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Abstract 

User modeling and recommender systems are often seen as key success factors for 

companies such as Google, Amazon, and Netflix. However, while user-modeling and 

recommender systems successfully utilize items like emails, news, social tags, and 

movies, they widely neglect mind-maps as a source for user modeling. We consider this a 

serious shortcoming since we assume user modeling based on mind maps to be equally 

effective as user modeling based on other items. Hence, millions of mind-mapping users 

could benefit from user-modeling applications such as recommender systems. 

The objective of this doctoral thesis is to develop an effective user-modeling approach 

based on mind maps. To achieve this objective, we integrate a research-paper 

recommender system in our mind-mapping and reference-management software Docear. 

The recommender system builds user models based on the users' mind maps, and 

recommends research papers based on the user models. As part of our research, we 

identify several variables relating to mind-map-based user modeling, and evaluate the 

variables' impact on user-modeling effectiveness with an offline evaluation, a user study, 

and an online evaluation based on 430,893 recommendations displayed to 4,700 users.  

We find, among others, that the number of analyzed nodes, the time when nodes were 

modified, the visibility of nodes, the relations between nodes, and the number of children 

and siblings of a node affect the effectiveness of user modeling. When all variables are 

combined in a favorable way, this novel user-modeling approach achieves click-through 

rates of 7.20%, which is nearly twice as effective as the best baseline. In addition, we 

show that user modeling based on mind maps performs about as well as user modeling 

based on other items, namely the research articles users downloaded or cited. Our findings 

let us to conclude that user modeling based on mind maps is a promising research field, 

and that developers of mind-mapping applications should integrate recommender systems 

into their applications. Such systems could create additional value for millions of mind-

mapping users.  

As part of our research, we also address the question of how to evaluate recommender 

systems adequately. This question is highly discussed in the recommender-system 

community, and we provide some new results and arguments. Among others, we show 

that offline evaluations often cannot predict results of online evaluations and user studies 

in the field of research-paper recommender systems. We also show that click-through rate 

and user rating correlate well (r=0.78). We discuss these findings, including some inherent 

problems of offline evaluations, and conclude that offline evaluations are probably 

unsuitable for evaluating research-paper recommender systems, while both user studies 

and online evaluations are adequate evaluation methods.  

We also introduce a new weighting scheme, TF-IDuF, which could be relevant for 

recommender systems in general. In addition, we are first to compare the weighting 

scheme CC-IDF against CC only, and we research concept drift in the context of research-

paper recommender systems, with the result that interests of researchers seem to shift after 

about four months. Last, but not least, we publish the architecture of Docear’s 

recommender system, as well as four datasets relating to the users, recommendations, and 

document corpus of Docear and its recommender system.  
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Zusammenfassung 

Empfehlungsdienste und Nutzermodellierungssysteme sind wichtige Erfolgsfaktoren für 

Unternehmen wie Google, Amazon und Netflix. Während solche Systeme die Interessen 

von Nutzern erfolgreich an Hand von verfassten Emails, gelesenen Nachrichten, 

geschauten Filmen, etc. ableiten, ignorieren Unternehmen bisher weitestgehend Mind-

Maps als Quelle für Nutzermodellierung. Dies sehen wir als Problem, denn Millionen von 

Mind-Mapping Nutzern könnten von Mind-Map basierten Nutzermodellierungssystemen 

wie beispielsweise Empfehlungsdiensten profitieren. 

Das Ziel der vorliegenden Doktorarbeit ist es, ein effektives Nutzermodellierungs-

verfahren zu entwickeln zur Realisierung von Empfehlungsdiensten in Mind-Mapping-

Tools. Hierzu entwickeln wir ein Empfehlungsdienst für unsere Mind-Mapping und 

Referenzmanagementsoftware Docear. Wir identifizieren Variablen, welche die 

Effektivität der Nutzermodellierung beeinflussen. Den Einfluss evaluieren wir mit einer 

Offline Evaluation, einer Nutzerstudie, und einer Online Evaluation basierend auf 430,893 

Empfehlungen für 4,700 Nutzer.  

Die Evaluation zeigt, dass, unter anderem, die Anzahl der analysierten Knoten, der 

Zeitpunkt wann Knoten modifiziert werden, die Beziehung zwischen Knoten, und die 

Anzahl von Kinder- und Geschwisterknoten die Effektivität der Nutzermodellierung 

beeinflussen. Werden alle Faktoren in einem mind-map-spezifischen Nutzermodel-

lierungsverfahren berücksichtigt, ist dieses Verfahren nahezu doppelt so effektiv wie 

Standardverfahren. Wir zeigen außerdem, dass Mind-Map-basierte Nutzermodellierung 

ähnlich effektiv ist, wie Nutzermodellierung in anderen Bereichen. Die Ergebnisse lassen 

uns schlussfolgern, dass Nutzermodellierung basierend auf Mind-Maps ein vielversprech-

endes Forschungsgebiet ist, und dass Entwickler von Mind-Mapping Tools Empfehlungs-

dienste integrieren sollten. Solche Empfehlungsdienste sollten ähnlichen Mehrwert für die 

Anwender und Entwickler schaffen, wie Empfehlungsdienste in anderen Bereichen. 

Im Rahmen unserer Arbeit beschäftigen wir uns auch mit der Frage, wie 

Empfehlungsdienste angemessen evaluiert werden können. Diese Frage wird in der 

wissenschaftlichen Gemeinschaft derzeit intensiv diskutiert, und wir tragen mit neuen 

Erkenntnissen zu dieser Diskussion bei. Unter anderem zeigen wir, dass Offline 

Evaluationen häufig nicht in der Lage sind, die Effektivität von Empfehlungsverfahren in 

der Praxis vorherzusagen. Wir zeigen außerdem, dass Click-Through Rates (CTR) und 

Nutzerzufriedenheit eine starke Korrelation aufweisen (r=0,78). Wir diskutieren diese 

Ergebnisse, einschließlich einiger inhärenter Probleme von Offline Evaluationen, und 

schlussfolgern, dass Offline Evaluationen vermutlich ungeeignet sind für die Evaluation 

von (Literatur-) Empfehlungsdiensten. Nutzerstudien und Online Evaluationen hingegen, 

erscheinen beide gleichermaßen geeignet.  

Wir stellen in unserer Arbeit außerdem ein neues Verfahren zur Gewichtung von Wörtern 

und Zitationen für Nutzermodellierung vor (TF-IDuF). Zusätzlich evaluieren wir das 

Gewichtungsverfahren CC-IDF mit dem Ergebnis, dass CC-IDF vermutlich nicht effektiv 

ist. Wir untersuchen auch den Einfluss von ‚Concept-Drift‘ in Literaturempfehlungs-

diensten, und finden heraus, dass nur die Arbeiten der letzten vier Monate für 

Nutzermodellierung verwendet werden sollten. Schließlich publizieren wir die Architektur 

und vier Datensets von Docear’s Empfehlungsdienst.  
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1. Introduction  

1.1 Problem Setting  

Items such as emails, social tags, or research articles are often utilized beyond 

their original purpose. The goal of this “extended use” is typically to enhance 

existing services, provide new services, or generate additional revenue. For 

instance, social tags are intended to organize private webpage collections, but 

search engines utilize them to enhance webpage indexing [416]. Emails are 

intended as a means of communication, but Google utilizes them for generating 

user models and displaying personalized advertisements [126], and research 

articles are intended to communicate research results, but the articles, or more 

precisely their references, are utilized to measure the impact of researchers and 

academic institutions [165].  

We propose that mind-maps could also be utilized beyond their original purpose, 

similar to social tags, emails, and research articles. In a preliminary study, we 

developed eight ideas of how mind maps could be utilized to provide new 

services, enhance existing services, and generate additional revenues (cf. 

Appendix B.4, p. 182). We explored the feasibility of the ideas and concluded that 

user modeling was the most promising. 

User modeling is the process of inferring information about users by analyzing the 

users’ items or actions [84, 417]. User models are required by many applications 

such as personalized search engines, adaptive graphical user interfaces, and 

recommender systems. Particularly, recommender systems are often seen as key 

factors to the increase of user satisfaction and revenue generation. For instance, 

Amazon considers its recommender system as a “key differentiation factor” [325], 

Google’s business model (i.e. personalized advertisement) is heavily dependent on 

user modeling [127], and the movie rental and streaming service Netflix offered 

one million US dollars to whomever could improve its recommender system by 

10% [278]. Given the popularity of recommender systems in general, we find it 

surprising, that researchers and developers of mind-mapping tools showed little 

interest in user modeling or recommender systems based on mind maps.  

In the research community, we are first to explore the field of mind-map-based 

user modeling, to the best of our knowledge. In practice, two companies made the 

first experiences: Both MindMeister and Mindomo, utilized mind maps for user 

modeling in the context of personalized advertisement. MindMeister extracted 

terms from the node that a user had created or edited most recently, and used these 



2  

 

terms as a user model. MindMeister then sent the user model, i.e. the terms, to 

Amazon’s Web Service as a search query. Amazon returned book 

recommendations that matched the query, and MindMeister displayed the 

recommendations in a window next to the mind map (Figure 1). Mindomo applied 

a similar concept using Google AdSense instead of Amazon. Both companies have 

since abandoned their user-modeling systems, although they still actively maintain 

their mind-mapping tools in general. In an email, Mindomo explained, “people 

were not really interested” in the advertisement1. We were surprised about 

Mindomo’s statement because it contradicted our expectations about the 

usefulness of user modeling based on mind maps. 

 
Figure 1: Personalized advertisement in MindMeister 

To explore the effectiveness of mind-map-based user modeling in more detail, and 

to find reasons why Mindomo and MindMeister might have abandoned 

personalized advertisements, we conducted a preliminary study (Appendix B, p. 

177). We re-implemented MindMeister’s approach and used it in our mind 

mapping software, Docear, to recommend research papers. Instead of using 

Amazon’s Web Service or Google AdSense, we built our own corpus of 

recommendation candidates and used Apache Lucene to match candidates with 

user models. In Docear, MindMeister’s approach, i.e. utilizing the terms from the 

most recently edited or created node, achieved click-through rates (CTR) between 

                                                      

1 Email by Daniel Sima of the Mindomo team, October 3, 2011. Permission for publication was granted. 
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0.2% and around 1%. Compared to other recommender systems [228, 266, 320], 

such a CTR is disappointing, which might explain why Mindomo and 

MindMeister abandoned their recommender systems.  

Besides MindMeister’s user-modeling approach, there are two more approaches, 

both following the popular idea of content-based filtering (CBF), that we consider 

rather obvious to use with mind-maps. One approach is to build user models based 

on terms contained in all nodes of a users’ current mind map. The next approach is 

to utilize terms from all mind maps ever created by a user. As part of the 

preliminary study, we implemented these approaches in Docear and both achieved 

CTRs of around 6% (Appendix B, p. 177). Such a CTR is reasonable and 

significantly better than MindMeister’s approach. We were surprised that rather 

similar user-modeling approaches differed in their effectiveness by a factor of six. 

Apparently, small differences in the algorithms – such as whether to utilize terms 

from a single node or from the entire mind map – have a significant impact on user 

modeling performance. 

1.2 Motivation 

Given the popularity of recommender systems for movies, e-commerce, etc., and 

the encouraging results of our preliminary study, we wanted to explore the 

potential of mind-map-based user modeling further. Our motivation was twofold.  

First, we have a self-interest in mind-map-based user modeling and recommender 

systems. Since 2009, we have been developing the reference management 

software Docear, previously known as SciPlore MindMapping [18, 19]. Docear 

has around 40,000 users2 who manage their academic literature and references 

with mind maps. These users would benefit from a user-modeling application such 

as a recommender system. 

Second, a significant number of mind-mapping users could benefit from 

recommender systems, as well as the developers of the mind-mapping tools (cf. 

Appendix B, p. 177). The website Mind-Mapping.org lists 142 actively maintained 

                                                      

2 More than 20,000 users registered, and based on the number of webpage visitors and update requests, we 

estimate that a similar number of researchers uses Docear without registration. 
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mind-mapping tools3. The mind-mapping tools are used by an estimated two 

million active users who create around five millions mind maps every year (cf. 

Appendix B, p. 177). Developing an effective user-modeling approach should 

encourage developers of mind-mapping applications to integrate recommender 

systems in their applications and thereby provide additional value to their users.  

1.3 Research Objective, Questions, and Tasks 

 
Figure 2: Research objective, questions, and tasks 

Given the many users that could benefit from mind-map-based user modeling and 

recommender systems, we defined our research objective as follows (cf. Figure 2):  

Develop an effective user-modeling approach based on mind maps 

                                                      

3 Some tools offer mind-mapping only as secondary feature in addition to other visualization techniques, such as 

concept maps or Gantt charts 

Research Objective

Develop an effective 
user-modeling approach 

based on mind maps

Research Questions

i) Which existing user-
modeling approaches 
could serve as basis? 

ii) How to adjust the 
existing approaches to 

mind-maps?

iii) How should the 
effectiveness of user-

modeling approaches be 
measured?

Research Tasks

1. Survey 
related work

2. Develop a 
recommender 

system for Docear

3. Identify ade-
quate evaluation 
methods and me-

trics

4. Identify mind-
map-specific user-
modeling variables

5. Develop a mind-
map-specific user-
modeling approach
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The research objective should be seen in the context of research-paper 

recommender systems, because we conducted our research based on Docear, and 

most of Docear’s users are researchers, hence our decision to use user models for a 

research-paper recommender systems.  

The research objective leads us to ask three research questions: 

i. Which existing user-modeling approaches could serve as a basis for 

mind-map-based user modeling? 

ii. Could the effectiveness of existing approaches be increased by 

adjusting them to the special characteristics of mind maps? 

iii. How should the effectiveness of user-modeling approaches be 

measured? 

To answer the research questions, we defined five tasks: 

Task 1: Survey related work  

 There are a significant number of publications about mind maps, 

user modeling, recommender systems, and recommender-systems 

evaluation. We assumed that the existing work would help to 

identify user-modeling approaches that could serve the basis for a 

mind-map-specific user-modeling approach. In addition, we 

expected that the literature could help identify adequate methods 

and metrics to evaluate user-modeling approaches. Therefore, the 

first task is to conduct a thorough review of the corresponding 

literature. 
 Chapter 3, p. 29 

 

Task 2: Develop a recommender system for Docear 

 The second task is to develop a recommender system and integrate 

it into Docear, to being able to conduct our research in a real-

world scenario. The recommender system should be capable of 

applying different user-modeling approaches and evaluation 

methods.  
 Chapter 5.1, p. 73 
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Task 3: Identify adequate evaluation methods and metrics  

 The literature survey revealed that there is uncertainty about the 

adequacy of evaluation methods and metrics. Therefore, the third 

task is to conduct additional research to find adequate evaluation 

methods and metrics for our particular scenario (user modeling 

and research-paper recommendations based on mind maps).  
 Chapter 5.2, p. 87 

 

Task 4: Identify mind-map-specific user-modeling variables  

 As a preliminary step toward the research goal, the fourth task is to 

identify variables that affect user modeling based on mind maps, 

and to assess the variables' impact on user-modeling effectiveness.  
 Chapter 5.3, p. 105 

 

Task 5: Develop a mind-map-specific user-modeling approach 

 The fifth task is to combine the variables from Task 4 in a single 

algorithm to obtain an effective mind-map-specific user-modeling 

approach. The approach should be compared against adequate 

baselines.  
 Chapter 5.4, p. 121 

1.4 Outline  

Chapter 2 presents basic information that is crucial for understanding this doctoral 

thesis. This includes an introduction to mind mapping, user modeling, 

recommender systems, and some definitions. The chapter only covers the basics – 

readers familiar with the topics are advised to skip to Chapter 3. 

Chapter 3 presents the results of our literature survey (Research Task 1). Since 

there is no literature about user modeling and recommender systems based on 

mind maps, the review focuses on recommender systems in general, more 

precisely on research-paper recommender systems, and their evaluation.  

Chapter 4 presents the methodology. This includes information about how 

Docear's recommender system was built, information about Docear’s users, an 

explanation of how recommendations are generated, and how user studies, offline 

evaluations, and online evaluations were conducted.  
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Chapter 5 presents the results of our research and splits it into four parts, one for 

each research task (Tasks 2-5): In Part One, Docear's research-paper recommender 

system is presented (Task 2), including its architecture and four datasets (5.1, p. 

73). The datasets contain information about Docear's users, the recommendation 

corpus, and delivered recommendations. Both the architecture and datasets help 

understanding and reproducing our research. In addition, the datasets allow further 

analyses that go beyond our own research. In Part Two, results of Research Task 3 

are presented, i.e. different methods for recommender-systems evaluation are 

compared, and discussed (5.2 p. 87). The discussion concludes that click-through 

rate is the most appropriate evaluation metric for Docear's scenario. In addition, it 

is concluded that offline evaluations, the most common evaluation method for 

recommender systems, are probably inappropriate for evaluating (research-paper) 

recommender systems. In Part Three, the results of Task 4 are presented, i.e. the 

effect of several variables on user modeling based on mind maps (5.3, p. 105). 

Among others, it is shown how the number of analyzed nodes and the visibility of 

nodes affecting user-modeling effectiveness. In Part Four, results of task 5 are 

presented, i.e. the variables are combined in a novel mind-map-specific user 

modeling and recommendation approach (5.4, p. 121). A comparison with 

standard user-modeling approaches shows that the mind-map-specific approach is 

around twice as effective.  

This thesis concludes with a summary of the contributions (Chapter 6), and 

provides an outlook for further research (Chapter 7). The Appendix contains 

additional information, e.g. our preliminary study (Appendix B), details on 

Docear’s users (Appendix H), the individual recommendation approaches that we 

surveyed (Appendix F), and the patent application that we filed for our mind-map-

specific user-modeling approach (Appendix K). 
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2. Fundamentals  

This chapter introduces mind mapping (p. 9), Docear (p. 12), some definitions 

(p. 14), user modeling (p. 16), recommender systems (p. 18), and related research 

fields (p. 27). A general understanding of these topics is important to following 

our research and discussion. Readers familiar with the topics may skip this 

chapter.  

2.1 Mind Mapping 

Mind mapping is a technique for recording and organizing information and for the 

development of new ideas with special types of documents called "mind maps" 

[152]. The structure of mind maps is similar to outlines and consists of three 

elements: nodes, connections, and visual clues. When users create a new mind 

map, they start with a root node, in which they write the central concept that the 

mind map is about [83]. To detail the central concept, users create sub nodes, i.e. 

child nodes, branching from the root node. To detail the child nodes, users create 

further sub nodes, and so on. This process is similar to creating an outline with a 

title, chapters, paragraphs, and sentences.  

Mind maps are often used for tasks like brainstorming, knowledge management, 

note taking, project planning, decision making, and career planning [103]. 

Originally, mind mapping was done with pen and paper, but since the 1980s, more 

than one-hundred software tools for aiding users in creating mind maps have been 

developed [105].  

Figure 3 shows a mind map that we created with Docear to organize academic 

conferences and journals. In the root node, we wrote the central topic 

(“Conferences and Journals”), and then created child nodes representing categories 

(e.g. “Information Retrieval” and “User Modeling”). Below each category, we 

created further child nodes with hyperlinks to websites of corresponding journals 

and conferences (red arrows indicate a hyperlink). For the “UMAP conference” 

node, we created an additional note with information about a paper that we 

submitted to the conference. A circle at the end of a node indicates that the node 

has child nodes, which are hidden (“folded”). Clicking the circle would unfold the 

node, i.e. make its child nodes visible again.  
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Figure 3: Mind map for managing conferences and journals  

Figure 4 shows a mind map created for career planning. For some nodes, we 

attached icons that indicate the progress of certain tasks.  

  

Figure 4: Mind map for career planning 

While mind maps share many characteristics with outlines, as well as with other 

document types such as emails or research articles, mind maps also possess several 

unique characteristics.  
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First, mind maps are often personal, while most other document types such as 

emails and research papers are meant to be seen by at least one other person. As 

such, we assume that mind maps might not be formulated as well as content in 

other documents. For instance, mind-maps might contain more abbreviations or 

spelling errors, because users do not worry about those people who might not be 

able to understand the mind maps.  

Second, mind maps might be less “standardized.” For example, while the structure 

of research articles is rather standard (title, abstract, headings, body text, etc.), 

mind maps are used for various tasks. We would assume that mind maps used for 

project planning differ in structure and content from a mind map used to plan a 

vacation. This might lead to challenges when it comes to selecting and weighting 

certain features, e.g. terms, of a mind map. While terms in a title of a research 

paper are obviously more descriptive than words in the paper’s appendix, such 

obviousness does not exist for different nodes in mind maps.  

Third, mind maps evolve over time, and mind-map-based user-modeling systems 

might consider this evolution. In contrast, other user-modeling applications 

typically get access to content when the items are finally published. However, the 

evolution of mind maps is likely very dissimilar. A brainstorming mind map might 

have a lifespan of a few hours. A mind map for planning one’s next vacation 

probably has a lifespan of a few weeks. A mind map for managing literature might 

be used over several years. This could lead to challenges when the evolution of the 

mind map is to be considered by a user-modeling system.  

Further differences relate to formatting and layout options that are often different 

for mind maps from other document types. For instance, it is common to fold 

nodes in mind maps that are not needed at a particular time (cf. Figure 5). Such an 

option usually does not exist when, for example, writing emails.  

The unique characteristics of mind maps led us to the assumption that by 

considering these characteristics in the user modeling process, user-modeling 

effectiveness can be improved when compared to the standard user-modeling 

approaches neglecting the characteristics.  
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2.2 Docear 

Docear is an open-source JAVA application for managing PDF files, annotations, 

and references with mind maps. Figure 5 shows an example of mind maps. In that 

mind map, we created categories reflecting our research interests (“Academic 

Search Engines”), subcategories (“Google Scholar”), and sorted PDFs by category 

and subcategory. Docear imported annotations that we made in the PDFs with a 

third party PDF editor (comments, highlighted text, and bookmarks). Clicking a 

PDF icon in the mind map opens the linked PDF file. Docear also extracts 

metadata from PDF files (e.g. title and journal name), and displays the metadata 

when the cursor hovers over a PDF icon. Overall, the information is organized 

similarly to other reference managers such as Endnote, Zotero, or Mendeley 

(Figure 6), with the difference being that Docear uses mind maps while other 

reference managers use tables or social tags.  

 
Figure 5: Mind map for organizing academic literature and notes 

In addition to the organization of PDFs and references, Docear enables users to 

draft their own assignments, papers, books, etc. in mind maps. Figure 7 shows a 

mind map that represents a draft for a new research paper. In the mind map, we 

outlined the paper that we wanted to write and included LaTeX formulas and 

images, as well as some of the PDFs and citations from the mind map in Figure 5. 

We use the term “citation” to refer to a reference or link in a mind map to a 

research paper. For instance, in Figure 5, nodes with a PDF icon link to a PDF file, 
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typically a research article. If such a link exists, this is seen as a citation for the 

linked research article. A citation is also made when a user added bibliographic 

data, such as title and author, to a node (even if the node did not link a PDF).  

 
Figure 6: Reference management in Mendeley 

 
Figure 7: Mind map as a draft for a new research paper 
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In addition, we developed Docear4Word, an add-on for Microsoft Word for 

managing references (Figure 8). Docear4Word is based on BibTeX and the 

Citation Style Language (CSL), features over 1,700 citation styles (Harvard, IEEE, 

ACM, etc.), is published as open source, and runs with Microsoft Word 2002 (and 

later) on Windows XP (and later). Docear4Word is similar to the MS-Word add-

ons that reference managers like Endnote, Zotero, or Citavi offer, with the 

difference that it is being developed to work with the de-facto standard BibTeX 

and thereby work with almost any reference manager. For more details about 

Docear4Word, refer to Appendix E and http://docear.org. 

 
Figure 8: Word document with IEEE (left) and Harvard (right) citation style 

2.3 Definitions 

We use the term "idea" to refer to a hypothesis about how recommendations could 

be effectively generated. To differentiate how specific the idea is, we distinguish 

between recommendation classes, approaches, algorithms, and implementations 

(Figure 9).  

We define a "recommendation class" as the least specific idea, namely a broad 

concept that vaguely describes how recommendations might be given. For 

instance, collaborative filtering (CF) and content-based filtering (CBF) 

fundamentally differ in their underlying ideas: the underlying idea of CBF is that 

users are interested in items that are similar to items the users previously liked. In 

contrast, the idea of CF is that users like items that the users' peers liked. However, 

http://docear.org/
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these ideas are rather vague and leave room for speculation about how the idea is 

actually realized.  

A "recommendation approach" is a model of how to bring a recommendation class 

into practice. For instance, the idea behind CF can be realized with user-based CF 

[310], content-boosted CF [255], and various other approaches [331]. These 

approaches are quite different but are each consistent with the central idea of CF. 

Nevertheless, approaches are rather vague, leaving room for speculation about 

how recommendations are precisely generated.  

A "recommendation algorithm" describes in detail the idea behind a 

recommendation approach. For instance, an algorithm of a CBF approach would 

specify whether terms were extracted from the title of a document or from the 

body of the text, and how terms are processed (e.g. stop-word removal or 

stemming) and weighted (e.g. TF-IDF). Algorithms are not necessarily complete. 

For instance, pseudo-code might contain only the most important information and 

ignore basics such as weighting schemes. This means that for a particular 

recommendation approach there might be several (slightly) different algorithms. 

Finally, an "implementation" is the actual source code of an algorithm that can be 

compiled and applied in a recommender system. It fully details how 

recommendations are generated and leaves no room for speculation. It is therefore 

the most specific idea about how recommendations might be generated.  

 
Figure 9: Illustration of recommendation ideas, systems, etc.  

A "recommender system" is a fully functional software system that applies at least 

one implementation to give recommendations. In addition, recommender systems 
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feature several other components, such as a user interface, a corpus of 

recommendation candidates, and an operator that owns/runs the system. Some 

recommender systems also apply two or more recommendation approaches. For 

instance, CiteULike lets their users choose between two approaches to use [37, 

69]. 

The "recommendation scenario" describes the entire setting of a recommender 

system, including the recommender system and the recommendation environment, 

i.e. the domain and user characteristics.  

"Evaluation" describes any kind of assessment that measures the effectiveness of 

ideas. There are different methods to evaluate recommender systems, which will 

be later introduced.  

By “effectiveness,” we refer to the degree to which a recommender system 

achieves its objective. Generally, the objective of a recommender system is to 

provide “good” [134] and “useful” [144] recommendations that make users 

“happy” [104] by satisfying their “needs” [250]. The needs of users vary, and 

consequently, different items might make users happy. For instance, some users 

might be interested in novel research-paper recommendations; others might be 

interested in authoritative research-paper recommendations; and, of course, users 

require recommendations specific to their fields of research [368]. When we use 

the term “effectiveness,” we refer to whatever objective the evaluator might have 

wanted to measure. In addition, we use the terms “performance” and 

“effectiveness” interchangeably. 

2.4 User Modeling  

In daily life, many situations require user modeling, which is, in a broad sense, the 

ability to understand someone’s needs and to adapt to them [84, 335]. Rich 

provided the following example of a librarian who needs to know basic 

information about a library visitor to being able to recommend books to this 

visitor: 

“Someone walks into a large library, tells the librarian that he is 

interested in China, and asks for some books. What sort of books does 

the librarian recommend? That depends. Is the person a small child 

who just saw a TV show about China and wants to see more pictures 

of such an exotic place? Is the person a high school student doing a 

term paper? Or maybe a prospective tourist? Or a scholar interested 

in Eastern thought? Can the person read Chinese? The librarian 
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needs to know these things before he can point the reader to the right 

books. Some of what he needs to know he'll know before he even 

thinks about it, such as the approximate age of the person. Some 

things he'll assume until he has evidence to the contrary, such as that 

the person does not read Chinese. To find out other things, he'll ask a 

few specific questions. Only after he has a rough model of the person 

he's talking to can he answer the question.” [312] 

There are different types of computer systems adapting to the needs of their users. 

Kobsa lists ten fields including intelligent interfaces, cognitive engineering, 

intelligent tutoring, expert systems, and guidance systems [184]. Others add more 

fields to that list, for instance, educational hypermedia [48], navigation support 

[107], and dialog strategy [417]. However, we see three main categories in user 

modeling and that is human computer interaction, user prediction & plan 

recognition, and information filtering/retrieval.  

Human computer interaction (HCI) includes the adaption of software’s interfaces 

[184], navigation [107], and presentation [107] to the users’ needs. For instance, 

for elderly users, larger fonts might be used to compensate vision impairments 

[137] or menu items may be re-sorted depending on how often they are used [99]. 

Plan and goal prediction focuses on the actions of a user. For instance, Thai-Nghe 

et al. build user models of students to predict the students’ future performance 

[364]. Germanakos et al. predict future purchases from customers [107]. Hirsh et 

al. predict which command line users will enter next [151]. Macskassy et al. 

predict which emails of a user are worth being forwarded to the user’s mobile 

device [235]. However, HCI and plan and goal recognition are out of scope of this 

doctoral thesis. 

The focus of this thesis lies on user modeling for recommender systems, which is a 

sub-discipline of information filtering, which is a sub-discipline of information 

retrieval, and a “research area that offers tools for discriminating between 

relevant and irrelevant information by providing personalized assistance for 

continuous retrieval of information” [200].  

The probably two most important questions in user modeling and recommender 

systems are 1) how to identify the user’s information needs, and 2) how to find 

items satisfying the users' needs? Potential answers to these questions are covered 

in the next section.  
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2.5 Recommender Systems 

2.5.1 Introduction 

Ideally, a recommender system identifies the users' needs automatically by 

inferring the needs from the user's item interactions. Alternatively, the 

recommender system asks users to specify their needs by providing a list of 

keywords or through some other method. However, in this case a recommender 

system becomes very much like a search engine and loses one of its main features, 

namely the capability to recommend items even if users do not know exactly what 

they need.  

To identify users' information needs and match these needs with items, researchers 

proposed several recommendation classes such as collaborative filtering and 

content-based filtering, as well as feature-based, knowledge-based, behavior-

based, citation-based, context-based, and ruse-based recommendations, and many 

more [50, 59, 219, 297, 305, 367, 400]. We consider the following seven classes to 

be most appropriate for distinguishing the approaches in the field of research-

paper recommender systems: 

1. Stereotyping 

2. Content-based Filtering 

3. Collaborative Filtering 

4. Co-Occurrence  

5. Graph-based 

6. Global Relevance  

7. Hybrid 

In the following sections, stereotypes, content-based filtering, collaborative 

filtering, and co-occurrence recommendations are introduced. The other 

classes are briefly introduced later as they are not that commonly used.  

2.5.2 Recommendation Classes 

2.5.2.1 Stereotyping 

Stereotyping is one of the earliest user modeling and recommendation classes. It 

was introduced by Rich in the recommender system Grundy, which recommended 
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novels to its users [312]. Rich was inspired by stereotypes from psychology that 

allowed psychologists to quickly judge people based on a few characteristics. Rich 

defined stereotypes – which she called “facets” – as collections of characteristics. 

For instance, Grundy assumed that male users have “a fairly high tolerance for 

violence and suffering, as well as a preference for thrill, suspense, fast plots, and a 

negative interest in romance” [312]. Consequently, Grundy recommended books 

that had been manually classified to suit the facets. 

One major problem with stereotypes is that they may pigeonhole users. While 

many men have a negative interest in romance, certainly not all do. Similarly, a 

recommender system that recommends sausages to users because they are German 

might please those who actually like sausages, but Germans who are vegetarian or 

Muslim might feel uncomfortable [186]. In addition, building stereotypes is often 

labor intensive, as the items typically need to be manually classified for each facet. 

This limits the number of e.g. books that could reasonably be personalized [14].  

Advocates of stereotypes argue that once the stereotypes are created the 

recommender system needs little computing power and may perform quite well in 

practice. For instance, Weber and Castillo observed that female users were usually 

searching for the composer Richard Wagner when they entered the search query 

‘Wagner’ on Yahoo! [385]. In contrast, male users entering the same query usually 

were looking for the Wagner paint sprayer. Weber and Castillo modified the 

search algorithm to show the Wikipedia page for Richard Wagner to female users, 

and the homepage of the Wagner paint sprayer company to male users searching 

for ‘Wagner.’ As a result, user satisfaction increased. Similarly, the travel agency 

Orbitz observed that Macintosh users were “40% more likely to book a four- or 

five-star hotel than PC users” and when booking the same hotel, Macintosh users 

booked the more expensive rooms [246]. Consequently, Orbitz assigned their 

website visitors to either the “Mac User” or “PC user” stereotype, and Mac users 

received recommendations for pricier hotels than PC users. All parties benefited – 

users received more relevant search results, and Orbitz received higher 

commissions. 

2.5.2.2 Content-based filtering 

Content-based filtering (CBF) is one of the most widely used and researched 

recommendation approaches [231]. One central component of CBF is the user 

modeling process, in which the interests of users are inferred from the items that 

users interacted with. “Items” are usually textual, for instance emails [288] or 

webpages [5]. "Interaction" is typically established through actions such as 
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downloading, buying, authoring, or tagging an item. Items are represented by a 

content model containing the items’ features. Features are typically word-based, 

i.e. single words, phrases, n-grams, etc. Some recommender systems also use non-

textual features such as writing style [327, 328], layout information [92, 332], and 

XML tags [54]. Typically, only the most descriptive features are used to model an 

item and users and these features are typically weighted. Once the most 

discriminative features are identified, they are stored, typically as vector that 

contains the features and their weights. The user model typically consists of the 

features of a user's items. To find recommendations, the user model and 

recommendation candidates are compared in e.g. the vector space model and 

similarities are calculated e.g. with Cosine.  

CBF has a number of advantages compared to stereotypes. CBF allows a more 

individual personalization so the recommender system can determine the best 

recommendations for each user individually, rather than be limited by stereotypes. 

CBF also requires less labor since user models can be created automatically.  

On the downside, content-based filtering requires more computing power than 

stereotyping. Each item must be analyzed for its features, user models need to be 

built, and similarity calculations need to be performed. If there are many users and 

many items, these calculations require significant resources. Content-based 

filtering is also criticized for low serendipity and overspecialization because it 

recommends items as similar as possible to the ones a user already knows [231]. 

Content-based filtering also ignores quality and popularity of items [86]. For 

instance, two research papers may be considered equally relevant by a CBF 

recommender system because the papers share the same terms with the user 

model. However, one paper might be written by an authority in the field, well 

structured, and presenting original results, while the other paper might be penned 

by a student, poorly written and just paraphrasing other research papers. Ideally, a 

recommender system should recommend only the first candidate but a CBF system 

would fail to do so. Another criticism of content-based filtering is that it is 

dependent on access to the item’s features [86]. For research-paper 

recommendations, usually PDFs must be processed and converted to text, 

document fields must be identified, and features such as terms must be extracted. 

None of these tasks is trivial and they may introduce errors in the 

recommendations [28, 75, 241]. 
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2.5.2.3 Collaborative filtering 

The term “collaborative filtering” (CF) was coined in 1992 by Goldberg et al., 

who proposed that “information filtering can be more effective when humans are 

involved in the filtering process” [124]. The concept of collaborative filtering as it 

is understood today was introduced two years later by Resnick et al. [310]. Their 

theory was that users like what like-minded users like, whereas two users were 

considered like-minded when they rated items alike. When like-minded users were 

identified, items that one user rated positively were recommended to the other 

user, and vice versa. Compared to CBF, CF offers three advantages. First, CF is 

content independent, i.e. no error-prone item processing is required [142, 323, 

368]. Second, because the ratings are done by humans, CF takes into account real 

quality assessments [86]. Finally, CF is supposed to provide serendipitous 

recommendations because recommendations are not based on item similarity but 

on user similarity [142, 250]. 

A general problem of CF is the “cold start problem,” which may occur in three 

situations [323]: new users, new items, and new communities or disciplines. If a 

new user rates few or no items, the system cannot find like-minded users and 

therefore cannot provide recommendations. If an item is new in the system and has 

not been rated yet by at least one user, it cannot be recommended. In a new 

community, no users have rated items, so no recommendations can be made and as 

a result, the incentive for users to rate items is low.  

There are further critiques of CF. Computing time for CF tends to be higher than 

for content-based filtering [323]. Collaborative filtering in general is less scalable 

and requires more offline data processing than CBF [337]. Torres et al. note that 

collaborative filtering creates similar users [368] and Sundar et al. criticize that 

collaborative filtering dictates opinions [350]. Lops makes the criticism that 

collaborative filtering systems are black boxes that cannot explain why an item is 

recommended except that other users liked it [231]. Manipulation is also 

considered a problem: since collaborative filtering is based on user opinions, 

blackguards might try to manipulate ratings to promote their products so they are 

recommended more often [252–254]. 

2.5.2.4 Co-occurrence recommendations 

To give co-occurrence recommendations, those items are recommended that 

frequently co-occur with some source items. One of the first co-occurrence 

application was co-citation analysis introduced by Small in 1973 [334]. Small 

proposed that two papers are the more related to each other, the more often they 
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are co-cited. This concept was adopted by many others, the most popular example 

being Amazon’s “Customers Who Bought This Item Also Bought….” Amazon 

analyzes which items are frequently bought together, and when a customer 

browses a product, items frequently bought with that item are recommended.  

One advantage of co-occurrence recommendations is the focus on relatedness 

instead of similarity. Similarity expresses how many features two items have in 

common. Recommending similar items, as CBF is doing, is often not ideal 

because similar items are not serendipitous [345]. In contrast, relatedness 

expresses how closely coupled two items are, not necessarily dependent on their 

features. For instance, two papers sharing the same features (words) are similar. In 

contrast, paper and pen are not similar but related, because both are required for 

writing letters. Hence, co-occurrence recommendations provide more 

serendipitous recommendations and are comparable to collaborative filtering. In 

addition, no access to content is needed and complexity is rather low. It is also 

rather easy to generate anonymous recommendations, and hence to assure users' 

privacy. On the downside, recommendations are not that highly personalized and 

items can be recommended only if they co-occur at least once with another item. 

2.5.3 Recommender-Systems Evaluation 

To evaluate recommender systems, some researchers distinguish between "offline" 

and "online evaluations" [411], between "data-centric" and "user-centric" 

evaluations [319], and between "live user experiments" and "offline analyses" 

[144]. We adopt the classification by Ricci et al. [311] and offer further sub-

classification, somewhat inspired by [167], i.e. we distinguish between user 

studies, online evaluations, and offline evaluations. Our classification is illustrated 

in Figure 10 and explained in the following sections 

 
Figure 10: Classification of evaluation methods 

2.5.3.1 User studies 

User studies typically measure user satisfaction through explicit ratings. Users 

receive recommendations generated by different recommendation approaches, rate 
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the recommendations, and the community considers the approach with the highest 

average rating most effective [311]. Study participants are typically asked to 

quantify their overall satisfaction with the recommendations. However, they might 

also be asked to rate individual aspects of a recommender system, for instance, 

how novel or authoritative recommendations are [368], or how suitable they are 

for non-experts [195]. A user study can also collect qualitative feedback, but this is 

rarely done in the field of (research-paper) recommender systems [341, 342].  

We distinguish between “lab” and “real-world” user studies. In lab studies, 

participants are aware that they are part of a user study, which, as well as several 

other factors, might affect their behavior and thereby the evaluation's results [130, 

220]. In real-world studies, participants are not aware of the study and rate 

recommendations for their own benefit, for instance because the recommender 

system improves recommendations based on the ratings (i.e. relevance feedback 

[231]), or ratings are required to generate recommendations (i.e. collaborative 

filtering [310]).  

Often, user studies are considered the optimal evaluation method [321]. However, 

the outcomes of user studies may depend on the questions users are asked. 

Cremonesi et al. found that it makes a difference whether users are asked for the 

"perceived relevance" or "global satisfaction" of recommendations [77]. Similarly, 

it made a difference whether users were asked to rate the novelty or relevance of 

recommendations [76]. A large number of participants are also crucial to user 

study validity, which makes user studies relatively expensive to conduct. The 

number of required participants, to receive statistically significant results, depends 

on the number of approaches being evaluated, the number of recommendations 

being displayed, and the variations in the results [53, 230]. However, as rough 

estimate, at least a few dozen participants are required, often more.  

2.5.3.2 Online evaluations 

Online evaluations originated from online advertising and e-commerce. They 

measure the acceptance rates of recommendations in real-world recommender 

systems. Acceptance rates are often measured by click-through rates (CTR), i.e. 

the ratio of clicked recommendations to displayed recommendations. For instance, 

if a recommender system displays 10,000 recommendations and 120 are clicked, 

the CTR is 1.2%. Other metrics include the ratio of downloaded or bought items to 

the items displayed. Acceptance rate is typically interpreted as an implicit measure 

for user satisfaction. The assumption is that when a user clicks, downloads, or 

buys a recommended item, the user liked the recommendation. Of course, this 
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assumption is not always reliable because users might buy a book but rate it 

negatively after reading it. However, in some cases, metrics such as CTR can be 

an explicit measures of effectiveness, namely when the operator receives money, 

e.g. for clicks on recommendations.  

Online evaluations are not without criticism. Zheng et al. showed that CTR and 

relevance do not always correlate and concluded that "CTR may not be the 

optimal metric for online evaluation of recommender systems" and "CTR should 

be used with precaution" [411]. In addition, conducting online evaluations requires 

significantly more time than offline evaluations, they are more expensive, and they 

can only be conducted by researchers who have access to a real-world 

recommender system. 

2.5.3.3 Offline evaluations 

Offline evaluations typically measure the accuracy of a recommender system 

based on a ground-truth [176, 188]. To measure accuracy, precision at position n 

(P@n) is often used to express how many items of the ground-truth are 

recommended within the top n recommendations. Other common evaluation 

metrics include recall, F-measure, mean reciprocal rank (MRR), normalized 

discounted cumulative gain (nDCG), mean absolute error, and root mean square 

error. Offline evaluations are also sometimes used to evaluate aspects such as 

novelty or serendipity of recommendations [104].  

We define three types of ground-truths.  

‘Explicit ground-truths’ contain explicit information about how much users liked 

certain items, whereas liked typically means how well users rated an item. To 

evaluate a recommendation approach, some ratings are removed from the dataset 

and the recommendation approach predicts the ratings for the removed items. The 

closer the predicted ratings are to the original ratings, the more accurate the 

recommender approach is. Figure 11 illustrates the idea of an explicit ground-

truth. User u has watched five movies and rated how much she liked them on a 

scale of 1 to 5. Movies D and E are removed from the collection. The 

recommendation approach predicts the ratings for movies D and E. The prediction 

for movie D was “perfect” (4) and the prediction for movie E was close (2 instead 

of 1). Consequently, the evaluated approach would be quite accurate.  

“Inferred ground-truths” are typically based on personal item collections of users, 

for instance a list of papers a user cited, or a list of books a user bought. The 
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assumption is that the items in the users’ personal collection – and only these 

items – would have been good recommendations. To evaluate a recommender 

system based on such a ground-truth, random items are removed from the 

collections, and recommendations are created based on the remaining items. The 

more of the removed items are recommended, the more accurate the approach is. 

At first glance, this concept seems similar to explicit ground-truths, but it is not as 

Figure 12 illustrates. User u has three research papers in her collection (Paper A, 

B, and C). The recommendation approach recommends three papers (Paper C, D, 

and E), only one of which is in u's collection (Paper C). Only paper C is 

considered a “good” recommendation. We propose that this concept is 

fundamentally flawed, because also Paper D and E might have been relevant 

recommendations. We will elaborate on this criticism later. 

 
Figure 11: Illustration of an explicit ground-truth 

 

 
Figure 12: Illustration of inferred ground-truth 

“Expert ground-truths” contain item classifications that are manually compiled by 

topical experts. Examples of such datasets include the TREC or MeSH 
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classification. In these datasets, documents such as webpages or research papers 

are classified according to the information needs they satisfy. In MeSH, for 

instance, terms from a controlled vocabulary are assigned to research papers. 

Papers with the same MeSH terms are considered similar. For an evaluation, some 

papers of one MeSH category are taken as input and the more papers of the same 

category are recommended, the more accurate the algorithm is. 

Offline evaluations were originally meant to identify a number of promising 

recommendation approaches [134, 244, 306, 311]. These approaches should then 

be evaluated in detail with a user study or online evaluation to identify the most 

effective approaches. However, criticism has been raised on the assumption that 

offline evaluation could predict an algorithm’s effectiveness in online evaluations 

or user studies. More precisely, several researchers have shown that results from 

offline evaluations do not necessarily correlate with results from user studies or 

online evaluations [76, 77, 145, 146, 249, 319, 369]. This means that approaches 

that are effective in offline evaluations are not necessarily effective in real-world 

recommender systems. Therefore, McNee et al. criticized that  

"the research community’s dependence on offline experiments 

[has] created a disconnect between algorithms that score well 

on accuracy metrics and algorithms that users will find useful." 

[250]  

Several more researchers voiced criticism of offline evaluations. Jannach et al. 

stated that "the results of offline [evaluations] may remain inconclusive or even 

misleading" and "real-world evaluations and, to some extent, lab studies represent 

probably the best methods to evaluate systems" [167]. Knijnenburg et al. reported 

that "the presumed link between algorithm accuracy […] and user experience […] 

is all but evident" [183]. Said et al. consider "on-line evaluation [as] the only 

technique able to measure the true user satisfaction" [321]. Rashid et al. criticize 

that biases in the offline datasets may cause bias in the evaluation [306]. The main 

reason for the criticism in the literature is that offline evaluations ignore human 

factors; yet human factors strongly affect overall user satisfaction with 

recommendations.  

Despite the criticism, offline evaluations are the predominant evaluation method in 

the recommender community [168] and "surprisingly few studies [evaluate] 

algorithms in live experiments with real users" [183]. 
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2.5.3.4 The operator's perspective 

It is commonly assumed that the objective of a recommender system is to make 

users "happy" (cf. 2.3, p. 14). However, there is another important stakeholder 

who is often ignored in the general recommender literature: the operator of a 

recommender system [134].  

Operators of recommender systems often are assumed to be satisfied when their 

users are satisfied, but this is not always the case. Operators may also want to keep 

down costs for labor, disk storage, memory, CPU power, and traffic [311]. 

Therefore, for operators, an effective recommender system may be one that can be 

developed, operated, and maintained at a low cost. Operators may also want to 

generate a profit from the recommender system [134]. Such operators might prefer 

to recommend items with higher profit margins, even if user satisfaction was not 

optimal. For instance, publishers might be more interested in recommending 

papers the user would have to pay for than papers the user could freely download. 

2.6 Related Research Fields 

Several research fields are related to user modeling and (research-paper) 

recommender systems. While we did not survey these fields, we are introducing 

them, so interested readers may broaden their research into these directions.  

Research on academic search engines deals with calculating relevancies between 

research papers and search queries [43, 313, 314]. The techniques are often similar 

to those used by research-paper recommender systems. In some cases, 

recommender systems and academic search engines are even identical. As shown 

later in detail, some of the recommender systems require their users to provide 

keywords that represent their interests. In such cases, research-paper recommender 

systems do not differ from academic search engines where users provide keywords 

to retrieve relevant papers. Consequently, these fields are highly related and most 

approaches for academic search engines are relevant for research-paper 

recommender systems.  

The reviewer assignment problem targets using information-retrieval and 

information-filtering techniques to automate the assignment of conference papers 

to reviewers [89]. The differences from research-paper recommendations are 

minimal: in the reviewer assignment problem a relatively small number of paper 

submissions must be assigned to a small number of users, i.e. reviewers; research-

paper recommender systems recommend a few papers out of a large corpus to a 
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relatively large number of users. However, the techniques are usually identical. 

The reviewer assignment problem was first addressed by Dumais and Nielson in 

1992 [89], six years before Giles et al. introduced the first research-paper 

recommender system [119]. A good survey on the reviewer assignment problem 

was published by Wang et al. [381]. 

Scientometrics deals with analyzing the impact of researchers, research articles 

and the links between them. Scientometrics researchers use several techniques to 

calculate document relatedness or to rank a collection of articles, and some of 

them – h-index [150], co-citation strength [334] and bibliographic coupling 

strength [179] – have also been applied by research-paper recommender systems 

[34, 388, 402]. However, there are many more metrics in scientometrics that might 

be relevant for research-paper recommender systems [418].  

Other related research fields include book recommender systems [267], 

educational recommender systems [49], academic alerting services [94], expert 

search [80], automatic summarization of academic articles [170, 264, 363], 

academic news feed recommenders [71, 293], academic event recommenders 

[182], venue recommendations [396], citation recommenders for patents [283], 

recommenders for academic datasets [333], and plagiarism detection. The latter, 

like many research-paper recommenders, utilizes text and citation analysis to 

identify similar documents [121, 406, 414]. In addition, research that relates to 

crawling the web and analyzing academic articles can be useful for building 

research-paper recommender systems, for instance, author name extraction and 

disambiguation [221], title extraction [20, 28, 136, 154, 294], or citation extraction 

and matching [212]. Finally, most of the research about content-based [231] or 

collaborative filtering [311, 323] from other domains (e.g. movies or news) is 

relevant for research-paper recommender systems as well. 
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3. Related Work4  

This chapter presents related work on mind mapping, research-paper recommender 

systems, and recommender-systems evaluation. The primary goal of the review 

was to identify promising user-modeling approaches to apply with mind maps, as 

well as to identify adequate evaluation methods and metrics to measure the 

effectiveness of recommendation approaches (cf. research questions i and iii, p. 4). 

Apart from answering research question i and iii, the review aimed at providing a 

comprehensive and critical overview of available research-paper recommender 

systems, and the approaches and techniques they apply, as well as to identify 

potential problems that require further research. This enables researchers and 

developers to (a) learn about the most important aspects of research-paper 

recommender systems, (b) identify promising fields of research, and (c) motivate 

the community to solve the most urgent problems that currently hinder the 

effective use of research-paper recommender systems. 

The focus of the survey lies on 70 recommendation approaches that were 

presented in 127 research articles. We analyze the use of recommendation classes 

such as collaborative filtering, the use of document fields such as title, abstract, or 

citation context, and the use of weighting schemes such as TF-IDF. We review the 

approaches' evaluations, including which evaluation methods were applied (e.g. 

user-studies or offline evaluations), which evaluation metrics were used (e.g. 

precision or recall), how many participants the user studies had, and how strong 

datasets were pruned. A discussion and critical analysis of the most serious 

limitations in the research field follows, exploring inadequate evaluations, sparse 

information on algorithms, neglecting the user modeling process and overall user 

satisfaction, and not transferring research results into practice. A review of the 

individual recommendation approaches can be found in Appendix F (p. 217). 

3.1 Introduction 

Mind maps received significant attention in various research fields. In the field of 

human computer interaction (HCI), Faste and Lin evaluated the effectiveness of 

                                                      

4 Parts of this chapter have been published as: J. Beel, S. Langer, M. Genzmehr, B. Gipp, C. Breitinger, and A. 
Nürnberger, “Research Paper Recommender System Evaluation: A Quantitative Literature Survey,” in 

Proceedings of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys) 

at the ACM Recommender System Conference (RecSys), 2013, pp. 15–22. 
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mind mapping tools and developed a framework for mind-map-based 

collaboration [96]. In the field of document engineering and text mining, Kudelic 

et al. created mind maps from texts automatically [199], and Bia et al. utilized 

mind maps to model semi-structured documents, i.e. XML files and the 

corresponding DTDs, schemas, and XML instances [36]. In the field of education, 

Jamieson researched how graph analysis techniques could be used with mind maps 

to quantify the learning of students [166], and Somers et al. used mind maps to 

research how knowledgeable business school students are [336]. Furthermore, 

mind maps have been used to implement a lambda calculator [63], to filter search 

results from Google [415], to conduct peer-review [324], present software 

requirements [72], and there are numerous studies about the effectiveness of mind 

maps as learning tool [64, 78, 79, 103, 152, 169, 202, 277, 280, 339, 380, 382].  

However, the research on mind maps is not helpful for developing a user-modeling 

and recommender system based on mind maps. Therefore, we shifted the focus of 

our literature review from mind maps to recommender systems. Since the body of 

literature in the field of recommender systems is huge, we decided to narrow down 

our review to research-paper recommender systems, as we wanted to apply our 

mind-map-based user modeling in the context of such systems.  

The first research-paper recommender system was presented in 1998, by Giles et 

al. as part of the CiteSeer project [119]. Since then, at least 216 more articles 

about research-paper recommender systems were published [1, 2, 4, 6, 9–11, 13, 

18, 19, 24, 26, 27, 29, 30, 32, 34, 37–41, 55, 58–61, 65–70, 74, 81, 82, 87, 90, 91, 

93, 95, 97, 98, 101, 102, 106, 108–118, 120, 122, 123, 128, 129, 131–133, 138–

141, 147–149, 153, 155–159, 161–163, 172–175, 178, 180, 185, 187, 189–198, 

203, 204, 206–211, 213, 214, 216, 219, 222, 224–226, 233, 239, 240, 243, 245, 

249, 250, 256–261, 263, 265, 266, 268–276, 279, 282, 284–287, 290, 295, 296, 

298, 299, 301–303, 307, 309, 315–317, 322, 329, 335, 341–344, 346–349, 351–

362, 365, 366, 368, 370–376, 379, 383, 384, 386–395, 397–399, 401–404, 407, 

409, 410, 412]5. The yearly number of publications steadily increases: 66 of the 

217 surveyed articles (30%) were published just in the past two years (Figure 13 & 

                                                      

5 Numbers are based on our literature search. Although, we believe our survey to be the most comprehensive 

survey about research-paper recommender systems, we may have missed a few articles. In addition, most likely, 

more than 40 papers were published in 2013 since we conducted the literature search in January 2014. Articles 
presented at conferences in late 2013 most likely had not been published in conferences proceedings by January 

2014, and hence were not found through our search. Hence, the total number of papers published is probably 

somewhat more than 217. 
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Table 1). The few existing literature surveys in the field cover only a fraction of 

the published articles [132, 219, 335]. Hence, they do not help in obtaining an 

overview of the research field, and identifying the most promising approaches 

(neither generally, nor for our specific purpose of generating recommendations 

based on mind maps).  

 
Figure 13: Published papers per year5 

The 217 surveyed articles were obtained through a literature search in June 2013 

and January 2014. We conducted the search via Google Scholar, ACM Digital 

Library, Springer Link, and ScienceDirect, and searched for 

[paper | article | citation] [recommender | recommendation] [system | systems]. 
All articles that had relevance for research-paper recommender systems were 

downloaded. Our relevance judgment made use of the title, and the abstract where 

the title was not clear. We examined the bibliography of each article. When an 

entry in the bibliography pointed to a relevant article not yet downloaded, we also 

downloaded that article. We expanded our search to websites, blogs, patents, and 

presentations on major academic recommender systems. These major academic 

services include the academic search engines CiteSeer(x)6, Google Scholar 

(Scholar Update)7, and PubMed8; the social network ResearchGate9; and the 

reference managers CiteULike10 and Mendeley11. While these systems offer 

recommender systems along with their main services, there are also a few stand-

                                                      

6 http://citeseerx.ist.psu.edu 
7 http://scholar.google.com/scholar?sciupd=1&hl=en&as_sdt=0,5 
8 http://www.ncbi.nlm.nih.gov/pubmed 
9 http://www.researchgate.net/ 
10 http://www.citeulike.org/ 
11 http://www.mendeley.com/ 
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alone recommender systems, namely BibTip12, bX13, RefSeer14, TheAdvisor15 and 

an experimental system called Sarkanto16. For clarity, we use the term "article" to 

refer to the 217 reviewed documents, and the term "paper" to refer to documents 

being recommended by research-paper recommender systems17. 

Table 1: List of papers by year 

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 

Reference 
[39, 

119] 

[211, 

315] 

[40, 

97, 

295, 

388] 

[106, 

111, 

113, 

214, 

259, 

316, 

373] 

[109, 

110, 

112, 

158, 

249, 

257, 

260, 

272, 

284, 

285, 

372] 

[38, 

108, 

114–

118, 

133, 

159, 

343, 

356, 

358, 

361] 

[91, 

155, 

213, 

261, 

287, 

298, 

299, 

352, 

353, 

357, 

368, 

371] 

[2, 

58, 

59, 

187, 

335, 

384] 

[1, 4, 

41, 65, 

74, 

102, 

129, 

147, 

149, 

174, 

222, 

250, 

286] 

[10, 

101, 

157, 

175, 

226, 

240, 

245, 

301, 

302, 

307, 

344, 

360, 

376, 

393, 

398] 

[37, 60, 

95, 

141, 

148, 

204, 

265, 

266, 

271, 

273, 

303, 

354, 

386, 

407, 

412] 

[9, 19, 

68, 70, 

81, 82, 

87, 122, 

123, 

185, 

258, 

268–

270, 

279, 

342, 

351, 

355, 

359, 

379, 

392] 

[34, 66, 

90, 

120, 

140, 

173, 

178, 

210, 

243, 

290, 

329, 

347, 

374, 

383, 

394, 

409] 

[11, 

18, 69, 

98, 

131, 

132, 

139, 

207, 

225, 

233, 

276, 

309, 

365, 

370] 

[13, 67, 

128, 

138, 

153, 

156, 

161–

163, 

172, 

189, 

191, 

193–

195, 

206, 

208, 

209, 

219, 

263, 

362, 

387, 

389, 

390, 

401, 

402] 

[6, 24, 26, 

27, 29, 30, 

32, 55, 61, 

93, 180, 

190, 192, 

196–198, 

203, 216, 

224, 239, 

256, 274, 

275, 282, 

296, 317, 

322, 341, 

346, 348, 

349, 366, 

375, 391, 

395, 397, 

399, 403, 

404, 410] 

 

The 217 articles consist of peer reviewed conference articles (71%), journal 

articles (14%), pre-prints (4%), and other formats such as PhD theses, patens, 

presentations and web pages (Table 2). When referring to a large number of 

recommender systems with certain properties, we cite only three exemplary 

articles. For instance, when we report how many recommender systems apply 

content-based filtering, we report the number or percentage and provide three 

exemplary references [29, 163, 211].  

