

Towards Effective Research-Paper Recommender Systems

and User Modeling based on Mind Maps

Dissertation

zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

Angenommen durch die Fakultät für Informatik

der Otto-von-Guericke-Universität Magdeburg

von Diplom Wirtschaftsinformatiker Jöran Beel, MSc

geboren am 19.02.1980 in Herdecke

GutachterInnen:

Prof. Dr. Andreas Nürnberger

Prof. Dr. Klaus Turowski

Prof. Dr. Alesia Zuccala

Magdeburg, den 17. März 2015

i

Abstract

User modeling and recommender systems are often seen as key success factors for

companies such as Google, Amazon, and Netflix. However, while user-modeling and

recommender systems successfully utilize items like emails, news, social tags, and

movies, they widely neglect mind-maps as a source for user modeling. We consider this a

serious shortcoming since we assume user modeling based on mind maps to be equally

effective as user modeling based on other items. Hence, millions of mind-mapping users

could benefit from user-modeling applications such as recommender systems.

The objective of this doctoral thesis is to develop an effective user-modeling approach

based on mind maps. To achieve this objective, we integrate a research-paper

recommender system in our mind-mapping and reference-management software Docear.

The recommender system builds user models based on the users' mind maps, and

recommends research papers based on the user models. As part of our research, we

identify several variables relating to mind-map-based user modeling, and evaluate the

variables' impact on user-modeling effectiveness with an offline evaluation, a user study,

and an online evaluation based on 430,893 recommendations displayed to 4,700 users.

We find, among others, that the number of analyzed nodes, the time when nodes were

modified, the visibility of nodes, the relations between nodes, and the number of children

and siblings of a node affect the effectiveness of user modeling. When all variables are

combined in a favorable way, this novel user-modeling approach achieves click-through

rates of 7.20%, which is nearly twice as effective as the best baseline. In addition, we

show that user modeling based on mind maps performs about as well as user modeling

based on other items, namely the research articles users downloaded or cited. Our findings

let us to conclude that user modeling based on mind maps is a promising research field,

and that developers of mind-mapping applications should integrate recommender systems

into their applications. Such systems could create additional value for millions of mind-

mapping users.

As part of our research, we also address the question of how to evaluate recommender

systems adequately. This question is highly discussed in the recommender-system

community, and we provide some new results and arguments. Among others, we show

that offline evaluations often cannot predict results of online evaluations and user studies

in the field of research-paper recommender systems. We also show that click-through rate

and user rating correlate well (r=0.78). We discuss these findings, including some inherent

problems of offline evaluations, and conclude that offline evaluations are probably

unsuitable for evaluating research-paper recommender systems, while both user studies

and online evaluations are adequate evaluation methods.

We also introduce a new weighting scheme, TF-IDuF, which could be relevant for

recommender systems in general. In addition, we are first to compare the weighting

scheme CC-IDF against CC only, and we research concept drift in the context of research-

paper recommender systems, with the result that interests of researchers seem to shift after

about four months. Last, but not least, we publish the architecture of Docear’s

recommender system, as well as four datasets relating to the users, recommendations, and

document corpus of Docear and its recommender system.

iii

Zusammenfassung

Empfehlungsdienste und Nutzermodellierungssysteme sind wichtige Erfolgsfaktoren für

Unternehmen wie Google, Amazon und Netflix. Während solche Systeme die Interessen

von Nutzern erfolgreich an Hand von verfassten Emails, gelesenen Nachrichten,

geschauten Filmen, etc. ableiten, ignorieren Unternehmen bisher weitestgehend Mind-

Maps als Quelle für Nutzermodellierung. Dies sehen wir als Problem, denn Millionen von

Mind-Mapping Nutzern könnten von Mind-Map basierten Nutzermodellierungssystemen

wie beispielsweise Empfehlungsdiensten profitieren.

Das Ziel der vorliegenden Doktorarbeit ist es, ein effektives Nutzermodellierungs-

verfahren zu entwickeln zur Realisierung von Empfehlungsdiensten in Mind-Mapping-

Tools. Hierzu entwickeln wir ein Empfehlungsdienst für unsere Mind-Mapping und

Referenzmanagementsoftware Docear. Wir identifizieren Variablen, welche die

Effektivität der Nutzermodellierung beeinflussen. Den Einfluss evaluieren wir mit einer

Offline Evaluation, einer Nutzerstudie, und einer Online Evaluation basierend auf 430,893

Empfehlungen für 4,700 Nutzer.

Die Evaluation zeigt, dass, unter anderem, die Anzahl der analysierten Knoten, der

Zeitpunkt wann Knoten modifiziert werden, die Beziehung zwischen Knoten, und die

Anzahl von Kinder- und Geschwisterknoten die Effektivität der Nutzermodellierung

beeinflussen. Werden alle Faktoren in einem mind-map-spezifischen Nutzermodel-

lierungsverfahren berücksichtigt, ist dieses Verfahren nahezu doppelt so effektiv wie

Standardverfahren. Wir zeigen außerdem, dass Mind-Map-basierte Nutzermodellierung

ähnlich effektiv ist, wie Nutzermodellierung in anderen Bereichen. Die Ergebnisse lassen

uns schlussfolgern, dass Nutzermodellierung basierend auf Mind-Maps ein vielversprech-

endes Forschungsgebiet ist, und dass Entwickler von Mind-Mapping Tools Empfehlungs-

dienste integrieren sollten. Solche Empfehlungsdienste sollten ähnlichen Mehrwert für die

Anwender und Entwickler schaffen, wie Empfehlungsdienste in anderen Bereichen.

Im Rahmen unserer Arbeit beschäftigen wir uns auch mit der Frage, wie

Empfehlungsdienste angemessen evaluiert werden können. Diese Frage wird in der

wissenschaftlichen Gemeinschaft derzeit intensiv diskutiert, und wir tragen mit neuen

Erkenntnissen zu dieser Diskussion bei. Unter anderem zeigen wir, dass Offline

Evaluationen häufig nicht in der Lage sind, die Effektivität von Empfehlungsverfahren in

der Praxis vorherzusagen. Wir zeigen außerdem, dass Click-Through Rates (CTR) und

Nutzerzufriedenheit eine starke Korrelation aufweisen (r=0,78). Wir diskutieren diese

Ergebnisse, einschließlich einiger inhärenter Probleme von Offline Evaluationen, und

schlussfolgern, dass Offline Evaluationen vermutlich ungeeignet sind für die Evaluation

von (Literatur-) Empfehlungsdiensten. Nutzerstudien und Online Evaluationen hingegen,

erscheinen beide gleichermaßen geeignet.

Wir stellen in unserer Arbeit außerdem ein neues Verfahren zur Gewichtung von Wörtern

und Zitationen für Nutzermodellierung vor (TF-IDuF). Zusätzlich evaluieren wir das

Gewichtungsverfahren CC-IDF mit dem Ergebnis, dass CC-IDF vermutlich nicht effektiv

ist. Wir untersuchen auch den Einfluss von ‚Concept-Drift‘ in Literaturempfehlungs-

diensten, und finden heraus, dass nur die Arbeiten der letzten vier Monate für

Nutzermodellierung verwendet werden sollten. Schließlich publizieren wir die Architektur

und vier Datensets von Docear’s Empfehlungsdienst.

v

Table of Contents

Abstract .. i

Zusammenfassung ... iii

Table of Contents .. v

List of Figures ... vii

List of Tables ... xi

Glossary ... xiii

Acknowledgements... xv

1. Introduction ... 1
1.1 Problem Setting ... 1
1.2 Motivation ... 3
1.3 Research Objective, Questions, and Tasks ... 4
1.4 Outline .. 6

2. Fundamentals .. 9
2.1 Mind Mapping .. 9
2.2 Docear ... 12
2.3 Definitions .. 14
2.4 User Modeling .. 16
2.5 Recommender Systems ... 18
2.6 Related Research Fields .. 27

3. Related Work ... 29
3.1 Introduction ... 29
3.2 Survey of the Recommendation Classes ... 36

3.2.1 Content-Based Filtering .. 36
3.2.2 Collaborative Filtering .. 37
3.2.3 Co-Occurrences ... 38
3.2.4 Graph Based .. 39
3.2.5 Global Relevance .. 40
3.2.6 Hybrid Recommendation Approaches .. 40

3.3 Survey of the Research Field and its Shortcomings .. 41
3.3.1 Neglect of User Modeling ... 41
3.3.2 Focus on Accuracy .. 42
3.3.3 Lack of Transferring Research into Practice ... 45
3.3.4 Lack of Persistence and Authorities .. 47
3.3.5 Lack of Cooperation .. 49
3.3.6 Information Sparsity ... 50

3.4 Survey of the Evaluations ... 50
3.4.1 Evaluation Methods and their Adequacy .. 51
3.4.2 The Operators’ Perspective ... 52
3.4.3 Coverage ... 53
3.4.4 Baselines ... 53
3.4.5 Offline Evaluation Metrics .. 54
3.4.6 Datasets and Architectures .. 55
3.4.7 The Butterfly Effect: Unpredictable Results ... 58

3.5 Discussion and Summary .. 59

vi

4. Methodology .. 63
4.1 Development of Docear’s Recommender System .. 63
4.2 Comparison of Evaluation Methods and Metrics .. 65
4.3 Identification of Mind-Map-Specific User-Modeling Variables 68
4.4 Development of a Mind-Map-Specific User-Modeling Approach 70

5. Results & Discussion ... 73
5.1 Docear’s Recommender System ... 73

5.1.1 Architecture ... 73
5.1.2 Datasets ... 81

5.2 Adequacy of Evaluation Methods and Metrics ... 87
5.2.1 Results of the Evaluations ... 87
5.2.2 Adequacy of Online-Evaluation Metrics ... 96
5.2.3 Adequacy of Online Evaluations & User Studies 98
5.2.4 Adequacy of Offline Evaluations .. 99

5.3 Mind-Map-Specific User-Modeling Variables ... 105
5.3.1 Mind-Map & Node Selection .. 105
5.3.2 Node Weighting .. 111
5.3.3 Feature Weighting ... 114
5.3.4 User-Model Size ... 116
5.3.5 Citations vs. Terms ... 117
5.3.6 Mind maps vs. Other Items ... 118
5.3.7 Additional Observations.. 119

5.4 Docear’s Mind-Map-Specific User-Modeling Approach.................................... 121

6. Summary and Contributions .. 123

7. Outlook ... 137

References.. 141

Appendix.. 171
A List of Publications ... 173
B Preliminary Study ... 177
C Exploratory Analysis of Mind-Maps .. 191
D Link Analysis in Mind Maps .. 203
E Docear4Word .. 211
F Review of the Recommendation Approaches ... 217
G PDF Title Extraction ... 245
H Impact of User Demographics .. 255
I Persistence in Recommender Systems .. 261
J Impact of Labels ... 267
K Patent Application ... 273

Ehrenerklärung .. 307

vii

List of Figures

Figure 1: Personalized advertisement in MindMeister ... 2

Figure 2: Research objective, questions, and tasks ... 4

Figure 3: Mind map for managing conferences and journals.................................... 10

Figure 4: Mind map for career planning ... 10

Figure 5: Mind map for organizing academic literature and notes 12

Figure 6: Reference management in Mendeley .. 13

Figure 7: Mind map as a draft for a new research paper ... 13

Figure 8: Word document with IEEE (left) and Harvard (right) citation style 14

Figure 9: Illustration of recommendation ideas, systems, etc. 15

Figure 10: Classification of evaluation methods... 22

Figure 11: Illustration of an explicit ground-truth .. 25

Figure 12: Illustration of inferred ground-truth .. 25

Figure 13: Published papers per year5 .. 31

Figure 14: Citation counts by year .. 34

Figure 15: Page count of reviewed articles ... 35

Figure 16: Citation Counts Overview ... 35

Figure 17: Citation counts of the reviewed papers ... 35

Figure 18: Papers per author ... 47

Figure 19: Number of authors of the reviewed papers .. 49

Figure 20: Illustration of a stereotype-tree of Docear users 60

Figure 21: Item similarity based on proximity in mind maps 62

Figure 22: Content-based filtering with mind maps and research articles 64

Figure 23: User-interface of Docear's recommender system 65

Figure 24: Mind map with an outlier node ... 68

Figure 25: Architecture of Docear's recommender system 74

Figure 26: Converting in-text citations to Docear-IDs ... 76

Figure 27: Effectiveness of recommendation approaches .. 88

Figure 28: Effectiveness based on user-model size .. 89

Figure 29: Effectiveness based on the number of nodes to analyze 90

Figure 30: Effectiveness based on the node modification type 91

Figure 31: Effectiveness of stop-word removal .. 92

Figure 32: Effectiveness by user type (registered and anonymous) 93

Figure 33: Effectiveness of labels ... 94

viii

Figure 34: Effectiveness by trigger ... 95

Figure 35: CTR by the number of mind maps to analyze (all users) 105

Figure 36: CTR by number of mind maps to analyze (8+ mind maps) 106

Figure 37: CTR by the number of nodes to analyze (all users)............................... 106

Figure 38: CTR by the number of nodes to analyze (1,000+ nodes available) 107

Figure 39: CTR for nodes analyzed in the past x days .. 108

Figure 40: Node modification type ... 108

Figure 41: Node visibility as selection criteria (at least 100 nodes analyzed) 109

Figure 42: Extending the original node selection ... 110

Figure 43: Extending the original node selection ... 110

Figure 44: Weighting based on node depth .. 111

Figure 45: Weighting based on children and siblings ... 112

Figure 46: Weighting based on the number of children .. 112

Figure 47: Weighting based on the number of siblings .. 113

Figure 48: Weighting based on the number of terms contained in a node 113

Figure 49: Combining the node weights ... 113

Figure 50: CTR of different weighting schemes63 .. 114

Figure 51: CTR of different weighting schemes (500+ nodes)63 115

Figure 52: CTR by user-model size (feature weight not stored) 116

Figure 53: CTR by user-model size (feature weight stored) 117

Figure 54: Citation vs. term-based citations, overall and under “fair”

conditions.. 118

Figure 55: CTR based on the source from which terms were extracted 118

Figure 56: CTR based on the recommendation’s original rank 119

Figure 57: CTR based on the rank at which a recommendation was displayed 120

Figure 58: CTR based on available recommendation candidates 120

Figure 59: Docear’s mind-map-specific approach vs. baselines (I) 122

Figure 60: Docear’s mind-map-specific approach vs. baselines (II) 122

Figure 61: Mind-map example (draft of this chapter) ... 178

Figure 62: Personalized advertisement in MindMeister ... 179

Figure 63: Search volume for selected search terms ... 180

Figure 64: Search volume for mind-mapping tools .. 180

Figure 65: Search volume for "XMind" and other selected search terms 181

Figure 66: Public mind-maps .. 184

Figure 67: User acceptance of IR on their mind-maps ... 185

Figure 68: CTR of different approaches ... 188

Figure 69: CTR by number of analyzed nodes ... 188

ix

Figure 70: Screenshot of a mind mapping software ... 192

Figure 71: Distribution of mind maps based on size (number of nodes) 194

Figure 72: Number of created mind maps per user ... 195

Figure 73: Number of file-links in Docear mind maps ... 196

Figure 74: Number of hyperlinks in mind maps ... 197

Figure 75: Number of words per node .. 198

Figure 76: Number of words per node based on node level 199

Figure 77: Number of days mind maps were edited ... 200

Figure 78: Mind map draft of a paper ... 204

Figure 79: Link extraction from the mind maps (illustration) 206

Figure 80: Relatedness of pairs in mind maps (mean) .. 207

Figure 81: Docear4Word ribbon in Microsoft Word 2010 211

Figure 82: Maintaining the BibTeX database ... 213

Figure 83: Selecting and inserting a reference .. 213

Figure 84: Style chooser ... 214

Figure 85: Automatically created bibliography .. 215

Figure 86: RefSeer website ... 231

Figure 87: Example PDF .. 246

Figure 88: Example XML Output ... 246

Figure 89: Output CSV opened in Microsoft Excel .. 250

Figure 90: Accuracies of the tools on the two test collections 252

Figure 91: Gender and user type (registered/unregistered) distribution.................. 257

Figure 92: Click-through rate (CTR) by user type and gender 257

Figure 93: Age distribution and click-through rate (CTR) by age 257

Figure 94: Click-through rate by the number of days Docear being used 258

Figure 95: User distribution and CTR by number of recommendation sets 258

Figure 96: Redisplayed recommendations vs. fresh ones 263

Figure 97: Fresh recommendations vs. redisplayed ones (one-day delay) 264

Figure 98: Recommendations in Docear with labels .. 268

Figure 99: CTR and MAP of different labels ... 269

Figure 100: MAP and CTR for prefixes (commercial and organic) 270

Figure 101: MAP and CTR for suffixes (commercial only) 271

xi

List of Tables

Table 1: List of papers by year ... 32

Table 2: Article types .. 33

Table 3: List of recommender systems ... 46

Table 4: Most productive authors ... 48

Table 5: Most productive author-groups ... 48

Table 6: Use of evaluation methods ... 51

Table 7: Number of participants in user studies ... 51

Table 8: Evaluation metrics .. 54

Table 9: Source of datasets ... 56

Table 10: MRR on different datasets .. 57

Table 11: Results of different CBF and CF evaluations ... 59

Table 12: POST and GET requests ... 75

Table 13: Correlation of the different metrics .. 96

Table 14: Feasibility of the ideas .. 186

Table 15: File types linked in mind maps ... 195

Table 16: Number of notes in mind maps ... 197

Table 17: Number of words per node by mind map size .. 198

Table 18: Title extraction of 693 PDF files .. 248

Table 19: Average runtimes (in milliseconds) per PDF.. 253

Table 20: Percentage of activated recommendations by gender 257

Table 21: Reiterations and click-through rate ... 262

Table 22: Labels for the recommendations ... 268

xiii

Glossary

ATR Annotation-Through Rate

CBF Content-Based Filtering

CC-IDF Weighting scheme analog to TF-IDF but based on citations instead of

terms

CiTR Cite-Through Rate

CF Collaborative Filtering

CTR Click-Through Rate

DTR Download-Through Rate

IDF Inverse Document Frequency

IF Information Filtering

IR Information Retrieval

LTR Link-Through Rate

MRR Mean Reciprocal Rank

nDCG normalized Discounted Cumulative Gain

P@N Precision at position n

r Pearson correlation coefficient

TF Term Frequency

TF-IDF Weighting scheme based on Term Frequency and Inverse Document

Frequency

TF-IDuF Novel weighting scheme like TF-IDF but based on a user's personal

document corpus

VSM Vector Space Model

xv

Acknowledgements

This doctoral thesis would not exist without the support of various individuals and

institutions to whom I would like to express my sincere thanks.

I am particularly indebted to Claus Rautenstrauch, who mentored me during my

undergraduate and graduate studies, and was my PhD supervisor, until he

tragically passed away. Claus always encouraged me to explore the world, to

broaden my horizons, and to question the status quo. Without him, I probably

would have never studied at Macquarie University Sydney, Australia, Lancaster

University, UK, and most certainly, I would never have begun the pursuit of my

PhD.

Deepest gratitude is also due to my supervisor Andreas Nürnberger. He greatly

dedicated himself to my work, particularly with respect to the development of

Docear. Without Andreas, Docear – the foundation for my research – would not

exist. Furthermore, Andreas was a great motivator throughout the time I was

working on my thesis and his guidance and knowledge was of great value.

I thank SAP and the Very-Large-Business-Applications Lab (VLBA-Lab) –

particularly the directors, Hans Henning Arndt and Klaus Turowski – for their

support, which allowed me to start my PhD. The time at the VLBA-Lab has been

largely inspiring and laid the foundation for my current research. Working at the

VLBA-lab also allowed me to teach at the WADI University in Syria. I

experienced Syria as a beautiful country with welcoming people and students

eager to gain knowledge. I wish my former students and colleagues all the best,

and that Syria may soon overcome the civil war and find the peace its people

deserve.

Bela Gipp was one of the best friends and colleagues one could ask for. He never

spared constructive feedback, he challenged my ideas, and he always motivated

me to go the extra mile. I appreciated his diligence and I am grateful for his ideas

and clarity of thought, which has proven to be very valuable to my work.

Stefan Langer and Marcel Genzmehr have stood along my side for more than three

years, day-by-day, to work on Docear and its recommender system. I am sincerely

thankful for their passion, their knowledge, and the sacrifice they accepted to

make Docear the powerful and unique tool it has become. It has been a pleasure

working with them, and I hope that many more years will follow.

xvi

I thank Erik Wilde and Jim Pitman from the University of California, Berkeley, for

their generosity, time, and knowledge. My work and research at UC Berkeley has

been an experience of a lifetime that has shaped my understanding of science.

I also thank the University of California, Berkeley, and the Otto-von-Guericke

University, as well as the German Academic Exchange Service (DAAD), the

European Union, and the federal state of Lower-Saxony for their support, both

financially and in terms of resources. Their support was key to the development of

Docear and for conducting my research. I also thank the DAAD, ACM, and IEEE

for several travel grants that allowed me to participate in conferences, such as the

ACM/IEEE Joint Conference on Digital Libraries (JCDL) and the ACM

Recommender Systems Conference (RecSys).

Georgia Kapitsaki has been a great research fellow for many months, and I am

greatly indebted to her for the invitation to the University of Cyprus (UCY). The

work-environment at UCY was amazing, and Georgia’s dedication was invaluable

to my research.

I would like to thank Debora Weber-Wulff for providing me with the opportunity

to teach and work at HTW Berlin. The students at HTW Berlin were highly

motivated and exceptionally talented – working with them was a pleasure and has

contributed to the success of Docear and my research.

Gratitude is also owed to the many students, volunteers, and research fellows that

aided in the development of Docear and its recommender system as well as in the

research. I would like to thank particularly Mario Lipinski, Corinna Breitinger,

Norman Meuschke, Christoph Müller, Simon Hewitt, Ammar Shaker, Nick

Friedrich, Cheng Xie, Julius Seltenheim, Alexander Schwank, Florian Wokurka,

Michael Schleichard, Paul Stüber, Sebastian Götte, Patrick Lühne, Mathias

Silbermann, the developers of the mind-mapping software Freeplane (Dimitry

Polivaev, Volker Boercher, and many others), and the developers of the reference

management software JabRef (Morten Omholt Alver, Oliver Kopp, and many

others). My gratitude goes also to the 4,700 Docear users who gave permission to

use their data for my research.

Finally, yet importantly, I would like to thank my girlfriend Carina, who gave me

support and backup throughout my PhD. Particularly during the past months,

which were characterized by long working hours and little sleep, Carina was of

invaluable help and a great motivator.

1

1. Introduction

1.1 Problem Setting

Items such as emails, social tags, or research articles are often utilized beyond

their original purpose. The goal of this “extended use” is typically to enhance

existing services, provide new services, or generate additional revenue. For

instance, social tags are intended to organize private webpage collections, but

search engines utilize them to enhance webpage indexing [416]. Emails are

intended as a means of communication, but Google utilizes them for generating

user models and displaying personalized advertisements [126], and research

articles are intended to communicate research results, but the articles, or more

precisely their references, are utilized to measure the impact of researchers and

academic institutions [165].

We propose that mind-maps could also be utilized beyond their original purpose,

similar to social tags, emails, and research articles. In a preliminary study, we

developed eight ideas of how mind maps could be utilized to provide new

services, enhance existing services, and generate additional revenues (cf.

Appendix B.4, p. 182). We explored the feasibility of the ideas and concluded that

user modeling was the most promising.

User modeling is the process of inferring information about users by analyzing the

users’ items or actions [84, 417]. User models are required by many applications

such as personalized search engines, adaptive graphical user interfaces, and

recommender systems. Particularly, recommender systems are often seen as key

factors to the increase of user satisfaction and revenue generation. For instance,

Amazon considers its recommender system as a “key differentiation factor” [325],

Google’s business model (i.e. personalized advertisement) is heavily dependent on

user modeling [127], and the movie rental and streaming service Netflix offered

one million US dollars to whomever could improve its recommender system by

10% [278]. Given the popularity of recommender systems in general, we find it

surprising, that researchers and developers of mind-mapping tools showed little

interest in user modeling or recommender systems based on mind maps.

In the research community, we are first to explore the field of mind-map-based

user modeling, to the best of our knowledge. In practice, two companies made the

first experiences: Both MindMeister and Mindomo, utilized mind maps for user

modeling in the context of personalized advertisement. MindMeister extracted

terms from the node that a user had created or edited most recently, and used these

2

terms as a user model. MindMeister then sent the user model, i.e. the terms, to

Amazon’s Web Service as a search query. Amazon returned book

recommendations that matched the query, and MindMeister displayed the

recommendations in a window next to the mind map (Figure 1). Mindomo applied

a similar concept using Google AdSense instead of Amazon. Both companies have

since abandoned their user-modeling systems, although they still actively maintain

their mind-mapping tools in general. In an email, Mindomo explained, “people

were not really interested” in the advertisement1. We were surprised about

Mindomo’s statement because it contradicted our expectations about the

usefulness of user modeling based on mind maps.

Figure 1: Personalized advertisement in MindMeister

To explore the effectiveness of mind-map-based user modeling in more detail, and

to find reasons why Mindomo and MindMeister might have abandoned

personalized advertisements, we conducted a preliminary study (Appendix B, p.

177). We re-implemented MindMeister’s approach and used it in our mind

mapping software, Docear, to recommend research papers. Instead of using

Amazon’s Web Service or Google AdSense, we built our own corpus of

recommendation candidates and used Apache Lucene to match candidates with

user models. In Docear, MindMeister’s approach, i.e. utilizing the terms from the

most recently edited or created node, achieved click-through rates (CTR) between

1 Email by Daniel Sima of the Mindomo team, October 3, 2011. Permission for publication was granted.

3

0.2% and around 1%. Compared to other recommender systems [228, 266, 320],

such a CTR is disappointing, which might explain why Mindomo and

MindMeister abandoned their recommender systems.

Besides MindMeister’s user-modeling approach, there are two more approaches,

both following the popular idea of content-based filtering (CBF), that we consider

rather obvious to use with mind-maps. One approach is to build user models based

on terms contained in all nodes of a users’ current mind map. The next approach is

to utilize terms from all mind maps ever created by a user. As part of the

preliminary study, we implemented these approaches in Docear and both achieved

CTRs of around 6% (Appendix B, p. 177). Such a CTR is reasonable and

significantly better than MindMeister’s approach. We were surprised that rather

similar user-modeling approaches differed in their effectiveness by a factor of six.

Apparently, small differences in the algorithms – such as whether to utilize terms

from a single node or from the entire mind map – have a significant impact on user

modeling performance.

1.2 Motivation

Given the popularity of recommender systems for movies, e-commerce, etc., and

the encouraging results of our preliminary study, we wanted to explore the

potential of mind-map-based user modeling further. Our motivation was twofold.

First, we have a self-interest in mind-map-based user modeling and recommender

systems. Since 2009, we have been developing the reference management

software Docear, previously known as SciPlore MindMapping [18, 19]. Docear

has around 40,000 users2 who manage their academic literature and references

with mind maps. These users would benefit from a user-modeling application such

as a recommender system.

Second, a significant number of mind-mapping users could benefit from

recommender systems, as well as the developers of the mind-mapping tools (cf.

Appendix B, p. 177). The website Mind-Mapping.org lists 142 actively maintained

2 More than 20,000 users registered, and based on the number of webpage visitors and update requests, we

estimate that a similar number of researchers uses Docear without registration.

4

mind-mapping tools3. The mind-mapping tools are used by an estimated two

million active users who create around five millions mind maps every year (cf.

Appendix B, p. 177). Developing an effective user-modeling approach should

encourage developers of mind-mapping applications to integrate recommender

systems in their applications and thereby provide additional value to their users.

1.3 Research Objective, Questions, and Tasks

Figure 2: Research objective, questions, and tasks

Given the many users that could benefit from mind-map-based user modeling and

recommender systems, we defined our research objective as follows (cf. Figure 2):

Develop an effective user-modeling approach based on mind maps

3 Some tools offer mind-mapping only as secondary feature in addition to other visualization techniques, such as

concept maps or Gantt charts

Research Objective

Develop an effective
user-modeling approach

based on mind maps

Research Questions

i) Which existing user-
modeling approaches
could serve as basis?

ii) How to adjust the
existing approaches to

mind-maps?

iii) How should the
effectiveness of user-

modeling approaches be
measured?

Research Tasks

1. Survey
related work

2. Develop a
recommender

system for Docear

3. Identify ade-
quate evaluation
methods and me-

trics

4. Identify mind-
map-specific user-
modeling variables

5. Develop a mind-
map-specific user-
modeling approach

5

The research objective should be seen in the context of research-paper

recommender systems, because we conducted our research based on Docear, and

most of Docear’s users are researchers, hence our decision to use user models for a

research-paper recommender systems.

The research objective leads us to ask three research questions:

i. Which existing user-modeling approaches could serve as a basis for

mind-map-based user modeling?

ii. Could the effectiveness of existing approaches be increased by

adjusting them to the special characteristics of mind maps?

iii. How should the effectiveness of user-modeling approaches be

measured?

To answer the research questions, we defined five tasks:

Task 1: Survey related work

 There are a significant number of publications about mind maps,

user modeling, recommender systems, and recommender-systems

evaluation. We assumed that the existing work would help to

identify user-modeling approaches that could serve the basis for a

mind-map-specific user-modeling approach. In addition, we

expected that the literature could help identify adequate methods

and metrics to evaluate user-modeling approaches. Therefore, the

first task is to conduct a thorough review of the corresponding

literature.
 Chapter 3, p. 29

Task 2: Develop a recommender system for Docear

 The second task is to develop a recommender system and integrate

it into Docear, to being able to conduct our research in a real-

world scenario. The recommender system should be capable of

applying different user-modeling approaches and evaluation

methods.
 Chapter 5.1, p. 73

6

Task 3: Identify adequate evaluation methods and metrics

 The literature survey revealed that there is uncertainty about the

adequacy of evaluation methods and metrics. Therefore, the third

task is to conduct additional research to find adequate evaluation

methods and metrics for our particular scenario (user modeling

and research-paper recommendations based on mind maps).
 Chapter 5.2, p. 87

Task 4: Identify mind-map-specific user-modeling variables

 As a preliminary step toward the research goal, the fourth task is to

identify variables that affect user modeling based on mind maps,

and to assess the variables' impact on user-modeling effectiveness.
 Chapter 5.3, p. 105

Task 5: Develop a mind-map-specific user-modeling approach

 The fifth task is to combine the variables from Task 4 in a single

algorithm to obtain an effective mind-map-specific user-modeling

approach. The approach should be compared against adequate

baselines.
 Chapter 5.4, p. 121

1.4 Outline

Chapter 2 presents basic information that is crucial for understanding this doctoral

thesis. This includes an introduction to mind mapping, user modeling,

recommender systems, and some definitions. The chapter only covers the basics –

readers familiar with the topics are advised to skip to Chapter 3.

Chapter 3 presents the results of our literature survey (Research Task 1). Since

there is no literature about user modeling and recommender systems based on

mind maps, the review focuses on recommender systems in general, more

precisely on research-paper recommender systems, and their evaluation.

Chapter 4 presents the methodology. This includes information about how

Docear's recommender system was built, information about Docear’s users, an

explanation of how recommendations are generated, and how user studies, offline

evaluations, and online evaluations were conducted.

7

Chapter 5 presents the results of our research and splits it into four parts, one for

each research task (Tasks 2-5): In Part One, Docear's research-paper recommender

system is presented (Task 2), including its architecture and four datasets (5.1, p.

73). The datasets contain information about Docear's users, the recommendation

corpus, and delivered recommendations. Both the architecture and datasets help

understanding and reproducing our research. In addition, the datasets allow further

analyses that go beyond our own research. In Part Two, results of Research Task 3

are presented, i.e. different methods for recommender-systems evaluation are

compared, and discussed (5.2 p. 87). The discussion concludes that click-through

rate is the most appropriate evaluation metric for Docear's scenario. In addition, it

is concluded that offline evaluations, the most common evaluation method for

recommender systems, are probably inappropriate for evaluating (research-paper)

recommender systems. In Part Three, the results of Task 4 are presented, i.e. the

effect of several variables on user modeling based on mind maps (5.3, p. 105).

Among others, it is shown how the number of analyzed nodes and the visibility of

nodes affecting user-modeling effectiveness. In Part Four, results of task 5 are

presented, i.e. the variables are combined in a novel mind-map-specific user

modeling and recommendation approach (5.4, p. 121). A comparison with

standard user-modeling approaches shows that the mind-map-specific approach is

around twice as effective.

This thesis concludes with a summary of the contributions (Chapter 6), and

provides an outlook for further research (Chapter 7). The Appendix contains

additional information, e.g. our preliminary study (Appendix B), details on

Docear’s users (Appendix H), the individual recommendation approaches that we

surveyed (Appendix F), and the patent application that we filed for our mind-map-

specific user-modeling approach (Appendix K).

9

2. Fundamentals

This chapter introduces mind mapping (p. 9), Docear (p. 12), some definitions

(p. 14), user modeling (p. 16), recommender systems (p. 18), and related research

fields (p. 27). A general understanding of these topics is important to following

our research and discussion. Readers familiar with the topics may skip this

chapter.

2.1 Mind Mapping

Mind mapping is a technique for recording and organizing information and for the

development of new ideas with special types of documents called "mind maps"

[152]. The structure of mind maps is similar to outlines and consists of three

elements: nodes, connections, and visual clues. When users create a new mind

map, they start with a root node, in which they write the central concept that the

mind map is about [83]. To detail the central concept, users create sub nodes, i.e.

child nodes, branching from the root node. To detail the child nodes, users create

further sub nodes, and so on. This process is similar to creating an outline with a

title, chapters, paragraphs, and sentences.

Mind maps are often used for tasks like brainstorming, knowledge management,

note taking, project planning, decision making, and career planning [103].

Originally, mind mapping was done with pen and paper, but since the 1980s, more

than one-hundred software tools for aiding users in creating mind maps have been

developed [105].

Figure 3 shows a mind map that we created with Docear to organize academic

conferences and journals. In the root node, we wrote the central topic

(“Conferences and Journals”), and then created child nodes representing categories

(e.g. “Information Retrieval” and “User Modeling”). Below each category, we

created further child nodes with hyperlinks to websites of corresponding journals

and conferences (red arrows indicate a hyperlink). For the “UMAP conference”

node, we created an additional note with information about a paper that we

submitted to the conference. A circle at the end of a node indicates that the node

has child nodes, which are hidden (“folded”). Clicking the circle would unfold the

node, i.e. make its child nodes visible again.

10

Figure 3: Mind map for managing conferences and journals

Figure 4 shows a mind map created for career planning. For some nodes, we

attached icons that indicate the progress of certain tasks.

Figure 4: Mind map for career planning

While mind maps share many characteristics with outlines, as well as with other

document types such as emails or research articles, mind maps also possess several

unique characteristics.

11

First, mind maps are often personal, while most other document types such as

emails and research papers are meant to be seen by at least one other person. As

such, we assume that mind maps might not be formulated as well as content in

other documents. For instance, mind-maps might contain more abbreviations or

spelling errors, because users do not worry about those people who might not be

able to understand the mind maps.

Second, mind maps might be less “standardized.” For example, while the structure

of research articles is rather standard (title, abstract, headings, body text, etc.),

mind maps are used for various tasks. We would assume that mind maps used for

project planning differ in structure and content from a mind map used to plan a

vacation. This might lead to challenges when it comes to selecting and weighting

certain features, e.g. terms, of a mind map. While terms in a title of a research

paper are obviously more descriptive than words in the paper’s appendix, such

obviousness does not exist for different nodes in mind maps.

Third, mind maps evolve over time, and mind-map-based user-modeling systems

might consider this evolution. In contrast, other user-modeling applications

typically get access to content when the items are finally published. However, the

evolution of mind maps is likely very dissimilar. A brainstorming mind map might

have a lifespan of a few hours. A mind map for planning one’s next vacation

probably has a lifespan of a few weeks. A mind map for managing literature might

be used over several years. This could lead to challenges when the evolution of the

mind map is to be considered by a user-modeling system.

Further differences relate to formatting and layout options that are often different

for mind maps from other document types. For instance, it is common to fold

nodes in mind maps that are not needed at a particular time (cf. Figure 5). Such an

option usually does not exist when, for example, writing emails.

The unique characteristics of mind maps led us to the assumption that by

considering these characteristics in the user modeling process, user-modeling

effectiveness can be improved when compared to the standard user-modeling

approaches neglecting the characteristics.

12

2.2 Docear

Docear is an open-source JAVA application for managing PDF files, annotations,

and references with mind maps. Figure 5 shows an example of mind maps. In that

mind map, we created categories reflecting our research interests (“Academic

Search Engines”), subcategories (“Google Scholar”), and sorted PDFs by category

and subcategory. Docear imported annotations that we made in the PDFs with a

third party PDF editor (comments, highlighted text, and bookmarks). Clicking a

PDF icon in the mind map opens the linked PDF file. Docear also extracts

metadata from PDF files (e.g. title and journal name), and displays the metadata

when the cursor hovers over a PDF icon. Overall, the information is organized

similarly to other reference managers such as Endnote, Zotero, or Mendeley

(Figure 6), with the difference being that Docear uses mind maps while other

reference managers use tables or social tags.

Figure 5: Mind map for organizing academic literature and notes

In addition to the organization of PDFs and references, Docear enables users to

draft their own assignments, papers, books, etc. in mind maps. Figure 7 shows a

mind map that represents a draft for a new research paper. In the mind map, we

outlined the paper that we wanted to write and included LaTeX formulas and

images, as well as some of the PDFs and citations from the mind map in Figure 5.

We use the term “citation” to refer to a reference or link in a mind map to a

research paper. For instance, in Figure 5, nodes with a PDF icon link to a PDF file,

13

typically a research article. If such a link exists, this is seen as a citation for the

linked research article. A citation is also made when a user added bibliographic

data, such as title and author, to a node (even if the node did not link a PDF).

Figure 6: Reference management in Mendeley

Figure 7: Mind map as a draft for a new research paper

14

In addition, we developed Docear4Word, an add-on for Microsoft Word for

managing references (Figure 8). Docear4Word is based on BibTeX and the

Citation Style Language (CSL), features over 1,700 citation styles (Harvard, IEEE,

ACM, etc.), is published as open source, and runs with Microsoft Word 2002 (and

later) on Windows XP (and later). Docear4Word is similar to the MS-Word add-

ons that reference managers like Endnote, Zotero, or Citavi offer, with the

difference that it is being developed to work with the de-facto standard BibTeX

and thereby work with almost any reference manager. For more details about

Docear4Word, refer to Appendix E and http://docear.org.

Figure 8: Word document with IEEE (left) and Harvard (right) citation style

2.3 Definitions

We use the term "idea" to refer to a hypothesis about how recommendations could

be effectively generated. To differentiate how specific the idea is, we distinguish

between recommendation classes, approaches, algorithms, and implementations

(Figure 9).

We define a "recommendation class" as the least specific idea, namely a broad

concept that vaguely describes how recommendations might be given. For

instance, collaborative filtering (CF) and content-based filtering (CBF)

fundamentally differ in their underlying ideas: the underlying idea of CBF is that

users are interested in items that are similar to items the users previously liked. In

contrast, the idea of CF is that users like items that the users' peers liked. However,

http://docear.org/

15

these ideas are rather vague and leave room for speculation about how the idea is

actually realized.

A "recommendation approach" is a model of how to bring a recommendation class

into practice. For instance, the idea behind CF can be realized with user-based CF

[310], content-boosted CF [255], and various other approaches [331]. These

approaches are quite different but are each consistent with the central idea of CF.

Nevertheless, approaches are rather vague, leaving room for speculation about

how recommendations are precisely generated.

A "recommendation algorithm" describes in detail the idea behind a

recommendation approach. For instance, an algorithm of a CBF approach would

specify whether terms were extracted from the title of a document or from the

body of the text, and how terms are processed (e.g. stop-word removal or

stemming) and weighted (e.g. TF-IDF). Algorithms are not necessarily complete.

For instance, pseudo-code might contain only the most important information and

ignore basics such as weighting schemes. This means that for a particular

recommendation approach there might be several (slightly) different algorithms.

Finally, an "implementation" is the actual source code of an algorithm that can be

compiled and applied in a recommender system. It fully details how

recommendations are generated and leaves no room for speculation. It is therefore

the most specific idea about how recommendations might be generated.

Figure 9: Illustration of recommendation ideas, systems, etc.

A "recommender system" is a fully functional software system that applies at least

one implementation to give recommendations. In addition, recommender systems

16

feature several other components, such as a user interface, a corpus of

recommendation candidates, and an operator that owns/runs the system. Some

recommender systems also apply two or more recommendation approaches. For

instance, CiteULike lets their users choose between two approaches to use [37,

69].

The "recommendation scenario" describes the entire setting of a recommender

system, including the recommender system and the recommendation environment,

i.e. the domain and user characteristics.

"Evaluation" describes any kind of assessment that measures the effectiveness of

ideas. There are different methods to evaluate recommender systems, which will

be later introduced.

By “effectiveness,” we refer to the degree to which a recommender system

achieves its objective. Generally, the objective of a recommender system is to

provide “good” [134] and “useful” [144] recommendations that make users

“happy” [104] by satisfying their “needs” [250]. The needs of users vary, and

consequently, different items might make users happy. For instance, some users

might be interested in novel research-paper recommendations; others might be

interested in authoritative research-paper recommendations; and, of course, users

require recommendations specific to their fields of research [368]. When we use

the term “effectiveness,” we refer to whatever objective the evaluator might have

wanted to measure. In addition, we use the terms “performance” and

“effectiveness” interchangeably.

2.4 User Modeling

In daily life, many situations require user modeling, which is, in a broad sense, the

ability to understand someone’s needs and to adapt to them [84, 335]. Rich

provided the following example of a librarian who needs to know basic

information about a library visitor to being able to recommend books to this

visitor:

“Someone walks into a large library, tells the librarian that he is

interested in China, and asks for some books. What sort of books does

the librarian recommend? That depends. Is the person a small child

who just saw a TV show about China and wants to see more pictures

of such an exotic place? Is the person a high school student doing a

term paper? Or maybe a prospective tourist? Or a scholar interested

in Eastern thought? Can the person read Chinese? The librarian

17

needs to know these things before he can point the reader to the right

books. Some of what he needs to know he'll know before he even

thinks about it, such as the approximate age of the person. Some

things he'll assume until he has evidence to the contrary, such as that

the person does not read Chinese. To find out other things, he'll ask a

few specific questions. Only after he has a rough model of the person

he's talking to can he answer the question.” [312]

There are different types of computer systems adapting to the needs of their users.

Kobsa lists ten fields including intelligent interfaces, cognitive engineering,

intelligent tutoring, expert systems, and guidance systems [184]. Others add more

fields to that list, for instance, educational hypermedia [48], navigation support

[107], and dialog strategy [417]. However, we see three main categories in user

modeling and that is human computer interaction, user prediction & plan

recognition, and information filtering/retrieval.

Human computer interaction (HCI) includes the adaption of software’s interfaces

[184], navigation [107], and presentation [107] to the users’ needs. For instance,

for elderly users, larger fonts might be used to compensate vision impairments

[137] or menu items may be re-sorted depending on how often they are used [99].

Plan and goal prediction focuses on the actions of a user. For instance, Thai-Nghe

et al. build user models of students to predict the students’ future performance

[364]. Germanakos et al. predict future purchases from customers [107]. Hirsh et

al. predict which command line users will enter next [151]. Macskassy et al.

predict which emails of a user are worth being forwarded to the user’s mobile

device [235]. However, HCI and plan and goal recognition are out of scope of this

doctoral thesis.

The focus of this thesis lies on user modeling for recommender systems, which is a

sub-discipline of information filtering, which is a sub-discipline of information

retrieval, and a “research area that offers tools for discriminating between

relevant and irrelevant information by providing personalized assistance for

continuous retrieval of information” [200].

The probably two most important questions in user modeling and recommender

systems are 1) how to identify the user’s information needs, and 2) how to find

items satisfying the users' needs? Potential answers to these questions are covered

in the next section.

18

2.5 Recommender Systems

2.5.1 Introduction

Ideally, a recommender system identifies the users' needs automatically by

inferring the needs from the user's item interactions. Alternatively, the

recommender system asks users to specify their needs by providing a list of

keywords or through some other method. However, in this case a recommender

system becomes very much like a search engine and loses one of its main features,

namely the capability to recommend items even if users do not know exactly what

they need.

To identify users' information needs and match these needs with items, researchers

proposed several recommendation classes such as collaborative filtering and

content-based filtering, as well as feature-based, knowledge-based, behavior-

based, citation-based, context-based, and ruse-based recommendations, and many

more [50, 59, 219, 297, 305, 367, 400]. We consider the following seven classes to

be most appropriate for distinguishing the approaches in the field of research-

paper recommender systems:

1. Stereotyping

2. Content-based Filtering

3. Collaborative Filtering

4. Co-Occurrence

5. Graph-based

6. Global Relevance

7. Hybrid

In the following sections, stereotypes, content-based filtering, collaborative

filtering, and co-occurrence recommendations are introduced. The other

classes are briefly introduced later as they are not that commonly used.

2.5.2 Recommendation Classes

2.5.2.1 Stereotyping

Stereotyping is one of the earliest user modeling and recommendation classes. It

was introduced by Rich in the recommender system Grundy, which recommended

19

novels to its users [312]. Rich was inspired by stereotypes from psychology that

allowed psychologists to quickly judge people based on a few characteristics. Rich

defined stereotypes – which she called “facets” – as collections of characteristics.

For instance, Grundy assumed that male users have “a fairly high tolerance for

violence and suffering, as well as a preference for thrill, suspense, fast plots, and a

negative interest in romance” [312]. Consequently, Grundy recommended books

that had been manually classified to suit the facets.

One major problem with stereotypes is that they may pigeonhole users. While

many men have a negative interest in romance, certainly not all do. Similarly, a

recommender system that recommends sausages to users because they are German

might please those who actually like sausages, but Germans who are vegetarian or

Muslim might feel uncomfortable [186]. In addition, building stereotypes is often

labor intensive, as the items typically need to be manually classified for each facet.

This limits the number of e.g. books that could reasonably be personalized [14].

Advocates of stereotypes argue that once the stereotypes are created the

recommender system needs little computing power and may perform quite well in

practice. For instance, Weber and Castillo observed that female users were usually

searching for the composer Richard Wagner when they entered the search query

‘Wagner’ on Yahoo! [385]. In contrast, male users entering the same query usually

were looking for the Wagner paint sprayer. Weber and Castillo modified the

search algorithm to show the Wikipedia page for Richard Wagner to female users,

and the homepage of the Wagner paint sprayer company to male users searching

for ‘Wagner.’ As a result, user satisfaction increased. Similarly, the travel agency

Orbitz observed that Macintosh users were “40% more likely to book a four- or

five-star hotel than PC users” and when booking the same hotel, Macintosh users

booked the more expensive rooms [246]. Consequently, Orbitz assigned their

website visitors to either the “Mac User” or “PC user” stereotype, and Mac users

received recommendations for pricier hotels than PC users. All parties benefited –

users received more relevant search results, and Orbitz received higher

commissions.

2.5.2.2 Content-based filtering

Content-based filtering (CBF) is one of the most widely used and researched

recommendation approaches [231]. One central component of CBF is the user

modeling process, in which the interests of users are inferred from the items that

users interacted with. “Items” are usually textual, for instance emails [288] or

webpages [5]. "Interaction" is typically established through actions such as

20

downloading, buying, authoring, or tagging an item. Items are represented by a

content model containing the items’ features. Features are typically word-based,

i.e. single words, phrases, n-grams, etc. Some recommender systems also use non-

textual features such as writing style [327, 328], layout information [92, 332], and

XML tags [54]. Typically, only the most descriptive features are used to model an

item and users and these features are typically weighted. Once the most

discriminative features are identified, they are stored, typically as vector that

contains the features and their weights. The user model typically consists of the

features of a user's items. To find recommendations, the user model and

recommendation candidates are compared in e.g. the vector space model and

similarities are calculated e.g. with Cosine.

CBF has a number of advantages compared to stereotypes. CBF allows a more

individual personalization so the recommender system can determine the best

recommendations for each user individually, rather than be limited by stereotypes.

CBF also requires less labor since user models can be created automatically.

On the downside, content-based filtering requires more computing power than

stereotyping. Each item must be analyzed for its features, user models need to be

built, and similarity calculations need to be performed. If there are many users and

many items, these calculations require significant resources. Content-based

filtering is also criticized for low serendipity and overspecialization because it

recommends items as similar as possible to the ones a user already knows [231].

Content-based filtering also ignores quality and popularity of items [86]. For

instance, two research papers may be considered equally relevant by a CBF

recommender system because the papers share the same terms with the user

model. However, one paper might be written by an authority in the field, well

structured, and presenting original results, while the other paper might be penned

by a student, poorly written and just paraphrasing other research papers. Ideally, a

recommender system should recommend only the first candidate but a CBF system

would fail to do so. Another criticism of content-based filtering is that it is

dependent on access to the item’s features [86]. For research-paper

recommendations, usually PDFs must be processed and converted to text,

document fields must be identified, and features such as terms must be extracted.

None of these tasks is trivial and they may introduce errors in the

recommendations [28, 75, 241].

21

2.5.2.3 Collaborative filtering

The term “collaborative filtering” (CF) was coined in 1992 by Goldberg et al.,

who proposed that “information filtering can be more effective when humans are

involved in the filtering process” [124]. The concept of collaborative filtering as it

is understood today was introduced two years later by Resnick et al. [310]. Their

theory was that users like what like-minded users like, whereas two users were

considered like-minded when they rated items alike. When like-minded users were

identified, items that one user rated positively were recommended to the other

user, and vice versa. Compared to CBF, CF offers three advantages. First, CF is

content independent, i.e. no error-prone item processing is required [142, 323,

368]. Second, because the ratings are done by humans, CF takes into account real

quality assessments [86]. Finally, CF is supposed to provide serendipitous

recommendations because recommendations are not based on item similarity but

on user similarity [142, 250].

A general problem of CF is the “cold start problem,” which may occur in three

situations [323]: new users, new items, and new communities or disciplines. If a

new user rates few or no items, the system cannot find like-minded users and

therefore cannot provide recommendations. If an item is new in the system and has

not been rated yet by at least one user, it cannot be recommended. In a new

community, no users have rated items, so no recommendations can be made and as

a result, the incentive for users to rate items is low.

There are further critiques of CF. Computing time for CF tends to be higher than

for content-based filtering [323]. Collaborative filtering in general is less scalable

and requires more offline data processing than CBF [337]. Torres et al. note that

collaborative filtering creates similar users [368] and Sundar et al. criticize that

collaborative filtering dictates opinions [350]. Lops makes the criticism that

collaborative filtering systems are black boxes that cannot explain why an item is

recommended except that other users liked it [231]. Manipulation is also

considered a problem: since collaborative filtering is based on user opinions,

blackguards might try to manipulate ratings to promote their products so they are

recommended more often [252–254].

2.5.2.4 Co-occurrence recommendations

To give co-occurrence recommendations, those items are recommended that

frequently co-occur with some source items. One of the first co-occurrence

application was co-citation analysis introduced by Small in 1973 [334]. Small

proposed that two papers are the more related to each other, the more often they

22

are co-cited. This concept was adopted by many others, the most popular example

being Amazon’s “Customers Who Bought This Item Also Bought….” Amazon

analyzes which items are frequently bought together, and when a customer

browses a product, items frequently bought with that item are recommended.

One advantage of co-occurrence recommendations is the focus on relatedness

instead of similarity. Similarity expresses how many features two items have in

common. Recommending similar items, as CBF is doing, is often not ideal

because similar items are not serendipitous [345]. In contrast, relatedness

expresses how closely coupled two items are, not necessarily dependent on their

features. For instance, two papers sharing the same features (words) are similar. In

contrast, paper and pen are not similar but related, because both are required for

writing letters. Hence, co-occurrence recommendations provide more

serendipitous recommendations and are comparable to collaborative filtering. In

addition, no access to content is needed and complexity is rather low. It is also

rather easy to generate anonymous recommendations, and hence to assure users'

privacy. On the downside, recommendations are not that highly personalized and

items can be recommended only if they co-occur at least once with another item.

2.5.3 Recommender-Systems Evaluation

To evaluate recommender systems, some researchers distinguish between "offline"

and "online evaluations" [411], between "data-centric" and "user-centric"

evaluations [319], and between "live user experiments" and "offline analyses"

[144]. We adopt the classification by Ricci et al. [311] and offer further sub-

classification, somewhat inspired by [167], i.e. we distinguish between user

studies, online evaluations, and offline evaluations. Our classification is illustrated

in Figure 10 and explained in the following sections

Figure 10: Classification of evaluation methods

2.5.3.1 User studies

User studies typically measure user satisfaction through explicit ratings. Users

receive recommendations generated by different recommendation approaches, rate

23

the recommendations, and the community considers the approach with the highest

average rating most effective [311]. Study participants are typically asked to

quantify their overall satisfaction with the recommendations. However, they might

also be asked to rate individual aspects of a recommender system, for instance,

how novel or authoritative recommendations are [368], or how suitable they are

for non-experts [195]. A user study can also collect qualitative feedback, but this is

rarely done in the field of (research-paper) recommender systems [341, 342].

We distinguish between “lab” and “real-world” user studies. In lab studies,

participants are aware that they are part of a user study, which, as well as several

other factors, might affect their behavior and thereby the evaluation's results [130,

220]. In real-world studies, participants are not aware of the study and rate

recommendations for their own benefit, for instance because the recommender

system improves recommendations based on the ratings (i.e. relevance feedback

[231]), or ratings are required to generate recommendations (i.e. collaborative

filtering [310]).

Often, user studies are considered the optimal evaluation method [321]. However,

the outcomes of user studies may depend on the questions users are asked.

Cremonesi et al. found that it makes a difference whether users are asked for the

"perceived relevance" or "global satisfaction" of recommendations [77]. Similarly,

it made a difference whether users were asked to rate the novelty or relevance of

recommendations [76]. A large number of participants are also crucial to user

study validity, which makes user studies relatively expensive to conduct. The

number of required participants, to receive statistically significant results, depends

on the number of approaches being evaluated, the number of recommendations

being displayed, and the variations in the results [53, 230]. However, as rough

estimate, at least a few dozen participants are required, often more.

2.5.3.2 Online evaluations

Online evaluations originated from online advertising and e-commerce. They

measure the acceptance rates of recommendations in real-world recommender

systems. Acceptance rates are often measured by click-through rates (CTR), i.e.

the ratio of clicked recommendations to displayed recommendations. For instance,

if a recommender system displays 10,000 recommendations and 120 are clicked,

the CTR is 1.2%. Other metrics include the ratio of downloaded or bought items to

the items displayed. Acceptance rate is typically interpreted as an implicit measure

for user satisfaction. The assumption is that when a user clicks, downloads, or

buys a recommended item, the user liked the recommendation. Of course, this

24

assumption is not always reliable because users might buy a book but rate it

negatively after reading it. However, in some cases, metrics such as CTR can be

an explicit measures of effectiveness, namely when the operator receives money,

e.g. for clicks on recommendations.

Online evaluations are not without criticism. Zheng et al. showed that CTR and

relevance do not always correlate and concluded that "CTR may not be the

optimal metric for online evaluation of recommender systems" and "CTR should

be used with precaution" [411]. In addition, conducting online evaluations requires

significantly more time than offline evaluations, they are more expensive, and they

can only be conducted by researchers who have access to a real-world

recommender system.

2.5.3.3 Offline evaluations

Offline evaluations typically measure the accuracy of a recommender system

based on a ground-truth [176, 188]. To measure accuracy, precision at position n

(P@n) is often used to express how many items of the ground-truth are

recommended within the top n recommendations. Other common evaluation

metrics include recall, F-measure, mean reciprocal rank (MRR), normalized

discounted cumulative gain (nDCG), mean absolute error, and root mean square

error. Offline evaluations are also sometimes used to evaluate aspects such as

novelty or serendipity of recommendations [104].

We define three types of ground-truths.

‘Explicit ground-truths’ contain explicit information about how much users liked

certain items, whereas liked typically means how well users rated an item. To

evaluate a recommendation approach, some ratings are removed from the dataset

and the recommendation approach predicts the ratings for the removed items. The

closer the predicted ratings are to the original ratings, the more accurate the

recommender approach is. Figure 11 illustrates the idea of an explicit ground-

truth. User u has watched five movies and rated how much she liked them on a

scale of 1 to 5. Movies D and E are removed from the collection. The

recommendation approach predicts the ratings for movies D and E. The prediction

for movie D was “perfect” (4) and the prediction for movie E was close (2 instead

of 1). Consequently, the evaluated approach would be quite accurate.

“Inferred ground-truths” are typically based on personal item collections of users,

for instance a list of papers a user cited, or a list of books a user bought. The

25

assumption is that the items in the users’ personal collection – and only these

items – would have been good recommendations. To evaluate a recommender

system based on such a ground-truth, random items are removed from the

collections, and recommendations are created based on the remaining items. The

more of the removed items are recommended, the more accurate the approach is.

At first glance, this concept seems similar to explicit ground-truths, but it is not as

Figure 12 illustrates. User u has three research papers in her collection (Paper A,

B, and C). The recommendation approach recommends three papers (Paper C, D,

and E), only one of which is in u's collection (Paper C). Only paper C is

considered a “good” recommendation. We propose that this concept is

fundamentally flawed, because also Paper D and E might have been relevant

recommendations. We will elaborate on this criticism later.

Figure 11: Illustration of an explicit ground-truth

Figure 12: Illustration of inferred ground-truth

“Expert ground-truths” contain item classifications that are manually compiled by

topical experts. Examples of such datasets include the TREC or MeSH

26

classification. In these datasets, documents such as webpages or research papers

are classified according to the information needs they satisfy. In MeSH, for

instance, terms from a controlled vocabulary are assigned to research papers.

Papers with the same MeSH terms are considered similar. For an evaluation, some

papers of one MeSH category are taken as input and the more papers of the same

category are recommended, the more accurate the algorithm is.

Offline evaluations were originally meant to identify a number of promising

recommendation approaches [134, 244, 306, 311]. These approaches should then

be evaluated in detail with a user study or online evaluation to identify the most

effective approaches. However, criticism has been raised on the assumption that

offline evaluation could predict an algorithm’s effectiveness in online evaluations

or user studies. More precisely, several researchers have shown that results from

offline evaluations do not necessarily correlate with results from user studies or

online evaluations [76, 77, 145, 146, 249, 319, 369]. This means that approaches

that are effective in offline evaluations are not necessarily effective in real-world

recommender systems. Therefore, McNee et al. criticized that

"the research community’s dependence on offline experiments

[has] created a disconnect between algorithms that score well

on accuracy metrics and algorithms that users will find useful."

[250]

Several more researchers voiced criticism of offline evaluations. Jannach et al.

stated that "the results of offline [evaluations] may remain inconclusive or even

misleading" and "real-world evaluations and, to some extent, lab studies represent

probably the best methods to evaluate systems" [167]. Knijnenburg et al. reported

that "the presumed link between algorithm accuracy […] and user experience […]

is all but evident" [183]. Said et al. consider "on-line evaluation [as] the only

technique able to measure the true user satisfaction" [321]. Rashid et al. criticize

that biases in the offline datasets may cause bias in the evaluation [306]. The main

reason for the criticism in the literature is that offline evaluations ignore human

factors; yet human factors strongly affect overall user satisfaction with

recommendations.

Despite the criticism, offline evaluations are the predominant evaluation method in

the recommender community [168] and "surprisingly few studies [evaluate]

algorithms in live experiments with real users" [183].

27

2.5.3.4 The operator's perspective

It is commonly assumed that the objective of a recommender system is to make

users "happy" (cf. 2.3, p. 14). However, there is another important stakeholder

who is often ignored in the general recommender literature: the operator of a

recommender system [134].

Operators of recommender systems often are assumed to be satisfied when their

users are satisfied, but this is not always the case. Operators may also want to keep

down costs for labor, disk storage, memory, CPU power, and traffic [311].

Therefore, for operators, an effective recommender system may be one that can be

developed, operated, and maintained at a low cost. Operators may also want to

generate a profit from the recommender system [134]. Such operators might prefer

to recommend items with higher profit margins, even if user satisfaction was not

optimal. For instance, publishers might be more interested in recommending

papers the user would have to pay for than papers the user could freely download.

2.6 Related Research Fields

Several research fields are related to user modeling and (research-paper)

recommender systems. While we did not survey these fields, we are introducing

them, so interested readers may broaden their research into these directions.

Research on academic search engines deals with calculating relevancies between

research papers and search queries [43, 313, 314]. The techniques are often similar

to those used by research-paper recommender systems. In some cases,

recommender systems and academic search engines are even identical. As shown

later in detail, some of the recommender systems require their users to provide

keywords that represent their interests. In such cases, research-paper recommender

systems do not differ from academic search engines where users provide keywords

to retrieve relevant papers. Consequently, these fields are highly related and most

approaches for academic search engines are relevant for research-paper

recommender systems.

The reviewer assignment problem targets using information-retrieval and

information-filtering techniques to automate the assignment of conference papers

to reviewers [89]. The differences from research-paper recommendations are

minimal: in the reviewer assignment problem a relatively small number of paper

submissions must be assigned to a small number of users, i.e. reviewers; research-

paper recommender systems recommend a few papers out of a large corpus to a

28

relatively large number of users. However, the techniques are usually identical.

The reviewer assignment problem was first addressed by Dumais and Nielson in

1992 [89], six years before Giles et al. introduced the first research-paper

recommender system [119]. A good survey on the reviewer assignment problem

was published by Wang et al. [381].

Scientometrics deals with analyzing the impact of researchers, research articles

and the links between them. Scientometrics researchers use several techniques to

calculate document relatedness or to rank a collection of articles, and some of

them – h-index [150], co-citation strength [334] and bibliographic coupling

strength [179] – have also been applied by research-paper recommender systems

[34, 388, 402]. However, there are many more metrics in scientometrics that might

be relevant for research-paper recommender systems [418].

Other related research fields include book recommender systems [267],

educational recommender systems [49], academic alerting services [94], expert

search [80], automatic summarization of academic articles [170, 264, 363],

academic news feed recommenders [71, 293], academic event recommenders

[182], venue recommendations [396], citation recommenders for patents [283],

recommenders for academic datasets [333], and plagiarism detection. The latter,

like many research-paper recommenders, utilizes text and citation analysis to

identify similar documents [121, 406, 414]. In addition, research that relates to

crawling the web and analyzing academic articles can be useful for building

research-paper recommender systems, for instance, author name extraction and

disambiguation [221], title extraction [20, 28, 136, 154, 294], or citation extraction

and matching [212]. Finally, most of the research about content-based [231] or

collaborative filtering [311, 323] from other domains (e.g. movies or news) is

relevant for research-paper recommender systems as well.

29

3. Related Work4

This chapter presents related work on mind mapping, research-paper recommender

systems, and recommender-systems evaluation. The primary goal of the review

was to identify promising user-modeling approaches to apply with mind maps, as

well as to identify adequate evaluation methods and metrics to measure the

effectiveness of recommendation approaches (cf. research questions i and iii, p. 4).

Apart from answering research question i and iii, the review aimed at providing a

comprehensive and critical overview of available research-paper recommender

systems, and the approaches and techniques they apply, as well as to identify

potential problems that require further research. This enables researchers and

developers to (a) learn about the most important aspects of research-paper

recommender systems, (b) identify promising fields of research, and (c) motivate

the community to solve the most urgent problems that currently hinder the

effective use of research-paper recommender systems.

The focus of the survey lies on 70 recommendation approaches that were

presented in 127 research articles. We analyze the use of recommendation classes

such as collaborative filtering, the use of document fields such as title, abstract, or

citation context, and the use of weighting schemes such as TF-IDF. We review the

approaches' evaluations, including which evaluation methods were applied (e.g.

user-studies or offline evaluations), which evaluation metrics were used (e.g.

precision or recall), how many participants the user studies had, and how strong

datasets were pruned. A discussion and critical analysis of the most serious

limitations in the research field follows, exploring inadequate evaluations, sparse

information on algorithms, neglecting the user modeling process and overall user

satisfaction, and not transferring research results into practice. A review of the

individual recommendation approaches can be found in Appendix F (p. 217).

3.1 Introduction

Mind maps received significant attention in various research fields. In the field of

human computer interaction (HCI), Faste and Lin evaluated the effectiveness of

4 Parts of this chapter have been published as: J. Beel, S. Langer, M. Genzmehr, B. Gipp, C. Breitinger, and A.
Nürnberger, “Research Paper Recommender System Evaluation: A Quantitative Literature Survey,” in

Proceedings of the Workshop on Reproducibility and Replication in Recommender Systems Evaluation (RepSys)

at the ACM Recommender System Conference (RecSys), 2013, pp. 15–22.

30

mind mapping tools and developed a framework for mind-map-based

collaboration [96]. In the field of document engineering and text mining, Kudelic

et al. created mind maps from texts automatically [199], and Bia et al. utilized

mind maps to model semi-structured documents, i.e. XML files and the

corresponding DTDs, schemas, and XML instances [36]. In the field of education,

Jamieson researched how graph analysis techniques could be used with mind maps

to quantify the learning of students [166], and Somers et al. used mind maps to

research how knowledgeable business school students are [336]. Furthermore,

mind maps have been used to implement a lambda calculator [63], to filter search

results from Google [415], to conduct peer-review [324], present software

requirements [72], and there are numerous studies about the effectiveness of mind

maps as learning tool [64, 78, 79, 103, 152, 169, 202, 277, 280, 339, 380, 382].

However, the research on mind maps is not helpful for developing a user-modeling

and recommender system based on mind maps. Therefore, we shifted the focus of

our literature review from mind maps to recommender systems. Since the body of

literature in the field of recommender systems is huge, we decided to narrow down

our review to research-paper recommender systems, as we wanted to apply our

mind-map-based user modeling in the context of such systems.

The first research-paper recommender system was presented in 1998, by Giles et

al. as part of the CiteSeer project [119]. Since then, at least 216 more articles

about research-paper recommender systems were published [1, 2, 4, 6, 9–11, 13,

18, 19, 24, 26, 27, 29, 30, 32, 34, 37–41, 55, 58–61, 65–70, 74, 81, 82, 87, 90, 91,

93, 95, 97, 98, 101, 102, 106, 108–118, 120, 122, 123, 128, 129, 131–133, 138–

141, 147–149, 153, 155–159, 161–163, 172–175, 178, 180, 185, 187, 189–198,

203, 204, 206–211, 213, 214, 216, 219, 222, 224–226, 233, 239, 240, 243, 245,

249, 250, 256–261, 263, 265, 266, 268–276, 279, 282, 284–287, 290, 295, 296,

298, 299, 301–303, 307, 309, 315–317, 322, 329, 335, 341–344, 346–349, 351–

362, 365, 366, 368, 370–376, 379, 383, 384, 386–395, 397–399, 401–404, 407,

409, 410, 412]5. The yearly number of publications steadily increases: 66 of the

217 surveyed articles (30%) were published just in the past two years (Figure 13 &

5 Numbers are based on our literature search. Although, we believe our survey to be the most comprehensive

survey about research-paper recommender systems, we may have missed a few articles. In addition, most likely,

more than 40 papers were published in 2013 since we conducted the literature search in January 2014. Articles
presented at conferences in late 2013 most likely had not been published in conferences proceedings by January

2014, and hence were not found through our search. Hence, the total number of papers published is probably

somewhat more than 217.

31

Table 1). The few existing literature surveys in the field cover only a fraction of

the published articles [132, 219, 335]. Hence, they do not help in obtaining an

overview of the research field, and identifying the most promising approaches

(neither generally, nor for our specific purpose of generating recommendations

based on mind maps).

Figure 13: Published papers per year5

The 217 surveyed articles were obtained through a literature search in June 2013

and January 2014. We conducted the search via Google Scholar, ACM Digital

Library, Springer Link, and ScienceDirect, and searched for

[paper | article | citation] [recommender | recommendation] [system | systems].
All articles that had relevance for research-paper recommender systems were

downloaded. Our relevance judgment made use of the title, and the abstract where

the title was not clear. We examined the bibliography of each article. When an

entry in the bibliography pointed to a relevant article not yet downloaded, we also

downloaded that article. We expanded our search to websites, blogs, patents, and

presentations on major academic recommender systems. These major academic

services include the academic search engines CiteSeer(x)6, Google Scholar

(Scholar Update)7, and PubMed8; the social network ResearchGate9; and the

reference managers CiteULike10 and Mendeley11. While these systems offer

recommender systems along with their main services, there are also a few stand-

6 http://citeseerx.ist.psu.edu
7 http://scholar.google.com/scholar?sciupd=1&hl=en&as_sdt=0,5
8 http://www.ncbi.nlm.nih.gov/pubmed
9 http://www.researchgate.net/
10 http://www.citeulike.org/
11 http://www.mendeley.com/

1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Cumulated 2 4 8 15 26 39 51 57 70 85 100 121 137 151 177 217

New (per year) 2 2 4 7 11 13 12 6 13 15 15 21 16 14 26 40

0

5

10

15

20

25

30

35

40

45

0

50

100

150

200

250

P
u

b
lic

at
io

n
s

(N
ew

)

Year

P
u

b
lic

at
io

n
s

(C
u

m
u

la
te

d
)

http://citeseerx.ist.psu.edu/
http://scholar.google.com/scholar?sciupd=1&hl=en&as_sdt=0,5
http://www.ncbi.nlm.nih.gov/pubmed
http://www.researchgate.net/
http://www.citeulike.org/
http://www.mendeley.com/

32

alone recommender systems, namely BibTip12, bX13, RefSeer14, TheAdvisor15 and

an experimental system called Sarkanto16. For clarity, we use the term "article" to

refer to the 217 reviewed documents, and the term "paper" to refer to documents

being recommended by research-paper recommender systems17.

Table 1: List of papers by year

Year 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013

Reference
[39,

119]

[211,

315]

[40,

97,

295,

388]

[106,

111,

113,

214,

259,

316,

373]

[109,

110,

112,

158,

249,

257,

260,

272,

284,

285,

372]

[38,

108,

114–

118,

133,

159,

343,

356,

358,

361]

[91,

155,

213,

261,

287,

298,

299,

352,

353,

357,

368,

371]

[2,

58,

59,

187,

335,

384]

[1, 4,

41, 65,

74,

102,

129,

147,

149,

174,

222,

250,

286]

[10,

101,

157,

175,

226,

240,

245,

301,

302,

307,

344,

360,

376,

393,

398]

[37, 60,

95,

141,

148,

204,

265,

266,

271,

273,

303,

354,

386,

407,

412]

[9, 19,

68, 70,

81, 82,

87, 122,

123,

185,

258,

268–

270,

279,

342,

351,

355,

359,

379,

392]

[34, 66,

90,

120,

140,

173,

178,

210,

243,

290,

329,

347,

374,

383,

394,

409]

[11,

18, 69,

98,

131,

132,

139,

207,

225,

233,

276,

309,

365,

370]

[13, 67,

128,

138,

153,

156,

161–

163,

172,

189,

191,

193–

195,

206,

208,

209,

219,

263,

362,

387,

389,

390,

401,

402]

[6, 24, 26,

27, 29, 30,

32, 55, 61,

93, 180,

190, 192,

196–198,

203, 216,

224, 239,

256, 274,

275, 282,

296, 317,

322, 341,

346, 348,

349, 366,

375, 391,

395, 397,

399, 403,

404, 410]

The 217 articles consist of peer reviewed conference articles (71%), journal

articles (14%), pre-prints (4%), and other formats such as PhD theses, patens,

presentations and web pages (Table 2). When referring to a large number of

recommender systems with certain properties, we cite only three exemplary

articles. For instance, when we report how many recommender systems apply

content-based filtering, we report the number or percentage and provide three

exemplary references [29, 163, 211].

