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ABSTRACT

In this thesis, potential hallmarks of topological magnons in macroscopic observables of
magnetic insulators are investigated. The magnon band structure for various models of
two-dimensional ferromagnets, collinear and noncollinear antiferromagnets are character-
ized for their topological properties. The signatures of magnetic and topological phase
transitions in the thermal Hall effect of magnons are analyzed in collinear antiferromag-
nets. On the basis of experimental data for the collinear antiferromagnet Na2Co2TeO6,
the magnon transport theory is validated and extended to include magnon polarons. The
extended theory explains important qualitative features of the transport measurements
highlighting the importance of magnon polarons in the thermal Hall effect. Beyond
the study of transport properties, the electric dipole moment of topological magnons is
predicted, which causes an electric edge polarization in topological magnon insulators in
equilibrium. Despite their charge neutrality, topological magnons are shown to respond
to alternating electric fields rendering them electrically active. Those topological elec-
tromagnons are predicted to bring about unique footprints in the electrical absorption
spectra at THz frequencies.

In dieser Doktorarbeit werden mögliche Kennzeichen von topologischen Magnonen in
makroskopischen Observablen von magnetischen Isolatoren untersucht. Dabei werden die
Magnonenbandstrukturen für verschiedene Modelle von Ferromagneten, kollinearen und
nichtkollinearen Antiferromagneten nach deren topologischen Eigenschaften charakteri-
siert. In kollinearen Antiferromagneten werden die Signaturen von magnetischen und to-
pologischen Phasenübergängen im thermischen Hall-Effekt von Magnonen identifiziert.
Anhand experimenteller Daten für den kollinearen Antiferromagneten Na2Co2TeO6 wird
die Magnontransporttheorie überprüft und um Magnonpolaronen erweitert. Die erweiter-
te Theorie hebt die Bedeutung von Magnonpolaronen im thermischen Transport hervor,
indem sie wichtige qualitative Merkmale der Transportmessungen mit ihrer Hilfe zu erklä-
ren vermag. Über die Transporteigenschaften hinaus wird ein elektrisches Dipolmoment
von topologischen Magnonen vorhergesagt, das sich in einer elektrischen Randpolarisati-
on in topologischen Magnonenisolatoren äußert. Es wird demonstriert, dass topologische
Magnonen trotz ihrer Ladungsneutralität mit elektrischen Feldern wechselwirken und so-
mit elektrisch aktiv sind. Insbesondere wird vorhergesagt, dass diese topologischen Elek-
tromagnonen oszillierende elektrische Felder absorbieren, wodurch sie in der Terahertz-
Spektroskopie in Erscheinung treten.
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CHAPTER 1

INTRODUCTION

Are insulators always insulating? It is well known that the quintessential distinction
between a metal and an insulator are band gaps in the electronic structure [1, 2].1 If a
material exhibits fully occupied bands and a nonzero energy gap between the occupied and
unoccupied states, it does not conduct charge currents. However, in certain materials, the
band gap exists only in their bulk and vanishes at the surface, where edge states appear.
Those edge states cannot exist with nor without the bulk. On the one hand, they cannot
exist with the bulk because they are localized at the edges and do not exist in infinite
systems. On the other hand, they cannot exist without the bulk because their existence
is determined by the bulk band structure and does not depend on the details of the edges.
In particular, it is the existence of the bulk band gap, which implies the existence of the
edge states. Consequently, the edge states are robust with respect to distortions of the
lattice, impurities, and other perturbations as long as the bulk band gap remains stable.
Since the existence of the edge states does not depend on geometrical details, they are
considered to be topologically protected.

The topologically protected edge states of such an insulator, called topological insulator,
allow for a unique transport signature – the quantum (anomalous) Hall effect [3–5].2
In response to an applied longitudinal electric field, a transverse current flows. The
transverse conductivity is quantized depending on the number of edge states [6–9]. The
first experimental observation has been reported by Klaus von Klitzing [6], who was
awarded the Nobel Prize in 1985 for his discovery. Hence, some insulators are not
insulating.

This work occupies itself with analogous topological phases of magnetic insulators, in
which electrons are bound to the atomic nuclei. Although electrons themselves cannot
conduct charge, heat, or spin, their spins interact with each other giving rise to collective
spin excitations – the magnons. Magnons are bosonic quasiparticles that quantize spin
waves [10–12]. Because of the mutual interactions of the electrons’ spins, the dynamics of
one spin incites the dynamics of surrounding spins, thereby forming spin waves. Similar
to electrons, magnons can feature topological gaps in their band structure that entail
magnonic edge states [13–21]. These topological magnon insulators have been predicted
in 2013 by Zhang et al. [14] and Shindou et al. [15], however, no conclusive experiment
has been conducted that proves their existence to date.

There are several complications compared to electrons. While the quantum (anoma-
lous) Hall effect serves as a reliable footprint for topological edge states of electrons,
magnons generally do not exhibit quantized transport coefficients. Firstly, magnons corre-
spond to excitations of the magnetic ground state. They do not exist at zero temperature
for their creation warrants finite energies. Electrons, on the other hand, may occupy dif-
ferent states at nonzero temperatures, but exist already in the ground state. Secondly,
magnons are bosons and, as such, do not have a Fermi level. Magnons are generated

1Here, I confine myself to band insulators.
2More specifically, I refer to Chern insulators, which host chiral edge states.
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1 Introduction

Figure 1.1: Transverse magnon transport in a temperature gradient by bulk and edge
states. As an example, the thermal Hall effect denotes the transverse heat transport in
a temperature gradient.

according to the Bose distribution, which occupies the magnonic states depending on
their energy levels. The higher the energy, the smaller the average number of magnons
at that energy. This disadvantages topological magnons because, in general, they are not
the lowest-energy excitations. Since they exist between two magnon bulk bands, lower-
energy magnons must exist. As a result, the magnonic transport is always governed by
both bulk and edge modes and shows no quantization (cf. Fig. 1.1).

Electronic edge states can be probed more directly by spectroscopic methods such
as angle-resolved photoemission spectroscopy. Magnons, however, lack the charge of an
electron and, thus, are invisible to these techniques [22]. One established technique for the
measurement of magnon band structures is inelastic neutron scattering, where a fraction
of the neutrons exchanges energy and momentum with magnons due to the magnetic
interaction between the spins of the neutrons and the spins in the magnet. The change
of energy and momentum then can be related to the magnon band structure [23]. Since
the magnetic interaction underlying inelastic neutron scattering is weak compared to
charge-based spectroscopic methods, edge modes do not provide the necessary scattering
intensities to directly probe them. Consequently, inelastic neutron scattering is of avail
for identifying topological magnon insulator candidates by detecting gaps in bulk magnon
spectra, but is insufficient for providing direct evidence for the topological edge modes [24,
25]. To summarize, the experimental detection of charge-neutral topological bosons in
general, and magnons in particular, tremendously challenges state-of-the-art techniques.

Acknowledging these intricacies, this thesis aims at theoretically studying new hall-
marks for probing topological magnons based on transport properties and THz spec-
troscopy taking practical restrictions into consideration. As an overarching pattern, the
starting point constitutes a microscopic description of the ground state and the low-energy
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excitations of a magnetic insulator. This description involves certain degrees of freedom
of magnons such as their spin and their energy. Beyond these well-known properties,
less explored traits of magnons like the orbital magnetic moment or the electric dipole
moment are addressed. The understanding of the microscopic physics is employed to
identify the signatures of magnons in macroscopic observables. In particular, emphasis is
put on the differentiation between effects that are independent of magnon topology and
those that originate from it to help to assess the practicability of the new routes for the
detection.

The structure of the thesis comprises two main parts. In the first part, the theoreti-
cal foundations for describing the relevant quasiparticles in magnetically ordered insula-
tors, which are phonons and magnons (and their hybrids), are delineated. Starting from
a many-body Hamiltonian of a crystal, it is demonstrated how magnons and phonons
emerge as low-energy degrees of freedom and how their interaction leads to another type
of quasiparticles – magnon polarons (Chapter 2). A section on bosonic topology (Chap-
ter 3) introduces how (bosonic) band structures can be classified in terms of a topological
invariant – the Chern number. Chapter 4 is devoted to linear response theory, which
is an essential tool for predicting and explaining macroscopic observables. The magneto-
electric effects presented in Chapter 5 provide the basis for the study of electric properties
of magnons.

The cumulative second part combines those theories and applies them to concrete
models of ferromagnets (Sections 6.1 and 6.3), collinear antiferromagnets (Sections 6.2.1
and 6.2.2), and noncollinear antiferromagnets (Section 6.1). Publication [RN1] of Sec-
tion 6.1 revisits the magnetic moment of magnons and predicts an additional contribution
beyond the magnon spin. The additional contribution, which is attributed to the orbital
magnetic moment, renormalizes not only the magnetization and the transport of mag-
netic moment in temperature gradients, but also affects their symmetry, i.e., qualitative
ramifications in macroscopic properties.

Both Publications [RN2] and [RN3] of Section 6.2 investigate how the transverse heat
transport evolves with an external magnetic field in collinear antiferromagnets. While
Publication [RN2] focuses on the magnon transport, which shows signatures of magnetic
and topological phase transitions, Publication [RN3], which has been a collaborative effort
involving experimental groups, demonstrates that magnons by themselves cannot explain
the transport properties of the insulating antiferromagnet Na2Co2TeO6. Instead, magnon
polarons have to be considered to reproduce the qualitative features of the experimental
data.

Finally, a major part of the thesis is concerned with the electric properties of magnons
that has been condensed in Publication [RN4] of Section 6.3. The paper attributes an
electric dipole moment to topological magnons, which directly depends on their topo-
logical properties. The microscopic electric dipole moment is shown to contribute to
the electric edge polarization in a ferromagnet. Moreover, the electric dipole allows al-
ternating electric fields to couple to topological magnons causing peaks in the electric
absorption spectrum when the frequency of the external field is tuned in resonance to the
topological magnons.

In Chapter 7, a conclusion is drawn and potential future research projects are proposed.
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CHAPTER 2

QUANTUM THEORY OF MAGNETIC
SOLIDS

The prediction and understanding of macroscopic phenomena in the solid state generally
requires a quantum theoretical description of its microscopic constituents – the electrons
and the nuclei. One of the most fundamental description of their coupled dynamics is
given by the Schrödinger equation

ih̄∂Ψ
∂t

= ĤΨ (2.1)

(i imaginary unit, h̄ Planck constant), where the wave function Ψ is a function of time
and all the positions ri and Rl of roughly 1023 electrons and nuclei, respectively. While
electrons have a negative charge −e, e being the elementary charge, nuclei have a positive
charge of Zke, where Zk is the integer-valued atomic number, that lead to electromagnetic
interactions. Thus, the many-body Hamiltonian [2]

Ĥ =
∑
k

P̂
2
k

2Mk
+
∑
i

p̂2i
2m

+
∑
i<j

e2

4πε0|ri − rj |
+
∑
k<l

ZkZle
2

4πε0|Rk −Rl|
−
∑
ik

Zke
2

4πε0|ri −Rk|

(2.2)

(ε0 vacuum permittivity) comprises their kinetic energies, which depend on the electrons’
and nuclei’s masses m and Mk as well as their momenta p̂i and P̂ k, respectively, and their
pairwise Coulomb interactions due to their charges. The relativistic corrections such as
spin-orbit coupling and the inner structure of the nuclei are neglected.

Although the full description treats electrons and nuclei on equal footing, empirically
the physical properties can be divided into those governed by the electrons, such as
electric conductivity, and those governed by the nuclei, such as thermal expansion [26].
As will be discussed in Section 2.1, this observation can be mathematically justified by
the Born-Oppenheimer approximation that allows to decouple the dynamics of the
lattice and the electrons. This separates the nuclei’s lattice vibrations – the phonons –
from the electronic degrees of freedom.

The electrons localize and become correlated if the repulsive interactions dominate
over the kinetic energies. The strong correlation often promotes magnetic order at low
temperatures so that the electronic degrees of freedom can be described by an effective
spin Hamiltonian, where the excited states correspond to collective excitations of localized
spins – magnons. While Section 2.2 is devoted to the mapping of the lattice dynamics
to phonons, Section 2.3 reviews how the spin dynamics of the correlated electrons can be
described by magnons. In the final section, the coupling between nuclei and electrons is
effectively restored by spin-lattice coupling, which causes the hybridization of phonons
and magnons. Those hybrid quasiparticles – called magnon polarons – turn out to play an
important role in transversal transport properties of magnetic insulators, as highlighted
in Publication [RN3] (cf. Section 6.2.2).
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2 Quantum Theory of Magnetic Solids

2.1 Born-Oppenheimer Approximation
The Born-Oppenheimer approximation, also called adiabatic approximation, was in-
troduced by Max Born and Julius Robert Oppenheimer in 1927 [27]. They realized
that the atomic and molecular spectra comprise terms of different orders of magnitudes:

Etot = Eel + Evib + Erot. (2.3)

The largest contribution comes from the electronic motion Eel, whereas the energies
associated with the vibrations and the rotations of nuclei, Evib and Erot, possess smaller
magnitudes. The reason for this hierarchy lies in the difference between electronic and
nuclear masses. Below, I cover the arguments of the adiabatic approximation following
Refs. [1, 2, 28–31]. For the ease of notation, I assume that the masses Mk and atomic
numbers Zk of all nuclei are identical. The arguments can be directly extended to the
most general case.

The full Hamiltonian [Eq. (2.2)] can be divided into three parts:

Ĥe =
∑
i

p̂2i
2m

+
∑
i<j

e2

4πε0|ri − rj |
, (2.4a)

Ĥn =
∑
k

P̂
2
k

2M
+
∑
k<l

Z2e2

4πε0|Rk −Rl|
, (2.4b)

Ĥe-n = −
∑
ik

Ze2

4πε0|ri −Rk|
, (2.4c)

for which the solutions of the stationary Schrödinger equation

ĤΨi(r,R) = EiΨi(r,R) (2.5)

have to be found. These solutions can be expanded in any complete basis set. For fixed
nuclear coordinates R, such a complete basis set is formed by the eigenfunctions of the
Hamiltonian Ĥe + Ĥe-n, which satisfy[

Ĥe(r) + Ĥe-n(r,R)
]
ψj(r,R) = εj(R)ψj(r,R). (2.6)

Here, the nuclei coordinates R are treated as parameters. By representing

Ψi(r,R) =
∑
j

χij(R)ψj(r,R) (2.7)

in the basis of ψj , the chosen basis set depends on the (frozen) nuclear coordinates R.
Consequently, the coefficients χij must depend on those parameters as well. The ansatz
for Ψi is inserted into the stationary Schrödinger equation of the full Hamiltonian
[Eq. (2.2)] to obtain1∑

j

ψj(r,R)
[
Ĥn + εj(R)

]
χij(R) +

∑
j

Ĉj(r,R)χij(R)

= Ei

∑
j

χij(R)ψj(r,R),
(2.8)

1This intermediate result does not fully agree with Ref. [30], where the mixed first derivatives of the
electronic and the nuclei wave functions do not appear contrary to Refs. [1, 28, 29]. For it will be
disregarded as an approximation, the final results match each other.
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2.1 Born-Oppenheimer Approximation

where the operator

Ĉj(r,R) =

[
P̂

2
ψj(r,R)

]
+ 2
[
P̂ψj(r,R)

]
· P̂

2M
(2.9)

acts on the nuclear coordinates of χij . The operator P̂ comprises the momenta P̂ k of all
nuclei k. Operators within brackets only act on a wave function inside the same bracket.
Multiplying with ψ∗

k(r,R) and integrating over the electron coordinates r yields[
Ĥn + εk(R)

]
χik(R) +

∑
j

Ĉkj(R)χij(R) = Eiχnk(R), (2.10)

where
∫

ddr ψ∗
kψj = δkj has been used (d is the dimension of the electronic configuration

space). Now all that remains of the electronic wave functions in the nuclear Schrödinger
equation is comprised in

Ĉkj(R) =

∫
ddr ψ∗

k(r,R)Ĉj(r,R), (2.11a)

=
1

2M

[∫
ddr ψ∗

k(r,R)P̂
2
ψj(r,R)

]
+

1

M

[∫
ddr ψ∗

k(r,R)P̂ψj(r,R)

]
· P̂ .

(2.11b)

This term in the Hamiltonian allows for transitions between electronic states j and k due
to the nuclear dynamics.2 If one assumes loosely bound electrons, the dependence of ψj

on R is weak and Ĉkj(R) can be neglected. For strongly localized electrons the electronic
and nuclear coordinates are coupled so that the actions of p̂ and P̂ on ψj are equivalent.
For illustration, I assume that there is one electron per nucleus so that the wave function
can be expressed as ψj(r,R) = ψj(r −R) and evaluate the first term of Ĉkj(R),

1

2M

∫
ddr ψ∗

k(r −R)p̂2ψj(r −R), (2.12)

which corresponds to m/M times the kinetic energy of the electrons for j = k. Because
of the mass difference between electrons on one hand and protons and neutrons on the
other hand, this ratio has a magnitude between 1/1836 and 1/500 000 (depending on
the atomic number and the mass defect) rendering the energy correction negligible. The
second term comprises ∫

ddr ψ∗
k(r,R)P̂ψj(r,R), (2.13)

the diagonal components (j = k) of which are effectively acting like a vector potential
for the nuclear wave function as it couples to the nuclear momentum. This already
hints at the geometric phase associated with adiabatic processes that I address in detail
in Chapter 3, where it is rederived in a general context. In the literature it is often

2In the case of a crystal, which is the focus of this work, the nuclei order in a lattice and the deviations
from the equilibrium positions are described by phonons (cf. Sections 2.2.1 and 2.2.2) and the electronic
transitions can be described by electron-phonon scattering.
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2 Quantum Theory of Magnetic Solids

dismissed, which is only justified if time-reversal symmetry is present so that the wave
function is real. Then, the integral of ψ∗

k(r,R)P̂ψk(r,R) = P̂ |ψk(r,R)|2/2 vanishes
due to the normalization of ψk. The nondiagonal entries of Ĉkj(R), corresponding to
interstate transitions, are small as long as the electronic energies εj(R) display large
splitting compared to the timescale of the nuclear motion.

In the adiabatic approximation, all terms comprising Ĉkj(r,R) are truncated from the
Hamiltonian and the nuclear wave function can be obtained from solving3[

P̂
2

2M
+Wk(R)

]
χnk(R) = Enχnk(R). (2.14)

Since now the electronic quantum number k is a good quantum number in the approxi-
mate nuclear Schrödinger equation [Eq. (2.14)], the expansion of the full wave function
[Eq. (2.7)] can be restricted to

Ψnk(r,R) = χnk(R)ψk(r,R) (2.15)

and the eigenstates can be labeled by the electronic (k) and nuclear (n) quantum numbers.
Here, the electronic degrees of freedom have essentially been removed from the nuclear

dynamics and only enter as a modified potential energy in the nuclear Hamiltonian. If
the electrons start in a state k, they give rise to a potential energy surface Wk(R) =∑

i<j
Z2e2

4πε0|Ri−Rj | + εk(R) that governs the nuclear dynamics. Physically, the electrons
move much faster due to the relative smallness of their masses and can follow the nuclear
positions instantaneously. Displacing the nuclei from their equilibrium positions causes
a new electronic distribution with higher energy while maintaining the electronic state k.
Upon relaxing the nuclei, the electrons assume their previous energy. This corresponds to
a reversible process, in which the electrons remain in the k-th state during the full time
evolution of R. When electron-phonon scattering becomes important or the electronic
energies εk(R) become degenerate for some R so that electronic transitions only require
infinitesimal energies, the adiabatic approximation is expected to fail and nonadiabatic
processes must be included.

2.2 Theory of Lattice Excitations: Phonons
Phonons are the bosonic quasiparticles of the collective lattice dynamics. They play a
central role for many macroscopic properties of crystals. Some examples include [2]:

• the heat capacity, thermal expansion, and the thermal conductivity of insulators,

• the temperature dependence of the electric resistivity of metals,

• the superconductivity of metals,
3Strictly speaking the diagonal elements of Ĉkj(r,R) are compatible with an adiabatic approximation

in the sense that they do not allow for electronic transitions, but merely renormalize the effective
potential energy for the nuclei. However, as demonstrated above, these renormalizations are either
relatively small (first term) or they become important as geometric phases (second term), which have
physical consequences in topologically nontrivial systems (cf. Chapter 3). While some authors consider
them part of the approximate nuclear Hamiltonian [30], others do not [1, 28, 29].
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2.2 Theory of Lattice Excitations: Phonons

• the dielectric properties of ionic crystals, and

• the inelastic light and neutron scattering.

In Section 2.1, the Born-Oppenheimer approximation was introduced that allows a
separate treatment of the lattice and electron dynamics. A simplification of the decou-
pled lattice dynamics given by the harmonic approximation is discussed in Section 2.2.1
and the resulting differential equations are solved classically in Section 2.2.2. Based on
the classical solutions the phonons can be quantized using a similar mapping as in the
algebraic solution of the harmonic oscillator, which is presented in Section 2.2.3.

2.2.1 Harmonic Approximation
Having separated the electronic and nuclear dynamics, it is possible to study the structure
of the solutions of the Hamiltonian P̂

2

2M +W(R). In the following, I consider the electronic
quantum number as arbitrary but fixed. At this point, one faces the problem of having to
compute the electronic energies ε(R), which requires solving the electronic Schrödinger
equation [Eq. (2.6)], for each possible configuration ofR first, in order to determine W(R)
even if one is not interested in the electronic properties. This is where the harmonic
approximation comes to the rescue. In this section, I partly present arguments from
Refs [1, 2, 26, 30, 32].

First, I confine myself to crystalline solids, in which the nuclei only take positions on
lattice points Rn = n1a1 + n2a2 + n3a3, where ni ∈ Z are integers and ai are primitive
translation vectors (i = 1, 2, 3). This describes the case of a Bravais lattice, where each
unit cell exactly comprises one nucleus. More generally, a crystal may feature multiple
sublattices that are displaced by basis vectors bi (i = 1, . . . ,Nsl), where Nsl is the number
of sublattices. Hence, the position of a nucleus can be written as

Rim = R
(0)
im + uim, (2.16)

where R(0)
im := Rm + bi is the equilibrium position and uim is the displacement of the

nucleus of the i-th sublattice in the m-th unit cell from its equilibrium position.
The equilibrium positions are characterized by local minima of the potential energy

surface, which means that the first derivative ∇̂RW(R)
∣∣∣
R(0)

evaluated at the equilibrium

positions of all nuclei, R(0), vanishes so that

W(R) = W
(
R(0)

)
+

1

2

∑
mn

∑
ij

∑
αβ

Cjβ
iα

(
R(0)

n −R(0)
m

)
uαimu

β
jn + . . . (2.17)

(α, β = x, y, z Cartesian components) can be expanded in a Taylor series without a
linear term. The second partial derivatives, i.e., the entries of the Hessian

Cjβ
iα

(
R(0)

n −R(0)
m

)
=

∂2W
∂Rα

im∂R
β
jn

∣∣∣∣∣
R(0)

(2.18)

at R(0) are the elastic constants.4 Here, I implicitly use the translational invariance of the
potential energy surface W, which must only depend on the difference vector R(0)

n −R(0)
m

4Alternative designations in the literature are force constants or spring constants.
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2 Quantum Theory of Magnetic Solids

between the unit cells, but not the absolute position within the lattice. Since the partial
derivatives can be commuted (for doubly continuously differentiable functions, which is
implicitly presumed in the Taylor expansion), the indices of the elastic constants can
be interchanged under simultaneous inversion of the argument:

Cjβ
iα

(
R(0)

n −R(0)
m

)
= Ciα

jβ

(
R(0)

m −R(0)
n

)
. (2.19)

The harmonic approximation truncates the Taylor expansion of W beyond quadratic
(or bilinear) order so that the nuclei move within a harmonic potential about their equi-
librium positions. This approximation holds if the displacements umi are small compared
to the interatomic distances (|ai| and |bj |).5 Moreover, in order for R(0) to be a minimum
of the truncated W, the Hessian needs to be positive semidefinite so that no deformation
of the lattice can decrease the energy. Note that an increase of energy upon arbitrary de-
formation (i.e., a positive definite Hessian, which is sufficient for an isolated local energy
minimum) cannot be required, since any rigid global translation can be conceived as a
change of coordinates and must not change the energy.

The tedious task of solving for the electronic Schrödinger equation for infinitely many
configurations of the nuclei has been mapped to computing only the potential energy
surface at the lattice positions and the elastic constants. The notion of the former is not
even required for most properties, since a constant energy does not affect the dynamics
as demonstrated in the next section (Section 2.2.2). The elastic constants themselves
are generally not independent of each other as they have to obey the lattice symmetries.
Furthermore, the elastic constants decrease with the distance of the interacting nuclei
and can be truncated beyond one or a few coordination spheres.

Finally, it should be mentioned that some properties intrinsically require an anharmonic
theory even for qualitative explanations. An important example in thermal equilibrium
is the thermal expansion. In the harmonic approximation, the nuclei vibrate about their
equilibrium positions (as discussed in Section 2.2.2); the amplitude of which is temper-
ature dependent. The equilibrium positions themselves do not depend on temperature,
hence, there is no thermal expansion (cf. Section 2.2.3). Concerning transport proper-
ties, the solid would have an infinite heat conductivity without anharmonic terms or
electron-phonon interactions [32].

2.2.2 Classical Equations of Motion
The previous two sections have laid the groundwork for the study of the lattice dynam-
ics, for which I present first a classical solution based on Newtonian mechanics in this
section. While I have briefly discussed the ground state of the nuclei – the lattice – in
the previous section, here I consider their excitations. Specifically, the dispersion relation
of the excitations can be obtained classically, which determines not only spectroscopic
properties, but also affects macroscopic properties in thermal equilibrium at finite tem-
peratures. However, to obtain the correct low-temperature behavior, the quantum nature
cannot be neglected. Nonetheless, the classical solution can be used as a basis for the
quantum theory of the nuclear dynamics. The classical approach to lattice dynamics
presented below is covered in several textbooks like Refs. [2, 26, 28, 32, 33].

5Classically, there is always a regime in which the mean square displacement is arbitrarily small if the
temperature is decreased. In solids with strong quantum fluctuations, this assumption breaks down
even at very low temperature, which requires a more complex theory [32].
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2.2 Theory of Lattice Excitations: Phonons

General solution

The equations of motion for the displacements follow from Newton’s second law, which
states that the force F im acting on a particular i-th nucleus in the m-th unit cell is
related to its acceleration by F im =Mi

∂2uim
∂t2

. In general, the masses Mi may depend on
the sublattice i for polyatomic compounds, but not on the unit cell. For the conservative
force results from a potential energy, F im = −∇̂RimW, a system of coupled second-order
differential equations is obtained:

Mi
∂2uαim
∂t2

+
∑
jnβ

Cjβ
iα (Rn −Rm)uβjn = 0. (2.20)

This system comprises a differential equation for each unit cell m, each sublattice i, and
each component of vibration α; hence, it encompasses NvibNslNuc equations, where Nsl
is the number of sublattices, Nuc is the number of unit cells, and Nvib is the number
of spatial dimensions of the vibration (usually Nvib = 3 for α = x, y, z). Although this
number of coupled equations would overexert any computer for macroscopic systems, a
drastic simplification results from the ansatz6

uαim = Re 1√
Mi

εiαk ei(k·Rim−ωkt), (2.21)

which exploits translational invariance to transform the NvibNslNuc coupled differential
equations to Nuc decoupled systems of NvibNsl coupled algebraic equations of motion:7

−ω2
kε

iα
k +

∑
jnβ

1√
MiMj

Cjβ
iα (Rn −Rm)eik·(Rjn−Rim)εjβk = 0. (2.22)

Here, the problem consists of solving for εiαk , where k is a fixed parameter. The complex
phonon polarization vector εiαk determines the direction, amplitude, and phase of the
vibration for all nuclei. Since it does not depend on the unit cell, the summation over n
in the second term can be put into the definition of the dynamical matrix

Djβ
iα (k) :=

eik·(bj−bi)√
MiMj

∑
n

eik·RnCjβ
iα (Rn), (2.23)

which is related to the Fourier transform of the elastic constants. Although it has 4
indices, it can be rearranged as a Np × Np matrix with complex entries, where Np =
NvibNsl. Using the dynamical matrix, Eq. (2.22) can be recast into∑

jβ

Djβ
iα (k)ε

jβ
λk = ω2

λkε
iα
λk. (2.24)

Therefore, the system of differential equations has become an eigenvalue problem of the
dynamical matrix with eigenvalues ω2

λk and eigenvectors εiαλk, which can be labeled by a
6Here, the real part is taken to account for the fact that the left-hand side is real. However, the imaginary

part or any linear combination of real or imaginary part are valid choices too.
7Note that the real part was truncated. If the solution of the complex equation exists so that the

left-hand side is zero, then the real part of the solution is a solution as well.
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2 Quantum Theory of Magnetic Solids

quantum number λ = 1, . . . ,Np. Importantly, the angular frequencies ωλk cannot be cho-
sen freely, but depend on k. This functional dependence is known as dispersion relation or
band structure. Hence, with the correct angular frequencies and phonon eigenvectors, the
ansatz of Eq. (2.21) is indeed a solution of the system of differential equations [Eq. (2.20)].

Physically, the solutions are lattice vibration plane waves. The nuclei collectively os-
cillate about their equilibrium positions with the same angular frequency ωλk. Different
unit cells that are displaced along the wave vector k differ in their phases, while those
displaced perpendicular to k oscillate in phase. The phase differences between nuclei
within the same unit cells are given by the relative phases of εiαλk, while their absolute
values govern the oscillation amplitudes of the various sublattices.8

Before turning to an example, one should be concerned with the mathematical proper-
ties of the solution of the eigenvalue problem [Eq. (2.24)]. One has to question whether
the eigenvalues of Djβ

iα (k) are real and, if so, whether they are nonnegative, since negative
values would imply imaginary angular frequencies ωλk, i.e., decaying or self-amplifying
waves depending on its sign. Such solutions would violate the conservation of energy.

Two general properties of the dynamical matrix can be proven. First, since the elastic
constants must be real, the dynamical matrix needs to satisfy Djβ

iα (k) =
[
Djβ

iα (−k)
]∗

.

Second, the symmetry property Eq. (2.19) requires Djβ
iα (k) = Diα

jβ(−k).
With those two general properties of the dynamical matrix, it directly follows that it

is Hermitian and, therefore, has real eigenvalues. Consequently, the eigenvectors of the
dynamical matrix must be orthogonal,9 can be normalized∑

iα

(
εiαλk
)∗
εiασk = δλσ, (2.25)

and must be complete.
For the proof of ωλk ∈ R, let Aiα be the components of an arbitrary vector with

complex entries. One has to check whether the sesquilinear form∑
iα

∑
jβ

A∗
iαD

jβ
iα (k)Ajβ (2.26)

is positive semidefinite in Aiα ∈ C for an arbitrary, but fixed k. This is readily proven
by recalling that the bilinear form∑

mn

∑
ij

∑
αβ

Cjβ
iα (Rn −Rm)uαimu

β
jn (2.27)

is positive semidefinite in uαim ∈ R because it corresponds to the change in energy W(R)
when displacing the nuclei from their equilibrium positions [cf. Eq. (2.17)]. Using these
arguments, one proves that the dynamical matrix is positive semidefinite and, thus, has
nonnegative eigenvalues so that ωλk are real.

In principle, there are two admissible choices for the angular frequencies (if nonzero)
because the eigenvalues of the dynamical matrix define their absolute values but not their
signs. However, the negative-frequency solutions are contained in the positive-frequency

8Note that there is also a factor 1/
√

Mi in the amplitudes.
9If the eigenvalues are not degenerate. Otherwise, the eigenvectors can be chosen orthogonal.
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2.2 Theory of Lattice Excitations: Phonons

solutions, which I exclusively consider for the rest of this thesis. For the proof, rewrite
the ansatz Eq. (2.21), using the trivial identity Re z = Re z∗ for any z ∈ C, as10

uαim = Re 1√
Mi

(
εiαλk
)∗ei(−k·Rim+ωkt). (2.28)

For ωλk > 0, this has the structure of a negative-frequency solution ω̃λ(−k) := −ωλk < 0.
To demonstrate that this is indeed a solution, one needs to show that ε̃iαλ(−k)

:=
(
εiαλk
)∗ is

an eigenvector of the dynamical matrix at −k with eigenvalue ω̃2
λ(−k) provided that ωλk

and εiαλk are eigenvalues and eigenvectors at k.
Because of the property Djβ

iα (k) =
[
Djβ

iα (−k)
]∗

the solutions of the eigenvalue problem∑
jβ

Djβ
iα (−k)

(
εjβλk

)∗
= ω2

λk

(
εiαλk
)∗ (2.29)

at −k are obtained by complex conjugation of Eq. (2.24). Consequently, the eigenvectors
at k and −k are related by complex conjugation (up to an arbitrary phase) and the
eigenvalues ω2

λk = ω2
λ(−k) are symmetric. This property is a consequence of the time-

reversal symmetry of the lattice dynamics, which is why it suffices to consider positive-
frequency solutions.

Another property of the solutions is the periodicity in k. Let G ∈ R3 be a reciprocal
lattice vector so that G · Rm = 2πp with p ∈ Z for any lattice vector Rm. Then, the
dynamical matrix at k +G fulfills the property

Djβ
iα (k +G) = eiG·(bj−bi)Djβ

iα (k), (2.30)

i.e., it is identical to itself at k up to a unitary transformation. Consequently, ωλ,k+G =
ωλk and εiαλ,k+G = e−iG·biεiαλk (up to a gauge transformation).

Elastic Chain with Two-Atomic Basis

It is instructive to apply the general theory to a simple example that gives some physical
insight. In the following, I consider a chain of two different types of atoms that have
masses MA and MB. I assume that the positions of the first (second) type of atoms are
RAn = 2na (RBn = RAn + a), where n ∈ Z and a ∈ R so that they are equidistantly
placed on the chain. The coupling between nearest neighbors is described by the potential
energy

W =
C

4

∑
n

[
(uAn − uBn)

2 + (uBn − uA,n+1)
2
]
. (2.31)

The vibrations are assumed to be restricted to only one dimension, which allows to
suppress the third, spatial index for u.

By computing the forces, two coupled equations of motion

MA
∂2uAn

∂t2
=
C

2
(uBn + uB,n−1 − 2uAn), (2.32a)

MB
∂2uBn

∂t2
=
C

2
(uAn + uA,n+1 − 2uBn) (2.32b)

10If I had defined uα
im using the imaginary part, there would be an additional minus sign, which just

corresponds to a global phase that can be compensated by redefining εiαλk.
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2 Quantum Theory of Magnetic Solids

Figure 2.1: Phonon spectrum and selected normal modes. (a) Phonon band structure
of a one-dimensional chain with acoustic and optical branches. Color represents the
normalized squared amplitudes

∣∣AA
λk

∣∣2 = 1−
∣∣AB

λk

∣∣2 of the modes with band index λ and
wave number k on sublattice A. (b–e) Snapshots of elastic waves representing amplitudes
and phases of selected phonon modes [cf. panel (a)]. Big (small) spheres represent atoms
on first (second) sublattice. Faint spheres in the background show their equilibrium
positions. Shown phonon modes correspond to (b, c) acoustic and (d, e) optical branches
at the (b, e) Brillouin zone center and (c, d) the Brillouin zone edge. Here, the
masses of the sublattices have been set as MA = 2MB.

arise. In analogy to Eq. (2.21) the ansatz

uin = Re 1√
Mi

εikei(kRin−ωkt) (2.33)

(i = A,B) transforms the two differential equations for uin(t) to algebraic equations(
C

MA
− ω2

k

)
εAk =

C

2
√
MAMB

(
eika + e−ika

)
εBk , (2.34a)(

C

MB
− ω2

k

)
εBk =

C

2
√
MAMB

(
eika + e−ika

)
εAk (2.34b)

for εik. Multiplying both sides of Eq. (2.34a) by C cos(ka)√
MAMB

and Eq. (2.34b) by C
MA

−ω2
k and

eliminating εAk yields[(
C

MA
− ω2

k

)(
C

MB
− ω2

k

)
− C2 cos2(ka)

MAMB

]
εBk = 0. (2.35)

For the nontrivial solutions, the first factor has to vanish, which is the case if

ω2
1/2,k =

C

2

(
1

MA
+

1

MB

)
∓ C

√
1

4

(
1

MA
+

1

MB

)2

− sin2(ka)

MAMB
. (2.36)

As expected, two (positive-frequency) solutions are obtained because of Nsl = 2 and
Nvib = 1. In the long-wavelength limit (k � a), the angular frequencies of the two
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2.2 Theory of Lattice Excitations: Phonons

branches can be approximated by

ω2
1k ≈ C(ka)2

MA +MB
, (2.37a)

ω2
2k ≈

(
C

MA
+

C

MB

)
− C(ka)2

MA +MB
. (2.37b)

The ratio of the (phase-comprising) vibrational amplitudes Ai
λk = εiλk/

√
Mi of both

sublattices i at k = 0 is exactly obtained as

AA
1k

AB
1k

∣∣∣∣
k=0

= 1, (2.38a)

AA
2k

AB
2k

∣∣∣∣
k=0

= −MB
MA

(2.38b)

for the two branches. In the lower branch, the energies are linear in the long-wavelength
limit and become zero for k = 0 [cf. Fig. 2.1(a)]. Precisely at k = 0, all nuclei oscillate in
phase with the same amplitudes [cf. Fig. 2.1(b)], which corresponds to a rigid translation
of the entire solid that leaves the energy constant [cf. Eq. (2.31)]. At k = π/2a, the
sublattice with the lower mass (in this case MB) is at rest, while the larger masses
vibrate with a phase shift of 180° between neighboring atoms [cf. Fig. 2.1(c)]. In the
upper branch, on the contrary, only the atoms on the B sublattice oscillate in antiphase
and those on the A sublattice remain at rest [cf. Fig. 2.1(d)]. The upper branch at k = 0
features oscillations of both sublattices with a phase shift of 180° between the sublattices,
while within the sublattices all atoms oscillate in phase [cf. Fig. 2.1(e)].

