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CHAPTER

1
Introduction

The prediction of the lifetime of mechanical designs is a challenging task in

mechanical engineering. The accurate estimation of risks and providing the

warranty on the mechanical components is a problem taking place mainly in

the industry, e.g. in the manufacturing of engines, turbines, heat exchang-

ers, etc. The importance of this problem is strongly related to the income of

the manufacturer, which is one of reasons for their interest. Besides the mer-

cantile reasons, the safety is also a very significant factor, which, however, is

also related to the excessive expenditures in case of accidents, e.g. failures of

turbines with destruction of turbine housing1, an explosion of engine in the

vehicle, etc.

The field of the highest interest is represented by the structural compo-

nents of power plants, chemical reactors, heat engines, pipework systems, tur-

bines, etc. It is induced by high prices and safety requirements to components.

Mainly, the mentioned cases are related to a high temperature and mechanical

loading conditions. The operating of a component at temperatures T > 0.3Tm

(Tm is a melting temperature) induces the evolution of strains over time even

at a constant load. Such strains are referred to as creep strains [27, 50].

Thereby, another important factor affecting the material behavior is time. The

task of mechanical engineering within the above-mentioned case of the op-

eration conditions is the modeling of time-dependent changes of stress and

strain states until the failure of the component.

The overlay of cyclic mechanical and thermal loads leads to the deteri-

oration of a material referred to as thermo-mechanical fatigue. The above-

1Sayano-Shushenskaya hydroelectric power station accident occurred on 17 August 2009.

9 of 10 turbines were destroyed, 75 people have died.
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(a) (b) (c)

Figure 1.1: Failures of turbine housings induced by thermo-mechanical fa-

tigue: (a) and (b) turbine housings used in Porsche 924T en-

gine (taken from www.rennlist.com/forums), (c) turbine housing

of Garrett GT3071R turbo charger compressor turbine (taken from

www.uksaabs.co.uk/UKS)

mentioned loading conditions are typical for steam and gas turbines and leads

to the nucleation and fast growth of cracks on a component’s surface. Fig-

ure 1.1 shows the typical failure of the turbine housings induced by thermo-

mechanical fatigue. There are several mechanisms affecting the thermo-

mechanical fatigue [78, 90]: creep and creep damage [25, 32, 50], damaging

induced by oxidation [54], and fatigue damage [32, 46].

The creep mechanics were intensively developed mainly in the middle of

the 19th century. The particular problems of the creep mechanics, e.g. the

modeling of the behavior of specific structural components and the solution

of non-linear initial-boundary value problems, became trivial in mechanical

engineering since the works of Odqvist [58], Odqvist and Hult [60], Hult [24],

and Rabotnov [76]. Beginning from 1970s creep problems of mechanics have

been significantly investigated, the concepts of hardening/recovery and creep

damage were introduced [10, 28, 38], the thermodynamic approach for the

formulation of constitutive equations was developed [31, 79]. The recently

published book of Naumenko and Altenbach [50] includes sophisticated ap-

proaches for solution of creep problems for general cases and particular struc-

tural components.

At the initial stage of development of the damage mechanics, the damage

was classified as the deterioration of the material taking place directly before

http://rennlist.com/forums/924-931-944-951-968-forum/515781-924t-turbo-turbo-rebuildable-2.html
http://www.uksaabs.co.uk/UKS/viewtopic.php?f=3&t=103799
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input
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output
Material

(a)

input
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output
Model

(b)

Figure 1.2: Behavior of material: (a) real process, (b) simulation process

the failure, i.e. damage was introduced as a generalized resultant characteris-

tic. At the same time the failure was described by the categories "yes" or "no".

The pioneers, who have introduced the variable representing progressive de-

terioration of material before the rupture, were Palmgren [63], Miner [45],

and Robinson [77]. The development of the creep damage concept was pro-

ceeded by Kachanov [25], who has introduced the internal variable ϑ, called

"continuity", representing the fraction of undamaged material in the mechan-

ical part. Later, the introduced "continuity" variable has received the thermo-

dynamical meaning through the relation with the damage variable ω= 1−ϑ,

which is still used in modern mechanics. The failure of material at cyclic loads,

referred to as fatigue damage, was described independently by Manson and

Coffin by means of a famous empirical law, nowadays called Manson-Coffin

law [41]. This approach has successfully been used upto now for the appli-

cation at strict loading conditions. For the next 40 years, the fatigue damage

concept has significantly been developed and became as well the part of con-

tinuum damage mechanics [30, 46]. This concept has been constructs the fa-

tigue damage law in the standard time scale, that leads to known challenges

with the time-consumption of algorithm. However, despite the mentioned

problems with time-consumption, the approaches of continuum damage me-

chanics allow us to take into account the complete history of loads.

On the other hand, the development of new industrial products is often

related to the application of new materials (e.g. newest cast irons and steels

with inclusions, composites, nano-materials, etc.), which requires the solu-

tion of the identification problem in order to formulate the constitutive model

representing their behavior. Thereby, an experimental testing of a material,

a phenomenological modeling of the observed processes and identification

problem are always coming together while the formulation of the constitu-

tive model. The structure of the material identification problem is shown in

Fig. 1.2. Within this scheme, the material is represented through some block

transforming the input parameters (e.g. mechanical and thermal loads) into
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the output parameters (e.g. displacements, deformations, stresses, etc.). The

aim of the identification is to replace the real process by a mathematical model

with the saving of similar correspondence between input and output charac-

teristics of the process [16, 56, 57]. The formulation of the constitutive model

is mainly based on the available experimental data and on the requirements

to the constitutive model, and always is a time-consuming problem for the

advanced constitutive models. Unfortunately, the application of a neural net-

works [23, 88] or a numerical optimization for the determination of the mate-

rial parameters [5, 13] for the formulated constitutive model makes the iden-

tification the challenging task, and, in some situations, non-realistic for its

solution within the framework of the mechanical engineering department of

an industrial company. The required time for the development of the product

is normally very limited by economic factors, which demotivates mechanical

engineers to apply the newest materials for the development of the design.

The challenges related to the analysis of the experimental data, the control

of the data’s accuracy and human factors, together with the requirement of a

short development time, finally lead to the situation, that the application of

new material with high potential for the development is completely degraded

by the implementation complexities.

Aims and tasks

The aim of the current work is to develop a generalized strategy for the for-

mulation of mechanisms-based constitutive models, which include elasticity,

inelastic properties, creep and fatigue damage processes, and are unified for a

wide range of the operational conditions. The work is focused on the develop-

ment of an identification strategy for the narrow class of cast irons used in the

structural components and subjected to thermo-mechanical loading condi-

tions which are a standard situation in turbines, pipe systems, heat exchang-

ers, etc. The low amount of knowledge about the structure of the constitutive

model and the shape of the response functions used by this model are chal-

lenges of the generalized identification. Therefore, within the current work,

the identification is designed in a way, that each step considers the certain

phenomenological mechanism representing the behavior of the material.

The unification of the constitutive model for application in a wide range

of loading conditions necessarily leads to the complication of the model, and,

therefore, to an increase of time required for the formulation of a constitutive

model. The proper way to reduce the complexity of the identification problem

is the consideration of the mechanisms taking place in the material during the



5

operation. For instance, the elastic material properties can be considered in-

dependently from the rest of the experimental data. Additionally, the exper-

imental data for inelastic strain rates can be considered independently from

the hardening/softening or damage processes. On the other hand, the iden-

tification of the kinematic hardening does not require the information about

the damaging of the material, etc. The partition of the constitutive model onto

mechanism-based constituents allows to significantly reduce the dimension

of the identification problem.

Unfortunately, the processes taking place in the material behavior under

some loads are not always observed in explicit form, and, therefore, can not be

identified by a decomposition of the constitutive model on the mechanism-

based constituents. Within the above-mentioned case, the identification of

hidden processes requires to work with the full dimension of the constitutive

model, which is time-consuming and, often, not possible, if the structure of

the constitutive model is not known. However, the experimental data can be

decomposed, according to the assumed phenomenological structure of the

constitutive model, onto constituents which may represent such processes as

hardening/softening or damage in an explicit form. Unfortunately, there is

a disadvantage of the above-mentioned approach related to the reduction of

accuracy of the estimated data. This problem is induced by a multiplicative

effect of processing on the error taking place in the experimental data. There-

fore, its application is justified only in situations, in which a preliminary esti-

mation of the constitutive model is performed.

The application of approaches mentioned above allows to significantly

simplify the identification of new cast irons and steels for mechanical engi-

neers. Within the current work, we developed the step-by-step identification

strategy in order to illuminate the above-mentioned problems.

Of course, the development of the unified identification strategy requires

the experimental data for certain material. Within the framework of the cur-

rent work, the identification strategy is presented on base of GJV cast iron with

vermicular graphite inclusions. However, during the development of identifi-

cation approaches given in this work the experimental data for the GJS (D5-S)

cast iron have been also used. Thereby, major target material of the current

work are the heat resistant cast irons with graphite inclusions.

The current thesis is structured as follows:

• Chapter 2 is focused on the consideration of the basic set of governing

equations, which are necessary for the formulation of mechanical bal-

ance principles, a basic sketch of the constitutive model for the descrip-

tion of the elastic and inelastic material behavior and damaging process.
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The relations presented within this chapter are mainly given for gener-

alized continuum with coverage of some particular features belonging

to cast irons.

• Within the Chapt. 3, the existing techniques available for solving of the

identification problem are presented, and a generalized strategy of the

identification is discussed. This chapter also includes the experimental

data for GJV cast iron used for the representation of the identification

steps.