12 http://www.bibtip.com/
13 http://www.exlibrisgroup.com/category/bXUsageBasedServices
14 http://refseer.ist.psu.edu/
15 http://theadvisor.osu.edu/
16 http://lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/
17 Some recommender systems also recommended “citations” but in our opinion, differences between

recommending papers and citations are marginal, which is why we do not distinguish between these two terms in

the remainder.

http://www.bibtip.com/
http://www.exlibrisgroup.com/category/bXUsageBasedServices
http://refseer.ist.psu.edu/
http://theadvisor.osu.edu/
http://lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/

33

Table 2: Article types

We used all 217 articles for some quantitative analyses about, e.g. page counts,

citation counts, and number of authors. Citation counts were retrieved from

Google Scholar in early 2014. Some researchers have reservations about using

Google Scholar as source for citation counts [17, 160, 281], but the numbers

should give a sufficient idea of a paper’s popularity.

Of the 217 articles, we reviewed 127 articles about 70 recommendation

approaches in detail [4, 9, 11, 18, 19, 24, 29, 30, 32, 34, 37–39, 41, 55, 60, 66–70,

74, 87, 90, 91, 93, 98, 101, 108–120, 122, 123, 128, 129, 131, 138–141, 147–149,

155, 156, 158, 159, 161–163, 172, 173, 175, 178, 185, 187, 189, 191–196, 204,

206–211, 213, 214, 222, 225, 226, 233, 249, 250, 257–261, 265, 266, 269–271,

273, 276, 279, 284–287, 295, 298, 299, 301, 302, 309, 317, 322, 344, 347, 365,

368, 370, 374, 376, 383, 384, 388, 392, 402, 403, 412]. We read those 127 articles

thoroughly and present their main ideas and results in this survey. The remaining

90 articles were excluded for one of the following reasons:

 58 articles were excluded because we considered them to be of little

significance [1, 2, 10, 13, 40, 58, 59, 65, 81, 82, 95, 97, 106, 133,

153, 157, 174, 240, 243, 245, 263, 268, 272, 290, 303, 307, 315,

316, 329, 341–343, 351–362, 371–373, 379, 386, 387, 389, 390,

393, 394, 398, 401, 407, 409]. We judged articles to be of little

significance when they provided neither an evaluation nor an

interesting new approach; when they were not understandable due

to serious English errors; or when they were out of scope (although

the article’s title suggested some relevance to research-paper

recommender systems). One example of an article out of scope is

‘Research Paper Recommender Systems - A Subspace Clustering

Approach’ [2]. The title seems relevant for this survey, but the

article presents a collaborative filtering approach that does not focus

on research-paper recommender systems. Instead, it is based on the

Movielens dataset, which contains ratings of movies.

 28 articles were excluded because they were found during the

second round of literature search in January 2014 [6, 27, 61, 102,

180, 190, 197, 198, 203, 216, 224, 239, 256, 274, 275, 282, 296,

346, 348, 349, 366, 375, 391, 395, 397, 399, 404, 410] when we

were researching the number of articles published in 2013 so we

Journal articles Conference papers PhD Theses Master's Theses Patents Pre-prints/unpublished Other

14% 71% 1% 1% 1% 4% 7%

34

could create Figure 13. It would have been interesting to include

these articles in the in-depth review, but in the time it would have

taken to review them, some more articles would have been

published, and we would never have finished the survey.

 Four articles were literature surveys on research-paper

recommender systems; hence they did not presented any new

approaches and were not relevant for our survey [26, 132, 219,

335].

Overall, the reviewed articles were comprehensive, with a median page count of

nine. Almost half of the articles (45.78%) had 10 or more pages (Figure 15).

Another 16.2% had eight or nine pages. Only 21.8% of the articles had four or

fewer pages. Citation counts follow a typical power-law distribution: a few articles

gained many citations (maximum was 528 [119]) and many articles had few

citations (Figure 16 and Figure 17). Mean citation count was 39, and median was

nine. From the reviewed articles, 19.80% had no citations, 32.67% had less than

10 citations. Not surprisingly, the earlier an article was published, the more

citations it tended to have (Figure 14).

Figure 14: Citation counts by year18

18 Articles with no citations are not plotted due to the log scale

1

5

25

125

625

1997 2002 2007 2012

C
it

a
ti

o
n

 C
o

u
n

t
(L

o
g

 S
ca

le
)

Year

35

Figure 15: Page count of reviewed articles

Figure 16: Citation Counts Overview

Figure 17: Citation counts of the reviewed papers

0.70%

9.15%

0.70%

11.27%

5.63%

8.45%

2.11%

9.86%

6.34%

17.61%

28.17%

1 2 3 4 5 6 7 8 9 10 >10

N
u
m
b
e
r

o
f

p
a
p
e
r
s

Page Count

1
9
.8

0
%

3
2
.6

7
%

1
8
.8

1
%

4
.9

5
%

6
.9

3
%

2
.9

7
%

2
.9

7
%

3
.9

6
%

0
.9

9
%

1
.9

8
%

3
.9

6
%

N
u

m
b

er
 o

f
p

a
p

er
s

Number of citations

0

100

200

300

400

500

600

N
u

m
b

er
 o

f
C

it
a
ti

o
n

s

Paper

36

3.2 Survey of the Recommendation Classes

3.2.1 Content-Based Filtering

In the research-paper recommender-system community, CBF is the predominant

approach: of the 70 reviewed approaches, 34 (49%) apply the idea of CBF [29,

140, 259], not including the hybrid approaches, which also mostly apply CBF. For

the reviewed approaches, “interaction” between users and items was typically

established through authorship [128, 347, 370], having papers in one’s personal

collection [29, 68, 161], adding social tags [98], or downloading [295], reading

[392], and browsing papers [41, 159, 266].

Most approaches use plain words as features, although some use n-grams [98,

276], topics (words and word combinations that occurred as social tags on

CiteULike) [172], and concepts that were inferred from the Anthology Reference

Corpus (ACL) corpus via Latent Dirichlet Allocation [34], and assigned to papers

through machine learning. Only a few approaches utilize non-textual features, and

if they do then these non-textual features are typically utilized in addition to

words. Giles et al. used citations in the same way as words were used and

weighted the citations with the standard TF-IDF measure (they called this method

CC-IDF) [119]. Others adopted the idea of CC-IDF or used it as baseline [29, 39,

91]. Zarrinkalam and Kahani considered authors as features and determined

similarities by the number of authors two items share [403].

The approaches extracted words from the title [210, 226, 317], abstract [90, 140,

172], header [119], introduction [158], foreword [158], author-provided keywords

[90, 158, 163], and bibliography [91], as well as from the papers’ body text [178,

276, 317]. The approaches further extracted words from external sources such as

social tags [163, 173], ACM classification tree and DMOZ categories [259, 261],

and citation context [140, 155, 178]. Utilizing citation context is similar to the way

search engines use anchor analysis for webpage indexing since the 1990’s [45,

247]. Citation context analysis was also used in academic search [330] before it

was used by research-paper recommender systems.

It is well known that words from different document fields have different

discriminative powers [238]. For instance, a word occurring in the title is usually

more meaningful than a word occurring in the body text. Nascimento et al.

accounted for this and weighted terms from the title three times stronger than

terms from the body-text, and text from the abstract twice as strong [276]. This

weighting scheme was arbitrarily selected and not based on empirical evidence.

37

Huang et al. experimented with different weights for papers’ content and citation

context [155]. They found that an equal weight for both fields achieved the highest

precision. The other reviewed approaches that used text from different fields did

not report on any field weighting.

The most popular model to store item representations and user models was the

Vector Space Model (VSM), which was used by 93% of those approaches that

reported the utilized model. Other approaches modeled their users as graph [284,

285, 384], as list of topics that were assigned through machine learning [259], or

as an ACM hierarchy [185]. Of those who used VSM, all but one used the cosine

measure to calculate similarities between user models and recommendation

candidates. In 1998, Giles et al. compared headers of documents with a string

distance measure [39], but neither they nor others mentioned that technique again,

which leads us to the assumption that the string edit distance was not effective.

TF-IDF was the most popular weighting scheme (83%) among those approaches

for which the scheme was specified. Other weighting schemes included plain term

frequency (TF) [98, 276, 347], and techniques that the authors called “phrase

depth” and “life span” [98].

3.2.2 Collaborative Filtering

From the reviewed approaches, only nine (13%) apply collaborative filtering, and

none uses explicit ratings [249, 295, 374]. Yang et al. intended to let users rate

research papers, but users were “too lazy to provide ratings” [392]. This illustrates

one of the main problems of CF: it requires user participation, but often the

motivation to participate is low. To overcome this problem, Yang et al. inferred

implicit ratings from the number of pages the users read: the more pages users

read, the more the users were assumed to like the documents [392]. Pennock et al.

interpreted interactions such as downloading a paper, adding it to ones’ profile,

editing paper details, and viewing its bibliography as positive votes [295]. McNee

et al. assumed that an author’s citations indicate a positive vote for a paper [249].

They postulated that when two authors cite the same papers, they are like-minded.

Similar, if a user reads or cites a paper the citations of the cited paper are supposed

to be liked by the user.

Using inferred ratings annihilates CF’s advantage of being based on real quality

assessments. This criticism applies to citations as well as to other types of implicit

ratings [46, 229, 234]. For instance, we reference papers in this survey that had

inadequate evaluations, or were written in barely understandable English. Hence,

38

interpreting these citations as positive vote would be misguiding. Similarly, when

a user spends lots of time reading a paper this could mean that the paper contains

interesting information, and the user would rate the paper positively; but it could

also mean that the paper is just difficult to understand and requires a lot of effort to

read. Consequently, CF’s advantage of explicit human quality assessments mostly

vanishes when implicit ratings are used.

Using citations might also annihilate CF’s second advantage of being content-

independent. Typically, reliable citation data is not widely available. Therefore,

access to the papers’ content is required to build a citation network, but this

process is even more fault-prone than word extraction in CBF. In CBF, “only” the

text of the papers must be extracted, and maybe fields such as title or abstracts

must be identified. For citation-based CF the text must also be extracted but in this

text, the bibliography and its individual references must be identified, including

their various fields (such as title and author). This is usually an error-prone task

[75].

A general problem of collaborative filtering in the domain of research-paper

recommender systems is sparsity. Vellino compared the (implicit) ratings on

Mendeley (research papers) and Netflix (movies), and found that sparsity on

Mendeley was three orders of magnitude higher than on Netflix [375]. This is

caused by the different ratio of users and items. In domains such as movie

recommendations, there are typically few items and many users. For instance, the

movie recommender MovieLens has 65,000 users and 5,000 movies [144].

Typically, many users watched the same movies. Therefore, like-minded users can

be found for most users and recommendations can be given effectively. Similarly,

most movies have been watched by at least some users and hence most movies can

be recommended. This is different in the domain of research papers. There are

typically few users but millions of papers, and only few users rated the same

papers. Hence, finding like-minded users is often not possible. In addition, many

papers are not rated by any users and therefore cannot be recommended.

3.2.3 Co-Occurrences

Six of the reviewed approaches are based on co-occurrences (9%). Three of those

approaches analyze how often papers are co-viewed during a browsing session [41,

159, 266]. Whenever a user views a paper, those papers that had frequently been

co-viewed with the browsed paper are recommended. Another approach uses

proximity of co-citations to calculate document relatedness [122]: the higher the

proximity of two references within a paper, the more related the cited papers are

39

assumed to be. Pohl et al. compared the effectiveness of co-citations and co-

downloads and found that co-downloads are only more effective than co-citations

in the first two years after a paper is published [302].

Calculating co-occurrence recommendations is not always feasible. For instance,

on arXiv.org, two thirds of all papers have no co-citations, and those that do

usually have only one or two [302]. Despite all that, co-occurrence

recommendations seem to perform quite well. Two popular research-paper

recommender systems, bX and BibTip, both rely on co-occurrence

recommendations and are delivering millions of recommendations every month

[41, 266].

3.2.4 Graph Based

Eleven of the reviewed approaches utilize the inherent connections that exist in

academia (16%). Based on these connections, the approaches build graph

networks that typically show how papers are connected through citations [11, 195,

225]. Sometimes, graphs include authors [9, 210, 412], users/customers [158],

venues [11, 210, 412], genes and proteins [9, 210], and the years the papers were

published [210]. Lao et al. even included terms from the papers’ titles in the graph,

which makes their approach a mixture of graph and content based [210].

Depending on the entities in the graph, connections may be citations [11, 210,

225], purchases [158], “published in” relations, [11, 210, 412], authorship [9, 11,

412], relatedness between genes19 [9], or occurrences of genes in papers [210].

Some authors connected entities based on non-inherent relations. For instance,

Huang et al. and Woodruff et al. calculated text similarities between items and

used the text similarity to connect papers in the graph [158, 388]. Other

connections were based on attribute similarity20, bibliographic coupling, co-

citation strength [158, 388, 412], or demographic similarity [158]. Once a graph

was built, graph metrics were used to find recommendation candidates. Typically

there was one or several input papers, and from this input, random walks with

restarts were conducted to find the most popular items in the graph [129, 195,

210].

19 Relatedness between genes was retrieved from an external data source that maintained information about gene
relatedness.

20 Attribute similarity was calculated, e.g., based on the number of pages.

40

3.2.5 Global Relevance

In its simplest form, a recommender system adopts a one-fits-all approach and

recommends items that have the highest global relevance. In this case, the

relevance is not calculated user-specifically based on e.g. the similarity of user

models and recommendation candidates. Instead, some global measures are

utilized such as overall popularity. For instance, a movie-rental system could

recommend those movies that were most often rented or that had the highest

average rating over all users. In this case, the basic assumption would be that users

like what most other users like.

From the reviewed approaches, many use global relevance as an additional

ranking factor. For instance, five CBF approaches used global popularity metrics

in their rankings [34, 140, 403]. They first determined a list of recommendation

candidates with a user-specific CBF approach. Then, the recommendation

candidates were re-ranked based on the global relevance metrics. Popular metrics

were PageRank [34], HITS [140], Katz [140], citation counts [34, 140, 317],

venues’ citation counts [34, 317], citation counts of the authors’ affiliations [317],

authors’ citation count [34, 317], h-index [34], recency of articles [34], title length

[317], number of co-authors [317], number of affiliations [317], and venue type

[317].

Strohman et al. report that the Katz measure strongly improved precision [344].

All variations that included Katz were about twice as good as those variations

without. Bethard and Jurafsky report that a simple citation count was the most

important factor, and age (recency) and h-index were even counterproductive [34].

They also report that considering these rather simple metrics doubled mean

average precision compared to a standard content-based filtering approach.

3.2.6 Hybrid Recommendation Approaches

Approaches of the previously introduced recommendation classes may be

combined in hybrid approaches. Many of the reviewed approaches have some

hybrid aspects. For instance, several of the CBF approaches use global relevance

attributes to rank the candidates, or graph methods are used to extend or restrict

potential recommendation candidates. This type of hybrid recommendation

technique is called “feature augmentation” [50]. It is only a weak kind of hybrid

recommendation technique, as the primary technique is still dominant. In true

hybrids, the combined concepts are more or less equally important [50, 51]. From

41

the reviewed approaches, only those of the TechLens team, and to some extent

from Papyres (Appendix F.5.2, p. 244), may be considered true hybrid approaches.

TechLens [90, 175, 187, 249, 250, 368] is certainly one of the most influential

research-paper recommender systems, though it was not the first one as some

claim (e.g. [301]). TechLens was developed by the GroupLens21 team, but

nowadays TechLens is not publicly available, although the GroupLens-team is still

very active in the development and research of recommender systems in other

fields. Between 2002 and 2010, Joseph A. Konstan, John Riedel, Sean M. McNee,

Roberto Torres, and several others published six articles relating to research-paper

recommender systems. Often, McNee’s et al. article from 2002 is considered to be

the original TechLens article [249]. However, the 2002 article ‘only’ introduced

some algorithms for recommending citations, which severed as foundation for

TechLens, which was introduced 2004 by Torres et al. [368]. Two articles about

TechLens followed in 2005 and 2007 but added nothing new with respect to

recommendations [175, 187]. In 2006, McNee et al. analyzed potential pitfalls of

recommender systems [250]. In 2010, Ekstrand et al. published another article

about the TechLens approaches, and enhanced them [90]. The most important

TechLens articles are summarized in Appendix F.5.1, p. 241.

3.3 Survey of the Research Field and its Shortcomings

3.3.1 Neglect of User Modeling

Of the reviewed approaches, 79% require users to explicitly provide keywords

[148, 270, 374], text snippet such as an abstract [34, 309, 403], or to provide a

single paper as input to represent their interests [90, 276, 344]. This means that

these approaches neglect the user modeling process, one of the most important

parts of a recommender system. This makes the approaches very similar to classic

search, or related document search [3, 135, 217], where users provide search terms

or one input paper, and receive a list of search results or similar papers. Of course,

neither classic search nor finding related documents are trivial tasks in themselves,

but they neglect the user modeling process and we see little reason to label such

systems as recommender systems.

21 http://grouplens.org/

42

Only 21% of the reviewed approaches inferred information from the items the

users interacted with. Most approaches that inferred information automatically

used all papers that a user authored, downloaded, etc. [173, 261, 384]. This is not

ideal. When inferring information automatically, a recommender system should

determine those items that are currently relevant for the user-modeling process.

For instance, papers being read ten years ago are probably not suitable to describe

a user’s current information needs. This aspect is called “concept drift” and it is

important for creating meaningful user models. In the research-paper

recommender systems community, concept drift is widely ignored: only three

approaches considered concept drift in detail. Middleton et al. weight papers by

the number of days since the user last accessed them [259]. Watanabe et al. use a

similar approach [384]. Sugiyama and Kan, who utilize an user’s authored papers,

weight each paper based on the difference between a paper’s publication year, and

the year of the most recently authored paper [347]. In addition, they found that it

makes sense to include only those papers that the user authored in the past three

years [347].

Another important aspect about user modeling is the user-model size. While in

search, user models (i.e. search queries) typically consist of a few words, user

models in recommender systems may consist of hundreds or even thousands of

words. Of the reviewed approaches, 91% did not report the user-model size, which

leads us to the assumption that they simply used all features. Those few that

reported on the user-model size usually stored fewer than 100 terms. For instance,

Giles et al. utilized the top 20 words of the papers [119].

3.3.2 Focus on Accuracy

The research-paper recommender-system community focuses strongly on

accuracy, and seems to assume that an accurate recommender system will lead to

high user satisfaction. However, outside the research-paper recommender-system

community it is widely known that many aspects beyond accuracy affect user

satisfaction. For instance, users might become dissatisfied with accurate

recommendations when they have no trust in the recommender system's operator

[378], their privacy is not ensured [305], they need to wait too long for

recommendations [305], or the user interfaces are not appealing to them [377].

Other factors that affect user satisfaction are confidence in a recommender system

[311], data security [205], diversity [413], user tasks [250], item’s lifespan [52]

and novelty [408], risk of accepting recommendations [300], robustness against

spam and fraud [73], transparency and explanations [143], time to first

recommendation [144], and interoperability [56].

43

Among the reviewed articles, only a few authors considered aspects beyond

accuracy, as shown in the following sections.

3.3.2.1 Users’ tasks

Torres et al. from TechLens’ considered a user’s current task in the

recommendation process, and distinguished between users who wanted to receive

authoritative recommendations and novel recommendations [368]. Torres et al.

showed that different recommendation approaches were differently effective for

these tasks. The developers of TheAdvisor let users specify whether they are

interested in classical or recent papers [193]. Uchiyama et al. found that students

are typically not interested in finding papers that are “similar” to their input paper

[370]. This finding is interesting because content-based filtering is based on the

assumption that user want similar papers. However, the study from Uchiyama et

al. was based on only 16 participants. As such, it remains uncertain how

significant the results are.

3.3.2.2 Diversity

Diversity of recommendations was mentioned in a few articles, but really

considered in depth only by Vellino et al. and Küçüktunç et al. Vellino et al.

measured diversity as the number of different journals from which articles were

recommended [374]. If recommendations were all from the same journals,

diversity was zero. They compared diversity of a CF approach with the co-

occurrence approach from bX and found that CF had a diversity of 60% while

diversity of bX was 34%. Küçüktunç et al. from TheAdvisor published two articles

about diversity in research-paper recommender systems [194, 196]. They provided

a survey on diversification techniques in graphs, and proposed some new

techniques to measure diversity.

3.3.2.3 Layout

Farooq et al. from CiteSeer analyzed which information users wanted to see when

receiving recommendations in RSS feeds [95]. They found that the information to

display varies on the type of recommendation. In one approach, Farooq et al.

recommended papers that cited the user’s papers. In this case, users preferred to

see the citing paper’s bibliographic data (title, author, etc.) and the context of the

citation – the sentence in which the citation appeared. When papers were

recommended that were co-cited with the users’ papers, citation context was not

that important. Rather, the users preferred to see the bibliographic data and

44

abstract of the co-cited paper. When papers were recommended that had a similar

content to the users’ papers, users preferred to see bibliographic data and abstract.

These findings are interesting because from the reviewed recommender systems

the majority displays only the title and not the abstract.

As part of our work, we researched the impact of labeling and found that papers

labeled as ‘sponsored recommendation’ performed worse than recommendations

with a label that indicated that the recommendations were ‘organic,’ though the

recommended papers were identical (cf. Appendix J, p. 267). It made also a

difference whether paper recommendations were labeled as ‘Sponsored’ or

‘Advertisement’ although both labels indicate the same thing, namely that they are

displayed for commercial reasons.

3.3.2.4 User characteristics

We also found that researchers who registered to a recommender system tended to

have higher click-through rates than unregistered users (6.95% vs. 4.97%) (cf.

Appendix H, p. 255). In addition, older users seem to have higher average click-

through rates (40-44 years: 8.46%) than younger users (20-24 years: 2.73%) [32].

Middleton et al. also report differences for different user groups. Click-through

rates in their recommender system Quickstep was around 9%, but only around

3.5% for Foxtrot, although both systems applied very similar approaches.

However, Quickstep users were recruited from a computer science laboratory,

while Foxtrot was a real-world system being offered to 260 faculty members and

students (though only 14% of them used Foxtrot at least three times).

Click-through rates from the bX recommender are also interesting [365]. They

varied between 3% and 10% depending on the university in which

recommendations were shown (bX is providing more than 1,000 institutions with

recommendations) [93]. This could have been caused by different layouts, and

how the recommendations were presented, but it might also be caused by different

backgrounds of the students.

3.3.2.5 Time of usage

Middleton et al. reported that the longer someone used the recommender system,

the lower click-through rates became [261]. Jack reports the opposite, namely that

precision increased over time (p=0.025 in the beginning, p=0.4 after six months)

and depended on a user’s library size (p=0.08 for 20 articles and p=0.40 for 140

articles) [163]. We showed that it might make sense to be “persistent” and show

45

the same recommendations to the same users multiple times – even

recommendations that users had clicked before were often clicked again (cf.

Appendix I, p. 261).

3.3.2.6 Recommendation medium

User satisfaction also depends on the medium through which recommendations are

made. Middleton et al. report that recommendations via email received only half

the click-through rate as the same recommendations delivered via a website [261].

Of the reviewed recommender systems, only Docear [29] and Mendeley [163]

provide recommendations through a desktop software; CiteSeer provided

recommendations in a news feed [95]; and all others deliver their

recommendations through websites. If and how click rates differ, when

recommendations are delivered by desktop software or a website, remains

unknown.

3.3.2.7 Relevance and profile feedback

Relevance feedback is a common technique to improve recommendations [311]

but it is widely ignored in the research-paper recommender-system community.

Middleton et al. showed that profile feedback is better than relevance feedback:

allowing users to edit their user models is more effective than just learning from

relevance feedback [261]. While Bollacker et al. from CiteSeer allowed their users

to edit their profiles, they conducted no research on the effectiveness of that

activity [211].

3.3.3 Lack of Transferring Research into Practice

Despite all the published articles and proposed approaches, we found only 24

research-paper recommender systems that could be used by real users (Table 3)22.

Of these 24 recommender systems, eight (33%) never left the prototyping stage –

and today only one of the prototypes is still publicly available. Of the remaining

recommender systems, four are offline (25%), five are idling (31%)23, and only

22 The recommender systems of Mendeley, CiteULike, and CiteSeer are counted twice because they offer or

offered two independent recommender systems.

23 We classified a recommender system as idling if no article was published or no changes were made at the

system for a year.

46

seven are running and actively maintained (44%). However, from the seven active

recommender systems, only four operators are involved with the recommender-

system research community22, publishing information about their systems.

Table 3: List of recommender systems

Most of the real-world recommender systems apply simple recommendation

approaches that are not based on recent research. For instance, PubMed seems still

to use an approach introduced in 2007; ResearchGate is using a simple content-

based filtering approach similar to classic search24; CiteULike apparently uses two

approaches from 2008/2009; and BibTip and bX are using simple co-occurrence

approaches. Whether RefSeer’s is really applying all the results from their

24 ResearchGate also applied other recommender systems, e.g. for persons or news, and it seems that these

approaches are more sophisticated.

Status Name Maturity Research Oriented Type Presentation

Active BibTip Real System No1 Stand-Alone Webpage

Active bx Real System No Stand-Alone Webpage

Active Docear Real System Yes On-Top Software

Mendeley -- -- -- --

 Related Papers Real System Yes On-Top Software

 Suggest Real System Yes On-Top Software

Active RefSeer Real System Yes Stand-Alone Webpage

Active Scholar Update Real System No On-Top Webpage

CiteULike -- -- -- --

 CF Real System No On-Top Webpage

 Item-Centric Real System No On-Top Webpage

Idle PubMed PRMA Real System No On-Top Webpage

Idle ResearchGate Real System No On-Top Webpage

Idle TheAdvisor Real System Yes Stand-Alone Webpage

Idle Who Should I Cite? Prototype Yes Stand-Alone Webpage

CiteSeer -- -- -- --

 Alert Real System Yes On-Top Feed

 Related Documents Real System Yes On-Top Webpage

Offline Foxtrot Real System Yes Stand-Alone Webpage, Email

Offline TechLens Real System Yes Stand-Alone Webpage

Offline NSYSU-ETD Prototype Yes On-Top Webpage

Offline OSUSUME Prototype Yes On-Top ?

Offline Papits Prototype Yes On-Top Webpage

Offline Papyres Prototype Yes On-Top ?

Offline Pirates Prototype Yes Stand-Alone ?

Offline Quickstep Prototype Yes Stand-Alone Webpage

Offline Sarkanto & Synthese Prototype Yes Stand-Alone Webpage

Active

Offline

Idle

47

research remains also unclear. In other words, most of the reviewed research had

no impact on real-world recommender systems.

3.3.4 Lack of Persistence and Authorities

One reason the research seems not to be transferred into practice might be a lack

of persistence and authorities in the field. From 327 authors who authored the 217

reviewed articles, 67% published only a single article (Figure 18). Only thirteen

authors published more than five articles, but of these authors, several were co-

authors publishing the same articles. This means, there is only a small number of

groups that consistently do research in the field of research-paper recommender

systems.

Figure 18: Papers per author

The most productive authors are C. Lee Giles and his co-author P. Mitra from

CiteSeer/RefSeer (Table 4 and Table 5). No others have published as many articles

(16) over as a long period of time (16 years) about as many different aspects of

research-paper recommender systems. Other highly productive authors are A.

Geyer-Schulz and his co-authors M. Hashler, and M. Jahn from BibTip. They

published fourteen articles, but these were less often cited in the community. The

articles are also narrower in scope than those of the CiteSeer authors. We authored

ten papers between 2009 and 2013, including posters and short papers, and we

concentrated on aspects beyond accuracy such as the impact of labeling

recommendations and the impact of demographics on click-through rates. O.

Küçüktunç and his co-authors E. Saule and K. Kaya from TheAdvisor published

nine articles focusing on diversity and graph-based recommendations. J. A.

Konstan, S. M. McNee, R. Torres, and J.T. Riedel, who are highly recognized

authors in the field of recommender systems in general, developed TechLens and

6
7
.
0
8
%

1
4
.
7
7
%

6
.
7
7
%

6
.
7
7
%

1
.
2
3
%

1
.
2
3
%

0
.
6
2
%

0
.
6
2
%

0
.
3
1
%

0
.
6
2
%

0
.
0
0
%

0
.
0
0
%

0
.
0
0
%

0
.
3
1
%

0
.
0
0
%

0
.
3
1
%

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

N
u
m
b
e
r

o
f

a
u
t
h
o
r
s

Number of published papers

48

authored six articles relating to research-paper recommender systems during 2002

and 2010. Two of their articles influenced the work of several others and are

among the most cited articles we have reviewed [249, 368]. W. W. Cohen, and his

PhD student N. Lao, are also two productive authors. They authored six articles

during 2008 and 2012 (some of which are unpublished). It stands out that the five

most productive research groups all have access to real-world recommender

systems.

Table 4: Most productive authors

Table 5: Most productive author-groups

Author Paper Count

C. Lee Giles 16

A. Geyer-Schulz 14

J. Beel 10

M. Hahsler 10

O. Küçüktunç 9

E. Saule 8

K. Kaya 8

S. Langer 7

M. Genzmehr 7

P. Mitra 6

J. A. Konstan 6

W. W. Cohen 6

B. Gipp 6

M. Jahn 5

N. Lao 5

Author(s) Max. Papers

C. Lee Giles; P. Mitra (CiteSeer/RefSeer) 16

A. Geyer-Schulz; M. Hashler; M. Jahn (BibTip) 14

J. Beel; S. Langer, M. Genzmehr, B. Gipp (Docear) 10

O. Küçüktunç; E. Saule; K. Kaya (TheAdvisor) 9

J. A. Konstan; S.M. McNee; R. Torres, J.T. Riedl (TechLens) 6

W. W. Cohen; N. Lao 6

49

3.3.5 Lack of Cooperation

Most articles were authored by multiple authors: the majority of papers had two

(26.35%), three (26.35%) or four authors (20.36%) (Figure 19)25. Only 15% of the

papers were authored by a single researcher. These numbers might indicate a high

degree of collaboration, on first glance. However, it is noticeable that between the

different co-author groups hardly any cooperation exists. The closest cooperation

we could find was that Giles was part of a committee for a thesis that Cohen

supervised [206]. No major authors of different groups ever co-authored any

articles.

Figure 19: Number of authors of the reviewed papers

Many co-author groups seem to work alone and barely build their work based

upon the work of peers, be it within or outside the research-paper recommender-

system community. Among the reviewed articles, it barely happened that authors

reported to have built their novel approach based upon an existing approach. This

lack of cooperation also becomes apparent when looking at the citations. Although

some of the reviewed articles gained many citations, these citations usually

resulted from articles outside the research-paper recommender domain. For

instance, the paper “Learning multiple graphs for document recommendations”

attracted 63 citations since 2008 [412]. From these citations, only three were made

by the reviewed articles. Another article, from the BibTiP developers, gained 24

citations since 2002 [110]. From the 24 citations, ten were self-citations and none

25 Median author count was three, maximum count eleven.

50

was from the reviewed articles. Both examples are typical for most of the

reviewed articles. One of the few articles that is constantly cited in the research-

paper recommender community is an article about TechLens, which accumulated

more than 100 citations [368]. However, most authors only cited the article for

authoritative reasons. In the citing papers, TechLens is mentioned but, with few

exceptions, its approaches are neither adopted nor used as baseline.

3.3.6 Information Sparsity

Most authors provided sparse information about their approaches, which makes a

re-implementation difficult, if not impossible. For instance, for 71% of the

content-based filtering approaches, the authors did not report the weighting

scheme they used (e.g. TF-IDF). The feature representation model (e.g. vector

space model) was not reported for 59% of the approaches. For 69% of the

approaches, authors did not report whether they removed stop words. For 67% of

the CBF approaches no information was given on the fields the terms were

extracted from (e.g. title or abstract). This means, when an evaluation reports

promising results for an approach, other researchers would not know how to re-

implement the approach in detail. If they tried, and guessed the specifics of an

approach, the outcome would probably differ significantly from the original. This

might cause problems in replicating evaluations, and reproducing research results

– a serious shortcoming that is covered in more detail in the next section.

3.4 Survey of the Evaluations

Recommender-systems research is heavily dependent on thorough evaluations to

assess the effectiveness of recommendation approaches and to decide which

approaches to apply, either in practice or as a baseline for other evaluations.

Among the key prerequisites for thorough evaluations are appropriate evaluation

methods, a sufficient number of study participants, and a comparison of the novel

approach against one or more state-of-the-art approaches [318]. In addition, the

novel approach and its evaluation need to be thoroughly described. Only with such

a description will readers be able to determine the soundness of the evaluation, re-

implement the approach, and reproduce or replicate the results.

51

From the reviewed approaches, 21% haven not been evaluated by their authors

[13, 39, 59, 65, 97, 106, 123, 272, 303, 316, 372, 379, 393], or were evaluated

using convoluted methods that we could not follow [82, 148, 245, 384, 386, 394]

26. In the remaining analysis, these approaches are ignored.

3.4.1 Evaluation Methods and their Adequacy

Of the evaluated approaches, 69% were evaluated with offline evaluations, 34%

with lab-based user studies, 7% with an online evaluation, and 3% with qualitative

user studies (Table 6)27.

Table 6: Use of evaluation methods27

Most user study participants rated only few recommendations and 17% of the

studies were conducted with fewer than five participants [173, 362, 388]; 17% of

the studies had five to ten participants [185, 225, 276]; 13% had 11-15 participants

[41, 268, 409]; and 17% had 16-50 participants [122, 370, 383]. Only 25% were

conducted with more than 50 participants [249, 270, 368]. The final 13% of the

studies failed to mention the number of participants [155, 172, 263] (Table 7).

Given these numbers, we conclude that most user studies were not large enough to

arrive at meaningful conclusions.

Table 7: Number of participants in user studies

Our review also indicates that the voiced criticism on offline evaluations (cf.

2.5.3.3, p. 24) applies to the offline evaluations in the field of research-paper

recommender systems. Six of the approaches were evaluated using both an offline

26 For the analysis, only 176 articles were reviewed that we found during a first round of literature search in 2012.

Consequently, percentages relate to these 176 reviewed articles and not the 217 articles, that were reviewed for
the rest of the survey.

27 Some approaches were evaluated with several methods at the same time. Therefore, percentages do not add up

to 100%.

Offline User Study Online Qualitative

69% 34% 7% 3%

Number of participants n/a <5 5-10 11-15 16-50 >50

Number of user studies 13% 17% 17% 13% 17% 25%

52

evaluation and a user study [90, 158, 225, 249, 362, 368]. Of these six evaluations,

one did not compare its approach against any baseline [362]. In two evaluations,

results from the offline evaluations were indeed similar to results of the user

studies [90, 225]. However, the user studies had only five and 19 participants

respectively, which led to statistically insignificant results. Three other studies

reported contradicting results for offline evaluations and user studies [158, 249,

368] (two of these studies had more than 100 participants; the third study only had

two participants). This means, offline evaluations could not reliably predict the

effectiveness in the real world. Interestingly, the three studies with the most

participants were all conducted by the authors of TechLens [90, 249, 368], who

are also the only authors in the field of research-paper recommender systems

discussing the potential shortcomings of offline evaluations [250]. It seems that

other researchers in this field are not aware of – or chose not to address – problems

associated with offline evaluations, although there has been quite a discussion

outside the research-paper recommender-system community (cf. 2.5.3.3, p. 24).

3.4.2 The Operators’ Perspective

Costs to build a recommender system, or implement an approach, were not

reported in any reviewed article. Costs to run a recommender system were only

reported by Jack from Mendeley [162]. He states that costs on Amazon’s S3 were

$66 a month plus $30 to update the recommender system that coped with 20

requests per second generated by 2 million users.

Important information relating to costs is runtime. Runtime information is crucial

to estimate costs, and hence to estimate how feasible an approach will be to apply

in practice. In one paper, runtimes of two approaches differed by a factor 600

[156]. For many operators, an approach requiring 600 times more CPU power than

another would probably not be an option, particularly if differences in

effectiveness are small. While this example is extreme, other runtime comparisons

showed differences by a factor five or more, which also can affect the decisions on

algorithm selection. However, information on runtime was only provided for 11%

of the approaches.

Reporting on computational complexity is also important. For operators who want

to offer their system for a large number of users, computational complexity is

important for estimating the long-term suitability of an approach. An approach

may perform well enough for a few users, but it might not scale well. Approaches

with exponentially increasing complexity most likely will not be applicable in

53

practice. However, computational complexity was reported for even fewer

approaches than runtime.

3.4.3 Coverage

Coverage describes how many papers of those in the recommender’s database

potentially may be recommended [125, 142]. High coverage is important because

it represents the number of recommendations a user may receive. As such,

coverage is an important metric to judge the usefulness of a recommender system.

For text-based approaches, coverage is usually 100%. For other approaches,

coverage is typically lower. For instance, in collaborative filtering usually not all

items are rated by users. Even though the unrated items might be relevant, they

cannot be recommended with classic CF approaches. From the reviewed articles,

only few consider coverage in their evaluations. He et al. judge the effectiveness

of their approaches based on which approach provides the best tradeoff between

accuracy and coverage [140]. The BibTip developers report that 80% of all

documents have been co-viewed and can be used for generating recommendations

[266]. Pohl et al. report that co-download coverage on arXiv is close to 100%

while co-citation coverage is only around 30% [302]. The TechLens authors report

that all of their hybrid and CBF approaches have 100% coverage, except pure CF

which has a coverage of 93% [368].

3.4.4 Baselines

Another important factor in evaluating recommender systems is the baseline

against which an algorithm is compared. For instance, knowing that a certain

approach has a particular CTR is not useful if the CTRs of alternative approaches

are unknown. Therefore, novel approaches should be compared against a baseline

representative of the state-of-the-art approaches. Only then is it possible to

quantify whether, and when, a novel approach is more effective than the state-of-

the-art and by what margin.

Of the reviewed approaches, 19% were not compared against a baseline [91, 138,

153, 185, 233, 263, 268, 290, 341, 342, 362, 407, 409]. Another 71% of the

approaches were compared against trivial baselines such as simple content-based

filtering without any sophisticated adjustments. These trivial baselines do not

represent the state-of-the-art and are not helpful for deciding whether a novel

approach is promising. This is particularly troublesome since the reviewed

approaches were not evaluated against the same trivial baselines. Even for a

simple CBF baseline, there are many variables, such as whether stop words are

54

filtered, which stemmer is applied, from which document field the text is

extracted, etc. This means almost all reviewed approaches were compared against

different baselines, and results cannot be compared with each other. Only 10% of

the evaluated approaches were evaluated against approaches proposed by other

researchers in the field. These evaluations allow drawing some conclusions on

which approaches may be most effective.

It is interesting to note that in all evaluations, at least one of the novel approaches

performed better than the baselines. No article reported on a non-effective

approach. We can only speculate about the reasons: First, authors may

intentionally select baselines such that their approaches appear favorable. Second,

the simple baselines used in most evaluations achieve relatively poor results, so

that any alternative easily performs better. Third, authors do not report their

failures. Fourth, journals and conferences do not accept publications that report on

failures. Whatever the reasons are, we advocate that reporting failures is desirable

as it could prevent other researchers from doing the same experiments, and hence

wasting time.

3.4.5 Offline Evaluation Metrics

In 69% of the offline evaluations, precision was used as evaluation metric (Table

8). Recall was used in 23%; F-measure and nDCG in 13%, and 15% were

evaluated using other measures. Overall, results of the different measures highly

correlated. That is algorithms, which performed well using precision also

performed well using nDCG, for instance. However, there were exceptions.

Zarrinkalam and Kahani tested the effectiveness of abstract and title against

abstract, title, and citation context [403]. When co-citation probability was used as

an evaluation metric, title and abstract were most effective. Based on recall, the

most effective field combination was abstract, title, and citation context. With the

nDCG measure, results varied depending on how the candidate set was generated

and which ranking approach was used.

Table 8: Evaluation metrics

Metric Precision Recall F-Measure nDCG MRR Other

Number of user studies 69% 23% 13% 13% 8% 15%

55

3.4.6 Datasets and Architectures

Researchers and developers in the field of recommender systems can benefit from

publicly available architectures and datasets28. Architectures help with the

understanding and building of recommender systems, and are available in various

recommendation domains such as e-commerce [289], marketing [218], and

engineering [304]. Datasets empower the evaluation of recommender systems by

enabling that researchers evaluate their systems with the same data. Datasets are

available in several recommendation domains, including movies29, music30, and

baby names31.

Architectures of research-paper recommender systems have only been published

by a few authors. The developers of CiteSeer(x) published an architecture that

focused on crawling and searching academic PDFs [39, 299]. This architecture has

some relevance for recommender systems since many task in academic search are

related to recommender systems (e.g. crawling and indexing PDFs, and matching

user models or search-queries with research papers). Bollen and van de Sompel

published an architecture that later served as the foundation for the research-paper

recommender system bX [41]. This architecture focuses on recording, processing,

and exchanging scholarly usage data. The developers of BibTiP [112] also

published an architecture that is similar to the architecture of bX (both bX and

BibTip utilize usage data to generate recommendations).

Several academic services published datasets that eased the process of researching

and developing research-paper recommender systems. CiteULike32 and

Bibsonomy33 published datasets containing the social tags that their users added to

research articles. The datasets were not originally intended for recommender-

system research but are frequently used for this purpose [156, 173, 317]. CiteSeer

made its corpus of research papers public34, as well as the citation graph of the

articles, data for author name disambiguation, and the co-author network [35].

CiteSeer’s dataset has been frequently used by researchers for evaluating research-

paper recommender systems [55, 87, 140, 156, 178, 295, 317, 368, 403]. Jack et

28 Recommendation frameworks such as LensKit or Mahout may also be helpful for researchers and developers,

but such frameworks are not the subject of this thesis.
29 http://grouplens.org/datasets/movielens/
30 http://labrosa.ee.columbia.edu/millionsong/
31 http://www.kde.cs.uni-kassel.de/ws/dc13/
32 http://www.citeulike.org/faq/data.adp
33 https://www.kde.cs.uni-kassel.de/bibsonomy/dumps/
34 http://csxstatic.ist.psu.edu/about/data

56

al. compiled a dataset based on the reference management software Mendeley

[164]. The dataset includes 50,000 randomly selected personal libraries from 1.5

million users. These 50,000 libraries contain 4.4 million articles with 3.6 million

of them being unique. For privacy reasons, Jack et al. only publish unique IDs of

the articles and no title or author names. In addition, only those libraries having at

least 20 articles were included in the dataset. Sugiyama and Kan released two

small datasets35, which they created for their academic recommender system [347].

The datasets include some research papers, and the interests of 50 researchers. The

CORE project released a dataset36 with enriched metadata and full-texts of

academic articles, and that could be helpful in building a recommendation

candidate corpus.

Of the reviewed approaches, 29% were evaluated using datasets from CiteSeer and

10% were evaluated using papers from ACM (Table 9). Other data sources

included CiteULike (10%), DBLP (8%), and a variety of others, often not publicly

available datasets (52%). Even when data originated from the same sources, it did

not guarantee that the same datasets were used. For instance, no single CiteSeer

dataset exists. Authors collected CiteSeer data at different times and pruned

datasets differently. Some authors removed documents with fewer than two

citations from the CiteSeer corpus [87], others with fewer than three citations

[368], and others with fewer than four citations [82]. Other datasets were pruned

even stronger: Caragea et al. removed papers having fewer than ten and more than

100 citations, as well as papers citing fewer than 15 and more than 50 papers [55].

From 1.3 million papers in the corpus, around 16,000 remained (1.2%). Pennock et

al. removed documents from the corpus with fewer than 15 implicit ratings [295]:

from originally 270,000 papers, 1,575 remained (0.58%). It is therefore safe to say

that no two studies, performed by different authors, used the same dataset. This

raises the question of the extent to which results based on different datasets are

comparable.

Table 9: Source of datasets

35 http://www.comp.nus.edu.sg/~sugiyama/SchPaperRecData.html
36 http://core.kmi.open.ac.uk/intro/data_dumps

Dataset CiteSeer ACM CiteULike DBLP Others

Number of user studies 29% 10% 10% 8% 52%

57

It is commonly known that recommendation approaches perform differently on

different datasets [44, 134, 177]. This is particularly true for the absolute

effectiveness of recommendation approaches. For instance, an algorithm that

achieved a recall of 4% on an IEEE dataset, achieved a recall of 12% on an ACM

dataset [276]. The relative effectiveness of two approaches is also not necessarily

the same with different datasets. For instance, because approach A is more

effective than approach B on dataset I, does not mean that A is also more effective

than B on dataset II. However, among the few reviewed approaches that were

evaluated on different datasets, the effectiveness was surprisingly consistent.

Of the evaluated approaches, seven were evaluated on multiple offline datasets.

Dataset combinations included CiteSeer and some blogs [273], CiteSeer and Web-

kd [178], CiteSeer and CiteULike [156], CiteSeer and Eachmovie [295], and

IEEE, ACM and ScienceDirect [276]. Only in one study did results differ notably

among the different datasets. However, the absolute ranking of the approaches

remained the same [156] (Table 10). In that article, the proposed approach (CTM)

performed best on two datasets (CiteULike and CiteSeer), with a MRR of 0.529

and 0.467 respectively. Three of the four baselines performed similarly on the

CiteSeer dataset (all with a MRR between 0.238 and 0.288). However, for the

CiteULike dataset the TM approach performed four times as well as CRM.

Consequently, if TM had been compared with CRM, rankings would have been

similar on the CiteSeer dataset but different on the CiteULike dataset.

Table 10: MRR on different datasets

Overall, a sample size of seven is small, but it gives at least some indication that

the impact of the chosen dataset is rather low in the domain of research-paper

recommender systems. This finding is interesting because in other fields it has

been observed that different datasets lead to different results [44, 134].

Nevertheless, we doubt that pruning datasets should be considered good practice,

in particular if only a fraction of the original data remains.

Rank Approach CiteSeer CiteULike

1 CTM 0.529 0.467

2 TM 0.288 0.285

3 cite-LDA 0.285 0.143

4 CRM 0.238 0.072

5 link-LDA 0.028 0.013

Dataset

58

3.4.7 The Butterfly Effect: Unpredictable Results

The reproducibility of experimental results is the "fundamental assumption" in

science [57], and the "cornerstone" for drawing meaningful conclusions about the

generalizability of ideas [308]. Reproducibility describes the situation when

(slightly) different ideas, scenarios, and evaluations lead to similar experimental

results [57], whereas we define "similar results" as results that allow the same

conclusions to be drawn. Conversely, if changes in the ideas, scenarios, or

evaluations cause dissimilar results, i.e. results that do not allow the same

conclusions to be drawn, we speak of non-reproducibility. Non-reproducibility is

expected when significant changes are made to the ideas, scenarios, or evaluations.

However, if minor changes are made but results are unexpectedly dissimilar, then

we speak of the "butterfly effect".

Reproducibility should not be confused with replicability. Replicability is used to

describe an exact copy of an experiment that uses the same tools, follows the same

steps, and produces the same results [88]. Therefore, replicability is important

when analyzing whether the original experiment was conducted thoroughly and

whether the results can be trusted.

During the review, we found several examples of the butterfly effect, i.e.

variations in experimental results that we considered unexpected. For instance, the

developers of the recommender system bx report that the effectiveness of their

recommender system varied by factor three at different institutions although the

same recommendation approach was used [365]. Lu et al. reported that the

translation model had twice the accuracy of the language model [233], but in

another evaluation, accuracy was only 18% higher [138]. Huang et al. report that

the Context-aware Relevance Model (CRM) and cite-LDA performed similarly,

but in another evaluation by the same authors, CRM performed significantly worse

than cite-LDA [156]. Lu et al. found that, sometimes, terms from the abstract

performed better than terms from the body-text, while sometimes the opposite

occurred [233]. Zarrinkalam and Kahani found that, sometimes, terms from the

title and abstract were most effective, while sometimes terms from the title,

abstract, and citation context were most effective [403]. Bethard and Jurafsky

reported that citation counts strongly increased the effectiveness of their

recommendation approach [34], while He et al. reported that citation counts

slightly increased the effectiveness of their approach [140].

Probably most interesting, with respect to the butterfly effect, are some evaluations

by the TechLens team (Table 11). The TechLens team evaluated several content-

based (CBF) and collaborative filtering (CF) approaches for research-paper

59

recommendations. In 2002, McNee et al. conducted an offline evaluation in which

CF and CBF performed similarly [249]. However, their additional user study led

to a different result – CBF outperformed CF. A user study by Torres et al. in 2004

report results similar to the user study by McNee et al. (CBF outperformed CF)

[368]. However, the offline evaluation from Torres et al. contradicted the previous

results – this time, CF outperformed CBF. In 2006, another user study by McNee

et al. indicated that CF (slightly) outperforms CBF [250], which contradicts the

previous user studies. In 2009, Dong et al., who are not affiliated with TechLens,

evaluated the approaches of Torres et al. with an offline evaluation [87]. In this

evaluation, CBF outperformed CF, contradicting the previous offline-results from

Torres et al. In 2010, Ekstrand et al. found that CBF performed worse than CF in

both an offline evaluation and user study, which again contradicts most of the

previous findings [90].

Table 11: Results of different CBF and CF evaluations

The authors of the studies provide some potential reasons for the variations, such

as different datasets, differences in user populations, and variations in the

implementations. However, these reasons can only explain some of the variations,

and overall we consider most of the contradictions to be unexpected.

We see the primary purpose of evaluations in aiding practitioners and researchers

in identifying the most effective recommendation approaches (for a given

scenario). Consequently, a practitioner who needed an effective recommendation

approach, or a researcher who needed an appropriate baseline to compare a novel

approach against, would not find much guidance in the existing evaluations.

Similarly, the evaluations, as they currently are, do not help to conclude whether

CF or CBF is more promising for research-paper recommender systems, or which

of the approaches is most promising for mind maps.

3.5 Discussion and Summary

The literature survey was primarily conducted to find promising user-modeling

approaches that could serve as basis for a mind-map-specific user-modeling

approach. The survey should have further helped to find adequate evaluation

methods and metrics. However, the survey revealed that most of the reviewed

Offline User Std. Offline User Std. Offline User Std. Offline User Std. Offline User Std.

CBF Draw Win Lose Win -- Lose Win -- Lose Lose

CF Draw Lose Win Lose -- Win Lose -- Win Win

McNee et al. 2002 Torres et al. 2004 McNee et al. 2006 Dong et al. 2009 Ekstrand et al. 2010

60

recommendation approaches neglected the user-modeling process. For instance,

most approaches let users specify their interests, i.e. they do not perform user

modeling at all. Those approaches that automatically inferred interests, mostly

utilized all items of a user, i.e. they ignored issues like concept drift. Finally, for

most approaches it was not reported how many features were stored in user

models. Hence, most of the approaches are not adequate as a basis for mind-map-

based user modeling. In addition, the evaluations of the approaches were mostly

questionable. Several approaches were not evaluated at all, and of those who were,

most were evaluated against trivial baselines, and with offline evaluations, which

are subject to strong criticism. Most of the few user studies were also of little

value since they were mostly conducted with a small number of participants.

Consequently, it remains unclear, which of the reviewed approaches are most

promising. Even if a few promising approaches could have been identified, there is

little information about the specifics of the approaches. This would make a re-

implementation difficult, if not impossible.

While the survey did not help in identifying specific recommendation approaches

that might be promising, the survey did aid in finding adequate recommendation

classes for user modeling based on mind maps.

Stereotype recommendations could be relevant for mind-mapping users: A user-

modeling system could generalize about certain types of mind-mapping users and

provide recommendations based on stereotypes. For instance, the mind-mapping

software Mindjet is often used by lawyers. A user-modeling system could

generalize that lawyers are interested in law books. Hence, Mindjet could

implement a recommender system that recommends law books to its users. A

similar approach could be applied with Docear.

Figure 20: Illustration of a stereotype-tree of Docear users

61

Docear users are primarily students and researchers. In a simple scenario, Docear’s

user-modeling system could assign each user as a stereotype “student or

researcher” and recommend academic literature that is presumably interesting to

students and researchers – for instance, books about academic writing. In a more

complex system, users could be classified as students and researchers, with

researchers being further divided into Postdocs, professors, and professionals.

Students could be further divided into Bachelor’s, Master’s, and PhD students

(Figure 20). Each of these types could be further divided into fields of study/work,

for instance law or marketing. Each stereotype level could be assigned a set of

appropriate recommendations. For instance, a recommender system could

recommend student loans to students in general, marketing textbooks to

Bachelor’s students in marketing, and so on.

Collaborative filtering seems to be of little relevance for mind-map-based user

modeling. First, collaborative filtering is domain independent. As such, there is

little need to consider special characteristics of mind maps. Second, a typical CF

approach applied to mind maps would recommend mind maps. However, most

users would probably not want to share their mind maps with other users.

Theoretically, mind-map-based recommender systems could apply implicit

collaborative filtering and infer ratings for e.g. research articles cited in mind

maps. However, at least for Docear, this approach is not feasible due to high

sparsity. We found that of 616,635 papers that are linked in the user’s mind maps,

only 224 papers (0.036%) were linked by two different users, three papers

(0.00049%) were linked by three users, and no paper was linked by more than

three users37. This means that 99.96% of the papers were only linked by a single

user. In other words, barely any users have PDFs in common and if they do, they

have at maximum three in common. This makes the application of (implicit)

collaborative filtering infeasible. We also investigated the possibility of applying

content-boosted CF [12, 255], but sparsity was still very high.

Co-occurrence recommendations could also be interesting for mind-mapping

applications. In this case, relatedness of items linked in mind maps could be

calculated. Items linked in the same mind map would assumed to be related, and

the more often mind maps link them, the more related they would be. The concept

of citation proximity analysis could also be applied to mind maps [122]; the closer

37 In the analysis, we ignored papers that Docear automatically adds to user’s mind-maps as part of demo-

projects. We also ignored users and mind-maps that were identical.

62

two items were linked within a mind map, the higher their relatedness (Figure 21).

We conducted an initial user study that showed promising results for such

recommendations (cf. Appendix D, p. 203). However, since there are barely any

users sharing the same PDF files (see previous paragraph), applying co-occurrence

recommendations for Docear, seems unfeasible.

Graph-based recommendations seem of little relevance for mind maps because

mind maps are not inherently connected with each other. Hence, building a graph

would be not possible. At most, a graph could be built if items linked in mind

maps are additionally considered. However, again, the high sparsity makes this

idea not feasible for Docear and probably most other mind-mapping applications

as well. Global relevance metrics could be used to enhance recommendations in

the field of mind maps. However, these metrics would not be mind-map specific,

which is why we do neglect global relevance in the remainder, and focus on the

characteristics of mind maps instead.

Figure 21: Item similarity based on proximity in mind maps

Eventually, content-based filtering seems to be the most promising user-modeling

concept for mind maps. The few attempts that had been made in the field by

MindMeister and Mindomo were content-based, and as our preliminary study

showed, the effectiveness of some approaches was promising.

Root

Node

Node

Node

Node

Node

Node with link to

PDF

Node with link to

PDF

Node with link to

PDF

Node with link to

PDF

Node with link to

PDF

Node

Node

Node

Node with link to

PDF

...

...

...

Pair 1 (Expected

Relatedness: High)

Pair 2 (Expected

Relatedness: Low)

63

4. Methodology

This chapter presents how we built Docear's recommender system, compared

different evaluation methods, found promising variables for mind-map-specific

user modeling, and build a mind-map-specific user-modeling approach.

4.1 Development of Docear’s Recommender System

Recommender-system researchers often conduct research on existing datasets (cf.

Section 3.4.6, p. 55). However, the existing datasets and architectures are not

helpful for developing and evaluating mind-map-specific user-modeling

approaches (cf. 3.5, p. 59). In addition, we needed a real-world recommender

system to compare results of different evaluation methods (Task 3). Therefore, as

part of Task 2, we developed an architecture for a research-paper recommender

system, implemented a recommender system based on this architecture, integrated

it into Docear, and used this recommender system for our research.

Docear's recommender system applies primarily a content-based filtering

approach, since collaborative filtering, co-occurrence recommendations, and

graph-based recommendations are not feasible to apply with mind maps and

Docear (cf. 3.5, p. 59). The basic idea is as follows (cf. Figure 22): For user u, a

user model umu is created based on the mind map collection MMu, whereas MMu

consists of those mind maps mm the user interacted with, i.e. MMu={mm1, …,

mmi}. In its simplest case umu is a bag of features F that comprises all features f

contained in MMu, i.e. 𝑢𝑚𝑢 = 𝐹(𝑀𝑀𝑢) = 𝐹(𝑚𝑚1 ⋃ 𝑚𝑚2 ⋃ … ⋃ 𝑚𝑚𝑖).

Similarly, the collection of research articles A, i.e. serves as recommendation

candidates, consists of a number of articles, i.e. A = {a1, …, am} that each has a

certain number of features f. To give recommendations, those articles that have the

most features in common with the user model are recommended.

The recommender system was mostly developed in JAVA, and displays

recommendations to the users at the start-up of Docear, every five days (Figure

23). In addition, users may explicitly request recommendations at any time.

Docear displays recommendations as a set of ten research papers, as long as ten

papers are available to recommend, otherwise less recommendations are shown. A

click on a recommendation opens the recommended PDF file in the user’s web

browser. For all users, the number of displayed and clicked recommendations was

recorded, so we could calculate CTR for the evaluation. Users could also rate each

recommendation set on a scale of one to five.

64

Figure 22: Content-based filtering with mind maps and research articles

Docear only displays the title of a recommendation. This might be not ideal

because users would probably like to see further bibliographic information (cf.

Section 3.3.2.3, p. 43). However, for most of the articles in Docear’s corpus such

information was not available, at least not in good quality. To not bias the

recommendation process by sometimes displaying the abstract, and sometimes not

displaying the abstract, we decided to only display the title. As shown later, this

decision most likely has not negatively affected the results of the evaluation.

Most of the data that we collected with the recommender system is released as

publicly available dataset (details follow in the subsequent chapter). By publishing

the recommender system’s architecture and datasets, we pursue three goals.

First, we want researchers to be able to understand, validate, and reproduce our

research. Second, we want to support researchers when building their own

research-paper recommender systems: Docear’s architecture and datasets ease the

process of designing one’s own system, estimating the required development

times, determining the required hardware resources to run the system, and

crawling full-text papers to use as recommendation candidates. Third, we want to

provide real-world data to researchers who have no access to such data. This is of

65

particular importance, since the majority of researchers in the field of research-

paper recommender systems have no access to real-world recommender systems.

Figure 23: User-interface of Docear's recommender system

More details on the recommender system are presented in the subsequent chapter

(5.1, p. 73).

4.2 Comparison of Evaluation Methods and Metrics

The literature survey did not help in identifying adequate evaluation methods and

metrics. To research the adequacy of the different evaluation methods (Task 3), we

measured the effectiveness of different user-modeling algorithms with an offline

evaluation, user study, and online evaluation. We then analyzed the correlation of

the results of the different evaluation methods and metrics. We expected that,

ideally, all evaluation methods and metrics would lead to similar results. If

concordance between the methods and metrics would be achieved, any of the

methods and metrics could be used to evaluate our mind-map-specific user-

modeling approach. If there were discord between the methods and metrics, a

discussion would be necessary about which of the methods and metrics are

adequate and under which circumstances.

66

We intended to conduct two user studies: one lab study and one real-world study.

For the lab study, we wanted to recruit participants through our blog38. In our blog,

we asked Docear’s users to start Docear, request recommendations, click each of

them, and read at least the abstract of each recommended paper. Users should then

rate the relevance of the recommendations from 1 to 5 stars (Figure 23, p. 65), and

if they wish, request new recommendations and continue this process for as long

as they like. The study was intended to run from April to July 2014. We promoted

the study in our newsletter (8,676 recipients), on Facebook (828 followers), on

Twitter (551 followers), and on Docear’s homepage (15,000 visitors per month).

Despite 248 people reading the blog post, only a single user participated in the

study. He rated three sets, each with ten recommendations. However, ratings of a

single user are not suitable to receive meaningful results. Hence, we consider this

user study as a failure, and focus on results of the real-world study. The real-world

study was based on ratings that users provided during their normal work with

Docear (Figure 23). Overall, 379 users rated 903 recommendation sets with 8,010

recommendations. The average rating was 2.82 (out of 5).

For the online evaluation, we measure acceptance rates of 45,208 recommendation

sets displayed to 4,700 users from March 2013 to August 2014. Typically, each set

of recommendations consists of ten recommendations, resulting in a total of

430,893 delivered recommendations. Acceptance is measured with the following

metrics: Click-Through Rate (CTR) measures the ratio of clicked vs. delivered

recommendations. Click-Through Rate over sets (CTRSet) is the mean of the

recommendation sets’ individual CTRs. For instance, if eight out of ten

recommendations had been clicked in set I, and two out of five recommendations

in set II, then for the two sets CTR would be
8+2

10+5
= 66.67% but CTRSet would be

8
10⁄ +2

5⁄

2
= 60%. We also calculated CTR over users (CTRUser). CTRUser levels the

effect that a few power users might have. For instance, if users A, B, and C saw

100, 200, and 1,000 recommendations, and user A clicked seven, user B 16, and

user C 300 recommendations, CTR would be
7+16+300

100+200+1000
= 24.85% , but

CTRUser would be
7

100
+

16

200
+

300

1000
= 12.36%, i.e. the impact of user C would be

weaker. However, CTRUser was only calculated for two analyses (the reason is

discussed later). Link-Through Rate (LTR) describes the ratio of the displayed

38http://www.docear.org/2014/04/10/wanted-participants-for-a-user-study-about-docears-recommender-system/

http://www.docear.org/2014/04/10/wanted-participants-for-a-user-study-about-docears-recommender-system/

67

recommendations against those recommendations that actually had been clicked,

downloaded, and linked in the user’s mind map. Annotate-Through Rate (ATR)

describes the ratio of recommendations that were annotated, i.e. a user opened a

linked PDF in a PDF viewer, created at least one annotation (bookmark, comment,

or highlighted text), and imported that annotation in Docear39. Cite-Through Rate

(CiTR) describes the ratio of documents for which the user added some

bibliographic data in the mind map, which strongly indicates that the user plans to

cite that document in a future research paper, assignment, or other piece of

academic work.

For the offline evaluation, we considered papers that users cited in their mind

maps to be the inferred ground-truth (cf. 2.5.3.3, p. 24). For each Docear user, we

created a copy of their mind maps, and removed the paper that was most recently

added to the mind map. We then applied a randomly selected recommendation

approach to the modified mind map. Overall, we calculated 118,291

recommendation sets. To measure the accuracy of the algorithm, we analyzed

whether the removed paper was within the top10 (P@10) or top3 (P@3) of the

recommendation candidates. We also calculated the Mean Reciprocal Rank

(MRR), i.e. the inverse of the rank at which the removed paper was recommended.

In addition, we calculated nDCG based on the 10 most recently added papers and

50 recommendation candidates. Our evaluation method is similar to other offline

evaluations in the field of research-paper recommender systems, where the

citations made in research papers are used as ground-truth. We display accuracy

metrics as percentages in charts. Typically, such metrics are displayed as decimals

between zero and one, but to display online and offline metrics in a single chart,

we had to choose one unit. If not otherwise stated, all reported differences are

statistically significant (p<0.05). Significance was calculated with a two-tailed t-

test and 𝜒2 test where appropriate.

39 It should be noted that PDFs often contain annotations already when they are published. For instance, often

PDFs contain the table of content as bookmarks. Consequently, results based on ATR should be considered with

some skepticism.

68

4.3 Identification of Mind-Map-Specific User-Modeling

Variables

To identify a number of variables that might affect user modeling based on mind

maps (Task 4) we did a brainstorming session, leading to a number of potential

variables. Due to time restrictions, we decided to implement and evaluate only a

few variables that we considered most promising, and for which an evaluation

with Docear was feasible. The variables we focused on included the number of

mind maps to analyze, the number of nodes to utilize, the size of the user model,

whether to use only visible nodes, and different weighting schemes including

standard schemes like TF-IDF but also mind-map-specific weighting schemes

based, for example, on the number of children a node has.

The variables are randomly arranged to assemble the final user-modeling

algorithm, each time recommendations are generated. For instance, one algorithm

might utilize visible nodes from the 2 most recently modified mind maps, weight

the terms of these nodes with TF-IDF, and store the 25 highest weighted terms in

the user model. Another algorithm might use the 250 most recently modified

nodes (visible and invisible) among all mind maps, weight the citations of these

nodes with TF-only, and store the 5 highest weighted citations in the user model.

A variable that we considered not feasible to analyze was the “position of a node”.

In most mind-mapping tools, users can arrange their nodes freely. We would

assume that depending on the position of a node, its importance differs, and hence

the weighting for user modeling should differ. For instance, a node far away from

the root node could be weighted differently than a node in close proximity to the

root node (illustrated in Figure 24). However, Docear positions nodes

automatically, which is why we did not analyze the impact of a node’s position.

Figure 24: Mind map with an outlier node

We measured the effectiveness of the individual variables with CTR, since the

comparison of the evaluation methods showed that CTR highly correlates with

user satisfaction and reporting CTR has some inherent value. In addition, rather

Outlier

69

few users participated in the user study, and we did not receive enough ratings, to

calculate statistically significant results for all variables based on ratings. To find

the optimal values for each variable, we compared CTR for all approaches in

which a variable had a certain value. For instance, to evaluate whether a user-

model size of 10 or 100 terms was more effective, effectiveness of all algorithms

with a user-model size of 10 was compared to the effectiveness of all algorithms

with a user-model size of 100.

We analyzed the effects of the variables for both CBF based on citations and based

on terms – we expected that the optimal values for the variables would differ for

terms and citations. For term-based CBF variations, all reported differences are

statistically significant (p<0.05), if not reported otherwise in the text. Significance

was calculated with a two tailed t-test and 𝜒2 test where appropriate. Results for

citation based CBF are mostly not statistically significant, because the approach

was implemented only a few months ago, and not all users have citations in their

mind-maps. Therefore, an insufficient number of citation-based recommendations

were delivered to produce significant results. Consequently, the focus of our

research lies on the term-based CBF variations. We also report runtimes in the

charts for informative reasons, but do not discuss the data. It should be noted that

runtimes could significantly differ with different implementations, or on different

hardware. Overall, runtimes are rather long. This is caused by recording many

statistics and running some other services on the recommendation server.

Our methodology has a limitation since determining optimal values for each

variable separately, ignores potential dependencies. For instance, only because a

user-model size of 100 terms is most effective on average, and analyzing 500

nodes is most effective on average, does not mean that analyzing 500 nodes and a

user-model size of 100 terms is the optimal combination. Ideally, we would have

evaluated all possible variations to find the single best variation. However, for

some variables, there are up to 1,000 possible values, and combining all these

variables and values leads to millions of possible variations. Evaluating this many

variations was not feasible for us. The second best option would have been a

multivariate statistical analysis to identify the impact of the single variables.

However, also for such an analysis we did not have enough data. Therefore, our

methodology was the third best option. It will not lead to a single optimal

combination of variables, but as our result will show, our methodology leads to a

significantly better algorithm than the baselines, and the results help understanding

the factors that affect effectiveness in mind-map-based user modeling.

70

4.4 Development of a Mind-Map-Specific User-Modeling

Approach

To achieve our primary research objective, we identified the optimal value for

each of the implemented variables, and combined the optimal values in a single

algorithm. We them compared this algorithm against four baselines, to analyze

whether this mind-map-specific user modeling performed better than the baselines.

One baseline was the stereotype approach that was chosen with a probability of

1%, whenever the recommendation process was triggered. To implement the

stereotype approach, the recommender system generalizes over all users, and

assumes that they are all researchers (which is not exactly true, because some

users only use Docear for its mind-mapping functionality). The recommender

system then recommends papers that are potentially interesting for researchers, i.e.

books and research articles about academic writing that we manually added to the

corpus. The stereotype does not consider any special characteristics of mind maps,

and we implemented it as simple baseline and because stereotype

recommendations have not been used before to recommend research papers.

The second, third and fourth baseline were those CBF variations that are rather

obvious and that we already used in our initial study: a) the approach of

MindMeister, in which only terms of the most recently modified node are analyzed

for the user model (‘modified’ means ‘created’, ‘edited’ or ‘moved’); b) all terms

of the user’s current mind map are used for the user model; c) all terms of all mind

maps that the user ever created are utilized for the user model.

We did not compare our approach against any of the reviewed research-paper

recommender approaches, for four reasons. First, it remains uncertain which of the

31 CBF approaches we should have used as baseline, due to the shortcomings in

their evaluations (cf. Section 3.4, p. 50). Second, authors mostly provided sparse

information, which would have made a re-implementation difficult, if not

impossible. Third, the research-paper recommender approaches widely neglect the

user modeling process, but the user modeling process was the focus of our

research. Hence, the reviewed approaches are not adequate baselines for our

purpose. Finally, and most importantly, the reviewed approaches are mostly not

applicable to mind maps. This means, we could have implemented the reviewed

approaches based on the PDFs of the users’ or the bibliographic data entered in the

mind maps. However, it would have been of little value to see that one of the

reviewed approaches performs better on the users’ PDFs than our novel approach

on the user’s mind maps. Besides, Docear’s recommender system has no access to

71

the users’ PDFs and hence could not apply general research-paper

recommendation approaches (unless a function had been implemented to transfer

the users’ PDFs to Docear’s server, which had been time consuming and had

probably caused problems with copyright). Given these points, we conclude that

comparing our novel approach against “standard” CBF baselines is the most

sensible solution particularly since one of these baselines is the only approach that

had been applied in practice in the domain of mind mapping.

73

5. Results & Discussion

In this chapter, we present and discuss the results of our work. Section 5.1 (p. 73)

presents Docear's recommender system, i.e. its architecture and some datasets, that

was developed a part of Task 2. The recommender system serves as framework for

our research as it allows to run different user-modeling approaches and to evaluate

them with different evaluation methods. Section 5.2 (p. 87) presents the analysis of

the recommender-system evaluation methods (Task 3). We compared the

outcomes of different methods when evaluating the same approaches, and we

discuss the adequacy of the methods for our scenario and in general. Section 5.3

(p. 105) presents several variables that effect mind-map-based user modeling

(Task 4). The effect of variables was evaluated with click-through rate, which

showed to be the most sensible metric according to our previous analysis of

evaluation methods. Finally, Section 5.4 (p. 121) presents Docear's mind-map-

specific user-modeling approach that combines the optimal values of the variables

in a single algorithm (Task 5). The approach is compared against several

baselines, and proves to be about twice as effective as the most effective baseline.

5.1 Docear’s Recommender System40

5.1.1 Architecture

Docear itself is a JAVA desktop software with its source code hosted on GitHub41.

Docear's recommender system is also primarily written in JAVA and runs on

Docear’s web servers. To enable communication between the desktop software

and the servers, we implemented a RESTful Web Service. Figure 25 illustrates the

architecture and the particular components, which are explained in detail in the

following sections, along with technical details.

40 Parts of this chapter have been published as: Beel, Joeran, Stefan Langer, Bela Gipp, and Andreas Nürnberger.

“The Architecture and Datasets of Docear’s Research Paper Recommender System.” In Proceedings of the 3rd
International Workshop on Mining Scientific Publications (WOSP 2014) at the ACM/IEEE Joint Conference on

Digital Libraries (JCDL 2014), 2014.

Please also note that all information in this chapter – including the datasets that we publish – is based on data that
we collected before March 2014, while the following chapters are based on data that we collected until August

2014.

41 https://github.com/Docear/

74

Figure 25: Architecture of Docear's recommender system

75

5.1.1.1 Web Service / API

Docear’s RESTful Web Service (based on Jersey)42 is responsible for several

tasks, including user registration and delivering recommendations. In Table 12, the

most important methods relating to recommendations are listed. Third parties

could use the Web Service, for instance, to request recommendations for a

particular Docear user and to use the recommendations in their own application (if

the third party knew the user’s username and password). However, it should be

noted that, for now, we developed the Web Service only for internal use, that there

is no documentation available, and that the URLs might change without prior

notification.