The zero-energy mode at k = 0 is a consequence of the Goldstone theorem, which
states that there is a zero-energy excitation11 for each generator of a spontaneously broken
continuous symmetry of the ground state [34–37].12 Here, the system is homogeneous in
space and the Hamiltonian is invariant under arbitrary translations uin → uin+r (r ∈ R).
However, by definition, the ground state fixes uin = 0. As a consequence of this arbitrary
choice, there is a Goldstone mode.

The lower branch with the linear dispersion in the long-wavelength limit, which en-
compasses the Goldstone mode, is also known as the “acoustic branch.” The upper
branch is denoted “optical branch,” as those oscillations induce electric dipole moments
in an ionic crystal, which affects its optical properties.

So far, the vibrations were confined to one dimension, but I did not make an as-
sumption of whether the elongations take place parallel or perpendicular to the chain.
Generally there is an acoustic and an optical branch for each dimension with different
elastic constants. If the oscillation occurs parallel to the chain (or, in higher dimension,
parallel to the propagation direction defined by the wave vector k), those modes are called
“longitudinal phonons,” while the perpendicular motion is characteristic for “transversal
11Although the Goldstone mode has the same energy as the ground state and, thus, corresponds

to a ground state itself, it is called “excitation” because the chosen ground state is assumed to be
dynamically stable in the low-temperature regime. Thus, the usage of the terms “ground state” and
“excitation” in this context refers to the density matrix rather than the Hamiltonian.

12Actually, this statement covers a special case, which is not entirely general, as it ignores a subtlety that
is addressed in Section 2.3.3.
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2 Quantum Theory of Magnetic Solids

phonons.” The bands of longitudinal phonons generally have a greater slope (i.e., larger
sound velocities) than the transversal ones [38].

The emergence of additional acoustic modes is in agreement with the Goldstone
theorem because there exists a generator of translation for each dimension, each of which
contributes a Goldstone mode as part of an acoustic branch. In general, there are Nvib
acoustic and Nvib(Nsl − 1) optical branches.

2.2.3 Second Quantization

The classical theory of the lattice dynamics is expedient to give an intuition about the
structure of the solutions, the symmetries of the underlying equations of motion and
how these affect the symmetry of the solutions. Hereafter, I reformulate the classical
theory into a quantum theory that is not only required to reproduce the correct low-
temperature behavior of thermodynamic quantities like the heat capacity [2], but it also
allows treating different kinds of excitations on equal footing. This lays the groundwork
for magnon polarons in Section 2.4.

I will start by a brief reminder on the algebraic solution of the harmonic oscillator,
which can be found in standard textbooks like [2, 39–41]. It is based on the construc-
tion of creation and annihilation operators that generate orthogonal eigenstates of the
Hamiltonian. From a single wave function, e.g., that of the ground state, the complete
eigenbasis of the Hamiltonian can be generated. However, it turns out that the energy
spectrum and expectation values can be computed without the notion of the real-space
representation of the wave functions.

The same idea can be applied to lattice waves, which exhibit a similar Hamiltonian,
but require a more complex construction. Indeed, the final Hamiltonian resembles that
of an ensemble of noninteracting harmonic oscillators with generally distinct frequencies.
I present two constructions. While the first construction is found in text books like
Refs. [1, 2, 30, 33, 40] and employs the classical solution obtained from the diagonalization
of the dynamical matrix to directly define creation and annihilation operators for the
normal modes, the second construction is a local mapping, which does not define creation
and annihilation operators for uncoupled normal modes, but maps to coupled harmonic
oscillators. The second construction avoids some complications that become apparent in
Section 2.4 and Chapter 3. This construction has not been published by other authors
to my knowledge.

The Hamiltonian of the harmonic oscillator

Ĥ =
p̂2

2m
+
mω2x̂2

2
(2.39)

in first quantization is written in terms of the conjugate variables position x̂ and mo-
mentum p̂, which satisfy the commutation relation [x̂, p̂] = ih̄. One could solve the
Schrödinger equation in first quantization and obtain the Hermite polynomials as so-
lutions. Alternatively, the Hamiltonian can be rewritten in second quantization.

The Hamiltonian is a sum of the squares of two operators, x̂ and p̂. It can be factorized
in analogy to a complex variant of the binomial formula (a + ib)(a − ib) = a2 + b2 for
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2.2 Theory of Lattice Excitations: Phonons

a, b ∈ R. This is achieved by defining the creation, annihilation operators

â =

√
mω

2h̄
x̂+ i

√
1

2h̄mω
p̂, (2.40a)

â† =

√
mω

2h̄
x̂− i

√
1

2h̄mω
p̂, (2.40b)

respectively. The inverse transformation is

x̂ =

√
h̄

2mω

(
â† + â

)
, (2.41a)

p̂ = i
√
h̄mω

2

(
â† − â

)
. (2.41b)

The newly defined operators fulfill the commutation relation of bosons:
[
â, â†

]
= 1.

Contrary to the numbers in the binomial formula, x̂ and p̂ do not commute so that the
Hamiltonian

Ĥ = h̄ω

(
â†â+

1

2

)
(2.42)

has an extra constant of h̄ω/2.
The eigenvalue problem of Ĥ has been reformulated into an eigenvalue problem of the

particle number operator n̂ = â†â. To solve its eigenvalue problem, let |n〉 be a normalized
eigenstate of n̂ with eigenvalue n. Then, â† |n〉 is an eigenstate with eigenvalue n+1 and
â |n〉 is an eigenstate with eigenvalue n as seen from the application of the commutation
relation:

n̂â† |n〉 = (n+ 1)â† |n〉 , (2.43a)
n̂â |n〉 = (n− 1)â |n〉 . (2.43b)

Therefore, one can write |n+ 1〉 = z1â
† |n〉 and |n− 1〉 = z2â |n〉 with coefficients z1, z2 ∈

C that ensure the normalization of the eigenstates

〈n+ 1|n+ 1〉 = |z1|2 〈n|ââ†|n〉 = |z1|2(n+ 1)
!
= 1, (2.44a)

〈n− 1|n− 1〉 = |z2|2 〈n|â†â|n〉 = |z2|2n
!
= 1. (2.44b)

Since the phases of the eigenstates are arbitrary, z1 and z2 are not uniquely defined. Cus-
tomary, the eigenstates of n̂ are defined so that the action of the creation and annihilation
operators can be expressed as

â |n〉 =
√
n |n− 1〉 , (2.45a)

â† |n〉 =
√
n+ 1 |n+ 1〉 . (2.45b)

Because the Hamiltonian has to be bounded below, the eigenvalues n must be natural
numbers including 0, i.e., n ∈ N0 with N0 = {0, 1, 2, . . . }.13 Hence, |0〉 represents the
13By requiring that Ĥ is bounded below for it has a ground state, there has to be a smallest eigenvalue

n0 ∈ R so that â |n0〉 = 0, which is the case for n0 = 0. Hence, the eigenvalues n must be natural
numbers including 0. If there was an eigenvalue ñ /∈ N0, then successive application of â onto |ñ〉
could generate eigenstates with negative eigenvalues. This contradicts the finding that 0 is the lowest
eigenvalue.
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ground state of the harmonic oscillator and excited states can be constructed as

|n〉 =
(
â†
)n

√
n!

|0〉 (n ∈ N0) (2.46)

and the energy eigenvalues read Ĥ |n〉 = h̄ω
(
n+ 1

2

)
. The explicit real-space representa-

tion of the wave functions can be incrementally constructed from the ground state, which
is obtained as the solution of â |0〉 = 0, where the definition of â [Eq. (2.40a)] has to be
inserted.

The excitation spectrum of a Hamiltonian in the form of Eq. (2.42) can immediately be
stated without knowledge of the real-space representation of the eigenfunctions. Instead
of solving the differential equation for a particular Hamiltonian by constructing wave
functions, the Hamiltonian itself can be mapped onto a bosonic Hamiltonian, where the
eigenvalues are known.

This pertains to expectation values and matrix elements of x̂ and p̂ as well. It is
possible to compute the moments of the position operator, e.g.,

〈n|x̂|n〉 =
√

h̄

2mω
〈n|â† + â|n〉 = 0, (2.47a)

〈n|x̂2|n〉 = h̄

2mω
〈n|
(
â† + â

)2
|n〉 = h̄(2n+ 1)

2mω
, (2.47b)

without having to integrate the probability amplitude, i.e., the square of the absolute
value of the wave function. This significantly reduces the complexity of the calculations.
Note that Eq. (2.47a) justifies the previous statement that thermal expansion requires
anharmonic potentials.

For the lattice dynamics, one has to bosonize the Hamiltonian

Ĥp =
∑
im

P̂
2
im

2Mi
+
∑
mn

∑
ij

∑
αβ

Cjβ
iα (Rn −Rm)ûαimû

β
jn, (2.48)

where P̂ is the momentum operator and M is the mass of the nuclei. The summation in-
dices m and n, i and j, α and β represent unit cell indices, sublattice indices, components
of displacement, respectively.

As a first step, I define the Fourier transforms14

ûαik =
1√
Nuc

∑
m

e−ik·Rim ûαim, ûαim =
1√
Nuc

∑
m

eik·Rim ûαik, (2.49a)

P̂α
ik =

1√
Nuc

∑
m

eik·RimP̂α
im, P̂α

im =
1√
Nuc

∑
m

e−ik·RimP̂α
ik (2.49b)

of the momentum and displacement operators. These operators are not Hermitian and,
instead, satisfy (ûαik)

† = ûαi(−k) and
(
P̂α
ik

)†
= P̂α

i(−k). Their commutation relation reads[
ûαik, P̂

β
jk′

]
= ih̄δkk′δijδαβ.

14The sign of the exponent is opposite in the Fourier transform to guarantee that the Fourier components
of the momentum and the position operators at different wave vectors commute. Sometimes, the same
phase factor is used in the Fourier transformation irrespective of the operator. In that case, the
commutation relation is modified to

[
ûα
ik, P̂

β
jk′

]
= ih̄δk(−k′)δijδαβ .
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The Hamiltonian can be cast into the form

Ĥp =
∑
k

∑
i

∑
α

P̂α
i(−k)P̂

α
ik

2Mi
+

1

2

∑
ij

∑
αβ

√
MiMjDjβ

iα (k)û
α
i(−k)û

β
jk

. (2.50)

Here, the dynamical matrix Djβ
iα (k) reappears in the quantum formulation that I have

introduced in the solution of the classical equation of motion (cf. Section 2.2.2).
The Hamiltonian [Eq. (2.50)] has almost the form of that of the harmonic oscillator

[Eq. (2.39)] with two important differences. (i) Instead of the squares of the momentum
and the position operators, products of their Fourier transform at k and −k appear.
(ii) The potential energy is nondiagonal in the sublattice and the displacement compo-
nents if the dynamical matrix is nondiagonal. As a result, the mapping must include its
eigenvectors, which are the polarization vectors εiαλk.

One can check that the creation and annihilation operators defined as

α̂λk =
∑
iα

√
1

2h̄Miωλk

(
Miωλkε

iα
λ(−k)û

α
ik + iεiαλkP̂α

i(−k)

)
, (2.51a)

α̂†
λk =

∑
iα

√
1

2h̄Miωλk

(
Miωλkε

iα
λkû

α
i(−k) − iεiαλ(−k)P̂

α
ik

)
(2.51b)

satisfy the bosonic commutation relations[
α̂λk, α̂

†
σk′

]
= δkk′δλσ, [α̂λk, α̂σk′ ] =

[
α̂†
λk, α̂

†
σk′

]
= 0. (2.52)

The angular frequencies ωλk are obtained from the eigenvalues of the dynamical matrix
[cf. Eq. (2.24)]. The inverse transformation

ûαik =
∑
λ

√
h̄

2Miωλk
εiαλk

(
α̂λk + α̂†

λ(−k)

)
, (2.53a)

P̂α
ik = i

∑
λ

√
h̄Miωλk

2
εiαλk

(
α̂†
λk − α̂λ(−k)

)
(2.53b)

can be applied to diagonalize the Hamiltonian [Eq. (2.50)]:

Ĥp =
∑
λk

h̄ωλk

(
α̂†
λkα̂λk +

1

2

)
. (2.54)

The Hamiltonian has been converted into that of an ensemble of noninteracting harmonic
oscillators [cf. Eq. (2.42)]. For each mode characterized by the band index λ and the wave
vector k, the excitation spectrum is that of a harmonic oscillator with angular frequency
ωλk. The eigenstates of the total Hamiltonian |{nλk}〉 are therefore product states of the
eigenstates with quantum numbers nλk of isolated harmonic oscillators.

In Section 2.2.2, the solution of the nuclear dynamics were plane waves of lattice vi-
brations. In the quantum theory, the solutions are quantized in terms of nλk, which can
be conceived as the number of quasiparticles per mode. As the ground state does not
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comprise any quasiparticles, it corresponds to the quasiparticle vacuum. Adding quasi-
particles to the system requires an energy of h̄ωλk. These bosonic quasiparticles, which
represent the collective lattice vibrations, are called phonons. The quantization of the
lattice excitations on the one hand and their delocalized, wave-like nature on the other
hand are manifestations of the particle-wave duality.

The second construction is based on a particular decomposition Ĥp = Ĥintra + Ĥinter
of the Hamiltonian. Consider the isolated one-dimensional vibrations along α ∈ {x, y, z}
of the nuclei in the m-th unit cell on the i-th sublattice. Neglecting the interaction Ĥinter
between them, the intra-oscillator Hamiltonian

Ĥintra =
∑
imα


(
P̂α
im

)2
2Mi

+
Ciα
iα (0)

2
(ûαim)2

 =
∑
imα

h̄ωiα

(
â†iαâiα +

1

2

)
(2.55)

has the structure of uncoupled harmonic oscillators with angular frequencies ωiα =√
Ciα

iα (0)
Mi

so that local oscillator modes

âiαm =

√
1

2h̄Miωiα

(
Miωiαû

α
im + iP̂α

im

)
, (2.56a)

â†iαm =

√
1

2h̄Miωiα

(
Miωiαû

α
im − iP̂α

im

)
(2.56b)

can be defined. The remaining inter-oscillator terms

Ĥinter =
∑
mn

∑
ij

∑
αβ

(1− δmnδijδαβ)C
jβ
iα (Rn −Rm)ûαimû

β
jn (2.57)

couple the local one-dimensional oscillators to each other.
In the following, I will use a combined index µ (ν) for the sublattice index i (j) and

the direction of vibration α (β). Furthermore, I define a modified dynamical matrix as

D̃jβ
iα (k) =

eik·(bj−bi)√
MiMjωiαωjβ

∑
n

eik·RnCjβ
iα (Rn). (2.58)

Then, the Hamiltonian can be compactly written as

Ĥp =
1

2

∑
k

φ̂
†
kHp,kφ̂k, (2.59)

where

φ̂
†
k =

(
â†1k · · · â†Npk

â1(−k) · · · âNp(−k)

)
(2.60)

and

Hp,k =

(
Ap,k Bp,k
Bp,k Ap,k

)
, (2.61a)

(Ap,k)µν =
h̄

2

[
D̃ν

µ(k) + δµνωµ

]
, (2.61b)

(Bp,k)µν =
h̄

2

[
D̃ν

µ(k)− δµνωµ

]
. (2.61c)
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As the local oscillator modes are no eigenmodes, the Hamiltonian couples different local
modes. Consequently, the Hamilton matrix Hp,k ∈ C2Np×2Np is nondiagonal. To obtain
the normal modes and install a form like in Eq. (2.54), it has to be diagonalized and
the normal modes have to be constructed as superpositions of the local oscillator modes.
This is achieved by the so-called Bogoliubov diagonalization, which is discussed in
Section 2.3.4.

2.3 Theory of Spin Excitations: Magnons

Up to now, the electron dynamics has been neglected for the description of the lattice
dynamics, which is justified by the adiabatic approximation (cf. Section 2.1). In the
following, I address the electron dynamics disregarding the phonons. In particular, the
aim of this section is to motivate the origin of magnetism and to present a formalism for
the quantum-mechanical description of the magnetic ground state and the excitations.
Analogous to the quantized, bosonic excitations of the structural order – the phonons –,
a type of bosonic quasiparticle for the excitation of the magnetic order – the magnons –
is introduced. Before I discuss any details, a general overview over the field of magnetism
is given following Ref. [42].

Magnetic order can come in many forms and classes. Generally, one distinguishes
between collinear and noncollinear magnetism [43]. Among the former, there exist fer-
romagnetism, ferrimagnetism, antiferromagnetism, and, discovered more recently, alter-
magnetism [43–45]. The latter includes coplanar magnetic phases such as helimagnets
and noncoplanar phases such as skyrmions [43, 46]. All these forms of magnetism have
in common that they rely on permanent magnetic moments in the absence of external
magnetic fields. Generally, there is an ordering temperature, below which the symmetries
of the Hamiltonian are spontaneously broken by the respective order parameters. The
various forms differ by the order parameter, which depends on the collective orientations
of the microscopic magnetic moments. They are contrasted by paramagnetism and dia-
magnetism, where permanent magnetic moments only exist in the presence of external
magnetic fields [42].

While phenomena as diamagnetism and paramagnetism do not necessarily require inter-
actions between magnetic moments, magnetic order does not exist without these. Owing
to the variety of magnetic states, there exists no unified theory of magnetism.

In magnetic insulators, the electrons are localized in partially filled d or f orbits and
can be described by the Heisenberg model [47], which is discussed in more detail in this
Chapter. In contrast, magnetic metals feature delocalized electrons, which may or may
not be responsible for magnetism.

For band magnetism, the delocalized electrons are responsible both for the magnetic
properties and the electrical conduction. Figuratively speaking, the spin-up and spin-
down bands, which are degenerate in the paramagnetic phase without external magnetic
field, are shifted by the exchange interaction so that the electrons preferably occupy one
band over the other. The Hubbard model [48] is paradigmatic for that class. It treats
the Coulomb interaction as a short-ranged, intra-atomic repulsion due to screening by
mobile electrons – known as the Hubbard interaction, which brings about spin-split
energy bands. A special case is the Stoner model [49, 50], where the spin-split bands
result from a mean-field description of the Hubbard interaction.
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2 Quantum Theory of Magnetic Solids

Localized magnetism refers to magnetic metals, in which the magnetic moments are
generated by localized electrons and the transport properties are governed by itinerant
electrons. The delocalized electrons’ spins interact with the local magnetic moments and
mediate an effective interaction between the localized permanent magnetic moments.
This situation is captured in the Kondo-lattice model, also known as the s-d or s-f
model [51–53].

This work focuses on magnetic insulators. First, the Heisenberg Hamiltonian is moti-
vated by a two-electron system, which provides an effective description of the many-body
electron Hamiltonian in certain types of magnets by mapping the electron degrees of
freedom onto spin degrees of freedom (cf. Section 2.3.1). The microscopic mechanisms,
which give rise to a Heisenberg Hamiltonian, and their applicability are briefly de-
scribed. Moreover, extensions beyond the Heisenberg Hamiltonian are discussed in
Section 2.3.2. Second, a particular spin-to-boson mapping that allows to expand the spin
Hamiltonian as series of bosonic Hamiltonians distinct in orders of 1/S, where S is the
length of the local spins, is introduced in Section 2.3.3. Finally, Section 2.3.4 is dedicated
to the diagonalization of the resulting truncated bilinear Hamiltonian.

2.3.1 Heisenberg Model

The Heisenberg model, as postulated by Werner Heisenberg in 1926 [47, 54], con-
sists of an effective spin Hamiltonian15

Ĥs =
1

2h̄2

∑
ij

JijŜi · Ŝj (2.62)

that reproduces the low-energy spectrum of the original electron Hamiltonian, which does
not (necessarily) depend on the spin degrees of freedom. It can be applied to molecules,
magnetic insulators, and metals with localized magnetic moments if one is only interested
in the effective interaction between them [42]. Depending on the concrete situation one
wishes to describe, there are multiple microscopic theories such as the Heitler-London
method, the Ruderman-Kittel-Kasuya-Yosida interaction, and superexchange that
give rise to a Hamiltonian like Eq. (2.62), although the interpretation of the exchange
constant J changes [42]. However, one often treats J as a parameter so that the magnetic
properties, e.g., magnetic order, magnon band structure, or magnetic phase transitions,
can be used to determine the parameters of the spin Hamiltonian.

Instead of a microscopic theory, I present the general idea of the mapping for a two-
electron Hamiltonian

Ĥ =
p̂21
2m

+
p̂22
2m

+ V(r1, r2) (2.63)

following Refs. [2, 42, 55, 56]. The first two terms represent the kinetic energies of the
electrons with momentum operator p̂i and electron mass m. V(r1, r2) represents the
potential energy that includes the electron-electron repulsion.
15In order to define exchange constants Jij in units of energy, the coefficient comprises a factor h̄2 to

compensate the unit of angular momentum. This is merely a convention and can be avoided if one sets
h̄ = 1. The factor 1/2 accounts for double counting. Furthermore, the exchange constant is sometimes
also defined with the opposite sign.
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2.3 Theory of Spin Excitations: Magnons

Since the two electrons are identical, they cannot be distinguished in a quantum-
mechanical theory, where there is no notion of trajectories. It follows that the permutation
operator P̂12, which transforms position and momentum operators as

P̂12r1/2P̂12 = r2/1, (2.64a)
P̂12p̂1/2P̂12 = p̂2/1, (2.64b)

commutes with the Hamiltonian:[
Ĥ, P̂12

]
=

[
p̂21
2m

+
p̂22
2m

, P̂12

]
+
[
V(r1, r2), P̂12

]
= 0. (2.65)

According to the symmetry postulate, the Hilbert space of a system of identical particles
contains either only symmetric or only antisymmetric wave functions [30]. The spin-
statistics theorem relates the particles with the former symmetry to integer and those with
the latter to half-odd integer spins [57]. Symmetric wave functions are eigenfunctions of
P̂12 with eigenvalue +1, while the antisymmetric wave function exhibit eigenvalue −1.
The special case of the symmetry postulate for electrons is known as the Pauli exclusion
principle, which states that the many-electron wave function is antisymmetric.

The Hilbert space of the electrons is composed of a spatial and a spin subspace. Only
the former is relevant for the energies of Eq. (2.63), as the Hamiltonian does not act in
the spin space.16 It is therefore possible to construct the total wave function

|Ψ〉 = |ψ〉(±) |χ〉(∓) (2.66)

as a product of the spatial |ψ〉(±) and the spin wave functions |χ〉(∓). The superscript
+ (−) signals the eigenvalue +1 (−1) under particle permutation. As the total wave
function |Ψ〉 needs to be antisymmetric, the symmetric spatial part |ψ〉(+) is multiplied
by the antisymmetric spin part |χ〉(−) or vice versa.

While the spin wave function can be arbitrary for |Ψ〉 to be an eigenfunction of the
two-electron Hamiltonian, the spatial part has to satisfy

Ĥ |ψ〉(±) = ε± |ψ〉(±) , (2.67)

where the energies ε± are assumed to be the two lowest energies of the symmetric and
antisymmetric eigenfunctions, respectively. The goal is to find an alternative Hamiltonian
that acts on the spin but not on the spatial subspace and reproduces the same energy
spectrum and the same corresponding spin wave functions:

Ĥs |χ〉(±) = ε∓ |χ〉(±) . (2.68)

Without the Pauli principle that relates the symmetries of spatial and spin wave func-
tions, this attempt would be bound to fail because the original Hamiltonian [Eq. (2.63)]
is spin degenerate and any spin wave function would be an eigenfunction. It is the Pauli
principle that excludes combinations of certain spin states and energies leading to an
effective spin splitting even in the absence of a magnetic field.
16Formally, it acts as an identity operator in the spin subspace.
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The symmetric and antisymmetric spin wave functions

|χ〉(+) = |1,m〉 , m ∈ {−1, 0, 1}, (2.69a)

|χ〉(−) = |0, 0〉 (2.69b)

can be constructed as the common eigenfunctions |S,m〉 of Ŝ2 and Ŝz, where Ŝ = ŝ1+ ŝ2
is the two-electron spin operator and ŝ1/2 are the two single-electron spin operators.
Importantly, the triplet states |1,m〉 and the singlet states |0, 0〉 are symmetric and anti-
symmetric, respectively. Hence, the two-electron spin quantum number S discriminates
between symmetric and antisymmetric spin wave functions, thereby it discriminates also
between symmetric and antisymmetric spatial wave functions and their energies ε±.

The spin quantum number is related to the eigenvalues of the operator Ŝ2 by

Ŝ
2 |S,m〉 = h̄2S(S + 1) |S,m〉 . (2.70)

Therefore, it can be used to define the effective Hamiltonian

Ĥs =
ε− − ε+

2h̄2
Ŝ

2
+ ε+, (2.71)

which indeed satisfies Eq. (2.68). It is common to express the spin Hamiltonian in terms
of single-electron spin rather than many-electron spin operators. Using its definition, one
finds Ŝ2

= ŝ21+ ŝ
2
2+2ŝ1 · ŝ2. Because electrons are spin-1/2 particles, ŝ21/2 can be replaced

by 3h̄2

4 and the effective Hamiltonian becomes

Ĥs =
J

h̄2
ŝ1 · ŝ2 +

3ε− + ε+
4

, (2.72)

where the exchange constant is J = ε− − ε+. This motivates the generalization of the
Heisenberg model to a lattice [cf. Eq. (2.62)], where Ŝi do not represent spin operators
of single electrons, but the collective spin of the electrons localized at the lattice site i.
The constant energy term can be truncated as it corresponds to a gauge transformation
of the potential energy, which is only defined up to a constant.

If ε+ 6= ε−, parallel (S = 1) and antiparallel alignment (S = 0) are energetically
inequivalent, which is a necessity for magnetic order. Ferromagnetism is promoted by
a negative J , which is the case if ε+ > ε−, i.e., the antisymmetric spatial part of the
two-electron wave function needs to be energetically favorable, while antiferromagnetism
is brought about by lower energies of the symmetric solution.

Although it is intuitively evident that without (electrostatic) electron-electron inter-
actions, the electrons’ spins would not “talk” to each other, I did not have to make
statements about the potential energy V(r1, r2). However, only the genuine many-body
terms in V lift the degeneracy between symmetric and antisymmetric states and, thus,
admit a nonzero J . To substantiate this crucial fact, I assume there were no interactions,
allowing me to write V(r1, r2) = U(r1) + U(r2). Then, the two-electron Hamiltonian
[Eq. (2.63)] would fragment into a sum of single-electron Hamiltonians and the eigen-
functions would be any product state of single-electron eigenfunctions

∣∣ψa/b

〉(1/2), where
a, b are quantum numbers of the single-electron Hamiltonians and 1/2 symbolize the two
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2.3 Theory of Spin Excitations: Magnons

single-electron Hilbert vectors/spaces.17 Then, the symmetric and antisymmetric wave
functions |ψ〉(±) = |ψa〉(1) |ψb〉(2) ± |ψb〉(1) |ψa〉(2) would be degenerate.

Considering the situation of two electrons in an atom as an example, the Coulomb
repulsion between the electrons is minimized by an antisymmetric spatial wave function
(i.e., ε+ > ε−) because it vanishes at r1 = r2. Hence, ferromagnetic order (S = 1) is
favorable.18 This is known in the context of electronic configurations of atoms as the
second Hund’s rule, which states that electrons tend to maximize their total spin in
unoccupied shells [58–60]. On the other hand, in a two-center system like a hydrogen
molecule in the Heitler-London approximation, there is not only the mutual repulsion
between the electrons, but also the attraction between electrons and protons, which
leads to antiferromagnetic coupling [42, 56]. Therefore, different theories can lead to
different expressions and magnitudes of the exchange constant J . Usually, J is treated
as a parameter that can be fitted to theoretical or experimental results, e.g., the spin
structure factor in inelastic neutron scattering measurements [23, 61].

2.3.2 Extended Heisenberg Model
The Heisenberg model motivated above is isotropic in the spin degrees of freedom and,
thus, does not couple the spins to the lattice. Realistic models of magnets must include
other terms that may be derived from spin-orbit coupling or dipole-dipole interactions.
Therefore, the spin Hamiltonian has to be generalized.

In general, the bilinear spin-spin interactions can be subsumed as [62–64]

Ĥs =
1

2h̄2

∑
ij

Ŝ
ᵀ
iJ ijŜj . (2.73)

Here, the interaction parameters are given as entries of the interaction matrix J ij = J
ᵀ
ji.

For J ij = JijI, where I ∈ R3×3 is the identity matrix, the isotropic Heisenberg model
[Eq. (2.62)] is retrieved. Below, some other special types of interactions are discussed
similarly to Ref. [65].

Anisotropic Interactions

There are two common types of anisotropic interaction, which break the continuous ro-
tational symmetry of the isotropic Heisenberg model. The single-ion anisotropy (or
magnetocrystalline anisotropy) [42, 66]

Ĥsi =
A

h̄2

∑
i

(
ei · Ŝi

)2
, (2.74)

can appear in the form of an easy-axis (A < 0) or an easy-plane anisotropy (A > 0),
where the spins tend to align (anti-)parallel or in the plane perpendicular to the unit
vector ei. This interaction is only relevant to spins with spin quantum numbers Si > 1/2,
because it becomes a constant for the case of spin 1/2 rendering the interaction isotropic.
17Because of the indistinguishability of both electrons, the two single-particle Hamiltonians and Hilbert

spaces are identical.
18If the energy corresponding to the quantum number a is sufficiently lower than that of b, it is energet-

ically favorable to occupy a symmetric two-electron wave function |ψ〉(+) = |ψa〉(1) |ψa〉(2), which is
associated with the singlet (S = 0) spin state. Such a state appears in the spectrum of parahelium [58].
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Figure 2.2: (a-e) The five Moriya rules showing the possible orientations of the Dzya-
loshinskii-Moriya vector (magenta arrows) between two magnetic sites (blue spheres)
in the presence of (a) an inversion center, (b, c) mirror planes, and (d, e) rotational axes.
In (a) the vector is zero.

In the Hamiltonian of the two-ion anisotropy [42]

Ĥti =
1

2h̄2

∑
ij
i 6=j

Aij

(
eij · Ŝi

)(
eij · Ŝj

)
, (2.75)

spins at different sites are projected onto a unit vector eij . This interaction resembles
the Ising model if eij is fixed [67]. Moreover, it has similarities to the anisotropic part of
the dipolar interaction, which is why it is also known as the pseudo-dipolar interaction.

Dzyaloshinskii-Moriya Interaction

The antisymmetric interaction, parameterized as the nonzero elements of

J ij − Jᵀ
ij = 2

 0 Dz
ij −Dy

ij

−Dz
ij 0 Dx

ij

Dy
ij −Dx

ij 0

 , (2.76)

is known as the Dzyaloshinskii-Moriya interaction [68, 69]

ĤDMI =
1

2h̄2

∑
ij

Dij ·
(
Ŝi × Ŝj

)
. (2.77)

Classically, the interaction prefers canted spins in the plane perpendicular to Dij = −Dji

and was historically predicted in 1958 by Igor E. Dzyaloshinskii to explain the weak
ferromagnetism found in antiferromagnets based on symmetry considerations [68]. In
1960, this interaction was microscopically derived and ascribed to spin-orbit coupling by
Tôru Moriya [69].

The existence and the directions of the axial vector Dij are restricted by the symmetry
of the lattice as summarized by the Moriya rules that are visualized in Fig. 2.2. Let A
be the position of site i, B that of site j, and C the location of the center between A and
B. Then, the Moriya rules read [69]

1. If a center of inversion is located at C, Dij = 0.

2. If a mirror plane perpendicular to AB passes through C, Dij ⊥ AB.

3. If a mirror plane including A and B exists, Dij ⊥ mirror plane.
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4. If a two-fold rotation axis n perpendicular to AB passes through C, Dij ⊥ n.

5. If there is an n-fold axis (n ≥ 2) along AB, Dij ‖ AB.

These rules can be derived using the transformation properties of axial vectors. Axial
vectors are by definition even under inversion. If a symmetry operation interchanges i
and j, Dij must be chosen to change sign. Whenever this can not be achieved (rule 1),
it has to vanish.

Special Interactions In Honeycomb Lattices

The honeycomb lattice is a bipartite, two-dimensional lattice with hexagonal symmetry
and two sites per primitive unit cell. Each site is connected with three different neighbors
by bonds that pairwise include an angle of 120°.

The Dzyaloshinskii-Moriya interaction is forbidden between nearest neighbors be-
cause of an inversion center at the midpoint of the bond (rule 1). However, an out-of-plane
Dij is allowed between next-nearest neighbors (rule 3).

An important spin-spin interaction derived from spin-orbit coupling in honeycomb
lattices is the Kitaev interaction [70]

ĤK =
K

2h̄2

∑
〈ij〉γ

Ŝγ
i Ŝ

γ
j , (2.78)

where the sum runs over nearest-neighbor sites 〈ij〉. Here, for each of the three bonds,
mutually orthogonal spin components γ = x, y, z are considered. Furthermore, the Ki-
taev interaction is commonly accompanied by the Gamma

ĤΓ =
Γ

2h̄2

∑
〈ij〉γ

(
Ŝα
i Ŝ

β
j + Ŝβ

i Ŝ
α
j

)
, (2.79)

and the Gamma’ interaction

ĤΓ ′ =
Γ ′

2h̄2

∑
〈ij〉γ

(
Ŝγ
i Ŝ

α
j + Ŝγ

i Ŝ
β
j + Ŝα

i Ŝ
γ
j + Ŝβ

i Ŝ
γ
j

)
, (2.80)

where the α and β refer to the remaining components orthogonal to γ [71–74].

Magnetostatic Interactions

The action of an external magnetic field is commonly described by the Zeeman Hamil-
tonian [42]

ĤZ =
gµB
h̄
B ·

∑
i

Ŝi, (2.81)

where g is the gyromagnetic factor, and µB is the Bohr magneton. This interaction can
be understood by classical physics as every spin Ŝi encompasses an antiparallel magnetic
moment m̂i = −gµB

h̄ Ŝi that is aligned by the magnetic field.
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Furthermore, classical dipole-dipole interactions

Ĥdd =
gµB
h̄

∑
ij
i 6=j

Ŝi · B̂j(ri − rj) (2.82)

can be included by substituting B in ĤZ by the magnetic dipole field

B̂j(r) =
µ0
4π

3r(r · m̂j)− |r|2m̂j

|r|5
(2.83)

generated by the surrounding spins j [42, 75, 76]. Since the energy scale is in the order
of µeV and, thus, around three orders of magnitude smaller than the typical exchange
interaction, it is neglected in this work.

2.3.3 Second Quantization

Previously, it was motivated that the low-energy many-body electronic degrees of freedom
in a magnetic insulator can be effectively mapped onto the spin degrees of freedom by
introducing a (spin) Hamiltonian that only acts on the spin but no longer on the spatial
part of the wave function. In other words, the problem of electron dynamics has been
transformed into a problem of spin dynamics.

There are several approaches to solve the spin dynamics. Atomistic spin dynamics
simulations [63, 65] involve deriving the equations of motion of the classical spin variables,
the Landau-Lifshitz-Gilbert equation [77, 78], which can be numerically integrated.
To describe thermal effects, Langevin dynamics is employed, which involves randomly
fluctuating magnetic fields whose variance increases with temperature [79–82]. As an
advantage, the interaction between the spins, as given by the Hamiltonian, can be treated
without approximations. The disadvantage is, however, that the classical results do not
apply at low temperatures, where quantum effects become essential.

In this work, a transformation mapping spin operators to bosonic operators, as done
for phonons in Section 2.2.3, is presented. This approach is usually suited in the low-
temperature regime with magnetic order and can capture quantum effects. The theory
is introduced in text books such as Refs. [42, 54, 61] and a more general situation is
considered in Ref. [64].

General Theory

Published in 1940, Theodore Holstein and Henry Primakoff introduced the trans-
formation [11]

Ŝ+
i

h̄
=

√
2S − b̂†i b̂ib̂i,

Ŝ−
i

h̄
= b̂†i

√
2S − b̂†i b̂i,

Ŝz
i

h̄
= S − b̂†i b̂i, (2.84)

that maps the local spin operators Ŝ±
i = Ŝx

i ±iŜy
i and Ŝz

i of the i-th site onto local bosonic
creation and annihilation operators b̂†i and b̂i, hence, they fulfill the commutation relations[
b̂i, b̂j

]
=
[
b̂†i , b̂

†
j

]
= 0 and

[
b̂i, b̂

†
j

]
= δij . The action of the newly defined bosonic operators

can be understood in the common eigenbasis |S,m〉 of Ŝ2
i and Ŝz

i , onto which the spin
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ladder operators act as Ŝ±
i |S,m〉 =

√
S(S + 1)−m(m± 1) |S,m± 1〉 [54]. Ignoring the

square roots in Eq. (2.84), b̂†i is related to Ŝ−
i , while b̂i appears in Ŝ+

i . Furthermore, the
number operator n̂i = b̂†i b̂i measures the deviations of the z component h̄m from its fully
polarized state S = m. Therefore, the bosonic quasiparticles correspond to local spin
flips of the fully-polarized (ground) state.