• Chapter 4 presents the initial step of the identification process. This

part is referred to as primary identification and is mainly focused on

the determination of the structure of the constitutive model and a pre-

liminary estimation of the material parameters. The primary identifica-

tion is based on the simplest identification approaches such as trial ap-

proach and hand-fitting, described in Chapt. 3. Within the framework

of current chapter, the identification is performed mainly based on the

experimental data from creep and tensile tests.

• Within the Chapt. 5, the optimization-based identification approach is

considered. This part of research is focused on the formulation of a flex-

ible and unified identification algorithm for the solution of the parame-

ters identification problem. Within the current chapter, the approaches

for the calibration of the constitutive model, reduction of the simulation

time, and multi-threading techniques are considered.

• Chapter 6 is focused on the verification of the resulting constitutive

model. This part is subjected to the estimation of the quality of the iden-

tified constitutive model, its accuracy of the prediction of the inelastic

behavior and the lifetime of material. Furthermore, the accuracy of the

additional approaches used within the current work is checked.

• Chapter 7 finalizes current thesis with summary, list of the restrictions

for the application of developed methods and outlook.

The primary identification of the fatigue damage model requires to anal-

yse the stress response of the material during the low-cyclic fatigue test.
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2
Basic equations

2.1 General remarks

The application of materials in modern mechanical engineering requires the

detailed consideration of phenomena and processes, which take place in

these materials. Within the framework of current research, cast irons can get

mechanical deformations as a result of applied temperature fields and exter-

nal mechanical loads. In general the interest of industrial engineering is more

focused on the risk analysis, which takes into account the instant strength as

well as the durability of design.

Proper risk analysis must consider the dominant phenomenon, which

takes place in the material during the exploitation of the mechanical design,

as well as structural properties of the material. Within a small representative

volume of a material, the distribution of graphite inclusions in space and the

distribution of their sizes is random [66, 85]. Therefore, cast iron can be sim-

ulated as an isotropic one. The phenomenological modeling in the particular

case of cast irons is normally based on the small displacements and the mate-

rial’s isotropy assumptions [26, 31, 50].

The operation conditions in the case of application of the material in tur-

bine housing can be characterized by high temperatures about Tm/3 values

and higher, cyclic thermal and mechanical loads and by the presence of steady

regimes at the different temperatures. Within the framework of current class

of materials, risk analysis must consider elasticity, plasticity, creep and creep-

fatigue damage interaction.

This chapter contains basic equations which describe the elastic material

behavior, creep, damage and its influence on the basic material properties.
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The kinematic equations are derived under the assumption of small displace-

ments. The plasticity is considered from the position of fast rate-dependent

material behavior, which is included in creep models through consideration of

exponential regimes in inelastic strain rates. The continuous fatigue damage

model is formulated in a general time scale in order to represent the material

behavior for complicated loading cycles with non-regular holdings.

2.2 Kinematics

2.2.1 Deformation map

The current section provides the fundamental principles and definitions

which are used for the description of the body motion. The starting point is

the consideration of the transformation of the state of continuum sub-domain

B from a reference configuration with position X of some point P into a actual

configuration of transformed continuum sub-domain S with position x of the

same point P (Fig. 2.1).

Given displacement vector u is characterizing the position change of point

P during the transformation of the body from reference state B to the actual

state S:

u = x −X

The vector function φφφt of vector argument X is referred to as deformation

map:

x =φφφt (X ) ⇒φφφt (X ) = X +u

The deformation map function describes the movement of all particles of sub-

domain B , and, consequently, its transformation to sub-domain S.

2.2.2 Deformation gradient

A deformation gradient is applied for the analysis of the deformed state of the

body. The deformation gradient F is the derivative of the actual configuration

vector x with respect to reference configuration vector X :

F =
dx

dX
≡∇∇∇Xφφφt (X ) ≡ I +

du

dX
≡ I +∇∇∇X u,

where I is the second-order unit tensor. In fact, the deformation gradient F

maps tangent vector T of curve L (X ) of reference configuration B into tangent

vector t of curve l (x) of actual configuration S: t = F ·T .
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T t
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Figure 2.1: Displacements and deformation map

Applying of the polar decomposition theorem of a second order tensor [50,

65] to the deformation gradient F , one can decompose F into the product of

two second order tensors [83] as follows:

F = R ·U =V ·R , (2.1)

where tensor R is an orthogonal tensor (RT = R−1 and detR = 1). Tensor R

contains the rotational part of deformations. U and V are right and left stretch

tensors, respectively. U and V are positively defined symmetric tensors.

2.2.3 Concept of strain

The right Cauchy-Green deformation tensor is the rotation-independent mea-

sure of deformations, which is most popular for the use in mechanical engi-

neering. This tensor was introduced by George Green1 as follows:

C = F T
·F =U 2 (2.2)

In particular, engineers use the concept of strain, which evaluates how dis-

placement differs locally from a rigid body displacement [33]. One of such

strains is the Green-Lagrangian strain tensor [34, 35], defined as follows:

E =
1

2
(C − I ) ≡

1

2

[
(∇∇∇X u)T

+∇∇∇X u + (∇∇∇X u)T
·∇∇∇X u

]
(2.3)

1George Green (14 July 1793 - 31 May 1841) was a British mathematical physicist. In his

essay "An Essay on the Application of Mathematical Analysis to the Theories of Electricity and

Magnetism" he introduced several important concepts, among them a theorem similar to the

modern Green’s theorem, the idea of potential functions as currently used in physics, and the

concept of what is now called Green’s functions.
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Figure 2.2: Euler’s cut principle: (a) initial configuration of solid body, (b) cut-

ted body balanced by forces

2.3 Mechanical balance principles

The differential equations based on the integral balances of physical quan-

tities describe the state of continuum. For any representative volume of the

continuum the balances of mass, momentum, angular momentum and en-

ergy hold true [4]. This section focused on the consideration of those balances.

2.3.1 Concept of stress

In the particular case of metals, the deformation of the solid body at the

macrolevel is represented as the distortion of a crystal lattice at the nanoscale.

The displacement of the atoms from the equilibrium positions, which can be

reached only at zero absolute temperature, conduct atomic acting forces tend-

ing to return the lattice into an equilibrium position. The summation of all

atomic forces at the macroscale is called internal forces [64].

Let us consider the body with an applied system of loads and boundary

conditions (Fig. 2.2). The state of the mechanical system is characterized by

equilibrium between a multiple number of internal forces and external loads

(Fig. 2.2a). According to the cutting principle, the arbitrary part of solid can be

replaced by the force, which acts in each point of the cutting surface Ω [34, 64].

The influence of the removed part on the mechanical system is compensated

by the surface traction vector τττn in each point of Ω with normal vector n

(Fig. 2.2b). The resulting force fn acting on the infinitesimal area ∆Ω with

normal n is the following:

fn =τττn∆Ω (2.4)
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The traction vector τττn is called Cauchy1 traction vector and depends on the

normal n and differs for each point of a cross-section. The Cauchy traction

vector τττn can be represented by the linear function of the normal n and the

second-order tensor:

τττn =σσσ ·n, (2.5)

where σσσ is the second-order Cauchy stress tensor. Within the used formula-

tion, the Cauchy stress tensor σσσ represents the stress state of the solid, inde-

pendent from the choice of the cutting plane Ω and normal n. The presented

definition of the stress was first given by Cauchy and often referenced as true

stress.

2.3.2 Balance of mass

The starting point for the derivation of material independent continuum

equations is the definition of mass density:

ρ = lim
∆V →0

∆m

∆V
, (2.6)

where V and m are the volume and the mass of the continuum. In the general

case, mass density may differ for each point of the continuum: ρ = ρ (X ).

The mass MB of continuum sub-domain B for the mentioned mass density

ρ (X ) is defined in (2.8). The balance of mass is based on the statement that

in the absence of mass supply, production or transport, the mass MB does not

change:

MB =

∫

B

ρ (X , t )dV ,

d

dt
MB = 0

(2.7)

1Augustin-Louis Cauchy (21 August 1789 - 23 May 1857) was a French mathematician, the

pioneer of mathematical analysis and founder of complex analysis. As a perfect mathemati-

cian, Cauchy had a strong influence on the development of mathematical physics.
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Figure 2.3: Surface and body forces acting on continuum sub-domain B

Under the assumption that volume of sub-domain B is not changes, the

integral form (2.7) can be reduced as follows:

ρ̇ (X , t ) = 0 (2.8)

2.3.3 Balance of linear momentum

The linear momentum of continuum sub-domain B (see Fig. 2.3) is defined in

terms of deformation map velocity φ̇φφt as follows:

IB =

∫

B

ρφ̇φφt dV

The resultant force FB acting on the sub-domain B is given by

FB =

∫

B

γγγdV +

∫

∂B

τττdA

The balance of linear momentum is postulated by the following relation:

d

dt
IB = FB ⇒

d

dt

∫

B

ρφ̇φφt dV =

∫

B

γγγdV +

∫

∂B

τττdA (2.9)

The substitution of the expression for the Cauchy traction force vector (2.5)

into (2.9) and the application of the divergence theorem [31, 50, 65] leads to

the equation of the body motion:

ρφ̈φφt =γγγ+∇∇∇X ·σσσ, (2.10)

which for quasistatic conditions is simplified to the expression of the mechan-

ical equilibrium condition:

∇∇∇X ·σσσ+γγγ=000 (2.11)
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2.3.4 Balance of angular momentum

The equilibrium of continuum sub-domain B requires a zero resultant mo-

ment, computed with respect to all forces acting on B . The angular momen-

tum LB of continuum sub-domain B is defined by

LB =

∫

B

φφφt ×ρφ̇φφt dV

The resultant torque TB action on the continuum sub-domain B is given by

following

TB =

∫

B

φφφt ×γγγdV +

∫

∂B

φφφt ×τττdA

The balance of angular momentum is postulated by the following relationship

d

dt
LB = TB ⇒

d

dt

∫

B

φφφt ×ρφ̇φφt dV =

∫

B

φφφt ×γγγdV +

∫

∂B

φφφt ×τττdA (2.12)

The substitution of the expression for Cauchy traction force (2.5) into (2.9)

and the application of the divergence theorem leads to the following expres-

sion, given in the local form:

φφφt ×ρφ̈φφt =φφφt ×γγγ+∇∇∇X · (φφφt ×σσσ) (2.13)

The above-presented expression (2.13) is the starting point for the deriva-

tion of the proof, that the Cauchy stress tensor is a symmetric tensor:

σσσ=σσσT

The above-mentioned feature of the stress tensor was firstly proved by Cauchy.