Table 12: POST and GET requests

Task URL Type

Upload a mind map https://api.docear.org/user/{username}/mindmaps/ POST

Request

recommendations

https://api.docear.org/user/{username}/recommendations/ GET

Confirm the receipt

of recommendations

https://api.docear.org/user/{username}/recommendations/

{recommendationsSetId}

POST

Download a

recommended paper

https://api.docear.org/ user/{username}/

recommendations/fulltext/{hash}

GET

Send rating https://api.docear.org/user/{username}/recommendations/

{recommendationsSetId}

POST

5.1.1.2 Building the corpus

The Spider crawls the Web for academic PDF files, which serve as

recommendation candidates. Each PDF is converted into text, and the header

information and citations are extracted. The text conversion is done with jPod43, a

PDF library we found to be more effective than the commonly used PDFBox (cf.

Appendix G.1, p. 245). The header extraction is done with ParsCit44 and a tool that

we developed and called Docear’s PDF Inspector (cf. Appendix G.2, p. 249). The

citation extraction is also conducted with ParsCit, which we modified to identify

42 http://jersey.java.net
43 http://sourceforge.net/projects/jpodlib/
44 http://aye.comp.nus.edu.sg/parsCit/

76

the citation position within a text45. Once all information is extracted, it is indexed

with Apache Lucene46 and stored in Lucene’s file-based data storage.

Instead of indexing the original citation placeholder with [1], [2], etc. the unique

Docear ID of the cited document is indexed (e.g. dcr_doc_id_54421) (Figure 26).

This allows to apply weighting schemes, such as TF-IDF to citations, i.e. CC-IDF

[39], and searching with Lucene for documents that cite a certain paper. It also

allows for the matching of user models and recommendation candidates based on

terms and citations at the same time. For instance, a user model could consist of

the terms and document-ID “cancer, sun, dcr_doc_id_54421, skin” and those

papers would be recommended that contain the terms cancer, sun and skin and that

cite the document dcr_doc_id_54421.

Figure 26: Converting in-text citations to Docear-IDs

In addition to the papers that were found by the Spider, we selected a few papers

manually and added them to the corpus of recommendation candidates. These

papers are about academic writing and search, i.e. topics we assume to be relevant

for the majority of our users. These papers are recommended with the stereotype

approach.

45 Meanwhile, our modifications were integrated into ParsCit.
46 http://lucene.apache.org

77

5.1.1.3 Collecting information about users

Docear’s recommender system needs access to the users’ data, i.e. their mind

maps, to be able to infer the users’ information needs. To get access to the users’

mind maps, Docear stores a copy of the mind maps in a temporary folder on the

users’ hard drive, whenever a mind map was modified and saved by the user.

Every five minutes – or when Docear starts – Docear sends all mind maps located

in the temporary folder to the Web Service. The Web Service forwards these mind

maps, i.e. XML files, to the Mind-Map Parser (JAVA), which is based on

nanoXML47. All nodes of the mind maps, including attributes (text, links to files,

titles of linked PDFs, and bibliographic data) are extracted from the XML file and

stored in a graph database (neo4j48). Citations in the mind maps are replaced with

the corresponding Docear-IDs, similarly to the replace-process of citations in the

research articles (cf. section 5.1.1.2 and Figure 26). A ‘citation’ in a mind map can

either be a link to a PDF file, or the bibliographic data that is attached to a node.

This means, if a node in a mind map links a PDF on the user’s hard drive, the PDF

is identified (via its title) and the link in the mind map is replaced with the Docear-

ID of the cited article, linked PDF respectively. If the cited article is not already in

Docear’s database, the article is added and a new Docear-ID is created.

5.1.1.4 Generating user models & recommendations

The recommendation engine is the central part of Docear’s recommender system.

It creates new user models and recommendations whenever new mind maps are

uploaded to the server or after recommendations have been delivered to a user.

Generating recommendations in advance has the disadvantage that a significant

amount of computing time is wasted. Of all generated recommendations, only

21.3% were delivered to the users. In other words, 79.7% of the computing power

could have been saved if recommendations were only created when they actually

were needed. However, on average, it took 52 seconds to calculate one set of

recommendations with a standard deviation of 118 seconds, and users would

probably not want to wait so long for receiving recommendations. This rather long

computing time is primarily caused by the many statistics that we calculate for

each set of recommendations, along with a few algorithms that require intensive

computing power. We also run several additional services on the recommendation

servers that require a lot of computing power (e.g. PDF processing), and this slows

47 http://nanoxml.sourceforge.net/orig/
48 http://www.neo4j.org/

78

down the recommendation process. If we would disable statistics, concentrate on a

few algorithms, and use a dedicated server for the recommender system, it should

be possible to generate recommendations in real-time. However, since we need the

statistics, and want to evaluate different variations of the recommendation

approaches, pre-generating recommendation seems the most feasible solution to

us.

Docear’s recommender system applies two recommendation approaches, namely

stereotype recommendations and content-based filtering (CBF). Every time the

recommendation process is triggered, one of these approaches is randomly chosen.

The stereotype approach is chosen with a probability of 1%. The content-based

filtering approach analyzes the users’ mind maps and recommends research papers

whose content is similar to the content of the mind maps. ‘Similarity’ is based on

the number of terms or citations that user-models and research papers have in

common. The user modeling process varies by a number of variables that are

stored in the algorithms database (MySQL & Hibernate49). These variables are

randomly arranged to assemble the final user-modeling algorithm, each time

recommendations are generated. In the first step, the feature type to use from the

mind maps is randomly chosen. The feature type may be terms, citations, or both.

Then, a number of other variables are chosen such as the number of mind maps to

analyze, the number of features the user model should contain, and the weighting

scheme for the features. For instance, one randomly arranged algorithm might

utilize the one hundred most recently created citations in the user’s mind maps,

weight the citations with CC-IDF, and store the five highest weighted citations as

a user model. Another algorithm might utilize all the terms from the two most

recently created mind maps, weight terms based on term frequency and store the

50 highest weighted terms as user model.

The user model is represented by a list of terms and/or citations that are supposed

to describe the user’s information needs. The user-modeling engine randomly

chooses whether to store the user model as a weighted or un-weighted list in the

database. An un-weighted list is a plain list of terms or citations such as sun, skin,

dcr_doc_id_54421, cancer ordered by the terms’ and citations’ weight (the

features are always sorted by weight, but the weight is discarded when storing the

user model as un-weighted list). The weighted list is a vector in which the weights

49 http://hibernate.org/

79

of the individual features are stored, in addition to the features themselves. Docear

uses both weighted and un-weighted lists to research the differences in their

effectiveness.

The matching module is responsible for finding the appropriate recommendations

for a given user model. To match user models and recommendation candidates,

Apache Lucene is used, i.e. the user model is sent as a search query to Lucene.

From Lucene’s top 50 search results, a set of ten papers is randomly selected as

recommendations. Choosing papers randomly from the top 50 results decreases the

overall relevance of the delivered recommendations, yet increases the variety of

recommendations, and allows for the analyzing of how relevant the search results

of Lucene are at different ranks.

Matching user models with recommendation candidates is the same for both terms

and citations. The user model, consisting of terms or citation IDs, is sent to

Lucene. Lucene returned those research papers that are most relevant for the terms

or citations (relevance is calculated with Lucene’s default algorithm).

Once the recommendations are created, they are stored in the recommendation

database (MySQL & Hibernate). The system stores for which user the

recommendations were generated, by which algorithm, as well as some statistical

information such as the time required to generate recommendations and the

original Lucene ranking. The recommendations are not yet delivered to the user

but only stored in the database.

5.1.1.5 Delivering recommendations

To display recommendations to a user, the Docear desktop software sends a

request to the Web Service. The Web Service retrieves the latest created

recommendations and returns them to Docear, which displays the

recommendations to the user. The Web Service stores some statistics, such as

when the recommendations where requested and from which Docear version.

After recommendations are displayed to the user, a new set of recommendations is

generated.

Each recommendation set receives a label that is displayed in Docear above the

recommendations (Figure 23). Some labels such as "Free research papers" indicate

that the recommendations are free and organic. Other labels such as "Research

papers (Sponsored)" indicate that the recommendations are given for commercial

reasons. For each user, the label is randomly chosen, when the user registers. The

80

label has no effect on how the recommendations are actually generated. We

randomly assign labels only to research the effect of different labels on user

satisfaction (cf. Appendix J, p. 267).

When users click on a recommendation, a download request is sent to Docear’s

Web Service. The Web Service again stores some statistics, such as the time when

the user clicked the recommendation. Then the user is forwarded to the original

URL of the recommended paper. Forwarding has the disadvantage that papers

occasionally are not available any more at the time of the recommendation since

they were removed from the original web server. However, caching PDFs and

offering them directly from Docear’s servers might have led to problems with the

papers’ copyright holders.

5.1.1.6 Offline evaluation

The Offline Evaluator (JAVA) runs occasionally to evaluate the effectiveness of

the different algorithms. The offline evaluator creates a copy of the users’ mind

maps and removes that citation that was most recently added to the mind maps. In

addition, all nodes from the copy are removed that were created after the most

recent citation was added. The offline evaluator then selects a random algorithm

and creates recommendations for the users. The offline evaluator checks if the

removed citation is contained in the list of recommendations and stores this

information in the database. It is assumed that if an algorithm could recommend

the removed citation, the algorithm was effective. The more often an algorithm

could recommend a removed citation, the more effective it is.

5.1.1.7 Technical details

The recommender system runs on two servers. The first server is an Intel Core i7

PC with two 120GB SSDs, one 3 TB HDD, and 16 GB RAM. It runs the PDF

Spider, PDF Analyzer, and the mind-map database, and its load is usually high,

because web crawling and PDF processing require many resources. The second

server is an Intel Core i7 PC with two 750 GB HDDs and 8 GB RAM. It runs all

other services including the Web Service, mind-map parser, MySQL database,

Lucene, and the offline evaluator. The server load is rather low on average, which

is important, because the Web Service is not only needed for recommendations but

also for other tasks such as user registration. While long response times, or even

down times, for e.g. the PDF spider are acceptable, user registration should always

be available.

81

5.1.2 Datasets

We publish four datasets relating to the research papers that Docear’s spider found

on the web (5.1.2.1), the mind maps of Docear’s users (5.1.2.2), the users

themselves (5.1.2.3), and the recommendations delivered to the users (5.1.2.4).

The following sections provide only an overview of the most important data,

particularly with regard to the randomly chosen variables. Please note that all

variables are explained in detail in the readme files of the datasets, and the effects

of most variables are presented in the following chapters. All datasets are available

at http://labs.docear.org.

5.1.2.1 Research papers

The research papers dataset contains information about the research papers that

Docear’s PDF Spider crawled, and their citations.

The file papers.csv contains information about 9.4 million research articles. Each

article has a unique document id, a title, a cleantitle, and for 1.8 million articles, a

URL to the full-text is provided. The 1.8 million documents were found by

Docears PDF Spider, and for each of these documents, titles were extracted with

Docear’s PDF Inspector or parsed from the web page that linked the PDF. The

remaining 7.6 million documents in the dataset were extracted from the 1.8 million

documents’ bibliographies. In this case, no full-text URL is available and the

document’s title was extracted from the bibliography with ParsCit. Based on a

small random sample of 100 documents, we estimate that 71% of the articles are

written in English. Other languages include German, Italian, Russian, and Chinese.

It also appears that the papers cover various disciplines, for instance, social

sciences, computer science, and biomedical sciences. However, several of the

indexed documents are of non-academic nature, and sometimes, entire proceedings

were indexed but only the first paper was recognized.

Document disambiguation is only based on the documents’ “cleantitle”. To

generate a cleantitle, all characters are transformed to lowercase, and only ASCII

letters from a to z are kept. If the resulting cleantitle is less than half the size of the

original title, the original title is used as cleantitle – this prevents e.g. Chinese titles

to be shortened to a string of length zero. If two documents have the same

cleantitle, the documents are assumed identical. Comparing documents only based

on such a simplified title is certainly not very sophisticated but it proved to be

sufficiently effective for our needs.

http://labs.docear.org/

82

The file citations.csv contains a list of 572,895 papers with 7.95 million citations.

These numbers mean that of the 1.8 million PDFs, 572,895 PDFs could be

downloaded and citations could be extracted, and on average, each of the PDFs

contained around 14 references. The dataset also contains information where

citations occur in the full-texts. For each citing->cited document pair, the position

of a citation is provided in terms of character count, starting from the beginning of

the document. This leads to 19.3 million entries in citations.csv, indicating that, on

average, each cited paper is cited around three times in a citing document. The

dataset allows building citation networks and hence calculating document

similarities, or the document impact. Since the position of the citations is provided,

document similarity based on citation proximity analysis could be calculated,

which we developed during the past years [122] and which is an extension of co-

citation analysis.

Due to copyright reasons, full-texts of the articles are not included in the dataset.

Downloading the full-text is easily possible, since the URLs to the PDFs are

included (as long as the PDFs are still available on the Web).

5.1.2.2 Mind maps / user libraries

Every month, 3,000 to 4,000 newly created and modified mind maps are uploaded

to Docear’s server. Some mind maps are uploaded for backup purposes, but most

mind maps are uploaded as part of the recommendation process.

The file mindmaps.csv contains information on 52,202 mind maps created by

12,038 users who agreed that we could publish their information. Docear does not

only store the latest version of a mind map but keeps each revision. Information

about 390,613 revisions of the 52,202 mind maps is also included in

mindmaps.csv. This means, on average there are around seven to eight revisions

per mind map. All mind maps and revisions in the dataset were created between

March 2012 and March 2014. There are three different types of mind maps. First,

there are mind maps in which users manage academic PDFs, annotations, and

references (Figure 5). These mind maps represent data similar to the data included

in the Mendeley dataset (cf. Chapter 3.4.6, p. 55). While Mendeley uses the term

“personal libraries” to describe a collection of PDFs and references, Docear’s

mind maps represent also collections of PDFs and references but with a different

structure than the ones of Me ndeley. Second, there are mind maps to

draft assignments, research papers, theses, or books (Figure 23). These mind maps

differ from the first type as they typically contain only few PDFs and references,

but they include additional data such as images, LaTeX formulas, and more text.

83

The third type of mind maps, are “normal” mind maps that users create to

brainstorm, manage tasks, or organize other information. Due to privacy concerns,

this dataset does not contain the mind maps themselves but only metadata. This

includes a list of all the mind maps and revisions, their file sizes, the date they

were created, and to which user they belong. The data may help to analyze how

often researchers are using reference management software, for how long they are

using it, and how many papers they manage in their mind maps, personal

collections respectively.

The file mindmaps-papers.csv contains a list 473,538 papers that are linked eight

million times in 12,994 mind maps. This means, of the 52,202 mind maps, 24.8%

contain at least one link to a PDF, and PDFs are linked 17 times in a mind map on

average. The paper-IDs in mindmaps-papers.csv are anonymized and do not

correlate with paper-IDs from the research paper dataset, nor does mindmaps-

papers.csv contain titles of the linked papers. It should also be noted that the

473,538 papers are not necessarily contained in papers.csv as papers.csv contains

only information of the publicly available PDFs and their citations. These

limitations were made to ensure the privacy of our users.

5.1.2.3 Users

There are three types of users in Docear, namely local users, registered users, and

anonymous users. Local users chose not to register when they install Docear.

Consequently, they cannot use Docear’s online services such as recommendations

or online backup, and we do not have any information about these users, nor do we

know how many local users there are. Registered users sign-up with a username, a

password, and an email address and they can use Docear’s online services. During

the registration process, these users may provide information about their age and

gender. Between March 2012 and March 2014, around 1,000 users registered

every month, resulting in 21,439 registered users. Anonymous users decline to

register but still want to use some of Docear’s online services. In this case, Docear

automatically creates a user account with a randomly selected user name that is

tied to a users’ computer. Anonymous users cannot login on Docear’s website, but

they can receive recommendations as their mind maps are transferred to Docear’s

servers, if they wish to receive recommendations. Due to spam issues, no new

anonymous users were allows since late 2013. Until then, around 9,500

anonymous user accounts were created by non-spammers.

The file users.csv contains anonymized information about 8,059 of the 21,439

registered users, namely about those who activated recommendations and agreed

84

to have their data analyzed and published. Among others, the file includes

information about the users’ date of registration, gender, age (if provided during

registration), usage intensity of Docear, when Docear was last started, when

recommendations were last received, the number of created mind maps, number of

papers in the user’s mind maps, how recommendations were labeled, the number

of received recommendations, and click-through rates.

The file users_papers.csv contains a list of 6,726 users and 616,651 papers that the

users have in their collections, i.e. mind maps. This means, on average, each user

has linked or cited 92 documents in his or her mind maps. The paper IDs in

users_papers.csv do not correlate with the IDs from the research paper dataset, to

ensure the users’ privacy.

The users-dataset may help to identify how differences between users affect users’

satisfaction with recommendations. For instance, we found that older users are

more likely to click on recommendations than younger users (cf. Appendix H, p.

255), and that the labelling of recommendations has an effect on user satisfaction

(cf. Appendix J, p. 267). The dataset also allows analyses about the use of

reference managers, for instance, how intensive researchers are using Docear.

5.1.2.4 Recommendations

Between March 2013 and March 2014, Docear delivered 31,935 recommendation

sets with 308,146 recommendations to 3,470 users50. Of the delivered sets, 38.7%

were explicitly requested by the users. The remaining 62.2% were delivered

automatically when the Docear Desktop software was started. Among the 308,146

recommendations, there were 147,135 unique documents. In other words, from

Docear’s 1.8 million documents, 9% were actually recommended. The

recommendation dataset splits into two files.

The file recommendation_sets.csv contains information about the 31,935 delivered

recommendation sets. This includes the number of recommendations per set

(usually ten), how many recommendations were clicked, the date of creation and

delivery, the time required to generate the set and corresponding user models, and

information on the algorithm that generated the set. There is a large variety in the

50 The analyses in the following chapters are based on this data and additional data that we collected until August

2014.

85

algorithms. We stored whether stop words were removed, which weighting

scheme was applied, whether terms and/or citations were used for the user

modelling process, and several other variables were applied that are described in

more detail in the dataset’s readme file.

The file recommendations.csv contains information about the 308,146

recommendations that Docear delivered. This information includes all details

contained in recommendation_sets.csv and additional information, such as at

which position a recommendation was shown, and which document was

recommended (again, we anonymized the paper IDs).

87

5.2 Adequacy of Evaluation Methods and Metrics

Task 3 was to identify adequate evaluation methods. Hence, we measured the

effectiveness of different recommendation approaches, and their variations, with a

user study, an online evaluation, and an offline evaluation. This section first

presents the results of the evaluations (p. 87). It follows a discussion about the

adequacy of online-evaluation metrics (p. 96), adequacy of online evaluations and

user studies (p. 98), and adequacy of offline evaluations (p. 99).

5.2.1 Results of the Evaluations

5.2.1.1 Effectiveness of recommendation approaches

We evaluated the effectiveness of stereotype recommendations, CBF based on

terms, and CBF based on citations with an online evaluation, offline evaluation,

and user study. The user study and online evaluation both led to the same ranking

of the approaches51: Term-based CBF performed best, i.e. CTR, CTRSet, DTR,

LTR, CiTR, and ratings were highest; citation-based CBF performed second best;

and the stereotype approach performed worst, but still reasonable (Figure 27).

On average, LTR was around one third of CTR. For instance, LTR for the

stereotype approach was 1.46% while CTR was 4.11%. This means that one third

of the recommendations that had been clicked were actually downloaded and

linked in the mind maps. ATR was around half of LTR for the CBF approaches.

This means that users annotated about half of the recommendations that they

downloaded52. However, for the stereotype approach, ATR was only 0.18%, i.e. 1

8

of LTR. Similarly, CiTR for the stereotype approach was only 1

75
 of LTR, while

CiTR for term- and citation-based CBF was around 1

4
 of LTR. Apparently,

51 To compare term- and citation based recommendations, we only compared recommendations when the

corresponding set contained ten recommendations, original ranks were 10 or lower, and the users’ mind-maps

contained at least one citation.

52 Many PDFs contain already annotations before they are downloaded. For instance, some publishers create
bookmarks for the chapters of a paper. Hence, results for ATR should be considered with skepticism.

88

stereotype recommendations were rarely annotated or cited, yet users cited every

fourth content-based recommendation that they downloaded53.

Figure 27: Effectiveness of recommendation approaches54

The offline evaluation led to the same overall ranking than the online evaluation

and user study. However, all four offline metrics attest that term-based CBF has

significantly better effectiveness than citation based CBF (around four to ten times

as effective), while user study and online evaluation only attest a slightly higher

effectiveness. In addition, the effectiveness of the stereotype approach in the

offline evaluation is close to zero, while user study and online evaluation show a

reasonable effectiveness.

53 Please note that users did not really cite the papers in their own publications but retrieved metadata for these

papers, which we interpret as a citation.

54 The comparison of term and citation-based recommendations was based on a “fair” comparison, i.e. only

recommendations delivered to users who had made at least 1 citation were considered and recommendation sets

including ten recommendations.

CBF (Terms) CBF (Cit.) Stereotype

Ratings 2.91 2.48 2.10

CTR 6.53% 5.25% 4.11%

CTR (Set) 5.33% 5.00% 4.04%

LTR 2.32% 1.89% 1.46%

ATR 1.20% 1.15% 0.18%

CiTR 0.53% 0.52% 0.02%

P@3 2.20% 0.19% 0.00%

P@10 6.21% 0.41% 0.03%

nDCG 1.37% 0.25% 0.03%

MRR 1.71% 0.31% 0.04%

0

1

2

3

4

0%

2%

4%

6%

8%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Approach

89

5.2.1.2 Effect of user-model size

We researched not only the effectiveness of distinct recommendation approaches,

but variables such as the extent of the user-model size. User-model size describes

how many terms (or citations) are stored to represent the users' information needs.

Whenever recommendations are requested, Docear randomly selected a user-

model size between 1 and 1000 terms. For term-based CBF, the highest ratings

(3.26) were given for recommendations that were based on user models containing

26 to 100 terms (Figure 28). All online metrics, except CiTR55, confirmed the

results of the user study. The offline metrics led to slightly different results and

showed the highest effectiveness for user models containing 101 to 250 terms.

Figure 28: Effectiveness based on user-model size

55 The differences for CiTR were statistically not significant.

[1;10] [11;25] [26;100]
[101;
250]

[251;
500]

[501;
1,000]

Ratings 2.62 2.94 3.26 2.92 3.00 2.94

CTR 3.92% 6.27% 7.48% 5.40% 6.09% 4.84%

CTR (Set) 3.78% 6.27% 7.81% 5.60% 6.32% 4.85%

LTR 1.33% 2.18% 2.81% 1.86% 2.03% 1.60%

ATR 0.61% 0.59% 1.53% 0.98% 1.18% 1.26%

CiTR 0.49% 0.15% 0.58% 0.69% 0.55% 0.24%

P@3 2.01% 1.97% 2.25% 3.48% 2.07% 1.85%

P@10 4.63% 5.82% 6.49% 8.87% 4.18% 2.16%

nDCG 0.90% 1.20% 1.49% 1.63% 2.08% 1.92%

MRR 0.58% 0.62% 2.16% 4.04% 3.17% 1.20%

0

1

2

3

4

0%

2%

4%

6%

8%

10%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Number of Terms

90

5.2.1.3 Effect of number of nodes

Docear’s mind maps often contain thousands of nodes. We assumed that analyzing

too many nodes might introduce noise into the user models. Therefore, Docear

randomly selected how many of the x most recently modified nodes, should be

utilized for extracting terms. Based on user ratings, analyzing between 50 and 99

nodes is most effective (Figure 29)56. As more nodes were analyzed, the average

ratings decreased. CTR, CTRSet, LTR, and CiTR also showed an optimal

effectiveness for analyzing 50 to 99 nodes. Based on ATR, the optimal number of

nodes is larger, but results were statistically not significant. The offline metrics

indicate that analyzing a larger number of nodes might be sensible, namely 100 to

499 nodes.

Figure 29: Effectiveness based on the number of nodes to analyze

56 All results are based on recommendations to users who had created 1,000 nodes and more.

[1;9]
[10;
49]

[50;
99]

[100;
499]

[500;
999]

1,000+

Ratings 2.56 3.17 3.46 3.16 3.07 2.58

CTR 3.64% 6.62% 7.50% 7.08% 6.09% 6.38%

CTR (Set) 3.63% 6.62% 7.49% 7.18% 6.20% 6.60%

LTR 1.24% 1.23% 2.60% 2.42% 2.39% 1.87%

ATR 0.91% 0.88% 1.18% 1.28% 1.38% 1.11%

CiTR 0.25% 0.58% 0.72% 0.56% 0.45% 0.44%

P@3 1.57% 1.91% 2.15% 3.69% 2.97% 1.85%

P@10 4.44% 5.81% 6.19% 8.44% 7.14% 5.27%

nDCG 1.09% 1.16% 1.38% 1.54% 1.44% 0.61%

MRR 1.61% 1.45% 1.86% 1.92% 1.22% 0.45%

0

1

2

3

4

0%

2%

4%

6%

8%

10%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Number of Nodes

91

5.2.1.4 Effect of node-selection method

Another variable we tested was the node modification type (Figure 30). The

recommender system chose randomly, whether to utilize only nodes that were

newly created, nodes that were moved, nodes that were edited, or nodes with any

type of modification (created, edited, or moved). Utilizing moved nodes only,

resulted in the highest ratings on average (3.31). The online metrics CTR, CTRSet,

and LTR as well as the offline metric MRR also have the highest effectiveness

when utilizing moved nodes. Results for ATR and CiTR differ, but are statistically

not significant. Based on P@N, utilizing all modified nodes is most effective,

based on nDCG utilizing newly created nodes is most effective.

Figure 30: Effectiveness based on the node modification type

5.2.1.5 Effect of stop-word removal

When the recommender system removed stop-words, the average rating was 3.16

compared to 2.88 when no stop-words were removed (Figure 31). All other

metrics, except ATR, also showed a higher effectiveness when stop-words were

removed, but, again, results for ATR were statistically insignificant.

Modified
Nodes

Edited
Nodes

Created
Nodes

Moved
Nodes

Ratings 2.85 2.82 3.04 3.31

CTR 4.99% 5.38% 5.09% 7.40%

CTR (Set) 4.98% 5.57% 5.18% 7.46%

LTR 2.24% 1.96% 2.33% 2.57%

ATR 0.95% 1.38% 1.20% 1.18%

CiTR 0.52% 0.73% 0.48% 0.37%

P@3 2.68% 2.40% 1.52% 2.04%

P@10 7.08% 7.07% 5.41% 5.81%

nDCG 1.17% 1.49% 1.61% 1.00%

MRR 1.61% 1.07% 1.94% 2.00%

0

1

2

3

4

0%

2%

4%

6%

8%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Node Selection Method

92

Figure 31: Effectiveness of stop-word removal

5.2.1.6 Effect of user types

Docear’s recommender system is open to both registered and

unregistered/anonymous users (cf. Chapter 5.1.2.3, p. 83), and we were interested

whether there would be differences in the two users groups with respect to

recommendation effectiveness. CTR and CTRSet show a clear difference between

the two user types (Figure 32). Registered users had an average CTR of 5.32%

while unregistered users had an average CTR of 3.86%. CTRUser is also higher for

registered users (4.00%) than for anonymous users (3.77%), but the difference is

not that strong. LTR and ATR also show a (slightly) higher effectiveness for

registered users. The offline evaluation contradicts the findings of the online

evaluation: P@3, P@10, and MRR indicate that recommendations for registered

users were about half as effective as for anonymous users, and nDCG showed no

statistically significant difference between the user groups.

On Off

Ratings 3.16 2.88

CTR 6.31% 5.94%

CTR (Set) 6.35% 6.01%

LTR 2.51% 2.33%

ATR 1.14% 1.21%

CiTR 0.58% 0.50%

P@3 2.71% 2.03%

P@10 7.98% 5.17%

nDCG 1.44% 1.29%

MRR 1.73% 1.68%

0

1

2

3

4

0%

2%

4%

6%

8%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Stop-Word Removal

93

Figure 32: Effectiveness by user type (registered and anonymous)57

5.2.1.7 Effect of labels

For each user, Docear randomly determined whether to display an organic label

(e.g. “Free Research Papers”), a commercial label (e.g. “Research Papers

[Sponsored]”), or to display no label at all (cf. Appendix J, p. 267). For each user a

fix label was randomly selected once, i.e. a particular user always saw the same

label. The label had no impact on how recommendations were generated. This

means, if recommendation effectiveness would differ for a particular label, then

only because users would value different labels differently.

57 User ratings were only introduced in early 2014. Since no new anonymous users have been allowed since late

2013, there are no ratings made by anonymous users. Hence, we could only compare results of online and offline

evaluations for the two types of users.

Registered Anonymous

CTR 5.32% 3.86%

CTR (Set) 5.38% 3.83%

CTR (User) 4.00% 3.77%

LTR 2.47% 2.30%

ATR 1.34% 1.34%

CiTR 0.52% 0.55%

P@3 1.54% 2.71%

P@10 4.24% 7.50%

nDCG 1.35% 1.31%

MRR 1.69% 2.30%

0%

2%

4%

6%

8%

C
TR

/L
TR

/P
@
n
/…

User Type

94

In the user study, there were no significant differences for the three types of labels

in terms of effectiveness: the ratings were around 2.9 on average for all labels

(Figure 33). Based on CTR, CTRSet, and LTR, displaying no label was most

effective. In addition, commercial labels were slightly, but statistical significantly,

more effective than organic labels. Based on CTRUser, commercial

recommendations were least effective, organic labels were most effective, and ‘no

label’ was second most effective. ATR and CiTR led to statistically not significant

results, and offline metrics could not be calculated for this kind of analysis.

Figure 33: Effectiveness of labels

5.2.1.8 Effect of trigger

Two triggers in Docear lead to displaying recommendations. First, Docear

displays recommendations automatically every five days when Docear starts.

Second, users may explicitly request recommendations at any time. The user study

shows a similar effectiveness for both types of trigger with an average rating

between 2.8 and 2.9 (Figure 34)58. Interestingly, the online evaluation shows a

58 The small difference in the average rating is statistically insignificant.

Organic Commercial No Label

Ratings 2.82 2.92 2.88

CTR 4.82% 4.92% 5.39%

CTR (Set) 5.21% 5.33% 6.46%

CTR (User) 3.68% 3.18% 3.57%

LTR 1.75% 1.76% 2.21%

ATR 1.00% 1.23% 0.97%

CiTR 0.59% 0.38% 0.48%

0

1

2

3

4

0%

2%

4%

6%

8%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Labels

95

significantly higher effectiveness for requested recommendations than for

automatically displayed recommendations. For instance, CTR for requested

recommendations is 2.5 times higher than for automatically displayed

recommendations (9.14% vs. 3.67%). Conducting an offline evaluation was not

possible for this type of analysis.

Figure 34: Effectiveness by trigger

5.2.1.9 Correlation of the evaluation metrics

We calculated the Pearson correlation coefficient for the different evaluation

metrics (Table 13). Both CTR and CTRSet show a strong positive correlation with

ratings (r=0.78). Correlation of all other metrics, both offline and online, with

ratings is between 0.52 (CiTR) and 0.67 (nDCG). This means that CTR and

CTRSet are most suitable to approximate ratings in our scenario. If the goal is to

approximate CTR, then ratings, obviously, is the most adequate metric (r=0.78),

followed by LTR (r=0.73). The other metrics have rather low correlation

coefficients with CTR; the worst are nDCG (r=0.28) and MRR (r=0.30). Among

the offline metrics, P@3 and P@10 correlate well (r=0.92), which is to expect.

MRR and nDCG also show a reasonable strong correlation (r=0.71), while

correlation of P@10 and MRR (r=0.56) and P@10 and nDCG (r=0.55) is rather

weak.

Requested Automatic

Ratings 2.83 2.93

CTR 9.14% 3.67%

CTR (Set) 9.23% 3.71%

LTR 3.14% 1.33%

ATR 1.32% 1.24%

CiTR 0.71% 0.38%

0

1

2

3

4

0%

2%

4%

6%

8%

10%

R
at

in
g

C
TR

/L
TR

/P
@
n
/…

Trigger

96

Table 13: Correlation of the different metrics

5.2.2 Adequacy of Online-Evaluation Metrics

Among the online metrics, CTR and CTRSet seem to be the most adequate metrics,

at least for Docear’s scenario. CTR and CTRSet had the highest correlation with

users’ ratings, are easiest to calculate, provided more often statistically significant

results than the other metrics, and CTR is commonly used in other fields such as e-

commerce and search engines. CTR and CTRSet (and LTR) also provided the more

plausible results for the stereotype recommendations. Based on CTR, the

stereotype approach was reasonably effective, while the approach was ineffective

based on ATR and CiTR. The result based on CTR seems more plausible since the

recommendations were about academic writing and most of Docear’s users should

be interested in improving their writing skills. However, there is little reason for

someone who is doing research in a particular research field, to annotate or even

cite an article about academic writing even if the article was useful. Hence,

judging stereotype recommendations based on ATR or CiTR seems inadequate to

us.

However, ATR and CiTR might be more sensible measures than CTR in other

scenarios. For instance, imagine two algorithms called “A” and “B”. Both are the

same content-based filtering approaches but B additionally boosts papers

published in reputable journals.59 In the online evaluation, users would probably

see no difference between the titles of the recommendations created with the two

approaches, assuming that authors publishing in reputable journals do not

formulate titles that are significantly different from titles in other journals.

Consequently, recommendations of the two algorithms would appear to be

59 For this example we ignore the question how reputability is measured

Ratings -- Ratings 0.78 P@3 and P@10 0.92

CTR 0.78 CTR -- P@10 and MRR 0.56

CTR (Set) 0.78 CTR (Set) 0.97 P@10 and nDCG 0.55

DTR 0.65 DTR 0.73 nDCG and MRR 0.71

ATR 0.61 ATR 0.53

CiTR 0.52 CiTR 0.42

P@3 0.62 P@3 0.41

P@10 0.65 P@10 0.48

MRR 0.55 MRR 0.30

nDCG 0.67 nDCG 0.28

Correlation of Ratings and … Correlation of CTR and … Correlation of …

97

similarly relevant and received similar CTR. However, most people would

probably agree that algorithm B would be preferable to algorithm A in practice.

Therefore, in this example, ATR and CiTR might be more appropriate than CTR.

Measuring CTR, while displaying only the title of recommendations, was

criticized by some reviewers of our previous publications. The reviewers argued

that titles alone would not allow thorough assessment of recommendations and

CTR could therefore be misleading. In some scenarios, such as the example above

with the two algorithms, one being boosted by journal reputation, this criticism

could indeed apply. However, in the scenario of Docear, the results do not indicate

that displaying only the title led to any problems or bias in the results since CTR

correlates well with those metrics that are based on a more thorough assessment of

the recommendations (e.g. user ratings or ATR).

Compared to CTR, CTRuser smoothed the effect of variables that strongly affected

a few users. For instance, CTRuser was highest for organic labels, lowest for

commercial labels, and mediocre for no labels – a result that one would probably

expect. In contrast, CTR was highest for no label, second highest for commercial

recommendations, and lowest for organic recommendations – a result that one

would probably not expect. After looking at the data in detail, we found that a few

users who received many recommendations (with no label) “spoiled” the results.

Hence, if the objective of an evaluation was to measure overall user satisfaction,

CTRuser was probably preferable to CTR because a few power users will not spoil

the results. However, applying CTRuser requires more users than applying CTR,

since CTRuser requires that users receive recommendations based on the same

parameters of the variables and not per recommendation set. For instance, to

calculate CTRuser, each user must always see the same label, each user model must

always be the same size for a particular user, and recommendations must always

be based on terms or citations for a particular user. In contrast, to calculate CTR,

users may receive recommendations based on terms in one occasion, and

recommendations based on citations in another occasion, or user models could

differ in size, different weighting schemes could be used etc. Consequently, to

receive statistically significant results, CTRuser requires more users than CTR. At

least for Docear, calculating CTRuser for variables such as user-model size, number

of nodes to analyze, features to utilize (terms or citations), and weighting schemes

is not feasible since we would need many more users than Docear currently has.

Considering the strong correlation of CTR and ratings, the more plausible result

for stereotype recommendations, and the rather low number of users being

required, we conclude that CTR is the most appropriate online metric for our

98

scenario. This is not to mean that in other scenarios other online metrics such as

CTRUser or ATR might not be more sensible.

5.2.3 Adequacy of Online Evaluations & User Studies

Ratings in the user study correlated strongly with CTR (r=0.78). This indicates

that explicit user satisfaction (ratings) is a good approximation of the acceptance

rate of recommendations (CTR), and vice versa. Only in two cases, CTR and

ratings contradicted each other, namely for the impact of labels (cf. Section

5.2.1.7) and the trigger (cf. Section 5.2.1.8). Both of these analyses relate to

human factors. For the analyses relating to the algorithms and their variations in

user-model size, number of nodes to analyze, etc., CTR and ratings always led to

the same conclusions. These differences indicate that when the accuracy of

recommendation algorithms is to be evaluated, both CTR and ratings are equally

well suitable. However, which of the two metrics to use when it comes to

evaluating human factors?

We argue that none of the metrics is generally more authoritative than another

metric. Ultimately, the authority of user studies and online evaluations depends on

the objective of the evaluator, and operator of the recommender system

respectively. If, for instance, the operator receives a commission per click on a

recommendation, CTR was to prefer over ratings. If the operator is interested in

user satisfaction, ratings were to prefer over CTR. Ideally, both CTR and ratings,

should be considered when making a decision about which algorithm to apply in

practice or to choose as baseline, since they both have some inherent value. Even

if the operator’s objective was revenue, and CTR was high, low user satisfaction

would not be in the interest of the operator. Otherwise, users would probably

ignore recommendations in the end, and hence stop clicking them. Similarly, if the

objective was user satisfaction, and ratings were high, a low CTR would not be in

the interest of the operator: a low CTR means that many irrelevant

recommendations are given, and if these could be filtered, user satisfaction would

probably further increase. Therefore, ideally, researchers should evaluate their

approaches with both online evaluation and user study when it comes to evaluating

human factors. However, if researchers do not have the resources to conduct both

types of evaluation, or if the analysis focuses on recommendation algorithms with

low impact of human factors, we suggest that conducting either a user study or an

online evaluation should still be considered “good practice”.

99

5.2.4 Adequacy of Offline Evaluations

Our research shows only a mediocre correlation of offline evaluations with user

studies and online evaluations. Sometimes, the offline evaluation could predict the

effectiveness of algorithms in the user study or online evaluation quite precisely.

For instance, the offline evaluation was capable of predicting whether removing

stop-words would increase the effectiveness. The optimal user-model size and

number of nodes to analyze were also predicted rather accurately (though not

perfectly). However, the offline evaluation remarkably failed to predict the

effectiveness of citation-based and stereotype recommendations. If one had trusted

the offline evaluation, one had never considered stereotype and citation-based

recommendations to be a worthwhile option.

The uncertain predictive power of offline evaluations, questions the often

proclaimed purpose of offline evaluations, namely to identify a set of promising

recommendation approaches for further analysis. However, this does not

necessarily mean that conducting offline evaluation is meaningless. To assess the

adequacy of offline evaluations, we propose that the following three questions

need to be answered:

1. Can we identify scenarios where offline evaluations will have

predictive power for how recommendation approaches will perform

in online evaluations and user studies? If we can, we should use

offline evaluations only in these scenarios.

2. Do results of offline evaluations have inherent value? If they do, it

would not matter if they contradicted results of online evaluations

of user studies. Instead, results of offline evaluations would have

inherent value and would be worth to be reported in publications,

similar to CTR and ratings.

3. Are offline evaluations inherently flawed? If they are, we should

abandon them entirely.

In the following sections, we attempt to answer these questions. We do not claim

that our answers are definitive but we hope to stimulate a discussion that will

eventually lead to widely accepted answers.

100

5.2.4.1 Finding scenarios for which offline evaluations have predictive power

A common criticism on offline evaluations is the ignorance of human factors (cf.

Section 3.3.2, p. 42). At least for some of our analyses, human factors might have

caused the non-predictive power of offline evaluations.

For instance, on first glance we expected that Docear’s recommendation

approaches create equally relevant recommendations for both anonymous and

registered users. However, the offline evaluation showed higher effectiveness for

anonymous users than for registered users while we saw the opposite in the online

evaluation. Although we find these results surprising, the influence of human

factors might explain the difference: It could be that anonymous users are more

concerned about privacy than registered users60. Users concerned about their

privacy, might worry that when they click a recommendation, some unknown, and

potentially malicious website, opens. This could be the reason that anonymous

users, who tend to be concerned about their privacy, click recommendations not as

often as registered users, and CTR is lower on average. Nevertheless, the higher

accuracy for anonymous users in the offline evaluation might still be plausible. If

anonymous users tended to use Docear more intensively than registered users, the

mind maps of the anonymous users would be more comprehensive and hence

more suitable for user modeling and generating recommendations, which would

lead to the higher accuracy in offline evaluations. This means that although mind

maps of anonymous users might be more suitable for user modeling, the human

factor “privacy concerns” causes the low effectiveness in online evaluations.

If human factors have an impact on recommendation effectiveness, we must

question whether one can determine scenarios in which human factors have no

impact. Only in these scenarios, offline evaluations would be an appropriate tool

to approximate the effectiveness of recommendation approaches in online

evaluations or user studies. In scenarios like our analysis of registered vs.

anonymous users, it is apparent that human factors may play a role, and that

offline evaluations might be not appropriate. For some of our other experiments,

such as whether to utilize terms or citations, we could see no plausible influence of

human factors, yet offline evaluations could not predict the performance in the

user study and online evaluation. Therefore, and assuming that results of offline

60 If users register, they have to reveal private information such as name and email address. If users are concerned

about revealing this information, they probably tend to use Docear as anonymous user.

101

evaluations have no inherent value, we would propose abandoning offline

evaluations, as they cannot reliably fulfil their purpose. However, could the results

of offline evaluations have some inherent value?

5.2.4.2 The inherent value of offline evaluations

Offline evaluations, online evaluations, and user studies typically measure

different types of effectiveness (cf. Section 3.4.1, p. 51). One might therefore

argue that comparing the results of the three methods is like comparing apples,

peaches, and oranges, and that the results of each method have some inherent

value. For online evaluations and user studies, such an inherent value doubtlessly

exists (see previous section).

An inherent value for offline evaluations would exist if those persons who

compiled the ground-truth, better knew which items were relevant than current

users who decide to click, download, or rate an item. This situation is comparable

with a teacher-student situation. Teachers know which books their students should

read, and although students might not like the books, or had not chosen the books

themselves, the books might be the best possible choice to learn about a certain

subject. Such a teacher-student situation might apply to offline evaluations.

In case of expert-datasets, one might argue that topical experts, who compile the

dataset, can better judge relevance of certain items than average users who use the

recommender system. For instance, if experts were asked to compile an

introductory reading list on recommender systems for undergraduate students, they

could probably better select the most relevant documents than the students

themselves could. Therefore, results from offline evaluations based on expert-

datasets might be more authoritative than results obtained from online evaluations

or user studies based e.g. on undergraduate students. However, an expert-created

list for undergraduate students would not be suitable for PhD students who wanted

to investigate the topic of recommender systems in more depth. Thus, another

expert list would be needed for PhD students, another for senior researchers, and

another for foreign language students, etc. Overall, there would be an almost

infinite number of lists required to cater to all user backgrounds and information

needs. Such a comprehensive dataset does not exist and probably never will. In

addition, today’s expert-datasets, such as TREC and MeSH, focus on specific use-

cases and the datasets were not created for recommender-system evaluation. For

instance, MeSH allows the determination of the similarity of documents.

Recommending similar documents might be one use case for a recommender

system, but there are many more. Considering the mentioned limitations, we

102

conclude that offline evaluations based on expert-datasets might theoretically have

some inherent value, and provide even more authoritative results than online

evaluations and user studies, but in practice, appropriate datasets will probably

never be available, except perhaps for some niche recommender systems.

Inferred ground-truths do not suffer the problem of overspecialization and should

typically represent a large variety of use-cases. Therefore, in principle, evaluations

based on inferred ground-truths (e.g. from citations) could be more authoritative

than online evaluations or user studies. For instance, before a researcher decides to

cite a document – which would add the document to the ground-truth – the

document was ideally carefully inspected and its relevance was judged according

to many factors such as the publication venue, the article’s citation count, or the

soundness of its methodology. These characteristics usually cannot be evaluated in

an online evaluation or user study. Thus, one might argue that results based on

personal-collection datasets might be more authoritative than results from online

evaluations and user studies.

There is also a plausible example in which results based on an inferred ground-

truth may be more authoritative than e.g. CTR. Recapitulate the previous example

with two content-based filtering approaches, called “A” and “B,” where B boosts

papers that were published in reputable journals (cf. Section 5.2.2, p. 96). In the

online evaluation, both approaches would probably receive similar CTR. In

contrast, an offline evaluation based on an inferred ground-truth might predict a

better performance for approach B, because articles from reputable journals are

probably more often cited than articles from non-reputable journals. Hence, if

citations were used as ground-truth, articles from reputable journals were more

often contained in the ground-truth, and would more often be considered a good

recommendation than articles from less reputable journals. As a result, algorithm

B would show better accuracy than algorithm A. In this scenario, the offline

evaluation would have identified the best algorithm while CTR did not.

Assuming that offline evaluations could be more authoritative than user studies

and online evaluations, the following question arises: How useful are

recommendations that might objectively be most relevant to users when users do

not click, read, or buy the recommended item, or when they rate the item

negatively? In contrast to teachers telling their students to read a particular book, a

recommender system cannot force a user to accept a recommendation. We argue

that an algorithm that is not liked by users, or that achieves low CTR, can never be

considered useful. Only if two algorithms performed similarly or if both

approaches had at least a mediocre performance in an online evaluation or user

103

study, an additional offline evaluation might be used to decide which of the two

algorithms is more effective. However, this means that offline evaluations had to

be conducted in addition to user studies or online evaluations, and not beforehand

or as only evaluation method. Consequently, a change in the current practice of

recommender-systems evaluation was required.

5.2.4.3 The fundamental flaw of inferred ground-truths

While inferred ground-truths look promising on first glance, we see a fundamental

problem: inferred ground-truths are supposed to contain all items that are relevant

for recommendation (cf. 2.5.3.3, p. 24). To compile such a ground-truth,

comprehensive knowledge of the domain is required. It should be apparent that

most users do not have comprehensive knowledge of their domain (which is why

they need a recommender system). Consequently, ground-truths are incomplete

and contain only a fraction of relevant items, and perhaps even irrelevant items. If

the ground-truth is inferred from citations, the problem becomes even more

apparent. Many conferences and journals have space restrictions that limit the

number of citations in a paper. This means that even if authors were aware of all

relevant literature – which they are not – they would only cite a limited amount of

relevant articles.

Citation bias further enforces the imperfection of citation-based ground-truths.

Authors cite papers for various reasons and these do not always relate to the

paper’s relevance to that author [234]. Some researchers prefer citing the most

recent papers to show they are “up-to-date” in their field. Other authors tend to cite

authoritative papers because they believe this makes their own paper more

authoritative or because it is the popular thing to do. In other situations,

researchers already know what they wish to write but require a reference to back

up their claim. In this case, they tend to cite the first appropriate paper they find

that supports the claim, although there may have been more fitting papers to cite.

Citations may also indicate a “negative” quality assessment. For instance, in

Chapter 3, we cited several papers that we considered of little significance and

excluded from the in-depth review. These papers certainly would not be good

recommendations. This means that even if authors were aware of all relevant

literature, they will not always select the most relevant literature to cite.

When incomplete or even biased datasets are used as ground-truth, recommender

systems are evaluated based on how well they can calculate such an imperfect

ground-truth. Recommender systems that recommend papers that are not

contained in the imperfect dataset, but that might be equally relevant, would

104

receive a poor rating. A recommender system might even recommend papers of

higher relevance than those in the offline dataset, but the evaluation would give

the algorithm a poor rating. In other words, if the incomplete status quo – that is, a

document collection compiled by researchers who are not aware of all literature,

who are restricted by space and time constraints, and who typically do biased

citing – is used as ground-truth, a recommender system can never perform better

than the imperfect status quo.

We consider the imperfection to be a fundamental problem. To us, it seems

plausible that the imperfection is also reason why offline metrics could not predict

the effectiveness of citation-based and stereotype recommendations in the online

evaluations and user study. As long as one cannot identify the situations in which

the imperfection will affect the results, we propose that inferred ground-truths

should not be used to evaluate research-paper recommender systems.

105

5.3 Mind-Map-Specific User-Modeling Variables

In this section, the results of Task 4 are presented. The task was to identify

variables that affect user modeling based on mind maps, and measure the impact

of the variables. To accomplish this task, content-based filtering algorithms were

randomly assembled, and the impact on the user modeling effectiveness was

measured with click-through rate.

5.3.1 Mind-Map & Node Selection

5.3.1.1 Mind-map selection

When utilizing mind maps for user modeling, one central question is which mind

maps to analyze, and which parts of the mind maps to analyze. We experimented

with a few variables to answer this question.

Figure 35: CTR by the number of mind maps to analyze (all users)

We hypothesized that analyzing all mind maps of a user is not the most effective

method: If too many, or too old mind maps are analyzed, this could introduce

noise in the user model. To test this hypothesis, Docear’s recommender system

randomly used the x most recently modified mind maps, regardless of when they

were modified. An initial analysis shows a slight tendency that CTR increases, the

more mind maps are analyzed (Figure 35). When only a user’s most recent mind

map is utilized, CTR is 4.52% on average. Utilizing eight or nine mind maps

resulted in the highest CTR (6.82%). However, these results might be misleading

since the analysis is based on recommendations for all users including those who

created only few mind maps: for these users it would not be possible to analyze the

eight or nine most recently created mind maps. Therefore, we did the same

1 2 3 4 5 [6;7] [8;9] 10+

Rntm (Terms) 16 18 29 24 23 27 29 50

Rntm (Citat.) 4 5 4 2 2 6 7 13

CTR (Terms) 4.52% 5.09% 4.90% 4.64% 5.56% 4.32% 6.82% 5.28%

CTR (Citat.) 5.69% 4.77% 7.12% 3.31% 3.28% 3.76% 3.92% 5.25%

0

50

100

0%

4%

8%

R
u

n
ti

m
e

[s
]

C
TR

Number of mind-maps

106

analysis for users who created at least eight mind maps (Figure 36). In this

analysis, no statistically significant difference could be found for the number of

utilized mind maps. Judging by these numbers, it seems that the number of the

most recently modified mind maps is not an effective variable to optimize the user

modeling process.

Figure 36: CTR by number of mind maps to analyze (8+ mind maps)

5.3.1.2 Node selection

As an alternative to using the x most recently modified mind maps, Docear

analyzed the x most recently modified nodes. For example, if x=50, the terms (or

citations) contained in the 50 most recently modified nodes are used. The intention

is that users might be working in different sections of several mind maps, and only

those actively edited sections are relevant for user modeling. The analysis shows

that the more nodes are used, the higher CTR becomes (Figure 37). While CTR is

3.66% on average when one to nine nodes are used, CTR increases to 6.60% when

1,000 and more nodes are used. Interestingly, it is the opposite for citations: the

more nodes with citations are used, the lower CTR becomes.

Figure 37: CTR by the number of nodes to analyze (all users)

1 2 3 4 5 [6;7] [8;9] 10+

Rntm (Terms) 22 18 48 22 21 29 29 50

Rntm (Citat.) 12 9 5 4 2 7 7 13

CTR (Terms) 4.71% 6.71% 6.72% 2.85% 8.18% 4.80% 6.82% 5.28%

CTR (Citat.) 8.59% 5.84% 9.06% 3.51% 1.20% 2.24% 3.92% 5.25%

0

100

0%

4%

8%

12%

R
u

n
ti

m
e

[s
]

C
TR

Number of mind-maps

[1;9]
[10;
49]

[50;
99]

[100;
499]

[500;
999]

1,000+

Rntm (Terms) 7 12 24 52 88 117

Rntm (Citat.) 3 3 3 7 10 22

CTR (Terms) 3.00% 4.72% 5.82% 5.87% 5.93% 6.38%

CTR (Citat.) 7.76% 7.21% 6.75% 6.34% 4.56% 6.71%

0

40

80

120

160

0%

2%

4%

6%

8%

10%

R
u

n
ti

m
e

[s
]

C
TR

Number of nodes

107

However, these results, again, might be misleading since not all users have created

e.g. thousand nodes. Consequently, the CTR for e.g. one to nine nodes includes

recommendations for all users, but the CTR for analyzing 1,000 or more nodes

only considers recommendations to users who created at least 1,000 nodes.

Therefore, we performed the previous analysis again, but for users who have

created at least 1,000 nodes (Figure 38). This time, a saturation appears. When the

50 to 99 most recently created nodes are used, CTR is highest (7.50%). When

more nodes are analyzed, CTR decreases. We did the same analysis for other user

groups, and results were always the same – using only the 50 to 99 most recently

modified nodes led to the highest CTRs on average. With regard to citations, the

results slightly change. For users with 1,000 or more nodes, using the most recent

10 to 49 citations is most effective (8.36% vs. 7.32% for using 1 to 9 citations).

Figure 38: CTR by the number of nodes to analyze (1,000+ nodes available)

Selecting a fix number of nodes might not be the most effective criteria. The most

recent, for example, 75 nodes could include nodes that were modified some years

ago. Such nodes would probably not represent a user’s current information needs

any more. Therefore, Docear’s recommender system randomly used all nodes that

were modified within the past x days (Figure 39). When the recommender system

utilized only those nodes that were modified on the current day, CTR was 3.81%

on average61. When nodes from the last two or three days were utilized, CTR

increased to 5.52%. CTR was highest, when nodes modified during the past 61 to

120 days were used (7.72%), and remained high when nodes of the past 121 to 180

days were used. When nodes were used that were modified more than 180 days

61 The analysis was done only for users being registered since at least 360 days

[1;9]
[10;
49]

[50;
99]

[100;
499]

[500;
999]

1,000+

Rntm (Terms) 8 13 29 61 89 117

Rntm (Citat.) 5 5 4 10 10 22

CTR (Terms) 3.64% 6.62% 7.50% 7.08% 6.09% 6.38%

CTR (Citat.) 7.32% 8.36% 8.02% 6.12% 4.52% 6.71%

0

50

100

150

0%
2%
4%
6%
8%

10%

R
u

n
ti

m
e

[s
]

C
TR

Number of nodes

108

ago, CTR began to decrease. Apparently, the interests of Docear’s users change

after a few months.

Figure 39: CTR for nodes analyzed in the past x days62

Figure 40: Node modification type

Another variable we tested was the node modification type (Figure 40). The

recommender system chose randomly, whether to utilize only nodes that were

newly created, nodes that were moved, nodes that were edited, or nodes with any

type of modification (created, edited, or moved). Utilizing moved nodes only,

resulted in the highest CTR (7.40%) on average, while the other modification

types achieved CTRs around 5%. We find this interesting, because this result

62 For users being registered since more than 360 days

1 [2;3] [4;9]
[10;
60]

[61;
120]

[121;
180]

[181;
360]

361+

Rntm (Terms) 33 22 39 45 53 46 56 43

Rntm (Citat.) 13 26 7 22 28 28 36 36

CTR (Terms) 3.81% 5.52% 5.68% 6.00% 7.72% 7.29% 5.29% 4.39%

CTR (Citat.) 0.00% 2.44% 8.70% 7.28% 8.50% 4.05% 11.81% 0.00%

0

40

80

0%
2%
4%
6%
8%

10%
12%
14%

R
u

n
ti

m
e

[s
]

C
TR

Number of days

Modified
Nodes

Edited
Nodes

Created
Nodes

Moved
Nodes

Rntm (Terms) 62 46 44 21

Rntm (Citat.) 10 8 10 7

CTR (Terms) 4.99% 5.38% 5.09% 7.40%

CTR (Citat.) 6.48% 6.18% 6.61% 8.57%

0

40

80

0%

2%

4%

6%

8%

10%

R
u

n
ti

m
e

[s
]

C
TR

Modification type

109

indicates that the evolution of a mind map might be important for user modeling,

and certain actions (e.g. moving nodes) indicate a high significance of certain

nodes.

Most mind-mapping tools allow folding a node, i.e. to hide its children. In Docear,

this is indicated by a circle at the end of node (Figure 5, p. 12). We hypothesized

that nodes that are hidden, are currently not relevant for describing the user’s

information needs. Therefore, Docear’s recommender system randomly chose

whether to use only visible nodes, invisible nodes, or all nodes. When using visible

nodes only, CTR increased from 6.00% (analyzing all nodes) to 7.61% (Figure

41). Using only invisible nodes led to a CTR of 4.89% on average. This indicates

once more that by selecting a few meaningful nodes, a better effectiveness can be

achieved than by examining simply all nodes.

Figure 41: Node visibility as selection criteria (at least 100 nodes analyzed)

5.3.1.3 Node extension

We hypothesized that the relation among nodes is important. This means the terms

of a node might be more meaningful when the node’s context is known with

regard to the neighboring nodes. The most common neighbors are parents,

children, and siblings. For instance, in Figure 5 (p. 12), the author’s information

needs seem rather vague when looking only at one node, “Google Scholar indexed

invisible text”. In combination with the (grand) parent “(Academic) Search Engine

Spam”, the author’s interests become clearer. Therefore, we experimented with

extending the original selection of nodes. After the system chose the relevant

nodes to examine with one of the previously introduced methods, the

recommender system randomly chose whether to add siblings, parents, or children

to the original selection. This process is illustrated in Figure 42 where two nodes

All Invisible Visible

Rntm (Terms) 111 102 138

Rntm (Citat.) 7 9 16

CTR (Terms) 6.00% 4.89% 7.61%

CTR (Citat.) 5.08% 5.67% 7.03%

0

50

100

150

0%
2%
4%
6%
8%

R
u

n
ti

m
e

[s
]

C
TR

Node visibility

110

were originally selected and the direct parent, children, and siblings were selected

as extension to the original nodes.

Figure 42: Extending the original node selection

Adding siblings resulted in a CTR of 5.73% compared to 5.10% for not adding

siblings (Figure 43). Adding parent-nodes decreased CTR to 5.36% compared to

5.46% for not adding them. Adding children increased CTR from 5.22% to 5.61%.

Differences are small but significant. In addition, when the recommender system

combined all factors, i.e. adding siblings and children but ignoring parents, CTR

was 6.18% on average, which is a significant improvement, compared to not

extending nodes (4.84%). One might suspect that extending the original node

selection was only more effective because the extension caused more nodes to be

used, and the more nodes are used, the higher CTR tends to become. However,

this suspicion is not correct. For instance, when 100 to 499 nodes were selected,

and no children or siblings were added, CTR was 5.15% on average. When, 10 to

50 nodes were selected and after adding children and siblings 100 to 499 nodes

were used, CTR was 5.45%. This indicates that selecting a few recently modified

nodes, and extending them with their siblings and children, is more effective than

selecting simply more nodes based only on the modification date.

Figure 43: Extending the original node selection

Selected

Liaisons

On Off On Off On Off

Include Siblings Include Parents
Include
Children

All Off
Bst.

Fctrs.
Cmbnd.

Rntm (Terms) 51 45 49 46 49 46 40 50

Rntm (Citat.) 9 9 9 9 10 9 7 12

CTR (Terms) 5.73% 5.10% 5.36% 5.46% 5.61% 5.22% 4.84% 6.18%

CTR (Citat.) 6.74% 6.47% 6.41% 6.82% 6.27% 6.99% 6.21% 6.80%

0

50

100

0%
2%
4%
6%
8%

R
u

n
ti

m
e

[s
]

C
TR

Extension method

111

5.3.2 Node Weighting

Often, user-modeling applications weight features (e.g. terms) that occur in a

certain document field (e.g. in title) stronger than features occurring in other

document fields (e.g. the body text). Mind maps have no fields for title, abstract,

headings, or body text. Instead, mind maps have nodes, which have a certain

depth, i.e. their distance from the root node. We hypothesized that the depth of a

node might indicate the importance of the node. For instance, in Figure 5 (p. 12),

the node “Scopus” has a depth of 2, and we would assume that the term “Scopus”

describes the user’s interests with a different accuracy than the node “Academic

Search Engines” that has a depth of 1.

To test the hypothesis, Docear’s recommender system randomly chose whether to

weight terms of a node stronger or weaker, depending on its depth. If the nodes

were to be weighted stronger the deeper they were, the weight of a node (1 by

default) was multiplied with a) the absolute depth of the node; b) the natural

logarithm of the depth; c) the logarithm to base 10 of the depth; or d) the square

root of the depth. If the resulting weight was lower than 1, e.g., for ln (2), then the

weight was set to 1. If nodes were to receive less weight the deeper they were,

then the original weight of 1 was multiplied with the reciprocal of the metrics a) –

d). If the resulting weight was larger than 1, e.g., for ln(2), the weight was set to 1.

In the following charts, we provide CTR for the mentioned metrics. However, the

differences among the metrics are not statistically significant. Hence, we

concentrate on comparing the overall CTR, i.e. the CTR of weighting nodes

stronger or weaker the deeper they are regardless of the particular metric.

Figure 44: Weighting based on node depth

Results show that when nodes are weighted stronger the deeper they are in a mind

map, CTR increases (Figure 44). Weighting them stronger, led to a CTR of 5.61%

on average, while weighting them weaker led to a CTR of 5.12% on average.

Over
all

Abso
lute

Ln Log
Square

Root
Over

all
1/Abso

lute
1/Ln 1/Log

1/Square
Root

The deeper, the more weight The deeper, the less weight

Rntm (Terms) 154 134 145 188 155 181 192 172 176 194

CTR (Terms) 5.61% 5.68% 6.00% 5.43% 5.38% 5.12% 5.04% 5.33% 5.07% 5.02%

0

50

100

150

200

250

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Node depth metric

112

We also experimented with other metrics that are based on the number of children,

the number of siblings, and the number of words contained in a node. Figure 42

illustrates this. Node A is a leaf node because it has no children. In contrast, node

B has two children, which in turn have two children each, too. We hypothesized

that the number of children indicates how important a node is to infer a user’s

interests. Therefore, Node A would be weighted differently than Node A.

Similarly, Node C also is a leaf but has more siblings than Node A. Therefore,

Node C might be weighted differently than Node A.

Figure 45: Weighting based on children and siblings

Based on our experiments, CTR increases when nodes are weighted stronger the

more children a node has (Figure 46). Weighting them stronger led to a CTR of

5.17% on average, while weighting them weaker led to a CTR of 4.97%.

However, the difference was statistically not significant. Weighting based on the

number of siblings had a significant effect (Figure 47). Weighting nodes stronger

the more siblings they have led to a CTR of 5.40%, compared to 5.01% for

weighting them weaker. Weighting nodes based on the number of terms they

contained led to no significant differences (Figure 48).

Figure 46: Weighting based on the number of children

A

B

C

Selected

Liaisons used
for weighting

Over
all

Abso
lute

Ln Log
Square
Root

Over
all

1/Abso
lute

1/Ln 1/Log
1/Square

Root

The more children, the more weight The more children, the less weight

Rntm (Terms) 162 145 145 199 168 170 152 182 143 220

CTR (Terms) 5.17% 4.80% 5.84% 4.46% 5.51% 4.97% 4.91% 4.37% 5.83% 4.81%

0

50

100

150

200

250

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Children metric

113

Figure 47: Weighting based on the number of siblings

Figure 48: Weighting based on the number of terms contained in a node

After the individual weights are calculated, the weights need to be combined into a

single node weighting score. We experimented with four different schemes to

combine the scores. The most effective scheme was using the sum of all individual

scores (CTR = 6.38%). Using only the maximum score (max), multiplying the

scores (product) or using the average score (avg) led to CTRs slightly above 5%

(Figure 49).

Figure 49: Combining the node weights

Over
all

Abso
lute

Ln Log
Square
Root

Over
all

1/Abso
lute

1/Ln 1/Log
1/Square

Root

The more siblings, the more weight The more siblings, the less weight

Rntm (Terms) 153 152 158 141 171 192 176 188 218 192

CTR (Terms) 5.40% 5.17% 5.77% 5.31% 5.31% 5.01% 4.49% 6.07% 4.71% 4.81%

0

50

100

150

200

250

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Sibling metric

Over
all

Abso
lute

Ln Log
Square
Root

Over
all

1/Abso
lute

1/Ln 1/Log
1/Squar
e Root

The more the better The more the worse

Rntm (Terms) 180 170 157 177 226 154 139 162 161 159

CTR (Terms) 4.86% 4.24% 5.48% 4.49% 5.35% 4.91% 5.54% 5.12% 4.99% 4.10%

0

50

100

150

200

250

0%

2%

4%

6%

R
u

n
ti

m
e

[s
]

C
TR

Word count metric

Sum Product Max Avg

Rntm (Terms) 78 76 74 74

CTR (Terms) 6.38% 5.29% 5.30% 5.43%

50

100

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Combination scheme

114

5.3.3 Feature Weighting

After nodes are weighted, the nodes’ features inherit the weight of the nodes, and

they are additionally weighted with a randomly chosen weighting scheme. This

means, if a node has a weight of eight, then all terms (or citations) of that node

receive a weight of eight, and this weight was multiplied with one of the following

weighting schemes: plain term or citation frequency (TF-Only), TF-IDF, and a

novel metric that we call TF-IDuF63. TF-IDuF is similar to TF-IDF but based on

the inverse document frequency in the user’s document corpus, instead of the

standard document corpus. Hence, TF-IDuF, weights a term stronger the more

often it occurs in the user’s mind maps (or nodes) that are currently selected for

user modeling, but the less mind maps of the user contain this term. The rationale

is that when users use a term frequently that they did not use frequently before,

this term is of particular importance. In addition, if users are using terms for a

longer time, they probably have already received recommendations for that term.

TF-IDF is commonly found to be more effective than TF-only [238]. Our analysis

confirms this well-known finding – TF-IDF outperformed TF-only for terms with

a CTR of 5.10% vs. 4.13% (Figure 50). However, to the best of our knowledge, it

has not been empirically shown that TD-IDF is superior to TF-only when applied

to citations, i.e. CC-IDF (cf. Section 3.2.1, p. 36). In Docear’s recommender

system, CC-IDF led to lower CTRs (5.75%) than TF-only, CC respectively, when

applied to citations (6.07%).

Figure 50: CTR of different weighting schemes63

63 TF-IDuF was only calculated for terms, not yet for citations.

TF Only TF-IDF TF-IDuF

Rntm (Terms) 59 37 43

Rntm (Citat.) 8 8

CTR (Terms) 4.13% 5.10% 4.88%

CTR (Citat.) 6.07% 5.75%

0

50

100

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Weighting scheme

115

We find this result surprising and can only speculate about the reason. One

explanation might be the following: The rationale behind IDF for weighting terms

is that terms occurring in many documents of the corpus (e.g. the, and, he, she,

etc.), do not describe the content of a documents well. This rational seems

plausible to us. However, the rationale does not necessarily apply for citations.

Citations occurring in many documents of the corpus might still describe the citing

document well, maybe even better than little cited papers. For instance, this thesis

cites, among others, reference [39] and [320]. Reference [39] is about research-

paper recommender systems and received more than 300 citations according to

Google Scholar. This means, many papers in the corpus contain a citation to [39].

Reference [320] is about news recommendations and received only four citations.

[39] is certainly more relevant to describe my thesis than [320] and hence, CC-IDF

would have led to suboptimal results when weighting the two papers. Of course,

this is only one example, and there might be other examples in which CC-IDF

were to prefer over TF-only. Further research is necessary to explore this issue.

Figure 51: CTR of different weighting schemes (500+ nodes)63

Our novel metric TF-IDuF (CTR = 4.88%) was slightly less effective than TF-IDF

for terms (CTR = 5.10%) but more effective than TF-only (Figure 50). When we

repeated the analysis for those user-modeling processes that analyzed at least 500

nodes, TF-IDuF became slightly more effective than TF-IDF (Figure 51). This

shows that the use of terms within a user’s “personal corpus” may be an important

measure about a term’s relevancy, in particular when the personal corpus is large.

Further research is necessary to explore the potential of TF-IDuF. Probably, TF-

IDuF is particularly interesting when there is no access to the global corpus, and

hence TF-IDF cannot be calculated. A combination of TF-IDF and TF-IDuF might

also be interesting.

TF Only TF-IDF TF-IDuF

Rntm (Terms) 71 48 55

Rntm (Citat.) 9 10 -

CTR (Terms) 5.24% 5.45% 5.65%

CTR (Citat.) 6.00% 5.99%

0

50

100

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Weighting scheme

116

5.3.4 User-Model Size

Just because utilizing e.g. the 50 most recently moved nodes is most effective,

does not mean that necessarily all features of these nodes need to be stored as user

model. Therefore, Docear’s recommender system randomly selected to store only

the x highest weighted features as user model. For user modeling based on at least

50 nodes, CTR is highest (8.81%) when user models contain the 26 to 50 highest

weighted terms (Figure 52). User models containing less, or more, terms achieve

significant lower CTRs. For instance, user models with one to ten terms have a

CTR of 3.92% on average. User models containing more than 500 terms have a

CTR of 4.84% on average. Interestingly, CTR for citations continuously decreases

the more citations a user model contains64. Consequently, a user-model size

between 26 and 50 seems most sensible for terms, and a user-model size of ten or

less for citations.

Figure 52: CTR by user-model size (feature weight not stored)

The previous analysis was based on un-weighted lists of terms and citations, i.e.

the user model contained only a list of the features without any weight

information. If the weights were stored in the user model, and used for the

matching process, the picture changes (Figure 53). In this case, CTR has a peak for

user models containing between 251 and 500 terms (8.13%). Interestingly, this

CTR is similar to the maximum CTR for the optimal non-weighted user-model

size (8.81% for 26 to 50 terms). We find this surprising because we expected

weighted lists to be more effective than un-weighted lists. The results for weighted

64 Analysis for 500 nodes or more being analyzed. The high CTR for user models with 501 and more citations is

statistically not significant.

[1;10] [11;25] [26;50] [51;100]
[101;
250]

[251;
500]

[501;
1,000]

Rntm (Terms) 7 8 11 17 39 98 217

Rntm (Citat.) 7 7 12 13 15 20 7

CTR (Terms) 3.92% 6.27% 8.81% 6.56% 5.40% 6.09% 4.84%

CTR (Citat.) 7.63% 4.03% 4.36% 3.61% 3.06% 0.91% 5.00%

0

150

300

0%

3%

6%

9%

12%

R
u

n
ti

m
e

[s
]

C
TR

Number of terms/citations

117

citations are also surprising – CTR varies and shows no clear trend. We have no

explanation for the results and hence see a need for further research65.

Figure 53: CTR by user-model size (feature weight stored)

5.3.5 Citations vs. Terms

Based on all delivered recommendations, citation-based recommendations have an

average CTR of 6.10%, while term-based recommendations have an average CTR

of 5.07% (Figure 54). Hence, on first glance, it appears that citation-based

recommendations are more effective than term-based recommendations. On

second glance, one realizes that citation-based recommendations are only possible

if users have at least one citation in their mind maps. Consequently, novel users,

without citations in their mind maps receive only term-based recommendations.

These users tend to have lower CTRs than users with more comprehensive mind

maps. In addition, citation-based user modeling often returns less than ten

recommendation candidates, which might affect CTR as well. Therefore, we made

a “fair” comparison and compared citation- and term-based recommendations for

which at least 10 recommendation candidates were returned; the original rank of

the recommendation candidates was between one and ten; and the users had made

at least one citation in their mind map. In this comparison, term-based

recommendations outperform citation-based recommendations with a CTR of

6.53% vs. 5.25%.

65 We double-checked all data and the source code, and are quite confident that there are no flaws in the user

modeling process.

[1;10] [11;25] [26;50] [51;100]
[101;
250]

[251;
500]

[501;
1,000]

Rntm (Terms) 8 9 11 20 38 106 213

Rntm (Citat.) 6 10 11 9 9 26 25

CTR (Terms) 4.51% 6.27% 5.53% 5.92% 7.77% 8.13% 6.37%

CTR (Citat.) 6.99% 4.82% 5.44% 8.34% 6.65% 2.00% 16.67%

0

100

200

300

0%

3%

6%

9%

12%

15%

18%

R
u

n
ti

m
e

[s
]

C
TR

Number of terms/citations

118

Figure 54: Citation vs. term-based citations, overall and under “fair” conditions

5.3.6 Mind maps vs. Other Items

Our main goal was to build a recommender system that considers the unique

characteristics of mind maps. However, we were also curious to explore how user

modeling based on mind maps compares to user modeling based on other items,

research papers in particular. Therefore, we evaluated seven approaches that

utilized (a) terms of nodes in the users’ mind maps (b) terms from the titles of the

users’ PDF files (c) terms from the titles of the user’s citations (d) terms from the

titles of the PDFs and citations, (e) terms from the nodes of mind maps, and titles

of citations, f) terms from the nodes of mind maps, and titles of PDFs files g)

terms from all mentioned sources.