The transformation Eq. (2.84) is only a special case that applies to ferromagnets with
magnetization along z. It can be generalized to describe antiferromagnetic or noncollinear
ground states as well. First, one needs to ascertain the classical ground state by treating
the spin operators Ŝi → Sizi as classical vectors of length Si and direction zi and min-
imize the classical spin Hamilton function corresponding to Ĥs with respect to {zi}.
Then, one chooses arbitrary orthogonal axes xi and yi that form a tripod with zi. With
the local quantization axis defined by zi, the general Holstein-Primakoff transforma-
tion reads [64]

Ŝi

h̄
=

√
Si
2

(
e+i b̂

†
i f̂i + e

−
i f̂ib̂i

)
+ zi

(
Si − b̂†i b̂i

)
, (2.85)

where Si is the spin quantum number of the i-th spin and e±i = xi ± iyi. The operator

f̂i =

√
1−

b̂†i b̂i
2Si

(2.86)

is defined by the series expansion
√
1− x = 1− x

2 − x2

8 − x3

16 +O
(
x4
)

of the square root.
Therefore, any spin Hamiltonian

Ĥs =

∞∑
r=0

Ĥ(r)
b (2.87)

can be written as a sum of bosonic Hamiltonians, which is an expansion in powers of
creation and annihilation operators. Here, Ĥ(r)

b comprises products of r creation or
annihilation operators.19

In the harmonic approximation the expansion is truncated beyond r = 2 so that only
two nonzero terms remain. Ĥ(0)

b is the classical ground state energy proportional to
S2 (assuming uniform spin lengths) that is obtained from the spin Hamilton function,
which in turn is minimized by {zi}. Furthermore, Ĥ(2)

b represents the excitations above
the ground state (and the quantum corrections of the ground state) that can be mapped
onto the harmonic oscillator, as demonstrated below. Note that Ĥ(1)

b corresponding to
the spontaneous creation or annihilation of spin deflections from the quantization axes
has to vanish for the correct classical magnetic ground state.

Instead of representing each spin by a site index, henceforth, the notation of, e.g., the
local spin operators is changed to Ŝim, where the first index i distinguishes the sublattices
and the second one m represents the unit cell. Then, the Fourier transformed creation
19Note that the number of creation and annihilation operators for a fixed expression depends on the

order. Consider the expression b̂†b̂, which can also be written as b̂b̂† − 1. It is expedient to perform
a normal-ordered series expansion, where all creation operators are written left of all annihilation
operators.
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and annihilation operators are introduced as

b̂ik =
1√
Nuc

∑
m

e−ik·Rim b̂im, b̂im =
1√
Nuc

∑
m

eik·Rim b̂ik, (2.88a)

b̂†ik =
1√
Nuc

∑
m

eik·Rim b̂†im, b̂†im =
1√
Nuc

∑
m

e−ik·Rim b̂†ik, (2.88b)

which allows representing

Ĥ(2)
b =

1

2

∑
k

ψ̂
†
kHm,kψ̂k + const (2.89)

as a Bogoliubov-de Gennes Hamiltonian that involves the Nambu spinors

ψ̂
†
k =

(
b̂†1k · · · b̂†Nmk b̂1(−k) · · · b̂Nm(−k)

)
(2.90)

and the Hamilton matrix Hm,k ∈ C2Nm×2Nm . Nm = Nsl is the number of magnon
bands.

This form accounts for anomalous magnon pairing terms b̂ikb̂jk′ and b̂†ikb̂
†
jk′ in the

Hamiltonian that break the magnon number conservation. These terms, which also ap-
pear in the Bardeen-Cooper-Schrieffer theory of superconductivity [2], can be ele-
gantly represented in an extended, redundant basis ψ̂k. Here, each mode characterized
by a sublattice index i and wave vector k exists as a particle-like ψ̂†

ik = b̂†ik and a hole-like
state ψ̂†

i+Nm,k = b̂i(−k).
General explicit expressions for Hm,k can be given by considering the generic spin

Hamiltonian

Ĥs =
1

2h̄2

∑
mn

∑
ij

Ŝ
ᵀ
imJ ij(Rn −Rm)Ŝjn +

gµB
h̄
B ·

∑
im

Ŝim. (2.91)

In the following, I assume without loss of generality that the contingent symmetry
J ij(R) = Jᵀ

ji(−R) is installed in the definition of the bilinear spin-spin interaction matrix
J . By defining the magnonic analogue to the dynamical matrix

J ij(k) =
∑
m

eik·(Rm+bj−bi)J ij(Rm) (2.92)

as the Fourier transform of J ij(Rn − Rm), the magnon Hamilton matrix can be
compactly expressed as

Hm,k =

(
Am,k Bm,k

Bᵀ
m,−k Aᵀ

m,−k

)
, (2.93a)

(Am,k)ij =
(
A+−

m,k

)
ij
+
(
Azz

m,k

)
ij
+
(
AZ

m,k

)
ij
, (2.93b)(

A+−
m,k

)
ij
=

√
SiSj

2

(
e+i
)ᵀJ ij(k)e

−
j , (2.93c)(

Azz
m,k

)
ij
= δij

∑
l

Slz
ᵀ
iJ il(0)zl, (2.93d)(

AZ
m,k

)
ij
= δijgµBB · zi, (2.93e)

(Bm,k)ij =

√
SiSj

2

(
e+i
)ᵀJ ij(k)e

+
i . (2.93f)
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2.3 Theory of Spin Excitations: Magnons

Figure 2.3: Magnon spectrum and selected magnon modes of one-dimensional Heisen-
berg ferromagnet. (a) Magnon band structure featuring one band. (b) Collinear spin
texture of the ferromagnetic ground state. (c–e) Snapshots of spin waves of different wave
numbers (c) k = 0, (d) k = π/2a, and (e) k = π/a [cf. panel (a)].

Note that Am,k is Hermitian and Bm,k = B∗
m,−k so that Hm,k is Hermitian.

Ferromagnetic Heisenberg Chain

The Hamiltonian of the one-dimensional Heisenberg ferromagnet

Ĥs =
J

h̄2

∑
i

Ŝi · Ŝi+1 (2.94)

only comprises ferromagnetic exchange interaction (J < 0) between nearest neighbors,
wherefore the spins are mutually parallel in the classical ground state, e.g., zi ‖ z.20

Employing the Holstein-Primakoff transformation [Eq. (2.84)], the Hamiltonian in
the harmonic approximation reads

Ĥm = J
∑
i

[
S2 − 2Sb̂†i b̂i + Sb̂†i b̂i+1 + Sb̂†i+1b̂i

]
, (2.95)

which can be transformed into

Ĥm = JS2Nuc +
∑
k

εm,k b̂
†
k b̂k, εm,k = −4JS sin2 ka

2
(2.96)

with the Fourier transformation of the creation and annihilation operators [Eq. (2.88)].
Here, a is the lattice constant and εm,k describes the dispersion relation of the spin waves
[cf. Fig. 2.3(a)].

The transformed Hamiltonian assumes the same shape as that of the harmonic oscillator
[Eq. (2.42)] and that of quantized phonons [Eq. (2.54)]. Note, however, that the quantum
fluctuations that correct the ground state energy by εm,k/2 are absent, as the ground state
20Since the Hamiltonian is isotropic, there is a continuous degeneracy of the ground state manifold. By

making the explicit choice zi ‖ z, the symmetry is spontaneously broken.
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is exact. Pictorially, the normal modes are spin waves, in which each localized atomic spin
precesses about its ground state orientation z [depicted in Fig. 2.3(b)] with an angular
frequency εm,k/h̄. Depending on the wave number k, the spins precess in phase for k = 0
[Fig. 2.3(c)], with a phase shift of 90° between neighbors for k = π/2a [Fig. 2.3(d)], in
antiphase for k = π/a [Fig. 2.3(e)] or anything in between. In the quantum theory, the
spin waves are described by the bosonic quasiparticles created and annihilated by b̂†k and
b̂k called magnons.

In the long wavelength limit, k → 0, the magnon energy εm,k ∝ k2 is quadratic in k
[cf. Fig. 2.3(a)], which is unlike the linear dispersion of acoustic phonons [cf. Eq. (2.37a)],
and vanishes for infinite wavelength. This is another example of the Goldstone theorem,
which guarantees the zero-energy mode based on the symmetry of the Hamiltonian. The
original spin Hamiltonian [Eq. (2.94)] respects isotropy with respect to the global spin
axes. In other words, the global quantization axis is not unique. By fixing a classical
ground state direction, two of three spin rotation axes are broken. However, there is only
one Goldstone mode.

To understand this discrepancy, two types of such modes have to be distinguished.
Type-I (type-II) modes are those that have dispersion relations with odd (even) powers
of their momenta [35, 37, 83]. The number of type-I (nI) and type-II modes (nII) is
related to the number of broken generators nbg as [35–37]

nI + 2nII = nbg. (2.97)

Applied to the present case, nbg = 2 so that nII = 1. On the contrary, the zero-energy
states in the acoustic phonon branches correspond to type-I modes, which is why their
number equals the number of broken symmetry generators.

2.3.4 Bogoliubov Transformation
The previous example of the Heisenberg ferromagnet was a special case that was di-
agonalized by Fourier transformation. In general, however, one deals with systems
that are not described by Bravais lattices because they have a structural basis or the
magnetic unit cell is increased by the magnetic superstructure. In these cases, the Hol-
stein-Primakoff transformation leads to a Hamiltonian like Eq. (2.89). Such a Hamilto-
nian requires a particular diagonalization procedure. Here, the general and mathematical
framework of Ref. [84] is transferred to the magnon theory and the idea is exemplified by
a Heisenberg antiferromagnet afterwards.

General Theory

Because of the nondiagonal structure of the Bogoliubov-de Gennes Hamiltonian Ĥ(2)
b

[Eq. (2.89)] and the pairing terms, the normal modes β̂†k ∝ b̂†k+ b̂−k are superpositions of
particle- and hole-like excitations. In the Nambu notation, the creation and annihilation
operators of the normal modes can be subsumed in the spinor

Ψ̂
†
k =

(
β̂†1k · · · β̂†Nmk β̂1(−k) · · · β̂Nm(−k)

)
, (2.98)

which is constructed as a linear combination

Ψ̂k = T−1
k ψ̂k (2.99)
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of the Holstein-Primakoff modes ψ̂k.
Two conditions have to be satisfied by the operators β̂mk and β̂†mk: (i) they have to

fulfill the bosonic commutation relations and (ii) they have to be the normal modes of
the bilinear part of the bosonic Hamiltonian Ĥ(2)

b .
Condition (i) implies

[
Ψ̂mk, Ψ̂nk′

]
=
[
Ψ̂mk, Ψ̂nk′

]
= 0 and

[
Ψ̂mk, Ψ̂

†
nk′

]
= δkk′(σ3)mn.

Here, σ3 = diag
(
1 · · · 1 −1 · · · −1

)
∈ R2Nm×2Nm is the bosonic metric. Conse-

quently,

T †
kσ3T k = σ3, or T kσ3T

†
k = σ3, or T †

kσ3 = σ3T
−1
k , (2.100)

must be fulfilled. Matrices with this property are called paraunitary.
Condition (ii) implies that the bilinear Hamiltonian can be expressed as

Ĥ(2)
b =

∑
k

∑
λ

εm,λkβ̂
†
λkβ̂λk + const, (2.101)

which is achieved by requiring

T †
kHm,kT k = Ek = diag

(
εm,1k · · · εm,Nmk εm,1(−k) · · · εm,Nm(−k)

)
. (2.102)

Assume that such a matrix T k exists and let tmk denote its column vectors. Using the
conditions (i) and (ii), one derives the eigenvalue problem

(σ3Hm,k − (σ3)mmεm,mk)tmk = 0. (2.103)

Therefore, the magnon energies and eigenvectors are obtained from the eigenvalue prob-
lem of the non-Hermitian matrix σ3Hm,k. This evokes several questions. (i) Are the
eigenvalues of the non-Hermitian matrix σ3Hm,k real? (ii) Does the paraunitary matrix
T k with tmk as its column vectors exist? (iii) How can the magnon eigenvectors and
eigenvalues be obtained in practice?

The answer of the first and partly the second question is given by the following theorem:
A 2m-dimensional Hermitian matrix A can be paraunitarily diagonalized into a matrix
with positive diagonal elements if and only if A is positive definite.

The restriction to positive definite matrices ensures that the magnon energies are indeed
positive. Although it ensures the stability of the magnetic ground state, the theorem does
not cover the case of zero-energy modes as forced by the Goldstone theorem. In the
below example, it is demonstrated that the theorem cannot be generalized to positive
semidefinite matrices.

The third question is answered by a construction algorithm for T k that involves the
following 4 steps.

1. Decompose the 2Nm square positive definite Hermitian matrix Hm,k as Hm,k =

K†
kKk by employing, e.g., the Cholesky decomposition.

2. Diagonalize the Hermitian matrix Kkσ3K
†
k by means of the unitary matrix Uk

resulting in the diagonal matrix Lk.

3. The eigenvalues are given as Ek = σ3Lk.

4. The eigenvectors are obtained from UkE
1
2
k = KkT k, where the square root of the

matrix Ek is the matrix of the square roots of the elements of Ek.
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Figure 2.4: Magnon spectrum and selected magnon modes of in a one-dimensional
Heisenberg antiferromagnet. (a) Magnon band structure featuring the two degenerate
bands. Color indicates localization of the modes on sublattice ↑. For k > 0 (k < 0), band
1 (band 2) is shown. (b–e) Snapshots of spin waves of (b, c) band 1 and (d, e) band 2 with
(b, e) k = ±π/2a and (c, d) k = ±π/4a [cf. panel (a)]. Band 1 (band 2) generally features
larger precession amplitudes on sublattice ↑ (sublattice ↓). As |k| → 0, the amplitudes of
the precessions of both sublattices diverge to ∞ for both bands.

Antiferromagnetic Heisenberg Chain

Although the Heisenberg ferromagnet and antiferromagnet share the same Hamiltonian

Ĥs =
J

h̄2

∑
i

(
Ŝ↑,i · Ŝ↓,i + Ŝ↓,i · Ŝ↑,i+1

)
, (2.104)

the ferromagnet exhibits only one sublattice and is diagonalized by Fourier transfor-
mation of the Holstein-Primakoff operators. In contrast, the antiferromagnet has
two sublattices ↑ and ↓ because the antiferromagnetic order favored by J > 0 breaks
translational symmetry and doubles the unit cell, which has the size 2a if the spins are
separated by a distance a.

After the Holstein-Primakoff transformation [Eq. (2.85)] and the Fourier trans-
formation [Eq. (2.88)], one obtains the Hamilton matrix

Hm,k =


ξ ηk

ξ ηk
ηk ξ

ηk ξ

 , (2.105)

where ξ = 2JS and ηk = −2JS cos(ka). Except at the edge of the first Brillouin
zone, k = ± π

2a , where ηk = 0, the Hamiltonian contains anomalous pairing terms like
ηk b̂↓,−k b̂↑,k, which require the normal modes to be a superposition of particle- and hole-like
modes.

Instead of applying the general algorithm, I solve the eigenvalue problem [Eq. (2.103)]
and check afterwards if a paraunitary matrix T k can be constructed from the eigenvectors
tmk.
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2.3 Theory of Spin Excitations: Magnons

As a first step, one computes the roots of the characteristic polynomial of σ3Hm,k,
which read

λ1/2,k =
√
ξ2 − η2k, λ3/4,k = −

√
ξ2 − η2k. (2.106)

Because these are directly related to the magnon energies as εm,mk = (σ3)mmλmk, the
dispersion relation in Heisenberg antiferromagnets reads

εm,1/2k = εm,k = 2JS|sin(ka)|. (2.107)

Thus, the antiferromagnet hosts two bands, shown in Fig. 2.4(a), which are doubly
degenerate because the antiferromagnet effectively restores time-reversal symmetry by
combining the time-reversal operation with inversion that interchanges the spins of both
sublattices. This effective time-reversal symmetry implements an analog of the Kramers
theorem. The number of spontaneously broken symmetry generators is, again, nbg = 2.
Because of the effective Kramers degeneracy, there must be an even number of Gold-
stone modes. Hence, one can conclude from Eq. (2.97) that there must be two type-I
modes with linear dispersion relations in a collinear antiferromagnet without any calcu-
lations. The linear dispersion affects the magnons’ group velocities, which are crucial for
transport, as well as the density of states and, therefore, the low-temperature behavior
of thermodynamic properties like heat capacity or magnetization. Because of the lin-
ear dispersion, the energy of the magnons in an antiferromagnet increases more rapidly
then in a ferromagnet. Therefore, the average number of magnons increases slower with
temperature and thermodynamic quantities generally display a weaker dependence on
temperature compared to ferromagnets [10, 85, 86].

Reverting to the diagonalization of Hm,k, the eigenvectors of σ3Hm,k are given as

tmk = ζmk

(
ξ + λmk 0 0 −ηk

)ᵀ
, tm+1,k = ζm+1,k

(
0 ξ + λmk −ηk 0

)ᵀ (2.108)

for m = 1, 3. The coefficients ζmk are chosen so that

t†mkσ3tmk = 2|ζmk|2λmk(ξ + λmk)
!
= (σ3)mm (2.109)

according to Eq. (2.100). Apparently, the phase of ζmk is not defined and can be chosen
freely. By choosing ζmk =

√
2|λmk|(ξ + λmk) the eigenvectors can be indeed “paranor-

malized” so that the Bogoliubov transformation mediated by

T k =



√
ξ+εm,k

2εm,k
0

√
ξ−εm,k

2εm,k
0

0
√

ξ+εm,k

2εm,k
0

√
ξ−εm,k

2εm,k

0 −
√

ξ−εm,k

2εm,k
0 −

√
ξ+εm,k

2εm,k

−
√

ξ−εm,k

2εm,k
0 −

√
ξ+εm,k

2εm,k
0

 (2.110)

exists.
There are two special cases, (i) k = 0 and (ii) k = ± π

2a . In case (ii) the Hamilto-
nian is diagonal, since the pairing terms proportional to ηk disappear. Then, the normal
modes do not encompass hole excitations because T k becomes block diagonal. For case
(i), T k is ill-defined because the magnon energies vanish. In this case, the Bogoliubov
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transformation does not exist, which is not in contradiction to the general theorem above
because the eigenvalues of Hm,k, ξ±ηk, are not exclusively positive anymore rendering it
positive semidefinite at k = 0. Hence, the Heisenberg antiferromagnet is a counterex-
ample, which demonstrates that the theorem cannot be extended to positive semidefinite
matrices (without additional constraints).

For better illustration snapshots of 4 selected modes are shown in Fig. 2.4(b–e). While
band 1 features modes with larger precession amplitudes on sublattice ↑, band 2 behaves
oppositely. At k = ±π/2a, only one of the two sublattices is excited for each band. Because
the precession reduces the sublattice magnetization, the magnons of band 1 (band 2)
carry a spin down (spin up) of magnitude h̄.21 As k → 0, the amplitudes increase on
both sublattices and diverge at k = 0, which explains the singularity in the Bogoliubov
transformation. Even as the amplitudes on both sublattices increase, it is ensured that
the component of the total spin parallel to the Néel vector changes by exactly h̄.

It should be noted that the Mermin-Wagner theorem forbids the spontaneous break-
ing of continuous symmetries at nonzero temperatures in one and two dimensions [42, 88].
Assuming antiferromagnetic order in the present model violates the theorem. However,
this can be easily remedied by an easy-axis anisotropy, which invalidates the applicability
of both the Mermin-Wagner and the Goldstone theorem. This additional interaction
would enter as a constant in ξ and shift the entire magnon spectrum. By removing the
zero-energy mode, the Bogoliubov transformation can be performed for all k.

2.4 Theory of Spin-Lattice Excitations: Magnon Polarons
Founded on the Born-Oppenheimer approximation, the nuclear and electronic dynam-
ics have been studied independently in Sections 2.2 and 2.3 under conditions that apply
to crystalline magnetic insulators. In both cases, different kinds of bosonic quasiparticles
emerged from the quantum-mechanical treatment of the problems. The nuclear dynam-
ics brings about lattice waves that are quantized in terms of phonons and describe the
collective vibration of the lattice. The low-energy electronic dynamics was shown to map
onto spin degrees of freedom, the excited states of which, the spin waves, i.e., collective
precessions of the localized spins, are quantized in terms of magnons.

In this part, the coupling between electrons and nuclei dynamics is effectively rein-
troduced as an interaction between phonons and magnons, the spin-lattice coupling
(cf. Section 2.4.1), which goes beyond the Born-Oppenheimer approximation. As a
consequence of this interaction, the normal modes are neither magnons nor phonons and
a new kind of quasiparticle emerges by their hybridization, which is discussed in Sec-
tion 2.4.2.

2.4.1 Spin-Lattice Coupling
A simple argument readily demonstrates the origin and the omnipresence of spin-lattice
coupling without invoking the many-body Hamiltonian or the Born-Oppenheimer ap-
proximation. Consider a pair of interacting spins Ŝ1 and Ŝ2, whose interaction is given by
21This is a consequence of spin conservation. Since the Hamiltonian does not comprise spin-orbit coupling,

the total spin must be conserved. Hence, the Hamiltonian and the total spin possess a common
eigenbasis, to which the states of band 1 and 2 belong to. Because the spin eigenvalues are quantized
as multiples of h̄, the one-magnon wave function may only alter the total spin by h̄ [87].
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2.4 Theory of Spin-Lattice Excitations: Magnon Polarons

the Heisenberg exchange interaction JŜ1 ·Ŝ2. It is intuitive to assume that the strength
of the interaction depends on the distance between both spins, i.e., J = J(R2 −R1).22

In the Born-Oppenheimer approximation, the distance is considered fixed but arbi-
trary for the electronic dynamics. At low temperatures, however, only the vicinity of the
equilibrium positions R(0)

i (i = 1, 2) are of interest, where the exchange constants can be
approximated as

J(R2 −R1) ≈ J
(
R

(0)
2 −R(0)

1

)
+ ∇̂RJ(R) · (u2 − u1)

∣∣∣∣
R

(0)
2 −R

(0)
1

. (2.111)

This expansion installs a coupling between the displacements of the nuclei ui = Ri−R(0)
i

from their equilibrium positions on the lattice and the spins Ŝ1 and Ŝ2. In the following,
R represent the equilibrium positions and u the deviations from it.

This argument can be generalized for any spin-spin interaction that depends on the
distance of the involved interacting spins. Abstractly, different mechanisms of spin-lattice
couplings can be captured to the lowest order by the Hamiltonian

Ĥslc =
1

2h̄2

∑
uvw

∑
pqr

∑
αβγ

Iαβγpqr (Ru −Rw,Rv −Rw)Ŝ
α
puŜ

β
qvu

γ
rw, (2.112)

where the first three sums (u, v, w) run over unit cells, the second (p, q, r) over all
sublattices, and the third (α, β, γ) over all Cartesian components. By relabeling the
indices, one shows that the symmetry Iαβγpqr (Ru−Rw,Rv−Rw) = Iβαγpqr (Rv−Rw,Ru−Rw)
can be installed by definition without loss of generality.

This expression for the spin-lattice coupling is very general so that Iαβγpqr (Ru−Rw,Rv−
Rw) may comprise contributions from different mechanisms like exchange magnetostric-
tion [89–92], dipolar interactions [93], single-ion anisotropies [94–102], Dzyaloshin-
skii-Moriya interaction [102–108], two-ion anisotropies [109, 110], among which the
Kitaev interaction [91, 92, 111], the Gamma [92, 111], and Gamma’ interactions [92] are
special cases.

It should be noted that through indirect exchange, which is mediated by nonmagnetic
ions, the spins of the magnetic ions may also be coupled to the displacement of non-
magnetic ions [91], which is in principle included in Eq. (2.112).23 The expression does
not comprise the spin-lattice coupling originating from the Zeeman interaction in an
inhomogeneous magnetic field [112], and higher orders of spin-spin (e.g., biquadratic)
interactions, or interactions that are of higher orders in the displacement [113, 114].

2.4.2 Hybridization of Phonons and Magnons
The spin-lattice coupling Hamiltonian [Eq. (2.112)] can be used to reintroduce the dy-
namics of the lattice by treating the (so far) static displacement as a dynamic operator
uγrw → ûγrw, thereby going beyond the Born-Oppenheimer approximation. Hence, the
spin Hilbert space is now augmented with the nuclear or lattice Hilbert space. This
22This assumption was implicitly employed in the previous models by restricting the spin-spin interactions

to nearest neighbors. In many realistic models, the spin-spin interactions are short-ranged and can be
truncated beyond a few coordination shells.

23The only difference is that the sublattice index r runs over a larger set including both magnetic and
nonmagnetic sublattices, while p and q are restricted to magnetic sublattices.
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is, however, different to the original many-body Hamiltonian [Eq. (2.2)] because the in-
teractions between electrons, nuclei, and their mutual interactions are treated effectively
by the aforementioned approximations.

First, I discuss how the harmonic approximation of the spin-lattice coupling leads to a
hybridization of magnons and phonons that brings about a new kind of quasiparticle – the
magnon polaron. A general theory is presented that formulates a bosonic Hamiltonian in
the extended Hilbert space of magnetoelastic excitations. Afterwards, the perturbative
solution of a ferromagnetic and elastic chain serves as an instructive example to illustrate
the physics of magnon polarons.

General Theory

In order to account for spin-lattice coupling, the Hamiltonian of Eq. (2.112) is trans-
formed into a bosonic Hamiltonian that mixes annihilation and creation operators of
magnons and phonons. The spin operators are mapped onto the magnon operators by
means of the Holstein-Primakoff transformation introduced in Section 2.3.3, while the
displacement operator is mapped onto local oscillator modes as described in Section 2.2.3.

As the spin Hamiltonian, the spin-lattice Hamiltonian can be expanded in terms of
the number of bosonic creation or annihilation operators. The leading order that affects
the mutual dynamics of phonon and magnons is the bilinear term, where one magnon is
converted into one phonon or vice versa. Other terms are henceforth neglected, which
is a good approximation if the spin quantum number S is large and the fluctuations are
small.

To bilinear order, Ĥslc [Eq. (2.112)] amounts to

Ĥ(2)
mp =

√
h̄

2

∑
pqr

∑
αβγ

∑
k

√
S2
pSqzpα

Iαβγ
pqr (k)e+qβ b̂

†
qk

α̂rγk + α̂†
rγ(−k)√

Mrωrγ

+ h.c.

, (2.113)

where

Iαβγ
pqr (k) =

∑
uv

e−ik·(Rv+bq−br)Iαβγpqr (Ru,Rv) (2.114)

is the Fourier transform of the spin-lattice coupling tensor [Eq. (2.112)], zpα and e+pα
are the α components of the vectors zp and e+p defined in Section 2.3.3 as the local spin
coordinate system, and h.c. refers to the Hermitian conjugate.

Because the displacement operator is a linear combination of creation and annihilation
operators, the number of bosons is no longer a conserved quantity (if Ĥ(2)

mp is nonzero).
As a consequence, the magnon-phonon Nambu spinor χ̂†

k =
(
ψ̂

†
k φ̂

†
k

)
encompassing

both magnon ψ̂†
k [defined in Eq. (2.90)] and phonon degrees of freedoms φ̂†

k [defined in
Eq. (2.60)] are necessary to represent the Bogoliubov-de Gennes Hamiltonian of the
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spin-lattice coupling,

Ĥ(2)
mp =

1

2

∑
k

χ̂†
kHmp,kχ̂k, (2.115a)

Hmp,k =

(
02Nm×2Nm Hmp,k
H†

mp,k 02Np×2Np

)
, (2.115b)

Hmp,k =

(
Amp,k Amp,k
A∗

mp,−k A∗
mp,−k

)
, (2.115c)

(Amp,k)ij =
∑
h

∑
αβ

√
h̄S2

hSi
Mjωj

Iαβ
hij(k)zhαe

+
iβ, (2.115d)

where Hmp,k ∈ C2Nmp×2Nmp , Hmp,k ∈ C2Nm×2Np , Amp,k ∈ CNm×Np with the abbrevi-
ation Nmp = Nm + Np. In Eq. (2.115d), I introduced a multi-index notation for the
phonon sublattice r and displacement components γ that are subsumed in the joint index
j, for which the details of the mapping do not matter. The index h runs over all magnetic
sublattices.

The matrix representation Hk of the full Hamiltonian Ĥ = Ĥs + Ĥp + Ĥslc would
be obtained by replacing 02Nm×2Nm by Hm,k [cf. Eq. (2.93)] and 02Np×2Np by Hp,k
[cf. Eq. (2.61)] in the expression of Hmp,k [cf. Eq. (2.115b)]. Without spin-lattice coupling
(Hmp,k = 02Nmp×2Nmp), Hk would be block diagonal and the eigenvalues and eigenvectors
would be identical to the separate solutions of Ĥs and Ĥp. In other words, magnons and
phonons would exist independently of each other. In the presence of spin-lattice coupling,
however, one would need to perform a Bogoliubov transformation diagonalizing the full
matrix Hk by applying the same formalism as outlined in Section 2.3.4.24 Then, the new
eigenmodes would be superpositions of magnons and phonons – magnon polarons. To
gain a better understanding of their formation and their properties, a simple example is
given below.

Elastic Ferromagnetic Chain

To exemplify the formation of magnon polarons, I choose a one-dimensional system, whose
Hamiltonian

Ĥ = Ĥs + Ĥp + Ĥslc (2.116)

comprises ferromagnetic Heisenberg exchange interaction

Ĥs =
J

h̄2

∑
i

Ŝi · Ŝi+1, (2.117)

24It should be noted that the chosen arrangement of the creation and annihilation operators for magnons
and phonons in the Nambu spinors χ̂†

k and χ̂k entails a changed bosonic metric. It can be beneficial
to perform a unitary transformation so that the creation operators of both phonons and magnons
precede the annihilation operators in χ̂†

k (and vice versa for χ̂k). Then, the bosonic metric remains
unchanged (except in the number of bands).
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Figure 2.5: Magnon polaron spectrum and selected normal modes. (a) Magnon polaron
band structure of one-dimensional elastic Heisenberg ferromagnet with two branches.
Red/blue/gray color represents magnon-like/phonon-like/hybrid character of quasiparti-
cles (see color bar). Inset: zoom into the area of the avoided crossing. Thin black lines
indicate bands without spin-lattice coupling. (b–e) Snapshots of magnetoelastic waves of
selected magnon polaron modes [cf. panel (a)]. In (d) [(e)], the elastic wave has a phase
shift of 90° [−90°] with respect to the spin wave. The parameters have been specified as
h̄ = 1, J = −1, S = 1,M = 1, C = 2, κmc = 0.2. The magnon branch has been shifted by
0.1JS to avoid a ground state instability in the presence of spin-lattice coupling.

(J < 0), harmonic lattice dynamics

Ĥp =
∑
i

P̂ 2
i

2M
+
C

4

∑
i

(ûi − ûi+1)
2 (2.118)

along one dimension, for instance the transversal one, and spin-lattice coupling Ĥslc.
Disregarding Ĥslc for the moment, the results for Ĥs in Section 2.3.3 can be carried over,
where it was approximated by

Ĥm = JS2Nuc +
∑
k

εm,k b̂
†
k b̂k, εm,k = −4JS sin2 ka

2
. (2.96 revisited)

Concerning Ĥp, the results of Section 2.2.2 can be carried over by setting M =M1 =M2.
Because the translational periodicity changes from 2a to a, the first Brillouin zone is
doubled and the acoustic and optical branch can be merged into one branch εp,k, which
for |k| ≤ π

2a describes the energies of the acoustic and for π
2a ≤ |k| ≤ π

a those of the optical
branch. Since the energy approaches zero for k → 0 and disperses linearly in the vicinity
of k = 0, the former two branches are unified by a single acoustic branch. By quantizing
lattice waves by means of the transformation in Eq. (2.53b), the phonon Hamiltonian

Ĥp =
∑
k

εp,k

(
α̂†
kα̂k +

1

2

)
, εp,k = h̄

√
2C

M

∣∣∣∣sin ka2
∣∣∣∣ (2.119)

is obtained.
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It is now instructive to study the effect of Ĥslc perturbatively. The obvious choice
would be to study the effect of exchange magnetostriction

Ĥslc =
κJ

h̄2

∑
i

Ŝi · Ŝi+1(ûi − ûi+1), (2.120)

where κJ = dJ(R)
dR

∣∣∣
a
. However, the scalar product Ŝi · Ŝi+1 does only produce products

of b̂ and b̂† that are even so that the leading order of Ĥslc would encompass terms of the
form b̂†b̂(α̂+ α̂†), which are not bilinear. Exchange magnetostriction gives rise to bilinear
terms only in noncollinear magnets [90].

Instead, consider the magnetocrystalline spin-lattice coupling

Ĥslc =
κmc

h̄2

∑
i

∑
ζ=±1

ζŜz
i Ŝ

x
i (ûi − ûi+ζ), (2.121)

in which the z and x components of the local spins are coupled. Indeed, this gives rise
to a bilinear magnon-phonon coupling, which reads

Ĥ(2)
mp = ih̄κmc

√
S3

M

∑
k

sin ka
√
εp,k

(
b̂k + b̂†−k

)(
α̂−k + α̂†

k

)
. (2.122)

Usually the spin-lattice coupling is weak compared to pure spin or elastic interactions.
Therefore, to good approximation, one obtains the renormalized energies and wave func-
tions with time-independent perturbation theory. Let |m, k〉 and |p, k〉 be nondegenerate
and unperturbed magnon and phonon states with wave vector k, respectively. To first
order, their energy is renormalized as [115]

∆ε
(1)
m,k = 〈m, k|Ĥ(2)

mp|m, k〉 = 0 = 〈p, k|Ĥ(2)
mp|p, k〉 = ∆ε

(1)
p,k. (2.123)

The reason is that Ĥ(2)
mp converts a phonon into a magnon and vice versa. Since phonon

and magnon states are orthogonal, their overlap and, with it, the first-order energy cor-
rections ∆ε(1)m,k and ∆ε

(1)
p,k vanish.

To second order, the correction of the magnon, phonon energy is given as [115]

∆ε
(2)
m,k = −∆ε(2)p,k =

∣∣∣ 〈m, k|Ĥ(2)
mp|p, k〉

∣∣∣2
εm,k − εp,k

, (2.124)

where the matrix element evaluates to ηk := 〈m, k|Ĥ(2)
mp|p, k〉 = −iκmch̄

√
S3

M
sin ka√
εp,k

.
In case of a degeneracy, the perturbation theory diverges. Then, one can approximate

the energies by neglecting the pairing terms in Ĥ(2)
mp and diagonalize the Hamilton matrix

Hk =

(
εm,k ηk
η∗k εp,k

)
(2.125)

in the basis {|m, k〉 , |p, k〉}. The corrected energies are

ε1/2k =
εm,k + εp,k

2
∓

√(
εm,k − εp,k

2

)2

+ |ηk|2 (2.126)

41



2 Quantum Theory of Magnetic Solids

and the eigenvectors for ηk 6= 0 are

v1k ∝
(
ε1k − εp,k η∗k

)ᵀ
, v2k ∝

(
ηk ε2k − εm,k

)ᵀ (2.127)

up to a normalization factor.
Consider the case that the magnon and phonon bands cross at some k, i.e., εm,k = εp,k.

Due to spin-lattice coupling, the degeneracies are lifted, ε1/2k = εm,k ∓ |ηk|, and the new
eigenstates

|mp, 1, k〉 = 1√
2

[
|m, k〉 − e−i arg ηk |p, k〉

]
, (2.128a)

|mp, 2, k〉 = 1√
2

[
|m, k〉+ e−i arg ηk |p, k〉

]
(2.128b)

are uniform superpositions of magnon and phonon modes. Hence, magnons and phonons
cease to exist in the presence of spin-lattice coupling and, instead, merge into magnon
polarons that account for the coupled spin and lattice dynamics. An excitation of the
lattice entails an excitation of spins and vice versa. Far away from such a degeneracy,
the magnon polaron wave functions exhibit either strong magnon or phonon character so
that the notion of magnons and phonons remains approximately intact.

These findings are supported by the numerical calculations: At the edge of the first
Brillouin zone, where the energies of magnons and phonons are far apart (for the
chosen parameters), the renormalization by spin-lattice coupling is minute [Fig. 2.5(a)].
The wave functions either correspond to that of a spin wave [Fig. 2.5(b)] or to that of
an elastic wave [Fig. 2.5(c)]. At the crossing between magnon and phonon bands [black
line in Fig. 2.5(a)], a gap is opened by spin-lattice coupling. The wave functions of the
hybridized states comprise spin and elastic excitations with equal amplitudes and phase
differences of ±90° [Fig. 2.5(d, e)].

In Fig. 2.5(a), the magnon branch has been shifted by 0.1JS mimicking an easy-axis
anisotropy or a magnetic field. Both kinds of interactions stabilize the ground state and
install a spin-wave excitation gap. This is necessary because the hybridization shifts
the low-energy modes to even lower energies so that the energies would become negative
otherwise, rendering Hk indefinite. Equivalently, the plotted eigenvalues of σ3Hk would
acquire an imaginary part close to k = 0. The (real part of the) magnon band close
to k = 0 would be deformed from a parabolic to a flat dispersion by the spin-lattice
coupling. These indications signal a ground state instability, which can be avoided by an
easy-axis anisotropy or a magnetic field as long as the hybridization gap is sufficiently
small compared to the spin-wave gap. For the above arguments, a stable ferromagnetic
ground state was presumed.
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CHAPTER 3

BAND TOPOLOGY OF BOSONIC
QUASIPARTICLES

3.1 Adiabatic Time Evolution
The Born-Oppenheimer approximation delineated in Section 2.1 resulted in an elec-
tronic Hamiltonian that parametrically depends on the nuclear positions. Since the dy-
namics of the electrons is much faster than that of the nuclei, the electronic wave function
instantaneously follows the time evolution of the nuclear positions without any electronic
transitions (within the approximation). There, a term was arising in the electronic wave
function, which is discussed in a more general framework here.

Imagine that a system can be described by a time-independent Hamiltonian Ĥ(X)
and is prepared in a stationary state, i.e., in an eigenstate of the Hamiltonian. Taking
the dynamic phase factor into account, the stationary state is a solution of the time-
dependent Schrödinger equation so that the system remains in this state (hence the
name stationary). What happens if the system does depend on an external parameter X
that is slowly varied? Does the system remain in the respective eigenstate of Ĥ(X(t)) for
each time t? These questions are answered by the adiabatic theorem, which is presented
in the following.

