm/2µm/1µm were used for 

electrical characterization. Figure 6.13 shows their cross-sectional views under SEM. The 

capacitor area is determined by the area of the top electrode, which is deposited by e-beam 

evaporation through a shadow mask with many holes of various diameters ranging from 0.2 to 

1.0mm. The type 3DA capacitors of width/distance/depth = 1µm/1µm/1µm have a 3D/2D 

area ratio of 2 and type 3DB capacitors of width/distance/depth = 2µm/2µm/1µm have a 

3D/2D area ratio of 1.5. 
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Figure 6.14 shows typical P-V and J-V characteristics of 2D, 3DA and 3DB 

capacitors. The P and J values are converted according to the real capacitor areas. With 

suitable process conditions all 2D and 3D capacitors show ferroelectric properties. In general 

the 3D capacitors especially 3DA type have a higher leakage current than the 2D capacitors. 

Many 3D capacitors show even a short circuit. The hysteresis loop becomes fat and round 

because of the disturbance of leakage current. If leakage current is too high, it is difficult to 

monitor the ferroelectric property. Meyer et al. [6.11] have developed a method to extract the 

leakage current of ferroelectric capacitors by multiple measurements with different 

frequencies. This method was also used to analyze the leakage current in our ferroelectric 

capacitors. The leakage current in our ferroelectric capacitors consists of two main 

components. As the voltage increases from zero, the leakage current increases linearly with 

increasing voltage. This is the first component of the leakage current and is shown in Figures 

6.14(d) and (f) as JL1. After increasing the voltage beyond a threshold, the leakage current 

increases much faster. It looks like a breakdown but the capacitor does not really break down 

unless the voltage does exceed the threshold voltage too much. The component of fast 

     

Figure 6.13  SEM cross-sectional views of ferroelectric capacitors 
made of the Ir/PZT/Ir stack on 3D trench line structures. 

(a) Type 3DA, width/distance/depth = 1µm/1µm/1µm 

(b) Type 3DB, width/distance/depth = 2µm/2µm/1µm 
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increasing leakage current beyond threshold voltage is shown in Figures 6.14(d) and (f) as JL2. 

After the subtraction of leakage current, the P-V and J-V characteristics of 3DA and 3DB 

capacitors are shown as red dashed lines in Figures 6.14(d)(e)(f)(g). The 3DA and 3DB 

capacitors show comparable remanent polarizations in comparison with 2D capacitors. That 

means, the sidewalls, bottoms of 3D structures seems to have comparable remanent 

polarizations with tops. But this result is based only on a few samples. More statistical 

investigations are necessary to confirm if 3D and 2D capacitors have the same ferroelectric 

properties.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     

Figure 6.14  Hysteresis loops and current responses of 2D and 3D 
ferroelectric capacitors. (P, J values are converted 
according to real capacitor areas) 
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High leakage currents exist actually in our ferroelectric capacitors independent of their 

2D or 3D structures. The leakage current level and the threshold voltage for JL2 vary in 

different ferroelectric capacitors and have a relation with PZT and top electrode deposition 

processes. Positive and negative threshold voltages are usually asymmetric. In 2D 

ferroelectric capacitors, good characteristics with low leakage current JL1 and high threshold 

voltage for JL2 have been obtained very often at selected process conditions. But in 3D 

ferroelectric capacitors the leakage current JL1 is often too high and the threshold voltage of 

JL2 is too low. Therefore, the capacitors have a rather high leakage current before reaching the 

voltage sufficient to switch the polarization. Hence a quantitative evaluation of 3D 

ferroelectric capacitors is very difficult. 

 

The leakage currents of several typical 2D and 3D ferroelectric capacitors were 

measured and the results are shown in Figure 6.15. The leakage currents of the two 3DA 

capacitors are about three orders higher than those of the two 2D capacitors. One of the 3DB 

capacitors has the same leakage current level as 3DA capacitors and the other one has a 

leakage current level between 3DA and 2D capacitors. It is the general case in this work that 

the leakage current I3DA > I3DB > I2D.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 6.15  Leakage currents of 2D and 3D ferroelectric capacitors. 
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One possible reason is the PZT film thickness of the Ir/PZT/Ir capacitor stack on the 

sidewall and the bottom of the trench lines. According to the results shown in Figure 6.4, the 

PZT films on sidewalls and bottoms of the narrower trench lines are thinner than those of the 

wider trench lines. Thinner PZT films usually have higher leakage currents than thicker PZT 

films.  