Figure 55: CTR based on the source from which terms were extracted

The highest CTR (7.14%) was achieved for utilizing terms from the cited paper

titles (Figure 55). Utilizing terms from the titles of all PDFs that users had linked

in their mind maps led to a CTR of 5.63% on average. Utilizing terms from the

mind maps’ nodes led to a CTR of 5.13% on average. The other approaches also

achieved CTRs around 5% and 6%. We would not conclude that titles of citations

are generally more effective than nodes in mind maps. The approaches were all

Overall Fair conditions

Rntm (Terms) 52 50

Rntm (Citat.) 8 9

CTR (Terms) 5.07% 6.53%

CTR (Citat.) 6.10% 5.25%

0

40

80

0%

2%

4%

6%

8%

R
u

n
ti

m
e

[s
]

C
TR

Nodes
Paper
Titles

(Cited)

Paper
Titles
(PDF)

Paper Ttls.
(Cited +

PDF)

Nodes &
Titles

(Cited)

Nodes &
Titles
(PDF)

All

Rntm (Terms) 66 53 42 45 72 81 73

CTR (Terms) 5.13% 7.14% 5.63% 6.17% 4.96% 5.74% 6.00%

0

50

100

0%

3%

6%

9%

R
u

n
ti

m
e

[s
]

C
TR

Source of the terms

119

rather simple. With appropriate enhancements, all approaches probably could

perform more effectively (in the next section we show that a mind-map-specific

user-modeling approach is twice as effective as the simple node approach). In

addition, cited papers are not commonly available in mind-mapping applications,

but only in Docear. However, based on the numbers we conclude that mind maps

are in the same league for user modeling, as are research papers, since the CTRs

are comparable. The numbers support our hypothesis that developers of mind-

mapping tools should integrate recommender systems in their tools, and that these

recommender systems will achieve similar performances as recommender systems

in other domains.

5.3.7 Additional Observations

During our research, we made a few observations that do not necessarily relate to

mind-map-specific user modeling, but that might be interesting for the general

recommender-system community.

Figure 56: CTR based on the recommendation’s original rank

To provide greater variety to users, Docear’s recommender system randomly

chose the ten final recommendations from the top 50 recommendation candidates.

This method increases variety but decreases CTR on average (Figure 56). Those

recommendations that were originally among the top 10 candidates, achieved a

CTR of 5.78% on average. For lower ranked recommendations, CTR continuously

decreased down to 4.56% for recommendations that were among the top 41 to 50

candidates. For citation-based recommendations, the trend was similar.

Before Docear displays the finally chosen recommendations, the recommendations

are shuffled. This allowed us to analyze the effect that the display-rank of a

recommendation has on CTR (Figure 57). Those recommendations displayed at

[1;10] [11;20] [21;30] [31;40] [41;50]

CTR (Terms) 5.78% 5.19% 4.94% 4.88% 4.56%

CTR (Citat.) 6.75% 5.06% 4.91% 4.01% 5.33%

0%

2%

4%

6%

8%

C
TR

Original rank

120

position 1 had the highest CTR on average (6.73%), while recommendations

shown in the middle of the list had the lowest CTR (4.37% on position 5). For the

last positions, CTR again increased a little bit (5.31% for position 10). This means,

just the recommendation rank made a difference in CTR of up to 50% (6.73% vs.

4.37%). The discovery that the recommendation rank affects CTR is not new, but,

to the best of our knowledge, it has not been empirically quantified in the domain

of research-paper recommender systems.

Figure 57: CTR based on the rank at which a recommendation was displayed

Figure 58: CTR based on available recommendation candidates

We also observed that when Lucene returned less than 1,000 recommendation

candidates for a particular user model, the CTR tended to be lower as if 1,000 or

more candidates were returned, in particular for term-based recommendations

(Figure 58). For 1,000 or more recommendation candidates, CTR was 5.10% on

average. In contrast, when 50 to 99 candidates were returned, CTR was 1.82% on

average. This means, the overall CTR could be increased when user models that

lead to less than 1,000 recommendation candidates are discarded, and a new user

model is created instead. We also observed that CTR was comparatively high,

1 2 3 4 5 6 7 8 9 10

CTR (Terms) 6.73% 5.19% 4.87% 4.86% 4.37% 4.74% 4.96% 4.73% 5.08% 5.31%

CTR (Citat.) 7.13% 4.31% 5.17% 4.80% 3.69% 4.18% 3.81% 5.41% 5.78% 6.27%

0%

2%

4%

6%

8%

C
TR

Presentation rank

[1;9] [10;49] [50;99] [100;499] [500;999] 1,000+

Rntm (Terms) 3 1 2 3 5 56

Rntm (Citat.) 7 8 13 12 23 9

CTR (Terms) 2.97% 1.61% 1.82% 1.60% 2.60% 5.10%

CTR (Citat.) 7.96% 4.72% 5.11% 4.74% 5.88%

0

50

100

0%

2%

4%

6%

8%

10%
R

u
n

ti
m

e
[s

]

C
TR

Number of recommendation candidates

121

when Lucene returned less than ten recommendation candidates. While this might

seem surprising on first glance, there is a plausible explanation. If less than ten

candidates are returned, then less than ten recommendations can be displayed.

However, the less recommendations are shown in general, the higher the CTR

tends to be. For citation-based recommendations, the maximum number of

recommendation candidates never was above 1,000.

5.4 Docear’s Mind-Map-Specific User-Modeling Approach

The so-far results make clear that numerous variables influence the effectiveness

of mind-map-based user modeling. We combined the optimal values of these

variables in a single algorithm as follows: The algorithm used the 75 most recently

moved nodes from the past 90 days that were visible. If less than 75 moved and

visible nodes were available, then up to 75 most recently modified nodes from the

past 90 days were used instead. The nodes were extended by their children and

siblings. Nodes were weighted based on depth and number of siblings (we used

the ln weighting and summed the individual scores). The terms of these nodes

were additionally weighted with TF-IDuF (stop-words were removed). The 35

highest weighted terms were stored in the user model as un-weighed list. This user

model was used for the matching process with the recommendation candidates.

Among the baselines, using all terms from all mind maps and from a single mind

map performed alike in terms of CTR (Figure 59) and ratings (Figure 60). Using

terms from only one node – the approach that MindMeister applied – resulted in

the lowest CTR (1.16%) and ratings (1.63). Stereotype recommendations

performed comparably reasonable with a CTR of 3.08% and a rating of 1.97 on

average. Overall, CTR of the baselines tends to be lower than in our initial study

(cf. Appendix B, p. 177). However, since our previous evaluation, we added

several new variables, and some might have decreased CTR on average. In

addition, Docear’s Web Spider was not running in the past couple of months. This

means, no new recommendation candidates were added to the corpus. Hence,

long-time users probably often received recommendations they had received

previously, which decreases average CTR (Appendix H, p. 255). The reasonable

effectiveness of stereotype recommendations might seem surprising, considering

how rarely used this approach is in the recommendation community. Nevertheless,

the result is plausible. Most of Docear’s users are researchers and therefore they

should be interested in books about academic writing, and hence click the

corresponding recommendations. Even though the ratings are not very high,

further research about stereotype recommendations might be promising.

122

Figure 59: Docear’s mind-map-specific approach vs. baselines (I)

Docear’s mind-map-specific user modeling algorithm significantly outperformed

all baselines and achieved a CTR of 7.20% on average (Figure 59). This is nearly

twice as high as the best performing baseline and six times as high as

MindMeister’s approach, the only approach that had been applied in practice thus

far. User ratings also show a significantly higher effectiveness for Docear’s

approach (3.23) than for the best performing baseline (2.53)66. Because we

experimented only with a few variables, and the experiments were of relative basic

nature, we are convinced that more research could further increase the

effectiveness.

Figure 60: Docear’s mind-map-specific approach vs. baselines (II)

66 Differences are statistically not significant due to a small number of users the ratings are based on.

Stereo
type

Single
Node

Single
Mind-
Map

All
Mind-
Maps

Docear

Rntm [s] 0.20 5.57 27.24 40.86 11.37

CTR 3.08% 1.16% 3.92% 3.87% 7.20%

0

20

40

60

0%

4%

8%

R
u

n
ti

m
e

[s
e

c]

C
TR

Stereo
type

Single Node
Single Mind-

Map
All Mind-

Maps
Docear

Ratings 1.97 1.63 2.31 2.53 3.23

0

1

2

3

R
at

in
g

123

6. Summary and Contributions

6.1 Overview

Mind maps are widely neglected by the user modeling and recommender-systems

community, and applications such as recommender systems are rarely found in

mind-mapping tools. Given the popularity of recommender systems in other

domains, we assumed that recommender systems could also benefit the more than

two million mind-mapping users. Hence, we defined the following research

objective:

Develop an effective user-modeling approach based on mind maps

By pursuing this objective, we expected to obtain a user-modeling approach that is

more effective than standard user-modeling approaches applied to mind maps.

Such an approach would enable developers of mind-mapping applications to

integrate, for instance, recommender systems in their applications for providing

additional value to their users.

The research objective let to three research questions and the following answers:

i. Which existing user-modeling approaches could serve as a basis for

mind-map-based user modeling?

Based on a literature survey and research that we conducted, we concluded that

content-based filtering (CBF) is the most promising recommendation class for the

application of mind maps. However, from the CBF approaches that we reviewed,

none seemed particularly promising for the application of mind maps. This was

primarily due to the neglect of user modeling in most recommendation

approaches, inadequate evaluations, and sparse information in publications.

Hence, standard user-modeling approaches, such as utilizing all terms from a mind

map, seemed to be the most plausible starting position for mind-map-based user

modeling. As our initial study showed, such approaches achieved a decent

effectiveness in terms of click-through rate.

ii. Could the effectiveness of the existing approaches be increased by

adjusting them to the special characteristics of mind maps?

We identified a number of mind-map-specific variables that potentially would

affect user modeling. We evaluated these variables and combined them into a

124

single mind-map-specific user-modeling approach that was around twice as

effective as the best baseline. Hence, the answer to the question is that the

effectiveness of user modeling can increase significantly when the user-modeling

process is adjusted to the special characteristics of mind maps.

iii. How should the effectiveness of user-modeling approaches be

measured?

A key prerequisite for our research was the use of adequate evaluation methods

to measure the effectiveness of user-modeling and recommendation

approaches. Our research shows that both user studies and online evaluations

generally are adequate methods, at least in our scenario. In online evaluations,

click-through rate seem most adequate since CTR correlates best with user

rating, and CTR is directly relevant for operators that run pay-per-click

schemes. Offline evaluations provided less meaningful results, and at least in

the field of research-paper recommender systems, they suffer from some

inherent flaws, which is why we concluded not to use them.

The answers to the three research questions were achieved by pursuing five tasks

that are summarized in the subsequent sections, along with the contributions that

were made while pursuing the tasks.

6.2 Task 1: Survey Related Work

To find promising recommendation approaches (question i) and adequate

evaluation methods (question iii), we reviewed 217 research articles in the field of

research-paper recommender systems and articles about recommender-systems

evaluation. We used all 217 articles for quantitative analyses regarding citation

counts and other bibliographic metrics. For an in-depth analysis, 90 articles were

excluded because we considered them of little significance (due to serious English

errors, or non-original ideas and inadequate evaluations), or because they were

published too late to be included in the in-depth review.

The survey leads to three contributions.

6.2.1 Contribution 1: Overview of Research-Paper Recommender Systems

The first contribution is an overview of the existing approaches in the field of

research-paper recommender systems (cf. Chapter 3, p. 29 and Appendix F, p.

125

217). This overview aids researchers and practitioners in gaining an understanding

of the research field and the recommendation approaches being applied.

We found that content-based filtering (CBF) is the predominant recommendation

class in the field of research-paper recommender systems. Of 70 reviewed

approaches, 34 used CBF (49%). From these approaches, the majority utilized

plain terms contained in the documents. Some used n-grams, or topics based on

LDA. A few approaches also utilized non-textual features such as citations or

authors. The most popular model to store item representations was the Vector

Space Model.

Only nine approaches (13%) applied collaborative filtering, and none of them used

explicit ratings. Implicit ratings were inferred from the number of pages the users

read, users’ interaction with the papers (downloads, edits, views, etc.), and

citations. The main problem of collaborative filtering for research papers seems to

be sparsity. André Vellino compared the available (implicit) ratings on Mendeley

(research papers) and Netflix (movies), and found that the number of ratings on

Netflix differs from the number on Mendeley by a magnitude of three.

Six of the reviewed approaches (9%) were co-occurrence recommendations. Three

of them analyzed how often papers were co-viewed during a browsing session. In

that approach, whenever users browsed a paper, the system recommended those

papers that had frequently been co-viewed with the browsed paper in the past.

Another approach used co-citations to calculate document relatedness. The higher

the proximity of two references within a paper, the more related they are assumed

to be. Pohl et al. compared the effectiveness of co-citations and co-downloads and

found that co-downloads are only more effective than co-citations in the first two

years after a paper’s publication.

Eleven recommendation approaches built graphs to generate recommendations

(16%). Such graphs typically included papers that were connected via citations.

Some graphs included authors, users/customers, venues, genes and proteins, and

publishing years of the papers. Lao et al. even included terms from the papers’

titles in the graph. Depending on the entities in the graph, connections included

citations, purchases, “published in” relationships, authorship, relatedness between

genes, and occurrences of genes in papers. Some authors connected the entities

based on non-inherent relations. For instance, Huang et al. and Woodruff et al.

calculated text similarities between items and used the text similarity to connect

papers in the graph. Other connections were based on attribute similarity,

bibliographic coupling, co-citation strength, and demographic similarity.

126

6.2.2 Contribution 2: Identification of Several Shortcomings in Research-

Paper Recommender-Systems Research

The second contribution of the survey is an analysis of the research-paper

recommender field in general and its major shortcomings.

One shortcoming relates to the evaluations. Of the reviewed approaches, 21%

were not evaluated at all. Of the remaining approaches, 19% were not evaluated

against a baseline, and most of the other approaches were compared only to simple

baselines. The evaluations were mostly conducted with offline evaluations based

on inferred ground-truths, which are subject to various criticisms. In addition, the

offline evaluations were often based on datasets pruned in ways that we would

consider inadequate67. The majority of the user studies (58%) had fewer than 16

participants, which also raises doubts of the significance of these evaluations. Only

7% of the approaches were evaluated with online evaluations in real recommender

systems with real users.

Another shortcoming was related to too little information provided by the authors.

The sparsity of information makes a re-implementation of the approaches difficult,

if not impossible. For instance, most authors did not report on the text fields they

utilized, and which weighting schemes were used.

In addition, much of the research was done in “the ivory tower”: research results

often are neither transferred into practice, nor considered by peers. Despite the

large number of research articles, there are only a handful of active recommender

systems, and most of them apply simple recommendation approaches that are not

based on any recent research results. As such, the extensive research that has been

conducted in the past 16 years has apparently had only a minor impact on the

practice of research-paper recommender systems in the real world. Additionally,

several of the active recommender systems do not engage in the research

community and seem reluctant to publish information on their systems.

Many researchers also seem to be unaware of developments in related research

domains such as scientometrics or the reviewer-assignment problem, and the

67 For instance, Pennock et al. removed all documents with fewer than 15 implicit ratings from the corpus.

Therefore, 1,575 papers remained from the original 270,000 (0.58%). Results based on such datasets do not allow

drawing reliable conclusions how the approaches might perform in real-world recommender systems

127

major co-author groups in the domain of research-paper recommender systems

seem not to cooperate with each other.

The majority of authors took no note of the fact that user satisfaction depends not

only on accuracy, but also on factors such as privacy, data security, diversity,

serendipity, labeling, and presentation. The operator perspective was also widely

neglected. Information about runtime was provided for only 11% of the

approaches. Complexity was covered by very few authors, and the actual costs of

running a recommender system were only reported in a single article. We also

noted that too many authors neglected the user-modeling process: 79% of the

approaches let their users provide keywords, text snippets, or a single input paper

to represent their information needs. Only a few approaches automatically inferred

information from the users’ authored, tagged, or otherwise-connected papers.

The analysis made clear that one cannot currently identify promising research-

paper recommendation approaches, neither in general nor for the purpose mind-

map-based user modeling. This means that we could not completely answer

research question i. Hence, we decided to use standard content-based filtering

approaches as the basis for our research instead of any of the reviewed approaches.

6.2.3 Contribution 3: Showing the Need for More Research on

Recommender-Systems Evaluation

The survey revealed that there is uncertainty in the community about how to

evaluate recommender systems. The most common applied evaluation method is

offline evaluations, but this method is subject to criticism. However, user studies

and online evaluations are also not without criticism. Hence, the survey showed

the need for a more thorough analysis of the adequacy of evaluation methods and

metrics for both Docear's particular scenario and in general.

6.3 Task 2: Develop a Recommender System for Docear

Since existing recommendation datasets and architectures are not suitable for

researching mind-map-based user modeling, we decided to develop a research-

paper recommender system for Docear. This recommender system was the

foundation of our research and answering the second and third research questions.

In addition, the development of the recommender system led to two further

contributions, namely the architecture and the datasets that we published.

128

6.3.1 Contribution 4: Docear's Recommender-System Architecture

Docear’s recommender-system architecture is unique in the domain of research-

paper recommendations and mind-map-based user modeling. Most of the

previously published architectures are rather brief, and architectures such as bX

and BibTip focus on co-occurrence based recommendations. These approaches are

primarily relevant for recommender systems with many users. Docear’s

architecture is comprehensive, explaining the individual components, the required

hardware, and the integrated software libraries. Hence, the architecture should

provide a good introduction for new researchers and developers on how to build a

research-paper recommender system (based on mind maps). Due to the focus on

content-based filtering, the architecture is also relevant for building recommender

systems for applications with rather few users.

6.3.2 Contribution 5: Docear's Datasets

The datasets are also unique. While the research-paper dataset is rather small, and

the metadata is probably of rather low quality, the dataset contains 1.8 million

URLs to freely accessible full-text articles from various research fields and

languages, and the dataset contains information where citations in a paper occur.

The mind-map dataset is smaller than the dataset, e.g. of Mendeley, but it was not

pruned, and hence allows for analyses for users with less than 20 papers in their

collections. The dataset also contains information on how often a paper appears in

a mind map. This information could be used to infer implicit ratings that are not

only binary (linked/not linked) but also to weight the implicit rating. The datasets

about Docear’s users and recommendations contain extensive information,

including user demographics, the number of received and clicked

recommendations, and specifics about the algorithms with which

recommendations were created. This data allows for analyses that go beyond those

that we already performed, and should provide a rich source of information for

researchers who are interested in recommender systems or for the use of reference

managers.

6.4 Task 3: Identify Adequate Evaluation Methods and Metrics

Most recommender systems are evaluated with offline evaluations, although

offline evaluations are subject to strong criticism. We did not want to take the risk

of measuring the effectiveness of our research with inappropriate methods.

Therefore, we analyzed and discussed the adequacy of offline evaluations and its

two alternatives, namely user studies and online evaluations. The discussion was

129

based on the comparison of results from three different evaluation methods. As

part of an online evaluation, Docear displayed 45,208 recommendation sets with

430,893 recommendations to 4,700 users from March 2013 to August 2014. In a

user study, 379 users rated 903 recommendation sets with 8,010 recommendations,

and in an offline evaluation, 118,291 recommendation sets were generated and

analyzed for their accuracy. To the best of our knowledge, we are first in the field

of recommender systems to compare the three evaluation methods and various

metrics, and to provide a detailed discussion on the appropriateness of the

evaluations methods, metrics, and ground-truths. The research led to two

contributions.

6.4.1 Contribution 6: Showing the Inadequacy of Offline Evaluations

One contribution was the confirmation that offline evaluations based on inferred

ground-truths only sometimes predict recommender effectiveness in online

evaluations and user studies. For instance, based on our offline evaluation, the

stereotype approach would have never been considered a worthwhile option for

further evaluation. In practice however, stereotype recommendations received

reasonable ratings, click-through rates and link-through rates that were not much

lower than for the other approaches. Similarly, the offline evaluation indicated that

term-based CBF was – depending on the metric – around five to fifteen times

more effective than citation-based CBF. Based on these numbers, citation-based

CBF would have never been considered a promising approach. In the online

evaluation and user study, however, citation-based CBF was only slightly less

effective than term-based CBF, and certainly an interesting approach.

To assess the adequacy of offline evaluations, we concluded that three questions

needed to be answered:

1. Can we identify scenarios where offline evaluations will have

predictive power?

If the community could determine which factors affect the predictive power of

offline evaluations, offline evaluations could be applied only in scenarios where

the factors are not present. However, we assume that it will not be possible to

determine such scenarios. Hence, we conclude that offline evaluations, based on

inferred ground truths, should be abandoned unless their results are shown to have

inherent value.

130

2. Do results of offline evaluations have some inherent value?

Results of offline evaluations might have inherent value that could make offline

evaluations a worthwhile evaluation method, even if results do not correlate with

results from online evaluations and user studies. Such inherent value might exist in

a student-teacher scenario, when those compiling a ground-truth know what is

relevant better than the users receiving recommendations. A student-teacher

scenario might occur, in particular, for offline evaluations based on expert-ground-

truths, e.g. datasets compiled by experts in their field. However, expert ground-

truths suffer from the problem of overspecialization and we doubt that there will

ever be an appropriate expert-dataset to comprehensively evaluate (research-

paper) recommender systems for different research fields and groups of users such

as undergraduates, postgraduates, doctoral students, professors, and foreign

students. Inferred ground-truths, i.e. datasets, inferred e.g. from citations or users’

personal document collections, do not suffer from overspecialization. Hence,

theoretically, inferred ground-truths could have inherent value but they suffer from

a fundamental problem.

3. Are offline evaluations generally flawed?

We argue that inferred ground-truths are generally flawed, at least in the domain

of research-paper recommender systems. Since researchers do not have perfect

knowledge of their domains, the datasets are incomplete. If datasets are based on

citations, the datasets additionally suffer from citation bias that makes the datasets

biased. Consequently, evaluations based on inferred ground-truths only assess how

accurately a recommendation approach recommends the imperfect ground-truths.

Such an assessment is not useful. We conclude that offline evaluations based on

inferred ground-truths should probably not be used for evaluating (research-paper)

recommender systems.

6.4.2 Contribution 7: Showing the Adequacy of Online Evaluations and User

Studies

Another contribution was to show that ratings in user studies strongly correlated

with online-evaluation metrics, particularly with CTR. However, in some

situations ratings and CTR led to different results. For instance, CTR and ratings

led to different results when comparing the effect of labels and the trigger to

generate recommendations. When analyzing things such as user-model size, the

number of nodes to utilize, and stop-word removal, CTR and ratings strongly

correlated. Apparently, a discrepancy between CTR and ratings is more likely for

131

measuring the effect of factors that do not directly relate to the recommendation

algorithm but to human factors. Therefore, we conclude that both online

evaluations and user studies are equally well suited for evaluating recommender

systems. Ideally, both methods should be used, but also applying only one of the

two methods should be considered good practice.

Regarding metrics in online evaluations, there are some noteworthy differences.

Annotation-through rate (ATR) and citation-through rate (CiTR) have the

advantage of being based on thorough assessments of the recommendations.

However, they require more users and delivered recommendations to receive

statistically significant results compared to click-through rate (CTR) or link-

through rate (LTR). Consequently, applying ATR and CiTR is only feasible in

large-scale recommender systems. In addition, ATR and CiTR predicted user

satisfaction for stereotype recommendations incorrectly. As such, at least for the

scenario of Docear, CTR seems most appropriate. For other scenarios, a thorough

assessment of the appropriateness of metrics is needed for each online evaluation.

Ideally, multiple metrics would be used.

6.5 Task 4: Identify Mind-Map-Specific User-Modeling

Variables

We experimented in Docear's recommender system with several variables that

were randomly assembled to create user models. For instance, the recommender

system randomly chose whether to store, for example, the 10, 50, 100, or 1000

highest weighted terms or citations as a user model. Experimenting with the

variables led to the following contribution.

6.5.1 Contribution 8: Identification and Evaluation of Mind-Map-Specific

Variables

We showed that several variables affect the effectiveness of user modeling based

on mind maps. Based on our research, the following variables have an effect: a)

the number of analyzed nodes. It seems that the terms of the most recently

modified 50 to 99 nodes are sufficient to describe the users’ information needs.

Using more, or fewer, nodes decreased the average CTR. b) Time restrictions were

important. It seems that utilizing nodes that were created more than four months

ago decreased CTR. c) CTR increased when only nodes were used that were

recently moved by a user, instead of using nodes that were created or edited. d)

Using only nodes that were visible in the mind map also increased effectiveness

132

compared to using both visible and invisible nodes. e) Extending the originally

selected nodes by adding siblings and children increased the average CTR slightly,

but statistically significantly. This indicates that the full meaning of nodes

becomes only clear when their neighbor nodes are considered. f) We also found

that weighting nodes and their terms based on node depth and the number of

siblings, increased CTR. The deeper a node, and the more siblings it has, the more

relevant its terms to describe the users’ information needs. The separate weights

should be combined by their sum. g) The final user model should contain the

highest weighted 26 to 50 terms if the user model is stored as un-weighted list. If

weights are stored, it seems that larger user models are sensible. However, more

research is needed to clarify this.

6.6 Task 5: Develop a Mind-Map-Specific User-Modeling

Approach

Our research goal was to develop a mind-map-specific user-modeling approach.

Therefore, we combined the identified variables in a single algorithm and

compared this algorithm against several standard user-modeling approaches. The

experiments led to three contributions.

6.6.1 Contribution 9: Evaluation of Standard User-Modeling Approaches

Applied to Mind Maps

We showed that standard user-modeling approaches could be reasonably effective

when applied to mind maps. However, the effectiveness varied depending on

which standard approach was used. When user models were based on all terms of

users’ mind maps, the click-through rate (CTR) was around 4%68. When only

terms from the most recently modified node were used, CTR was 1.16%. These

results led us to conclude that user modeling based on mind maps is not trivial,

and minor differences in the approaches lead to significant differences in

effectiveness.

68 CTR of the standard approaches was lower in the final evaluation than in our initial study (6%). See section 5.4

for details and an explanation.

133

6.6.2 Contribution 10: A Mind-Map-Specific User-Modeling Approach

When the variables were combined in their apparently favorable way, this mind-

map-specific user-modeling approach outperformed standard user-modeling

approaches applied to mind maps by a factor of nearly two (CTR of 7.20% vs.

3.92%). Compared to the approach that was applied in practice by MindMeister

(using only the last modified node), our approach increased effectiveness by a

factor of six (CTR of 7.20% vs. 1.16%). The user study confirmed the results of

the online evaluation: the mind-map-specific user-modeling approach was

significantly more effective than the baselines (rating of 3.23 vs. 2.53).

6.6.3 Contribution 11: Demonstrating the Potential of Mind Maps as Source

for User Modeling

We compared the effectiveness of user modeling based on mind maps with the

effectiveness of user modeling based on the user's PDFs and citations. We found

that user modeling based on the citations' titles was most effective (CTR = 7.14%),

while user modeling based on the mind maps had an average CTR of 5.13%. On

one hand, this shows that for the particular scenario of Docear, it might be more

sensible to utilize users' citations instead of mind maps, or maybe to combine

them. However, most mind-mapping applications do not have access to users'

PDFs or citations. Therefore, even though standard user modeling based on mind

maps might be slightly less effective than standard user modeling based on other

items, the results show that the effectiveness is in the same league. Hence, we see

no reason why developers of mind-mapping applications should not integrate

recommender systems in their applications – particularly because a mind-map-

specific user modeling approach can further increase effectiveness. Consequently,

we would expect that recommender systems in mind-mapping applications would

lead to benefits similar to the benefits of recommender systems in other domains.

6.7 Further Contributions

As part of our research, we made the following further contributions.

We introduced TF-IDuF, a weighting scheme that is equally effective as TF-IDF,

and that might be combined with TF-IDF (cf. Section 5.3.3, p. 114). In addition,

we were first who empirically compared CC-IDF, i.e. TF-IDF applied to citations,

with plain citation frequency (cf. Section 5.3.3, p. 114). The results indicate that

CC-IDF might be less effective than a simple citation-count measure. However,

more research is needed to clarify this. In the domain of research-paper

134

recommender systems, the finding that a user-model size should be between 26

and 50 terms is also novel (cf. Section 5.3.4, p. 116). The finding that researchers’

interests shift after about four months might also prove useful for other research-

paper recommender systems (cf. Section 5.3.1.2, p. 106). To the best of our

knowledge, it has also not been shown that the recommendation rank can affect

CTR by up to 50% in the field of research-paper recommendations (cf. Section

5.3.5, p. 117).

As part of recommender-system development, we also developed SciPlore Xtract

(cf. Appendix G.1, p. 245), and its successor Docear’s PDF Inspector (cf.

Appendix G.2, p. 249). Both tools extract titles from academic PDF files by

applying a simple heuristic: the largest text on the first page of a PDF is assumed

the title. This simple heuristic achieves accuracy of around 70% and outperforms

machine-learning-based tools like ParsCit in both run-time and accuracy. Docear’s

PDF Inspector was released under the free open source license GPL 2+ at

http://www.docear.org, written in JAVA, and runs on any major operating system.

The dataset for its evaluation is also publicly available at http://labs.docear.org.

We conducted an exploratory study of 19,379 mind maps created by 11,179 users

from the mind mapping applications Docear and MindMeister (cf. Appendix C, p.

191). The objective was to find out how mind maps are structured, what

information they contain, and to identify potential information-retrieval

applications that could utilize mind maps. The results include the discovery that a

typical mind map is rather small, with 31 nodes on average (median), whereas

each node usually contains between one to three words. The number of hyperlinks

tends to be rather low but depends upon the mind mapping application. Most mind

maps are edited only over one (60.76%) or two days (18.41%). A typical user

creates around 2.7 mind maps (mean) a year. However, there are exceptions,

which create a long tail. One user created 243 mind maps, the largest mind map

contained 52,182 nodes, one node contained 7,497 words, and one mind map was

edited on 142 days.

The analysis of the mind maps led to the preliminary study that created eight ideas

about how mind maps could be utilized by information retrieval applications (cf.

Appendix B, p. 177). We evaluated the feasibility of the eight ideas, based on

estimates of the number of available mind maps, an analysis of the content of mind

maps, and an evaluation of the users’ acceptance of the ideas. We concluded that

user modelling is the most promising application with respect to mind maps,

which eventually led to the development of our mind-map-specific user-modeling

approach.

http://www.docear.org/
http://labs.docear.org/

135

Finally, to enhance Docear’s recommender system, and to show that non-accuracy

factors have a significant impact on recommender effectiveness (cf. 3.3.2, p. 42),

we evaluated the impact of labeling, demographics, and persistence on the

effectiveness of recommender systems.

With respect to labels, we showed that organic recommendations are preferable to

commercial recommendations, even when they point to the same freely

downloadable research papers (cf. Appendix J, p. 267). Simply the fact that users

perceive recommendations as commercial decreased their willingness to click

them. We further showed that the exact labeling of recommendations matters. For

instance, recommendations labeled as “advertisements” performed worse than

those labeled as “sponsored” did. Similarly, recommendations labeled as “Free

Research Papers” performed better than those labeled as “Research Papers” did.

We also analyzed how click-through rates vary between research-paper

recommendations previously shown to the same users and recommendations

shown for the very first time. Our research indicates that recommendations should

only be given once. Click-through rates for “fresh,” i.e. previously unknown

recommendations, are twice as high as for known recommendations. However,

results also show that some users are “oblivious.” Users frequently clicked on

recommendations they already knew. In one case, the same recommendation was

shown six times to the same user and the user clicked it each time. Overall, around

50% of clicks on re-shown recommendations were such “oblivious-clicks.”

We further showed the importance of considering demographics and other user

characteristics when evaluating (research-paper) recommender systems (cf.

Appendix H, p. 255). We analyzed 37,572 recommendations delivered to 1,028

users and found that older users clicked more often on recommendations than

younger ones. For instance, 20-24 years old users achieved click-through rates

(CTR) of 2.73% on average while CTR for users between 50 and 54 years was

9.26%. Gender only had a marginal impact (CTR males 6.88%; females 6.67%)

but other user characteristics such as whether a user was registered (CTR: 6.95%)

or not (4.97%) had a strong impact. Due to the results, we argue that research

articles on recommender systems should report detailed data on their users to

make results better comparable (to learn about the demographics of Docear’s

users, please see Appendix H, p. 255).

137

7. Outlook

Our literature review revealed several shortcomings in current research-paper

recommender-systems research. To eliminate these shortcomings, we consider it

crucial that the community discusses and develops frameworks and best-practice

guidelines for research-paper recommender-systems evaluation. This should

include an analysis and discussion of how suitable offline evaluations are, to what

extent datasets should be pruned, the minimum number of participants in user

studies, and which factors influence the outcome of evaluations (e.g. user

demographics). Ideally, a set of reference approaches that could be used as

baselines would be implemented. In addition, more details on implementation are

needed, based on a discussion of the information needed in research articles. It is

also crucial to discover why apparently minor differences in algorithms, datasets,

evaluations, etc. lead to major variations in evaluation results. Until the reasons for

these variations are found, scholars cannot rely on existing research results

because it is unclear whether the results can be generalized to any new

recommendation scenario.

A step towards using the full potential behind research-paper recommender

systems could be to establish a platform for researchers to publish and

communicate, such as appropriate conferences or workshops focusing solely on

research-paper recommender systems. An open-source recommender framework

containing the most promising approaches could help bring the research results

into practice. Such a framework would also help new researchers in the field

access a number of baselines with which they could compare their own

approaches. A framework could either be built from scratch or based on existing

frameworks such as MyMediaLite69, LensKit70, Mahout71, Duine72, RecLab Core73,

easyrec74, or Recommender10175. The community would probably also benefit

from considering research results from related disciplines. In particular, research

about user modeling and scientometrics seems highly promising to us, as well as

research from the general recommender-systems community about non-accuracy

aspects.

69 http://www.mymedialite.net/
70 http://lenskit.grouplens.org/
71 http://mahout.apache.org/
72 http://www.duineframework.org/
73 http://code.richrelevance.com/reclab-core/
74 http://easyrec.org/
75 http://ls13-www.cs.uni-dortmund.de/homepage/recommender101/index.shtml

138

Our comparison of the different evaluation methods showed offline evaluations to

be probably inadequate for evaluating research-paper recommender systems.

However, the offline dataset by Docear might not be considered an optimal dataset

due to the large number of novice users. A repetition of our analysis on other

datasets, with more advanced users might lead to more favorable results for offline

evaluations (nevertheless, our criticism about the imperfection of inferred ground-

truths remains). Future research should also analyze the extent to which the

limitations of offline datasets for research-paper recommender systems apply to

other domains. We also conclude that the differences of CTR, LTR, ATR, and

CiTR need more research to find out when which metrics are most appropriate.

Finally, offline evaluations based on explicit ground-truths have been neglected in

our analysis since they are not used in the domain of research-paper recommender

systems, and we are not familiar with their use. We know that such ground-truths

are widely used in other recommender domains (e.g. movies), and propose that a

thorough analysis and discussion of explicit ground-truths is highly needed.

Our research on mind-map-specific user modeling showed that several variables

affect the user-modeling effectiveness. So far, the values for the variables are only

rough suggestions. For instance, our finding that the optimal user-model size is

between 26 and 50 terms is still rather vague. Hence, more research is required to

specify the optimal values of the variables. There are also more potential variables

that we have not yet analyzed but that might be promising. For instance, the

evolution of mind maps over time might enhance the effectiveness of mind-map-

specific user modeling. We could imagine that weighting nodes by the intensity of

use (e.g. how often a node was edited, opened, or moved) might provide valuable

information. We also advocate research on the differences of content and the

structure of mind maps created for different purposes, such as brainstorming or

literature management. This might provide valuable insights on the characteristics

of mind maps. More research is also needed to explore dependencies among the

variables. This requires more advanced statistical analysis of the variables. This,

however, requires research in large-scale recommender systems with significantly

more users than Docear has. It should also be noted that our research was based

only on Docear, which is a unique mind-mapping software tool, because it focuses

on researchers. Additional research with other mind-mapping tools seems

desirable. This is particularly true because most mind-mapping tools focus on

certain groups of users, and it would be interesting to explore whether there is one

mind-map-specific user-modeling approach that suits all mind-mapping

applications, or whether each application needs to apply a different approach.

Finally, most of our results regarding citations were statistically not significant. It

would also be interesting to research in more detail how citations, or hyperlinks,

139

could be exploited to enhance user modeling, or realize some of our other ideas

how mind maps could benefit information-retrieval applications.

Overall, the results of our research reinforced our astonishment that mind maps are

being disregarded by the user-modeling and recommender-system community.

Our research showed the potential of mind-map-specific user modeling, and we

hope that the results initiate a discussion that encourages other researchers to do

research in this field. Our results should also help practitioners to implement a

decently effective user-modeling approach. We hope this encourages developers

of mind-mapping tools to integrate recommender systems in their software, which

would create additional value for the millions of mind-mapping users.

141

References

[1] Agarwal, N., Haque, E., Liu, H. and Parsons, L. 2006. A subspace

clustering framework for research group collaboration. International

Journal of Information Technology and Web Engineering. 1, 1 (2006), 35–

58.

[2] Agarwal, N., Haque, E., Liu, H. and Parsons, L. 2005. Research Paper

Recommender Systems: A Subspace Clustering Approach. Proceedings of

the 6th international conference on Advances in Web-Age Information

Management (WAIM’05) (2005), 475–491.

[3] Ahlgren, P. and Colliander, C. 2009. Document–Document Similarity

Approaches and Science Mapping: Experimental Comparison of Five

Approaches. Journal of Informetrics. 3, 1 (2009), 49–63.

[4] Airoldi, E.M., Blei, D.M., Fienberg, S.E., Xing, E.P. and Jaakkola, T.

2006. Mixed membership stochastic block models for relational data with

application to protein-protein interactions. Proceedings of the

International Biometrics Society Annual Meeting (2006), 1–34.

[5] AlMurtadha, Y., Sulaiman, M.N., Mustapha, N. and Udzir, N.I. 2011.

Improved web page recommender system based on web usage mining.

Proceedings of the 3rd International Conference on Computing and

Informatics (ICOCI) (2011), 8–9.

[6] Alotaibi, S. and Vassileva, J. 2013. Trust-Based Recommendations for

Scientific Papers Based on the Researcher’s Current Interest. Artificial

Intelligence in Education (2013), 717–720.

[7] Amatriain, X., Pujol, J.M., Tintarev, N. and Oliver, N. 2009. Rate it again:

increasing recommendation accuracy by user re-rating. Proceedings of the

third ACM conference on Recommender systems (2009), 173–180.

[8] Anderson, J.R. and Pirolli, P.L. 1984. Spread of activation. Journal of

Experimental Psychology: Learning, Memory, and Cognition. 10, 4

(1984), 791.

[9] Arnold, A. and Cohen, W.W. 2009. Information extraction as link

prediction: Using curated citation networks to improve gene detection.

Proceedings of the 4th International Conference on Wireless Algorithms,

Systems, and Applications (2009), 541–550.

[10] Avancini, H., Candela, L. and Straccia, U. 2007. Recommenders in a

personalized, collaborative digital library environment. Journal of

Intelligent Information Systems. 28, 3 (2007), 253–283.

[11] Baez, M., Mirylenka, D. and Parra, C. 2011. Understanding and supporting

search for scholarly knowledge. Proceeding of the 7th European Computer

Science Summit (2011), 1–8.

[12] Balabanovi, M. and Shoham, Y. 1997. Fab: content-based, collaborative

recommendation. Communications of the ACM. 40, 3 (1997), 66–72.

[13] Bancu, C., Dagadita, M., Dascalu, M., Dobre, C., Trausan-Matu, S. and

Florea, A.M. 2012. ARSYS-Article Recommender System. Proceedings of

the 14th International Symposium on Symbolic and Numeric Algorithms

for Scientific Computing (2012), 349–355.

142

[14] Barla, M. 2011. Towards social-based user modeling and personalization.

Information Sciences and Technologies Bulletin of the ACM Slovakia. 3,

(2011), 52–60.

[15] Beel, J. 2010. Retrieving Data from Mind Maps to Enhance Search

Applications. Bulletin of IEEE Technical Committee on Digital Libraries.

6, 2 (2010).

[16] Beel, J. 2011. SciPlore MindMapping now provides literature

recommendations (Beta 15). (Apr. 2011).

[17] Beel, J. and Gipp, B. 2010. Academic search engine spam and Google

Scholar’s resilience against it. Journal of Electronic Publishing. 13, 3

(2010).

[18] Beel, J., Gipp, B., Langer, S. and Genzmehr, M. 2011. Docear: An

Academic Literature Suite for Searching, Organizing and Creating

Academic Literature. Proceedings of the 11th Annual International

ACM/IEEE Joint Conference on Digital Libraries (JCDL) (2011), 465–

466.

[19] Beel, J., Gipp, B. and Mueller, C. 2009. SciPlore MindMapping’ - A Tool

for Creating Mind Maps Combined with PDF and Reference Management.

D-Lib Magazine. 15, 11 (Nov. 2009).

[20] Beel, J., Gipp, B., Shaker, A. and Friedrich, N. 2010. SciPlore Xtract:

Extracting Titles from Scientific PDF Documents by Analyzing Style

Information (Font Size). Research and Advanced Technology for Digital

Libraries, Proceedings of the 14th European Conference on Digital

Libraries (ECDL’10) (Glasgow (UK), 2010), 413–416.

[21] Beel, J., Gipp, B. and Stiller, J.-O. 2009. Information Retrieval on Mind

Maps - What could it be good for? Proceedings of the 5th International

Conference on Collaborative Computing: Networking, Applications and

Worksharing (CollaborateCom’09) (Washington (USA), Nov. 2009), 1–4.

[22] Beel, J., Gipp, B. and Wilde, E. 2010. Academic Search Engine

Optimization (ASEO): Optimizing Scholarly Literature for Google Scholar

and Co. Journal of Scholarly Publishing. 41, 2 (2010), 176–190.

[23] Beel, J. and Langer, S. 2011. An Exploratory Analysis of Mind Maps.

Proceedings of the 11th ACM Symposium on Document Engineering

(DocEng’11) (2011), 81–84.

[24] Beel, J., Langer, S. and Genzmehr, M. 2013. Sponsored vs. Organic

(Research Paper) Recommendations and the Impact of Labeling.

Proceedings of the 17th International Conference on Theory and Practice

of Digital Libraries (TPDL 2013) (Valletta, Malta, Sep. 2013), 395–399.

[25] Beel, J., Langer, S., Genzmehr, M. and Gipp, B. 2014. Utilizing Mind-

Maps for Information Retrieval and User Modelling. Proceedings of the

22nd Conference on User Modelling, Adaption, and Personalization

(UMAP) (2014), 301–313.

[26] Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C. and

Nürnberger, A. 2013. Research Paper Recommender System Evaluation: A

Quantitative Literature Survey. Proceedings of the Workshop on

Reproducibility and Replication in Recommender Systems Evaluation

143

(RepSys) at the ACM Recommender System Conference (RecSys) (2013),

15–22.

[27] Beel, J., Langer, S., Genzmehr, M., Gipp, B. and Nürnberger, A. 2013. A

Comparative Analysis of Offline and Online Evaluations and Discussion

of Research Paper Recommender System Evaluation. Proceedings of the

Workshop on Reproducibility and Replication in Recommender Systems

Evaluation (RepSys) at the ACM Recommender System Conference

(RecSys) (2013), 7–14.

[28] Beel, J., Langer, S., Genzmehr, M. and Müller, C. 2013. Docears PDF

Inspector: Title Extraction from PDF files. Proceedings of the 13th

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’13) (2013),

443–444.

[29] Beel, J., Langer, S., Genzmehr, M. and Nürnberger, A. 2013. Introducing

Docear’s Research Paper Recommender System. Proceedings of the 13th

ACM/IEEE-CS Joint Conference on Digital Libraries (JCDL’13) (2013),

459–460.

[30] Beel, J., Langer, S., Genzmehr, M. and Nürnberger, A. 2013. Persistence

in Recommender Systems: Giving the Same Recommendations to the

Same Users Multiple Times. Proceedings of the 17th International

Conference on Theory and Practice of Digital Libraries (TPDL 2013)

(Valletta, Malta, Sep. 2013), 390–394.

[31] Beel, J., Langer, S., Gipp, B. and Kapitsaki, G.M. 2014. Mind-Map based

User Modelling and Research Paper Recommendations. Under Review.

Pre-print available at http://www.docear.org/publications/. (2014).

[32] Beel, J., Langer, S., Nürnberger, A. and Genzmehr, M. 2013. The Impact

of Demographics (Age and Gender) and Other User Characteristics on

Evaluating Recommender Systems. Proceedings of the 17th International

Conference on Theory and Practice of Digital Libraries (TPDL 2013)

(Valletta, Malta, Sep. 2013), 400–404.

[33] Berger, A. and Lafferty, J. 1999. Information retrieval as statistical

translation. Proceedings of the 22nd annual international ACM SIGIR

conference on Research and development in information retrieval (1999),

222–229.

[34] Bethard, S. and Jurafsky, D. 2010. Who should I cite: learning literature

search models from citation behavior. Proceedings of the 19th ACM

international conference on Information and knowledge management

(2010), 609–618.

[35] Bhatia, S., Caragea, C., Chen, H.-H., Wu, J., Treeratpituk, P., Wu, Z.,

Khabsa, M., Mitra, P. and Giles, C.L. 2012. Specialized Research Datasets

in the CiteSeerx Digital Library. D-Lib Magazine. 18, 7/8 (2012).

[36] Bia, A., Muñoz, R. and Gómez, J. 2010. Using mind maps to model

semistructured documents. Proceedings of the 14th European Conference

on Digital Libraries (ECDL) (2010), 421–424.

[37] Bogers, T. and Bosch, A. van den 2008. Recommending scientific articles

using citeulike. Proceedings of the 2008 ACM conference on

Recommender systems (2008), 287–290.

144

[38] Böhm, W., Geyer-schulz, A., Hahsler, M. and Jahn, M. 2003. Repeat-

Buying Theory and Its Application for Recommender Services.

Proceedings of the 25th Annual Conference of the Gesellschaft für

Klassifikation e.V. (2003), 229–239.

[39] Bollacker, K.D., Lawrence, S. and Giles, C.L. 1998. CiteSeer: An

autonomous web agent for automatic retrieval and identification of

interesting publications. Proceedings of the 2nd international conference

on Autonomous agents (1998), 116–123.

[40] Bollen, J. and Rocha, L.M. 2000. An adaptive systems approach to the

implementation and evaluation of digital library recommendation systems.

Proceedings of the 4th European Conference on Digital Libraries.

Springer. 356–359.

[41] Bollen, J. and Sompel, H. Van de 2006. An architecture for the

aggregation and analysis of scholarly usage data. Proceedings of the 6th

ACM/IEEE-CS joint conference on Digital libraries (2006), 298–307.

[42] Bonhard, P., Harries, C., McCarthy, J. and Sasse, M.A. 2006. Accounting

for taste: using profile similarity to improve recommender systems.

Proceedings of the SIGCHI conference on Human Factors in computing

systems (2006), 1057–1066.

[43] Bradshaw, S. 2003. Reference directed indexing: Redeeming relevance for

subject search in citation indexes. Research and Advanced Technology for

Digital Libraries. (2003), 499–510.

[44] Breese, J.S., Heckerman, D. and Kadie, C. 1998. Empirical analysis of

predictive algorithms for collaborative filtering. Technical Report #MSR-

TR-98-12. Microsoft Research.

[45] Brin, S. and Page, L. 1998. The anatomy of a large-scale hypertextual Web

search engine. Computer networks and ISDN systems. 30, 1-7 (1998), 107–

117.

[46] Brooks, T.A. 1985. Private acts and public objects: an investigation of citer

motivations. Journal of the American Society for Information Science. 36,

4 (1985), 223–229.

[47] Brucks, C. and Schommer, C. 2008. Assembling Actor-based Mind-Maps

from Text Stream. arXiv preprint (abs/0810.4616). (2008).

[48] Brusilovsky, P. 2001. Adaptive hypermedia. User modeling and user-

adapted interaction. 11, 1 (2001), 87–110.

[49] Brusilovsky, P., Farzan, R. and Ahn, J. 2005. Comprehensive personalized

information access in an educational digital library. Digital Libraries,

2005. JCDL’05. Proceedings of the 5th ACM/IEEE-CS Joint Conference

on (2005), 9–18.

[50] Burke, R. 2002. Hybrid recommender systems: Survey and experiments.

User modeling and user-adapted interaction. 12, 4 (2002), 331–370.

[51] Burke, R. 2007. Hybrid web recommender systems. The adaptive web.

(2007), 377–408.

[52] Burke, R. and Ramezani, M. 2011. Matching recommendation

technologies and domains. Recommender Systems Handbook. Springer.

367–386.

[53] Burns, C.A. and Bush, F.R. 2013. Marketing Research. Prentice Hall.

145

[54] Buttler, D. 2004. A short survey of document structure similarity

algorithms. Proceedings of the 5th International Conference on Internet

Computing (2004).

[55] Caragea, C., Silvescu, A., Mitra, P. and Giles, C.L. 2013. Can’t See the

Forest for the Trees? A Citation Recommendation System. iConference

2013 Proceedings (2013), 849–851.

[56] Carmagnola, F., Cena, F. and Gena, C. 2011. User model interoperability:

a survey. User Modeling and User-Adapted Interaction. (2011), 1–47.

[57] Casadevall, A. and Fang, F.C. 2010. Reproducible science. Infection and

immunity. 78, 12 (2010), 4972–4975.

[58] Cazella, S. and Alvares, L. 2005. Modeling user’s opinion relevance to

recommending research papers. Proceedings of the UMAP Conference

(2005), 150–150.

[59] Cazella, S.C. and Alvares, L.O.C. 2005. Combining Data Mining

Technique and Users’ Relevance Opinion to Build an Efficient

Recommender System. Revista Tecnologia da Informação, UCB. 4, 2

(2005).

[60] Chandrasekaran, K., Gauch, S., Lakkaraju, P. and Luong, H. 2008.

Concept-based document recommendations for citeseer authors.

Proceedings of the 5th international conference on Adaptive Hypermedia

and Adaptive Web-Based Systems (2008), 83–92.

[61] Chen, C., Mao, C., Tang, Y., Chen, G. and Zheng, J. 2013. Personalized

recommendation based on implicit social network of researchers. Joint

International Conference, ICPCA/SWS (2013), 97–107.

[62] Chi, Y., Tseng, B.L. and Tatemura, J. 2006. Eigen-trend: trend analysis in

the blogosphere based on singular value decompositions. Proceedings of

the 15th ACM international conference on Information and knowledge

management (2006), 68–77.

[63] Chien, L.-R. and Buehre, D.J. 2008. A Visual Lambda-Calculator Using

Typed Mind-Maps. International Conference on Computer and Electrical

Engineering (2008), 250–255.

[64] Chiou, C.-C. 2008. The effect of concept mapping on students’ learning

achievements and interests. Innovations in Education and Teaching

International. 45, 4 (2008), 375–387.

[65] Chirawatkul, P. 2006. Structured Peer-to-Peer Search to build a

Bibliographic Paper Recommendation System. Saarland University.

[66] Choochaiwattana, W. 2010. Usage of tagging for research paper

recommendation. Proceedings of the 3rd International Conference on

Advanced Computer Theory and Engineering (ICACTE) (2010), 439–442.

[67] CiteSeerX, T. 2012. About RefSeer. http://refseer.ist.psu.edu/about.

(2012).

[68] CiteULike 2009. Data from CiteULike’s new article recommender. Blog,

http://blog.citeulike.org/?p=136.

[69] CiteULike 2011. My Top Recommendations. Website,

http://www.citeulike.org/profile/<username>/recommendations.

[70] CiteULike 2009. Science papers that interest you. Blog,

http://blog.citeulike.org/?p=11.

146

[71] Collins, L.M., Mane, K.K., Martinez, M.L., Hussell, J.A. and Luce, R.E.

2005. ScienceSifter: Facilitating activity awareness in collaborative

research groups through focused information feeds. First International

Conference on e-Science and Grid Computing (2005), 40–47.

[72] Contó, J.A.P., Godoy, W.F., Cunha, R.H., Palácios, E.C.G., LErario, A.,

Domingues, A.L., Gonçalves, J.A., Duarte, A.S. and Fabri, J.A. 2013.

Applying Mind Maps at Representing Software Requirements.

Contributions on Information Systems and Technologies. (2013), 1.

[73] Cosley, D., Lam, S.K., Albert, I., Konstan, J.A. and Riedl, J. 2003. Is

seeing believing? How recommender system interfaces affect users’

opinions. Proceedings of the SIGCHI conference on Human factors in

computing systems (2003), 585–592.

[74] Councill, I., Giles, C., Di Iorio, E., Gori, M., Maggini, M. and Pucci, A.

2006. Towards next generation CiteSeer: A flexible architecture for digital

library deployment. Research and Advanced Technology for Digital

Libraries (2006), 111–122.

[75] Councill, I.G., Giles, C.L. and Kan, M.Y. 2008. ParsCit: An open-source

CRF reference string parsing package. Proceedings of LREC (2008), 661–

667.

[76] Cremonesi, P., Garzotto, F., Negro, S., Papadopoulos, A.V. and Turrin, R.

2011. Looking for “good” recommendations: A comparative evaluation of

recommender systems. Human-Computer Interaction–INTERACT 2011.

Springer. 152–168.

[77] Cremonesi, P., Garzotto, F. and Turrin, R. 2012. Investigating the

persuasion potential of recommender systems from a quality perspective:

An empirical study. ACM Transactions on Interactive Intelligent Systems

(TiiS). 2, 2 (2012), 11.

[78] Cunningham, G.E. 2005. Mindmapping: Its Effects on Student

Achievement in High School Biology. The University of Texas at Austin.

[79] D’Antoni, A.V. and Zipp, G.P. 2006. Applications of the Mind Map

Learning Technique in Chiropractic Education: A Pilot Study and

Literature. (2006).

[80] Das, S., Mitra, P. and Giles, C.L. 2012. Similar Researcher Search’ in

Academic Environments. Proceedings of the JCDL’12 (2012), 167–170.

[81] Dattolo, A., Ferrara, F. and Tasso, C. 2009. Supporting personalized user

concept spaces and recommendations for a publication sharing system.

Proceedings of the 17th International Conference on User Modeling,

Adaptation, and Personalization (2009), 325–330.

[82] Daud, A. and Shaikh, A.H. Muhammad Akramand Rajpar 2009. Scientific

Reference Mining using Semantic Information through Topic Modeling.

Research Journal of Engineering & Technology. 28, 2 (2009), 253–262.

[83] Davies, M. 2011. Concept mapping, mind mapping and argument

mapping: what are the differences and do they matter? Higher education.

62, 3 (2011), 279–301.

[84] DiMarco, J. 2004. Computer graphics and multimedia: Applications,

problems and solutions. IGI Global.

147

[85] DMOZ, O.D.P. 2009. Open Directory - Reference: Knowledge

Management: Knowledge Creation: Mind Mapping: Software.

[86] Dong, R., Tokarchuk, L. and Ma, A. Digging Friendship: Paper

Recommendation in Social Network.

[87] Dong, R., Tokarchuk, L. and Ma, A. 2009. Digging Friendship: Paper

Recommendation in Social Network. Proceedings of Networking &

Electronic Commerce Research Conference (NAEC 2009) (2009), 21–28.

[88] Drummond, C. 2009. Replicability is not reproducibility: nor is it good

science. Proc. of the Evaluation Methods for MachineLearning Workshop

at the 26th ICML (2009).

[89] Dumais, S.T. and Nielsen, J. 1992. Automating the assignment of

submitted manuscripts to reviewers. Proceedings of the 15th annual

international ACM SIGIR conference on Research and development in

information retrieval (1992), 233–244.

[90] Ekstrand, M.D., Kannan, P., Stemper, J.A., Butler, J.T., Konstan, J.A. and

Riedl, J.T. 2010. Automatically building research reading lists.

Proceedings of the fourth ACM conference on Recommender systems

(2010), 159–166.

[91] Erosheva, E., Fienberg, S. and Lafferty, J. 2004. Mixed-membership

models of scientific publications. Proceedings of the National Academy of

Sciences of the United States of America (2004), 5220–5227.

[92] Esposito, F., Ferilli, S., Basile, T.M.A. and Mauro, N.D. 2008. Machine

Learning for Digital Document Processing: from Layout Analysis to

Metadata Extraction. Studies in Computational Intelligence (SCI). 90,

(2008), 105–138.

[93] ExLibris 2013. bX Usage-Based Services transform your discovery

experience! Web page,

http://www.exlibrisgroup.com/category/bXUsageBasedServices.

[94] Faensen, D., Faultstich, L., Schweppe, H., Hinze, A. and Steidinger, A.

2001. Hermes: a notification service for digital libraries. Proceedings of

the 1st ACM/IEEE-CS joint conference on Digital libraries (2001), 373–

380.

[95] Farooq, U., Ganoe, C.H., Carroll, J.M., Councill, I.G. and Lee Giles, C.

2008. Design and evaluation of awareness mechanisms in CiteSeer.

Information Processing & Management. 44, 2 (2008), 596–612.

[96] Faste, H. and Lin, H. 2012. The untapped promise of digital mind maps.

Proceedings of the SIGCHI Conference on Human Factors in Computing

Systems (2012), 1017–1026.

[97] Fernández, L., Sánchez, J.A. and Garc𝚤a, A. 2000. Mibiblio: personal

spaces in a digital library universe. Proceedings of the fifth ACM

conference on Digital libraries (2000), 232–233.

[98] Ferrara, F., Pudota, N. and Tasso, C. 2011. A Keyphrase-Based Paper

Recommender System. Proceedings of the IRCDL’11 (2011), 14–25.

[99] Findlater, L. and McGrenere, J. 2004. A comparison of static, adaptive,

and adaptable menus. Proceedings of the SIGCHI conference on Human

factors in computing systems (2004), 89–96.

[100] Frank G. Bennett, J. 2011. The citeproc-js Citation Processor.

148

[101] Franke, M. and Geyer-Schulz, A. 2007. Using restricted random walks for

library recommendations and knowledge space exploration. International

Journal of Pattern Recognition and Artificial Intelligence. 21, 02 (2007),

355–373.

[102] Franke, M., Geyer-Schulz, A. and Neumann, A. 2006. Building

recommendations from random walks on library opac usage data. Data

Analysis, Classification and the Forward Search. Springer. 235–246.

[103] Frey, C. 2010. Mind Mapping Software User Survey.

http://mindmappingsoftwareblog.com/wp-

content/uploads/2010/04/2010_MMS_Survey_Results.pdf. (Mar. 2010).

[104] Ge, M., Delgado-Battenfeld, C. and Jannach, D. 2010. Beyond accuracy:

evaluating recommender systems by coverage and serendipity.

Proceedings of the fourth ACM conference on Recommender systems

(2010), 257–260.

[105] Gee, V. 2012. Software for mind mapping and information organisation.

http://www.mind-mapping.org/. (Jan. 2012).

[106] Geisler, G., McArthur, D. and Giersch, S. 2001. Developing

recommendation services for a digital library with uncertain and changing

data. Proceedings of the 1st ACM/IEEE-CS joint conference on Digital

libraries (2001), 199–200.

[107] Germanakos, P., Tsianos, N., Lekkas, Z., Mourlas, C. and Samaras, G.

2009. Realizing Comprehensive User Profile as the Core Element of

Adaptive and Personalized Communication Environments and Systems.

The Computer Journal. 52, doi: 10.1093/comjnl/bxn014 (2009), 749–770.

[108] Geyer-Schulz, A. and Hahsler, M. 2003. Comparing two recommender

algorithms with the help of recommendations by peers. Proceedings of the

WEBKDD 2002 - Mining Web Data for Discovering Usage Patterns and

Profiles (2003), 137–158.

[109] Geyer-Schulz, A. and Hahsler, M. 2002. Evaluation of recommender

algorithms for an internet information broker based on simple association

rules and on the repeat-buying theory. Proceedings of the 4th WebKDD

Workshop: Web Mining for Usage Patterns & User Profiles (2002), 100–

114.

[110] Geyer-Schulz, A., Hahsler, M. and Jahn, M. 2002. A customer purchase

incidence model applied to recommender services. Proceedings of the

Third International Workshop on Mining Web Log Data Across All

Customers Touch Points (2002), 25–47.

[111] Geyer-Schulz, A., Hahsler, M. and Jahn, M. 2001. Educational and

scientific recommender systems: Designing the information channels of

the virtual university. International Journal of Engineering Education. 17,

2 (2001), 153–163.

[112] Geyer-Schulz, A., Hahsler, M. and Jahn, M. 2002. Recommendations for

virtual universities from observed user behavior. Proceedings of the 24th

Annual Conference of the Gesellschaft für Klassifikation e.V. (2002), 273–

280.

[113] Geyer-Schulz, A., Hahsler, M., Jahn, M. and Geyer, A. 2001.

Wissenschaftliche Recommendersysteme in Virtuellen Universitäten.

149

Proceedings of the Symposiom of Unternehmen Hochschule (2001), 101–

114.

[114] Geyer-Schulz, A., Hahsler, M., Neumann, A. and Thede, A. 2003. An

integration strategy for distributed recommender services in legacy library

systems. Between Data Science and Applied Data Analysis. Springer. 412–

420.

[115] Geyer-Schulz, A., Hahsler, M., Neumann, A. and Thede, A. 2003.

Behavior-based recommender systems as value-added services for

scientific libraries. Statistical Data Mining & Knowledge Discovery.

(2003), 433–454.

[116] Geyer-Schulz, A., Hahsler, M. and Thede, A. 2003. Comparing Simple

Association-Rules and Repeat-Buying Based Recommender Systems in a

B2B Environment. Proceedings of the 26th Annual Conference of the

Gesellschaft für Klassifikation e.V. (2003), 421–429.

[117] Geyer-Schulz, A., Neumann, A. and Thede, A. 2003. An architecture for

behavior-based library recommender systems. Information technology and

libraries. 22, 4 (2003), 165–174.

[118] Geyer-Schulz, A., Neumann, A. and Thede, A. 2003. Others also use: A

robust recommender system for scientific libraries. Proceedings of the 7th

European Conference on Digital Libraries (2003), 113–125.

[119] Giles, C.L., Bollacker, K.D. and Lawrence, S. 1998. CiteSeer: An

automatic citation indexing system. Proceedings of the 3rd ACM

conference on Digital libraries (1998), 89–98.

[120] Gillitzer, B. 2010. Der Empfehlungsdienst BibTip - Ein flächendeckendes

Angebot im Bibliotheksverbund Bayern. http://www.b-i-t-

online.de/heft/2010-01/nachrichtenbeitrag3.

[121] Gipp, B. and Beel, J. 2010. Citation Based Plagiarism Detection - a New

Approach to Identify Plagiarized Work Language Independently.

Proceedings of the 21st ACM Conference on Hypertext and Hypermedia

(Toronto, Ontario, Canada, 2010), 273–274.

[122] Gipp, B. and Beel, J. 2009. Citation Proximity Analysis (CPA) - A new

approach for identifying related work based on Co-Citation Analysis.

Proceedings of the 12th International Conference on Scientometrics and

Informetrics (ISSI’09) (Rio de Janeiro (Brazil), 2009), 571–575.

[123] Gipp, B., Beel, J. and Hentschel, C. 2009. Scienstein: A Research Paper

Recommender System. Proceedings of the International Conference on

Emerging Trends in Computing (ICETiC’09) (Virudhunagar (India),

2009), 309–315.

[124] Goldberg, D., Nichols, D., Oki, B.M. and Terry, D. 1992. Using

collaborative filtering to weave an information Tapestry. Communications

of the ACM. 35, 12 (1992), 61–70.

[125] Good, N., Schafer, J.B., Konstan, J.A., Borchers, A., Sarwar, B.,

Herlocker, J. and Riedl, J. 1999. Combining collaborative filtering with

personal agents for better recommendations. Proceedings of the National

Conference on Artificial Intelligence (1999), 439–446.

[126] Google 2012. Ads in Gmail and your personal data,

https://support.google.com/mail/answer/6603.

150

[127] Google 2010. Annual Report.

http://investor.google.com/pdf/2010_google_annual_report.pdf. (2010).

[128] Google Scholar Scholar Update: Making New Connections. Google

Scholar Blog, http://googlescholar.blogspot.de/2012/08/scholar-updates-

making-new-connections.html.

[129] Gori, M. and Pucci, A. 2006. Research paper recommender systems: A

random-walk based approach. Proceedings of the 2006 IEEE/WIC/ACM

International Conference on Web Intelligence (2006), 778–781.

[130] Gorrell, G., Ford, N., Madden, A., Holdridge, P. and Eaglestone, B. 2011.

Countering method bias in questionnaire-based user studies. Journal of

Documentation. 67, 3 (2011), 507–524.

[131] Gottwald, S. 2011. Recommender Systeme fuer den Einsatz in Bibliotheken

/ Survey on recommender systems. Technical Report #ZIB-Report 11-30.

Konrad-Zuse-Zentrum für Informationstechnik Berlin.

[132] Gottwald, S. and Koch, T. 2011. Recommender Systems for Libraries.

Proceedings of the ACM International Conference on Recommender

Systems (2011), 1–5.

[133] Gross, T. 2003. CYCLADES: A distributed system for virtual community

support based on open archives. Proceedings of the 11th Euromicro

Conference on Parallel, Distributed and Network-Based Processing

(2003), 484–491.

[134] Gunawardana, A. and Shani, G. 2009. A survey of accuracy evaluation

metrics of recommendation tasks. The Journal of Machine Learning

Research. 10, (2009), 2935–2962.

[135] Hammouda, K.M. and Kamel, M.S. 2002. Phrase-based document

similarity based on an index graph model. Data Mining, 2002. ICDM

2003. Proceedings. 2002 IEEE International Conference on (2002), 203–

210.

[136] Han, H., Giles, C.L., Manavoglu, E., Zha, H., Zhang, Z. and Fox, E.A.

2003. Automatic document metadata extraction using support vector

machines. Proceedings of the 3rd ACM/IEEE-CS Joint Conference on

Digital libraries (2003), 37–48.

[137] Hanson, V.L. 2001. Web access for elderly citizens. Workshop on

Universal Accessibility of Ubiquitous Computing: Proceedings of the 2001

EC/NSF workshop on Universal accessibility of ubiquitous computing:

providing for the elderly (2001), 14–18.

[138] He, J., Nie, J.-Y., Lu, Y. and Zhao, W.X. 2012. Position-Aligned

translation model for citation recommendation. Proceedings of the 19th

international conference on String Processing and Information Retrieval

(2012), 251–263.

[139] He, Q., Kifer, D., Pei, J., Mitra, P. and Giles, C.L. 2011. Citation

recommendation without author supervision. Proceedings of the fourth

ACM international conference on Web search and data mining (2011),

755–764.

[140] He, Q., Pei, J., Kifer, D., Mitra, P. and Giles, L. 2010. Context-aware

citation recommendation. Proceedings of the 19th international conference

on World wide web (2010), 421–430.

151

[141] Henning, V. and Reichelt, J. 2008. Mendeley-A Last. fm For Research?

Proceedings of the IEEE Fourth International Conference on eScience

(2008), 327–328.

[142] Herlocker, J.L., Konstan, J.A., Borchers, A. and Riedl, J. 1999. An

algorithmic framework for performing collaborative filtering. Proceedings

of the 22nd annual international ACM SIGIR conference on Research and

development in information retrieval (1999), 230–237.

[143] Herlocker, J.L., Konstan, J.A. and Riedl, J. 2000. Explaining collaborative

filtering recommendations. Proceedings of the 2000 ACM conference on

Computer supported cooperative work (2000), 241–250.

[144] Herlocker, J.L., Konstan, J.A., Terveen, L.G. and Riedl, J.T. 2004.

Evaluating collaborative filtering recommender systems. ACM

Transactions on Information Systems (TOIS). 22, 1 (2004), 5–53.

[145] Hersh, W., Turpin, A., Price, S., Chan, B., Kramer, D., Sacherek, L. and

Olson, D. 2000. Do batch and user evaluations give the same results?

Proceedings of the 23rd annual international ACM SIGIR conference on

Research and development in information retrieval (2000), 17–24.

[146] Hersh, W.R., Turpin, A., Sacherek, L., Olson, D., Price, S., Chan, B. and

Kraemer, D. 2000. Further Analysis of Whether Batch and User

Evaluations Give the Same Results with a Question-Answering Task. In

Proceedings of the Ninth Text REtrieval Conference (TREC 9) (2000).

[147] Hess, C. 2006. Trust-based recommendations for publications: A multi-

layer network approach. TCDL Bulletin. 2, 2 (2006), 190–201.

[148] Hess, C. 2008. Trust-based recommendations in multi-layer networks. IOS

Press.

[149] Hess, C., Stein, K. and Schlieder, C. 2006. Trust-enhanced visibility for

personalized document recommendations. Proceedings of the 2006 ACM

symposium on Applied computing (2006), 1865–1869.

[150] Hirsch, J.E. 2005. An index to quantify an individual’s scientific research

output. Proceedings of the National academy of Sciences of the United

States of America. 102, 46 (2005), 16569.

[151] Hirsh, H., Basu, C. and Davison, B.D. 2000. Learning to personalize.

Communications of the ACM. 43, 8 (2000), 102–106.

[152] Holland, B., Holland, L. and Davies, J. 2004. An investigation into the

concept of mind mapping and the use of mind mapping software to support

and improve student academic performance. (2004).

[153] Hong, K., Jeon, H. and Jeon, C. 2012. UserProfile-based personalized

research paper recommendation system. Proceedings of the 8th

International Conference on Computing and Networking Technology

(2012), 134–138.

[154] Hu, Y., Li, H., Cao, Y., Teng, L., Meyerzon, D. and Zheng, Q. 2006.

Automatic extraction of titles from general documents using machine

learning. Information Processing and Management. 42, 5 (2006), 1276–

1293.

[155] Huang, S., Xue, G.R., Zhang, B.Y., Chen, Z., Yu, Y. and Ma, W.Y. 2004.

Tssp: A reinforcement algorithm to find related papers. Proceedings of the

152

IEEE/WIC/ACM International Conference on Web Intelligence (WI)

(2004), 117–123.

[156] Huang, W., Kataria, S., Caragea, C., Mitra, P., Giles, C.L. and Rokach, L.

2012. Recommending citations: translating papers into references.

Proceedings of the 21st ACM international conference on Information and

knowledge management (2012), 1910–1914.

[157] Huang, Y. 2007. Combining Social Networks and Content for

Recommendation in a Literature Digital Library. National Sun Yat-Sen

University, Taiwan.

[158] Huang, Z., Chung, W., Ong, T.H. and Chen, H. 2002. A graph-based

recommender system for digital library. Proceedings of the 2nd

ACM/IEEE-CS joint conference on Digital libraries (2002), 65–73.

[159] Hwang, S.-Y., Hsiung, W.-C. and Yang, W.-S. 2003. A prototype WWW

literature recommendation system for digital libraries. Online Information

Review. 27, 3 (2003), 169–182.

[160] Bar-Ilan, J. 2007. Which h-index? - A comparison of WoS, Scopus and

Google Scholar. Scientometrics. 74, 2 (2007), 257–271.

[161] Jack, K. 2012. Mahout Becomes a Researcher: Large Scale

Recommendations at Mendeley. Presentation at Big Data Week

Conferences.

[162] Jack, K. 2012. Mendeley Suggest: Engineering a Personalised Article

Recommender System. Presentation at RecSysChallenge workshop 2012.

