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ABSTRACT
We propose a parametric model for describing chronic disease mortality from cohort data and illustrate its use for Type 2 diabetes.
The model uses ideas from accelerated life testing in reliability theory and conceptualizes the occurrence of a chronic disease as
putting the observational unit to an enhanced stress level, which is supposed to shorten its lifetime. It further addresses the issue
of semi-competing risk, that is, the asymmetry of death and diagnosis of disease, where the disease can be diagnosed before death,
but not after. With respect to the cohort structure of the data, late entry into the cohort is taken into account and prevalent as
well as incident cases inform the analysis. We finally give an extension of the model that allows age at disease diagnosis to be
observed not exactly, but only partially within an interval. Model parameters can be straightforwardly estimated by Maximum
Likelihood, using the assumption of a Gompertz distribution we show in a small simulation study that this works well. Data of
the Cardiovascular Disease, Living and Ageing in Halle (CARLA) study, a population-based cohort in the city of Halle (Saale) in
the eastern part of Germany, are used for illustration.

1 | Introduction

Chronic diseases, for example, cardiovascular disease, cancer,
or diabetes have overruled infectious diseases as leading causes
of death since long times. Actually and following the World
Health Organization, chronic (noncommunicable) diseases
together accounted for 74% of global deaths in 2019 [1]. Detailed
knowledge of chronic disease mortality and its dynamics is
thus essential for policy and decision makers to organize health
systems and health care in the 21st century.

From a statistical viewpoint, chronic disease mortality comes
with some challenges. In essence, two time-to-event processes are
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involved, one leading to onset of disease, the other one leading to
death. Both process are interrelated, in general have similar risk
factors and are correlated within observational units. However,
there is also a substantial asymmetry between the two processes:
One can contract a chronic disease and will die with it, but not
vice versa, that is, after death there is no possibility to be newly
diagnosed with the disease. This asymmetry has been termed
“semi-competing risk” in statistics, with death being denoted
as the “terminal” or “absorbing” event. Several statistical meth-
ods have been used to model this semi-competing risk, most
prominently illness-death models (see, e.g., Haneuse and Lee [2]
for an overview), but also shared frailty models [3] or marginal
regression models with corrections for dependent censoring [4].
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Here, we propose an entirely new approach to semi-competing
risk data, which borrows ideas from accelerated life testing (ALT)
for technical items, for example, light bulbs or cable insulation
(Nelson [5] and Pascual, Meeker, and Escobar [6]). As these items
are in general highly reliable today, assessing their lifetime under
normal conditions necessitates prohibitively long observation
times. One solution is to put the devices to higher-than-normal
environmental conditions or stresses (e.g., temperature, voltage,
pressure) to achieve more failures in shorter times (thus making
the experiments more efficient), and then extrapolating back to
normal conditions.

With respect to chronic diseases in humans, we conceptualize
the diagnosis of a chronic disease here as inducing stress for
a human being, which is expected to shorten its residual life-
time, or, equivalently, accelerating its time to death. In ALT,
this situation is termed a “step-stress” situation because the
stress (=chronic disease) is induced at a specific point in time.
Moreover, the term “partial” is used, because observations are
observed under normal (=before disease diagnosis) as well
as under accelerated (=after disease diagnosis) conditions. A
step-stress partial ALT model (SSPALT) thus consists of a life
distribution under normal conditions and an acceleration factor
which governs lifetime under stress conditions [7]. There are
several models for assessing step-stress (see, e.g., Kateri and
Kamps [8, 9] for a review), and we focus here on the tampered
random variable model (TRV) of Goel [10].

The methodical work presented here was motivated by the
clinical example of Type 2 diabetes. The available data origi-
nated from a cohort study, the CARLA cohort, [11–13] which
imposes several additional challenges for the model. To be more
specific, we want to properly account for entry into the cohort
during lifetime (rather than at birth) and include the informa-
tion of prevalent (=diagnosis before cohort entry) as well as
incident (=new diagnosis while on cohort follow-up) diabetes
cases.

In Section 2, we introduce the model, its likelihood function, and
methods for parameter estimation. Section 3 describes the design
and results of a small simulation study, inspired by the CARLA
data. In Section 4, we give the results for the analysis of the
CARLA data, and Section 5 re-iterates strengths and limitations
of the model and gives an outlook to future work.

2 | The Model

2.1 | Notation and Basic Assumptions

We consider the TRV model as defined by Goel [10]. The model
was developed for step-stress experiments in reliability analysis
and describes the total lifetime of the (in general, technical)
items under observation. The total lifetime of an item tested
under standard conditions, that is, before stress is introduced,
is denoted by the random variable 𝑇

∗ with cumulative distri-
bution function (CDF) 𝐹(𝑡

∗
; 𝜃), with 𝜃 a set of parameters to

be estimated. A real number 𝑦 from the same time scale as 𝑇
∗

is considered either fixed before observing or chosen by some
random procedure independently of 𝑇∗ and is called tampering
point of the observation. The TRV 𝑇 that describes the total

lifetime of an item (depending on whether it experiences a stress
condition during its entire lifetime or not) is then given by

𝑇 =

{
𝑇
∗
, 𝑇

∗ ≤ 𝑦

𝑦 +
𝑇
∗
−𝑦

𝛾
, 𝑇

∗
> 𝑦

(1)

with 𝛾 > 0 (“the tampering coefficient” or “acceleration factor”)
an unknown parameter that describes the change in the remain-
ing life time after inducing stress at 𝑦. The tampering coefficient
quantifies external effects that change the residual life time
after 𝑦. For 0 < 𝛾 < 1 this remaining life time is prolonged (thus
decelerating the time to failure), for 𝛾 > 1 the remaining life time
is shortened (thus accelerating the time to failure). Note that
1
𝛾

corresponds to the tampering coefficient 𝛼 as it was defined
by Goel [10].

The survival function of the TRV model (1) is

𝑆
𝑇
(𝑡) =

{
𝑆(𝑡), 𝑡 ≤ 𝑦

𝑆(𝑦 + 𝛾(𝑡 − 𝑦)), 𝑡 > 𝑦

(2)

We use model (1) for the analysis of chronic disease mortality in
humans. In particular, we are interested to describe the change
in lifetimes for individuals after the diagnosis of Type 2 diabetes.
To this task, let the random variable 𝑇

∗ denote the lifetime, that
is, the time from age at birth (0) to age at death, of an individual
without diabetes during its whole lifetime. In terms of ALT
terminology, this corresponds to the normal stress condition.
If an individual gets a Type 2 diabetes diagnosis at the age of
𝑦, then its lifetime is tampered, so that 𝑇 = 𝑦 + 𝛾

−1
(𝑇

∗
− 𝑦) is

observed and the residual lifetime after 𝑦 is accelerated by 𝛾. It is
well known that the effect of diabetes is to shorten the residual
lifetime of the diagnosed individual [14] and so we expect 𝛾 to be
larger than 1.