                                                      

12 http://www.bibtip.com/ 
13 http://www.exlibrisgroup.com/category/bXUsageBasedServices 
14 http://refseer.ist.psu.edu/ 
15 http://theadvisor.osu.edu/ 
16 http://lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/ 
17 Some recommender systems also recommended “citations” but in our opinion, differences between 

recommending papers and citations are marginal, which is why we do not distinguish between these two terms in 

the remainder.  

http://www.bibtip.com/
http://www.exlibrisgroup.com/category/bXUsageBasedServices
http://refseer.ist.psu.edu/
http://theadvisor.osu.edu/
http://lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/
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Table 2: Article types 

 

We used all 217 articles for some quantitative analyses about, e.g. page counts, 

citation counts, and number of authors. Citation counts were retrieved from 

Google Scholar in early 2014. Some researchers have reservations about using 

Google Scholar as source for citation counts [17, 160, 281], but the numbers 

should give a sufficient idea of a paper’s popularity.  

Of the 217 articles, we reviewed 127 articles about 70 recommendation 

approaches in detail [4, 9, 11, 18, 19, 24, 29, 30, 32, 34, 37–39, 41, 55, 60, 66–70, 

74, 87, 90, 91, 93, 98, 101, 108–120, 122, 123, 128, 129, 131, 138–141, 147–149, 

155, 156, 158, 159, 161–163, 172, 173, 175, 178, 185, 187, 189, 191–196, 204, 

206–211, 213, 214, 222, 225, 226, 233, 249, 250, 257–261, 265, 266, 269–271, 

273, 276, 279, 284–287, 295, 298, 299, 301, 302, 309, 317, 322, 344, 347, 365, 

368, 370, 374, 376, 383, 384, 388, 392, 402, 403, 412]. We read those 127 articles 

thoroughly and present their main ideas and results in this survey. The remaining 

90 articles were excluded for one of the following reasons:  

 58 articles were excluded because we considered them to be of little 

significance [1, 2, 10, 13, 40, 58, 59, 65, 81, 82, 95, 97, 106, 133, 

153, 157, 174, 240, 243, 245, 263, 268, 272, 290, 303, 307, 315, 

316, 329, 341–343, 351–362, 371–373, 379, 386, 387, 389, 390, 

393, 394, 398, 401, 407, 409]. We judged articles to be of little 

significance when they provided neither an evaluation nor an 

interesting new approach; when they were not understandable due 

to serious English errors; or when they were out of scope (although 

the article’s title suggested some relevance to research-paper 

recommender systems). One example of an article out of scope is 

‘Research Paper Recommender Systems - A Subspace Clustering 

Approach’ [2]. The title seems relevant for this survey, but the 

article presents a collaborative filtering approach that does not focus 

on research-paper recommender systems. Instead, it is based on the 

Movielens dataset, which contains ratings of movies.  

 28 articles were excluded because they were found during the 

second round of literature search in January 2014 [6, 27, 61, 102, 

180, 190, 197, 198, 203, 216, 224, 239, 256, 274, 275, 282, 296, 

346, 348, 349, 366, 375, 391, 395, 397, 399, 404, 410] when we 

were researching the number of articles published in 2013 so we 

Journal articles Conference papers PhD Theses Master's Theses Patents Pre-prints/unpublished Other

14% 71% 1% 1% 1% 4% 7%
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could create Figure 13. It would have been interesting to include 

these articles in the in-depth review, but in the time it would have 

taken to review them, some more articles would have been 

published, and we would never have finished the survey.  

 Four articles were literature surveys on research-paper 

recommender systems; hence they did not presented any new 

approaches and were not relevant for our survey [26, 132, 219, 

335].  

Overall, the reviewed articles were comprehensive, with a median page count of 

nine. Almost half of the articles (45.78%) had 10 or more pages (Figure 15). 

Another 16.2% had eight or nine pages. Only 21.8% of the articles had four or 

fewer pages. Citation counts follow a typical power-law distribution: a few articles 

gained many citations (maximum was 528 [119]) and many articles had few 

citations (Figure 16 and Figure 17). Mean citation count was 39, and median was 

nine. From the reviewed articles, 19.80% had no citations, 32.67% had less than 

10 citations. Not surprisingly, the earlier an article was published, the more 

citations it tended to have (Figure 14). 

 
Figure 14: Citation counts by year18 

                                                      

18 Articles with no citations are not plotted due to the log scale 
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Figure 15: Page count of reviewed articles 

 
Figure 16: Citation Counts Overview 

 
Figure 17: Citation counts of the reviewed papers 
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3.2 Survey of the Recommendation Classes 

3.2.1 Content-Based Filtering  

In the research-paper recommender-system community, CBF is the predominant 

approach: of the 70 reviewed approaches, 34 (49%) apply the idea of CBF [29, 

140, 259], not including the hybrid approaches, which also mostly apply CBF. For 

the reviewed approaches, “interaction” between users and items was typically 

established through authorship [128, 347, 370], having papers in one’s personal 

collection [29, 68, 161], adding social tags [98], or downloading [295], reading 

[392], and browsing papers [41, 159, 266]. 

Most approaches use plain words as features, although some use n-grams [98, 

276], topics (words and word combinations that occurred as social tags on 

CiteULike) [172], and concepts that were inferred from the Anthology Reference 

Corpus (ACL) corpus via Latent Dirichlet Allocation [34], and assigned to papers 

through machine learning. Only a few approaches utilize non-textual features, and 

if they do then these non-textual features are typically utilized in addition to 

words. Giles et al. used citations in the same way as words were used and 

weighted the citations with the standard TF-IDF measure (they called this method 

CC-IDF) [119]. Others adopted the idea of CC-IDF or used it as baseline [29, 39, 

91]. Zarrinkalam and Kahani considered authors as features and determined 

similarities by the number of authors two items share [403].  

The approaches extracted words from the title [210, 226, 317], abstract [90, 140, 

172], header [119], introduction [158], foreword [158], author-provided keywords 

[90, 158, 163], and bibliography [91], as well as from the papers’ body text [178, 

276, 317]. The approaches further extracted words from external sources such as 

social tags [163, 173], ACM classification tree and DMOZ categories [259, 261], 

and citation context [140, 155, 178]. Utilizing citation context is similar to the way 

search engines use anchor analysis for webpage indexing since the 1990’s [45, 

247]. Citation context analysis was also used in academic search [330] before it 

was used by research-paper recommender systems.  

It is well known that words from different document fields have different 

discriminative powers [238]. For instance, a word occurring in the title is usually 

more meaningful than a word occurring in the body text. Nascimento et al. 

accounted for this and weighted terms from the title three times stronger than 

terms from the body-text, and text from the abstract twice as strong [276]. This 

weighting scheme was arbitrarily selected and not based on empirical evidence. 
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Huang et al. experimented with different weights for papers’ content and citation 

context [155]. They found that an equal weight for both fields achieved the highest 

precision. The other reviewed approaches that used text from different fields did 

not report on any field weighting.  

The most popular model to store item representations and user models was the 

Vector Space Model (VSM), which was used by 93% of those approaches that 

reported the utilized model. Other approaches modeled their users as graph [284, 

285, 384], as list of topics that were assigned through machine learning [259], or 

as an ACM hierarchy [185]. Of those who used VSM, all but one used the cosine 

measure to calculate similarities between user models and recommendation 

candidates. In 1998, Giles et al. compared headers of documents with a string 

distance measure [39], but neither they nor others mentioned that technique again, 

which leads us to the assumption that the string edit distance was not effective.  

TF-IDF was the most popular weighting scheme (83%) among those approaches 

for which the scheme was specified. Other weighting schemes included plain term 

frequency (TF) [98, 276, 347], and techniques that the authors called “phrase 

depth” and “life span” [98]. 

3.2.2 Collaborative Filtering  

From the reviewed approaches, only nine (13%) apply collaborative filtering, and 

none uses explicit ratings [249, 295, 374]. Yang et al. intended to let users rate 

research papers, but users were “too lazy to provide ratings” [392]. This illustrates 

one of the main problems of CF: it requires user participation, but often the 

motivation to participate is low. To overcome this problem, Yang et al. inferred 

implicit ratings from the number of pages the users read: the more pages users 

read, the more the users were assumed to like the documents [392]. Pennock et al. 

interpreted interactions such as downloading a paper, adding it to ones’ profile, 

editing paper details, and viewing its bibliography as positive votes [295]. McNee 

et al. assumed that an author’s citations indicate a positive vote for a paper [249]. 

They postulated that when two authors cite the same papers, they are like-minded. 

Similar, if a user reads or cites a paper the citations of the cited paper are supposed 

to be liked by the user.  

Using inferred ratings annihilates CF’s advantage of being based on real quality 

assessments. This criticism applies to citations as well as to other types of implicit 

ratings [46, 229, 234]. For instance, we reference papers in this survey that had 

inadequate evaluations, or were written in barely understandable English. Hence, 
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interpreting these citations as positive vote would be misguiding. Similarly, when 

a user spends lots of time reading a paper this could mean that the paper contains 

interesting information, and the user would rate the paper positively; but it could 

also mean that the paper is just difficult to understand and requires a lot of effort to 

read. Consequently, CF’s advantage of explicit human quality assessments mostly 

vanishes when implicit ratings are used.  

Using citations might also annihilate CF’s second advantage of being content-

independent. Typically, reliable citation data is not widely available. Therefore, 

access to the papers’ content is required to build a citation network, but this 

process is even more fault-prone than word extraction in CBF. In CBF, “only” the 

text of the papers must be extracted, and maybe fields such as title or abstracts 

must be identified. For citation-based CF the text must also be extracted but in this 

text, the bibliography and its individual references must be identified, including 

their various fields (such as title and author). This is usually an error-prone task 

[75]. 

A general problem of collaborative filtering in the domain of research-paper 

recommender systems is sparsity. Vellino compared the (implicit) ratings on 

Mendeley (research papers) and Netflix (movies), and found that sparsity on 

Mendeley was three orders of magnitude higher than on Netflix [375]. This is 

caused by the different ratio of users and items. In domains such as movie 

recommendations, there are typically few items and many users. For instance, the 

movie recommender MovieLens has 65,000 users and 5,000 movies [144]. 

Typically, many users watched the same movies. Therefore, like-minded users can 

be found for most users and recommendations can be given effectively. Similarly, 

most movies have been watched by at least some users and hence most movies can 

be recommended. This is different in the domain of research papers. There are 

typically few users but millions of papers, and only few users rated the same 

papers. Hence, finding like-minded users is often not possible. In addition, many 

papers are not rated by any users and therefore cannot be recommended.  

3.2.3 Co-Occurrences 

Six of the reviewed approaches are based on co-occurrences (9%). Three of those 

approaches analyze how often papers are co-viewed during a browsing session [41, 

159, 266]. Whenever a user views a paper, those papers that had frequently been 

co-viewed with the browsed paper are recommended. Another approach uses 

proximity of co-citations to calculate document relatedness [122]: the higher the 

proximity of two references within a paper, the more related the cited papers are 
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assumed to be. Pohl et al. compared the effectiveness of co-citations and co-

downloads and found that co-downloads are only more effective than co-citations 

in the first two years after a paper is published [302]. 

Calculating co-occurrence recommendations is not always feasible. For instance, 

on arXiv.org, two thirds of all papers have no co-citations, and those that do 

usually have only one or two [302]. Despite all that, co-occurrence 

recommendations seem to perform quite well. Two popular research-paper 

recommender systems, bX and BibTip, both rely on co-occurrence 

recommendations and are delivering millions of recommendations every month 

[41, 266].  

3.2.4 Graph Based  

Eleven of the reviewed approaches utilize the inherent connections that exist in 

academia (16%). Based on these connections, the approaches build graph 

networks that typically show how papers are connected through citations [11, 195, 

225]. Sometimes, graphs include authors [9, 210, 412], users/customers [158], 

venues [11, 210, 412], genes and proteins [9, 210], and the years the papers were 

published [210]. Lao et al. even included terms from the papers’ titles in the graph, 

which makes their approach a mixture of graph and content based [210]. 

Depending on the entities in the graph, connections may be citations [11, 210, 

225], purchases [158], “published in” relations, [11, 210, 412], authorship [9, 11, 

412], relatedness between genes19 [9], or occurrences of genes in papers [210]. 

Some authors connected entities based on non-inherent relations. For instance, 

Huang et al. and Woodruff et al. calculated text similarities between items and 

used the text similarity to connect papers in the graph [158, 388]. Other 

connections were based on attribute similarity20, bibliographic coupling, co-

citation strength [158, 388, 412], or demographic similarity [158]. Once a graph 

was built, graph metrics were used to find recommendation candidates. Typically 

there was one or several input papers, and from this input, random walks with 

restarts were conducted to find the most popular items in the graph [129, 195, 

210]. 

                                                      

19 Relatedness between genes was retrieved from an external data source that maintained information about gene 
relatedness. 

20 Attribute similarity was calculated, e.g., based on the number of pages.  
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3.2.5 Global Relevance  

In its simplest form, a recommender system adopts a one-fits-all approach and 

recommends items that have the highest global relevance. In this case, the 

relevance is not calculated user-specifically based on e.g. the similarity of user 

models and recommendation candidates. Instead, some global measures are 

utilized such as overall popularity. For instance, a movie-rental system could 

recommend those movies that were most often rented or that had the highest 

average rating over all users. In this case, the basic assumption would be that users 

like what most other users like. 

From the reviewed approaches, many use global relevance as an additional 

ranking factor. For instance, five CBF approaches used global popularity metrics 

in their rankings [34, 140, 403]. They first determined a list of recommendation 

candidates with a user-specific CBF approach. Then, the recommendation 

candidates were re-ranked based on the global relevance metrics. Popular metrics 

were PageRank [34], HITS [140], Katz [140], citation counts [34, 140, 317], 

venues’ citation counts [34, 317], citation counts of the authors’ affiliations [317], 

authors’ citation count [34, 317], h-index [34], recency of articles [34], title length 

[317], number of co-authors [317], number of affiliations [317], and venue type 

[317].  

Strohman et al. report that the Katz measure strongly improved precision [344]. 

All variations that included Katz were about twice as good as those variations 

without. Bethard and Jurafsky report that a simple citation count was the most 

important factor, and age (recency) and h-index were even counterproductive [34]. 

They also report that considering these rather simple metrics doubled mean 

average precision compared to a standard content-based filtering approach.  

3.2.6 Hybrid Recommendation Approaches 

Approaches of the previously introduced recommendation classes may be 

combined in hybrid approaches. Many of the reviewed approaches have some 

hybrid aspects. For instance, several of the CBF approaches use global relevance 

attributes to rank the candidates, or graph methods are used to extend or restrict 

potential recommendation candidates. This type of hybrid recommendation 

technique is called “feature augmentation” [50]. It is only a weak kind of hybrid 

recommendation technique, as the primary technique is still dominant. In true 

hybrids, the combined concepts are more or less equally important [50, 51]. From 
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the reviewed approaches, only those of the TechLens team, and to some extent 

from Papyres (Appendix F.5.2, p. 244), may be considered true hybrid approaches.  

TechLens [90, 175, 187, 249, 250, 368] is certainly one of the most influential 

research-paper recommender systems, though it was not the first one as some 

claim (e.g. [301]). TechLens was developed by the GroupLens21 team, but 

nowadays TechLens is not publicly available, although the GroupLens-team is still 

very active in the development and research of recommender systems in other 

fields. Between 2002 and 2010, Joseph A. Konstan, John Riedel, Sean M. McNee, 

Roberto Torres, and several others published six articles relating to research-paper 

recommender systems. Often, McNee’s et al. article from 2002 is considered to be 

the original TechLens article [249]. However, the 2002 article ‘only’ introduced 

some algorithms for recommending citations, which severed as foundation for 

TechLens, which was introduced 2004 by Torres et al. [368]. Two articles about 

TechLens followed in 2005 and 2007 but added nothing new with respect to 

recommendations [175, 187]. In 2006, McNee et al. analyzed potential pitfalls of 

recommender systems [250]. In 2010, Ekstrand et al. published another article 

about the TechLens approaches, and enhanced them [90]. The most important 

TechLens articles are summarized in Appendix F.5.1, p. 241.  

3.3 Survey of the Research Field and its Shortcomings 

3.3.1 Neglect of User Modeling 

Of the reviewed approaches, 79% require users to explicitly provide keywords 

[148, 270, 374], text snippet such as an abstract [34, 309, 403], or to provide a 

single paper as input to represent their interests [90, 276, 344]. This means that 

these approaches neglect the user modeling process, one of the most important 

parts of a recommender system. This makes the approaches very similar to classic 

search, or related document search [3, 135, 217], where users provide search terms 

or one input paper, and receive a list of search results or similar papers. Of course, 

neither classic search nor finding related documents are trivial tasks in themselves, 

but they neglect the user modeling process and we see little reason to label such 

systems as recommender systems.  

                                                      

21 http://grouplens.org/ 
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Only 21% of the reviewed approaches inferred information from the items the 

users interacted with. Most approaches that inferred information automatically 

used all papers that a user authored, downloaded, etc. [173, 261, 384]. This is not 

ideal. When inferring information automatically, a recommender system should 

determine those items that are currently relevant for the user-modeling process. 

For instance, papers being read ten years ago are probably not suitable to describe 

a user’s current information needs. This aspect is called “concept drift” and it is 

important for creating meaningful user models. In the research-paper 

recommender systems community, concept drift is widely ignored: only three 

approaches considered concept drift in detail. Middleton et al. weight papers by 

the number of days since the user last accessed them [259]. Watanabe et al. use a 

similar approach [384]. Sugiyama and Kan, who utilize an user’s authored papers, 

weight each paper based on the difference between a paper’s publication year, and 

the year of the most recently authored paper [347]. In addition, they found that it 

makes sense to include only those papers that the user authored in the past three 

years [347]. 

Another important aspect about user modeling is the user-model size. While in 

search, user models (i.e. search queries) typically consist of a few words, user 

models in recommender systems may consist of hundreds or even thousands of 

words. Of the reviewed approaches, 91% did not report the user-model size, which 

leads us to the assumption that they simply used all features. Those few that 

reported on the user-model size usually stored fewer than 100 terms. For instance, 

Giles et al. utilized the top 20 words of the papers [119].  

3.3.2 Focus on Accuracy 

The research-paper recommender-system community focuses strongly on 

accuracy, and seems to assume that an accurate recommender system will lead to 

high user satisfaction. However, outside the research-paper recommender-system 

community it is widely known that many aspects beyond accuracy affect user 

satisfaction. For instance, users might become dissatisfied with accurate 

recommendations when they have no trust in the recommender system's operator 

[378], their privacy is not ensured [305], they need to wait too long for 

recommendations [305], or the user interfaces are not appealing to them [377]. 

Other factors that affect user satisfaction are confidence in a recommender system 

[311], data security [205], diversity [413], user tasks [250], item’s lifespan [52] 

and novelty [408], risk of accepting recommendations [300], robustness against 

spam and fraud [73], transparency and explanations [143], time to first 

recommendation [144], and interoperability [56]. 
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Among the reviewed articles, only a few authors considered aspects beyond 

accuracy, as shown in the following sections.  

3.3.2.1 Users’ tasks 

Torres et al. from TechLens’ considered a user’s current task in the 

recommendation process, and distinguished between users who wanted to receive 

authoritative recommendations and novel recommendations [368]. Torres et al. 

showed that different recommendation approaches were differently effective for 

these tasks. The developers of TheAdvisor let users specify whether they are 

interested in classical or recent papers [193]. Uchiyama et al. found that students 

are typically not interested in finding papers that are “similar” to their input paper 

[370]. This finding is interesting because content-based filtering is based on the 

assumption that user want similar papers. However, the study from Uchiyama et 

al. was based on only 16 participants. As such, it remains uncertain how 

significant the results are.  

3.3.2.2 Diversity 

Diversity of recommendations was mentioned in a few articles, but really 

considered in depth only by Vellino et al. and Küçüktunç et al. Vellino et al. 

measured diversity as the number of different journals from which articles were 

recommended [374]. If recommendations were all from the same journals, 

diversity was zero. They compared diversity of a CF approach with the co-

occurrence approach from bX and found that CF had a diversity of 60% while 

diversity of bX was 34%. Küçüktunç et al. from TheAdvisor published two articles 

about diversity in research-paper recommender systems [194, 196]. They provided 

a survey on diversification techniques in graphs, and proposed some new 

techniques to measure diversity.  

3.3.2.3 Layout 

Farooq et al. from CiteSeer analyzed which information users wanted to see when 

receiving recommendations in RSS feeds [95]. They found that the information to 

display varies on the type of recommendation. In one approach, Farooq et al. 

recommended papers that cited the user’s papers. In this case, users preferred to 

see the citing paper’s bibliographic data (title, author, etc.) and the context of the 

citation – the sentence in which the citation appeared. When papers were 

recommended that were co-cited with the users’ papers, citation context was not 

that important. Rather, the users preferred to see the bibliographic data and 



44  

 

abstract of the co-cited paper. When papers were recommended that had a similar 

content to the users’ papers, users preferred to see bibliographic data and abstract. 

These findings are interesting because from the reviewed recommender systems 

the majority displays only the title and not the abstract.  

As part of our work, we researched the impact of labeling and found that papers 

labeled as ‘sponsored recommendation’ performed worse than recommendations 

with a label that indicated that the recommendations were ‘organic,’ though the 

recommended papers were identical (cf. Appendix J, p. 267). It made also a 

difference whether paper recommendations were labeled as ‘Sponsored’ or 

‘Advertisement’ although both labels indicate the same thing, namely that they are 

displayed for commercial reasons.  

3.3.2.4 User characteristics 

We also found that researchers who registered to a recommender system tended to 

have higher click-through rates than unregistered users (6.95% vs. 4.97%) (cf. 

Appendix H, p. 255). In addition, older users seem to have higher average click-

through rates (40-44 years: 8.46%) than younger users (20-24 years: 2.73%) [32]. 

Middleton et al. also report differences for different user groups. Click-through 

rates in their recommender system Quickstep was around 9%, but only around 

3.5% for Foxtrot, although both systems applied very similar approaches. 

However, Quickstep users were recruited from a computer science laboratory, 

while Foxtrot was a real-world system being offered to 260 faculty members and 

students (though only 14% of them used Foxtrot at least three times).  

Click-through rates from the bX recommender are also interesting [365]. They 

varied between 3% and 10% depending on the university in which 

recommendations were shown (bX is providing more than 1,000 institutions with 

recommendations) [93]. This could have been caused by different layouts, and 

how the recommendations were presented, but it might also be caused by different 

backgrounds of the students.  

3.3.2.5 Time of usage 

Middleton et al. reported that the longer someone used the recommender system, 

the lower click-through rates became [261]. Jack reports the opposite, namely that 

precision increased over time (p=0.025 in the beginning, p=0.4 after six months) 

and depended on a user’s library size (p=0.08 for 20 articles and p=0.40 for 140 

articles) [163]. We showed that it might make sense to be “persistent” and show 
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the same recommendations to the same users multiple times – even 

recommendations that users had clicked before were often clicked again (cf. 

Appendix I, p. 261).  

3.3.2.6 Recommendation medium 

User satisfaction also depends on the medium through which recommendations are 

made. Middleton et al. report that recommendations via email received only half 

the click-through rate as the same recommendations delivered via a website [261]. 

Of the reviewed recommender systems, only Docear [29] and Mendeley [163] 

provide recommendations through a desktop software; CiteSeer provided 

recommendations in a news feed [95]; and all others deliver their 

recommendations through websites. If and how click rates differ, when 

recommendations are delivered by desktop software or a website, remains 

unknown. 

3.3.2.7 Relevance and profile feedback 

Relevance feedback is a common technique to improve recommendations [311] 

but it is widely ignored in the research-paper recommender-system community. 

Middleton et al. showed that profile feedback is better than relevance feedback: 

allowing users to edit their user models is more effective than just learning from 

relevance feedback [261]. While Bollacker et al. from CiteSeer allowed their users 

to edit their profiles, they conducted no research on the effectiveness of that 

activity [211]. 

3.3.3 Lack of Transferring Research into Practice 

Despite all the published articles and proposed approaches, we found only 24 

research-paper recommender systems that could be used by real users (Table 3)22. 

Of these 24 recommender systems, eight (33%) never left the prototyping stage – 

and today only one of the prototypes is still publicly available. Of the remaining 

recommender systems, four are offline (25%), five are idling (31%)23, and only 

                                                      

22 The recommender systems of Mendeley, CiteULike, and CiteSeer are counted twice because they offer or 

offered two independent recommender systems.  

23 We classified a recommender system as idling if no article was published or no changes were made at the 

system for a year.  
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seven are running and actively maintained (44%). However, from the seven active 

recommender systems, only four operators are involved with the recommender-

system research community22, publishing information about their systems.  

Table 3: List of recommender systems 

 

Most of the real-world recommender systems apply simple recommendation 

approaches that are not based on recent research. For instance, PubMed seems still 

to use an approach introduced in 2007; ResearchGate is using a simple content-

based filtering approach similar to classic search24; CiteULike apparently uses two 

approaches from 2008/2009; and BibTip and bX are using simple co-occurrence 

approaches. Whether RefSeer’s is really applying all the results from their 

                                                      

24 ResearchGate also applied other recommender systems, e.g. for persons or news, and it seems that these 

approaches are more sophisticated.  

Status Name Maturity Research Oriented Type Presentation

Active BibTip Real System No1 Stand-Alone Webpage

Active bx Real System No Stand-Alone Webpage

Active Docear Real System Yes On-Top Software

Mendeley -- -- -- --

     Related Papers Real System Yes On-Top Software

     Suggest Real System Yes On-Top Software

Active RefSeer Real System Yes Stand-Alone Webpage

Active Scholar Update Real System No On-Top Webpage

CiteULike -- -- -- --

     CF Real System No On-Top Webpage

     Item-Centric Real System No On-Top Webpage

Idle PubMed PRMA Real System No On-Top Webpage

Idle ResearchGate Real System No On-Top Webpage

Idle TheAdvisor Real System Yes Stand-Alone Webpage

Idle Who Should I Cite? Prototype Yes Stand-Alone Webpage

CiteSeer -- -- -- --

     Alert Real System Yes On-Top Feed

     Related Documents Real System Yes On-Top Webpage

Offline Foxtrot Real System Yes Stand-Alone Webpage, Email

Offline TechLens Real System Yes Stand-Alone Webpage

Offline NSYSU-ETD Prototype Yes On-Top Webpage

Offline OSUSUME Prototype Yes On-Top ?

Offline Papits Prototype Yes On-Top Webpage

Offline Papyres Prototype Yes On-Top ?

Offline Pirates Prototype Yes Stand-Alone ?

Offline Quickstep Prototype Yes Stand-Alone Webpage

Offline Sarkanto & Synthese Prototype Yes Stand-Alone Webpage

Active

Offline

Idle
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research remains also unclear. In other words, most of the reviewed research had 

no impact on real-world recommender systems.  

3.3.4 Lack of Persistence and Authorities  

One reason the research seems not to be transferred into practice might be a lack 

of persistence and authorities in the field. From 327 authors who authored the 217 

reviewed articles, 67% published only a single article (Figure 18). Only thirteen 

authors published more than five articles, but of these authors, several were co-

authors publishing the same articles. This means, there is only a small number of 

groups that consistently do research in the field of research-paper recommender 

systems.  

 
Figure 18: Papers per author 

The most productive authors are C. Lee Giles and his co-author P. Mitra from 

CiteSeer/RefSeer (Table 4 and Table 5). No others have published as many articles 

(16) over as a long period of time (16 years) about as many different aspects of 

research-paper recommender systems. Other highly productive authors are A. 

Geyer-Schulz and his co-authors M. Hashler, and M. Jahn from BibTip. They 

published fourteen articles, but these were less often cited in the community. The 

articles are also narrower in scope than those of the CiteSeer authors. We authored 

ten papers between 2009 and 2013, including posters and short papers, and we 

concentrated on aspects beyond accuracy such as the impact of labeling 

recommendations and the impact of demographics on click-through rates. O. 

Küçüktunç and his co-authors E. Saule and K. Kaya from TheAdvisor published 

nine articles focusing on diversity and graph-based recommendations. J. A. 

Konstan, S. M. McNee, R. Torres, and J.T. Riedel, who are highly recognized 

authors in the field of recommender systems in general, developed TechLens and 
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authored six articles relating to research-paper recommender systems during 2002 

and 2010. Two of their articles influenced the work of several others and are 

among the most cited articles we have reviewed [249, 368]. W. W. Cohen, and his 

PhD student N. Lao, are also two productive authors. They authored six articles 

during 2008 and 2012 (some of which are unpublished). It stands out that the five 

most productive research groups all have access to real-world recommender 

systems.  

Table 4: Most productive authors 

 

 

Table 5: Most productive author-groups 

 

Author Paper Count

C. Lee Giles 16

A. Geyer-Schulz 14

J. Beel 10

M. Hahsler 10

O. Küçüktunç 9

E. Saule 8

K. Kaya 8

S. Langer 7

M. Genzmehr 7

P. Mitra 6

J. A. Konstan 6

W. W. Cohen 6

B. Gipp 6

M. Jahn 5

N. Lao 5

Author(s) Max. Papers

C. Lee Giles; P. Mitra (CiteSeer/RefSeer) 16

A. Geyer-Schulz; M. Hashler; M. Jahn (BibTip) 14

J. Beel; S. Langer, M. Genzmehr, B. Gipp (Docear) 10

O. Küçüktunç; E. Saule; K. Kaya (TheAdvisor) 9

J. A. Konstan; S.M. McNee; R. Torres, J.T. Riedl (TechLens) 6

W. W. Cohen; N. Lao 6
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3.3.5 Lack of Cooperation 

Most articles were authored by multiple authors: the majority of papers had two 

(26.35%), three (26.35%) or four authors (20.36%) (Figure 19)25. Only 15% of the 

papers were authored by a single researcher. These numbers might indicate a high 

degree of collaboration, on first glance. However, it is noticeable that between the 

different co-author groups hardly any cooperation exists. The closest cooperation 

we could find was that Giles was part of a committee for a thesis that Cohen 

supervised [206]. No major authors of different groups ever co-authored any 

articles.  

 
Figure 19: Number of authors of the reviewed papers 

Many co-author groups seem to work alone and barely build their work based 

upon the work of peers, be it within or outside the research-paper recommender-

system community. Among the reviewed articles, it barely happened that authors 

reported to have built their novel approach based upon an existing approach. This 

lack of cooperation also becomes apparent when looking at the citations. Although 

some of the reviewed articles gained many citations, these citations usually 

resulted from articles outside the research-paper recommender domain. For 

instance, the paper “Learning multiple graphs for document recommendations” 

attracted 63 citations since 2008 [412]. From these citations, only three were made 

by the reviewed articles. Another article, from the BibTiP developers, gained 24 

citations since 2002 [110]. From the 24 citations, ten were self-citations and none 

                                                      

25 Median author count was three, maximum count eleven. 
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was from the reviewed articles. Both examples are typical for most of the 

reviewed articles. One of the few articles that is constantly cited in the research-

paper recommender community is an article about TechLens, which accumulated 

more than 100 citations [368]. However, most authors only cited the article for 

authoritative reasons. In the citing papers, TechLens is mentioned but, with few 

exceptions, its approaches are neither adopted nor used as baseline.  

3.3.6 Information Sparsity 

Most authors provided sparse information about their approaches, which makes a 

re-implementation difficult, if not impossible. For instance, for 71% of the 

content-based filtering approaches, the authors did not report the weighting 

scheme they used (e.g. TF-IDF). The feature representation model (e.g. vector 

space model) was not reported for 59% of the approaches. For 69% of the 

approaches, authors did not report whether they removed stop words. For 67% of 

the CBF approaches no information was given on the fields the terms were 

extracted from (e.g. title or abstract). This means, when an evaluation reports 

promising results for an approach, other researchers would not know how to re-

implement the approach in detail. If they tried, and guessed the specifics of an 

approach, the outcome would probably differ significantly from the original. This 

might cause problems in replicating evaluations, and reproducing research results 

– a serious shortcoming that is covered in more detail in the next section.  

3.4 Survey of the Evaluations 

Recommender-systems research is heavily dependent on thorough evaluations to 

assess the effectiveness of recommendation approaches and to decide which 

approaches to apply, either in practice or as a baseline for other evaluations. 

Among the key prerequisites for thorough evaluations are appropriate evaluation 

methods, a sufficient number of study participants, and a comparison of the novel 

approach against one or more state-of-the-art approaches [318]. In addition, the 

novel approach and its evaluation need to be thoroughly described. Only with such 

a description will readers be able to determine the soundness of the evaluation, re-

implement the approach, and reproduce or replicate the results. 
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From the reviewed approaches, 21% haven not been evaluated by their authors 

[13, 39, 59, 65, 97, 106, 123, 272, 303, 316, 372, 379, 393], or were evaluated 

using convoluted methods that we could not follow [82, 148, 245, 384, 386, 394] 

26. In the remaining analysis, these approaches are ignored. 

3.4.1 Evaluation Methods and their Adequacy 

Of the evaluated approaches, 69% were evaluated with offline evaluations, 34% 

with lab-based user studies, 7% with an online evaluation, and 3% with qualitative 

user studies (Table 6)27. 

Table 6: Use of evaluation methods27 

 

Most user study participants rated only few recommendations and 17% of the 

studies were conducted with fewer than five participants [173, 362, 388]; 17% of 

the studies had five to ten participants [185, 225, 276]; 13% had 11-15 participants 

[41, 268, 409]; and 17% had 16-50 participants [122, 370, 383]. Only 25% were 

conducted with more than 50 participants [249, 270, 368]. The final 13% of the 

studies failed to mention the number of participants [155, 172, 263] (Table 7). 

Given these numbers, we conclude that most user studies were not large enough to 

arrive at meaningful conclusions.  

Table 7: Number of participants in user studies 

 

 

Our review also indicates that the voiced criticism on offline evaluations (cf. 

2.5.3.3, p. 24) applies to the offline evaluations in the field of research-paper 

recommender systems. Six of the approaches were evaluated using both an offline 

                                                      

26 For the analysis, only 176 articles were reviewed that we found during a first round of literature search in 2012. 

Consequently, percentages relate to these 176 reviewed articles and not the 217 articles, that were reviewed for 
the rest of the survey.  

27 Some approaches were evaluated with several methods at the same time. Therefore, percentages do not add up 

to 100%. 

Offline User Study Online Qualitative

69% 34% 7% 3%

Number of participants n/a <5 5-10 11-15 16-50 >50

Number of user studies 13% 17% 17% 13% 17% 25%
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evaluation and a user study [90, 158, 225, 249, 362, 368]. Of these six evaluations, 

one did not compare its approach against any baseline [362]. In two evaluations, 

results from the offline evaluations were indeed similar to results of the user 

studies [90, 225]. However, the user studies had only five and 19 participants 

respectively, which led to statistically insignificant results. Three other studies 

reported contradicting results for offline evaluations and user studies [158, 249, 

368] (two of these studies had more than 100 participants; the third study only had 

two participants). This means, offline evaluations could not reliably predict the 

effectiveness in the real world. Interestingly, the three studies with the most 

participants were all conducted by the authors of TechLens [90, 249, 368], who 

are also the only authors in the field of research-paper recommender systems 

discussing the potential shortcomings of offline evaluations [250]. It seems that 

other researchers in this field are not aware of – or chose not to address – problems 

associated with offline evaluations, although there has been quite a discussion 

outside the research-paper recommender-system community (cf. 2.5.3.3, p. 24).  

3.4.2 The Operators’ Perspective 

Costs to build a recommender system, or implement an approach, were not 

reported in any reviewed article. Costs to run a recommender system were only 

reported by Jack from Mendeley [162]. He states that costs on Amazon’s S3 were 

$66 a month plus $30 to update the recommender system that coped with 20 

requests per second generated by 2 million users.  

Important information relating to costs is runtime. Runtime information is crucial 

to estimate costs, and hence to estimate how feasible an approach will be to apply 

in practice. In one paper, runtimes of two approaches differed by a factor 600 

[156]. For many operators, an approach requiring 600 times more CPU power than 

another would probably not be an option, particularly if differences in 

effectiveness are small. While this example is extreme, other runtime comparisons 

showed differences by a factor five or more, which also can affect the decisions on 

algorithm selection. However, information on runtime was only provided for 11% 

of the approaches.  

Reporting on computational complexity is also important. For operators who want 

to offer their system for a large number of users, computational complexity is 

important for estimating the long-term suitability of an approach. An approach 

may perform well enough for a few users, but it might not scale well. Approaches 

with exponentially increasing complexity most likely will not be applicable in 
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practice. However, computational complexity was reported for even fewer 

approaches than runtime. 

3.4.3 Coverage 

Coverage describes how many papers of those in the recommender’s database 

potentially may be recommended [125, 142]. High coverage is important because 

it represents the number of recommendations a user may receive. As such, 

coverage is an important metric to judge the usefulness of a recommender system. 

For text-based approaches, coverage is usually 100%. For other approaches, 

coverage is typically lower. For instance, in collaborative filtering usually not all 

items are rated by users. Even though the unrated items might be relevant, they 

cannot be recommended with classic CF approaches. From the reviewed articles, 

only few consider coverage in their evaluations. He et al. judge the effectiveness 

of their approaches based on which approach provides the best tradeoff between 

accuracy and coverage [140]. The BibTip developers report that 80% of all 

documents have been co-viewed and can be used for generating recommendations 

[266]. Pohl et al. report that co-download coverage on arXiv is close to 100% 

while co-citation coverage is only around 30% [302]. The TechLens authors report 

that all of their hybrid and CBF approaches have 100% coverage, except pure CF 

which has a coverage of 93% [368].  

3.4.4 Baselines 

Another important factor in evaluating recommender systems is the baseline 

against which an algorithm is compared. For instance, knowing that a certain 

approach has a particular CTR is not useful if the CTRs of alternative approaches 

are unknown. Therefore, novel approaches should be compared against a baseline 

representative of the state-of-the-art approaches. Only then is it possible to 

quantify whether, and when, a novel approach is more effective than the state-of-

the-art and by what margin. 

Of the reviewed approaches, 19% were not compared against a baseline [91, 138, 

153, 185, 233, 263, 268, 290, 341, 342, 362, 407, 409]. Another 71% of the 

approaches were compared against trivial baselines such as simple content-based 

filtering without any sophisticated adjustments. These trivial baselines do not 

represent the state-of-the-art and are not helpful for deciding whether a novel 

approach is promising. This is particularly troublesome since the reviewed 

approaches were not evaluated against the same trivial baselines. Even for a 

simple CBF baseline, there are many variables, such as whether stop words are 
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filtered, which stemmer is applied, from which document field the text is 

extracted, etc. This means almost all reviewed approaches were compared against 

different baselines, and results cannot be compared with each other. Only 10% of 

the evaluated approaches were evaluated against approaches proposed by other 

researchers in the field. These evaluations allow drawing some conclusions on 

which approaches may be most effective. 

It is interesting to note that in all evaluations, at least one of the novel approaches 

performed better than the baselines. No article reported on a non-effective 

approach. We can only speculate about the reasons: First, authors may 

intentionally select baselines such that their approaches appear favorable. Second, 

the simple baselines used in most evaluations achieve relatively poor results, so 

that any alternative easily performs better. Third, authors do not report their 

failures. Fourth, journals and conferences do not accept publications that report on 

failures. Whatever the reasons are, we advocate that reporting failures is desirable 

as it could prevent other researchers from doing the same experiments, and hence 

wasting time.  

3.4.5 Offline Evaluation Metrics 

In 69% of the offline evaluations, precision was used as evaluation metric (Table 

8). Recall was used in 23%; F-measure and nDCG in 13%, and 15% were 

evaluated using other measures. Overall, results of the different measures highly 

correlated. That is algorithms, which performed well using precision also 

performed well using nDCG, for instance. However, there were exceptions. 

Zarrinkalam and Kahani tested the effectiveness of abstract and title against 

abstract, title, and citation context [403]. When co-citation probability was used as 

an evaluation metric, title and abstract were most effective. Based on recall, the 

most effective field combination was abstract, title, and citation context. With the 

nDCG measure, results varied depending on how the candidate set was generated 

and which ranking approach was used. 

Table 8: Evaluation metrics 

 

Metric Precision Recall F-Measure nDCG MRR Other

Number of user studies 69% 23% 13% 13% 8% 15%
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3.4.6 Datasets and Architectures 

Researchers and developers in the field of recommender systems can benefit from 

publicly available architectures and datasets28. Architectures help with the 

understanding and building of recommender systems, and are available in various 

recommendation domains such as e-commerce [289], marketing [218], and 

engineering [304]. Datasets empower the evaluation of recommender systems by 

enabling that researchers evaluate their systems with the same data. Datasets are 

available in several recommendation domains, including movies29, music30, and 

baby names31.  

Architectures of research-paper recommender systems have only been published 

by a few authors. The developers of CiteSeer(x) published an architecture that 

focused on crawling and searching academic PDFs [39, 299]. This architecture has 

some relevance for recommender systems since many task in academic search are 

related to recommender systems (e.g. crawling and indexing PDFs, and matching 

user models or search-queries with research papers). Bollen and van de Sompel 

published an architecture that later served as the foundation for the research-paper 

recommender system bX [41]. This architecture focuses on recording, processing, 

and exchanging scholarly usage data. The developers of BibTiP [112] also 

published an architecture that is similar to the architecture of bX (both bX and 

BibTip utilize usage data to generate recommendations). 

Several academic services published datasets that eased the process of researching 

and developing research-paper recommender systems. CiteULike32 and 

Bibsonomy33 published datasets containing the social tags that their users added to 

research articles. The datasets were not originally intended for recommender-

system research but are frequently used for this purpose [156, 173, 317]. CiteSeer 

made its corpus of research papers public34, as well as the citation graph of the 

articles, data for author name disambiguation, and the co-author network [35]. 

CiteSeer’s dataset has been frequently used by researchers for evaluating research-

paper recommender systems [55, 87, 140, 156, 178, 295, 317, 368, 403]. Jack et 

                                                      

28 Recommendation frameworks such as LensKit or Mahout may also be helpful for researchers and developers, 

but such frameworks are not the subject of this thesis. 
29 http://grouplens.org/datasets/movielens/ 
30 http://labrosa.ee.columbia.edu/millionsong/ 
31 http://www.kde.cs.uni-kassel.de/ws/dc13/ 
32 http://www.citeulike.org/faq/data.adp 
33 https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/ 
34 http://csxstatic.ist.psu.edu/about/data 
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al. compiled a dataset based on the reference management software Mendeley 

[164]. The dataset includes 50,000 randomly selected personal libraries from 1.5 

million users. These 50,000 libraries contain 4.4 million articles with 3.6 million 

of them being unique. For privacy reasons, Jack et al. only publish unique IDs of 

the articles and no title or author names. In addition, only those libraries having at 

least 20 articles were included in the dataset. Sugiyama and Kan released two 

small datasets35, which they created for their academic recommender system [347]. 

The datasets include some research papers, and the interests of 50 researchers. The 

CORE project released a dataset36 with enriched metadata and full-texts of 

academic articles, and that could be helpful in building a recommendation 

candidate corpus.  

Of the reviewed approaches, 29% were evaluated using datasets from CiteSeer and 

10% were evaluated using papers from ACM (Table 9). Other data sources 

included CiteULike (10%), DBLP (8%), and a variety of others, often not publicly 

available datasets (52%). Even when data originated from the same sources, it did 

not guarantee that the same datasets were used. For instance, no single CiteSeer 

dataset exists. Authors collected CiteSeer data at different times and pruned 

datasets differently. Some authors removed documents with fewer than two 

citations from the CiteSeer corpus [87], others with fewer than three citations 

[368], and others with fewer than four citations [82]. Other datasets were pruned 

even stronger: Caragea et al. removed papers having fewer than ten and more than 

100 citations, as well as papers citing fewer than 15 and more than 50 papers [55]. 

From 1.3 million papers in the corpus, around 16,000 remained (1.2%). Pennock et 

al. removed documents from the corpus with fewer than 15 implicit ratings [295]: 

from originally 270,000 papers, 1,575 remained (0.58%). It is therefore safe to say 

that no two studies, performed by different authors, used the same dataset. This 

raises the question of the extent to which results based on different datasets are 

comparable. 

Table 9: Source of datasets 

  

                                                      

35 http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html 
36 http://core.kmi.open.ac.uk/intro/data_dumps 

Dataset CiteSeer ACM CiteULike DBLP Others

Number of user studies 29% 10% 10% 8% 52%
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It is commonly known that recommendation approaches perform differently on 

different datasets [44, 134, 177]. This is particularly true for the absolute 

effectiveness of recommendation approaches. For instance, an algorithm that 

achieved a recall of 4% on an IEEE dataset, achieved a recall of 12% on an ACM 

dataset [276]. The relative effectiveness of two approaches is also not necessarily 

the same with different datasets. For instance, because approach A is more 

effective than approach B on dataset I, does not mean that A is also more effective 

than B on dataset II. However, among the few reviewed approaches that were 

evaluated on different datasets, the effectiveness was surprisingly consistent.  

Of the evaluated approaches, seven were evaluated on multiple offline datasets. 

Dataset combinations included CiteSeer and some blogs [273], CiteSeer and Web-

kd [178], CiteSeer and CiteULike [156], CiteSeer and Eachmovie [295], and 

IEEE, ACM and ScienceDirect [276]. Only in one study did results differ notably 

among the different datasets. However, the absolute ranking of the approaches 

remained the same [156] (Table 10). In that article, the proposed approach (CTM) 

performed best on two datasets (CiteULike and CiteSeer), with a MRR of 0.529 

and 0.467 respectively. Three of the four baselines performed similarly on the 

CiteSeer dataset (all with a MRR between 0.238 and 0.288). However, for the 

CiteULike dataset the TM approach performed four times as well as CRM. 

Consequently, if TM had been compared with CRM, rankings would have been 

similar on the CiteSeer dataset but different on the CiteULike dataset.  

Table 10: MRR on different datasets 

 

Overall, a sample size of seven is small, but it gives at least some indication that 

the impact of the chosen dataset is rather low in the domain of research-paper 

recommender systems. This finding is interesting because in other fields it has 

been observed that different datasets lead to different results [44, 134]. 

Nevertheless, we doubt that pruning datasets should be considered good practice, 

in particular if only a fraction of the original data remains.  

Rank Approach CiteSeer CiteULike

1 CTM 0.529 0.467

2 TM 0.288 0.285

3 cite-LDA 0.285 0.143

4 CRM 0.238 0.072

5 link-LDA 0.028 0.013

Dataset



58  

 

3.4.7 The Butterfly Effect: Unpredictable Results  

The reproducibility of experimental results is the "fundamental assumption" in 

science [57], and the "cornerstone" for drawing meaningful conclusions about the 

generalizability of ideas [308]. Reproducibility describes the situation when 

(slightly) different ideas, scenarios, and evaluations lead to similar experimental 

results [57], whereas we define "similar results" as results that allow the same 

conclusions to be drawn. Conversely, if changes in the ideas, scenarios, or 

evaluations cause dissimilar results, i.e. results that do not allow the same 

conclusions to be drawn, we speak of non-reproducibility. Non-reproducibility is 

expected when significant changes are made to the ideas, scenarios, or evaluations. 

However, if minor changes are made but results are unexpectedly dissimilar, then 

we speak of the "butterfly effect".  

Reproducibility should not be confused with replicability. Replicability is used to 

describe an exact copy of an experiment that uses the same tools, follows the same 

steps, and produces the same results [88]. Therefore, replicability is important 

when analyzing whether the original experiment was conducted thoroughly and 

whether the results can be trusted.  

During the review, we found several examples of the butterfly effect, i.e. 

variations in experimental results that we considered unexpected. For instance, the 

developers of the recommender system bx report that the effectiveness of their 

recommender system varied by factor three at different institutions although the 

same recommendation approach was used [365]. Lu et al. reported that the 

translation model had twice the accuracy of the language model [233], but in 

another evaluation, accuracy was only 18% higher [138]. Huang et al. report that 

the Context-aware Relevance Model (CRM) and cite-LDA performed similarly, 

but in another evaluation by the same authors, CRM performed significantly worse 

than cite-LDA [156]. Lu et al. found that, sometimes, terms from the abstract 

performed better than terms from the body-text, while sometimes the opposite 

occurred [233]. Zarrinkalam and Kahani found that, sometimes, terms from the 

title and abstract were most effective, while sometimes terms from the title, 

abstract, and citation context were most effective [403]. Bethard and Jurafsky 

reported that citation counts strongly increased the effectiveness of their 

recommendation approach [34], while He et al. reported that citation counts 

slightly increased the effectiveness of their approach [140].  

Probably most interesting, with respect to the butterfly effect, are some evaluations 

by the TechLens team (Table 11). The TechLens team evaluated several content-

based (CBF) and collaborative filtering (CF) approaches for research-paper 
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recommendations. In 2002, McNee et al. conducted an offline evaluation in which 

CF and CBF performed similarly [249]. However, their additional user study led 

to a different result – CBF outperformed CF. A user study by Torres et al. in 2004 

report results similar to the user study by McNee et al. (CBF outperformed CF) 

[368]. However, the offline evaluation from Torres et al. contradicted the previous 

results – this time, CF outperformed CBF. In 2006, another user study by McNee 

et al. indicated that CF (slightly) outperforms CBF [250], which contradicts the 

previous user studies. In 2009, Dong et al., who are not affiliated with TechLens, 

evaluated the approaches of Torres et al. with an offline evaluation [87]. In this 

evaluation, CBF outperformed CF, contradicting the previous offline-results from 

Torres et al. In 2010, Ekstrand et al. found that CBF performed worse than CF in 

both an offline evaluation and user study, which again contradicts most of the 

previous findings [90]. 

Table 11: Results of different CBF and CF evaluations 

 

The authors of the studies provide some potential reasons for the variations, such 

as different datasets, differences in user populations, and variations in the 

implementations. However, these reasons can only explain some of the variations, 

and overall we consider most of the contradictions to be unexpected.  

We see the primary purpose of evaluations in aiding practitioners and researchers 

in identifying the most effective recommendation approaches (for a given 

scenario). Consequently, a practitioner who needed an effective recommendation 

approach, or a researcher who needed an appropriate baseline to compare a novel 

approach against, would not find much guidance in the existing evaluations. 

Similarly, the evaluations, as they currently are, do not help to conclude whether 

CF or CBF is more promising for research-paper recommender systems, or which 

of the approaches is most promising for mind maps. 

3.5 Discussion and Summary 

The literature survey was primarily conducted to find promising user-modeling 

approaches that could serve as basis for a mind-map-specific user-modeling 

approach. The survey should have further helped to find adequate evaluation 

methods and metrics. However, the survey revealed that most of the reviewed 

Offline User Std. Offline User Std. Offline User Std. Offline User Std. Offline User Std.

CBF Draw Win Lose Win -- Lose Win -- Lose Lose

CF Draw Lose Win Lose -- Win Lose -- Win Win

McNee et al. 2002 Torres et al. 2004 McNee et al. 2006 Dong et al. 2009 Ekstrand et al. 2010
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recommendation approaches neglected the user-modeling process. For instance, 

most approaches let users specify their interests, i.e. they do not perform user 

modeling at all. Those approaches that automatically inferred interests, mostly 

utilized all items of a user, i.e. they ignored issues like concept drift. Finally, for 

most approaches it was not reported how many features were stored in user 

models. Hence, most of the approaches are not adequate as a basis for mind-map-

based user modeling. In addition, the evaluations of the approaches were mostly 

questionable. Several approaches were not evaluated at all, and of those who were, 

most were evaluated against trivial baselines, and with offline evaluations, which 

are subject to strong criticism. Most of the few user studies were also of little 

value since they were mostly conducted with a small number of participants. 

Consequently, it remains unclear, which of the reviewed approaches are most 

promising. Even if a few promising approaches could have been identified, there is 

little information about the specifics of the approaches. This would make a re-

implementation difficult, if not impossible.  

While the survey did not help in identifying specific recommendation approaches 

that might be promising, the survey did aid in finding adequate recommendation 

classes for user modeling based on mind maps.  

Stereotype recommendations could be relevant for mind-mapping users: A user-

modeling system could generalize about certain types of mind-mapping users and 

provide recommendations based on stereotypes. For instance, the mind-mapping 

software Mindjet is often used by lawyers. A user-modeling system could 

generalize that lawyers are interested in law books. Hence, Mindjet could 

implement a recommender system that recommends law books to its users. A 

similar approach could be applied with Docear.  

 

Figure 20: Illustration of a stereotype-tree of Docear users 
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Docear users are primarily students and researchers. In a simple scenario, Docear’s 

user-modeling system could assign each user as a stereotype “student or 

researcher” and recommend academic literature that is presumably interesting to 

students and researchers – for instance, books about academic writing. In a more 

complex system, users could be classified as students and researchers, with 

researchers being further divided into Postdocs, professors, and professionals. 

Students could be further divided into Bachelor’s, Master’s, and PhD students 

(Figure 20). Each of these types could be further divided into fields of study/work, 

for instance law or marketing. Each stereotype level could be assigned a set of 

appropriate recommendations. For instance, a recommender system could 

recommend student loans to students in general, marketing textbooks to 

Bachelor’s students in marketing, and so on.  

Collaborative filtering seems to be of little relevance for mind-map-based user 

modeling. First, collaborative filtering is domain independent. As such, there is 

little need to consider special characteristics of mind maps. Second, a typical CF 

approach applied to mind maps would recommend mind maps. However, most 

users would probably not want to share their mind maps with other users. 

Theoretically, mind-map-based recommender systems could apply implicit 

collaborative filtering and infer ratings for e.g. research articles cited in mind 

maps. However, at least for Docear, this approach is not feasible due to high 

sparsity. We found that of 616,635 papers that are linked in the user’s mind maps, 

only 224 papers (0.036%) were linked by two different users, three papers 

(0.00049%) were linked by three users, and no paper was linked by more than 

three users37. This means that 99.96% of the papers were only linked by a single 

user. In other words, barely any users have PDFs in common and if they do, they 

have at maximum three in common. This makes the application of (implicit) 

collaborative filtering infeasible. We also investigated the possibility of applying 

content-boosted CF [12, 255], but sparsity was still very high. 

Co-occurrence recommendations could also be interesting for mind-mapping 

applications. In this case, relatedness of items linked in mind maps could be 

calculated. Items linked in the same mind map would assumed to be related, and 

the more often mind maps link them, the more related they would be. The concept 

of citation proximity analysis could also be applied to mind maps [122]; the closer 

                                                      

37 In the analysis, we ignored papers that Docear automatically adds to user’s mind-maps as part of demo-

projects. We also ignored users and mind-maps that were identical.  
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two items were linked within a mind map, the higher their relatedness (Figure 21). 

We conducted an initial user study that showed promising results for such 

recommendations (cf. Appendix D, p. 203). However, since there are barely any 

users sharing the same PDF files (see previous paragraph), applying co-occurrence 

recommendations for Docear, seems unfeasible.  

Graph-based recommendations seem of little relevance for mind maps because 

mind maps are not inherently connected with each other. Hence, building a graph 

would be not possible. At most, a graph could be built if items linked in mind 

maps are additionally considered. However, again, the high sparsity makes this 

idea not feasible for Docear and probably most other mind-mapping applications 

as well. Global relevance metrics could be used to enhance recommendations in 

the field of mind maps. However, these metrics would not be mind-map specific, 

which is why we do neglect global relevance in the remainder, and focus on the 

characteristics of mind maps instead.  

 
Figure 21: Item similarity based on proximity in mind maps 

Eventually, content-based filtering seems to be the most promising user-modeling 

concept for mind maps. The few attempts that had been made in the field by 

MindMeister and Mindomo were content-based, and as our preliminary study 

showed, the effectiveness of some approaches was promising.  
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4. Methodology  

This chapter presents how we built Docear's recommender system, compared 

different evaluation methods, found promising variables for mind-map-specific 

user modeling, and build a mind-map-specific user-modeling approach.  

4.1 Development of Docear’s Recommender System 

Recommender-system researchers often conduct research on existing datasets (cf. 

Section 3.4.6, p. 55). However, the existing datasets and architectures are not 

helpful for developing and evaluating mind-map-specific user-modeling 

approaches (cf. 3.5, p. 59). In addition, we needed a real-world recommender 

system to compare results of different evaluation methods (Task 3). Therefore, as 

part of Task 2, we developed an architecture for a research-paper recommender 

system, implemented a recommender system based on this architecture, integrated 

it into Docear, and used this recommender system for our research.  

Docear's recommender system applies primarily a content-based filtering 

approach, since collaborative filtering, co-occurrence recommendations, and 

graph-based recommendations are not feasible to apply with mind maps and 

Docear (cf. 3.5, p. 59). The basic idea is as follows (cf. Figure 22): For user u, a 

user model umu is created based on the mind map collection MMu, whereas MMu 

consists of those mind maps mm the user interacted with, i.e. MMu={mm1, …, 

mmi}. In its simplest case umu is a bag of features F that comprises all features f 

contained in MMu, i.e. 𝑢𝑚𝑢 =  𝐹(𝑀𝑀𝑢) =  𝐹(𝑚𝑚1 ⋃ 𝑚𝑚2 ⋃ … ⋃ 𝑚𝑚𝑖). 

Similarly, the collection of research articles A, i.e. serves as recommendation 

candidates, consists of a number of articles, i.e. A = {a1, …, am} that each has a 

certain number of features f. To give recommendations, those articles that have the 

most features in common with the user model are recommended.  

The recommender system was mostly developed in JAVA, and displays 

recommendations to the users at the start-up of Docear, every five days (Figure 

23). In addition, users may explicitly request recommendations at any time. 