[163] Jack, K. 2012. Mendeley: Recommendation Systems for Academic

Literature. Presentation at Technical University of Graz (TUG).

[164] Jack, K., Hristakeva, M., Zuniga, R.G. de and Granitzer, M. 2012.

Mendeley’s Open Data for Science and Learning: A Reply to the DataTEL

Challenge. International Journal of Technology Enhanced Learning. 4, 1/2

(2012), 31–46.

[165] Jacso, P. 2008. Testing the calculation of a realistic h-index in Google

Scholar, Scopus, and Web of Science for FW Lancaster. Library Trends.

56, 4 (2008), 784–815.

[166] Jamieson, P. 2012. Using Modern Graph Analysis Techniques on Mind

Maps to Help Quantify Learning. Proceedings of the 2012 IEEE Frontiers

in Education Conference (FIE) (Washington, DC, USA, 2012), 1–6.

[167] Jannach, D., Lerche, L., Gedikli, F. and Bonnin, G. 2013. What

Recommenders Recommend–An Analysis of Accuracy, Popularity, and

Sales Diversity Effects. User Modeling, Adaptation, and Personalization.

Springer. 25–37.

[168] Jannach, D., Zanker, M., Ge, M. and Gröning, M. 2012. Recommender

Systems in Computer Science and Information Systems – A Landscape of

Research. Proceedings of the 13th International Conference, EC-Web

(2012), 76–87.

[169] Al-Jarf, R. 2009. Enhancing Freshman Student’s Writing Skills with a

Mind-Mapping Software. Proceedings of eLearning and Software for

Education (eLSE) (2009), 375–382.

[170] Abu-Jbara, A. and Radev, D. 2011. Coherent citation-based summarization

of scientific papers. Proceedings of the 49th Annual Meeting of the

153

Association for Computational Linguistics: Human Language

Technologies (2011), 500–509.

[171] Jeh, G. and Widom, J. 2002. SimRank: a measure of structural-context

similarity. Proceedings of the eighth ACM SIGKDD international

conference on Knowledge discovery and data mining (2002), 538–543.

[172] Jiang, Y., Jia, A., Feng, Y. and Zhao, D. 2012. Recommending academic

papers via users’ reading purposes. Proceedings of the sixth ACM

conference on Recommender systems (2012), 241–244.

[173] Jomsri, P., Sanguansintukul, S. and Choochaiwattana, W. 2010. A

framework for tag-based research paper recommender system: an IR

approach. Proceedings of the 24th International Conference on Advanced

Information Networking and Applications (WAINA) (2010), 103–108.

[174] Kang, S. and Cho, Y. 2006. A novel personalized paper search system.

Proceedings of the International Conference on Intelligent Computing

(2006), 1257–1262.

[175] Kapoor, N., Chen, J., Butler, J.T., Fouty, G.C., Stemper, J.A., Riedl, J. and

Konstan, J.A. 2007. Techlens: a researcher’s desktop. Proceedings of the

2007 ACM conference on Recommender systems (2007), 183–184.

[176] Karatzoglou, A., Baltrunas, L. and Shi, Y. 2013. Learning to Rank for

Recommender Systems. Proceedings of the 7th ACM Conference on

Recommender Systems (Hong Kong, China, 2013), 493–494.

[177] Karypis, G. 2001. Evaluation of item-based top-n recommendation

algorithms. Proceedings of the tenth international conference on

Information and knowledge management (2001), 247–254.

[178] Kataria, S., Mitra, P. and Bhatia, S. 2010. Utilizing context in generative

bayesian models for linked corpus. Proceedings of the 24th AAAI

Conference on Artificial Intelligence (2010), 1340–1345.

[179] Kessler, M.M. 1963. Bibliographic Coupling Between Scientific Papers.

American Documentation. 14, (1963), 10–25.

[180] Kim, S. 2013. iScholar: A mobile research support system. PhD Thesis.

University of Regina.

[181] Kiwitobes 2011. Lessons on recommendation systems. Blog,

http://blog.kiwitobes.com/?p=58. (2011).

[182] Klamma, R., Cuong, P.M. and Cao, Y. 2009. You never walk alone:

Recommending academic events based on social network analysis.

Complex Sciences. Springer. 657–670.

[183] Knijnenburg, B.P., Willemsen, M.C., Gantner, Z., Soncu, H. and Newell,

C. 2012. Explaining the user experience of recommender systems. User

Modeling and User-Adapted Interaction. 22, 4-5 (2012), 441–504.

[184] Kobsa, A. 1993. User modeling: Recent work, prospects and hazards.

Human Factors in Information Technology (1993), 111–111.

[185] Kodakateri Pudhiyaveetil, A., Gauch, S., Luong, H. and Eno, J. 2009.

Conceptual recommender system for CiteSeerX. Proceedings of the third

ACM conference on Recommender systems (2009), 241–244.

[186] Kofod-Petersen, A. and Langseth, H. 2010. Tourist without a cause.

Norwegian Artificial Intelligens Symposium (NAIS) (2010).

154

[187] Konstan, J.A., Kapoor, N., McNee, S.M. and Butler, J.T. 2005. Techlens:

Exploring the use of recommenders to support users of digital libraries.

Proceedings of the Coalition for Networked Information Fall 2005 Task

Force Meeting (2005), 111–112.

[188] Konstan, J.A. and Riedl, J. 2012. Recommender systems: from algorithms

to user experience. User Modeling and User-Adapted Interaction. (2012),

1–23.

[189] Kuberek, M. and Mönnich, M. 2012. Einsatz von Recommendersystemen

in Bibliotheken Recommender systems in libraries. Presentation.

[190] Küçüktunç, O. 2013. Result Diversication on Spatial, Multidimensional,

Opinion, and Bibliographic Data. Ohio State University.

[191] Küçüktunç, O., Kaya, K., Saule, E. and Catalyürek, U.V. 2012. Fast

Recommendation on Bibliographic Networks. Proceedings of the

IEEE/ACM International Conference on Advances in Social Networks

Analysis and Mining (ASONAM) (2012), 480–487.

[192] Küçüktunç, O., Kaya, K., Saule, E. and Catalyürek, U.V. 2013. Fast

Recommendation on Bibliographic Networks with Sparse-Matrix Ordering

and Partitioning. Social Network Analysis and Mining. 3, 4 (2013), 1097–

1111.

[193] Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü.V. 2012. Direction

Awareness in Citation Recommendation. Proceedings of DBRank

Workshop in conjunction with VLDB’12 (Aug. 2012), 161–166.

[194] Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü.V. 2012.

Diversifying Citation Recommendations. arXiv preprint arXiv:1209.5809.

[195] Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü.V. 2012.

Recommendation on Academic Networks using Direction Aware Citation

Analysis. arXiv preprint arXiv:1205.1143.

[196] Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü.V. 2013. Result

Diversification in Automatic Citation Recommendation. Proceedings of

the iConference Workshop on Computational Scientometrics: Theory and

Applications (2013), 1–4.

[197] Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü.V. 2013.

TheAdvisor: a webservice for academic recommendation. Proceedings of

the 13th ACM/IEEE-CS joint conference on Digital libraries (2013), 433–

434.

[198] Küçüktunç, O., Saule, E., Kaya, K. and Çatalyürek, Ü.V. 2013. Towards a

personalized, scalable, and exploratory academic recommendation service.

Proceedings of the 2013 IEEE/ACM International Conference on

Advances in Social Networks Analysis and Mining (2013), 636–641.

[199] Kudelic, R., Malekovic, M. and Lovrencic, A. 2012. Mind map generator

software. Proceedings of the 2nd IEEE International Conference on

Computer Science and Automation Engineering (CSAE) (2012), 123–127.

[200] Kuflik, T. and Shoval, P. 2000. Generation of user profiles for information

filtering-research agenda. Proceedings of the 23rd annual international

ACM SIGIR conference on Research and development in information

retrieval (2000), 313–315.

155

[201] Lafferty, J.D. and Lebanon, G. 2005. Diffusion kernels on statistical

manifolds. Technical Report #1043. MIT Press.

[202] Lai, A.-F. and Chiu, S.-T. 2013. Integrating Mobile Device and

Collaborative Mind Map to Enhance Sixth Graders’ Creative Writing

Abilities. Advanced Learning Technologies (ICALT), 2013 IEEE 13th

International Conference on (2013), 483–484.

[203] Lai, Y. and Zeng, J. 2013. A cross-language personalized recommendation

model in digital libraries. The Electronic Library. 31, 3 (2013), 164–277.

[204] Lakkaraju, P., Gauch, S. and Speretta, M. 2008. Document similarity

based on concept tree distance. Proceedings of the nineteenth ACM

conference on Hypertext and hypermedia (2008), 127–132.

[205] Lam, S., Frankowski, D. and Riedl, J. 2006. Do you trust your

recommendations? An exploration of security and privacy issues in

recommender systems. Emerging Trends in Information and

Communication Security. (2006), 14–29.

[206] Lao, N. 2012. Efficient Random Walk Inference with Knowledge Bases.

PhD Thesis. The Carnegie Mellon University.

[207] Lao, N. and Cohen, W.W. 2011. Contextual Recommendation with Path

Constrained Random Walks. Unpublished,

http://www.cs.cmu.edu/ nlao/doc/2011.cikm.pdf.

[208] Lao, N. and Cohen, W.W. 2012. Personalized Reading Recommendations

for Saccharomyces Genome Database. Unpublished Paper,

http://www.cs.cmu.edu/ nlao/publication/2012/2012.dils.pdf.

[209] Lao, N. and Cohen, W.W. 2012. Personalized Reading Recommendations

for Saccharomyces Genome Database. Unpublished Paper,

http://www.cs.cmu.edu/ nlao/publication/2012/2012.dils.pdf (2012), 1–15.

[210] Lao, N. and Cohen, W.W. 2010. Relational retrieval using a combination

of path-constrained random walks. Machine learning. 81, 1 (2010), 53–67.

[211] Lawrence, K.D.B.S. 1999. A System For Automatic Personalized Tracking

of Scientific Literature on the Web. Proceedings of the fourth ACM

conference on Digital libraries (1999), 105–113.

[212] Lawrence, S., Giles, C.L. and Bollacker, K.D. 1999. Autonomous citation

matching. Proceedings of the third annual conference on Autonomous

Agents (1999), 392–393.

[213] Lawrence, S.R., Bollacker, K.D. and Giles, C.L. 2004. Autonomous

citation indexing and literature browsing using citation context. U.S.

Patent #US 6,738,780 B2. Summer. 2004.

[214] Lawrence, S.R., Giles, C.L. and Bollacker, K.D. 2001. Autonomous

citation indexing and literature browsing using citation context. U.S.

Patent #US 6,289,342 B1. Nov. 2001.

[215] Lee, D., Jaewoo, K., Prasenjit, M., Giles, L. and Byung-Won, O. 2007.

Are your citations clean? Communications of the ACM. 50, (2007), 33–38.

[216] Lee, J., Lee, K. and Kim, J.G. 2013. Personalized Academic Research

Paper Recommendation System. ArXiv Preprint.

http://arxiv.org/abs/1304.5457, (2013), 1–8.

156

[217] Lee, M.D., Pincombe, B. and Welsh, M. 2005. An Empirical Evaluation of

Models of Text Document Similarity. Proceedings of the 27th Annual

Conference of the Cognitive Science Society (2005), 1254–1259.

[218] Lee, Y.-L. and Huang, F.-H. 2011. Recommender system architecture for

adaptive green marketing. Expert Systems with Applications. 38, 8 (2011),

9696–9703.

[219] Leong, S. 2012. A survey of recommender systems for scientific papers.

Presentation,

http://www.liquidpub.org/mediawiki/upload/f/ff/RecommenderSystems.pdf.

[220] Leroy, G. 2011. Designing User Studies in Informatics. Springer.

[221] Ley, M. and Reuther, P. 2006. Maintaining an online bibliographical

database: The problem of data quality. EGC’2006, Actes des sixièmes

journées Extraction et Gestion des Connaissances. (2006), 17–20.

[222] Li, H., Councill, I., Lee, W.-C. and Giles, C.L. 2006. CiteSeerx: an

architecture and web service design for an academic document search

engine. Proceedings of the 15th international conference on World Wide

Web (2006), 883–884.

[223] Li, X., Wang, W. and Zhang, M. 2008. A Paper Recommender for

Scientific Literatures Based on Semantic Concept Similarity. ICADL

(2008), 359–362.

[224] Li, Y., Yang, M. and Zhang, Z.M. 2013. Scientific articles

recommendation. Proceedings of the 22nd ACM International conference

on information & knowledge management (2013), 1147–1156.

[225] Liang, Y., Li, Q. and Qian, T. 2011. Finding relevant papers based on

citation relations. Proceedings of the 12th international conference on

Web-age information management (2011), 403–414.

[226] Lin, J. and Wilbur, W.J. 2007. PubMed Related Articles: a Probabilistic

Topic-based Model for Content Similarity. BMC Bioinformatics. 8, 1

(2007), 423–436.

[227] Lipinski, M., Yao, K., Breitinger, C., Beel, J. and Gipp, B. 2013.

Evaluation of Header Metadata Extraction Approaches and Tools for

Scientific PDF Documents. Proceedings of the 13th ACM/IEEE-CS joint

conference on Digital libraries (JCDL’13) (2013), 385–386.

[228] Liu, J., Dolan, P. and Pedersen, E.R. 2010. Personalized news

recommendation based on click behavior. Proceedings of the 15th

international conference on Intelligent user interfaces (2010), 31–40.

[229] Liu, M. 1993. Progress in documentation the complexities of citation

practice: a review of citation studies. Journal of Documentation. 49, 4

(1993), 370–408.

[230] Loeppky, J.L., Sacks, J. and Welch, W.J. 2009. Choosing the sample size

of a computer experiment: A practical guide. Technometrics. 51, 4 (2009).

[231] Lops, P., Gemmis, M. and Semeraro, G. 2011. Content-based

recommender systems: State of the art and trends. Recommender Systems

Handbook. (2011), 73–105.

[232] Lu, W., Janssen, J., Milios, E., Japkowicz, N. and Zhang, Y. 2007. Node

similarity in the citation graph. Knowledge and Information Systems. 11, 1

(2007), 105–129.

157

[233] Lu, Y., He, J., Shan, D. and Yan, H. 2011. Recommending citations with

translation model. Proceedings of the 20th ACM international conference

on Information and knowledge management (2011), 2017–2020.

[234] MacRoberts, M.H. and MacRoberts, B. 1996. Problems of Citation

Analysis. Scientometrics. 36, (1996), 435–444.

[235] Macskassy, S.A., Dayanik, A.A., Hirsh, H. and others 1999. Emailvalet:

Learning user preferences for wireless email. Proceedings of Learning

about Users Workshop, IJCAIâ€TM99 (1999).

[236] Mahler, T. and Weber, M. 2009. Dimian-Direct Manipulation and

Interaction in Pen Based Mind Mapping. Proceedings of the 17th World

Congress on Ergonomics, IEA 2009 (2009).

[237] Manchanda, P., Dubé, J.P., Goh, K.Y. and Chintagunta, P.K. 2006. The

effect of banner advertising on internet purchasing. Journal of Marketing

Research. 43, 1 (2006), 98–108.

[238] Manning, C.D., Raghavan, P. and Schütze, H. 2009. An Introduction to

Information Retrieval. Cambridge University Press, Cambridge, England.

[239] Manouselis, N. and Verbert, K. 2013. Layered Evaluation of Multi-Criteria

Collaborative Filtering for Scientific Paper Recommendation. Procedia

Computer Science (2013), 1189–1197.

[240] Mao, Y., Vassileva, J. and Grassmann, W. 2007. A system dynamics

approach to study virtual communities. Proceedings of the 40th Annual

Hawaii International Conference on System Sciences (2007), 178–197.

[241] Marinai, S. 2009. Metadata Extraction from PDF Papers for Digital

Library Ingest. 10th International Conference on Document Analysis and

Recognition. (2009).

[242] Marshakova-Shaikevich, I. 1973. System of Document Connections Based

on References. Scientific and Technical Information Serial of VINITI. 6, 2

(1973), 3–8.

[243] Martin, G.H., Schockaert, S., Cornelis, C. and Naessens, H. 2010.

Metadata impact on research paper similarity. 14th European Conference

on Digital Libraries (2010), 457–460.

[244] Matejka, J., Li, W., Grossman, T. and Fitzmaurice, G. 2009.

CommunityCommands: command recommendations for software

applications. Proceedings of the 22nd annual ACM symposium on User

interface software and technology (2009), 193–202.

[245] Matsatsinis, N.F., Lakiotaki, K. and Delia, P. 2007. A system based on

multiple criteria analysis for scientific paper recommendation.

Proceedings of the 11th Panhellenic Conference on Informatics (2007),

135–149.

[246] Mattioli, D. 2012. On Orbitz, Mac users steered to pricier hotels. Wall

Street Journal.

http://online.wsj.com/news/articles/SB10001424052702304458604577488

822667325882, (2012).

[247] McBryan, O.A. 1994. GENVL and WWWW: Tools for Taming the Web.

Proceedings of the First International World Wide Web Conference

(1994).

158

[248] McCallum, A.K., Nigam, K., Rennie, J. and Seymore, K. 2000.

Automating the construction of internet portals with machine learning.

Information Retrieval. 3, 2 (2000), 127–163.

[249] McNee, S.M., Albert, I., Cosley, D., Gopalkrishnan, P., Lam, S.K., Rashid,

A.M., Konstan, J.A. and Riedl, J. 2002. On the Recommending of

Citations for Research Papers. Proceedings of the ACM Conference on

Computer Supported Cooperative Work (New Orleans, Louisiana, USA,

2002), 116–125.

[250] McNee, S.M., Kapoor, N. and Konstan, J.A. 2006. Don’t look stupid:

avoiding pitfalls when recommending research papers. Proceedings of the

2006 20th anniversary conference on Computer supported cooperative

work (2006), 171–180.

[251] Medicalnerds 2007. How to use JabRef (BibTeX) with Microsoft Word

2003.

[252] Mehta, B., Hofmann, T. and Fankhauser, P. 2007. Lies and propaganda:

detecting spam users in collaborative filtering. Proceedings of the 12th

international conference on Intelligent user interfaces (2007), 14–21.

[253] Mehta, B., Hofmann, T. and Nejdl, W. 2007. Robust collaborative

filtering. Proceedings of the 2007 ACM conference on Recommender

systems (2007), 49–56.

[254] Mehta, B. and Nejdl, W. 2008. Attack resistant collaborative filtering.

Proceedings of the 31st annual international ACM SIGIR conference on

Research and development in information retrieval (2008), 75–82.

[255] Melville, P., Mooney, R.J. and Nagarajan, R. 2002. Content-boosted

collaborative filtering for improved recommendations. Proceedings of the

National Conference on Artificial Intelligence (2002), 187–192.

[256] Meng, F., Gao, D., Li, W., Sun, X. and Hou, Y. 2013. A unified graph

model for personalized query-oriented reference paper recommendation.

Proceedings of the 22nd ACM international conference on Conference on

information & knowledge management (2013), 1509–1512.

[257] Middleton, S.E., Alani, H. and De Roure, D.C. 2002. Exploiting synergy

between ontologies and recommender systems. Proceedings of the

Semantic Web Workshop (2002), 1–10.

[258] Middleton, S.E., De Roure, D. and Shadbolt, N.R. 2009. Ontology-based

recommender systems. Handbook on Ontologies. Springer. 779–796.

[259] Middleton, S.E., De Roure, D.C. and Shadbolt, N.R. 2001. Capturing

knowledge of user preferences: ontologies in recommender systems.

Proceedings of the 1st international conference on Knowledge capture

(2001), 100–107.

[260] Middleton, S.E., De Roure, D.C. and Shadbolt, N.R. 2002. Foxtrot

recommender system: User profiling, ontologies and the World Wide Web.

Proceedings of the WWW Conference (2002), 1–3.

[261] Middleton, S.E., Shadbolt, N.R. and De Roure, D.C. 2004. Ontological

user profiling in recommender systems. ACM Transactions on Information

Systems (TOIS). 22, 1 (2004), 54–88.

[262] MindJet 2013. MindJet: About MindJet. http://www.mindjet.com/about/.

(2013).

159

[263] Mishra, G. 2012. Optimised Research Paper Recommender System Using

Social Tagging. International Journal of Engineering Research and

Applications. 2, 2 (2012), 1503–1507.

[264] Mohammad, S., Dorr, B., Egan, M., Hassan, A., Muthukrishan, P.,

Qazvinian, V., Radev, D. and Zajic, D. 2009. Using citations to generate

surveys of scientific paradigms. Proceedings of Human Language

Technologies: The 2009 Annual Conference of the North American

Chapter of the Association for Computational Linguistics (2009), 584–

592.

[265] Monnich, M. and Spiering, M. 2008. Einsatz von BibTip als

Recommendersystem im Bibliothekskatalog. Bibliotheksdienst. 42, 1

(2008), 54–54.

[266] Mönnich, M. and Spiering, M. 2008. Adding value to the library catalog

by implementing a recommendation system. D-Lib Magazine. 14, 5

(2008), 4–11.

[267] Mooney, R.J. and Roy, L. 2000. Content-based book recommending using

learning for text categorization. Proceedings of the fifth ACM conference

on Digital libraries (2000), 195–204.

[268] Morales-del-Castillo, J.M., Peis, E. and Herrera-Viedma, E. 2009. A

filtering and recommender system prototype for scholarly users of digital

libraries. Proceedings of the Second World Summit on the Knowledge

Society. Springer. 108–117.

[269] Naak, A. 2009. Papyres: un système de gestion et de recommandation

d’articles de recherche. Master Thesis. Université de Montréal.

[270] Naak, A., Hage, H. and Aimeur, E. 2009. A multi-criteria collaborative

filtering approach for research paper recommendation in papyres.

Proceedings of the 4th International Conference MCETECH (2009), 25–

39.

[271] Naak, A., Hage, H. and Aimeur, E. 2008. Papyres: A Research Paper

Management System. Proceedings of the 10th E-Commerce Technology

Conference on Enterprise Computing, E-Commerce and E-Services

(2008), 201–208.

[272] Nakagawa, A. and Ito, T. 2002. An implementation of a knowledge

recommendation system based on similarity among users’ profiles.

Proceedings of the 41st SICE Annual Conference (2002), 326–327.

[273] Nallapati, R.M., Ahmed, A., Xing, E.P. and Cohen, W.W. 2008. Joint

latent topic models for text and citations. Proceedings of the 14th ACM

SIGKDD international conference on Knowledge discovery and data

mining (2008), 542–550.

[274] De Nart, D., Ferrara, F. and Tasso, C. 2013. Personalized Access to

Scientific Publications: from Recommendation to Explanation.

Proceedings of the International Conference on User Modeling,

Adaptation, and Personalization (2013), 296–301.

[275] De Nart, D., Ferrara, F. and Tasso, C. 2013. RES: A Personalized Filtering

Tool for CiteSeerX Queries Based on Keyphrase Extraction. Proceedings

of the International Conference on User Modeling, Adaptation, and

Personalization (UMAP) (2013), 341–343.

160

[276] Nascimento, C., Laender, A.H., Silva, A.S. da and Gonçalves, M.A. 2011.

A source independent framework for research paper recommendation.

Proceedings of the 11th annual international ACM/IEEE joint conference

on Digital libraries (2011), 297–306.

[277] Nesbit, J.C. and Adesope, O.O. 2006. Learning with concept and

knowledge maps: A meta-analysis. Review of Educational Research. 76, 3

(2006), 413.

[278] Netflix 2009. The Netflix Prize. http://www.netflixprize.com/. (2009).

[279] Neumann, A.W. 2009. Recommender Systems for Information Providers.

Springer. 91–119.

[280] Noonan, M. 2013. Mind maps: Enhancing midwifery education. Nurse

education today. 33, 8 (2013), 847–852.

[281] Noruzi, A. 2005. Google Scholar: The new generation of citation indexes.

Libri. 55, 4 (2005), 170–180.

[282] Nunes, B.P., Fetahu, B. and Casanova, M.A. 2013. Cite4Me: Semantic

Retrieval and Analysis of Scientific Publications. Proceedings of the LAK

Data Challenge, co-located at the International Learning Analytics &

Knowledge Conference (2013), 10–15.

[283] Oh, S., Lei, Z., Lee, W.-C., Mitra, P. and Yen, J. 2013. CV-PCR: a

context-guided value-driven framework for patent citation

recommendation. Proceedings of the 22nd ACM international conference

on Conference on information & knowledge management (2013), 2291–

2296.

[284] Ozono, T., Goto, S., Fujimaki, N. and Shintani, T. 2002. P2p based

knowledge source discovery on research support system papits.

Proceedings of the first international joint conference on Autonomous

agents and multiagent systems: part 1 (2002), 49–50.

[285] Ozono, T. and Shintani, T. 2002. P2P based Information Retrieval on

Research Support System Papits. Proceedngs of the IASTED International

Conference on Artificial and Computational Intelligence (2002), 136–141.

[286] Ozono, T. and Shintani, T. 2006. Paper classification for recommendation

on research support system papits. IJCSNS International Journal of

Computer Science and Network Security. 6, (2006), 17–23.

[287] Ozono, T., Shintani, T., Ito, T. and Hasegawa, T. 2004. A feature selection

for text categorization on research support system Papits. Proceedings of

the 8th Pacific Rim International Conference on Artificial Intelligence

(2004), 524–533.

[288] Paik, W., Yilmazel, S., Brown, E., Poulin, M., Dubon, S. and Amice, C.

2001. Applying natural language processing (nlp) based metadata

extraction to automatically acquire user preferences. Proceedings of the 1st

international conference on Knowledge capture (2001), 116–122.

[289] Palopoli, L., Rosaci, D. and Sarné, G.M. 2013. A Multi-tiered

Recommender System Architecture for Supporting E-Commerce.

Intelligent Distributed Computing VI. Springer. 71–81.

[290] Pan, C. and Li, W. 2010. Research paper recommendation with topic

analysis. Proceedings of the International Conference on Computer

Design and Applications (ICCDA) (2010), 264–268.

161

[291] Parsons, J., Ralph, P. and Gallagher, K. 2004. Using viewing time to infer

user preference in recommender systems. Proceedings of the AAAI

Workshop on Semantic Web Personalization held in conjunction with the

9th National Conference on Artificial Intelligence (AAAI’04) (2004).

[292] Patashnik, O. 1988. BibTexing.

[293] Patton, R., Potok, T. and Worley, B. 2012. Discovery & Refinement of

Scientific Information via a Recommender System. INFOCOMP 2012,

The Second International Conference on Advanced Communications and

Computation (2012), 31–35.

[294] Peng, F. and McCallum, A. 2006. Information extraction from research

papers using conditional random fields. Information Processing and

Management. 42, 4 (2006), 963–979.

[295] Pennock, D.M., Horvitz, E., Lawrence, S. and Giles, C.L. 2000.

Collaborative filtering by personality diagnosis: A hybrid memory-and

model-based approach. Proceedings of the Sixteenth conference on

Uncertainty in artificial intelligence (2000), 473–480.

[296] Pera, M.S. and Ng, Y.-K. 2013. Exploiting the wisdom of social

connections to make personalized recommendations on scholarly articles.

Journal of Intelligent Information Systems. (2013), 1–21.

[297] Perugini, S., Gonçalves, M.A. and Fox, E.A. 2004. Recommender systems

research: A connection-centric survey. Journal of Intelligent Information

Systems. 23, 2 (2004), 107–143.

[298] Petinot, Y., Giles, C.L., Bhatnagar, V., Teregowda, P.B. and Han, H. 2004.

Enabling interoperability for autonomous digital libraries: an API to

citeseer services. Digital Libraries, 2004. Proceedings of the 2004 Joint

ACM/IEEE Conference on (2004), 372–373.

[299] Petinot, Y., Giles, C.L., Bhatnagar, V., Teregowda, P.B., Han, H. and

Councill, I. 2004. A service-oriented architecture for digital libraries.

Proceedings of the 2nd international conference on Service oriented

computing (2004), 263–268.

[300] Pizzato, L., Rej, T., Yacef, K., Koprinska, I. and Kay, J. 2011. Finding

someone you will like and who won’t reject you. User Modeling, Adaption

and Personalization. (2011), 269–280.

[301] Pohl, S. 2007. Using Access Data for Paper Recommendations on ArXiv.

org. Master Thesis. Technical University of Darmstadt.

[302] Pohl, S., Radlinski, F. and Joachims, T. 2007. Recommending related

papers based on digital library access records. Proceedings of the 7th

ACM/IEEE-CS joint conference on Digital libraries (2007), 417–418.

[303] Popa, H.-E., Negru, V., Pop, D. and Muscalagiu, I. 2008. DL-

AgentRecom-A multi-agent based recommendation system for scientific

documents. Proceedings of the 10th International Symposium on Symbolic

and Numeric Algorithms for Scientific Computing (2008), 320–324.

[304] Prieto, M.E., Menéndez, V.H., Segura, A.A. and Vidal, C.L. 2008. A

recommender system architecture for instructional engineering. Emerging

Technologies and Information Systems for the Knowledge Society.

Springer. 314–321.

162

[305] Pu, P., Chen, L. and Hu, R. 2012. Evaluating recommender systems from

the user’s perspective: survey of the state of the art. User Modeling and

User-Adapted Interaction. (2012), 1–39.

[306] Rashid, A.M., Albert, I., Cosley, D., Lam, S.K., McNee, S.M., Konstan,

J.A. and Riedl, J. 2002. Getting to know you: learning new user

preferences in recommender systems. Proceedings of the 7th international

conference on Intelligent user interfaces (2002), 127–134.

[307] Ratprasartporn, N. and Ozsoyoglu, G. 2007. Finding related papers in

literature digital libraries. Proceedings of the 11th European Conference

on Digital Libraries (2007), 271–284.

[308] Rehman, J. 2013. Cancer research in crisis: Are the drugs we count on

based on bad science?

http://www.salon.com/2013/09/01/is_cancer_research_facing_a_crisis/.

(2013).

[309] Researchgate, T. 2011. Researchgate Recommender.

http://www.researchgate.net/directory/publications/. (2011).

[310] Resnick, P., Iacovou, N., Suchak, M., Bergstrom, P. and Riedl, J. 1994.

GroupLens: an open architecture for collaborative filtering of netnews.

Proceedings of the 1994 ACM conference on Computer supported

cooperative work (1994), 175–186.

[311] Ricci, F., Rokach, L., Shapira, B. and P., K.B. 2011. Recommender

systems handbook. Springer.

[312] Rich, E. 1979. User modeling via stereotypes. Cognitive science. 3, 4

(1979), 329–354.

[313] Ritchie, A. 2008. Citation context analysis for information retrieval. PhD

Thesis. University of Cambridge.

[314] Ritchie, A., Teufel, S. and Robertson, S. 2008. Using terms from citations

for IR: some first results. Advances in Information Retrieval. Springer.

211–221.

[315] Rocha, L.M. 1999. Talkmine and the adaptive recommendation project.

Proceedings of the fourth ACM conference on Digital libraries (1999),

242–243.

[316] Rocha, L.M. 2001. TalkMine: a soft computing approach to adaptive

knowledge recommendation. Studies in fuzziness and soft computing. 75,

(2001), 89–116.

[317] Rokach, L., Mitra, P., Kataria, S., Huang, W. and Giles, L. 2013. A

Supervised Learning Method for Context-Aware Citation

Recommendation in a Large Corpus. Proceedings of the Large-Scale and

Distributed Systems for Information Retrieval Workshop (LSDS-IR)

(2013), 17–22.

[318] Rossi, P.H., Lipsey, M.W. and Freeman, H.E. 2004. Evaluation: A

systematic approach. Sage publications.

[319] Said, A. 2013. Evaluating the Accuracy and Utility of Recommender

Systems. PhD Thesis. Technische Universität Berlin. (2013).

[320] Said, A., Lin, J., Bellog𝚤n, A. and Vries, A. de 2013. A month in the life of

a production news recommender system. Proceedings of the 2013

workshop on Living labs for information retrieval evaluation (2013), 7–10.

163

[321] Said, A., Tikk, D., Shi, Y., Larson, M., Stumpf, K. and Cremonesi, P.

2012. Recommender systems evaluation: A 3d benchmark. ACM RecSys

2012 Workshop on Recommendation Utility Evaluation: Beyond RMSE,

Dublin, Ireland (2012), 21–23.

[322] Sarkanto 2013. About the Sarkanto Recommender Demo. http://lab.cisti-

icist.nrc-cnrc.gc.ca/Sarkanto/about.jsp.

[323] Schafer, J.B., Frankowski, D., Herlocker, J. and Sen, S. 2007.

Collaborative filtering recommender systems. Lecture Notes In Computer

Science. 4321, (2007), 291.

[324] Schell, T. 2009. Peer Review with Mind Mapping. Rhetoric and Writing

Class (Fall 2009) at the University of Texas Austin.

http://www.dwrl.utexas.edu/students/peer-review-mind-mapping. (2009).

[325] Schonfeld, E. 2007. Click here for the upsell. CNNMoney.com,

http://money.cnn.com/magazines/business2/business2_archive/2007/07/01/

100117056/. July (2007).

[326] Schwartz, B. 2010. Google AdWords Click Through Rates: 2% is Average

But Double Digits is Great. Search Engine Round Table Blog. (2010),

http://www.seroundtable.com/archives/021514.html.

[327] Seroussi, Y. 2010. Utilising user texts to improve recommendations. User

Modeling, Adaptation, and Personalization. (2010), 403–406.

[328] Seroussi, Y., Zukerman, I. and Bohnert, F. 2010. Collaborative inference

of sentiments from texts. User Modeling, Adaptation, and Personalization.

(2010), 195–206.

[329] Shaoping, Z. 2010. ActiveCite: An interactive system for automatic

citation suggestion. Master Thesis. National University of Singapore.

[330] Shi, S., Xing, F., Zhu, M., Nie, Z. and Wen, J.-R. 2009. Anchor Text

Extraction for Academic Search. Proceedings of the 2009 Workshop on

Text and Citation Analysis for Scholarly Digital Libraries (ACL-IJCNLP

2009) (Singapore, 2009), 10–18.

[331] Shi, Y., Larson, M. and Hanjalic, A. 2014. Collaborative Filtering Beyond

the User-Item Matrix: A Survey of the State of the Art and Future

Challenges. ACM Comput. Surv. 47, 1 (2014), 3:1–3:45.

[332] Shin, C.K. and Doermann, D. 2000. Classification of document page

images based on visual similarity of layout structures. Proceedings of the

SPIE Document Recognition and Retrieval VII (2000), 182–190.

[333] Singhal, A., Kasturi, R., Sivakumar, V. and Srivastava, J. 2013.

Leveraging Web Intelligence for Finding Interesting Research Datasets.

Web Intelligence (WI) and Intelligent Agent Technologies (IAT), 2013

IEEE/WIC/ACM International Joint Conferences on (2013), 321–328.

[334] Small, H. 1973. Co-citation in the Scientific Literature: A New Measure of

the Relationship Between Two Documents. Journal of the American

Society for Information Science. 24, (1973), 265–269.

[335] Smeaton, A.F. and Callan, J. 2005. Personalisation and recommender

systems in digital libraries. International Journal on Digital Libraries. 5, 4

(2005), 299–308.

[336] Somers, M.J., Passerini, K., Parhankangas, A. and Casal, J. 2014. Using

mind maps to study how business school students and faculty organize and

164

apply general business knowledge. The International Journal of

Management Education. 12, 1 (2014), 1–13.

[337] Sosnovsky, S. and Dicheva, D. 2010. Ontological Technologies for User

Modeling. International Journal of Metadata, Semantics and Ontologies.

5, 1 (2010), 32–71.

[338] SourceForge 2008. SourceForge.net: Project Statistics for FreeMind.

http://sourceforge.net/projects/freemind/files/freemind/stats/timeline.

(2008).

[339] Spencer, J.R., Anderson, K.M. and Ellis, K.K. 2013. Radiant thinking and

the use of the mind map in nurse practitioner education. The Journal of

nursing education. 52, 5 (2013), 291–293.

[340] Stober, S., Steinbrecher, M. and Nürnberger, A. 2009. A Survey on the

Acceptance of Listening Context Logging for MIR Applications. In

Proceedings of the 3rd Workshop on Learning the Semantics of Audio

Signals (LSAS) (2009), 45–57.

[341] Stock, K., Karasova, V., Robertson, A., Roger, G., Small, M., Bishr, M.,

Ortmann, J., Stojanovic, T., Reitsma, F., Korczynski, L., Brodaric, B. and

Gardner, Z. 2013. Finding Science with Science: Evaluating a Domain and

Scientific Ontology User Interface for the Discovery of Scientific

Resources. Transactions in GIS. 1, (2013), 1–28.

[342] Stock, K., Robertson, A., Reitsma, F., Stojanovic, T., Bishr, M.,

Medyckyj-Scott, D. and Ortmann, J. 2009. eScience for Sea Science: A

Semantic Scientific Knowledge Infrastructure for Marine Scientists.

Proceedings of the 5th IEEE International Conference on e-Science

(2009), 110–117.

[343] Straccia, U. 2003. Cyclades: An Open Collaborative Virtual Archive

Environment. Poster (http://www.ercim.eu/cyclades/cyclades-fs.pdf).

(2003).

[344] Strohman, T., Croft, W.B. and Jensen, D. 2007. Recommending citations

for academic papers. Proceedings of the 30th annual international ACM

SIGIR conference on Research and development in information retrieval

(2007), 705–706.

[345] Sugiyama, K. and Kan, M.Y. 2011. Serendipitous recommendation for

scholarly papers considering relations among researchers. Proceeding of

the 11th annual international ACM/IEEE joint conference on Digital

libraries (2011), 307–310.

[346] Sugiyama, K. and Kan, M.-Y. 2013. Exploiting potential citation papers in

scholarly paper recommendation. Proceedings of the 13th ACM/IEEE-CS

joint conference on Digital libraries (2013), 153–162.

[347] Sugiyama, K. and Kan, M.-Y. 2010. Scholarly paper recommendation via

user’s recent research interests. Proceedings of the 10th ACM/IEEE

Annual Joint Conference on Digital Libraries (JCDL) (2010), 29–38.

[348] Sun, J., Ma, J., Liu, X., Liu, Z., Wang, G., Jiang, H. and Silva, T. 2013. A

Novel Approach for Personalized Article Recommendation in Online

Scientific Communities. Proceedings of the 46th Hawaii International

Conference on System Sciences (HICSS) (2013).

165

[349] Sun, J., Ma, J., Liu, Z. and Miao, Y. 2013. Leveraging Content and

Connections for Scientific Article Recommendation. The Computer

Journal. (2013), 60–71.

[350] Sundar, S.S., Oeldorf-Hirsch, A. and Xu, Q. 2008. The bandwagon effect

of collaborative filtering technology. CHI’08 Extended Abstracts on

Human Factors in Computing Systems (2008), 3453–3458.

[351] Tang, J. and Zhang, J. 2009. A discriminative approach to Topic-Based

citation recommendation. Advances in Knowledge Discovery and Data

Mining. (2009), 572–579.

[352] Tang, T. and McCalla, G. 2004. Beyond learners’ interest: personalized

paper recommendation based on their pedagogical features for an e-

learning system. Proceedings of the 8th Pacific Rim International

Conference on Artificial Intelligence. Springer. 301–310.

[353] Tang, T. and McCalla, G. 2004. Utilizing artificial learners to help

overcome the cold-start problem in a pedagogically-oriented paper

recommendation system. Adaptive Hypermedia and Adaptive Web-Based

Systems (2004), 245–254.

[354] Tang, T.Y. 2008. The design and study of pedagogical paper

recommendation. PhD Thesis. University of Saskatchewan.

[355] Tang, T.Y. and McCalla, G. 2009. A multidimensional paper

recommender: Experiments and evaluations. Internet Computing, IEEE.

13, 4 (2009), 34–41.

[356] Tang, T.Y. and McCalla, G. 2003. Mining implicit ratings for focused

collaborative filtering for paper recommendations. Proceedings of the

Workshop on User and Group Models for Web-based Adaptive

Collaborative Environments (2003).

[357] Tang, T.Y. and McCalla, G. 2004. On the pedagogically guided paper

recommendation for an evolving web-based learning system. Proceedings

of the FLAIRS Conference (2004), 86–91.

[358] Tang, T.Y. and McCalla, G. 2003. Smart recommendation for an evolving

e-learning system. Proceedings of the Workshop on Technologies for

Electronic Documents for Supporting Learning, at the International

Conference on Artificial Intelligence in Education (2003), 699–710.

[359] Tang, T.Y. and McCalla, G. 2009. The pedagogical value of papers: a

collaborative-filtering based paper recommender. Journal of Digital

Information. 10, 2 (2009), 1–12.

[360] Tang, T.Y. and McCalla, G. 2007. The social affordance of a paper.

Proceedings of the Workshop of Assessment of Group and Individual

Learning Through Intelligent Visualization on the 13th International

Conference on Artificial Intelligence in Education (2007), 34–42.

[361] Tang, T.Y. and McCalla, G. 2003. Towards Pedagogy-Oriented Paper

Recommendations and Adaptive Annotations for a Web-Based Learning

System. Knowledge Representation and Automated Reasoning for E-

Learning Systems (2003), 72–80.

[362] Tang, X. and Zeng, Q. 2012. Keyword clustering for user interest profiling

refinement within paper recommender systems. Journal of Systems and

Software. 85, 1 (2012), 87–101.

166

[363] Teufel, S. and Moens, M. 2002. Summarizing scientific articles:

experiments with relevance and rhetorical status. Computational

linguistics. 28, 4 (2002), 409–445.

[364] Thai-Nghe, N., Drumond, L., Krohn-Grimberghe, A. and Schmidt-Thieme,

L. 2010. Recommender system for predicting student performance.

Procedia Computer Science. 1, 2 (2010), 2811–2819.

[365] Thomas, D., Greenberg, A. and Calarco, P. 2011. Scholarly Usage Based

Recommendations: Evaluating bX for a Consortium. Presentation,

http://igelu.org/wp-

content/uploads/2011/09/bx_igelu_presentation_updated_september-

13.pdf.

[366] Tian, G. and Jing, L. 2013. Recommending scientific articles using bi-

relational graph-based iterative RWR. Proceedings of the 7th ACM

conference on Recommender systems (2013), 399–402.

[367] Torre, I. 2009. Adaptive systems in the era of the semantic and social web,

a survey. User Modeling and User-Adapted Interaction. 19, 5 (2009), 433–

486.

[368] Torres, R., McNee, S.M., Abel, M., Konstan, J.A. and Riedl, J. 2004.

Enhancing digital libraries with TechLens+. Proceedings of the 4th

ACM/IEEE-CS joint conference on Digital libraries (2004), 228–236.

[369] Turpin, A.H. and Hersh, W. 2001. Why batch and user evaluations do not

give the same results. Proceedings of the 24th annual international ACM

SIGIR conference on Research and development in information retrieval

(2001), 225–231.

[370] Uchiyama, K., Nanba, H., Aizawa, A. and Sagara, T. 2011. OSUSUME:

cross-lingual recommender system for research papers. Proceedings of the

2011 Workshop on Context-awareness in Retrieval and Recommendation

(2011), 39–42.

[371] Vassileva, J. 2004. Harnessing p2p power in the classroom. Proceedings of

the Conference on Intelligent tutoring systems (2004), 305–314.

[372] Vassileva, J. 2002. Supporting peer-to-peer user communities.

Proceedings of the Conference On the Move to Meaningful Internet

Systems (2002), 230–247.

[373] Vassileva, J., Detters, R., Geer, J., Maccalla, G., Bull, S. and Kettel, L.

2001. Lessons from deploying I-Help. Workshop on Multi-Agent

Architectures for Distributed Learning Environments. In Proceedings of

International Conference on AI and Education. San Antonio, TX (2001),

3–11.

[374] Vellino, A. 2010. A comparison between usage-based and citation-based

methods for recommending scholarly research articles. Proceedings of the

American Society for Information Science and Technology (2010), 1–2.

[375] Vellino, A. 2013. Usage-based vs. Citation-based Methods for

Recommending Scholarly Research Articles. Arxiv.

http://arxiv.org/abs/1303.7149, (2013).

[376] Vellino, A. and Zeber, D. 2007. A hybrid, multi-dimensional recommender

for journal articles in a scientific digital library. Proceedings of the 2007

167

IEEE/WIC/ACM International Conference on Web Intelligence (2007),

111–114.

[377] Verbert, K., Parra, D., Brusilovsky, P. and Duval, E. 2013. Visualizing

recommendations to support exploration, transparency and controllability.

Proceedings of the 2013 international conference on Intelligent user

interfaces (2013), 351–362.

[378] Victor, P., De Cock, M. and Cornelis, C. 2011. Trust and

recommendations. Recommender systems handbook. Springer. 645–675.

[379] Vivacqua, A.S., Oliveira, J. and Souza, J.M. de 2009. i-ProSE: inferring

user profiles in a scientific context. The Computer Journal. 52, 7 (2009),

789–798.

[380] Vogel, F.R. and Human-Vogel, S. 2013. Mind maps as a teaching tool: Its

relationship to learning approaches, materials science self-efficacy, and

academic achievement. Conference of the South African Society for

Engineering Education (2013), 317.

[381] Wang, F., Shi, N. and Chen, B. 2010. A comprehensive survey of the

reviewer assignment problem. International Journal of Information

Technology & Decision Making. 9, 04 (2010), 645–668.

[382] Wang, S., Ding, J., Xu, Q., Wei, X. and Dilinar, B. 2014. Application of

Mind Map in Teaching and Learning of Medical Immunology. Frontier

and Future Development of Information Technology in Medicine and

Education. Springer. 2091–2094.

[383] Wang, Y., Zhai, E., Hu, J. and Chen, Z. 2010. Claper: Recommend

classical papers to beginners. Seventh International Conference on Fuzzy

Systems and Knowledge Discovery (2010), 2777–2781.

[384] Watanabe, S., Ito, T., Ozono, T. and Shintani, T. 2005. A paper

recommendation mechanism for the research support system papits.

Proceedings of the International Workshop on Data Engineering Issues in

E-Commerce (2005), 71–80.

[385] Weber, I. and Castillo, C. 2010. The demographics of web search.

Proceeding of the 33rd international ACM SIGIR conference on Research

and development in information retrieval (2010), 523–530.

[386] Weng, S.-S. and Chang, H.-L. 2008. Using ontology network analysis for

research document recommendation. Expert Systems with Applications. 34,

3 (2008), 1857–1869.

[387] Winoto, P., Tang, T.Y. and McCalla, G.I. 2012. Contexts in a paper

recommendation system with collaborative filtering. The International

Review of Research in Open and Distance Learning. 13, 5 (2012), 56–75.

[388] Woodruff, A., Gossweiler, R., Pitkow, J., Chi, E.H. and Card, S.K. 2000.

Enhancing a digital book with a reading recommender. Proceedings of the

SIGCHI conference on Human factors in computing systems (2000), 153–

160.

[389] Wu, H., Hua, Y., Li, B. and Pei, Y. 2012. Enhancing citation

recommendation with various evidences. Proceedings of the 9th

International Conference on Fuzzy Systems and Knowledge Discovery

(FSKD) (2012), 1160–1165.

168

[390] Xia, H., Li, J., Tang, J. and Moens, M.-F. 2012. Plink-LDA: using link as

prior information in topic modeling. Proceedings of the Conference on

Database Systems for Advanced Applications (DASFAA) (2012), 213–227.

[391] Yan, R., Yan, H. and others 2013. Guess What You Will Cite:

Personalized Citation Recommendation Based on Users’s Preference.

Proceedings of the Annual I&R Training and Education Conference

(2013), 428–439.

[392] Yang, C., Wei, B., Wu, J., Zhang, Y. and Zhang, L. 2009. CARES: a

ranking-oriented CADAL recommender system. Proceedings of the 9th

ACM/IEEE-CS joint conference on Digital libraries (2009), 203–212.

[393] Yang, Q., Zhang, S. and Feng, B. 2007. Research on Personalized

Recommendation System of Scientific and Technological Periodical Based

on Automatic Summarization. Proceedings of the 1st International

Symposium on Information Technologies and Applications in Education

(2007), 34–39.

[394] Yang, S.-Y. and Hsu, C.-L. 2010. A New Ontology-Supported and Hybrid

Recommending Information System for Scholars. Proceedings of the 13th

International Conference on Network-Based Information Systems (NBiS)

(2010), 379–384.

[395] Yang, W.-S. and Lin, Y.-R. 2013. A task-focused literature recommender

system for digital libraries. Online Information Review. 37, 4 (2013), 581–

601.

[396] Yang, Z. and Davison, B.D. 2012. Venue Recommendation: Submitting

your Paper with Style. Machine Learning and Applications (ICMLA), 2012

11th International Conference on (2012), 681–686.

[397] Yao, W., He, J., Huang, G., Cao, J. and Zhang, Y. 2013. Personalized

Recommendation on Multi-Layer Context Graph. Web Information

Systems Engineering (WISE 2013) (2013), 135–148.

[398] Yin, P., Zhang, M. and Li, X. 2007. Recommending scientific literatures in

a collaborative tagging environment. Proceedings of the 10th international

conference on Asian digital libraries. Springer. 478–481.

[399] Yu, L., Yang, J., Yang, D. and Yang, X. 2013. A Decision Support System

for Finding Research Topic based on Paper Recommendation. Proceedings

of the Pacific Asia Conference on Information Systems (2013).

[400] Zanker, M., Jessenitschnig, M., Jannach, D. and Gordea, S. 2007.

Comparing recommendation strategies in a commercial context. IEEE

Intelligent Systems. 22, 3 (2007), 69–73.

[401] Zarrinkalam, F. and Kahani, M. 2012. A multi-criteria hybrid citation

recommendation system based on linked data. Proceedings of the 2nd

International eConference on Computer and Knowledge Engineering

(2012), 283–288.

[402] Zarrinkalam, F. and Kahani, M. 2012. A New Metric for Measuring

Relatedness of Scientific Papers Based on Non-Textual Features.

Intelligent Information Management. 4, 4 (2012), 99–107.

[403] Zarrinkalam, F. and Kahani, M. 2013. SemCiR - A citation

recommendation system based on a novel semantic distance measure.

169

Program: electronic library and information systems. 47, 1 (2013), 92–

112.

[404] Zarrinkalam, F. and Kahani, M. 2013. Using Semantic Relations to

Improve Quality of a Citation Recommendation System. Soft Computing

Journal. 1, 2 (2013), 36–45.

[405] Zelle, R.M. 2010. Citation Style Language 1.0. Citationstyles.org.

[406] Zhan, S., Byung-Ryul, A., Ki-Yol, E., Min-Koo, K., Jin-Pyung, K. and

Moon-Kyun, K. 2008. Plagiarism Detection Using the Levenshtein

Distance and Smith-Waterman Algorithm. Proceedings of the 3rd

International Conference on Innovative Computing Information and

Control (2008), 569–569.

[407] Zhang, M., Wang, W. and Li, X. 2008. A Paper Recommender for

Scientific Literatures Based on Semantic Concept Similarity. Proceedings

of the International Conference on Asian Digital Libraries (2008), 359–

362.

[408] Zhang, Y., Callan, J. and Minka, T. 2002. Novelty and redundancy

detection in adaptive filtering. Proceedings of the 25th annual

international ACM SIGIR conference on Research and development in

information retrieval (2002), 81–88.

[409] Zhang, Z. and Li, L. 2010. A research paper recommender system based

on spreading activation model. Proceedings of the 2nd International

Conference on Information Science and Engineering (ICISE) (2010), 928–

931.

[410] Zhang, Z.P., Li, L.N. and Yu, H.Y. 2013. A Hybrid Document

Recommender Algorithm Based on Random Walk. Applied Mechanics

and Materials. 2270, (2013), 336–338.

[411] Zheng, H., Wang, D., Zhang, Q., Li, H. and Yang, T. 2010. Do clicks

measure recommendation relevancy?: an empirical user study.

Proceedings of the fourth ACM conference on Recommender systems

(2010), 249–252.

[412] Zhou, D., Zhu, S., Yu, K., Song, X., Tseng, B.L., Zha, H. and Giles, C.L.

2008. Learning multiple graphs for document recommendations.

Proceedings of the 17th international conference on World Wide Web

(2008), 141–150.

[413] Ziegler, C.N., McNee, S.M., Konstan, J.A. and Lausen, G. 2005.

Improving recommendation lists through topic diversification.

Proceedings of the 14th international conference on World Wide Web

(2005), 22–32.

[414] Zini, M., Fabbri, M., Moneglia, M. and Panunzi, A. 2006. Plagiarism

Detection through Multilevel Text Comparison. Proceedings of the 2nd

Conference on Automated Production of Cross Media Content for Multi-

Channel Distribution (2006), 181–185.

[415] Zualkernan, I.A., AbuJayyab, M.A. and Ghanam, Y.A. 2006. An

alignment equation for using mind maps to filter learning queries from

Google. Advanced Learning Technologies, 2006. Sixth International

Conference on (2006), 153–155.

170

[416] Zubiaga, A., Martinez, R. and Fresno, V. 2009. Getting the most out of

social annotations for web page classification. Proceedings of the 9th ACM

symposium on Document engineering. (2009), 74–83.

[417] Zukerman, I. and Albrecht, D.W. 2001. Predictive statistical models for

user modeling. User Modeling and User-Adapted Interaction. 11, 1-2

(2001), 5–18.

[418] Zyczkowski, K. 2010. Citation graph, weighted impact factors and

performance indices. Scientometrics. 85, 1 (2010), 301–315.

171

Appendix

A List of Publications ... 173
B Preliminary Study ... 177
C Exploratory Analysis of Mind-Maps .. 191
D Link Analysis in Mind Maps .. 203
E Docear4Word .. 211
F Review of the Recommendation Approaches ... 217
G PDF Title Extraction ... 245
H Impact of User Demographics .. 255
I Persistence in Recommender Systems .. 261
J Impact of Labels ... 267
K Patent Application ... 273

173

A List of Publications

The following research articles were published during pursuing my PhD. Some

parts of the doctoral thesis were published in these articles.

2014

Beel, J., Langer, S., Gipp, B., Nürnberger, A.: The Architecture and Datasets of

Docear’s Research Paper Recommender System. Proceedings of the 3rd

International Workshop on Mining Scientific Publications (WOSP 2014) at the

ACM/IEEE Joint Conference on Digital Libraries (JCDL 2014). D-Lib Magazine

(2014).

Beel, J., Langer, S., Genzmehr, M., Gipp, B.: Utilizing Mind-Maps for

Information Retrieval and User Modelling. In: Dimitrova, V., Kuflik, T., Chin, D.,

Ricci, F., Dolog, P., and Houben, G.-J. (eds.) Proceedings of the 22nd Conference

on User Modelling, Adaption, and Personalization (UMAP). pp. 301–313.

Springer (2014).

Langer, S., Beel, J.: The Comparability of Recommender System Evaluations and

Characteristics of Docear’s Users. Proceedings of the Workshop on Recommender

Systems Evaluation: Dimensions and Design (REDD) at the 2014 ACM

Conference Series on Recommender Systems (RecSys). CEUR-WS (2014).

2013

Beel, J., Langer, S., Genzmehr, M.: Sponsored vs. Organic (Research Paper)

Recommendations and the Impact of Labeling. In: Aalberg, T., Dobreva, M.,

Papatheodorou, C., Tsakonas, G., and Farrugia, C. (eds.) Proceedings of the 17th

International Conference on Theory and Practice of Digital Libraries (TPDL

2013). pp. 395–399. , Valletta, Malta (2013).

Beel, J., Langer, S., Genzmehr, M., Gipp, B., Breitinger, C., Nürnberger, A.:

Research Paper Recommender System Evaluation: A Quantitative Literature

Survey. Proceedings of the Workshop on Reproducibility and Replication in

Recommender Systems Evaluation (RepSys) at the ACM Recommender System

Conference (RecSys). pp. 15–22. ACM (2013).

Beel, J., Langer, S., Genzmehr, M., Gipp, B., Nürnberger, A.: A Comparative

Analysis of Offline and Online Evaluations and Discussion of Research Paper

Recommender System Evaluation. Proceedings of the Workshop on

174

Reproducibility and Replication in Recommender Systems Evaluation (RepSys) at

the ACM Recommender System Conference (RecSys). pp. 7–14 (2013).

Beel, J., Langer, S., Genzmehr, M., Müller, C.: Docears PDF Inspector: Title

Extraction from PDF files. Proceedings of the 13th ACM/IEEE-CS Joint

Conference on Digital Libraries (JCDL’13). pp. 443–444. ACM (2013).

Beel, J., Langer, S., Genzmehr, M.: Docear4Word: Reference Management for

Microsoft Word based on BibTeX and the Citation Style Language (CSL).

Proceedings of the 13th ACM/IEEE-CS Joint Conference on Digital Libraries

(JCDL’13). pp. 445–446. ACM (2013).

Beel, J., Langer, S., Genzmehr, M., Nürnberger, A.: Persistence in Recommender

Systems: Giving the Same Recommendations to the Same Users Multiple Times.

In: Aalberg, T., Dobreva, M., Papatheodorou, C., Tsakonas, G., and Farrugia, C.

(eds.) Proceedings of the 17th International Conference on Theory and Practice of

Digital Libraries (TPDL 2013). pp. 390–394. Springer, Valletta, Malta (2013).

Beel, J., Langer, S., Genzmehr, M., Nürnberger, A.: Introducing Docear’s

Research Paper Recommender System. Proceedings of the 13th ACM/IEEE-CS

Joint Conference on Digital Libraries (JCDL’13). pp. 459–460. ACM (2013).

Lipinski, M., Yao, K., Breitinger, C., Beel, J., Gipp, B.: Evaluation of Header

Metadata Extraction Approaches and Tools for Scientific PDF Documents.

Proceedings of the 13th ACM/IEEE-CS joint conference on Digital libraries

(JCDL’13). pp. 385–386 (2013).

Beel, J., Langer, S., Nürnberger, A., Genzmehr, M.: The Impact of Demographics

(Age and Gender) and Other User Characteristics on Evaluating Recommender

Systems. In: Aalberg, T., Dobreva, M., Papatheodorou, C., Tsakonas, G., and

Farrugia, C. (eds.) Proceedings of the 17th International Conference on Theory

and Practice of Digital Libraries (TPDL 2013). pp. 400–404. Springer, Valletta,

Malta (2013).

2011

Beel, J.: Research paper recommendations based on mind maps. In: Arndt, H.-K.

and Krcmar, H. (eds.) Very Large Business Applications (VLBA): System

Landscapes of the Future. pp. 66–75. Shaker Verlag (2011).

175

Beel, J., Gipp, B., Langer, S., Genzmehr, M.: Docear: An Academic Literature

Suite for Searching, Organizing and Creating Academic Literature. Proceedings of

the 11th Annual International ACM/IEEE Joint Conference on Digital Libraries

(JCDL). pp. 465–466. ACM (2011).

Beel, J., Langer, S.: An Exploratory Analysis of Mind Maps. Proceedings of the

11th ACM Symposium on Document Engineering (DocEng’11). pp. 81–84. ACM

(2011).

2010

Beel, J.: Retrieving Data from Mind Maps to Enhance Search Applications. In:

Lalmas, M., Jose, J., Rauber, A., Sebastiani, R., and Frommholz, I. (eds.) Research

and Advanced Technology for Digital Libraries, Proceedings of the 14th European

Conference on Digital Libraries (ECDL’10). Springer, Glasgow (UK) (2010).

Beel, J.: Retrieving Data from Mind Maps to Enhance Search Applications.

Bulletin of IEEE Technical Committee on Digital Libraries. 6, (2010).

Beel, J., Gipp, B.: Enhancing Information Search by Utilizing Mind Maps.

Proceedings of the 21st ACM Conference on Hypertext and Hypermedia (HT’10).

pp. 303–304. ACM, Toronto (CA) (2010).

Beel, J., Gipp, B.: Link analysis in mind maps: a new approach to determining

document relatedness. Proceedings of the 4th International Conference on

Ubiquitous Information Management and Communication (ICUIMC ’10). pp.

38:1–38:5. ACM (2010).

Beel, J., Gipp, B., Shaker, A., Friedrich, N.: SciPlore Xtract: Extracting Titles

from Scientific PDF Documents by Analyzing Style Information (Font Size). In:

Lalmas, M., Jose, J., Rauber, A., Sebastiani, F., and Frommholz, I. (eds.) Research

and Advanced Technology for Digital Libraries, Proceedings of the 14th European

Conference on Digital Libraries (ECDL’10). pp. 413–416. Springer, Glasgow

(UK) (2010).

2009

Beel, J.: Information Retrieval in Mind Maps zum Verbessern von

Suchapplikationen. In: Arndt, H.-K. and Krcmar, H. (eds.) Very Large Business

Applications (VLBA): Systemlandschaften der Zukunft. pp. 139–152. Shaker

Verlag, Magdeburg (2009).

176

Beel, J., Gipp, B., Stiller, J.-O.: Information Retrieval on Mind Maps - What could

it be good for? Proceedings of the 5th International Conference on Collaborative

Computing: Networking, Applications and Worksharing (CollaborateCom’09). pp.

1–4. IEEE, Washington (USA) (2009).

Gipp, B., Beel, J.: Citation Proximity Analysis (CPA) - A new approach for

identifying related work based on Co-Citation Analysis. In: Larsen, B. and Leta, J.

(eds.) Proceedings of the 12th International Conference on Scientometrics and

Informetrics (ISSI’09). pp. 571–575. International Society for Scientometrics and

Informetrics, Rio de Janeiro (Brazil) (2009).

Gipp, B., Beel, J., Hentschel, C.: Scienstein: A Research Paper Recommender

System. Proceedings of the International Conference on Emerging Trends in

Computing (ICETiC’09). pp. 309–315. IEEE, Virudhunagar (India) (2009).

177

B Preliminary Study76

B.1 Introduction

Information retrieval (IR) applications utilize many items beyond the items’

original purpose. For instance, emails are intended as a means of communication,

but Google utilizes them for generating user profiles and displaying personalized

advertisement [126]; social tags can help to organize private webpage collections,

but search engines utilize them for indexing websites [416]; research articles are

meant to publish research results, but they, or more precisely their references, are

utilized to analyze the impact of researchers and institutions [165].

We propose that mind-maps are an equally valuable source for information

retrieval as are social tags, emails, research articles, etc. Consequently, our

research objective was to identify, how mind-maps could be used to empower IR

applications. To achieve our objective, we 1) analyzed the extent to which mind-

mapping is used, to decide if mind-map based IR is a field worth researching, 2)

brainstormed how mind-maps might be utilized by IR applications, 3) analyzed the

feasibility of the ideas, and 4) implemented a prototype of the most promising

idea, which – to anticipate the result – is a recommender system that creates user

models based on mind-maps. All estimates are based on data collected from our

own mind-mapping software Docear [18, 29], Google Trends and the mind-

mapping tools’ websites.

We hope to stimulate a discussion that encourages IR and user modelling

researchers to further analyze the potential of mind-maps. We believe that

researchers will find this new research field rewarding, and the results will enable

developers of mind-mapping tools to devise novel services for their millions of

users.

76 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Bela Gip. “Utilizing

Mind-Maps for Information Retrieval and User Modelling.” In Proceedings of the 22nd Conference on User

Modelling, Adaption, and Personalization (UMAP), edited by Vania Dimitrova, Tsvi Kuflik, David Chin,

Francesco Ricci, Peter Dolog, and Geert-Jan Houben, 8538:301–313. Lecture Notes in Computer Science.

Springer, 2014.

178

Figure 61: Mind-map example (draft of this chapter)

B.2 Related Work

Mind-maps are typically used to develop ideas and organize information. As such,

they are often used for tasks including brainstorming, project management, and

document drafting. Figure 61 shows an example of a mind-map, created with our

mind-mapping software Docear (http://docear.org) [18]. We created the mind-

map to represent a draft of this chapter. The root node represents the title. From

the root node, child nodes branch to represent each chapter, additional child nodes

branch off for each paragraph, sentence and reference. We also added a list of

relevant conferences, to which we planned to submit the paper. Red arrows

indicate a link to a website. A PDF icon indicates a link to a PDF file on the hard

drive. A “circle” on a node indicates that the node has child nodes that are

currently hidden.

There has been plenty of research showing the effectiveness of mind-mapping as a

learning tool [277]; creating mind-maps automatically from full-text streams [47];

and evaluating whether paper-based or electronic mind-mapping is more effective

[236]. To the best of our knowledge, mind-maps have not been researched with

regard to information retrieval or user modelling. However, there are two types of

information retrieval applications, which utilized mind-maps in practice.

The first type of application is a search engine for mind-maps. Several mind-

mapping tools, for instance XMind and MindMeister, allow their users to publish

their mind-maps in so called “mind-map galleries”. These galleries are similar to

photo galleries. They show thumbnails of mind-maps that users uploaded to the

gallery. Visitors of the galleries may search for mind-maps containing certain

keywords, and download the corresponding mind-maps. According to

http://docear.org/

179

MindMeister, around 10% of mind-maps being created by their users are published

in the galleries77. The other mind-maps remain private.

Figure 62: Personalized advertisement in MindMeister

The second type of application is a user modelling system. Only two companies –

MindMeister and Mindomo – implemented such a system to generate user models

and display personalized advertisement. MindMeister extracted the terms of the

node that a user last edited or created – typically, a node contains two or three

terms [23]. These terms were sent to Amazon’s Web Service as search query.

Amazon returned book recommendations matching the search query, which

MindMeister displayed in a window besides the mind-map (Figure 62). Mindomo

had a similar concept, only that Google AdSense instead of Amazon was used.

Meanwhile, both companies abandoned personalized advertisement, though they

still offer and actively maintain their mind-mapping tools. In an email, Mindomo

said that “people were not really interested” in the advertisement1.

B.3 Popularity of Mind-Mapping

Some reviewers of previous papers were skeptical whether there is enough interest

in mind-mapping to justify the effort for researching the potential of IR

applications utilizing mind-maps. We believe this skepticism to be unfounded,

because, as shown in the next paragraphs, there is a significant number of mind-

mapping tools and users who could benefit from the research.

The popularity of mind-mapping, based on search volume, is similar to the

popularity of e.g. note taking, file management, or crowdsourcing, and

significantly higher than for reference management, user modelling, recommender

systems, or information retrieval (Figure 63). The website Mind-Mapping.org lists

142 mind-mapping tools being actively maintained, although some tools offer

77 Email from MindMeister’s CEO Michael Hollauf, June 28, 2011. Permission for publication was granted.

180

mind-mapping only as secondary feature in addition to other visualization

techniques, such as concept maps or Gantt charts. When discontinued tools are

included in the count, there are 207 tools. Of the ‘pure’ mind-mapping tools, i.e.

those that focus on mind-mapping functionality, XMind is the most popular tool,

based on search volume (25%) (Figure 64)78. Other popular tools are FreeMind

(23%), MindManager (13%), and MindMeister (8%). The search volume for

XMind is in the same league as search volume for the Dropbox alternative

ownCloud, the reference manager Zotero, or the Blog TechCrunch, and the

volume is significantly higher than for academic conferences such as UMAP,

SIGIR, or RecSys (Figure 65).

Figure 63: Search volume for selected search terms

Figure 64: Search volume for mind-mapping tools

According to the tools’ websites, XMind has more than 1 million users, Bubbl.us

more than 1.5 million, MindManager more than 2 million, and MindMeister more

78 All numbers relating to search volume are based on Google Trends http://www.google.com/trends/. Search

volume is calculated relatively by Google, as such there are no numbers to display on the y-axis.

http://www.google.com/trends/

181

than 2.5 million users. In sum, this makes 7 Million users for four tools that

accumulate 52% of the search volume (Figure 64). Interpolating from the search

volume, we can estimate that the remaining tools (48% of the search volume) must

have around 6.5 million users. This results in a total of around 13.5 million mind-

map users. To us, it seems likely that these numbers also include inactive users.

For our own mind-mapping software Docear, 10 to 20% of the users who

registered in the past years, are active, i.e. they started Docear in the past month.

Based on this information, we may estimate the numbers of active mind-map users

to be between 1.35 and 2.7 million.

Figure 65: Search volume for "XMind" and other selected search terms

The claimed user counts do not always correlate with the search volume. For

instance, MindMeister accumulates less than 8% of the search volume, and claims

2.5 million users. In contrast, XMind accumulates 25% of the search volume, but

reports only around 1 million users. We assume that these differences result from

different registration and usage concepts. MindMeister is a web-based tool that

requires everyone to register. XMind is a desktop software that can also be used

without registration. As such, our estimate remains a rough guess. However,

another estimate leads to a similar result. The open source mind-mapping software

FreeMind was downloaded 1.4 million times in the past 12 month (we considered

only downloads of the latest stable release)79. Assuming, that the number of active

users is around 1/3 of users who downloaded the software in the past year, leads to

the estimate that FreeMind has around 450,000 active users. Interpolating from the

search volume (22.58%), leads to an estimate of 2 million active mind-map users.

79 http://sourceforge.net/projects/freemind/files/stats/timeline

182

We believe that these numbers indicate a substantial interest in the topic of mind

mapping, and the active user base justifies the effort to research the potential of

utilizing mind-maps for IR applications.

B.4 Mind-Map based IR Applications

We developed eight ideas, how mind-maps could be utilized beyond their original

purpose. These ideas are briefly described in the following paragraphs, and were

originally published in [25]. For more details refer to [15, 21].

Search Engines for Mind-Maps: Mind-maps contain information that probably is

not only relevant for the given authors of a mind-map, but also for others.

Therefore, a search engine for mind-maps might be an interesting application.

User Modelling: Analog to analyzing users’ authored research papers, emails, etc.,

user modelling systems could analyze mind-maps to identify users’ information

needs and expertise. User models could be used, for instance, for personalized

advertisements, or by recommender systems, or expert search systems. For

instance, when employees create mind-maps, we would assume that the mind-

maps would be suitable to infer the employees’ expertise. This information could

be used by an expert search system. As described previously, Mindomo and

MindMeister implemented user modelling systems, but Mindomo reported that

users were not interested in the results. Hence, they removed the system from their

mind-mapping application. Apparently, user modelling based on mind-maps is not

trivial and does not always lead to satisfying results.

Document Indexing / Anchor Text Analysis: Mind-maps could be seen as

neighboring documents to those documents being linked in the mind-maps, and

anchor text analysis could be applied to index the linked documents with the terms

occurring in the mind-maps. Such information could be valuable, e.g., for classic

search engines.

Document Relatedness: When mind-maps contain links to web pages or other

documents, these links could be used to determine relatedness of the linked web

pages or documents. For instance, with citation proximity analysis [122],

documents would be assumed to be related that are linked in close proximity, e.g.

in the same sentence. Such calculations could be relevant for search engines and

recommender systems.

Document Summarization: Mind-maps could be utilized to complement document

summarization. If a mind-map contains a link to a webpage, the node’s text, and

183

maybe the text of parent nodes, could be interpreted as a summary for the linked

web page. Such summaries could be displayed by search engines on their result

pages.

Impact Analysis: Mind-maps could be utilized to analyze the impact of the

documents linked within the mind-map, similar to PageRank or citation based

similarity metrics. This information could be used by search engines to rank, e.g.,

web pages, or by institutions to evaluate the impact of researchers and journals.

Trend Analysis: Trend analysis is important for marketing and customer

relationship management, but also in other disciplines [62]. Such analyses could

be done based on mind-maps. For instance, analyzing mind-maps that stand for

drafts of academic papers would allow estimating citation counts for the

referenced papers. It would also predict in which field new papers can be

expected.

Semantic Analysis: A mind-map is a tree and nodes are in hierarchical order. As

such, the nodes and their terms are in direct relationship to each other. These

relationships could be used, for instance, by search engines to identify synonyms,

or by recommender systems to recommend alternative search terms or social tags.

B.5 Feasibility

We evaluated the ideas’ feasibility in three steps. First, we estimated whether there

are enough mind-maps and mind-map users available to realize the ideas. Second,

we analyzed whether the content of mind-maps is suitable for realizing the ideas.

Finally, we gauged whether users are accepting the ideas.