We further note that we have to consider the age at diabetes
diagnosis 𝑦 to be fixed, but individual-specific (𝑦𝑖), although we
omit the index 𝑖 for the tampered variables 𝑇

𝑖
and the corre-

sponded individual-specific 𝑦
𝑖

for better readability. This is due
to the fact that we observe highly unique ages (i.e., stress-level
changes) of diabetes diagnoses, whereas in standard ALT testing
the time point of stress-level change is typically identical for all
items under study. In principle, this assumption invalidates the
proofs for consistency and asymptotic normality of maximum
likelihood estimators as given in Goel [10] and the assump-
tions 5.A from Goel [10] needed to be proven for the Gompertz
distribution.

We assume that 𝑇
∗ follows a Gompertz distribution with

parameters 𝛼 > 0 and 𝛽 > 0 for 𝑡 ≥ 0, hazard function
𝜆(𝑡; 𝛼, 𝛽) = 𝜆(𝑡) = 𝛼 ⋅ e𝛽t, and survival function 𝑆(𝑡; 𝛼, 𝛽) =

𝑆(𝑡) = exp
(
−𝛼∕𝛽 ⋅

(
e𝛽t

− 1
))
. The Gompertz distribution was

recently shown to describe nearly perfectly diabetes mortality
in a sample of 6.5 million people above 30 years of age in Ger-
many, [15] similar fits were also seen in other countries, see, for
example, Carstensen, Rønn, and Jørgensen [16] for Denmark.
In addition, Gompertz distributions gave better fits [15] than
Weibull and logistic distributions, which have also been pro-
posed as biologically plausible for age-at-death distributions. In
essence, the Gompertz distribution assumes that the logarithm
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of the hazard is a linear function of age, log(𝜆(𝑡)) = log(𝛼) + 𝛽 ⋅ 𝑡.
The Gompertz parameter 𝛼 gives the value of the hazard function
at age 0, or equivalently, log(𝛼) corresponds to the intercept of the
linear log-mortality function of time. The Gompertz parameter
𝛽 describes the aging process of the population and quantifies
the increase of mortality with age. As the linear relation on the
log-hazard scale translates into a multiplicative relation on the
original hazard scale, the value of 𝛽 can be interpreted as the
multiplicative annual increase in the mortality hazard. Typical
values for 𝛽 in Western societies are around 0.1, which means
that the annual hazard of dying for an individual grows by 10%
each year.

Returning to the TRV model, in the Gompertz case the survival
function for the total lifetime of an individual with diabetes diag-
nosis (𝑡 > 𝑦) is

𝑆
𝑇
(𝑡) = S(𝑦 + γ(𝑡 − 𝑦))

= exp
(
−α∕β ⋅

(
eβ(𝑦+γ(𝑡−𝑦))

− 1
))

= exp
(
α∕β − α∕β ⋅ 𝑒β𝑦 ⋅ 𝑒𝛽𝛾(𝑡−𝑦)

)
= exp

(
−α∕β ⋅ eβ𝑦 + α∕β − α∕β ⋅ eβ𝑦 ⋅ e𝛽𝛾(𝑡−𝑦)

+ α∕β ⋅ eβ𝑦
)

= exp
(
−α∕β ⋅

(
eβ𝑦 − 1

)
− α∕β ⋅ eβ𝑦

(
e𝛽𝛾(𝑡−𝑦)

− 1
))

= exp
(
−α∕β ⋅

(
eβ𝑦 − 1

))
⏟⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⏟

=S(𝑦)

⋅ exp
(
−α∕β ⋅ eβ𝑦

(
e𝛽𝛾(𝑡−𝑦)

− 1
))

⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟⎴⎴⎴⎴⎴⎴⎴⎴⎴⏟

Survival function of a Gompertz distribution for
𝑡−𝑦 with α

′
=𝛼𝛾eβ𝑦 , β′=𝛽𝛾

= S(𝑦; α, β) ⋅ S
(
𝑡 − 𝑦; α

′
, β

′
)

(3)

The survival function 𝑆(𝑦 + 𝛾(𝑡 − 𝑦)) factorizes in two factors
before and after diabetes diagnosis. The first factor 𝑆(𝑦), the prob-
ability of surviving until 𝑦, is computed from the original Gom-
pertz distribution with parameters 𝛼 and 𝛽, independent of 𝛾.
The second factor is actually the survival function of a Gompertz
distribution for 𝑡 − 𝑦, the residual lifetime after diagnosis with
new parameters 𝛼

′
= 𝛼𝛾e𝛽y and 𝛽

′
= 𝛽𝛾. In Figure 1, we show

the different survival functions from the TRV model. The hazard

function for 𝑡 > 𝑦 is given as 𝜆
𝑇
(𝑡) = 𝛾𝛼 exp(𝛽(𝑦 + 𝛾(𝑡 − 𝑦))) =

𝛾𝜆(𝑦 + 𝛾(𝑡 − 𝑦); 𝛼, 𝛽). Just aside, the factorization in (3) general-
izes the “setting-the-clock-back-to-zero”-property (SCBZ) of the
Gompertz distribution as given by Rao [17] to the TRV case.

The expected residual lifetime for an individual of age 𝑡 without
a diabetes diagnosis during the whole life is

𝑒
∗

𝑡
= 𝐸(𝑇

∗|𝑇∗
> 𝑡) − 𝑡 =

1
𝑆(𝑡; 𝛼, 𝛽)∫

∞

𝑡

𝑆(𝑥; 𝛼, 𝛽)dx

=
∫

∞

0

𝑆(𝑥 + 𝑡; 𝛼, 𝛽)

𝑆(𝑡; 𝛼, 𝛽)
dx =

∫

∞

0
exp

[
−
𝛼e𝛽t

𝛽

(
e𝛽x

− 1
)]

dx
(4)

It should be noted that (4) takes an individual perspective and
describes the remaining lifetime of an individual that will be
undiagnosed with diabetes for the rest of its life. From an epi-
demiological perspective, that is, when describing the remaining
lifetime of a population, then some of the individuals within this
group would actually be diagnosed with diabetes and the average
remaining lifetime of this population would be overestimated
when averaging across the individual lifetimes.