 

In addition, the mechanical stress between Ir, PZT and substrates is also suspected. 

Layer peeling of Ir/PZT/Ir stacks caused by high mechanical stress happened very often in the 

start-up period of this work. This problem caused high leakage currents and short-circuits of 

the capacitors. It was found that the deposition temperature of the e-beam evaporation process 

for Ir top electrodes played a very important role. Although the layer peeling problem was 

reduced by depositing the Ir top electrode at a higher temperature, it is believed that there still 

exists a high stress in the capacitor stacks. The geometric difference of the 3D/2D structures 

may cause accumulation of mechanical stress at certain sites of the capacitor stacks and 

results in more leakage current paths. 

 

Although a high leakage current disturbs the 3D ferroelectric capacitors very much, 

some 3DB type capacitors have been found to be ferroelectric with a low leakage current. 

They were used for the cycling tests. Figure 6.16 shows the degradation of the remanent 

polarization of three groups of 2D/3DB capacitors after cycling. The process conditions of 

different groups were different. The degradation of the remanent polarization between these 

groups differs severely. Group 1 started to fatigue only after 105 switching cycles and the 

remanent polarization decreased to less than 50% after 109 cycles. Group 2 could preserve the 

remanent polarization comparable to the initial value even after 109 cycles. The degradation 

of 2D and 3DB capacitors of the same group is similar. They have probably the same quality 

with respect to degradation of the remanent polarization. But there is a distinct difference 

between 3DB and 2D capacitors. During the cycling tests, leakage current jumps happened in 

two of the three 3DB capacitors. The leakage current decreased again after further cycling but 

one of the capacitor broke down after further cycling. Two of three tested 3DB capacitors 

broke down before finishing 109 switching cycles. This reveals that 3D capacitors tend to 

have failures caused by leakage current.  
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6.4  Summary 
 

The deposition of Ir/PZT/Ir ferroelectric capacitor stacks is investigated in this chapter. 

The step coverage of PZT films on trench holes of width/depth=0.6µm/1.0µm is about 0.4. 

For trench line structures with width/distance/depth from 0.7µm/0.7µm/1µm to 

2µm/2µm/1µm, the step coverage of PZT films between 0.6 and 1 has been found. Phase 

separation, observed for 2D PZT deposition, has also been detected on 3D structures. No clear 

dependence of the crystallization of PZT on 3D profiles is found. STEM EDX line scans 

show a uniform Zr/(Zr+Ti) concentration ratio along the 3D profile but the Pb/(Zr+Ti) 

concentration ratio has a very large variation. Interface layers between PZT and top/bottom Ir 

layers are visible. EDX line scans across PZT films show large differences of Pb composition 

between middle regions of PZT films and interface layers. The PZT films appear to be not 

well crystalized but consists of many grains smaller than 10nm as revealed by TEM 

investigations. The grain size and its distribution seem to have a relation with the large 

variation of Pb composition in the PZT films. 

Figure 6.16  Degradation of remanent polarization vs. cycling. 
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3D ferroelectric capacitors have much higher leakage currents than 2D ferroelectric 

capacitors. Although the degradation of the remanent polarization between 2D and 3D 

capacitors is similar after 109 switching cycles, 3D ferroelectric capacitors tend to break down 

or to have leakage current jumps during cycling tests.  

 

 

6.5  Reference 
 

[6.1] Hironori Fujisawa, Kentaro Kita, Masaru Shimizu, Hirohiko Niu, “Low-Temperature 

Fabrication of Ir/Pb(Zr,Ti)O3/Ir Capacitors Solely by Metalorganic Chemical Vapor 

Deposition”, Jpn. J. Appl. Phys., 2001, Vol. 40, pp. 5551–5553  123 

[6.2] H. Fujisawa, S. Watari, N. Iwamoto, et al., “Fabrication of Planar and 

Three-Dimensional PZT Capacitors with Ir-Based Electrodes Solely by 

Low-Temperature MOCVD Using a Novel Liquid Ir Precursor”, Integrated 

Ferroelectrics, 2004, Vol. 68, pp. 85–94  123 

[6.3] Youngsoo Park, Jung Hyun Lee, June Mo Koo, et al., “Preparation of 

Pb(ZrxTi1−x)O3 Films on Trench Structure for High-Density Ferroelectric Random 

Access Memory”, Integrated Ferroelectrics, 2004, Vol. 66, pp. 85–95  123 

[6.4] June-Mo Koo, Bum-Seok Seo, Sukpil Kim, et al., “Fabrication of 3D trench PZT 

capacitors for 256Mbit FRAM device application”, IEEE IEDM, 2005, pp. 340–343  
123 130 

[6.5] Sungyung Lee, Kinam Kim, “Current Development Status and Future Challenges of 

Ferroelectric Random Access Memory Technologies”, Jpn. J. Appl. Phys., 2006, Vol. 