B.5.1 Mind-Map Users and (Public) Mind-Maps

Most of the ideas hinge on the availability of a large number of mind-maps. It is

also important to distinguish between public and private mind-maps. If many

mind-maps were available publicly, the ideas could be realized by anyone. If

mind-maps were private, i.e. only available to the developers of the mind-mapping

tools, only these developers could realize the ideas.

There are more than 300,000 mind-maps in public galleries, 50% of them in the

gallery of MindMeister, 20% in the gallery of Mindomo, and 16% in the gallery of

184

XMind (Figure 66)80. Over the years, the number of public mind-maps increased

from 67,167 in 2010 to 303,084 in 2014. Given, that MindMeister’s users

published around 62,000 mind-maps between 2013 and 2014, we estimate that

MindMeister’s users created approximately 620,000 mind-maps during that

period, since around 10% of mind-maps being created are also published77.

Interpolating these numbers with the search volume (Figure 64), we can estimate

that overall 4.6 million mind-maps were created between 2013 and 2014. Another

estimate confirms this number: Mind-map users create between 2 and 3 mind-

maps per year on average [23]. A calculation with 2.5 mind-maps per year, and 2

million mind-map users, leads to an estimate of 5 million mind-maps created per

year. Considering that mind-mapping tools have been used for many years, a few

dozens of millions mind-maps must exist on the computers of mind-map users.

Figure 66: Public mind-maps

B.5.2 Content of Mind-Maps

We recently analyzed the content of 19,379 mind-maps, created by 11,179

MindMeister and Docear users [23]. On average, mind-maps contained a few

dozens of nodes, each with two to three words on average. Some mind-maps even

contained a few thousand nodes, with some nodes containing more than a hundred

words. This amount of nodes, and words, is comparable to the number of words in

emails or web pages. Since emails and web pages are successfully utilized by

information retrieval applications, the content of mind-maps might be suitable for

80 Over the past four years, we retrieved the numbers of mind-maps each year directly from the webpages of the

galleries.

185

those ideas that depend on the existence of terms. However, the number of links in

mind-maps is low. Almost two thirds of the mind-maps did not contain any links

to files, such as academic articles or other documents (63.88%), and most of the

mind-maps that did contain links, contained only few of them. Links to webpages

were not available in 92.37% of Docear’s mind-maps and 75.27% of

MindMeister’s mind-maps. Consequently, those ideas based on link-analysis seem

less attractive.

B.5.3 User Acceptance

We evaluated the user acceptance of the eight ideas with our mind-mapping

software SciPlore MindMapping [19]. 4,332 users were shown at first start a

settings dialog. In this dialog, users could (un)select four options relating to the

different ideas we proposed (Figure 67). It was randomly chosen whether options

were pre-selected.

When all options were pre-selected, 61% of the users accepted user modelling to

receive recommendations based on their mind-maps (Figure 67). 38% of the users

accepted that the content of their mind-maps could be utilized e.g. for anchor text

analysis. 32% of users agreed that SPLMM could also analyze the content of the

documents they linked in their mind-maps. Usage mining, i.e. the general analysis

of how users are making use of a software, was accepted by 48% of the users.

Figure 67: User acceptance of IR on their mind-maps

If options were not pre-selected, fewer users allowed the analysis of their data.

22% activated recommendations, 7% activated information retrieval on mind-

maps, 6% activated IR on the linked documents, and 12% activated usage mining.

B.5.4 Discussion of the Feasibility

Due to the generally few links available in mind-maps, anchor text analysis,

calculating document relatedness, document summarization, and impact analysis

seem less feasible for the majority of mind-mapping tools (Table 14). However,

186

there might be exceptions, for instance in the case of Docear. Docear’s mind-maps

contain comparatively many links to PDF files, because most users are researchers

who manage their academic papers with Docear. Assuming that Docear’s users

create enough mind-maps, the link-based ideas might be interesting to pursue.

Those ideas that depend on the availability of terms seem more feasible,

considering the content of mind-maps. However, only a small number of mind-

maps are publicly available (around 300,000). This makes the ideas less interesting

for third parties who do not offer their own mind-mapping software. The same is

true for developers of mind-mapping software with only a few users. A mind-map

search engine or trend analysis using for example only 50,000 mind-maps, cannot

attract many people. For the major players, such as XMind, FreeMind, or

MindMeister, this might be different. They potentially have access to millions of

mind-maps, which should be sufficient to achieve reasonable results. One idea is

also relevant for the less popular mind-mapping tools, namely user modelling.

User modelling, more precisely recommender system, personalized advertisement,

or expert search, should be well applicable even with few users. User modelling

has also the highest acceptance rate among the users. User Modelling for a

recommender system was accepted by 61% or the users. User acceptance of the

other ideas was lower. Around 10% of mind-maps are published, and around 30-

40% of users accept IR to enhance external applications.

Table 14: Feasibility of the ideas

Overall, user modelling seems to be the most promising idea: The content of

mind-maps is suitable, user acceptance is rather high, and user modelling is

relevant for all developers of mind-mapping software, and companies whose

employees use mind-maps. In addition, user modelling directly benefits the mind-

mapping tools and may be fundamentally important for a company. For instance,

Google is generating almost its entire profit from personalized advertisements

[127], and Amazon is also making a significant amount of revenue through its

For 3rd

parties

For MM tool

developers

Content

Suitability

Users'

Acceptance
Overall

Search Engine Low Depends Good Low Low

Document Indexing Low Depends Low Medium Low

Document Relatedness Low Depends Low Medium Low

Document Summarization Low Depends Low Medium Low

Impact Analysis Low Depends Low Medium Low

Trend Analysis Low Depends Medium Medium Medium

Semantic Analysis Low Depends Good Medium Medium

User Modeling --- Good Good Good Good

Mind Map Availability

187

recommender system [181]. In contrast, applications such as semantic analysis are

usually not fundamental to a company’s business.

However, user modelling based on mind-maps already had been implemented, but

results indicate that it is not as promising as our analysis suggests. MindMeister

and Mindomo created user models for displaying personalized advertisement but

both abandoned this after a while. This leads to the question, whether mind-maps

actually can successfully be utilized by user modelling systems.

B.6 Prototype

To analyze whether user modelling based on mind-maps can be done effectively,

we integrated a recommender system into our mind-mapping tools SciPlore

MindMapping (SPLMM) [19], and its successor Docear [18]. Both tools are

primarily used by researchers. Therefore, the recommender system recommends

research papers. We implemented different recommendation approaches that we

evaluated using click-through rate (CTR), i.e. the ratio of clicked

recommendations against the number of displayed recommendations. Please note

that due to space restriction we may only provide superficial information on the

recommender system and its evaluation. We are about to publish a paper that will

present the architecture of Docear’s recommender system in more detail, as well as

a discussion on the suitability of CTR as an evaluation metric for recommender

systems. These papers will be available soon at

http://www.docear.org/publications/.

For SPLMM, we implemented an approach similar to MindMeister’s approach.

Each time, a user modified, i.e. edited or created, a node, the terms of that node

were send as search query to Google Scholar. Google Scholar’s Top 3 results were

shown in a separate window above the currently opened mind-map. Between July

and December 2011, 78,698 recommendations were displayed, of which 221 were

clicked, i.e. an overall CTR of 0.28% was achieved (Figure 68). A CTR of 0.28%

is low. If MindMeister and Mindomo should have achieved similarly CTRs, it is

no surprise that they abandoned the personalized advertisement.

In Docear, we integrated a new recommender system [29]. The new system

showed recommendations only when users explicitly requested them, or

automatically every five days on start-up of Docear. Recommendations were based

on Docear’s own document corpus, consisting of around 1.8 million full-text

articles. The recommender system used four different approaches and displayed

21,445 recommendations between July 2012 and February 2013. The first

approach made use of the terms of the last modified node, similar to the approach

http://www.docear.org/publications/

188

of SPLMM. This led to a CTR of 1.17% (Figure 68). The reasons why CTR was

around four times higher than CTR in SPLMM, may be manifold. Maybe, the

lower frequency of displaying recommendations (every five days instead of

continuously) or the source (Docear’s corpus vs Google Scholar), influenced CTR.

However, 1.17% is still a rather low CTR. The second approach utilized the most

frequent words of the user’s current mind-map. This increased CTR to 6.12%.

When the most frequent words of all mind-maps were utilized, CTR was also

above 6%. For the fourth approach, we manually compiled a list of ten research

articles relating to academic writing. Most of Docear’s users are researchers and

therefore we assumed that these articles would be relevant to most of Docear’s

users. When recommendations were given based on this approach – the stereotype

approach [312] – CTR was 4.99%.

Figure 68: CTR of different approaches

The results show that a single node, typically containing two to three words, does

not express users' information needs thoroughly. Instead, entire mind-maps are

needed for analysis. To analyze this in more detail, we modified the recommender

system, so it randomly chose the number of nodes to analyze. The results show

that there is a strong correlation between the number of nodes analyzed and the

CTR (Figure 69). When the recommender system utilized only the last 1 – 9

modified nodes, CTR was 3.16% on average. When 10 to 49 nodes were utilized,

CTR increased to 4% on average. Utilizing between 500 and 999 nodes resulted in

the highest CTR (7.47%). When more than 1,000 nodes were utilized, CTR began

to decrease (though, the difference is not statistically significant).

Figure 69: CTR by number of analyzed nodes

189

B.7 Summary

Mind-maps have thus far been widely neglected by the information retrieval

community. We found that there are more than 100 mind-mapping tools and that,

based on search volume, the popularity of mind-mapping is comparable to the

popularity of note taking, file management, or crowdsourcing. Popular mind-

mapping tools, such as XMind, are as popular as popular reference management

software (e.g. Zotero), or Tech Blogs (e.g. TechCrunch). Overall, we estimated,

there are around 2 million people who actively create mind-maps using a mind-

mapping software. Based on these numbers, we conclude that it is worth to

research whether the developers of mind-mapping tools, and their users, might

benefit from new applications, which utilize mind-maps.

We presented eight ideas of how mind-maps could be utilized to enhance

information retrieval applications: search engines for mind-maps could help to

find interesting information; user modelling based on mind-maps could enable the

implementation of recommender systems, personalized advertisement, and expert

search; anchor text analysis applied to mind-maps could enhance the indexing of

webpages and other documents; similarly, anchor-text analysis could enhance the

summarization of webpages and documents being linked in mind-maps; citation

and link analysis could help to calculate document relatedness, which might be

useful to enhance search engines or recommender systems; similarly, citation and

link analysis in mind-maps could be used for impact and trend analysis; finally,

semantic analyses could be applied to mind-maps to identify synonyms and other

relationships of words,

Not all ideas are equally feasible. We analyzed the content of mind-maps and

learned that mind-maps often do not contain any citations or links. In addition,

there are only around 300,000 mind-maps publicly available, although around 5

million mind-maps are created each year. The user’s acceptance to utilize their

mind-maps was mediocre. 38% of the users allowed the use of their mind-maps

for e.g. anchor text analysis, 61% accepted recommendations based on their mind-

maps. We concluded that, out of the eight ideas, user modelling is the most

feasible use case. The content of mind-maps is suitable for user modelling, the

users’ acceptance seems reasonably high, and user modelling is relevant for all

developers of mind-mapping software, not only the major players.

We implemented a prototype of a user modelling system, namely a research paper

recommender system, and, overall, results are promising. While the most simple

user modelling approach – utilizing terms of the currently edited or created node –

performed poorly (CTRs around 1% and lower), utilizing terms of users’ entire

190

mind-maps achieved click-through rates above 6%. This shows that user

modelling based on mind-maps is not trivial, and strongly depends on the applied

approaches. Further research is required to identify the unique characteristics of

mind-maps, and to use these characteristics successfully in user modelling systems

such as expert search, and recommender systems.

191

C Exploratory Analysis of Mind-Maps81

We conducted an exploratory study of mind-maps, which was originally published

in 2011 [23]. The objective was to find out how mind maps are structured and

which information they contain. Results include: A typical mind map is rather

small, with 31 nodes on average (median), whereas each node usually contains

between one to three words. In 66.12% of cases, there are few notes, if any, and

the number of hyperlinks tends to be rather low, too, but depends upon the mind

mapping application. Most mind maps are edited only on one (60.76%) or two

days (18.41%). A typical user creates around 2.7 mind maps (mean) a year.

However, there are exceptions, which create a long tail. One user created 243

mind maps, the largest mind map contained 52,182 nodes, one node contained

7,497 words, and one mind map was edited on 142 days.

C.1 Introduction

Millions of people are using mind maps for brainstorming, note taking, document

drafting, project planning, and other tasks that require hierarchical structuring of

information. Figure 70 shows a mind map which was created as draft for this

chapter. As all mind maps, it has a central node (the root) which represents the

main topic the mind map is about. From this root node, child-nodes branch out, in

order to describe sub-topics. Each node may contain an arbitrary number of words.

This way, a mind map is comparable to an outline but with stronger focus on the

graphical representation. Mind maps created on a computer may also contain links

to files, hyperlinks to websites (in Figure 70 indicated by red arrows), pictures,

and notes (indicated by yellow note icons).

In this chapter, we present the initial results of an exploratory study of 19,379

mind maps. The overall research objective was to find out how mind maps are

structured and what information they contain. To our knowledge, this is the first

study of its kind. We therefore aimed at a broad overview to determine further

areas of interesting research.

81 This chapter has been published as: Beel, Joeran, and Stefan Langer. “An Exploratory Analysis of Mind Maps.”

In Proceedings of the 11th ACM Symposium on Document Engineering (DocEng’11), 81–84. ACM, 2011.

192

C.2 Related Work

There is lots of research on content and structure of other documents: Web pages,

emails, academic articles, etc. have all been analyzed thoroughly in the past (e.g.

[1-3]). With respect to mind maps, there is mostly research about the effectiveness

as learning tool (e.g. [4]).

The lack of analyses of mind maps is not surprising. Emails, web pages, etc. had to

be thoroughly researched to make information retrieval tasks, for instance,

indexing, and spam detection, effectively possible. Such information retrieval

tasks have never been applied to mind maps, and therefore the need for knowledge

about mind map content and structure was low.

Figure 70: Screenshot of a mind mapping software

However, recently we proposed to apply information retrieval tasks to mind maps

to enhance keyword-based search engines, document recommender systems, and

193

user profile generation [5]. To do this effectively, knowledge about the content

and structure of mind maps is required.

There was only one paper we found that is somewhat related: a survey from the

Mind Mapping Software Blog [6]. For this survey 334 participants answered

questions about their use of mind mapping software. However, the survey was

based on 334 self-selected participants from a single source (readers of the Mind

Mapping Software Blog). Accordingly, it seems likely that predominantly very

active mind mapping users participated in the survey and results are not

representative. In addition, the survey focused on the usage of mind mapping

software rather than the content and structure of mind maps.

C.3 Methodology

We conducted an exploratory study on 19,379 mind maps created by 11,179 users

from the two mind mapping applications Docear82 and MindMeister83 (the latter

one is abbreviated as ‘MM’ in figures and tables).

Docear is a mind mapping application for Windows, Linux and Mac, focusing on

academic literature management, and developed by ourselves [7]. 2,779 users

agreed to have their mind maps analyzed. They created 7,506 mind maps between

April 1, 2010 and March 31, 2011.

MindMeister is a web-based mind mapping application. 8,400 users published

11,873 mind maps in MindMeister’s public mind map gallery84 between February

2007 and October 2010. For our study these public mind maps were downloaded

in XML format via MindMeister’s API85, parsed, and analyzed.

Numbers include only mind maps containing six or more nodes86, and that were

not being edited between April 1, 2011 and the day of the analysis (June 2, 2011).

This way it is ensured that mind maps in the beginning of their life-cycle do not

spoil the results but only “mature” mind maps were analyzed.

82 http://docear.org
83 http://mindmeister.com
84 http://mindmeister.com/maps/public
85 http://mindmeister.com/services/api
86 A random sample of 50 mind maps showed that the vast majority of mind maps with five or fewer nodes were

created for testing purposes and did not contain valuable content.

http://mindmeister.com/maps/public
http://mindmeister.com/services/api

194

We were particularly interested in finding out whether differences existed for

different types of mind maps and between the two mind mapping applications.

Therefore, mind maps were grouped based on their size, measured by the number

of nodes. Mind maps with 6 to 35 nodes were considered as ‘tiny’, with 36 to 100

nodes as ‘small’, with 101 to 350 nodes as ‘medium’, with 351 to 1000 nodes as

‘large’ and with more than 1000 nodes as ‘very large’. In the data set, the majority

of mind maps were tiny (52.47%) or small (31.40%) as shown in Figure 71.

Figure 71: Distribution of mind maps based on size (number of nodes)

C.4 Results & Interpretation

C.4.1 Mind Maps per User

Figure 72 shows the number of mind maps users created. The majority of

MindMeister users created, or we should say published, exactly one mind map

(81.26%). Only 2.32% of MindMeister users published five or more mind maps.

In contrast, 56.75% of Docear users created one mind map and 11.36% created

five or more mind maps. On average (mean), users created 2.7 mind maps

(Docear) during the 12 month period of data collection, respectively 1.4

(MindMeister) during ~3.5 years. The highest number of mind maps created by

one user was 243 for Docear and 73 for MindMeister. It has to be noted that

numbers of MindMeister and Docear are only limitedly comparable, as we did

only analyze MindMeister mind maps that were published by their users. It can be

assumed that most users who published mind maps on the Web, created further

private mind maps that were not publicly available.

195

Figure 72: Number of created mind maps per user

C.4.2 Nodes per mind map

As mentioned in the methodology and shown in Figure 71, most mind maps were

rather small. On average, Docear mind maps contained 232 nodes (mean),

respectively 41 nodes (median). MindMeister mind maps contained 51 nodes

(mean), respectively 31 (median). Docear mind maps tended to be larger than

MindMeister mind maps. For instance, while only 0.10% of MindMeister mind

maps were ‘very large’, 3.81% of Docear mind maps were. The largest Docear

mind map contained 52,182 nodes (and there are several more mind maps

containing 10,000+ nodes); the largest MindMeister mind map contained 2,318

nodes.

C.4.3 File Links

In a mind map, users may link to files on their hard drive. Figure 73 shows the

distribution of mind maps containing a certain number of links (for Docear mind

maps only since MindMeister does not provide this feature). Well over half of

mind maps do not contain any links to files (63.88%).

Table 15: File types linked in mind maps

PDFs Images Documents HTML Excel/CSV PowerPoint MP3s Other

89.58% 1.26% 0.53% 0.47% 0.42% 0.34% 0.27% 7.14%

196

Figure 73: Number of file-links in Docear mind maps

However, some users make heavy use of the feature. 2.94% of mind maps

contained more than 1,000 links to files and 2.97% of mind maps contained

between 351 and 1,000 links. The highest number of links in a mind map was

52,138 and all 7,506 Docear mind maps together contained 1,184,547 links to files

on the users’ hard drives. This does not mean that 1,184,547 different files were

linked. Most users linked the same file multiple times in a mind map.

From all links, 89.58% pointed to PDF files (Table 15). Other files being linked

included images (.gif, .png, .jpeg, .tiff), MP3s and text documents (.doc, .docx,

.odt, .rtf, .txt), but with much smaller frequency.

C.4.4 Hyperlinks

Looking at all mind maps, 81.57% do not contain a single hyperlink to a website

(Figure 74). However, there are differences between Docear and MindMeister.

While 92.37% of Docear mind maps do not contain hyperlinks at all, only 75.27%

of MindMeister mind maps do not contain any hyperlinks. In other words: 7.63%

of Docear mind maps and 24.73% of MindMeister mind maps contain at least one

hyperlink.

Larger mind maps more often contain hyperlinks when compared to smaller mind

maps. For instance, around 20% of Docear’s (very) large mind maps but only

3.94% of tiny mind maps contain hyperlinks. Similarly, around 40% of

MindMeister’s (very) large mind maps but only 22% of tiny mind maps contain

hyperlinks.

197

Figure 74: Number of hyperlinks in mind maps

C.4.5 Notes

Most mind mapping software tools (such as Docear and MindMeister) allow users

to add notes to a node. Many users do not use this feature – 66.12% of mind maps

do not contain any notes (Table 16). Results are similar for both, MindMeister and

Docear mind maps.

Table 16: Number of notes in mind maps

C.4.6 Words per node

Figure 75 shows the distribution of words per node (everything separated by

whitespace characters was assumed to be a word). Nodes in mind maps generally

contain few words. Nearly 1/3 of all 2,352,584 nodes contained a single word

(29.91%). Only 8.25% of nodes contained more than ten words.

0 [1,2] [3,10] [11,75] [76,150] [151,500] >500

Tiny 68.66% 19.53% 8.00% 3.81% 0.00% 0.00% 0.00%

Small 65.72% 15.02% 9.58% 9.53% 0.15% 0.00% 0.00%

Medium 59.58% 13.73% 9.92% 14.37% 1.97% 0.43% 0.00%

Large 52.15% 11.86% 11.66% 17.59% 4.29% 2.25% 0.20%

Very large 61.74% 6.04% 7.38% 16.44% 3.69% 3.36% 1.34%

Total 66.12% 17.01% 8.81% 7.42% 0.45% 0.16% 0.03%

Amount of Notes

M
in

d
 M

ap
s

Si
ze

198

Figure 75: Number of words per node

However, there is a long tail in the distribution – the maximum word count for a

node was 7,497 for Docear and 1,184 for MindMeister. Although the most

frequent word count per node is one, mean is 4.80 words per node and median is 3.

There is a slight tendency that the larger mind maps are, the more words their

nodes contain. Details are provided in Table 17.

Table 17: Number of words per node by mind map size

Also, the deeper a node is in a mind map (further out on the branch), the more

words it tends to contain. While root nodes (level 0) contain 3.03 words on

average (mean), respectively 2 (median), nodes in level 5 contain 5.11 words on

average (mean), or 3 (median) respectively (also Figure 76).

Mean Median Modal Max

Tiny maps 4.67 2 1 1,874

Small maps 4.45 2 1 687

Medium maps 5.07 2 1 1,463

Large maps 5.76 3 1 2,723

Very large maps 4.60 3 1 7,497

Word count per node

199

Figure 76: Number of words per node based on node level

Results are similar for both, Docear and MindMeister mind maps. Except, the

median word count for Docear is three, and for MindMeister two.

C.4.7 Days Edited

The majority of mind maps seem to be used for rather short term activities such as

brainstorming or maybe taking meeting-minutes.

Figure 77 shows on how many days mind maps were edited87. 60.76% of mind

maps were edited only during a single day88. However, also a large proportion of

mind maps were edited on several days, and a small fraction (0.55%) even on

more than 25 days. On average, mind maps were edited on one day (median),

respectively 2.36 days (mean). The maximum was 142 days.

C.5 Interpretation & Summary

For some features, there appear to be significant differences between mind maps

created with Docear and those created with MindMeister. However, most of the

differences can be attributed to the special functionality of the corresponding

software. For instance, Docear offers special features for literature management

such as automatically importing PDF bookmarks as new nodes to a mind map.

87 Data was available for Docear mind maps only.

88 Creation of a mind map was counted as one edit. All edits made during one day were combined.

200

Accordingly, it was expected that Docear mind maps would be larger, in terms of

number of nodes. Concerning this case, probably MindMeister numbers are more

representative for other mind maps than Docear’s are.

On the other hand, when estimating the number of mind maps per user, Docear’s

numbers are probably more suitable for generalizations, as we could only analyze

public mind maps of MindMeister users.

Figure 77: Number of days mind maps were edited

The study showed that a ‘typical’ (average) mind map is rather small, with a few

dozen nodes (31 was the median for MindMeister mind maps), whereas each node

contains probably between one to three words (more for large mind maps or nodes

deeper in a mind map). The mind map probably contains few if any notes

(66.12%). The number of hyperlinks depends on the mind mapping application

and tends to be rather low, too. Probably the mind map was edited only on one

(60.76%) or two days (18.41%) and it is expected that a typical user creates

around 2.7 mind maps a year (mean, Docear).

However, these are only averages. Most results followed a power-law distribution

with a long tail. There was one user who created 243 mind maps (and several users

more created 10+ mind maps). The largest mind map in the data set contained

52,182 nodes (and several more with 10,000+ nodes existed), there was one node

containing 7,497 words (and several more nodes with 100+ words existed), one

mind map was edited on 142 days (and several more were edited a few dozen

times) and several mind maps contained a few hundred notes.

201

C.6 Outlook

For future research, analysis of the evolvement of mind maps could be interesting.

Maybe there are different patterns how mind maps evolve and are used by users.

Also, differences between user types should be analyzed. In addition, the content

of mind maps has only been analyzed superficially, yet. It would be interesting to

know what exactly the content is and what mind maps are used for exactly

(brainstorming, literature management, etc.). A more detailed analysis should also

look at the extremes and outliers (e.g. the node with 7,497 words).

Most importantly, mind maps need to be compared to other types of documents

and consequences for information retrieval needs to be drawn. What does it mean

when nodes usually contain one to three words? Are they comparable to search

queries which usually consist of a similar number of terms? If so, can approaches

for search query recommender easily be adopted to create a ‘node recommender’?

Are mind maps with a few dozen nodes comparable to a user’s collection of social

tags which usually also consist of a few dozen tags each with one or two words? If

so, can approaches for user modeling based on social tags easily be applied to

model the interests of mind map users? And are mind maps, which contain a few

thousands nodes or words, comparable to web pages, academic articles, or emails?

If so, what does this mean for the ability to apply information retrieval on mind

maps? All these questions need to be answered in further research.

203

D Link Analysis in Mind Maps89

D.1 Introduction

Mind mapping is a common method to structure and visualize ideas, manage

electronic literature and to draft documents. Some users do link in their mind map

to external documents such as PDFs or websites. Some even cite scholarly

literature, for instance by adding BibTeX keys to a mind map’s node (Figure 78

for an example). In a recent paper we proposed to analyze these links and

references to determine the relatedness of those documents that are linked in the

mind map [21]90.

The basic idea is that two documents are related if they are both linked by a mind

map. In addition, it was assumed that the closer the links occur in the mind map,

the higher related the linked documents are. If the assumption proves to be right,

Link Analysis in Mind Maps (LAMM) could be used to enhance search engines

and document recommender systems since these systems often present related

documents to their users.

We conducted a brief experiment to test the proposed idea and present the results

in this chapter. The focus of this chapter lies on calculating the relatedness of

scholarly literature and on enhancing research paper recommender systems as we

plan to integrate LAMM into our academic search engine and research paper

recommender system SciPlore91. However, it's highly probable that the results

would be similar for other kind of documents linked by a mind map such as

websites.

In the next section, related work about research paper recommender systems and

citation analysis is presented. It is then followed by a section showing the

methodology which has been used to evaluate LAMM. Finally, the results, a

discussion, and an outlook towards future work conclude.

89 This chapter has been published as: Beel, Joeran, and Bela Gipp. “Link analysis in mind maps: a new approach

to determining document relatedness.” In Proceedings of the 4th International Conference on Ubiquitous

Information Management and Communication, 38. ACM, 2010.

90 We do not distinguish between linking files and referencing scholarly literature, for instance with a BibTeX

key. Citations, links to files on the user’s hard drive and hyperlinks to websites are all considered as ‘link’.

91 http://www.sciplore.org

204

D.2 Related Work

Several attempts have been made to establish research paper recommender

systems [2, 37, 123, 129, 356, 368]. Some of them use citation analysis to

determine the degree of relatedness between two papers. An overview of different

citation analysis approaches for determining the relatedness of research papers is

given in [232]. At this time, our research focuses on co-citation analysis [242] and

its extension citation proximity analysis [122].

Figure 78: Mind map draft of a paper

According to co-citation analysis, two papers A and B are related if a third paper C

references both. If more than one paper reference paper A and B together, their

relatedness is supposed to be even higher. Citation proximity analysis additionally

considers the location of citations in the full text: Two papers A and B are

supposed to be more highly related when they are closely referenced by a third

paper C in the text. For instance, if paper C references paper A and B in the same

sentence, A and B are likely to be highly related. If paper C references paper A in

the beginning of a 100-page document and paper B at the end, their relatedness is

probably not nearly as high.

Co-citation analysis and citation proximity analysis can be used by research paper

recommender systems to make item-based recommendations: If paper A and B are

related, paper B may be recommended to those users interested in paper A (but not

knowing paper B yet).

However, co-citation analysis and citation proximity analysis have to cope with

some drawbacks.

1. Availability of Data: Co-citation analysis and citation proximity analysis

cannot be applied to all research papers due to a lack of (correct) data

[215, 234]: many research papers are not cited at all; citation databases

such as ISI Web of Knowledge do not cover all available publications; and

205

due to technical difficulties, citations are not always recognized correctly,

which in turn leads to incorrect data in citation databases.

2. Robustness of Data: Citations are often considered as biased because

authors do cite papers they should not cite and do not cite papers they

should cite [234]. Accordingly, citation based recommender systems

might provide irrelevant recommendations.

3. Timeliness of Data: Publishing scientific articles is a slow process and it

takes months or even years before they are published and citations are

received. Accordingly, documents recommended based on citation

analysis are, at the very least, several months old.

4. Metrics: There exist metrics for measuring the relatedness of research

papers based on citation analysis (for instance, coupling strength [334] or

the citation proximity index [122]). However, to our knowledge, each

metric focuses solely on one citation analysis approach and no combining

metric exists yet. Consequently, relatedness of research papers based on

citations cannot be measured and expressed thoroughly.

Summarized, citation analysis applied to scholarly literature can do a good job in

identifying related articles, but there is room for improvement.

D.3 Methodology

Our intention was to conduct an experiment to obtain first indications if Link

Analysis in Mind Maps (LAMM) might be suitable for determining research paper

relatedness. Two assumptions were researched:

1. Two research papers A and B are related if at least one mind map links

them both

2. Two research papers A and B are more highly related the more closely

they are linked within a mind map

As part of the experiment, five mind maps were analyzed which were originally

created for drafting research papers, respectively Masters Theses92. That means

each of the mind maps links at least to a few PDF files representing academic

articles. From each mind map, links (respectively citations) to three articles were

extracted and pairs were built (Figure 21 for illustration). The first pair was built

from the first and second link in a mind map. Since the distance between them was

low, we expected this pair to be ‘highly related’. The second pair was built from

the first and last link in the mind maps. Here, the distance between the links was

92 Two mind maps represented drafts of our own papers and three mind maps were created by some of our

students for their Masters’ theses.

206

high. Accordingly, we expected the corresponding articles to be less closely

related.

To test our assumptions, titles and abstracts of the linked PDFs were extracted.

Since five mind maps were analyzed, five pairs with low distance (expected

relatedness = (very) high) and five pairs with high distance (expected relatedness

=low) existed. In addition, five ‘control pairs’ of papers were created. We created

these pairs in a way that they should appear as not being related to each other at

all93.

Figure 79: Link extraction from the mind maps (illustration)

93 The papers were taken from the SciPlore database, were not linked by any of the mind maps and did not cite

each other.

Root

Node

Node

Node

Node

Node

Node with link to

PDF

Node with link to

PDF

Node with link to

PDF

Node with link to

PDF

Node with link to

PDF

Node

Node

Node

Node with link to

PDF

...

...

...

Pair 1 (Expected

Relatedness: High)

Pair 2 (Expected

Relatedness: Low)

207

All pairs were shown to five participants94 and the participants had to rate the

relatedness of the pairs on a scale from 1 to 5 (1 = not related, 5 = highly related).

For evaluation, ratings were painted in a scatter plot for each participant as well as

the overall rating (mean and median). A more detailed statistical analysis was not

considered necessary, since the graphs showed quite clear results and the amount

of data was too little for extensive statistic analyses.

D.4 Results

Figure 80 shows the results. On average (mean), those pairs linked closely

together in the mind maps were considered significantly more often (highly)

related than those pairs not linked closely together. The control pairs, which were

not linked by any mind map, were all rated as not related, on average.

Some outliers exist: On average, pair 2 in mind map 2 was considered higher

related than pair 1 in mind map 2. In addition, pair 2 of mind map 3 and pair 1 of

mind map 5 were rated as almost not related. However, this is not surprising since

mind maps are usually used for drafting a paper and therefore variances are to be

expected.

Figure 80: Relatedness of pairs in mind maps (mean)

94 None of the participants were involved in creating the mind maps. The pairs of papers were distributed to the

participants without their knowledge of the pairs being linked by a mind map or not. Each participant was shown

all 15 pairs at once.

208

D.5 Discussion

Overall, the results are a first indication that mind maps can be used to calculate

research papers’ relatedness. However, it needs to be emphasized that all five

mind maps were created by our students and ourselves and hence came from the

same ‘school of thought’. It's very possible that other researchers use mind maps

in a different way, which would then lead to variations in the results.

In addition, similar problems as for classic ciation analysis are to be expected for

Link Analysis in Mind Maps. These problems are related to data availability,

robustness, timeliness, and metrics and are discussed in the following sections.

D.5.1 Availability of Data

Data availability seems to be the main challenge LAMM will have to face. It is

unknown how many researchers use mind maps and how many are willing to share

their data. It could be that the number is rather low. Nevertheless, mind mapping is

a popular application. For instance, the mind mapping tool FreeMind is

downloaded over a 150,000 times a month [338], more than 1.5 million people use

MindManager [262] and there exist dozens of tools more [85]. Even platforms for

sharing mind maps exist already95. On our website sciplore.org we also offer a

special mind mapping software for researchers which will enable us to collect

mind maps [19].

Overall, we are confident, that sufficient data can be collected that makes LAMM

worth researching. Certainly, it will never replace citation analysis in scholarly

literature or hyperlink analysis on websites but LAMM could serve as a

complement for both.

Technical problems (in terms of identifying references) should be equal or even

less for LAMM than for classic citation analysis. If users link to a unique identifier

such as a BibTeX key, the corresponding metadata should be easily extractable

from the user’s bibliographic database. If the user links a PDF file, at least the title

should be easily identifiable from the PDF, in most cases96.

95 For instance, http://www.mappio.com, http://share.xmind.net, and http://www.mindmeister.com/maps/public/

96 We developed a tool for extracting titles from PDFs. First tests are promising.

209

D.5.2 Robustness of Data

All social media platforms do have to cope with spam and fraud as soon as they

become successful. There is no reason to assume this would be different if mind

maps were used for calculating relatedness of documents. However, most social

media platforms also find a way to cope with fraud and spam. If only mind maps

of ‘trusted’ users were used, serious spam and fraud could probably be prevented

successfully. Trustworthiness of users probably could be determined in

cooperation with social networks, other community websites or by usage data of

mind mapping software.

D.5.3 Timeliness of Data

With LAMM, timeliness has a clear advantage over classic citation analysis. Mind

maps do not need to be published in journals or at conferences. They could be

analyzed the moment they are created. This would enable research paper

recommender systems to recommend new publications faster than with classic

citation based approaches.

D.5.4 Appropriate Metrics

LAMM could use the same metrics that are used for citation analysis. Perhaps

slight modifications would have to be made, but overall, metrics should be very

similar (and so the advantages and disadvantages of citation based metrics).

D.6 Summary & Future Research

We presented Link Analysis in Mind Maps (LAMM). LAMM is an approach for

determining the relatedness of documents by applying methods from hyperlink

and citation analysis to mind maps. The basic idea is: If two documents A and B

are linked or referenced by a mind map, these articles are likely to be related.

Consequently, a recommender system could recommend document B to those

users liking document A. In addition, we proposed that two documents are higher

related when their proximity in the mind map is higher. In a small study (five mind

maps and five participants) we obtained first indications that our assumptions

could be true. The participants rated research articles that were linked in high

proximity in the mind map, as more highly related than those articles linked within

low proximity. Advantages and problems of LAMM in comparison to classic

citation analysis were also discussed. Especially in respect to timeliness, MMCA

seems likely to outperform classic citation analysis. On the other hand, data

availability is likely to be a much larger problem than it is for citation analysis.

210

Overall, LAMM might prove to be a promising field of research having the chance

to complement classic citation analysis and enhance research paper recommender

systems in the long run. However, there is a need for more research since many

questions remain unanswered:

 How many researchers are using mind maps?

 How many are willing to share them?

 How can spam and fraud be prevented?

 Which metrics should be used to measure relatedness?

 How should these metrics be combined with existing ones based on

citations and other techniques (for instance, based on text mining and

collaborative filtering)?

While we focused on determining relatedness of scholarly literature, LAMM could

be applied equally well to other document types such as web pages.

211

E Docear4Word

E.1 Introduction

Reference management probably is the most tiring task for students and

researchers. They have to re-type and format bibliographic information over and

over, for each paper, assignment or thesis. This is particularly frustrating if they

need to change citation styles in a document. This might become necessary, for

instance, because a supervisor changes his mind on his favorite citation style, or a

paper is submitted to another journal, which requires a different citation style than

the previous journal.

In the past decades, many software tools evolved to facilitate this workflow.

Commercial tools such as Endnote and Citavi enable researchers to maintain a

database with all the bibliographic data of their references. These so called

‘reference managers’ usually offer add-ons for Microsoft Word allowing users to

insert and format references and bibliographies in a convenient way. Also some

open source tools offer such add-ons, for instance Zotero. However, all these tools

use proprietary data formats. Accordingly, a Microsoft Word add-on from one of

these tools (e.g. Endnote) works only with corresponding data format of that

particular tool.

Figure 81: Docear4Word ribbon in Microsoft Word 2010

There is one alternative to the proprietary formats, namely BibTeX. BibTeX was

created by Oren Patashnik in 1988 [292] and is the de-facto standard to store

references. There are many reference mangers directly supporting BibTeX, for

instance JabRef, BibDesk and our own reference manager Docear [18]. Even

proprietary tools such as Endnote usually allow exporting their database to

BibTeX. There is a Microsoft Word add-on for BibTeX-based databases named

BibTeX4Word97. However, BibTeX4Word requires the installation of additional

tools and is difficult to setup and use. For instance, in the Blog MedicalNerds

97 http://www.ee.ic.ac.uk/hp/staff/dmb/perl/index.html

http://www.ee.ic.ac.uk/hp/staff/dmb/perl/index.html

212

more than 250 comments were made on BibTeX4Word, mostly questioning about

the usage – especially installing new citation styles is complicated [251].

We developed Docear4Word98, a Microsoft Word add-on to insert and format

references directly in MS-Word, based on BibTeX. Docear4Word is open source

and runs with Microsoft Word 2002 (and later) on Windows XP (and later). After

the installation, Docear4Word is accessible in the “Reference” ribbon when

Microsoft Word 2007 or later is used (Figure 81). In Word 2002 and 2003 a

separate toolbar is installed. Docear4Word was primarily intended for users of our

literature management tool Docear [18], but it can be used with any BibTeX file

from any reference manager. In contrast to BibTeX4Word, Docear4Word is more

user-friendly and uses the citation style language (more details in the following

section).

The remainder of this chapter provides a detailed overview of Docear4Word.

E.2 Maintaining a BibTeX database

BibTeX is a text-based format. Accordingly, a BibTeX file can be created and

edited with any text editor. However, there are several tools offering a graphical

user interface to create BibTeX files, for instance JabRef and our own reference

manager Docear. Figure 82 shows a screenshot of Docear. Docear provides a

graphical user interface for specifying title, authors, and other bibliographic data

of academic literature. Based on this data Docear automatically creates a BibTeX

entry. Instead of Docear, or a text editor, any reference management tool can be

used that uses the BibTeX format or that may export its proprietary format to

BibTeX.

E.3 Inserting references in Microsoft Word

Figure 83 shows the dialog to search and insert references. The dialog allows

selecting several references at once and specifying individual page numbers. Once,

the references are selected and the “Add References” button is clicked, references

are added in the document and formatted accordingly to the selected citation style

(Figure 85).

98 http://www.docear.org/software/add-ons/docear4word/overview/

http://www.docear.org/software/add-ons/docear4word/overview/

213

Figure 82: Maintaining the BibTeX database

Figure 83: Selecting and inserting a reference

214

E.4 Changing the Citation Style

Docear4Word uses the citation style language [405] and citeproc-js citation

processor [100] to format references. The citation style language supports more

than 1,700 citation styles such as IEEE, Harvard, MLA, and ACM in several

variations. Docear4Word users can select a style in the style box (Figure 84) and

install new styles from the style repository. When a new style is selected, all

references are formatted accordingly.

E.5 Insert a Bibliography

Docear4Word automatically creates a bibliography based on the references in the

body of the document (Figure 85). The user can choose where to insert the

bibliography and the bibliography is automatically updated when new references

are inserted.

Figure 84: Style chooser

E.6 Outlook

Docear4Word was released as final and stable version 1.0 on http://docear.org.

However, we will continue to improve Docear4Word. Among others, it is planned

to offer a version for Microsoft Word on MacOS; implement support for

footnotes; enable suppressing author and/or year in a reference; implement an

installer for new citation styles; and allow using multiple BibTeX files at the same

time. As Docear4Word is available as open source, we sincerely invite other

researchers to join the development.

http://docear.org/

215

Figure 85: Automatically created bibliography

217

F Review of the Recommendation Approaches

Our main goal was to provide a general overview and discussion of the research

field. However, for the interested reader, we provide a short summary of the

individual approaches in the following.

F.1 Content-based Filtering Approaches

F.1.1 CiteSeer(x) and CC-IDF

In 1998 C. Lee Giles, Kurt D. Bollacker, and Steve Lawrence introduced CiteSeer,

a web-based digital library [39, 119]. With CiteSeer, users could search for

research papers, and for each search result, CiteSeer offered a link for retrieving a

list of “related documents”. This might not be considered a “real” recommender

system but it was the first step towards it, and Giles et al. also called it a

recommender system. Document relatedness was calculated based on three factors.

First, text similarity was calculated based on the top-20 words per document,

which were determined with TF-IDF. Second, CiteSeer calculated header-

similarity between documents with a string edit distance (the authors interpreted as

all the text before a paper’s abstract as header). Thirdly, CiteSeer introduced a new

similarity measure, which they called CC-IDF. CC-IDF was identical to TF-IDF

but instead of terms, citations were used. The underlying idea is that the more

citations two documents share, and the less other documents contain these

citations, the more similar the two documents are. Both papers [39, 119] provide

identical information about the recommender system and are rather sparse of

details. An evaluation of the recommendation approaches is missing.

One year later, the three researchers presented the very first ‘real’ research paper

recommender system that offered three different approaches to users [211]. First,

users could create citation alerts. Whenever a paper, that the user had to specify

manually, was cited by a new paper, the user was informed. Second, users could

specify constraints. For instance, users could specify keywords and whenever

CiteSeer indexed a new document matching the keywords, the user was informed.

Thirdly, users could specify documents they liked and whenever CiteSeer found

new documents related to the liked documents, users received a recommendation.

Document relatedness was based on TF-IDF and CC-IDF (header similarity was

not mentioned any more). User profiles could directly be maintained by the users

and recommendations were sent by email or shown on CiteSeer’s website. The

paper, again, contained no evaluation.

In the following years, CiteSeer was continuously improved which resulted in a

new version called CiteSeerX [74, 222, 298, 299]. Some of CiteSeer’s

218

functionality was also patented by NEC Laboratories, the employer of Giles,

Bollacker, and Lawrence [213, 214]. Today, CiteSeer(x) does not provide any

recommendation functionality, although Giles et al. published several papers more

about research paper recommendations, which are covered later in our review.

Recommendations nowadays are given by RefSeer, which was built on top of

CiteSeer and takes a text snippet or PDF file as input [317] (p. 231).

F.1.2 Quickstep & Foxtrot

Middleton et al. published five papers between 2001 and 2009 about their

recommender systems Quickstep and Foxtrot [257–261] (the fifth paper from 2009

[258] is a summary of their papers published between 2001 and 2004).

In the first paper, Quickstep was introduced and an evaluation was conducted

whether flat topic lists or hierarchical ontologies are more effective for

recommendations [259]. Based on machine learning, Quickstep classified each

research paper with one topic, derived from DMOZ’s computer science categories.

When a user browsed a research paper, the paper’s topic was added to the user’s

user model with a “topic interest” value. This interest value differed, based on how

often users browsed papers with that topic, the number of days being passed since

the last browsing, and some other factors. Quickstep recommended those papers

whose topics correlated best with the user’s topics of interests. Additionally,

Middleton et al. experimented with adding the topics’ parents to the user model. In

DMOZ, the classification is not flat but hierarchical. This means, when a paper

was assigned to one category, all parent categories were also assigned to that

paper, and user models respectively. In a small-scale evaluation, the authors found

that using a hierarchical ontology was slightly better than a flat list of topics in

terms of click-through rate, and 7-15% better in terms of user-satisfaction.

In 2002, Middleton et al. published a poster introducing Foxtrot [260], an

enhanced version of Quickstep. In Foxtrot, users’ profiles were visualized and

users could edit their profiles. The poster contains only brief information about

Foxtrot and no new recommendation approaches or evaluation. In 2004, Foxtrot

was presented in more detail in a journal article [261]. The article consisted of

three parts. The first part contained the information and experiment from the first

Quickstep paper (some details from the first paper were missing, and some new

ones added) [259]. The second part was about bootstrapping a recommender

system based on an external ontology. This part was also published as pre-print on

arXiv.org in 2002 [257]. The third part was about Foxtrot, comparing user

relevance feedback with profile feedback (Section 3.3.2.7). Middleton et al. also

provided some statistics on the usage of their recommender system and differences

219

between user groups (Sections 3.3.2.4 and 3.3.2.5). Another difference between

Foxtrot and Quickstep was that Foxtrot used the CORA classification [248]

instead of DMOZ categories.

F.1.3 Topic Sensitive Similarity Propagation (TSSP)

Huang et al. were first to apply citation-context analysis for generating

research paper recommendations [155]. Citation context is the text that

surrounds a citation. For instance, the citation contexts of Huang et al.’s

paper, based on our paper, would be “Huang et al. were first to apply

citation context analysis for generating research paper recommendations”,

which is the sentence that includes the reference to their paper. Huang et al.

calculated two similarity values separately, both being based on TF-IDF in

the vector space model. One similarity value was calculated for citation

contexts, and one was based on documents’ body text. Then, both values

were combined. The highest precision was achieved when content and

citation similarity received the same weight. Huang et al. called their

approach Topic Sensitive Similarity Propagation (TSSP) and evaluated it

with a small user study based on 28 papers and an unknown number of

participants. TSSP outperformed the baselines co-citation, SimRank [171],

content-only (without citation context), and some variations. More

precisely, TSSP performed twice as good as content-only (p@10 of 0.52 vs.

0.25). Also a linear combination of content and SimRank performed well

(p@10=0.41). In contrast, SimRank (0.18) alone and co-citation (0.19)

performed poorly. However, due to the small study size it is questionable

how representative these results are.

F.1.4 Mixed-membership model / Link-LDA

In 2004, Erosheva et al. modeled citations and terms with Latent Dirichlet

Allocation (LDA) which is similar to Probabilistic Latent Semantic Analysis

(PLSA) [91]. They utilized the terms contained in the document’s abstracts and the

references. For each document, two models were created. Terms were weighted

based on simple term counts, references were weighted binary (present or not

present). The paper itself has no sound evaluation, as the approach was not tested

against any baseline. However, their work influenced several other papers in the

field of citation recommendations [178, 273], which are covered later in this

survey. The mixed membership model is later referred to as ‘Link-LDA’.

220

F.1.5 Papits

In 2002, Papits was introduced as a peer-to-peer system that supported researchers

in finding literature, keeping a research diary, and sharing papers [284, 285]99.

Between 2004 and 2006, the authors published one paper about document

classification [287] and two about integrating a research paper recommender

system in Papits [286, 384]. The authors distinguished between short- and long-

time interests of their users [384]. Their way of representing user models is unique

in the domain of research-paper recommender systems. Each user was represented

as a graph. The graph’s nodes contained the terms of the users’ papers. The

graphs’ edges were based on the frequency of co-occurrences of terms. Their

approach outperformed standard CBF with a precision of 0.57 vs. 0.27. In their

last paper, the authors compared a kNN approach with SVM to classify research

papers [286]. Both approaches performed about the same. The papers are in some

parts difficult to understand, have several typos and some important information is

missing about the proposed approach and evaluation. This might be the reason

why the papers received little attention (citations counts of their papers are

between one and four). Nevertheless, especially the paper from 2005 is worth

reading [384]. The idea of representing user models as graph is unique and the

evaluation indicates an excellent precision.

F.1.6 Trust-based Scientific Paper Recommender (SPRec)

Between 2006 and 2007, Claudia Hess developed a research paper recommender

system as part of her PhD thesis [148]. Hess focused on trust between researchers

and reviewers respectively. The basic idea is that if a user A trusts another user B,

B’s article reviews are (more) important to user A than other reviews. Hess

considers the citation graph between papers as a trust network, expressing which

authors trust each other. With respect to trust-based recommender systems, the

thesis might be an interesting read, but the recommender system itself is only

described superficially. Hess also published two papers [147, 149] but the thesis

contains the more interesting information.

F.1.7 PubMed Related Articles (PRMA)

In 2007, PubMed, a large academic search engine for biomedical literature,

introduced a recommender system that is still available today [226]. When users

browses a detail-page of an article, related articles are displayed. To find related

99 Both papers are essentially the same

221

articles, PubMed uses what they call PRMA (PubMed Related Articles), an

algorithm similar to BM25. PRMA is based on terms contained in the documents’

titles and abstracts. One fundamental difference between BM25 and PRMA is that

PRMA was developed for using MeSH terms, i.e. a controlled vocabulary

available only for biomedical literature. PRMA outperforms BM25 with p@5 of

0.399 vs. 0.383 (statistically significant). The authors stress that PRMA is less

complex than BM25, which makes the parameter optimization process less

difficult. The authors also report that 20% of users who browse an article’s detail

page follow at least one recommendation. Although the recommender system is

active since 2007, no more papers were published about PRMA, to the best of our

knowledge.

F.1.8 Recommending Citations

Strohman et al. combined classic CBF and ranked papers with a combination of

several metrics [344]. Strohman et al. expected a user to provide a manuscript

containing text and that the user wanted recommendations for papers to cite. Based

on the input manuscript, the system determined 100 recommendation candidates.

The candidates were determined based on text similarity, whereas text similarity

was calculated with multinomial diffusion kernel [201]. The original 100

candidates were extended by all papers being cited by the 100 candidates.

Extending the candidate set increased MAP by around 10%. Strohman et al. also

considered including another level of cited papers (those papers being cited by the

papers being cited by the original candidates) but initial experiments showed that

this did not improve the effectiveness. The papers in the final candidate set

(typically 1,000-3,000) were ranked based on different combinations of

publication year, text similarity, co-citation strength, same author, citation count,

and the Katz measure. An offline evaluation showed that especially the Katz

measure strongly improved precision. All variations including Katz were about

twice as good as those variations without. For a 2-page poster, the article provides

many interesting information. However, caused by the space restrictions, the

authors had to omit many details, for instance how exactly the different factors

were used for the ranking100. This limits the value of their results, and makes re-

implementing their approach impossible. Strohman et al. state that full details can

be found in an extended version of their paper (a technical report), but we were not

100 They report to have used „coordinate ascent” to learn the weights, but do not provide a reference to this

concept (of which we have never heard of).

222

able to find this technical report. Other authors [140] also criticize that Strohman

et al. used a biased ground-truth to calculate the Katz measure, which would favor

the Katz measure.

F.1.9 Concept-Based Recommender System

Susan Gauch et al. used the ACM classification tree to generate recommendations

[60, 185, 204]. Papers were represented as trees, namely the ACM classification

concepts, including parent nodes. Users were represented by the concept trees of

the papers they authored. To match users and papers, Gauch et al. used cosine

similarity for the concepts, and the tree-edit distance for the concept trees. Both

approaches outperformed a classic keyword based cosine matching, and the tree-

edit distance outperformed cosine-based concept similarity. The paper corpus was

crawled from CiteSeer, and papers were assigned to the ACM classifications

through machine learning. In their first article, the authors presented the basic

approach to compare documents based on tree-edit-distance [204]. The second

article focused on the user modeling part [60]. The third article focused on the

general architecture and how the system could be integrated into CiteSeer [185]. It

remains unclear whether the system was integrated into CiteSeer and whether

CiteSeer supported the authors actively. The evaluations in all three articles were

only small-scale with seven to nine participants.

F.1.10 Pairwise Link-LDA & Link-PLSA-LDA

Nallapati et al. addressed the problem of jointly modeling citations and text [273].

They proposed two approaches called ‘Link-PLSA-LDA’ and ‘Pairwise Link-

LDA’. The later one is based on Erosheva et al.’s Link-LDA (p. 219) and

combines it with the ‘Mixed Membership Stochastic Block’ [4] model, a

probabilistic model originally developed to find related proteins. Although

Pairwise Link-LDA achieves a better precision than Link-LDA, it is about 100

times slower and not feasible to apply with larger collections. The second

approach, Link-PLSA-LDA, combined PLSA and LDA into a single graphical

model and outperformed LDA as well with regard to precision as computing time.

F.1.11 Cite-LDA & cite-PLSA-LDA

In 2010, Link-LDA and Link-PLSA-LDA were adopted by Kataria et al. who

proposed Cite-LDA and Cite-PLSA-LDA [178]. The approaches utilize citations,

the context of citations and the content of documents. In an evaluation, Cite-

PLSA-LDA outperformed all other models on two tested datasets (CiteSeer and

Webkb). The evaluation confirms, similar to TSSP (p. 219), that citation context is

a highly effective source for retrieving terms. As many of the previous authors,

223

Kataria et al. focused only on calculating paper similarities, and they neglected the

user modeling process.

F.1.12 User’s Recent Research Interests

Sugiyama and Kan used a classic CBF approach in which users were represented

by the papers they published [347]. The authors experimented with several

variations of building user models and weighting papers. Among others, they

extended the list of papers utilized for user modeling by adding all papers that

were cited or did cite the original input papers. Sugiyama and Kan tried four

approaches to weight these neighbor papers. First, papers were weighted equally.

Second, neighbored papers were weighted the stronger the higher their contently

similarity with the original input papers was (cosine similarity). Third, papers were

weighted the stronger the closer their publication year was to the publication year

of the original publications. Fourth, for senior researchers with several papers

being published, papers that were more recent were weighted stronger than older

papers. Sugiyama and Kan incorporated PageRank to weight papers but using

PageRank decreased the effectiveness. The authors assumed this was because

PageRank favors older papers but users are more interested in recent papers. The

authors also extended candidate models by incorporating cited and citing papers

but this increased the accuracy only slightly. While the authors used plain term

frequency for user modeling, they used TF-IDF for the candidate papers. Their

argument was that the small number of publication utilized for user modeling

would negatively affect the IDF calculation. However, we know of no evidence

supporting this assumption. The authors found that it makes sense to include only

papers being published in the past three years in the user modelling process.

F.1.13 Social Tag Based Recommender System

Choochaiwattana et al. published two articles about using social tags for research

paper recommendations [66, 173]. Papers were represented by the social tags that

users had added. User were represented by the tags of those papers that the users

had in their collections. The matching was done by calculating cosine similarity in

the vector space. Sadly, both articles do not compare their approach against a

baseline. The content of the two articles is nearly identical, only that the first has

an evaluation with three participants [173], while the second article has an

evaluation with 15 participants [66].

F.1.14 Context Aware Relevance Model (CRM)

He et al. introduced the context-aware relevance model (CRM), which suggests

papers that users could cite in a specific sentence of their manuscript [140]. He et

224

al. expected a user to provide either a manuscript as input, or a citation context, i.e.

a few sentences that needed citations. CRM searched for documents that contained

citation contexts being similar to the input sentences or manuscript. These

documents and the documents being cited were taken as recommendation

candidates and ranked based on Gleason’s Theorem, but CRM uses an

approximate measure instead of maximum likelihood. He et al. differentiate

between “global citations” for the bibliography, and “local citations” for each

placeholder in the text. He et al. evaluated CRM against many different baselines

and combinations, among others HITs, Katz, simple citation count, and simple text

similarity. According to the paper, CRM is applied by CiteSeer. However, as

mentioned previously, CiteSeer does not offer any recommender system (any

more).

In 2011, He et al. extended their idea of a citation recommender so the

recommender would analyze a manuscript and automatically recommend where

exactly which citation was needed [139]. While the original approach is just a

different view on recommender systems (there is no fundamental difference

between a ‘citation context’ being provided by the user and a search query or

abstract), this latter paper could be seen as the first true citation recommender

because it addresses the problem of autonomously finding locations to add

citations.

F.1.15 SVM-MAP Approach / Who Should I Cite?

Bethard and Jurafski used CBF and ranked the candidates based on a large number

of factors [34]. The factors included text similarity; citation metrics such as

citation count, PageRank, paper’s venue citation count and h-index, and authors

citation count; recency (older articles received less weight); social habits such as

self-citation rate, co-authorship, boost for venues the user has previously published

in, and several more. The article presents were several interesting findings. For

instance, h-index had a negative impact on the algorithms’ accuracy but plain

citation count had a very positive impact. Bethard and Jurafski also found that

authors like to cite papers they cited before. In addition, Bethard and Jurafski

created an approach that learned to weight the factors with a support vector

machine (SVM)101. In an offline evaluation, the “SVM-MAP” approach achieved

an MAP of up to 28.7%, while a simple text comparison achieved only 15.9%.

101 The authors also tried a logistic classifier but SVM performed better.

225

The results are interesting because they show how some simple metrics (mostly

adopted from Scientometrics) can strongly enhance content-based filtering. The

authors also published a simple prototype102.

F.1.16 Keyphrase-based recommender / Pirates Framework

Ferrara et al. created user models based on the content of papers a user had tagged

[98]. Based on the terms contained in the tagged papers, they created three lists,

one with uni-grams, one with bi-grams, and one with tri-grams. All n-grams were

weighted based on their frequency, a part-of-speech value, phrase depth (based on

the part of the document in which the term occurred first, e.g. title or abstract),

phrase last occurrence (more weight to terms occurring in the conclusion), and

phrase lifespan (portion of text being covered by the term). Papers were

represented the same way. The cosine similarity was calculated for each of the

three lists separately. The final similarity score was based on a linear combination.

The approach performed better than using a uni-gram list alone. Unfortunately, the

authors did not research how a different weighting (e.g. frequency only) or the

individual n-gram lists (e.g. bi-grams only) performed. As such, it remains unclear

how sensible it is to consider phrase depth, life span etc. for user modeling.

However, the ideas are interesting but, to the best of our knowledge, the article

received only little attention in the community.

F.1.17 Source Independent Framework

A time-consuming task in building a research paper recommender system is

harvesting a large-enough collection of research papers to recommend.

Nascimento et al. bypassed this problem by creating brief user models which could

be sent as search query to external information sources such as ACM Digital

Library, IEEE XPlore, and Science Direct [276]. The search results were taken as

initial candidate set and ranked by several Cosine variations. Based on the ranking,

the top-ten search results were returned to the users as recommendation. The user-

modeling approach itself was not novel. Nascimento et al. created user models

based on terms in the title (weight=3), abstract (weight=2), and body (weight=1)

of the users’ papers. Results for the different search engines are interesting.

Overall, ACM performed better than IEEE and Science Direct, but a combination

of all three performed best. Other findings include that creating user models based

on abstracts performs better than based on titles only and slightly better than based

102 http://nlp.stanford.edu:8080/citation-retrieval/

http://nlp.stanford.edu:8080/citation-retrieval/

226

on body text. In addition, bi-grams performed better than noun-phrases. However,

the evaluation was based on ten computer science students only.

F.1.18 ResearchGate

ResearchGate is a social network for scientists and offers a recommender system,

or more precisely an advanced search interface [309]. Users may enter search

terms or an abstract and ResearchGate will show related papers that are

determined with a classic content-based text comparison. We could find no more

details on their recommender system.

F.1.19 Docear103

Docear is a literature management software that allows managing PDF files,

annotations, and references in mind maps [18]. In 2012, a content-based

recommender system was integrated in Docear, and presented in a poster at JCDL

2013 [29]. The recommender system was based on Docear’s predecessor, SciPlore

MindMapping [16, 19], and utilized the users’ mind maps for user-modeling. On

average, click-through rate was around 6%. When users explicitly requested

recommendations, CTR increased to 8.35%. Beel et al. also analyzed the impact of

the user-model size. Small user models, containing five or less terms, only

achieved CTRs of 1.80% on average. Larger user models with more than 11 terms,

achieved CTRs of 6.67% on average. The best results were achieved when user

models contained between 100 and 250 words. The authors also published several

other papers about different aspects of research-paper recommender systems [24,

30, 32]. Beel et al. also applied stereotypes [31]. They assumed that all users of

their reference management software Docear are researchers or students. Hence,

papers and books were recommended that were potentially interesting for any

student and researcher (e.g. a paper about optimizing scholarly literature for

Google Scholar [22]). Beel et al. used stereotypes only as fallback model when

other recommendation approaches could not deliver recommendations, for

instance for very new users. They report mediocre performance of the stereotype

approach with click-through rates (CTR) around 4%.

F.1.20 Osusume

Osusume is the first Japanese paper recommender, according to Uchiyama et al.

[370]. It distinguishes between different “viewpoints”, i.e. requirements of the

103 Docear is included in this review, because the review was ment to be published as separate research paper.

227

users. For instance, the authors assumed that some users are more interested in

state-of-the-art papers and others in authoritative papers. Uchiyama et al. also

distinguish between novice and expert users. To provide diversity in

recommendations Osusume selects five recommendations randomly out of the

top100 candidates. The authors claim that Osusume combines CF and CBF, but no

details are provided in the articles. To us the approach appears like a classic CBF

with some additional filtering criteria (e.g. to provide state-of-the-art paper, results

were ordered by publication date). Uchiyama et al. did not evaluate their

recommender system. They only asked 16 study participants which viewpoints

were most relevant to them. Most users were interested in state-of-the-art and

international papers (all users were Japanese and apparently interested in receiving

recommendations for English articles). Only few users were interested in papers

being just similar to the input paper. This finding is interesting because the main

assumption of CBF is that users are interested in papers being similar to the ones

they already know.

F.1.21 Translation Model

In 2011, Lu et al. proposed a unique and interesting view on the problem of giving

citation recommendations [233]. The authors considered terms in a citation’s

context to be of a different language than terms contained in the cited document.

Hence, they argued, the different languages needed a translation. To accomplish

the translation, Lu et al. adopted the Translation Model that was introduced in

1999 by Berger and Lafferty and that is usually used for cross language search

[33]. The translation model requires a training data set to ‘learn’ the language. Lu

et al. used the citation contexts (three sentences around a citation) and the abstracts

and full-texts of the recommendation candidates for the learning, and compared

their approach against the context aware relevance model (p. 223), and the

language model. The new approach outperformed both baselines. Interestingly, the

language model performed better on the body-text than the abstract, and the

translation model performed better on the abstract than on the body-text.

In 2012, He et al. enhanced their approach through position alignment, which

enhanced the learning process by dividing a document into passages and

considering their positions in the translation [138]. Based on an offline evaluation,

the authors report a small, but statistically significant, improvement: mean average

precision increased from 0.5829 for the standard translation model to 0.5919 for

the position-aligned translation model. This is an improvement of around 1.5%.

Somewhat interesting is the effectiveness of the baseline, i.e. the language model.

In the first article, the language model achieved a mean average precision between

0.122 and 0.211, while the translation model achieved an MAP around 0.5, i.e.

228

more than twice as high [233]. In the second paper, the language model achieved

an MAP of 0.4938, while the translation model achieved 0.5829 [138]. This is

‘only’ an increase of 18%.

F.1.22 Citation Translation Model (CTM)

In 2012, Huang et al. adopted the idea of using the translation model for

recommending citations [156]. In contrast to Lu et al., Huang et al. consider cited

papers as entirely new words and give them unique IDs. In addition, they used

“inverse citation context frequency” (ICF), which they adopted from the standard

IDF measure. Finally, Huang et al. included co-citation data in their approach.

They assigned all terms in a citation context to all references of that citing paper.

Based on an offline evaluation, CTM outperforms TM and other baselines (Cite-

PLSA-LDA, Link-PLSA-LDA, and CRM). Despite the excellent performance,

Huang et al. acknowledge one significant problem of CTM, namely that only

papers can be recommended that have been cited previously.

F.1.23 Problem vs. Solution

Jiang et al. propose that are two types of relevancies, one problem-oriented

relevance, and one solution-oriented relevance [172]. Accordingly, they try to find

recommendation candidates that are most relevant to an input’s paper problem, or

most relevant to its presented solution. To do so, Jiang et al. split the papers’

abstracts into a solution and a problem part. They did this manually for 200 papers

(71% of the abstracts contained a clear distinction between problem and solution).

Each paper then was represented by two vector space models, one containing the

terms of the abstract’s problem section, and one with the terms of the abstract’s

solution section. For both representations, separate recommendations were

generated. According to their user study, with an unknown number of participants,

their approach achieved higher user satisfaction than providing a single list of

recommendations based on a combined vector space model. In addition to terms,

Jiang et al. also experimented with topics and concepts. Topics were based on

latent dirichlet allocation, concepts were based comparing n-gram terms with

social tags from CiteULike. In many scenarios, topics and concepts performed

better than single terms. The authors acknowledge that their approach requires a

lot of runtime. To reduce runtime, user models (i.e. a single input paper), were

only compared against those papers that were cited by the input paper or cited by

the cited papers, or that the input paper was citing itself or that the cited papers

were citing.

229

F.1.24 Scholar Update

Scholar Update is a recommender system by Google Scholar [128]. On Google

Scholar, researchers may create a profile listing their publications. Based on these

publications, Scholar Update finds related articles and recommends these to the

user. Related articles are based on content, the citation graph, and the authors the

user works with and cites. Scholar Update also reports to consider concept drift.

However, there are no further details available on the exact implementation of the

recommendation approach.

F.1.25 Mendeley Related Papers

Mendeley [141] offers two types of recommendations, namely content-based and

collaborative filtering based [163]. Their content-based recommender system is a

“related paper function” that shows recommendations based on a set of input

papers [163]. Similarity is measured with cosine based on TF-IDF weighting and

implemented with Lucene. Mendeley experimented with different document-fields

for their recommender system (title, abstract, social tags, mesh-terms, author

provided keywords, author name, general keywords) and combinations of the

fields. Their evaluation shows that social tags outperform all other fields (p@5:

0.45 vs. e.g. abstracts p@5: 0.27). Even the best performing combination of

several fields only achieved a precision of 0.36. There is no information provided

about the evaluation except that it was an offline cross-validation based on a

ground truth. However, since Mendeley has access to data of millions of articles

and users, it seems likely that the results have some significance. Their

collaborative filtering approach is reviewed later (p. 234).

F.1.26 SemCir

In 2012/13, Zarrinkalam and Kahani introduced an approach to calculate paper

similarity based on relational features [402] and built the recommender system

SemCir (Semantic Citation Recommendation System) based on top of it [403]104.

SemCir indexes papers based on titles, abstracts and citation context. Users

provide some text, which serves as user model. The initial candidate set is

generated by selecting the n most similar documents based on content-similarity.

104 The SemCir paper contains most of the first paper’s information and reading it should be sufficient for

most researchers.

230

All neighbor papers are included in the candidate set (cited papers, citing papers,

papers from the same venue, same author, co-cited, bibliographic coupled). Then,

each paper in the candidate set is ranked based on the multiplication of text and

relational similarity. Relational similarity is based on the same factors as being

used for extending the candidate set (citing and cited papers, number of co-

authors, etc.). The weights of the factors were learned with a genetic algorithm.

Results show that using the relational factors in addition to text similarity roughly

doubled the effectiveness compared to text similarity alone. The optimal size, i.e.

best trade-off for recall and computing time, for the initial candidate set was 25

(resulting in a total candidate set size around 3,000 wit SD=1,300). The downside

of SemCir’s approach is that it needs 38 times as much calculating time than a

text-only comparison. The authors also self-criticize that they used a citation-based

ground-truth which probably favored the citation based ranking factors. So far, the

paper only received one citation. However, we believe that this paper is worth

reading. The paper is well written, very detailed, and the approach seems

promising.

F.1.27 Clapper

In 2013, Wang et al. developed a system to recommend “classical papers” to

researchers being new to a research field, so these researchers could easily find the

most relevant standard literature in that field [383]. Wang et al. used two main

factors to rank papers retrieved via a normal search query. The first factor was

“download persistence” which describes how constantly papers accumulate

download counts over the years. They defined that classical papers are those

papers with high download persistence. The second factor was the “principle of

citation approaching” (CAF). Wang et al. observed that papers, which cite a

classical paper, tend to cite those papers that the classical paper is citing as well.

Papers with a high CAF were ranked lower than papers with a low CAF. The

authors claim that in a user study with 50 professors, and download counts

retrieved from ACM Digital Library, their approach could recommend papers that

were considered by the professors as suitable papers for beginners. Unfortunately,

the approach was not compared against any baseline. It would have been

particularly interesting to see whether “classical papers”, with constantly high

download counts, are preferred over papers with high download count that were

not accumulated constantly over a longer period of time. In addition, the user

study and the recommendation approach are described only superficially, which

reduces the significance of the results.

231

F.1.28 RefSeer

In 2013, Rokach et al. introduced RefSeer, which used machine learning based on

the Citation Translation Model (p. 228) with a number of global relevance features

[317]. Papers were ranked higher, the more citations the papers, the papers’

authors, venues, or affiliations had accumulated over the past 12 months. Rokach

et al. also considered title length, number of co-authors, number of affiliations, and

venues types for the ranking. Papers were also ranked higher if one of its authors

had co-authored with the current user, or if the user had cited the recommendation

candidate or its authors previously. Finally, textual similarity between titles and

venue names was considered. All these features were used to train a “Full Machine

Learning Method” that combined several machine learning approaches such as

LibSVM, Random Forests, and AdaBoost.

Figure 86: RefSeer website

The results showed that combining the mentioned features with the CTM lead to a

twice as high precision, and f-measure, than using CTM alone. However, runtimes

dramatically increased from 248ms (CTM) to 4.6 seconds (Full Machine

Learning), on a small CiteSeer dataset with 3,312 papers. On a CiteULike dataset

with 14,418 papers, runtime even increased to 49 seconds, while CTM required

390ms. To improve runtimes, Rokach et al. used a “Lite” machine learning which

pre-filtered 500 recommendation candidates based on CTM only, and then applied

the machine learning to rank the candidates. Consequently, runtime decreased to

232

less than a second, and precision remained almost as high as with the full machine

learning model. The paper impressively shows that simple metrics adopted from

Scientometrics can significantly improve the recommendation process.

Whether the approach is applied by RefSeer remains unclear. On RefSeer’s

website (Figure 86), users have three different modes to submit PDF files, or

queries (i.e. abstracts). It is not stated what exactly the differences between the

modes are, and which approaches are applied to generate recommendations.

F.2 Collaborative Filtering Approaches

F.2.1 Personality Diagnosis

“Personality Diagnosis” was introduced in 2000 and is a collaborative filtering

approach by D. M. Pennock and some of the CiteSeer authors, including C. Lee

Giles [295]. Their main contribution was to assume that users were rating items

with Gaussian noise and when removing the noise the ‘true’ rating became visible.

To find the true ratings, and similar users, Pennock et al. apply probability theory.

They evaluated their approach against classic collaborative filtering with Pearson

correlation and a vector-similarity based CF. The evaluation showed that vector-

similarity CF outperforms Pearson correlation CF, and that personality diagnosis

outperformed both of the baselines. The evaluation was based on the Eachmovie

dataset and a dataset from CiteSeer in which implicit ratings were inferred from

users’ actions such as downloading documents or viewing document details. The

CiteSeer dataset contained only 1,575 documents from originally 270,000 articles

because the authors removed all documents with less than 15 implicit ratings. The

authors explain that their approach should be integrated into CiteSeer soon.

However, none of the later CiteSeer papers mentioned ‘Personality Diagnosis’.

Hence, we assume the plan was never realized. Also within the research paper

recommender community, Personality Diagnosis had not much impact. To the best

of our knowledge, no other authors adopted their approach. Outside the research

paper recommender community, the article was highly influential and was cited

more than 400 times.