3.1.1 Derivation of the Adiabatic Theorem
Michael Victor Berry considered these questions in his 1983 paper, where he show-
cased how the adiabatic evolution of a parameter-dependent system alters the wave func-
tion [116]. Here, I follow his approach as well as Refs. [41, 117].

First, for any value X of the parameter, one can solve the eigenvalue equation of the
Hamiltonian

Ĥ(X) |n(X)〉 = En(X) |n(X)〉 , (3.1)

which, however, does not solve the time-dependent Schrödinger equation

ih̄∂ |ψ(t)〉
∂t

= Ĥ(X(t)) |ψ(t)〉 , (3.2)

where the time evolution of X is implied. This partial differential equation can be
reformulated as a system of ordinary differential equations by expanding |ψ〉 in terms of
eigenfunctions:

|ψ(t)〉 =
∑
n

cn(t) |n(X(t))〉 . (3.3)

This is possible because the eigenfunctions |n(X)〉 span the entire Hilbert space for
each X(t). Note that for each t, |ψ〉 is represented in a different basis, which is assumed
to be discrete.
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3 Band Topology of Bosonic Quasiparticles

Plugging Eq. (3.3) into Eq. (3.2), one obtains the differential equation

∂cm(t)

∂t
= − i

h̄
Em(X(t))cm(t)−

∑
n

∂X(t)

∂t
· 〈m(X)|∇Xn(X)〉 cn(t) (3.4)

under the condition that the eigenfunctions |n(X)〉 have a locally differentiable gauge
with respect to the parameter X. This would not be necessary because they are only
required to fulfill the eigenvalue problem Eq. (3.1). This is a weak requirement because the
eigenfunction has a U(1) symmetry. The gauge transformation |n(X)〉 → eiϕ(X) |n(X)〉
maps a normalized eigenfunction to an equivalent normalized eigenfunction of Ĥ(X). It
is a general feature of quantum mechanics that the global phase of the wave function
is not observable. Once X is treated as time dependent, it does no longer correspond
to a global (constant) phase because the time-dependent wave function, as a solution of
Eq. (3.2), has to be analytic in time. In order for the expansion coefficients cm(t) to be
analytic, a locally analytic gauge has to be chosen.

In Eq. (3.4), it is the last term on the right-hand side that mutually couples the ordinary
differential equations. So far, no approximations have been made. In the following, I argue
that the terms1

〈m|∇Xn〉 =
〈m|∇XĤ(X)|n〉
En(X)− Em(X)

(3.5)

for m 6= n are negligible if the corresponding energies differences |Em(X)− En(X)| are
large compared to the dynamics of X(t). In that case, the adiabatic dynamics of X
is insufficient to cause transitions between different states n and m. Thus, the sum in
Eq. (3.4) can be restricted to n = m so that one obtains a decoupled system of differential
equations, whose solution is

cm(t) = e−
i
h̄

∫ t
t′dτEm(X(τ))eiγm(C), (3.6)

where t′ is chosen so that cm(t′) = 1 without loss of generality. The first factor in the
right-hand side is the dynamical phase that is reminiscent of the stationary problem,
where the time dependence only corresponds to an oscillation with an angular frequency
Em(X)/h̄. The second factor is the so-called Berry phase

γm(C) =
∫
C

dX ·Am(X), Am(X) = i 〈m(X)|∇Xm(X)〉 , (3.7)

which is obtained by a line integral of the Berry connection Am over the contour C in
parameter space traced by X(t).

By decoupling of the system of differential equations, the adiabatic theorem has been
proven. It states that the time evolution of the parameter does not cause interband
transitions in the time-dependent wave function |ψ(t)〉. Prepared in a stationary state
|m(X)〉, the system always remains in its respective stationary state at each point in
time, while X(t) follows a path in parameter space. The wave function can be written
as |ψ(t)〉 = |m(X(t))〉 except for two phase factors. First, the wave function picks up
the dynamical phase even if the parameter is not changed, in which case it only is a

1This identity is proven below.
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3.1 Adiabatic Time Evolution

harmonic oscillation in time. Second, there is a geometric phase that does not depend
on the dynamics, but only on the geometry of the parameter space. It is similar to the
parallel transport of a tangential vector along a loop on a curved surface like a sphere.
Upon returning to its initial position, the vector after the transport has rotated within the
tangential space by the solid angle of the surface on the sphere enclosed by the loop [118],
while parallel transport on a plane does not cause a change in its orientation. As an
example, the Foucault pendulum changes its direction after one full rotation of the
earth. Parallel transport is an example of anholonomy, which designates the phenomenon,
where some variables do not assume their original values when other variables are evolved
on a loop [119].

The conditions used to derive the adiabatic theorem is that the spectrum is nonde-
generate within the parameter subspace of interest, and that the parameter is changed
adiabatically, i.e., h̄

∣∣∣〈m(X(t))
∣∣∣∂n(X(t))

∂t

〉∣∣∣� |Em(X)− En(X)| [120].

3.1.2 Observability of the Geometric Phase
At this point, the question arises, whether the geometric phase is observable. First,
one needs to ensure that the phase is indeed real. This can be readily seen from the
normalization of the wave function 〈m(X)|m(X)〉 = 1. By taking the derivative with
respect to X, one shows 〈m|∇Xm〉 = −〈∇Xm|m〉 = −〈m|∇Xm〉∗, hence Am and γm
are real. Second, the behavior under gauge transformations has to be considered as any
physical observable needs to respect gauge invariance. Let |m′(X)〉 = eiϕ(X) |m(X)〉 be
the stationary wave function in a different gauge and ϕ(X) a differentiable gauge phase.
Then, the Berry connection in the new gauge is Am′ = Am −∇Xϕ. Thus, the Berry
connection and generally even the Berry phase are gauge dependent. However, if C
corresponds to a closed path in parameter space, the integral over ∇Xϕ vanishes and
γm(C) is observable. Note that in general the Berry phase is nonintegrable because the
Berry connection cannot be written as a gradient of a scalar field so that γm(C) 6= 2πl
with l ∈ Z for a closed contour C.

Another way to construct a gauge-independent quantity relies on Stokes’ theorem.
From now on, I assume that X ∈ R3. If the contour C = ∂S is closed, it demarcates a
surface S in parameter space so that the integral Eq. (3.7) can be rewritten as

γm(S) =
∫
S

dSX ·Ωm(X), (3.8)

where Ωm(X) = ∇X × Am(X) is the Berry curvature. Because it is defined as the
curl of the Berry connection, which is determined up to a gradient of a gauge phase, the
Berry curvature is gauge invariant. There is a close analogy to electrodynamics, where
the vector potential, which is analogous to the Berry connection, is a gauge dependent
quantity and the magnetic field, defined as the curl of the vector potential, is not modified
under gauge transformations similar to the Berry curvature.

3.1.3 Alternative Expressions for Geometric Quantities
The Berry curvature is an important quantity for transversal transport coefficients as
corroborated in Chapter 4. It can be difficult to compute |∇Xm〉 because usually the
eigenstates are not known analytically so that the derivative has to be approximated
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3 Band Topology of Bosonic Quasiparticles

by finite differences numerically. On the other hand, the Hamiltonian is often known
analytically, and its derivative can easily be obtained.

It is possible to compute the Berry curvature with only the matrix elements of
∇XĤ(X). To do so, one takes the derivative of Eq. (3.1) on both sides:[

∇XĤ
]
|n〉+ Ĥ |∇Xn〉 = [∇XEn] |n〉+ En |∇Xn〉 . (3.9)

Since the stationary states are orthogonal to each other, one obtains

〈m|∇XĤ|n〉 − δmn∇XEn = [En − Em] 〈m|∇Xn〉 (3.10)

after scalar multiplication with |m〉. For m = n, the right-hand side vanishes and, thus,
one cannot express the Berry connection as the matrix elements of ∇XĤ. This is a
reflection of the gauge dependence of the Berry connection, which is incompatible with
any gauge-invariant quantity. On the other hand, the Berry curvature

Ωn = i∇X × 〈n|∇Xn〉 = i 〈∇Xn|×|∇Xn〉 = i
∑
m

〈∇Xn|m〉 × 〈m|∇Xn〉 (3.11)

is a gauge-invariant quantity. For the last identity the completeness relation has been
inserted. For the completeness, the sum for m runs over all states including n. However,
because 〈n|∇Xn〉 = −〈∇Xn|n〉, the cross product vanishes for m = n so that the sum
may be written to exclude n. By inserting Eq. (3.10) into Eq. (3.11), the Berry curvature

Ωn(X) = i
∑
m

m 6=n

〈n(X)|∇XĤ(X)|m(X)〉 × 〈m(X)|∇XĤ(X)|n(X)〉
[En(X)− Em(X)]2

(3.12)

is expressed via the matrix elements of ∇XĤ. The summand in Eq. (3.12) is antisym-
metric under exchange of quantum numbers m ↔ n. Using this observation, one shows
that the Berry curvatures of all states mutually cancel:∑

n

Ωn(X) = 0. (3.13)

3.2 Geometric Concepts in Band Structure Theory
The general arguments of the previous sections did not specify the nature of the parameter
that the Hamiltonian depends on. Consequently, the Berry curvature is not a priori a
fixed quantity, but comes in different forms. Reverting to the Born-Oppenheimer
approximation of Section 2.1, the key ingredient for the decoupling of the electronic and
nuclear dynamics is the slowness of the latter compared to the former. For the electrons,
the motion of the nuclei can be described by treating the nuclear positions as adiabatically
evolving parameters in the electronic Hamiltonian. Hence, a close trajectory in the high-
dimensional parameter space of nuclear coordinates encompasses a Berry phase, which
has been implicitly identified in Eq. (2.13), where the derivative of the electronic wave
function with respect to the nuclear coordinates is taken. This corresponds to the general
definition of the Berry connection [Eq. (3.7)].
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Here, another kind of Berry phase, connection, and curvature is studied, which arises
from the single-electron wave functions in a periodic potential. Based on the structure of
the solution of the problem, a new parameter-dependent Hamiltonian is derived, which
is based on a quantum number. This situation is different from the Born-Oppenheimer
approximation because a quantum number has no time evolution in equilibrium. However,
it can be anticipated that a perturbation of the equilibrium with a Hamiltonian breaking
the essential symmetries invalidates the quantum number and the nonequilibrium state
may be described by a time-dependent quantum number, which may seem paradox at
the beginning, but turns out to be useful in linear response theory. I will corroborate this
aspect more in the subsequent Section 3.2.1.

Lattice-periodic Hamiltonians are not restricted to electrons, but also comprise spin
lattices. Magnon, phonon, and magnon polaron Hamiltonians, for instance, abide by
translational invariance as well and may be subject to external perturbations breaking
this symmetry and causing to a time evolution of certain quantum numbers. The formal
definitions are similar to those for electrons, but special attention has to be paid to the
nonconserving nature of (bosonic) Bogoliubov-de Gennes Hamiltonians. Since these
kinds of Hamiltonians are of particular relevance for this work, a separate section is
dedicated to them (cf. Section 3.2.2).

3.2.1 Application to Bloch Electrons
In 1989, Joshua Zak published a paper that highlights the role of the Berry phase
in the band theory of solids when subjected to an electric field [121]. Here, I focus
mostly on the application of the previously presented general theory (Section 3.1) similar
to Refs. [120–122] and mention the connection to the nonequilibrium physics, which is
extensively discussed in Chapter 4.

The Hamiltonian under consideration

Ĥψ(r) = Eψ(r), Ĥ =
p̂2

2m
+ U(r) (3.14)

describes a single electron in a periodic potential U(r +R) = U(r), where R = n1a1 +
n2a2+n3a3 is an arbitrary lattice vector represented as a linear combination of primitive
lattice vectors ai with integer coefficients ni ∈ Z (i = 1, 2, 3). This Hamiltonian appears
in the description of electrons in the solids after the Born-Oppenheimer approximation,
if the electron-electron interactions are treated effectively.2 Due to the discrete transla-
tional invariance of U(r), the translation operators T̂R that translate the wave function
T̂Rψ(r) = ψ(r + R) by a lattice vector commute with the Hamiltonian and mutually
commute for different lattice vectors. Thus, both the Hamiltonian and the set of all
lattice translation operators must possess a common eigensystem.

The eigenvalue problem of the unitary translation operators reads

T̂Rψk(r) = ψk(r +R) = eik·Rψk(r), (3.15)

where the Bloch vector k ∈ R3 comprises the quantum numbers that are related to
the complex eigenvalues of the translation operators. The Bloch vector is defined as

2The many-electron problem can be (approximately) transformed onto a single-electron Hamiltonian
by neglecting the electron-electron interactions, by the Hartree approximation [123–125], or by
considering the Kohn-Sham equation [126].
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a continuous quantum number, which is only defined modulo reciprocal lattice vectors
G = n1a

∗
1 + n2a

∗
2 + n3a

∗
3, where ai · a∗j = 2πδij , because the eigenfunctions of all lattice

translation operators exhibit the same eigenvalue for k and k +G for any ni ∈ Z (i =
1, 2, 3).

As a consequence of Eq. (3.15), the wave functions exhibit the structure of Bloch
functions

ψnk(r) = eik·runk(r), (3.16)

where unk(r +R) = unk(r) is a cell-periodic wave function. This is the famous Bloch
theorem [127]. Since the common eigenfunctions of the translation operators and the
Hamiltonian could have the same translation eigenvalues while being orthogonal, it is
expedient to introduce an additional quantum number n, which is the band index.

Now, the Hamiltonian for the periodic part of the Bloch function reads

Ĥk := e−ik·rĤeik·r =
(p̂+ h̄k)2

2m
+ U(r), (3.17)

so that the Schrödinger equation becomes

Ĥkunk(r) = Enkunk(r). (3.18)

At this point, the Bloch vector k has entered the Hamiltonian Ĥk as a parameter. The
original Hamiltonian respects the translational symmetry that conserves k so that no
Berry phase arises. The situation changes if a perturbation emerges which causes an
adiabatic dynamics of k. Such a perturbation has to be described by a Hamiltonian
that breaks the discrete translational symmetry, i.e., it must not commute with T̂R. The
corresponding momentum-space Berry connection

An(k) = i 〈unk|∇kunk〉 (3.19)

and the Berry curvature

Ωn(k) = i 〈∇kunk|×|∇kunk〉 (3.20)

are defined with respect to unk. Since Ωn only depends on the wave function unk and not
on its gauge, it is an intrinsic property of the band structure. Alternatively, the Berry
curvature

Ωn(k) = i 〈∇kψnk|×|∇kψnk〉+∇k × 〈ψnk|r|ψnk〉 (3.21)

recast in terms of the Bloch function [Eq. (3.16)] encompasses both the gradient (first
term on right-hand side) and the dipole contributions (second term).

The existence and the structure of the Berry curvature depends on the symmetry
of the system. Because the Berry curvature is an axial vector, it is symmetric in cen-
trosymmetric systems: Ωn(k) = Ωn(−k). On the other hand, the Berry curvature
is odd in time-reversal symmetric systems: Ωn(k) = −Ωn(−k). In other words, if the
material is nonmagnetic or does not have an external field, Ωn(k) is antisymmetric. Both
symmetries combined would lead to a cancelation of the Berry curvature.
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The importance of translational symmetry breaking is evident in the semiclassical de-
scription of electrons. Consider an electron wave packet localized around rc with mean
Bloch vector kc constructed of Bloch functions of band n. In the presence of electric
or magnetic fields, both position and Bloch vector follow the dynamics [128, 129]

∂rc
∂t

=
1

h̄
∇kEnk − ∂kc

∂t
×Ωn(k), (3.22a)

∂kc
∂t

= − e

h̄

(
E +

∂rc
∂t

×B
)
. (3.22b)

Obviously, in the presence of electric or magnetic fields, the Bloch vector is no conserved
quantity anymore [cf. Eq. (3.22b)] and the wave function picks up the momentum-space
Berry phase. As a result, the real-space motion of the wave packet is no longer exclu-
sively determined by the group velocity [first term on right-hand side of Eq. (3.22a)], but
co-affected by the anomalous velocity [second term in Eq. (3.22a)], which is perpendicular
to the Berry curvature and the electric field.

In Section 4.3, I show that the influence of the temperature gradient indeed introduces
a term that breaks the momentum conservation so that the momentum-space Berry
curvature plays a pivotal role in the thermally induced transverse transport.

3.2.2 Application to Bosonic Bogoliubov-de Gennes Hamiltonians

Having introduced the momentum-space Berry curvature in Section 3.2.1, it remains to
transfer the theory to bosons like magnons or magnon polarons. Compared to the previous
section, the wave function is not explicit, but hidden in the creation and annihilation
operators. Furthermore, the Hamiltonian might not be particle number conserving, which
introduces artificial additional bands and changes the normalization of the eigenvectors.
Ref. [15, 130, 131] present different, but equivalent expressions for the Berry curvature
for magnons, which I cover below. Since the phonons have been quantized as bosons in
a local basis similar to magnons in the second method delineated in Section 2.2.3, they
can be regarded as “additional spin sublattices” so that the same equations are valid in
the presence of phonon bands.3

I start with a general bosonic Hamiltonian in reciprocal space

Ĥ =
1

2

∑
k

ψ̂
†
kHkψ̂k, (3.23)

where the Nambu spinors

ψ̂
†
k =

(
ĉ†1k · · · ĉ†Nk ĉ1(−k) · · · ĉN (−k)

)
(3.24)

comprise N independent operators corresponding to the degrees of freedom within a unit
cell (e.g., sublattices). The operators depend on the Bloch vector as a result of the

3In the bosonic basis, the information about the physical interpretation of the quantized excitation is
no longer relevant, but hidden in the particular mapping that was used to formulate the bosonic
Hamiltonian in the first place. This includes spin-to-boson mappings like the Holstein-Primakoff
transformation (cf. Section 2.3.3) or the phonon quantization (cf. Section 2.2.3). Hence, phonon and
magnons (as well as other bosonic quasiparticles) can be treated on equal footing.
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3 Band Topology of Bosonic Quasiparticles

Fourier transformation

ĉik =
1√
Nuc

∑
m

e−ik·Rim ĉim, ĉim =
1√
Nuc

∑
k

eik·Rim ĉik, (3.25a)

ĉ†ik =
1√
Nuc

∑
m

eik·Rim ĉ†im, ĉ†im =
1√
Nuc

∑
k

e−ik·Rim ĉ†ik. (3.25b)

Here, the positions Rim = Rm + bi include both unit cell (m) and sublattice (i) posi-
tion vectors. Because I include the sublattice position vectors, Hk may not be periodic
in reciprocal space if multiple sites belong to one unit cell. This is consistent with the
transformed Hamiltonian for the cell-periodic wave function that might also not be trans-
lationally invariant [cf. Eq. (3.17)]. Because a translation k → k + G by a reciprocal
lattice vector G results only in a unitary transformation of the matrix Hk, the eigenval-
ues εnk = εn,k+G are periodic. Excluding the sublattice vector in the phase factors in
Eq. (3.25) would result in a Hamiltonian and eigenvectors inappropriate for computing
the Berry curvature using the expressions given below [132].

The eigenmodes are obtained by the Bogoliubov transformation

Ψ̂k = T−1
k ψ̂k =

(
γ̂1k · · · γ̂Nk γ̂†1(−k) · · · γ̂†N (−k)

)ᵀ
(3.26)

comprising the creation and annihilation operators of the eigenmodes with band indices
n and Bloch vector k corresponding to the energies εnk (n = 1, . . . , 2N ), where εnk =
εn+N ,−k for n = 1, . . . ,N . The details of the Bogoliubov transformation are explained
in Section 2.3.4.

For electrons, it is possible to transfer the expression Eq. (3.21) into the language of
second quantization by identifying ψnk with γ̂†nk |0〉, where |0〉 is the ground state of the
system. For bosons, the bosonic metric σ3 needs to be included in the definition of the
scalar product because the eigenvectors given by T−1

k are not normalized in general. One
finds for component λ of the bosonic Berry curvature [130]

Ωλ,n(k) = i
∑
µν

ελµν

(
σ3
∂T †

k

∂kµ
σ3
∂T k

∂kν

)
nn

. (3.27)

The vector product is written in component notation using the Levi-Civita symbol
ελµν . Without σ3, one would obtain the result for electronic momentum space Berry
curvature. Because of the particle-hole symmetry, which relates the energies and the
wave functions of bands with indices n ≤ N and n > N , the Berry curvature satisfies
Ωn(k) = −Ωn+N (−k) for n ≤ N . As for electrons, the sum of the Berry curvature
over all bands vanishes. This, however, includes the “hole” bands (n > N ) so that the
sum over the “particle” bands (n ≤ N ) does not vanish, but instead obeys

N∑
n=1

Ωn(k) =

N∑
n=1

Ωn(−k). (3.28)

Hence, if the system is inversion symmetric, which implies a symmetric Berry curvature,
there is no additional constraint.
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3.3 Chern Insulators and Chiral Edge States

Figure 3.1: Topological chiral edge states and bulk-boundary correspondence. (a) Two-
dimensional system hosting edge states. Left and right movers propagate in opposite
directions. (b) Edge states at interfaces between vacuum and two Chern insulators with
different Chern numbers C. The number and the chirality of the edge states for a given
interface depends on the change of the Chern numbers ∆C across the interface.

Using Eqs. (2.100) and (2.102), one proofs the identity

(
T †

kσ3
∂T k

∂kµ

)
mn

=

(
T †

k
∂Hk
∂kµ

T k

)
mn

(σ3Ek)mm − (σ3Ek)nn
(3.29)

for m 6= n that allows to rewrite the Berry curvature as [131]

Ωλ,m(k) = iελµν
2N∑

m,n=1
m 6=n

(
σ3T

†
k
∂Hk
∂kµ

T k

)
mn

(
σ3T

†
k
∂Hk
∂kν

T k

)
nm

[(σ3Ek)mm − (σ3Ek)nn]
2 . (3.30)

Here, Ek is the diagonal matrix with εmk as its entries. This formulation of the Berry
curvature is useful for calculations as the Hamilton matrixHk can be analytically derived.
In this work, its entries have been explicitly derived for phonons (cf. Section 2.2.3),
magnons (cf. Section 2.3.3), and magnon polarons (cf. Section 2.4.2). Therefore, the
calculation of the Berry curvature for k only requires (numerical) diagonalization locally,
instead of approximating the derivatives by finite differences.

Alternatively, one may compute the Berry curvature based on the overlap of the wave
functions at nearby wave vectors as described in Ref. [133].

3.3 Chern Insulators and Chiral Edge States
The Berry curvature that I introduced in the previous sections plays an important role
in the field of band topology, in particular for so-called Chern insulators. In the field
of topology, materials are classified by topological invariants, which do not depend on
details of the system and are robust under certain conditions. For the Chern insulator,
the corresponding topological invariant is the Chern number4 [7, 14, 15, 117, 134]

Cn = − 1

2π

∫
d2kΩn(k), (3.31)

4The sign of the Chern numbers is not consistent throughout the literature. Some authors define it
with the reversed sign, e.g., Refs. [2, 14–16, 120, 130].
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3 Band Topology of Bosonic Quasiparticles

where the system is two-dimensional and Ωn(k) is the z component of Berry curvature if
the system is translationally invariant in the xy plane.5 The Chern number is an integer
number that is protected by the splitting of the n-th band to the remaining bands. In
order for it to change, the band gap must be closed and reopened again. The band gap
provides a topological protection of the Chern number against small perturbations [117].

If one now places two systems with different Chern numbers next to each other, the
Chern number has to interpolate from one to the other. Because it is integer-valued, it
cannot smoothly vary across the interface and the band gap has to close. As a result,
edge states appear that bridge the gap between the bulk bands, allowing the Chern
number to change [2]. Two types of edge states exist that are distinguished by their
propagation direction. Left movers circle counterclockwise, while right movers revolve
clockwise around the sample (cf. Fig. 3.1) [70]. Deformations at the edge may alter the
wave function of these edge states, but they cannot be destroyed as long as there is a bulk
band gap. The edge states also occur in systems with a nonzero Chern number that have
a boundary, i.e., an interface to the vacuum. Conversely, if the Chern numbers vanish,
there are not necessarily edge states.6 In an electronic system with a Fermi energy in
a bulk band gap and an interface to the vacuum, the Chern number is related to the
number of left- and right-moving edge states as [3, 70]

C :=
∑
n∈occ

Cn = NL −NR. (3.32)

NL (NR) is the number of left (right) movers and the sum runs over all occupied bands.
This is the bulk-boundary correspondence because it relates a bulk property (left-hand
side) to an edge property (right-hand side). If C 6= 0, there is a preponderance of left
over right movers or vice versa. In this case, the edge states are said to be chiral, and the
system is topologically nontrivial. If one considers the interface between two insulators,
one would need to replace the left-hand side of Eq. (3.32) by the difference ∆C of C of
both insulators on either side of the interface [3]. Hence, the number of chiral edge states
depends on “how much” the topological invariants change from one to the other system
that form the interface [cf. Fig. 3.1(b)].

Zhang et al. [14] and Shindou et al. [15] were the first to predict that Chern insulators
also exist for magnons, where they are commonly referred to as “topological magnon
insulators.” Although magnons do not feature a Fermi level, their bands may be gapped
and possess nonzero Chern numbers. Then, the gap above the n-th bulk band hosts at
least

NL(n)−NR(n) =
∑
m≤n

Cm (3.33)

edge modes [8, 9]. Contrary to electrons, the edge states of magnons are necessarily
excitations above the ground state. This means that either nonzero temperature or a
preparation of a nonequilibrium state are required to observe them. Since there are

5Note that the components of the Berry curvature parallel to the plane are not defined because a two-
dimensional system displays no translational invariance along the out-of-plane component and, hence,
the Bloch vector does not have an out-of-plane component.

6There may be trivial edge states that are not robust and whose energies depend on the details of the
edges. The topologically protected edge states are guaranteed within the bulk band gap for topological
insulators irrespective of the details.
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3.3 Chern Insulators and Chiral Edge States

Figure 3.2: Magnonic Haldane model. (a) Honeycomb lattice with nearest (δ) and
next-nearest neighbor bonds (δ2). Green arrows indicate counterclockwise next-nearest
neighbor bonds, for which Dij = +D. (b) Bulk magnon spectrum with and without
Dzyaloshinskii-Moriya interaction (see legend). Inset: High-symmetry path in the
first Brillouin zone. (c) Nanoribbon magnon spectrum with zigzag terminations for
D = 0.1|J |. Gray/blue/red color of the bands indicate bulk/bottom edge/top edge modes
(see color bar). (d, e) Amplitudes of two magnon wave functions in a zigzag nanoribbon
localized at the top/bottom edge, respectively [cf. panel (c)]. The color represents the
logarithmically scaled squares of the wave functions’ amplitudes (see color bar). The
ribbon is finite (infinite) in the vertical (horizontal) direction.

no topological chiral edge states below the lowest bulk band, they are higher-energy
excitations. This is one of the main problems that exacerbates their detection as discussed
in the Publications [RN2, RN4] (cf. Sections 6.2.1 and 6.3).

3.3.1 Magnonic Haldane Model

In the following, the theoretical existence of chiral topological magnons is demonstrated
by the magnonic analogue of the famous Haldane model, by which Frederick Duncan
Michael Haldane showcased the existence of a Chern insulating phase in the absence
of an external magnetic field in 1988 [135]. It has been rediscovered for magnons in
Refs. [18, 19].

The magnonic Haldane model describes a ferromagnet on a two-dimensional honey-
comb lattice [cf. Fig. 3.2(a)], which has two sublattices A and B. The localized spins are
oriented along the out-of-plane directions (zi ‖ z, i = A,B) and their interactions are
given by [18, 19, 136]

Ĥs =
J

2h̄2

∑
〈ij〉

Ŝi · Ŝj +
1

2h̄2

∑
〈〈ij〉〉

Dij ·
(
Ŝi × Ŝj

)
. (3.34)

Here, the first term is the Heisenberg exchange interaction J < 0 between the three
nearest neighbors of each spin, and the second one corresponds to the Dzyaloshin-
skii-Moriya interaction between the six next-nearest neighbors per spin. The vec-
tor Dij = −Dji = Dijz with Dij = ±D is oriented perpendicular to the honeycomb
plane and has the same sign for all bonds connecting the sites by counterclockwise loops
[cf. Fig. 3.2(a)]. By employing the Holstein-Primakoff transformation (Section 2.3.3),
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one obtains for the bilinear bosonic Hamiltonian

Ĥ(2)
b = −3JS

∑
i

b̂†i b̂i + JS
∑
〈ij〉

b̂†i b̂j − iS
∑
〈〈ij〉〉

Dij b̂
†
i b̂j . (3.35)

The first term corresponds to an on-site potential for the magnons that shifts their en-
ergy, the second term accounts for real hopping between nearest neighbors, and the last
one describes the complex hopping between second-nearest neighbors. After Fourier
transformation, one obtains a 2× 2 matrix that can be readily diagonalized yielding the
magnon energies [19]

εm,±k = 3JS ± |hk|, hk =

 JS
∑

δ cosk · δ
−JS

∑
δ sink · δ

2DS
∑

δ2
sink · δ2

 , (3.36)

where δ and δ2 denote nearest and three of the six next-nearest neighbor bonds, respec-
tively [cf. Fig. 3.2(a)].7

The magnon band structure features two bands, which touch at the K point if D = 0
forming a Dirac point with linearly dispersing magnon bands [cf. Fig. 3.2(b)]. In the
presence of the Dzyaloshinskii-Moriya interaction (D 6= 0), a gap is opened, which
does not depend on the sign of D.

In a two-level system, the Berry curvature can conveniently be expressed as [19, 137,
138]

Ω±(k) = ∓ hk

2|hk|3
·
(
∂hk

∂kx
× ∂hk

∂ky

)
, (3.37)

which, for D 6= 0, becomes nonzero giving rise to the Chern numbers C± = ∓ signD.
Only if D 6= 0 the Chern numbers are well-defined and their signs are governed by
the sign of D. Alternatively, to reverse the Chern numbers, one could also reverse the
ground state direction. This is a general consequence of the symmetry properties of the
Berry curvature, which leads to a reversal of the Chern numbers under time reversal
(cf. Section 3.2.1).

As a consequence of the formed gap between the topologically nontrivial bulk bands,
in-gap edge modes appear in nanoribbons, which are infinite along one and finite along the
other direction.8 For zigzag terminations and D = 0.1|J |, the in-gap modes connect the
projected gapped Dirac points of the bulk bands [cf. Fig. 3.2(c)]. For other terminations,
the dispersion of the edge modes can be changed, but their existence is guaranteed by
the topological bulk band gap. Here, the gray colored bulk continuum results from the
projection of the two-dimensional band structure [Fig. 3.2(b)] onto the zigzag edges. The
two red and blue colored bands are edge modes at opposite sites of the nanoribbon,
which have opposite group velocities due to the opposite slopes of their bands. Because
C− = +1, the two bands correspond to a left mover as visualized in Fig. 3.1(a) in
agreement with Eq. (3.33).

7The vectors δ2 are defined as those three next-nearest bond vectors connecting sites i and j on sublattice
A so that Dij = +D.

8Alternatively, they are finite in both directions, but periodic boundary conditions are applied to one
direction, whereas the other is subject to open boundary conditions.
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To get an impression of the degree of localization, I plot the squared amplitudes of
the magnon wave functions for the two selected modes highlighted in Fig. 3.2(c) in
Fig. 3.2(d, e) on the zigzag nanoribbon. Here, they are visualized on a logarithmic scale.
Both modes are strongly localized at opposite edges and rapidly decay into the bulk.
Those modes whose energies approach those of the bulk bands have higher localization
lengths, eventually interpolating to the bulk modes that are delocalized (not shown).
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CHAPTER 4

LINEAR RESPONSE THEORY

This thesis is not only concerned with the microscopic description and phenomena that
are predicted by quantum mechanics and topology, but also their observable macroscopic
consequences. A straight-forward example would be the relation between the microscopic
magnetic moment of a magnon, which is related to the macroscopic magnetization of the
sample. These two can be related by the density operator [139]

ρ̂0 =
e−β(Ĥ0−µN̂)

Z
, (4.1)

which, loosely speaking, weights each microstate with a probability amplitude 〈n|ρ̂0|n〉
to obtain a temporal average of an observable by an ensemble average over all possible
microstates |n〉.1 This is known as the ergodic hypothesis, which states that the phase
space trajectory of the microstate samples every point of the phase space during the
observation time so that temporal averages are identical to ensemble averages [139].2
Here, I am working with the grand canonical ensemble, where β = (kBT )

−1 is the ther-
modynamic beta, kB is the Boltzmann constant, T is the temperature, Ĥ0 is a time-
independent Hamiltonian, µ is the chemical potential, N̂ is the particle number operator,
and Z = Tr e−β(Ĥ0−µN̂) is the partition function. More rigorously, if Ô is an operator
that is defined for each microstate, its statistical expectation value is given as [40]〈

Ô
〉
0
:= Tr ρ̂0Ô =

∑
n

e−β(En−µNn)

Z
〈n|Ô|n〉 , (4.2)

with the energy En and the particle number Nn of the microstate n. The second equation
holds for the eigenbasis of Ĥ0.

Assume the total Hamiltonian

Ĥ(t) = Ĥ0 + V̂ (t) (4.3)

is time-dependent and the system is coupled to a heat bath. Now, the question arises
how the associated density operator ρ̂(t) is modified in presence of this perturbation
V̂ (t). Is it sufficient to replace Ĥ0 by Ĥ(t) in Eq. (4.1)? This seems unlikely because
the bath is not expected to follow the temporal oscillations [39]. Then, how can the
thermal expectation values of operators be expressed? These questions are addressed in
Section 4.1 in a general framework. In order to describe diffusion processes, which are
driven by statistical forces like thermal gradients or gradients in the chemical potential,
the Luttinger method is introduced in Section 4.2. With the general theory established,
the last section (Section 4.3) is concerned with the thermal transport.

1This statement is correct as long as the microstate is defined as an eigenstate of both Ĥ0 and N̂ so
that ρ̂0 is diagonal in that basis. Otherwise, it does not merely weight the microstates, but its matrix
elements mix with the matrix element of the observable.

2A relaxed version only assumes that every trajectory except a null set is approaching every point in
phase space with arbitrarily small distance [139].
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4 Linear Response Theory

4.1 General Kubo Formula
Published in 1957, Ryogo Kubo developed a general quantum statistical theory for the
linear response of quantities to external perturbations by linearizing and subsequently
solving the equation of motion for the nonequilibrium density operator ρ̂ [140]. The
quintessential idea, succinctly known as the fluctuation-dissipation theorem, is that the
response of a system to a small external perturbation is related to its equilibrium fluctu-
ations. In equilibrium, all variables fluctuate about their mean with a certain standard
deviation. If there is a deviation from the mean, the system has the tendency to return
to its mean value, otherwise it would not be at equilibrium. According to the fluctuation-
dissipation theorem, the noise of thermodynamic variables in equilibrium and the response
of a system to an external perturbation are caused by a common microscopic origin [141].
This fundamental abstract relation applies to many different contexts, e.g., the relation
between voltage fluctuations and electrical impedance known as the Nyquist relation, or
between Brownian motion and viscous drag of fluids on moving bodies [142]. The mathe-
matical framework presented here follows the original article [140] and the textbooks [39,
40].

Kubo Formula in Time Domain

The nonequilibrium density operator obeys the von Neumann equation

ih̄∂ρ̂(t)
∂t

=
[
Ĥ(t), ρ̂(t)

]
(4.4)

that one solves for ρ̂(t) = ρ̂0 + ρ̂V (t). After linearization, the von Neumann equation
becomes

ih̄∂ρ̂V (t)
∂t

=
[
V̂ (t), ρ̂0

]
+
[
Ĥ0, ρ̂V (t)

]
, (4.5)

whose solution reads

ρ̂V (t) = − i
h̄

e
i
h̄
tĤ0

∫ t

t0

dt′
[
V̂D(t

′), ρ̂0

]
e−

i
h̄
tĤ0 . (4.6)

I have assumed that V̂ (t) vanishes before t0 and is adiabatically switched on at t0. Be-
fore t0, the density matrix is given as ρ̂ = ρ̂0. A new notation for operators has been
introduced. Let X̂(t) be an operator in the Schrödinger picture, then

X̂D(t) = e
i
h̄
Ĥ0tX̂(t)e−

i
h̄
Ĥ0t (4.7)

is the same operator in the Dirac picture.
Having obtained the nonequilibrium density matrix to first order in the perturbation V̂ ,

statistical expectation values of arbitrary operators Ô(t) can be computed as
〈
Ô(t)

〉
=〈

Ô(t)
〉
0
+∆

〈
Ô(t)

〉
with

∆
〈
Ô(t)

〉
=

∫ ∞

t0

dt′CR
ÔV̂

(t, t′)e−η(t−t′), (4.8)
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where the retarded correlation function is integrated over time. For arbitrary operators
X̂ and Ŷ , the retarded correlation function is defined as

CR
X̂Ŷ

(t, t′) = − i
h̄
θ
(
t− t′

) 〈[
X̂D(t), ŶD(t

′)
]〉

0
, (4.9)

which vanishes for t < t′ due to the Heaviside function θ(t− t′). Equation (4.8) is the
famous Kubo formula that relates the change of an expectation value to the retarded cor-
relation function of that operator with the perturbation. The exponential factor e−η(t−t′)

was artificially added to bestow a finite memory upon the system. It ensures that the
response at time t to the perturbation at time t′ decays over time. After the evaluation
of the integral, one takes the limit η → 0+.