The symmetry of Cauchy stress tensorσσσ allows to reduce the number of inde-

pendent stress tensor components from nine to six.

2.4 Strain components

The majority of cast irons exhibits low values of strains, which normally do not

exceed 1-2% in the steady exploitation mode and 5-10% during the rupture.

Within the mentioned operation conditions, the application of Lagrangian or

Euler approaches do not give a significant difference and yields ∇∇∇x u ≈∇∇∇X u =

∇∇∇u. Taking into account that ||u|| << 1 and ||∇∇∇u|| << 1, the quadratic term in
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(2.3) can be neglected. Thereby, the Green-Lagrangian strain tensor (2.3) takes

its linearized form, also called infinitesimal strain:

εεε=
1

2

[
∇∇∇u +∇∇∇uT

]
(2.14)

The exploitation of the designs made of cast irons in modern mechanical

engineering implies the presence of a complicated set of phenomena in the

material, such as elastic deformations, a saturated amount of accumulated

inelastic strains of different nature (plasticity, creep, etc.), the deformations

induced by the thermal expansion of the material, etc. Corresponding to the

different nature of the deformation mechanisms, the strain tensor is repre-

sented as follows:

εεε=εεεel
+εεεp

+εεεth, (2.15)

where εεεel, εεεp and εεεth are elastic, inelastic and thermal parts, respectively.

In general, the thermal strain tensor εεεth represents the tendency of the

matter to change the volume in response to a change of the temperature. With

an increase of the temperature, the atoms begin moving faster and usually in-

crease the space between them. Mentioned behavior of the atoms, in general,

leads to the increase of the volume. For isotropic materials, the thermal strain

tensor εεεth is defined by the following constitutive equation [43]:

εεεth
=αT∆T I , ∆T = T −Tref,

where αT is the coefficient of thermal expansion, which in the general case is

the function of temperature, Tref is the reference temperature.

The elastic strain tensorεεεel is a second-order symmetric tensor. The elastic

strains are the slight distortion of the crystal lattice and, for all materials, are

related to stresses. The elastic part of the strain tensor is completely reversible.

For a large amount of metallic materials, the relationship between stresses and

elastic strains can be sufficiently described by Hooke’s law. However, in partic-

ular cases the sensitivity to the tensile/compressive loading mode is observed.

In order to represent the different material behavior at the different loading

regimes by the constitutive model, the elastic strain tensor can be splitted into

the positive and negative parts as follows:

εεεel
=εεεel

+ +εεεel
− (2.16)
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The contributions of both parts are based on the decomposition, which is well

described by Miehe et al. [44]:

εεεel
+ =

3∑

i=1

〈εel
i 〉+gi ⊗gi , εεεel

− =
3∑

i=1
〈εel

i
〉−gi ⊗gi , (2.17)

where gi are principal directions of the elastic strain tensor εεεel, 〈〉+ and 〈〉− are

the following operators:

〈x〉+ =
x +|x|

2
, 〈x〉− =

x −|x|

2
(2.18)

The inelastic strain tensor εεεp is a second-order tensor, which, in general, is

formulated in a unique manner for each material. The formulation and iden-

tification of the material parameters for εεεp is one of the tasks of the identifi-

cation problem considered within the framework of current work. The basic

principles used for the derivation of the inelastic strain tensor εεεp are given in

Sect. 2.6.

2.5 Elasticity

The formulation of the stress-strain relations within the framework of current

research is based on the hyperelasticity principle. The mentioned principle

is based on the consideration of the mechanical state of materials through

the strain energy density ψ. The following relationship between the energy

storage functional ψ, elastic strain tensor εεεel and Cauchy stress tensor σσσ is

postulated for isotropic material as follows:

σσσ=
∂ψ

∂εεεel
(2.19)

For the linear elastic material, the energy storage functional ψ is the fol-

lowing:

ψ(εεεel) =λ tr2[εεεel]/2+µ tr[(εεεel)2], (2.20)

where λ and µ are Lamé’s parameters. They are related to engineering con-

stants as follows:

λ=
νE

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
, (2.21)

where E is Young’s modulus, ν is Poisson’s ratio and µ is the shear modulus.

In principal, the classic definition fully satisfies the main requirements of

the problem definition, except the material behavior, which is observed before
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a rupture. In this case, the reduction of stresses is experimentally observed.

The reduction taking place during the tensile mode of kinematic loading, ap-

plied to a specimen. In order to reproduce the mentioned behavior by the

constitutive model, the following form of the energy storage functional ψ can

be used [44]:

ψ(εεεel,ω) =
[
κ(ω)+χ

]
ψ+(εεεel)+ψ−(εεεel), (2.22)

where function κ(ω) represents the degradation of material caused by the ac-

cumulated damage, which normally affects the stiffness only at tensile loads.

Parameter χ is chosen to be a small value used for the stabilization of the sim-

ulation.

Taking into account compressive/tensile loading modes, the following ex-

pressions for ψ+ and ψ− are proposed:

ψ±(εεεel) =λ〈tr[εεεel]〉2
±/2+µ tr[(εεεel

±)2], (2.23)

with above-defined by (2.17) brackets 〈〉± and tensile/compressive parts εεεel
± of

strain tensor εεεel(2.18), respectively.

With the substitution of the defined profile of the elastic energy function-

als ψ+ and ψ+ into (2.20) and further in (2.19), the constitutive equation for

the Cauchy stress tensorσσσ yields:

σσσ=
[
κ(ω)+χ

][
λ〈tr[εεεel]〉+I +2µεεεel

+

]
+

[
λ〈tr[εεεel]〉−I +2µεεεel

−

]
(2.24)

The obtained stress-strain relation (2.24) is a generalized expression of the

well-known Hooke’s law, which can be obtained by substitution κ(ω)+χ = 1

in (2.24):

σσσ=λ tr[εεεel]I +2µεεεel (2.25)

2.6 Rate-dependent material behavior

The formulation of the constitutive model is based mainly on the set of the

loading regimes, for which the material response must be described. Taking

into account fast loading regimes and holding regimes with stabilized load-

ing conditions in the turbochargers, formulation of the constitutive relations

for inelastic strain rates requires to consider fast- and slow-flowing rheologi-

cal processes: plasticity and creep. In order to describe both of them by the

unified constitutive mode, both plasticity and creep are considered from the

position of rate-dependent processes.
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2.6.1 Steady regime

Steady regime is characterized by holding of the continuous conditions of

thermal and mechanical loads. Above-mentioned regime may be observed in

the creep process at the constant loads. However, when higher amount of the

loads are applied on the representative sample, steady regime of the inelastic

strain rate may be observed in the plasticity as well. Thereby, consideration of

the material behavior in steady regimes of the loads is important step of the

identification of the unified constitutive model for plasticity and creep.

The starting point for the derivation of the inelastic strain rate tensor is the

Odqvist flow rule [50, 59, 60]:

ε̇εεp
=

∂W

∂σσσ
, (2.26)

where W is the creep potential, which is scalar-valued function of stress

tensorσσσ. Under the assumption of isotropic creep behavior, the creep poten-

tial W must be an isotropic function of stress tensor σσσ. In fact, it means that

the creep potential can be formulated with respect to the first invariant of the

stress tensor J1 and quadratic J2 and cubic J3 invariants of the stress deviator

s [50]:

J1 = trσσσ, J2 =−
1

2
s · ·s, J3 =

1

3
(s · s) · ·s, (2.27)

where s =σσσ−
1
3

trσσσ is the deviator of the stress tensor. By substitution of (2.27)

in the general flow rule (2.26) the following expression for the inelastic strain

rate tensor can be obtained:

ε̇εεp
=

∂W

∂J1
I −

∂W

∂J2
s +

∂W

∂J3

(
s2

−
1

3
tr s2I

)
(2.28)

Under the assumption that inelastic deformations do not lead to the vol-

ume change, the volumetric part of the inelastic strain rate tensor can be ne-

glected:

trε̇εεp
= tr

(
∂W

∂J1
I

)
= 0, (2.29)

that leads to the following expression for the inelastic strain rate tensor:

ε̇εεp
=−

∂W

∂J2
s +

∂W

∂J3

(
s2

−
1

3
tr s2I

)
(2.30)

The presented creep flow rule (2.30) is called tensorial non-linear equa-

tion [8, 50, 76]. The part of equation (2.30) including the third invariant of the

stress tensor is a non-linear function of the deviatoric stress tensor s. The ap-

plication of the creep flow rule in form (2.30) allows to describe non-classical
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second order effects of the material behavior, which take place mainly in com-

posite materials with particle system or in specific loading cases of certain

structural elements [9].