Docear displays recommendations as a set of ten research papers, as long as ten 

papers are available to recommend, otherwise less recommendations are shown. A 

click on a recommendation opens the recommended PDF file in the user’s web 

browser. For all users, the number of displayed and clicked recommendations was 

recorded, so we could calculate CTR for the evaluation. Users could also rate each 

recommendation set on a scale of one to five.  
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Figure 22: Content-based filtering with mind maps and research articles 

Docear only displays the title of a recommendation. This might be not ideal 

because users would probably like to see further bibliographic information (cf. 

Section 3.3.2.3, p. 43). However, for most of the articles in Docear’s corpus such 

information was not available, at least not in good quality. To not bias the 

recommendation process by sometimes displaying the abstract, and sometimes not 

displaying the abstract, we decided to only display the title. As shown later, this 

decision most likely has not negatively affected the results of the evaluation. 

Most of the data that we collected with the recommender system is released as 

publicly available dataset (details follow in the subsequent chapter). By publishing 

the recommender system’s architecture and datasets, we pursue three goals. 

First, we want researchers to be able to understand, validate, and reproduce our 

research. Second, we want to support researchers when building their own 

research-paper recommender systems: Docear’s architecture and datasets ease the 

process of designing one’s own system, estimating the required development 

times, determining the required hardware resources to run the system, and 

crawling full-text papers to use as recommendation candidates. Third, we want to 

provide real-world data to researchers who have no access to such data. This is of 
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particular importance, since the majority of researchers in the field of research-

paper recommender systems have no access to real-world recommender systems. 

 
Figure 23: User-interface of Docear's recommender system 

More details on the recommender system are presented in the subsequent chapter 

(5.1, p. 73). 

4.2 Comparison of Evaluation Methods and Metrics 

The literature survey did not help in identifying adequate evaluation methods and 

metrics. To research the adequacy of the different evaluation methods (Task 3), we 

measured the effectiveness of different user-modeling algorithms with an offline 

evaluation, user study, and online evaluation. We then analyzed the correlation of 

the results of the different evaluation methods and metrics. We expected that, 

ideally, all evaluation methods and metrics would lead to similar results. If 

concordance between the methods and metrics would be achieved, any of the 

methods and metrics could be used to evaluate our mind-map-specific user-

modeling approach. If there were discord between the methods and metrics, a 

discussion would be necessary about which of the methods and metrics are 

adequate and under which circumstances. 
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We intended to conduct two user studies: one lab study and one real-world study. 

For the lab study, we wanted to recruit participants through our blog38. In our blog, 

we asked Docear’s users to start Docear, request recommendations, click each of 

them, and read at least the abstract of each recommended paper. Users should then 

rate the relevance of the recommendations from 1 to 5 stars (Figure 23, p. 65), and 

if they wish, request new recommendations and continue this process for as long 

as they like. The study was intended to run from April to July 2014. We promoted 

the study in our newsletter (8,676 recipients), on Facebook (828 followers), on 

Twitter (551 followers), and on Docear’s homepage (15,000 visitors per month). 

Despite 248 people reading the blog post, only a single user participated in the 

study. He rated three sets, each with ten recommendations. However, ratings of a 

single user are not suitable to receive meaningful results. Hence, we consider this 

user study as a failure, and focus on results of the real-world study. The real-world 

study was based on ratings that users provided during their normal work with 

Docear (Figure 23). Overall, 379 users rated 903 recommendation sets with 8,010 

recommendations. The average rating was 2.82 (out of 5).  

For the online evaluation, we measure acceptance rates of 45,208 recommendation 

sets displayed to 4,700 users from March 2013 to August 2014. Typically, each set 

of recommendations consists of ten recommendations, resulting in a total of 

430,893 delivered recommendations. Acceptance is measured with the following 

metrics: Click-Through Rate (CTR) measures the ratio of clicked vs. delivered 

recommendations. Click-Through Rate over sets (CTRSet) is the mean of the 

recommendation sets’ individual CTRs. For instance, if eight out of ten 

recommendations had been clicked in set I, and two out of five recommendations 

in set II, then for the two sets CTR would be 
8+2

10+5
= 66.67% but CTRSet would be 

8
10⁄ +2

5⁄

2
= 60%. We also calculated CTR over users (CTRUser). CTRUser levels the 

effect that a few power users might have. For instance, if users A, B, and C saw 

100, 200, and 1,000 recommendations, and user A clicked seven, user B 16, and 

user C 300 recommendations, CTR would be 
7+16+300

100+200+1000
= 24.85% , but 

CTRUser would be 
7

100
+

16

200
+

300

1000
= 12.36%, i.e. the impact of user C would be 

weaker. However, CTRUser was only calculated for two analyses (the reason is 

discussed later). Link-Through Rate (LTR) describes the ratio of the displayed 

                                                      

38http://www.docear.org/2014/04/10/wanted-participants-for-a-user-study-about-docears-recommender-system/  

http://www.docear.org/2014/04/10/wanted-participants-for-a-user-study-about-docears-recommender-system/
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recommendations against those recommendations that actually had been clicked, 

downloaded, and linked in the user’s mind map. Annotate-Through Rate (ATR) 

describes the ratio of recommendations that were annotated, i.e. a user opened a 

linked PDF in a PDF viewer, created at least one annotation (bookmark, comment, 

or highlighted text), and imported that annotation in Docear39. Cite-Through Rate 

(CiTR) describes the ratio of documents for which the user added some 

bibliographic data in the mind map, which strongly indicates that the user plans to 

cite that document in a future research paper, assignment, or other piece of 

academic work. 

For the offline evaluation, we considered papers that users cited in their mind 

maps to be the inferred ground-truth (cf. 2.5.3.3, p. 24). For each Docear user, we 

created a copy of their mind maps, and removed the paper that was most recently 

added to the mind map. We then applied a randomly selected recommendation 

approach to the modified mind map. Overall, we calculated 118,291 

recommendation sets. To measure the accuracy of the algorithm, we analyzed 

whether the removed paper was within the top10 (P@10) or top3 (P@3) of the 

recommendation candidates. We also calculated the Mean Reciprocal Rank 

(MRR), i.e. the inverse of the rank at which the removed paper was recommended. 

In addition, we calculated nDCG based on the 10 most recently added papers and 

50 recommendation candidates. Our evaluation method is similar to other offline 

evaluations in the field of research-paper recommender systems, where the 

citations made in research papers are used as ground-truth. We display accuracy 

metrics as percentages in charts. Typically, such metrics are displayed as decimals 

between zero and one, but to display online and offline metrics in a single chart, 

we had to choose one unit. If not otherwise stated, all reported differences are 

statistically significant (p<0.05). Significance was calculated with a two-tailed t-

test and 𝜒2 test where appropriate. 

                                                      

39 It should be noted that PDFs often contain annotations already when they are published. For instance, often 

PDFs contain the table of content as bookmarks. Consequently, results based on ATR should be considered with 

some skepticism. 
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4.3 Identification of Mind-Map-Specific User-Modeling 

Variables  

To identify a number of variables that might affect user modeling based on mind 

maps (Task 4) we did a brainstorming session, leading to a number of potential 

variables. Due to time restrictions, we decided to implement and evaluate only a 

few variables that we considered most promising, and for which an evaluation 

with Docear was feasible. The variables we focused on included the number of 

mind maps to analyze, the number of nodes to utilize, the size of the user model, 

whether to use only visible nodes, and different weighting schemes including 

standard schemes like TF-IDF but also mind-map-specific weighting schemes 

based, for example, on the number of children a node has.  

The variables are randomly arranged to assemble the final user-modeling 

algorithm, each time recommendations are generated. For instance, one algorithm 

might utilize visible nodes from the 2 most recently modified mind maps, weight 

the terms of these nodes with TF-IDF, and store the 25 highest weighted terms in 

the user model. Another algorithm might use the 250 most recently modified 

nodes (visible and invisible) among all mind maps, weight the citations of these 

nodes with TF-only, and store the 5 highest weighted citations in the user model.  

A variable that we considered not feasible to analyze was the “position of a node”. 

In most mind-mapping tools, users can arrange their nodes freely. We would 

assume that depending on the position of a node, its importance differs, and hence 

the weighting for user modeling should differ. For instance, a node far away from 

the root node could be weighted differently than a node in close proximity to the 

root node (illustrated in Figure 24). However, Docear positions nodes 

automatically, which is why we did not analyze the impact of a node’s position.  

 
Figure 24: Mind map with an outlier node 

We measured the effectiveness of the individual variables with CTR, since the 

comparison of the evaluation methods showed that CTR highly correlates with 

user satisfaction and reporting CTR has some inherent value. In addition, rather 

Outlier
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few users participated in the user study, and we did not receive enough ratings, to 

calculate statistically significant results for all variables based on ratings. To find 

the optimal values for each variable, we compared CTR for all approaches in 

which a variable had a certain value. For instance, to evaluate whether a user-

model size of 10 or 100 terms was more effective, effectiveness of all algorithms 

with a user-model size of 10 was compared to the effectiveness of all algorithms 

with a user-model size of 100.  

We analyzed the effects of the variables for both CBF based on citations and based 

on terms – we expected that the optimal values for the variables would differ for 

terms and citations. For term-based CBF variations, all reported differences are 

statistically significant (p<0.05), if not reported otherwise in the text. Significance 

was calculated with a two tailed t-test and 𝜒2 test where appropriate. Results for 

citation based CBF are mostly not statistically significant, because the approach 

was implemented only a few months ago, and not all users have citations in their 

mind-maps. Therefore, an insufficient number of citation-based recommendations 

were delivered to produce significant results. Consequently, the focus of our 

research lies on the term-based CBF variations. We also report runtimes in the 

charts for informative reasons, but do not discuss the data. It should be noted that 

runtimes could significantly differ with different implementations, or on different 

hardware. Overall, runtimes are rather long. This is caused by recording many 

statistics and running some other services on the recommendation server. 

Our methodology has a limitation since determining optimal values for each 

variable separately, ignores potential dependencies. For instance, only because a 

user-model size of 100 terms is most effective on average, and analyzing 500 

nodes is most effective on average, does not mean that analyzing 500 nodes and a 

user-model size of 100 terms is the optimal combination. Ideally, we would have 

evaluated all possible variations to find the single best variation. However, for 

some variables, there are up to 1,000 possible values, and combining all these 

variables and values leads to millions of possible variations. Evaluating this many 

variations was not feasible for us. The second best option would have been a 

multivariate statistical analysis to identify the impact of the single variables. 

However, also for such an analysis we did not have enough data. Therefore, our 

methodology was the third best option. It will not lead to a single optimal 

combination of variables, but as our result will show, our methodology leads to a 

significantly better algorithm than the baselines, and the results help understanding 

the factors that affect effectiveness in mind-map-based user modeling. 
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4.4 Development of a Mind-Map-Specific User-Modeling 

Approach 

To achieve our primary research objective, we identified the optimal value for 

each of the implemented variables, and combined the optimal values in a single 

algorithm. We them compared this algorithm against four baselines, to analyze 

whether this mind-map-specific user modeling performed better than the baselines.  

One baseline was the stereotype approach that was chosen with a probability of 

1%, whenever the recommendation process was triggered. To implement the 

stereotype approach, the recommender system generalizes over all users, and 

assumes that they are all researchers (which is not exactly true, because some 

users only use Docear for its mind-mapping functionality). The recommender 

system then recommends papers that are potentially interesting for researchers, i.e. 

books and research articles about academic writing that we manually added to the 

corpus. The stereotype does not consider any special characteristics of mind maps, 

and we implemented it as simple baseline and because stereotype 

recommendations have not been used before to recommend research papers. 

The second, third and fourth baseline were those CBF variations that are rather 

obvious and that we already used in our initial study: a) the approach of 

MindMeister, in which only terms of the most recently modified node are analyzed 

for the user model (‘modified’ means ‘created’, ‘edited’ or ‘moved’); b) all terms 

of the user’s current mind map are used for the user model; c) all terms of all mind 

maps that the user ever created are utilized for the user model. 

We did not compare our approach against any of the reviewed research-paper 

recommender approaches, for four reasons. First, it remains uncertain which of the 

31 CBF approaches we should have used as baseline, due to the shortcomings in 

their evaluations (cf. Section 3.4, p. 50). Second, authors mostly provided sparse 

information, which would have made a re-implementation difficult, if not 

impossible. Third, the research-paper recommender approaches widely neglect the 

user modeling process, but the user modeling process was the focus of our 

research. Hence, the reviewed approaches are not adequate baselines for our 

purpose. Finally, and most importantly, the reviewed approaches are mostly not 

applicable to mind maps. This means, we could have implemented the reviewed 

approaches based on the PDFs of the users’ or the bibliographic data entered in the 

mind maps. However, it would have been of little value to see that one of the 

reviewed approaches performs better on the users’ PDFs than our novel approach 

on the user’s mind maps. Besides, Docear’s recommender system has no access to 
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the users’ PDFs and hence could not apply general research-paper 

recommendation approaches (unless a function had been implemented to transfer 

the users’ PDFs to Docear’s server, which had been time consuming and had 

probably caused problems with copyright). Given these points, we conclude that 

comparing our novel approach against “standard” CBF baselines is the most 

sensible solution particularly since one of these baselines is the only approach that 

had been applied in practice in the domain of mind mapping. 
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5. Results & Discussion  

In this chapter, we present and discuss the results of our work. Section 5.1 (p. 73) 

presents Docear's recommender system, i.e. its architecture and some datasets, that 

was developed a part of Task 2. The recommender system serves as framework for 

our research as it allows to run different user-modeling approaches and to evaluate 

them with different evaluation methods. Section 5.2 (p. 87) presents the analysis of 

the recommender-system evaluation methods (Task 3). We compared the 

outcomes of different methods when evaluating the same approaches, and we 

discuss the adequacy of the methods for our scenario and in general. Section 5.3 

(p. 105) presents several variables that effect mind-map-based user modeling 

(Task 4). The effect of variables was evaluated with click-through rate, which 

showed to be the most sensible metric according to our previous analysis of 

evaluation methods. Finally, Section 5.4 (p. 121) presents Docear's mind-map-

specific user-modeling approach that combines the optimal values of the variables 

in a single algorithm (Task 5). The approach is compared against several 

baselines, and proves to be about twice as effective as the most effective baseline.  

5.1 Docear’s Recommender System40 

5.1.1 Architecture  

Docear itself is a JAVA desktop software with its source code hosted on GitHub41. 

Docear's recommender system is also primarily written in JAVA and runs on 

Docear’s web servers. To enable communication between the desktop software 

and the servers, we implemented a RESTful Web Service. Figure 25 illustrates the 

architecture and the particular components, which are explained in detail in the 

following sections, along with technical details.  

                                                      

40 Parts of this chapter have been published as: Beel, Joeran, Stefan Langer, Bela Gipp, and Andreas Nürnberger. 

“The Architecture and Datasets of Docear’s Research Paper Recommender System.” In Proceedings of the 3rd 
International Workshop on Mining Scientific Publications (WOSP 2014) at the ACM/IEEE Joint Conference on 

Digital Libraries (JCDL 2014), 2014. 

Please also note that all information in this chapter – including the datasets that we publish – is based on data that 
we collected before March 2014, while the following chapters are based on data that we collected until August 

2014.  

41 https://github.com/Docear/ 
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Figure 25: Architecture of Docear's recommender system 
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5.1.1.1 Web Service / API  

Docear’s RESTful Web Service (based on Jersey)42 is responsible for several 

tasks, including user registration and delivering recommendations. In Table 12, the 

most important methods relating to recommendations are listed. Third parties 

could use the Web Service, for instance, to request recommendations for a 

particular Docear user and to use the recommendations in their own application (if 

the third party knew the user’s username and password). However, it should be 

noted that, for now, we developed the Web Service only for internal use, that there 

is no documentation available, and that the URLs might change without prior 

notification.  

Table 12: POST and GET requests  

Task URL Type 

Upload a mind map https://api.docear.org/user/{username}/mindmaps/ POST 

Request 

recommendations 

https://api.docear.org/user/{username}/recommendations/ GET 

Confirm the receipt 

of recommendations 

https://api.docear.org/user/{username}/recommendations/

{recommendationsSetId} 

POST 

Download a 

recommended paper 

https://api.docear.org/ user/{username}/ 

recommendations/fulltext/{hash} 

GET 

Send rating https://api.docear.org/user/{username}/recommendations/

{recommendationsSetId} 

POST 

5.1.1.2 Building the corpus 

The Spider crawls the Web for academic PDF files, which serve as 

recommendation candidates. Each PDF is converted into text, and the header 

information and citations are extracted. The text conversion is done with jPod43, a 

PDF library we found to be more effective than the commonly used PDFBox (cf. 

Appendix G.1, p. 245). The header extraction is done with ParsCit44 and a tool that 

we developed and called Docear’s PDF Inspector (cf. Appendix G.2, p. 249). The 

citation extraction is also conducted with ParsCit, which we modified to identify 

                                                      

42 http://jersey.java.net 
43 http://sourceforge.net/projects/jpodlib/ 
44 http://aye.comp.nus.edu.sg/parsCit/ 
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the citation position within a text45. Once all information is extracted, it is indexed 

with Apache Lucene46 and stored in Lucene’s file-based data storage.  

Instead of indexing the original citation placeholder with [1], [2], etc. the unique 

Docear ID of the cited document is indexed (e.g. dcr_doc_id_54421) (Figure 26). 

This allows to apply weighting schemes, such as TF-IDF to citations, i.e. CC-IDF 

[39], and searching with Lucene for documents that cite a certain paper. It also 

allows for the matching of user models and recommendation candidates based on 

terms and citations at the same time. For instance, a user model could consist of 

the terms and document-ID “cancer, sun, dcr_doc_id_54421, skin” and those 

papers would be recommended that contain the terms cancer, sun and skin and that 

cite the document dcr_doc_id_54421.  

 
Figure 26: Converting in-text citations to Docear-IDs 

In addition to the papers that were found by the Spider, we selected a few papers 

manually and added them to the corpus of recommendation candidates. These 

papers are about academic writing and search, i.e. topics we assume to be relevant 

for the majority of our users. These papers are recommended with the stereotype 

approach. 

                                                      

45 Meanwhile, our modifications were integrated into ParsCit. 
46 http://lucene.apache.org 
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5.1.1.3 Collecting information about users 

Docear’s recommender system needs access to the users’ data, i.e. their mind 

maps, to be able to infer the users’ information needs. To get access to the users’ 

mind maps, Docear stores a copy of the mind maps in a temporary folder on the 

users’ hard drive, whenever a mind map was modified and saved by the user. 

Every five minutes – or when Docear starts – Docear sends all mind maps located 

in the temporary folder to the Web Service. The Web Service forwards these mind 

maps, i.e. XML files, to the Mind-Map Parser (JAVA), which is based on 

nanoXML47. All nodes of the mind maps, including attributes (text, links to files, 

titles of linked PDFs, and bibliographic data) are extracted from the XML file and 

stored in a graph database (neo4j48). Citations in the mind maps are replaced with 

the corresponding Docear-IDs, similarly to the replace-process of citations in the 

research articles (cf. section 5.1.1.2 and Figure 26). A ‘citation’ in a mind map can 

either be a link to a PDF file, or the bibliographic data that is attached to a node. 

This means, if a node in a mind map links a PDF on the user’s hard drive, the PDF 

is identified (via its title) and the link in the mind map is replaced with the Docear-

ID of the cited article, linked PDF respectively. If the cited article is not already in 

Docear’s database, the article is added and a new Docear-ID is created.  

5.1.1.4 Generating user models & recommendations 

The recommendation engine is the central part of Docear’s recommender system. 

It creates new user models and recommendations whenever new mind maps are 

uploaded to the server or after recommendations have been delivered to a user. 

Generating recommendations in advance has the disadvantage that a significant 

amount of computing time is wasted. Of all generated recommendations, only 

21.3% were delivered to the users. In other words, 79.7% of the computing power 

could have been saved if recommendations were only created when they actually 

were needed. However, on average, it took 52 seconds to calculate one set of 

recommendations with a standard deviation of 118 seconds, and users would 

probably not want to wait so long for receiving recommendations. This rather long 

computing time is primarily caused by the many statistics that we calculate for 

each set of recommendations, along with a few algorithms that require intensive 

computing power. We also run several additional services on the recommendation 

servers that require a lot of computing power (e.g. PDF processing), and this slows 

                                                      

47 http://nanoxml.sourceforge.net/orig/ 
48 http://www.neo4j.org/ 
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down the recommendation process. If we would disable statistics, concentrate on a 

few algorithms, and use a dedicated server for the recommender system, it should 

be possible to generate recommendations in real-time. However, since we need the 

statistics, and want to evaluate different variations of the recommendation 

approaches, pre-generating recommendation seems the most feasible solution to 

us.  

Docear’s recommender system applies two recommendation approaches, namely 

stereotype recommendations and content-based filtering (CBF). Every time the 

recommendation process is triggered, one of these approaches is randomly chosen. 

The stereotype approach is chosen with a probability of 1%. The content-based 

filtering approach analyzes the users’ mind maps and recommends research papers 

whose content is similar to the content of the mind maps. ‘Similarity’ is based on 

the number of terms or citations that user-models and research papers have in 

common. The user modeling process varies by a number of variables that are 

stored in the algorithms database (MySQL & Hibernate49). These variables are 

randomly arranged to assemble the final user-modeling algorithm, each time 

recommendations are generated. In the first step, the feature type to use from the 

mind maps is randomly chosen. The feature type may be terms, citations, or both. 

Then, a number of other variables are chosen such as the number of mind maps to 

analyze, the number of features the user model should contain, and the weighting 

scheme for the features. For instance, one randomly arranged algorithm might 

utilize the one hundred most recently created citations in the user’s mind maps, 

weight the citations with CC-IDF, and store the five highest weighted citations as 

a user model. Another algorithm might utilize all the terms from the two most 

recently created mind maps, weight terms based on term frequency and store the 

50 highest weighted terms as user model.  

The user model is represented by a list of terms and/or citations that are supposed 

to describe the user’s information needs. The user-modeling engine randomly 

chooses whether to store the user model as a weighted or un-weighted list in the 

database. An un-weighted list is a plain list of terms or citations such as sun, skin, 

dcr_doc_id_54421, cancer ordered by the terms’ and citations’ weight (the 

features are always sorted by weight, but the weight is discarded when storing the 

user model as un-weighted list). The weighted list is a vector in which the weights 

                                                      

49 http://hibernate.org/ 
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of the individual features are stored, in addition to the features themselves. Docear 

uses both weighted and un-weighted lists to research the differences in their 

effectiveness.  

The matching module is responsible for finding the appropriate recommendations 

for a given user model. To match user models and recommendation candidates, 

Apache Lucene is used, i.e. the user model is sent as a search query to Lucene. 

From Lucene’s top 50 search results, a set of ten papers is randomly selected as 

recommendations. Choosing papers randomly from the top 50 results decreases the 

overall relevance of the delivered recommendations, yet increases the variety of 

recommendations, and allows for the analyzing of how relevant the search results 

of Lucene are at different ranks.  

Matching user models with recommendation candidates is the same for both terms 

and citations. The user model, consisting of terms or citation IDs, is sent to 

Lucene. Lucene returned those research papers that are most relevant for the terms 

or citations (relevance is calculated with Lucene’s default algorithm).  

Once the recommendations are created, they are stored in the recommendation 

database (MySQL & Hibernate). The system stores for which user the 

recommendations were generated, by which algorithm, as well as some statistical 

information such as the time required to generate recommendations and the 

original Lucene ranking. The recommendations are not yet delivered to the user 

but only stored in the database. 

5.1.1.5 Delivering recommendations 

To display recommendations to a user, the Docear desktop software sends a 

request to the Web Service. The Web Service retrieves the latest created 

recommendations and returns them to Docear, which displays the 

recommendations to the user. The Web Service stores some statistics, such as 

when the recommendations where requested and from which Docear version. 

After recommendations are displayed to the user, a new set of recommendations is 

generated.  

Each recommendation set receives a label that is displayed in Docear above the 

recommendations (Figure 23). Some labels such as "Free research papers" indicate 

that the recommendations are free and organic. Other labels such as "Research 

papers (Sponsored)" indicate that the recommendations are given for commercial 

reasons. For each user, the label is randomly chosen, when the user registers. The 
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label has no effect on how the recommendations are actually generated. We 

randomly assign labels only to research the effect of different labels on user 

satisfaction (cf. Appendix J, p. 267).  

When users click on a recommendation, a download request is sent to Docear’s 

Web Service. The Web Service again stores some statistics, such as the time when 

the user clicked the recommendation. Then the user is forwarded to the original 

URL of the recommended paper. Forwarding has the disadvantage that papers 

occasionally are not available any more at the time of the recommendation since 

they were removed from the original web server. However, caching PDFs and 

offering them directly from Docear’s servers might have led to problems with the 

papers’ copyright holders.  

5.1.1.6 Offline evaluation 

The Offline Evaluator (JAVA) runs occasionally to evaluate the effectiveness of 

the different algorithms. The offline evaluator creates a copy of the users’ mind 

maps and removes that citation that was most recently added to the mind maps. In 

addition, all nodes from the copy are removed that were created after the most 

recent citation was added. The offline evaluator then selects a random algorithm 

and creates recommendations for the users. The offline evaluator checks if the 

removed citation is contained in the list of recommendations and stores this 

information in the database. It is assumed that if an algorithm could recommend 

the removed citation, the algorithm was effective. The more often an algorithm 

could recommend a removed citation, the more effective it is.  

5.1.1.7 Technical details 

The recommender system runs on two servers. The first server is an Intel Core i7 

PC with two 120GB SSDs, one 3 TB HDD, and 16 GB RAM. It runs the PDF 

Spider, PDF Analyzer, and the mind-map database, and its load is usually high, 

because web crawling and PDF processing require many resources. The second 

server is an Intel Core i7 PC with two 750 GB HDDs and 8 GB RAM. It runs all 

other services including the Web Service, mind-map parser, MySQL database, 

Lucene, and the offline evaluator. The server load is rather low on average, which 

is important, because the Web Service is not only needed for recommendations but 

also for other tasks such as user registration. While long response times, or even 

down times, for e.g. the PDF spider are acceptable, user registration should always 

be available.  
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5.1.2 Datasets 

We publish four datasets relating to the research papers that Docear’s spider found 

on the web (5.1.2.1), the mind maps of Docear’s users (5.1.2.2), the users 

themselves (5.1.2.3), and the recommendations delivered to the users (5.1.2.4). 

The following sections provide only an overview of the most important data, 

particularly with regard to the randomly chosen variables. Please note that all 

variables are explained in detail in the readme files of the datasets, and the effects 

of most variables are presented in the following chapters. All datasets are available 

at http://labs.docear.org. 

5.1.2.1 Research papers 

The research papers dataset contains information about the research papers that 

Docear’s PDF Spider crawled, and their citations.  

The file papers.csv contains information about 9.4 million research articles. Each 

article has a unique document id, a title, a cleantitle, and for 1.8 million articles, a 

URL to the full-text is provided. The 1.8 million documents were found by 

Docears PDF Spider, and for each of these documents, titles were extracted with 

Docear’s PDF Inspector or parsed from the web page that linked the PDF. The 

remaining 7.6 million documents in the dataset were extracted from the 1.8 million 

documents’ bibliographies. In this case, no full-text URL is available and the 

document’s title was extracted from the bibliography with ParsCit. Based on a 

small random sample of 100 documents, we estimate that 71% of the articles are 

written in English. Other languages include German, Italian, Russian, and Chinese. 

It also appears that the papers cover various disciplines, for instance, social 

sciences, computer science, and biomedical sciences. However, several of the 

indexed documents are of non-academic nature, and sometimes, entire proceedings 

were indexed but only the first paper was recognized.  

Document disambiguation is only based on the documents’ “cleantitle”. To 

generate a cleantitle, all characters are transformed to lowercase, and only ASCII 

letters from a to z are kept. If the resulting cleantitle is less than half the size of the 

original title, the original title is used as cleantitle – this prevents e.g. Chinese titles 

to be shortened to a string of length zero. If two documents have the same 

cleantitle, the documents are assumed identical. Comparing documents only based 

on such a simplified title is certainly not very sophisticated but it proved to be 

sufficiently effective for our needs. 

http://labs.docear.org/
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The file citations.csv contains a list of 572,895 papers with 7.95 million citations. 

These numbers mean that of the 1.8 million PDFs, 572,895 PDFs could be 

downloaded and citations could be extracted, and on average, each of the PDFs 

contained around 14 references. The dataset also contains information where 

citations occur in the full-texts. For each citing->cited document pair, the position 

of a citation is provided in terms of character count, starting from the beginning of 

the document. This leads to 19.3 million entries in citations.csv, indicating that, on 

average, each cited paper is cited around three times in a citing document. The 

dataset allows building citation networks and hence calculating document 

similarities, or the document impact. Since the position of the citations is provided, 

document similarity based on citation proximity analysis could be calculated, 

which we developed during the past years [122] and which is an extension of co-

citation analysis.  

Due to copyright reasons, full-texts of the articles are not included in the dataset. 

Downloading the full-text is easily possible, since the URLs to the PDFs are 

included (as long as the PDFs are still available on the Web).  

5.1.2.2 Mind maps / user libraries 

Every month, 3,000 to 4,000 newly created and modified mind maps are uploaded 

to Docear’s server. Some mind maps are uploaded for backup purposes, but most 

mind maps are uploaded as part of the recommendation process.  

The file mindmaps.csv contains information on 52,202 mind maps created by 

12,038 users who agreed that we could publish their information. Docear does not 

only store the latest version of a mind map but keeps each revision. Information 

about 390,613 revisions of the 52,202 mind maps is also included in 

mindmaps.csv. This means, on average there are around seven to eight revisions 

per mind map. All mind maps and revisions in the dataset were created between 

March 2012 and March 2014. There are three different types of mind maps. First, 

there are mind maps in which users manage academic PDFs, annotations, and 

references (Figure 5). These mind maps represent data similar to the data included 

in the Mendeley dataset (cf. Chapter 3.4.6, p. 55). While Mendeley uses the term 

“personal libraries” to describe a collection of PDFs and references, Docear’s 

mind maps represent also collections of PDFs and references but with a different 

structure than the ones of Me ndeley. Second, there are mind maps to 

draft assignments, research papers, theses, or books (Figure 23). These mind maps 

differ from the first type as they typically contain only few PDFs and references, 

but they include additional data such as images, LaTeX formulas, and more text. 
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The third type of mind maps, are “normal” mind maps that users create to 

brainstorm, manage tasks, or organize other information. Due to privacy concerns, 

this dataset does not contain the mind maps themselves but only metadata. This 

includes a list of all the mind maps and revisions, their file sizes, the date they 

were created, and to which user they belong. The data may help to analyze how 

often researchers are using reference management software, for how long they are 

using it, and how many papers they manage in their mind maps, personal 

collections respectively. 

The file mindmaps-papers.csv contains a list 473,538 papers that are linked eight 

million times in 12,994 mind maps. This means, of the 52,202 mind maps, 24.8% 

contain at least one link to a PDF, and PDFs are linked 17 times in a mind map on 

average. The paper-IDs in mindmaps-papers.csv are anonymized and do not 

correlate with paper-IDs from the research paper dataset, nor does mindmaps-

papers.csv contain titles of the linked papers. It should also be noted that the 

473,538 papers are not necessarily contained in papers.csv as papers.csv contains 

only information of the publicly available PDFs and their citations. These 

limitations were made to ensure the privacy of our users.  

5.1.2.3 Users  

There are three types of users in Docear, namely local users, registered users, and 

anonymous users. Local users chose not to register when they install Docear. 

Consequently, they cannot use Docear’s online services such as recommendations 

or online backup, and we do not have any information about these users, nor do we 

know how many local users there are. Registered users sign-up with a username, a 

password, and an email address and they can use Docear’s online services. During 

the registration process, these users may provide information about their age and 

gender. Between March 2012 and March 2014, around 1,000 users registered 

every month, resulting in 21,439 registered users. Anonymous users decline to 

register but still want to use some of Docear’s online services. In this case, Docear 

automatically creates a user account with a randomly selected user name that is 

tied to a users’ computer. Anonymous users cannot login on Docear’s website, but 

they can receive recommendations as their mind maps are transferred to Docear’s 

servers, if they wish to receive recommendations. Due to spam issues, no new 

anonymous users were allows since late 2013. Until then, around 9,500 

anonymous user accounts were created by non-spammers.  

The file users.csv contains anonymized information about 8,059 of the 21,439 

registered users, namely about those who activated recommendations and agreed 



84  

 

to have their data analyzed and published. Among others, the file includes 

information about the users’ date of registration, gender, age (if provided during 

registration), usage intensity of Docear, when Docear was last started, when 

recommendations were last received, the number of created mind maps, number of 

papers in the user’s mind maps, how recommendations were labeled, the number 

of received recommendations, and click-through rates.  

The file users_papers.csv contains a list of 6,726 users and 616,651 papers that the 

users have in their collections, i.e. mind maps. This means, on average, each user 

has linked or cited 92 documents in his or her mind maps. The paper IDs in 

users_papers.csv do not correlate with the IDs from the research paper dataset, to 

ensure the users’ privacy.  

The users-dataset may help to identify how differences between users affect users’ 

satisfaction with recommendations. For instance, we found that older users are 

more likely to click on recommendations than younger users (cf. Appendix H, p. 

255), and that the labelling of recommendations has an effect on user satisfaction 

(cf. Appendix J, p. 267). The dataset also allows analyses about the use of 

reference managers, for instance, how intensive researchers are using Docear.  

5.1.2.4 Recommendations  

Between March 2013 and March 2014, Docear delivered 31,935 recommendation 

sets with 308,146 recommendations to 3,470 users50. Of the delivered sets, 38.7% 

were explicitly requested by the users. The remaining 62.2% were delivered 

automatically when the Docear Desktop software was started. Among the 308,146 

recommendations, there were 147,135 unique documents. In other words, from 

Docear’s 1.8 million documents, 9% were actually recommended. The 

recommendation dataset splits into two files. 

The file recommendation_sets.csv contains information about the 31,935 delivered 

recommendation sets. This includes the number of recommendations per set 

(usually ten), how many recommendations were clicked, the date of creation and 

delivery, the time required to generate the set and corresponding user models, and 

information on the algorithm that generated the set. There is a large variety in the 

                                                      

50 The analyses in the following chapters are based on this data and additional data that we collected until August 

2014. 
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algorithms. We stored whether stop words were removed, which weighting 

scheme was applied, whether terms and/or citations were used for the user 

modelling process, and several other variables were applied that are described in 

more detail in the dataset’s readme file.  

The file recommendations.csv contains information about the 308,146 

recommendations that Docear delivered. This information includes all details 

contained in recommendation_sets.csv and additional information, such as at 

which position a recommendation was shown, and which document was 

recommended (again, we anonymized the paper IDs).  
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5.2 Adequacy of Evaluation Methods and Metrics 

Task 3 was to identify adequate evaluation methods. Hence, we measured the 

effectiveness of different recommendation approaches, and their variations, with a 

user study, an online evaluation, and an offline evaluation. This section first 

presents the results of the evaluations (p. 87). It follows a discussion about the 

adequacy of online-evaluation metrics (p. 96), adequacy of online evaluations and 

user studies (p. 98), and adequacy of offline evaluations (p. 99).  

5.2.1 Results of the Evaluations 

5.2.1.1 Effectiveness of recommendation approaches 

We evaluated the effectiveness of stereotype recommendations, CBF based on 

terms, and CBF based on citations with an online evaluation, offline evaluation, 

and user study. The user study and online evaluation both led to the same ranking 

of the approaches51: Term-based CBF performed best, i.e. CTR, CTRSet, DTR, 

LTR, CiTR, and ratings were highest; citation-based CBF performed second best; 

and the stereotype approach performed worst, but still reasonable (Figure 27).  

On average, LTR was around one third of CTR. For instance, LTR for the 

stereotype approach was 1.46% while CTR was 4.11%. This means that one third 

of the recommendations that had been clicked were actually downloaded and 

linked in the mind maps. ATR was around half of LTR for the CBF approaches. 

This means that users annotated about half of the recommendations that they 

downloaded52. However, for the stereotype approach, ATR was only 0.18%, i.e. 1

8
 

of LTR. Similarly, CiTR for the stereotype approach was only 1

75
 of LTR, while 

CiTR for term- and citation-based CBF was around 1

4
 of LTR. Apparently, 

                                                      

51 To compare term- and citation based recommendations, we only compared recommendations when the 

corresponding set contained ten recommendations, original ranks were 10 or lower, and the users’ mind-maps 

contained at least one citation. 

52 Many PDFs contain already annotations before they are downloaded. For instance, some publishers create 
bookmarks for the chapters of a paper. Hence, results for ATR should be considered with skepticism.  
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stereotype recommendations were rarely annotated or cited, yet users cited every 

fourth content-based recommendation that they downloaded53.  

 
Figure 27: Effectiveness of recommendation approaches54 

The offline evaluation led to the same overall ranking than the online evaluation 

and user study. However, all four offline metrics attest that term-based CBF has 

significantly better effectiveness than citation based CBF (around four to ten times 

as effective), while user study and online evaluation only attest a slightly higher 

effectiveness. In addition, the effectiveness of the stereotype approach in the 

offline evaluation is close to zero, while user study and online evaluation show a 

reasonable effectiveness. 

                                                      

53 Please note that users did not really cite the papers in their own publications but retrieved metadata for these 

papers, which we interpret as a citation.  

54 The comparison of term and citation-based recommendations was based on a “fair” comparison, i.e. only 

recommendations delivered to users who had made at least 1 citation were considered and recommendation sets 

including ten recommendations.  
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5.2.1.2 Effect of user-model size 

We researched not only the effectiveness of distinct recommendation approaches, 

but variables such as the extent of the user-model size. User-model size describes 

how many terms (or citations) are stored to represent the users' information needs. 

Whenever recommendations are requested, Docear randomly selected a user-

model size between 1 and 1000 terms. For term-based CBF, the highest ratings 

(3.26) were given for recommendations that were based on user models containing 

26 to 100 terms (Figure 28). All online metrics, except CiTR55, confirmed the 

results of the user study. The offline metrics led to slightly different results and 

showed the highest effectiveness for user models containing 101 to 250 terms.  

 
Figure 28: Effectiveness based on user-model size 

                                                      

55 The differences for CiTR were statistically not significant. 
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5.2.1.3 Effect of number of nodes  

Docear’s mind maps often contain thousands of nodes. We assumed that analyzing 

too many nodes might introduce noise into the user models. Therefore, Docear 

randomly selected how many of the x most recently modified nodes, should be 

utilized for extracting terms. Based on user ratings, analyzing between 50 and 99 

nodes is most effective (Figure 29)56. As more nodes were analyzed, the average 

ratings decreased. CTR, CTRSet, LTR, and CiTR also showed an optimal 

effectiveness for analyzing 50 to 99 nodes. Based on ATR, the optimal number of 

nodes is larger, but results were statistically not significant. The offline metrics 

indicate that analyzing a larger number of nodes might be sensible, namely 100 to 

499 nodes.  

 
Figure 29: Effectiveness based on the number of nodes to analyze 

 

                                                      

56 All results are based on recommendations to users who had created 1,000 nodes and more.  
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5.2.1.4 Effect of node-selection method 

Another variable we tested was the node modification type (Figure 30). The 

recommender system chose randomly, whether to utilize only nodes that were 

newly created, nodes that were moved, nodes that were edited, or nodes with any 

type of modification (created, edited, or moved). Utilizing moved nodes only, 

resulted in the highest ratings on average (3.31). The online metrics CTR, CTRSet, 

and LTR as well as the offline metric MRR also have the highest effectiveness 

when utilizing moved nodes. Results for ATR and CiTR differ, but are statistically 

not significant. Based on P@N, utilizing all modified nodes is most effective, 

based on nDCG utilizing newly created nodes is most effective. 

 
Figure 30: Effectiveness based on the node modification type 

5.2.1.5 Effect of stop-word removal 

When the recommender system removed stop-words, the average rating was 3.16 

compared to 2.88 when no stop-words were removed (Figure 31). All other 

metrics, except ATR, also showed a higher effectiveness when stop-words were 

removed, but, again, results for ATR were statistically insignificant.  
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Figure 31: Effectiveness of stop-word removal 

5.2.1.6 Effect of user types 

Docear’s recommender system is open to both registered and 

unregistered/anonymous users (cf. Chapter 5.1.2.3, p. 83), and we were interested 

whether there would be differences in the two users groups with respect to 

recommendation effectiveness. CTR and CTRSet show a clear difference between 

the two user types (Figure 32). Registered users had an average CTR of 5.32% 

while unregistered users had an average CTR of 3.86%. CTRUser is also higher for 

registered users (4.00%) than for anonymous users (3.77%), but the difference is 

not that strong. LTR and ATR also show a (slightly) higher effectiveness for 

registered users. The offline evaluation contradicts the findings of the online 

evaluation: P@3, P@10, and MRR indicate that recommendations for registered 

users were about half as effective as for anonymous users, and nDCG showed no 

statistically significant difference between the user groups.  
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Figure 32: Effectiveness by user type (registered and anonymous)57 

5.2.1.7 Effect of labels 

For each user, Docear randomly determined whether to display an organic label 

(e.g. “Free Research Papers”), a commercial label (e.g. “Research Papers 

[Sponsored]”), or to display no label at all (cf. Appendix J, p. 267). For each user a 

fix label was randomly selected once, i.e. a particular user always saw the same 

label. The label had no impact on how recommendations were generated. This 

means, if recommendation effectiveness would differ for a particular label, then 

only because users would value different labels differently.  

                                                      

57 User ratings were only introduced in early 2014. Since no new anonymous users have been allowed since late 

2013, there are no ratings made by anonymous users. Hence, we could only compare results of online and offline 

evaluations for the two types of users. 
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In the user study, there were no significant differences for the three types of labels 

in terms of effectiveness: the ratings were around 2.9 on average for all labels 

(Figure 33). Based on CTR, CTRSet, and LTR, displaying no label was most 

effective. In addition, commercial labels were slightly, but statistical significantly, 

more effective than organic labels. Based on CTRUser, commercial 

recommendations were least effective, organic labels were most effective, and ‘no 

label’ was second most effective. ATR and CiTR led to statistically not significant 

results, and offline metrics could not be calculated for this kind of analysis.  

 
Figure 33: Effectiveness of labels 

5.2.1.8 Effect of trigger 

Two triggers in Docear lead to displaying recommendations. First, Docear 

displays recommendations automatically every five days when Docear starts. 

Second, users may explicitly request recommendations at any time. The user study 

shows a similar effectiveness for both types of trigger with an average rating 

between 2.8 and 2.9 (Figure 34)58. Interestingly, the online evaluation shows a 

                                                      

58 The small difference in the average rating is statistically insignificant. 
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significantly higher effectiveness for requested recommendations than for 

automatically displayed recommendations. For instance, CTR for requested 

recommendations is 2.5 times higher than for automatically displayed 

recommendations (9.14% vs. 3.67%). Conducting an offline evaluation was not 

possible for this type of analysis.  

 
Figure 34: Effectiveness by trigger 

5.2.1.9 Correlation of the evaluation metrics 

We calculated the Pearson correlation coefficient for the different evaluation 

metrics (Table 13). Both CTR and CTRSet show a strong positive correlation with 

ratings (r=0.78). Correlation of all other metrics, both offline and online, with 

ratings is between 0.52 (CiTR) and 0.67 (nDCG). This means that CTR and 

CTRSet are most suitable to approximate ratings in our scenario. If the goal is to 

approximate CTR, then ratings, obviously, is the most adequate metric (r=0.78), 

followed by LTR (r=0.73). The other metrics have rather low correlation 

coefficients with CTR; the worst are nDCG (r=0.28) and MRR (r=0.30). Among 

the offline metrics, P@3 and P@10 correlate well (r=0.92), which is to expect. 

MRR and nDCG also show a reasonable strong correlation (r=0.71), while 

correlation of P@10 and MRR (r=0.56) and P@10 and nDCG (r=0.55) is rather 

weak.  
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Table 13: Correlation of the different metrics 

 

5.2.2 Adequacy of Online-Evaluation Metrics 

Among the online metrics, CTR and CTRSet seem to be the most adequate metrics, 

at least for Docear’s scenario. CTR and CTRSet had the highest correlation with 

users’ ratings, are easiest to calculate, provided more often statistically significant 

results than the other metrics, and CTR is commonly used in other fields such as e-

commerce and search engines. CTR and CTRSet (and LTR) also provided the more 

plausible results for the stereotype recommendations. Based on CTR, the 

stereotype approach was reasonably effective, while the approach was ineffective 

based on ATR and CiTR. The result based on CTR seems more plausible since the 

recommendations were about academic writing and most of Docear’s users should 

be interested in improving their writing skills. However, there is little reason for 

someone who is doing research in a particular research field, to annotate or even 

cite an article about academic writing even if the article was useful. Hence, 

judging stereotype recommendations based on ATR or CiTR seems inadequate to 

us.  

However, ATR and CiTR might be more sensible measures than CTR in other 

scenarios. For instance, imagine two algorithms called “A” and “B”. Both are the 

same content-based filtering approaches but B additionally boosts papers 

published in reputable journals.59 In the online evaluation, users would probably 

see no difference between the titles of the recommendations created with the two 

approaches, assuming that authors publishing in reputable journals do not 

formulate titles that are significantly different from titles in other journals. 

Consequently, recommendations of the two algorithms would appear to be 

                                                      

59 For this example we ignore the question how reputability is measured 

Ratings -- Ratings 0.78 P@3 and P@10 0.92              

CTR 0.78 CTR -- P@10 and MRR 0.56              

CTR (Set) 0.78 CTR (Set) 0.97 P@10 and nDCG 0.55              

DTR 0.65 DTR 0.73 nDCG and MRR 0.71              

ATR 0.61 ATR 0.53

CiTR 0.52 CiTR 0.42

P@3 0.62 P@3 0.41

P@10 0.65 P@10 0.48

MRR 0.55 MRR 0.30

nDCG 0.67 nDCG 0.28

Correlation of Ratings and … Correlation of CTR and … Correlation of …
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similarly relevant and received similar CTR. However, most people would 

probably agree that algorithm B would be preferable to algorithm A in practice. 

Therefore, in this example, ATR and CiTR might be more appropriate than CTR.  

Measuring CTR, while displaying only the title of recommendations, was 

criticized by some reviewers of our previous publications. The reviewers argued 

that titles alone would not allow thorough assessment of recommendations and 

CTR could therefore be misleading. In some scenarios, such as the example above 

with the two algorithms, one being boosted by journal reputation, this criticism 

could indeed apply. However, in the scenario of Docear, the results do not indicate 

that displaying only the title led to any problems or bias in the results since CTR 

correlates well with those metrics that are based on a more thorough assessment of 

the recommendations (e.g. user ratings or ATR).  

Compared to CTR, CTRuser smoothed the effect of variables that strongly affected 

a few users. For instance, CTRuser was highest for organic labels, lowest for 

commercial labels, and mediocre for no labels – a result that one would probably 

expect. In contrast, CTR was highest for no label, second highest for commercial 

recommendations, and lowest for organic recommendations – a result that one 

would probably not expect. After looking at the data in detail, we found that a few 

users who received many recommendations (with no label) “spoiled” the results. 

Hence, if the objective of an evaluation was to measure overall user satisfaction, 

CTRuser was probably preferable to CTR because a few power users will not spoil 

the results. However, applying CTRuser requires more users than applying CTR, 

since CTRuser requires that users receive recommendations based on the same 

parameters of the variables and not per recommendation set. For instance, to 

calculate CTRuser, each user must always see the same label, each user model must 

always be the same size for a particular user, and recommendations must always 

be based on terms or citations for a particular user. In contrast, to calculate CTR, 

users may receive recommendations based on terms in one occasion, and 

recommendations based on citations in another occasion, or user models could 

differ in size, different weighting schemes could be used etc. Consequently, to 

receive statistically significant results, CTRuser requires more users than CTR. At 

least for Docear, calculating CTRuser for variables such as user-model size, number 

of nodes to analyze, features to utilize (terms or citations), and weighting schemes 

is not feasible since we would need many more users than Docear currently has.  

Considering the strong correlation of CTR and ratings, the more plausible result 

for stereotype recommendations, and the rather low number of users being 

required, we conclude that CTR is the most appropriate online metric for our 
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scenario. This is not to mean that in other scenarios other online metrics such as 

CTRUser or ATR might not be more sensible.  

5.2.3 Adequacy of Online Evaluations & User Studies 

Ratings in the user study correlated strongly with CTR (r=0.78). This indicates 

that explicit user satisfaction (ratings) is a good approximation of the acceptance 

rate of recommendations (CTR), and vice versa. Only in two cases, CTR and 

ratings contradicted each other, namely for the impact of labels (cf. Section 

5.2.1.7) and the trigger (cf. Section 5.2.1.8). Both of these analyses relate to 

human factors. For the analyses relating to the algorithms and their variations in 

user-model size, number of nodes to analyze, etc., CTR and ratings always led to 

the same conclusions. These differences indicate that when the accuracy of 

recommendation algorithms is to be evaluated, both CTR and ratings are equally 

well suitable. However, which of the two metrics to use when it comes to 

evaluating human factors? 

We argue that none of the metrics is generally more authoritative than another 

metric. Ultimately, the authority of user studies and online evaluations depends on 

the objective of the evaluator, and operator of the recommender system 

respectively. If, for instance, the operator receives a commission per click on a 

recommendation, CTR was to prefer over ratings. If the operator is interested in 

user satisfaction, ratings were to prefer over CTR. Ideally, both CTR and ratings, 

should be considered when making a decision about which algorithm to apply in 

practice or to choose as baseline, since they both have some inherent value. Even 

if the operator’s objective was revenue, and CTR was high, low user satisfaction 

would not be in the interest of the operator. Otherwise, users would probably 

ignore recommendations in the end, and hence stop clicking them. Similarly, if the 

objective was user satisfaction, and ratings were high, a low CTR would not be in 

the interest of the operator: a low CTR means that many irrelevant 

recommendations are given, and if these could be filtered, user satisfaction would 

probably further increase. Therefore, ideally, researchers should evaluate their 

approaches with both online evaluation and user study when it comes to evaluating 

human factors. However, if researchers do not have the resources to conduct both 

types of evaluation, or if the analysis focuses on recommendation algorithms with 

low impact of human factors, we suggest that conducting either a user study or an 

online evaluation should still be considered “good practice”. 
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5.2.4 Adequacy of Offline Evaluations  

Our research shows only a mediocre correlation of offline evaluations with user 

studies and online evaluations. Sometimes, the offline evaluation could predict the 

effectiveness of algorithms in the user study or online evaluation quite precisely. 

For instance, the offline evaluation was capable of predicting whether removing 

stop-words would increase the effectiveness. The optimal user-model size and 

number of nodes to analyze were also predicted rather accurately (though not 

perfectly). However, the offline evaluation remarkably failed to predict the 

effectiveness of citation-based and stereotype recommendations. If one had trusted 

the offline evaluation, one had never considered stereotype and citation-based 

recommendations to be a worthwhile option.  

The uncertain predictive power of offline evaluations, questions the often 

proclaimed purpose of offline evaluations, namely to identify a set of promising 

recommendation approaches for further analysis. However, this does not 

necessarily mean that conducting offline evaluation is meaningless. To assess the 

adequacy of offline evaluations, we propose that the following three questions 

need to be answered:  

1. Can we identify scenarios where offline evaluations will have 

predictive power for how recommendation approaches will perform 

in online evaluations and user studies? If we can, we should use 

offline evaluations only in these scenarios.  

2. Do results of offline evaluations have inherent value? If they do, it 

would not matter if they contradicted results of online evaluations 

of user studies. Instead, results of offline evaluations would have 

inherent value and would be worth to be reported in publications, 

similar to CTR and ratings.  

3. Are offline evaluations inherently flawed? If they are, we should 

abandon them entirely.  

In the following sections, we attempt to answer these questions. We do not claim 

that our answers are definitive but we hope to stimulate a discussion that will 

eventually lead to widely accepted answers.  
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5.2.4.1 Finding scenarios for which offline evaluations have predictive power 

A common criticism on offline evaluations is the ignorance of human factors (cf. 

Section 3.3.2, p. 42). At least for some of our analyses, human factors might have 

caused the non-predictive power of offline evaluations. 

For instance, on first glance we expected that Docear’s recommendation 

approaches create equally relevant recommendations for both anonymous and 

registered users. However, the offline evaluation showed higher effectiveness for 

anonymous users than for registered users while we saw the opposite in the online 

evaluation. Although we find these results surprising, the influence of human 

factors might explain the difference: It could be that anonymous users are more 

concerned about privacy than registered users60. Users concerned about their 

privacy, might worry that when they click a recommendation, some unknown, and 

potentially malicious website, opens. This could be the reason that anonymous 

users, who tend to be concerned about their privacy, click recommendations not as 

often as registered users, and CTR is lower on average. Nevertheless, the higher 

accuracy for anonymous users in the offline evaluation might still be plausible. If 

anonymous users tended to use Docear more intensively than registered users, the 

mind maps of the anonymous users would be more comprehensive and hence 

more suitable for user modeling and generating recommendations, which would 

lead to the higher accuracy in offline evaluations. This means that although mind 

maps of anonymous users might be more suitable for user modeling, the human 

factor “privacy concerns” causes the low effectiveness in online evaluations.  

If human factors have an impact on recommendation effectiveness, we must 

question whether one can determine scenarios in which human factors have no 

impact. Only in these scenarios, offline evaluations would be an appropriate tool 

to approximate the effectiveness of recommendation approaches in online 

evaluations or user studies. In scenarios like our analysis of registered vs. 

anonymous users, it is apparent that human factors may play a role, and that 

offline evaluations might be not appropriate. For some of our other experiments, 

such as whether to utilize terms or citations, we could see no plausible influence of 

human factors, yet offline evaluations could not predict the performance in the 

user study and online evaluation. Therefore, and assuming that results of offline 

                                                      

60 If users register, they have to reveal private information such as name and email address. If users are concerned 

about revealing this information, they probably tend to use Docear as anonymous user.  
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evaluations have no inherent value, we would propose abandoning offline 

evaluations, as they cannot reliably fulfil their purpose. However, could the results 

of offline evaluations have some inherent value?  

5.2.4.2 The inherent value of offline evaluations 

Offline evaluations, online evaluations, and user studies typically measure 

different types of effectiveness (cf. Section 3.4.1, p. 51). One might therefore 

argue that comparing the results of the three methods is like comparing apples, 

peaches, and oranges, and that the results of each method have some inherent 

value. For online evaluations and user studies, such an inherent value doubtlessly 

exists (see previous section). 

An inherent value for offline evaluations would exist if those persons who 

compiled the ground-truth, better knew which items were relevant than current 

users who decide to click, download, or rate an item. This situation is comparable 

with a teacher-student situation. Teachers know which books their students should 

read, and although students might not like the books, or had not chosen the books 

themselves, the books might be the best possible choice to learn about a certain 

subject. Such a teacher-student situation might apply to offline evaluations.  

In case of expert-datasets, one might argue that topical experts, who compile the 

dataset, can better judge relevance of certain items than average users who use the 

recommender system. For instance, if experts were asked to compile an 

introductory reading list on recommender systems for undergraduate students, they 

could probably better select the most relevant documents than the students 

themselves could. Therefore, results from offline evaluations based on expert-

datasets might be more authoritative than results obtained from online evaluations 

or user studies based e.g. on undergraduate students. However, an expert-created 

list for undergraduate students would not be suitable for PhD students who wanted 

to investigate the topic of recommender systems in more depth. Thus, another 

expert list would be needed for PhD students, another for senior researchers, and 

another for foreign language students, etc. Overall, there would be an almost 

infinite number of lists required to cater to all user backgrounds and information 

needs. Such a comprehensive dataset does not exist and probably never will. In 

addition, today’s expert-datasets, such as TREC and MeSH, focus on specific use-

cases and the datasets were not created for recommender-system evaluation. For 

instance, MeSH allows the determination of the similarity of documents. 

Recommending similar documents might be one use case for a recommender 

system, but there are many more. Considering the mentioned limitations, we 
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conclude that offline evaluations based on expert-datasets might theoretically have 

some inherent value, and provide even more authoritative results than online 

evaluations and user studies, but in practice, appropriate datasets will probably 

never be available, except perhaps for some niche recommender systems.  

Inferred ground-truths do not suffer the problem of overspecialization and should 

typically represent a large variety of use-cases. Therefore, in principle, evaluations 

based on inferred ground-truths (e.g. from citations) could be more authoritative 

than online evaluations or user studies. For instance, before a researcher decides to 

cite a document – which would add the document to the ground-truth – the 

document was ideally carefully inspected and its relevance was judged according 

to many factors such as the publication venue, the article’s citation count, or the 

soundness of its methodology. These characteristics usually cannot be evaluated in 

an online evaluation or user study. Thus, one might argue that results based on 

personal-collection datasets might be more authoritative than results from online 

evaluations and user studies.  

There is also a plausible example in which results based on an inferred ground-

truth may be more authoritative than e.g. CTR. Recapitulate the previous example 

with two content-based filtering approaches, called “A” and “B,” where B boosts 

papers that were published in reputable journals (cf. Section 5.2.2, p. 96). In the 

online evaluation, both approaches would probably receive similar CTR. In 

contrast, an offline evaluation based on an inferred ground-truth might predict a 

better performance for approach B, because articles from reputable journals are 

probably more often cited than articles from non-reputable journals. Hence, if 

citations were used as ground-truth, articles from reputable journals were more 

often contained in the ground-truth, and would more often be considered a good 

recommendation than articles from less reputable journals. As a result, algorithm 

B would show better accuracy than algorithm A. In this scenario, the offline 

evaluation would have identified the best algorithm while CTR did not. 