Kubo Formula in Frequency Domain

In the remainder of this section, I show how to rewrite the Kubo formula in frequency
domain and how to express the retarded correlation functions as Matsubara correlation
functions. The Fourier transform V̂ω of

V̂ (t) =

∫ ∞

−∞

dω
2π

e−iωtV̂ω (4.10)

no longer depends on time in the Schrödinger picture. Therefore, the retarded corre-
lation function

CR
ÔV̂ω

(t− t′) = − i
h̄
θ
(
t− t′

) 〈[
ÔD(t− t′), V̂ω

]〉
0

(4.11)

is homogeneous in time since the time dependence of the Dirac picture can be carried
over to ÔD(t) → ÔD(t − t′) because of the commutativity of operators under the trace.
It is related to the correlation function in the Kubo formula [Eq. (4.8)] as

CR
ÔV̂

(t, t′) =

∫ ∞

−∞

dω
2π

e−iωt′CR
ÔV̂ω

(t− t′). (4.12)

Inserting this relation in the Kubo formula [Eq. (4.8)] and taking the limit t0 → −∞,
one obtains

∆
〈
Ô(t)

〉
=

∫ ∞

−∞

dω
2π

e−iωtCR
ÔV̂ω

(ω). (4.13)

Here, the retarded correlation function has been defined in frequency domain as

CR
ÔV̂ω

(ω) =

∫ ∞

−∞
dτ eiωτe−ητCR

ÔV̂ω
(τ). (4.14)

The left-hand side of Eq. (4.13) is written in the time-domain, while the right-hand
side involves the frequency-domain correlation function that is transformed to the time
domain. Recasting the expression to frequency domain gives a concise formulation of the
Kubo formula:

∆
〈
Ôω

〉
= CR

ÔV̂ω
(ω). (4.15)
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Hence, the Fourier transform of the nonequilibrium contribution to the expectation
value of Ô is equal to the Fourier transform of the retarded correlation function between
Ô and the Fourier transform of the time-dependent part of the Hamiltonian.

In some cases it is more convenient to compute the correlation function with the time
derivative of V̂ rather than V̂ itself. As an example, consider an electric field, which cou-
ples to the electric polarization V̂ = −V P̂ ·E with the total volume of the system denoted
as V . Rather than computing the correlation function with the electric polarization, one
may consider its time derivative, which is the charge current density [140].3

First, I assume that Ô is time-independent in its Schrödinger representation. Then,
the time derivative of the retarded correlation function reads

∂CR
ÔV̂ω

(t)

∂t
= − i

h̄
δ(t)

〈[
Ô, V̂ω,D(−t)

]〉
0
+

i
h̄
θ(t)

〈[
Ô,

∂V̂ω,D(−t)
∂(−t)

]〉
0

, (4.16)

where I exploited the identity ∂θ(t)
∂t = δ(t). By partial integration of Eq. (4.14) and

insertion of Eq. (4.16), one obtains

CR
ÔV̂ω

(ω) =

CR
Ô ∂V̂ω

∂t

(ω)− CR
Ô ∂V̂ω

∂t

(0)

iω
, (4.17)

where the limit η → 0+ has been taken. The operator ∂V̂ω
∂t is an abbreviation for the

operator i
h̄

[
Ĥ0, V̂ω

]
, which is the time derivative of V̂ω,D(t) before it has been transformed

back to its Schrödinger representation. Note that the explicit time dependence of V̂ (t)
is not included here because it has been eliminated in the Fourier transform V̂ω.

Matsubara Correlation Functions

Besides retarded correlation functions, there is another important kind of correlation
functions, which are related to the former. In the context of this thesis, the Matsubara
correlation functions, named after Takeo Matsubara, defined for arbitrary operators
X̂ and Ŷ as

CX̂Ŷ (t, t
′) = −

〈
T̂ X̂D̃(t)ŶD̃(t

′)
〉
0

(4.18)

plays an important role because they can be employed for obtaining the corresponding
retarded correlation functions. Here, the Dirac picture has been introduced for imagi-
nary “times” as X̂D̃(t) := X̂D(−ih̄t) (and analogue for Ŷ ). The time-ordering operator T̂
acts on the operators X̂D̃(t) and ŶD̃(t

′) such that it reorders their product as

T̂ X̂D̃(t)ŶD̃(t
′) = θ

(
t− t′

)
X̂D̃(t)ŶD̃(t

′)± θ
(
t′ − t

)
ŶD̃(t

′)X̂D̃(t), (4.19)

where the upper (lower) sign applies to bosons (fermions). In the following, X̂ and Ŷ are
assumed to be time independent.

3In the Schrödinger picture, P̂ does not depend on time. However, in its Dirac picture, the time
derivative is given by the commutator with Ĥ0. Hence, whenever I loosely refer to the time derivative
of a time-independent operator X̂, the actual operator I am referring to is i

h̄

[
Ĥ0, X̂

]
.
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The Matsubara correlation function can be shown to depend only on the time dif-
ference t − t′ and is only well-defined in the interval −β < t − t′ < β. Furthermore, it
satisfies CX̂Ŷ (τ) = ±CX̂Ŷ (τ + β) depending on whether it describes a bosonic (+) or
fermionic (−) system. These properties allow for a representation of the Matsubara
correlation functions as a Fourier series with coefficients

CX̂Ŷ (iωl) =

∫ β

0
dτ eih̄ωlτCX̂Ŷ (τ). (4.20)

The so-called Matsubara frequencies take the discrete values ωl = 2lπ
βh̄ for bosons or

ωl =
(2l+1)π

βh̄ for fermions (l ∈ Z).
The importance of the Matsubara correlation functions in the context of linear re-

sponse theory becomes apparent upon revealing their connection to the retarded cor-
relation functions. Usually, it is much easier to compute the Matsubara correlation
functions in frequency space. After the integral has been computed, the retarded corre-
lation function is simply obtained by analytic continuation to the real axis:

CR
X̂Ŷ

(ω) = CX̂Ŷ (iωl → ω + i0+). (4.21)

This provides yet another way of computing the linear response.

4.2 Statistical Forces
The Kubo formula in the last section quantifies the reaction of a system to an external
stimulus. Two main assumptions have been made. Firstly, the stimulus must be suf-
ficiently weak so that the linear order provides a good approximation to the response.
Secondly, the perturbation must be expressible as a Hamiltonian. The latter condition
represents a severe restriction to the applicability to statistical forces such as gradients
in temperature or chemical potential. These quantities are not defined on the level of
the Hamiltonian, but they are introduced in the statistical-mechanical description, i.e.,
in the equilibrium density operator.

Temperature is a measure of the mean energy of a system. Gradients in temperature
lead to a compensating current that tries to balance the inhomogeneity. In order to
describe a disturbance of the homogeneous temperature or the mean energy, a conju-
gated external field has to be applied that controls the perturbation. In 1964, Joaquin
Mazdak Luttinger proposed introducing a gravitational potential that couples to the
energy density to mimic the temperature gradient at the level of the Hamiltonian [143].
This installs a force proportional to the energy of the particles. Hence, at the core of the
Luttinger method, a dynamical force – the pseudogravitational potential – is employed
to incorporate a statistical force – the temperature gradient, where the former acts on in-
dividual particles and the latter affects their dynamics via the distribution function [130].
The following presentation of the Luttinger method is guided by Refs. [130, 143–146].

To further motivate the use of a pseudogravitational potential, recall that the temper-
ature enters the Boltzmann factor e−Ĥ0/(kBT ), where the temperature gradient enters
T (r) = T0[1− χ(r)]. T0 is the mean temperature and χ governs the spatial inhomogene-
ity. To linear order in χ, the Boltzmann factor can be rewritten as e−(1+χ)Ĥ0/(kBT0) so
that V̂ = χĤ0 can be considered as the Hamiltonian of the perturbation. Assuming a
linear temperature profile, the temperature gradient enters as χ(r) = −r · ∇̂rT/T0.
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4 Linear Response Theory

First, the equilibrium Hamiltonian

Ĥ0 =
1

2

∫
ddr ψ̂

†
(r)Ĥ0ψ̂(r) (4.22)

is defined in terms of a Hamiltonian density Ĥ0 ∈ Mat(2N , 2N ), which should be inter-
preted as a matrix superoperator acting on the Nambu spinors

ψ̂
†
(r) =

(
ĉ†1(r) · · · ĉ†N (r) ĉ1(r) · · · ĉN (r)

)
(4.23)

of bosonic creation and annihilation operators. Although the derivation applies to lattices,
they are herein described by a continuum theory, where the creation operators ĉ†i (r) de-
pend on the sublattice i and the position r of the unit cell (as for annihilation operators).
The commutation relation in the continuum limit becomes

[
ĉi(r1), ĉ

†
j(r2)

]
= δijδ(r1−r2),

where δ(r) is the delta distribution. Other combinations of bosonic operators commute.
Even though the Hamiltonian [Eq. (4.22)] seems diagonal in r, Ĥ0 =

∑
δHδeδ·∇̂r gen-

erally acts on ψ̂(r) → ψ̂(r + δ) and translates it [145].
Having introduced the continuum notation, it is now possible to express the perturba-

tion as

V̂ =
1

4

∫
ddr ψ̂

†
(r)
(
Ĥ0(r)χ(r) + χ(r)Ĥ0(r)

)
ψ̂(r). (4.24)

Here, the energy density comprising χ had to be symmetrized in order to render V̂
Hermitian. Since χ is assumed to be small, the total Hamiltonian

Ĥ =
1

2

∫
ddr

(
1 +

χ(r)

2

)
ψ̂

†
(r)Ĥ0(r)

(
1 +

χ(r)

2

)
ψ̂(r) (4.25)

is obtained by rescaling the creation operators ψ̂†
(r) →

(
1 + χ(r)

2

)
ψ̂

†
(r) [and analogous

for ψ̂(r)] in the expression of the equilibrium Hamiltonian [Eq. (4.22)].
Now, a Hamiltonian for the temperature gradient has been provided that can be tack-

led with the Kubo formula. As a result of the pseudogravitational potential, the total
Hamiltonian has changed. This affects the dynamics of operators that are governed by
their commutation with the total Hamiltonian according to the Heisenberg equation of
motion [30, 39, 40]

∂X̂H(t)

∂t
=

i
h̄

[
Ĥ, X̂H(t)

]
, (4.26)

where X̂H(t) = e
i
h̄
tĤX̂e−

i
h̄
tĤ is the Heisenberg representation of a time-independent

operator X̂ in the Schrödinger picture.4 The time evolution of X̂H is already considered
in the Kubo formula by the solution of the von Neumann equation. On the other hand,
if a current for X̂ is defined from a continuity equation, the definition of the current
itself will change under V̂ . Therefore, there are two contributions to the linear response
of a current: one arising from the Kubo formula and one from the modification of the
continuity equation that alters the definition of the current operator. This is elaborated
in the next section for the example of thermal currents.

4In the most general case, the Heisenberg picture of an operator X̂(t) would be defined as X̂H(t) =
Û†(t)X̂(t)Û(t), where Û(t) is the time-evolution operator [30]. Only in the case of an explicitly time-
independent Hamiltonian Ĥ, the time-evolution operator can be expressed as Û(t) = e−

i
h̄
tĤ. Here, Ĥ

expressed in Eq. (4.25) is time-independent.
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4.3 Intrinsic Thermal Hall Conductivity

4.3 Intrinsic Thermal Hall Conductivity
The thermal Hall effect, named after Edwin Hall, also known as the Righi-Leduc
effect, named after Augusto Righi and Sylvestre Anatole Leduc, refers to the
appearance of a transverse heat current induced by a longitudinal temperature gradi-
ent (cf. Fig. 1.1). It is the complementary transport effect to Fourier’s law, named
after Jean-Baptiste Joseph Fourier, which denotes the longitudinal flow of heat in
response to a longitudinal temperature gradient. While the thermal Hall effect of elec-
trons in nonmagnetic metals in an external magnetic field is driven by the Lorentz force,
the thermal Hall effect in magnetic insulators without disorder studied in this work is
driven by the Berry curvature, as demonstrated below. The following derivations pro-
vide the basis for the Publications [RN2, RN3] of this thesis.

In general, heat transport in the linear response regime is governed by the heat con-
ductivity κ that mediates between heat current〈

Ĵ
〉
= κ(−∇̂rT ) (4.27)

and thermal gradient ∇̂rT . The thermal Hall conductivity κH
µν = (κµν − κνµ)/2 (µ 6= ν)

is associated with the antisymmetric part of κ and quantifies the thermal Hall effect.
The thermal Hall conductivity is time-reversal odd, i.e., it changes sign upon reversal of
the external magnetic field and the magnetic order. Consequently, it vanishes without
magnetic field and magnetism. On the other hand, the symmetric part (κµν + κνµ)/2 is
even under time reversal and associated with the so-called planar Hall effect. The planar
Hall effects sensitively depend on the geometry because the corresponding transverse
current changes its magnitude depending on the direction of the temperature gradient.
It even can be suppressed along certain crystallographic directions, which can be found
by diagonalizing the symmetric part of κ. In contrast, the thermal Hall effect is robust
and exists independently of the direction of the temperature gradient.5 In this section,
the derivation of the thermal Hall effect by Matsumoto et al. is sketched [130].

The heat current operator can be derived from the continuity equation6

∂ĥH
∂t

+∇ · ĵH = 0 (4.28)

for the total energy density operator ĥ = 1
2(1 +

χ
2 )ψ̂

†
(r)Ĥ0(1 +

χ
2 )ψ̂(r) [cf. Eq. (4.25)]

in its Heisenberg representation ĥH.7 Since in transport experiments one measures the
average heat current rather than the local heat current densities, the latter are averaged
across the sample as Ĵ = 1

V

∫
ddr ĵ(r) (V is the total volume of the system) so that the

former does not depend on r.
5In higher dimensions, the thermal Hall effect appears in certain planes in which the temperature

gradient can be freely rotated and the transverse heat current by the antisymmetric part will follow
without changing its magnitude. If the temperature gradient is tilted out-of-plane, only the in-plane
component generates the thermal Hall current. In three dimensions, there are three independent
thermal Hall conductivities associated with the three orthogonal planes.

6Here, the Heisenberg picture is used to write the continuity equation as an operator equation and to
derive an expression for the current density in the Heisenberg picture, which then can be translated
back to the Schrödinger picture. In the Schrödinger picture, the continuity equation would be an
equation for the expectation values since the dynamics is included in the wave functions.

7Note that the heat current density defined this way is only determined up to a curl [144].
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4 Linear Response Theory

The first term in Eq. (4.28) is computed by ∂ĥH
∂t = i

h̄

[
Ĥ, ĥH

]
. The local current density

ĵ = ĵ0 + ĵ1 consists of an equilibrium and nonequilibrium part:8

ĵ0,µ =
1

4
ψ̂

†
(r)
(
V̂ µσ3Ĥ0 + Ĥ0σ3V̂ µ

)
ψ̂(r), (4.29a)

ĵ1,µ = − i
8

∂χ

∂rν
ψ̂

†
(r)
(
V̂ µσ3V̂ ν − V̂ νσ3V̂ µ

)
ψ̂(r)

+
1

8

∂χ

∂rν
ψ̂

†
(r)
(
rνV̂ µσ3 + 3V̂ µσ3rν

)
Ĥ0ψ̂(r)

+
1

8

∂χ

∂rν
ψ̂

†
(r)Ĥ0

(
3rνσ3V̂ µ + σ3V̂ µrν

)
ψ̂(r),

(4.29b)

where the velocity operator V̂ µ = i
h̄

[
Ĥ0, rµ

]
is introduced. This follows from the ob-

servation that ĵ0 is independent of ∇̂rχ, while ĵ1 comprises the linear-in-∇̂rχ terms.
Higher order terms are neglected. The nonequilibrium part ĵ1 corresponds to a circu-
lating heat current that may exist in the presence of time-reversal symmetry breaking.
This circulating heat current (also called magnetization current) associated with the so-
called “energy magnetization” has to be subtracted for the transport current as it is not
observable [144, 147, 148].

The average heat current density〈
Ĵ
〉
=
〈
Ĵ0

〉
+
〈
Ĵ1

〉
, (4.30a)〈

Ĵ0,µ

〉
= Sµν

(
− ∂χ

∂rν

)
(4.30b)〈

Ĵ1,µ

〉
=Mµν

(
− ∂χ

∂rν

)
(4.30c)

can therefore be obtained up to linear order by taking the thermal and quantum-mechanical
expectation value, where the expectation value of Ĵ0 vanishes in equilibrium9 and one
evaluates ∆

〈
Ĵ0

〉
using the Kubo formula. This part is contained in S. Ĵ1 on the

other hand is already linear in the perturbation and, hence, should be evaluated using
the equilibrium density operator ρ̂0 to compute the linear response tensor M . Then, the
heat conductivity is obtained as κ = (S +M)/T .

Basis Transformation

In order to compute the relevant correlation functions appearing in the Kubo formula
for heat currents, which involves the Dirac picture of the creation and annihilation
operators, it is expedient to transform to the eigenbasis of Ĥ0. First, the Fourier
transformation of Eq. (4.22) installs a familiar form that has been considered before:

Ĥ0 =
1

2

∑
k

ψ̂
†
kH0,kψ̂k, (4.31)

8The Einstein convention is employed for ν = x, y, z in Eq. (4.29).
9According to the Bloch theorem for persistent currents, any system of electrons or bosons in its ground

state or thermal equilibrium must not exhibit finite charge or heat currents in the thermodynamic
limit. This statement holds very generally for one-dimensional or gapped systems [149–154].

64



4.3 Intrinsic Thermal Hall Conductivity

where the Nambu spinors have been introduced as

ψ̂
†
k =

(
ĉ†1k · · · ĉ†Nk ĉ1(−k) · · · ĉN (−k)

)
. (4.32)

The Fourier transformations of ĉ†i (r) and ĉi(r) have been performed in analogy to
Eq. (2.88). Importantly, the Fourier-transformed Hamilton density

(H0,k)ij =
∑
δ

(Hδ)ijeik·(δ+bj−bi) (4.33)

is no longer a superoperator that acts on the creation and annihilation operators because
of translational invariance. As in Section 2.3.4, a Bogoliubov transformation

Ψ̂k = T−1
k ψ̂k =

(
γ̂1k · · · γ̂Nk γ̂†1(−k) · · · γ̂†N (−k)

)ᵀ
(4.34)

is employed to diagonalize Ĥ0, the eigenvalues of which are εmk (m = 1, . . . , 2N ), where
εm+N ,k = εm(−k) for m = 1, . . . ,N .

Within the eigenbasis, equilibrium expectation values can be conveniently evaluated as

〈
Ψ̂ †
mkΨ̂nk′

〉
0
= δkk′(σ3)mnρ(ε̃mk), (4.35a)〈

Ψ̂mkΨ̂
†
nk′

〉
0
= −δkk′(σ3)mnρ(−ε̃mk), (4.35b)〈

Ψ̂mkΨ̂nk′

〉
0
= −δk(−k′)(σ3)mmΣ

x
mnρ(−ε̃mk), (4.35c)〈

Ψ̂ †
mkΨ̂

†
nk′

〉
0
= δk(−k′)(σ3)mmΣ

x
mnρ(ε̃mk), (4.35d)

where ρ(x) =
[
eβx − 1

]−1 is the Bose-Einstein distribution function, which has the
property ρ(x) = −[1 + ρ(−x)], ε̃mk = (σ3)mmεmk are the signed energies, and

Σx =

(
0 I
I 0

)
∈ Z2N×2N . (4.36)

Furthermore, the Dirac and Schrödinger pictures of the creation and annihilation
operators can be easily related as

Ψ̂D,mk(τ) = eω̃mkτ Ψ̂mk, (4.37a)

Ψ̂ †
D,mk(τ) = e−ω̃mkτ Ψ̂ †

mk, (4.37b)

where ω̃mk = ε̃mk/h̄.

Computation of S

For Ĵ0 is independent of ∇̂rχ, its linear-response contribution is directly given by the
Kubo formula. There are two possibilities to compute the statistical and quantum-
mechanical average, which involve different correlation functions. On the one hand, one
could compute the correlation function between Ĵ0 and V̂ according to Eq. (4.8). On the
other hand, one could consider the correlation function between Ĵ0 and ∂V̂

∂t ≡ i
h̄

[
Ĥ0, V̂

]
=
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4 Linear Response Theory

Ĵ0,µ
∂χ
∂rµ

, which is proportional to the autocorrelation function of Ĵ0. Hence, the first
contribution to the thermal conductivity reads

Sµν = − lim
ω→0

CR
Ĵ0,µĴ0,ν

(ω)− CR
Ĵ0,µĴ0,ν

(0)

iω
(4.38)

according to Eq. (4.17). The equilibrium part of the current operator

Ĵ0,µ =
1

4

∑
k

ψ̂
†
k(V µ,kσ3H0,k +H0,kσ3V µ,k)ψ̂k (4.39)

can be expressed within reciprocal space defining the Fourier-transformed velocity den-
sity as V µ,k = 1

h̄
∂H0,k

∂kµ
. Those matrix elements enter the Matsubara autocorrelation

function

CĴ0,µĴ0,ν
(iωl) = −

∫ β

0
dλ eih̄ωlλ

〈
T̂ ĴD̃,0,µ(λ)ĴD̃,0,ν(0)

〉
0
, (4.40)

which is computed by inserting the expression for Ĵ0 [Eq. (4.39)], transforming it into
the eigenbasis of Ĥ0 by Eq. (4.34), and applying the identities Eqs. (4.35) and (4.37),
which leads to

Sµν = − i
8

2N∑
m,n=1

∑
k

ρ(ε̃mk)− ρ(ε̃nk)

(ε̃mk − ε̃nk)
2 (ε̃mk + ε̃nk)

2
(
T †

kV µ,kT k

)
mn

(
T †

kV ν,kT k

)
nm

(4.41)

Computation of M

The second contribution is derived from the nonequilibrium part Ĵ1 of the current oper-
ator, whose statistical and quantum-mechanical expectation value is computed in equi-
librium within linear response theory. With the definition of the nonequilibrium part of
the local heat current density [Eq. (4.29b)], one finds

Ĵ1,µ = − i
8

∂χ

∂rν

∑
k

ψ̂
†
k(V µ,kσ3V ν,k − V ν,kσ3V µ,k)ψ̂k

+
1

8

∂χ

∂rν

∑
k

ψ̂
†
k(r̂νV µ,kσ3 + 3V µ,kσ3r̂ν)H0,kψ̂k

+
1

8

∂χ

∂rν

∑
k

ψ̂
†
kH0,k(3r̂νσ3V µ,k + σ3V µ,kr̂ν)ψ̂k

(4.42)

in the Fourier basis. By taking the trace over ρ̂0Ĵ1,µ, one identifies

Mµν =
i
8

∑
k

2N∑
m,n=1

ρ(ε̃mk)(σ3)mm(σ3)nn(Vµ,k)mn(Vν,k)nm − (µ↔ ν)

− 1

2

∑
k

2N∑
m=1

εmkρ(ε̃mk)
[
T †

k(r̂νV µ,k + V µ,kr̂ν)T k

]
mm

,

(4.43)

where Vµ,k = T †
kV µ,kT k are the matrix elements of the velocity operator along µ in the

eigenbasis of Ĥ0.
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Thermal Hall Conductivity

The following steps of the derivation involve a particular separation of the terms in Sµν
and Mµν so that some of them cancel, while the remaining terms are transformed so that
they involve derivatives of T k. I skip these steps here and directly focus on the thermal
Hall conductivity, which is obtained as

κH
µν =

Sµν +Mµν − (µ↔ ν)

2T
=
∑
λ

ελµν
k2BT

h̄V

∑
k

N∑
m=1

c2[ρ(εmk)]Ωλ,mk, (4.44)

where ελµν is the totally antisymmetric Levi-Civita symbol, c2(x) = (1 + x) ln2 1+x
x −

ln2 x− 2Li2(−x) with the dilogarithm Li2(x) = −
∫ x
0 dt ln(1−t)

t and the Berry curvature

Ωλ,mk = i
∑
µν

ελµν

[
σ3
∂T †

k

∂kµ
σ3
∂T k

∂kν

]
mm

, (4.45)

where m = 1, . . . , 2N . As discussed in Section 3.2.1, the Berry curvature endows the
bosons with an anomalous velocity that is transverse to the applied temperature gradient
similar to how the Lorentz force would be oriented to an applied electric field. Each
boson contributes an energy εmk to the heat current. However, the higher the energy,
the smaller the number of bosons in that state. Consequently, the Berry curvature is
weighted with the temperature-dependent function c2[ρ(ε)] that decreases monotonously
with ε. Its maximum at ε = 0 is π2

3 , while it approaches 0 for ε→ ∞.
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CHAPTER 5

MAGNETOELECTRIC EFFECTS

The electrons in a solid generally interact with external electric or magnetic fields, which
can induce an internal electric polarization or a magnetization depending on the electric
or magnetic susceptibility, respectively. The magnetoelectric effect refers to the cross-
coupling between electric and magnetic properties in solids. For example, a magnetization
may be induced by an external electric field or an electric polarization can be caused by
an external magnetic field. The strength of the cross-response is determined by the
magnetoelectric susceptibility [155, 156].

Materials with both ferroelectric and ferromagnetic order tend to have a strong magne-
toelectric effect. Such materials are called multiferroics.1 In a multiferroic, the magneto-
electric coupling manifests in the cross-control of domain walls by external fields. While
an external magnetic field causes a magnetic domain wall motion that changes the mag-
netization forming a hysteresis loop in ferromagnets, the same field additionally causes
a motion of the electric domain walls changing the electric polarization in a hysteretic
fashion [155].

One distinguishes two types of multiferroics [157]. Type-I multiferroics owe their fer-
roelectric and ferromagnetic order to independent origins and both merely coexist. They
are characterized by different transition temperatures, where the magnetic ordering tem-
perature usually lies below the electric one. One example is BiFeO3, which has a fer-
roelectric ordering temperature of 1100 K and a Néel temperature of 643 K [157]. In
type-II multiferroics, magnetism is the origin of ferroelectricity. Therefore, both mag-
netic and electrical order are stable up to the same ordering temperature. The onset of
the ferroelectric phase in the type-II TbMnO3 is explained by the simultaneous transition
from a sinusoidal to helical magnetic phase at 28 K [158, 159]. Typically, type-I systems
have a larger ferroelectric polarization at the expense of a smaller magnetoelectric effect
than type-II materials [157].

Importantly, although the magnetoelectric effect and multiferroicity are closely related,
the former can exist independently of the latter [160]. In multiferroics and materials with a
nonzero static magnetoelectric susceptibility both inversion and time reversal symmetries
are broken [156]. On the other hand, the localized electrons responsible for magnetism
carry a charge and interact with electric fields even if the ground state is not ferroelectric.
It can give rise to magnetoelectric coupling, where the charge dynamics of the electron
is affected on the energy scale of the magnons far below of the insulating gap of the
electrons [160]. Such a coupling can exist even in the absence of symmetry breaking,
although lower symmetries allow for additional coupling mechanisms [155, 161].

Phenomenologically, one can expand the local electric polarization operator in terms

1Depending on the context, the requirement of ferromagnetic order for the definition of a multiferroic is
relaxed in favor of long-range magnetic order including antiferromagnetic, ferrimagnetic, helimagnetic
ones [155].
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of spin operators as [22, 162]

P̂λ =
∑
i

∑
µ=x,y,z

α
(1),λ
iµ Ŝµ

i +
∑
ij

∑
µ,ν=x,y,z

α
(2),λ
ijµν Ŝ

µ
i Ŝ

ν
j + . . . , (5.1)

where the shape of the spin-polarization coupling tensors α(l) (l = 1, 2) can be derived
from symmetry. For example, the linear spin-polarization coupling α

(1),λ
iµ requires that

the site i is no inversion center [22, 162].
The magnetoelectric coupling mediates an interaction between external electric fields

and the spins, which generally affects both the ground state and the excited states, i.e.,
the magnons. Certain magnon modes become electrically active as they can be excited
by alternating electrical fields. Those “electromagnons” have been first experimentally
identified in the dielectric function of TbMnO3 and GdMnO3 [163].

The electromagnons are the motivation to introduce the magnetoelectric effects in this
work. In Publication [RN4], the implications of magnetoelectric effects for topological
magnons are explored (cf. Section 3.2.1). In the following, I will discuss four common
mechanisms that give rise to a spin-dependent polarization. The vacuum magnetoelec-
tric effect is a material-independent effect that is mainly discussed for its simplicity and
plays a role in Publication [RN4]. Afterwards, the three commonly discussed magneto-
electric effects of solids, one of which – the spin current mechanism – is also employed
in Publication [RN4], are presented. All three can be related to different components of
α(2) [cf. Eq. (5.1)]. I will focus mainly on the physical pictures to give an idea of the
underlying ideas and refrain from lengthy derivations.

5.1 Vacuum Magnetoelectric Effect
The vacuum magnetoelectric effect refers to the electric dipole created by a moving mag-
netic dipole. It is a fundamental consequence of the Lorentz invariance of electromag-
netism that is covered in many text books such as Ref. [76].

Let S be an inertial system with respect to which the coordinate origin of another
inertial system S̄ moves along the x axis with velocity v. If (x, y, z, t) are the coordinates
of an event in S, then the coordinates of the same event in S̄

x̄ = γ(x− vt), (5.2a)
ȳ = y, (5.2b)
z̄ = z, (5.2c)

t̄ = γ
(
t− xv

c2

)
(5.2d)

are obtained by Lorentz transformation [76]. Here, c is the speed of light and γ =(
1− v2/c2

)−1/2. Assume that there is a magnetic dipole located at the origin of S̄, which
generates a magnetic dipole field [76]

B̄ = ∇r̄ × Ā, Ā =
µ0
4π

m̄× r̄
|r̄|5

(5.3)

and is moving with a velocity v in S. What is the structure of the electromagnetic fields
observed by S? To answer this question one needs to understand how electromagnetic
fields transform going from one to the other inertial system.
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5.2 Exchange Striction Model

The scalar and vector potentials are summarized as the four potential and transform
like any four vector [76]

Āx = γ

(
Ax −

vφ

c2

)
, (5.4a)

Āy = Ay, (5.4b)
Āz = Az, (5.4c)
φ̄ = γ(φ− vAx). (5.4d)

The transformation of the scalar and vector potentials from S̄ to S is obtained by inverting
the sign of v. According to (5.4d), the scalar potential φ = v · Ā in S is solely given by
the component of the vector potential in S̄ parallel to the velocity if φ̄ = 0. Therefore,
in the nonrelativistic limit, the scalar potential

φ =
p · (r − r0)
4πε0|r − r0|5

(5.5)

in S represents that of a dipole field of an electric dipole p = v×m̄
c2

located at r0 = vt.
A magnon possesses both a magnetic moment of magnitude gµB due to its spin of

h̄ and a group velocity vnk = ∇kεm,nk/h̄.2 Because of the vacuum magnetoelectric
effect, the magnon has an electric dipole perpendicular to its spin direction, given by the
quantization axis in a ferromagnet, and its group velocity. The electric dipole allows the
magnon to interact with electric fields. In an electric field gradient, a transversal force
analogous to the magnetic Lorentz force for charged particles acts on the magnons. This
has lead to the prediction of transversal transport effects for magnons in full analogy to
the ordinary Hall effect for electrons [164]. The vacuum magnetoelectric effect represents
the conceptual starting point for Publication [RN4].

5.2 Exchange Striction Model
The exchange striction mechanism produces an electric polarization by the symmetric
interaction between to spins. Suppose the ions in Fig. 5.1(a) have opposite charges.
Depending on the spin orientations of the interacting magnetic ions, the bond might
be stretched or compressed along a certain crystallographic direction to minimize the
energy of the interacting spins [Fig. 5.1(b)]. Because of the opposite charges, the lattice
displacement is concurrently linked to the electric polarization. The exchange striction
mechanism is related to the nonrelativistic symmetric exchange interaction and, thus,
does not require spin-orbit coupling [155].

Mathematically, the electric dipole by exchange striction for one bond reads [155]

p̂ij =Π ij

(
Ŝi · Ŝj

)
, (5.6)

where i and j are the sites of the magnetic ions. The direction of the electric dipole
given by Π ij is restricted by the lattice symmetries. If the bond center between i and
j represents an inversion center, Π ij = 0. Importantly, the inversion symmetry needs

2The spin of a magnon can deviate from h̄ if the spin is not conserved or the ground state is not
ferromagnetic [87].
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5 Magnetoelectric Effects

Figure 5.1: Three types of magnetoelectric effects. (a–c) Exchange striction mechanism
from symmetric spin exchange interaction. (d–f) Spin current model, inverse Dzyalo-
shinskii-Moriya model, or Katsura-Nagaosa-Balatsky effect from antisymmetric
spin exchange interaction. (g–i) Spin-dependent p-d hybridization model from single-ion
anisotropy. M and X indicate magnetic and ligand ions, respectively. (a) Array of in-
equivalent sites MA and MB. (b, c) Emergence of electric polarization along the bonds
due to (b) symmetry-breaking spin order or (c) dimer-singlet formation. (d) Cluster of
M -X-M ions with structural inversion symmetry. (e, f) Formation of electric polariza-
tion normal to the bond direction due to (e) displacement of X or (f) spin currents with
spin polarization Ŝi × Ŝj between the magnetic sites caused by spin canting. (g) Pair
of M and X sites. (h) Electric polarization along the bond due to asymmetric charge
density by spin-dependent hybridization of magnetic d orbitals and ligand p orbitals. (i)
Cancellation of the electric polarization is avoided in specific lattice geometries such as
MX4 tetrahedra. Reprinted figure from Y. Tokura, S. Seki, and N. Nagaosa, Reports on Progress in
Physics 77, 076501 (2014); Ref. [155]; http://dx.doi.org/10.1088/0034-4885/77/7/076501. Copyright
(2014) IOP Publishing. Reproduced with permission. All rights reserved.
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5.3 Spin Current Model

to be broken on the structural level. Therefore, this mechanism can only be present in
materials with a sufficiently low symmetry. In a Bravais lattice, for example, it cannot
exist.

Even if the structural inversion symmetry between the magnetic ions is locally broken,
in order to generate a net polarization, the spin texture needs to both break inversion
symmetry on a global level and has to be commensurate with the lattice so that the
local electric dipole moments do not cancel. A collinear ferromagnet or antiferromagnet
would have compensated dipoles because they exhibit an inversion center at a magnetic
site. A spin order such as ↓↓↑↑ breaks inversion symmetry and admits a net polarization
[cf. Fig. 5.1(b)].

Instead of long-range magnetic ordering, spin-singlet dimerization represents an alter-
native route for realizing an electric polarization [cf. Fig. 5.1(c)]. Consider the Hamilto-
nian

Ĥ =
∑
i

Ji,i+1Ŝi · Ŝi+1 (5.7)

of a one-dimensional chain of ions with different valences, in which the antiferromagnetic
exchange coupling is modified by the displacements ui of the ions as [155]

Ji,i+1 = J0 + g(ui − ui+1). (5.8)

The staggered dimerization ui = (−1)iu reduces the energy of the spin singlet. This is
the spin-Peierls instability, which corresponds to a transition to a phase of a periodic
array of spin-singlet pairs.

The exchange striction model has been identified as the key ingredient for the elec-
tromagnons in the rare earth manganites [165]. In these orthorhombic compounds, the
exchange interaction between nearest neighbors is mediated by oxygen ions. Since the
electric field shifts the oxygen ions, the exchange constants are modified. This induces a
coupling between the electric field and the magnons, i.e., electromagnons. As a side note,
this coupling is linear in the magnon creation and annihilation operators in noncollinear
magnets and, thus, enables so-called one-magnon processes [162, 165, 166]. The features
of one- and two-magnon processes are further discussed in Publication [RN4].

5.3 Spin Current Model
The spin current model, which is also known as inverse Dzyaloshinksii-Moriya in-
teraction or Katsura-Nagaosa-Balatsky effect, has been microscopically derived by
Katsura et al. [161] and phenomenologically discovered by Mostovoy [159]. Here, the
polarization originates from the antisymmetric spin interaction and is generated by the
inversion symmetry breaking due to spin canting. The electric dipole moment associated
to two (noncollinear) spins connected by a bond vector δij reads [155, 161]

p̂ij = qeffδij ×
(
Ŝi × Ŝj

)
, (5.9)

where qeff is the effective charge that quantifies the magnitude of the electric dipole. To
understand its origin, it is useful to illustrate the analogy to the Dzyaloshinskii-Moriya
interaction.
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5 Magnetoelectric Effects

Assume that there is a ligand ion located between the magnetic ions [cf. Fig. 5.1(d)].
If the ligand ion is displaced by a vector u from the bond center, it generates a local
electric field along its displacement that breaks the inversion symmetry and mediates a
Dzyaloshinksii-Moriya interaction

Ĥ =Dij ·
(
Ŝi × Ŝj

)
(5.10)

between the two spins. This interaction promotes their canting in the plane perpendicular
to Dij . The vector Dij needs to be parallel to δij × u according to the Moriya rules
(cf. Section 2.3.2).3

Instead of a local electric field inducing spin canting, the spin canting also can induce
an electric field. Without the canting, the ligand ion is located at the inversion center
between both spins [cf. Fig. 5.1(e)]. In the presence of spin canting, the displacement of
the ligand ion is energetically favored, which generates a local electric dipole moment.4
The direction of the dipole moment, i.e., the displacement of the ligand, is perpendicular
to δij and Ŝi × Ŝj . This is the lattice contribution to the spin current model [167].

Besides the lattice contribution, there is also an electronic contribution [161]. The spin
canting generates a spin current flowing between the two magnetic ions [cf. Fig. 5.1(f)].
Its spin polarization points along Ŝi × Ŝj . Similar to the spin Hall effect, the spin
current results in an electric dipole that is perpendicular to both the spin current and
the spin polarization direction.