F.2.2 CF Based Citation Recommender

In 2002, McNee et al. wanted to apply collaborative filtering to research paper

recommendations [249]. To overcome the cold start problem, McNee at al.

presented an interesting idea. They considered papers to be users and a paper’s

citations to be votes for other papers. This way they could fill the rating-matrix,

and applied user-item and item-item CF. They compared these two approaches

against four baselines. First, with co-citation matching those papers were

233

recommended that were most often co-cited with those papers contained in the

input paper’s bibliography. Second, a naïve Bayesian classifier was used to find

related papers. Third, the title of the input paper was send as search query to

Google, and Google’s results were recommended. Fourth, content similarity (title

and abstract) was calculated between the input paper and all papers citing the

papers in input paper’s bibliography, being cited, or being co-cited. In an offline

experiment, both CF variations were two or even three times as good as the

alternatives (user-item a little bit better than item-item). However, in an online

experiment, with real users, the Google baseline performed best.

McNee et al. also showed that the way users were asked to evaluate papers,

influences their answers. For the online experiment, they asked two questions,

“Would recommendations such as these be helpful in finding related work” and

“Would recommendations such as these be helpful in finding papers to read” 105.

Results differed significantly although we would consider both questions as being

very similar. McNee et al also showed that asking users for ‘quality’ and ‘novelty’

judgments made a difference. They concluded that there is no single-best

algorithm and a recommender system should consider the usage scenario. The

paper received more than 200 citations, and is interesting to read.

F.2.3 CiteULike

CiteULike is an online reference manager providing literature recommendations

since 2009 [70], whereas the algorithms are based on research from 2008 [37]. The

authors compared two variations of item-based CF with user-based CF in an

offline experiment [37]. User-based CF performed around twice as good as the

item-based CF. Bogers and van den Bosch also found that the optimal

neighborhood size for user-based CF lies between four and eight, and for item-

based CF around 40, though precision still slightly increases for neighborhood

sizes up to 500. Unfortunately, the paper provides hardly any detail about the

algorithms, and is difficult to read. Today, on the CiteULike platform, both an

item-based and a user-based algorithm are offered separately and the user decides

which algorithm to use to receive recommendations [69]. CiteULike reported

click-through rates in their live system of 18.96% [68]. We are not sure if the item-

based approach is the item-based CF approach presented in their paper, of if it is a

new approach that is based on the co-occurrence concept (see next section).

105 Emphasis was made by us

234

F.2.4 CARES

In 2009, Yang et al. developed a recommender system for the China American

Digital Academic Library (CADAL), called CARES (CADAL Recommender

System) [392]. They used collaborative filtering and inferred implicit ratings based

on users’ access logs, and the number of pages they read. The authors would have

liked to use explicit ratings but their users were “too lazy to provide [explicit]

ratings for books“. Yang et al. experimented with two different ranking strategies

for recommendation candidates, namely a greedy and a random walk algorithm,

after similar users were determined with AP Correlation. Their results show that a

random walk based ranking performs better than a simple greedy ranking

algorithm. In addition, they report that the optimal neighborhood size was 20-30. It

remains unclear whether CARES ever was actually integrated into CADAL. The

approach was evaluated in an offline experiment, against no baseline.

F.2.5 Synthese & Sarkanto

In 2007, Vellino and Zeber proposed a “hybrid, multidimensional recommender

system” for research articles [376]. The 4-page paper contain primarily a literature

survey on recommender systems and some ideas how a hybrid multidimensional

recommender could look like. The paper was later referred to by Vellino as the

paper in which his recommender system “Synthese” was introduced (though the

term Synthese does not occur in that paper). In 2010, Vellino compared Synthese

against the bx recommender (p. 236). Instead of the hybrid multidimensional

approach, Synthese was now supposed to use the same approach as TechLens (p.

241), i.e. CF with papers interpreted as users [374]. Results in the two-page poster

include that bx’ approach, based on co-downloads, has a higher coverage than

Synthese, but semantic diversity was lower. Since the overlap between the

approaches, in terms of recommended papers, was low, Vellino concluded that

ideally both approaches should be combined. The accuracy of the two approaches

was no evaluated. A prototype of Synthese, renamed to Sarkanto, was available

until recently106, but in the past few months, the website was not available.

F.2.6 Mendeley Suggest

Mendeley Suggest was introduced in 2012 by Kris Jack in several presentations

[161–163]. Mendeley Suggest uses Apache Mahout for implementing item-based

collaborative filtering, and is only available to Mendeley’s premium users. Since

106 http//www.lab.cisti-icist.nrc-cnrc.gc.ca/Sarkanto/

235

Mendeley Suggest is using a (slightly modified) out-of-the-box solution, it cannot

shine with novel recommendation approaches but some interesting insights about

running a large-scale recommender system for research papers. Among others,

Jack reports that precision increased over time (0.025 in the beginning, 0.4 after

six months); precision strongly depended on a user’s library size (p@10=0.08 for

20 articles, p=0.40 for 140 articles), and precision depended on the similarity

metric being used (1st: co-occurrence; 2nd: Log Likelihood; 3rd: Tanimoto

coefficient; 4th: Cosine; 5th: Euclidian Distance; 6th: City Block). Kris was also first

who reported about the monetary costs required to run a recommender system –

which are surprisingly low (cf. 3.4.2, p. 52). The slides also include detailed

information about the general architecture and implementation of Mendeley

Suggest.

F.2.7 Can’t See the Forest for the Trees

In 2013, Caragea, Lee Giles, et al. used singular value decomposition (SVD) on

the citation graph, and evaluated their approach against several CF variations [55].

In their 2-page poster, the authors described their approach in a single paragraph,

which leaves the reader with only a rudimentary idea of the approach. Since the

authors use a citation graph, containing papers and citations, it remains also

unclear how the collaborative filtering approaches and user similarities

respectively were computed. In addition, the test collection from CiteSeer was

strongly reduced which makes it difficult to judge the validity of the results. The

authors removed papers having less than ten and more than 100 citations from the

collection, as well as papers citing less than 15 and more than 50 papers.

Therefore, from 1.3 million citing papers, only 16 thousand papers remained in the

test collection. We doubt that such a pruned collection may produce representative

results.

F.3 Co-occurrence Approaches

F.3.1 BibTiP

BibTip was originally developed by the University of Karlsruhe, Germany and

uses co-views for determining related papers [266]. The authors adopt the ‘Repeat-

Buying Theory’ which was developed by Andrew Ehrenberg in the 1950’s to

explain consumer behavior [110]. Since BibTip uses co-views, no true user model

is built. Instead, document similarities are calculated offline, and when a user

looks at a paper, papers being previously co-viewed with that paper are

recommended. The earliest BibTip papers from 2001 present only some general

ideas [111, 113]. In 2002, more details were published with a first evaluation [109,

110] and an overview of BibTip’s architecture [112]. Several papers more

236

followed in the next years [38, 101, 108, 115–118, 120, 132, 265, 266, 279].

Although the BibTip team published many papers, their work is surprisingly little

acknowledged in the community. Most of their papers have only few citations.

This might be because BibTip uses rather a simple approach and as such, the

published papers are not particularly groundbreaking. However, it should be noted

that the BibTip team around Andreas Geyer-Schulz were probably first to apply

the concept of co-occurrences to research-paper recommender systems. BibTip is

also one of the few recommender systems that is applied on a large scale. Today,

BibTip is a commercial system available via a Web Service that can be purchased

by digital libraries who want to provide literature recommendations to their

visitors. The viewing behavior is collected over all libraries using BibTip. This

results in observing more than one million downloads per day [189]. The authors c

is clicked out of the delivered recommendation lists (containing up to 13

recommendations) [120, 189]. Interestingly, this value is similar to the one

reported by PubMed which is using a completely different approach (p. 220)

F.3.2 National Sun Yat-sen University

In 2003, the National Sun Yat-sen University in Taiwan experimented with co-

occurrences and tried different methods for building user models [159]. The initial

situation was that a user submitted a search query to the university’s search

engine. In one approach, all papers contained in the search result were utilized and

those papers that most often co-occurred with those in the search results were

recommended. In another approach, only those papers whose detail-page a user

browsed during one session were utilized. The latter one performed best. The

authors used association rules and a ‘hypergraph’ approach to determine relevant

papers. Their association rule is a simple co-occurrence measure normalized by

time. The “hypergraph” approach compares user sessions with each other based on

cosine similarity. The authors conclude that the hypergraph approach performs

better than the simple association rule approach. The approach does not seem too

spectacular. However, it shows that also co-occurrence based approaches can

utilize user models that contain more than one single input paper.

F.3.3 bx by Exlibris

bx is a recommender system run by ExLibris and similar to BibTip. As BibTip, bx

is a commercial recommender system available via a Web Service, and, as BibTip,

bx utilizes co-views of research papers. Sadly, there is only little detail on the

exact algorithms, which apparently are patent-pending [93]. In the paper from

which bx originated, only superficial information can be found [41], but it seems

that bx is applying a simple count of co-occurrences to provide recommendations.

237

Some presentation slides from 2011 provide information about the effectiveness of

bx [365]. Click-through rates are between 3% and 10% depending on the

institution in which recommendations are show (bx is providing more than 1,000

institutions with recommendations) [93]. This is an interesting result, because it

shows that the same recommendation algorithm may lead to different results when

they are applied at different universities, possibly in different webpage layouts,

and possibly to students with different backgrounds.

F.3.4 Co-Citations vs. Co-Downloads

For his Master’s thesis, Stefan Pohl evaluated in 2007 whether recommendations

based on co-citations or co-downloads were more effective [301]. He was

motivated by the fact that extracting citations from articles is time consuming and

error-prone and it may take years before articles are cited and become available as

recommendation candidates. His most interesting finding was that after around 26

months, recommendations based on co–citations became more effective than those

based on co-downloads. Pohl also pointed out that about two thirds of all papers

had no co-citation at all and those who had usually had only one or two of them. In

contrast, “almost all” papers had at least one co-download. Pohl concluded that co-

citation approaches make only sense for few papers after a long time after

publication. The most important findings of Pohl’s thesis are summarized in a two-

page poster [302].

F.3.5 Scienstein and Citation Proximity Analysis

In 2009, Gipp et al. presented Scienstein, a concept for a research paper

recommender system with several ideas how recommendations could be made

[123]. The poster also introduced a concept called ‘citation proximity analysis’

(CPA) which was later presented in detail by Gipp and Beel in another paper

[122]. CPA is an extension of co-citation analysis taking into account the distance

of two citations in a document. For instance, if two papers are cited in the same

sentence, their relatedness is assumed to be higher than that of two papers being

cited in two different paragraphs. Based on a small user study, the authors report

that twice as many users liked CPA-based recommendations than

recommendations based on classic co-citation analysis.

F.4 Graph Based Approaches

F.4.1 Spreading activation in intra-book recommendations

In 2000, Woodruff et al. tackled the problem that a researcher reads a book, which

contains several articles, but does not know which articles of the book to read

[388]. Woodruff et al. imagined that users picked at least one article they like, and

238

related articles in the book, or related articles being cited by articles in the book,

would be recommended. They built a graph, in which papers were connected by

citations, bibliographic coupling strength, co-citation strength, text similarity and

several combinations. Given a single input paper, recommendation candidates

were found through spreading activation in the graph. Namely, they applied the

Leaky Capacitor Model, which was already introduced in 1984 [8]. Based on an

evaluation with only three participants and a single book (containing 43 articles,

and 676 cited articles) Woodruff et al. claimed that spreading activation achieved

the best results, compared to a standard CBF. Results were particularly effective

when the graph was based on papers’ text similarity and citation based metrics.

F.4.2 A two-layer graph approach

Usually, recommender systems use ‘flat’ graphs (if they are using graphs at all).

Huang et al. proposed a two-layer graph model for a Chinese book recommender

in a digital library [158]. In the user-layer, users are modeled and their similarities

to each other based on demographic data such as age, education, gender, and

number of children. In the book-layer, similarities between books are modeled,

based on the books’ content and attributes. For content similarity, title, keywords,

foreword, and introduction were analyzed. Utilized attributes included the number

of pages, layout information, publisher, weight, size, and several more. How

exactly demographics and book attributes were utilized to calculate similarities

was not explained. Both layers were connected by the purchases of books the users

made. With this model, Huang et al. were able to apply content-based filtering,

collaborative filtering, and a combination of both. For content-based filtering,

those books were recommended that were similar to the books purchased by a

user. For collaborative filtering, those books were recommended that were

purchased by similar users. In a hybrid approach they calculated user-book

similarities over three degrees in the graph. Additionally, they applied spreading

activation based on Hopfield’s Net algorithm. Overall, the hybrid approach

performed best and no statistically significant difference was found between CF

and CBF.

F.4.3 PaperRank

In 2006, Gori and Pucci applied a PageRank-like Random-Walk algorithm to the

citation network and called this approach PaperRank [129]. They expected a user

to provide a manuscript containing already some citation to papers. The citations

were taken as starting point in the citation graph. Gori and Pucci claim a

precision@20 of 100% (which seems questionable to us), and did not evaluate

PaperRank against any baseline. This shortcoming was made up for in 2012 when

239

Küçüktunç et al. tested PaperRank against several baselines [195]. They confirmed

a good – for some scenarios even the best – precision compared against Katz, co-

citation strength, bibliographic coupling strength, CC-IDF (p. 217), DaKatz (p.

241), and DaRWR (p. 241).

F.4.4 Multiple Graphs

In 2008 Zhou, Lee Giles, et al. used machine learning (label propagation) on

several graphs to generate research paper recommendations [412]. Utilized graphs

were the citation graph (papers->papers), the author graph (researchers->papers)

which included papers an author had authored and cited, and the venue graph

(venues->papers). Zhou et al. evaluated their approach against a SVD based CF

(on the author-document matrix) and a simple graph Laplacian. They report 3-5

times better results than with Laplacian and 2.5 times better results than with SVD.

Zhou at al consider their approach to be an item-based CF approach, we would

rather classify it as a graph based approach. The paper is very mathematical and

provides many details about graph calculations.

F.4.5 Curated Citation Networks & Path Ranking Algorithm

Andrew Arnold and William W. Cohen are from the biological sciences and

focused in 2009 on the problem of predicting genes and proteins a researcher

would write about next [9]. They modeled authors, papers and genes in a graph

with various connections. Authors were connected to the papers they had authored

and to their co-authors. Papers were connected to papers they cited or were cited

by, and to genes they mentioned. Genes were additionally connected to each other

when they were related (information about relatedness was retrieved from special

gene databases). Once a user specified one or several papers of interests, a random

walk was performed in the graph to determine the most relevant genes to

recommend. Arnold and Cohen experimented with different variations of their

graph and the findings are interesting not only for researchers in the field of

biology. Among others, they found that performing a query based on a paper’s

first author is more effective than on the paper’s last author. Leaving out some

connections in the graph (e.g. co-authorship and related genes) also increased

accuracy. This shows that it is not always optimal to utilize all available

information.

One year later, Cohen and Lao proposed the Path Ranking Algorithm (PRA) to

recommend papers, venues, experts (i.e. authors), and genes [210]. In contrast to

their previous work about curated citation networks from 2009, the graph also

contained title-words, venues, and publication years. They used machine learning

to learn the weights of the edges in the graph. Compared to an untrained RWR

240

(with edge-weight=1) PRA performed significantly better for most of the tasks.

Interesting to note is that the same algorithm, i.e. PRA, performs differently on

different recommendation tasks. For instance, mean average precision for expert

recommendation was 7.2% but 16.0% for papers. The original paper dates to 2010

[210]. In 2012, the PhD thesis of Lao, which was supervised by Cohen, was

published with more details on the approach [206]. There are also a few more

papers and posters, some being unpublished [207–209].

F.4.6 Local and Global Relation Strength

Liang at al. proposed “Local Relation Strength” (LRS) and “Global Relation

Strength” (GRS) in a citation graph to determine relatedness of papers [225]. LRS

expresses how strong citing and cited papers are related. The strength is based on

the “importance” of the citation, the “surrounding citation environment”, and the

“temporal distance”. How exactly these values are calculated, is described only

vaguely. GRS is essentially the Katz measure, only that Katz typically assumes a

weight of 1 between two nodes in a graph, and GRS uses LRS as weight of the

edges. Both LRS and GRS perform better than several baselines (CC-IDF, co-

citation strength, bibliographic coupling strength, HITS, and Katz).

F.4.7 Network-Aware Popularity

Popularity-measures such as PageRank, or a simple citation count, typically are

calculated based on all papers in the citation graph. Baez et al. proposed to

calculate a ‘network-aware’ popularity. This measure calculates e.g. citation

counts only based on the citations from researchers being in the personal network

related to the user (the personal network could be populated e.g. by co-authorship)

[11]. Baez et al. present several, rather trivial, ideas for measuring such a network-

aware popularity. For instance, one metric defines a paper as being the more

popular the more researchers in a user’s network authored or cited the paper. Baez

et al. propose different types of graphs, for instance the venue, co-authorship, and

topic graph. In their evaluation, they only seem to consider the co-authorship

network. Their evaluation shows that their network-aware popularity performs

better than an overall popularity. However, the authors evaluated their approach

only against a single overall popularity baseline (absolute citation and author

count). We also see a major problem with network-aware popularity: Citation

network usually are already sparse. Reducing the citation network to related

authors or papers will increase sparsity even further.

241

F.4.8 TheAdvisor with direction aware Katz and RWR (daKatz & daRWR)

TheAdvisor107 was recently developed (2012/13) and is one of the few

recommender systems being publicly available without prior registration. It allows

users to upload a BibTeX file with a set of references, and specifying whether

recommended papers should be more recent or more traditional. TheAdvisor was

initially released in January 2012 and the first paper was published as pre-print on

arXiv.org [195]. An ‘official’ and briefer version followed some months later

[193]. It is not clear how recommendations eventually are generated in

TheAdvisor, but in their papers, Küçüktunç et al. proposed two approaches. One is

based on Katz, the other one on PaperRank, i.e. RWR. They modified both

approaches so they consider the direction of a citation and hence called their

approaches direction aware Katz and RWR (daKatz and daRWR). They conducted

an extensive evaluation with different scenarios (i.e. different weight on recent and

traditional papers) and compared daKatz and daRWR against Katz, PaperRank

(RWR), co-citation and bibliographic coupling strength, and CC-IDF. In most

scenarios, daKatz and daRWR outperformed the baselines.

Küçüktunç et al. also published detailed information about the technical

infrastructure and run-times of TheAdvisor in a conference paper [191] and an

extensive pre-print of a forthcoming journal paper [192]. An approach for

diversifying results, based on daRWR, is briefly presented in a poster [196], and in

more detail in a pre-print of a journal article [194]. Küçüktunç et al. also report to

have experimented with user feedback but results are omitted in their paper [195],

and we could not find a paper that present those results.

F.5 Hybrid Recommendation Approaches

F.5.1 TechLens

In 2004, Torres, McNee, and three others introduced TechLens and ten different

algorithms to generate research paper recommendations [368]. The algorithms

were mainly adopted from Robin Burke [50] and consisted of three CBF

variations, two CF variations, and five hybrid approaches.

Content-Based Filtering: Pure-CBF served as baseline, being the standard

CBF in which a term-based user model – in case of TechLens, terms from

a single input paper – is compared with the recommendation candidates. In

107 http://theadvisor.osu.edu/

http://theadvisor.osu.edu/

242

CBF-Separated, for each paper being cited by the input paper, similar

papers are determined separately and at the end the different

recommendation lists are merged and presented to the user. In CBF-

Combined, terms of the input paper and terms of all papers being cited by

the input paper are combined in the user model. Then, those papers being

most similar to this user model were recommended.

Collaborative Filtering: Pure-CF served as another baseline and

represented the collaborative filtering approach from McNee et al., in

which papers were interpreted as users, and citations as votes [249]. In

Denser-CF, citations of the input paper were additionally included in the

user model.

Hybrid: With Pure-CF->CBF Separated, recommendations were first

created with Pure-CF. These recommendations were then used as input

documents for CBF-Separated. In a similar way Pure-CF-

>CBF Combined, CBF Separated->Pure-CF, and CBF-Combined->Pure-

CF were used to generate recommendations. Fusion created

recommendations with both, CBF, and CF independently, and then

merged both recommendation lists.

Torres et al. report to have evaluated all ten approaches, but results were only

presented for the top-5 approaches. In an offline evaluation, the CBF approaches

performed worst (CBF-Separated better than CBF-Combined), and Pure-CF

performed best (even better than the hybrid approaches). The approaches were

also evaluated with a user study and Torres et al. distinguished between different

reading purposes (novel, survey, authority, introductory). As in 2002, no single-

best algorithm could be found. For instance, Pure-CF performed best for

authoritative and novel papers. For survey papers and introductory papers, CF

performed worst and CBF-Separated was best. In terms of overall user

satisfaction, CF delivered unsatisfactory results (second worst out of the five

algorithms for which details were provided), and CBF-Separated performed best.

Unfortunately, the Google-baseline, which performed best in the 2002-paper, was

not used in this evaluation.

In 2006, McNee et al. criticized that researchers were concentrating too much on

recommender’s accuracy but ignoring users’ actual needs [250]. In a user study

243

with around 138 participants108, they evaluated whether different algorithms

performed differently for different recommendation tasks. The study is similar to

the two previous papers but while the two previous papers covered users’ needs

only superficially, the 2006-paper investigates this issue in detail. McNee at al.

compared their citation based CF approach, CBF and a PLSI and Naïve Bayesian

approach with each other. The latter two approaches performed quite poor in

general. However, for CF and CBF it was shown that depending on the task, user

satisfaction differed for the two algorithms. Interestingly, the overall difference in

satisfaction for CF and CBF was rather small. This result contradicts the previous

finding, in which users were not very satisfied with CF.

In 2010, some of the TechLens authors re-evaluated some of the TechLens

approaches and some newly developed approaches with an offline evaluation [90].

The novel idea was to weight implicit ratings for item-based CF, which were

inferred from the citation network, based on PageRank, SALSA, and HITS. In

addition, Ekstrand et al. evaluated several CBF approaches for which they used

PageRank, SALSA, and HITS in the ranking, and some hybrid approaches. They

combined various factors and evaluated 177 algorithms in total. Using SALSA and

PageRank for CF improved performance, compared to plain CF, while HITS did

not increase performance. Interestingly, for CBF, results were just the opposite.

Here, a HITS enhanced ranking achieved the highest performance. Overall, CF

(with whatever weighting) outperformed CBF, and the hybrid approaches. As

such, the results of this offline evaluation confirmed the results presented in the

2004 paper. In an additional user study with 19 participants, Ekstrand et al.

evaluated three of the approaches, namely PageRank weighted CF, CBF with

HITS weighting, and a CBF-CF hybrid approach. Similar to the offline

experiment, CF outperformed the other approaches, and CBF performed worst. It

is interesting to note that results from the user study are exactly the opposite as in

the 2004 user-study. Although it was the same evaluation scenario (creating

introductory reading lists), CBF performed best in the 2004 paper, and CF

performed worst. We were also confused that in the 2010 paper, item-based CF

and CBF-Combined were primarily used, although in 2004, user-CF (slightly)

outperformed item-CF, and CBF-Separated outperformed CBF-Combined. Again,

the Google baseline from 2002 was missing.

108 The exact number of study participants remains unclear. Once McNee et al write there had been 138

participants, and once they write there had been 117 professors, 18 students, and 7 others, which adds up to 142.

244

Interesting is also a paper published by Dong et al. [87] who are not affiliated with

TechLens. In 2009, Dong et al. evaluated seven of the ten algorithms presented by

TechLens in 2004. In Dong et al.’s offline-evaluation, Pure-CF is only fifth best

(out of seven), while Pure-CF was best in the TechLens offline evaluations. In

Dong et al.’s offline evaluation, all three CBF approaches performed better than

CF or hybrid approaches, and among the CBF approaches, CBF-Combined

performed better than CBF-Separated. These results contradict the results from

Torres et al. [368]. There is no obvious reason why results would differ so much.

The approaches seem identical, the way the offline experiment was conducted

seems to be similar and both experiments were conducted on a CiteSeer dataset.

The only difference we found is that Torres et al. removed papers with less than

three citations from the corpus, and Dong et al. removed papers with less than two

citations from the corpus109. However, this could only explain why rankings for CF

and CBF differed, but not why in Torres et al. evaluation CBF-Separated performs

better than CBF-Combined, and Dong et al. report the opposite.

F.5.2 Papyres

Papyres is a software tool to support researchers in managing their literature [271],

developed by Amine Naak as part of his Master’s thesis [269]. In 2009, Papyres

integrated a research paper recommender system [270]. Naak’s work was

motivated by the idea that most researchers were only interested in certain parts of

a paper. Therefore, Naak et al. allowed users providing different explicit ratings

per paper for the paper’s contribution, originality, readability, technical quality,

etc. These ratings were used for collaborative filtering in combination with

content-based filtering. Because Papyres had not enough users, Naak et al.

randomly created artificial users, randomly assigned papers to them, and randomly

created ratings to evaluate their CF variations based on multiple ratings. Besides

this questionable evaluation technique, the paper provides little detail on how CF

and CBF are combined. In an additional user study with 83 participants, Papyrus

was evaluated and achieved an average rating of 4.43 (out of 5) [271]. However,

Papyrus was not evaluated against any baseline. As such, the average rating was

not very meaningful.

109 It should be noted that the paper from Dong et al. is not very well written, and when reading the paper, the

impression occurs that Dong et al. had invented the presented algorithms and not TechLens (some might argue

Dong et al. plagiarized)

245

G PDF Title Extraction

G.1 SciPlore Xtract110

G.1.1 Introduction

Extracting the title from PDF documents is one of the prerequisites for many tasks

in information retrieval. Among others, (academic) search engines need to identify

PDF files found on the Web. One possibility to identify a PDF file is extracting the

title directly from the PDF’s metadata. However, often the PDF metadata is

incorrect or missing. Therefore, what is often tried is to extract the title from the

PDFs’ full text.

Usually, machine-learning approaches such as Support Vector Machines (SVM),

Hidden Markov Models and Conditional Random Fields are used for extracting

titles from a document’s full text. According to studies, the existing approaches

achieve excellent accuracy, significantly above 90%, sometimes close to 100%

[136, 154, 294]. However, all existing approaches for extracting titles from PDF

files have two shortcomings. First, they are expensive in terms of runtime. Second,

they usually convert PDF files to plain text and lose all style information such as

font size.

For our academic search engine SciPlore.org we developed SciPlore Xtract, a tool

applying rule based heuristics to extract titles from PDF files. In this chapter, we

present this tool, the applied heuristics, and an evaluation.

G.1.2 SciPlore Xtract

SciPlore Xtract is an open source Java program that is based on pdftohtml111 and

runs on Windows, Linux, and MacOS. The basic idea is to identify a title based on

the rule that it will be the largest font on the upper first third on the first page.

In the first step, SciPlore Xtract converts the entire PDF to an XML file. In

contrast to many other converters, SciPlore Xtract keeps all layout information

110 This chapter has been published as: Beel, Joeran, Bela Gipp, Ammar Shaker, and Nick Friedrich. “SciPlore

Xtract: Extracting Titles from Scientific PDF Documents by Analyzing Style Information (Font Size).” In

Research and Advanced Technology for Digital Libraries, Proceedings of the 14th European Conference on
Digital Libraries (ECDL’10), edited by M. Lalmas, J. Jose, A. Rauber, F. Sebastiani, and I. Frommholz,

6273:413–416. Lecture Notes of Computer Science (LNCS). Glasgow (UK): Springer, 2010.

111 http://www.pdftohtml.sourceforge.net

246

regarding text size and text position. Figure 88 shows an example XML output file

of the PDF showed in Figure 87. Lines 6 to 12 of the XML file show all font sizes

that are used in the entire document (in this case it is all “Times” in a size between

7 and 22 points). Below this, each line of the original PDF file is stated including

layout information such as the exact position in which the line starts, and which

font is used.

Figure 87: Example PDF

SciPlore Xtract now simply needs to identify the largest font type (in the example

the font with the ID=0). Which text uses this font type on the first page is then

identified and to assumed to be the title.

Figure 88: Example XML Output

G.1.3 Methodology

In an experiment, titles of 1000 PDF files were extracted with SciPlore Xtract.

Then, titles from the same PDFs were extracted with a Support Vector Machine

from CiteSeer [136] to compare results. CiteSeer’s tool is written in Perl and based

on SVM Light112 which is written in C. As CiteSeer’s SVM needs plain text, the

112 http://svmlight.joachims.org/

247

PDFs were converted once with PDFBox113 and once with pdftotext114 as these are

the tools recommended by CiteSeer. It was then checked for each PDF if the title

was correctly extracted by SciPlore Xtract and CiteSeer’s SVM (for both the

pdftohtml text file and the PDFBox text file). If the title contained slight errors the

title was still considered as being identified correctly. ‘Slight errors’ include

wrongly encoded special characters or, for instance, the inclusion of single

characters such as ‘*’ at the end of the title.

The PDFs analyzed were a random sample from our SciPlore.org database, a

scientific (web based) search engine. A title was seen as being correctly extracted

when either the main title or both the main title and the sub-title (if existent) were

correctly extracted. The analyzed PDFs were not always scientific. It occurred that

PDFs represented other kind of documents such as websites or PowerPoint

presentations. However, we consider the collection to be realistic for an academic

search engine scenario.

G.1.4 Results

From 1000 PDFs, 307 could not be processed by SciPlore Xtract. Apparently,

SciPlore Xtract (respectively pdftohtml) struggles with PDFs that consist of

scanned images on which OCR has been applied. For further analysis only the

remaining 693 PDFs were used. We consider this legitimate as the purpose of our

experiment was not to evaluate SciPlore Xtract, but the applied rule based

heuristic.

For 54 of the 693 PDFs (7.8%), titles could neither be extracted correctly by

SciPlore Xtract nor CiteSeer’s SVM. Only 160 (23.1%) of the titles were correctly

identified by all three approaches. Overall, SciPlore Xtract extracted titles of 540

PDFs correctly (77.9%). CiteSeer’s SVM applied to pdftotext identified 481 titles

correctly (69.4%). CiteSeer’s SVM applied to PDFBox extracted 448 titles

correctly (64.6%). Table 1 shows all these results in an overview.

When only completely correct titles are compared, SciPlore Xtract performs even

better. It extracted 528 (76.2%) titles completely correct, while CiteSeer’s SVM

extracted only 406 (58.6%) respectively 370 (53.4%) completely correct.

113 http://pdfbox.apache.org/

114 http://www.foolabs.com/xpdf/download.html

248

Table 18: Title extraction of 693 PDF files

SciPlore Xtract required 8:19 minutes for extracting the titles. SVM needed 57:26

minutes for extracting the titles from the plain text files (this does not include the

time to convert the PDFs to text), which is 6.9 times longer. However, we need to

emphasize that these numbers are only comparable to a limited extent. CiteSeer’s

SVM extracts not only the title but also other header data such as the authors and

CiteSeer’s SVM is written in C and Perl while SciPlore Xtract is written in Java.

G.1.5 Discussion & Summary

All three tests show significantly worse results than the often claimed close-to-

100% accuracies. Our tests showed (1) that style information such as font size is

suitable in many cases to extract titles from PDF files (in our experiment in

77.9%). Surprisingly, our simple rule based heuristic performed better than a

support vector machine. However, it could be that with other text to PDF

converters, better results may be obtained by the SVM. CiteSeer states to use a

commercial tool to convert PDFs to text and recommends PDFBox and pdftotext

only as secondary choice. Our tests also showed (2) that runtime of the rule based

heuristic was better (8:19 min) than SVM (57:26). However, these numbers are

only limitedly comparable due to various reasons.

In next steps, we will analyze why many PDFs could not be converted (30.7%)

and in which cases the heuristics could not identify titles correctly. The rule based

heuristic also needs to be compared to other approaches such as Conditional

Random Fields and Hidden Markov Models. We also intend to take a closer look

at the other studies and investigate why they achieve accuracies of around 90%,

while in our test the SVM achieved significantly lower accuracies. In the long run,

machine learning algorithms probably should be combined with our rule based

heuristic. We assume that this will deliver the best results. It also needs to be

investigated how different approaches with different languages. Existing machine

learning approaches mostly are trained with English documents. It might be that

our approach will outperform machine learning approaches even more

significantly with non-English documents as style information is language-

independent (at least for western languages).

SciPlore Xtract 528 76.2% 12 1.7% 540 77.9%

CiteSeer SVM +

pdftotext 406 58.6% 75 10.8% 481 69.4%

CiteSeer SVM +

PDFBox 370 53.4% 78 11.3% 448 64.6%

Correct TotalSlight Errors

249

Summarized, despite the issue that many PDFs could not be converted, the rule-

based heuristic we introduced, delivers good results in extracting titles from

scientific PDFs (77.9% accuracy). Surprisingly, this simple rule based heuristic

performs better than a Support Vector Machine based approach.

Our dataset (PDFs, software, results) is available upon request so that other

researchers can evaluate our heuristics and do further research.

G.2 Docear’s PDF Inspector115

G.2.1 Introduction

Several applications in the field of Academia require extracting titles from PDF

files. For instance, academic search engines identify PDFs found on the Web, and

reference managers such as Mendeley and Zotero extract titles (and other

metadata) from PDFs to help users creating bibliographies. In the ideal case, a

PDF’s title is stored in the PDF’s metadata and can easily be retrieved with

standard PDF libraries (e.g. PDFBox, jPod, or iText). However, often a title is not

available via the PDF’s metadata. To retrieve a title anyway, the full-text of a PDF

must be analyzed.

In the past years, several tools used machine learning to identify titles from PDFs

[75, 136, 154, 294], some of them being open source. However, the recently

developed “SciPlore Xtract” [20] showed that a simple heuristic outperformed

machine learning approaches. SciPlore Xtract extracted the largest font from the

first page of a PDF and assumed this to be the title. Although researchers often

claim accuracies of around 90% for title extraction [136, 154, 294], we recently

showed that under “real-world” conditions, accuracies are rather between 50% to

70% [20].

All solutions have some shortcomings. Either they are proprietary solutions being

not freely available (Mendeley), have problems in processing PDF files that do not

comply 100% to the PDF standard (SciPlore Xtract), don’t process PDFs at all and

require third party tools (ParsCit), are rather slow and achieve low accuracies

(ParsCit), are not available for all operating systems, or are available only as

stand-alone tools which cannot be easily integrated into other applications.

115 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Christoph Müller.

“Docears PDF Inspector: Title Extraction from PDF files.” In Proceedings of the 13th ACM/IEEE-CS Joint

Conference on Digital Libraries (JCDL’13), 443–444. ACM, 2013.

250

G.2.2 Docear’s PDF Inspector

We developed “Docear’s PDF Inspector” which identifies titles from (academic)

PDF files and does not suffer from the aforementioned shortcomings. Namely,

Docear’s PDF Inspector (a) achieves good accuracies with excellent run times (see

next section for details) (b) can be used as library by other JAVA applications

which means other tools can easily integrate Docear’s PDF Inspector (c) can be

used as a stand-alone application that returns a PDF’s title on the command line or

stores the data into a CSV file (Figure 89) (d) can process several PDFs in a batch

(e) can process all PDF files of all PDF versions, including those with minor

deviations from the PDF standard. In the rare cases that a PDF cannot be parsed

the title from a PDFs metadata is returned (if available) (f) is written 100% in

JAVA 1.6 which means Docear’s PDF Inspector runs on any major operating

system, including Windows, Linux, and MacOS, without any other tools required

(besides the JAVA runtime environment, of course) (g) is released under the GNU

General Public License (GPL) 2 or later, which means it is completely free to use

and its source code can be downloaded and modified by anyone. Both source code

and compiled library can be found at http://www.docear.org.

Figure 89: Output CSV opened in Microsoft Excel

Via command line, Docear’s PDF Inspector is started with java -jar

PdfInspector.jar [OPTION][FILE] and both options and files can be specified

multiple times. Available options are ‘header’ which includes a PDF’s header

in the output, ‘name’ which includes the file name, ‘time’ includes the time

required for processing the PDF, ‘out <arg>’ specifies the file to write to,

‘outappend’ appends the output to an existing file instead of overwriting it,

and ‘delimiter’ specifies how fields are separated in the CSV file. The title

extraction is performed in the same way as SciPlore Xtract does [20]: the largest

font on the first page that is not exceeding eight lines is assumed to be the title. For

processing PDF files the PDF library jPod is used.

http://www.docear.org/

251

G.2.3 Methodology

To evaluate the performance of Docear’s PDF Inspector we created a test

collection of 500 PDF files. To have a PDF collection that contains various

formats of academic articles we sent 500 search queries to Google Scholar and

from the result pages (each with 100 entries) we randomly downloaded one paper.

57 PDFs were removed from the collection because they had no title or were no

academic articles at all, i.e. 443 articles remained for the evaluation. The search

queries were randomly generated from words contained in the mind maps of the

users of our literature management software Docear [18]. We did not conduct a

detailed analysis of the downloaded papers but it appeared to us that most papers

were written in English, and some in German, French and Spanish. Papers were

from various disciplines (computer science, psychology, biology, social sciences,

business, etc.) and there was a very high variety of different formats of the articles.

The collection of 500 PDFs is available upon request, so other researchers can use

this PDF collection for their research and making their results comparable to ours.

We also publish our research data, i.e. the extracted titles and charts we created, on

http://labs.docear.org.

We evaluated Docear’s PDF Inspector against SciPlore Xtract and ParsCit to have

a comparison of how good the achieved results are. Because ParsCit cannot

process PDF files by its own, we converted PDFs to plain text with PDFBox and

jPod and run ParsCit on both text sets. If an extracted title was identical to the

actual title, we classified the result as “exact match”. If the extracted title was a

substring of the actual title we classified the result as “partly match”. Such a partly

match occurred, for instance, when a tool failed to extract a PDF’s sub-title. For

both, exact and partly match comparisons, we ignored spaces and special

characters.

Some PDFs caused parsing errors probably because they did not comply 100%

with the PDF standard. For SciPlore Xtract and PDFBox (and hence ParsCit) this

problem was most apparent: 35.21% (SciPlore) and 20.77% (PDFBox) of the 443

PDFs could not be parsed at all, for jPod the error was only 5.19%. While we

consider the original test collection to be representative for a real-world scenario

that applications such as academic search engines or reference managers face, we

also wanted to have a test collection that could be processed by all tools, to

evaluate the effectiveness of the title extraction algorithms (ignoring any PDF

parsing problems). Therefore, we inferred a ‘reduced test collection’ by removing

all PDFs from the original test collection which couldn’t be processed by at least

one of the tools. This resulted in a subset of 278 PDFs.

http://labs.docear.org/

252

G.2.4 Results

The results we present in this section also show how often titles from Google

Scholar were accurate. We need to emphasize that accuracies from Google Scholar

are not comparable with results from the other tools evaluated because Google

Scholar often receives metadata directly from the publishers. That means, Google

Scholar does not always extract metadata from PDFs. We provided these results

only to show that even Google Scholar seems to have problems with extracting

titles in some cases.

Docear’s achieves the highest accuracies (Figure 90). For our standard test

collection Docear’s PDF Inspector outperforms the second best tool (SciPlore

Xtract) notably. Docear extracts 65.01% of the titles exactly, i.e. without any

errors, while SciPlore Xtract extracts only 50.34% accurately. ParsCit performs

worst with an accuracy of 37.25% (PDFBox) and 36.79% (jPod). Docear also

performs best measured by ‘partly matches’ with an accuracy of 74.04% (SciPlore

52.14%; ParsCit 38.83% and 36.79%).

Looking at the reduced test collection the picture slightly changes. Now, Docear

and SciPlore perform about the same. Docear extracts 73.38% of the titles

flawlessly, SciPlore 77.70%. Based on ‘partly matches’ Docear extracts 82.01% of

the titles correctly, SciPlore 80.58% (differences are statistically not significant).

ParsCit still performs far worse with accuracies around 50%.

Figure 90: Accuracies of the tools on the two test collections

Docear’s PDF Inspector also performs best in terms of runtime. On average

(mean), Docear’s PDF Inspector needs 50ms to extract a title from a PDF while

253

SciPlore Xtract needs 428ms and ParsCit 2965ms with the PDFBox library and

1786ms with jPod (Table 19). The comparison is not completely fair because

ParsCit does not only extract the title (as Docear does) but also other metadata

such as authors. However, for those users being only interested in the title,

Docear’s PDF Inspector identifies a title definitely fastest.

Table 19: Average runtimes (in milliseconds) per PDF

Summarized, from a user perspective, Docear’s PDF Inspector is the most

effective tool. It is about 50% more effective than SciPlore Xtract and almost

twice as effective as ParsCit for a PDF collection we consider representative for

real-world scenarios. In addition, Docear’s PDF Inspector is around 40 to 100

times faster than ParsCit and eight times as fast as SciPlore Xtract which uses

basically the same heuristic. From a research perspective (i.e. on the reduced data

set), the simple heuristic applied by Docear and SciPlore is around 50% more

effective than the machine learning approach applied by ParsCit.

Final note: A recent study showed very good results for some tools which we were

not aware of at the time of our evaluation [227]. Otherwise, we would have tested

them against Docear’s PDF Inspector.

Docear SciPlore ParsCit (PDFBox) ParsCit (jPod)

M ean 50 428 2965 1786

Std. Dev. 61 611 1383 1332

M edian 23 352 2706 1394

M ax 475 17667 15131 17585

255

H Impact of User Demographics116

H.1 Introduction

There are more than one hundred research articles on research paper recommender

systems, and even more on recommender systems in general. Many of them report

on new recommendation approaches and their effectiveness. For instance, Papyrus

is supposed to have a precision around 20% [270]; Quickstep’s approach is

supposed to have a precision around 10% [261]; and Jomsri et al. claim an

accuracy of 91.66% for their research paper recommender system [173].

Unfortunately, results cannot be compared with each other because researchers

used different evaluation methods, metrics, and data sets.

We believe there is another factor influencing the comparability which has

received too little attention: users’ demographics and characteristics. In other

disciplines it is well known that results from one study cannot be used to draw

conclusions for a population if the study’s user sample differs too much from that

population. For instance, in marketing you cannot draw reliable conclusions about

how elderly people in Germany will react to a product if a study about that product

was conducted in France with university students. Evaluations of recommender

systems widely ignored differences in user samples. Some studies report to have

asked their participants for demographic data, but they do not report on them in

their papers [42]. Another paper reports that age and gender had no impact on the

accuracy of recommendations but test subjects were all students [291]. With

students typically being all in the same age-range, it is no surprise that the study

could not find any differences between different ages.

We analyzed empirical data collected with Docear’s research paper recommender

system [29] to find out whether users’ demographics and characteristics influence

the outcome of the recommender system evaluation.

116 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Andreas Nürnberger.

“Persistence in Recommender Systems: Giving the Same Recommendations to the Same Users Multiple Times.”

In Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013),
edited by Trond Aalberg, Milena Dobreva, Christos Papatheodorou, Giannis Tsakonas, and Charles Farrugia,

8092:390–394. Lecture Notes of Computer Science (LNCS). Valletta, Malta: Springer, 2013.

256

H.2 Methodology

Docear users can register an account and provide demographic information such as

year of birth and gender if they like. They may also opt-in for receiving research

paper recommendations (even without registration). Recommendations are shown

on request or automatically every three days of use, ten at a time. During March

and Mai 2013 1,028 users received 37,572 recommendations. Details on the

recommendation process may be found in [29]. For the evaluation we used click-

through rate (CTR) which expresses how many out of the displayed

recommendations were clicked. For instance, when 37,572 recommendations were

shown, and 2,361 were clicked, CTR is 6.28%. CTR is a common measure in

online advertisement and equivalent to “precision” in information retrieval.

H.3 Results

From a total of 1,028 users who received recommendations, 38.62% did not

register and 61.38% registered. 21.79% registered but did not provide information

about their gender, 33.17% registered and were males, and 6.42% registered and

were females (Figure 91, left pie). Looking only at those users who specified their

gender, 83.79% were male, and 16.22% were female (Figure 91, right pie).

Among the genders there is only a marginal difference in CTR with 6.88% for

males and 6.67% for females (Figure 92). However, there is a significant

difference between registered users (6.95%) and unregistered users (4.97%).

Interestingly, those users who registered and did not specify their gender have the

highest CTR with 7.14%. Another interesting difference between genders relates

to the willingness of accepting recommendations. From all male users, 38.09%

activated recommendations while only 34.74% of women did and even less

(28.72%) of the users who did not specify their gender during registration (Table

20). This might indicate that these users are concerned about privacy issues when

receiving recommendations [340].

From the registered users, 39.62% did not specify their age. From those who did,

around one quarter (24.15%) were 25 to 29 years of age (Figure 93, bar chart).

11.29% were between 20 and 24 years and only two users were younger than 20,

namely 17 and 18. The vast majority (88.19%) was older than 25 years. 4.46% of

the users were 60 or older. The mean age was 36.56 years, the median was 33. Of

course, it might be that some users did not provide their correct age and the true

ages slightly differ from the ones presented.

Looking at click-through rate by age shows that the older a user is the higher CTR

becomes (Figure 93, dotted line). While younger users (20-24 years) have the

257

lowest CTR of only 2.73% on average, CTR for users older than 60 is the highest

with 9.92%. Overall, a clear linear trend is recognizable (Figure 93, dotted line).

CTR for users who registered but did not provide their age was 7.66% on average

(not shown in Figure 93).

Figure 91: Gender and user type (registered/unregistered) distribution

Table 20: Percentage of activated recommendations by gender

Figure 92: Click-through rate (CTR) by user type and gender

Figure 93: Age distribution and click-through rate (CTR) by age

The analysis also indicates that the number of days on which a user started Docear

impacts CTR (Figure 94). For the first 20 times a user starts Docear, CTR

increases. For instance, users who started Docear on one to five days had a CTR of

38.62%

33.17%

6.42%

21.79%
Unregistered

Males

Females

Unknown

83.78%

16.22%

Male Female n/a

Recs. Activated 38.09% 34.74% 28.72%

Recs. Deactivated 61.91% 65.26% 71.28%

258

5.62% on average while users having started Docear on 11-20 days had a CTR of

7.30% on average. This is not surprising assuming that the more often users start

Docear, the more information they enter, the better the user models become, and

hence the recommendations. However, for users having started Docear on more

than 20 days, CTR decreased. For instance, users having started Docear on more

than 100 days achieve a CTR of 4.92% on average.

Figure 94: Click-through rate by the number of days Docear being used

Another analysis brings even more confusion. We analyzed how CTR changes

based on the number of recommendations a user received. Based on the above

results we assumed that the more recommendations a user received, the lower the

CTR would become because users starting Docear often also receive more

recommendations. Our assumption was not correct. There is a trend that the more

recommendations users see, the higher the CTR becomes (Figure 95, dotted line).

Users who received only one recommendation set (i.e. typically ten

recommendations) had a CTR of 4.13% while users who saw 21-50 sets had a

CTR of 9.91% on average.

Figure 95: User distribution and CTR by number of recommendation sets

H.4 Conclusion

The analysis showed that demographics and user-characteristics may have a

significant impact on click-through rates on (research-paper) recommender

systems. Although gender had only a marginal impact, age impacted CTR

strongly. It made also a difference for CTR whether users were registered or not,

how many recommendations they had seen before and how often users had started

Docear. However, to fully understand the effects and correlations between the last

two factors, more research is required.

259

We suggest that future evaluations should report on their users’ demographics and

characteristics in order to create valid and comparable results of recommender

systems. Some of these are registered vs. unregistered; intensity of the software

being used; and amount of previously shown recommendations. There are

certainly further demographics and characteristics that might impact an evaluation

such as nationality, field of research, and profession, whose impact should be

researched.

261

I Persistence in Recommender Systems117

I.1 Introduction

Recommender systems became popular in many domains during the past decades

and content-based and collaborative filtering became the two most dominant

approaches. Some researchers in the field of collaborative filtering analyzed the

effect of letting users re-rate items. They found that correlation between original

ratings and new ratings was low and only 60% of users gave the same rating as

before [73]. Amatriain et al. showed that it might be better to letting users re-rate

items than showing new ones. By doing so accuracy of recommender systems

increased by around 5% [7].

We wonder whether re-showing recommendations might make sense in general.

For instance, a user might miss a recommendation the first time, simply because

he was in a hurry and did not pay attention to the recommendation. In this case it

would make sense for a recommender to be persistent and to display the same

recommendation again. To the best of our knowledge ‘recommendation

persistence’ has not been studied so far.

I.2 Research Objective & Methodology

Our goal was to find out if and how often it makes sense to display the same

recommendations to the same users. To answer this question we analyzed

empirical data from the literature management software Docear [18] which

features a research paper recommender system [29]. The recommender system

recommends research papers to users regardless of whether papers were

previously recommended to the users or not. We analyzed how click-through rates

(CTR) between recommendations shown only once and CTR of recommendations

shown multiple times differed. CTR expresses how much percent of the delivered

recommendations were clicked. For instance, if 12 recommendations were clicked

out of 1,000 delivered ones, CTR would be 1.2%. CTR basically measures the

‘precision’ of the recommendation algorithm under the assumption that a clicked

117 This chapter has been published as: Beel, Joeran, Stefan Langer, Marcel Genzmehr, and Andreas Nürnberger.

“Persistence in Recommender Systems: Giving the Same Recommendations to the Same Users Multiple Times.”

In Proceedings of the 17th International Conference on Theory and Practice of Digital Libraries (TPDL 2013),
edited by Trond Aalberg, Milena Dobreva, Christos Papatheodorou, Giannis Tsakonas, and Charles Farrugia,

8092:390–394. Lecture Notes of Computer Science (LNCS). Valletta, Malta: Springer, 2013.

262

recommendation is a ‘good’, i.e. useful, recommendation. For further details on

Docear and its recommender system (e.g. how recommendations are generated and

displayed) see [18, 29].

I.3 Results

31,942 recommendations were shown to 1,155 users for the first time and from the

31,942 recommendations 1,677 were clicked, which equals a click-through rate of

5.25% (Table 21). From the 31,942 recommendations 2,466 were shown a second

time to 375 distinct users and 154 recommendations were clicked (CTR 6.24%).

From the 2,466 recommendations 574 were displayed a third time and CTR was

6.97%. Also for the fourth iteration CTR was still rather high (6.55%). Based on

these results one might conclude that it could make sense to display

recommendations at least two or three times because for these reiterations CTR

was significantly higher than for the first one (p<0.05).

Table 21: Reiterations and click-through rate

The picture changes when looking at more detail into the data: around 50% of all

clicks on reshown recommendations are ‘oblivious-clicks’ (Table 21, lower part).

We define an ‘oblivious click’ as a click on a recommendation that the user should

know already, because he clicked it previously. For instance, 574

recommendations were shown three times. 40 of these recommendations were

clicked which equals a CTR of 6.97%. However, only 14 were clicked for the first

time – the other 26 (2x13) were clicked for the second or even third time. In one

case a recommendation was even shown six times to the same user and the user

clicked it each time. Ignoring the oblivious-clicks, i.e. considering only 1st clicks,

1 2 3 4 5 6 … 11 … 21

Users 1,155 375 97 38 12 6 - 1

Impressions 31,942 2,466 574 229 112 71 2 1

No clicks 30,265 2,312 534 214 100 68 2 1

Clicks 1,677 154 40 15 12 3 - -

CTR, overall 5.25% 6.24% 6.97% 6.55% 10.71% 4.23% 0.00% 0.00%

1st click 1,677 97 14 8 7 - - -

2nd click - 57 13 1 2 1 - -

3rd click - - 13 3 2 1 - -

4th click - - - 3 - - - -

5th click - - - - 1 - - -

6th click - - - - - 1 - -

Ʃ Obliv. clicks - 57 26 7 5 3 - -

% Obliv. clicks 0% 37% 65% 47% 42% 100% - -

CTR, 1st click 5.25% 3.93% 2.44% 3.49% 6.25% 0.00% 0.00% 0.00%

Reiteration

O
b

li
v.

-c
li

ck
s

263

CTR decreases the more often recommendations are shown. Therefore, results

may indicate that CTR increases when showing recommendations multiple times

but only because users sometimes clicked on recommendations they have clicked

before.

In addition, CTR increased in general the more recommendations were shown

previously to a user (Figure 96). For instance, CTR did not only increase for

reshown recommendations but also for ‘fresh’ recommendations, i.e.

recommendations being displayed to a user for the very first time. This is not

surprising because users who receive many recommendations probably are using

the software for a longer time than users receiving their first recommendations.

And for users using the software for a longer time, better user models can be

created and hence better recommendations can be given (although this is not

always the case as shown in [24].

Figure 96: Redisplayed recommendations vs. fresh ones

To get a better understanding of how good re-shown recommendations performed,

we compared their CTR with CTR of fresh recommendations. If a

recommendation was shown the second time, it received a CTR of 6.24% on

average – a CTR of 3.93% for reshown recommendations not being clicked before

and a CTR of 2.31% for reshown recommendations being clicked before (Figure

96). In contrast, fresh recommendations being displayed at the same time achieved

a CTR of 6.44% and hence performed better than the reshown recommendations.

This is true for all iterations: fresh recommendations always performed better than

reshown recommendations at the same time (including oblivious-clicks).

Considering only new clicks on reshown recommendations (i.e. ignoring oblivious

clicks), fresh recommendations performed even two to three times as good.

264

Figure 97: Fresh recommendations vs. redisplayed ones (one-day delay)

Based on the presented numbers one could conclude that reshowing

recommendations would never make sense. However, we did the same analysis for

recommendations that were reshown with at least one day delay (Figure 97). That

means we ignored all recommendations in the analysis that were reshown to the

same user within 24 hours. In this case, CTR of reshown recommendations is often

better than for fresh recommendations (with oblivious-clicks included). For

instance, for the second iteration CTR for fresh recommendations was 6.69% but

for reshown recommendations 7.72%. However, when ignoring oblivious-clicks

again fresh recommendations always perform better than reshown

recommendations. We also conducted the same analysis with a longer delay (three,

seven, and fourteen days). Results were similar to the ones presented. Due to space

restrictions we omit further details.

I.4 Interpretation and Outlook

Our results indicate that it makes no sense to generally display recommendations

multiple times to the same users – fresh recommendations usually perform better.

Nevertheless, about 2-3 % of recommendations shown the second or third time

were clicked by the users for the first time. By showing recommendations only

once, researchers would miss this 2-3% of interesting articles. In further research it

should be studied why users sometimes click recommendations only when they

were shown multiple times and whether users eventually found those

recommendations useful or not. If they found the recommendations useful, then it

should be studied how to find out which recommendations to show multiple times

and how often. For instance, it might be that the interest of a user has changed –

maybe even due to the recommendations he has seen – and on first display the

recommendation simply was not relevant for him. That means if a strong concept

drift was determined by the recommender system, recommendations shown

previously (before the concept drift) might be given again.

265

In addition, it should be studied why users click several times on the same

recommendations. We assumed that users were just oblivious. In this case it

probably would be of little benefit for the user to see the same recommendations

several times. But maybe obliviousness is not the only reason for clicking

recommendations multiple times.

It is also quite interesting that it made a difference whether a recommendation was

reshown before or after 24 hours of a previous impression. In latter case (delay of

one day or more), click through rates were significantly higher than for

recommendations being re-shown within 24 hours and CTR of the reshown

recommendations was even higher than for fresh recommendations. Under the

assumption that oblivious clicks are desirable, reshowing recommendations could

make sense. It might also make sense to transfer this finding to collaborative

filtering and study how long to set a delay before letting users re-rate their items.

267

J Impact of Labels118

J.1 Introduction

In the Web community there is lots of discussion about organic and sponsored

search. ‘Organic search’ is the classic search where users enter search terms and

search engines return a list of relevant web pages. ‘Sponsored search’ describes

additional ‘results’ that are often shown beside the organic results. Usually these

results are related to the search terms but companies pay for them to be displayed

(in other words, ‘sponsored search’ is a nice paraphrase for personalized

advertisement). While typical online advertisement has click-through rates (CTR)

around 0.5% [237], sponsored search achieves CTRs around 2% and sometimes

even more than 30% [326]. CTR is a common performance measure in online

advertisement. It describes how many ads were clicked relative to the delivered

ones. For instance, if 1,000 ads were delivered, and users clicked 61 of them, CTR

was 6.1%. The higher the CTR the better is the algorithm behind the search

results.

In academia, there are several academic recommender systems which typically

only show organic recommendations [129, 223]. However, we were interested

which CTR was to expect for sponsored recommendations in academia and more

importantly, how much, or how little, users would like recommendations in

general that were displayed for profit-making.

J.2 Methodology

Our academic literature management software ‘Docear’ [18] features a research

paper recommender system [29]. Every third start Docear displays ten

recommendations that can be freely downloaded (Figure 98). We modified

Docear’s recommender system and analyzed the effects of the modifications on

click-through rates (overall, 22,452 recommendations were delivered to 587

users). Modifications were related to a label describing the nature of the

recommendations (organic or commercial) and the way of presenting

118 This chapter has been published as: Beel, Joeran, Stefan Langer, and Marcel Genzmehr. “Sponsored vs.

Organic (Research Paper) Recommendations and the Impact of Labeling.” In Proceedings of the 17th
International Conference on Theory and Practice of Digital Libraries (TPDL 2013), edited by Trond Aalberg,

Milena Dobreva, Christos Papatheodorou, Giannis Tsakonas, and Charles Farrugia, 395–399. Valletta, Malta,

2013.

268

recommendations (Figure 98). More information on the recommender system can

be found in [18, 29].

Figure 98: Recommendations in Docear with labels

Recommendations in Docear were ‘labeled’ to explain the ‘nature’ of the

recommendations (Figure 98). The ‘basic’ label was ‘Research Papers’. We

modified this label for each user by randomly choosing whether to add a prefix

such as ‘Free’ or ‘Free Full-text’ (Table 22) or a suffix such as ‘(Advertisement)’

or ‘(Sponsored)’ which resulted in labels like ‘Free Research Papers’, ‘Research

Papers from our partners’, or ‘Free Full-text Research Papers (Sponsored)’. When

a suffix was chosen, user must have assumed that the recommendations had a

commercial background. When no suffix was chosen, users must have assumed

that recommendations were organic. In addition, when no suffix was chosen it was

randomly chosen whether to mark the first recommendation as ‘[Sponsored]’ and

whether to highlight this recommendation or not (Figure 98). Whatever label was

displayed, recommendations were always calculated with the same algorithms and

always linked to freely downloadable PDFs.

Table 22: Labels for the recommendations

We selected two metrics to measure the effectiveness of recommendations and

determine differences between the labels. With click-through rate (CTR) we

measured how many recommendations out of the displayed ones were clicked

overall. For instance, if 1,000 recommendations with a certain label were shown

and 50 were clicked, CTR was 5%. If CTR for recommendations with another

label was, for instance, 3.2%, the first label performed better. CTR is a common

measure on advertisement but it suffers from one problem, especially when

recommendations of only a few users are analyzed. In this case, a few users could

Free Free Full-text Full-text None (Sponsored) (Advertisement) From our partners

SuffixPrefix

269

spoil the results. For instance, one user receiving and clicking many

recommendations would strongly increase overall CTR, although maybe all other

users hardly clicked on any recommendations. Therefore, we also used mean

average precision (MAP) for users’ click-through rates. That means, for each user

we calculated his average CTR and then we calculated the mean CTR over all

users. For instance, if one user had seen 50 recommendations and clicked all of

them, and 95 other users had each seen 10 recommendations but clicked none,

CTR for the first user was 100% but CTR for the 95 others were 0% each. Hence,

MAP was
100%+0%+0%+⋯+0%

96
= 1.04%.

J.3 Results

Based on CTR organic recommendations clearly outperform commercial ones

with a CTR of 8.86% vs. 5.86% (Figure 99, blue line). This is probably what most

people would expect. However, it is still interesting to have it quantified that only

because recommendations are labeled as some kind of commercial, users are far

less likely to click on them. Based on CTR, recommendations with the first

recommendation being labeled as ‘[Sponsored]’, but not highlighted, also clearly

outperform those being highlighted (8.38% vs. 5.16%). However, the evaluation

based on MAP shows a different picture (Figure 99, beige line). Here, organic

(MAP=5.21%) and commercial recommendations (4.91%) perform very much

alike. In addition, recommendations with the first one being labeled as sponsored

and being highlighted (MAP=7.47%) outperform those being not highlighted

(5.25%). What is evident with both metrics is that completely unlabeled

recommendations performed better than all other label variations (CTR=9.87%;

MAP=8.76%).

Figure 99: CTR and MAP of different labels

For organic recommendations, the ‘free’ and ‘free full-text’ labels clearly

outperformed those labels not indicating that the recommended papers were free to

270

download (Figure 100). This is true for both metrics CTR and MAP119. However,

for commercial recommendations results differed. Here, using no suffix at all

(MAP=6.51%; CTR=7.26%) performed better than any of the suffixes. We cannot

explain this difference. For suffixes, both CTR and MAP indicate that

‘Advertisement’ leads to the lowest performance (Figure 101). Based on MAP

‘Sponsored’ recommendations (5.95%) performed better than ‘partner’

recommendations (4.85%). Based on CTR, ‘partner’ recommendations performed

better (6.79%) than ‘sponsored’ ones (5.93%).

Summarized, the most surprising result was that recommendations with no label at

all performed best, and that based on MAP commercial and organic

recommendations performed about alike. Our study also showed that click-rates on

recommendations varied strongly based on how they were labeled (although they

were all based on the same algorithms). In particular recommendations labeled as

‘advertisement’ were least liked by the users. Results based on CTR often

contradicted those based on MAP and also using certain prefixes had different

effects on commercial and organic recommendations. More research is needed to

clarify these contradictions. In some cases a small sample size might have caused

the contradictions. For instance, for some labels (e.g. ‘Free Research Papers’)

results were only based on twelve users. However, other results were based on

larger samples and still contradict each other.

Figure 100: MAP and CTR for prefixes (commercial and organic)

119 For ‘full-text’ CTR is an outlier. We investigated the result and found that in this case few users had extremely

high CTRs based on few received recommendations they almost all clicked.

271

Figure 101: MAP and CTR for suffixes (commercial only)

273

K Patent Application

As part of my work, I filed an international patent application (PCT) in 2011 for

Docear’s mind-map-specific user modeling approach (PCT/EP2011/070873). The

following text is a copy of the application in German. A machine translation to

English is available via Google Patents120.

K.1 Patentbeschreibung

Verfahren und System zum Erstellen von Nutzermodellen

Gebiet der Erfindung

Die Erfindung betrifft ein Verfahren und ein System zum Erstellen von

Nutzermodellen und darauf basierenden Empfehlungen, vorzugsweise durch

Analyse von baumförmigen Datenstrukturen.

Hintergrund der Erfindung und Stand der Technik

Nutzer von Computersystemen unterscheiden sich in vielerlei Hinsicht, unter

anderem hinsichtlich ihrer Interessen, ihres Wissens und ihrer demographischen

Daten. Viele Computersysteme versuchen diesen Unterschieden gerecht zu

werden, indem sie abhängig etwa vom Wissen und den Interessen des Nutzers,

individuelle Informationen oder Benutzeroberflächen zur Anzeige bringen. Um

Softwaresysteme, etwa Computerprogramme oder Internet-basierte Anwendungen

individuell an seine Nutzer anpassen zu können, benötigen die Softwaresysteme

Zugriff etwa auf die Interessen der Nutzer. Diese Daten können entweder manuell

vom Nutzer angegeben, oder automatisch vom System erzeugt werden. In jedem

Fall werden die Informationen über die Nutzer in so genannten Nutzermodellen

gespeichert.

Häufig werden solche Nutzermodelle von Empfehlungsdiensten verwendet.

Abhängig von den Interessen eines Nutzers zeigen diese Empfehlungsdienste

individuelle Empfehlungen beispielsweise für Filme, Bücher, Musik, oder auch

auf den Nutzer abgestimmte Werbung an. Bei einem Empfehlungsdienst handelt

120 http://www.google.com/patents/WO2013075745A1?cl=en&hl=de

274

es sich immer um ein sogenanntes „User-Item Matching Problem“: Die Frage bei

diesem Problem ist, welche kleine Auswahl an relevanten Items (z.B.

Musikstücke, Webseiten, Bücher, etc.) aus einer großen Menge von verfügbaren

Items einem Nutzer empfohlen werden soll. Dieser aus dem Stand der Technik

bekannte Ansatz ist in Fig. 1 dargestellt. Gezeigt ist in Fig. 1 eine Menge von

Nutzer n (User 1 bis User 3) und eine Menge von Items (Item 1 bis Item 3). Mit

entsprechenden Verfahren wird die Relevanz von Nutzern und Items zueinander

berechnet. Danach können alle Items die einen bestimmten Schwellenwert bzgl.

der Relevanz überschreiten den entsprechenden Nutzern empfohlen werden.

Aus dem Stand der Technik bekannte Empfehlungsdienste nutzen zwei

grundsätzliche Verfahren, um Nutzermodelle zu erzeugen bzw. Empfehlungen zu

geben. Diese Verfahren sind bekannt als "Content Based Filtering" bzw.

"Collaborative Filtering".

Beim Content Based Filtering (CBF) nimmt das Computersystem an, dass der

Inhalt (Content) der Items mit denen ein Nutzer in Verbindung steht, die

Interessen und/oder das Wissen des Nutzers wiederspiegelt. Dieser aus dem Stand

der Technik bekannte Ansatz ist in Fig.2 gezeigt.

Ein Nutzer (User 1) steht mit einer Anzahl von Items (Item 1 bis Item j) in

Verbindung. Ein Item kann jedes mögliche Objekt sein. Ein Item kann etwa ein

Dokument (Bücher, Webseiten, Emails, etc.), ein Multimediaobjekt (Filme,

Musik, Fotos), eine Personen oder ein Ort sein. Items können aber auch

Menüeinträge einer Computeranwendung oder Komponenten grafischer

Benutzeroberflächen sein.

In Verbindung steht ein Nutzer mit einem Item, wenn irgendein Bezug zwischen

ihnen besteht. Das heißt, wenn der Nutzer beispielsweise ein Buch gelesen,

gekauft oder auch nur kurz betrachtet hat, eine Person kennt oder einen Film

geschaut, heruntergeladen oder auf einem Filmportal bewertet hat, steht der Nutzer

mit dem Buch, der Person, bzw. dem Film in Verbindung. Die Verbindung kann

dabei unterschiedlich stark gewichtet werden, je nach Art der Verbindung.

Beispielsweise könnte das Kaufen eines Buches stärker gewichtet werden als das

bloße Betrachten des Buchcovers. Oder eine Verbindung zu einem Item kann

umso stärker gewichtet werden, je öfter das Item genutzt wurde.

Beim Content Based Filtering wird der Inhalt der verbundenen Objekte genutzt um

ein Nutzermodell zu erstellen. In der Regel wird dieses Verfahren bei textuellen

Items, also Dokumenten, angewandt, da der Inhalt von Dokumenten (also der

275

Text) gut von Computern verarbeitet werden kann im Gegensatz, z. B. zu Bildern.

Um den Inhalt der Items zu nutzen, wird für jedes Item ein Modell erstellt. Bei

Dokumenten wird häufig das sogenannte "Vector Space Model" genutzt, ein

Modell, welches Dokumente als Vektor ihrer Terme darstellt. Jeder Vektor drückt

durch seine Länge aus, wie gut der entsprechende Term das eigentliche Dokument

beschreibt. Diese Gewichtung kann mit verschiedenen Verfahren errechnet

werden. Ein gängiges Verfahren ist das sogenannte TF-IDF Verfahren. Hierbei ist

das Gewicht eines Terms für ein Dokument umso größer je öfter der Term in dem

Dokument vorkommt und je weniger Dokumente in der gesamten Kollektion es

mit diesem Term gibt.

Das Nutzermodell wird dann aus den Modellen der verschiedenen verbundenen

Items erzeugt. Dies bedeutet, wenn ein Nutzer viele Bücher besitzt die den Term

„Recommender“ mit hohem Gewicht enthalten, dann bekommt auch das

Nutzermodell diesen Term mit einem hohem Gewicht zugeordnet. Die

verschiedenen Item-Modelle können dabei mit unterschiedlicher Gewichtung in

das Nutzermodell einfließen. Üblich ist es beispielsweise, Items die vor kurzem

genutzt wurden, stärker zu gewichten als Items deren Nutzung bereits längere Zeit

zurückliegt. Üblicherweise wird das Nutzermodell in dem gleichen Format

gespeichert, wie die Item-Modelle – also beispielsweise als Vector Space Model.

Von den Items, die später dem Nutzer gegebenenfalls empfohlen werden sollen,

wird ebenfalls ein Modell erstellt, beispielsweise wieder mit TF-IDF-Verfahren

und dem Vector Space Model. Diese Items müssen nicht notwendigerweise die

gleichen Items sein, die mit Nutzern in Verbindung stehen. Beispielsweise wäre es

möglich, ein Nutzermodell zu erstellen basierend auf Webseiten die ein Nutzer

besucht hat, und ihm basierend auf diesem Modell Bücher zu empfehlen, oder

auch personalisierte Werbung anzuzeigen. Das Matching der Nutzermodelle mit

den zu empfehlenden Items basiert vorzugsweise auf Ähnlichkeitsvergleichen

zwischen den Nutzer- und den Item-Modellen. Bei textbasierten Items bedeutet

das, wenn das Nutzermodell die gleichen Terme mit hohem Gewicht enthält wie

die Item-Modelle der zu empfehlenden Items, dann ist die Ähnlichkeit groß und

das Item wird dem Nutzer empfohlen. Ein übliches Ähnlichkeitsmaß im Vector

Space Model ist etwa die Cosine Similarity.

Beim sogenannten Collaborative Filtering (CF), welches in Fig. 3 gezeigt ist,

spielt der Inhalt von Items keine Rolle. Es wird lediglich die Information

verwendet, welche Items mit welchen Nutzern (wie stark) in Verbindung stehen.

Die Gewichtung wird entweder direkt vom Nutzer angegeben, indem der Nutzer

276

ein Item bewertet, oder indirekt, indem das System die Nutzung des Items

überwacht.

Wie beim Content Based Filtering kann die Gewichtung beispielsweise umso

stärker sein, je öfter ein Item genutzt wird. Oder ein Item, welches gekauft wurde,

wird stärker gewichtet als ein Item welches kostenlos heruntergeladen wurde.

Berechnet wird dann auch nicht die Ähnlichkeit zwischen Nutzer-Modellen und

Item-Modellen sondern ausschließlich die Ähnlichkeit von Nutzermodellen

zueinander (User-User Matching). Hier gibt es wieder viele bekannte Verfahren.

Im Wesentlichen wird bei allen Verfahren geprüft, welche Nutzermodelle

möglichst viele Items in ähnlicher Gewichtung gemeinsam haben. Wurden nun

ähnliche Nutzermodelle identifiziert, werden dem Nutzer 1 die Items empfohlen

die mit dem ähnlichen Nutzer 2 in starker Verbindung stehen (und die Nutzer 1

gegebenenfalls noch nicht kennt).

Es ist auch möglich, die Nutzermodelle wie beim Content Based Filtering zu

erzeugen und basierend auf diesen Nutzermodellen gleiche Nutzer zu

identifizieren. Dieser Ansatz ist in Fig. 4 gezeigt.

Zumindest beim Content Based Filtering (CBF) ist das Erstellen der Item-Modelle

ein zentraler Bestandteil, da alles andere, d.h., das Erstellen der Nutzermodelle

und das Matching von Nutzern und Items, hierauf basiert. Wie vorstehend

erwähnt, ist ein häufig verwendetes Modell das Vector Space Model, welches ein

textuelles Item als Vektor seiner Terme speichert, wobei die Länge des Vektors

die Gewichtung des jeweiligen Terms in Bezug auf das Item repräsentiert. Um das

Gewicht der Terme zu bestimmen, gibt es zahlreiche Verfahren. Nachteilig ist

hierbei jedoch, dass mit diesen aus dem Stand der Technik bekannten Verfahren

nur die Modellierung von "normalen" textuellen Items, also Dokumenten, wie

Emails, Webseiten, Büchern, News Artikel, wissenschaftliche Artikel, etc.,

möglich ist. Eine Abbildung von Termen in baumförmigen Strukturen, etwa Mind

Maps und Verzeichnisstrukturen, im Vector Space Model, um hierauf basierend

Nutzermodelle und Empfehlungsdienste zu realisieren ist mit den aus dem Stand

der Technik bekannten Verfahren nicht möglich.