The description of engineering materials, such as steels, alloys, cast irons,

etc., requires, as a rule, the classical von Mises type potential W based on the

second invariant of the stress deviator [84]:

ε̇εεp
=

3

2

∂W (σvM)

∂σvM

s

σvM
, σvM =

√
3

2
s · ·s =

√
−3J2. (2.31)

In other words, the flow rule (2.31) is the generalized constitutive equation

for the inelastic strains ε̇εεp derived for the isotropic materials which show in-

elastic incompressibility. The particular cases of material properties are intro-

duced in the model through the creep potential function W . The dependence

on temperature is excluded from the derivation of the flow rule (2.31) for the

sake of brevity. However, including the temperature dependence would not

affect the general structure of the flow rule.

The introduction of the second invariant ε̇
p

vM
of the inelastic strain rate

tensor ε̇εεp leads to the well-known constitutive equation for the steady-state

inelastic strain rate, which is well represented among others by Naumenko

and Altenbach [50]:

ε̇εεp
=

3

2

ε̇
p

vM

σvM
s, ε̇

p

vM
=

√
2

3
ε̇εεp · ·ε̇εεp =

∂W

∂σvM

(2.32)

The proposed equation is derived in [60] for the secondary steady-state

creep stage and can be extended for the primary and tertiary stages of creep

by means of introducing additional order parameters into constitutive equa-

tions.

2.6.2 Transient regime

Usually, the principles of formulation of the constitutive model for inelastic

material behavior is based on the effects, which must be taken into account.

The inelastic response of material at long-term constant loading can be suffi-

ciently represented by using the constitutive relation for the ideal viscoplastic-

ity, which is presented above. However, the exploitation of mechanical parts

and, in particular, turbine housings also includes the transient regimes with

variable loads. Standardized in material science low-cyclic fatigue tests, which

are normally performed for constant temperature and saw-type kinematic
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loading profiles, and thermo-mechanical tests with more complicated load-

ing profiles, are the simplest cases of the operation conditions taking place in

the real construction. Majority of the operational conditions are character-

ized by the variation of stress, strain and temperature around some average

values, and includes the launches and stopping regimes. The application of

the single ideal viscoplasticity approach in this case is not sufficient, while the

significant part of the inelastic material behavior is characterized as primary

creep stage.

In general, the primary creep stage is characterized by the increasing re-

sistivity of material against evolution of inelastic deformations, which are also

known as hardening. Hardening is usually associated with the moving of the

dislocations, anisotropic inelastic deformations inside the crystals and in the

grain boundary layer.

The idea of kinematic hardening within the creep mechanics was origi-

nally introduced by Malinin and Khadjinsky [39, 40]. Authors started with the

decomposition of the stress tensor σσσ through the active stress tensor σσσ and

order parameterααα known as backstress.

σσσ=σσσ+ααα (2.33)

It is assumed that only the active stress tensorσσσ affects the inelastic strain

rate, while the backstress tensor ααα is introduced as a measure of internal

stresses, which are associated with deviation between the loading direction of

the polycrystal and preferable slip directions of each crystal [6, 21, 82]. These

introduced tensors can be further decomposed into the spherical and devia-

toric parts

σσσ=
1

3
trσσσI + s, tr s = 0,

ααα=
1

3
trαααI +βββ, trβββ= 0,

σσσ=
1

3

(
trσσσ+ trααα

)
I + s, s = s +βββ

(2.34)

The backstress deviator serves to reflect kinematic hardening effects such

as the Bauschinger effect, creep recovery, etc., and provides a phenomeno-

logical measure for internal stress fields generated by the non-uniform in-

elastic deformation on the microscale. The theoretical background to intro-

duce backstress deviator(s) is based on a mixture composed of two or more

constituents with different inelastic material properties [7, 51]. The mixture

model approximates the spacial non-uniformity of inelastic deformation and

the internal stress redistribution, and characterizes hardening effects. A ro-
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bust model is based on two inelastic constituents in such way that one back-

stress variable can be introduced [51, 52].

Within the derivation presented above, the creep potential W can be de-

fined in terms of the active stress tensor. Under the assumption, that inelastic

deformations do not affect the volume change for classic isotropic creep, we

have W =W (s). Thereby, the expression for the inelastic strain rates in case of

ideal viscoplasticity (2.32) proposed in [60] yields the following:

ε̇εεp
=

3

2

ε̇
p

vM

σvM
s, (2.35)

which is able to describe the transient processes observed in the primary

creep stage as well as in the secondary steady creep stage. Introduced in (2.35)

σvM is the von Mises equivalent active stress:

σvM ≡

√
3

2
s · ·s =

√
3

2
(s −βββ) · ·(s −βββ) (2.36)

The different phenomenon takes place during thermo-mechanical load-

ing of mechanical parts. The correlation of the constitutive model in general

case depends on the precision of the description of observed phenomenon.

For the instance, constitutive models considered in [31, 50] includes isotropic

hardening, softening, ageing and damage variables. However, the excessive

complexity of the model is undesirable, because it requires higher quality and

quantity of experimental data. Taking into account the available set of experi-

mental data and declared loading conditions, the constitutive model includes

the single kinematic hardening variableβββ.

Within the stated flow rule (2.35) the equivalent von Mises inelastic strain

rate is the quantitative representation of the rate of inelastic processes, which

takes place in the material. Obviously, the change of the stress or temperature

leads to the change of intensity of the creep process. Therefore, the decom-

position of the equivalent inelastic strain rates onto constituents, which are

representing the influence of temperature and stress, is reasonable [50]:

ε̇
p

vM
= R(T ) f

(
σvM

)
(2.37)

The function R(T ) including the influence of the temperature into the in-

tensity of flow. The function f
(
σvM

)
is the response function of the effective

stress. The temperature response function is normally represented by the Ar-

rhenius type function [26, 50] of absolute temperature:

R(T ) = exp

(
−

Q

RaT

)
, (2.38)
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where Ra is the gas constant, Q is the activation energy related to specific ma-

terial.

2.6.3 Backstress evolution

The evolution equation for the backstress deviator can be derived in order to

represent the behavior of the certain material. For instance, in [37, 38] the

following evolution equation is postulated:

β̇ββ=
2

3
bε̇εεp

−
g (βvM)

βvM
βββ, g (βvM) = c exp

(
−

Q

RaT

)
βn

vM, βvM ≡

√
3

2
βββ · ·βββ (2.39)

Equation (2.39) is the multiaxial realization of the Bailey-Orowan recovery hy-

pothesis [17, 50, 61]. Here, b, c and n are material constants.

On the other hand, kinematic hardening model proposed in [1] is suit-

able in cases of ratcheting and includes the opportunity to incorporate several

backstresses into the constitutive model:

βββ=

n∑

i=1

βββi , β̇ββi = ξi

[
2

3
ri ε̇εε

p
−µiβββi ε̇

p

vM
−H( fi )〈λ̇i 〉

]
, (2.40)

where n is the number of backstress parts, H and 〈...〉 are Heaviside’s step func-

tion and Macaulay’s brackets, correspondingly, ξi , ri and µi are material con-

stants. The values λ̇i and fi are determined as follows:

λ̇i = r−1
i ε̇εεp

· ·βββi −µi ε̇
p

vM
, fi =

3

2
βββi · ·βββi − r 2

i (2.41)

Within the framework of current research the evolution equation originally

proposed by Frederick and Armstrong [19] and derived as well in a different

manner by Naumenko et al. [51] is used:

β̇ββ=
1

µh

dµh

dT
Ṫβββ+

2

3
µh

[
ε̇εεp

−
3

2
ε̇

p

vM

βββ

β∗

]
, (2.42)

where µh is the hardening rate function, which in original papers [19, 51] re-

lates to the shear modulus. In the general case, µh is proportional to the shear

modulus G . Proposed in [51], definition for µh is following:

µh =
3G

ch

, (2.43)

where ch is the material constant.

Elastic material properties especially in case of metals are temperature de-

pendent. Thereby, in general case the hardening rate modulus is the function
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of the temperature. For particular cases of temperature-independent shear

modulus G , hardening rate modulus µh becomes the constant, therefore the

first part of (2.42) is vanish. Term β∗ of (2.42) is the scalar function of the plas-

tic strain path [19], which is also known as hardening saturation function. In

general case β∗ is the function of the stress and temperature. The particular

representation of the function differs for various materials and should be de-

termined taking into account the experimental data for the certain material.

2.7 Damaging of material

Current section is focused on the formulation of evolution equations for creep

and fatigue damaging mechanisms taking place in turbine housings during

the operation. The constitutive model including the creep-fatigue damage in-

teraction.

The aim of continuum damage mechanics is to represent the damaged

state of materials. The starting point is the introduction of a damage vari-

able, which affects the behavior of material and further development of the

damage. In general, damage in the materials have a different nature. When

the micro-crack arises without plastic deformations, such damage is referred

to as brittle damage. Growing of the spherical and ellipsoidal micro-voids in

the material caused by plastic deformation is called ductile damage [46]. In

case of high temperatures, the diffusional movement of micro-voids and dis-

locations can leads to the accumulation of the micro-voids on the boundary of

grains in polycrystal. Such damage mechanism is referred to as creep damage,

because on practice it is often observed during the creep [31, 46].