Rao [17] gives the expected residual lifetime for the step-stress
accelerated life test, according to the TRV model. The expected
residual lifetime after a diabetes diagnosis at age 𝑦 is given, using
(1) and (4), as follows:

𝑒
TRV
𝑦

= 𝐸(𝑇 − 𝑦|𝑇 > 𝑦)
(1)
=

1
𝛾
𝐸(𝑇

∗
− 𝑦|𝑇 > 𝑦)

=
1
𝛾
𝑒
∗

𝑦

(4)
=

1
𝛾∫

∞

0
exp

[
−
𝛼e𝛽y

𝛽

(
e𝛽x

− 1
)]

dx
(5)

The relation 𝑒
TRV
𝑦

=
1
𝛾
𝑒
∗

𝑦
in Equation (5) explicates the term “ac-

celerating factor” for 𝛾. The expected residual lifetime after a dia-
betes diagnosis at age 𝑦 is only 1

𝛾
of the time without a diabetes

diagnosis. In other words, the time until death is accelerated by
the factor 𝛾 after a diagnosis of diabetes.

FIGURE 1 | Survival functions of the TRV model for lifetimes without diabetes diagnosis during the whole life (blue broken line) and lifetimes with
diabetes diagnosis at age y= 70.
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2.2 | Likelihood Function and Parameter
Estimation

As our data originate from a population-based cohort study, we
have to account for two specific challenges when defining the
likelihood function of the model. First, cohort entry is observed
during lifetime (rather than from birth) which requires methods
for left-truncated data. Second, we have to distinguish prevalent
cases which had their diabetes diagnoses before cohort entry from
incident cases which are diagnosed with diabetes while on cohort
follow-up.

Overall, six different cases (I–VI) have to be distinguished when
defining the likelihood function and we give an overview of
them in Figure 2 and Table 1. We define three indicator func-
tions to describe the respective cases in terms of death, diabetes
diagnosis, and being a prevalent or an incident disease case.
For 𝑛 individuals, we consider a sample of 𝑛 independent ran-
dom variables 𝑇1, 𝑇2, … , 𝑇

𝑛
, that describe the total lifetime of

𝑛 individuals according to the model (1) with observed values
𝑡1, 𝑡2, … , 𝑡

𝑛
, 𝑖 = 1, 2, … , 𝑛, and set 𝛿

𝑖
∈ {0, 1} for censoring versus

death, 𝑑
𝑖
∈ {0, 1} for diabetes no versus yes, and 𝜁

𝑖
∈ {0, 1} for

being an incident (𝑦
𝑖
≥ 𝑡0𝑖) versus a prevalent (𝑦

𝑖
< 𝑡0𝑖) case,

where 𝑡0𝑖 equals the age at cohort entry.

Collecting terms for all six cases finally yields the logarithm of the
likelihood function

LL(α, β, γ) ∝
∑
𝑖

(1 − 𝑑
𝑖) ⋅ δ𝑖 ⋅ log [𝑆(𝑡𝑖) ⋅ λ(𝑡𝑖)∕𝑆(𝑡0𝑖 )]

+

∑
𝑖

(1 − 𝑑
𝑖) ⋅ (1 − δ

𝑖) ⋅ log [𝑆(𝑡𝑖)∕𝑆(𝑡0𝑖 )]

+

∑
𝑖

𝑑
𝑖
⋅
(
1 − ζ

𝑖

)
⋅ δ

𝑖
⋅ log[𝑆(𝑦𝑖 + γ(𝑡𝑖 − 𝑦

𝑖))

⋅ 𝛾𝜆(𝑦𝑖 + γ(𝑡𝑖 − 𝑦
𝑖))∕𝑆(𝑡0𝑖 )]

+

∑
𝑖

𝑑
𝑖
⋅
(
1 − ζ

𝑖

)
⋅ (1 − δ

𝑖) ⋅ log [𝑆(𝑦𝑖 + 𝛾(𝑡𝑖 − 𝑦
𝑖))∕𝑆(𝑡0𝑖 )]

+

∑
𝑖

𝑑
𝑖
⋅ ζ

𝑖
⋅ δ

𝑖
⋅ log[𝑆(𝑦𝑖 + γ(𝑡𝑖 − 𝑦

𝑖))

⋅ 𝛾𝜆(𝑦𝑖 + γ(𝑡𝑖 − 𝑦
𝑖))∕𝑆(𝑦𝑖 + γ(𝑡0𝑖 − 𝑦

𝑖))]

+

∑
𝑖

𝑑
𝑖
⋅ ζ

𝑖
⋅ (1 − δ

𝑖) ⋅ log [𝑆(𝑦𝑖 + γ(𝑡𝑖 − 𝑦
𝑖))∕𝑆(𝑦𝑖 + γ(𝑡0𝑖 − 𝑦

𝑖))]

(6)

Under the assumption of a Gompertz distribution for the total
lifetime the unknown parameters 𝛼, 𝛽 and 𝛾 of model (1)
can be straightforwardly estimated by maximum likelihood
methods. In principle, each software that allows maximizing
a non-linear function with several parameters could be used.
We used the NLMIXED procedure in SAS 9.4 (SAS Institute
Inc., Cary, NC, USA), the respective code is given in the online
supplement.

2.3 | An Extension for Age at Diagnosis Only
Partially Observed

The likelihood function (6) is appropriate only if age at diabetes
diagnosis is known exactly. However, we noticed a number of
observations in our example cohort, where age at diagnosis
was only reported as having occurred within an interval or at
a respective full age, given as an integer value. We thus give
here an extension of the likelihood function (6) if only partial
information about age at diagnosis is available.

In terms of notation, we assume that the age of diabetes onset
is observed within an interval [𝑦𝑙, 𝑦𝑟]. The random variable 𝑌

FIGURE 2 | Illustration of the six different possibilities (“cases”) for observed life courses with respect to death, diabetes diagnosis and preva-
lence/incidence of diabetes with respect to cohort entry. Please note, that for simplicity it is assumed that all individuals enter the cohort in the same
age, which is not the case in our example data set.
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TABLE 1 | Contributions to the likelihood function (“cases”) with respect to death, diabetes diagnosis, and prevalence/incidence of diabetes with
respect to cohort entry. 𝑆(𝑡) and 𝜆(𝑡) are the survival and the hazard functions, defined in Section 2.1.