Assuming that offline evaluations could be more authoritative than user studies 

and online evaluations, the following question arises: How useful are 

recommendations that might objectively be most relevant to users when users do 

not click, read, or buy the recommended item, or when they rate the item 

negatively? In contrast to teachers telling their students to read a particular book, a 

recommender system cannot force a user to accept a recommendation. We argue 

that an algorithm that is not liked by users, or that achieves low CTR, can never be 

considered useful. Only if two algorithms performed similarly or if both 

approaches had at least a mediocre performance in an online evaluation or user 
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study, an additional offline evaluation might be used to decide which of the two 

algorithms is more effective. However, this means that offline evaluations had to 

be conducted in addition to user studies or online evaluations, and not beforehand 

or as only evaluation method. Consequently, a change in the current practice of 

recommender-systems evaluation was required. 

5.2.4.3 The fundamental flaw of inferred ground-truths 

While inferred ground-truths look promising on first glance, we see a fundamental 

problem: inferred ground-truths are supposed to contain all items that are relevant 

for recommendation (cf. 2.5.3.3, p. 24). To compile such a ground-truth, 

comprehensive knowledge of the domain is required. It should be apparent that 

most users do not have comprehensive knowledge of their domain (which is why 

they need a recommender system). Consequently, ground-truths are incomplete 

and contain only a fraction of relevant items, and perhaps even irrelevant items. If 

the ground-truth is inferred from citations, the problem becomes even more 

apparent. Many conferences and journals have space restrictions that limit the 

number of citations in a paper. This means that even if authors were aware of all 

relevant literature – which they are not – they would only cite a limited amount of 

relevant articles.  

Citation bias further enforces the imperfection of citation-based ground-truths. 

Authors cite papers for various reasons and these do not always relate to the 

paper’s relevance to that author [234]. Some researchers prefer citing the most 

recent papers to show they are “up-to-date” in their field. Other authors tend to cite 

authoritative papers because they believe this makes their own paper more 

authoritative or because it is the popular thing to do. In other situations, 

researchers already know what they wish to write but require a reference to back 

up their claim. In this case, they tend to cite the first appropriate paper they find 

that supports the claim, although there may have been more fitting papers to cite. 

Citations may also indicate a “negative” quality assessment. For instance, in 

Chapter 3, we cited several papers that we considered of little significance and 

excluded from the in-depth review. These papers certainly would not be good 

recommendations. This means that even if authors were aware of all relevant 

literature, they will not always select the most relevant literature to cite. 

When incomplete or even biased datasets are used as ground-truth, recommender 

systems are evaluated based on how well they can calculate such an imperfect 

ground-truth. Recommender systems that recommend papers that are not 

contained in the imperfect dataset, but that might be equally relevant, would 
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receive a poor rating. A recommender system might even recommend papers of 

higher relevance than those in the offline dataset, but the evaluation would give 

the algorithm a poor rating. In other words, if the incomplete status quo – that is, a 

document collection compiled by researchers who are not aware of all literature, 

who are restricted by space and time constraints, and who typically do biased 

citing – is used as ground-truth, a recommender system can never perform better 

than the imperfect status quo. 

We consider the imperfection to be a fundamental problem. To us, it seems 

plausible that the imperfection is also reason why offline metrics could not predict 

the effectiveness of citation-based and stereotype recommendations in the online 

evaluations and user study. As long as one cannot identify the situations in which 

the imperfection will affect the results, we propose that inferred ground-truths 

should not be used to evaluate research-paper recommender systems.  
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5.3 Mind-Map-Specific User-Modeling Variables 

In this section, the results of Task 4 are presented. The task was to identify 

variables that affect user modeling based on mind maps, and measure the impact 

of the variables. To accomplish this task, content-based filtering algorithms were 

randomly assembled, and the impact on the user modeling effectiveness was 

measured with click-through rate.  

5.3.1 Mind-Map & Node Selection 

5.3.1.1 Mind-map selection 

When utilizing mind maps for user modeling, one central question is which mind 

maps to analyze, and which parts of the mind maps to analyze. We experimented 

with a few variables to answer this question. 

 
Figure 35: CTR by the number of mind maps to analyze (all users) 

We hypothesized that analyzing all mind maps of a user is not the most effective 

method: If too many, or too old mind maps are analyzed, this could introduce 

noise in the user model. To test this hypothesis, Docear’s recommender system 

randomly used the x most recently modified mind maps, regardless of when they 

were modified. An initial analysis shows a slight tendency that CTR increases, the 

more mind maps are analyzed (Figure 35). When only a user’s most recent mind 

map is utilized, CTR is 4.52% on average. Utilizing eight or nine mind maps 

resulted in the highest CTR (6.82%). However, these results might be misleading 

since the analysis is based on recommendations for all users including those who 

created only few mind maps: for these users it would not be possible to analyze the 

eight or nine most recently created mind maps. Therefore, we did the same 
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analysis for users who created at least eight mind maps (Figure 36). In this 

analysis, no statistically significant difference could be found for the number of 

utilized mind maps. Judging by these numbers, it seems that the number of the 

most recently modified mind maps is not an effective variable to optimize the user 

modeling process. 

 
Figure 36: CTR by number of mind maps to analyze (8+ mind maps) 

5.3.1.2 Node selection 

As an alternative to using the x most recently modified mind maps, Docear 

analyzed the x most recently modified nodes. For example, if x=50, the terms (or 

citations) contained in the 50 most recently modified nodes are used. The intention 

is that users might be working in different sections of several mind maps, and only 

those actively edited sections are relevant for user modeling. The analysis shows 

that the more nodes are used, the higher CTR becomes (Figure 37). While CTR is 

3.66% on average when one to nine nodes are used, CTR increases to 6.60% when 

1,000 and more nodes are used. Interestingly, it is the opposite for citations: the 

more nodes with citations are used, the lower CTR becomes.  

 
Figure 37: CTR by the number of nodes to analyze (all users) 
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However, these results, again, might be misleading since not all users have created 

e.g. thousand nodes. Consequently, the CTR for e.g. one to nine nodes includes 

recommendations for all users, but the CTR for analyzing 1,000 or more nodes 

only considers recommendations to users who created at least 1,000 nodes. 

Therefore, we performed the previous analysis again, but for users who have 

created at least 1,000 nodes (Figure 38). This time, a saturation appears. When the 

50 to 99 most recently created nodes are used, CTR is highest (7.50%). When 

more nodes are analyzed, CTR decreases. We did the same analysis for other user 

groups, and results were always the same – using only the 50 to 99 most recently 

modified nodes led to the highest CTRs on average. With regard to citations, the 

results slightly change. For users with 1,000 or more nodes, using the most recent 

10 to 49 citations is most effective (8.36% vs. 7.32% for using 1 to 9 citations).  

 
Figure 38: CTR by the number of nodes to analyze (1,000+ nodes available) 

Selecting a fix number of nodes might not be the most effective criteria. The most 

recent, for example, 75 nodes could include nodes that were modified some years 

ago. Such nodes would probably not represent a user’s current information needs 

any more. Therefore, Docear’s recommender system randomly used all nodes that 

were modified within the past x days (Figure 39). When the recommender system 

utilized only those nodes that were modified on the current day, CTR was 3.81% 

on average61. When nodes from the last two or three days were utilized, CTR 

increased to 5.52%. CTR was highest, when nodes modified during the past 61 to 

120 days were used (7.72%), and remained high when nodes of the past 121 to 180 

days were used. When nodes were used that were modified more than 180 days 

                                                      

61 The analysis was done only for users being registered since at least 360 days 
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ago, CTR began to decrease. Apparently, the interests of Docear’s users change 

after a few months.  

 
Figure 39: CTR for nodes analyzed in the past x days62 

 
Figure 40: Node modification type 

Another variable we tested was the node modification type (Figure 40). The 

recommender system chose randomly, whether to utilize only nodes that were 

newly created, nodes that were moved, nodes that were edited, or nodes with any 

type of modification (created, edited, or moved). Utilizing moved nodes only, 

resulted in the highest CTR (7.40%) on average, while the other modification 

types achieved CTRs around 5%. We find this interesting, because this result 

                                                      

62 For users being registered since more than 360 days 
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indicates that the evolution of a mind map might be important for user modeling, 

and certain actions (e.g. moving nodes) indicate a high significance of certain 

nodes.  

Most mind-mapping tools allow folding a node, i.e. to hide its children. In Docear, 

this is indicated by a circle at the end of node (Figure 5, p. 12). We hypothesized 

that nodes that are hidden, are currently not relevant for describing the user’s 

information needs. Therefore, Docear’s recommender system randomly chose 

whether to use only visible nodes, invisible nodes, or all nodes. When using visible 

nodes only, CTR increased from 6.00% (analyzing all nodes) to 7.61% (Figure 

41). Using only invisible nodes led to a CTR of 4.89% on average. This indicates 

once more that by selecting a few meaningful nodes, a better effectiveness can be 

achieved than by examining simply all nodes.  

 
Figure 41: Node visibility as selection criteria (at least 100 nodes analyzed) 

5.3.1.3 Node extension 

We hypothesized that the relation among nodes is important. This means the terms 

of a node might be more meaningful when the node’s context is known with 

regard to the neighboring nodes. The most common neighbors are parents, 

children, and siblings. For instance, in Figure 5 (p. 12), the author’s information 

needs seem rather vague when looking only at one node, “Google Scholar indexed 

invisible text”. In combination with the (grand) parent “(Academic) Search Engine 

Spam”, the author’s interests become clearer. Therefore, we experimented with 

extending the original selection of nodes. After the system chose the relevant 

nodes to examine with one of the previously introduced methods, the 

recommender system randomly chose whether to add siblings, parents, or children 

to the original selection. This process is illustrated in Figure 42 where two nodes 
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were originally selected and the direct parent, children, and siblings were selected 

as extension to the original nodes.  

 

Figure 42: Extending the original node selection 

Adding siblings resulted in a CTR of 5.73% compared to 5.10% for not adding 

siblings (Figure 43). Adding parent-nodes decreased CTR to 5.36% compared to 

5.46% for not adding them. Adding children increased CTR from 5.22% to 5.61%. 

Differences are small but significant. In addition, when the recommender system 

combined all factors, i.e. adding siblings and children but ignoring parents, CTR 

was 6.18% on average, which is a significant improvement, compared to not 

extending nodes (4.84%). One might suspect that extending the original node 

selection was only more effective because the extension caused more nodes to be 

used, and the more nodes are used, the higher CTR tends to become. However, 

this suspicion is not correct. For instance, when 100 to 499 nodes were selected, 

and no children or siblings were added, CTR was 5.15% on average. When, 10 to 

50 nodes were selected and after adding children and siblings 100 to 499 nodes 

were used, CTR was 5.45%. This indicates that selecting a few recently modified 

nodes, and extending them with their siblings and children, is more effective than 

selecting simply more nodes based only on the modification date.  

 
Figure 43: Extending the original node selection 

Selected 

Liaisons

On Off On Off On Off

Include Siblings Include Parents
Include
Children

All Off
Bst.

Fctrs.
Cmbnd.

Rntm (Terms) 51 45 49 46 49 46 40 50

Rntm (Citat.) 9 9 9 9 10 9 7 12

CTR (Terms) 5.73% 5.10% 5.36% 5.46% 5.61% 5.22% 4.84% 6.18%

CTR (Citat.) 6.74% 6.47% 6.41% 6.82% 6.27% 6.99% 6.21% 6.80%

0

50

100

0%
2%
4%
6%
8%

R
u

n
ti

m
e 

[s
]

C
TR

Extension method



111 

 

5.3.2 Node Weighting 

Often, user-modeling applications weight features (e.g. terms) that occur in a 

certain document field (e.g. in title) stronger than features occurring in other 

document fields (e.g. the body text). Mind maps have no fields for title, abstract, 

headings, or body text. Instead, mind maps have nodes, which have a certain 

depth, i.e. their distance from the root node. We hypothesized that the depth of a 

node might indicate the importance of the node. For instance, in Figure 5 (p. 12), 

the node “Scopus” has a depth of 2, and we would assume that the term “Scopus” 

describes the user’s interests with a different accuracy than the node “Academic 

Search Engines” that has a depth of 1.  

To test the hypothesis, Docear’s recommender system randomly chose whether to 

weight terms of a node stronger or weaker, depending on its depth. If the nodes 

were to be weighted stronger the deeper they were, the weight of a node (1 by 

default) was multiplied with a) the absolute depth of the node; b) the natural 

logarithm of the depth; c) the logarithm to base 10 of the depth; or d) the square 

root of the depth. If the resulting weight was lower than 1, e.g., for ln (2), then the 

weight was set to 1. If nodes were to receive less weight the deeper they were, 

then the original weight of 1 was multiplied with the reciprocal of the metrics a) – 

d). If the resulting weight was larger than 1, e.g., for ln(2), the weight was set to 1. 

In the following charts, we provide CTR for the mentioned metrics. However, the 

differences among the metrics are not statistically significant. Hence, we 

concentrate on comparing the overall CTR, i.e. the CTR of weighting nodes 

stronger or weaker the deeper they are regardless of the particular metric.  

 
Figure 44: Weighting based on node depth 

Results show that when nodes are weighted stronger the deeper they are in a mind 

map, CTR increases (Figure 44). Weighting them stronger, led to a CTR of 5.61% 

on average, while weighting them weaker led to a CTR of 5.12% on average.  
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We also experimented with other metrics that are based on the number of children, 

the number of siblings, and the number of words contained in a node. Figure 42 

illustrates this. Node A is a leaf node because it has no children. In contrast, node 

B has two children, which in turn have two children each, too. We hypothesized 

that the number of children indicates how important a node is to infer a user’s 

interests. Therefore, Node A would be weighted differently than Node A. 

Similarly, Node C also is a leaf but has more siblings than Node A. Therefore, 

Node C might be weighted differently than Node A.  

 

Figure 45: Weighting based on children and siblings 

Based on our experiments, CTR increases when nodes are weighted stronger the 

more children a node has (Figure 46). Weighting them stronger led to a CTR of 

5.17% on average, while weighting them weaker led to a CTR of 4.97%. 

However, the difference was statistically not significant. Weighting based on the 

number of siblings had a significant effect (Figure 47). Weighting nodes stronger 

the more siblings they have led to a CTR of 5.40%, compared to 5.01% for 

weighting them weaker. Weighting nodes based on the number of terms they 

contained led to no significant differences (Figure 48). 

 
Figure 46: Weighting based on the number of children 
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Figure 47: Weighting based on the number of siblings 

 
Figure 48: Weighting based on the number of terms contained in a node 

After the individual weights are calculated, the weights need to be combined into a 

single node weighting score. We experimented with four different schemes to 

combine the scores. The most effective scheme was using the sum of all individual 

scores (CTR = 6.38%). Using only the maximum score (max), multiplying the 

scores (product) or using the average score (avg) led to CTRs slightly above 5% 

(Figure 49).  

 
Figure 49: Combining the node weights 
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5.3.3 Feature Weighting 

After nodes are weighted, the nodes’ features inherit the weight of the nodes, and 

they are additionally weighted with a randomly chosen weighting scheme. This 

means, if a node has a weight of eight, then all terms (or citations) of that node 

receive a weight of eight, and this weight was multiplied with one of the following 

weighting schemes: plain term or citation frequency (TF-Only), TF-IDF, and a 

novel metric that we call TF-IDuF63. TF-IDuF is similar to TF-IDF but based on 

the inverse document frequency in the user’s document corpus, instead of the 

standard document corpus. Hence, TF-IDuF, weights a term stronger the more 

often it occurs in the user’s mind maps (or nodes) that are currently selected for 

user modeling, but the less mind maps of the user contain this term. The rationale 

is that when users use a term frequently that they did not use frequently before, 

this term is of particular importance. In addition, if users are using terms for a 

longer time, they probably have already received recommendations for that term.  

TF-IDF is commonly found to be more effective than TF-only [238]. Our analysis 

confirms this well-known finding – TF-IDF outperformed TF-only for terms with 

a CTR of 5.10% vs. 4.13% (Figure 50). However, to the best of our knowledge, it 

has not been empirically shown that TD-IDF is superior to TF-only when applied 

to citations, i.e. CC-IDF (cf. Section 3.2.1, p. 36). In Docear’s recommender 

system, CC-IDF led to lower CTRs (5.75%) than TF-only, CC respectively, when 

applied to citations (6.07%).  

 
Figure 50: CTR of different weighting schemes63 

                                                      

63 TF-IDuF was only calculated for terms, not yet for citations.  
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We find this result surprising and can only speculate about the reason. One 

explanation might be the following: The rationale behind IDF for weighting terms 

is that terms occurring in many documents of the corpus (e.g. the, and, he, she, 

etc.), do not describe the content of a documents well. This rational seems 

plausible to us. However, the rationale does not necessarily apply for citations. 

Citations occurring in many documents of the corpus might still describe the citing 

document well, maybe even better than little cited papers. For instance, this thesis 

cites, among others, reference [39] and [320]. Reference [39] is about research-

paper recommender systems and received more than 300 citations according to 

Google Scholar. This means, many papers in the corpus contain a citation to [39]. 

Reference [320] is about news recommendations and received only four citations. 

[39] is certainly more relevant to describe my thesis than [320] and hence, CC-IDF 

would have led to suboptimal results when weighting the two papers. Of course, 

this is only one example, and there might be other examples in which CC-IDF 

were to prefer over TF-only. Further research is necessary to explore this issue.  

 
Figure 51: CTR of different weighting schemes (500+ nodes)63 

Our novel metric TF-IDuF (CTR = 4.88%) was slightly less effective than TF-IDF 

for terms (CTR = 5.10%) but more effective than TF-only (Figure 50). When we 

repeated the analysis for those user-modeling processes that analyzed at least 500 

nodes, TF-IDuF became slightly more effective than TF-IDF (Figure 51). This 

shows that the use of terms within a user’s “personal corpus” may be an important 

measure about a term’s relevancy, in particular when the personal corpus is large. 

Further research is necessary to explore the potential of TF-IDuF. Probably, TF-

IDuF is particularly interesting when there is no access to the global corpus, and 

hence TF-IDF cannot be calculated. A combination of TF-IDF and TF-IDuF might 

also be interesting.  
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5.3.4 User-Model Size 

Just because utilizing e.g. the 50 most recently moved nodes is most effective, 

does not mean that necessarily all features of these nodes need to be stored as user 

model. Therefore, Docear’s recommender system randomly selected to store only 

the x highest weighted features as user model. For user modeling based on at least 

50 nodes, CTR is highest (8.81%) when user models contain the 26 to 50 highest 

weighted terms (Figure 52). User models containing less, or more, terms achieve 

significant lower CTRs. For instance, user models with one to ten terms have a 

CTR of 3.92% on average. User models containing more than 500 terms have a 

CTR of 4.84% on average. Interestingly, CTR for citations continuously decreases 

the more citations a user model contains64. Consequently, a user-model size 

between 26 and 50 seems most sensible for terms, and a user-model size of ten or 

less for citations.  

 
Figure 52: CTR by user-model size (feature weight not stored) 

The previous analysis was based on un-weighted lists of terms and citations, i.e. 

the user model contained only a list of the features without any weight 

information. If the weights were stored in the user model, and used for the 

matching process, the picture changes (Figure 53). In this case, CTR has a peak for 

user models containing between 251 and 500 terms (8.13%). Interestingly, this 

CTR is similar to the maximum CTR for the optimal non-weighted user-model 

size (8.81% for 26 to 50 terms). We find this surprising because we expected 

weighted lists to be more effective than un-weighted lists. The results for weighted 

                                                      

64 Analysis for 500 nodes or more being analyzed. The high CTR for user models with 501 and more citations is 

statistically not significant.  
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citations are also surprising – CTR varies and shows no clear trend. We have no 

explanation for the results and hence see a need for further research65.  

 
Figure 53: CTR by user-model size (feature weight stored) 

5.3.5 Citations vs. Terms 

Based on all delivered recommendations, citation-based recommendations have an 

average CTR of 6.10%, while term-based recommendations have an average CTR 

of 5.07% (Figure 54). Hence, on first glance, it appears that citation-based 

recommendations are more effective than term-based recommendations. On 

second glance, one realizes that citation-based recommendations are only possible 

if users have at least one citation in their mind maps. Consequently, novel users, 

without citations in their mind maps receive only term-based recommendations. 

These users tend to have lower CTRs than users with more comprehensive mind 

maps. In addition, citation-based user modeling often returns less than ten 

recommendation candidates, which might affect CTR as well. Therefore, we made 

a “fair” comparison and compared citation- and term-based recommendations for 

which at least 10 recommendation candidates were returned; the original rank of 

the recommendation candidates was between one and ten; and the users had made 

at least one citation in their mind map. In this comparison, term-based 

recommendations outperform citation-based recommendations with a CTR of 

6.53% vs. 5.25%. 

                                                      

65 We double-checked all data and the source code, and are quite confident that there are no flaws in the user 

modeling process.  
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Figure 54: Citation vs. term-based citations, overall and under “fair” conditions 

5.3.6 Mind maps vs. Other Items 

Our main goal was to build a recommender system that considers the unique 

characteristics of mind maps. However, we were also curious to explore how user 

modeling based on mind maps compares to user modeling based on other items, 

research papers in particular. Therefore, we evaluated seven approaches that 

utilized (a) terms of nodes in the users’ mind maps (b) terms from the titles of the 

users’ PDF files (c) terms from the titles of the user’s citations (d) terms from the 

titles of the PDFs and citations, (e) terms from the nodes of mind maps, and titles 

of citations, f) terms from the nodes of mind maps, and titles of PDFs files g) 

terms from all mentioned sources. 

 
Figure 55: CTR based on the source from which terms were extracted 

The highest CTR (7.14%) was achieved for utilizing terms from the cited paper 

titles (Figure 55). Utilizing terms from the titles of all PDFs that users had linked 

in their mind maps led to a CTR of 5.63% on average. Utilizing terms from the 

mind maps’ nodes led to a CTR of 5.13% on average. The other approaches also 

achieved CTRs around 5% and 6%. We would not conclude that titles of citations 

are generally more effective than nodes in mind maps. The approaches were all 
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rather simple. With appropriate enhancements, all approaches probably could 

perform more effectively (in the next section we show that a mind-map-specific 

user-modeling approach is twice as effective as the simple node approach). In 

addition, cited papers are not commonly available in mind-mapping applications, 

but only in Docear. However, based on the numbers we conclude that mind maps 

are in the same league for user modeling, as are research papers, since the CTRs 

are comparable. The numbers support our hypothesis that developers of mind-

mapping tools should integrate recommender systems in their tools, and that these 

recommender systems will achieve similar performances as recommender systems 

in other domains. 

5.3.7 Additional Observations 

During our research, we made a few observations that do not necessarily relate to 

mind-map-specific user modeling, but that might be interesting for the general 

recommender-system community. 

 
Figure 56: CTR based on the recommendation’s original rank 

To provide greater variety to users, Docear’s recommender system randomly 

chose the ten final recommendations from the top 50 recommendation candidates. 

This method increases variety but decreases CTR on average (Figure 56). Those 
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CTR of 5.78% on average. For lower ranked recommendations, CTR continuously 

decreased down to 4.56% for recommendations that were among the top 41 to 50 

candidates. For citation-based recommendations, the trend was similar.  
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position 1 had the highest CTR on average (6.73%), while recommendations 

shown in the middle of the list had the lowest CTR (4.37% on position 5). For the 

last positions, CTR again increased a little bit (5.31% for position 10). This means, 

just the recommendation rank made a difference in CTR of up to 50% (6.73% vs. 

4.37%). The discovery that the recommendation rank affects CTR is not new, but, 

to the best of our knowledge, it has not been empirically quantified in the domain 

of research-paper recommender systems.  

 
Figure 57: CTR based on the rank at which a recommendation was displayed 

 
Figure 58: CTR based on available recommendation candidates 
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candidates for a particular user model, the CTR tended to be lower as if 1,000 or 
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when Lucene returned less than ten recommendation candidates. While this might 

seem surprising on first glance, there is a plausible explanation. If less than ten 

candidates are returned, then less than ten recommendations can be displayed. 

However, the less recommendations are shown in general, the higher the CTR 

tends to be. For citation-based recommendations, the maximum number of 

recommendation candidates never was above 1,000.  

5.4 Docear’s Mind-Map-Specific User-Modeling Approach 

The so-far results make clear that numerous variables influence the effectiveness 

of mind-map-based user modeling. We combined the optimal values of these 

variables in a single algorithm as follows: The algorithm used the 75 most recently 

moved nodes from the past 90 days that were visible. If less than 75 moved and 

visible nodes were available, then up to 75 most recently modified nodes from the 

past 90 days were used instead. The nodes were extended by their children and 

siblings. Nodes were weighted based on depth and number of siblings (we used 

the ln weighting and summed the individual scores). The terms of these nodes 

were additionally weighted with TF-IDuF (stop-words were removed). The 35 

highest weighted terms were stored in the user model as un-weighed list. This user 

model was used for the matching process with the recommendation candidates.  

Among the baselines, using all terms from all mind maps and from a single mind 

map performed alike in terms of CTR (Figure 59) and ratings (Figure 60). Using 

terms from only one node – the approach that MindMeister applied – resulted in 

the lowest CTR (1.16%) and ratings (1.63). Stereotype recommendations 

performed comparably reasonable with a CTR of 3.08% and a rating of 1.97 on 

average. Overall, CTR of the baselines tends to be lower than in our initial study 

(cf. Appendix B, p. 177). However, since our previous evaluation, we added 

several new variables, and some might have decreased CTR on average. In 

addition, Docear’s Web Spider was not running in the past couple of months. This 

means, no new recommendation candidates were added to the corpus. Hence, 

long-time users probably often received recommendations they had received 

previously, which decreases average CTR (Appendix H, p. 255). The reasonable 

effectiveness of stereotype recommendations might seem surprising, considering 

how rarely used this approach is in the recommendation community. Nevertheless, 

the result is plausible. Most of Docear’s users are researchers and therefore they 

should be interested in books about academic writing, and hence click the 

corresponding recommendations. Even though the ratings are not very high, 

further research about stereotype recommendations might be promising.  
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Figure 59: Docear’s mind-map-specific approach vs. baselines (I) 

Docear’s mind-map-specific user modeling algorithm significantly outperformed 

all baselines and achieved a CTR of 7.20% on average (Figure 59). This is nearly 

twice as high as the best performing baseline and six times as high as 

MindMeister’s approach, the only approach that had been applied in practice thus 

far. User ratings also show a significantly higher effectiveness for Docear’s 

approach (3.23) than for the best performing baseline (2.53)66. Because we 

experimented only with a few variables, and the experiments were of relative basic 

nature, we are convinced that more research could further increase the 

effectiveness.  

 
Figure 60: Docear’s mind-map-specific approach vs. baselines (II) 

 

                                                      

66 Differences are statistically not significant due to a small number of users the ratings are based on.  
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6. Summary and Contributions 

6.1 Overview  

Mind maps are widely neglected by the user modeling and recommender-systems 

community, and applications such as recommender systems are rarely found in 

mind-mapping tools. Given the popularity of recommender systems in other 

domains, we assumed that recommender systems could also benefit the more than 

two million mind-mapping users. Hence, we defined the following research 

objective:  

Develop an effective user-modeling approach based on mind maps 

By pursuing this objective, we expected to obtain a user-modeling approach that is 

more effective than standard user-modeling approaches applied to mind maps. 

Such an approach would enable developers of mind-mapping applications to 

integrate, for instance, recommender systems in their applications for providing 

additional value to their users.  

The research objective let to three research questions and the following answers: 

i. Which existing user-modeling approaches could serve as a basis for 

mind-map-based user modeling? 

Based on a literature survey and research that we conducted, we concluded that 

content-based filtering (CBF) is the most promising recommendation class for the 

application of mind maps. However, from the CBF approaches that we reviewed, 

none seemed particularly promising for the application of mind maps. This was 

primarily due to the neglect of user modeling in most recommendation 

approaches, inadequate evaluations, and sparse information in publications. 

Hence, standard user-modeling approaches, such as utilizing all terms from a mind 

map, seemed to be the most plausible starting position for mind-map-based user 

modeling. As our initial study showed, such approaches achieved a decent 

effectiveness in terms of click-through rate.  

ii. Could the effectiveness of the existing approaches be increased by 

adjusting them to the special characteristics of mind maps? 

We identified a number of mind-map-specific variables that potentially would 

affect user modeling. We evaluated these variables and combined them into a 
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single mind-map-specific user-modeling approach that was around twice as 

effective as the best baseline. Hence, the answer to the question is that the 

effectiveness of user modeling can increase significantly when the user-modeling 

process is adjusted to the special characteristics of mind maps. 

iii. How should the effectiveness of user-modeling approaches be 

measured? 

A key prerequisite for our research was the use of adequate evaluation methods 

to measure the effectiveness of user-modeling and recommendation 

approaches. Our research shows that both user studies and online evaluations 

generally are adequate methods, at least in our scenario. In online evaluations, 

click-through rate seem most adequate since CTR correlates best with user 

rating, and CTR is directly relevant for operators that run pay-per-click 

schemes. Offline evaluations provided less meaningful results, and at least in 

the field of research-paper recommender systems, they suffer from some 

inherent flaws, which is why we concluded not to use them. 

The answers to the three research questions were achieved by pursuing five tasks 

that are summarized in the subsequent sections, along with the contributions that 

were made while pursuing the tasks. 

6.2 Task 1: Survey Related Work 

To find promising recommendation approaches (question i) and adequate 

evaluation methods (question iii), we reviewed 217 research articles in the field of 

research-paper recommender systems and articles about recommender-systems 

evaluation. We used all 217 articles for quantitative analyses regarding citation 

counts and other bibliographic metrics. For an in-depth analysis, 90 articles were 

excluded because we considered them of little significance (due to serious English 

errors, or non-original ideas and inadequate evaluations), or because they were 

published too late to be included in the in-depth review.  

The survey leads to three contributions. 

6.2.1 Contribution 1: Overview of Research-Paper Recommender Systems 

The first contribution is an overview of the existing approaches in the field of 

research-paper recommender systems (cf. Chapter 3, p. 29 and Appendix F, p. 
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217). This overview aids researchers and practitioners in gaining an understanding 

of the research field and the recommendation approaches being applied. 

We found that content-based filtering (CBF) is the predominant recommendation 

class in the field of research-paper recommender systems. Of 70 reviewed 

approaches, 34 used CBF (49%). From these approaches, the majority utilized 

plain terms contained in the documents. Some used n-grams, or topics based on 

LDA. A few approaches also utilized non-textual features such as citations or 

authors. The most popular model to store item representations was the Vector 

Space Model.  

Only nine approaches (13%) applied collaborative filtering, and none of them used 

explicit ratings. Implicit ratings were inferred from the number of pages the users 

read, users’ interaction with the papers (downloads, edits, views, etc.), and 

citations. The main problem of collaborative filtering for research papers seems to 

be sparsity. André Vellino compared the available (implicit) ratings on Mendeley 

(research papers) and Netflix (movies), and found that the number of ratings on 

Netflix differs from the number on Mendeley by a magnitude of three. 

Six of the reviewed approaches (9%) were co-occurrence recommendations. Three 

of them analyzed how often papers were co-viewed during a browsing session. In 

that approach, whenever users browsed a paper, the system recommended those 

papers that had frequently been co-viewed with the browsed paper in the past. 

Another approach used co-citations to calculate document relatedness. The higher 

the proximity of two references within a paper, the more related they are assumed 

to be. Pohl et al. compared the effectiveness of co-citations and co-downloads and 

found that co-downloads are only more effective than co-citations in the first two 

years after a paper’s publication. 

Eleven recommendation approaches built graphs to generate recommendations 

(16%). Such graphs typically included papers that were connected via citations. 

Some graphs included authors, users/customers, venues, genes and proteins, and 

publishing years of the papers. Lao et al. even included terms from the papers’ 

titles in the graph. Depending on the entities in the graph, connections included 

citations, purchases, “published in” relationships, authorship, relatedness between 

genes, and occurrences of genes in papers. Some authors connected the entities 

based on non-inherent relations. For instance, Huang et al. and Woodruff et al. 

calculated text similarities between items and used the text similarity to connect 

papers in the graph. Other connections were based on attribute similarity, 

bibliographic coupling, co-citation strength, and demographic similarity. 
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6.2.2 Contribution 2: Identification of Several Shortcomings in Research-

Paper Recommender-Systems Research 

The second contribution of the survey is an analysis of the research-paper 

recommender field in general and its major shortcomings.  

One shortcoming relates to the evaluations. Of the reviewed approaches, 21% 

were not evaluated at all. Of the remaining approaches, 19% were not evaluated 

against a baseline, and most of the other approaches were compared only to simple 

baselines. The evaluations were mostly conducted with offline evaluations based 

on inferred ground-truths, which are subject to various criticisms. In addition, the 

offline evaluations were often based on datasets pruned in ways that we would 

consider inadequate67. The majority of the user studies (58%) had fewer than 16 

participants, which also raises doubts of the significance of these evaluations. Only 

7% of the approaches were evaluated with online evaluations in real recommender 

systems with real users.  

Another shortcoming was related to too little information provided by the authors. 

The sparsity of information makes a re-implementation of the approaches difficult, 

if not impossible. For instance, most authors did not report on the text fields they 

utilized, and which weighting schemes were used. 

In addition, much of the research was done in “the ivory tower”: research results 

often are neither transferred into practice, nor considered by peers. Despite the 

large number of research articles, there are only a handful of active recommender 

systems, and most of them apply simple recommendation approaches that are not 

based on any recent research results. As such, the extensive research that has been 

conducted in the past 16 years has apparently had only a minor impact on the 

practice of research-paper recommender systems in the real world. Additionally, 

several of the active recommender systems do not engage in the research 

community and seem reluctant to publish information on their systems.  

Many researchers also seem to be unaware of developments in related research 

domains such as scientometrics or the reviewer-assignment problem, and the 

                                                      

67 For instance, Pennock et al. removed all documents with fewer than 15 implicit ratings from the corpus. 

Therefore, 1,575 papers remained from the original 270,000 (0.58%). Results based on such datasets do not allow 

drawing reliable conclusions how the approaches might perform in real-world recommender systems 
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major co-author groups in the domain of research-paper recommender systems 

seem not to cooperate with each other.  

The majority of authors took no note of the fact that user satisfaction depends not 

only on accuracy, but also on factors such as privacy, data security, diversity, 

serendipity, labeling, and presentation. The operator perspective was also widely 

neglected. Information about runtime was provided for only 11% of the 

approaches. Complexity was covered by very few authors, and the actual costs of 

running a recommender system were only reported in a single article. We also 

noted that too many authors neglected the user-modeling process: 79% of the 

approaches let their users provide keywords, text snippets, or a single input paper 

to represent their information needs. Only a few approaches automatically inferred 

information from the users’ authored, tagged, or otherwise-connected papers. 

The analysis made clear that one cannot currently identify promising research-

paper recommendation approaches, neither in general nor for the purpose mind-

map-based user modeling. This means that we could not completely answer 

research question i. Hence, we decided to use standard content-based filtering 

approaches as the basis for our research instead of any of the reviewed approaches.  

6.2.3 Contribution 3: Showing the Need for More Research on 

Recommender-Systems Evaluation 

The survey revealed that there is uncertainty in the community about how to 

evaluate recommender systems. The most common applied evaluation method is 

offline evaluations, but this method is subject to criticism. However, user studies 

and online evaluations are also not without criticism. Hence, the survey showed 

the need for a more thorough analysis of the adequacy of evaluation methods and 

metrics for both Docear's particular scenario and in general. 

6.3 Task 2: Develop a Recommender System for Docear 

Since existing recommendation datasets and architectures are not suitable for 

researching mind-map-based user modeling, we decided to develop a research-

paper recommender system for Docear. This recommender system was the 

foundation of our research and answering the second and third research questions. 

In addition, the development of the recommender system led to two further 

contributions, namely the architecture and the datasets that we published.  
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6.3.1 Contribution 4: Docear's Recommender-System Architecture 

Docear’s recommender-system architecture is unique in the domain of research-

paper recommendations and mind-map-based user modeling. Most of the 

previously published architectures are rather brief, and architectures such as bX 

and BibTip focus on co-occurrence based recommendations. These approaches are 

primarily relevant for recommender systems with many users. Docear’s 

architecture is comprehensive, explaining the individual components, the required 

hardware, and the integrated software libraries. Hence, the architecture should 

provide a good introduction for new researchers and developers on how to build a 

research-paper recommender system (based on mind maps). Due to the focus on 

content-based filtering, the architecture is also relevant for building recommender 

systems for applications with rather few users.  

6.3.2 Contribution 5: Docear's Datasets 

The datasets are also unique. While the research-paper dataset is rather small, and 

the metadata is probably of rather low quality, the dataset contains 1.8 million 

URLs to freely accessible full-text articles from various research fields and 

languages, and the dataset contains information where citations in a paper occur. 

The mind-map dataset is smaller than the dataset, e.g. of Mendeley, but it was not 

pruned, and hence allows for analyses for users with less than 20 papers in their 

collections. The dataset also contains information on how often a paper appears in 

a mind map. This information could be used to infer implicit ratings that are not 

only binary (linked/not linked) but also to weight the implicit rating. The datasets 

about Docear’s users and recommendations contain extensive information, 

including user demographics, the number of received and clicked 

recommendations, and specifics about the algorithms with which 

recommendations were created. This data allows for analyses that go beyond those 

that we already performed, and should provide a rich source of information for 

researchers who are interested in recommender systems or for the use of reference 

managers. 

6.4 Task 3: Identify Adequate Evaluation Methods and Metrics 

Most recommender systems are evaluated with offline evaluations, although 

offline evaluations are subject to strong criticism. We did not want to take the risk 

of measuring the effectiveness of our research with inappropriate methods. 

Therefore, we analyzed and discussed the adequacy of offline evaluations and its 

two alternatives, namely user studies and online evaluations. The discussion was 
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based on the comparison of results from three different evaluation methods. As 

part of an online evaluation, Docear displayed 45,208 recommendation sets with 

430,893 recommendations to 4,700 users from March 2013 to August 2014. In a 

user study, 379 users rated 903 recommendation sets with 8,010 recommendations, 

and in an offline evaluation, 118,291 recommendation sets were generated and 

analyzed for their accuracy. To the best of our knowledge, we are first in the field 

of recommender systems to compare the three evaluation methods and various 

metrics, and to provide a detailed discussion on the appropriateness of the 

evaluations methods, metrics, and ground-truths. The research led to two 

contributions.  

6.4.1 Contribution 6: Showing the Inadequacy of Offline Evaluations 

One contribution was the confirmation that offline evaluations based on inferred 

ground-truths only sometimes predict recommender effectiveness in online 

evaluations and user studies. For instance, based on our offline evaluation, the 

stereotype approach would have never been considered a worthwhile option for 

further evaluation. In practice however, stereotype recommendations received 

reasonable ratings, click-through rates and link-through rates that were not much 

lower than for the other approaches. Similarly, the offline evaluation indicated that 

term-based CBF was – depending on the metric – around five to fifteen times 

more effective than citation-based CBF. Based on these numbers, citation-based 

CBF would have never been considered a promising approach. In the online 

evaluation and user study, however, citation-based CBF was only slightly less 

effective than term-based CBF, and certainly an interesting approach.  

To assess the adequacy of offline evaluations, we concluded that three questions 

needed to be answered: 

1. Can we identify scenarios where offline evaluations will have 

predictive power?  

If the community could determine which factors affect the predictive power of 

offline evaluations, offline evaluations could be applied only in scenarios where 

the factors are not present. However, we assume that it will not be possible to 

determine such scenarios. Hence, we conclude that offline evaluations, based on 

inferred ground truths, should be abandoned unless their results are shown to have 

inherent value.  
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2. Do results of offline evaluations have some inherent value?  

Results of offline evaluations might have inherent value that could make offline 

evaluations a worthwhile evaluation method, even if results do not correlate with 

results from online evaluations and user studies. Such inherent value might exist in 

a student-teacher scenario, when those compiling a ground-truth know what is 

relevant better than the users receiving recommendations. A student-teacher 

scenario might occur, in particular, for offline evaluations based on expert-ground-

truths, e.g. datasets compiled by experts in their field. However, expert ground-

truths suffer from the problem of overspecialization and we doubt that there will 

ever be an appropriate expert-dataset to comprehensively evaluate (research-

paper) recommender systems for different research fields and groups of users such 

as undergraduates, postgraduates, doctoral students, professors, and foreign 

students. Inferred ground-truths, i.e. datasets, inferred e.g. from citations or users’ 

personal document collections, do not suffer from overspecialization. Hence, 

theoretically, inferred ground-truths could have inherent value but they suffer from 

a fundamental problem. 

3. Are offline evaluations generally flawed?  

We argue that inferred ground-truths are generally flawed, at least in the domain 

of research-paper recommender systems. Since researchers do not have perfect 

knowledge of their domains, the datasets are incomplete. If datasets are based on 

citations, the datasets additionally suffer from citation bias that makes the datasets 

biased. Consequently, evaluations based on inferred ground-truths only assess how 

accurately a recommendation approach recommends the imperfect ground-truths. 

Such an assessment is not useful. We conclude that offline evaluations based on 

inferred ground-truths should probably not be used for evaluating (research-paper) 

recommender systems.  

6.4.2 Contribution 7: Showing the Adequacy of Online Evaluations and User 

Studies 

Another contribution was to show that ratings in user studies strongly correlated 

with online-evaluation metrics, particularly with CTR. However, in some 

situations ratings and CTR led to different results. For instance, CTR and ratings 

led to different results when comparing the effect of labels and the trigger to 

generate recommendations. When analyzing things such as user-model size, the 

number of nodes to utilize, and stop-word removal, CTR and ratings strongly 

correlated. Apparently, a discrepancy between CTR and ratings is more likely for 
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measuring the effect of factors that do not directly relate to the recommendation 

algorithm but to human factors. Therefore, we conclude that both online 

evaluations and user studies are equally well suited for evaluating recommender 

systems. Ideally, both methods should be used, but also applying only one of the 

two methods should be considered good practice.  

Regarding metrics in online evaluations, there are some noteworthy differences. 

Annotation-through rate (ATR) and citation-through rate (CiTR) have the 

advantage of being based on thorough assessments of the recommendations. 

However, they require more users and delivered recommendations to receive 

statistically significant results compared to click-through rate (CTR) or link-

through rate (LTR). Consequently, applying ATR and CiTR is only feasible in 

large-scale recommender systems. In addition, ATR and CiTR predicted user 

satisfaction for stereotype recommendations incorrectly. As such, at least for the 

scenario of Docear, CTR seems most appropriate. For other scenarios, a thorough 

assessment of the appropriateness of metrics is needed for each online evaluation. 

Ideally, multiple metrics would be used. 

6.5 Task 4: Identify Mind-Map-Specific User-Modeling 

Variables 

We experimented in Docear's recommender system with several variables that 

were randomly assembled to create user models. For instance, the recommender 

system randomly chose whether to store, for example, the 10, 50, 100, or 1000 

highest weighted terms or citations as a user model. Experimenting with the 

variables led to the following contribution.  

6.5.1 Contribution 8: Identification and Evaluation of Mind-Map-Specific 

Variables 

We showed that several variables affect the effectiveness of user modeling based 

on mind maps. Based on our research, the following variables have an effect: a) 

the number of analyzed nodes. It seems that the terms of the most recently 

modified 50 to 99 nodes are sufficient to describe the users’ information needs. 

Using more, or fewer, nodes decreased the average CTR. b) Time restrictions were 

important. It seems that utilizing nodes that were created more than four months 

ago decreased CTR. c) CTR increased when only nodes were used that were 

recently moved by a user, instead of using nodes that were created or edited. d) 

Using only nodes that were visible in the mind map also increased effectiveness 
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compared to using both visible and invisible nodes. e) Extending the originally 

selected nodes by adding siblings and children increased the average CTR slightly, 

but statistically significantly. This indicates that the full meaning of nodes 

becomes only clear when their neighbor nodes are considered. f) We also found 

that weighting nodes and their terms based on node depth and the number of 

siblings, increased CTR. The deeper a node, and the more siblings it has, the more 

relevant its terms to describe the users’ information needs. The separate weights 

should be combined by their sum. g) The final user model should contain the 

highest weighted 26 to 50 terms if the user model is stored as un-weighted list. If 

weights are stored, it seems that larger user models are sensible. However, more 

research is needed to clarify this.  

6.6 Task 5: Develop a Mind-Map-Specific User-Modeling 

Approach 

Our research goal was to develop a mind-map-specific user-modeling approach. 

Therefore, we combined the identified variables in a single algorithm and 

compared this algorithm against several standard user-modeling approaches. The 

experiments led to three contributions.  

6.6.1 Contribution 9: Evaluation of Standard User-Modeling Approaches 

Applied to Mind Maps 

We showed that standard user-modeling approaches could be reasonably effective 

when applied to mind maps. However, the effectiveness varied depending on 

which standard approach was used. When user models were based on all terms of 

users’ mind maps, the click-through rate (CTR) was around 4%68. When only 

terms from the most recently modified node were used, CTR was 1.16%. These 

results led us to conclude that user modeling based on mind maps is not trivial, 

and minor differences in the approaches lead to significant differences in 

effectiveness.  

                                                      

68 CTR of the standard approaches was lower in the final evaluation than in our initial study (6%). See section 5.4 

for details and an explanation.  
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6.6.2 Contribution 10: A Mind-Map-Specific User-Modeling Approach 

When the variables were combined in their apparently favorable way, this mind-

map-specific user-modeling approach outperformed standard user-modeling 

approaches applied to mind maps by a factor of nearly two (CTR of 7.20% vs. 

3.92%). Compared to the approach that was applied in practice by MindMeister 

(using only the last modified node), our approach increased effectiveness by a 

factor of six (CTR of 7.20% vs. 1.16%). The user study confirmed the results of 

the online evaluation: the mind-map-specific user-modeling approach was 

significantly more effective than the baselines (rating of 3.23 vs. 2.53).  

6.6.3 Contribution 11: Demonstrating the Potential of Mind Maps as Source 

for User Modeling  

We compared the effectiveness of user modeling based on mind maps with the 

effectiveness of user modeling based on the user's PDFs and citations. We found 

that user modeling based on the citations' titles was most effective (CTR = 7.14%), 

while user modeling based on the mind maps had an average CTR of 5.13%. On 

one hand, this shows that for the particular scenario of Docear, it might be more 

sensible to utilize users' citations instead of mind maps, or maybe to combine 

them. However, most mind-mapping applications do not have access to users' 

PDFs or citations. Therefore, even though standard user modeling based on mind 

maps might be slightly less effective than standard user modeling based on other 

items, the results show that the effectiveness is in the same league. Hence, we see 

no reason why developers of mind-mapping applications should not integrate 

recommender systems in their applications – particularly because a mind-map-

specific user modeling approach can further increase effectiveness. Consequently, 

we would expect that recommender systems in mind-mapping applications would 

lead to benefits similar to the benefits of recommender systems in other domains. 

6.7 Further Contributions 

As part of our research, we made the following further contributions.  

We introduced TF-IDuF, a weighting scheme that is equally effective as TF-IDF, 

and that might be combined with TF-IDF (cf. Section 5.3.3, p. 114). In addition, 

we were first who empirically compared CC-IDF, i.e. TF-IDF applied to citations, 

with plain citation frequency (cf. Section 5.3.3, p. 114). The results indicate that 

CC-IDF might be less effective than a simple citation-count measure. However, 

more research is needed to clarify this. In the domain of research-paper 
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recommender systems, the finding that a user-model size should be between 26 

and 50 terms is also novel (cf. Section 5.3.4, p. 116). The finding that researchers’ 

interests shift after about four months might also prove useful for other research-

paper recommender systems (cf. Section 5.3.1.2, p. 106). To the best of our 

knowledge, it has also not been shown that the recommendation rank can affect 

CTR by up to 50% in the field of research-paper recommendations (cf. Section 

5.3.5, p. 117). 

As part of recommender-system development, we also developed SciPlore Xtract 

(cf. Appendix G.1, p. 245), and its successor Docear’s PDF Inspector (cf. 

Appendix G.2, p. 249). Both tools extract titles from academic PDF files by 

applying a simple heuristic: the largest text on the first page of a PDF is assumed 

the title. This simple heuristic achieves accuracy of around 70% and outperforms 

machine-learning-based tools like ParsCit in both run-time and accuracy. Docear’s 

PDF Inspector was released under the free open source license GPL 2+ at 

http://www.docear.org, written in JAVA, and runs on any major operating system. 

The dataset for its evaluation is also publicly available at http://labs.docear.org.  

We conducted an exploratory study of 19,379 mind maps created by 11,179 users 

from the mind mapping applications Docear and MindMeister (cf. Appendix C, p. 

191). The objective was to find out how mind maps are structured, what 

information they contain, and to identify potential information-retrieval 

applications that could utilize mind maps. The results include the discovery that a 

typical mind map is rather small, with 31 nodes on average (median), whereas 

each node usually contains between one to three words. The number of hyperlinks 

tends to be rather low but depends upon the mind mapping application. Most mind 

maps are edited only over one (60.76%) or two days (18.41%). A typical user 

creates around 2.7 mind maps (mean) a year. However, there are exceptions, 

which create a long tail. One user created 243 mind maps, the largest mind map 

contained 52,182 nodes, one node contained 7,497 words, and one mind map was 

edited on 142 days. 

The analysis of the mind maps led to the preliminary study that created eight ideas 

about how mind maps could be utilized by information retrieval applications (cf. 

Appendix B, p. 177). We evaluated the feasibility of the eight ideas, based on 

estimates of the number of available mind maps, an analysis of the content of mind 

maps, and an evaluation of the users’ acceptance of the ideas. We concluded that 

user modelling is the most promising application with respect to mind maps, 

which eventually led to the development of our mind-map-specific user-modeling 

approach.  

http://www.docear.org/
http://labs.docear.org/
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Finally, to enhance Docear’s recommender system, and to show that non-accuracy 

factors have a significant impact on recommender effectiveness (cf. 3.3.2, p. 42), 

we evaluated the impact of labeling, demographics, and persistence on the 

effectiveness of recommender systems.  

With respect to labels, we showed that organic recommendations are preferable to 

commercial recommendations, even when they point to the same freely 

downloadable research papers (cf. Appendix J, p. 267). Simply the fact that users 

perceive recommendations as commercial decreased their willingness to click 

them. We further showed that the exact labeling of recommendations matters. For 

instance, recommendations labeled as “advertisements” performed worse than 

those labeled as “sponsored” did. Similarly, recommendations labeled as “Free 

Research Papers” performed better than those labeled as “Research Papers” did.  

We also analyzed how click-through rates vary between research-paper 

recommendations previously shown to the same users and recommendations 

shown for the very first time. Our research indicates that recommendations should 

only be given once. Click-through rates for “fresh,” i.e. previously unknown 

recommendations, are twice as high as for known recommendations. However, 

results also show that some users are “oblivious.” Users frequently clicked on 

recommendations they already knew. In one case, the same recommendation was 

shown six times to the same user and the user clicked it each time. Overall, around 

50% of clicks on re-shown recommendations were such “oblivious-clicks.” 

We further showed the importance of considering demographics and other user 

characteristics when evaluating (research-paper) recommender systems (cf. 

Appendix H, p. 255). We analyzed 37,572 recommendations delivered to 1,028 

users and found that older users clicked more often on recommendations than 

younger ones. For instance, 20-24 years old users achieved click-through rates 

(CTR) of 2.73% on average while CTR for users between 50 and 54 years was 

9.26%. Gender only had a marginal impact (CTR males 6.88%; females 6.67%) 

but other user characteristics such as whether a user was registered (CTR: 6.95%) 

or not (4.97%) had a strong impact. Due to the results, we argue that research 

articles on recommender systems should report detailed data on their users to 

make results better comparable (to learn about the demographics of Docear’s 

users, please see Appendix H, p. 255). 
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7. Outlook 

Our literature review revealed several shortcomings in current research-paper 

recommender-systems research. To eliminate these shortcomings, we consider it 

crucial that the community discusses and develops frameworks and best-practice 

guidelines for research-paper recommender-systems evaluation. This should 

include an analysis and discussion of how suitable offline evaluations are, to what 

extent datasets should be pruned, the minimum number of participants in user 

studies, and which factors influence the outcome of evaluations (e.g. user 

demographics). Ideally, a set of reference approaches that could be used as 

baselines would be implemented. In addition, more details on implementation are 

needed, based on a discussion of the information needed in research articles. It is 

also crucial to discover why apparently minor differences in algorithms, datasets, 

evaluations, etc. lead to major variations in evaluation results. Until the reasons for 

these variations are found, scholars cannot rely on existing research results 

because it is unclear whether the results can be generalized to any new 

recommendation scenario.  

A step towards using the full potential behind research-paper recommender 

systems could be to establish a platform for researchers to publish and 

communicate, such as appropriate conferences or workshops focusing solely on 

research-paper recommender systems. An open-source recommender framework 

containing the most promising approaches could help bring the research results 

into practice. Such a framework would also help new researchers in the field 

access a number of baselines with which they could compare their own 

approaches. A framework could either be built from scratch or based on existing 

frameworks such as MyMediaLite69, LensKit70, Mahout71, Duine72, RecLab Core73, 

easyrec74, or Recommender10175. The community would probably also benefit 

from considering research results from related disciplines. In particular, research 

about user modeling and scientometrics seems highly promising to us, as well as 

research from the general recommender-systems community about non-accuracy 

aspects. 

                                                      

69 http://www.mymedialite.net/ 
70 http://lenskit.grouplens.org/ 
71 http://mahout.apache.org/ 
72 http://www.duineframework.org/ 
73 http://code.richrelevance.com/reclab-core/ 
74 http://easyrec.org/ 
75 http://ls13-www.cs.uni-dortmund.de/homepage/recommender101/index.shtml 
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Our comparison of the different evaluation methods showed offline evaluations to 

be probably inadequate for evaluating research-paper recommender systems. 

However, the offline dataset by Docear might not be considered an optimal dataset 

due to the large number of novice users. A repetition of our analysis on other 

datasets, with more advanced users might lead to more favorable results for offline 

evaluations (nevertheless, our criticism about the imperfection of inferred ground-

truths remains). Future research should also analyze the extent to which the 

limitations of offline datasets for research-paper recommender systems apply to 

other domains. We also conclude that the differences of CTR, LTR, ATR, and 

CiTR need more research to find out when which metrics are most appropriate. 

Finally, offline evaluations based on explicit ground-truths have been neglected in 

our analysis since they are not used in the domain of research-paper recommender 

systems, and we are not familiar with their use. We know that such ground-truths 

are widely used in other recommender domains (e.g. movies), and propose that a 

thorough analysis and discussion of explicit ground-truths is highly needed. 

Our research on mind-map-specific user modeling showed that several variables 

affect the user-modeling effectiveness. So far, the values for the variables are only 

rough suggestions. For instance, our finding that the optimal user-model size is 

between 26 and 50 terms is still rather vague. Hence, more research is required to 

specify the optimal values of the variables. There are also more potential variables 

that we have not yet analyzed but that might be promising. For instance, the 

evolution of mind maps over time might enhance the effectiveness of mind-map-

specific user modeling. We could imagine that weighting nodes by the intensity of 

use (e.g. how often a node was edited, opened, or moved) might provide valuable 

information. We also advocate research on the differences of content and the 

structure of mind maps created for different purposes, such as brainstorming or 

literature management. This might provide valuable insights on the characteristics 

of mind maps. More research is also needed to explore dependencies among the 

variables. This requires more advanced statistical analysis of the variables. This, 

however, requires research in large-scale recommender systems with significantly 

more users than Docear has. It should also be noted that our research was based 

only on Docear, which is a unique mind-mapping software tool, because it focuses 

on researchers. Additional research with other mind-mapping tools seems 

desirable. This is particularly true because most mind-mapping tools focus on 

certain groups of users, and it would be interesting to explore whether there is one 

mind-map-specific user-modeling approach that suits all mind-mapping 

applications, or whether each application needs to apply a different approach. 

Finally, most of our results regarding citations were statistically not significant. It 

would also be interesting to research in more detail how citations, or hyperlinks, 
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could be exploited to enhance user modeling, or realize some of our other ideas 

how mind maps could benefit information-retrieval applications.  

Overall, the results of our research reinforced our astonishment that mind maps are 

being disregarded by the user-modeling and recommender-system community. 

Our research showed the potential of mind-map-specific user modeling, and we 

hope that the results initiate a discussion that encourages other researchers to do 

research in this field. Our results should also help practitioners to implement a 

decently effective user-modeling approach. We hope this encourages developers 

of mind-mapping tools to integrate recommender systems in their software, which 

would create additional value for the millions of mind-mapping users.  
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B Preliminary Study76 

B.1 Introduction  

Information retrieval (IR) applications utilize many items beyond the items’ 

original purpose. For instance, emails are intended as a means of communication, 

but Google utilizes them for generating user profiles and displaying personalized 

advertisement [126]; social tags can help to organize private webpage collections, 

but search engines utilize them for indexing websites [416]; research articles are 

meant to publish research results, but they, or more precisely their references, are 

utilized to analyze the impact of researchers and institutions [165]. 

We propose that mind-maps are an equally valuable source for information 

retrieval as are social tags, emails, research articles, etc. Consequently, our 

research objective was to identify, how mind-maps could be used to empower IR 

applications. To achieve our objective, we 1) analyzed the extent to which mind-

mapping is used, to decide if mind-map based IR is a field worth researching, 2) 

brainstormed how mind-maps might be utilized by IR applications, 3) analyzed the 

feasibility of the ideas, and 4) implemented a prototype of the most promising 

idea, which – to anticipate the result – is a recommender system that creates user 

models based on mind-maps. All estimates are based on data collected from our 

own mind-mapping software Docear [18, 29], Google Trends and the mind-

mapping tools’ websites. 