Thereby, the loading conditions have the principal influence on the de-

velopment of damage in the material. Within the current work we are fo-

cused onto the consideration of loading conditions, which are normally take

place in creep tests, uniaxial tension tests, low-cycle fatigue tests and thermo-

mechanical fatigue tests. The unified constitutive model is formulated in or-

der to describe the damaging processes taking place in the material at the var-

ious thermal and mechanical loads.

Within current research, the unified continuum damage variable 0≤ω< 1

is introduced. The various loading conditions taking place during the op-

eration of mechanical parts induce the different micro-defects of the mate-

rial. On the one hand, the variable ω should take into account each of above-

mentioned damage mechanisms. On the other hand, the introduced damage

variable represents general damaged state of the material. Thereby, within
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the framework of current work the different damage formation mechanisms

are considered.

2.7.1 Creep damage

When crystalline materials are subjected to static stresses and temperature

higher than one-third of their melting temperature, the microvoids and mi-

crocavities may arise and grow in the grain boundaries [18, 46, 50]. This mi-

cromechanical material degradation is known as creep damage [46]. Creep

damage originate the tertiary creep stage, where the significant increase of

inelastic strain rates is observed for constant loading conditions. The shape

of the tertiary part of the creep curve, its duration and rupture creep strains

depends on the material composition, mechanical load and operation tem-

perature [50].

Nucleation and growth of microvoids and microcavities dominates in the

grain boundaries, which are orthogonal to the loading direction. The change

of the loading direction leads to the activation of damaging processes in cor-

responding grain boundaries. Thereby, creep damage in the general loading

case is anisotropic and can be characterized by tensor [47]. Above-mentioned

loading cases are referred to as unproportional loading. On the other hand,

in case of the unidirectional loading, known also as proportional loading, the

scalar damage variable is sufficient in order to describe the internal degrada-

tion of the material [31, 46, 47] under the assumption of the coaxiality of the

stress and plastic strain tensors [50].

2.7.1.1 Kachanov-Rabotnov model

The phenomenological creep damage equations for scalar valued damage

were firstly proposed by Kachanov [25] and Rabotnov [75]. The models are

based on the geometrical interpretation of damage in form of discontinuities

in the material. An arising of these discontinuities leads to the reduction of

the specimen cross-section area.

According to Kachanov-Rabotnov model [25, 50, 75], the cross-section area

of virgin material A0 is reduced by the total area of micro-voids and micro-

cracks AD. A decreasing of the cross-section area leads to a growth of internal

stresses in the specimen, and, consequently, to growth of creep strain rates,

which is usually observed on the tertiary stage of creep curves. The proposed

introduction of the damaging process in material leads to the following defi-
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nitions for the creep damage parameter ω and effective stresses σ̃:

ω=
AD

A0
, σ̃=

σ

1−ω
, (2.44)

where ω takes values from 0 for undamaged material state to 1 for completely

damaged.

The constitutive relation for the creep strain rates must take into account

the current damage value [25]. Substitution of the effective stress (2.44) to

constitutive equation (2.37) involves the influence of current damage state on

the equivalent inelastic strain rates [25, 50]:

ε̇
p

vM
= R(T ) f

(
σvM

1−ω

)
(2.45)

2.7.1.2 Kinetic equation

The basic principles of the derivation of a kinetic equation for the description

of the creep damage evolution are given, among others, by Lemaitre [30]. The

majority of the kinetic equations for evolution of the creep damage are based

on the following assumptions:

• Creep damage is irreversible and related to irreversible strain.

ω̇c =C(ω,T,σσσ,εεεp,ε̇εεp)ε̇
p

vM
(2.46)

The formulation of a kinetic equation in terms of equivalent von Mises

inelastic strain rates ε̇
p

vM
satisfies both assumptions if

C(ω,T,σσσ,εεεp,ε̇εεp) ≥ 0∀ω,T,σσσ,εεεp,ε̇εεp

The function C reflects the state of material.

• Creep damage rates are related to the accumulated damage in material.

The contribution of the current damage state in the creep damage rate

is performed by means of the accumulated damage response function

r (ω):

ω̇c = r (ω)C(T,σσσ,εεεp,ε̇εεp)ε̇
p

vM
, (2.47)

where r (ω) > 0, r ′
ω(ω) > 0∀ω ∈ (0,1]. The expression for function r (ω)

depends on the profile of the tertiary stage of the creep curve for the

certain material.
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• The creep damage accumulation rate differs for tensile and compressive

loading modes [30, 50, 81]. Under the mentioned constraints the kinetic

equation (2.47) yields:

ω̇c = Hc(σσσ)Y (εεεp)r (ω)C(T,σσσ,εεεp,ε̇εεp)ε̇
p

vM
, (2.48)

where the functions Hc(σσσ) and Y (εεεp) reflect the influence of the ten-

sion/compression in terms of the stress and inelastic strain, respectively.

The generalized expression (2.48) covers the majority of kinematic equa-

tions available in the literature [26, 30, 46, 50]. The particular cases of func-

tions r (ω) and C(T,σσσ,εεεp,ε̇εεp) are well described, among others, by Naumenko

and Altenbach [50].

There are many possible cases for the formulation of the analytic expres-

sion for material state function C(T,σσσ,εεεp,ε̇εεp) depending on the available ex-

perimental data and an acceptable level of complexity. However, the main

and most reasonable criterion for large number of models presented in the

literature is the minimum of material parameters.

2.7.1.3 Response functions

The profile of the accumulated damage response function r (ω) in the general

case depends on the qualitative and quantitative profile of the tertiary stage

of creep strain curves. The templates of r (ω) are available in [26, 30, 46, 50].

Within the current model is used the expression proposed, among others,

in Naumenko and Altenbach [50]:

r (ω) = lω1− 1
l , (2.49)

where l is the temperature-independent material parameter which must be

determined. The proposed expression of function (2.49) is useful, because the

above-mentioned definition (2.49) allows to obtain the analytic solution for

the inelastic strains in the particular cases of the structure of the equivalent

inelastic strain rate function ε̇
p

vM
(2.45) and applied loading conditions [50].

According to stated definition of the uniform damage parameter ω, the

unique expressions must be used for the accumulated damage response func-

tion r (ω), because the function represents the general state of material inde-

pendently on the damage nature.

Axiallity functions of stress and inelastic strains are defined in order to re-

strict the damage accumulation at the compressive loading mode. The expres-
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sions presented further are defined in terms of stresses and inelastic strain:

Hc(σσσ) =
σ+

σvM
, σ+ =

σI +|σI |

2
,

Y (εεεp) =
1

2

[
sgn(ε

p
+)+1

]
, ε

p
+ = ε

p

I
+ε

p

I I I

(2.50)

The functions Hc(σσσ) and Y (εεεp) represent the influence of stressed and

strained state of material on the creep damage rate. The creep damage rate

becomes negligible in cases of compressive stress (σ+ = 0) or when the com-

pressive type of the inelastic deformations dominates. The introduced fea-

tures can be observed in experimental data including both compressive and

tensile creep tests [81].

2.7.1.4 State function C in the literature

A large number of evolution equations are available in the literature for de-

scription of the creep damage growth. They are developed for various mate-

rials and differs for the each certain case. For instance, the damage evolution

equation proposed by Kachanov [26] is represented in current notation by fol-

lowing:

ω̇=
1

(1−ω)n
︸ ︷︷ ︸

r (ω)

Aσn
vM︸ ︷︷ ︸
C

, (2.51)

where n is the temperature-independent material parameter, A is the mate-

rial parameter, which in general case is the function of temperature. Function

C here is represented by Norton’s law [55]. The presented expression is de-

signed in such a way, that the solution for the time to rupture can be obtained

analytically.

The damage evolution equation mentioned in [50, 69] is similar to pro-

posed by Kachanov [26]. However, except to (2.51), this equation utilize the

normalized principal stress and inelastic strain rates:

ω̇= H(σσσ)D(T )

(
σI

σvM

)n

︸ ︷︷ ︸
C

ε̇
p

vM
, D(T ) = D0e−

Q
RaT

(2.52)

The above-presented expression includes the dependence not only on

stress, but also contains the Arrhenius type temperature function D(T ) and

the equivalent inelastic strain rates ε̇
p

vM
. The evolution equation is included in

the constitutive model, which is used for the modeling of the creep phenom-

ena in the different zones of weldment. The influence of accumulated damage
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in the current specific case is involved into equation implicitly through depen-

dence of the inelastic strain rates ε̇
p

vM
and stress response σσσ on the damage

ω. Function H(σσσ) here is Heaviside’s function of stress, which is 1 for σI > 0

and 0 otherwise. D0 here is the temperature independent material parameter.

The identification of material parameters is given in [68] and based on experi-

mental data of creep tests for stress range 28−110 MPa and temperature range

615−690◦C.

The evolution equation proposed in [51] is verified for 12%Cr steel:

ω̇= H(σσσ)r (ω)
1

ε
p
∗(σvM)︸ ︷︷ ︸

C

ε̇
p

vM
, ε

p
∗(σvM) = εbr +

aε

1+bεe
−
σvM

cε

,
(2.53)

where ε
p
∗(σvM) is the response function including information about the creep

strain values on the final interval of the tertiary creep stage. The experimental

data provided by Straub [81] for X20CrMoV12-1 steel at one value of tempera-

ture T = 600◦C. Taking into account the above-mentioned testing condition,

the function ε
p
∗(σvM) is only depending on stress (2.53). In general case, the

influence of temperature must be taken into account.