Case Description 𝒅
𝒊

𝜻
𝒊

𝜹
𝒊

Contribution to likelihood function

∅ Death before cohort entry — — — —
I Death during cohort follow-up without diabetes

diagnosis before cohort entry or during cohort
follow-up

0 — 1 𝑆(𝑡)⋅𝜆(𝑡)
𝑆(𝑡0)

II Neither death nor diabetes diagnosis before cohort
entry or during cohort follow-up

0 — 0 𝑆(𝑡)

𝑆(𝑡0)

III Incident diagnosis with death during cohort
follow-up

1 0 1 𝑆(𝑦+𝛾(𝑡−𝑦))⋅𝛾𝜆(𝑦+𝛾(𝑡−𝑦))

𝑆(𝑡0)

IV Incident diagnosis without death during cohort
follow-up

1 0 0 𝑆(𝑦+𝛾(𝑡−𝑦))

𝑆(𝑡0)

V Prevalent diagnosis with death during cohort
follow-up

1 1 1 𝑆(𝑦+𝛾(𝑡−𝑦))⋅𝛾𝜆(𝑦+𝛾(𝑡−𝑦))

𝑆(𝑦+𝛾(𝑡0−𝑦))

VI Prevalent diagnosis without death during cohort
follow-up

1 1 0 𝑆(𝑦+𝛾(𝑡−𝑦))

𝑆(𝑦+𝛾(𝑡0−𝑦))

denotes the age at diagnosis onset and follows some prespecified
distribution with density function 𝑔 and cumulative density
function 𝐺. The density function for age at diagnosis on an
interval [𝑦𝑙, 𝑦𝑟] is given by

𝑔
∗
(𝑦) =

{
𝑔(𝑦)

𝐺(𝑦𝑟)−𝐺(𝑦𝑙)
, for 𝑦 ∈ [𝑦𝑙, 𝑦𝑟]

0, otherwise

with

∫

𝑦
𝑟

𝑦
𝑙

𝑔
∗
(𝑣)d𝑣 = 1, 𝑔

∗
(𝑦) ≥ 0, ∀𝑦 ∈ [𝑦𝑙, 𝑦𝑟]

With respect to a random variable 𝑌 the conditional survival
and density functions of the lifetime due to the TRV model
are 𝑆

𝑇∣𝑌
(𝑡|𝑦) = 𝑆(𝑦 + 𝛾(𝑡 − 𝑦)) and 𝑓

𝑇∣𝑌
(𝑡|𝑦) = 𝑆(𝑦 + 𝛾(𝑡 −

𝑦)) ⋅ 𝛾𝜆(𝑦 + 𝛾(𝑡 − 𝑦)), respectively. From the general definition
of conditional probability, the marginal density function for
𝑇, where 𝑇

∗
> 𝑦

𝑙
, can then be written as

𝑓
𝑇
(𝑡) =

∫

𝑦
𝑟

𝑦
𝑙

𝑓
𝑇,𝑌

(𝑡, 𝑣)dv =
∫

𝑦
𝑟

𝑦
𝑙

𝑓
𝑇∣𝑌

(𝑡|𝑣) ⋅ 𝑔∗(𝑣)dv

= 𝛾
∫

𝑦
𝑟

𝑦
𝑙

𝑆(𝑣𝑖 + 𝛾(𝑡𝑖 − 𝑣
𝑖)) ⋅ 𝜆(𝑣𝑖 + 𝛾(𝑡𝑖 − 𝑣

𝑖)) ⋅ 𝑔
∗
(𝑣)dv

(7)

and the marginal survival function as

𝑆
𝑇
(𝑡) =

∫

𝑦
𝑟

𝑦
𝑙

𝑆
𝑇∣𝑌

(𝑡|𝑣) ⋅ 𝑔∗(𝑣)d𝑣 =
∫

𝑦
𝑟

𝑦
𝑙

𝑆(𝑣𝑖 + 𝛾(𝑡𝑖 − 𝑣
𝑖)) ⋅ 𝑔

∗
(𝑣)d𝑣

(8)

Hence the entries of the likelihood function for the individu-
als with established diagnosis (corresponding to cases III–VI)
change according to the marginal density and the marginal
survival functions. The log-likelihood function for the situation
when age at diagnosis is only partially observed is

LL(α, β, γ) ∝
∑
𝑖

(1 − 𝑑
𝑖) ⋅ δ𝑖 ⋅ log

[
𝑆(𝑡𝑖) ⋅ λ(𝑡𝑖)∕𝑆

(
𝑡0

𝑖

)]
+

∑
𝑖

(1 − 𝑑
𝑖) ⋅ (1 − δ

𝑖) ⋅ log [𝑆(𝑡𝑖)∕𝑆(𝑡0𝑖)]

+

∑
𝑖

𝑑
𝑖
⋅
(
1 − ζ

𝑖

)
⋅ δ

𝑖
⋅ log [𝑓𝑇(𝑡𝑖)∕𝑆(𝑡0𝑖)]

+

∑
𝑖

𝑑
𝑖
⋅
(
1 − ζ

𝑖

)
⋅ (1 − δ

𝑖) ⋅ log [𝑆𝑇(𝑡𝑖)∕𝑆(𝑡0𝑖)]

+

∑
𝑖

𝑑
𝑖
⋅ ζ

𝑖
⋅ δ

𝑖
⋅ log [𝑓𝑇(𝑡𝑖)∕𝑆𝑇(𝑡0𝑖)]

+

∑
𝑖

𝑑
𝑖
⋅ ζ

𝑖
⋅ (1 − δ

𝑖) ⋅ log [𝑆𝑇(𝑡𝑖)∕𝑆𝑇(𝑡0𝑖)] (9)

For parameter estimation, maximizing (9) involves numerical
integration with respect to the marginal density and the marginal
survival function.

3 | Simulation Study

In this section, we report on a small simulation study to investi-
gate the statistical properties of the TRV model with respect to the
epidemiology of chronic diseases. The simulation settings, that
is, the true values for the simulation parameters, were motivated
by the CARLA study [11–13] or more generally and by diabetes
mortality in Germany. In particular and with a view toward
challenges of cohort data, we compare different strategies to
handle partially observed diagnosis age and include censoring as
well as truncation in the simulation procedure. The simulation
study was performed using SAS (SAS Institute Inc., Cary, NC,
USA, Version 9.4) and reported according to Morris, White, and
Crowther [18].

3.1 | Data-Generating Process

For each individual, the year of birth was generated from a uni-
form distribution between 1920 and 1958. Based on the year of
birth, the age at cohort entry 𝑡0𝑖 in 2003 was assigned to each indi-
vidual. To simulate age at death without diabetes diagnosis𝑇∗, we
used a Gompertz distribution with parameters 𝛼 = 0.00001 and
𝛽 = 0.105, approximately averaging those values across sexes in
Germany.
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Age at diabetes diagnosis was simulated using a Weibull distribu-
tion with shape parameter 𝑘 and scale parameter 𝑙. The density
and the cumulative density functions are

𝑓(𝑦) =
𝑘

𝑙

(
𝑦

𝑙

)𝑘−1
exp

(
−

(
𝑦

𝑙

)𝑘
)
,

𝐹(𝑦) = 1 − exp
(
−

(
𝑦

𝑙

)𝑘
)
, for 𝑦 ≥ 0

(10)

Values of 𝑘 = 5 and 𝑙 = 95 were used for the simulation of age at
diagnosis, resulting in about 20% diabetes diagnoses as observed
in the CARLA cohort. Individuals with diabetes diagnosis during
lifetime (𝑇∗

> 𝑦) were switched to an increased stress level in the
model and their total life span was calculated according to the
model (1) as

𝑇 = 𝑦 +
𝑇
∗
− 𝑦

𝛾

We varied the tampering coefficient 𝛾 using the values 1, 1.2, and
1.6, with 𝛾 = 1 denoting the null effect, that is, no influence of
diabetes on residual lifetime. The value of 𝛾 = 1.2 is motivated
by the respective value in the CARLA cohort, and 𝛾 = 1.6 would
describe a more severe chronic disease, for example, an aggressive
tumor, leading to death more rapidly.