In contrast to the Dzyaloshinksii-Moriya interaction, the spin current model is ubiq-
uitous because it does not rely on structural symmetry breaking. Instead, the symmetry
is purely broken by the spin texture. This property distinguishes it from the exchange
striction and spin-dependent p-d hybridization model and renders its study relevant be-
yond multiferroics [160]. Even in a ferromagnet, where the inversion symmetry is not
broken by the ground state spin texture, the magnons can give rise to dynamical canting
and induce local electric dipole moments. Furthermore, it couples magnons to alternating
electric fields as studied in Publication [RN4].

Turning to multiferroics, the mechanism promotes ferroelectricity in materials with
noncollinear spin textures. Importantly, the local electric dipoles must not cancel each
other to give rise to a net electric polarization. In contrast to the exchange striction
mechanism, both commensurate and incommensurate spin textures can lead to the net
polarization. This mechanism successfully explains the multiferroicity of helimagnets
such as TbMnO3 [159, 168], a representative of the family of rare earth manganites.
Interestingly, the electromagnons in this material could not be explained by the spin
current model, but by the exchange striction model [165, 166]. Thus, different types of

3The displacement breaks inversion symmetry, which is a necessary condition according to the first rule.
It preserves the mirror plane perpendicular to the bond, which requires Dij to lie inside the plane
according to the second rule. Moreover, it preserves the rotational axis passing through the ligand,
which bound Dij to the plane perpendicular to the displacement vector. Taking the intersection of
both planes only the axis along δij × u remains.

4Spin canting implies noncollinearity. Technically, the inversion symmetry can be broken by a collinear
arrangement: the Néel order. This collinear antiferromagnetic configuration is insufficient for gen-
erating the spin polarization. Even though it breaks inversion symmetry, it preserves the combined
inversion and time-reversal symmetry. Since time reversal does not affect the electric dipole, the sym-
metry is equivalent to the pure inversion symmetry. The noncollinearity ensures that the spins cannot
be mapped onto each other by a reversal of the spins.
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magnetoelectric couplings are generally necessary to explain static and dynamic coupling
phenomena within the same material.

5.4 Spin-Dependent p-d Hybridization Model
The spin-dependent p-d hybridization mechanism generates an electric dipole [155]

p̂i ∝ Λi

(
Ŝi ·Λi

)2
(5.11)

which is analogous to the single-ion anisotropic spin interaction (cf. Section 2.3.2). The
physical origin of the hybridization model is spin-orbit coupling that alters the orbital
part of the electronic wave function depending on the spin orientation of the electron.
If a magnetic ion is located near a ligand ion [cf. Fig. 5.1(g)], the d orbitals of the
former hybridize with the p orbitals of the latter. In the presence of spin-orbit coupling,
the strength of the hybridization depends on whether the spin is parallel to the bond
δil connecting both ions or perpendicular. The hybridization causes an antisymmetric
charge distribution and, hence, an electric dipole along Λi = δil [155] as indicated in
Fig. 5.1(h). If there was a second ligand placed symmetrically next to the magnetic ion,
the hybridization would take place with the p orbitals of both ligands similarly (not shown
in Fig. 5.1). Although the charge distribution would be altered, it would be symmetric
cancelling out the electric dipole. Thus, the spin-dependent p-d hybridization causes
magnetoelectric coupling only in materials with low on-site symmetry for example with
tetrahedral structures as displayed in Fig. 5.1(i).

While for the exchange striction mechanism, inversion symmetry has to be locally bro-
ken at the bond center, a necessary condition for the hybridization model is breaking
of local inversion symmetry at the site of the respective magnetic ion i. Hence, one
has to distinguish between inter- and on-site inversion symmetry breaking. A honey-
comb lattice possesses on-site local (and global) inversion symmetry, but does not feature
inter-site local inversion symmetry between second-nearest neighbors. This precludes
the hybridization model in kagome and pyrochlore lattices, which underlie the models of
Publication [RN1], and honeycomb magnets [22], which are the basis for the models of
the Publications [RN2, RN3, RN4].
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CHAPTER 6

PUBLICATIONS

In this chapter, the four publications of this thesis are presented. The first Publica-
tion [RN1] predicts a previously undiscovered contribution to the magnon’s magnetic
moment and highlights its significance for the magnetization in coplanar antiferromag-
nets and the transport of magnetic moment in response to thermal gradients. In Pub-
lication [RN2], the thermal Hall effect of magnons is considered in a collinear antifer-
romagnet that undergoes magnetic and topological phase transitions driven by external
magnetic fields. The two kinds of phase transitions both imprint specific signatures onto
the heat transport signal. Thereafter, the magnon transport theory is applied to the ex-
perimental data for the thermal Hall effect in the collinear antiferromagnet Na2Co2TeO6

(Publication [RN3]). It is demonstrated that magnons themselves fail to account for the
measured transport signal, while a theory that includes magnon polarons capture impor-
tant qualitative features. Lastly, an electric dipole moment of (topological) magnons is
predicted in Publication [RN4], which gives rise to an electric polarization in equilibrium
and an absorption of alternating electric fields in nonequilibrium. The one-magnon pro-
cesses discussed in that publication give rise to in-gap peaks at frequencies that match
the energies of topological magnons. A complete list of publications is given in Chapter 8.

6.1 Orbital Magnetic Moment of Magnons
When a magnon is excited from an ordered ground state, the accompanying precession of
the local spins effectively reduces the size of the ordered moments. In a ferromagnet the
magnetization of the ground state is maximal and decreases with the number of excited
magnons that increases with temperature. The spin of a magnon is defined by [87]

snk = 〈nk|Ŝtot|nk〉 − 〈0|Ŝtot|0〉 , (6.1)

which corresponds to the difference of the expectation values of the total spin operator
Ŝtot =

∑
i Ŝi in the excited state |nk〉 compared to the ground state |0〉. Technically, the

creation of a magnon is linked to the spin ladder operators Ŝ−
i that reduce the spin quan-

tum number by one h̄ (cf. Section 2.3.3). Thus, in a ferromagnet, snk conventionally has
a magnitude of h̄ and is antiparallel to the ground state spin directions [cf. Fig. 6.1(a)].1

This implies several severe restrictions to the macroscopic properties of a magnetic in-
sulator because the magnetic ground state, which often has different symmetries than the
Hamiltonian, determines the orientation of the magnon spin. A coplanar antiferromag-
net, which has an in-plane ground state spin texture as in Fig. 6.1(b), can be compatible
with an out-of-plane magnetization. The compatibility can be achieved by nonmagnetic
ions that lower the symmetry. However, due to frustration, the classical ground state
accidentally does not exhibit a net magnetization. Because magnons can only have spins

1The magnon spin may deviate from h̄ if spin-orbit interaction breaks the conservation of the total spin
operator Ŝtot along the quantization axis.
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Figure 6.1: The orbital magnetic moment of magnons and its macroscopic consequences.
(a) The magnon spin snk defined as the difference between the excited and ground state
total spin is antiparallel to the magnetization, while the spin magnetic moment µS

nk is
antiparallel to snk. The direction of µO

nk is not restricted by the ground state spin texture.
(b) Magnons in a coplanar kagome antiferromagnet. µS

nk is in-plane, while µO
nk features

out-of-plane components, which give rise to an out-of-plane orbital magnetization. (c)
Magnon transport in a pyrochlore ferromagnet subjected to a temperature gradient. µS

nk

is parallel to the quantization axis, while µO
nk is perpendicular leading to an orbital

Nernst effect.

along the directions offered by the ground state, the accidental symmetry of the ground
state inhibits the magnons to feature an out-of-plane spin.

The restriction of the magnon spin also affects the spin transport in pyrochlore fer-
romagnets. For electrons, it is established that the spin Hall effect can exist in any
material irrespective of its symmetries [169, RN6]. In materials with high symmetries,
the spin current is generated perpendicular to the electric field with spin polarization per-
pendicular to both current and field. The spin Nernst effect, where the transverse spin
current is generated by a temperature gradient, has the same symmetry requirements as
the spin Hall effect and, thus, is also ubiquitous. In contrast, the spin currents carried
by magnons may only feature a spin polarization along the quantization axis defined by
the ground state, fundamentally changing the symmetry of the magnonic spin Nernst
effect.

In this paper, the magnon spin, which encompasses a spin magnetic moment µS
nk =

−gµB
h̄ snk parallel to the magnons’ spins, is contrasted by the total magnetic moment

µnk = −
∂εm,nk

∂B
(6.2)

identified as the derivative of the magnon energies εm,nk with respect to the magnetic field
B. It is demonstrated that µS

nk does not fully account for the total magnetic moment.
Instead, there is an additional contribution µO

nk = µnk −µS
nk, which is attributed to the

orbital magnetic moment of magnons.
To understand the discrepancy of total and spin magnetic moment, one needs to con-

sider the Hamiltonian in the presence of a magnetic field, which typically comprises the
spin-spin interactions Ĥspin and a Zeeman term ĤZee = gµB

h̄ B · Ŝtot (cf. Section 2.3.2).
The latter causes the magnetic field dependence of the magnon energies that gives rise to
µS
nk by virtue of Eq. (6.2). This definition of µS

nk is fully consistent with the quantum-
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6.1 Orbital Magnetic Moment of Magnons

mechanical definition of snk [Eq. (6.1)]. However, all other magnetic field dependencies
of εm,nk are not accounted for.

Herein, an additional contribution µO
nk arising from the dependence of the magnetic

ground state on the magnetic field is considered. Typically, a magnetic field distorts
the spin texture of the magnetic ground state by canting all spins in the direction of
the magnetic field. Since the magnon band structure clearly depends on the magnetic
ground state, the field dependence of the ground state manifests as an additional field
dependence of εm,nk. The resulting µO

nk has fewer restrictions than µS
nk.

The macroscopic consequences of this additional contribution to the magnon’s magnetic
moment encompass both equilibrium and nonequilibrium properties. Firstly, we demon-
strate that the coplanar antiferromagnet develops an orbital magnetization perpendicular
to the kagome plane due to µO

nk [cf. Fig. 6.1(b)]. Although the spin texture is in-plane,
the magnons realize a weak ferromagnetism at zero and nonzero temperatures by quan-
tum and thermal fluctuations, respectively. Importantly, the weak ferromagnetism does
not rely on a canting of the classical spin texture. Secondly, it is shown that the currents
of magnetic moment arising in the pyrochlore ferromagnet are nonzero in all geometries,
which admit these currents according to the symmetry of the system. In particular, mag-
netic moment perpendicular to the ferromagnetic quantization axis can be transported,
in which case the magnetic moment only comprises the orbital contribution. Therefore,
an orbital Nernst effect is realized [cf. Fig. 6.1(c)].

Reprinted article from R. R. Neumann, A. Mook, J. Henk, and I. Mertig, Physical Review Letters 125,
117209 (2020); Ref. [RN1]; http://dx.doi.org/10.1103/PhysRevLett.125.117209. Copyright (2020)
American Physical Society. Reproduced with permission. All rights reserved.
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In experiments and their interpretation usually the spin magnetic moment of magnons is considered. In
this Letter, we identify a complementing orbitalmagnetic moment of magnons brought about by spin-orbit
coupling. Our microscopic theory uncovers that spin magnetization MS and orbital magnetization MO are
independent quantities; they are not necessarily collinear. Even when the total spin moment is compensated
due to antiferromagnetism, MO may be nonzero. This scenario of orbital weak ferromagnetism is realized
in paradigmatic kagome antiferromagnets with Dzyaloshinskii-Moriya interaction. We demonstrate that
magnets exhibiting a magnonic orbital moment are omnipresent and propose transport experiments for
probing it.

DOI: 10.1103/PhysRevLett.125.117209

Introduction.—Textbooks on magnetism introduce spin
waves as collective excitations of a magnetically ordered
ground state, as epitomized by ferromagnets (Ref. [1],
among others). The quanta of spin waves—the magnons—
are typically viewed as local deviations from the ordered
state [2,3]. Within this picture, it appears natural that the
magnetic moment carried by magnons has only spatial
components that are offered by the ground-state spin
texture, because the latter defines the directions relative
to which a deviation can occur [4]. This implies in
particular that collinear magnets feature only magnons
whose magnetic moment is along the collinear axis.
Likewise the magnetic moments of magnons of coplanar
magnets lie within that plane. This reasoning is widely
accepted and adopted for a plethora of transport phenomena
that involve the magnon magnetic moment, such as the spin
Seebeck [5], spin Nernst [6–14], and magnon Edelstein
effect [15,16] in ferromagnets [17] and in both collinear
[18–20] and noncollinear [13,14,21–23] antiferromagnets.
In this Letter, we challenge this paradigm by revealing an

additional magnonic property: their orbital magnetic
moment. Overall, the magnetic moment,

μn;k ¼ −
∂εn;k
∂B ¼ μSn;k þ μOn;k; ð1Þ

of a magnon in band n and with momentum ℏk decomposes
into two contributions. These are derived from the explicit
and implicit dependence of the magnon energy εn;k with
respect to the magnetic field B. The first contribution,

μSn;k ∝ −sn;k; ð2Þ
is the spin magnetic moment (SMM) which is proportional
to the magnon spin sn;k [4,16]. As mentioned above, this is
the contribution conventionally referred to as the magnetic

moment of magnons. The second contribution μOn;k—the
orbital magnetic moment (OMM)—captures the difference
of Eqs. (1) and (2) and is the main object of interest in this
Letter. It is associated with an implicit dependence of εn;k
on B, which arises from the field-dependent relative
orientation of the magnetic texture to the structural lattice
[24] and, hence, requires spin-orbit coupling (SOC). The
SMM and the OMM result in macroscopic spin and orbital
magnetizations, MS and MO, respectively. These indepen-
dent quantities can be disentangled clearly in the situation
of magnonic orbital weak ferromagnetism, in which
MS ¼ 0 but MO ≠ 0. Importantly, even if MO ¼ 0 in
equilibrium, the OMM may be addressed by an orbital
Nernst effect of magnons in nonequilibrium. As a conse-
quence, the complete set of magnonic degrees of freedom
may be utilized for insulator spintronics.
Identification of the orbital magnetic moment.—We start

with a generic spin Hamiltonian Ĥ ¼ Ĥspin þ ĤZee; Ĥspin

and ĤZee ¼ ℏ−1μB
P

i B · giŜi describe the spin-spin inter-
actions (where the magnetic field B does not enter) and the
coupling to the magnetic field (Zeeman term; ℏ reduced
Planck constant, μB Bohr’s magneton), respectively. gi is
the g tensor of the spin operator Ŝi at site i. Assuming an
ordered ground state with N spins per magnetic unit cell
pointing along ẑn (n ¼ 1;…; N), we perform a truncated
Holstein-Primakoff (HP) transformation [25] from spin

operators to bosonic operators âð†Þi , yielding Ĥ ≈ E0 þ Ĥ2.
Here, E0 is the classical ground state energy and
Ĥ2 describes noninteracting magnons. After a trans-

formation to magnonic normal modes α̂ð†Þn;k in reciprocal

space, we obtain Ĥ ≈ E0 þ ΔE0 þ
P

k

P
N
n¼1 εn;kα̂

†
n;kα̂n;k.

The harmonic zero-point quantum fluctuations,

ΔE0 ¼ ΔEð1Þ
0 þ ΔEð2Þ

0 , with ΔEð1Þ
0 ¼ − 1

4

P
k TrHk, and
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ΔEð2Þ
0 ¼ 1

2

P
k

P
N
n¼1 εn;k, provide a correction to E0;Hk is the Hamilton matrix. See the Supplemental Material [26], Sec. I,

for details.
When considering effective spin Hamiltonians, usually the spin magnetization ([26], Sec. II),

MSðTÞ ¼ −
μB
V

X
k

XN
n¼1

gnẑnðSn − hâ†n;kân;kiÞ

¼ −
μB
Vuc

XN
n¼1

Sngnẑn
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

MS
0

−
μB
2Vuc

XN
n¼1

gnẑn
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ΔMS;ð1Þ
0

þ 1

2V

XN
n¼1

X
k

μSn;k
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

ΔMS;ð2Þ
0

þ 1

V

XN
n¼1

X
k

μSn;kρðεn;k; TÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MS
2
ðTÞ

; ð3Þ

is addressed (V sample volume, Vuc volume of a unit cell,
h·i thermodynamic average). Sn and gn are the length and
the g tensor of the nth spin in the unit cell, respectively.
Although gn already incorporates SOC, we denote
MS as a “spin” magnetization, because the set fgng
merely transforms the directions ẑn. The above
sum is decomposed into the classical ground state
spin magnetization MS

0, its quantum corrections

ΔMS
0 ¼ ΔMS;ð1Þ

0 þ ΔMS;ð2Þ
0 , and into MS

2ðTÞ, which is
due to the thermal population of magnons
[ρðεnk; TÞ ¼ ðeβεnk − 1Þ−1 Bose-Einstein distribution func-
tion at temperature T ¼ ðkBβÞ−1]. Eventually, μSn;k is the
SMM of magnons in band n with momentum k ([26],
Sec. II).
MSðTÞ does not coincide with the thermodynamical

definition of magnetization ([26], Sec. III)

MðTÞ ¼ −
1

V
∂Ω
∂B ¼ −

1

V
∂E0

∂B|fflfflfflffl{zfflfflfflffl}
M0

þ 1

4V

X
k

∂TrHk

∂B|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔMð1Þ

0
¼−1

V

∂ΔEð1Þ
0∂B

þ 1

2V

X
k

XN
n¼1

μn;k

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
ΔMð2Þ

0
¼−1

V

∂ΔEð2Þ
0∂B

þ 1

V

XN
n¼1

X
k

μn;kρðεn;k; TÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

M2ðTÞ

ð4Þ

(Ω grand potential). μn;k is the full magnonic magnetic
moment defined in Eq. (1). The constituents of M are
defined in analogy to those of MS.
To verify briefly that MS ≠ M replace the g tensor by a

scalar (gn → gn). MS is then restricted to those spatial
components offered by the ẑns; however, M and μn;k are
not, because the ẑns themselves depend on B. Thus, even if
all ẑns are collinear (or coplanar), μnk may have an
orthogonal component whose integral is nonzero;
hence, M ∦ MS.
The observation M0 ¼ MS

0 ([26], Sec. IV) allows us to
trace the difference of M and MS back to the difference
between μn;k and μSn;k. More precisely, one obtains
μn;k ¼ μSn;k þ μOn;k, in which the SMM is derived from
the explicit B dependence of the Zeeman energy and the
OMM ([26], Sec. V)

μOn;k ¼ −
XN
m¼1

X
α¼x;y;z

∂εn;k
∂α̂m

·
∂α̂m

∂B ð5Þ

from the implicit B dependence of the local coordinate
system fx̂n; ŷn; ẑng [32]. Such a dependence has to result
from SOC (or SOC-like interactions), which couples spins

and lattice and therefore motivates the term “orbital”
moment. The orbital magnetization,

MOðTÞ ¼ ΔMO;ð1Þ
0

þ 1

2V

X
k

XN
n¼1

μOn;k
|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

ΔMO;ð2Þ
0

þ 1

V

XN
n¼1

X
k

μOn;kρðεnk; TÞ
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

MO
2
ðTÞ

; ð6Þ

is absent in the classical ground state, since it is exclusively

due to quantum (ΔMO;ð1Þ
0 þ ΔMO;ð2Þ

0 ) and thermal fluctua-
tions [MO

2 ðTÞ].
In what follows, we assume scalar g factors and include

SOC exclusively via spin-spin interactions.
Orbital magnetic moments in equilibrium.—First, we

demonstrate how OMM can be probed in equilibrium as a
contribution to weak ferromagnetism. This phenomenon is
usually described at the level of classically antiferromagnetic
spin textures that exhibit a small canting, e.g., due to a
Dzyaloshinskii-Moryia interaction (DMI) [34,35] (MS

0 ≠ 0).
Here, we predict pure orbital weak ferromagnetism:MS

0 ¼ 0
butMO ≠ 0. A system of choice is a kagome antiferromagnet
[Fig. 1(a)] with the spin Hamiltonian
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Ĥ ¼ 1

2ℏ2

X
hiji

ð−JŜi · Ŝj þ Dij · Ŝi × ŜjÞ þ
gμB
ℏ

B ·
X
i

Ŝi;

ð7Þ

whose classical phase diagram was derived in Ref. [36]. Each
spin interacts with its four neighbors via antiferromagnetic
exchange J < 0 and SOC-induced DMI. The DMI vectors
Dij are orthogonal to the respective bond [black arrows in
Fig. 1(a)] and have both an in-plane (Dk) and an out-of-plane
component (Dz). ForDz > 0 and jDkj below a critical value,
the classical magnetic ground state is an antiferromagnetic
coplanar texture with negative vector chirality (NVC) [36]
[colored arrows in Fig. 1(a)]. The classical spin magnetization
vanishes (MS

0 ¼ 0). For E0 exhibits an accidental degeneracy
under global in-plane rotation of all spins, we perform an
order-by-disorder study with respect to the rotation angle ϕ
[insets in Fig. 1(b)]. Both quantum and thermal fluctuations
select the ϕ ¼ 0 texture [Fig. 1(a)] and its π=3 rotations over
any other rotated texture ([26], Sec. IV). Nonetheless, we
proceed with studying all textures.
For the discussion we single out the phases for ϕ ¼ 0

with magnetic point group 20=m0 (the prime indicates
additional time reversal) and ϕ ¼ π=2 with 2=m [37]. In
both cases the twofold rotation axis is along the x direction
and the mirror plane coincides with the yz plane. Both
groups are compatible with ferromagnetism (Table I).
Besides an in-plane magnetization, the ϕ ¼ 0 phase is also
compatible with a nonzero Mz. Since ẑn;z ¼ 0 by
construction, any nonzero Mz ¼ MO

z must be attributed
to an orbital moment.
This symmetry analysis is fully confirmed by the

magnetization calculated from Eq. (4) [Fig. 1(b)]. Although

M0ðϕÞ ¼ MS
0ðϕÞ ¼ 0 for all ϕ, the quantum-corrected

magnetization is never compensated: jΔM0ðϕÞj ≠ 0.
Hence, the quantum fluctuations cause the weak
ferromagnetism, of both spin and orbital origin for Mx
and My but of pure orbital origin for Mz. This finding
complements classical analyses of kagome antiferromag-
nets [36] and shows that even the NVC phase exhibits weak
ferromagnetism without the need of higher-order
anisotropies beyond DMI [38]. It is also a counterexample
to the common belief that quantum fluctuations only
reduce the magnitude of the ordered moment.
The microscopic origin of Mz ≠ 0 can be studied on the

basis of the OMM μ1;k;z ¼ μO1;k;z of the lowest magnon band
(n ¼ 1) for both phases (top row of Fig. 2; recall μS1;k;z ¼ 0).
Already an “ocular integration” over the Brillouin zone
reveals that MzðTÞ ¼ MO

z ðTÞ from Eq. (6) must be either
nonzero (ϕ ¼ 0) or zero (ϕ ¼ π=2), an observation con-
firmed by numerical integration (bottom row of Fig. 2). For
the ϕ ¼ 0 phase jMzðTÞj increases in absolute value with
temperature, showing that thermal fluctuations enhance the
quantum mechanical weak moment (the T dependence of
Mx and My is detailed in the Supplemental Material [26],
Sec. VI).
That SOC is causing the orbital moment is supported

by noting that μn;k;z;MzðTÞ → 0 as Dk → 0 (not shown).
If Dk ¼ 0 the kagome plane is an m0 plane, which renders
Mz zero by symmetry. Hence, in the absence of SOC-
induced spin-spin interactions, the orbital magnetization
vanishes.
Orbital magnetic moments in nonequilibrium.—Having

established signatures of OMMs at equilibrium, we now
focus on nonequilibrium and consider as an example
transport of magnetic moment—rather than spin—
in the pyrochlore ferromagnet Lu2V2O7. The spin
Hamiltonian [42]

Ĥ ¼ 1

2ℏ2

X
hiji

ð−JŜi · Ŝj þ Dij · Ŝi × ŜjÞ þ
gμB
ℏ

B ·
X
i

Ŝi;

ð8Þ

includes DMI vectors Dij ¼ Dn̂ij × êij that are
perpendicular to both the bonds êij and the normal n̂ij
of the cube that surrounds that tetrahedron the bond
belongs to [43]. For J > 0, collinear ferromagnetism is
found, ẑn ¼ −b̂ ¼ −B=B (n ¼ 1;…; 4), and quantum fluc-
tuations are absent, ΔM0 ¼ 0.

FIG. 1. Weak ferromagnetism due to quantum fluctuations in
the NVC phase on the kagome lattice. (a) Structural lattice with ẑn
(n ¼ 1, 2, 3) indicated by colored arrows and DMI vectors by
black arrows. (b) Magnetization components Mα (α ¼ x, y, z) at
zero temperature in dependence on ϕ. Since jMj ≠ 0, quantum
weak ferromagnetism is omnipresent; the out-of-plane magneti-
zation Mz ¼ MO

z is attributed to an orbital moment. Parameters
read J ¼ 3.18 meV, S ¼ 5=2, Dz ¼ 0.062J, Dk ¼ 1 meV.

TABLE I. Magnetic point group and symmetry-imposed shape
of M for NVC phases with ϕ ¼ 0 and ϕ ¼ π=2.

Angle ϕ 0 π=2

Magnetic point group 20=m0 2=m
Compatible magnetization ð 0 My Mz Þ ðMx 0 0 Þ
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The application of a magnetic field B ¼ ð0; 0; BzÞ [44]
results in μn;k;z ¼ μSn;k;z ¼ gμB and μn;k;α ¼ μOn;k;α ¼ OðDÞ
for α ¼ x, y. Hence, the constant z component of μn;k is a
SMM. The x and y components are OMMs, however,
which for positive (negative) kz resembles a sourcelike
(sinklike) vector field, as depicted in Fig. 3.
In equilibrium, the OMM integrates to zero,MO

2 ðTÞ ¼ 0.
However, in nonequilibrium, it is transported in transverse
direction to a temperature gradient ∇T. In other words, this
is a Nernst effect (NE) for magnetic moment rather than for
spin. Its analysis focuses on the response tensor ϒγ which
relates the nonequilibrium current density of the magneti-
zation with the temperature gradient: hjγαi ¼ ϒγ

αβð−∇βTÞ
with α; β; γ ¼ x, y, z.

Pyrochlore ferromagnets magnetized in z direction
belong to the magnetic point group 4=mm0m0, which
dictates the shape of ϒγ (Table II). Tensor elements that
are even upon magnetization reversal (subscript “e”) are
associated with intrinsic contributions to the transport,
whereas odd elements (subscript “o”) are associated with
extrinsic contributions [13,45].
The elements ϒ̃o and ϒ̃0

o of ϒz comprise a spin Seebeck
effect, while ϒ̃e indicates an anomalous spin Nernst effect
(SNE) which is associated with spin-polarized transverse
particle currents caused by the Berry curvature
[12,37,42,46–50].
Besides transport of the z component, symmetry admits

transport of x and y components as well (ϒx and ϒy in
Table II). ϒe (ϒ0

e) comprises an anomalous SNE with
mutual orthogonality of force, current, and moment direc-
tions, whereas ϒo (ϒ0

o) indicates a magnetic SNE [14].
Since the x and y components are OMMs, the respective
SNEs could be termed “magnonic orbital Nernst effects.”
The above symmetry analysis suggests straightaway an

experimental setup for probing OMMs. In a finite
pyrochlore sample with −∇T kM k ẑ, OMM accumulates
at the surfaces parallel to M (xz and yz surfaces).
The resulting surface-located nonequilibrium tilt on M,
conceivably measured by magnetooptical Kerr microscopy,
would clearly indicate transport of magnonic orbital
magnetization.
We support the above analysis by calculating numeri-

cally all 27 elements of ϒγ within Kubo transport theory
(Fig. 4; [26], Sec. VII). Vanishing elements (marked by
yellow background) agree with the zeroes in Table II; and
so does the either intrinsic (blue, “e”) or extrinsic (red, “o”)
character. Except for the diagonal elements of ϒz, all
elements scale with the strength D of the DMI, because
DMI causes either a nonzero Berry curvature (ϒ̃e) or
OMMs (ϒe, ϒ0

e, ϒo, ϒ0
o). With an orbital Nernst

conductivity ϒx
xz ≈ −0.4 mJ=ðTKmsÞ at T ¼ 20 K and

∇zT ¼ 25 K=mm, we find hjxxi ≈ 10 J=ðTm2 sÞ (in units
of spin, this corresponds to ℏhjxxi=μB ∼ 10−10 J=m2).
Another class of magnets lends itself support for non-

trivial magnonic OMMs: chiral magnets, like Cu2OSeO3,
which hold a prominent place in skyrmion research [52].
Their DMI-induced magnonic OMM μOk is nonzero, but
integrates to MO ¼ 0 in equilibrium. Due to broken
centrosymmetry, however, a magnon current caused by

FIG. 2. Top: momentum-dependent OMM μ1;k;z of the lowest
magnon band (n ¼ 1) in the Brillouin zone of the kagome
antiferromagnet in the NVC phase for ϕ ¼ 0 (left) and ϕ ¼
π=2 (right). Bottom: temperature dependence of the orbital
magnetization Mz. Parameters as in Fig. 1.

FIG. 3. Orbital magnetic moments μk;x and μk;y of the lowest
magnon band of the pyrochlore ferromagnet Lu2V2O7. The color

scale represents
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ2k;x þ μ2k;y

q
(in units of μB) in two selected

kx − ky planes: kz ¼ 0.2π=a (left) and kz ¼ −0.2π=a (right); a is
the lattice constant.

TABLE II. Shape of response tensors ϒγ (γ ¼ x, y, z) for the
magnetic point group 4=mm0m0. A subscript “e” (“o”) indicates
elements that are even (odd) under magnetization reversal.

ϒx ϒy ϒz

0
B@

0 0 ϒo

0 0 −ϒe

ϒ0
o −ϒ0

e 0

1
CA

0
B@

0 0 ϒe

0 0 ϒo

ϒ0
e ϒ0

o 0

1
CA

0
B@

ϒ̃o ϒ̃e 0

−ϒ̃e ϒ̃o 0

0 0 ϒ̃0
o

1
CA
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−∇T exerts a torque on M [8,53], an effect that can be
explained as an orbital version of the magnon Edelstein
effect proposed in Ref. [16]; see the Supplemental Material
[26], Sec. VIII.
Dipolar interactions couple spins to the lattice as well. A

magnonic OMM—or better: dipolar magnetic moment—
could be identified as follows. Magnons with k ∦ M
carry nonzero μOk ⊥M. Again, MO ¼ 0 in equilibrium,
but a dipolar-driven “orbital” Nernst effect should show
up for symmetry reasons, for example in yttrium iron
garnet (YIG); see the Supplemental Material [26],
Sec. IX.
Synopsis.—We introduced the orbital magnetic moment

of magnons and proposed two experimental signatures: (ı)
weak ferromagnetic orbital moment in equilibrium and (ıı)
accumulation of orbital magnetic moment in nonequili-
brium due to a magnonic orbital Nernst effect. Since the
latter has the same symmetry as the spin Hall effect [54], it
should occur in any magnet with large enough SOC or
dipolar interactions. Hence, our results pave a way for an
all-insulator magnonic spin-orbit torque.

This work is supported by CRC/TRR 227 of Deutsche
Forschungsgemeinschaft (DFG).

Note added.—The magnonic OMM defined as the differ-
ence between total moment and SMM applies to any spin
Hamiltonian. For the Hamiltonians discussed in this Letter,
it can be traced back to the dependence of the local
coordinate axes on the magnetic field as written in
Eq. (5). The “topological orbital moment” and the resulting
orbital Nernst effect of magnons discussed in Ref. [33],
both of which rely on a special type of spin interaction,
namely three-spin ring exchange, is also captured by
Eq. (1) and would appear as an additional contribution

in Eq. (5). However, in the frame of this Letter, we confined
ourselves to bilinear spin-spin interactions.
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lattice, Phys. Rev. B 66, 014422 (2002).

[37] A. Mook, J. Henk, and I. Mertig, Thermal Hall effect
in noncollinear coplanar insulating antiferromagnets,
Phys. Rev. B 99, 014427 (2019).

[38] For parameters of CdCu3ðOHÞ6ðNO3Þ2 · H2O—we used
S ¼ 1=2, g ¼ 2.1, Dk ¼ Dz ¼ 0.1J, and J ¼ 3.87 meV
and ϕ ¼ π=2—we find that the weak moment accounts
for ≲1% of the experimentally found 7.93 × 10−2 μB=Cu
[39]. Similar estimates may apply to Ca-kapellasite [40] and
YCu3ðOHÞ6Cl3 [41].

[39] R. Okuma, T. Yajima, D. Nishio-Hamane, T. Okubo, and
Z. Hiroi, Weak ferromagnetic order breaking the threefold
rotational symmetry of the underlying kagome lattice in
CdCu3ðOHÞ6ðNO3Þ2 · H2O, Phys. Rev. B 95, 094427
(2017).

[40] Y. Ihara, H. Yoshida, K. Arashima, M. Hirata, and T. Sasaki,
Anisotropic magnetic excitations from single-chirality anti-
ferromagnetic state in Ca-kapellasite, Phys. Rev. Research
2, 023269 (2020).

[41] A. Zorko, M. Pregelj, M. Gomilšek, M. Klanjšek, O.
Zaharko, W. Sun, and J.-X. Mi, Negative-vector-chirality
120° spin structure in the defect- and distortion-free
quantum kagome antiferromagnet YCu3ðOHÞ6Cl3, Phys.
Rev. B 100, 144420 (2019).

PHYSICAL REVIEW LETTERS 125, 117209 (2020)

117209-6



[42] Y. Onose, T. Ideue, H. Katsura, Y. Shiomi, N. Nagaosa, and
Y. Tokura, Observation of the magnon Hall effect, Science
329, 297 (2010).

[43] M. Elhajal, B. Canals, R. Sunyer, and C. Lacroix, Ordering
in the pyrochlore antiferromagnet due to Dzyaloshinsky-
Moriya interactions, Phys. Rev. B 71, 094420 (2005).

[44] This field models an anisotropy; see the Supplemental
Material [26], Sec. VII, for details.

[45] J. Železný, Y. Zhang, C. Felser, and B. Yan, Spin-Polarized
Current in Noncollinear Antiferromagnets, Phys. Rev. Lett.
119, 187204 (2017).

[46] H. Katsura, N. Nagaosa, and P. A. Lee, Theory of the
Thermal Hall Effect in Quantum Magnets, Phys. Rev. Lett.
104, 066403 (2010).

[47] R. Matsumoto and S. Murakami, Rotational motion of
magnons and the thermal Hall effect, Phys. Rev. B 84,
184406 (2011).

[48] R. Matsumoto and S. Murakami, Theoretical Prediction of a
Rotating Magnon Wave Packet in Ferromagnets, Phys. Rev.
Lett. 106, 197202 (2011).

[49] R. Matsumoto, R. Shindou, and S. Murakami, Thermal Hall
effect of magnons in magnets with dipolar interaction,
Phys. Rev. B 89, 054420 (2014).

[50] A. Mook, J. Henk, and I. Mertig, Magnon Hall effect and
topology in kagome lattices: A theoretical investigation,
Phys. Rev. B 89, 134409 (2014).

[51] K. Riedl, D. Guterding, H. O. Jeschke, M. J. P. Gingras, and
R. Valentí, Ab initio determination of spin hamiltonians with
anisotropic exchange interactions: The case of the pyrochlore
ferromagnet Lu2V2O7, Phys. Rev. B 94, 014410 (2016).

[52] S. Seki, X. Z. Yu, S. Ishiwata, and Y. Tokura, Observation of
skyrmions in a multiferroic material, Science 336, 198
(2012).

[53] A. Manchon, P. B. Ndiaye, J.-H. Moon, H.-W. Lee, and
K.-J. Lee, Magnon-mediated Dzyaloshinskii-Moriya torque
in homogeneous ferromagnets, Phys. Rev. B 90, 224403
(2014).

[54] J. Sinova, S. O. Valenzuela, J. Wunderlich, C. H. Back, and
T. Jungwirth, Spin Hall effects, Rev. Mod. Phys. 87, 1213
(2015).

PHYSICAL REVIEW LETTERS 125, 117209 (2020)

117209-7



6.2 Thermal Hall Effect in Magnetic Insulators

6.2 Thermal Hall Effect in Magnetic Insulators

The thermal Hall effect is an important probe for the Berry curvature of charge neutral
quasiparticles. In Section 4.3, I delineated the derivation of the intrinsic thermal Hall
conductivity, which depends on the Berry curvature. The Berry curvature also plays
a central role in topology (cf. Section 3.3). Measuring the transversal heat transport is
therefore one possible approach for identifying topological states of bosons in analogy
to the anomalous Hall effect, which universally indicates topological electronic phases.
However, the analogy has limitations for topological magnons.

The following two papers both study the thermal Hall effect in collinear antiferro-
magnets in the presence of an external magnetic field. The magnetic field competes with
the antiferromagnetic order and drives the magnet across two magnetic phase transitions.
The spin-flop transition describes the change from the collinear antiferromagnetic phase
to a noncollinear spin-flop phase, where the spins partly align to the external field to
reduce their Zeeman energy and partly maintain their antiparallel orientation depend-
ing on the magnitude of the field. When the spins have fully rotated parallel to the
external field, the spin texture is that of a ferromagnet and the system has entered the
field-polarized phase.

Both kinds of magnetic phase transitions can be expected to drastically affect the ther-
mal Hall conductivity. While the first publication considers the pure magnon transport,
the second publication addresses the role of hybridization of magnons and phonons in the
transversal heat transport. Both works reveal a significant effect of the magnetic phase
transitions on the transport properties.

6.2.1 Magnon Thermal Hall Effect

While the anomalous Hall effect can be quantized at zero temperature if the Fermi level
is located in the topological gap (quantum anomalous Hall effect), which is a direct
experimental signature of topological insulators for electrons, the quantization of the
thermal Hall effect fails to materialize for two main reasons. First, any heat transport
vanishes at zero temperature and, thus, must be small at low temperature. It is therefore
no ground state property and, hence, can only be observed at finite temperatures.