45, pp. 3189–3193  123 130 

[6.6] Takayuki Watanabe, Susanne Hoffmann-Eifert, Rainer Waser, Cheol Seong Hwang, 

“Liquid Injection Atomic Layer Deposition of Pb(Zr,Ti)O3 Thin Films on Three 

Dimensional Structures”, IEEE ISAF, 2007, pp. 156–158  123 

[6.7] Takayuki Watanabe, Susanne Hoffmann-Eifert, Frank Peter, et al., “Liquid Injection 

ALD of Pb(Zr,Ti)Ox Thin Films by a Combination of Self-Regulating Component 

Oxide Processes”, Journal of The Electrochemical Society, 2007, Vol. 154(12), pp. 

G262–G269  123 

141 

http://dx.doi.org/10.1143/JJAP.40.5551
http://dx.doi.org/10.1080/10584580490895699
http://dx.doi.org/10.1080/10584580490895699
http://dx.doi.org/10.1080/10584580490894771
http://dx.doi.org/10.1109/IEDM.2005.1609345
http://dx.doi.org/10.1143/JJAP.45.3189
http://dx.doi.org/10.1143/JJAP.45.3189
http://dx.doi.org/10.1109/ISAF.2007.4393199
http://dx.doi.org/10.1149/1.2789295
http://dx.doi.org/10.1149/1.2789295


Chapter 6  Fabrication of Three-Dimensional Ferroelectric Capacitors 

[6.8] Sangmin Shin, Hee Han, Yong Jun Park, et al., “Characterization of 3D Trench PZT 

Capacitors for High Density FRAM Devices by Synchrotron X-ray 

Micro-diffraction”, AIP Conf. Proc., 2007, Vol. 879, pp. 1554  123 130 

[6.9] D. J. Wouters, D. Maes, L. Goux, et al., “Integration of SrBi2Ta2O9 Thin Films for 

High Density Ferroelectric Random Access Memory”, Journal of Applied Physics, 

2006, Vol. 100, pp. 051603  123 

[6.10] L. Goux, D. Maes, J.G. Lisoni, et al., “Scaling potential of pin-type 3-D SBT 

ferroelectric capacitors integrated in 0.18 µm CMOS technology”, Microelectronic 

Engineering, 2006, Vol. 83, pp. 2027–2031  123 

[6.11] René Meyer, Rainer Waser, Klaus Prume, et al., “Dynamic Leakage Current 

Compensation in Ferroelectric Thin-Film Capacitor Structures”, Appl. Phys. Lett., 

2005, Vol. 86, pp. 142907  136 

 
 

 

 

 

142 

http://dx.doi.org/10.1063/1.2436361
http://dx.doi.org/10.1063/1.2337359
http://dx.doi.org/10.1063/1.2337359
http://dx.doi.org/10.1016/j.mee.2006.04.004
http://dx.doi.org/10.1016/j.mee.2006.04.004
http://dx.doi.org/10.1063/1.1897425
http://dx.doi.org/10.1063/1.1897425


 

7  Conclusions and Perspectives 
 

 

 

The achievement in this thesis is listed below:  

 

(1) A MOCVD PZT thin film deposition process with novel Zr and Ti precursors was 

developed on Ir substrates. The PZT films deposited at 450/500/550°C are ferroelectric 

and the films deposited at 500/550°C show good remanent polarization.  

 

(2) Reactive ion etching of iridium with an Al mask and CF4/O2/Ar gas mixtures was 

developed. Higher etch rates were achieved at elevated substrate temperatures. A high 

selectivity was obtained between iridium and the Al etching mask.  

 

(3) An Ir thin film deposition process on 3D structures was developed using plasma enhanced 

MOCVD. Acceptable step coverage and surface morphology are achieved with sufficient 

quality for the application as electrodes of three-dimensional capacitor structures. 

 

(4) Ir/PZT/Ir ferroelectric capacitor stacks on 3D structures were realized. The 3D capacitors 

show good ferroelectric properties comparable to 2D capacitors but have higher leakage 

currents than 2D capacitors and tend to fail during cycling tests. 