With respect to the observed age at diabetes diagnosis, we distin-
guished an exact setting (where the age of diagnosis was observed
exactly) and a partially observed setting. In the latter, age at diag-
nosis was observed only in an interval, and the respective interval
limits 𝑦

𝑙
and 𝑦

𝑟
were simulated by two uniform distributions

𝑦
𝑙
∈ Unif(𝑦 − 8, 𝑦), 𝑦

𝑟
∈ Unif(𝑦,max(𝑦 + 8, 𝑇)) (11)

resulting in a median (minimal, maximal) length of 6.5 (0.09,
15.4) years for the intervals. Random censoring for the time to
death was taken into account also by using Gompertz distribution
with parameters 0.000012 and 0.125. This resulted in about 17%
of deaths and a corresponding 83% proportion of right censored
data, again mirroring the numbers from the CARLA cohort. For
each simulation setting, we generated 𝑁 = 1000 data sets with
sample of sizes of 3000 or 1000. Due to truncation of observations
with age of death before age of cohort entry (corresponding to
case ∅ in Table 1), the simulated data sets were actually smaller,
roughly including 60% of the intended sample size.

3.2 | Estimands

The parameters of interest were those from model (1), which
are the parameters 𝛼 and 𝛽 of the Gompertz distribution for
the disease-free lifetime and the tampering coefficient 𝛾 which
affects the lifetime after a diabetes diagnosis. We focus in partic-
ular on the tampering coefficient 𝛾, which quantifies the impact
of diabetes on the residual lifetime of an individual.

3.3 | Performance Measures

The performance of the estimation procedure was summarized in
terms of mean bias over 1000 simulation sets, the mean squared
error (MSE) and 95% coverage.

3.4 | Methods

Parameters were estimated by maximum likelihood and we used
Newton–Raphson optimization with ridging in the NLMIXED
procedure in SAS 9.4 (SAS Institute Inc., Cary, NC, USA, Version
9.4). In terms of the likelihood function, we have to distinguish
between the two different simulation settings with respect to
age at diagnosis. In the “exact” setting where age at diagnosis
is given exactly the log-likelihood function (6) was used. In the
“partially observed” (henceforth abbreviated with “PO”) setting
we observe only an interval [𝑦li, 𝑦ri] in which diabetes was diag-
nosed, but not the exact age of diagnosis 𝑦

𝑖
, that is, 𝑦

𝑖
∈ [𝑦li, 𝑦ri].

For parameter estimation, we considered three different
approaches PO1 to PO3 to deal with the missing exact age at
diagnosis.

PO1: Age at diagnosis 𝑦
𝑖

was fixed as the middle of the known
interval [𝑦li, 𝑦ri].

𝑦
𝑖
=

𝑦li + 𝑦ri

2

PO2: Age at diabetes diagnosis �̃�
𝑖

was fixed by generating a
random number from a uniformly distributed random
variable on the interval [𝑦li, 𝑦ri].

PO3: Age at diabetes diagnosis �̃�
𝑖

was assumed to follow
a Weibull distribution with known parameters 𝑘 = 5
and 𝑙 = 67 according to the distribution of the random
variable 𝑌 from Section 2.3. The values of the Weibull
parameters were chosen after finding the Weibull dis-
tribution as a plausible fit to nationwide data from all
statutorily insured persons in Germany [19, 20].

For the approaches PO1 and PO2 where the age at diagnosis had
been fixed, the log-likelihood function (6) was used for param-
eter estimation. For approach PO3, we used the log-likelihood
function (9), numerical integration was needed for estimating the
marginal distribution in PO3.

3.5 | Results

The results of the simulation study are presented below in Table 2.
Overall, there were no problems with numerical robustness of
the estimation procedure, we found sensible results for all 1000
simulated data sets and no indication of nonconvergence of algo-
rithms. The additional results of the simulation study for larger
(n= 7000) and smaller (n= 100) sample sizes are presented in the
Appendix S1.

3.5.1 | Bias

In terms of bias, we find only small and negligible deviations from
the true values for all three parameters (𝛼, 𝛽, 𝛾) of the model.
In addition, also the approaches PO1–PO3 perform quite simi-
lar. Comparing the bias between the “exact” setting and the PO
approaches, the bias for 𝛼 and 𝛽 parameters is also similar. How-
ever, 𝛾 tends to be underestimated by the PO approaches as com-
pared to the “exact” setting. This results in a negative bias for 𝛾

for all PO approaches and both sample sizes.
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TABLE 2 | Results of the simulation study with respect to bias, MSE, and 95% coverage.

𝜶 = 0.00001, 𝜷 = 0.105, 𝜸 = 1.0

𝒏 = 1791a
𝒏 = 598a

Setting Parameter Bias MSE Cov. (%) Bias MSE Cov. (%)

Exact 𝛼 1.2e − 6 1.6e − 12 90.0 4.6e − 6 2.1e − 11 85.8
𝛽 5.3e − 4 3.5e − 7 95.8 1.1e − 3 1.4e − 6 95.2
𝛾 −7.2e − 4 3.3e − 6 94.8 −4.1e − 3 2.6e − 5 96.0

PO1 𝛼 1.2e − 6 1.4e − 12 90.0 4.5e − 6 2.1e − 11 85.8
𝛽 6.1e − 4 4.4e − 7 95.8 1.2e − 3 1.7e − 6 95.1
𝛾 −3.3e − 3 1.3e − 5 94.9 −7.1e − 3 6.0e − 5 95.6

PO2 𝛼 1.1e − 6 1.4e − 12 89.7 4.5e − 6 2.1e − 11 85.9
𝛽 6.1e − 4 4.4e − 7 95.9 1.2e − 3 1.7e − 6 95.1
𝛾 −3.3e − 3 1.3e − 5 94.8 −7.0e − 3 5.8e − 5 95.9

PO3 𝛼 1.1e − 6 1.3e − 12 89.9 4.4e − 6 2.0e − 11 85.7
𝛽 6.9e − 4 5.4e − 7 95.8 1.3e − 3 1.8e − 6 95.1
𝛾 −5.5e − 3 3.3e − 5 94.8 −9.4e − 3 9.7e − 5 96.0