We hope to stimulate a discussion that encourages IR and user modelling 

researchers to further analyze the potential of mind-maps. We believe that 

researchers will find this new research field rewarding, and the results will enable 

developers of mind-mapping tools to devise novel services for their millions of 

users.  

                                                      

76 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Bela Gip. “Utilizing 

Mind-Maps for Information Retrieval and User Modelling.” In Proceedings of the 22nd Conference on User 

Modelling, Adaption, and Personalization (UMAP), edited by Vania Dimitrova, Tsvi Kuflik, David Chin, 

Francesco Ricci, Peter Dolog, and Geert-Jan Houben, 8538:301–313. Lecture Notes in Computer Science. 

Springer, 2014. 
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Figure 61: Mind-map example (draft of this chapter) 

B.2 Related Work 

Mind-maps are typically used to develop ideas and organize information. As such, 

they are often used for tasks including brainstorming, project management, and 

document drafting. Figure 61 shows an example of a mind-map, created with our 

mind-mapping software Docear (http://docear.org) [18]. We created the mind-

map to represent a draft of this chapter. The root node represents the title. From 

the root node, child nodes branch to represent each chapter, additional child nodes 

branch off for each paragraph, sentence and reference. We also added a list of 

relevant conferences, to which we planned to submit the paper. Red arrows 

indicate a link to a website. A PDF icon indicates a link to a PDF file on the hard 

drive. A “circle” on a node indicates that the node has child nodes that are 

currently hidden. 

There has been plenty of research showing the effectiveness of mind-mapping as a 

learning tool [277]; creating mind-maps automatically from full-text streams [47]; 

and evaluating whether paper-based or electronic mind-mapping is more effective 

[236]. To the best of our knowledge, mind-maps have not been researched with 

regard to information retrieval or user modelling. However, there are two types of 

information retrieval applications, which utilized mind-maps in practice.  

The first type of application is a search engine for mind-maps. Several mind-

mapping tools, for instance XMind and MindMeister, allow their users to publish 

their mind-maps in so called “mind-map galleries”. These galleries are similar to 

photo galleries. They show thumbnails of mind-maps that users uploaded to the 

gallery. Visitors of the galleries may search for mind-maps containing certain 

keywords, and download the corresponding mind-maps. According to 

http://docear.org/
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MindMeister, around 10% of mind-maps being created by their users are published 

in the galleries77. The other mind-maps remain private.  

 
Figure 62: Personalized advertisement in MindMeister 

The second type of application is a user modelling system. Only two companies – 

MindMeister and Mindomo – implemented such a system to generate user models 

and display personalized advertisement. MindMeister extracted the terms of the 

node that a user last edited or created – typically, a node contains two or three 

terms [23]. These terms were sent to Amazon’s Web Service as search query. 

Amazon returned book recommendations matching the search query, which 

MindMeister displayed in a window besides the mind-map (Figure 62). Mindomo 

had a similar concept, only that Google AdSense instead of Amazon was used. 

Meanwhile, both companies abandoned personalized advertisement, though they 

still offer and actively maintain their mind-mapping tools. In an email, Mindomo 

said that “people were not really interested” in the advertisement1.  

B.3 Popularity of Mind-Mapping  

Some reviewers of previous papers were skeptical whether there is enough interest 

in mind-mapping to justify the effort for researching the potential of IR 

applications utilizing mind-maps. We believe this skepticism to be unfounded, 

because, as shown in the next paragraphs, there is a significant number of mind-

mapping tools and users who could benefit from the research.  

The popularity of mind-mapping, based on search volume, is similar to the 

popularity of e.g. note taking, file management, or crowdsourcing, and 

significantly higher than for reference management, user modelling, recommender 

systems, or information retrieval (Figure 63). The website Mind-Mapping.org lists 

142 mind-mapping tools being actively maintained, although some tools offer 

                                                      

77 Email from MindMeister’s CEO Michael Hollauf, June 28, 2011. Permission for publication was granted. 
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mind-mapping only as secondary feature in addition to other visualization 

techniques, such as concept maps or Gantt charts. When discontinued tools are 

included in the count, there are 207 tools. Of the ‘pure’ mind-mapping tools, i.e. 

those that focus on mind-mapping functionality, XMind is the most popular tool, 

based on search volume (25%) (Figure 64)78. Other popular tools are FreeMind 

(23%), MindManager (13%), and MindMeister (8%). The search volume for 

XMind is in the same league as search volume for the Dropbox alternative 

ownCloud, the reference manager Zotero, or the Blog TechCrunch, and the 

volume is significantly higher than for academic conferences such as UMAP, 

SIGIR, or RecSys (Figure 65).  

 
Figure 63: Search volume for selected search terms 

 
Figure 64: Search volume for mind-mapping tools 

According to the tools’ websites, XMind has more than 1 million users, Bubbl.us 

more than 1.5 million, MindManager more than 2 million, and MindMeister more 

                                                      

78 All numbers relating to search volume are based on Google Trends http://www.google.com/trends/. Search 

volume is calculated relatively by Google, as such there are no numbers to display on the y-axis. 

http://www.google.com/trends/
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than 2.5 million users. In sum, this makes 7 Million users for four tools that 

accumulate 52% of the search volume (Figure 64). Interpolating from the search 

volume, we can estimate that the remaining tools (48% of the search volume) must 

have around 6.5 million users. This results in a total of around 13.5 million mind-

map users. To us, it seems likely that these numbers also include inactive users. 

For our own mind-mapping software Docear, 10 to 20% of the users who 

registered in the past years, are active, i.e. they started Docear in the past month. 

Based on this information, we may estimate the numbers of active mind-map users 

to be between 1.35 and 2.7 million.  

 
Figure 65: Search volume for "XMind" and other selected search terms 

The claimed user counts do not always correlate with the search volume. For 

instance, MindMeister accumulates less than 8% of the search volume, and claims 

2.5 million users. In contrast, XMind accumulates 25% of the search volume, but 

reports only around 1 million users. We assume that these differences result from 

different registration and usage concepts. MindMeister is a web-based tool that 

requires everyone to register. XMind is a desktop software that can also be used 

without registration. As such, our estimate remains a rough guess. However, 

another estimate leads to a similar result. The open source mind-mapping software 

FreeMind was downloaded 1.4 million times in the past 12 month (we considered 

only downloads of the latest stable release)79. Assuming, that the number of active 

users is around 1/3 of users who downloaded the software in the past year, leads to 

the estimate that FreeMind has around 450,000 active users. Interpolating from the 

search volume (22.58%), leads to an estimate of 2 million active mind-map users. 

                                                      

79 http://sourceforge.net/projects/freemind/files/stats/timeline 
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We believe that these numbers indicate a substantial interest in the topic of mind 

mapping, and the active user base justifies the effort to research the potential of 

utilizing mind-maps for IR applications. 

B.4 Mind-Map based IR Applications 

We developed eight ideas, how mind-maps could be utilized beyond their original 

purpose. These ideas are briefly described in the following paragraphs, and were 

originally published in [25]. For more details refer to [15, 21]. 

Search Engines for Mind-Maps: Mind-maps contain information that probably is 

not only relevant for the given authors of a mind-map, but also for others. 

Therefore, a search engine for mind-maps might be an interesting application.  

User Modelling: Analog to analyzing users’ authored research papers, emails, etc., 

user modelling systems could analyze mind-maps to identify users’ information 

needs and expertise. User models could be used, for instance, for personalized 

advertisements, or by recommender systems, or expert search systems. For 

instance, when employees create mind-maps, we would assume that the mind-

maps would be suitable to infer the employees’ expertise. This information could 

be used by an expert search system. As described previously, Mindomo and 

MindMeister implemented user modelling systems, but Mindomo reported that 

users were not interested in the results. Hence, they removed the system from their 

mind-mapping application. Apparently, user modelling based on mind-maps is not 

trivial and does not always lead to satisfying results.  

Document Indexing / Anchor Text Analysis: Mind-maps could be seen as 

neighboring documents to those documents being linked in the mind-maps, and 

anchor text analysis could be applied to index the linked documents with the terms 

occurring in the mind-maps. Such information could be valuable, e.g., for classic 

search engines. 

Document Relatedness: When mind-maps contain links to web pages or other 

documents, these links could be used to determine relatedness of the linked web 

pages or documents. For instance, with citation proximity analysis [122], 

documents would be assumed to be related that are linked in close proximity, e.g. 

in the same sentence. Such calculations could be relevant for search engines and 

recommender systems. 

Document Summarization: Mind-maps could be utilized to complement document 

summarization. If a mind-map contains a link to a webpage, the node’s text, and 
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maybe the text of parent nodes, could be interpreted as a summary for the linked 

web page. Such summaries could be displayed by search engines on their result 

pages.  

Impact Analysis: Mind-maps could be utilized to analyze the impact of the 

documents linked within the mind-map, similar to PageRank or citation based 

similarity metrics. This information could be used by search engines to rank, e.g., 

web pages, or by institutions to evaluate the impact of researchers and journals.  

Trend Analysis: Trend analysis is important for marketing and customer 

relationship management, but also in other disciplines [62]. Such analyses could 

be done based on mind-maps. For instance, analyzing mind-maps that stand for 

drafts of academic papers would allow estimating citation counts for the 

referenced papers. It would also predict in which field new papers can be 

expected.  

Semantic Analysis: A mind-map is a tree and nodes are in hierarchical order. As 

such, the nodes and their terms are in direct relationship to each other. These 

relationships could be used, for instance, by search engines to identify synonyms, 

or by recommender systems to recommend alternative search terms or social tags. 

B.5 Feasibility 

We evaluated the ideas’ feasibility in three steps. First, we estimated whether there 

are enough mind-maps and mind-map users available to realize the ideas. Second, 

we analyzed whether the content of mind-maps is suitable for realizing the ideas. 

Finally, we gauged whether users are accepting the ideas.  

B.5.1 Mind-Map Users and (Public) Mind-Maps 

Most of the ideas hinge on the availability of a large number of mind-maps. It is 

also important to distinguish between public and private mind-maps. If many 

mind-maps were available publicly, the ideas could be realized by anyone. If 

mind-maps were private, i.e. only available to the developers of the mind-mapping 

tools, only these developers could realize the ideas. 

There are more than 300,000 mind-maps in public galleries, 50% of them in the 

gallery of MindMeister, 20% in the gallery of Mindomo, and 16% in the gallery of 
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XMind (Figure 66)80. Over the years, the number of public mind-maps increased 

from 67,167 in 2010 to 303,084 in 2014. Given, that MindMeister’s users 

published around 62,000 mind-maps between 2013 and 2014, we estimate that 

MindMeister’s users created approximately 620,000 mind-maps during that 

period, since around 10% of mind-maps being created are also published77. 

Interpolating these numbers with the search volume (Figure 64), we can estimate 

that overall 4.6 million mind-maps were created between 2013 and 2014. Another 

estimate confirms this number: Mind-map users create between 2 and 3 mind-

maps per year on average [23]. A calculation with 2.5 mind-maps per year, and 2 

million mind-map users, leads to an estimate of 5 million mind-maps created per 

year. Considering that mind-mapping tools have been used for many years, a few 

dozens of millions mind-maps must exist on the computers of mind-map users.  

 
Figure 66: Public mind-maps 

B.5.2 Content of Mind-Maps 

We recently analyzed the content of 19,379 mind-maps, created by 11,179 

MindMeister and Docear users [23]. On average, mind-maps contained a few 

dozens of nodes, each with two to three words on average. Some mind-maps even 

contained a few thousand nodes, with some nodes containing more than a hundred 

words. This amount of nodes, and words, is comparable to the number of words in 

emails or web pages. Since emails and web pages are successfully utilized by 

information retrieval applications, the content of mind-maps might be suitable for 

                                                      

80 Over the past four years, we retrieved the numbers of mind-maps each year directly from the webpages of the 

galleries. 
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those ideas that depend on the existence of terms. However, the number of links in 

mind-maps is low. Almost two thirds of the mind-maps did not contain any links 

to files, such as academic articles or other documents (63.88%), and most of the 

mind-maps that did contain links, contained only few of them. Links to webpages 

were not available in 92.37% of Docear’s mind-maps and 75.27% of 

MindMeister’s mind-maps. Consequently, those ideas based on link-analysis seem 

less attractive.  

B.5.3 User Acceptance  

We evaluated the user acceptance of the eight ideas with our mind-mapping 

software SciPlore MindMapping [19]. 4,332 users were shown at first start a 

settings dialog. In this dialog, users could (un)select four options relating to the 

different ideas we proposed (Figure 67). It was randomly chosen whether options 

were pre-selected.  

When all options were pre-selected, 61% of the users accepted user modelling to 

receive recommendations based on their mind-maps (Figure 67). 38% of the users 

accepted that the content of their mind-maps could be utilized e.g. for anchor text 

analysis. 32% of users agreed that SPLMM could also analyze the content of the 

documents they linked in their mind-maps. Usage mining, i.e. the general analysis 

of how users are making use of a software, was accepted by 48% of the users.  

 
Figure 67: User acceptance of IR on their mind-maps 

If options were not pre-selected, fewer users allowed the analysis of their data. 

22% activated recommendations, 7% activated information retrieval on mind-

maps, 6% activated IR on the linked documents, and 12% activated usage mining.  

B.5.4 Discussion of the Feasibility 

Due to the generally few links available in mind-maps, anchor text analysis, 

calculating document relatedness, document summarization, and impact analysis 

seem less feasible for the majority of mind-mapping tools (Table 14). However, 
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there might be exceptions, for instance in the case of Docear. Docear’s mind-maps 

contain comparatively many links to PDF files, because most users are researchers 

who manage their academic papers with Docear. Assuming that Docear’s users 

create enough mind-maps, the link-based ideas might be interesting to pursue.  

Those ideas that depend on the availability of terms seem more feasible, 

considering the content of mind-maps. However, only a small number of mind-

maps are publicly available (around 300,000). This makes the ideas less interesting 

for third parties who do not offer their own mind-mapping software. The same is 

true for developers of mind-mapping software with only a few users. A mind-map 

search engine or trend analysis using for example only 50,000 mind-maps, cannot 

attract many people. For the major players, such as XMind, FreeMind, or 

MindMeister, this might be different. They potentially have access to millions of 

mind-maps, which should be sufficient to achieve reasonable results. One idea is 

also relevant for the less popular mind-mapping tools, namely user modelling. 

User modelling, more precisely recommender system, personalized advertisement, 

or expert search, should be well applicable even with few users. User modelling 

has also the highest acceptance rate among the users. User Modelling for a 

recommender system was accepted by 61% or the users. User acceptance of the 

other ideas was lower. Around 10% of mind-maps are published, and around 30-

40% of users accept IR to enhance external applications.  

Table 14: Feasibility of the ideas 

 

Overall, user modelling seems to be the most promising idea: The content of 

mind-maps is suitable, user acceptance is rather high, and user modelling is 

relevant for all developers of mind-mapping software, and companies whose 

employees use mind-maps. In addition, user modelling directly benefits the mind-

mapping tools and may be fundamentally important for a company. For instance, 

Google is generating almost its entire profit from personalized advertisements 

[127], and Amazon is also making a significant amount of revenue through its 

For 3rd 

parties

For MM tool 

developers

Content 

Suitability

Users' 

Acceptance
Overall

Search Engine Low Depends Good Low Low

Document Indexing Low Depends Low Medium Low

Document Relatedness Low Depends Low Medium Low

Document Summarization Low Depends Low Medium Low

Impact Analysis Low Depends Low Medium Low

Trend Analysis Low Depends Medium Medium Medium

Semantic Analysis Low Depends Good Medium Medium

User Modeling --- Good Good Good Good

Mind Map Availability
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recommender system [181]. In contrast, applications such as semantic analysis are 

usually not fundamental to a company’s business.  

However, user modelling based on mind-maps already had been implemented, but 

results indicate that it is not as promising as our analysis suggests. MindMeister 

and Mindomo created user models for displaying personalized advertisement but 

both abandoned this after a while. This leads to the question, whether mind-maps 

actually can successfully be utilized by user modelling systems. 

B.6 Prototype 

To analyze whether user modelling based on mind-maps can be done effectively, 

we integrated a recommender system into our mind-mapping tools SciPlore 

MindMapping (SPLMM) [19], and its successor Docear [18]. Both tools are 

primarily used by researchers. Therefore, the recommender system recommends 

research papers. We implemented different recommendation approaches that we 

evaluated using click-through rate (CTR), i.e. the ratio of clicked 

recommendations against the number of displayed recommendations. Please note 

that due to space restriction we may only provide superficial information on the 

recommender system and its evaluation. We are about to publish a paper that will 

present the architecture of Docear’s recommender system in more detail, as well as 

a discussion on the suitability of CTR as an evaluation metric for recommender 

systems. These papers will be available soon at 

http://www.docear.org/publications/.  

For SPLMM, we implemented an approach similar to MindMeister’s approach. 

Each time, a user modified, i.e. edited or created, a node, the terms of that node 

were send as search query to Google Scholar. Google Scholar’s Top 3 results were 

shown in a separate window above the currently opened mind-map. Between July 

and December 2011, 78,698 recommendations were displayed, of which 221 were 

clicked, i.e. an overall CTR of 0.28% was achieved (Figure 68). A CTR of 0.28% 

is low. If MindMeister and Mindomo should have achieved similarly CTRs, it is 

no surprise that they abandoned the personalized advertisement.  

In Docear, we integrated a new recommender system [29]. The new system 

showed recommendations only when users explicitly requested them, or 

automatically every five days on start-up of Docear. Recommendations were based 

on Docear’s own document corpus, consisting of around 1.8 million full-text 

articles. The recommender system used four different approaches and displayed 

21,445 recommendations between July 2012 and February 2013. The first 

approach made use of the terms of the last modified node, similar to the approach 

http://www.docear.org/publications/
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of SPLMM. This led to a CTR of 1.17% (Figure 68). The reasons why CTR was 

around four times higher than CTR in SPLMM, may be manifold. Maybe, the 

lower frequency of displaying recommendations (every five days instead of 

continuously) or the source (Docear’s corpus vs Google Scholar), influenced CTR. 

However, 1.17% is still a rather low CTR. The second approach utilized the most 

frequent words of the user’s current mind-map. This increased CTR to 6.12%. 

When the most frequent words of all mind-maps were utilized, CTR was also 

above 6%. For the fourth approach, we manually compiled a list of ten research 

articles relating to academic writing. Most of Docear’s users are researchers and 

therefore we assumed that these articles would be relevant to most of Docear’s 

users. When recommendations were given based on this approach – the stereotype 

approach [312] – CTR was 4.99%.  

 
Figure 68: CTR of different approaches 

The results show that a single node, typically containing two to three words, does 

not express users' information needs thoroughly. Instead, entire mind-maps are 

needed for analysis. To analyze this in more detail, we modified the recommender 

system, so it randomly chose the number of nodes to analyze. The results show 

that there is a strong correlation between the number of nodes analyzed and the 

CTR (Figure 69). When the recommender system utilized only the last 1 – 9 

modified nodes, CTR was 3.16% on average. When 10 to 49 nodes were utilized, 

CTR increased to 4% on average. Utilizing between 500 and 999 nodes resulted in 

the highest CTR (7.47%). When more than 1,000 nodes were utilized, CTR began 

to decrease (though, the difference is not statistically significant).  

 
Figure 69: CTR by number of analyzed nodes 
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B.7 Summary 

Mind-maps have thus far been widely neglected by the information retrieval 

community. We found that there are more than 100 mind-mapping tools and that, 

based on search volume, the popularity of mind-mapping is comparable to the 

popularity of note taking, file management, or crowdsourcing. Popular mind-

mapping tools, such as XMind, are as popular as popular reference management 

software (e.g. Zotero), or Tech Blogs (e.g. TechCrunch). Overall, we estimated, 

there are around 2 million people who actively create mind-maps using a mind-

mapping software. Based on these numbers, we conclude that it is worth to 

research whether the developers of mind-mapping tools, and their users, might 

benefit from new applications, which utilize mind-maps. 

We presented eight ideas of how mind-maps could be utilized to enhance 

information retrieval applications: search engines for mind-maps could help to 

find interesting information; user modelling based on mind-maps could enable the 

implementation of recommender systems, personalized advertisement, and expert 

search; anchor text analysis applied to mind-maps could enhance the indexing of 

webpages and other documents; similarly, anchor-text analysis could enhance the 

summarization of webpages and documents being linked in mind-maps; citation 

and link analysis could help to calculate document relatedness, which might be 

useful to enhance search engines or recommender systems; similarly, citation and 

link analysis in mind-maps could be used for impact and trend analysis; finally, 

semantic analyses could be applied to mind-maps to identify synonyms and other 

relationships of words,  

Not all ideas are equally feasible. We analyzed the content of mind-maps and 

learned that mind-maps often do not contain any citations or links. In addition, 

there are only around 300,000 mind-maps publicly available, although around 5 

million mind-maps are created each year. The user’s acceptance to utilize their 

mind-maps was mediocre. 38% of the users allowed the use of their mind-maps 

for e.g. anchor text analysis, 61% accepted recommendations based on their mind-

maps. We concluded that, out of the eight ideas, user modelling is the most 

feasible use case. The content of mind-maps is suitable for user modelling, the 

users’ acceptance seems reasonably high, and user modelling is relevant for all 

developers of mind-mapping software, not only the major players.  

We implemented a prototype of a user modelling system, namely a research paper 

recommender system, and, overall, results are promising. While the most simple 

user modelling approach – utilizing terms of the currently edited or created node – 

performed poorly (CTRs around 1% and lower), utilizing terms of users’ entire 
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mind-maps achieved click-through rates above 6%. This shows that user 

modelling based on mind-maps is not trivial, and strongly depends on the applied 

approaches. Further research is required to identify the unique characteristics of 

mind-maps, and to use these characteristics successfully in user modelling systems 

such as expert search, and recommender systems. 
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C Exploratory Analysis of Mind-Maps81 

We conducted an exploratory study of mind-maps, which was originally published 

in 2011 [23]. The objective was to find out how mind maps are structured and 

which information they contain. Results include: A typical mind map is rather 

small, with 31 nodes on average (median), whereas each node usually contains 

between one to three words. In 66.12% of cases, there are few notes, if any, and 

the number of hyperlinks tends to be rather low, too, but depends upon the mind 

mapping application. Most mind maps are edited only on one (60.76%) or two 

days (18.41%). A typical user creates around 2.7 mind maps (mean) a year. 

However, there are exceptions, which create a long tail. One user created 243 

mind maps, the largest mind map contained 52,182 nodes, one node contained 

7,497 words, and one mind map was edited on 142 days.  

C.1 Introduction 

Millions of people are using mind maps for brainstorming, note taking, document 

drafting, project planning, and other tasks that require hierarchical structuring of 

information. Figure 70 shows a mind map which was created as draft for this 

chapter. As all mind maps, it has a central node (the root) which represents the 

main topic the mind map is about. From this root node, child-nodes branch out, in 

order to describe sub-topics. Each node may contain an arbitrary number of words. 

This way, a mind map is comparable to an outline but with stronger focus on the 

graphical representation. Mind maps created on a computer may also contain links 

to files, hyperlinks to websites (in Figure 70 indicated by red arrows), pictures, 

and notes (indicated by yellow note icons).  

In this chapter, we present the initial results of an exploratory study of 19,379 

mind maps. The overall research objective was to find out how mind maps are 

structured and what information they contain. To our knowledge, this is the first 

study of its kind. We therefore aimed at a broad overview to determine further 

areas of interesting research. 

                                                      

81 This chapter has been published as: Beel, Joeran, and Stefan Langer. “An Exploratory Analysis of Mind Maps.” 

In Proceedings of the 11th ACM Symposium on Document Engineering (DocEng’11), 81–84. ACM, 2011. 
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C.2 Related Work 

There is lots of research on content and structure of other documents: Web pages, 

emails, academic articles, etc. have all been analyzed thoroughly in the past (e.g. 

[1-3]). With respect to mind maps, there is mostly research about the effectiveness 

as learning tool (e.g. [4]).  

The lack of analyses of mind maps is not surprising. Emails, web pages, etc. had to 

be thoroughly researched to make information retrieval tasks, for instance, 

indexing, and spam detection, effectively possible. Such information retrieval 

tasks have never been applied to mind maps, and therefore the need for knowledge 

about mind map content and structure was low.  

 
Figure 70: Screenshot of a mind mapping software 

However, recently we proposed to apply information retrieval tasks to mind maps 

to enhance keyword-based search engines, document recommender systems, and 
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user profile generation [5]. To do this effectively, knowledge about the content 

and structure of mind maps is required.  

There was only one paper we found that is somewhat related: a survey from the 

Mind Mapping Software Blog [6]. For this survey 334 participants answered 

questions about their use of mind mapping software. However, the survey was 

based on 334 self-selected participants from a single source (readers of the Mind 

Mapping Software Blog). Accordingly, it seems likely that predominantly very 

active mind mapping users participated in the survey and results are not 

representative. In addition, the survey focused on the usage of mind mapping 

software rather than the content and structure of mind maps.  

C.3 Methodology 

We conducted an exploratory study on 19,379 mind maps created by 11,179 users 

from the two mind mapping applications Docear82 and MindMeister83 (the latter 

one is abbreviated as ‘MM’ in figures and tables). 

Docear is a mind mapping application for Windows, Linux and Mac, focusing on 

academic literature management, and developed by ourselves [7]. 2,779 users 

agreed to have their mind maps analyzed. They created 7,506 mind maps between 

April 1, 2010 and March 31, 2011.  

MindMeister is a web-based mind mapping application. 8,400 users published 

11,873 mind maps in MindMeister’s public mind map gallery84 between February 

2007 and October 2010. For our study these public mind maps were downloaded 

in XML format via MindMeister’s API85, parsed, and analyzed.  

Numbers include only mind maps containing six or more nodes86, and that were 

not being edited between April 1, 2011 and the day of the analysis (June 2, 2011). 

This way it is ensured that mind maps in the beginning of their life-cycle do not 

spoil the results but only “mature” mind maps were analyzed.  

                                                      

82 http://docear.org 
83 http://mindmeister.com 
84 http://mindmeister.com/maps/public 
85 http://mindmeister.com/services/api 
86 A random sample of 50 mind maps showed that the vast majority of mind maps with five or fewer nodes were 

created for testing purposes and did not contain valuable content. 

http://mindmeister.com/maps/public
http://mindmeister.com/services/api
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We were particularly interested in finding out whether differences existed for 

different types of mind maps and between the two mind mapping applications. 

Therefore, mind maps were grouped based on their size, measured by the number 

of nodes. Mind maps with 6 to 35 nodes were considered as ‘tiny’, with 36 to 100 

nodes as ‘small’, with 101 to 350 nodes as ‘medium’, with 351 to 1000 nodes as 

‘large’ and with more than 1000 nodes as ‘very large’. In the data set, the majority 

of mind maps were tiny (52.47%) or small (31.40%) as shown in Figure 71.  

 
Figure 71: Distribution of mind maps based on size (number of nodes) 

C.4 Results & Interpretation 

C.4.1 Mind Maps per User 

Figure 72 shows the number of mind maps users created. The majority of 

MindMeister users created, or we should say published, exactly one mind map 

(81.26%). Only 2.32% of MindMeister users published five or more mind maps. 

In contrast, 56.75% of Docear users created one mind map and 11.36% created 

five or more mind maps. On average (mean), users created 2.7 mind maps 

(Docear) during the 12 month period of data collection, respectively 1.4 

(MindMeister) during ~3.5 years. The highest number of mind maps created by 

one user was 243 for Docear and 73 for MindMeister. It has to be noted that 

numbers of MindMeister and Docear are only limitedly comparable, as we did 

only analyze MindMeister mind maps that were published by their users. It can be 

assumed that most users who published mind maps on the Web, created further 

private mind maps that were not publicly available. 
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Figure 72: Number of created mind maps per user 

C.4.2 Nodes per mind map 

As mentioned in the methodology and shown in Figure 71, most mind maps were 

rather small. On average, Docear mind maps contained 232 nodes (mean), 

respectively 41 nodes (median). MindMeister mind maps contained 51 nodes 

(mean), respectively 31 (median). Docear mind maps tended to be larger than 

MindMeister mind maps. For instance, while only 0.10% of MindMeister mind 

maps were ‘very large’, 3.81% of Docear mind maps were. The largest Docear 

mind map contained 52,182 nodes (and there are several more mind maps 

containing 10,000+ nodes); the largest MindMeister mind map contained 2,318 

nodes. 

C.4.3 File Links 

In a mind map, users may link to files on their hard drive. Figure 73 shows the 

distribution of mind maps containing a certain number of links (for Docear mind 

maps only since MindMeister does not provide this feature). Well over half of 

mind maps do not contain any links to files (63.88%).  

Table 15: File types linked in mind maps 

 

PDFs Images Documents HTML Excel/CSV PowerPoint MP3s Other

89.58% 1.26% 0.53% 0.47% 0.42% 0.34% 0.27% 7.14%
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Figure 73: Number of file-links in Docear mind maps 

However, some users make heavy use of the feature. 2.94% of mind maps 

contained more than 1,000 links to files and 2.97% of mind maps contained 

between 351 and 1,000 links. The highest number of links in a mind map was 

52,138 and all 7,506 Docear mind maps together contained 1,184,547 links to files 

on the users’ hard drives. This does not mean that 1,184,547 different files were 

linked. Most users linked the same file multiple times in a mind map. 

From all links, 89.58% pointed to PDF files (Table 15). Other files being linked 

included images (.gif, .png, .jpeg, .tiff), MP3s and text documents (.doc, .docx, 

.odt, .rtf, .txt), but with much smaller frequency.  

C.4.4 Hyperlinks 

Looking at all mind maps, 81.57% do not contain a single hyperlink to a website 

(Figure 74). However, there are differences between Docear and MindMeister. 

While 92.37% of Docear mind maps do not contain hyperlinks at all, only 75.27% 

of MindMeister mind maps do not contain any hyperlinks. In other words: 7.63% 

of Docear mind maps and 24.73% of MindMeister mind maps contain at least one 

hyperlink.  

Larger mind maps more often contain hyperlinks when compared to smaller mind 

maps. For instance, around 20% of Docear’s (very) large mind maps but only 

3.94% of tiny mind maps contain hyperlinks. Similarly, around 40% of 

MindMeister’s (very) large mind maps but only 22% of tiny mind maps contain 

hyperlinks. 
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Figure 74: Number of hyperlinks in mind maps 

C.4.5 Notes 

Most mind mapping software tools (such as Docear and MindMeister) allow users 

to add notes to a node. Many users do not use this feature – 66.12% of mind maps 

do not contain any notes (Table 16). Results are similar for both, MindMeister and 

Docear mind maps. 

Table 16: Number of notes in mind maps 

 

C.4.6 Words per node 

Figure 75 shows the distribution of words per node (everything separated by 

whitespace characters was assumed to be a word). Nodes in mind maps generally 

contain few words. Nearly 1/3 of all 2,352,584 nodes contained a single word 

(29.91%). Only 8.25% of nodes contained more than ten words.  

0 [1,2] [3,10] [11,75] [76,150] [151,500] >500

Tiny 68.66% 19.53% 8.00% 3.81% 0.00% 0.00% 0.00%

Small 65.72% 15.02% 9.58% 9.53% 0.15% 0.00% 0.00%

Medium 59.58% 13.73% 9.92% 14.37% 1.97% 0.43% 0.00%

Large 52.15% 11.86% 11.66% 17.59% 4.29% 2.25% 0.20%

Very large 61.74% 6.04% 7.38% 16.44% 3.69% 3.36% 1.34%

Total 66.12% 17.01% 8.81% 7.42% 0.45% 0.16% 0.03%
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Figure 75: Number of words per node 

However, there is a long tail in the distribution – the maximum word count for a 

node was 7,497 for Docear and 1,184 for MindMeister. Although the most 

frequent word count per node is one, mean is 4.80 words per node and median is 3. 

There is a slight tendency that the larger mind maps are, the more words their 

nodes contain. Details are provided in Table 17. 

Table 17: Number of words per node by mind map size 

 

Also, the deeper a node is in a mind map (further out on the branch), the more 

words it tends to contain. While root nodes (level 0) contain 3.03 words on 

average (mean), respectively 2 (median), nodes in level 5 contain 5.11 words on 

average (mean), or 3 (median) respectively (also Figure 76).  

Mean Median Modal Max

Tiny maps 4.67 2 1 1,874

Small maps 4.45 2 1 687

Medium maps 5.07 2 1 1,463

Large maps 5.76 3 1 2,723

Very large maps 4.60 3 1 7,497

Word count per node
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Figure 76: Number of words per node based on node level 

Results are similar for both, Docear and MindMeister mind maps. Except, the 

median word count for Docear is three, and for MindMeister two.  

C.4.7 Days Edited 

The majority of mind maps seem to be used for rather short term activities such as 

brainstorming or maybe taking meeting-minutes.  

Figure 77 shows on how many days mind maps were edited87. 60.76% of mind 

maps were edited only during a single day88. However, also a large proportion of 

mind maps were edited on several days, and a small fraction (0.55%) even on 

more than 25 days. On average, mind maps were edited on one day (median), 

respectively 2.36 days (mean). The maximum was 142 days. 

C.5 Interpretation & Summary 

For some features, there appear to be significant differences between mind maps 

created with Docear and those created with MindMeister. However, most of the 

differences can be attributed to the special functionality of the corresponding 

software. For instance, Docear offers special features for literature management 

such as automatically importing PDF bookmarks as new nodes to a mind map. 

                                                      

87 Data was available for Docear mind maps only. 

88 Creation of a mind map was counted as one edit. All edits made during one day were combined.  
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Accordingly, it was expected that Docear mind maps would be larger, in terms of 

number of nodes. Concerning this case, probably MindMeister numbers are more 

representative for other mind maps than Docear’s are.  

On the other hand, when estimating the number of mind maps per user, Docear’s 

numbers are probably more suitable for generalizations, as we could only analyze 

public mind maps of MindMeister users.  

 
Figure 77: Number of days mind maps were edited 

The study showed that a ‘typical’ (average) mind map is rather small, with a few 

dozen nodes (31 was the median for MindMeister mind maps), whereas each node 

contains probably between one to three words (more for large mind maps or nodes 

deeper in a mind map). The mind map probably contains few if any notes 

(66.12%). The number of hyperlinks depends on the mind mapping application 

and tends to be rather low, too. Probably the mind map was edited only on one 

(60.76%) or two days (18.41%) and it is expected that a typical user creates 

around 2.7 mind maps a year (mean, Docear).  

However, these are only averages. Most results followed a power-law distribution 

with a long tail. There was one user who created 243 mind maps (and several users 

more created 10+ mind maps). The largest mind map in the data set contained 

52,182 nodes (and several more with 10,000+ nodes existed), there was one node 

containing 7,497 words (and several more nodes with 100+ words existed), one 

mind map was edited on 142 days (and several more were edited a few dozen 

times) and several mind maps contained a few hundred notes.  
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C.6 Outlook 

For future research, analysis of the evolvement of mind maps could be interesting. 

Maybe there are different patterns how mind maps evolve and are used by users. 

Also, differences between user types should be analyzed. In addition, the content 

of mind maps has only been analyzed superficially, yet. It would be interesting to 

know what exactly the content is and what mind maps are used for exactly 

(brainstorming, literature management, etc.). A more detailed analysis should also 

look at the extremes and outliers (e.g. the node with 7,497 words).  

Most importantly, mind maps need to be compared to other types of documents 

and consequences for information retrieval needs to be drawn. What does it mean 

when nodes usually contain one to three words? Are they comparable to search 

queries which usually consist of a similar number of terms? If so, can approaches 

for search query recommender easily be adopted to create a ‘node recommender’? 

Are mind maps with a few dozen nodes comparable to a user’s collection of social 

tags which usually also consist of a few dozen tags each with one or two words? If 

so, can approaches for user modeling based on social tags easily be applied to 

model the interests of mind map users? And are mind maps, which contain a few 

thousands nodes or words, comparable to web pages, academic articles, or emails? 

If so, what does this mean for the ability to apply information retrieval on mind 

maps? All these questions need to be answered in further research. 
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D Link Analysis in Mind Maps89 

D.1 Introduction 

Mind mapping is a common method to structure and visualize ideas, manage 

electronic literature and to draft documents. Some users do link in their mind map 

to external documents such as PDFs or websites. Some even cite scholarly 

literature, for instance by adding BibTeX keys to a mind map’s node (Figure 78 

for an example). In a recent paper we proposed to analyze these links and 

references to determine the relatedness of those documents that are linked in the 

mind map [21]90. 

The basic idea is that two documents are related if they are both linked by a mind 

map. In addition, it was assumed that the closer the links occur in the mind map, 

the higher related the linked documents are. If the assumption proves to be right, 

Link Analysis in Mind Maps (LAMM) could be used to enhance search engines 

and document recommender systems since these systems often present related 

documents to their users.  

We conducted a brief experiment to test the proposed idea and present the results 

in this chapter. The focus of this chapter lies on calculating the relatedness of 

scholarly literature and on enhancing research paper recommender systems as we 

plan to integrate LAMM into our academic search engine and research paper 

recommender system SciPlore91. However, it's highly probable that the results 

would be similar for other kind of documents linked by a mind map such as 

websites. 

In the next section, related work about research paper recommender systems and 

citation analysis is presented. It is then followed by a section showing the 

methodology which has been used to evaluate LAMM. Finally, the results, a 

discussion, and an outlook towards future work conclude.  

                                                      

89 This chapter has been published as: Beel, Joeran, and Bela Gipp. “Link analysis in mind maps: a new approach 

to determining document relatedness.” In Proceedings of the 4th International Conference on Ubiquitous 

Information Management and Communication, 38. ACM, 2010. 

90 We do not distinguish between linking files and referencing scholarly literature, for instance with a BibTeX 

key. Citations, links to files on the user’s hard drive and hyperlinks to websites are all considered as ‘link’. 

91 http://www.sciplore.org 
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D.2 Related Work  

Several attempts have been made to establish research paper recommender 

systems [2, 37, 123, 129, 356, 368]. Some of them use citation analysis to 

determine the degree of relatedness between two papers. An overview of different 

citation analysis approaches for determining the relatedness of research papers is 

given in [232]. At this time, our research focuses on co-citation analysis [242] and 

its extension citation proximity analysis [122].  

 
Figure 78: Mind map draft of a paper 

According to co-citation analysis, two papers A and B are related if a third paper C 

references both. If more than one paper reference paper A and B together, their 

relatedness is supposed to be even higher. Citation proximity analysis additionally 

considers the location of citations in the full text: Two papers A and B are 

supposed to be more highly related when they are closely referenced by a third 

paper C in the text. For instance, if paper C references paper A and B in the same 

sentence, A and B are likely to be highly related. If paper C references paper A in 

the beginning of a 100-page document and paper B at the end, their relatedness is 

probably not nearly as high.  

Co-citation analysis and citation proximity analysis can be used by research paper 

recommender systems to make item-based recommendations: If paper A and B are 

related, paper B may be recommended to those users interested in paper A (but not 

knowing paper B yet).  

However, co-citation analysis and citation proximity analysis have to cope with 

some drawbacks. 

1. Availability of Data: Co-citation analysis and citation proximity analysis 

cannot be applied to all research papers due to a lack of (correct) data 

[215, 234]: many research papers are not cited at all; citation databases 

such as ISI Web of Knowledge do not cover all available publications; and 



205 

 

due to technical difficulties, citations are not always recognized correctly, 

which in turn leads to incorrect data in citation databases. 

2. Robustness of Data: Citations are often considered as biased because 

authors do cite papers they should not cite and do not cite papers they 

should cite [234]. Accordingly, citation based recommender systems 

might provide irrelevant recommendations. 

3. Timeliness of Data: Publishing scientific articles is a slow process and it 

takes months or even years before they are published and citations are 

received. Accordingly, documents recommended based on citation 

analysis are, at the very least, several months old. 

4. Metrics: There exist metrics for measuring the relatedness of research 

papers based on citation analysis (for instance, coupling strength [334] or 

the citation proximity index [122]). However, to our knowledge, each 

metric focuses solely on one citation analysis approach and no combining 

metric exists yet. Consequently, relatedness of research papers based on 

citations cannot be measured and expressed thoroughly.  

Summarized, citation analysis applied to scholarly literature can do a good job in 

identifying related articles, but there is room for improvement.  

D.3 Methodology 

Our intention was to conduct an experiment to obtain first indications if Link 

Analysis in Mind Maps (LAMM) might be suitable for determining research paper 

relatedness. Two assumptions were researched: 

1. Two research papers A and B are related if at least one mind map links 

them both 

2. Two research papers A and B are more highly related the more closely 

they are linked within a mind map 

As part of the experiment, five mind maps were analyzed which were originally 

created for drafting research papers, respectively Masters Theses92. That means 

each of the mind maps links at least to a few PDF files representing academic 

articles. From each mind map, links (respectively citations) to three articles were 

extracted and pairs were built (Figure 21 for illustration). The first pair was built 

from the first and second link in a mind map. Since the distance between them was 

low, we expected this pair to be ‘highly related’. The second pair was built from 

the first and last link in the mind maps. Here, the distance between the links was 

                                                      

92 Two mind maps represented drafts of our own papers and three mind maps were created by some of our 

students for their Masters’ theses.  
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high. Accordingly, we expected the corresponding articles to be less closely 

related.  

To test our assumptions, titles and abstracts of the linked PDFs were extracted. 

Since five mind maps were analyzed, five pairs with low distance (expected 

relatedness = (very) high) and five pairs with high distance (expected relatedness 

=low) existed. In addition, five ‘control pairs’ of papers were created. We created 

these pairs in a way that they should appear as not being related to each other at 

all93.  

 
Figure 79: Link extraction from the mind maps (illustration) 

                                                      

93 The papers were taken from the SciPlore database, were not linked by any of the mind maps and did not cite 

each other.  
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All pairs were shown to five participants94 and the participants had to rate the 

relatedness of the pairs on a scale from 1 to 5 (1 = not related, 5 = highly related). 

For evaluation, ratings were painted in a scatter plot for each participant as well as 

the overall rating (mean and median). A more detailed statistical analysis was not 

considered necessary, since the graphs showed quite clear results and the amount 

of data was too little for extensive statistic analyses. 

D.4 Results  

Figure 80 shows the results. On average (mean), those pairs linked closely 

together in the mind maps were considered significantly more often (highly) 

related than those pairs not linked closely together. The control pairs, which were 

not linked by any mind map, were all rated as not related, on average.  

Some outliers exist: On average, pair 2 in mind map 2 was considered higher 

related than pair 1 in mind map 2. In addition, pair 2 of mind map 3 and pair 1 of 

mind map 5 were rated as almost not related. However, this is not surprising since 

mind maps are usually used for drafting a paper and therefore variances are to be 

expected. 

 
Figure 80: Relatedness of pairs in mind maps (mean) 

                                                      

94 None of the participants were involved in creating the mind maps. The pairs of papers were distributed to the 

participants without their knowledge of the pairs being linked by a mind map or not. Each participant was shown 

all 15 pairs at once.  
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D.5 Discussion 

Overall, the results are a first indication that mind maps can be used to calculate 

research papers’ relatedness. However, it needs to be emphasized that all five 

mind maps were created by our students and ourselves and hence came from the 

same ‘school of thought’. It's very possible that other researchers use mind maps 

in a different way, which would then lead to variations in the results. 

In addition, similar problems as for classic ciation analysis are to be expected for 

Link Analysis in Mind Maps. These problems are related to data availability, 

robustness, timeliness, and metrics and are discussed in the following sections. 

D.5.1 Availability of Data 

Data availability seems to be the main challenge LAMM will have to face. It is 

unknown how many researchers use mind maps and how many are willing to share 

their data. It could be that the number is rather low. Nevertheless, mind mapping is 

a popular application. For instance, the mind mapping tool FreeMind is 

downloaded over a 150,000 times a month [338], more than 1.5 million people use 

MindManager [262] and there exist dozens of tools more [85]. Even platforms for 

sharing mind maps exist already95. On our website sciplore.org we also offer a 

special mind mapping software for researchers which will enable us to collect 

mind maps [19].  

Overall, we are confident, that sufficient data can be collected that makes LAMM 

worth researching. Certainly, it will never replace citation analysis in scholarly 

literature or hyperlink analysis on websites but LAMM could serve as a 

complement for both.  

Technical problems (in terms of identifying references) should be equal or even 

less for LAMM than for classic citation analysis. If users link to a unique identifier 

such as a BibTeX key, the corresponding metadata should be easily extractable 

from the user’s bibliographic database. If the user links a PDF file, at least the title 

should be easily identifiable from the PDF, in most cases96. 

                                                      

95 For instance, http://www.mappio.com, http://share.xmind.net, and http://www.mindmeister.com/maps/public/ 

96 We developed a tool for extracting titles from PDFs. First tests are promising. 
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D.5.2 Robustness of Data 

All social media platforms do have to cope with spam and fraud as soon as they 

become successful. There is no reason to assume this would be different if mind 

maps were used for calculating relatedness of documents. However, most social 

media platforms also find a way to cope with fraud and spam. If only mind maps 

of ‘trusted’ users were used, serious spam and fraud could probably be prevented 

successfully. Trustworthiness of users probably could be determined in 

cooperation with social networks, other community websites or by usage data of 

mind mapping software.  

D.5.3 Timeliness of Data 

With LAMM, timeliness has a clear advantage over classic citation analysis. Mind 

maps do not need to be published in journals or at conferences. They could be 

analyzed the moment they are created. This would enable research paper 

recommender systems to recommend new publications faster than with classic 

citation based approaches. 

D.5.4 Appropriate Metrics 

LAMM could use the same metrics that are used for citation analysis. Perhaps 

slight modifications would have to be made, but overall, metrics should be very 

similar (and so the advantages and disadvantages of citation based metrics). 

D.6 Summary & Future Research 

We presented Link Analysis in Mind Maps (LAMM). LAMM is an approach for 

determining the relatedness of documents by applying methods from hyperlink 

and citation analysis to mind maps. The basic idea is: If two documents A and B 

are linked or referenced by a mind map, these articles are likely to be related. 

Consequently, a recommender system could recommend document B to those 

users liking document A. In addition, we proposed that two documents are higher 

related when their proximity in the mind map is higher. In a small study (five mind 

maps and five participants) we obtained first indications that our assumptions 

could be true. The participants rated research articles that were linked in high 

proximity in the mind map, as more highly related than those articles linked within 

low proximity. Advantages and problems of LAMM in comparison to classic 

citation analysis were also discussed. Especially in respect to timeliness, MMCA 

seems likely to outperform classic citation analysis. On the other hand, data 

availability is likely to be a much larger problem than it is for citation analysis.  
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Overall, LAMM might prove to be a promising field of research having the chance 

to complement classic citation analysis and enhance research paper recommender 

systems in the long run. However, there is a need for more research since many 

questions remain unanswered: 

 How many researchers are using mind maps? 

 How many are willing to share them? 

 How can spam and fraud be prevented? 

 Which metrics should be used to measure relatedness?  

 How should these metrics be combined with existing ones based on 

citations and other techniques (for instance, based on text mining and 

collaborative filtering)? 

While we focused on determining relatedness of scholarly literature, LAMM could 

be applied equally well to other document types such as web pages. 
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E Docear4Word 

E.1 Introduction 

Reference management probably is the most tiring task for students and 

researchers. They have to re-type and format bibliographic information over and 

over, for each paper, assignment or thesis. This is particularly frustrating if they 

need to change citation styles in a document. This might become necessary, for 

instance, because a supervisor changes his mind on his favorite citation style, or a 

paper is submitted to another journal, which requires a different citation style than 

the previous journal.  

In the past decades, many software tools evolved to facilitate this workflow. 

Commercial tools such as Endnote and Citavi enable researchers to maintain a 

database with all the bibliographic data of their references. These so called 

‘reference managers’ usually offer add-ons for Microsoft Word allowing users to 

insert and format references and bibliographies in a convenient way. Also some 

open source tools offer such add-ons, for instance Zotero. However, all these tools 

use proprietary data formats. Accordingly, a Microsoft Word add-on from one of 

these tools (e.g. Endnote) works only with corresponding data format of that 

particular tool.  

 
Figure 81: Docear4Word ribbon in Microsoft Word 2010 

There is one alternative to the proprietary formats, namely BibTeX. BibTeX was 

created by Oren Patashnik in 1988 [292] and is the de-facto standard to store 

references. There are many reference mangers directly supporting BibTeX, for 

instance JabRef, BibDesk and our own reference manager Docear [18]. Even 

proprietary tools such as Endnote usually allow exporting their database to 

BibTeX. There is a Microsoft Word add-on for BibTeX-based databases named 

BibTeX4Word97. However, BibTeX4Word requires the installation of additional 

tools and is difficult to setup and use. For instance, in the Blog MedicalNerds 

                                                      

97 http://www.ee.ic.ac.uk/hp/staff/dmb/perl/index.html  

http://www.ee.ic.ac.uk/hp/staff/dmb/perl/index.html
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more than 250 comments were made on BibTeX4Word, mostly questioning about 

the usage – especially installing new citation styles is complicated [251].  

We developed Docear4Word98, a Microsoft Word add-on to insert and format 

references directly in MS-Word, based on BibTeX. Docear4Word is open source 

and runs with Microsoft Word 2002 (and later) on Windows XP (and later). After 

the installation, Docear4Word is accessible in the “Reference” ribbon when 

Microsoft Word 2007 or later is used (Figure 81). In Word 2002 and 2003 a 

separate toolbar is installed. Docear4Word was primarily intended for users of our 

literature management tool Docear [18], but it can be used with any BibTeX file 

from any reference manager. In contrast to BibTeX4Word, Docear4Word is more 

user-friendly and uses the citation style language (more details in the following 

section).  

The remainder of this chapter provides a detailed overview of Docear4Word. 

E.2 Maintaining a BibTeX database 

BibTeX is a text-based format. Accordingly, a BibTeX file can be created and 

edited with any text editor. However, there are several tools offering a graphical 

user interface to create BibTeX files, for instance JabRef and our own reference 

manager Docear. Figure 82 shows a screenshot of Docear. Docear provides a 

graphical user interface for specifying title, authors, and other bibliographic data 

of academic literature. Based on this data Docear automatically creates a BibTeX 

entry. Instead of Docear, or a text editor, any reference management tool can be 

used that uses the BibTeX format or that may export its proprietary format to 

BibTeX.  

E.3 Inserting references in Microsoft Word 

Figure 83 shows the dialog to search and insert references. The dialog allows 

selecting several references at once and specifying individual page numbers. Once, 

the references are selected and the “Add References” button is clicked, references 

are added in the document and formatted accordingly to the selected citation style 

(Figure 85).  

                                                      

98 http://www.docear.org/software/add-ons/docear4word/overview/  

http://www.docear.org/software/add-ons/docear4word/overview/
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Figure 82: Maintaining the BibTeX database 

 

Figure 83: Selecting and inserting a reference 
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E.4 Changing the Citation Style 

Docear4Word uses the citation style language [405] and citeproc-js citation 

processor [100] to format references. The citation style language supports more 

than 1,700 citation styles such as IEEE, Harvard, MLA, and ACM in several 

variations. Docear4Word users can select a style in the style box (Figure 84) and 

install new styles from the style repository. When a new style is selected, all 

references are formatted accordingly.  

E.5 Insert a Bibliography 

Docear4Word automatically creates a bibliography based on the references in the 

body of the document (Figure 85). The user can choose where to insert the 

bibliography and the bibliography is automatically updated when new references 

are inserted.  

 
Figure 84: Style chooser 

E.6 Outlook 

Docear4Word was released as final and stable version 1.0 on http://docear.org. 

However, we will continue to improve Docear4Word. Among others, it is planned 

to offer a version for Microsoft Word on MacOS; implement support for 

footnotes; enable suppressing author and/or year in a reference; implement an 

installer for new citation styles; and allow using multiple BibTeX files at the same 

time. As Docear4Word is available as open source, we sincerely invite other 

researchers to join the development.  

http://docear.org/
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Figure 85: Automatically created bibliography 
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F Review of the Recommendation Approaches 

Our main goal was to provide a general overview and discussion of the research 

field. However, for the interested reader, we provide a short summary of the 

individual approaches in the following.  

F.1 Content-based Filtering Approaches 

F.1.1 CiteSeer(x) and CC-IDF 

In 1998 C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence introduced CiteSeer, 

a web-based digital library [39, 119]. With CiteSeer, users could search for 

research papers, and for each search result, CiteSeer offered a link for retrieving a 

list of “related documents”. This might not be considered a “real” recommender 

system but it was the first step towards it, and Giles et al. also called it a 

recommender system. Document relatedness was calculated based on three factors. 

First, text similarity was calculated based on the top-20 words per document, 

which were determined with TF-IDF. Second, CiteSeer calculated header-

similarity between documents with a string edit distance (the authors interpreted as 

all the text before a paper’s abstract as header). Thirdly, CiteSeer introduced a new 

similarity measure, which they called CC-IDF. CC-IDF was identical to TF-IDF 

but instead of terms, citations were used. The underlying idea is that the more 

citations two documents share, and the less other documents contain these 

citations, the more similar the two documents are. Both papers [39, 119] provide 

identical information about the recommender system and are rather sparse of 

details. An evaluation of the recommendation approaches is missing.  

One year later, the three researchers presented the very first ‘real’ research paper 

recommender system that offered three different approaches to users [211]. First, 

users could create citation alerts. Whenever a paper, that the user had to specify 

manually, was cited by a new paper, the user was informed. Second, users could 

specify constraints. For instance, users could specify keywords and whenever 

CiteSeer indexed a new document matching the keywords, the user was informed. 

Thirdly, users could specify documents they liked and whenever CiteSeer found 

new documents related to the liked documents, users received a recommendation. 

Document relatedness was based on TF-IDF and CC-IDF (header similarity was 

not mentioned any more). User profiles could directly be maintained by the users 

and recommendations were sent by email or shown on CiteSeer’s website. The 

paper, again, contained no evaluation.  

In the following years, CiteSeer was continuously improved which resulted in a 

new version called CiteSeerX [74, 222, 298, 299]. Some of CiteSeer’s 
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functionality was also patented by NEC Laboratories, the employer of Giles, 

Bollacker, and Lawrence [213, 214]. Today, CiteSeer(x) does not provide any 

recommendation functionality, although Giles et al. published several papers more 

about research paper recommendations, which are covered later in our review. 

Recommendations nowadays are given by RefSeer, which was built on top of 

CiteSeer and takes a text snippet or PDF file as input [317] (p. 231).  

F.1.2 Quickstep & Foxtrot 

Middleton et al. published five papers between 2001 and 2009 about their 

recommender systems Quickstep and Foxtrot [257–261] (the fifth paper from 2009 

[258] is a summary of their papers published between 2001 and 2004).  

In the first paper, Quickstep was introduced and an evaluation was conducted 

whether flat topic lists or hierarchical ontologies are more effective for 

recommendations [259]. Based on machine learning, Quickstep classified each 

research paper with one topic, derived from DMOZ’s computer science categories. 

When a user browsed a research paper, the paper’s topic was added to the user’s 

user model with a “topic interest” value. This interest value differed, based on how 

often users browsed papers with that topic, the number of days being passed since 

the last browsing, and some other factors. Quickstep recommended those papers 

whose topics correlated best with the user’s topics of interests. Additionally, 

Middleton et al. experimented with adding the topics’ parents to the user model. In 

DMOZ, the classification is not flat but hierarchical. This means, when a paper 

was assigned to one category, all parent categories were also assigned to that 

paper, and user models respectively. In a small-scale evaluation, the authors found 

that using a hierarchical ontology was slightly better than a flat list of topics in 

terms of click-through rate, and 7-15% better in terms of user-satisfaction.  

In 2002, Middleton et al. published a poster introducing Foxtrot [260], an 

enhanced version of Quickstep. In Foxtrot, users’ profiles were visualized and 

users could edit their profiles. The poster contains only brief information about 

Foxtrot and no new recommendation approaches or evaluation. In 2004, Foxtrot 

was presented in more detail in a journal article [261]. The article consisted of 

three parts. The first part contained the information and experiment from the first 

Quickstep paper (some details from the first paper were missing, and some new 

ones added) [259]. The second part was about bootstrapping a recommender 

system based on an external ontology. This part was also published as pre-print on 

arXiv.org in 2002 [257]. The third part was about Foxtrot, comparing user 

relevance feedback with profile feedback (Section 3.3.2.7). Middleton et al. also 

provided some statistics on the usage of their recommender system and differences 
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between user groups (Sections 3.3.2.4 and 3.3.2.5). Another difference between 

Foxtrot and Quickstep was that Foxtrot used the CORA classification [248] 

instead of DMOZ categories.  

F.1.3 Topic Sensitive Similarity Propagation (TSSP)  

Huang et al. were first to apply citation-context analysis for generating 

research paper recommendations [155]. Citation context is the text that 

surrounds a citation. For instance, the citation contexts of Huang et al.’s 

paper, based on our paper, would be “Huang et al. were first to apply 

citation context analysis for generating research paper recommendations”, 

which is the sentence that includes the reference to their paper. Huang et al. 

calculated two similarity values separately, both being based on TF-IDF in 

the vector space model. One similarity value was calculated for citation 

contexts, and one was based on documents’ body text. Then, both values 

were combined. The highest precision was achieved when content and 

citation similarity received the same weight. Huang et al. called their 

approach Topic Sensitive Similarity Propagation (TSSP) and evaluated it 

with a small user study based on 28 papers and an unknown number of 

participants. TSSP outperformed the baselines co-citation, SimRank [171], 

content-only (without citation context), and some variations. More 

precisely, TSSP performed twice as good as content-only (p@10 of 0.52 vs. 

0.25). Also a linear combination of content and SimRank performed well 

(p@10=0.41). In contrast, SimRank (0.18) alone and co-citation (0.19) 

performed poorly. However, due to the small study size it is questionable 

how representative these results are.  