 

After summarizing the results of this study, some conclusions can be drawn for the 

future work:  

 

Although the PZT films deposited at 450°C are ferroelectric, their remanent 

polarizations are too low and need more improvement. Further reduction of the deposition 

temperature is still a benefit for better compatibility with the conventional CMOS process. 

Reduction of PZT film thickness below 50nm in 3D capacitors is necessary in order to 

compete with other memory devices. Non-uniform Pb contents, inhomogeneous 

microstructures and partially crystallized phases in PZT films can be deleterious to the 

ferroelectric properties. These are important issues to be solved before mass production.  
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A reactive ion etching process for Ir was developed in this study. Further 

investigations with Ir/PZT/Ir stacks are necessary to ensure its compatibility to PZT films. It 

is also worth to study Al2O3 thin films as hard mask for Ir etching with CF4/O2 gas mixtures. 

 

Although the deposition technology of Ir thin films developed in this study is 

applicable to 3D ferroelectric capacitors, further improvements of step coverage are necessary. 

The deposition of Ir by ALD can be an alternative approach instead of MOCVD to achieve a 

better step coverage. 

 

The reasons for high leakage currents of 3D ferroelectric capacitors as observed in this 

study need further detailed investigations. In addition, complex electrodes with conductive 

oxides such as SrRuO3 and LaNiO3 are inevitable against fatigue degradation. Conductive 

oxides should be integrated into 3D capacitor stacks as electrodes.  
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AES   Auger electron spectroscopy 

AFM  atomic force microscopy 

ALD  atomic layer deposition 

BFO   bismuth ferrite, BiFeO3 

BIT   bismuth titanate, Bi4Ti3O12 

BL   bit line 

BLB   bit line bar 

BLSF  bismuth layer structured ferroelectric 

BLT   lanthanum-substituted bismuth titanate, (Bi4-xLax)Ti3O12 

CD   compact disc 

CMOS  complementary metal-oxide-semiconductor 

CPU   central processing unit 

CVD  chemical vapor deposition 

DDR2  double-data-rate two 

DRAM  dynamic random access memory 

DVD  digital video disc, or digital versatile disc 

EDX  dispersive X-ray spectroscopy 

FeRAM  ferroelectric random access memory 

FRAM  ferroelectric random access memory 

ECR   electron cyclotron resonance 

GST   GeSbTe, germanium-antimony-tellurium 

IC   integrated circuit 

Ir(EtCp)(1,5COD)  iridium(ethylcyclopentadienyl)(1,5-cyclooctadiene) 

LNO  lanthanum nickel oxide, LaNiO3 

LSCO  lanthanum strontium cobalt oxide, La(1-x)SrxCoO3 

mmp  1-methoxy-2-methyl-2-propoxy 

MOCVD  metal organic chemical vapor deposition 

MOS  metal-oxide-semiconductor 

MPB  morphotropic phase boundary 

MRAM  magnetic random access memory 
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MTJ   magnetic tunnel junction 

NMOS n-MOSFET, n-channel metal-oxide-semiconductor field-effect transistor  

OiPr   isopropoxide 

OtBu  tert-butoxide 

PCRAM  phase change random access memory 

PDA   personal digital assistant 

PECVD  plasma enhanced chemical vapor deposition 

PE-MOCVD plasma enhanced metal organic chemical vapor deposition 

PL   plate line 

PMOS p-MOSFET, p-channel metal-oxide-semiconductor field-effect transistor 

PT   lead titanate, PbTiO3 

PZ   lead zirconate , PbZrO3 

PZT   lead zirconate titanate, PbZrxTi1-xO3 

RF   radio frequency 

RIE   reactive ion etching 

SAED  selected area electron diffraction 

SBT   strontium bismuth tantalate, SrBi2Ta2O9 

SEM  scanning electron microscopy 

SIMS  secondary ion mass spectroscopy 

SRAM  static random access memory 

SRO   strontium ruthenate, SrRuO3 

STEM  scanning transmission electron microscopy 

STT-MRAM spin-torque-transfer MRAM, or spin-transfer-torque MRAM 

TDMAT  tetrakis(dimethylamido)titanium, Ti[N(CH3)2]4 

TEM  transmission electron microscopy 

TGA  thermal gravimetric analysis 

thd   2,2,6,6-tetramethyl-3,5-heptanedionato 

TMR  tunnel magnetoresistance 

WL   word line 

XPS   X-ray photoelectron spectroscopy 

XRD  X-ray diffraction 
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