𝜶 = 0.00001, 𝜷 = 0.105, 𝜸 = 1.2

𝒏 = 1785a
𝒏 = 595a

Setting Parameter Bias MSE Cov. (%) Bias MSE Cov. (%)

Exact 𝛼 1.0e − 6 1.1e − 12 90.2 3.8e − 6 1.5e − 11 85.1
𝛽 6.2e − 4 4.5e − 7 95.6 1.5e − 3 2.3e − 6 94.9
𝛾 6.6e − 4 2.8e − 6 94.8 2.8e − 3 1.6e − 5 95.1

PO1 𝛼 9.6e − 7 9.5e − 13 90.3 3.7e − 6 1.4e − 11 85.1
𝛽 7.1e − 4 5.6e − 7 95.6 1.5e − 3 2.5e − 6 95.1
𝛾 −2.1e − 3 6.7e − 6 94.4 −2.8e − 4 8.0e − 6 94.8

PO2 𝛼 9.2e − 7 8.8e − 13 89.8 3.7e − 6 1.4e − 11 85.0
𝛽 7.8e − 4 6.6e − 7 95.7 1.6e − 3 2.8e − 6 95.0
𝛾 −5.1e − 3 2.9e − 5 94.2 −3.4e − 3 1.9e − 5 94.7

PO3 𝛼 9.7e − 7 9.7e − 13 90.2 3.7e − 6 1.4e − 11 85.1
𝛽 6.9e − 4 5.4e − 7 95.6 1.5e − 3 2.5e − 6 95.1
𝛾 −2.5e − 3 8.8e − 6 94.4 −7.8e − 4 8.7e − 6 95.1

𝜶 = 0.00001, 𝜷 = 0.105, 𝜸 = 1.6

𝒏 = 1766a
𝒏 = 589a

Setting Parameter Bias MSE Cov. (%) Bias MSE Cov. (%)

Exact 𝛼 9.2e − 7 8.8e − 13 91.1 3.2e − 6 1.1e − 11 86.1
𝛽 4.3e − 4 2.4e − 7 95.5 1.0e − 3 1.2e − 6 95.1
𝛾 2.5e − 3 9.3e − 6 94.6 7.2e − 3 6.3e − 5 95.0

PO1 𝛼 8.6e − 7 7.6e − 13 91.0 3.1e − 6 9.9e − 12 85.7
𝛽 4.4e − 4 2.5e − 7 95.7 1.0e − 3 1.2e − 6 95.3
𝛾 −3.7e − 3 1.7e − 5 94.3 1.1e − 3 1.1e − 5 94.7

PO2 𝛼 1.0e − 6 1.0e − 12 91.1 3.0e − 6 1.1e − 11 86.4
𝛽 3.8e − 4 2.0e − 7 95.4 9.4e − 4 1.0e − 6 95.1
𝛾 −1.6e − 2 2.7e − 4 91.9 −1.2e − 2 1.4e − 4 93.4

PO3 𝛼 8.7e − 7 7.9e − 13 91.1 3.2e − 6 1.0e − 11 85.7
𝛽 3.9e − 4 2.0e − 7 95.5 9.8e − 4 1.1e − 6 95.5
𝛾 2.1e − 3 7.6e − 6 94.5 6.5e − 3 5.3e − 5 95.1

aMedian sample sizes of 1000 data sets, due to truncation.
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3.5.2 | Mean Squared Error

Overall, MSE values are very close to zero, indicating the accu-
racy of the estimation methods. Similar to the bias outcome,
there is no large difference in MSE between the “exact” setting
and PO approaches in the parameters 𝛼 and 𝛽. For the parameter
𝛾, MSE values are larger with the PO approaches if compared to
the “exact” setting. When comparing MSE values for different
values of 𝛾, it is noticeable that the larger values of 𝛾, the more
bias and MSE values differ between the various approaches. For
𝛾 = 1.0, all approaches give very similar results with respect to
performance measures. However, for 𝛾 = 1.6, the values of bias
and MSE differ between the approaches and, especially for PO2,
we observe compromised estimates. Moreover, both bias and
MSE increase with the smaller sample size for all three different
values of 𝛾.

3.5.3 | Coverage

In terms of coverage, we find rather different results for the three
parameters of the model. The smallest coverage is observed for
the parameter 𝛼 and ranges between 85.0% and 91.1%. This is
probably a consequence of the small true value of the parameter
𝛼, which complicates estimation. It appears that with increasing
𝛾, the proportion that confidence interval contains the true 𝛼

value improves, however, only for larger sample size. In terms of
the parameter 𝛽, all observed values for coverage are around 95%,
which, allowing some random simulation error over the 1000
simulated data sets, indicates correct coverage of the estimands.
With respect to the parameter 𝛾, we also find satisfying values
for coverage over all sample sizes with values ranging in general
between 94.2% and 96%. Only in the PO2 approach with a large
value of 𝛾 (= 1.6) in the data, we find coverage values of less
than 92%.

4 | Analysis of the CARLA Cohort

In this section, we use the TRV model to analyze data of the
Cardiovascular Disease, Living and Ageing in Halle (CARLA)
study, a population-based cohort in the city of Halle (Saale) in
the eastern part of Germany. The primary aim of the study was
to investigate risk factors for cardiovascular disease based on
comprehensive cardiological phenotyping of study participants
and was extended to study factors related to healthy aging
[11, 12]. We use data from all 𝑛 = 1779 (54% men and 46%
women) study participants, who were aged 45 − 83 during
the baseline examination which took place between 2002 and
2005. The participants were drawn from the population registry
of the city of Halle (Saale), Germany in 2002. The detailed
recruitment procedure has been described by Greiser et al.
[12] Diabetes status was recorded during baseline and two
follow-up investigations (follow-up 1 between 2007 and 2010,
follow-up 2 in 2013) by self-reported, physician-confirmed dia-
betes diagnosis or self-reported antidiabetic medication within
the preceding 7 days. This means that some study participants
were already diagnosed with diabetes before being included in
the study (prevalent case), while others were diagnosed with
diabetes during the follow-up period of the study (incident case).
Therefore, the study entry is not at the same time as diabetes

diagnosis (incident and prevalent cases). Furthermore, vital
status was ascertained before the beginning of two follow-ups
and additionally in the years 2012 and 2019 by contacting the
residents’ registration office [13]. To avoid misclassification of
participants who were diagnosed with diabetes after 2013, we
only use information from follow-up 2 and especially ignore the
information of the vital status from 2019.