F.1.4 Mixed-membership model / Link-LDA 

In 2004, Erosheva et al. modeled citations and terms with Latent Dirichlet 

Allocation (LDA) which is similar to Probabilistic Latent Semantic Analysis 

(PLSA) [91]. They utilized the terms contained in the document’s abstracts and the 

references. For each document, two models were created. Terms were weighted 

based on simple term counts, references were weighted binary (present or not 

present). The paper itself has no sound evaluation, as the approach was not tested 

against any baseline. However, their work influenced several other papers in the 

field of citation recommendations [178, 273], which are covered later in this 

survey. The mixed membership model is later referred to as ‘Link-LDA’. 
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F.1.5 Papits 

In 2002, Papits was introduced as a peer-to-peer system that supported researchers 

in finding literature, keeping a research diary, and sharing papers [284, 285]99. 

Between 2004 and 2006, the authors published one paper about document 

classification [287] and two about integrating a research paper recommender 

system in Papits [286, 384]. The authors distinguished between short- and long-

time interests of their users [384]. Their way of representing user models is unique 

in the domain of research-paper recommender systems. Each user was represented 

as a graph. The graph’s nodes contained the terms of the users’ papers. The 

graphs’ edges were based on the frequency of co-occurrences of terms. Their 

approach outperformed standard CBF with a precision of 0.57 vs. 0.27. In their 

last paper, the authors compared a kNN approach with SVM to classify research 

papers [286]. Both approaches performed about the same. The papers are in some 

parts difficult to understand, have several typos and some important information is 

missing about the proposed approach and evaluation. This might be the reason 

why the papers received little attention (citations counts of their papers are 

between one and four). Nevertheless, especially the paper from 2005 is worth 

reading [384]. The idea of representing user models as graph is unique and the 

evaluation indicates an excellent precision.  

F.1.6 Trust-based Scientific Paper Recommender (SPRec) 

Between 2006 and 2007, Claudia Hess developed a research paper recommender 

system as part of her PhD thesis [148]. Hess focused on trust between researchers 

and reviewers respectively. The basic idea is that if a user A trusts another user B, 

B’s article reviews are (more) important to user A than other reviews. Hess 

considers the citation graph between papers as a trust network, expressing which 

authors trust each other. With respect to trust-based recommender systems, the 

thesis might be an interesting read, but the recommender system itself is only 

described superficially. Hess also published two papers [147, 149] but the thesis 

contains the more interesting information. 

F.1.7 PubMed Related Articles (PRMA)  

In 2007, PubMed, a large academic search engine for biomedical literature, 

introduced a recommender system that is still available today [226]. When users 

browses a detail-page of an article, related articles are displayed. To find related 

                                                      

99 Both papers are essentially the same 
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articles, PubMed uses what they call PRMA (PubMed Related Articles), an 

algorithm similar to BM25. PRMA is based on terms contained in the documents’ 

titles and abstracts. One fundamental difference between BM25 and PRMA is that 

PRMA was developed for using MeSH terms, i.e. a controlled vocabulary 

available only for biomedical literature. PRMA outperforms BM25 with p@5 of 

0.399 vs. 0.383 (statistically significant). The authors stress that PRMA is less 

complex than BM25, which makes the parameter optimization process less 

difficult. The authors also report that 20% of users who browse an article’s detail 

page follow at least one recommendation. Although the recommender system is 

active since 2007, no more papers were published about PRMA, to the best of our 

knowledge.  

F.1.8 Recommending Citations 

Strohman et al. combined classic CBF and ranked papers with a combination of 

several metrics [344]. Strohman et al. expected a user to provide a manuscript 

containing text and that the user wanted recommendations for papers to cite. Based 

on the input manuscript, the system determined 100 recommendation candidates. 

The candidates were determined based on text similarity, whereas text similarity 

was calculated with multinomial diffusion kernel [201]. The original 100 

candidates were extended by all papers being cited by the 100 candidates. 

Extending the candidate set increased MAP by around 10%. Strohman et al. also 

considered including another level of cited papers (those papers being cited by the 

papers being cited by the original candidates) but initial experiments showed that 

this did not improve the effectiveness. The papers in the final candidate set 

(typically 1,000-3,000) were ranked based on different combinations of 

publication year, text similarity, co-citation strength, same author, citation count, 

and the Katz measure. An offline evaluation showed that especially the Katz 

measure strongly improved precision. All variations including Katz were about 

twice as good as those variations without. For a 2-page poster, the article provides 

many interesting information. However, caused by the space restrictions, the 

authors had to omit many details, for instance how exactly the different factors 

were used for the ranking100. This limits the value of their results, and makes re-

implementing their approach impossible. Strohman et al. state that full details can 

be found in an extended version of their paper (a technical report), but we were not 

                                                      

100 They report to have used „coordinate ascent” to learn the weights, but do not provide a reference to this 

concept (of which we have never heard of). 
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able to find this technical report. Other authors [140] also criticize that Strohman 

et al. used a biased ground-truth to calculate the Katz measure, which would favor 

the Katz measure.  

F.1.9 Concept-Based Recommender System  

Susan Gauch et al. used the ACM classification tree to generate recommendations 

[60, 185, 204]. Papers were represented as trees, namely the ACM classification 

concepts, including parent nodes. Users were represented by the concept trees of 

the papers they authored. To match users and papers, Gauch et al. used cosine 

similarity for the concepts, and the tree-edit distance for the concept trees. Both 

approaches outperformed a classic keyword based cosine matching, and the tree-

edit distance outperformed cosine-based concept similarity. The paper corpus was 

crawled from CiteSeer, and papers were assigned to the ACM classifications 

through machine learning. In their first article, the authors presented the basic 

approach to compare documents based on tree-edit-distance [204]. The second 

article focused on the user modeling part [60]. The third article focused on the 

general architecture and how the system could be integrated into CiteSeer [185]. It 

remains unclear whether the system was integrated into CiteSeer and whether 

CiteSeer supported the authors actively. The evaluations in all three articles were 

only small-scale with seven to nine participants. 

F.1.10 Pairwise Link-LDA & Link-PLSA-LDA 

Nallapati et al. addressed the problem of jointly modeling citations and text [273]. 

They proposed two approaches called ‘Link-PLSA-LDA’ and ‘Pairwise Link-

LDA’. The later one is based on Erosheva et al.’s Link-LDA (p. 219) and 

combines it with the ‘Mixed Membership Stochastic Block’ [4] model, a 

probabilistic model originally developed to find related proteins. Although 

Pairwise Link-LDA achieves a better precision than Link-LDA, it is about 100 

times slower and not feasible to apply with larger collections. The second 

approach, Link-PLSA-LDA, combined PLSA and LDA into a single graphical 

model and outperformed LDA as well with regard to precision as computing time.  

F.1.11 Cite-LDA & cite-PLSA-LDA 

In 2010, Link-LDA and Link-PLSA-LDA were adopted by Kataria et al. who 

proposed Cite-LDA and Cite-PLSA-LDA [178]. The approaches utilize citations, 

the context of citations and the content of documents. In an evaluation, Cite-

PLSA-LDA outperformed all other models on two tested datasets (CiteSeer and 

Webkb). The evaluation confirms, similar to TSSP (p. 219), that citation context is 

a highly effective source for retrieving terms. As many of the previous authors, 
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Kataria et al. focused only on calculating paper similarities, and they neglected the 

user modeling process.  

F.1.12 User’s Recent Research Interests  

Sugiyama and Kan used a classic CBF approach in which users were represented 

by the papers they published [347]. The authors experimented with several 

variations of building user models and weighting papers. Among others, they 

extended the list of papers utilized for user modeling by adding all papers that 

were cited or did cite the original input papers. Sugiyama and Kan tried four 

approaches to weight these neighbor papers. First, papers were weighted equally. 

Second, neighbored papers were weighted the stronger the higher their contently 

similarity with the original input papers was (cosine similarity). Third, papers were 

weighted the stronger the closer their publication year was to the publication year 

of the original publications. Fourth, for senior researchers with several papers 

being published, papers that were more recent were weighted stronger than older 

papers. Sugiyama and Kan incorporated PageRank to weight papers but using 

PageRank decreased the effectiveness. The authors assumed this was because 

PageRank favors older papers but users are more interested in recent papers. The 

authors also extended candidate models by incorporating cited and citing papers 

but this increased the accuracy only slightly. While the authors used plain term 

frequency for user modeling, they used TF-IDF for the candidate papers. Their 

argument was that the small number of publication utilized for user modeling 

would negatively affect the IDF calculation. However, we know of no evidence 

supporting this assumption. The authors found that it makes sense to include only 

papers being published in the past three years in the user modelling process.  

F.1.13 Social Tag Based Recommender System 

Choochaiwattana et al. published two articles about using social tags for research 

paper recommendations [66, 173]. Papers were represented by the social tags that 

users had added. User were represented by the tags of those papers that the users 

had in their collections. The matching was done by calculating cosine similarity in 

the vector space. Sadly, both articles do not compare their approach against a 

baseline. The content of the two articles is nearly identical, only that the first has 

an evaluation with three participants [173], while the second article has an 

evaluation with 15 participants [66].  

F.1.14 Context Aware Relevance Model (CRM) 

He et al. introduced the context-aware relevance model (CRM), which suggests 

papers that users could cite in a specific sentence of their manuscript [140]. He et 
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al. expected a user to provide either a manuscript as input, or a citation context, i.e. 

a few sentences that needed citations. CRM searched for documents that contained 

citation contexts being similar to the input sentences or manuscript. These 

documents and the documents being cited were taken as recommendation 

candidates and ranked based on Gleason’s Theorem, but CRM uses an 

approximate measure instead of maximum likelihood. He et al. differentiate 

between “global citations” for the bibliography, and “local citations” for each 

placeholder in the text. He et al. evaluated CRM against many different baselines 

and combinations, among others HITs, Katz, simple citation count, and simple text 

similarity. According to the paper, CRM is applied by CiteSeer. However, as 

mentioned previously, CiteSeer does not offer any recommender system (any 

more).  

In 2011, He et al. extended their idea of a citation recommender so the 

recommender would analyze a manuscript and automatically recommend where 

exactly which citation was needed [139]. While the original approach is just a 

different view on recommender systems (there is no fundamental difference 

between a ‘citation context’ being provided by the user and a search query or 

abstract), this latter paper could be seen as the first true citation recommender 

because it addresses the problem of autonomously finding locations to add 

citations. 

F.1.15 SVM-MAP Approach / Who Should I Cite? 

Bethard and Jurafski used CBF and ranked the candidates based on a large number 

of factors [34]. The factors included text similarity; citation metrics such as 

citation count, PageRank, paper’s venue citation count and h-index, and authors 

citation count; recency (older articles received less weight); social habits such as 

self-citation rate, co-authorship, boost for venues the user has previously published 

in, and several more. The article presents were several interesting findings. For 

instance, h-index had a negative impact on the algorithms’ accuracy but plain 

citation count had a very positive impact. Bethard and Jurafski also found that 

authors like to cite papers they cited before. In addition, Bethard and Jurafski 

created an approach that learned to weight the factors with a support vector 

machine (SVM)101. In an offline evaluation, the “SVM-MAP” approach achieved 

an MAP of up to 28.7%, while a simple text comparison achieved only 15.9%. 

                                                      

101 The authors also tried a logistic classifier but SVM performed better.  
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The results are interesting because they show how some simple metrics (mostly 

adopted from Scientometrics) can strongly enhance content-based filtering. The 

authors also published a simple prototype102. 

F.1.16 Keyphrase-based recommender / Pirates Framework 

Ferrara et al. created user models based on the content of papers a user had tagged 

[98]. Based on the terms contained in the tagged papers, they created three lists, 

one with uni-grams, one with bi-grams, and one with tri-grams. All n-grams were 

weighted based on their frequency, a part-of-speech value, phrase depth (based on 

the part of the document in which the term occurred first, e.g. title or abstract), 

phrase last occurrence (more weight to terms occurring in the conclusion), and 

phrase lifespan (portion of text being covered by the term). Papers were 

represented the same way. The cosine similarity was calculated for each of the 

three lists separately. The final similarity score was based on a linear combination. 

The approach performed better than using a uni-gram list alone. Unfortunately, the 

authors did not research how a different weighting (e.g. frequency only) or the 

individual n-gram lists (e.g. bi-grams only) performed. As such, it remains unclear 

how sensible it is to consider phrase depth, life span etc. for user modeling. 

However, the ideas are interesting but, to the best of our knowledge, the article 

received only little attention in the community.  

F.1.17 Source Independent Framework 

A time-consuming task in building a research paper recommender system is 

harvesting a large-enough collection of research papers to recommend. 

Nascimento et al. bypassed this problem by creating brief user models which could 

be sent as search query to external information sources such as ACM Digital 

Library, IEEE XPlore, and Science Direct [276]. The search results were taken as 

initial candidate set and ranked by several Cosine variations. Based on the ranking, 

the top-ten search results were returned to the users as recommendation. The user-

modeling approach itself was not novel. Nascimento et al. created user models 

based on terms in the title (weight=3), abstract (weight=2), and body (weight=1) 

of the users’ papers. Results for the different search engines are interesting. 

Overall, ACM performed better than IEEE and Science Direct, but a combination 

of all three performed best. Other findings include that creating user models based 

on abstracts performs better than based on titles only and slightly better than based 

                                                      

102 http://nlp.stanford.edu:8080/citation-retrieval/ 

http://nlp.stanford.edu:8080/citation-retrieval/
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on body text. In addition, bi-grams performed better than noun-phrases. However, 

the evaluation was based on ten computer science students only.  

F.1.18 ResearchGate 

ResearchGate is a social network for scientists and offers a recommender system, 

or more precisely an advanced search interface [309]. Users may enter search 

terms or an abstract and ResearchGate will show related papers that are 

determined with a classic content-based text comparison. We could find no more 

details on their recommender system.  

F.1.19 Docear103 

Docear is a literature management software that allows managing PDF files, 

annotations, and references in mind maps [18]. In 2012, a content-based 

recommender system was integrated in Docear, and presented in a poster at JCDL 

2013 [29]. The recommender system was based on Docear’s predecessor, SciPlore 

MindMapping [16, 19], and utilized the users’ mind maps for user-modeling. On 

average, click-through rate was around 6%. When users explicitly requested 

recommendations, CTR increased to 8.35%. Beel et al. also analyzed the impact of 

the user-model size. Small user models, containing five or less terms, only 

achieved CTRs of 1.80% on average. Larger user models with more than 11 terms, 

achieved CTRs of 6.67% on average. The best results were achieved when user 

models contained between 100 and 250 words. The authors also published several 

other papers about different aspects of research-paper recommender systems [24, 

30, 32]. Beel et al. also applied stereotypes [31]. They assumed that all users of 

their reference management software Docear are researchers or students. Hence, 

papers and books were recommended that were potentially interesting for any 

student and researcher (e.g. a paper about optimizing scholarly literature for 

Google Scholar [22]). Beel et al. used stereotypes only as fallback model when 

other recommendation approaches could not deliver recommendations, for 

instance for very new users. They report mediocre performance of the stereotype 

approach with click-through rates (CTR) around 4%. 

F.1.20  Osusume 

Osusume is the first Japanese paper recommender, according to Uchiyama et al. 

[370]. It distinguishes between different “viewpoints”, i.e. requirements of the 

                                                      

103 Docear is included in this review, because the review was ment to be published as separate research paper.  
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users. For instance, the authors assumed that some users are more interested in 

state-of-the-art papers and others in authoritative papers. Uchiyama et al. also 

distinguish between novice and expert users. To provide diversity in 

recommendations Osusume selects five recommendations randomly out of the 

top100 candidates. The authors claim that Osusume combines CF and CBF, but no 

details are provided in the articles. To us the approach appears like a classic CBF 

with some additional filtering criteria (e.g. to provide state-of-the-art paper, results 

were ordered by publication date). Uchiyama et al. did not evaluate their 

recommender system. They only asked 16 study participants which viewpoints 

were most relevant to them. Most users were interested in state-of-the-art and 

international papers (all users were Japanese and apparently interested in receiving 

recommendations for English articles). Only few users were interested in papers 

being just similar to the input paper. This finding is interesting because the main 

assumption of CBF is that users are interested in papers being similar to the ones 

they already know.  

F.1.21 Translation Model  

In 2011, Lu et al. proposed a unique and interesting view on the problem of giving 

citation recommendations [233]. The authors considered terms in a citation’s 

context to be of a different language than terms contained in the cited document. 

Hence, they argued, the different languages needed a translation. To accomplish 

the translation, Lu et al. adopted the Translation Model that was introduced in 

1999 by Berger and Lafferty and that is usually used for cross language search 

[33]. The translation model requires a training data set to ‘learn’ the language. Lu 

et al. used the citation contexts (three sentences around a citation) and the abstracts 

and full-texts of the recommendation candidates for the learning, and compared 

their approach against the context aware relevance model (p. 223), and the 

language model. The new approach outperformed both baselines. Interestingly, the 

language model performed better on the body-text than the abstract, and the 

translation model performed better on the abstract than on the body-text.  

In 2012, He et al. enhanced their approach through position alignment, which 

enhanced the learning process by dividing a document into passages and 

considering their positions in the translation [138]. Based on an offline evaluation, 

the authors report a small, but statistically significant, improvement: mean average 

precision increased from 0.5829 for the standard translation model to 0.5919 for 

the position-aligned translation model. This is an improvement of around 1.5%. 

Somewhat interesting is the effectiveness of the baseline, i.e. the language model. 

In the first article, the language model achieved a mean average precision between 

0.122 and 0.211, while the translation model achieved an MAP around 0.5, i.e. 
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more than twice as high [233]. In the second paper, the language model achieved 

an MAP of 0.4938, while the translation model achieved 0.5829 [138]. This is 

‘only’ an increase of 18%.  

F.1.22 Citation Translation Model (CTM) 

In 2012, Huang et al. adopted the idea of using the translation model for 

recommending citations [156]. In contrast to Lu et al., Huang et al. consider cited 

papers as entirely new words and give them unique IDs. In addition, they used 

“inverse citation context frequency” (ICF), which they adopted from the standard 

IDF measure. Finally, Huang et al. included co-citation data in their approach. 

They assigned all terms in a citation context to all references of that citing paper. 

Based on an offline evaluation, CTM outperforms TM and other baselines (Cite-

PLSA-LDA, Link-PLSA-LDA, and CRM). Despite the excellent performance, 

Huang et al. acknowledge one significant problem of CTM, namely that only 

papers can be recommended that have been cited previously.  

F.1.23 Problem vs. Solution 

Jiang et al. propose that are two types of relevancies, one problem-oriented 

relevance, and one solution-oriented relevance [172]. Accordingly, they try to find 

recommendation candidates that are most relevant to an input’s paper problem, or 

most relevant to its presented solution. To do so, Jiang et al. split the papers’ 

abstracts into a solution and a problem part. They did this manually for 200 papers 

(71% of the abstracts contained a clear distinction between problem and solution). 

Each paper then was represented by two vector space models, one containing the 

terms of the abstract’s problem section, and one with the terms of the abstract’s 

solution section. For both representations, separate recommendations were 

generated. According to their user study, with an unknown number of participants, 

their approach achieved higher user satisfaction than providing a single list of 

recommendations based on a combined vector space model. In addition to terms, 

Jiang et al. also experimented with topics and concepts. Topics were based on 

latent dirichlet allocation, concepts were based comparing n-gram terms with 

social tags from CiteULike. In many scenarios, topics and concepts performed 

better than single terms. The authors acknowledge that their approach requires a 

lot of runtime. To reduce runtime, user models (i.e. a single input paper), were 

only compared against those papers that were cited by the input paper or cited by 

the cited papers, or that the input paper was citing itself or that the cited papers 

were citing.  
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F.1.24 Scholar Update 

Scholar Update is a recommender system by Google Scholar [128]. On Google 

Scholar, researchers may create a profile listing their publications. Based on these 

publications, Scholar Update finds related articles and recommends these to the 

user. Related articles are based on content, the citation graph, and the authors the 

user works with and cites. Scholar Update also reports to consider concept drift. 

However, there are no further details available on the exact implementation of the 

recommendation approach.  

F.1.25 Mendeley Related Papers 

Mendeley [141] offers two types of recommendations, namely content-based and 

collaborative filtering based [163]. Their content-based recommender system is a 

“related paper function” that shows recommendations based on a set of input 

papers [163]. Similarity is measured with cosine based on TF-IDF weighting and 

implemented with Lucene. Mendeley experimented with different document-fields 

for their recommender system (title, abstract, social tags, mesh-terms, author 

provided keywords, author name, general keywords) and combinations of the 

fields. Their evaluation shows that social tags outperform all other fields (p@5: 

0.45 vs. e.g. abstracts p@5: 0.27). Even the best performing combination of 

several fields only achieved a precision of 0.36. There is no information provided 

about the evaluation except that it was an offline cross-validation based on a 

ground truth. However, since Mendeley has access to data of millions of articles 

and users, it seems likely that the results have some significance. Their 

collaborative filtering approach is reviewed later (p. 234). 

F.1.26 SemCir 

In 2012/13, Zarrinkalam and Kahani introduced an approach to calculate paper 

similarity based on relational features [402] and built the recommender system 

SemCir (Semantic Citation Recommendation System) based on top of it [403]104. 

SemCir indexes papers based on titles, abstracts and citation context. Users 

provide some text, which serves as user model. The initial candidate set is 

generated by selecting the n most similar documents based on content-similarity. 

                                                      

104 The SemCir paper contains most of the first paper’s information and reading it should be sufficient for 

most researchers. 
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All neighbor papers are included in the candidate set (cited papers, citing papers, 

papers from the same venue, same author, co-cited, bibliographic coupled). Then, 

each paper in the candidate set is ranked based on the multiplication of text and 

relational similarity. Relational similarity is based on the same factors as being 

used for extending the candidate set (citing and cited papers, number of co-

authors, etc.). The weights of the factors were learned with a genetic algorithm. 

Results show that using the relational factors in addition to text similarity roughly 

doubled the effectiveness compared to text similarity alone. The optimal size, i.e. 

best trade-off for recall and computing time, for the initial candidate set was 25 

(resulting in a total candidate set size around 3,000 wit SD=1,300). The downside 

of SemCir’s approach is that it needs 38 times as much calculating time than a 

text-only comparison. The authors also self-criticize that they used a citation-based 

ground-truth which probably favored the citation based ranking factors. So far, the 

paper only received one citation. However, we believe that this paper is worth 

reading. The paper is well written, very detailed, and the approach seems 

promising.  

F.1.27 Clapper 

In 2013, Wang et al. developed a system to recommend “classical papers” to 

researchers being new to a research field, so these researchers could easily find the 

most relevant standard literature in that field [383]. Wang et al. used two main 

factors to rank papers retrieved via a normal search query. The first factor was 

“download persistence” which describes how constantly papers accumulate 

download counts over the years. They defined that classical papers are those 

papers with high download persistence. The second factor was the “principle of 

citation approaching” (CAF). Wang et al. observed that papers, which cite a 

classical paper, tend to cite those papers that the classical paper is citing as well. 

Papers with a high CAF were ranked lower than papers with a low CAF. The 

authors claim that in a user study with 50 professors, and download counts 

retrieved from ACM Digital Library, their approach could recommend papers that 

were considered by the professors as suitable papers for beginners. Unfortunately, 

the approach was not compared against any baseline. It would have been 

particularly interesting to see whether “classical papers”, with constantly high 

download counts, are preferred over papers with high download count that were 

not accumulated constantly over a longer period of time. In addition, the user 

study and the recommendation approach are described only superficially, which 

reduces the significance of the results.  
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F.1.28  RefSeer  

In 2013, Rokach et al. introduced RefSeer, which used machine learning based on 

the Citation Translation Model (p. 228) with a number of global relevance features 

[317]. Papers were ranked higher, the more citations the papers, the papers’ 

authors, venues, or affiliations had accumulated over the past 12 months. Rokach 

et al. also considered title length, number of co-authors, number of affiliations, and 

venues types for the ranking. Papers were also ranked higher if one of its authors 

had co-authored with the current user, or if the user had cited the recommendation 

candidate or its authors previously. Finally, textual similarity between titles and 

venue names was considered. All these features were used to train a “Full Machine 

Learning Method” that combined several machine learning approaches such as 

LibSVM, Random Forests, and AdaBoost.  

 
Figure 86: RefSeer website 

The results showed that combining the mentioned features with the CTM lead to a 

twice as high precision, and f-measure, than using CTM alone. However, runtimes 

dramatically increased from 248ms (CTM) to 4.6 seconds (Full Machine 

Learning), on a small CiteSeer dataset with 3,312 papers. On a CiteULike dataset 

with 14,418 papers, runtime even increased to 49 seconds, while CTM required 

390ms. To improve runtimes, Rokach et al. used a “Lite” machine learning which 

pre-filtered 500 recommendation candidates based on CTM only, and then applied 

the machine learning to rank the candidates. Consequently, runtime decreased to 
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less than a second, and precision remained almost as high as with the full machine 

learning model. The paper impressively shows that simple metrics adopted from 

Scientometrics can significantly improve the recommendation process. 

Whether the approach is applied by RefSeer remains unclear. On RefSeer’s 

website (Figure 86), users have three different modes to submit PDF files, or 

queries (i.e. abstracts). It is not stated what exactly the differences between the 

modes are, and which approaches are applied to generate recommendations.  

F.2 Collaborative Filtering Approaches 

F.2.1 Personality Diagnosis 

“Personality Diagnosis” was introduced in 2000 and is a collaborative filtering 

approach by D. M. Pennock and some of the CiteSeer authors, including C. Lee 

Giles [295]. Their main contribution was to assume that users were rating items 

with Gaussian noise and when removing the noise the ‘true’ rating became visible. 

To find the true ratings, and similar users, Pennock et al. apply probability theory. 

They evaluated their approach against classic collaborative filtering with Pearson 

correlation and a vector-similarity based CF. The evaluation showed that vector-

similarity CF outperforms Pearson correlation CF, and that personality diagnosis 

outperformed both of the baselines. The evaluation was based on the Eachmovie 

dataset and a dataset from CiteSeer in which implicit ratings were inferred from 

users’ actions such as downloading documents or viewing document details. The 

CiteSeer dataset contained only 1,575 documents from originally 270,000 articles 

because the authors removed all documents with less than 15 implicit ratings. The 

authors explain that their approach should be integrated into CiteSeer soon. 

However, none of the later CiteSeer papers mentioned ‘Personality Diagnosis’. 

Hence, we assume the plan was never realized. Also within the research paper 

recommender community, Personality Diagnosis had not much impact. To the best 

of our knowledge, no other authors adopted their approach. Outside the research 

paper recommender community, the article was highly influential and was cited 

more than 400 times.  

F.2.2 CF Based Citation Recommender 

In 2002, McNee et al. wanted to apply collaborative filtering to research paper 

recommendations [249]. To overcome the cold start problem, McNee at al. 

presented an interesting idea. They considered papers to be users and a paper’s 

citations to be votes for other papers. This way they could fill the rating-matrix, 

and applied user-item and item-item CF. They compared these two approaches 

against four baselines. First, with co-citation matching those papers were 
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recommended that were most often co-cited with those papers contained in the 

input paper’s bibliography. Second, a naïve Bayesian classifier was used to find 

related papers. Third, the title of the input paper was send as search query to 

Google, and Google’s results were recommended. Fourth, content similarity (title 

and abstract) was calculated between the input paper and all papers citing the 

papers in input paper’s bibliography, being cited, or being co-cited. In an offline 

experiment, both CF variations were two or even three times as good as the 

alternatives (user-item a little bit better than item-item). However, in an online 

experiment, with real users, the Google baseline performed best.  

McNee et al. also showed that the way users were asked to evaluate papers, 

influences their answers. For the online experiment, they asked two questions, 

“Would recommendations such as these be helpful in finding related work” and 

“Would recommendations such as these be helpful in finding papers to read” 105. 

Results differed significantly although we would consider both questions as being 

very similar. McNee et al also showed that asking users for ‘quality’ and ‘novelty’ 

judgments made a difference. They concluded that there is no single-best 

algorithm and a recommender system should consider the usage scenario. The 

paper received more than 200 citations, and is interesting to read.  

F.2.3 CiteULike 

CiteULike is an online reference manager providing literature recommendations 

since 2009 [70], whereas the algorithms are based on research from 2008 [37]. The 

authors compared two variations of item-based CF with user-based CF in an 

offline experiment [37]. User-based CF performed around twice as good as the 

item-based CF. Bogers and van den Bosch also found that the optimal 

neighborhood size for user-based CF lies between four and eight, and for item-

based CF around 40, though precision still slightly increases for neighborhood 

sizes up to 500. Unfortunately, the paper provides hardly any detail about the 

algorithms, and is difficult to read. Today, on the CiteULike platform, both an 

item-based and a user-based algorithm are offered separately and the user decides 

which algorithm to use to receive recommendations [69]. CiteULike reported 

click-through rates in their live system of 18.96% [68]. We are not sure if the item-

based approach is the item-based CF approach presented in their paper, of if it is a 

new approach that is based on the co-occurrence concept (see next section).  

                                                      

105 Emphasis was made by us 
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F.2.4 CARES 

In 2009, Yang et al. developed a recommender system for the China American 

Digital Academic Library (CADAL), called CARES (CADAL Recommender 

System) [392]. They used collaborative filtering and inferred implicit ratings based 

on users’ access logs, and the number of pages they read. The authors would have 

liked to use explicit ratings but their users were “too lazy to provide [explicit] 

ratings for books“. Yang et al. experimented with two different ranking strategies 

for recommendation candidates, namely a greedy and a random walk algorithm, 

after similar users were determined with AP Correlation. Their results show that a 

random walk based ranking performs better than a simple greedy ranking 

algorithm. In addition, they report that the optimal neighborhood size was 20-30. It 

remains unclear whether CARES ever was actually integrated into CADAL. The 

approach was evaluated in an offline experiment, against no baseline.  

F.2.5 Synthese & Sarkanto  

In 2007, Vellino and Zeber proposed a “hybrid, multidimensional recommender 

system” for research articles [376]. The 4-page paper contain primarily a literature 

survey on recommender systems and some ideas how a hybrid multidimensional 

recommender could look like. The paper was later referred to by Vellino as the 

paper in which his recommender system “Synthese” was introduced (though the 

term Synthese does not occur in that paper). In 2010, Vellino compared Synthese 

against the bx recommender (p. 236). Instead of the hybrid multidimensional 

approach, Synthese was now supposed to use the same approach as TechLens (p. 

241), i.e. CF with papers interpreted as users [374]. Results in the two-page poster 

include that bx’ approach, based on co-downloads, has a higher coverage than 

Synthese, but semantic diversity was lower. Since the overlap between the 

approaches, in terms of recommended papers, was low, Vellino concluded that 

ideally both approaches should be combined. The accuracy of the two approaches 

was no evaluated. A prototype of Synthese, renamed to Sarkanto, was available 

until recently106, but in the past few months, the website was not available. 

F.2.6 Mendeley Suggest 

Mendeley Suggest was introduced in 2012 by Kris Jack in several presentations 

[161–163]. Mendeley Suggest uses Apache Mahout for implementing item-based 

collaborative filtering, and is only available to Mendeley’s premium users. Since 

                                                      

106 http//www.lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/ 
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Mendeley Suggest is using a (slightly modified) out-of-the-box solution, it cannot 

shine with novel recommendation approaches but some interesting insights about 

running a large-scale recommender system for research papers. Among others, 

Jack reports that precision increased over time (0.025 in the beginning, 0.4 after 

six months); precision strongly depended on a user’s library size (p@10=0.08 for 

20 articles, p=0.40 for 140 articles), and precision depended on the similarity 

metric being used (1st: co-occurrence; 2nd: Log Likelihood; 3rd: Tanimoto 

coefficient; 4th: Cosine; 5th: Euclidian Distance; 6th: City Block). Kris was also first 

who reported about the monetary costs required to run a recommender system – 

which are surprisingly low (cf. 3.4.2, p. 52). The slides also include detailed 

information about the general architecture and implementation of Mendeley 

Suggest. 

F.2.7 Can’t See the Forest for the Trees 

In 2013, Caragea, Lee Giles, et al. used singular value decomposition (SVD) on 

the citation graph, and evaluated their approach against several CF variations [55]. 

In their 2-page poster, the authors described their approach in a single paragraph, 

which leaves the reader with only a rudimentary idea of the approach. Since the 

authors use a citation graph, containing papers and citations, it remains also 

unclear how the collaborative filtering approaches and user similarities 

respectively were computed. In addition, the test collection from CiteSeer was 

strongly reduced which makes it difficult to judge the validity of the results. The 

authors removed papers having less than ten and more than 100 citations from the 

collection, as well as papers citing less than 15 and more than 50 papers. 

Therefore, from 1.3 million citing papers, only 16 thousand papers remained in the 

test collection. We doubt that such a pruned collection may produce representative 

results.  

F.3 Co-occurrence Approaches 

F.3.1 BibTiP 

BibTip was originally developed by the University of Karlsruhe, Germany and 

uses co-views for determining related papers [266]. The authors adopt the ‘Repeat-

Buying Theory’ which was developed by Andrew Ehrenberg in the 1950’s to 

explain consumer behavior [110]. Since BibTip uses co-views, no true user model 

is built. Instead, document similarities are calculated offline, and when a user 

looks at a paper, papers being previously co-viewed with that paper are 

recommended. The earliest BibTip papers from 2001 present only some general 

ideas [111, 113]. In 2002, more details were published with a first evaluation [109, 

110] and an overview of BibTip’s architecture [112]. Several papers more 
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followed in the next years [38, 101, 108, 115–118, 120, 132, 265, 266, 279]. 

Although the BibTip team published many papers, their work is surprisingly little 

acknowledged in the community. Most of their papers have only few citations. 

This might be because BibTip uses rather a simple approach and as such, the 

published papers are not particularly groundbreaking. However, it should be noted 

that the BibTip team around Andreas Geyer-Schulz were probably first to apply 

the concept of co-occurrences to research-paper recommender systems. BibTip is 

also one of the few recommender systems that is applied on a large scale. Today, 

BibTip is a commercial system available via a Web Service that can be purchased 

by digital libraries who want to provide literature recommendations to their 

visitors. The viewing behavior is collected over all libraries using BibTip. This 

results in observing more than one million downloads per day [189]. The authors c 

is clicked out of the delivered recommendation lists (containing up to 13 

recommendations) [120, 189]. Interestingly, this value is similar to the one 

reported by PubMed which is using a completely different approach (p. 220) 

F.3.2 National Sun Yat-sen University 

In 2003, the National Sun Yat-sen University in Taiwan experimented with co-

occurrences and tried different methods for building user models [159]. The initial 

situation was that a user submitted a search query to the university’s search 

engine. In one approach, all papers contained in the search result were utilized and 

those papers that most often co-occurred with those in the search results were 

recommended. In another approach, only those papers whose detail-page a user 

browsed during one session were utilized. The latter one performed best. The 

authors used association rules and a ‘hypergraph’ approach to determine relevant 

papers. Their association rule is a simple co-occurrence measure normalized by 

time. The “hypergraph” approach compares user sessions with each other based on 

cosine similarity. The authors conclude that the hypergraph approach performs 

better than the simple association rule approach. The approach does not seem too 

spectacular. However, it shows that also co-occurrence based approaches can 

utilize user models that contain more than one single input paper.  

F.3.3 bx by Exlibris 

bx is a recommender system run by ExLibris and similar to BibTip. As BibTip, bx 

is a commercial recommender system available via a Web Service, and, as BibTip, 

bx utilizes co-views of research papers. Sadly, there is only little detail on the 

exact algorithms, which apparently are patent-pending [93]. In the paper from 

which bx originated, only superficial information can be found [41], but it seems 

that bx is applying a simple count of co-occurrences to provide recommendations. 
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Some presentation slides from 2011 provide information about the effectiveness of 

bx [365]. Click-through rates are between 3% and 10% depending on the 

institution in which recommendations are show (bx is providing more than 1,000 

institutions with recommendations) [93]. This is an interesting result, because it 

shows that the same recommendation algorithm may lead to different results when 

they are applied at different universities, possibly in different webpage layouts, 

and possibly to students with different backgrounds. 

F.3.4 Co-Citations vs. Co-Downloads  

For his Master’s thesis, Stefan Pohl evaluated in 2007 whether recommendations 

based on co-citations or co-downloads were more effective [301]. He was 

motivated by the fact that extracting citations from articles is time consuming and 

error-prone and it may take years before articles are cited and become available as 

recommendation candidates. His most interesting finding was that after around 26 

months, recommendations based on co–citations became more effective than those 

based on co-downloads. Pohl also pointed out that about two thirds of all papers 

had no co-citation at all and those who had usually had only one or two of them. In 

contrast, “almost all” papers had at least one co-download. Pohl concluded that co-

citation approaches make only sense for few papers after a long time after 

publication. The most important findings of Pohl’s thesis are summarized in a two-

page poster [302]. 

F.3.5 Scienstein and Citation Proximity Analysis 

In 2009, Gipp et al. presented Scienstein, a concept for a research paper 

recommender system with several ideas how recommendations could be made 

[123]. The poster also introduced a concept called ‘citation proximity analysis’ 

(CPA) which was later presented in detail by Gipp and Beel in another paper 

[122]. CPA is an extension of co-citation analysis taking into account the distance 

of two citations in a document. For instance, if two papers are cited in the same 

sentence, their relatedness is assumed to be higher than that of two papers being 

cited in two different paragraphs. Based on a small user study, the authors report 

that twice as many users liked CPA-based recommendations than 

recommendations based on classic co-citation analysis.  

F.4 Graph Based Approaches 

F.4.1 Spreading activation in intra-book recommendations  

In 2000, Woodruff et al. tackled the problem that a researcher reads a book, which 

contains several articles, but does not know which articles of the book to read 

[388]. Woodruff et al. imagined that users picked at least one article they like, and 
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related articles in the book, or related articles being cited by articles in the book, 

would be recommended. They built a graph, in which papers were connected by 

citations, bibliographic coupling strength, co-citation strength, text similarity and 

several combinations. Given a single input paper, recommendation candidates 

were found through spreading activation in the graph. Namely, they applied the 

Leaky Capacitor Model, which was already introduced in 1984 [8]. Based on an 

evaluation with only three participants and a single book (containing 43 articles, 

and 676 cited articles) Woodruff et al. claimed that spreading activation achieved 

the best results, compared to a standard CBF. Results were particularly effective 

when the graph was based on papers’ text similarity and citation based metrics.  

F.4.2 A two-layer graph approach  

Usually, recommender systems use ‘flat’ graphs (if they are using graphs at all). 

Huang et al. proposed a two-layer graph model for a Chinese book recommender 

in a digital library [158]. In the user-layer, users are modeled and their similarities 

to each other based on demographic data such as age, education, gender, and 

number of children. In the book-layer, similarities between books are modeled, 

based on the books’ content and attributes. For content similarity, title, keywords, 

foreword, and introduction were analyzed. Utilized attributes included the number 

of pages, layout information, publisher, weight, size, and several more. How 

exactly demographics and book attributes were utilized to calculate similarities 

was not explained. Both layers were connected by the purchases of books the users 

made. With this model, Huang et al. were able to apply content-based filtering, 

collaborative filtering, and a combination of both. For content-based filtering, 

those books were recommended that were similar to the books purchased by a 

user. For collaborative filtering, those books were recommended that were 

purchased by similar users. In a hybrid approach they calculated user-book 

similarities over three degrees in the graph. Additionally, they applied spreading 

activation based on Hopfield’s Net algorithm. Overall, the hybrid approach 

performed best and no statistically significant difference was found between CF 

and CBF.  

F.4.3 PaperRank 

In 2006, Gori and Pucci applied a PageRank-like Random-Walk algorithm to the 

citation network and called this approach PaperRank [129]. They expected a user 

to provide a manuscript containing already some citation to papers. The citations 

were taken as starting point in the citation graph. Gori and Pucci claim a 

precision@20 of 100% (which seems questionable to us), and did not evaluate 

PaperRank against any baseline. This shortcoming was made up for in 2012 when 
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Küçüktunç et al. tested PaperRank against several baselines [195]. They confirmed 

a good – for some scenarios even the best – precision compared against Katz, co-

citation strength, bibliographic coupling strength, CC-IDF (p. 217), DaKatz (p. 

241), and DaRWR (p. 241).  

F.4.4 Multiple Graphs 

In 2008 Zhou, Lee Giles, et al. used machine learning (label propagation) on 

several graphs to generate research paper recommendations [412]. Utilized graphs 

were the citation graph (papers->papers), the author graph (researchers->papers) 

which included papers an author had authored and cited, and the venue graph 

(venues->papers). Zhou et al. evaluated their approach against a SVD based CF 

(on the author-document matrix) and a simple graph Laplacian. They report 3-5 

times better results than with Laplacian and 2.5 times better results than with SVD. 

Zhou at al consider their approach to be an item-based CF approach, we would 

rather classify it as a graph based approach. The paper is very mathematical and 

provides many details about graph calculations.  

F.4.5 Curated Citation Networks & Path Ranking Algorithm 

Andrew Arnold and William W. Cohen are from the biological sciences and 

focused in 2009 on the problem of predicting genes and proteins a researcher 

would write about next [9]. They modeled authors, papers and genes in a graph 

with various connections. Authors were connected to the papers they had authored 

and to their co-authors. Papers were connected to papers they cited or were cited 

by, and to genes they mentioned. Genes were additionally connected to each other 

when they were related (information about relatedness was retrieved from special 

gene databases). Once a user specified one or several papers of interests, a random 

walk was performed in the graph to determine the most relevant genes to 

recommend. Arnold and Cohen experimented with different variations of their 

graph and the findings are interesting not only for researchers in the field of 

biology. Among others, they found that performing a query based on a paper’s 

first author is more effective than on the paper’s last author. Leaving out some 

connections in the graph (e.g. co-authorship and related genes) also increased 

accuracy. This shows that it is not always optimal to utilize all available 

information.  

One year later, Cohen and Lao proposed the Path Ranking Algorithm (PRA) to 

recommend papers, venues, experts (i.e. authors), and genes [210]. In contrast to 

their previous work about curated citation networks from 2009, the graph also 

contained title-words, venues, and publication years. They used machine learning 

to learn the weights of the edges in the graph. Compared to an untrained RWR 



240  

 

(with edge-weight=1) PRA performed significantly better for most of the tasks. 

Interesting to note is that the same algorithm, i.e. PRA, performs differently on 

different recommendation tasks. For instance, mean average precision for expert 

recommendation was 7.2% but 16.0% for papers. The original paper dates to 2010 

[210]. In 2012, the PhD thesis of Lao, which was supervised by Cohen, was 

published with more details on the approach [206]. There are also a few more 

papers and posters, some being unpublished [207–209]. 

F.4.6 Local and Global Relation Strength 

Liang at al. proposed “Local Relation Strength” (LRS) and “Global Relation 

Strength” (GRS) in a citation graph to determine relatedness of papers [225]. LRS 

expresses how strong citing and cited papers are related. The strength is based on 

the “importance” of the citation, the “surrounding citation environment”, and the 

“temporal distance”. How exactly these values are calculated, is described only 

vaguely. GRS is essentially the Katz measure, only that Katz typically assumes a 

weight of 1 between two nodes in a graph, and GRS uses LRS as weight of the 

edges. Both LRS and GRS perform better than several baselines (CC-IDF, co-

citation strength, bibliographic coupling strength, HITS, and Katz).  

F.4.7 Network-Aware Popularity 

Popularity-measures such as PageRank, or a simple citation count, typically are 

calculated based on all papers in the citation graph. Baez et al. proposed to 

calculate a ‘network-aware’ popularity. This measure calculates e.g. citation 

counts only based on the citations from researchers being in the personal network 

related to the user (the personal network could be populated e.g. by co-authorship) 

[11]. Baez et al. present several, rather trivial, ideas for measuring such a network-

aware popularity. For instance, one metric defines a paper as being the more 

popular the more researchers in a user’s network authored or cited the paper. Baez 

et al. propose different types of graphs, for instance the venue, co-authorship, and 

topic graph. In their evaluation, they only seem to consider the co-authorship 

network. Their evaluation shows that their network-aware popularity performs 

better than an overall popularity. However, the authors evaluated their approach 

only against a single overall popularity baseline (absolute citation and author 

count). We also see a major problem with network-aware popularity: Citation 

network usually are already sparse. Reducing the citation network to related 

authors or papers will increase sparsity even further.  



241 

 

F.4.8 TheAdvisor with direction aware Katz and RWR (daKatz & daRWR) 

TheAdvisor107 was recently developed (2012/13) and is one of the few 

recommender systems being publicly available without prior registration. It allows 

users to upload a BibTeX file with a set of references, and specifying whether 

recommended papers should be more recent or more traditional. TheAdvisor was 

initially released in January 2012 and the first paper was published as pre-print on 

arXiv.org [195]. An ‘official’ and briefer version followed some months later 

[193]. It is not clear how recommendations eventually are generated in 

TheAdvisor, but in their papers, Küçüktunç et al. proposed two approaches. One is 

based on Katz, the other one on PaperRank, i.e. RWR. They modified both 

approaches so they consider the direction of a citation and hence called their 

approaches direction aware Katz and RWR (daKatz and daRWR). They conducted 

an extensive evaluation with different scenarios (i.e. different weight on recent and 

traditional papers) and compared daKatz and daRWR against Katz, PaperRank 

(RWR), co-citation and bibliographic coupling strength, and CC-IDF. In most 

scenarios, daKatz and daRWR outperformed the baselines.  

Küçüktunç et al. also published detailed information about the technical 

infrastructure and run-times of TheAdvisor in a conference paper [191] and an 

extensive pre-print of a forthcoming journal paper [192]. An approach for 

diversifying results, based on daRWR, is briefly presented in a poster [196], and in 

more detail in a pre-print of a journal article [194]. Küçüktunç et al. also report to 

have experimented with user feedback but results are omitted in their paper [195], 

and we could not find a paper that present those results. 

F.5 Hybrid Recommendation Approaches 

F.5.1 TechLens 

In 2004, Torres, McNee, and three others introduced TechLens and ten different 

algorithms to generate research paper recommendations [368]. The algorithms 

were mainly adopted from Robin Burke [50] and consisted of three CBF 

variations, two CF variations, and five hybrid approaches.  

Content-Based Filtering: Pure-CBF served as baseline, being the standard 

CBF in which a term-based user model – in case of TechLens, terms from 

a single input paper – is compared with the recommendation candidates. In 

                                                      

107 http://theadvisor.osu.edu/ 

http://theadvisor.osu.edu/
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CBF-Separated, for each paper being cited by the input paper, similar 

papers are determined separately and at the end the different 

recommendation lists are merged and presented to the user. In CBF-

Combined, terms of the input paper and terms of all papers being cited by 

the input paper are combined in the user model. Then, those papers being 

most similar to this user model were recommended.  

Collaborative Filtering: Pure-CF served as another baseline and 

represented the collaborative filtering approach from McNee et al., in 

which papers were interpreted as users, and citations as votes [249]. In 

Denser-CF, citations of the input paper were additionally included in the 

user model.  

Hybrid: With Pure-CF->CBF Separated, recommendations were first 

created with Pure-CF. These recommendations were then used as input 

documents for CBF-Separated. In a similar way Pure-CF-

>CBF Combined, CBF Separated->Pure-CF, and CBF-Combined->Pure-

CF were used to generate recommendations. Fusion created 

recommendations with both, CBF, and CF independently, and then 

merged both recommendation lists. 

Torres et al. report to have evaluated all ten approaches, but results were only 

presented for the top-5 approaches. In an offline evaluation, the CBF approaches 

performed worst (CBF-Separated better than CBF-Combined), and Pure-CF 

performed best (even better than the hybrid approaches). The approaches were 

also evaluated with a user study and Torres et al. distinguished between different 

reading purposes (novel, survey, authority, introductory). As in 2002, no single-

best algorithm could be found. For instance, Pure-CF performed best for 

authoritative and novel papers. For survey papers and introductory papers, CF 

performed worst and CBF-Separated was best. In terms of overall user 

satisfaction, CF delivered unsatisfactory results (second worst out of the five 

algorithms for which details were provided), and CBF-Separated performed best. 

Unfortunately, the Google-baseline, which performed best in the 2002-paper, was 

not used in this evaluation. 

In 2006, McNee et al. criticized that researchers were concentrating too much on 

recommender’s accuracy but ignoring users’ actual needs [250]. In a user study 
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with around 138 participants108, they evaluated whether different algorithms 

performed differently for different recommendation tasks. The study is similar to 

the two previous papers but while the two previous papers covered users’ needs 

only superficially, the 2006-paper investigates this issue in detail. McNee at al. 

compared their citation based CF approach, CBF and a PLSI and Naïve Bayesian 

approach with each other. The latter two approaches performed quite poor in 

general. However, for CF and CBF it was shown that depending on the task, user 

satisfaction differed for the two algorithms. Interestingly, the overall difference in 

satisfaction for CF and CBF was rather small. This result contradicts the previous 

finding, in which users were not very satisfied with CF.  

In 2010, some of the TechLens authors re-evaluated some of the TechLens 

approaches and some newly developed approaches with an offline evaluation [90]. 

The novel idea was to weight implicit ratings for item-based CF, which were 

inferred from the citation network, based on PageRank, SALSA, and HITS. In 

addition, Ekstrand et al. evaluated several CBF approaches for which they used 

PageRank, SALSA, and HITS in the ranking, and some hybrid approaches. They 

combined various factors and evaluated 177 algorithms in total. Using SALSA and 

PageRank for CF improved performance, compared to plain CF, while HITS did 

not increase performance. Interestingly, for CBF, results were just the opposite. 

Here, a HITS enhanced ranking achieved the highest performance. Overall, CF 

(with whatever weighting) outperformed CBF, and the hybrid approaches. As 

such, the results of this offline evaluation confirmed the results presented in the 

2004 paper. In an additional user study with 19 participants, Ekstrand et al. 

evaluated three of the approaches, namely PageRank weighted CF, CBF with 

HITS weighting, and a CBF-CF hybrid approach. Similar to the offline 

experiment, CF outperformed the other approaches, and CBF performed worst. It 

is interesting to note that results from the user study are exactly the opposite as in 

the 2004 user-study. Although it was the same evaluation scenario (creating 

introductory reading lists), CBF performed best in the 2004 paper, and CF 

performed worst. We were also confused that in the 2010 paper, item-based CF 

and CBF-Combined were primarily used, although in 2004, user-CF (slightly) 

outperformed item-CF, and CBF-Separated outperformed CBF-Combined. Again, 

the Google baseline from 2002 was missing. 

                                                      

108 The exact number of study participants remains unclear. Once McNee et al write there had been 138 

participants, and once they write there had been 117 professors, 18 students, and 7 others, which adds up to 142. 
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Interesting is also a paper published by Dong et al. [87] who are not affiliated with 

TechLens. In 2009, Dong et al. evaluated seven of the ten algorithms presented by 

TechLens in 2004. In Dong et al.’s offline-evaluation, Pure-CF is only fifth best 

(out of seven), while Pure-CF was best in the TechLens offline evaluations. In 

Dong et al.’s offline evaluation, all three CBF approaches performed better than 

CF or hybrid approaches, and among the CBF approaches, CBF-Combined 

performed better than CBF-Separated. These results contradict the results from 

Torres et al. [368]. There is no obvious reason why results would differ so much. 

The approaches seem identical, the way the offline experiment was conducted 

seems to be similar and both experiments were conducted on a CiteSeer dataset. 

The only difference we found is that Torres et al. removed papers with less than 

three citations from the corpus, and Dong et al. removed papers with less than two 

citations from the corpus109. However, this could only explain why rankings for CF 

and CBF differed, but not why in Torres et al. evaluation CBF-Separated performs 

better than CBF-Combined, and Dong et al. report the opposite. 

F.5.2 Papyres 

Papyres is a software tool to support researchers in managing their literature [271], 

developed by Amine Naak as part of his Master’s thesis [269]. In 2009, Papyres 

integrated a research paper recommender system [270]. Naak’s work was 

motivated by the idea that most researchers were only interested in certain parts of 

a paper. Therefore, Naak et al. allowed users providing different explicit ratings 

per paper for the paper’s contribution, originality, readability, technical quality, 

etc. These ratings were used for collaborative filtering in combination with 

content-based filtering. Because Papyres had not enough users, Naak et al. 

randomly created artificial users, randomly assigned papers to them, and randomly 

created ratings to evaluate their CF variations based on multiple ratings. Besides 

this questionable evaluation technique, the paper provides little detail on how CF 

and CBF are combined. In an additional user study with 83 participants, Papyrus 

was evaluated and achieved an average rating of 4.43 (out of 5) [271]. However, 

Papyrus was not evaluated against any baseline. As such, the average rating was 

not very meaningful. 

 

                                                      

109 It should be noted that the paper from Dong et al. is not very well written, and when reading the paper, the 

impression occurs that Dong et al. had invented the presented algorithms and not TechLens (some might argue 

Dong et al. plagiarized) 



245 

 

G PDF Title Extraction 

G.1 SciPlore Xtract110 

G.1.1 Introduction 

Extracting the title from PDF documents is one of the prerequisites for many tasks 

in information retrieval. Among others, (academic) search engines need to identify 

PDF files found on the Web. One possibility to identify a PDF file is extracting the 

title directly from the PDF’s metadata. However, often the PDF metadata is 

incorrect or missing. Therefore, what is often tried is to extract the title from the 

PDFs’ full text.  

Usually, machine-learning approaches such as Support Vector Machines (SVM), 

Hidden Markov Models and Conditional Random Fields are used for extracting 

titles from a document’s full text. According to studies, the existing approaches 

achieve excellent accuracy, significantly above 90%, sometimes close to 100% 

[136, 154, 294]. However, all existing approaches for extracting titles from PDF 

files have two shortcomings. First, they are expensive in terms of runtime. Second, 

they usually convert PDF files to plain text and lose all style information such as 

font size.  

For our academic search engine SciPlore.org we developed SciPlore Xtract, a tool 

applying rule based heuristics to extract titles from PDF files. In this chapter, we 

present this tool, the applied heuristics, and an evaluation. 

G.1.2 SciPlore Xtract 

SciPlore Xtract is an open source Java program that is based on pdftohtml111 and 

runs on Windows, Linux, and MacOS. The basic idea is to identify a title based on 

the rule that it will be the largest font on the upper first third on the first page. 

In the first step, SciPlore Xtract converts the entire PDF to an XML file. In 

contrast to many other converters, SciPlore Xtract keeps all layout information 

                                                      

110 This chapter has been published as: Beel, Joeran, Bela Gipp, Ammar Shaker, and Nick Friedrich. “SciPlore 

Xtract: Extracting Titles from Scientific PDF Documents by Analyzing Style Information (Font Size).” In 

Research and Advanced Technology for Digital Libraries, Proceedings of the 14th European Conference on 
Digital Libraries (ECDL’10), edited by M. Lalmas, J. Jose, A. Rauber, F. Sebastiani, and I. Frommholz, 

6273:413–416. Lecture Notes of Computer Science (LNCS). Glasgow (UK): Springer, 2010. 

111 http://www.pdftohtml.sourceforge.net 
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regarding text size and text position. Figure 88 shows an example XML output file 

of the PDF showed in Figure 87. Lines 6 to 12 of the XML file show all font sizes 

that are used in the entire document (in this case it is all “Times” in a size between 

7 and 22 points). Below this, each line of the original PDF file is stated including 

layout information such as the exact position in which the line starts, and which 

font is used. 

 
Figure 87: Example PDF 

SciPlore Xtract now simply needs to identify the largest font type (in the example 

the font with the ID=0). Which text uses this font type on the first page is then 

identified and to assumed to be the title. 

 
Figure 88: Example XML Output 

G.1.3 Methodology 

In an experiment, titles of 1000 PDF files were extracted with SciPlore Xtract. 

Then, titles from the same PDFs were extracted with a Support Vector Machine 

from CiteSeer [136] to compare results. CiteSeer’s tool is written in Perl and based 

on SVM Light112 which is written in C. As CiteSeer’s SVM needs plain text, the 

                                                      

112 http://svmlight.joachims.org/ 
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PDFs were converted once with PDFBox113 and once with pdftotext114 as these are 

the tools recommended by CiteSeer. It was then checked for each PDF if the title 

was correctly extracted by SciPlore Xtract and CiteSeer’s SVM (for both the 

pdftohtml text file and the PDFBox text file). If the title contained slight errors the 

title was still considered as being identified correctly. ‘Slight errors’ include 

wrongly encoded special characters or, for instance, the inclusion of single 

characters such as ‘*’ at the end of the title.  

The PDFs analyzed were a random sample from our SciPlore.org database, a 

scientific (web based) search engine. A title was seen as being correctly extracted 

when either the main title or both the main title and the sub-title (if existent) were 

correctly extracted. The analyzed PDFs were not always scientific. It occurred that 

PDFs represented other kind of documents such as websites or PowerPoint 

presentations. However, we consider the collection to be realistic for an academic 

search engine scenario.  

G.1.4 Results  

From 1000 PDFs, 307 could not be processed by SciPlore Xtract. Apparently, 

SciPlore Xtract (respectively pdftohtml) struggles with PDFs that consist of 

scanned images on which OCR has been applied. For further analysis only the 

remaining 693 PDFs were used. We consider this legitimate as the purpose of our 

experiment was not to evaluate SciPlore Xtract, but the applied rule based 

heuristic.  

For 54 of the 693 PDFs (7.8%), titles could neither be extracted correctly by 

SciPlore Xtract nor CiteSeer’s SVM. Only 160 (23.1%) of the titles were correctly 

identified by all three approaches. Overall, SciPlore Xtract extracted titles of 540 

PDFs correctly (77.9%). CiteSeer’s SVM applied to pdftotext identified 481 titles 

correctly (69.4%). CiteSeer’s SVM applied to PDFBox extracted 448 titles 

correctly (64.6%). Table 1 shows all these results in an overview. 