2.7.2 Low cycle fatigue damage

When material is subjected to the cyclic loads, the plastic deformation may

lead to the formation of the microcavities. Nonmonotonic internal state of

material leads to the growth of microcavities to the cracks, which finally leads

to fracture of the material. In particular, in metals cyclic loads leads to the

transgranular slips, which induce decohesion on the surface and further mi-

crocrack initiation [46]. The presented mechanism of the damage formation is

referred to as fatigue damage. When the material is subjected to high stresses

and large amounts of inelastic strains take place, the transgranular slips are

accumulated in the large number of grains. It leads to the fracture of the ma-

terial at respectively low numbers of loading cycles NA < 104. The fatigue dam-

age, in this case, is classified as low cycle fatigue damage.

The necessity to include into the constitutive model the fatigue damage

model is caused as well by the technical, industrial and marketing reasons.

The design processes of the mechanical parts includes the planned obsoles-

cence, which, in the case of turbine housings, is in the range 103 < NA < 5 ·103

cycles. The marketing reason is the attempt to replace expensive material by

the cheap one, in order to reduce the price with the saving of primary techni-

cal characteristics of the product at the same time. The industrial reason is the

tendency to reduce technological costs of products. Each of above-mentioned
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cases requires the reliable estimation of the lifetime of the product, which in

turn needs the proper constitutive model for the low-cycle fatigue damage.

The majority of fatigue damage models presented in the literature is based

on several assumptions, which in turn are formulated taking into account the

behavior of the material observed in the experiments.

• The damage is irreversible [62]. Microcavities and transgranular slips

can not vanish once they are arisen.

• Cyclic loads with higher stress magnitudes lead to faster fracture, that

the same loading profiles with lower stress magnitudes. Thereby, the ac-

cumulation of damage in this case is the growing function of stress [26,

30, 62, 80].

• The starting point of fatigue damage accumulation on the microscale is

the arising and growth of the cavities. According to the effective stress

concept [12], the damaging depends on the compression/tension load-

ing mode [62, 80].

• While the inelastic strain tensor is the measure of irreversible deforma-

tions in the material, transgranular slips arising during the cyclic load-

ing can be characterized by this measure. Thereby, the damage is in-

creasing function of the accumulated inelastic strains [62, 67].

• When the cyclic load with low amplitude is applied, the low stress re-

sponse and negligible inelastic strain is observed in the experiment.

However, even in the mentioned case, the fatigue damage is observed.

Therefore, the fatigue damage model must include the complete strain

tensor in order to describe the accumulation of damage for low loading

amplitudes.

• Fast loads lead to the rupture faster, then the slow one. Therefore, the

damage accumulation rate must be proportional to inelastic strain rates

[2, 3, 30, 62, 67].

• The temperature affects the damage accumulation rate. The implicit

influence of the temperature is included into the constitutive model

through the dependence of the inelastic strain rates on the temperature.

However, the constitutive models with the explicit dependence of the

temperature are available in the literature [2, 3, 30].



29

2.7.2.1 Kinetic equation

The fatigue damage evolution equation within the framework of continuum

damage approach can only be formulated in terms of variable, which describe

the state of material in a current moment of time. Taking into account above-

mentioned principles of the formulation, which are widespread in the litera-

ture in the particular or complete manner [2, 3, 26, 30, 62, 67, 80], the following

fatigue damage evolution equation is introduced:

ω̇f = Hf(σσσ)r (ω)F
(
T,σσσ,εεε,εεεp

)
ε̇

p

vM
, (2.54)

where r (ω) is the response function which characterizes the influence of accu-

mulated damage on the current damage rate (see Sect. 2.7.1.3), Hf(σσσ) reflects

the influence of the compression/tension loading regimes (see Sect. 2.7.1.3)

and F is the scalar-valued isotropic function of the material state. The equa-

tion is formulated with respect to equivalent von Mises plastic strain rates ε̇
p

vM

in order to represent the influence of inelastic deformation on the damaging

of the material.

The profile of function F depends on the particular behavior of specific

material. To determine an expression for this function is the main task of the

fatigue damage identification problem, which is shown in details in Chapt. 3.

2.7.2.2 State function F in the literature

A large number of evolution equations for continuous fatigue damage are de-

veloped for various materials. For instance, Lemaitre and Desmorat [32] pro-

posed the fatigue damage evolution equation in the following form:

ω̇=
Y

S︸︷︷︸
r (ω)F

ε̇
p

vM
H(ε

p

vM
−ε

p
0 ), (2.55)

where Y is the thermodynamically conditioned driving force of the damage

accumulation rate, S is the temperature depended material parameter and

H(x) is Heaviside’s function. ε
p
0 denotes the threshold value of strains, which

are necessary for the development of the fatigue damage. The function Y is

stated as analogue of the strain energy density and formulated as follows:

Y =
σ2

vMRν

2E (1−ω)2
, Rν =

2

3
(1+ν)+3(1−2ν)

(
σH

σvM

)2

,

where Rν is the triaxiality factor, σH = 1
3

trσσσ is the hydrostatic stress.
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The fatigue damage evolution law developed by Kachanov [26] is based on

the assumption that increment of fatigue damage dω is proportional to the

stress increment dσ:

dω=
1

(1−ω)k
︸ ︷︷ ︸

r (ω)

[
〈σvM −σ0〉

(σu −σ0)

]k
〈

dσeq

〉

σu −σ0︸ ︷︷ ︸
F

(2.56)

Here σu is the ultimate strength, k is the material constant. In contrast to [32]

the damage model of Kachanov [26] utilizes the threshold of stress σ0. σeq is

defined by following relation:

σeq =σT

[
2(1+ν)+3(1−2ν)

(
σH

σT

)2]1/2

,

where σT = 1
2

(σI −σI I I ) is Tresca stress.

The model proposed by Paas [62] is developed accounting the microcracks

formation process, which is prior to macrocrack initiation:

ω̇= H(ε
p

vM
−ε

p
0 )αωβ

︸︷︷︸
r (ω)

ε
p

vM

γ

︸ ︷︷ ︸
F

ε̇
p

vM
(2.57)

Here α, β and γ are material parameters, ε
p
0 is the inelastic strain threshold.

Moreover, parameter β may depend on the loading.

The model developed by Peerlings et al. [67] is used for the modeling of

high cyclic fatigue. This model is similar to one proposed by [62], except for

the part reflecting the influence of accumulated fatigue damage:

ω̇= A exp(Bω)︸ ︷︷ ︸
r (ω)

ε
p

vM

C

︸ ︷︷ ︸
F

ε̇
p

vM
(2.58)

Here A, B and C are material parameters.

The fatigue damage evolution equation introduced by Sommitsch et al.

[80] allows to describe cases of disproportionately high damaging compared

to the low stresses:

ω̇=

(
σvM

S0

)m
(
ε̇

p

vM

ṗ0

)n

ṗ0

︸ ︷︷ ︸
Fε̇

p
vM

, (2.59)

where ṗ0 is the normalization constant. The parameters S0 and m regularize

the influence of the stress on the lifetime. The parameter n describes the time-

dependence of the lifetime: rate-independent behavior n > 0 and n = 0 means

that lifetime behavior is fully time-dependent.
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The overview of available fatigue damage evolution equations leads to the

conclusion, that, in general, the function of material state F is depending on

temperature, stresses, total and inelastic strains. The choice of expression for

F is more a personal decision of the scientist or mechanical engineer, which

may only depend on the available experimental data and the knowledge of

the designer. However, the minimum of the material parameters is the recom-

mended property not only for the evolution equation of the fatigue damage,

but for the complete constitutive model of the material.

2.7.3 Creep-fatigue damage interaction

The operation conditions taking place in applications normally include cyclic

loads, where the fatigue damage growth is assumed, and steady regimes

with a constant level of the load, where creep damage processes are usually

observed. Taking into account the above-mentioned statement, the creep-

fatigue damage interaction mechanisms must be considered.

2.7.3.1 Accumulation of damages of different nature

The creep and fatigue damages defined in Sect. 2.7.1 and Sect. 2.7.2 are con-

sidered from the position that only one creep or fatigue damage process takes

place at the unique moment of time. Thereby, the evolution equations for the

creep and fatigue damage are written in the independent manner:

• The creep damage characterizing the accumulation of intercrystalline

defects:

ω̇c = Hc(σσσ)Y (εεεp)r (ωc)C(T,σσσ,εεεp,ε̇εεp)ε̇
p

vM

• The fatigue damage characterizing transcrystallyne processes initiating

on the surface:

ω̇f = Hf(σσσ)r (ωf)F
(
T,σσσ,εεε,εεεp

)
ε̇

p

vM
(2.60)

Obviously, under the real operation conditions material is affected by both

kinds of the defects in the same time. Therefore, the contribution of the

macroscopic effects must be taken into account in each evolution equation:

ω̇c = Hc(σσσ)Y (εεεp)r (ωc +ωf)C(T,σσσ,εεεp,ε̇εεp)ε̇
p

vM
,

ω̇f = Hf(σσσ)r (ωc +ωf)F
(
T,σσσ,εεε,εεεp

)
ε̇

p

vM

The experimental determination of the creep and fatigue damage contri-

bution in the generalized damaged state of the material on practice is not a re-

alistic task. Therefore, and in order to simplify the problem, the single damage
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variable ω can be introduced. The evolution of ω must be dependent on both

creep and fatigue damage processes, according to the loading conditions. The

influence of the creep and fatigue damage on the general damaged state of the

material is referred to as creep-fatigue damage interaction.

The simplest case of the accounting of creep-fatigue damage interactions

can be described by the following expression:

ω̇= ω̇c + ω̇f, (2.61)

however, there are several more complicated and more convenient variants

for the description of the creep-fatigue damage interaction in the litera-

ture [31, 46].