Overall, we recorded 406 Type 2 diabetes diagnoses, of which
276 were prevalent at baseline, and 130 were incident during the
cohort follow-up. With respect to the age at diagnosis, 375 diag-
nosis ages were observed on small intervals with 𝑦li − 𝑦ri ≤ 1. Ten
individuals reported having diabetes at baseline, but without age
at diagnosis or year of diagnosis. In these cases, we set 𝑦li = 18
and 𝑦ri = 𝑡0𝑖 , resulting in a median (minimal, maximal) length
of intervals of 49.5 (39.7, 62.6) years. The remaining 21 diabetes
diagnoses were observed on intervals [𝑦li, 𝑦ri] with a median
(minimal, maximal) length of 4.1 (3.7, 5.4). Finally, 305 deaths
and 1474 censored cases (unreachable, declined participation or
no event was occurred) were observed.

In Table 3, we give the results of fitting the TRV model to the
CARLA data, where we distinguish between sex-specific and
joint 𝛾 parameters for men and women. Note that we report the
parameter log(𝛼) instead of 𝛼 to enhance readability. Indeed and
to avoid numerical problems we fitted all models in the simula-
tion also using log(𝛼). In any case, 𝛾 is estimated to be larger than
1.0, pointing, as expected, to a reduction of the residual lifetime
after diabetes diagnosis. According to the sex-constant 𝛾, the
residual lifetime after diagnosis is shortened on average by a fac-
tor of 1.19 [95%CI ∶ 1.10, 1.27] independent of sex. With respect
to the sex-specific analyses, estimates for 𝛾 are rather similar
for sexes, amounting to 1.17 [95%CI ∶ 1.04, 1.29] for men and
1.20 [95%CI ∶ 1.09, 1.31] for women. Correspondingly, informa-
tion criteria prefer the smaller model with a sex-constant 𝛾.

Converting the 𝛾 factor into percentages provides the alternative
interpretation of the acceleration factor of time. The loss of resid-
ual lifetime for an individual after diabetes diagnosis is on average
16% [9%, 21%] (= (1 − 1∕𝛾) ∗ 100) in comparison to an individ-
ual without diabetes diagnosis.

As the CARLA data contain partially observed ages at diabetes
diagnosis we used all three given strategies (PO1–PO3) to deal
with this. As expected from the results of the simulation study,
estimates for all model parameters were very similar (data not
shown). Interestingly and referring to AIC/BIC values (PO1:
2481.2/2514.1; PO2: 2481.4/2514.3), the PO3 (2435.5/2462.9)
approach was chosen as the favorite model.

Using the results for the sex-constant 𝛾 from Table 3, the expected
residual lifetime of an individual who survived 𝑦 years without
diabetes diagnosis and an individual with a diagnosis at age
of 𝑦 can be compared according to (4) and (5). Figure 3 gives
the difference in the residual life expectancy according to the
TRV model and stratified for sex. As expected from clinical
epidemiological knowledge, the residual lifetime of women is
larger than that of men both for the groups with and without
diabetes. Moreover, the solid lines in Figure 3 show the loss of
lifetime due to the influence of diabetes for both sexes according
to the TRV model. For instance, the expected residual lifetime
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TABLE 3 | Results of fitting the TRV to the CARLA data using the PO3 approach for handling partially observed ages at diabetes diagnosis.

Parameter Estimate [𝟗𝟓%CI] for men Estimate [𝟗𝟓%CI] for women Fit statistics

log(𝛼) −10.8 [−12.1, −9.5] −16.1 [−18.4, −13.8]
𝛽 0.098 [0.083, 0.116] 0.161 [0.135, 0.192] AIC: 2435.5
𝛾 1.19 [1.10, 1.27] BIC: 2462.9
log(𝛼) −10.8 [−12.1, −9.5] −16.0 [−18.4, −13.7]
𝛽 0.099 [0.083, 0.117] 0.160 [0.133, 0.192] AIC: 2437.2
𝛾 1.17 [1.04, 1.29] 1.20 [1.09, 1.31] BIC: 2470.1

FIGURE 3 | Expected residual lifetime with and without diabetes diagnosis according to TRV model using the estimated parameters from the
CARLA cohort. For instance, the expected residual lifetime of a man diagnosed with Type 2 diabetes at age of 𝑦 = 70 is 12.2 years. In comparison, the
expected residual lifetime of a man without diabetes diagnosis at the same age is 14.5 years.

of a man diagnosed with Type 2 diabetes at age of 𝑦 = 70 is 12.2
years. In comparison, the expected residual lifetime of a man
without diabetes diagnosis at the same age is 14.5 years. Dividing
those two expected residual lifetimes yields, as expected, the
acceleration factor 𝛾 (14.5∕12.2 ≈ 1.19).

It is straightforward to include covariates into the TRV model.
We prefer an AFT interpretation on the original age scale also for
the covariates. We therefore have to reparametrize the Gompertz
TRV model with new parameters 𝜂 and 𝜌 and the transformation
(𝜂, 𝜌) →

(
𝛼

𝛽
,

1
𝛽

)
. This yields the survival and the hazard functions

of an AFT model as

𝑆(𝑡) = exp
(
−𝜂

(
e𝑡∕𝜌 − 1

))
, 𝜆(𝑡) =

𝜂

𝜌
exp(t∕𝜌)

where the parameter 1∕𝜌 models the acceleration of time
and can be parametrized by covariates via an exponential

function of a linear predictor 1
𝜌
= exp(𝜙0 + 𝜙1𝑋1 + · · · + 𝜙

𝑚
𝑋

𝑚)

with 𝑚 covariates 𝑋
𝑖
, 𝑗 = 1, · · · , 𝑚 and the corresponding

coefficients 𝜙1, · · · , 𝜙𝑚
and intercept 𝜙0. To facilitate com-

parison with the sex-stratified results as given above we give
the results of a model with the single covariate sex in the
non-stratified CARLA data set in Table 4. Interestingly, the
covariate model replicates the value (1.19) of the 𝛾 parameter
from the sex-stratified model. With respect to sex itself, we
observe 𝑆

𝑚
(𝑡) = 𝑆

𝑤

(
e0.028

𝑡

)
= 𝑆

𝑤
(1.028 ⋅ 𝑡), with 𝑆

𝑚
, 𝑆

𝑤
survival

functions for men and women, respectively. That is, the time
toward death is accelerated by a factor of 1.028 for men as com-
pared to women. In terms of the model fit, the covariate model
is judged inferior as compared to the sex-stratified model, AIC
as well as BIC values are larger. Just aside and from a technical
viewpoint, this AFT parametrization of the Gompertz distribu-
tion in the TRV model can be interpreted as a general AFT model
with several time-constant covariates and one time-dependent
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TABLE 4 | Results of fitting the TRV model with covariate sex to the
CARLA data.