When only completely correct titles are compared, SciPlore Xtract performs even 

better. It extracted 528 (76.2%) titles completely correct, while CiteSeer’s SVM 

extracted only 406 (58.6%) respectively 370 (53.4%) completely correct. 

                                                      

113 http://pdfbox.apache.org/ 

114 http://www.foolabs.com/xpdf/download.html 



248  

 

Table 18: Title extraction of 693 PDF files 

 

SciPlore Xtract required 8:19 minutes for extracting the titles. SVM needed 57:26 

minutes for extracting the titles from the plain text files (this does not include the 

time to convert the PDFs to text), which is 6.9 times longer. However, we need to 

emphasize that these numbers are only comparable to a limited extent. CiteSeer’s 

SVM extracts not only the title but also other header data such as the authors and 

CiteSeer’s SVM is written in C and Perl while SciPlore Xtract is written in Java.  

G.1.5 Discussion & Summary 

All three tests show significantly worse results than the often claimed close-to-

100% accuracies. Our tests showed (1) that style information such as font size is 

suitable in many cases to extract titles from PDF files (in our experiment in 

77.9%). Surprisingly, our simple rule based heuristic performed better than a 

support vector machine. However, it could be that with other text to PDF 

converters, better results may be obtained by the SVM. CiteSeer states to use a 

commercial tool to convert PDFs to text and recommends PDFBox and pdftotext 

only as secondary choice. Our tests also showed (2) that runtime of the rule based 

heuristic was better (8:19 min) than SVM (57:26). However, these numbers are 

only limitedly comparable due to various reasons. 

In next steps, we will analyze why many PDFs could not be converted (30.7%) 

and in which cases the heuristics could not identify titles correctly. The rule based 

heuristic also needs to be compared to other approaches such as Conditional 

Random Fields and Hidden Markov Models. We also intend to take a closer look 

at the other studies and investigate why they achieve accuracies of around 90%, 

while in our test the SVM achieved significantly lower accuracies. In the long run, 

machine learning algorithms probably should be combined with our rule based 

heuristic. We assume that this will deliver the best results. It also needs to be 

investigated how different approaches with different languages. Existing machine 

learning approaches mostly are trained with English documents. It might be that 

our approach will outperform machine learning approaches even more 

significantly with non-English documents as style information is language-

independent (at least for western languages).  

SciPlore Xtract 528 76.2% 12 1.7% 540 77.9%

CiteSeer SVM + 

pdftotext 406 58.6% 75 10.8% 481 69.4%

CiteSeer SVM + 

PDFBox 370 53.4% 78 11.3% 448 64.6%

Correct TotalSlight Errors
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Summarized, despite the issue that many PDFs could not be converted, the rule-

based heuristic we introduced, delivers good results in extracting titles from 

scientific PDFs (77.9% accuracy). Surprisingly, this simple rule based heuristic 

performs better than a Support Vector Machine based approach. 

Our dataset (PDFs, software, results) is available upon request so that other 

researchers can evaluate our heuristics and do further research. 

G.2 Docear’s PDF Inspector115 

G.2.1 Introduction 

Several applications in the field of Academia require extracting titles from PDF 

files. For instance, academic search engines identify PDFs found on the Web, and 

reference managers such as Mendeley and Zotero extract titles (and other 

metadata) from PDFs to help users creating bibliographies. In the ideal case, a 

PDF’s title is stored in the PDF’s metadata and can easily be retrieved with 

standard PDF libraries (e.g. PDFBox, jPod, or iText). However, often a title is not 

available via the PDF’s metadata. To retrieve a title anyway, the full-text of a PDF 

must be analyzed.  

In the past years, several tools used machine learning to identify titles from PDFs 

[75, 136, 154, 294], some of them being open source. However, the recently 

developed “SciPlore Xtract” [20] showed that a simple heuristic outperformed 

machine learning approaches. SciPlore Xtract extracted the largest font from the 

first page of a PDF and assumed this to be the title. Although researchers often 

claim accuracies of around 90% for title extraction [136, 154, 294], we recently 

showed that under “real-world” conditions, accuracies are rather between 50% to 

70% [20].  

All solutions have some shortcomings. Either they are proprietary solutions being 

not freely available (Mendeley), have problems in processing PDF files that do not 

comply 100% to the PDF standard (SciPlore Xtract), don’t process PDFs at all and 

require third party tools (ParsCit), are rather slow and achieve low accuracies 

(ParsCit), are not available for all operating systems, or are available only as 

stand-alone tools which cannot be easily integrated into other applications. 

                                                      

115 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Christoph Müller. 

“Docears PDF Inspector: Title Extraction from PDF files.” In Proceedings of the 13th ACM/IEEE-CS Joint 

Conference on Digital Libraries (JCDL’13), 443–444. ACM, 2013. 
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G.2.2 Docear’s PDF Inspector 

We developed “Docear’s PDF Inspector” which identifies titles from (academic) 

PDF files and does not suffer from the aforementioned shortcomings. Namely, 

Docear’s PDF Inspector (a) achieves good accuracies with excellent run times (see 

next section for details) (b) can be used as library by other JAVA applications 

which means other tools can easily integrate Docear’s PDF Inspector (c) can be 

used as a stand-alone application that returns a PDF’s title on the command line or 

stores the data into a CSV file (Figure 89) (d) can process several PDFs in a batch 

(e) can process all PDF files of all PDF versions, including those with minor 

deviations from the PDF standard. In the rare cases that a PDF cannot be parsed 

the title from a PDFs metadata is returned (if available) (f) is written 100% in 

JAVA 1.6 which means Docear’s PDF Inspector runs on any major operating 

system, including Windows, Linux, and MacOS, without any other tools required 

(besides the JAVA runtime environment, of course) (g) is released under the GNU 

General Public License (GPL) 2 or later, which means it is completely free to use 

and its source code can be downloaded and modified by anyone. Both source code 

and compiled library can be found at http://www.docear.org. 

 
Figure 89: Output CSV opened in Microsoft Excel 

Via command line, Docear’s PDF Inspector is started with java -jar 

PdfInspector.jar [OPTION][FILE] and both options and files can be specified 

multiple times. Available options are ‘header’ which includes a PDF’s header 

in the output, ‘name’ which includes the file name, ‘time’ includes the time 

required for processing the PDF, ‘out <arg>’ specifies the file to write to, 

‘outappend’ appends the output to an existing file instead of overwriting it, 

and ‘delimiter’ specifies how fields are separated in the CSV file. The title 

extraction is performed in the same way as SciPlore Xtract does [20]: the largest 

font on the first page that is not exceeding eight lines is assumed to be the title. For 

processing PDF files the PDF library jPod is used.  

http://www.docear.org/
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G.2.3 Methodology 

To evaluate the performance of Docear’s PDF Inspector we created a test 

collection of 500 PDF files. To have a PDF collection that contains various 

formats of academic articles we sent 500 search queries to Google Scholar and 

from the result pages (each with 100 entries) we randomly downloaded one paper. 

57 PDFs were removed from the collection because they had no title or were no 

academic articles at all, i.e. 443 articles remained for the evaluation. The search 

queries were randomly generated from words contained in the mind maps of the 

users of our literature management software Docear [18]. We did not conduct a 

detailed analysis of the downloaded papers but it appeared to us that most papers 

were written in English, and some in German, French and Spanish. Papers were 

from various disciplines (computer science, psychology, biology, social sciences, 

business, etc.) and there was a very high variety of different formats of the articles. 

The collection of 500 PDFs is available upon request, so other researchers can use 

this PDF collection for their research and making their results comparable to ours. 

We also publish our research data, i.e. the extracted titles and charts we created, on 

http://labs.docear.org.  

We evaluated Docear’s PDF Inspector against SciPlore Xtract and ParsCit to have 

a comparison of how good the achieved results are. Because ParsCit cannot 

process PDF files by its own, we converted PDFs to plain text with PDFBox and 

jPod and run ParsCit on both text sets. If an extracted title was identical to the 

actual title, we classified the result as “exact match”. If the extracted title was a 

substring of the actual title we classified the result as “partly match”. Such a partly 

match occurred, for instance, when a tool failed to extract a PDF’s sub-title. For 

both, exact and partly match comparisons, we ignored spaces and special 

characters.  

Some PDFs caused parsing errors probably because they did not comply 100% 

with the PDF standard. For SciPlore Xtract and PDFBox (and hence ParsCit) this 

problem was most apparent: 35.21% (SciPlore) and 20.77% (PDFBox) of the 443 

PDFs could not be parsed at all, for jPod the error was only 5.19%. While we 

consider the original test collection to be representative for a real-world scenario 

that applications such as academic search engines or reference managers face, we 

also wanted to have a test collection that could be processed by all tools, to 

evaluate the effectiveness of the title extraction algorithms (ignoring any PDF 

parsing problems). Therefore, we inferred a ‘reduced test collection’ by removing 

all PDFs from the original test collection which couldn’t be processed by at least 

one of the tools. This resulted in a subset of 278 PDFs. 

http://labs.docear.org/
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G.2.4 Results 

The results we present in this section also show how often titles from Google 

Scholar were accurate. We need to emphasize that accuracies from Google Scholar 

are not comparable with results from the other tools evaluated because Google 

Scholar often receives metadata directly from the publishers. That means, Google 

Scholar does not always extract metadata from PDFs. We provided these results 

only to show that even Google Scholar seems to have problems with extracting 

titles in some cases. 

Docear’s achieves the highest accuracies (Figure 90). For our standard test 

collection Docear’s PDF Inspector outperforms the second best tool (SciPlore 

Xtract) notably. Docear extracts 65.01% of the titles exactly, i.e. without any 

errors, while SciPlore Xtract extracts only 50.34% accurately. ParsCit performs 

worst with an accuracy of 37.25% (PDFBox) and 36.79% (jPod). Docear also 

performs best measured by ‘partly matches’ with an accuracy of 74.04% (SciPlore 

52.14%; ParsCit 38.83% and 36.79%).  

Looking at the reduced test collection the picture slightly changes. Now, Docear 

and SciPlore perform about the same. Docear extracts 73.38% of the titles 

flawlessly, SciPlore 77.70%. Based on ‘partly matches’ Docear extracts 82.01% of 

the titles correctly, SciPlore 80.58% (differences are statistically not significant). 

ParsCit still performs far worse with accuracies around 50%.  

 
Figure 90: Accuracies of the tools on the two test collections 

Docear’s PDF Inspector also performs best in terms of runtime. On average 

(mean), Docear’s PDF Inspector needs 50ms to extract a title from a PDF while 
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SciPlore Xtract needs 428ms and ParsCit 2965ms with the PDFBox library and 

1786ms with jPod (Table 19). The comparison is not completely fair because 

ParsCit does not only extract the title (as Docear does) but also other metadata 

such as authors. However, for those users being only interested in the title, 

Docear’s PDF Inspector identifies a title definitely fastest.  

Table 19: Average runtimes (in milliseconds) per PDF 

 

Summarized, from a user perspective, Docear’s PDF Inspector is the most 

effective tool. It is about 50% more effective than SciPlore Xtract and almost 

twice as effective as ParsCit for a PDF collection we consider representative for 

real-world scenarios. In addition, Docear’s PDF Inspector is around 40 to 100 

times faster than ParsCit and eight times as fast as SciPlore Xtract which uses 

basically the same heuristic. From a research perspective (i.e. on the reduced data 

set), the simple heuristic applied by Docear and SciPlore is around 50% more 

effective than the machine learning approach applied by ParsCit. 

Final note: A recent study showed very good results for some tools which we were 

not aware of at the time of our evaluation [227]. Otherwise, we would have tested 

them against Docear’s PDF Inspector. 

Docear SciPlore ParsCit (PDFBox) ParsCit (jPod)

M ean 50 428 2965 1786

Std. Dev. 61 611 1383 1332

M edian 23 352 2706 1394

M ax 475 17667 15131 17585
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H Impact of User Demographics116 

H.1 Introduction 

There are more than one hundred research articles on research paper recommender 

systems, and even more on recommender systems in general. Many of them report 

on new recommendation approaches and their effectiveness. For instance, Papyrus 

is supposed to have a precision around 20% [270]; Quickstep’s approach is 

supposed to have a precision around 10% [261]; and Jomsri et al. claim an 

accuracy of 91.66% for their research paper recommender system [173]. 

Unfortunately, results cannot be compared with each other because researchers 

used different evaluation methods, metrics, and data sets.  

We believe there is another factor influencing the comparability which has 

received too little attention: users’ demographics and characteristics. In other 

disciplines it is well known that results from one study cannot be used to draw 

conclusions for a population if the study’s user sample differs too much from that 

population. For instance, in marketing you cannot draw reliable conclusions about 

how elderly people in Germany will react to a product if a study about that product 

was conducted in France with university students. Evaluations of recommender 

systems widely ignored differences in user samples. Some studies report to have 

asked their participants for demographic data, but they do not report on them in 

their papers [42]. Another paper reports that age and gender had no impact on the 

accuracy of recommendations but test subjects were all students [291]. With 

students typically being all in the same age-range, it is no surprise that the study 

could not find any differences between different ages.  

We analyzed empirical data collected with Docear’s research paper recommender 

system [29] to find out whether users’ demographics and characteristics influence 

the outcome of the recommender system evaluation.  

                                                      

116 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Andreas Nürnberger. 

“Persistence in Recommender Systems: Giving the Same Recommendations to the Same Users Multiple Times.” 

In Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013), 
edited by Trond Aalberg, Milena Dobreva, Christos Papatheodorou, Giannis Tsakonas, and Charles Farrugia, 

8092:390–394. Lecture Notes of Computer Science (LNCS). Valletta, Malta: Springer, 2013. 
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H.2 Methodology 

Docear users can register an account and provide demographic information such as 

year of birth and gender if they like. They may also opt-in for receiving research 

paper recommendations (even without registration). Recommendations are shown 

on request or automatically every three days of use, ten at a time. During March 

and Mai 2013 1,028 users received 37,572 recommendations. Details on the 

recommendation process may be found in [29]. For the evaluation we used click-

through rate (CTR) which expresses how many out of the displayed 

recommendations were clicked. For instance, when 37,572 recommendations were 

shown, and 2,361 were clicked, CTR is 6.28%. CTR is a common measure in 

online advertisement and equivalent to “precision” in information retrieval.  

H.3 Results 

From a total of 1,028 users who received recommendations, 38.62% did not 

register and 61.38% registered. 21.79% registered but did not provide information 

about their gender, 33.17% registered and were males, and 6.42% registered and 

were females (Figure 91, left pie). Looking only at those users who specified their 

gender, 83.79% were male, and 16.22% were female (Figure 91, right pie). 

Among the genders there is only a marginal difference in CTR with 6.88% for 

males and 6.67% for females (Figure 92). However, there is a significant 

difference between registered users (6.95%) and unregistered users (4.97%). 

Interestingly, those users who registered and did not specify their gender have the 

highest CTR with 7.14%. Another interesting difference between genders relates 

to the willingness of accepting recommendations. From all male users, 38.09% 

activated recommendations while only 34.74% of women did and even less 

(28.72%) of the users who did not specify their gender during registration (Table 

20). This might indicate that these users are concerned about privacy issues when 

receiving recommendations [340].  

From the registered users, 39.62% did not specify their age. From those who did, 

around one quarter (24.15%) were 25 to 29 years of age (Figure 93, bar chart). 

11.29% were between 20 and 24 years and only two users were younger than 20, 

namely 17 and 18. The vast majority (88.19%) was older than 25 years. 4.46% of 

the users were 60 or older. The mean age was 36.56 years, the median was 33. Of 

course, it might be that some users did not provide their correct age and the true 

ages slightly differ from the ones presented.  

Looking at click-through rate by age shows that the older a user is the higher CTR 

becomes (Figure 93, dotted line). While younger users (20-24 years) have the 
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lowest CTR of only 2.73% on average, CTR for users older than 60 is the highest 

with 9.92%. Overall, a clear linear trend is recognizable (Figure 93, dotted line). 

CTR for users who registered but did not provide their age was 7.66% on average 

(not shown in Figure 93).  

 

 

Figure 91: Gender and user type (registered/unregistered) distribution 

Table 20: Percentage of activated recommendations by gender 

 

 
Figure 92: Click-through rate (CTR) by user type and gender 

 
Figure 93: Age distribution and click-through rate (CTR) by age 

The analysis also indicates that the number of days on which a user started Docear 

impacts CTR (Figure 94). For the first 20 times a user starts Docear, CTR 

increases. For instance, users who started Docear on one to five days had a CTR of 

38.62%

33.17%

6.42%

21.79%
Unregistered

Males

Females

Unknown

83.78%

16.22%

Male Female n/a

Recs. Activated 38.09% 34.74% 28.72%

Recs. Deactivated 61.91% 65.26% 71.28%
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5.62% on average while users having started Docear on 11-20 days had a CTR of 

7.30% on average. This is not surprising assuming that the more often users start 

Docear, the more information they enter, the better the user models become, and 

hence the recommendations. However, for users having started Docear on more 

than 20 days, CTR decreased. For instance, users having started Docear on more 

than 100 days achieve a CTR of 4.92% on average.  

 
Figure 94: Click-through rate by the number of days Docear being used 

Another analysis brings even more confusion. We analyzed how CTR changes 

based on the number of recommendations a user received. Based on the above 

results we assumed that the more recommendations a user received, the lower the 

CTR would become because users starting Docear often also receive more 

recommendations. Our assumption was not correct. There is a trend that the more 

recommendations users see, the higher the CTR becomes (Figure 95, dotted line). 

Users who received only one recommendation set (i.e. typically ten 

recommendations) had a CTR of 4.13% while users who saw 21-50 sets had a 

CTR of 9.91% on average.  

 
Figure 95: User distribution and CTR by number of recommendation sets 

H.4 Conclusion 

The analysis showed that demographics and user-characteristics may have a 

significant impact on click-through rates on (research-paper) recommender 

systems. Although gender had only a marginal impact, age impacted CTR 

strongly. It made also a difference for CTR whether users were registered or not, 

how many recommendations they had seen before and how often users had started 

Docear. However, to fully understand the effects and correlations between the last 

two factors, more research is required.  
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We suggest that future evaluations should report on their users’ demographics and 

characteristics in order to create valid and comparable results of recommender 

systems. Some of these are registered vs. unregistered; intensity of the software 

being used; and amount of previously shown recommendations. There are 

certainly further demographics and characteristics that might impact an evaluation 

such as nationality, field of research, and profession, whose impact should be 

researched.  
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I Persistence in Recommender Systems117 

I.1 Introduction 

Recommender systems became popular in many domains during the past decades 

and content-based and collaborative filtering became the two most dominant 

approaches. Some researchers in the field of collaborative filtering analyzed the 

effect of letting users re-rate items. They found that correlation between original 

ratings and new ratings was low and only 60% of users gave the same rating as 

before [73]. Amatriain et al. showed that it might be better to letting users re-rate 

items than showing new ones. By doing so accuracy of recommender systems 

increased by around 5% [7]. 

We wonder whether re-showing recommendations might make sense in general. 

For instance, a user might miss a recommendation the first time, simply because 

he was in a hurry and did not pay attention to the recommendation. In this case it 

would make sense for a recommender to be persistent and to display the same 

recommendation again. To the best of our knowledge ‘recommendation 

persistence’ has not been studied so far.  

I.2 Research Objective & Methodology 

Our goal was to find out if and how often it makes sense to display the same 

recommendations to the same users. To answer this question we analyzed 

empirical data from the literature management software Docear [18] which 

features a research paper recommender system [29]. The recommender system 

recommends research papers to users regardless of whether papers were 

previously recommended to the users or not. We analyzed how click-through rates 

(CTR) between recommendations shown only once and CTR of recommendations 

shown multiple times differed. CTR expresses how much percent of the delivered 

recommendations were clicked. For instance, if 12 recommendations were clicked 

out of 1,000 delivered ones, CTR would be 1.2%. CTR basically measures the 

‘precision’ of the recommendation algorithm under the assumption that a clicked 

                                                      

117 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Andreas Nürnberger. 

“Persistence in Recommender Systems: Giving the Same Recommendations to the Same Users Multiple Times.” 

In Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013), 
edited by Trond Aalberg, Milena Dobreva, Christos Papatheodorou, Giannis Tsakonas, and Charles Farrugia, 

8092:390–394. Lecture Notes of Computer Science (LNCS). Valletta, Malta: Springer, 2013. 
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recommendation is a ‘good’, i.e. useful, recommendation. For further details on 

Docear and its recommender system (e.g. how recommendations are generated and 

displayed) see [18, 29].  

I.3 Results 

31,942 recommendations were shown to 1,155 users for the first time and from the 

31,942 recommendations 1,677 were clicked, which equals a click-through rate of 

5.25% (Table 21). From the 31,942 recommendations 2,466 were shown a second 

time to 375 distinct users and 154 recommendations were clicked (CTR 6.24%). 

From the 2,466 recommendations 574 were displayed a third time and CTR was 

6.97%. Also for the fourth iteration CTR was still rather high (6.55%). Based on 

these results one might conclude that it could make sense to display 

recommendations at least two or three times because for these reiterations CTR 

was significantly higher than for the first one (p<0.05).  

Table 21: Reiterations and click-through rate 

 

The picture changes when looking at more detail into the data: around 50% of all 

clicks on reshown recommendations are ‘oblivious-clicks’ (Table 21, lower part). 

We define an ‘oblivious click’ as a click on a recommendation that the user should 

know already, because he clicked it previously. For instance, 574 

recommendations were shown three times. 40 of these recommendations were 

clicked which equals a CTR of 6.97%. However, only 14 were clicked for the first 

time – the other 26 (2x13) were clicked for the second or even third time. In one 

case a recommendation was even shown six times to the same user and the user 

clicked it each time. Ignoring the oblivious-clicks, i.e. considering only 1st clicks, 

1 2 3 4 5 6 … 11 … 21

Users 1,155     375      97     38     12     6      -   1      

Impressions 31,942  2,466  574  229  112   71    2      1      

No clicks 30,265  2,312  534  214  100   68    2      1      

Clicks 1,677     154      40     15     12     3      -   -   

CTR, overall 5.25% 6.24% 6.97% 6.55% 10.71% 4.23% 0.00% 0.00%

1st click 1,677     97        14     8       7        -   -   -   

2nd click -          57        13     1       2        1      -   -   

3rd click -          -        13     3       2        1      -   -   

4th click -          -        -    3       -     -   -   -   

5th click -          -        -    -    1        -   -   -   

6th click -          -        -    -    -     1      -   -   

Ʃ Obliv. clicks -          57        26     7       5        3      -   -   

% Obliv. clicks 0% 37% 65% 47% 42% 100% -   -   

CTR, 1st click 5.25% 3.93% 2.44% 3.49% 6.25% 0.00% 0.00% 0.00%

Reiteration

O
b

li
v.

-c
li

ck
s
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CTR decreases the more often recommendations are shown. Therefore, results 

may indicate that CTR increases when showing recommendations multiple times 

but only because users sometimes clicked on recommendations they have clicked 

before.  

In addition, CTR increased in general the more recommendations were shown 

previously to a user (Figure 96). For instance, CTR did not only increase for 

reshown recommendations but also for ‘fresh’ recommendations, i.e. 

recommendations being displayed to a user for the very first time. This is not 

surprising because users who receive many recommendations probably are using 

the software for a longer time than users receiving their first recommendations. 

And for users using the software for a longer time, better user models can be 

created and hence better recommendations can be given (although this is not 

always the case as shown in [24].  

 
Figure 96: Redisplayed recommendations vs. fresh ones 

To get a better understanding of how good re-shown recommendations performed, 

we compared their CTR with CTR of fresh recommendations. If a 

recommendation was shown the second time, it received a CTR of 6.24% on 

average – a CTR of 3.93% for reshown recommendations not being clicked before 

and a CTR of 2.31% for reshown recommendations being clicked before (Figure 

96). In contrast, fresh recommendations being displayed at the same time achieved 

a CTR of 6.44% and hence performed better than the reshown recommendations. 

This is true for all iterations: fresh recommendations always performed better than 

reshown recommendations at the same time (including oblivious-clicks). 

Considering only new clicks on reshown recommendations (i.e. ignoring oblivious 

clicks), fresh recommendations performed even two to three times as good.  
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Figure 97: Fresh recommendations vs. redisplayed ones (one-day delay) 

Based on the presented numbers one could conclude that reshowing 

recommendations would never make sense. However, we did the same analysis for 

recommendations that were reshown with at least one day delay (Figure 97). That 

means we ignored all recommendations in the analysis that were reshown to the 

same user within 24 hours. In this case, CTR of reshown recommendations is often 

better than for fresh recommendations (with oblivious-clicks included). For 

instance, for the second iteration CTR for fresh recommendations was 6.69% but 

for reshown recommendations 7.72%. However, when ignoring oblivious-clicks 

again fresh recommendations always perform better than reshown 

recommendations. We also conducted the same analysis with a longer delay (three, 

seven, and fourteen days). Results were similar to the ones presented. Due to space 

restrictions we omit further details.  

I.4 Interpretation and Outlook 

Our results indicate that it makes no sense to generally display recommendations 

multiple times to the same users – fresh recommendations usually perform better. 

Nevertheless, about 2-3 % of recommendations shown the second or third time 

were clicked by the users for the first time. By showing recommendations only 

once, researchers would miss this 2-3% of interesting articles. In further research it 

should be studied why users sometimes click recommendations only when they 

were shown multiple times and whether users eventually found those 

recommendations useful or not. If they found the recommendations useful, then it 

should be studied how to find out which recommendations to show multiple times 

and how often. For instance, it might be that the interest of a user has changed – 

maybe even due to the recommendations he has seen – and on first display the 

recommendation simply was not relevant for him. That means if a strong concept 

drift was determined by the recommender system, recommendations shown 

previously (before the concept drift) might be given again.  
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In addition, it should be studied why users click several times on the same 

recommendations. We assumed that users were just oblivious. In this case it 

probably would be of little benefit for the user to see the same recommendations 

several times. But maybe obliviousness is not the only reason for clicking 

recommendations multiple times.  

It is also quite interesting that it made a difference whether a recommendation was 

reshown before or after 24 hours of a previous impression. In latter case (delay of 

one day or more), click through rates were significantly higher than for 

recommendations being re-shown within 24 hours and CTR of the reshown 

recommendations was even higher than for fresh recommendations. Under the 

assumption that oblivious clicks are desirable, reshowing recommendations could 

make sense. It might also make sense to transfer this finding to collaborative 

filtering and study how long to set a delay before letting users re-rate their items.  
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J Impact of Labels118 

J.1 Introduction 

In the Web community there is lots of discussion about organic and sponsored 

search. ‘Organic search’ is the classic search where users enter search terms and 

search engines return a list of relevant web pages. ‘Sponsored search’ describes 

additional ‘results’ that are often shown beside the organic results. Usually these 

results are related to the search terms but companies pay for them to be displayed 

(in other words, ‘sponsored search’ is a nice paraphrase for personalized 

advertisement). While typical online advertisement has click-through rates (CTR) 

around 0.5% [237], sponsored search achieves CTRs around 2% and sometimes 

even more than 30% [326]. CTR is a common performance measure in online 

advertisement. It describes how many ads were clicked relative to the delivered 

ones. For instance, if 1,000 ads were delivered, and users clicked 61 of them, CTR 

was 6.1%. The higher the CTR the better is the algorithm behind the search 

results.  

In academia, there are several academic recommender systems which typically 

only show organic recommendations [129, 223]. However, we were interested 

which CTR was to expect for sponsored recommendations in academia and more 

importantly, how much, or how little, users would like recommendations in 

general that were displayed for profit-making.  

J.2 Methodology 

Our academic literature management software ‘Docear’ [18] features a research 

paper recommender system [29]. Every third start Docear displays ten 

recommendations that can be freely downloaded (Figure 98). We modified 

Docear’s recommender system and analyzed the effects of the modifications on 

click-through rates (overall, 22,452 recommendations were delivered to 587 

users). Modifications were related to a label describing the nature of the 

recommendations (organic or commercial) and the way of presenting 

                                                      

118 This chapter has been published as: Beel, Joeran, Stefan Langer, and Marcel Genzmehr. “Sponsored vs. 

Organic (Research Paper) Recommendations and the Impact of Labeling.” In Proceedings of the 17th 
International Conference on Theory and Practice of Digital Libraries (TPDL 2013), edited by Trond Aalberg, 

Milena Dobreva, Christos Papatheodorou, Giannis Tsakonas, and Charles Farrugia, 395–399. Valletta, Malta, 

2013. 
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recommendations (Figure 98). More information on the recommender system can 

be found in [18, 29]. 

 
Figure 98: Recommendations in Docear with labels 

Recommendations in Docear were ‘labeled’ to explain the ‘nature’ of the 

recommendations (Figure 98). The ‘basic’ label was ‘Research Papers’. We 

modified this label for each user by randomly choosing whether to add a prefix 

such as ‘Free’ or ‘Free Full-text’ (Table 22) or a suffix such as ‘(Advertisement)’ 

or ‘(Sponsored)’ which resulted in labels like ‘Free Research Papers’, ‘Research 

Papers from our partners’, or ‘Free Full-text Research Papers (Sponsored)’. When 

a suffix was chosen, user must have assumed that the recommendations had a 

commercial background. When no suffix was chosen, users must have assumed 

that recommendations were organic. In addition, when no suffix was chosen it was 

randomly chosen whether to mark the first recommendation as ‘[Sponsored]’ and 

whether to highlight this recommendation or not (Figure 98). Whatever label was 

displayed, recommendations were always calculated with the same algorithms and 

always linked to freely downloadable PDFs.  

Table 22: Labels for the recommendations 

 

We selected two metrics to measure the effectiveness of recommendations and 

determine differences between the labels. With click-through rate (CTR) we 

measured how many recommendations out of the displayed ones were clicked 

overall. For instance, if 1,000 recommendations with a certain label were shown 

and 50 were clicked, CTR was 5%. If CTR for recommendations with another 

label was, for instance, 3.2%, the first label performed better. CTR is a common 

measure on advertisement but it suffers from one problem, especially when 

recommendations of only a few users are analyzed. In this case, a few users could 

Free Free Full-text Full-text None (Sponsored) (Advertisement) From our partners

SuffixPrefix
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spoil the results. For instance, one user receiving and clicking many 

recommendations would strongly increase overall CTR, although maybe all other 

users hardly clicked on any recommendations. Therefore, we also used mean 

average precision (MAP) for users’ click-through rates. That means, for each user 

we calculated his average CTR and then we calculated the mean CTR over all 

users. For instance, if one user had seen 50 recommendations and clicked all of 

them, and 95 other users had each seen 10 recommendations but clicked none, 

CTR for the first user was 100% but CTR for the 95 others were 0% each. Hence, 

MAP was 
100%+0%+0%+⋯+0%

96
= 1.04%. 

J.3 Results 

Based on CTR organic recommendations clearly outperform commercial ones 

with a CTR of 8.86% vs. 5.86% (Figure 99, blue line). This is probably what most 

people would expect. However, it is still interesting to have it quantified that only 

because recommendations are labeled as some kind of commercial, users are far 

less likely to click on them. Based on CTR, recommendations with the first 

recommendation being labeled as ‘[Sponsored]’, but not highlighted, also clearly 

outperform those being highlighted (8.38% vs. 5.16%). However, the evaluation 

based on MAP shows a different picture (Figure 99, beige line). Here, organic 

(MAP=5.21%) and commercial recommendations (4.91%) perform very much 

alike. In addition, recommendations with the first one being labeled as sponsored 

and being highlighted (MAP=7.47%) outperform those being not highlighted 

(5.25%). What is evident with both metrics is that completely unlabeled 

recommendations performed better than all other label variations (CTR=9.87%; 

MAP=8.76%).  

 
Figure 99: CTR and MAP of different labels 

For organic recommendations, the ‘free’ and ‘free full-text’ labels clearly 

outperformed those labels not indicating that the recommended papers were free to 
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download (Figure 100). This is true for both metrics CTR and MAP119. However, 

for commercial recommendations results differed. Here, using no suffix at all 

(MAP=6.51%; CTR=7.26%) performed better than any of the suffixes. We cannot 

explain this difference. For suffixes, both CTR and MAP indicate that 

‘Advertisement’ leads to the lowest performance (Figure 101). Based on MAP 

‘Sponsored’ recommendations (5.95%) performed better than ‘partner’ 

recommendations (4.85%). Based on CTR, ‘partner’ recommendations performed 

better (6.79%) than ‘sponsored’ ones (5.93%).  

Summarized, the most surprising result was that recommendations with no label at 

all performed best, and that based on MAP commercial and organic 

recommendations performed about alike. Our study also showed that click-rates on 

recommendations varied strongly based on how they were labeled (although they 

were all based on the same algorithms). In particular recommendations labeled as 

‘advertisement’ were least liked by the users. Results based on CTR often 

contradicted those based on MAP and also using certain prefixes had different 

effects on commercial and organic recommendations. More research is needed to 

clarify these contradictions. In some cases a small sample size might have caused 

the contradictions. For instance, for some labels (e.g. ‘Free Research Papers’) 

results were only based on twelve users. However, other results were based on 

larger samples and still contradict each other. 

 
Figure 100: MAP and CTR for prefixes (commercial and organic) 

 

                                                      

119 For ‘full-text’ CTR is an outlier. We investigated the result and found that in this case few users had extremely 

high CTRs based on few received recommendations they almost all clicked. 
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Figure 101: MAP and CTR for suffixes (commercial only) 
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K Patent Application 

As part of my work, I filed an international patent application (PCT) in 2011 for 

Docear’s mind-map-specific user modeling approach (PCT/EP2011/070873). The 

following text is a copy of the application in German. A machine translation to 

English is available via Google Patents120.  

K.1 Patentbeschreibung 

 

Verfahren und System zum Erstellen von Nutzermodellen 

Gebiet der Erfindung 

Die Erfindung betrifft ein Verfahren und ein System zum Erstellen von 

Nutzermodellen und darauf basierenden Empfehlungen, vorzugsweise durch 

Analyse von baumförmigen Datenstrukturen. 

Hintergrund der Erfindung und Stand der Technik 

Nutzer von Computersystemen unterscheiden sich in vielerlei Hinsicht, unter 

anderem hinsichtlich ihrer Interessen, ihres Wissens und ihrer demographischen 

Daten. Viele Computersysteme versuchen diesen Unterschieden gerecht zu 

werden, indem sie abhängig etwa vom Wissen und den Interessen des Nutzers, 

individuelle Informationen oder Benutzeroberflächen zur Anzeige bringen. Um 

Softwaresysteme, etwa Computerprogramme oder Internet-basierte Anwendungen 

individuell an seine Nutzer anpassen zu können, benötigen die Softwaresysteme 

Zugriff etwa auf die Interessen der Nutzer. Diese Daten können entweder manuell 

vom Nutzer angegeben, oder automatisch vom System erzeugt werden. In jedem 

Fall werden die Informationen über die Nutzer in so genannten Nutzermodellen 

gespeichert. 

Häufig werden solche Nutzermodelle von Empfehlungsdiensten verwendet. 

Abhängig von den Interessen eines Nutzers zeigen diese Empfehlungsdienste 

individuelle Empfehlungen beispielsweise für Filme, Bücher, Musik, oder auch 

auf den Nutzer abgestimmte Werbung an. Bei einem Empfehlungsdienst handelt 

                                                      

120 http://www.google.com/patents/WO2013075745A1?cl=en&hl=de 



274  

 

es sich immer um ein sogenanntes „User-Item Matching Problem“: Die Frage bei 

diesem Problem ist, welche kleine Auswahl an relevanten Items (z.B. 

Musikstücke, Webseiten, Bücher, etc.) aus einer großen Menge von verfügbaren 

Items einem Nutzer empfohlen werden soll. Dieser aus dem Stand der Technik 

bekannte Ansatz ist in Fig. 1 dargestellt. Gezeigt ist in Fig. 1 eine Menge von 

Nutzer n (User 1 bis User 3) und eine Menge von Items (Item 1 bis Item 3). Mit 

entsprechenden Verfahren wird die Relevanz von Nutzern und Items zueinander 

berechnet. Danach können alle Items die einen bestimmten Schwellenwert bzgl. 

der Relevanz überschreiten den entsprechenden Nutzern empfohlen werden. 

Aus dem Stand der Technik bekannte Empfehlungsdienste nutzen zwei 

grundsätzliche Verfahren, um Nutzermodelle zu erzeugen bzw. Empfehlungen zu 

geben. Diese Verfahren sind bekannt als "Content Based Filtering" bzw. 

"Collaborative Filtering". 

Beim Content Based Filtering (CBF) nimmt das Computersystem an, dass der 

Inhalt (Content) der Items mit denen ein Nutzer in Verbindung steht, die 

Interessen und/oder das Wissen des Nutzers wiederspiegelt. Dieser aus dem Stand 

der Technik bekannte Ansatz ist in Fig.2 gezeigt. 

Ein Nutzer (User 1) steht mit einer Anzahl von Items (Item 1 bis Item j) in 

Verbindung. Ein Item kann jedes mögliche Objekt sein. Ein Item kann etwa ein 

Dokument (Bücher, Webseiten, Emails, etc.), ein Multimediaobjekt (Filme, 

Musik, Fotos), eine Personen oder ein Ort sein. Items können aber auch 

Menüeinträge einer Computeranwendung oder Komponenten grafischer 

Benutzeroberflächen sein. 

In Verbindung steht ein Nutzer mit einem Item, wenn irgendein Bezug zwischen 

ihnen besteht. Das heißt, wenn der Nutzer beispielsweise ein Buch gelesen, 

gekauft oder auch nur kurz betrachtet hat, eine Person kennt oder einen Film 

geschaut, heruntergeladen oder auf einem Filmportal bewertet hat, steht der Nutzer 

mit dem Buch, der Person, bzw. dem Film in Verbindung. Die Verbindung kann 

dabei unterschiedlich stark gewichtet werden, je nach Art der Verbindung. 

Beispielsweise könnte das Kaufen eines Buches stärker gewichtet werden als das 

bloße Betrachten des Buchcovers. Oder eine Verbindung zu einem Item kann 

umso stärker gewichtet werden, je öfter das Item genutzt wurde. 

Beim Content Based Filtering wird der Inhalt der verbundenen Objekte genutzt um 

ein Nutzermodell zu erstellen. In der Regel wird dieses Verfahren bei textuellen 

Items, also Dokumenten, angewandt, da der Inhalt von Dokumenten (also der 



275 

 

Text) gut von Computern verarbeitet werden kann im Gegensatz, z. B. zu Bildern. 

Um den Inhalt der Items zu nutzen, wird für jedes Item ein Modell erstellt. Bei 

Dokumenten wird häufig das sogenannte "Vector Space Model" genutzt, ein 

Modell, welches Dokumente als Vektor ihrer Terme darstellt. Jeder Vektor drückt 

durch seine Länge aus, wie gut der entsprechende Term das eigentliche Dokument 

beschreibt. Diese Gewichtung kann mit verschiedenen Verfahren errechnet 

werden. Ein gängiges Verfahren ist das sogenannte TF-IDF Verfahren. Hierbei ist 

das Gewicht eines Terms für ein Dokument umso größer je öfter der Term in dem 

Dokument vorkommt und je weniger Dokumente in der gesamten Kollektion es 

mit diesem Term gibt. 

Das Nutzermodell wird dann aus den Modellen der verschiedenen verbundenen 

Items erzeugt. Dies bedeutet, wenn ein Nutzer viele Bücher besitzt die den Term 

„Recommender“ mit hohem Gewicht enthalten, dann bekommt auch das 

Nutzermodell diesen Term mit einem hohem Gewicht zugeordnet. Die 

verschiedenen Item-Modelle können dabei mit unterschiedlicher Gewichtung in 

das Nutzermodell einfließen. Üblich ist es beispielsweise, Items die vor kurzem 

genutzt wurden, stärker zu gewichten als Items deren Nutzung bereits längere Zeit 

zurückliegt. Üblicherweise wird das Nutzermodell in dem gleichen Format 

gespeichert, wie die Item-Modelle – also beispielsweise als Vector Space Model. 

Von den Items, die später dem Nutzer gegebenenfalls empfohlen werden sollen, 

wird ebenfalls ein Modell erstellt, beispielsweise wieder mit TF-IDF-Verfahren 

und dem Vector Space Model. Diese Items müssen nicht notwendigerweise die 

gleichen Items sein, die mit Nutzern in Verbindung stehen. Beispielsweise wäre es 

möglich, ein Nutzermodell zu erstellen basierend auf Webseiten die ein Nutzer 

besucht hat, und ihm basierend auf diesem Modell Bücher zu empfehlen, oder 

auch personalisierte Werbung anzuzeigen. Das Matching der Nutzermodelle mit 

den zu empfehlenden Items basiert vorzugsweise auf Ähnlichkeitsvergleichen 

zwischen den Nutzer- und den Item-Modellen. Bei textbasierten Items bedeutet 

das, wenn das Nutzermodell die gleichen Terme mit hohem Gewicht enthält wie 

die Item-Modelle der zu empfehlenden Items, dann ist die Ähnlichkeit groß und 

das Item wird dem Nutzer empfohlen. Ein übliches Ähnlichkeitsmaß im Vector 

Space Model ist etwa die Cosine Similarity. 

Beim sogenannten Collaborative Filtering (CF), welches in Fig. 3 gezeigt ist, 

spielt der Inhalt von Items keine Rolle. Es wird lediglich die Information 

verwendet, welche Items mit welchen Nutzern (wie stark) in Verbindung stehen. 

Die Gewichtung wird entweder direkt vom Nutzer angegeben, indem der Nutzer 
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ein Item bewertet, oder indirekt, indem das System die Nutzung des Items 

überwacht. 

Wie beim Content Based Filtering kann die Gewichtung beispielsweise umso 

stärker sein, je öfter ein Item genutzt wird. Oder ein Item, welches gekauft wurde, 

wird stärker gewichtet als ein Item welches kostenlos heruntergeladen wurde. 

Berechnet wird dann auch nicht die Ähnlichkeit zwischen Nutzer-Modellen und 

Item-Modellen sondern ausschließlich die Ähnlichkeit von Nutzermodellen 

zueinander (User-User Matching). Hier gibt es wieder viele bekannte Verfahren. 

Im Wesentlichen wird bei allen Verfahren geprüft, welche Nutzermodelle 

möglichst viele Items in ähnlicher Gewichtung gemeinsam haben. Wurden nun 

ähnliche Nutzermodelle identifiziert, werden dem Nutzer 1 die Items empfohlen 

die mit dem ähnlichen Nutzer 2 in starker Verbindung stehen (und die Nutzer 1 

gegebenenfalls noch nicht kennt). 

Es ist auch möglich, die Nutzermodelle wie beim Content Based Filtering zu 

erzeugen und basierend auf diesen Nutzermodellen gleiche Nutzer zu 

identifizieren. Dieser Ansatz ist in Fig. 4 gezeigt. 

Zumindest beim Content Based Filtering (CBF) ist das Erstellen der Item-Modelle 

ein zentraler Bestandteil, da alles andere, d.h., das Erstellen der Nutzermodelle 

und das Matching von Nutzern und Items, hierauf basiert. Wie vorstehend 

erwähnt, ist ein häufig verwendetes Modell das Vector Space Model, welches ein 

textuelles Item als Vektor seiner Terme speichert, wobei die Länge des Vektors 

die Gewichtung des jeweiligen Terms in Bezug auf das Item repräsentiert. Um das 

Gewicht der Terme zu bestimmen, gibt es zahlreiche Verfahren. Nachteilig ist 

hierbei jedoch, dass mit diesen aus dem Stand der Technik bekannten Verfahren 

nur die Modellierung von "normalen" textuellen Items, also Dokumenten, wie 

Emails, Webseiten, Büchern, News Artikel, wissenschaftliche Artikel, etc., 

möglich ist. Eine Abbildung von Termen in baumförmigen Strukturen, etwa Mind 

Maps und Verzeichnisstrukturen, im Vector Space Model, um hierauf basierend 

Nutzermodelle und Empfehlungsdienste zu realisieren ist mit den aus dem Stand 

der Technik bekannten Verfahren nicht möglich. 

 

Aufgabe der Erfindung 

Aufgabe der Erfindung ist es daher, ein Verfahren und ein System bereitzustellen, 

welche es auf einfache Weise erlauben Item-Modelle bzw. Nutzermodelle auch für 

hierarchische, d.h. baumförmige Strukturen zu erzeugen, um basierend hierauf 

Nutzermodelle und Empfehlungen zu erstellen. 
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Erfindungsgemäße Lösung 

Diese Aufgabe wird durch ein Verfahren und ein System gemäß den unabhängigen 

Ansprüchen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den 

jeweiligen abhängigen Ansprüchen angegeben. 

Bereit gestellt wird demnach ein Verfahren zum Erzeugen eines Nutzermodells, 

insbesondere für einen Empfehlungsdienst, aus zumindest einer baumförmigen 

Datenstruktur, wobei das Nutzermodell Informationen über einen Nutzer umfasst, 

wobei die zumindest eine baumförmige Datenstruktur dem Nutzer zuordenbar ist, 

wobei die baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von 

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit einem 

Kinderknoten verbunden sind, wobei zumindest einem Knoten zumindest ein 

Element zugeordnet ist, und wobei 

- die den Knoten zugeordneten Elemente ermittelt werden, wobei die Elemente 

einen Inhalt des jeweiligen Knoten repräsentieren, 

- die ermittelten Elemente gewichtet werden und jedem Element eine 

Elementgewichtung zugeordnet wird, und 

- ein Nutzermodell generiert wird, wobei das generierte Nutzermodell die 

ermittelten Elemente und die dem jeweiligen Element zugeordnete 

Elementgewichtung umfasst. 

 

Die Knoten der baumförmigen Datenstruktur können gewichtet werden und jedem 

Knoten kann eine Knotengewichtung zugeordnet werden. 

 

In einem Initialisierungsschritt kann jedem Element eine vorbestimmte 

Elementgewichtung oder die Knotengewichtung des zugeordneten Knotens 

zugeordnet werden. 

 

Das Verfahren kann ferner einen Vorverarbeitungsschritt umfassen, bei dem  

- Knoten, denen keine Elemente zugeordnet sind, gelöscht werden, und/oder 

- Knoten gelöscht werden, denen ein vorbestimmtes Element zugeordnet oder 

nicht zugeordnet ist, und/oder 

- Knoten gelöscht werden, welche vorbestimmte Attribute aufweisen oder nicht 

aufweisen, und/oder 

- Knoten und/oder Elemente der Knoten gelöscht werden, welche nicht direkt 

dem Nutzer zugeordnet sind. 
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Das Gewichten der Knoten kann eine statische Knotengewichtung und/oder eine 

dynamische Knotengewichtung umfassen, wobei 

- bei der statischen Knotengewichtung die Anzahl der dem jeweiligen Knoten 

zugeordneten Kinderknoten, die Anzahl der jeweiligen Geschwisterknoten, die 

Tiefe des jeweiligen Knotens in der baumförmigen Datenstruktur, die 

Sichtbarkeit des Knotens, oder eine Kombination hiervon berücksichtigt 

werden, und 

- bei der dynamischen Knotengewichtung für jeden Knoten das Alter, der 

Zeitpunkt der letzen Änderung, die Anzahl der Änderungen, die Anzahl der 

Verschiebungen innerhalb der baumförmigen Datenstruktur, die Anzahl der 

Markierungen, die Sichtbarkeit des Knotens, ein Dämpfungsfaktor, oder eine 

Kombination hiervon berücksichtigt werden. 

 

Das Ermitteln der den Knoten zugeordneten Elemente kann ein Vorverarbeiten der 

ermittelten Elemente umfassen, wobei beim Vorverarbeiten der Elemente Text in 

Token und/oder Terme zerlegt wird, sofern das Element ein Textelement ist, 

und/oder Verweise verarbeitet werden, sofern das Element ein Verweiselement ist. 

 

Die in dem Initialisierungsschritt den Elementen zugeordneten 

Elementgewichtungen können angepasst werden, wobei beim Anpassen der 

jeweiligen Elementgewichtung der Elementtyp, Attributsausprägungen der von 

dem Element zugeordneten Attribute, eine Häufigkeit des Elements innerhalb der 

baumförmigen Datenstruktur, die Anzahl der baumförmigen Datenstrukturen in 

einer Kollektion von baumförmigen Datenstrukturen in denen das Element 

vorkommt, eine Häufigkeit des Elements innerhalb einer Kollektion von 

baumförmigen Datenstrukturen, die Größe der baumförmigen Datenstruktur im 

Verhältnis zu anderen baumförmigen Datenstrukturen in einer Kollektion von 

baumförmigen Datenstrukturen, die Position des Elementes innerhalb des 

Knotens, die Sprache des Elementes, die Anzahl der Elemente innerhalb des 

Knotens, der Abstand des Elementes zu gleichartigen Elementen anderer Knoten, 

Häufigkeit des Elementes in dem Pfad zwischen dem Knoten und dem 

Wurzelknoten, das Alter des Elements, der Zeitpunkt der letzen Änderung, die 

Anzahl der Änderungen, die Anzahl der Markierungen, die Sichtbarkeit des 

Elements, ein Dämpfungsfaktor, oder eine Kombination hiervon berücksichtigt 

werden. 

 

Bei der statischen Knotengewichtung und/oder bei der dynamischen 

Knotengewichtung oder nach der statischen Knotengewichtung und/oder nach der 
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dynamischen Knotengewichtung und/oder bei oder nach der Elementgewichtung 

kann eine Vererbung des Knotengewichts bzw. des Elementgewichts 

berücksichtigt werden. 

Das generierte Nutzermodell kann in einer Speichereinrichtung gespeichert 

werden, um dem Empfehlungsdienst zur Verfügung gestellt zu werden. 

Alle Elemente können zusammen mit den jeweiligen Elementgewichtungen als 

Nutzermodell gespeichert werden, oder für jeden Elementtyp kann ein eigenes 

Nutzermodell gespeichert werden, wobei die Nutzermodelle der verschiedenen 

Elementtypen ein Gesamtnutzermodell bilden. 

 

Bei mehreren dem Nutzer zuordenbaren baumförmigen Datenstrukturen kann für 

jede baumförmige Datenstruktur eine Anzahl von Nutzermodellen generiert 

werden, welche zusammen ein dem Nutzer zugeordnetes Gesamtnutzermodell 

bilden. 

 

Jeder baumförmigen Datenstruktur kann eine Baumgewichtung zugeordnet 

werden. 

 

Für eine neue dem Nutzer zuordenbare baumförmige Datenstruktur kann das dem 

Nutzer zugeordnete Nutzermodell angepasst werden. 

 

Von der baumförmigen Datenstruktur referenzierte Elemente können in das 

Nutzermodell eingefügt werden und wie Elemente der baumförmigen 

Datenstruktur behandelt werden. 

 

Einem generierten Nutzermodell kann eine Information über den Nutzermodelltyp 

zugeordnet werden. 

 

Das Verfahren kann ferner ein Auswählen von Objekten anhand vorbestimmter 

Auswahlkriterien umfassen, wobei ein Objekt ein Nutzermodell oder ein 

Itemmodell umfasst. 

 

Die Auswahlkriterien können umfassen: 

- Objekte eines vorbestimmten Typs, und/oder 
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- Objekte die eine vorbestimmte Ähnlichkeit zu dem Nutzermodell und/oder 

Itemmodell aufweisen, wobei vor dem Auswählen Ähnlichkeitswerte zwischen 

dem generierten Nutzermodell und/oder Itemmodell und den Objekten ermittelt 

werden. 

 

Durch ein Itemmodell kann ein Förderprogramm repräsentiert werden, wobei das 

das Förderprogramm repräsentierende Itemmodell ausgewählt wird, wenn das 

Nutzermodell eine vorbestimmte Ähnlichkeit zu dem Itemmodell aufweist. 

 

Bereit gestellt wird ferner ein System zum Erzeugen eines Nutzermodells, 

insbesondere für einen Empfehlungsdienst, aus zumindest einer baumförmigen 

Datenstruktur, wobei das Nutzermodell Informationen über einen Nutzer umfasst, 

wobei die baumförmige Datenstruktur dem Nutzer zuordenbar ist, wobei die 

baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von 

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit einem 

Kinderknoten verbunden sind, und wobei zumindest einem Knoten zumindest ein 

Element zugeordnet ist, wobei das System aufweist: 

- wenigstens eine Speichereinrichtung zum Speichern wenigstens einer 

baumförmigen Datenstruktur, und 

- eine Verarbeitungseinrichtung, welche mit der Speichereinrichtung gekoppelt 

ist und welche angepasst ist ein Verfahren nach einem der vorhergehenden 

Ansprüche auszuführen, um ein Nutzermodell zu generieren und das generierte 

Nutzermodell in der Speichereinrichtung abzuspeichern und einem 

Empfehlungsdienst zur Verfügung zu stellen. 

 

Des Weiteren wird ein Datenträgerprodukt bereit gestellt, mit einem darauf 

gespeicherten Programmcode, welcher in einen Computer und / oder in ein 

Computernetzwerk ladbar ist und angepasst ist, ein erfindungsgemäßes Verfahren 

auszuführen. 

 

Kurzbeschreibung der Figuren 

 

Die Erfindung wird anhand eines Ausführungsbeispiels und der Zeichnung näher 

erläutert. In der Zeichnung zeigt: 
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Fig. 1 einen aus dem Stand der Technik bekannten Ansatz für ein sogenanntes 

"User-Item Matching"; 

Fig. 2 ein aus dem Stand der Technik bekanntes "Content Based Filtering" 

Verfahren; 

Fig. 3 ein sogenanntes "Collaborative Filtering" Verfahren, wie es aus dem 

Stand der Technik bekannt ist; 

Fig. 4 eine Abwandlung des aus dem Stand der Technik bekannten 

"Collaborative Filtering" Verfahrens; 

Fig. 5 eine baumförmige (hierarchische) Datenstruktur; 

Fig. 6a, 6b zwei baumförmige Datenstrukturen, welche im Sinne der Erfindung 

die gleiche Aussage haben; und 

Fig. 7a, 7b ein Ablaufdiagramm eines erfindungsgemäßen Verfahrens. 

 

Detaillierte Beschreibung der Erfindung 

Definitionen 

- Baumförmige Datenstruktur - Als baumförmige Datenstruktur (im Folgenden 

BD) wird eine Datenstruktur bezeichnet mit der sich eine Monohierarchie 

abbilden lässt. Dabei sind in der Datenstruktur Knoten mittels Kanten 

baumförmig verbunden. Es gibt genau einen Wurzelknoten, der beliebig viele 

Kinderknoten haben kann. Jeder Kinderknoten kann wiederum beliebig viele 

Kinderknoten haben. 

 

Beispiele für BD im Sinne der Erfindung sind vor allem, aber nicht 

ausschließlich, Verzeichnisstrukturen und/oder Dateisysteme auf einer 

Festplatte (Ordner und Dateien) oder sogenannte Mind Maps. Handelt es sich 

bei der BD um ein Dateisystem entsprechen die "Blätter" (das sind die jeweils 

letzten Knoten eines Pfades in einer BD) Dateien oder Dateiverknüpfungen und 

alle anderen Knoten entsprechen Verzeichnissen bzw. Ordnern. 

 

Knoten einer BD enthalten in der Regel ein oder mehrere Elemente. Diese 

Elemente können unterschiedlichen Typs sein. Übliche Elemente bzw. 
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Elementtypen sind: Text (im Falle eines Dateisystems wäre der Knotentext der 

Datei- oder Verzeichnisname), zusätzliche Notizen, Tabellen, Termine, 

Multimediaobjekte (Musik, Film, Bild), Icons, Formeln, Verweise (in der 

Regel auf externe Items), Zahlen, und / oder Binärcode (insbesondere falls es 

sich bei der BD um eine Verzeichnisstruktur handelt und der Knoten eine Datei 

ist). Ein Verweis kann eine eindeutige URI (Uniform Resource Identifier) sein, 

z.B. Hyperlink, lokaler Link/Verknüpfung auf eine Datei auf einem 

Speichermedium (z.B. Festplatte). Ein Verweis kann aber auch eine nicht 

eindeutige Beschreibung sein, die ein Item identifiziert (z.B. Titel eines 

Dokumentes, Autorenname, Foto, BibTeX Key, Name eines Ortes oder 

Produktes). 

 

Jedes der Elemente kann eine Anzahl von Attributen besitzen. So kann Text 

unterschiedlich formatiert sein, also hinsichtlich z.B. Größe und Farbe 

unterschiedliche Werte annehmen. Auch Knoten selbst können Attribute 

besitzen, insbesondere um die Anzeige der Knoten zu formatieren oder dem 

Knoten bestimmte Funktionen zuzuordnen. Beispielsweise können Knoten 

mittels Attributen als "eingeklappt" oder "ausgeklappt" dargestellt werden, das 

heißt für den Nutzer sichtbar oder unsichtbar sein. Genauso wie Knoten können 

einzelne Elemente eines Knotens sichtbar oder unsichtbar für den Nutzer sein. 

 

Kanten in einer BD sind in der Regel ungerichtet und enthalten üblicherweise 

keine textuellen Informationen. Kanten können aber auch gerichtet sein. 

 

- Item - Items sind beliebige Objekte, d.h., zum Beispiel Dokumente (Bücher, 

Webseiten, wissenschaftliche Artikel), Dateien, Werbeanzeigen (in Bild, Text, 

Ton), Personen, Musikstücke oder Musikalben, Filme, Produkte, geographische 

Orte, etc. oder deren digitale Repräsentation (d.h. nicht zwangsweise ein 

physisches Buch, sondern z.B. die digitale Kopie/Repräsentation des Buches in 

verschiedensten Formaten). 