2.7.3.2 Law of linear accumulation and interaction

This rule was originally introduced by Palmgren [63] and further developed

by Miner [45]. Formulated in terms of the current notation, the linear accu-

mulation rule is defined by the following expression:

dω=
dt

tc(T,σσσ)
+

dt

tf(T,σσσ,εεε,εεεp,ε̇εεp)
, (2.62)

where tc(T,σσσ) is the time to rupture in creep under constant load σσσ and tem-

perature T , tf(T,σσσ,εεε,εεεp,ε̇εεp) is the time to rupture under pure periodic loading

with generalized loading conditions:

σσσ=σσσ(t ),

εεε=εεε(t ),

εεεp =εεεp(t ),

T = T (t )

The represented summation rule is the simplest approach in order to take

into account the creep-fatigue damage interaction. Satisfactory in some cases,

this method is ineffective for many materials [31].

2.7.3.3 Law of nonlinear accumulation and interaction

The nonlinear summation rule is based on the assumption on the additiv-

ity of creep and fatigue damage. In particular, during the formulation of the

generalized law for the creep and fatigue damages and their interaction the

following physical effects must be taken into account:

• The presence of creep damage accelerates the nucleation and growth of

transgranular microcracks
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• Fatigue damage increases the creep damage accumulation rate, because

transgranular effects induces internal stress concentrators affecting the

creep damage rates.

Within the current notation, the simplest case of the nonlinear accumula-

tion rule is given by (2.61). The generalized expression, which may represent

the main principles of nonlinear damage summation law, is the following:

ω̇= F (ω̇c,ω̇f), (2.63)

where ω̇f is corresponding to the accumulation of fatigue damage, ω̇c is the

damage accumulation, which is induced by creep processes and takes place

during the creep test. Obviously, the presented expression is represented by

certain mixture rule.

Presented approach (2.63) is used in current research for accounting of the

creep-fatigue damage interaction. Application of continuous fatigue damage

model allows to stay in single time scale, however it affects the computational

costs needed for current approach. On the other hand, the continuous fatigue

damage model allows to estimate the lifetime of the material for cases of com-

plicated loading profiles, which are not available for the testing equipment.

The particular expression for the above-mentioned mixture rule F can be

derived only taking into account properties of the specific material. However,

the formulation of the expression is the task of engineer and, therefore, de-

pends on the knowledges of the developer. In additional, the usability of the

constitutive model is also depends on its complexity, therefore simple models

with less number of the material parameters are preferable.

2.8 Complete set of governing equations

The complete set of basic equations includes the relationship of strains,

stresses, backstress deviator and damage variables. Derived in terms of

implicitly defined functions, the system of governing equations includes the

following relations:

• Kinematic equation

εεε=
1

2

[
∇∇∇u +∇∇∇uT

]
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• Equilibrium equation

∇∇∇·σσσ+γγγ=000

• Constitutive equations

εεε=εεεel
+εεεp

+εεεth

σσσ=
[
κ(ω)+χ

][
λ〈tr[εεεel]〉+I +2µεεεel

+

]
+

[
λ〈tr[εεεel]〉−I +2µεεεel

−

]

ε̇εεp
=

3

2

ε̇
p

vM

σvM
s, ε̇

p

vM
= R(T ) f

(
σvM

1−ω

)
, s = s −βββ

σvM =

√
3

2
s · ·s

• Evolution equations

β̇ββ=
1

µh

dµh

dT
Ṫβββ+

2

3
µh

[
ε̇εεp

−
3

2
ε̇

p

vM

βββ

β∗(T,σσσ)

]

ω̇= F (ω̇c,ω̇f)

ω̇c = Hc(σσσ)Y (εεεp)r (ω)C(T,σσσ,εεεp,ε̇εεp)ε̇
p

vM

ω̇f = Hf(σσσ)r (ω)F
(
T,σσσ,εεε,εεεp

)
ε̇

p

vM

Functions κ(ω), R(T ), f
(
σvM

)
, µh, β∗, F , r (ω), C(T,σσσ,εεεp,ε̇εεp), F (T,σσσ,εεε,εεεp)

are given in implicit form within the current chapter. Identification of the

structure and parameters for them are given in Chapt. 3.

2.9 Summary

The aim of current chapter was to discuss the constitutive model and ba-

sic modeling principles which are used for the formulation of mathematical

expressions for phenomena, which in particular are observed in cast irons.

Chapter is focused on the constitutive model for inelastic material behavior,

creep and fatigue damaging processes and their interaction. The elasticity is

described by means of the linear elastic material model, taking into account

only the dependence of the stiffness on the temperature and damage. The

model is formulated under assumption of small strains, that is sufficient for

strains upto 5−6%.
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The following principles were used for the formulation of the constitutive

model:

• the constitutive model must completely encompass major phe-

nomenon taking place in the material

• the structure of the constitutive model is designed in order to unify the

model for several materials of that class

• the aspiration to minimize the number of the model parameters is one

of the principles which is used within the formulation of the model.

In particular, the described constitutive model is focused on material be-

havior, which is observed in cast irons GJV and D5-S with the vermicular and

spherical graphite inclusions [29, 48, 49] . The model is formulated in gen-

eral form. The customization of the implicit functions mentioned in Sect. 2.8

allows the use current constitutive model in both particular cases.





CHAPTER

3
Identification basics

The current chapter is focused on the discussion of existing methods for the

solution of identification problem. The identification scheme is mainly fo-

cused on the application for the materials, which exhibit elastic and inelastic

properties including creep and fatigue damage. The chapter presents avail-

able basic approaches for a solution of the identification problems, describ-

ing the step-by-step identification strategy structured by applied methods and

flexibility to the experimental data.

3.1 Identification problem

The majority of constitutive models are usually formulated by means of a phe-

nomenological approach, which gives good results within the qualitative anal-

ysis of the material’s behavior. Nevertheless, the formulated framework of the

constitutive model requires a detailed definition of functions, which describes

the particular processes in the material, and the determination of their param-

eters.

A mathematical formulation of the constitutive model is termed the struc-

ture identification [36]. In general, the structure identification problem is rep-

resented by the following expression:

c = arg[ξ(c ,d ) = 0] ,

where c is the target constitutive model, d is the vector of experimental data

and ξ is the Gauß function, representing deviation between the experimental

data d and estimation by constitutive model c . Within the framework of cur-

rent work, the structure of the constitutive model c is formulated by means of
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a phenomenological modeling approach (see Chapt. 2), taking into account

the behavior of the material observed in given experimental data.

A phenomenological formulation of the framework of a constitutive model

reduces the structure identification problem to a parameters identification

problem. Taking into account the reduction of the size of the identification

problem, the parameters identification problem is represented by the follow-

ing expression:

p = arg
[
ξ(c(p),d )= 0

]
,

where p are model parameters. Within the framework of the shown prob-

lem structure, the determination of material parameters is the inverse prob-

lem [36]. However, the discrete nature of experimental data d and concomi-

tant measurement error leads to the scatter of solutions pi .

When the error function ξ becomes undesirably high, the majority of con-

stitutive models in practice are extending, which normally leads to an increase

of the number of material parameters. However, the error of experimental

data and their discrete structure in particular cases leads to the situation, that

a further extension of the model does not make sense. Moreover, an excessive

increasing of the model complexity may lead to overparametrization prob-

lems. Thereby, the minimalistic approach in the formulation of the constitu-

tive model c is preferable, because it reduces the size of the parameters iden-

tification problem and avoids possible overparameterization problems.

By the application identification approaches, specific experimental data

and time-consumption, the identification problem can be contingently sepa-

rated on two different parts: primary and secondary identification stage. The

identification of the structure of the constitutive model and preliminary esti-

mation of the material parameters of this model is the main task of the pri-

mary identification. The step is restricted by the identification approaches

and includes only the experimental data which explicitly represents the phe-

nomenological processes taking place in the material. In except to the previ-

ous one, the secondary identification step is mainly related to an additional

calibration of the constitutive model according to entire set of the available

experimental data.

3.1.1 Trial approach

The trial approach is based on the solution of the direct problem (SDP) repre-

sented in Fig. 3.1. The current approach allows the determination the individ-

ual vector of material parameters simultaneously. The method includes the

iteration process with the following steps:
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Figure 3.1: Direct problem scheme

• estimate guess values of p ,

• solve direct problem for given p ,

• if error function ξ(c(p),d ) does not satisfy the accuracy requirements,

then change p and iterate again.

The trial approach is useful for solving the inverse problem for a wide

range of constitutive models, and simply realizable by programming tools.

However, applications of the trial approach for the identification of constitu-

tive models with a large number of parameters are time-consuming and can

lead to inaccurate solutions. Moreover, an overparametrization of the con-

stitutive model in this particular case leads to the situation, when the several

variants of pi satisfies the requirements of the problem.

3.1.2 Hand fitting approach

The hand fitting approach is useful when material parameters are related to

processes explicitly observed in the experimental curves. In the particular

cases, the application of the hand fitting [36] method is also available for pro-

cessed experimental curves. For instance, hand fitting is easily used for the

determination of Young’s modulus E , yields strength Rp02, tensile strength σu,

fracture strength σf and others explicitly observed representative measures. A

more complicated example of the hand fitting approach is given by Lemaitre

and Chaboche [31] in the determination of Norton’s law parameters, which

can be identified in a trivial way by the plot of ε̇p versus σ in double logarith-

mic scale. The mentioned above approach do not requires complicated com-

putations and can give instant results in the structure and parameters identi-

fication problem.