Parameter Estimate [𝟗𝟓%CI] Fit statistics

log(𝜂) −10.2 [−11.5, −8.9]
𝜙0 −2.17 [−2.30, −2.04] AIC: 2449.7
𝜙1 (man) 0.028 [0.003, 0.053] BIC: 2471.6
𝛾 1.19 [1.10, 1.28]

covariate and we show the respective equivalence in the
Appendix S1.

5 | Discussion

We proposed a parametric model for describing chronic disease
mortality from cohort data and illustrated its use for Type 2
diabetes. The innovative aspect of our proposal is that we use
a model from ALT in reliability theory and conceptualize the
occurrence of a chronic disease as putting the observational unit
to an enhanced stress level, which is supposed to shorten its
lifetime. With respect to the cohort structure of our motivating
data set, our model addresses various challenges and solves
several problems for such data. In particular, it properly accounts
for the semi-competing risk character of the data, where dia-
betes can be diagnosed before death, but not vice versa. Using
parametric distributions for age at diagnosis as well as for age of
death allows a number of additional and easy-to-communicate
insights on the time scale, for example, in terms of residual life
expectancy or years of life lost due to disease. Especially by using
the Gompertz distribution for age of death there is a minimal loss
of information as compared with a semi- or even non-parametric
modeling [15]. In addition, the parameter 𝛾 that describes the
dynamic of disease can be conveniently interpreted as an accel-
eration factor of time. By using methods for left-truncated data,
late entry into the cohort can also be taken into account. With
respect to the age at diagnoses, prevalent as well as incident cases
of disease are allowed. Finally, we presented an extension of
the model which allows age at disease diagnosis to be observed
not exactly, but only partially within an interval. To assess the
statistical properties of the model and the estimation procedure
a small simulation study was conducted. This shows that the
model works well and the estimation algorithm was numerically
stable with no convergence problems. Model parameters can
be straightforwardly estimated by maximum likelihood and can
be realized with every software tool that allows defining and
maximizing a non-linear function.

It is fair to point to some limitations of our approach. First, the
TRV is a parametric model that comes with various assumptions.
While we have shown in previous work [15] that the Gompertz
distribution is plausible for overall as well as for diabetes mor-
tality in Germany we are not aware of empirical evidence for
the TRV structure of the model, especially of the accelerating
character of 𝛾. There are alternative models in ALT, which might
give better fits or model the process of the chronic disease toward
death more plausible. To be more specific, possible alternatives
to the TRV model are the tampered failure rate (TFR) model
of Bhattacharyya and Soejoeti [21] or the cumulative exposure

(CE) model by Nelson [5]. However, in the case of the Gompertz
distribution, the TRV and the TFR model coincide, [17] and there
is no additional insight from the TFR model. For more general
cases, for example, when allowing different distributions for dif-
ferent stress levels, the hazard-based approach of the TFR model
has some advantages also in comparison to the CE model [8].

Second, in the TRV model as used here, we assume a constant
𝛾, that is a constant effect of diabetes stress on mortality. In
ALT, there are also models allowing progressive stress (see,
e.g. Yin and Sheng [22] for an early application with a Weibull
distribution as assumed for the constant stress situation and the
progressive stress being linearly related to time) and these might
be further fruitful extensions for the diabetes case, but also for
other diseases. In particular, a phenomenon known as com-
pression of mortality can be observed in case of Type 2 diabetes
[15, 16]. This means that the association between diabetes and
mortality becomes smaller with increasing age. Thus, a model
with regressive (instead of progressive) stress would be of great
interest for future work, especially in the diabetes area.

Third, we have to assume that the probability of cohort entry
is equal for people with and without the disease diagnosis. It is
unclear if this assumption is true for the case of Type 2 diabetes.
On one hand, people with diabetes might be more concerned
about their health status and thus more willing by participate in a
cohort study. On the other hand, they might be too stressed from
managing the disease, making study participation less likely.

Fourth, the TRV does not allow to explicitly model the distribu-
tion of age at disease diagnosis. Instead, it is only concerned with
modeling age at death, assuming age at diagnosis to be fixed. This
has the limitation, if compared to illness-death models, that no
inference on age at disease onset can be made. However, this also
comes with an advantage of the TRV model, results with respect
to disease mortality are valid independent of the distributional
form of age at disease diagnosis.

As a further limitation, at least if the model is compared to the
illness-death model, we consider the fact that the TRV model does
not allow the age of disease diagnosis to be censored. In particu-
lar, it is not possible that information on mortality can be used for
the cohort if disease status is not yet known. This was a problem
here with the analysis of the CARLA data when we could not use
the information from the mortality follow-up in 2019 for model-
ing disease mortality because information on disease status was
only available from 2013.

Finally, there are models in ALT which would allow age-of-death
not observed exactly, but only within weekly or monthly inter-
vals, that is, as numbers of people that died within a specific
interval. These situations are termed “interval monitoring” in
the ALT literature, see, for example, Bobotas and Kateri, [23] for
an example. In epidemiological research, these models might be
useful when confidentiality issues play a role, for example, when
published strata from registries are too sparsely occupied and
would allow re-identification of single individuals.

There are several possibilities for future work or extensions
of the model. First, we restricted here to pure modeling of
diabetes mortality for men and women. Of course, it would
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be straigtforward to include further covariates in the model,
for example, BMI or smoking behavior, for additional insights.
Similarly, random effects might be used for modeling correlated
observations. Second, we did not yet think too deeply about
assessing the model fit, that is, comparing observed deaths to
those predicted from the TRV model.

Third, we know from external sources that the Gompertz distri-
bution is especially well suited for modeling diabetes mortality
[15] and we used it exclusively here. There might be other
chronic diseases where other distributions, for example, the
Weibull, might improve the fit of the TRV model. Fourth, with
respect to other chronic diseases, for example, hypertension
or hypercholesterolemia, it might be illuminating to include
them as additional stress factors and treat them in the sense of
step-stress modeling.

Finally, considering the multiple step-stress model in epidemi-
ological context is an interesting area for further research. To
extend the TRV model to more stress levels in the context of
diabetes, it would be possible to consider prediabetes as an
additional stress level between normal stress (without diabetes)
and the stress level after a diabetes diagnosis, giving a TRV model
with three stress levels.

To conclude, we think that the TRV model is a valuable extension
to the epidemiologists’ toolbox for modeling chronic disease mor-
tality from cohort data. We are further confident that there are
numbers of other methods in ALT or reliability theory in general
that can be fruitfully used in epidemiology or clinical medicine.
Interestingly, a reviewer (obviously from the field of reliability
theory) proposed that this exchange should be bi-directional,
because reliability theory and engineering applications can and
should also learn from epidemiology.
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