 

- Nutzer - Ein Nutzer ist eine Person die das erfindungsgemäße System 

anwendet bzw. nutzt. Ein Nutzer kann auch ein sogenannter Agent, eine Art 

elektronische Person bzw. ein System, welches das Verhalten einer realen 

Person simuliert. 

 

- Nutzermodell - Ein Nutzermodell umfasst die Interessen, das Wissen oder 

andere Informationen über die Person, üblicherweise in maschinenlesbarer 
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Form. Im Folgenden werden die Begriffe Interessen bzw. Wissen eines Nutzers 

bzw. Information über den Nutzer synonym verwendet. 

 

- Verbindung zwischen BD und Nutzer - Eine BD steht mit einem Nutzer in 

Verbindung bzw. ist dem Nutzer zuordenbar, wenn dieser Nutzer z.B. die BD 

erstellt, editiert, heruntergeladen, oder geöffnet hat oder sich die BD im Besitz 

des Nutzers befindet oder befand (z.B. auf der Festplatte des Nutzers 

gespeichert ist bzw. war). 

 

- Kollektion - Eine Kollektion ist die Menge aller BD auf die das 

erfindungsgemäße System Zugriff hat. 

 

Erfindungsgemäß werden baumförmige Datenstrukturen BD analysiert, die mit 

dem Nutzer in Verbindung stehen bzw. einem Nutzer zuordenbar sind, um ein 

Modell des Nutzers, d.h. ein Nutzermodell, zu erstellen. Ein Nutzermodell umfasst 

insbesondere, aber nicht ausschließlich, Informationen über die Interessen und das 

Wissen des Nutzers. 

 

Fig. 5 zeigt eine erfindungsgemäße baumförmige Datenstruktur BD. Eine 

baumförmige Datenstruktur BD umfasst eine Anzahl von Knoten, wobei ein 

spezieller Knoten den Root-Knoten bzw. den Wurzelknoten repräsentiert. Die 

anderen Knoten werden als Kinderknoten bezeichnet, wobei die Kinderknoten 

über Kanten mit dem Wurzelknoten oder mit einem Kinderknoten verbunden sind. 

Knoten, welche keine Kinderknoten enthalten, werden als "Blätter" bezeichnet. 

Jeder Knoten kann einen oder mehrere Verweise auf externe Items enthalten. In 

Fig. 5 besitzt der Knoten 2.i einen solchen Verweis auf ein Item. 

 

Erfindungsgemäß beschreiben der Inhalt einer baumförmige Datenstruktur und 

gegebenenfalls die Items die aus einer baumförmige Datenstruktur verlinkt werden 

bzw. die Inhalte der verlinkten Items die Interessen des Nutzers und können zur 

Generierung eines Nutzermodells verwendet werden. Vereinfacht gesagt bedeutet 

dies, wenn die Knoten einer baumförmigen Datenstruktur häufig das Wort 

"Patent" enthalten, kann daraus geschlossen werden, dass der Nutzer der 

baumförmige Datenstruktur bzw. der Nutzer, dem die baumförmige Datenstruktur 

zuordenbar ist sich für Patente interessiert oder Kenntnisse auf diesem Gebiet hat. 
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Der gleiche Schluss kann auch gezogen, wenn das Wort nicht in der baumförmige 

Datenstruktur selbst vorkommt, aber viele Dokumente (z.B. Patentschriften oder 

Webseiten) in der baumförmige Datenstruktur verlinkt sind, die das Wort "Patent" 

enthalten. 

 

Fig. 7a und Fig. 7b zeigen ein Ablaufdiagramm eines erfindungsgemäßen 

Verfahrens zum Erzeugen eines Nutzermodells aus zumindest einer baumförmigen 

Datenstruktur. 

 

In einem ersten Schritt findet eine Vorverarbeitung statt, bei der die baumförmigen 

Datenstrukturen für eine weitere Verarbeitung angepasst bzw. aufbereitet werden. 

Der Schritt der Vorverarbeitung ist ein optionaler Schritt und muss nicht 

notwendigerweise durchgeführt werden, etwa wenn die baumförmigen 

Datenstrukturen bereits das für die weitere Verarbeitung notwendige Format 

aufweisen. 

 

Die Vorverarbeitung kann ein Konvertieren der baumförmigen Datenstrukturen in 

ein für das System lesbares Format umfassen. Ferner kann die Vorverarbeitung ein 

Löschen von Knoten aus den baumförmigen Datenstrukturen umfassen, d.h., es 

können bestimmte Knoten gelöscht werden, die für das Erzeugen eines 

Nutzermodells nicht relevant sind. Löschen eines Knoten heißt, dass dieser aus der 

baumförmige Datenstruktur entfernt wird und die Kinderknoten des zu löschenden 

Knotens entweder ebenfalls entfernt werden oder die Kinderknoten dem 

Elternknoten des zu löschenden Knotens zugeordnet werden. Ein Knoten kann 

etwa gelöscht werden, wenn der Knoten eines oder mehrere der folgenden 

Kriterien erfüllt: 

- Der Knoten ist leer; 

- Der Knoten enthält ein bestimmtes Element (nicht), wie z.B. Text oder 

Verweis; 

- Der Knoten besitzt ein bestimmtes Attribut (nicht); 

- Der Knoten oder Elemente des Knotens stehen nicht direkt mit dem Nutzer in 

Verbindung. Dies kann der Fall sein, wenn ein Knoten nicht vom Nutzer selbst 

erzeugt wurde (z.B. bei Knoten einer Mind Map die auf eine Datei verlinken 

und wo der Text des Knotens gleich dem Dateinamen der verlinkten Datei ist 

kann angenommen werden, dass der Knoten automatisch, z.B. durch 

"Drag & Drop" entstanden ist, also der Text des Knotens nicht vom Nutzer 

erzeugt wurde, und deshalb keine oder nur eine geringe Aussagekraft besitzt). 
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Selbstverständlich können beim Löschen eines Knotens auch noch weitere 

Kriterien berücksichtigt werden. 

 

Nach der (optionalen) Vorverarbeitung wird in einem nächsten Schritt basierend 

auf der baumförmigen Datenstruktur ein Nutzermodell erzeugt. Hierbei werden 

die Knoten einer baumförmigen Datenstruktur bzw. die Elemente der Knoten 

analysiert, um die Interessen etc. des Nutzers zu identifizieren und in einem 

Nutzermodell zu speichern, welches dem Nutzer zugeordnet wird. Dies geschieht 

in den folgenden Schritten: 

 

A) Gewichten der Knoten 

 

Dem Gewichten der Knoten liegt die Annahme zugrunde, dass einige Knoten bzw. 

ihre Elemente aussagekräftiger sind um die Interessen des Nutzers zu beschreiben 

als andere Knoten bzw. ihre Elemente. Bei der Gewichtung der Knoten können 

zwei Teilgewichte berechnet werden. Es ist aber auch möglich nur eines der 

beiden Teilgewichte zu berechnen und dieses eine Teilgewicht als Knotengewicht 

eines Knotens zu betrachten. Die beiden Teilgewichte umfassen die statische 

Knotengewichtung und die dynamische Knotengewichtung. Selbstverständlich 

können auch noch weitere hier nicht genannte Teilgewichte berechnet werden. Die 

Kombination der berechneten Teilgewichte ergibt das Knotengewicht eines 

Knotens. 

 

Bei der statischen Knotengewichtung können folgende Kriterien berücksichtigt 

werden: 

- Anzahl der Kinderknoten: Ein Knoten wird abhängig von der Anzahl der 

Kinderknoten gewichtet, z.B. je mehr Kinder der Knoten hat desto mehr 

Gewicht erhält dieser Knoten. 

- Anzahl der Geschwisterknoten: Geschwisterknoten eines Knotens sind jene 

Knoten, die denselben Elternknoten wie der betrachtete Knoten haben. Hier 

wird der Knoten abhängig von der Anzahl der Geschwisterknoten des Knotens 

gewichtet, z.B. je mehr Geschwister ein Knoten hat, desto weniger Gewicht 

bekommt er. 

- Knoten-Tiefe: Je weiter oben (also je näher zum Wurzelknoten) in einer 

baumförmige Datenstruktur ein Knoten ist, desto mehr Gewicht erhält er. Der 

Wurzelknoten bekommt also viel Gewicht, die Blattknoten weniger. 
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- Sichtbarkeit des Knotens: Sichtbare Knoten erhalten mehr Gewicht als 

unsichtbare Knoten. 

- Attribute: Ist der Knoten durch ein bestimmtes Attribut hervorgehoben, z.B. 

durch farbige Markierung oder Unterstreichung, so erhält er mehr Gewicht. Ist 

er durch bestimmte Attribute abgeschwächt, z.B. indem er ausgegraut oder 

durchgestrichen wurde, erhält er weniger Gewicht. 

 

Bei der statischen Knotengewichtung wird die baumförmige Datenstruktur nur zu 

einem bestimmten Zeitpunkt betrachtet. Erfindungsgemäß können die Knoten aber 

auch dynamisch gewichtet, d.h., Veränderungen und Nutzungsintensivität der 

baumförmigen Datenstruktur über die Zeit können in die Knotengewichtung 

einfließen. Wenn beispielsweise ein Knoten intensiver genutzt wird, bzw. in der 

Vergangenheit intensiver genutzt wurde als andere Knoten, so kann dieser Knoten 

ein höheres Gewicht erhalten als die anderen Knoten. Die Gewichtung kann sich 

unter anderem ergeben aus: 

- Alter des Knotens: Ältere Knoten können mehr oder weniger Gewicht erhalten 

als jüngere Knoten. Vorzugsweise erhalten jüngere Knoten ein höheres 

Gewicht. Es kann auch ein Schwellenwert vorgesehen sein, beispielsweise der 

Art "Knoten die mindestens 12 Stunden und maximal 5 Tage alt sind". Knoten, 

die das Schwellenwertkriterium erfüllen erhalten ein höheres Gewicht. 

- Zeitpunkt der letzten Bearbeitung (z.B. Editierung): Knoten die kürzlich 

editiert wurden erhalten ein höheres Gewicht. 

- Anzahl der Bearbeitungen: Vorzugsweise kann ein Knoten, der öfter editiert 

wurde als andere Knoten ein höheres Gewicht erhalten. 

- Anzahl der Verschiebungen: Je öfter ein Knoten verschoben (ausgeschnitten 

und wieder eingefügt) wurde, desto mehr Gewicht erhält er. 

- Anzahl der Markierungen: Je öfter ein Knoten ausgewählt/markiert wurde 

desto mehr Gewicht erhält er. 

- Sichtbarkeitsdauer: Je länger ein Knoten sichtbar war, desto mehr Gewicht 

erhält er. 

- Anzahl der Sichtbarkeiten: Je öfter ein Knoten unsichtbar und wieder sichtbar 

gemacht wurde, das heißt ein- und ausgeklappt wurde, desto stärker ist sein 

Gewicht. 

- Anzahl der verfolgten Verweise: Je öfter ein Verweis eines Knoten geöffnet 

wurde, desto größer ist das Gewicht des Knoten. 
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Jede der vorstehend genannten (dynamischen) Gewichtungen kann mittels eines 

Zeitparameters geschwächt oder verstärkt werden. Hierzu ein Beispiel: Ein Knoten 

wird doppelt so stark gewichtet wenn er wenigstens zwei Mal editiert wurde. Liegt 

die letzte Editierung aber schon länger als X Wochen zurück, wird die Gewichtung 

durch einen dämpfenden Zeitparameter nur 1,5 Mal so stark gewichtet. 

 

Zusätzlich zur vorstehend genannten statischen und/oder dynamischen 

Knotengewichtung kann eine Vererbung von Gewichten vorgesehen sein. Die 

Vererbung wird vorzugsweise dann durchgeführt, nachdem die statische bzw. 

dynamische Gewichtung durchgeführt worden ist. Bei der Vererbung von 

Gewichten können Knoten Gewichtungen von ihren umliegenden Knoten "erben". 

Hat etwa ein Elternknoten ein sehr hohes Gewicht (weil er z.B. oft ausgewählt 

wurde), kann auch der Kindsknoten ein höheres Gewicht bekommen als wenn er 

nur für sich betrachtet würde. Bevorzugt bekommen alle Kinderknoten und deren 

Knoten, alle Geschwisterknoten und alle Elternknoten und deren Eltern bis zur 

Wurzel ein höheres Gewicht, wobei das zusätzliche Gewicht schwächer wird, je 

weiter entfernt von dem vererbenden Knoten sich der erbende Knoten befindet. 

Zudem kann vorgesehen sein, dass nur Knoten, die einen Schwellenwert (z.B. 

Gewichtung fünf Mal größer als normal) überschreiten das Gewicht an 

umliegende Knoten vererben können. Gehören mehrere Knoten einer 

baumförmige Datenstruktur einer bestimmten "Gruppe" an, kann die Gewichtung 

der einzelnen Knoten der Gruppe aneinander angeglichen bzw. vererbt werden. 

Gruppen können visuell in der baumförmige Datenstruktur erkennbar sein oder 

sich durch bestimmte Attribute bzw. Elementtypen auszeichnen. Beispiel: Eine 

baumförmige Datenstruktur enthält einige Knoten, die Verweise haben. Alle diese 

Knoten sind der Gruppe "Verweis-Knoten" zugeordnet. Obwohl nur 95% dieser 

Knoten eine sehr hohe Gewichtung haben, vergibt das System an alle Knoten (also 

auch an die restlichen 5%) eine sehr hohe Gewichtung. Die schwachen Knoten 

einer Gruppe erben quasi von ihren anderen Gruppenknoten.  

 

B) Identifizieren der Elemente in den Knoten 

 

In einem weiteren Schritt werden die Elemente in den Knoten identifiziert und ggf. 

einer Vorverarbeitung zugeführt. Hierbei werden zunächst die in jedem Knoten 

enthaltenden Elemente und deren Attribute identifiziert bzw. ermittelt. 

 

Handelt es sich bei dem ermittelten Element um ein Textelement, so wird dieser 

Text weiter zerlegt und zwar in Token bzw. Terme (Begriffe). Häufig kann als 

Term ein einzelnes Wort gelten, manchmal aber auch zusammengesetzte Wörter 
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wie "Mind Map". Im Folgenden gilt jeder Term als eigenständiges Element vom 

Typ Text. 

 

Die Terme können weiter verarbeitet werden. Hierfür können aus dem Stand der 

Technik bekannte Verfahren, etwa aus dem Bereich Information Retrieval 

herangezogen werden. Beispiele für solche Verfahren sind etwa 

- Stemming: Wörter werden auf ihre Stämme reduziert. Beispielsweise würde 

das Wort "Stämme" auf "Stamm" gestemmt bzw. reduziert. 

- Stop Word Removal: Sehr häufig vorkommende Wörter mit wenig 

Aussagekraft (beispielsweise der, die, das, wo, wer, weshalb, schon, so, darum, 

…) werden entfernt. 

- Latent Semantic Indexing (LSI): Mit Latent Semantic Indexing werden 

Synonyme von Wörtern zusammengefasst bzw. berücksichtigt. 

- Translation: die Worte werden in eine Referenzsprache, z.B. Englisch, 

übersetzt. 

- Spelling Correction: Rechtschreibfehler werden erkannt und korrigiert oder 

gelöscht. 

 

Bei dem ermittelten Element kann es sich auch um einen Verweis handeln. 

Verweise können ebenfalls vorverarbeitet werden, indem beispielsweise für jeden 

Verweis die URI (Uniform Ressource Identifier) und/oder die Sonderzeichen auf 

ein einheitliches Format konvertiert werden oder falls es sich um keinen 

eindeutigen Verweis handelt (z.B. lediglich der Titel eines Dokumentes), versucht 

wird einen eindeutigen Identifikator zu finden (im Falle eines Dokumentes 

beispielsweise die ISBN). 

 

C) Gewichten der Elemente 

 

Ähnlich wie die Knoten kann auch jedes Element eines Knotens gewichtet 

werden. Besonders Text- und Verweiselemente sind wichtig für die Erstellung des 

erfindungsgemäßen Nutzermodells. Vorzugsweise erhält jedes Element zunächst 

eine vorbestimmte Gewichtung (Initialgewichtung), etwa die Gewichtung 1 oder 

die Gewichtung seines zugehörigen Knotens. Dies kann etwa in einem 

Initialisierungsschritt erfolgen, bei dem alle Elemente mit einer Initialgewichtung 

versehen werden. 
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Die Initialgewichtung eines Elementes kann verstärkt bzw. geschwächt werden, 

vorzugsweise basierend auf einen oder mehreren der folgenden Faktoren: 

- Element-Typ: Elemente bestimmter Typen können unterschiedliche 

Basisgewichtungen erhalten. Beispielsweise kann ein Text-Element welches 

den allgemeinen Knotentext darstellt eine höhere Gewichtung erhalten als ein 

Text-Element welches eine zusätzliche Notiz darstellt. 

- Attribute: Abhängig von den Attributen können Elemente eine stärkere oder 

schwächere Gewichtung bekommen. Beispielsweise kann ein Text-Element, 

welches fett formatiert ist stärker gewichtet werden als ein Text-Element ohne 

Formatierung. 

- Element Frequenz: Je öfter ein Element in der baumförmigen Datenstruktur 

vorkommt, desto stärker kann seine Gewichtung sein. 

- BD Frequenz: In je weniger baumförmigen Datenstrukturen der gesamten 

Kollektion ein Element vorkommt, desto stärker wird es gewichtet. Dies beruht 

auf der Annahme, dass ein Element, welches nur wenige Male in allen 

baumförmigen Datenstrukturen vorkommt, aussagekräftiger ist als ein Element, 

das in fast jeder baumförmigen Datenstruktur vorkommt. Enthält 

beispielsweise in einer Kollektion von 100 baumförmigen Datenstrukturen nur 

eine einzige baumförmige Datenstruktur den Term "Baum", dann würde dieser 

Term stärker gewichtet in Bezug auf die baumförmige Datenstruktur als wenn 

90 weitere baumförmige Datenstrukturen diesen Term ebenfalls enthalten. 

- Kollektionsfrequenz: Je seltener das Element in der Gesamtmenge aller 

Elemente der gesamten Kollektion vorkommt, desto stärker wird es gewichtet. 

Dies ist sehr ähnlich zur BD Frequenz, mit dem Unterschied, dass bei der BD 

Frequenz die Anzahl der baumförmigen Datenstrukturen gezählt wird in denen 

das Element vorkommt und bei er Kollektionsfrequenz die Gesamtanzahl der 

Elemente selbst. 

- BD Größe: Je größer die baumförmige Datenstruktur, desto weniger stark wird 

das Element gewichtet. Dies unterliegt der Annahme, dass große baumförmige 

Datenstrukturen tendenziell mehr Elemente enthalten aber nicht gegenüber 

kleinen baumförmige Datenstrukturen bevorzugt werden sollen. Die Größe 

einer baumförmigen Datenstruktur kann angegeben werden durch die Anzahl 

der Knoten einer baumförmigen Datenstruktur oder durch die Anzahl der 

Elemente in einer baumförmigen Datenstruktur. 

- Position im Knoten: Elemente die vorne im Knoten stehen werden anders 

gewichtet als Elemente weiter hinten im Knoten. Enthält ein Knoten 

beispielsweise 100 Terme, dann kann vorgesehen sein, dass nur die ersten 10 



290  

 

Terme berücksichtigt werden. Ferner kann vorgesehen sein, dass die weiteren 

Terme (z.B. die nächsten 10 Terme) mit weniger Gewicht berücksichtigt 

werden. 

- Sprache (falls der Knoten ein Text-Elemente enthält): Im Gegensatz zu 

Dokumenten, wie Webseiten, kommt es bei baumförmigen Datenstrukturen 

häufig vor, dass Terme in verschiedenen Sprachen enthalten sind. Die 

Elemente eines Knotens können abhängig von der Sprache unterschiedlich 

stark gewichtet werden. Das heißt auch, dass wenn z.B. der Text eines Knotens 

in einer bestimmten Sprache ist, die anderen Elemente des Knotens (zum 

Beispiel ein Verweis) weniger oder mehr gewichtet werden. 

- Knotenlänge: Elemente werden abhängig von der Knotenlänge gewichtet. Je 

weniger Elemente ein Knoten enthält, desto stärker können seine Elemente 

gewichtet werden. 

- Abstand zu gleichartigen Elementen: Je weniger gleichartige Elemente es in 

der Nähe eines Knotens gibt zu dem das Element gehört, desto mehr Gewicht 

bekommt das Element. Zum Beispiel: Hat ein Knoten einen Verweis auf ein 

Item und die umliegenden Knoten (z.B. alle Kinder, Geschwister und 

Elternknoten) enthalten keine Verweise, dann könnte dieser Verweis ein 

besonders hohes Gewicht bekommen, da die Vermutung nahe liegt, dass sich 

der Verweis auch auf die umliegenden Knoten bezieht. Haben hingegen 

Geschwisterknoten ebenfalls Verweise, bekommt dieser Verweis kein 

besonders hohes Gewicht. 

- Element-Wiederholung: Baumförmige Datenstrukturen können sehr 

benutzerspezifisch erstellt werden. Beispielsweise kann es vorkommen, dass 

ein Nutzer Elemente in den Knoten oft wiederholt, ein anderer Nutzer aber 

nicht. Hier kann es vorteilhaft sein, das Gewicht eines Elementes zu verringern, 

je öfter einer der Elternknoten (bis hoch zum Wurzelknoten) oder 

Geschwisterknoten dieses Element bereits enthält. Fig. 6a und Fig. 6b 

verdeutlichen diesen Fall. Fig. 6a und Fig. 6b zeigen jeweils eine baumförmige 

Datenstruktur mit der gleichen Aussage von zwei Nutzern, wobei die 

baumförmigen Datenstrukturen dennoch unterschiedlich aussehen. In Fig. 6a 

wiederholt sich der Term "Recommender" mehrfach, in Fig. 6b hingegen nicht. 

Trotzdem wäre der Term "Recommender" für beide baumförmigen 

Datenstrukturen bzw. Nutzer gleichermaßen zutreffend und sollte 

gleichermaßen gewichtet werden.  

 

Die Gewichtung der Elemente kann auch mit den gleichen Verfahren stattfinden 

mit dem die Knoten gewichtet werden. Beispielsweise können ältere Elemente 
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schwächer gewichtet werden als neuere und auch bei den Elementgewichtungen 

kann eine Vererbung stattfinden. 

 

D) Speichern des Nutzermodells 

 

In einer vorteilhaften Ausgestaltung der Erfindung kann es vorteilhaft sein, das 

generierte Nutzermodell zu speichern, um es etwa einem Empfehlungsdienst zur 

Verfügung zu stellen. Alternativ kann ein Nutzermodell aber auch auf 

Anforderung erstellt werden, ohne es zu speichern. 

 

Erfindungsgemäß können mindestens zwei verschiedene Ansätze genutzt werden, 

um ein Nutzermodell zu speichern. Die beiden hier gezeigten Ansätze sind das 

Typ-Neutrale Speichern und das Typ-Abhängige Speichern eines Nutzermodells. 

 

Bei der Typ-Neutralen Speicherung werden alle Elemente mit ihrer Gewichtung 

gespeichert. Das heißt, Terme, Links/Verweise, Bilder, etc. werden alle 

gemeinsam in dem Model gespeichert. In einer konkreten Ausgestaltung des 

erfindungsgemäßen Verfahrens kann hierfür das eingangs beschriebene Vector 

Space Model genutzt werden, welches durch die Erfindung so erweitert wird, dass 

nicht nur Terme mit einer Gewichtung gespeichert werden können, sondern 

vielmehr beliebige Elemente verschiedenen Typs mit ihrer Gewichtung und ihrem 

Typ. 

 

Bei der Typ-Abhängigen Speicherung kann für jeden Elementtyp ein separates 

Nutzermodell erzeugt werden, welche zusammen ein Gesamtnutzermodell bilden. 

Ein Nutzermodell umfasst dann beispielsweise ein Text-Modell und ein Verweis-

Modell. Hierfür können Standardverfahren aus dem Information Retrieval Bereich 

bzw. User Modelling Bereich genutzt werden. Ein Standardmodell für ein Text-

basiertes Modell wäre beispielsweise wieder das genannte Vector Space Model in 

dem die einzelnen Terme entsprechend des oben beschriebenen Verfahrens 

gewichtet sind. Verweise können auch in anderen Modellen gespeichert werden, 

die beispielsweise auch die Reihenfolge der Elemente in der baumförmigen 

Datenstruktur berücksichtigen. 

 

E) Weitere Schritte 

 

Die nachfolgenden Schritte können optional zu den vorstehend genannten 

Schritten ausgeführt werden. 
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Hat ein Nutzer Beziehungen zu mehreren baumförmigen Datenstrukturen, kann 

für jede baumförmige Datenstruktur ein (bzw. mehrere) Modelle erzeugt werden, 

wie vorstehend beschrieben, und die verschiedenen Modelle am Ende zu einem 

Gesamtmodell zusammen gefügt werden. Hierbei können unterschiedliche 

baumförmige Datenstrukturen mit unterschiedlicher Gewichtung versehen werden. 

Die Gewichtung erfolgt nach ähnlichen Prinzipien wie die Gewichtung der Knoten 

oder der Elemente. Beispielsweise kann eine neuere baumförmige Datenstruktur 

oder baumförmige Datenstrukturen, die häufiger geöffnet oder editiert wurden, 

stärker gewichtet werden. 

 

Entsteht eine neue Beziehung zwischen einer baumförmigen Datenstruktur und 

einem Nutzer zu dem bereits ein Nutzermodell existiert, kann das bestehende 

Nutzermodell um die Elemente der neuen baumförmigen Datenstruktur erweitert 

werden. 

 

Enthält eine baumförmige Datenstruktur Verweise auf Items, können diese Items 

ebenfalls für die Generierung eines Nutzermodells genutzt werden. Das heißt, die 

Elemente in dem verlinkten Item werden in das Nutzermodell eingefügt und zwar 

auf vergleichbare Weise wie Elemente der baumförmige Datenstruktur selbst. 

Diese Items können mit einer niedrigeren Gewichtung versehen werden. Ist das 

verlinkte Item eine baumförmige Datenstruktur, werden deren Elemente mit dem 

vorstehend beschriebenen Verfahren gewichtet. Ist das verlinkte Element z.B. eine 

Webseite, dann kann die Gewichtung mit Standardverfahren, wie dem TF-IDF 

durchgeführt werden. 

 

Die vorstehend genannten Typ-Neutralen und Typ-Abhängigen Modelle können in 

Untermodelle unterteilt sein, beispielsweise in 

- Modelle für Kurzzeitinteressen: Dieses Modell würde beispielsweise nur Daten 

aus einer Session bzw. der zuletzt editierten baumförmigen Datenstruktur 

enthalten (oder Daten der baumförmigen Datenstruktur, die in einem 

bestimmten Zeitraum editiert wurden). 

- Modelle für Langzeitinteressen: Dieses Modell würde Interessen basierend auf 

allen oder zumindest mehreren baumförmigen Datenstrukturen enthalten. 

- Modelle für verschiedene Interessen: Es ist denkbar, dass Nutzer verschiedene 

baumförmige Datenstrukturen erstellen für z.B. verschiedene Projekte. Das 

heißt, eine baumförmige Datenstruktur (oder auch mehrere) werden genutzt für 

Projekt A und eine andere baumförmige Datenstruktur (oder auch mehrere) für 

ein anderes Projekt B. Erfindungsgemäß können baumförmige 
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Datenstrukturen, die sehr unterschiedlich sind für die Erstellung 

unterschiedlicher Modelle genutzt werden (die ggf. auch wieder unterteilt 

werden in Langzeit und Kurzzeitinteressen). Die Identifizierung von 

zusammengehörigen baumförmigen Datenstrukturen kann folgendermaßen 

erfolgen: 

- Inhaltliche Analyse: Hier werden mit den Verfahren zur Gewichtung von 

Termen oder Verweisen ähnliche baumförmige Datenstrukturen ermittelt. 

Unterschreiten die baumförmigen Datenstrukturen einen bestimmten 

Ähnlichkeits-Schwellenwert, werden sie für unterschiedliche Nutzermodelle 

genutzt. 

- Zeitliche Analyse: Baumförmige Datenstrukturen, die selten oder nie zur 

gleichen Zeit genutzt, geöffnet, etc. werden, werden für unterschiedliche 

Nutzermodelle genutzt. 

 

Baumförmige Datenstrukturen können für unterschiedliche Arten von 

Anwendungen genutzt werden, zum Beispiel Dateiverwaltung, Brainstorming, 

Dokumentenmanagement, Projektplanung etc. Die Art der Anwendung wird im 

Nutzermodell vermerkt. Wenn ein Nutzer verschiedene baumförmige 

Datenstrukturen für verschiedene Arten von Anwendungen erstellt, werden wieder 

jeweils verschiedene Nutzermodelle erstellt. Die Art der Anwendung kann wie 

folgt festgestellt werden: 

- Über die Anwendung, mit der die baumförmige Datenstruktur erstellt wurde. 

Beispielsweise kann pauschal angenommen werden, dass eine baumförmige 

Datenstruktur, mit dem Windows Explorer erstellt worden ist zur 

Dateiverwaltung dient. 

- Durch manuelle Angabe des Nutzers: Der Nutzer kann in der Anwendung zum 

Erstellen der baumförmigen Datenstruktur angeben für welchen Zweck er die 

baumförmige Datenstruktur erstellen will (z.B. Brainstorming, Projektplanung, 

etc.). 

- Automatische Analyse: Das System analysiert die baumförmige Datenstruktur 

und schließt, z.B. an Hand ihres Aufbaus, ihrer Nutzung oder ihres 

Quellformates, automatisch auf die Art der Anwendung.  

 

Bei der automatischen Analyse können folgende Regeln angewandt werden: 

- Enthalten baumförmige Datenstrukturen viele Verweise, ist die primäre 

Anwendung Dateiverwaltung, Webseitenverwaltung bzw. 

Dokumentenverwaltung. 
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- Werden erst sehr schnell sehr viele Knoten in der baumförmigen Datenstruktur 

erstellt, diese dann verschoben und editiert und die baumförmige Datenstruktur 

danach nie oder nur selten geöffnet, wurde sie für Brainstorming erstellt. 

- Wächst die baumförmige Datenstruktur langsam und kontinuierlich ist es keine 

baumförmige Datenstruktur für Brainstorming. 

 

Bei der automatischen Analyse können Faktoren wie Wachstumsrate, Größe, 

Nutzungsdauer, Art der Nutzung, Anwendung zum Erstellen der baumförmigen 

Datenstruktur und/oder weitere Faktoren eine Rolle spielen. 

 

Mit dem vorstehend beschriebenen erfindungsgemäßen Verfahren sind für eine 

Anzahl von Nutzer jeweils ein oder auch mehrere Nutzermodelle erzeugt worden. 

Diese Nutzermodelle werden erfindungsgemäß genutzt, um einem Nutzer 

Empfehlungen für Items zu geben. Das heißt, basierend auf den Nutzermodellen 

können Items identifiziert werden, die der Nutzer wahrscheinlich als 

interessant/relevant empfindet. Um Items zu empfehlen, wird gemäß der 

Erfindung ein Verfahren vorgeschlagen, welches sowohl Item-Modelle als auch 

Nutzermodelle als gleich ansieht. Im Folgenden werden Items und Nutzer 

zusammengefasst als Objekt bezeichnet, wobei jedes Objekt einen Typ haben kann 

(Typ = Nutzer; Typ = Webseite; Typ = Email; Typ = Wissenschaftlicher Artikel; 

etc.).  

 

Das erfindungsgemäße Verfahren zum Vorschlagen von Objekten kann zumindest 

die nachfolgend genannten Schritte umfassen: 

 

Die Nutzermodelle wurden bereits mit vorstehen genannten erfindungsgemäßen 

Verfahren erstellt und gespeichert. Nun wird von allen Items die potentiell 

empfohlen werden können, ein Item-Modell mit aus dem Stand der Technik 

bekannten Verfahren erzeugt. Handelt es sich bei dem Item beispielsweise um eine 

Webseite könnten Terme mittels TF-IDF gewichtet und als Vector Space Model 

gespeichert werden. Handelt es sich bei dem Item um eine wissenschaftliche 

Arbeit könnte ebenfalls TF-IDF genutzt werden, aber auch andere Verfahren, wie 

etwa Citation Proximity Analysis um das Item abzubilden. 

 

Es kann auch das vorstehend genannte Typ-Neutrale Verfahren genutzt werden, 

um ein entsprechendes Modell von Items zu erstellen die, wie baumförmige 

Datenstrukturen, mehrere Elementtypen enthalten. Dies trifft zum Beispiel auf 

wissenschaftliche Artikel zu. Eine wissenschaftliche Arbeit enthält in der Regel 

Text und Verweise (Referenzen auf andere wissenschaftlichen Arbeiten), 
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vergleichbar zu einer baumförmigen Datenstruktur, die ebenfalls Text und 

Verweise (z.B. auf Dateien) enthält. Darum können beide relativ leicht mit 

kompatiblen Modelltypen abgebildet werden. Wichtig ist, dass erfindungsgemäß 

alle Objekte in dem gleichen bzw. einem kompatiblen Modell abgebildet werden, 

um diese später miteinander vergleichen zu können.  

 

Nachdem von allen Objekten Modelle erstellt und gespeichert wurden, werden 

diese auf Ähnlichkeit verglichen. Enthalten die Objektmodelle mehrere 

Untermodelle (beispielsweise für Kurz- und Langzeitinteressen oder für 

verschiedene Elementtypen), wird jedes dieser Untermodelle mit den anderen 

Objektmodellen verglichen. Der Vergleich kann mit Standardverfahren stattfinden, 

wie Cosine für Vergleiche im Vector Space Model oder Ähnlichkeitsmaßen wie 

Greedy Citation Tiling für verweisbasierte Modelle. Das heißt letztlich, dass durch 

das Objekt-Objekt Matching die Ähnlichkeit der Nutzer zueinander, die 

Ähnlichkeit der Items zueinander und die Ähnlichkeit der Items und Nutzer 

zueinander in einem Schritt berechnet werden. Dies hat den Vorteil, dass einem 

Nutzer später sehr flexible Empfehlungen gegeben werden können.  

 

Soll nun einem Nutzer eine Empfehlung gegeben werden, werden basierend auf 

seinem Objekt bzw. Nutzermodell: 

- alle Objekte empfohlen, die einen bestimmten Typ haben (z.B. Webseite bzw. 

allgemein „Item“) oder ungleich eines bestimmten Typs sind (z.B. Nutzer) und 

einen gewissen Ähnlichkeitswert überschreiten; 

- alle Objekte empfohlen, auf die in einem der im vorherigen Schritt bestimmten 

Objekte mit hohem Gewicht verwiesen wird. Wurde z.B. im vorherigen Schritt 

ein zum Nutzermodell ähnliches Objekt vom Typ Webseite bestimmt, werden 

dem Nutzer die Webseiten empfohlen die häufig auf der ähnlichen Webseite 

verlinkt sind. Oder, wurde ein ähnliches Objekt vom Typ "Nutzer" bestimmt 

werden die Items empfohlen, auf die häufig in dem Nutzermodell des ähnlichen 

Nutzers verwiesen wird bzw. die in enger Verbindung zu dem Nutzer stehen; 

und/oder 

- alle Objekte empfohlen, die ähnlich zu den Objekten sind, auf die im 

Nutzermodell des Nutzers verwiesen wird. Das heißt: Hat ein Nutzer in seinem 

Nutzermodell einen Verweis auf eine Webseite X, werden die Objekte 

empfohlen die ähnlich zu dieser Webseite X sind. 

 

Zusätzlich bzw. alternativ zu dem vorstehend beschriebenen Ansatz kann ein 

Verfahren basierend auf Machine Learning genutzt werden. Die Verweise eines 
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Nutzermodells können mit Machine Learning Verfahren genutzt werden, um die 

Präferenzen von Nutzern zu lernen. Hierbei gilt jeder Verweis auf ein Item als 

positive Assoziation, welche das System lernt und darauf basierend Empfehlungen 

für neue Items gibt. 

 

In einer speziellen Ausführung des erfindungsgemäßen Verfahrens kann dieses 

verwendet werden, um Empfehlungen für Fördergelder/Förderprogramme zu 

geben. Hierzu wird zunächst ein aus einer baumförmigen Datenstruktur ein 

Nutzermodell erzeugt, wie vorstehend beschrieben. Das Förderprogramm selbst 

wird als Item betrachtet. Das Item wiederum wird repräsentiert durch einen Text 

welcher das Förderprogramm beschreibt. Dieser Text kann eine Webseite sein, 

eine Broschüre im PDF Format, Social Tags, etc. Enthält beispielsweise ein 

Nutzermodell den stark gewichteten Term "Recommender Systems" und gibt es 

ein Förderprogramm, dessen Webseite ebenfalls diesen Term oft beinhaltet, würde 

dieses Förderprogramm dem Nutzer empfohlen. 

 

Durch die erfindungsgemäßen Nutzermodelle und Empfehlungen kann der Nutzen 

vieler Softwareprogramme für den Anwender gesteigert werden, da sie 

interessante Empfehlungen erhalten. 

 

K.2 Ansprüche 

Computer-implementiertes Verfahren zum Erzeugen eines Nutzermodells, 

insbesondere für einen Empfehlungsdienst, aus zumindest einer baumförmigen 

Datenstruktur, wobei das Nutzermodell Informationen über einen Nutzer umfasst, 

wobei die zumindest eine baumförmige Datenstruktur dem Nutzer zuordenbar ist, 

wobei die baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von 

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit einem 

Kinderknoten verbunden sind, wobei zumindest einem Knoten zumindest ein 

Element zugeordnet ist, und wobei 

- die den Knoten zugeordneten Elemente ermittelt werden, wobei die 

Elemente einen Inhalt des jeweiligen Knoten repräsentieren, 

- die ermittelten Elemente gewichtet werden und jedem Element eine 

Elementgewichtung zugeordnet wird, und 

- ein Nutzermodell generiert wird, wobei das generierte Nutzermodell die 

ermittelten Elemente und die dem jeweiligen Element zugeordnete 

Elementgewichtung umfasst. 
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1. Verfahren nach Anspruch 1, wobei die Knoten der baumförmigen 

Datenstruktur gewichtet werden und jedem Knoten eine Knotengewichtung 

zugeordnet wird. 

 

2. Verfahren nach einem der vorhergehenden Ansprüche, wobei in einem 

Initialisierungsschritt jedem Element eine vorbestimmte Elementgewichtung 

oder die Knotengewichtung des zugeordneten Knotens zugeordnet wird. 

 

3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren 

ferner einen Vorverarbeitungsschritt umfasst, bei dem  

- Knoten, denen keine Elemente zugeordnet sind, gelöscht werden, und/oder 

- Knoten gelöscht werden, denen ein vorbestimmtes Element zugeordnet 

oder nicht zugeordnet ist, und/oder 

- Knoten gelöscht werden, welche vorbestimmte Attribute aufweisen oder 

nicht aufweisen, und/oder 

- Knoten und/oder Elemente der Knoten gelöscht werden, welche nicht 

direkt dem Nutzer zugeordnet sind. 

 

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Gewichten 

der Knoten eine statische Knotengewichtung und/oder eine dynamische 

Knotengewichtung umfasst, wobei 

- bei der statischen Knotengewichtung die Anzahl der dem jeweiligen 

Knoten zugeordneten Kinderknoten, die Anzahl der jeweiligen 

Geschwisterknoten, die Tiefe des jeweiligen Knotens in der baumförmigen 

Datenstruktur, die Sichtbarkeit des Knotens, oder eine Kombination 

hiervon berücksichtigt werden, und 

- bei der dynamischen Knotengewichtung für jeden Knoten das Alter, der 

Zeitpunkt der letzen Änderung, die Anzahl der Änderungen, die Anzahl 

der Verschiebungen innerhalb der baumförmigen Datenstruktur, die 

Anzahl der Markierungen, die Sichtbarkeit des Knotens, ein 

Dämpfungsfaktor, oder eine Kombination hiervon berücksichtigt werden. 

 

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln 

der den Knoten zugeordneten Elemente ein Vorverarbeiten der ermittelten 

Elemente umfasst, wobei beim Vorverarbeiten der Elemente Text in Token 

und/oder Terme zerlegt wird, sofern das Element ein Textelement ist, 
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und/oder Verweise verarbeitet werden, sofern das Element ein 

Verweiselement ist. 

 

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die in dem 

Initialisierungsschritt den Elementen zugeordneten Elementgewichtungen 

angepasst werden, wobei beim Anpassen der jeweiligen Elementgewichtung 

der Elementtyp, Attributsausprägungen der von dem Element zugeordneten 

Attribute, eine Häufigkeit des Elements innerhalb der baumförmigen 

Datenstruktur, die Anzahl der baumförmigen Datenstrukturen in einer 

Kollektion von baumförmigen Datenstrukturen in denen das Element 

vorkommt, eine Häufigkeit des Elements innerhalb einer Kollektion von 

baumförmigen Datenstrukturen, die Größe der baumförmigen Datenstruktur 

im Verhältnis zu anderen baumförmigen Datenstrukturen in einer Kollektion 

von baumförmigen Datenstrukturen, die Position des Elementes innerhalb des 

Knotens, die Sprache des Elementes, die Anzahl der Elemente innerhalb des 

Knotens, der Abstand des Elementes zu gleichartigen Elementen anderer 

Knoten, Häufigkeit des Elementes in dem Pfad zwischen dem Knoten und 

dem Wurzelknoten, das Alter des Elements, der Zeitpunkt der letzen 

Änderung, die Anzahl der Änderungen, die Anzahl der Markierungen, die 

Sichtbarkeit des Elements, ein Dämpfungsfaktor, oder eine Kombination 

hiervon berücksichtigt werden. 

 

Verfahren nach einem der Ansprüche 5 bis 7, wobei bei der statischen 

Knotengewichtung und/oder bei der dynamischen Knotengewichtung oder nach 

der statischen Knotengewichtung und/oder nach der dynamischen 

Knotengewichtung und/oder bei oder nach der Elementgewichtung die Vererbung 

des Knotengewichts bzw. des Elementgewichts berücksichtigt werden. 

 

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das generierte 

Nutzermodell in einer Speichereinrichtung gespeichert wird, um dem 

Empfehlungsdienst zur Verfügung gestellt zu werden. 

 

8. Verfahren nach Anspruch 9, wobei alle Elemente zusammen mit den 

jeweiligen Elementgewichtungen als Nutzermodell gespeichert werden, oder 

wobei für jeden Elementtyp ein eigenes Nutzermodell gespeichert wird, 



299 

 

wobei die Nutzermodelle der verschiedenen Elementtypen ein 

Gesamtnutzermodell bilden. 

 

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei mehreren 

dem Nutzer zuordenbaren baumförmigen Datenstrukturen für jede 

baumförmige Datenstruktur eine Anzahl von Nutzermodellen generiert wird, 

welche zusammen ein dem Nutzer zugeordnetes Gesamtnutzermodell bilden. 

 

10. Verfahren nach Anspruch 11, wobei jeder baumförmigen Datenstruktur eine 

Baumgewichtung zugeordnet wird. 

 

11. Verfahren nach Anspruch 11 oder 12, wobei für eine neue dem Nutzer 

zuordenbare baumförmige Datenstruktur das dem Nutzer zugeordnete 

Nutzermodell angepasst wird. 

 

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei von der 

baumförmigen Datenstruktur referenzierte Elemente in das Nutzermodell 

eingefügt werden und wie Elemente der baumförmigen Datenstruktur 

behandelt werden. 

 

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei einem 

generierten Nutzermodell eine Information über den Nutzermodelltyp 

zugeordnet wird. 

 

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren 

ferner ein Auswählen von Objekten anhand vorbestimmter Auswahlkriterien 

umfasst, wobei ein Objekt ein Nutzermodell oder ein Itemmodell umfasst. 

 

15. Verfahren nach Anspruch 16, wobei die Auswahlkriterien umfassen: 

- Objekte eines vorbestimmten Typs, und/oder 

- Objekte die eine vorbestimmte Ähnlichkeit zu dem Nutzermodell und/oder 

Itemmodell aufweisen, wobei vor dem Auswählen Ähnlichkeitswerte 
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zwischen dem generierten Nutzermodell und/oder Itemmodell und den 

Objekten ermittelt werden. 

 

16. Verfahren nach einem der vorhergehenden Ansprüche, wobei durch ein 

Itemmodell ein Förderprogramm repräsentiert wird, und wobei das das 

Förderprogramm repräsentierende Itemmodell ausgewählt wird, wenn das 

Nutzermodell eine vorbestimmte Ähnlichkeit zu dem Itemmodell aufweist. 

 

17. System zum Erzeugen eines Nutzermodells, insbesondere für einen 

Empfehlungsdienst, aus zumindest einer baumförmigen Datenstruktur, wobei 

das Nutzermodell Informationen über einen Nutzer umfasst, wobei die 

baumförmige Datenstruktur dem Nutzer zuordenbar ist, wobei die 

baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von 

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit 

einem Kinderknoten verbunden sind, und wobei zumindest einem Knoten 

zumindest ein Element zugeordnet ist, aufweisend 

- wenigstens eine Speichereinrichtung zum Speichern wenigstens einer 

baumförmigen Datenstruktur, und 

- eine Verarbeitungseinrichtung, welche mit der Speichereinrichtung 

gekoppelt ist und welche angepasst ist ein Verfahren nach einem der 

vorhergehenden Ansprüche auszuführen, um ein Nutzermodell zu 

generieren und das generierte Nutzermodell in der Speichereinrichtung 

abzuspeichern und einem Empfehlungsdienst zur Verfügung zu stellen. 

 

18. Datenträgerprodukt mit einem darauf gespeicherten Programmcode, welcher 

in einen Computer und / oder in ein Computernetzwerk ladbar ist und 

angepasst ist, ein Verfahren nach einem der Ansprüche 1 bis 18 auszuführen. 
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K.3 Figuren 
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Fig. 3 
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Fig. 5 
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Fig. 7a 
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Fig. 7b 

Empfehlungen 

Welches 

Verfahren? 

Item, Nutzer, 

Verweis Verfahren 

Kombiniertes 

Verfahren 

Machine 

Learning 

Relevante Items 

empfehlen 



307 

 

Ehrenerklärung 

 

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe 

Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt 

habe; verwendete fremde und eigene Quellen sind als solche kenntlich gemacht. 

Insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in 

Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar 

geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt 

der vorgelegten Dissertation stehen. Ich habe insbesondere nicht wissentlich:  

 Ergebnisse erfunden oder widersprüchliche Ergebnisse 

verschwiegen,  

 statistische Verfahren absichtlich missbraucht, um Daten in 

ungerechtfertigter Weise zu interpretieren,  

 fremde Ergebnisse oder Veröffentlichungen plagiiert,  

 fremde Forschungsergebnisse verzerrt wiedergegeben.  

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und 

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch 

die Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im 

Inland noch im Ausland in gleicher oder ähnlicher Form als Dissertation 

eingereicht und ist als Ganzes auch noch nicht veröffentlicht. 

 

_____________________________________ 
Jöran Beel, Magdeburg, Deutschland, 22. Oktober 2014 


	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Acknowledgements
	1. Introduction
	1.1 Problem Setting
	1.2 Motivation
	1.3 Research Objective, Questions, and Tasks
	1.4 Outline

	2. Fundamentals
	2.1 Mind Mapping
	2.2 Docear
	2.3 Definitions
	2.4 User Modeling
	2.5 Recommender Systems
	2.5.1 Introduction
	2.5.2 Recommendation Classes
	2.5.2.1 Stereotyping
	2.5.2.2 Content-based filtering
	2.5.2.3 Collaborative filtering
	2.5.2.4 Co-occurrence recommendations

	2.5.3 Recommender-Systems Evaluation
	2.5.3.1 User studies
	2.5.3.2 Online evaluations
	2.5.3.3 Offline evaluations
	2.5.3.4 The operator's perspective


	2.6 Related Research Fields

	3. Related Work
	3.1 Introduction
	3.2 Survey of the Recommendation Classes
	3.2.1 Content-Based Filtering
	3.2.2 Collaborative Filtering
	3.2.3 Co-Occurrences
	3.2.4 Graph Based
	3.2.5 Global Relevance
	3.2.6 Hybrid Recommendation Approaches

	3.3 Survey of the Research Field and its Shortcomings
	3.3.1 Neglect of User Modeling
	3.3.2 Focus on Accuracy
	3.3.2.1 Users’ tasks
	3.3.2.2 Diversity
	3.3.2.3 Layout
	3.3.2.4 User characteristics
	3.3.2.5 Time of usage
	3.3.2.6 Recommendation medium
	3.3.2.7 Relevance and profile feedback

	3.3.3 Lack of Transferring Research into Practice
	3.3.4 Lack of Persistence and Authorities
	3.3.5 Lack of Cooperation
	3.3.6 Information Sparsity

	3.4 Survey of the Evaluations
	3.4.1 Evaluation Methods and their Adequacy
	3.4.2 The Operators’ Perspective
	3.4.3 Coverage
	3.4.4 Baselines
	3.4.5 Offline Evaluation Metrics
	3.4.6 Datasets and Architectures
	3.4.7 The Butterfly Effect: Unpredictable Results

	3.5 Discussion and Summary

	4. Methodology
	4.1 Development of Docear’s Recommender System
	4.2 Comparison of Evaluation Methods and Metrics
	4.3 Identification of Mind-Map-Specific User-Modeling Variables
	4.4 Development of a Mind-Map-Specific User-Modeling Approach

	5. Results & Discussion
	5.1 Docear’s Recommender System
	5.1.1 Architecture
	5.1.1.1 Web Service / API
	5.1.1.2 Building the corpus
	5.1.1.3 Collecting information about users
	5.1.1.4 Generating user models & recommendations
	5.1.1.5 Delivering recommendations
	5.1.1.6 Offline evaluation
	5.1.1.7 Technical details

	5.1.2 Datasets
	5.1.2.1 Research papers
	5.1.2.2 Mind maps / user libraries
	5.1.2.3 Users
	5.1.2.4 Recommendations


	5.2 Adequacy of Evaluation Methods and Metrics
	5.2.1 Results of the Evaluations
	5.2.1.1 Effectiveness of recommendation approaches
	5.2.1.2 Effect of user-model size
	5.2.1.3 Effect of number of nodes
	5.2.1.4 Effect of node-selection method
	5.2.1.5 Effect of stop-word removal
	5.2.1.6 Effect of user types
	5.2.1.7 Effect of labels
	5.2.1.8 Effect of trigger
	5.2.1.9 Correlation of the evaluation metrics

	5.2.2 Adequacy of Online-Evaluation Metrics
	5.2.3 Adequacy of Online Evaluations & User Studies
	5.2.4 Adequacy of Offline Evaluations
	5.2.4.1 Finding scenarios for which offline evaluations have predictive power
	5.2.4.2 The inherent value of offline evaluations
	5.2.4.3 The fundamental flaw of inferred ground-truths


	5.3 Mind-Map-Specific User-Modeling Variables
	5.3.1 Mind-Map & Node Selection
	5.3.1.1 Mind-map selection
	5.3.1.2 Node selection
	5.3.1.3 Node extension

	5.3.2 Node Weighting
	5.3.3 Feature Weighting
	5.3.4 User-Model Size
	5.3.5 Citations vs. Terms
	5.3.6 Mind maps vs. Other Items
	5.3.7 Additional Observations

	5.4 Docear’s Mind-Map-Specific User-Modeling Approach

	6. Summary and Contributions
	6.1 Overview
	6.2 Task 1: Survey Related Work
	6.2.1 Contribution 1: Overview of Research-Paper Recommender Systems
	6.2.2 Contribution 2: Identification of Several Shortcomings in Research-Paper Recommender-Systems Research
	6.2.3 Contribution 3: Showing the Need for More Research on Recommender-Systems Evaluation

	6.3 Task 2: Develop a Recommender System for Docear
	6.3.1 Contribution 4: Docear's Recommender-System Architecture
	6.3.2 Contribution 5: Docear's Datasets

	6.4 Task 3: Identify Adequate Evaluation Methods and Metrics
	6.4.1 Contribution 6: Showing the Inadequacy of Offline Evaluations
	6.4.2 Contribution 7: Showing the Adequacy of Online Evaluations and User Studies

	6.5 Task 4: Identify Mind-Map-Specific User-Modeling Variables
	6.5.1 Contribution 8: Identification and Evaluation of Mind-Map-Specific Variables

	6.6 Task 5: Develop a Mind-Map-Specific User-Modeling Approach
	6.6.1 Contribution 9: Evaluation of Standard User-Modeling Approaches Applied to Mind Maps
	6.6.2 Contribution 10: A Mind-Map-Specific User-Modeling Approach
	6.6.3 Contribution 11: Demonstrating the Potential of Mind Maps as Source for User Modeling

	6.7 Further Contributions

	7. Outlook
	References
	Appendix
	A List of Publications
	B Preliminary Study
	B.1 Introduction
	B.2 Related Work
	B.3 Popularity of Mind-Mapping
	B.4 Mind-Map based IR Applications
	B.5 Feasibility
	B.5.1 Mind-Map Users and (Public) Mind-Maps
	B.5.2 Content of Mind-Maps
	B.5.3 User Acceptance
	B.5.4 Discussion of the Feasibility

	B.6 Prototype
	B.7 Summary

	C Exploratory Analysis of Mind-Maps
	C.1 Introduction
	C.2 Related Work
	C.3 Methodology
	C.4 Results & Interpretation
	C.4.1 Mind Maps per User
	C.4.2 Nodes per mind map
	C.4.3 File Links
	C.4.4 Hyperlinks
	C.4.5 Notes
	C.4.6 Words per node
	C.4.7 Days Edited

	C.5 Interpretation & Summary
	C.6 Outlook

	D Link Analysis in Mind Maps
	D.1 Introduction
	D.2 Related Work
	D.3 Methodology
	D.4 Results
	D.5 Discussion
	D.5.1 Availability of Data
	D.5.2 Robustness of Data
	D.5.3 Timeliness of Data
	D.5.4 Appropriate Metrics

	D.6 Summary & Future Research

	E Docear4Word
	E.1 Introduction
	E.2 Maintaining a BibTeX database
	E.3 Inserting references in Microsoft Word
	E.4 Changing the Citation Style
	E.5 Insert a Bibliography
	E.6 Outlook

	F Review of the Recommendation Approaches
	F.1 Content-based Filtering Approaches
	F.1.1 CiteSeer(x) and CC-IDF
	F.1.2 Quickstep & Foxtrot
	F.1.3 Topic Sensitive Similarity Propagation (TSSP)
	F.1.4 Mixed-membership model / Link-LDA
	F.1.5 Papits
	F.1.6 Trust-based Scientiﬁc Paper Recommender (SPRec)
	F.1.7 PubMed Related Articles (PRMA)
	F.1.8 Recommending Citations
	F.1.9 Concept-Based Recommender System
	F.1.10 Pairwise Link-LDA & Link-PLSA-LDA
	F.1.11 Cite-LDA & cite-PLSA-LDA
	F.1.12 User’s Recent Research Interests
	F.1.13 Social Tag Based Recommender System
	F.1.14 Context Aware Relevance Model (CRM)
	F.1.15 SVM-MAP Approach / Who Should I Cite?
	F.1.16 Keyphrase-based recommender / Pirates Framework
	F.1.17 Source Independent Framework
	F.1.18 ResearchGate
	F.1.19 Docear
	F.1.20  Osusume
	F.1.21 Translation Model
	F.1.22 Citation Translation Model (CTM)
	F.1.23 Problem vs. Solution
	F.1.24 Scholar Update
	F.1.25 Mendeley Related Papers
	F.1.26 SemCir
	F.1.27 Clapper
	F.1.28  RefSeer

	F.2 Collaborative Filtering Approaches
	F.2.1 Personality Diagnosis
	F.2.2 CF Based Citation Recommender
	F.2.3 CiteULike
	F.2.4 CARES
	F.2.5 Synthese & Sarkanto
	F.2.6 Mendeley Suggest
	F.2.7 Can’t See the Forest for the Trees

	F.3 Co-occurrence Approaches
	F.3.1 BibTiP
	F.3.2 National Sun Yat-sen University
	F.3.3 bx by Exlibris
	F.3.4 Co-Citations vs. Co-Downloads
	F.3.5 Scienstein and Citation Proximity Analysis

	F.4 Graph Based Approaches
	F.4.1 Spreading activation in intra-book recommendations
	F.4.2 A two-layer graph approach
	F.4.3 PaperRank
	F.4.4 Multiple Graphs
	F.4.5 Curated Citation Networks & Path Ranking Algorithm
	F.4.6 Local and Global Relation Strength
	F.4.7 Network-Aware Popularity
	F.4.8 TheAdvisor with direction aware Katz and RWR (daKatz & daRWR)

	F.5 Hybrid Recommendation Approaches
	F.5.1 TechLens
	F.5.2 Papyres


	G PDF Title Extraction
	G.1 SciPlore Xtract
	G.1.1 Introduction
	G.1.2 SciPlore Xtract
	G.1.3 Methodology
	G.1.4 Results
	G.1.5 Discussion & Summary

	G.2 Docear’s PDF Inspector
	G.2.1 Introduction
	G.2.2 Docear’s PDF Inspector
	G.2.3 Methodology
	G.2.4 Results


	H Impact of User Demographics
	H.1 Introduction
	H.2 Methodology
	H.3 Results
	H.4 Conclusion

	I Persistence in Recommender Systems
	I.1 Introduction
	I.2 Research Objective & Methodology
	I.3 Results
	I.4 Interpretation and Outlook

	J Impact of Labels
	J.1 Introduction
	J.2 Methodology
	J.3 Results

	K Patent Application
	K.1 Patentbeschreibung
	K.2 Ansprüche
	K.3 Figuren


	Ehrenerklärung