Second, magnons in general and topological magnons in particular are excitations of
the ground state. Even if the thermal Hall conductivity was finite at zero tempera-
ture, no magnon states would be thermally populated and therefore the signal would be
independent of (topological) magnons. Topological magnons in particular are not the
lowest-energy excitations, since they “live” between two bulk bands (cf. Section 3.3.1).
Because lower-energy states are preferably occupied by the Bose distribution, both bulk
and edge magnons contribute to the thermal transport. Hence, there is no universal
signature of topological magnon phases in the thermal transport properties.

This insight has motivated the study of topological phase transitions. Besides the
magnetic phase transitions, topological phase transitions must appear in a collinear an-
tiferromagnet. The antiferromagnetic phase is effectively time-reversal symmetric, which
excludes a topologically nontrivial band topology. This is because the Chern numbers
vanish in the presence of time-reversal symmetry (cf. Section 3.3) The field-polarized
phase on the other hand directly maps onto the Haldane model, which is known to
feature topological phases (cf. Section 3.3.1). Consequently, topological phase transitions
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have to exist in between.
By calculating the thermal Hall conductivity across the magnetic and topological

phase transitions driven by an external magnetic field, signatures of the phase transitions
can be identified. These signatures encompass jumps, peaks, and sign changes in the
thermal Hall conductivity. We quantify the impact of the phase transitions onto the
transport signal by defining the thermal Hall magnetoconductivity as a figure of merit.
While the impact of the spin-flop transition on the signal decreases with temperature with
the thermal Hall magnetoconductivity reaching up to almost 100 % at low temperatures,
the topological phase transition has a larger impact at higher temperatures. Since the
temperature provides the tunability of the sensitivity to either type of phase transition,
they can be distinguished in the thermal Hall conductivity.

The sensitivity of the thermal Hall conductivity to topological phase transitions dis-
tinguishes it from other macroscopic quantities that exclusively indicate magnetic phase
transitions. As an example, we have considered the heat capacity of the magnons, which
display distinct peaks at the magnetic phase transitions, but no traces of the topological
ones.2 A combination of thermal Hall and heat capacity measurements can thus identify
topological phase transitions and discern them from magnetic ones.

Reprinted article from R. R. Neumann, A. Mook, J. Henk, and I. Mertig, Physical Review Letters 128,
117201 (2022); Ref. [RN2]; http://dx.doi.org/10.1103/PhysRevLett.128.117201. Copyright (2022)
American Physical Society. Reproduced with permission. All rights reserved.

2The results are part of the Supplemental Material of Publication [RN2].
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Thermal Hall Effect of Magnons in Collinear Antiferromagnetic Insulators:
Signatures of Magnetic and Topological Phase Transitions

Robin R. Neumann ,1 Alexander Mook ,2 Jürgen Henk ,1 and Ingrid Mertig 1

1Institut für Physik, Martin-Luther-Universität Halle-Wittenberg, D-06099 Halle (Saale), Germany
2Department of Physics, University of Basel, Klingelbergstrasse 82, CH-4056 Basel, Switzerland

(Received 1 September 2021; accepted 21 January 2022; published 14 March 2022)

We demonstrate theoretically that the thermal Hall effect of magnons in collinear antiferromagnetic
insulators is an indicator of magnetic and topological phase transitions in the magnon spectrum. The
transversal heat current of magnons caused by a thermal gradient is calculated for an antiferromagnet on a
honeycomb lattice. An applied magnetic field drives the system from the antiferromagnetic phase via a
spin-flop phase into the field-polarized phase. In addition to these magnetic phase transitions, we find
topological phase transitions within the spin-flop phase. Both types of transitions manifest themselves in
prominent and distinguishing features in the thermal conductivity, which changes by several orders of
magnitude. The variation of temperature provides a tool to discern experimentally the two types of phase
transitions. We include numerical results for the van der Waals magnet MnPS3.

DOI: 10.1103/PhysRevLett.128.117201

Introduction.—In electronic systems, details of the
electronic structure and the magnetic configuration mani-
fest themselves in the transport properties. As an example,
the quantum anomalous Hall effect, in which the trans-
versal transport coefficient is quantized, is a clear signature
of a topologically nontrivial phase. Moreover, topological
phases of the electronic states can be clearly identified
spectroscopically, e.g., in topological insulators [1–5].
The field of topology is not restricted to fermions, but

also applies to bosons. The topological features of phonons
[6–13], photons [14–18], and magnetic excitations [19–27],
however, are more subtle due to the lack of the Pauli
exclusion principle and quantized transport. In this Letter,
we focus on magnons because they are easily manipulated
by external magnetic fields. The identification of magnon
edge states, the hallmarks of a nontrivial system, is
notoriously difficult. On the one hand, angle-resolved
photoelectron spectroscopy cannot be applied at all and
spin-polarized scanning tunneling spectroscopy has severe
restrictions [28–33]. On the other hand, inelastic neutron
scattering succeeds in detecting gapped bulk spectra, but
fails in resolving edge modes [34]. These apparent short-
comings call for identifying clear signatures of magnetic
and topological phase transitions.
In this Letter, we aim at bridging the apparent gap

sketched in the preceding paragraph. For this purpose, we
investigate theoretically an antiferromagnet that exhibits
spin-split, nonreciprocal magnon bands and both magnetic
and topological phase transitions induced by an applied
magnetic field. These phase transitions show up as clear
characteristic signatures in the field and temperature
dependence of the thermal Hall conductivity, which are
explained by the magnonic band structure and the Berry

curvature. In order to convey the strong tunability and
sensitivity of the thermal Hall effect, we calculate the
thermal Hall magnetoconductivity at two selected phase
transitions. Our findings suggest a means for identifying
magnetic and topological phases via transport measure-
ments, which could be especially attractive in two-
dimensional materials, for which other methods are imprac-
tical (e.g., neutron scattering due to low signal intensities).
Conversely, they insinuate a way to externally control the
thermal Hall effect due to the significant changes across the
phase transitions. The numerical results for MnPS3, which
is known for its nontrivial magnon transport [35], ask for
comparison with experimental data.
Previous reports addressed thermal Hall effects in col-

linear ferromagnets with Dzyaloshinskii-Moriya interaction
(DMI) and dipolar interactions [19,20,24,36–61], in weak
ferromagnets with scalar spin chirality or due to magnetic
fields [62–76], in noncollinear antiferromagnets [77], or in
paramagnets [13,42,45,62,78–83]. Here, we present a ther-
mal Hall effect in collinear antiferromagnets without
DMI, which may even be present without external fields.
While noncollinear antiferromagnets rely exclusively on
their magnetic order to break an effective time-reversal
symmetry (which is a prerequisite for the thermal Hall
effect), collinear antiferromagnets additionally rely on the
symmetry-breaking effect of the crystal, e.g., due to non-
magnetic atoms. The underlying mechanism is the mag-
nonic analog of the Hall effect reported in Ref. [84].
Model and methods.—We consider a magnet on a two-

dimensional (2D) honeycomb lattice (in the xy plane;
depicted in Fig. 1). In the ground state without a magnetic
field, the spins of sublattice A (B) point in the þz (−z)
direction.
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The spin Hamiltonian

H ¼ HNN þHon þHB ð1Þ

comprises the coupling of nearest-neighbor spins,

HNN ¼ 1

2ℏ2

X

hiji
S⊺i

0
B@

Jþ Ja cosθij −Ja sinθij 0

−Ja sinθij J − Ja cosθij 0

0 0 Jz

1
CASj

ð2Þ

(ℏ reduced Planck constant). Both in- and out-of-plane spin
components are coupled antiferromagnetically, but with
different strengths (Jz > J > 0). The traceless and sym-
metric coupling, introduced by Ja, originates from spin-
orbit coupling [85]. It is related to the nearest-neighbor
bonds hiji by the bond-dependent angles θij ¼ 0, 2π=3,
and −2π=3 (cf. angles near bonds in Fig. 1). The classical
collinear configuration favored by J and Jz is maintained as
long as Ja is sufficiently small.
This model was proposed for manganese thiophosphate

MnPS3 in Ref. [85] and it produces a nonreciprocal
magnon spectrum. Wildes et al. did not find signatures
of an asymmetric band structure in MnPS3 and ruled out the
presence of DMI [86], another source of nonreciprocity
[87]. However, bond-dependent exchange interaction Ja is
allowed by symmetry [85], consistent with results from
neutron resonance spin echo spectroscopy [88], and cannot
be excluded due to the limited experimental resolution in
Ref. [86]. Nevertheless, further insights into the spin-spin
interactions are desirable, for example, by comparing
experimental results with our predictions for the transport
properties.
We extend the model of Ref. [85] by considering an

on-site anisotropy

Hon ¼ −
A
ℏ2

X

i∈A
ðSzi Þ2 ð3Þ

for the spins on sublattice A, which breaks the inversion
symmetry on the level of the Hamiltonian. It may be
brought about by placing the sample on a substrate or in a
heterostructure (e.g., on a transition-metal dichalcogenide),
thereby producing local environments of the atoms that
differ for the two sublattices [89]. The anisotropy translates
into a sublattice-dependent on-site potential of the
magnons.
The Zeeman Hamiltonian

HB ¼ gμBBz

ℏ

X

i

Szi ð4Þ

(g is g-factor, μB is Bohr magneton) accounts for an out-of-
plane magnetic field that destabilizes the antiferromagnetic
(AFM) order and induces magnetic phase transitions.

Below the critical magnetic field BðmÞ
1 , defined by

gμBB
ðmÞ
1 =S ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð3Jz þ AÞ2 − 9J2

q
− A; ð5Þ

the classical ground state is a collinear antiferromagnet

with a Néel vector pointing in the z direction. Between BðmÞ
1

and BðmÞ
2 ,

gμBB
ðmÞ
2 =S ¼ 3Jz þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9J2 þ A2

p
− A; ð6Þ

the system is in a coplanar spin-flop (SF) phase, and in the

field-polarized (FP) phase (fields larger than BðmÞ
2 ) all spins

point along þz. The ground state’s spin configuration has
been obtained by analytical and numerical methods; for
details see the Supplemental Material [90].
For the thermal Hall conductivity [38]

κxy ¼ −
k2BT
ℏV

X

k

XN

n¼1

c2½ρðεn;kÞ�Ωn;k; ð7Þ

(T temperature, kB Boltzmann’s constant, V volume), a
large Berry curvature Ωnk at low energies εnk, which enter
the weight function c2½ρðεÞ�, are relevant. More details can
be found in the Supplemental Material [90].
We continue with MnPS3: Jz ¼ 1.541 meV, J ¼

1.54 meV, Ja ¼ 0.02 meV, and S ¼ 5=2 [86,94].
Regarding the on-site anisotropy A, we consider two cases.
First, the bulk properties of MnPS3 are modeled by setting
A ¼ 0. Second, we account for a substrate by setting
A ¼ 0.1meV, which is a realistic value in the range of
predictions by ab initio calculations for other van der Waals
magnets [89]. Our choice for A renders the respective
calculations semiquantitative, since the precise numerical
value of A depends on the selected substrate.

FIG. 1. Honeycomb lattice with antiferromagnetically coupled
spins on sublattices A (blue) and B (orange). The spin configu-
ration shown here is paradigmatic for the spin-flop phase with
A ≠ 0 and a magnetic field applied along −z.
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Below, we describe and explain the field-dependent Hall
conductivity κxyðBzÞ for increasing field starting at zero.
Magnetic (m) and topological (t) phase transitions occur at

B1 < BðtÞ
2 < BðtÞ

3 < BðmÞ
2 . If a topological and a magnetic

phase transition coincide (e.g., at B1), the notation BðmÞ

and BðtÞ becomes redundant. Changes in κxy are traced
back to the evolution of the magnon spectrum and the
Berry curvature. In addition to the descriptions and figures
provided here, animations are available in the Supplemental
Material [90].
Discussion of results for bulk MnPS3.—For A ¼ 0 and

zero magnetic field, the AFM phase is invariant under
simultaneous space inversion P and time reversal T, which
causes Ωnk ¼ 0 and, thus, κxy ¼ 0. The otherwise degen-
erate magnon bands are spin-orbit split by Ja ≠ 0, with the
exception of the Γ and K0 points in the Brillouin zone
(BZ) [85].
A small magnetic field breaks PT symmetry and lifts the

band degeneracies at Γ and K0, which brings about Berry
curvature of opposite sign [Ω1k > 0 at Γ, Ω1k < 0 at K0 as
displayed in Fig. 3(a)]. The higher thermal occupation of
the states around Γ and the minus sign in Eq. (7) explain
that κxy is negative. The higher the temperature, the larger
the occupation at Γ and the larger jκxyj.
As the field strength increases, the positive Berry

curvature around Γ is gradually redistributed toward the
K points and the negative Berry curvature at K0 extends
toward Γ (cf. Supplemental Material, Video 1 [90]), which
explains the nonmonotonic behavior of κxy.
At the first-order AFM-SF phase transition at gμBB

ðmÞ
1 ¼

0.416 meV, also identified by a diverging susceptibility,
bothA andB spins are abruptly rotated into the xy plane but
obtain a small (ferromagnetic) component parallel to the
magnetic field. In Fig. 2(a), this redirection is seen in the
angles θA and θB between the xy plane and the spins (inset:
A blue, B orange) and in the jump of the magnetization
from zero to negative values. The experimentally measured
critical field in the range of gμBB1 ¼ 0.42–0.54 meV
[97,98] agrees reasonably well with our analysis.
In the SF phase, the lower band is pinned at zero energy

at Γ due to the continuous rotational symmetry of the
classical ground state energy that is spontaneously broken
by the noncollinear ground state [99]. The Berry curvature
of band n ¼ 1 is dominantly positive, and the Chern
number C1 jumps from 0 to −1. Thus, the magnetic phase
transition is accompanied by a topological phase transition
and jκxyj is abruptly increased.
Ramping up the magnetic field further, the large Berry

curvature around Γ [cf. Fig. 3(b)] becomes redistributed to
high-energy magnons [cf. Fig. 3(c)], with the consequence
that jκxyj decreases with the B field [cf. Fig. 2(b)].
The second topological phase transition at gμBB

ðtÞ
2 ¼

1.901 meV is attributed to a band inversion. The Chern
numbers of both bands are interchanged; that is,

C1 ¼ −1 → C1 ¼ þ1. This band inversion occurs near

the BZ edge: just before BðtÞ
2 , e.g., jgμBBzj ¼ 1.8 meV,

the dominating positive Berry curvature appears near the
BZ edge and is spread along kx [red in Fig. 3(c)]. And after
the transition, e.g., at jgμBBzj ¼ 2 meV, this dominating
Ωnk has changed sign [blue in Fig. 3(d)]. As a consequence,
the band inversion manifests itself in κxy prominently at
elevated temperatures, for which it even causes sign
changes [cf. red line in Fig. 2(b)].
The band inversion is reversed again (C1 ¼ þ1 →

C1 ¼ −1) at gμBB
ðtÞ
3 ¼ 13.368 meV, again most clearly

seen in κxy at 30 K, which, as before, features a sign change.

Approaching BðtÞ
3 the elongated distribution of the Berry

curvature seen for BðtÞ
2 becomes concentrated around the K

and K0 points, and the band inversion then occurs at these
points at the BZ edge (cf. Supplemental Material, Video 1
[90]). In short, the higher the temperature (but still well
below the ordering temperature), the stronger κxy reflects
the topological phase transitions.
The second-order magnetic SF-FP phase transition at

gμBB
ðmÞ
2 ¼ 23.107 meV, also identified by a jump in the

FIG. 2. Magnetic, topological, and transport properties of
(bulk) MnPS3 (A ¼ 0). (a) Classical ground state magnetization
versus magnetic field. Inset: angles θA and θB of the sublattice A
(blue) and B (orange) spins with the xy plane. (b) Thermal Hall
conductivity κxy for four selected temperatures (T ¼ 1.0, 4.2, 15,
and 30 K). The white, blue, red background color indicates
topological phases with Chern numbers C1 ¼ 0;−1;þ1 of the
lowest magnon band. Dashed red lines mark the magnetic phase

transitions at the critical fields BðmÞ
1 and BðmÞ

2 . All four panels have
logarithmic ordinates and abscissae with linear-scale segments
around 0, which are identified by equally spaced minor ticks.
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susceptibility, shows clear temperature-dependent signa-
tures in κxy [Fig. 2(b)]. On the one hand, the dominating
positive contribution of the Berry curvature is located at the
BZ edges (magnons with higher energies); on the other
hand, a small annular, negative contribution shows up near

the BZ center (low-energy magnons) [Fig. 3(e)]. Thus, the
weighting between these competing contributions can be
altered by the occupation of the respective magnon states
and, therefore, by the temperature. To be more specific, low
temperatures freeze out the high-energy contribution,
allowing the small low-energy contribution to dominate
in the transport and leading to a peak with a sign change
in κxy. At elevated temperatures, however, magnons
with positive Ωnk are significantly populated. Since the
high-energy contribution, being induced by the topological
phase transition, exists independently of the magnetic
phase transition, it does not show up as a pronounced peak.
At the transition point, the in-plane Néel vector vanishes.

The FP phase is hence characterized by a saturated classical
magnetization [cf. Fig. 2(a)]. Beyond this second-order
transition the magnetic field shifts both bands to higher
energies, thereby suppressing thermal transport (κxy → 0)
[Fig. 2(b)].
Based on the above, we conclude that κxy exhibits clear

signatures of magnetic phase transition at low temperatures
and of topological phase transitions at higher temperatures.
Thermal Hall magnetoconductivity.—The previous

analysis revealed the need for a quantity that precisely
measures the sensitivity of κxyðBzÞ on the phase transitions.
In analogy to the magnetoresistance, we define the thermal
Hall magnetoconductivity (THMC) as

THMC ¼
����
κxyðBz þ ΔBzÞ − κxyðBz − ΔBzÞ
κxyðBz þ ΔBzÞ þ κxyðBz − ΔBzÞ

����: ð8Þ

By definition, the THMC corresponds to the relative
change of κxy upon the phase transition at Bz. In Fig. 4,
the THMC is shown versus temperature for (i) the AFM-SF
transition (blue line) and (ii) for the topological phase

transition at BðtÞ
2 (orange line) [100]. For (i) the THMC is

close to one near 1 K and monotonically decreases with
temperature. (ii) The topological phase transition shows
the expected behavior, i.e., the THMC is small at low
temperatures, indicating that κxy does not change by much,

FIG. 3. (a–e) Magnon band structures and Berry curvatures of
(bulk) MnPS3 (A ¼ 0) for selected strengths jgμBBzj of the
magnetic field. Magnon-dispersion and Berry-curvature panels
appear in pairs, indicated by a common gray background, with
identical strength of the magnetic field (in meV; the positioning
with respect to the phase transitions is sketched at the bottom).
The magnon energies εnk (in meV) are shown along high-
symmetry lines of the first Brillouin zone; the Berry curvatures
Ω1k of the lowest band are displayed as color maps in reciprocal
space (the black hexagons indicate the first BZ). The kx and ky
axes are given in Å−1. Parameters are chosen as in Fig. 2. For an
animation, see Supplemental Material, Video 1 [90].

FIG. 4. Thermal Hall magnetoconductivity as a function of
temperature T at the AFM-SF transition B1 (blue line) and the

second topological phase transition BðtÞ
2 (orange line).

PHYSICAL REVIEW LETTERS 128, 117201 (2022)
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when the topological transition is crossed, but it escalates
and takes values close to 175% at 30 K. Based on these
results, the drastic changes of κxy at the phase transitions
can be exploited for a “thermal Hall switch,” in which the
transverse heat current (or the transverse temperature
gradient) is controlled by the external field.
Results for MnPS3 on a substrate.—A substrate or a

heterostructure that breaks the sublattice symmetry is
mimicked by setting A ¼ 0.1 meV. There are three key
differences to bulk MnPS3 (A ¼ 0): (i) The AFM-SF
transition becomes continuous. (ii) The nonmagnetic atoms,
which are responsible for A ≠ 0, break an effective time-
reversal symmetryPT and a thermalHall effect in a collinear
antiferromagnet without a magnetic field ensues. A similar
situation has been reported for the anomalous Hall effect in
an electronic system [84]. (iii)A opens a trivial gap in the FM
phase and it dominates over Ja. Since the AFM phase is
always trivial, there are no topological phase transitions.We
present the magnon spectra, Berry curvature, thermal Hall
effect, and heat capacity for A ¼ 0.1 meV in the
Supplemental Material [90].
Wrap up.—Our theoretical investigation of the tempera-

ture and magnetic-field dependence of the transversal heat
conductivity κxy of a honeycomb magnet proves that κxy is
very sensitive to the magnetic structure at low temperatures:
it exhibits pronounced peaks at the magnetic phase tran-
sitions, but is rather unaffected by topological phase
transitions. Conversely, κxy traces the topological phase
transitions at high temperatures, but is insensitive to the
magnetic transitions. Its reading may change several orders
near a phase transition and it may also change sign. To
paraphrase, magnetic and topological phase transition
cause distinct signatures in κxy, the measurement of which
may be used to identify the phase transitions. On the other
hand, the strong change under the phase transitions may be
exploited as a thermal Hall switch in which the transport
properties are manipulated by external means.
Detecting topological (edge) magnons is more difficult

than for electrons, since transport of bosons is not quan-
tized—what is a clear signature of nontrivial topology in
electronic systems. Instead, κxyðBÞ may be investigated as
an indicator, its prominent features provide evidence to
infer the existence of topological magnons. Although there
are other sources of drastic changes in κxyðBÞ, a combi-
nation with measurements of, e.g., heat capacity CVðBÞ,
which is insensitive to topology, could be used to verify the
topological nature of the signatures (proof of concept in
Supplemental Material [90]).
Our findings call for experimental validation.

The numerical results for MnPS3 suggest that κxy lies
within the experimentally accessible range. We point out
that extraordinarily high fields would be required for
mapping the entire phase diagram. Nonetheless, the
antiferromagnet–spin-flop transition and the topological
transition at 2.202 meV are experimentally amenable.

This work is funded by the Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) –
Project-ID 328545488 – TRR 227, project B04.
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6.2 Thermal Hall Effect in Magnetic Insulators

6.2.2 Thermal Magnon-Polaron Hall Effect
Motivated by the preceding results on the effects of field-driven phase transitions on the
thermal transport properties of antiferromagnets, we collaborated with experimentalists
on the heat transport in the cobaltate Na2Co2TeO6. The material is a honeycomb anti-
ferromagnet, which has gained attention due to the prediction of a spin liquid phase in
materials with 3d electrons [170]. However, the material features antiferromagnetic order
below TN = 27 K [171]. The experimental data of the thermal Hall effect reported in
our paper obtained at temperatures below 2.2 K exhibit a sign change at 10 T driven by
the magnetic field.

The theoretical analysis of the paper revealed three main findings:

• The sign change around 10 T can be attributed to a spin-flop phase transition from
a collinear zigzag-type antiferromagnetic to a spin-flop phase.

• Intrinsic magnon transport by itself does not explain the observed sign and magni-
tude of the thermal Hall signal.

• The hybridization of magnons and phonons reverses the sign and can explain the
magnitude of the thermal Hall conductivity.

While the magnon model predicts a magnetic phase transition close to 10 T and an
accompanying sign change of the thermal Hall conductivity, the global sign is incorrect.
Furthermore, the magnon transport only accounts for roughly 10 % of the signal.

When spin-lattice coupling is included in the form of a hybridization between magnons
and phonons, the crossings between phonon and magnon bands are gapped and magnon
polarons emerge (cf. Section 2.4). The hybridization imparts a Berry curvature to the
hybrid excitations, the dominant contribution of which is of opposite sign than that of
the dominant magnon Berry curvature before the hybridization. Consequently, the sign
of the thermal Hall conductivity reverses and the magnitude increases depending on the
strength of the spin-lattice coupling. Pictorially speaking, magnons and magnon polarons
are deflected in opposite directions and their contributions to the transverse heat current
compete with each other. Depending on the temperature and spin-lattice coupling, the
balance can be tilted in favor of either types of quasiparticles.

Importantly, the study demonstrates that magnon polarons may dominate the ther-
mal Hall conductivity, which exacerbates the detection of topological magnons by heat
transport because they are typically higher in energy. The potential of magnon polarons
overshadowing topological magnons therefore needs to be considered in proposals for
observing the latter.

Reprinted article from N. Li, R. R. Neumann, S. K. Guang, Q. Huang, J. Liu, K. Xia, X. Y. Yue, Y.
Sun, Y. Y. Wang, Q. J. Li, Y. Jiang, J. Fang, Z. Jiang, X. Zhao, A. Mook, J. Henk, I. Mertig, H. D. Zhou,
and X. F. Sun, Physical Review B 108, L140402 (2023); Ref. [RN3]; http://dx.doi.org/10.1103/
PhysRevB.108.L140402. Copyright (2023) American Physical Society. Reproduced with permission. All
rights reserved.
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We investigate the thermal Hall effect in the Heisenberg-Kitaev antiferromagnet Na2Co2TeO6, where we
observe negative thermal Hall conductivity (THC) with thermal Hall angles up to 2% at low magnetic fields,
which changes the sign to positive THC at higher fields. Our theoretical calculations, incorporating spin-
lattice coupling, reveal that the quantum-geometric Berry curvature of magnon polarons counteracts the purely
magnonic contribution, resulting in a reversed sign and an increased magnitude in THC. This finding emphasizes
the significance of spin-lattice coupling in understanding the thermal Hall effect.

DOI: 10.1103/PhysRevB.108.L140402

Topological phases of matter have received enormous at-
tention in solid-state physics not only for their exceptional
fundamental properties, but also for their potential tech-
nological impact. For example, topological band insulators
feature protected, dissipationless edge channels [1–3], and
topological order in strongly correlated electron systems (e.g.,
quantum spin liquids [4–6]) may be a route to fault-tolerant
quantum computing [7,8]. Harvesting the potential of these
exotic phases requires a reliable technique for their detec-
tion and characterization. An important probe for topological
phases in insulators is the thermal Hall effect (THE), which
denotes a transverse heat current response to a longitudinal
temperature gradient [9,10]. Its intrinsic contribution is an
invaluable probe of the Berry curvature, that is, a quantum-
geometric property acting on the inherent quasiparticles, e.g.,
Majorana fermions [11,12], triplons [13,14], photons [15,16],
and magnons [17–23], like a fictitious magnetic field. How-
ever, the ubiquitous phonons (quanta of lattice vibrations)
interact and potentially hybridize with the aforementioned
quasiparticles due to spin-lattice coupling (SLC) [24–26]. The
band inversions of these quasiparticle-phonon hybrids estab-
lish another source of Berry curvature that may even dominate
the low-temperature THE because of the low acoustic phonon
energies. Hence, a detailed understanding of SLC and its
effects on intrinsic heat transport is required.

*These authors contributed equally to this work.
†ingrid.mertig@physik.uni-halle.de
‡hzhou10@utk.edu
§xfsun@ahu.edu.cn

In this joint experimental and theoretical work, we re-
port the thermal Hall conductivity (THC) κxy of the Kitaev
spin-liquid candidate Na2Co2TeO6 (NCTO), which has at-
tracted considerable attention recently [27–42]. Our field- and
temperature-dependent measurements reveal a negative THC
for out-of-plane magnetic fields below 10 T and a positive
THC above 10 T at low temperatures. We attribute this sign
change to a field-driven magnetic phase transition. As we
demonstrate theoretically, magnons fail to explain not only
the overall sign of THC, but also its order of magnitude, as
THC is underestimated by a factor of ten. By taking SLC into
account, magnons and phonons form hybrid quasiparticles,
i.e., magnon polarons. The Berry curvature at the resulting
avoided crossing between the lowest magnon and the acoustic
phonon band is of opposite sign compared to the low-energy
magnon Berry curvature without SLC. Hence, we reproduce
both the correct overall sign and the order of magnitude of
the experimental THC. The sign reversal of THC due to the
hybridization of phonons and magnons is one of our main
findings and is visualized in Fig. 1. Our results indicate the
pivotal role of SLC in thermal transport, which may be also
relevant to the interpretation of THC in related Heisenberg-
Kitaev magnets [43–45].

NCTO is composed of Co2+ ions, arranged in lay-
ers of honeycomb lattices, whose effective S = 1/2 spins
order in antiferromagnetic (AFM) zigzag chains [cf.
Fig. 2(a)]. Employing a three-thermometer setup [Fig. 2(b), cf.
Supplemental Material Section I.D. [46]], we have measured
the temperature dependence of the longitudinal thermal con-
ductivity κxx(T ) of NCTO at zero magnetic field [Fig. 2(c)].
According to previous studies, NCTO enters a magnetically

2469-9950/2023/108(14)/L140402(7) L140402-1 ©2023 American Physical Society
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FIG. 1. Qualitative visualization of our theoretical results. Intrinsic thermal transport of distinct quasiparticles moving from hot to cold in
a temperature gradient. Without hybridization, magnons contribute to the longitudinal and transversal transport, while phonons only contribute
to the longitudinal one (in our approximation). With hybridization, magnons and phonons merge into magnon polarons and the transverse
transport direction is reversed.

ordered state below the Néel temperature TN = 27 K, fol-
lowed by two possible spin reorientations around 16 K and
6 K, respectively [27–31]. Our κxx(T ) data show no obvious
anomalies around 27 K and 16 K, in agreement with reported
κxx(T ) data [47], but a slope change is noted below ∼6 K,
possibly related to a spin reorientation [28,30]. At sub-Kelvin
temperatures, κxx(T ) roughly follows a T 1.2 behavior, which
is at variance with the T 3 or T 2 behavior expected for the

FIG. 2. Longitudinal thermal heat conductivity κxx of a
Na2Co2TeO6 single crystal. (a) Crystallographic spin structure of
the ab plane of NCTO in the AFM state. The honeycomb lattice
consists of cobalt ions (blue spheres) in the zigzag AFM arrange-
ments (indicated by arrows), and the tellurium ions (red spheres)
are located at the center of each honeycomb. The a∗ axis is the
in-plane direction perpendicular to the a axis. (b) Schematic of the
experimental setup for the thermal Hall measurements. The heat
current and the magnetic field are applied along the a and c axes,
respectively. The longitudinal and transverse temperature gradients
are determined by the difference between T1 and T2 and between T2

and T3, respectively. (c) Temperature dependence of the longitudinal
thermal conductivity κxx at zero magnetic field. The zero-field data
roughly display a T 1.2 behavior at very low temperatures, as the solid
line indicates. (d) and (e) Magnetic-field dependence of the thermal
conductivity at various temperatures and with B ‖ c.

phonon thermal conductivity at low temperatures in three or
two dimensions, respectively [48]. Since magnons are frozen
out at temperatures corresponding to energies below the spin-
wave gap, their contribution does not explain the observed
scaling law either. Therefore, this T 1.2 behavior may indi-
cate the significance of interactions between phonons and
magnons.

The field dependence of κxx(B) measured at various tem-
peratures with B ‖ c is depicted in Fig. 2(d) and 2(e). At
T < 1.56 K, κxx(B) decreases quickly with increasing field to
reach a minimum around 4 T, and then shows a weak field
dependence up to 14 T. At 2.2 K, 2.7 K, and 3.2 K, κxx(B)
manifests a double-valley structure, with valleys around 2 T
and 10 T, respectively. At even higher temperatures, κxx(B)
exhibits a broad valley in the range of 5 to 10 T. Similar
observations have been reported in Ref. [49].

Apart from the complex longitudinal thermal conductiv-
ity, we find a peculiar field dependence of the THC κxy(B),
which we have measured at various temperatures below TN

[cf. Figs. 3(a) and 3(b)]. At T � 2.2 K, with increasing field,
κxy(B) first exhibits a negative Hall response, reaching a min-
imum around 3 to 5 T, then it changes to a positive sign
around 10 T and increases at higher fields. At 3.2 K and 5.4 K,
κxy(B) curves show a positive peak at low fields, followed by
two zero crossings with increasing field. At 7.8 K, κxy(B) is
positive without sign reversal. We have plotted the tempera-
ture dependence of κxy/T at several fields in Fig. 3(c). It is
evident that at B = 3 T and 5 T, with increasing temperature,
κxy is negative and reaches a minimum around 2 K, and then
changes to a positive sign around 3 K to 4 K. The thermal Hall
angle κxy/κxx possesses a minimum around 4 T and changes
to a positive sign around 10 T at temperatures below 2.2 K [cf.
Fig. 3(d)]. The largest absolute value of κxy/κxx is around 2%
at 0.78 K and 4 T.

In a magnetic insulator, the observed κxy may have sev-
eral origins, including phonons, magnons, and fractionalized
exotic quasiparticles such as spinons. In experiments on non-
magnetic insulators, the κxy of phonons does not exhibit a sign
change [49,50], although this possibility cannot be ruled out
here. For spinons, a nonzero κxy has only been observed in
a quantum spin liquid with disordered spins [51–53]. More-
over, the 2% thermal Hall angle is exceptionally large for an
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FIG. 3. Thermal Hall conductivity of a Na2Co2TeO6 single crys-
tal. (a) and (b) Field dependence of thermal Hall conductivity κxy

for B ‖ c at various temperatures. (c) Temperature dependence of
κxy/T at selected magnetic fields. (d) Magnetic field dependence of
the thermal Hall angle κxy/κxx at various temperatures.

insulator. The expected value, either originating from phonons
or magnons, is typically around 0.3% to 0.6% or even
lower [54], although similar thermal Hall angles have been ob-
served in the insulating phases of the cuprate Nd2−xCexCuO4

(up to 2%) [55], the iridate Sr2Ir1−xRhxO4 (up to 3%) [56],
and the pyrochlore magnet Yb2Ti2O7 in its quantum spin-
liquid state (up to 2%) [53].

The experimental results on the transverse transport prop-
erties of NCTO are subsequently explained by an effective,
semiquantitative model. The starting point is the Heisenberg-
Kitaev-Gamma-Gamma′ (HKGG′) Hamiltonian [57–59]

H = 1

2h̄2

∑
〈i j〉r

JrSi · S j + 1

2h̄2

∑
〈i j〉

[
KSγ

i Sγ

j + �
(
Sα

i Sβ
j +Sβ

i Sα
j

)

+ �′(Sγ

i Sα
j + Sγ

i Sβ
j + Sα

i Sγ

j + Sβ
i Sγ

j

)]
that encompasses the Heisenberg exchange [Jr (r = 1, 2, 3)]
up to third nearest neighbors, and the Kitaev (K ), Gamma
(�), Gamma′ (�′) interactions between nearest neighbors.
The magnetic field B enters via the Zeeman Hamiltonian

HB = gμB

h̄
B ·

∑
i

Si.

h̄ denotes the reduced Planck constant, μB the Bohr magneton
and g is the g-factor.

Here, we are interested in out-of-plane fields B‖c.
Several parameter sets of the spin Hamiltonian have been
determined for NCTO (Supplemental Material Table I
[46]). In the following, we choose J1 = −3.2 meV,
J2 = 0.1 meV, J3 = 1.2 meV, K = 2.7 meV, � = −2.9 meV,
�′ = 1.6 meV, and g = 2.3 Refs. [34,36]. This parame-
ter set (referred to as tc+) reproduces the critical fields

in experimental reports on field-induced magnetic phase
transitions (Supplemental Material Section II.C. [46]) and, as
presented later, provides the best agreement with the exper-
imental THC. Results for other parameter sets are reported
in the Supplemental Material Section II.D. [46]. The weak
interlayer coupling is neglected.

The antiferromagnetic ground state of the Hamiltonian
at zero field is characterized by zigzag chains with intra-
chain ferromagnetic and interchain antiferromagnetic order.
Applying a magnetic field cants the spins slightly, but they
remain confined to the yz plane [cf. Fig. 4(a), left inset].
At the critical field of Bc1 = 10.8 T the system passes a
first-order phase transition into a spin-flop state, in which
the spins lie within the zx plane [ferromagnetic component
along z and Néel vector along x; cf. Fig. 4(a), right inset].
The magnetization saturates at Bc2 = 31.2 T, at which the
fully field-polarized phase is reached. These critical fields
are supported by magnetometry measurements (Supplemental
Material Section II.C. [46]).

The diagonalization of the linearized Hamiltonian yields
the four magnon bands εnk (n = 1, 2, 3, 4) [60,61]. Be-
cause of the spin-1/2 nature of the local magnetic moments,
significant quantum fluctuations [62,63] are expected, which
we discuss in the Supplemental Material Section II.F. [46].
The intrinsic contribution to THC is computed with the lin-
ear response formalism (cf. Supplemental Material Section
II.D. [46]) [64].

Figure 4(a) shows κxy versus Bz as computed from free-
magnon calculations for six temperatures. In the low-field
phase, κxy is positive and changes sign at Bc1 for all tem-
peratures. This sign change is thus linked to the magnetic
phase transition. However, the overall sign of κxy is at variance
with the measured data [cf. Fig. 3(a)]. Attributed to the first-
order transition, κxy is discontinuous at the phase transition,
with the maximum left and the minimum right of Bc1. More-
over, the experimental data are underestimated by a factor of
ten. Similar calculations with other parameter sets taken from
the literature fail to reproduce the data as well (Supplemental
Material Section II.D. [46]).