Aufgabe der Erfindung

Aufgabe der Erfindung ist es daher, ein Verfahren und ein System bereitzustellen,

welche es auf einfache Weise erlauben Item-Modelle bzw. Nutzermodelle auch für

hierarchische, d.h. baumförmige Strukturen zu erzeugen, um basierend hierauf

Nutzermodelle und Empfehlungen zu erstellen.

277

Erfindungsgemäße Lösung

Diese Aufgabe wird durch ein Verfahren und ein System gemäß den unabhängigen

Ansprüchen gelöst. Vorteilhafte Ausgestaltungen der Erfindung sind in den

jeweiligen abhängigen Ansprüchen angegeben.

Bereit gestellt wird demnach ein Verfahren zum Erzeugen eines Nutzermodells,

insbesondere für einen Empfehlungsdienst, aus zumindest einer baumförmigen

Datenstruktur, wobei das Nutzermodell Informationen über einen Nutzer umfasst,

wobei die zumindest eine baumförmige Datenstruktur dem Nutzer zuordenbar ist,

wobei die baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit einem

Kinderknoten verbunden sind, wobei zumindest einem Knoten zumindest ein

Element zugeordnet ist, und wobei

- die den Knoten zugeordneten Elemente ermittelt werden, wobei die Elemente

einen Inhalt des jeweiligen Knoten repräsentieren,

- die ermittelten Elemente gewichtet werden und jedem Element eine

Elementgewichtung zugeordnet wird, und

- ein Nutzermodell generiert wird, wobei das generierte Nutzermodell die

ermittelten Elemente und die dem jeweiligen Element zugeordnete

Elementgewichtung umfasst.

Die Knoten der baumförmigen Datenstruktur können gewichtet werden und jedem

Knoten kann eine Knotengewichtung zugeordnet werden.

In einem Initialisierungsschritt kann jedem Element eine vorbestimmte

Elementgewichtung oder die Knotengewichtung des zugeordneten Knotens

zugeordnet werden.

Das Verfahren kann ferner einen Vorverarbeitungsschritt umfassen, bei dem

- Knoten, denen keine Elemente zugeordnet sind, gelöscht werden, und/oder

- Knoten gelöscht werden, denen ein vorbestimmtes Element zugeordnet oder

nicht zugeordnet ist, und/oder

- Knoten gelöscht werden, welche vorbestimmte Attribute aufweisen oder nicht

aufweisen, und/oder

- Knoten und/oder Elemente der Knoten gelöscht werden, welche nicht direkt

dem Nutzer zugeordnet sind.

278

Das Gewichten der Knoten kann eine statische Knotengewichtung und/oder eine

dynamische Knotengewichtung umfassen, wobei

- bei der statischen Knotengewichtung die Anzahl der dem jeweiligen Knoten

zugeordneten Kinderknoten, die Anzahl der jeweiligen Geschwisterknoten, die

Tiefe des jeweiligen Knotens in der baumförmigen Datenstruktur, die

Sichtbarkeit des Knotens, oder eine Kombination hiervon berücksichtigt

werden, und

- bei der dynamischen Knotengewichtung für jeden Knoten das Alter, der

Zeitpunkt der letzen Änderung, die Anzahl der Änderungen, die Anzahl der

Verschiebungen innerhalb der baumförmigen Datenstruktur, die Anzahl der

Markierungen, die Sichtbarkeit des Knotens, ein Dämpfungsfaktor, oder eine

Kombination hiervon berücksichtigt werden.

Das Ermitteln der den Knoten zugeordneten Elemente kann ein Vorverarbeiten der

ermittelten Elemente umfassen, wobei beim Vorverarbeiten der Elemente Text in

Token und/oder Terme zerlegt wird, sofern das Element ein Textelement ist,

und/oder Verweise verarbeitet werden, sofern das Element ein Verweiselement ist.

Die in dem Initialisierungsschritt den Elementen zugeordneten

Elementgewichtungen können angepasst werden, wobei beim Anpassen der

jeweiligen Elementgewichtung der Elementtyp, Attributsausprägungen der von

dem Element zugeordneten Attribute, eine Häufigkeit des Elements innerhalb der

baumförmigen Datenstruktur, die Anzahl der baumförmigen Datenstrukturen in

einer Kollektion von baumförmigen Datenstrukturen in denen das Element

vorkommt, eine Häufigkeit des Elements innerhalb einer Kollektion von

baumförmigen Datenstrukturen, die Größe der baumförmigen Datenstruktur im

Verhältnis zu anderen baumförmigen Datenstrukturen in einer Kollektion von

baumförmigen Datenstrukturen, die Position des Elementes innerhalb des

Knotens, die Sprache des Elementes, die Anzahl der Elemente innerhalb des

Knotens, der Abstand des Elementes zu gleichartigen Elementen anderer Knoten,

Häufigkeit des Elementes in dem Pfad zwischen dem Knoten und dem

Wurzelknoten, das Alter des Elements, der Zeitpunkt der letzen Änderung, die

Anzahl der Änderungen, die Anzahl der Markierungen, die Sichtbarkeit des

Elements, ein Dämpfungsfaktor, oder eine Kombination hiervon berücksichtigt

werden.

Bei der statischen Knotengewichtung und/oder bei der dynamischen

Knotengewichtung oder nach der statischen Knotengewichtung und/oder nach der

279

dynamischen Knotengewichtung und/oder bei oder nach der Elementgewichtung

kann eine Vererbung des Knotengewichts bzw. des Elementgewichts

berücksichtigt werden.

Das generierte Nutzermodell kann in einer Speichereinrichtung gespeichert

werden, um dem Empfehlungsdienst zur Verfügung gestellt zu werden.

Alle Elemente können zusammen mit den jeweiligen Elementgewichtungen als

Nutzermodell gespeichert werden, oder für jeden Elementtyp kann ein eigenes

Nutzermodell gespeichert werden, wobei die Nutzermodelle der verschiedenen

Elementtypen ein Gesamtnutzermodell bilden.

Bei mehreren dem Nutzer zuordenbaren baumförmigen Datenstrukturen kann für

jede baumförmige Datenstruktur eine Anzahl von Nutzermodellen generiert

werden, welche zusammen ein dem Nutzer zugeordnetes Gesamtnutzermodell

bilden.

Jeder baumförmigen Datenstruktur kann eine Baumgewichtung zugeordnet

werden.

Für eine neue dem Nutzer zuordenbare baumförmige Datenstruktur kann das dem

Nutzer zugeordnete Nutzermodell angepasst werden.

Von der baumförmigen Datenstruktur referenzierte Elemente können in das

Nutzermodell eingefügt werden und wie Elemente der baumförmigen

Datenstruktur behandelt werden.

Einem generierten Nutzermodell kann eine Information über den Nutzermodelltyp

zugeordnet werden.

Das Verfahren kann ferner ein Auswählen von Objekten anhand vorbestimmter

Auswahlkriterien umfassen, wobei ein Objekt ein Nutzermodell oder ein

Itemmodell umfasst.

Die Auswahlkriterien können umfassen:

- Objekte eines vorbestimmten Typs, und/oder

280

- Objekte die eine vorbestimmte Ähnlichkeit zu dem Nutzermodell und/oder

Itemmodell aufweisen, wobei vor dem Auswählen Ähnlichkeitswerte zwischen

dem generierten Nutzermodell und/oder Itemmodell und den Objekten ermittelt

werden.

Durch ein Itemmodell kann ein Förderprogramm repräsentiert werden, wobei das

das Förderprogramm repräsentierende Itemmodell ausgewählt wird, wenn das

Nutzermodell eine vorbestimmte Ähnlichkeit zu dem Itemmodell aufweist.

Bereit gestellt wird ferner ein System zum Erzeugen eines Nutzermodells,

insbesondere für einen Empfehlungsdienst, aus zumindest einer baumförmigen

Datenstruktur, wobei das Nutzermodell Informationen über einen Nutzer umfasst,

wobei die baumförmige Datenstruktur dem Nutzer zuordenbar ist, wobei die

baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit einem

Kinderknoten verbunden sind, und wobei zumindest einem Knoten zumindest ein

Element zugeordnet ist, wobei das System aufweist:

- wenigstens eine Speichereinrichtung zum Speichern wenigstens einer

baumförmigen Datenstruktur, und

- eine Verarbeitungseinrichtung, welche mit der Speichereinrichtung gekoppelt

ist und welche angepasst ist ein Verfahren nach einem der vorhergehenden

Ansprüche auszuführen, um ein Nutzermodell zu generieren und das generierte

Nutzermodell in der Speichereinrichtung abzuspeichern und einem

Empfehlungsdienst zur Verfügung zu stellen.

Des Weiteren wird ein Datenträgerprodukt bereit gestellt, mit einem darauf

gespeicherten Programmcode, welcher in einen Computer und / oder in ein

Computernetzwerk ladbar ist und angepasst ist, ein erfindungsgemäßes Verfahren

auszuführen.

Kurzbeschreibung der Figuren

Die Erfindung wird anhand eines Ausführungsbeispiels und der Zeichnung näher

erläutert. In der Zeichnung zeigt:

281

Fig. 1 einen aus dem Stand der Technik bekannten Ansatz für ein sogenanntes

"User-Item Matching";

Fig. 2 ein aus dem Stand der Technik bekanntes "Content Based Filtering"

Verfahren;

Fig. 3 ein sogenanntes "Collaborative Filtering" Verfahren, wie es aus dem

Stand der Technik bekannt ist;

Fig. 4 eine Abwandlung des aus dem Stand der Technik bekannten

"Collaborative Filtering" Verfahrens;

Fig. 5 eine baumförmige (hierarchische) Datenstruktur;

Fig. 6a, 6b zwei baumförmige Datenstrukturen, welche im Sinne der Erfindung

die gleiche Aussage haben; und

Fig. 7a, 7b ein Ablaufdiagramm eines erfindungsgemäßen Verfahrens.

Detaillierte Beschreibung der Erfindung

Definitionen

- Baumförmige Datenstruktur - Als baumförmige Datenstruktur (im Folgenden

BD) wird eine Datenstruktur bezeichnet mit der sich eine Monohierarchie

abbilden lässt. Dabei sind in der Datenstruktur Knoten mittels Kanten

baumförmig verbunden. Es gibt genau einen Wurzelknoten, der beliebig viele

Kinderknoten haben kann. Jeder Kinderknoten kann wiederum beliebig viele

Kinderknoten haben.

Beispiele für BD im Sinne der Erfindung sind vor allem, aber nicht

ausschließlich, Verzeichnisstrukturen und/oder Dateisysteme auf einer

Festplatte (Ordner und Dateien) oder sogenannte Mind Maps. Handelt es sich

bei der BD um ein Dateisystem entsprechen die "Blätter" (das sind die jeweils

letzten Knoten eines Pfades in einer BD) Dateien oder Dateiverknüpfungen und

alle anderen Knoten entsprechen Verzeichnissen bzw. Ordnern.

Knoten einer BD enthalten in der Regel ein oder mehrere Elemente. Diese

Elemente können unterschiedlichen Typs sein. Übliche Elemente bzw.

282

Elementtypen sind: Text (im Falle eines Dateisystems wäre der Knotentext der

Datei- oder Verzeichnisname), zusätzliche Notizen, Tabellen, Termine,

Multimediaobjekte (Musik, Film, Bild), Icons, Formeln, Verweise (in der

Regel auf externe Items), Zahlen, und / oder Binärcode (insbesondere falls es

sich bei der BD um eine Verzeichnisstruktur handelt und der Knoten eine Datei

ist). Ein Verweis kann eine eindeutige URI (Uniform Resource Identifier) sein,

z.B. Hyperlink, lokaler Link/Verknüpfung auf eine Datei auf einem

Speichermedium (z.B. Festplatte). Ein Verweis kann aber auch eine nicht

eindeutige Beschreibung sein, die ein Item identifiziert (z.B. Titel eines

Dokumentes, Autorenname, Foto, BibTeX Key, Name eines Ortes oder

Produktes).

Jedes der Elemente kann eine Anzahl von Attributen besitzen. So kann Text

unterschiedlich formatiert sein, also hinsichtlich z.B. Größe und Farbe

unterschiedliche Werte annehmen. Auch Knoten selbst können Attribute

besitzen, insbesondere um die Anzeige der Knoten zu formatieren oder dem

Knoten bestimmte Funktionen zuzuordnen. Beispielsweise können Knoten

mittels Attributen als "eingeklappt" oder "ausgeklappt" dargestellt werden, das

heißt für den Nutzer sichtbar oder unsichtbar sein. Genauso wie Knoten können

einzelne Elemente eines Knotens sichtbar oder unsichtbar für den Nutzer sein.

Kanten in einer BD sind in der Regel ungerichtet und enthalten üblicherweise

keine textuellen Informationen. Kanten können aber auch gerichtet sein.

- Item - Items sind beliebige Objekte, d.h., zum Beispiel Dokumente (Bücher,

Webseiten, wissenschaftliche Artikel), Dateien, Werbeanzeigen (in Bild, Text,

Ton), Personen, Musikstücke oder Musikalben, Filme, Produkte, geographische

Orte, etc. oder deren digitale Repräsentation (d.h. nicht zwangsweise ein

physisches Buch, sondern z.B. die digitale Kopie/Repräsentation des Buches in

verschiedensten Formaten).

- Nutzer - Ein Nutzer ist eine Person die das erfindungsgemäße System

anwendet bzw. nutzt. Ein Nutzer kann auch ein sogenannter Agent, eine Art

elektronische Person bzw. ein System, welches das Verhalten einer realen

Person simuliert.

- Nutzermodell - Ein Nutzermodell umfasst die Interessen, das Wissen oder

andere Informationen über die Person, üblicherweise in maschinenlesbarer

283

Form. Im Folgenden werden die Begriffe Interessen bzw. Wissen eines Nutzers

bzw. Information über den Nutzer synonym verwendet.

- Verbindung zwischen BD und Nutzer - Eine BD steht mit einem Nutzer in

Verbindung bzw. ist dem Nutzer zuordenbar, wenn dieser Nutzer z.B. die BD

erstellt, editiert, heruntergeladen, oder geöffnet hat oder sich die BD im Besitz

des Nutzers befindet oder befand (z.B. auf der Festplatte des Nutzers

gespeichert ist bzw. war).

- Kollektion - Eine Kollektion ist die Menge aller BD auf die das

erfindungsgemäße System Zugriff hat.

Erfindungsgemäß werden baumförmige Datenstrukturen BD analysiert, die mit

dem Nutzer in Verbindung stehen bzw. einem Nutzer zuordenbar sind, um ein

Modell des Nutzers, d.h. ein Nutzermodell, zu erstellen. Ein Nutzermodell umfasst

insbesondere, aber nicht ausschließlich, Informationen über die Interessen und das

Wissen des Nutzers.

Fig. 5 zeigt eine erfindungsgemäße baumförmige Datenstruktur BD. Eine

baumförmige Datenstruktur BD umfasst eine Anzahl von Knoten, wobei ein

spezieller Knoten den Root-Knoten bzw. den Wurzelknoten repräsentiert. Die

anderen Knoten werden als Kinderknoten bezeichnet, wobei die Kinderknoten

über Kanten mit dem Wurzelknoten oder mit einem Kinderknoten verbunden sind.

Knoten, welche keine Kinderknoten enthalten, werden als "Blätter" bezeichnet.

Jeder Knoten kann einen oder mehrere Verweise auf externe Items enthalten. In

Fig. 5 besitzt der Knoten 2.i einen solchen Verweis auf ein Item.

Erfindungsgemäß beschreiben der Inhalt einer baumförmige Datenstruktur und

gegebenenfalls die Items die aus einer baumförmige Datenstruktur verlinkt werden

bzw. die Inhalte der verlinkten Items die Interessen des Nutzers und können zur

Generierung eines Nutzermodells verwendet werden. Vereinfacht gesagt bedeutet

dies, wenn die Knoten einer baumförmigen Datenstruktur häufig das Wort

"Patent" enthalten, kann daraus geschlossen werden, dass der Nutzer der

baumförmige Datenstruktur bzw. der Nutzer, dem die baumförmige Datenstruktur

zuordenbar ist sich für Patente interessiert oder Kenntnisse auf diesem Gebiet hat.

284

Der gleiche Schluss kann auch gezogen, wenn das Wort nicht in der baumförmige

Datenstruktur selbst vorkommt, aber viele Dokumente (z.B. Patentschriften oder

Webseiten) in der baumförmige Datenstruktur verlinkt sind, die das Wort "Patent"

enthalten.

Fig. 7a und Fig. 7b zeigen ein Ablaufdiagramm eines erfindungsgemäßen

Verfahrens zum Erzeugen eines Nutzermodells aus zumindest einer baumförmigen

Datenstruktur.

In einem ersten Schritt findet eine Vorverarbeitung statt, bei der die baumförmigen

Datenstrukturen für eine weitere Verarbeitung angepasst bzw. aufbereitet werden.

Der Schritt der Vorverarbeitung ist ein optionaler Schritt und muss nicht

notwendigerweise durchgeführt werden, etwa wenn die baumförmigen

Datenstrukturen bereits das für die weitere Verarbeitung notwendige Format

aufweisen.

Die Vorverarbeitung kann ein Konvertieren der baumförmigen Datenstrukturen in

ein für das System lesbares Format umfassen. Ferner kann die Vorverarbeitung ein

Löschen von Knoten aus den baumförmigen Datenstrukturen umfassen, d.h., es

können bestimmte Knoten gelöscht werden, die für das Erzeugen eines

Nutzermodells nicht relevant sind. Löschen eines Knoten heißt, dass dieser aus der

baumförmige Datenstruktur entfernt wird und die Kinderknoten des zu löschenden

Knotens entweder ebenfalls entfernt werden oder die Kinderknoten dem

Elternknoten des zu löschenden Knotens zugeordnet werden. Ein Knoten kann

etwa gelöscht werden, wenn der Knoten eines oder mehrere der folgenden

Kriterien erfüllt:

- Der Knoten ist leer;

- Der Knoten enthält ein bestimmtes Element (nicht), wie z.B. Text oder

Verweis;

- Der Knoten besitzt ein bestimmtes Attribut (nicht);

- Der Knoten oder Elemente des Knotens stehen nicht direkt mit dem Nutzer in

Verbindung. Dies kann der Fall sein, wenn ein Knoten nicht vom Nutzer selbst

erzeugt wurde (z.B. bei Knoten einer Mind Map die auf eine Datei verlinken

und wo der Text des Knotens gleich dem Dateinamen der verlinkten Datei ist

kann angenommen werden, dass der Knoten automatisch, z.B. durch

"Drag & Drop" entstanden ist, also der Text des Knotens nicht vom Nutzer

erzeugt wurde, und deshalb keine oder nur eine geringe Aussagekraft besitzt).

285

Selbstverständlich können beim Löschen eines Knotens auch noch weitere

Kriterien berücksichtigt werden.

Nach der (optionalen) Vorverarbeitung wird in einem nächsten Schritt basierend

auf der baumförmigen Datenstruktur ein Nutzermodell erzeugt. Hierbei werden

die Knoten einer baumförmigen Datenstruktur bzw. die Elemente der Knoten

analysiert, um die Interessen etc. des Nutzers zu identifizieren und in einem

Nutzermodell zu speichern, welches dem Nutzer zugeordnet wird. Dies geschieht

in den folgenden Schritten:

A) Gewichten der Knoten

Dem Gewichten der Knoten liegt die Annahme zugrunde, dass einige Knoten bzw.

ihre Elemente aussagekräftiger sind um die Interessen des Nutzers zu beschreiben

als andere Knoten bzw. ihre Elemente. Bei der Gewichtung der Knoten können

zwei Teilgewichte berechnet werden. Es ist aber auch möglich nur eines der

beiden Teilgewichte zu berechnen und dieses eine Teilgewicht als Knotengewicht

eines Knotens zu betrachten. Die beiden Teilgewichte umfassen die statische

Knotengewichtung und die dynamische Knotengewichtung. Selbstverständlich

können auch noch weitere hier nicht genannte Teilgewichte berechnet werden. Die

Kombination der berechneten Teilgewichte ergibt das Knotengewicht eines

Knotens.

Bei der statischen Knotengewichtung können folgende Kriterien berücksichtigt

werden:

- Anzahl der Kinderknoten: Ein Knoten wird abhängig von der Anzahl der

Kinderknoten gewichtet, z.B. je mehr Kinder der Knoten hat desto mehr

Gewicht erhält dieser Knoten.

- Anzahl der Geschwisterknoten: Geschwisterknoten eines Knotens sind jene

Knoten, die denselben Elternknoten wie der betrachtete Knoten haben. Hier

wird der Knoten abhängig von der Anzahl der Geschwisterknoten des Knotens

gewichtet, z.B. je mehr Geschwister ein Knoten hat, desto weniger Gewicht

bekommt er.

- Knoten-Tiefe: Je weiter oben (also je näher zum Wurzelknoten) in einer

baumförmige Datenstruktur ein Knoten ist, desto mehr Gewicht erhält er. Der

Wurzelknoten bekommt also viel Gewicht, die Blattknoten weniger.

286

- Sichtbarkeit des Knotens: Sichtbare Knoten erhalten mehr Gewicht als

unsichtbare Knoten.

- Attribute: Ist der Knoten durch ein bestimmtes Attribut hervorgehoben, z.B.

durch farbige Markierung oder Unterstreichung, so erhält er mehr Gewicht. Ist

er durch bestimmte Attribute abgeschwächt, z.B. indem er ausgegraut oder

durchgestrichen wurde, erhält er weniger Gewicht.

Bei der statischen Knotengewichtung wird die baumförmige Datenstruktur nur zu

einem bestimmten Zeitpunkt betrachtet. Erfindungsgemäß können die Knoten aber

auch dynamisch gewichtet, d.h., Veränderungen und Nutzungsintensivität der

baumförmigen Datenstruktur über die Zeit können in die Knotengewichtung

einfließen. Wenn beispielsweise ein Knoten intensiver genutzt wird, bzw. in der

Vergangenheit intensiver genutzt wurde als andere Knoten, so kann dieser Knoten

ein höheres Gewicht erhalten als die anderen Knoten. Die Gewichtung kann sich

unter anderem ergeben aus:

- Alter des Knotens: Ältere Knoten können mehr oder weniger Gewicht erhalten

als jüngere Knoten. Vorzugsweise erhalten jüngere Knoten ein höheres

Gewicht. Es kann auch ein Schwellenwert vorgesehen sein, beispielsweise der

Art "Knoten die mindestens 12 Stunden und maximal 5 Tage alt sind". Knoten,

die das Schwellenwertkriterium erfüllen erhalten ein höheres Gewicht.

- Zeitpunkt der letzten Bearbeitung (z.B. Editierung): Knoten die kürzlich

editiert wurden erhalten ein höheres Gewicht.

- Anzahl der Bearbeitungen: Vorzugsweise kann ein Knoten, der öfter editiert

wurde als andere Knoten ein höheres Gewicht erhalten.

- Anzahl der Verschiebungen: Je öfter ein Knoten verschoben (ausgeschnitten

und wieder eingefügt) wurde, desto mehr Gewicht erhält er.

- Anzahl der Markierungen: Je öfter ein Knoten ausgewählt/markiert wurde

desto mehr Gewicht erhält er.

- Sichtbarkeitsdauer: Je länger ein Knoten sichtbar war, desto mehr Gewicht

erhält er.

- Anzahl der Sichtbarkeiten: Je öfter ein Knoten unsichtbar und wieder sichtbar

gemacht wurde, das heißt ein- und ausgeklappt wurde, desto stärker ist sein

Gewicht.

- Anzahl der verfolgten Verweise: Je öfter ein Verweis eines Knoten geöffnet

wurde, desto größer ist das Gewicht des Knoten.

287

Jede der vorstehend genannten (dynamischen) Gewichtungen kann mittels eines

Zeitparameters geschwächt oder verstärkt werden. Hierzu ein Beispiel: Ein Knoten

wird doppelt so stark gewichtet wenn er wenigstens zwei Mal editiert wurde. Liegt

die letzte Editierung aber schon länger als X Wochen zurück, wird die Gewichtung

durch einen dämpfenden Zeitparameter nur 1,5 Mal so stark gewichtet.

Zusätzlich zur vorstehend genannten statischen und/oder dynamischen

Knotengewichtung kann eine Vererbung von Gewichten vorgesehen sein. Die

Vererbung wird vorzugsweise dann durchgeführt, nachdem die statische bzw.

dynamische Gewichtung durchgeführt worden ist. Bei der Vererbung von

Gewichten können Knoten Gewichtungen von ihren umliegenden Knoten "erben".

Hat etwa ein Elternknoten ein sehr hohes Gewicht (weil er z.B. oft ausgewählt

wurde), kann auch der Kindsknoten ein höheres Gewicht bekommen als wenn er

nur für sich betrachtet würde. Bevorzugt bekommen alle Kinderknoten und deren

Knoten, alle Geschwisterknoten und alle Elternknoten und deren Eltern bis zur

Wurzel ein höheres Gewicht, wobei das zusätzliche Gewicht schwächer wird, je

weiter entfernt von dem vererbenden Knoten sich der erbende Knoten befindet.

Zudem kann vorgesehen sein, dass nur Knoten, die einen Schwellenwert (z.B.

Gewichtung fünf Mal größer als normal) überschreiten das Gewicht an

umliegende Knoten vererben können. Gehören mehrere Knoten einer

baumförmige Datenstruktur einer bestimmten "Gruppe" an, kann die Gewichtung

der einzelnen Knoten der Gruppe aneinander angeglichen bzw. vererbt werden.

Gruppen können visuell in der baumförmige Datenstruktur erkennbar sein oder

sich durch bestimmte Attribute bzw. Elementtypen auszeichnen. Beispiel: Eine

baumförmige Datenstruktur enthält einige Knoten, die Verweise haben. Alle diese

Knoten sind der Gruppe "Verweis-Knoten" zugeordnet. Obwohl nur 95% dieser

Knoten eine sehr hohe Gewichtung haben, vergibt das System an alle Knoten (also

auch an die restlichen 5%) eine sehr hohe Gewichtung. Die schwachen Knoten

einer Gruppe erben quasi von ihren anderen Gruppenknoten.

B) Identifizieren der Elemente in den Knoten

In einem weiteren Schritt werden die Elemente in den Knoten identifiziert und ggf.

einer Vorverarbeitung zugeführt. Hierbei werden zunächst die in jedem Knoten

enthaltenden Elemente und deren Attribute identifiziert bzw. ermittelt.

Handelt es sich bei dem ermittelten Element um ein Textelement, so wird dieser

Text weiter zerlegt und zwar in Token bzw. Terme (Begriffe). Häufig kann als

Term ein einzelnes Wort gelten, manchmal aber auch zusammengesetzte Wörter

288

wie "Mind Map". Im Folgenden gilt jeder Term als eigenständiges Element vom

Typ Text.

Die Terme können weiter verarbeitet werden. Hierfür können aus dem Stand der

Technik bekannte Verfahren, etwa aus dem Bereich Information Retrieval

herangezogen werden. Beispiele für solche Verfahren sind etwa

- Stemming: Wörter werden auf ihre Stämme reduziert. Beispielsweise würde

das Wort "Stämme" auf "Stamm" gestemmt bzw. reduziert.

- Stop Word Removal: Sehr häufig vorkommende Wörter mit wenig

Aussagekraft (beispielsweise der, die, das, wo, wer, weshalb, schon, so, darum,

…) werden entfernt.

- Latent Semantic Indexing (LSI): Mit Latent Semantic Indexing werden

Synonyme von Wörtern zusammengefasst bzw. berücksichtigt.

- Translation: die Worte werden in eine Referenzsprache, z.B. Englisch,

übersetzt.

- Spelling Correction: Rechtschreibfehler werden erkannt und korrigiert oder

gelöscht.

Bei dem ermittelten Element kann es sich auch um einen Verweis handeln.

Verweise können ebenfalls vorverarbeitet werden, indem beispielsweise für jeden

Verweis die URI (Uniform Ressource Identifier) und/oder die Sonderzeichen auf

ein einheitliches Format konvertiert werden oder falls es sich um keinen

eindeutigen Verweis handelt (z.B. lediglich der Titel eines Dokumentes), versucht

wird einen eindeutigen Identifikator zu finden (im Falle eines Dokumentes

beispielsweise die ISBN).

C) Gewichten der Elemente

Ähnlich wie die Knoten kann auch jedes Element eines Knotens gewichtet

werden. Besonders Text- und Verweiselemente sind wichtig für die Erstellung des

erfindungsgemäßen Nutzermodells. Vorzugsweise erhält jedes Element zunächst

eine vorbestimmte Gewichtung (Initialgewichtung), etwa die Gewichtung 1 oder

die Gewichtung seines zugehörigen Knotens. Dies kann etwa in einem

Initialisierungsschritt erfolgen, bei dem alle Elemente mit einer Initialgewichtung

versehen werden.

289

Die Initialgewichtung eines Elementes kann verstärkt bzw. geschwächt werden,

vorzugsweise basierend auf einen oder mehreren der folgenden Faktoren:

- Element-Typ: Elemente bestimmter Typen können unterschiedliche

Basisgewichtungen erhalten. Beispielsweise kann ein Text-Element welches

den allgemeinen Knotentext darstellt eine höhere Gewichtung erhalten als ein

Text-Element welches eine zusätzliche Notiz darstellt.

- Attribute: Abhängig von den Attributen können Elemente eine stärkere oder

schwächere Gewichtung bekommen. Beispielsweise kann ein Text-Element,

welches fett formatiert ist stärker gewichtet werden als ein Text-Element ohne

Formatierung.

- Element Frequenz: Je öfter ein Element in der baumförmigen Datenstruktur

vorkommt, desto stärker kann seine Gewichtung sein.

- BD Frequenz: In je weniger baumförmigen Datenstrukturen der gesamten

Kollektion ein Element vorkommt, desto stärker wird es gewichtet. Dies beruht

auf der Annahme, dass ein Element, welches nur wenige Male in allen

baumförmigen Datenstrukturen vorkommt, aussagekräftiger ist als ein Element,

das in fast jeder baumförmigen Datenstruktur vorkommt. Enthält

beispielsweise in einer Kollektion von 100 baumförmigen Datenstrukturen nur

eine einzige baumförmige Datenstruktur den Term "Baum", dann würde dieser

Term stärker gewichtet in Bezug auf die baumförmige Datenstruktur als wenn

90 weitere baumförmige Datenstrukturen diesen Term ebenfalls enthalten.

- Kollektionsfrequenz: Je seltener das Element in der Gesamtmenge aller

Elemente der gesamten Kollektion vorkommt, desto stärker wird es gewichtet.

Dies ist sehr ähnlich zur BD Frequenz, mit dem Unterschied, dass bei der BD

Frequenz die Anzahl der baumförmigen Datenstrukturen gezählt wird in denen

das Element vorkommt und bei er Kollektionsfrequenz die Gesamtanzahl der

Elemente selbst.

- BD Größe: Je größer die baumförmige Datenstruktur, desto weniger stark wird

das Element gewichtet. Dies unterliegt der Annahme, dass große baumförmige

Datenstrukturen tendenziell mehr Elemente enthalten aber nicht gegenüber

kleinen baumförmige Datenstrukturen bevorzugt werden sollen. Die Größe

einer baumförmigen Datenstruktur kann angegeben werden durch die Anzahl

der Knoten einer baumförmigen Datenstruktur oder durch die Anzahl der

Elemente in einer baumförmigen Datenstruktur.

- Position im Knoten: Elemente die vorne im Knoten stehen werden anders

gewichtet als Elemente weiter hinten im Knoten. Enthält ein Knoten

beispielsweise 100 Terme, dann kann vorgesehen sein, dass nur die ersten 10

290

Terme berücksichtigt werden. Ferner kann vorgesehen sein, dass die weiteren

Terme (z.B. die nächsten 10 Terme) mit weniger Gewicht berücksichtigt

werden.

- Sprache (falls der Knoten ein Text-Elemente enthält): Im Gegensatz zu

Dokumenten, wie Webseiten, kommt es bei baumförmigen Datenstrukturen

häufig vor, dass Terme in verschiedenen Sprachen enthalten sind. Die

Elemente eines Knotens können abhängig von der Sprache unterschiedlich

stark gewichtet werden. Das heißt auch, dass wenn z.B. der Text eines Knotens

in einer bestimmten Sprache ist, die anderen Elemente des Knotens (zum

Beispiel ein Verweis) weniger oder mehr gewichtet werden.

- Knotenlänge: Elemente werden abhängig von der Knotenlänge gewichtet. Je

weniger Elemente ein Knoten enthält, desto stärker können seine Elemente

gewichtet werden.

- Abstand zu gleichartigen Elementen: Je weniger gleichartige Elemente es in

der Nähe eines Knotens gibt zu dem das Element gehört, desto mehr Gewicht

bekommt das Element. Zum Beispiel: Hat ein Knoten einen Verweis auf ein

Item und die umliegenden Knoten (z.B. alle Kinder, Geschwister und

Elternknoten) enthalten keine Verweise, dann könnte dieser Verweis ein

besonders hohes Gewicht bekommen, da die Vermutung nahe liegt, dass sich

der Verweis auch auf die umliegenden Knoten bezieht. Haben hingegen

Geschwisterknoten ebenfalls Verweise, bekommt dieser Verweis kein

besonders hohes Gewicht.

- Element-Wiederholung: Baumförmige Datenstrukturen können sehr

benutzerspezifisch erstellt werden. Beispielsweise kann es vorkommen, dass

ein Nutzer Elemente in den Knoten oft wiederholt, ein anderer Nutzer aber

nicht. Hier kann es vorteilhaft sein, das Gewicht eines Elementes zu verringern,

je öfter einer der Elternknoten (bis hoch zum Wurzelknoten) oder

Geschwisterknoten dieses Element bereits enthält. Fig. 6a und Fig. 6b

verdeutlichen diesen Fall. Fig. 6a und Fig. 6b zeigen jeweils eine baumförmige

Datenstruktur mit der gleichen Aussage von zwei Nutzern, wobei die

baumförmigen Datenstrukturen dennoch unterschiedlich aussehen. In Fig. 6a

wiederholt sich der Term "Recommender" mehrfach, in Fig. 6b hingegen nicht.

Trotzdem wäre der Term "Recommender" für beide baumförmigen

Datenstrukturen bzw. Nutzer gleichermaßen zutreffend und sollte

gleichermaßen gewichtet werden.

Die Gewichtung der Elemente kann auch mit den gleichen Verfahren stattfinden

mit dem die Knoten gewichtet werden. Beispielsweise können ältere Elemente

291

schwächer gewichtet werden als neuere und auch bei den Elementgewichtungen

kann eine Vererbung stattfinden.

D) Speichern des Nutzermodells

In einer vorteilhaften Ausgestaltung der Erfindung kann es vorteilhaft sein, das

generierte Nutzermodell zu speichern, um es etwa einem Empfehlungsdienst zur

Verfügung zu stellen. Alternativ kann ein Nutzermodell aber auch auf

Anforderung erstellt werden, ohne es zu speichern.

Erfindungsgemäß können mindestens zwei verschiedene Ansätze genutzt werden,

um ein Nutzermodell zu speichern. Die beiden hier gezeigten Ansätze sind das

Typ-Neutrale Speichern und das Typ-Abhängige Speichern eines Nutzermodells.

Bei der Typ-Neutralen Speicherung werden alle Elemente mit ihrer Gewichtung

gespeichert. Das heißt, Terme, Links/Verweise, Bilder, etc. werden alle

gemeinsam in dem Model gespeichert. In einer konkreten Ausgestaltung des

erfindungsgemäßen Verfahrens kann hierfür das eingangs beschriebene Vector

Space Model genutzt werden, welches durch die Erfindung so erweitert wird, dass

nicht nur Terme mit einer Gewichtung gespeichert werden können, sondern

vielmehr beliebige Elemente verschiedenen Typs mit ihrer Gewichtung und ihrem

Typ.

Bei der Typ-Abhängigen Speicherung kann für jeden Elementtyp ein separates

Nutzermodell erzeugt werden, welche zusammen ein Gesamtnutzermodell bilden.

Ein Nutzermodell umfasst dann beispielsweise ein Text-Modell und ein Verweis-

Modell. Hierfür können Standardverfahren aus dem Information Retrieval Bereich

bzw. User Modelling Bereich genutzt werden. Ein Standardmodell für ein Text-

basiertes Modell wäre beispielsweise wieder das genannte Vector Space Model in

dem die einzelnen Terme entsprechend des oben beschriebenen Verfahrens

gewichtet sind. Verweise können auch in anderen Modellen gespeichert werden,

die beispielsweise auch die Reihenfolge der Elemente in der baumförmigen

Datenstruktur berücksichtigen.

E) Weitere Schritte

Die nachfolgenden Schritte können optional zu den vorstehend genannten

Schritten ausgeführt werden.

292

Hat ein Nutzer Beziehungen zu mehreren baumförmigen Datenstrukturen, kann

für jede baumförmige Datenstruktur ein (bzw. mehrere) Modelle erzeugt werden,

wie vorstehend beschrieben, und die verschiedenen Modelle am Ende zu einem

Gesamtmodell zusammen gefügt werden. Hierbei können unterschiedliche

baumförmige Datenstrukturen mit unterschiedlicher Gewichtung versehen werden.

Die Gewichtung erfolgt nach ähnlichen Prinzipien wie die Gewichtung der Knoten

oder der Elemente. Beispielsweise kann eine neuere baumförmige Datenstruktur

oder baumförmige Datenstrukturen, die häufiger geöffnet oder editiert wurden,

stärker gewichtet werden.

Entsteht eine neue Beziehung zwischen einer baumförmigen Datenstruktur und

einem Nutzer zu dem bereits ein Nutzermodell existiert, kann das bestehende

Nutzermodell um die Elemente der neuen baumförmigen Datenstruktur erweitert

werden.

Enthält eine baumförmige Datenstruktur Verweise auf Items, können diese Items

ebenfalls für die Generierung eines Nutzermodells genutzt werden. Das heißt, die

Elemente in dem verlinkten Item werden in das Nutzermodell eingefügt und zwar

auf vergleichbare Weise wie Elemente der baumförmige Datenstruktur selbst.

Diese Items können mit einer niedrigeren Gewichtung versehen werden. Ist das

verlinkte Item eine baumförmige Datenstruktur, werden deren Elemente mit dem

vorstehend beschriebenen Verfahren gewichtet. Ist das verlinkte Element z.B. eine

Webseite, dann kann die Gewichtung mit Standardverfahren, wie dem TF-IDF

durchgeführt werden.

Die vorstehend genannten Typ-Neutralen und Typ-Abhängigen Modelle können in

Untermodelle unterteilt sein, beispielsweise in

- Modelle für Kurzzeitinteressen: Dieses Modell würde beispielsweise nur Daten

aus einer Session bzw. der zuletzt editierten baumförmigen Datenstruktur

enthalten (oder Daten der baumförmigen Datenstruktur, die in einem

bestimmten Zeitraum editiert wurden).

- Modelle für Langzeitinteressen: Dieses Modell würde Interessen basierend auf

allen oder zumindest mehreren baumförmigen Datenstrukturen enthalten.

- Modelle für verschiedene Interessen: Es ist denkbar, dass Nutzer verschiedene

baumförmige Datenstrukturen erstellen für z.B. verschiedene Projekte. Das

heißt, eine baumförmige Datenstruktur (oder auch mehrere) werden genutzt für

Projekt A und eine andere baumförmige Datenstruktur (oder auch mehrere) für

ein anderes Projekt B. Erfindungsgemäß können baumförmige

293

Datenstrukturen, die sehr unterschiedlich sind für die Erstellung

unterschiedlicher Modelle genutzt werden (die ggf. auch wieder unterteilt

werden in Langzeit und Kurzzeitinteressen). Die Identifizierung von

zusammengehörigen baumförmigen Datenstrukturen kann folgendermaßen

erfolgen:

- Inhaltliche Analyse: Hier werden mit den Verfahren zur Gewichtung von

Termen oder Verweisen ähnliche baumförmige Datenstrukturen ermittelt.

Unterschreiten die baumförmigen Datenstrukturen einen bestimmten

Ähnlichkeits-Schwellenwert, werden sie für unterschiedliche Nutzermodelle

genutzt.

- Zeitliche Analyse: Baumförmige Datenstrukturen, die selten oder nie zur

gleichen Zeit genutzt, geöffnet, etc. werden, werden für unterschiedliche

Nutzermodelle genutzt.

Baumförmige Datenstrukturen können für unterschiedliche Arten von

Anwendungen genutzt werden, zum Beispiel Dateiverwaltung, Brainstorming,

Dokumentenmanagement, Projektplanung etc. Die Art der Anwendung wird im

Nutzermodell vermerkt. Wenn ein Nutzer verschiedene baumförmige

Datenstrukturen für verschiedene Arten von Anwendungen erstellt, werden wieder

jeweils verschiedene Nutzermodelle erstellt. Die Art der Anwendung kann wie

folgt festgestellt werden:

- Über die Anwendung, mit der die baumförmige Datenstruktur erstellt wurde.

Beispielsweise kann pauschal angenommen werden, dass eine baumförmige

Datenstruktur, mit dem Windows Explorer erstellt worden ist zur

Dateiverwaltung dient.

- Durch manuelle Angabe des Nutzers: Der Nutzer kann in der Anwendung zum

Erstellen der baumförmigen Datenstruktur angeben für welchen Zweck er die

baumförmige Datenstruktur erstellen will (z.B. Brainstorming, Projektplanung,

etc.).

- Automatische Analyse: Das System analysiert die baumförmige Datenstruktur

und schließt, z.B. an Hand ihres Aufbaus, ihrer Nutzung oder ihres

Quellformates, automatisch auf die Art der Anwendung.

Bei der automatischen Analyse können folgende Regeln angewandt werden:

- Enthalten baumförmige Datenstrukturen viele Verweise, ist die primäre

Anwendung Dateiverwaltung, Webseitenverwaltung bzw.

Dokumentenverwaltung.

294

- Werden erst sehr schnell sehr viele Knoten in der baumförmigen Datenstruktur

erstellt, diese dann verschoben und editiert und die baumförmige Datenstruktur

danach nie oder nur selten geöffnet, wurde sie für Brainstorming erstellt.

- Wächst die baumförmige Datenstruktur langsam und kontinuierlich ist es keine

baumförmige Datenstruktur für Brainstorming.

Bei der automatischen Analyse können Faktoren wie Wachstumsrate, Größe,

Nutzungsdauer, Art der Nutzung, Anwendung zum Erstellen der baumförmigen

Datenstruktur und/oder weitere Faktoren eine Rolle spielen.

Mit dem vorstehend beschriebenen erfindungsgemäßen Verfahren sind für eine

Anzahl von Nutzer jeweils ein oder auch mehrere Nutzermodelle erzeugt worden.

Diese Nutzermodelle werden erfindungsgemäß genutzt, um einem Nutzer

Empfehlungen für Items zu geben. Das heißt, basierend auf den Nutzermodellen

können Items identifiziert werden, die der Nutzer wahrscheinlich als

interessant/relevant empfindet. Um Items zu empfehlen, wird gemäß der

Erfindung ein Verfahren vorgeschlagen, welches sowohl Item-Modelle als auch

Nutzermodelle als gleich ansieht. Im Folgenden werden Items und Nutzer

zusammengefasst als Objekt bezeichnet, wobei jedes Objekt einen Typ haben kann

(Typ = Nutzer; Typ = Webseite; Typ = Email; Typ = Wissenschaftlicher Artikel;

etc.).

Das erfindungsgemäße Verfahren zum Vorschlagen von Objekten kann zumindest

die nachfolgend genannten Schritte umfassen:

Die Nutzermodelle wurden bereits mit vorstehen genannten erfindungsgemäßen

Verfahren erstellt und gespeichert. Nun wird von allen Items die potentiell

empfohlen werden können, ein Item-Modell mit aus dem Stand der Technik

bekannten Verfahren erzeugt. Handelt es sich bei dem Item beispielsweise um eine

Webseite könnten Terme mittels TF-IDF gewichtet und als Vector Space Model

gespeichert werden. Handelt es sich bei dem Item um eine wissenschaftliche

Arbeit könnte ebenfalls TF-IDF genutzt werden, aber auch andere Verfahren, wie

etwa Citation Proximity Analysis um das Item abzubilden.

Es kann auch das vorstehend genannte Typ-Neutrale Verfahren genutzt werden,

um ein entsprechendes Modell von Items zu erstellen die, wie baumförmige

Datenstrukturen, mehrere Elementtypen enthalten. Dies trifft zum Beispiel auf

wissenschaftliche Artikel zu. Eine wissenschaftliche Arbeit enthält in der Regel

Text und Verweise (Referenzen auf andere wissenschaftlichen Arbeiten),

295

vergleichbar zu einer baumförmigen Datenstruktur, die ebenfalls Text und

Verweise (z.B. auf Dateien) enthält. Darum können beide relativ leicht mit

kompatiblen Modelltypen abgebildet werden. Wichtig ist, dass erfindungsgemäß

alle Objekte in dem gleichen bzw. einem kompatiblen Modell abgebildet werden,

um diese später miteinander vergleichen zu können.

Nachdem von allen Objekten Modelle erstellt und gespeichert wurden, werden

diese auf Ähnlichkeit verglichen. Enthalten die Objektmodelle mehrere

Untermodelle (beispielsweise für Kurz- und Langzeitinteressen oder für

verschiedene Elementtypen), wird jedes dieser Untermodelle mit den anderen

Objektmodellen verglichen. Der Vergleich kann mit Standardverfahren stattfinden,

wie Cosine für Vergleiche im Vector Space Model oder Ähnlichkeitsmaßen wie

Greedy Citation Tiling für verweisbasierte Modelle. Das heißt letztlich, dass durch

das Objekt-Objekt Matching die Ähnlichkeit der Nutzer zueinander, die

Ähnlichkeit der Items zueinander und die Ähnlichkeit der Items und Nutzer

zueinander in einem Schritt berechnet werden. Dies hat den Vorteil, dass einem

Nutzer später sehr flexible Empfehlungen gegeben werden können.

Soll nun einem Nutzer eine Empfehlung gegeben werden, werden basierend auf

seinem Objekt bzw. Nutzermodell:

- alle Objekte empfohlen, die einen bestimmten Typ haben (z.B. Webseite bzw.

allgemein „Item“) oder ungleich eines bestimmten Typs sind (z.B. Nutzer) und

einen gewissen Ähnlichkeitswert überschreiten;

- alle Objekte empfohlen, auf die in einem der im vorherigen Schritt bestimmten

Objekte mit hohem Gewicht verwiesen wird. Wurde z.B. im vorherigen Schritt

ein zum Nutzermodell ähnliches Objekt vom Typ Webseite bestimmt, werden

dem Nutzer die Webseiten empfohlen die häufig auf der ähnlichen Webseite

verlinkt sind. Oder, wurde ein ähnliches Objekt vom Typ "Nutzer" bestimmt

werden die Items empfohlen, auf die häufig in dem Nutzermodell des ähnlichen

Nutzers verwiesen wird bzw. die in enger Verbindung zu dem Nutzer stehen;

und/oder

- alle Objekte empfohlen, die ähnlich zu den Objekten sind, auf die im

Nutzermodell des Nutzers verwiesen wird. Das heißt: Hat ein Nutzer in seinem

Nutzermodell einen Verweis auf eine Webseite X, werden die Objekte

empfohlen die ähnlich zu dieser Webseite X sind.

Zusätzlich bzw. alternativ zu dem vorstehend beschriebenen Ansatz kann ein

Verfahren basierend auf Machine Learning genutzt werden. Die Verweise eines

296

Nutzermodells können mit Machine Learning Verfahren genutzt werden, um die

Präferenzen von Nutzern zu lernen. Hierbei gilt jeder Verweis auf ein Item als

positive Assoziation, welche das System lernt und darauf basierend Empfehlungen

für neue Items gibt.

In einer speziellen Ausführung des erfindungsgemäßen Verfahrens kann dieses

verwendet werden, um Empfehlungen für Fördergelder/Förderprogramme zu

geben. Hierzu wird zunächst ein aus einer baumförmigen Datenstruktur ein

Nutzermodell erzeugt, wie vorstehend beschrieben. Das Förderprogramm selbst

wird als Item betrachtet. Das Item wiederum wird repräsentiert durch einen Text

welcher das Förderprogramm beschreibt. Dieser Text kann eine Webseite sein,

eine Broschüre im PDF Format, Social Tags, etc. Enthält beispielsweise ein

Nutzermodell den stark gewichteten Term "Recommender Systems" und gibt es

ein Förderprogramm, dessen Webseite ebenfalls diesen Term oft beinhaltet, würde

dieses Förderprogramm dem Nutzer empfohlen.

Durch die erfindungsgemäßen Nutzermodelle und Empfehlungen kann der Nutzen

vieler Softwareprogramme für den Anwender gesteigert werden, da sie

interessante Empfehlungen erhalten.

K.2 Ansprüche

Computer-implementiertes Verfahren zum Erzeugen eines Nutzermodells,

insbesondere für einen Empfehlungsdienst, aus zumindest einer baumförmigen

Datenstruktur, wobei das Nutzermodell Informationen über einen Nutzer umfasst,

wobei die zumindest eine baumförmige Datenstruktur dem Nutzer zuordenbar ist,

wobei die baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit einem

Kinderknoten verbunden sind, wobei zumindest einem Knoten zumindest ein

Element zugeordnet ist, und wobei

- die den Knoten zugeordneten Elemente ermittelt werden, wobei die

Elemente einen Inhalt des jeweiligen Knoten repräsentieren,

- die ermittelten Elemente gewichtet werden und jedem Element eine

Elementgewichtung zugeordnet wird, und

- ein Nutzermodell generiert wird, wobei das generierte Nutzermodell die

ermittelten Elemente und die dem jeweiligen Element zugeordnete

Elementgewichtung umfasst.

297

1. Verfahren nach Anspruch 1, wobei die Knoten der baumförmigen

Datenstruktur gewichtet werden und jedem Knoten eine Knotengewichtung

zugeordnet wird.

2. Verfahren nach einem der vorhergehenden Ansprüche, wobei in einem

Initialisierungsschritt jedem Element eine vorbestimmte Elementgewichtung

oder die Knotengewichtung des zugeordneten Knotens zugeordnet wird.

3. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren

ferner einen Vorverarbeitungsschritt umfasst, bei dem

- Knoten, denen keine Elemente zugeordnet sind, gelöscht werden, und/oder

- Knoten gelöscht werden, denen ein vorbestimmtes Element zugeordnet

oder nicht zugeordnet ist, und/oder

- Knoten gelöscht werden, welche vorbestimmte Attribute aufweisen oder

nicht aufweisen, und/oder

- Knoten und/oder Elemente der Knoten gelöscht werden, welche nicht

direkt dem Nutzer zugeordnet sind.

4. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Gewichten

der Knoten eine statische Knotengewichtung und/oder eine dynamische

Knotengewichtung umfasst, wobei

- bei der statischen Knotengewichtung die Anzahl der dem jeweiligen

Knoten zugeordneten Kinderknoten, die Anzahl der jeweiligen

Geschwisterknoten, die Tiefe des jeweiligen Knotens in der baumförmigen

Datenstruktur, die Sichtbarkeit des Knotens, oder eine Kombination

hiervon berücksichtigt werden, und

- bei der dynamischen Knotengewichtung für jeden Knoten das Alter, der

Zeitpunkt der letzen Änderung, die Anzahl der Änderungen, die Anzahl

der Verschiebungen innerhalb der baumförmigen Datenstruktur, die

Anzahl der Markierungen, die Sichtbarkeit des Knotens, ein

Dämpfungsfaktor, oder eine Kombination hiervon berücksichtigt werden.

5. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Ermitteln

der den Knoten zugeordneten Elemente ein Vorverarbeiten der ermittelten

Elemente umfasst, wobei beim Vorverarbeiten der Elemente Text in Token

und/oder Terme zerlegt wird, sofern das Element ein Textelement ist,

298

und/oder Verweise verarbeitet werden, sofern das Element ein

Verweiselement ist.

6. Verfahren nach einem der vorhergehenden Ansprüche, wobei die in dem

Initialisierungsschritt den Elementen zugeordneten Elementgewichtungen

angepasst werden, wobei beim Anpassen der jeweiligen Elementgewichtung

der Elementtyp, Attributsausprägungen der von dem Element zugeordneten

Attribute, eine Häufigkeit des Elements innerhalb der baumförmigen

Datenstruktur, die Anzahl der baumförmigen Datenstrukturen in einer

Kollektion von baumförmigen Datenstrukturen in denen das Element

vorkommt, eine Häufigkeit des Elements innerhalb einer Kollektion von

baumförmigen Datenstrukturen, die Größe der baumförmigen Datenstruktur

im Verhältnis zu anderen baumförmigen Datenstrukturen in einer Kollektion

von baumförmigen Datenstrukturen, die Position des Elementes innerhalb des

Knotens, die Sprache des Elementes, die Anzahl der Elemente innerhalb des

Knotens, der Abstand des Elementes zu gleichartigen Elementen anderer

Knoten, Häufigkeit des Elementes in dem Pfad zwischen dem Knoten und

dem Wurzelknoten, das Alter des Elements, der Zeitpunkt der letzen

Änderung, die Anzahl der Änderungen, die Anzahl der Markierungen, die

Sichtbarkeit des Elements, ein Dämpfungsfaktor, oder eine Kombination

hiervon berücksichtigt werden.

Verfahren nach einem der Ansprüche 5 bis 7, wobei bei der statischen

Knotengewichtung und/oder bei der dynamischen Knotengewichtung oder nach

der statischen Knotengewichtung und/oder nach der dynamischen

Knotengewichtung und/oder bei oder nach der Elementgewichtung die Vererbung

des Knotengewichts bzw. des Elementgewichts berücksichtigt werden.

7. Verfahren nach einem der vorhergehenden Ansprüche, wobei das generierte

Nutzermodell in einer Speichereinrichtung gespeichert wird, um dem

Empfehlungsdienst zur Verfügung gestellt zu werden.

8. Verfahren nach Anspruch 9, wobei alle Elemente zusammen mit den

jeweiligen Elementgewichtungen als Nutzermodell gespeichert werden, oder

wobei für jeden Elementtyp ein eigenes Nutzermodell gespeichert wird,

299

wobei die Nutzermodelle der verschiedenen Elementtypen ein

Gesamtnutzermodell bilden.

9. Verfahren nach einem der vorhergehenden Ansprüche, wobei bei mehreren

dem Nutzer zuordenbaren baumförmigen Datenstrukturen für jede

baumförmige Datenstruktur eine Anzahl von Nutzermodellen generiert wird,

welche zusammen ein dem Nutzer zugeordnetes Gesamtnutzermodell bilden.

10. Verfahren nach Anspruch 11, wobei jeder baumförmigen Datenstruktur eine

Baumgewichtung zugeordnet wird.

11. Verfahren nach Anspruch 11 oder 12, wobei für eine neue dem Nutzer

zuordenbare baumförmige Datenstruktur das dem Nutzer zugeordnete

Nutzermodell angepasst wird.

12. Verfahren nach einem der vorhergehenden Ansprüche, wobei von der

baumförmigen Datenstruktur referenzierte Elemente in das Nutzermodell

eingefügt werden und wie Elemente der baumförmigen Datenstruktur

behandelt werden.

13. Verfahren nach einem der vorhergehenden Ansprüche, wobei einem

generierten Nutzermodell eine Information über den Nutzermodelltyp

zugeordnet wird.

14. Verfahren nach einem der vorhergehenden Ansprüche, wobei das Verfahren

ferner ein Auswählen von Objekten anhand vorbestimmter Auswahlkriterien

umfasst, wobei ein Objekt ein Nutzermodell oder ein Itemmodell umfasst.

15. Verfahren nach Anspruch 16, wobei die Auswahlkriterien umfassen:

- Objekte eines vorbestimmten Typs, und/oder

- Objekte die eine vorbestimmte Ähnlichkeit zu dem Nutzermodell und/oder

Itemmodell aufweisen, wobei vor dem Auswählen Ähnlichkeitswerte

300

zwischen dem generierten Nutzermodell und/oder Itemmodell und den

Objekten ermittelt werden.

16. Verfahren nach einem der vorhergehenden Ansprüche, wobei durch ein

Itemmodell ein Förderprogramm repräsentiert wird, und wobei das das

Förderprogramm repräsentierende Itemmodell ausgewählt wird, wenn das

Nutzermodell eine vorbestimmte Ähnlichkeit zu dem Itemmodell aufweist.

17. System zum Erzeugen eines Nutzermodells, insbesondere für einen

Empfehlungsdienst, aus zumindest einer baumförmigen Datenstruktur, wobei

das Nutzermodell Informationen über einen Nutzer umfasst, wobei die

baumförmige Datenstruktur dem Nutzer zuordenbar ist, wobei die

baumförmige Datenstruktur einen Wurzelknoten und eine Anzahl von

Kinderknoten umfasst, welche über Kanten mit dem Wurzelknoten oder mit

einem Kinderknoten verbunden sind, und wobei zumindest einem Knoten

zumindest ein Element zugeordnet ist, aufweisend

- wenigstens eine Speichereinrichtung zum Speichern wenigstens einer

baumförmigen Datenstruktur, und

- eine Verarbeitungseinrichtung, welche mit der Speichereinrichtung

gekoppelt ist und welche angepasst ist ein Verfahren nach einem der

vorhergehenden Ansprüche auszuführen, um ein Nutzermodell zu

generieren und das generierte Nutzermodell in der Speichereinrichtung

abzuspeichern und einem Empfehlungsdienst zur Verfügung zu stellen.

18. Datenträgerprodukt mit einem darauf gespeicherten Programmcode, welcher

in einen Computer und / oder in ein Computernetzwerk ladbar ist und

angepasst ist, ein Verfahren nach einem der Ansprüche 1 bis 18 auszuführen.

301

K.3 Figuren

Fig. 1

(Stand der Technik)

User 1

User 2

User 3

Item 1

Item 2

Item 3

U
se

r-
It

em
 M

at
ch

in
g

Fig. 2

(Stand der Technik)

User

Model 1

Item

Model A

Item

Model B

Item

Model j

Item A

Item B

Item j

Item

Model 1

Item

Model 2

Item

Model i

User 1

Item 1

Item 2

Item i

… …

It
em

 R
ep

re
se

n
ta

ti
o

n

It
em

-U
se

r
M

at
ch

in
g

It
em

 W
ei

g
h

ti
n

g

It
em

 R
ep

re
se

n
ta

ti
o

n

302

Fig. 3

(Stand der Technik)

User

Model 1

User

Model 2

User-User

Matching

User 1

User 2

Item 1

Item 2

Item 4

Item 3

It
em

 W
ei

g
h
ti

n
g

Fig. 4

(Stand der Technik)

User

Model 1

User

Model 2

User-User

Matching

User 1

User 2

Item 1

Item 2

Item 4

Item 3

It
em

 R
ep

re
se

n
ta

ti
o
n

Item

Model 1

Item

Model 2

Item

Model 3

Item

Model 4

It
em

 W
ei

g
h
ti

n
g

303

Fig. 5

Knoten 1

(Root)

Knoten

2.1

Knoten

2.2
… Knoten

2.i

Knoten

i.1

Knoten

i.n

…

Kante

Kante Kante

Kante

L
ev

el
 1

L

ev
el

 2

L
ev

el
 i

Item

304

Fig. 6a

Fig. 6b

Recommender

Systems

Collaborative Filtering

Recommender Systems

Content Based

Recommender Systems

Research Paper

Recommender

Book

Recommender

Website

Recommender

Recommender

Systems

Collaborative Filtering Content Based

Research Papers Books Websites

305

Fig. 7a

Konvertieren

Löschen nicht

relevanter Knoten

Nutzermodell erzeugen

Gewichte Knoten

Statische

Knotengewichtung

Dynamische

Knotengewichtung

Elemente in Knoten identifizieren

Vorverarbeitung

Term

Vorverarbeitung

Verweis

Vorverarbeitung

Gewichten der

Elemente

Kombiniertes

Modell speichern

Empfehlungen

Separates Element-

Modell speichern

Knotengewichte vererben

Elementgewichte vererben

306

Fig. 7b

Empfehlungen

Welches

Verfahren?

Item, Nutzer,

Verweis Verfahren

Kombiniertes

Verfahren

Machine

Learning

Relevante Items

empfehlen

307

Ehrenerklärung

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe

Dritter und ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt

habe; verwendete fremde und eigene Quellen sind als solche kenntlich gemacht.

Insbesondere habe ich nicht die Hilfe eines kommerziellen Promotionsberaters in

Anspruch genommen. Dritte haben von mir weder unmittelbar noch mittelbar

geldwerte Leistungen für Arbeiten erhalten, die im Zusammenhang mit dem Inhalt

der vorgelegten Dissertation stehen. Ich habe insbesondere nicht wissentlich:

 Ergebnisse erfunden oder widersprüchliche Ergebnisse

verschwiegen,

 statistische Verfahren absichtlich missbraucht, um Daten in

ungerechtfertigter Weise zu interpretieren,

 fremde Ergebnisse oder Veröffentlichungen plagiiert,

 fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und

Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch

die Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im

Inland noch im Ausland in gleicher oder ähnlicher Form als Dissertation

eingereicht und ist als Ganzes auch noch nicht veröffentlicht.

Jöran Beel, Magdeburg, Deutschland, 22. Oktober 2014

	Abstract
	Zusammenfassung
	Table of Contents
	List of Figures
	List of Tables
	Glossary
	Acknowledgements
	1. Introduction
	1.1 Problem Setting
	1.2 Motivation
	1.3 Research Objective, Questions, and Tasks
	1.4 Outline

	2. Fundamentals
	2.1 Mind Mapping
	2.2 Docear
	2.3 Definitions
	2.4 User Modeling
	2.5 Recommender Systems
	2.5.1 Introduction
	2.5.2 Recommendation Classes
	2.5.2.1 Stereotyping
	2.5.2.2 Content-based filtering
	2.5.2.3 Collaborative filtering
	2.5.2.4 Co-occurrence recommendations

	2.5.3 Recommender-Systems Evaluation
	2.5.3.1 User studies
	2.5.3.2 Online evaluations
	2.5.3.3 Offline evaluations
	2.5.3.4 The operator's perspective

	2.6 Related Research Fields

	3. Related Work
	3.1 Introduction
	3.2 Survey of the Recommendation Classes
	3.2.1 Content-Based Filtering
	3.2.2 Collaborative Filtering
	3.2.3 Co-Occurrences
	3.2.4 Graph Based
	3.2.5 Global Relevance
	3.2.6 Hybrid Recommendation Approaches

	3.3 Survey of the Research Field and its Shortcomings
	3.3.1 Neglect of User Modeling
	3.3.2 Focus on Accuracy
	3.3.2.1 Users’ tasks
	3.3.2.2 Diversity
	3.3.2.3 Layout
	3.3.2.4 User characteristics
	3.3.2.5 Time of usage
	3.3.2.6 Recommendation medium
	3.3.2.7 Relevance and profile feedback

	3.3.3 Lack of Transferring Research into Practice
	3.3.4 Lack of Persistence and Authorities
	3.3.5 Lack of Cooperation
	3.3.6 Information Sparsity

	3.4 Survey of the Evaluations
	3.4.1 Evaluation Methods and their Adequacy
	3.4.2 The Operators’ Perspective
	3.4.3 Coverage
	3.4.4 Baselines
	3.4.5 Offline Evaluation Metrics
	3.4.6 Datasets and Architectures
	3.4.7 The Butterfly Effect: Unpredictable Results

	3.5 Discussion and Summary

	4. Methodology
	4.1 Development of Docear’s Recommender System
	4.2 Comparison of Evaluation Methods and Metrics
	4.3 Identification of Mind-Map-Specific User-Modeling Variables
	4.4 Development of a Mind-Map-Specific User-Modeling Approach

	5. Results & Discussion
	5.1 Docear’s Recommender System
	5.1.1 Architecture
	5.1.1.1 Web Service / API
	5.1.1.2 Building the corpus
	5.1.1.3 Collecting information about users
	5.1.1.4 Generating user models & recommendations
	5.1.1.5 Delivering recommendations
	5.1.1.6 Offline evaluation
	5.1.1.7 Technical details

	5.1.2 Datasets
	5.1.2.1 Research papers
	5.1.2.2 Mind maps / user libraries
	5.1.2.3 Users
	5.1.2.4 Recommendations

	5.2 Adequacy of Evaluation Methods and Metrics
	5.2.1 Results of the Evaluations
	5.2.1.1 Effectiveness of recommendation approaches
	5.2.1.2 Effect of user-model size
	5.2.1.3 Effect of number of nodes
	5.2.1.4 Effect of node-selection method
	5.2.1.5 Effect of stop-word removal
	5.2.1.6 Effect of user types
	5.2.1.7 Effect of labels
	5.2.1.8 Effect of trigger
	5.2.1.9 Correlation of the evaluation metrics

	5.2.2 Adequacy of Online-Evaluation Metrics
	5.2.3 Adequacy of Online Evaluations & User Studies
	5.2.4 Adequacy of Offline Evaluations
	5.2.4.1 Finding scenarios for which offline evaluations have predictive power
	5.2.4.2 The inherent value of offline evaluations
	5.2.4.3 The fundamental flaw of inferred ground-truths

	5.3 Mind-Map-Specific User-Modeling Variables
	5.3.1 Mind-Map & Node Selection
	5.3.1.1 Mind-map selection
	5.3.1.2 Node selection
	5.3.1.3 Node extension

	5.3.2 Node Weighting
	5.3.3 Feature Weighting
	5.3.4 User-Model Size
	5.3.5 Citations vs. Terms
	5.3.6 Mind maps vs. Other Items
	5.3.7 Additional Observations

	5.4 Docear’s Mind-Map-Specific User-Modeling Approach

	6. Summary and Contributions
	6.1 Overview
	6.2 Task 1: Survey Related Work
	6.2.1 Contribution 1: Overview of Research-Paper Recommender Systems
	6.2.2 Contribution 2: Identification of Several Shortcomings in Research-Paper Recommender-Systems Research
	6.2.3 Contribution 3: Showing the Need for More Research on Recommender-Systems Evaluation

	6.3 Task 2: Develop a Recommender System for Docear
	6.3.1 Contribution 4: Docear's Recommender-System Architecture
	6.3.2 Contribution 5: Docear's Datasets

	6.4 Task 3: Identify Adequate Evaluation Methods and Metrics
	6.4.1 Contribution 6: Showing the Inadequacy of Offline Evaluations
	6.4.2 Contribution 7: Showing the Adequacy of Online Evaluations and User Studies

	6.5 Task 4: Identify Mind-Map-Specific User-Modeling Variables
	6.5.1 Contribution 8: Identification and Evaluation of Mind-Map-Specific Variables

	6.6 Task 5: Develop a Mind-Map-Specific User-Modeling Approach
	6.6.1 Contribution 9: Evaluation of Standard User-Modeling Approaches Applied to Mind Maps
	6.6.2 Contribution 10: A Mind-Map-Specific User-Modeling Approach
	6.6.3 Contribution 11: Demonstrating the Potential of Mind Maps as Source for User Modeling

	6.7 Further Contributions

	7. Outlook
	References
	Appendix
	A List of Publications
	B Preliminary Study
	B.1 Introduction
	B.2 Related Work
	B.3 Popularity of Mind-Mapping
	B.4 Mind-Map based IR Applications
	B.5 Feasibility
	B.5.1 Mind-Map Users and (Public) Mind-Maps
	B.5.2 Content of Mind-Maps
	B.5.3 User Acceptance
	B.5.4 Discussion of the Feasibility

	B.6 Prototype
	B.7 Summary

	C Exploratory Analysis of Mind-Maps
	C.1 Introduction
	C.2 Related Work
	C.3 Methodology
	C.4 Results & Interpretation
	C.4.1 Mind Maps per User
	C.4.2 Nodes per mind map
	C.4.3 File Links
	C.4.4 Hyperlinks
	C.4.5 Notes
	C.4.6 Words per node
	C.4.7 Days Edited

	C.5 Interpretation & Summary
	C.6 Outlook

	D Link Analysis in Mind Maps
	D.1 Introduction
	D.2 Related Work
	D.3 Methodology
	D.4 Results
	D.5 Discussion
	D.5.1 Availability of Data
	D.5.2 Robustness of Data
	D.5.3 Timeliness of Data
	D.5.4 Appropriate Metrics

	D.6 Summary & Future Research

	E Docear4Word
	E.1 Introduction
	E.2 Maintaining a BibTeX database
	E.3 Inserting references in Microsoft Word
	E.4 Changing the Citation Style
	E.5 Insert a Bibliography
	E.6 Outlook

	F Review of the Recommendation Approaches
	F.1 Content-based Filtering Approaches
	F.1.1 CiteSeer(x) and CC-IDF
	F.1.2 Quickstep & Foxtrot
	F.1.3 Topic Sensitive Similarity Propagation (TSSP)
	F.1.4 Mixed-membership model / Link-LDA
	F.1.5 Papits
	F.1.6 Trust-based Scientiﬁc Paper Recommender (SPRec)
	F.1.7 PubMed Related Articles (PRMA)
	F.1.8 Recommending Citations
	F.1.9 Concept-Based Recommender System
	F.1.10 Pairwise Link-LDA & Link-PLSA-LDA
	F.1.11 Cite-LDA & cite-PLSA-LDA
	F.1.12 User’s Recent Research Interests
	F.1.13 Social Tag Based Recommender System
	F.1.14 Context Aware Relevance Model (CRM)
	F.1.15 SVM-MAP Approach / Who Should I Cite?
	F.1.16 Keyphrase-based recommender / Pirates Framework
	F.1.17 Source Independent Framework
	F.1.18 ResearchGate
	F.1.19 Docear
	F.1.20 Osusume
	F.1.21 Translation Model
	F.1.22 Citation Translation Model (CTM)
	F.1.23 Problem vs. Solution
	F.1.24 Scholar Update
	F.1.25 Mendeley Related Papers
	F.1.26 SemCir
	F.1.27 Clapper
	F.1.28 RefSeer

	F.2 Collaborative Filtering Approaches
	F.2.1 Personality Diagnosis
	F.2.2 CF Based Citation Recommender
	F.2.3 CiteULike
	F.2.4 CARES
	F.2.5 Synthese & Sarkanto
	F.2.6 Mendeley Suggest
	F.2.7 Can’t See the Forest for the Trees

	F.3 Co-occurrence Approaches
	F.3.1 BibTiP
	F.3.2 National Sun Yat-sen University
	F.3.3 bx by Exlibris
	F.3.4 Co-Citations vs. Co-Downloads
	F.3.5 Scienstein and Citation Proximity Analysis

	F.4 Graph Based Approaches
	F.4.1 Spreading activation in intra-book recommendations
	F.4.2 A two-layer graph approach
	F.4.3 PaperRank
	F.4.4 Multiple Graphs
	F.4.5 Curated Citation Networks & Path Ranking Algorithm
	F.4.6 Local and Global Relation Strength
	F.4.7 Network-Aware Popularity
	F.4.8 TheAdvisor with direction aware Katz and RWR (daKatz & daRWR)

	F.5 Hybrid Recommendation Approaches
	F.5.1 TechLens
	F.5.2 Papyres

	G PDF Title Extraction
	G.1 SciPlore Xtract
	G.1.1 Introduction
	G.1.2 SciPlore Xtract
	G.1.3 Methodology
	G.1.4 Results
	G.1.5 Discussion & Summary

	G.2 Docear’s PDF Inspector
	G.2.1 Introduction
	G.2.2 Docear’s PDF Inspector
	G.2.3 Methodology
	G.2.4 Results

	H Impact of User Demographics
	H.1 Introduction
	H.2 Methodology
	H.3 Results
	H.4 Conclusion

	I Persistence in Recommender Systems
	I.1 Introduction
	I.2 Research Objective & Methodology
	I.3 Results
	I.4 Interpretation and Outlook

	J Impact of Labels
	J.1 Introduction
	J.2 Methodology
	J.3 Results

	K Patent Application
	K.1 Patentbeschreibung
	K.2 Ansprüche
	K.3 Figuren

	Ehrenerklärung