The foregoing suggests that magnons by themselves are not
sufficient to explain the experimental data. It has been shown
before that the hybridization of magnons and phonons can
give rise to a thermal Hall effect [25,26,65–71]. We therefore
consider out-of-plane oscillating phonons described by

Hp =
∑

i

(
pz

i

)2

2M
+ C

4

∑
〈i j〉

(
uz

i − uz
j

)2
,

where pz
i is momentum and uz

i is displacement, which are
subject of a particular SLC arising from spin-orbit cou-
pling [25,26,67,71–73],

Hme = λ̃

h̄2

∑
i

∑
δ

(Si · δ)Sz
i

(
uz

i − uz
i+δ

)
,

where δ are the nearest-neighbor bond vectors for site. We
neglect vibrations of nonmagnetic ions and other types of
SLC for a minimal description. Furthermore, we consider a
single acoustic phonon branch in the crystallographic Bril-
louin zone (that is, two branches in the magnetic Brillouin
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FIG. 4. Model calculations. (a) and (b) Thermal Hall conductivity κxy versus applied field Bz (a) without (λ = 0 meV) and (b) with (λ =
0.4 meV) SLC. Inset: Magnetic ground state of Co2+ ions in their two respective phases. (c) Magnon-polaron spectrum εnk along a high-
symmetry path. Red, white, and blue color of the bands indicate the magnon, mixed, phonon character, respectively, of the modes; the magnetic
field is 5 T. (d) and (e) Berry curvatures 	nk of the lowest bands n = 1 (d) with SLC (λ = 0.1 meV) and (e) without SLC (λ = 0 meV).
Dashed rectangles in (d) and (e) mark the first Brillouin zone. The white arrows in (c) and (d) indicate the same avoided crossing. All
results are obtained for the model of a two-dimensional honeycomb antiferromagnet with Heisenberg-Kitaev-Gamma-Gamma′ interactions
(J1 = −3.2 meV, J2 = 0.1 meV, J3 = 1.2 meV, K = 2.7 meV, � = −2.9 meV, �′ = 1.6 meV, and g = 2.3) and coupling of the spins to
out-of-plane lattice displacements (see text for further details).

zone). The relevant energy scale λ = λ̃dnn

√
h̄

2
√

CM
[where M

is the mass of Co2+ and dnn = 3.0361 Å is the (in-plane)
nearest-neighbor distance] quantifies the strength of the SLC.
The elastic constant C is chosen to yield a phonon velocity
of 3000 m/s, which is supported by heat capacity measure-
ments (Supplemental Material Section I.C. [46]) [74]. We
proceed by bosonizing the spin and position operators, and
extend the basis by the two phonon modes. The extended
Hamiltonian is then diagonalized, and κxy is computed as
before. The SLC strength λ = 0.4 meV has been fitted as an
effective parameter to reproduce the experimental THC at
2.2 K.

Figure 4(b) displays κxy versus Bz in the presence of SLC.
Compared to exclusive magnon transport, the overall sign of
κxy is reversed and the sign change at the magnetic phase
transition remains intact. Furthermore, κxy’s order of mag-
nitude has increased and matches that of the experimental
data. In short, agreement with the experiment has increased
significantly.

The sign change and the increase of |κxy| are attributed to
hybrid quasiparticles that we refer to as magnon polarons.
These normal modes are superpositions of magnons and
phonons. Their hybrid nature is prominent in the band struc-
ture with SLC [Fig. 4(c)] at avoided crossings: their character
changes continuously from magnon-like (red) to phonon-like
(blue). The avoided crossing between the acoustic phonon
branch and the lower magnon band generates a positive Berry
curvature in the lowest band, indicated by a white arrow in
Fig. 4(d). This pronounced, low-energy Berry curvature dom-
inates the transport and explains the negative sign in the zigzag
antiferromagnetic phase. This finding is contrasted with the
Berry curvature in the absence of SLC [Fig. 4(e)]. Ignoring the
phonon bands [blue in Fig. 4(c)], the magnon bands exhibit
a spin-wave gap, and their lowest energies are at the � and
S points. The Berry curvature of the lowest magnon band
[Fig. 4(e)] at these points is negative and positive, respectively.
Since the two lower magnon bands are degenerate at S and
the upper band exhibits the opposite Berry curvature at S, the
Berry curvature at � mostly governs the thermal transport at
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low temperatures. This Berry curvature is, however, opposite
to the emerging Berry curvature caused by the hybridization.
Thus, there is a competition between pure magnon transport
and magnon-polaron transport in the presence of SLC.

The gradual suppression and sign reversal of κxy by
the coupling to phonons hold for lower temperatures. At
higher temperatures, the magnon bands are strongly popu-
lated and the transport coefficient changes sign (Supplemental
Material [46]). This competitive interplay between phonons
and magnons is contrasted by the results of Zhang et al. [26]
for the honeycomb ferromagnet VI3, which has been mod-
eled with the Dzyaloshinskii-Moriya interaction (DMI) as the
source of the magnon Berry curvature. There, an amplification
of THC was found due to the SLC. Notably, an attenuation can
be found for reversed DMI, which produces the same magnon
spectrum, but opposite Berry curvature; hence, both amplifi-
cation and attenuation of THC are within the reach of the DMI
model with SLC. In contrast, the HKGG′ model with SLC
uniquely fixes both the sign of the magnon and the magnon-
polaron Berry curvatures and, therefore, their relative sign.
This renders the agreement between theory and experiment
nontrivial. Overall, whether SLC leads to an amplification
or an attenuation depends on the spin Hamiltonian and the
particular form of SLC. Examples for the amplification by
SLC in the HKGG′ model are reported in the Supplemental
Material [46] with different parameters. A systematic study
is needed to predict which of these two scenarios can be
expected in other systems.

The model including SLC achieves an agreement between
theoretical and experimental results in overall sign, magni-
tude, and the general field dependence, in contrast to the pure
magnon calculations. The remaining quantitative disagree-
ment between the effective theoretical model and experiment
could be caused by the presence of multiple domains close
to the phase transition, which is not accounted for in our
model, the restriction to one phonon band and one partic-
ular type of SLC, and the disregard of vibrational degrees
of freedom of nonmagnetic ions. The deviation between the
minima of κxy(Bz ) measured at 3 T and computed at 10 T may
be attributed to extrinsic contributions to THC, as indicated
by the correlation between the measured minima of κxx and
κxy at similar fields [cf. Figs. 2(d), 2(e), and 3(a)]. Hence, at
lower fields, extrinsic contributions appear to be relevant for
a better quantitative agreement, while at larger fields, due to
the lack of a similar prominent correlation, their relevance
might be limited. Therefore, the extrinsic contributions to
THC such as magnon-phonon scattering, magnon-magnon

scattering, and scattering of phonons or magnons at (mag-
netic) impurities should be investigated in a more comprehen-
sive quantitative theory.

An open question for NCTO is whether its ground state
is of zigzag antiferromagnetic or of triple-Q nature. While
several studies have argued in favor of triple-Q [33,39,40],
another reports inconsistent observations with the triple-Q
ground state [41]. Our study shows that the zigzag antiferro-
magnetic ground state is compatible with THC measurements;
however, we cannot conclusively rule out the possibility of a
triple-Q ground state. In the triple-Q state, the noncollinear
spin texture gives rise to a more complex SLC and magnon-
phonon hybridization, leading to a larger set of adjustable
parameters, which would have to be obtained from density
functional theory. Whether the triple-Q ground state is also
compatible with our THC measurements needs to be ad-
dressed in the future.

Finally, our results—in particular, the fact that magnon
polarons and pure magnons can drive opposite heat currents of
different magnitudes—demonstrate that SLC may completely
alter the low-temperature transport properties and overshadow
predicted transport signatures of isolated quasiparticles like
topological magnons. Instead of transport signatures of iso-
lated exotic spin excitations, a more unified approach that
includes the hybridization with phonons is necessary for
the interpretation of such transport experiments. To verify the
importance of SLC in NCTO, but also more generally, an
independent determination of the SLC by ab initio calcula-
tions or magnetoelastic experiments is required that should be
combined with model calculations to quantify the impact on
THC. In short, our results call for a systematic analysis of the
role of SLC in THC.

We thank I. Kimchi for insightful discussions, and
W. J. Chu and X. H. Zhou for their help with the exper-
iments. This work was supported by the National Natural
Science Foundation of China (Grants No. 12274388, No.
12174361, No. 12025408, No. 11904003, and No. 12274001)
and the Nature Science Foundation of Anhui Province
(Grants No. 1908085MA09, No. 2108085QA22, and No.
2208085MA09). The work at the University of Tennessee
and Georgia Tech was supported by the U.S. Depart-
ment of Energy (Awards No. DE-SC-0020254 and No.
DE-FG02-07ER46451). A.M., J.H., and I.M. acknowledge
funding from Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) (Projects No. 504261060 and
No. SFB TRR 227).

[1] K. v. Klitzing, G. Dorda, and M. Pepper, New method
for high-accuracy determination of the fine-structure constant
based on quantized Hall resistance, Phys. Rev. Lett. 45, 494
(1980).

[2] D. J. Thouless, M. Kohmoto, M. P. Nightingale, and M. den
Nijs, Quantized Hall conductance in a two-dimensional peri-
odic potential, Phys. Rev. Lett. 49, 405 (1982).

[3] F. D. M. Haldane, Model for a quantum Hall effect without Lan-
dau levels: Condensed-matter realization of the parity anomaly,
Phys. Rev. Lett. 61, 2015 (1988).

[4] P. W. Anderson, Resonating valence bonds: A new kind of
insulator? Mater. Res. Bull. 8, 153 (1973).

[5] R. Moessner and S. L. Sondhi, Resonating valence bond phase
in the triangular lattice quantum dimer model, Phys. Rev. Lett.
86, 1881 (2001).

[6] A. Kitaev, Anyons in an exactly solved model and beyond, Ann.
Phys. 321, 2 (2006).

[7] A. Stern and N. H. Lindner, Topological quantum computation:
From basic concepts to first experiments, Science 339, 1179
(2013).

L140402-5



N. LI et al. PHYSICAL REVIEW B 108, L140402 (2023)

[8] V. Lahtinen and J. Pachos, A short introduction to topological
quantum computation, SciPost Physics 3, 021 (2017).

[9] H. Katsura, N. Nagaosa, and P. A. Lee, Theory of the thermal
Hall effect in quantum magnets, Phys. Rev. Lett. 104, 066403
(2010).

[10] R. Matsumoto, R. Shindou, and S. Murakami, Thermal Hall
effect of magnons in magnets with dipolar interaction, Phys.
Rev. B 89, 054420 (2014).

[11] J. Nasu, J. Yoshitake, and Y. Motome, Thermal transport in the
Kitaev model, Phys. Rev. Lett. 119, 127204 (2017).

[12] Y. Kasahara, T. Ohnishi, Y. Mizukami, O. Tanaka, S. Ma, K.
Sugii, N. Kurita, H. Tanaka, J. Nasu, Y. Motome, T. Shibauchi,
and Y. Matsuda, Majorana quantization and half-integer thermal
quantum Hall effect in a Kitaev spin liquid, Nature (London)
559, 227 (2018).

[13] J. Romhányi, K. Penc, and R. Ganesh, Hall effect of triplons in
a dimerized quantum magnet, Nat. Commun. 6, 6805 (2015).

[14] P. A. McClarty, F. Krüger, T. Guidi, S. F. Parker, K. Refson, A.
W. Parker, D. Prabhakaran, and R. Coldea, Topological triplon
modes and bound states in a Shastry–Sutherland magnet, Nat.
Phys. 13, 736 (2017).

[15] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystals, Phys. Rev. A 78, 033834
(2008).

[16] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological pho-
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6.3 Electrical Activity of Topological Magnons

6.3 Electrical Activity of Topological Magnons
Electronic edge states travelling unidirectionally around the boundaries of a sample pro-
duce an orbital magnetization [152, 172]. Magnons, on the other hand, do not transport
charge, but their edge modes constitute a spin current flowing at the edges of the mag-
net. By virtue of the vacuum magnetoelectric effect, a moving magnetic dipole moment,
which is associated with the magnon’s spin, must entail an electric dipole moment locked
perpendicular to their propagation direction (cf. Section 5.1). For a set of edge states,
which do not have a collective preference of a propagation direction, the electric dipole
moments cancel. Chiral edge states have a preferred propagation direction by definition;
it is determined by the Chern number of the bulk magnon bands (cf. Section 3.3).

The following paper studies the implications of the electric dipole moment of the topo-
logical magnons. Two main properties are investigated.

1. The electric polarization at the edges in thermal equilibrium, which can exist even
in centrosymmetric systems as long as the net polarization vanishes.

2. The absorption of alternating electric fields by magnons in nonequilibrium.

The microscopic electric dipole moments of the topological magnons give rise to a
macroscopic electric edge polarization, whose direction depends on the chirality. Since
the occupation depends on temperature, the polarization increases with temperature.
Moreover, thermally activated internal electric fields and electrical voltages are demon-
strated to ensue from the presence of topological magnons. However, a more comprehen-
sive model deems these predictions incomplete as trivial edge magnons may feature lower
energies and overshadow the contributions of the topological magnons due to their larger
population.

This drawback of thermal equilibrium can be avoided by a resonant excitation of topo-
logical magnons. We find that topological magnons can be activated by alternating
electric fields. The fluctuations of their electric dipole moments directly couple to the
external electric fields and give rise to one-magnon processes, in which the photon energy
is completely transferred to the topological magnons. Importantly, the one-magnon pro-
cesses dominate in ferromagnets at low temperatures. These topological electromagnons
give rise to an in-gap resonance in the electrical absorption spectrum, which we propose
can be used to detect topological magnons. By combining inelastic neutron scattering
and the proposed THz spectroscopy, the bulk band structure including potential topolog-
ical band gaps can be identified by neutron scattering, which cannot distinguish between
topologically trivial and nontrivial gaps because it does not resolve in-gap edge states.
By performing electric absorption measurements in the energy window of the gap, in-gap
states can be potentially identified.
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Topological magnon insulators support chiral edge excitations, whose lack of electric charge makes them noto-
riously di�cult to detect experimentally. We show that relativistic magnetoelectric coupling universally renders
chiral edge magnons electrically active, thereby facilitating electrical probes of magnon topology. Considering
a two-dimensional out-of-plane magnetized topological magnon insulator, we predict a fluctuation-activated
electric polarization perpendicular to the sample edges. Furthermore, the chiral topological electromagnons give
rise to a unique in-gap signal in electrical absorption experiments. These results suggest THz spectroscopy as a
promising probe for topological magnons.

Introduction. Topology has become a key concept in con-
densed matter physics, with the quantized Hall conductance
being a prominent example [1, 2]. Although topological band
structure theory can be carried over to magnons [3–8], i.e. the
elementary excitations of magnetic order [9], their bosonic
statistics does not give rise to quantized transport [10–17]. Fur-
thermore, magnons lack electric charge, which, although being
an attractive trait for technologies free of Joule heating [18],
renders them “dark” in charge-probing spectroscopies. In ad-
dition, inelastic neutron scattering, which is the conventional
probe of magnons, reveals their bulk band gaps, but fails to
detect edge states [19, 20]. In short, the state of the art does
not o↵er an appropriate tool for the detection of topological
magnons and new ideas are needed [21–28].

Despite their charge neutrality, magnons can respond to
external electric fields. Those electrically active magnons,
so-called electromagnons, have been studied by THz spec-
troscopy [29–34], by magnon-photon coupling in cavi-
ties [35–37], and by parametric amplification of topological
magnons [22]. The experimental proof of principle for driving
magnons electrically has already been provided [38].

Herein, we investigate the electrical activity of topological
chiral edge magnons in ferromagnets in order to explore their
spectroscopic signatures. Knowing that a flow of magnons
induces electric fields [39, 40] by virtue of the vacuum mag-
netoelectric (VME) e↵ect [41–43], we first show that a flow
of chiral edge magnons universally causes an electric edge
polarization. Motivated by this result, we consider the Katsura-
Nagaosa-Balatsky (KNB) mechanism [44] to study the electric
polarization of a two-dimensional topological magnon insula-
tor (TMI) and to disentangle contributions from topologically
trivial and nontrivial magnons. Second, we investigate the re-
sponse of topological magnons to external alternating electric
fields in TMI nanoribbons and flakes, in which edge magnons
cause electric absorption peaks within the magnon bulk band
gap. Our results suggest that chiral edge magnons are elec-
trically active and that terahertz spectroscopy could evidence
their existence experimentally.

Intuitive expectations. Magnons carry a magnetic mo-
ment m, giving rise to a relativistic electric dipole p = v⇥m/c2

(v magnon velocity, c speed of light), which is the VME e↵ect
resulting from Lorentz transformation from the magnon’s rest

FIG. 1. Propagating chiral edge magnon in a disk-shaped topological
magnon insulator. Arrows indicate velocity (yellow), magnetic dipole
moment (green), and electric dipole moment (red, due to the vacuum
magnetoelectric e↵ect) of the wave packet (transparent sphere). The
electric field (light red lines) follows from the generalized Biot-Savart
law. The dark (light) blue arrows represent localized spins in their
ground state (excited) state. The red oscillating curve illustrates an
external alternating electric field, which excites and probes chiral edge
magnons.

frame to the lab frame [39, 41–43]. For chiral edge magnons
in two-dimensional and out-of-plane magnetized TMI, m k ẑ

and p k v ⇥ ẑ points along the local edge normal, as indicated
in Fig. 1. The sign of p depends on the magnetization direc-
tion and on the velocity (hence, on the chirality) of the edge
magnons. The chiral magnon edge current causes an electric
field E = �r�, whose scalar potential

�(r) =
µ0Im

4⇡

I
⇥
dr
0
⇥ m̂(r

0)
⇤
·

r � r
0

|r � r0|
3 , (1)

is obtained from a generalized Biot-Savart law [39, 40] (µ0
vacuum permeability, Im magnetization current, m̂ direction of
the magnetic dipole).

For a magnetic current carried by chiral magnons on a cir-
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FIG. 2. Electric field of a magnetic disk in the xy plane and with a
radius of 100 nm. (a) Field distribution in the xz-plane (y = 0). Arrows
and arrow colors indicate directions and magnitude of the electric
field, respectively, while black lines indicate equipotential lines. The
disk is indicated by the black rectangle at z = 0. (b) Schematic of
a voltage measurement setup. (c) Estimated distance dependence of
the voltage due to the vacuum magnetoelectric e↵ect of topological
magnons for the setup of panel (b). Dots represent numerical data,
while straight and dashed lines are linear fits to U(r) for kBT = 1 meV
(11.6 K). For parameters, see text.

cular trajectory of radius R, we write r = ⇢ê⇢(') + zêz in
cylindrical coordinates; êz (ê⇢) is out-of-plane (radial) to the
magnetic current loop. If R ⌧ ⇢, we approximate

�(⇢,', z) ⇡
µ0Im

4
R2(⇢2

� 2z2)
(⇢2 + z2)5/2

, (2)

while for ⇢ = 0 the exact potential reads

�(0,', z) = �
µ0Im

2
R2

(R2 + z2)3/2
(3)

[see Supplemental Material (SM) [45]]. Thus, the potential
drops with distance as z�3 in the far field limit. The sign of
Im, i.e., the chirality of the edge magnons, determines the
direction of the electric field E. As expected, the E field lines
point radially outward from the edge of the disk and resemble
a dipole field close to the edge [see Fig. 2(a)]. The largest
electric field is found in the vicinity of the edges hosting the
chiral edge magnons.

In order to estimate E, we compute Im =
gµBv
2⇡

R ⇡/a
�⇡/a dk ⇢("k)

(g Landé g-factor, µB Bohr magneton, a lattice constant, v edge
magnon’s group velocity). The occupation is given by ⇢(") =
[exp("/(kBT )) � 1]�1 (kB Boltzmann constant, T temperature).
We assume a = 1 nm and, in order to describe van-der-Waals
magnets [20, 46], v = 1000 m s�1, "k = ~vk + 12 meV (i.e., the
topological band gap is 4 meV). The voltage U(r) = �(r, 0, 0)�
�(0, 0, r) between two leads at a distance r from the edge and
the center of the disk is evaluated numerically [Fig. 2(b)]. Its
r-dependence, shown in Fig. 2(c) for selected temperatures,
exhibits two regimes: r ⌧ R with a r�1-dependence and r � R
with a r�3-dependence. The crossover is around R = 100 nm.
These results suggest that a nanovolt-sensitive measurement
could prove the existence of chiral edge magnons. We now
contrast this intuitive picture with a microscopic theory.

Microscopic theory. We consider a two-dimensional TMI
on a honeycomb lattice, which is an e↵ective model for van-
der-Waals magnets. The Hamiltonian

H = �

3X

r=1

Jr

2~2

X

hi jir

Si · S j +
1

2~2

X

hi ji2

Di j ·
⇣
Si ⇥ S j

⌘

�
A
~2

X

i

⇣
S z

i

⌘2
(4)

includes Heisenberg exchange interactions Jr up to 3rd near-
est neighbors, out-of-plane Dzyaloshinskii-Moriya interaction
(DMI) Di j = ±Dz ẑ between 2nd nearest neighbors, and out-
of-plane anisotropy A (~ reduced Planck constant). In the fol-
lowing we choose relative parameters: J1 = 1, J2 = 0.25, J3 =
0,Dz = �0.1, A = 0.1, and S = 1. The ground state is an
out-of-plane collinear ferromagnet.

The model (4) is known to yield topological magnons in
linear spin-wave theory [7, 8], which are shown for the arm-
chair nanoribbon geometry in Fig. 3(b). The in-gap states have
positive (negative) group velocity and are localized on the left
(right) edge. The relation between velocity and localization
depends on the Chern number, which can be reversed with the
magnetization or the sign of Dz.

The relativistic electric dipole between two spins at sites i
and j reads pi j = qi j ei j ⇥

⇣
Si ⇥ S j

⌘
/~2 according to the spin-

current [or Katsura-Nagaosa-Balatsky (KNB)] mechanism [44,
47] (qi j e↵ective charge, ei j bond vector between site i and j,
Si and S j spin operators). As shown in the SM [45], the VME
and the KNB e↵ects are equivalent for magnons in Heisenberg
ferromagnets, but the KNB e↵ect can be around 5 to 6 orders
of magnitude larger.

We expand pi j = p
(0)
i j + p

(1)
i j + p

(2)
i j + · · · by means of the

Holstein-Primako↵ transformation [48], where the superscript
denotes the number of bosons (explicit expressions for the
operators are provided in the SM [45]). p

(0)
i j is the classical

ground state polarization, which is zero in our case. p
(1)
i j van-

ishes in equilibrium, but encodes the dynamic electric dipole
moment associated with spin dynamics, and the bilinear p

(2)
i j

tells about the expectation value per magnon. In equilibrium,
the fluctuation-induced p

(2)
i j is the dominant contribution to the

macroscopic polarization.
Below, we consider the layer-resolved polarization

Pn =
q
~2L

X

hi ji
i2Ln

ei j ⇥
⇣
Si ⇥ S j

⌘
, (5)

of layer n in the nanoribbon, which is a sum over all inter-site
electric dipole moments pi j in that layer (Ln set of all sites
in layer n, L circumference of the nanoribbon). The thermal
equilibrium expectation value of Pn (originating from p

(2)
i j )

projected onto the in-plane normal vector n̂ of the left edge,
shown in Fig. 3(a), features nonzero values at the edges of the
nanoribbon, while it vanishes in the bulk. Inversion symmetry
dictates that the polarizations at opposite edges are antiparal-
lelly oriented. However, based on the intuitive expectations
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FIG. 3. Electric polarization and magnons of a nanoribbon in armchair nanoribbon geometry with 32 layers. (a) Layer-resolved electric
polarization due to the Katsura-Nagaosa-Balatsky e↵ect for various temperatures (as indicated) projected onto the outward-facing in-plane
normal vector n̂ of the left edge. Inset: section of the nanoribbon including layer labels and the normal vector n̂. The system is finite (infinite)
along the horizontal (vertical) direction. (b) Magnon spectrum. Probability amplitudes of the left (red) and right (blue) edge [defined as
the 4 outermost layers at each edge side; cf. the inset in panel (a)] are encoded by color. Inset: hidden band covered by the lowest band.
(c) Energy-resolved contributions of the magnons to the electric polarization at the left edge [highlighted in panel (a) by a gray background]
for two selected temperatures (as indicated). Each bar comprises contributions accumulated in an energy interval of J1S/2. The blue bars are
multiplied by 3 for better visibility. Parameters read J1 = 1, J2 = 0.25, J3 = 0,Dz = �0.1, A = 0.1, and S = 1. Results for other terminations can
be found in the SM [45].

following from the VME e↵ect and the chirality of the edge
magnons [cf. Fig. 3(b)], one would expect a negative projected
polarization at the left edge, which is opposite to the numerical
results.

This discrepancy is understood by analyzing the energy-
resolved contributions to the left-edge polarization

P3
n=0 Pn

[see Fig. 3(c); layers 0–3 are highlighted in Fig. 3(a)]. There
exist not only contributions from within the topological band
gap, but also much larger ones from energies below the gap.
The latter arise from trivial sub-gap edge modes [see Fig. 3(b)],
whose thermal occupation is larger than that of the nontrivial
in-gap states. The existence of trivial sub-gap edge modes
is unavoidable: these arise from the weaker e↵ective internal
magnetic field for spins at the edges (missing neighbor sites).
The sub-gap states highlighted in the inset of Fig. 3(b) (these
are hidden below the lowest band) have a velocity opposite
to that of the nontrivial mode localized at the same edge, and,
therefore, an opposite electric dipole moment. The contribu-
tions of trivial sub-gap modes to

P3
n=0 Pn dominate over those

of the nontrivial in-gap modes at all temperatures. Further-
more, the trivial contributions proved robust against disorder
and manipulations of the edges (see SM [45]).

In short, the equilibrium properties of the topological
magnons are overshadowed by those of trivial magnons, and
the intuitive picture is incomplete.

Absorption of alternating electric fields. The above discus-
sion demonstrates the need to go beyond thermal equilibrium,
in which sub-gap states are favored over in-gap states. As we
show in the SM [45], the in-gap states do not respond to alter-
nating magnetic fields. Therefore, we study the possibility to
address resonantly the magnons with alternating electric fields

E(t) by including a perturbation

H
0 = �V P · E(t) =

q
~2

X

hi ji

⇣
ei j ⇥ E(t)

⌘
·

⇣
Si ⇥ S j

⌘
(6)

to the Hamiltonian (4) (P total electric polarization). This form
suggests that the external electric field induces a time-varying
DMI, the corresponding DMI vector of which is out-of-plane
(in-plane) for in-plane (out-of-plane) fields.

The linear response of P to the perturbation, �
D
Pµ(!)

E
=

�µ⌫(!) E⌫(!), is quantified by the electric susceptibility �µ⌫(!)
(µ, ⌫ = x, y, z; implicit summation over ⌫). In Kubo’s for-
malism [49, 50], �µ⌫(!) = �VCR

PµP⌫(!) is obtained from the
retarded polarization autocorrelation function CR

PµP⌫ (!), which
is evaluated in the SM [45]. There are various types of con-
tributions �(i)

µ⌫ to �µ⌫, among them one- (i = 1; leading order
derived from p

(1)
i j ) and two-magnon processes (i = 2; leading

order derived from p
(2)
i j ). While the one-magnon processes are

governed by the (out-of-plane or transversal) fluctuations of the
magnons’ electric dipole moments about their mean value, the
two-magnon processes are governed by the bilinear part of the
total dipole moment that is also responsible for the finite mean
value in equilibrium (longitudinal fluctuations). Therefore, one-
magnon processes appear for out-of-plane, while two-magnon
processes appear for in-plane electric fields. Since accord-
ing to Eq. (6) only the former induces in-plane DMI, which
breaks magnon-number conservation, only one-magnon pro-
cesses may change the magnon number, while two-magnon
processes can only cause interband transitions of thermally
excited magnons. Thus, contrary to �(1)

µ⌫ , �
(2)
µ⌫ can be frozen

out. We therefore focus on one-magnon processes in the rest
of the paper, while delegating further details, mathematical
expressions, derivations, and results for two-magnon processes
to the SM [45].



4

FIG. 4. Electric susceptibility of a 120 layers wide nanoribbon with
armchair terminations. (a) Imaginary part of the one-magnon suscep-
tibility vs. energy. (b) Magnon spectrum with localization at the left
(red) and right (blue) edge encoded by color. ab is the bulk lattice
constant of the underlying honeycomb lattice, while a =

p
3ab is the

lattice constant of the nanoribbon. The width of the Lorentzians is
⌘ = 0.01J1S . Parameters as for Fig. 3. Results for other terminations
can be found in the SM [45].

The imaginary part

Im �(1)
µµ (!) = ⇡V

NX

n=1

����
⇣
P

(1)
µ

⌘
n

����
2
�(~! � "n,k=0) (7)

of the diagonal electric one-magnon susceptibility (! > 0, N
number of bands) contains the linear electric dipole element⇣
P

(1)
µ

⌘
n

for component µ and band n, whose general expression
is derived in the SM [45]. The �-distribution, which we replace
by a Lorentzian of width ⌘ for numerical calculations, ensures
energy conservation, such that resonance frequencies appear
at the eigenfrequencies of the system, while only magnons at
k = 0 can be probed due to momentum conservation.

Returning to the honeycomb model, absorption appears only
for µ = z: it shows a pronounced in-gap peak just below
"/(J1S ) = 6, which is attributed to topological magnons (see
Fig. 4). In the SM [45], we show that the absorption only
takes place at the edges, therefore, only modes with nonzero
probability amplitude at the edges may contribute. Bulk modes
have nonzero probability amplitudes at the edges as well, but
cause peaks above and below the gap.

Together with inelastic neutron scattering, which can locate
gaps in the bulk magnon spectrum, in-gap peaks of Im �(1)

zz (!)
could allow to detect topological magnons in principle. Mo-
mentum conservation tells that only topological magnons with
k = 0 contribute to the signal; however, it is not guaranteed
that topological magnons exist at this particular k (see SM
for a counterexample [45]). Thus, in-gap peaks are no nec-
essary consequence of topological edge modes. Furthermore,
absorption at a sample’s edge could be overshadowed by other
sources and hence might be hard to resolve in experiment.

The above suggests that momentum conservation has to
be lifted. We therefore consider the electric absorption of
flakes instead of nanoribbons. While a large flake is roughly
similar to a nanoribbon, increasing deviations are expected

FIG. 5. Electric susceptibility of a flake of 1152 spins cut into four
(nine) smaller equally sized tiles [see legend in panel (a)]. (a) Energy-
resolved imaginary part of the electric one-magnon susceptibility. For
the 9-tile spectrum (green line), selected in-gap resonances (1)–(4) are
marked with arrows. The gray background indicates the topological
bulk band gap. (b) Real-space probability distributions of the four
electrically active magnon modes (1)–(4) marked in panel (a), one tile
for each mode (as indicated). Nine of these tiles make up the green
absorption spectrum in panel (a). The width of the Lorentzians is
⌘ = 0.01J1S . Parameters as for Fig. 3.

upon shrinking the flake. We have computed the electric one-
magnon absorption of a flake encompassing 1152 spins [blue
line in Fig. 5(a)] that is “cut” into 4 (orange line) and 9 equally
sized smaller tiles (green line). This cutting increases the signal
magnitude of infinite-wavelength peaks due to the introduction
of internal edges and leads to additional peaks from in-gap
states with smaller wavelengths.

To prove the topological origin of the in-gap peaks for the
green line, we have selected four peaks [labeled (1)–(4) in
Fig. 5(a)], for which the real-space probability distribution of
the corresponding magnon states is shown in Fig. 5(b). Each
flake depicts one of the 9 tiles responsible for the green absorp-
tion spectrum in Fig. 5(a). The darker the color, the stronger
the localization of the corresponding magnon mode at that
site. In the cases (1), (2), and (3), the electrically active modes
have vanishing weights in the bulk. In contrast, mode (4) is
delocalized throughout the bulk. The topological bulk gap,
indicated by a horizontal gray stripe in the background of
Fig. 5(a), includes modes (1)–(3), while (4) falls outside this
energy window, demonstrating the topological origin of the
in-gap absorption peaks.

Quantitative estimate. The e↵ective charge is estimated
as q ⇡ 10�4

|e| to 10�3
|e| for GaV4S8 [51], CrBr3 [52], and

YIG [53] (cf. SM [45]; |e| elementary charge). Here, we
present calculations based on Heisenberg-DMI and Heisenberg-
Kitaev models for the experimental parameters of CrI3 [54]
(cf. SM [45]), a putative TMI. The three-dimensional elec-
tric edge polarization, which depends on the weight of the
edges in the probed volume, is estimated to about 10 µC m�2

within the first four layers. For the imaginary part of the three-
dimensional electric susceptibility, which is inversely propor-
tional to the linewidth ⌘, we obtain 6⇥ 10�3"0 for ⌘ = 0.1 meV
("0 vacuum permittivity). This value decreases with increas-
ing size of the nanoribbon, as is expected for edge e↵ects.
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We expect that our prediction qualitatively applies as well
to other ferromagnetic TMI, such as Lu2V2O7 [12], Cu(1,3-
benzenedicarboxylate) [14, 19], CrSiTe3 and CrGeTe3 [20],
and VI3 [55].

Discussion. We have investigated the electric properties of
topological chiral edge magnons in equilibrium and nonequi-
librium. In an intuitive picture of the vacuum magnetoelectric
e↵ect, topological magnons give rise to an electric edge po-
larization by thermal fluctuations even in centrosymmetric
systems. However, the model calculations based on the KNB
e↵ect identified further contributions by trivial edge modes,
which dominate the overall signal. Nonetheless, by address-
ing the topological magnons directly with alternating elec-
tric fields of corresponding frequencies, we demonstrated that
these modes may be electrically active, as is indicated by peaks
in the one-magnon electric susceptibility. These topological
electromagnons have infinite wavelengths and, depending on
their specific dispersion relation, might not be present in ev-
ery nanoribbon. The electric absorption by topological edge
magnons in flakes can be tuned by the edge-to-area ratio, such
that additional peaks from magnons with a finite wavelength
appear and the signal of magnons with infinite wavelength is
increased. Hence, we believe that THz spectroscopy can be
regarded a probe for topological magnons.

Future research in “topological electromagnonics” could be
directed at a local THz probe of chiral edge states, as provided
by scattering-type scanning near-field optical microscopy [56–
59], at a topological electromagnon-polariton formation in
THz cavities [36], and at the existence of topological electro-
magnons beyond the relativistic KNB mechanism [47]. We
hope that our results provide additional impetus to search for
candidate materials with nontrivial magnon band structures and
strong magnetoelectric coupling, and to explore the relation of
electromagnons to magnon orbitronics [60, 61].
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CHAPTER 7

CONCLUSION AND OUTLOOK

In this thesis, multiple routes for the detection of topological magnons have been studied
theoretically. Linear spin wave theory, the second quantization of phonons, and linear
response theory have been applied to correlate microscopic properties of the bosonic
quasiparticles of magnetic insulators with their macroscopic observables in equilibrium
and nonequilibrium. This includes magnetic and electrical properties as well as the ther-
mal transport in ferromagnets, collinear and noncollinear antiferromagnets.

For the detectability of topological magnons, the following conclusions can be drawn.

• The thermal Hall effect can exist both in topologically trivial and nontrivial phases
and does not indicate topological magnons. However, transitions between trivial
and nontrivial phases or between different nontrivial phases have been found to
imprint characteristic signatures in the thermal Hall effect. The topological phase
transitions can be distinguished from magnetic ones by tuning the thermal Hall
effect sensitive to either one in collinear antiferromagnets. In addition, combining
transverse heat transport measurements with equilibrium measurements such as the
heat capacity supports the search of topological phase transitions.

• Magnon polarons may play an important role in the thermal Hall effect in the
collinear antiferromagnet Na2Co2TeO6. While a pure magnon transport theory
is unable to explain the experimental data qualitatively, a theory that allows for
a hybridization of magnons and phonons is able to install an agreement between
theory and experiment. The theory demonstrates that the hybridization can reverse
the sign of the thermal Hall effect and increase its magnitude. Thus, topological
phases of magnons can be obscured in the heat transport properties by magnon
polarons.

• Despite being charge-neutral, (topological) magnons were shown to possess an elec-
tric dipole that manifests in the electric polarization in equilibrium and the electric
susceptibility in nonequilibrium. The electric dipole moment imparted by the spin
current mechanism is locked to the group velocity and, hence, is coupled to the chi-
rality of the topological chiral edge magnons. Topological magnon insulators exhibit
an electric edge polarization that partially stems from the topological magnons. On
the other hand, detailed microscopic calculations have revealed that the main con-
tribution is of nontopological origin.

More promising for the detection of topological magnons are one-magnon processes
in the electric absorption. While magnetic fields are unable to excite topological
magnons resonantly, external electric fields directly couple to the in-gap modes
allowing for their activation. Microscopic calculations in nanoribbons and flakes
exposed the in-gap peaks of topological origin in the electric absorption spectrum
at THz frequencies. In short, topological magnons are electromagnons.
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7 Conclusion and Outlook

The work shows that resonant probes of topological magnons are most promising for
their detection, one of which is the one-magnon electrical absorption. With the help of
inelastic neutron scattering band gaps in the bulk magnon spectrum can be identified,
which can be checked for in-gap states by THz spectroscopy, which are not visible to
neutrons. These results await experimental confirmation.

Future theoretical research on topological electromagnons could address other magne-
toelectric mechanisms and identify candidate materials for topological magnon insulators
with strong magnetoelectric effects. One shortcoming of the one-magnon absorption is
the need of topological magnons with long wavelengths. Even though small flakes lift
this requirement partially, local geometries could be explored in the future. Instead of
homogeneously exciting all spins in the sample with electrical fields, near-field techniques
such as scattering-type scanning near-field optical microscopy motivate the development
of a theory of local electrical response properties.

Since heat transport measurements on insulators are gaining more experimental atten-
tion, a theoretical study of regimes in which topological magnons may be relevant to the
thermal transport constitutes another possible future research direction. Most theoreti-
cal results rely on noninteracting magnons in clean crystals neglecting magnon-magnon,
magnon-impurity, and magnon-phonon scattering. Applying an interacting transport the-
ory could clarify if topological magnons can dominate the transport properties because
of their proposed immunity against backscattering.
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