When the part of the constitutive model related to explicitly observed con-

comitant processes is identified, the experimental data in the particular cases
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can be decomposed into the constituents representing more implicit compo-

nents of the material behavior like backstress or damage. Therefore, the ap-

plication of the hand-fitting identification approach, in some cases, allows us

to determine a complete set of material parameters. However, the accuracy

of such an identification decreases within each processing of the experimen-

tal data. Mainly it is related to the magnification of the existing error of the

experimental data by the error of the estimation of the constitutive model.

Hand fitting approach is useful for a rapid estimation of material param-

eters. It requires experimental data representing mechanical phenomena in

explicit form. However, in some cases, the implicit phenomena (e.g. hard-

ening, softening, etc.) can be identified by means of hand fitting approach.

Within the current work, the above-mentioned approach is used for the de-

termination of a guess vector of material parameters.

3.1.3 Optimization

Optimization is the problem of the search for the best solution among all fea-

sible solutions. Within the framework of the identification problem, the op-

timization is more corresponding to the deterministic minimization problem

intended for the solution of the inverse parameters problem. The essential

idea of optimization in the identification problem is mathematically repre-

sented by the following expression:

p = arg min
p∈P

[
ξ(c(p),d )

]
, (3.1)

where P is the space of material parameters p .

The optimization method may be grouped by the restrictions according

to the target function. Thus, the zero-order method requires only existence

of the target function ξ(c(p),d ), while first-order methods use in addition

the gradient ∇∇∇pξ(c(p),d ), and, therefore, requires differentiability of the tar-

get function ξ(c(p),d ). Examples of zero-order deterministic optimization

methods available for target functions of a vector argument are Simplex al-

gorithm [53, 86] and Powell’s conjugate directional method [70, 71, 74]. Above

mentioned approaches are useful by means of their unpretentiousness to the

target function. In except to zero-order methods, the gradient-based opti-

mization methods together with existence of the target function and differ-

entiability requires also continuity of the target function and their derivative

in the space of material parameters P. In principal, high requirements to the

target function is compensated by the efficiency of the approach. However,

when the mentioned condition may be not satisfied, the application of zero-
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order methods is preferable. Examples of gradient-based methods are Gauss-

Newton method [87], Broyden-Fletcher-Goldfarb-Shanno (BFGS) method of

unconstrained optimization [14, 87], modified L-BFGS-B algorithm for opti-

mization with constraints [11, 89], among others.

3.1.4 Neural networks

Neural networks were first introduced in a research paper by McCulloch and

Pitts [42]. The paper was focused on the modeling of biological processes in

the brain, therefore the approach was named neural networks. General in-

formation on neural networks is given by Haykin [22]. The particular appli-

cation of neural networks in the solution of the inverse problem is described

by Yoshimura et al. [88] and Huber [23].

The concept of neural networks is based on the simulation of the relation-

ship between the neuron cell. Neurons are arranged in layers. Each cell has

synaptic weights w defining the behavior of the cell. The determination of

synaptic weights is referred to as training process.

Neural networks are useful in a wide range of direct and inverse problems,

including the parameters identification problem. The trained neural network

gives the instant result of the parameters identification problem. However,

there are disadvantages of the identification based on the neural networks:

neural networks require a large volume of input data for the training process,

the training data must be representative and may not be contradictory. More-

over, the excessive training of the network can lead to the overtraining prob-

lems. In order to avoid the overtraining problems, the training data must be

diversified.

The training of neural networks requires the formulated structure of the

constitutive model c(p). Mainly training may be mathematically represented

by the following expression:

ξ(w )=
N∑

i=1

||pi − yout(c(pi ), w )||+γ||w ||, (3.2)

where ξ(w ) is the target error function using for the training of the neural net-

work, the response of the constitutive model c(pi ) is used as input of the net-

work, yout is the signal on the output of the network, γ is the regularization pa-

rameter, pi is the arbitrary chosen set of the material parameters, i = 1,2, ..., N ,

||.|| is the norm operator, which can differs for different constitutive models.

Thereby, the feature of the training process restrict the application of the

neural networks on the solution of the parameters identification problem.
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3.1.5 Remarks

The above-mentioned identification approaches can be used for the solu-

tion of the structure and parameters identification problem. Each of the ap-

proaches have the different requirements to the amount and quality of exper-

imental data, restrictions to the solving problems, and limitations induced by

the requirements to Gauß function ξ. Obviously, the application of a compo-

sition of the above-mentioned identification methods increases the efficiency

of the identification, makes the solution more flexible and invulnerable to the

artefacts and error of experimental data.

Within the current work, the combined identification approach is used, in-

cluding the primary and the secondary identification steps. The primary iden-

tification step is mainly focused on the determination of the structure of the

material-dependent functions, used in the constitutive model, and estimation

of the material parameters for the model. For above-mentioned step only trial

and hand-fitting approaches are used. The secondary identification step is

optimization-based and may take into account complete set of the available

experimental data.

3.2 Experimental data

The current section is focused on the representation of the available exper-

imental data. The data are provided according to the research project sub-

jected to the modeling of the inelastic material behavior of the GJV cast iron

including the creep-fatigue damage. The experimental values are secured by

the confidence agreement, and, therefore, within the current work are pre-

sented in the normalized form with respect to normalizing factors σn, εn, ε
p
n,

ε̇
p
n, N∗ and melting temperature of the material Tm.

3.2.1 Young’s modulus

Majority of steels and cast irons exhibit a significant influence of tempera-

ture on the elastic properties. In general, an increase of the operation tem-

perature leads to the reducing of the material stiffness. GJV cast iron is not

an exception: the stiffness for 0.573Tm is almost two times lower than for

0.253Tm. Therefore, in order to determine the temperature dependence of

Young’s modulus a series of experiments at different temperatures is required.

The available experimental data of Young’s modulus for GJV cast iron are

shown in Fig. 3.2.
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Figure 3.2: Young’s modulus at different temperatures

3.2.2 Creep tests

The experimental data of creep tests are given for temperatures of 0.359Tm,

0.466Tm, 0.519Tm and 0.573Tm and different levels of applied loads. The re-

sultant experimental data are provided in the form of inelastic strains with re-

spect to time. The current step of the identification require the operation with

measured by the experimental data inelastic strain rates. Thereby, the applica-

tion of the experimental data from creep tests in the identification procedures

requires the processing of proven experimental data, the evaluation of inelas-

tic strain rates, and the removing of undesired noises, which arise after the dif-

ferentiation of the experimental inelastic strains. In order to reduce noises in

the experimental data, the approximation of the smoothed inelastic strain is

performed according to available experimental data, which for the particular

loads T =0.519Tm, σ=0.37σn shown in Fig. 3.3a. The smoothing algorithm is

based on the approximation of the experimental data by the polynomial func-

tions of different order and further averaging. Thereby artificial fluctuations

of the calculated inelastic strain rates can be avoided.

For instance, the average approximation of the creep curve presented in

Fig. 3.3b is based on the fittings with orders of polynomials from three to

ten. In principal, the application of the orders of polynomials upto half of the

length of vector of experimental data d is acceptable, because the averaging

technique reduces the fluctuations normally taking place in the polynomial

fittings of high order.
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Figure 3.3: Processing of experimental data: (a) smoothing of experimental

creep strains, (b) computing creep strain rates by the differentia-

tion of experimental data and obtained smoothed values
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Figure 3.4: Tensile tests at different temperatures

3.2.3 Tensile tests

Tensile tests of GJV material are given for temperatures 0.159Tm, 0.199Tm,

0.253Tm, 0.359Tm, 0.413Tm, 0.519Tm and 0.573Tm. These tests are strain con-

trolled. The loading rates within current tensile tests are the same, ε̇= 3.6 h−1.

The results of tensile tests are given in Fig. 3.4.

The presented experimental data includes the elastic and inelastic mate-

rial behavior at the different temperatures and can be utilized in the identifi-

cation of the corresponding constitutive model.

3.2.4 Cyclic loading at constant temperature

Cyclic loading at the specific temperatures is normally applied in low-cycle fa-

tigue (LCF) tests. There are two principal kinds of information, which one can

obtain from such experiments: a stress response for a given profile of the load

and the number of cycles to rupture NA. The first one is used for the identi-

fication of a part of the constitutive model required to describe the inelastic

material behavior. On the other hand, the number of cycles to rupture can be

used for the identification of the creep-fatigue damage model.

Within the frame of current work the experimental data from low-cycle

fatigue tests performed for the specific temperatures 0.253Tm, 0.359Tm,
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Figure 3.5: LCF tests: (a) saw-type strain loading profile, (b) stress-strain hys-

teresis loops

0.413Tm, 0.519Tm, 0.573Tm and saw-type loading profiles of strains with dif-

ferent magnitudes were used. The magnitudes of strain are given in the dif-

ferent variations from the smallest εA =7.96 · 10−2εn to highest εA =1.581εn.

The identification of the constitutive model for the inelastic material behav-

ior with the frame of single temperature can be performed by means of the

experimental data from the LCF test with highest strain amplitude. Mainly it

is related to fact, that inelastic material behavior is represented in such curves

in the most complete way. Moreover, the representative cycles of the stress for

initial (N = 1) and steady (N = NA/2) regimes can be used within the identifi-

cation of the constitutive model.

The available experimental data are given for the same strain rate ε̇ =

3.6 h−1 and have a symmetric saw-type loading profile schematically shown

in Fig. 3.5a. The stress response for represented the strain loading profiles are

given for the initial N = 1 and steady N = NA/2 loading cycles. The hysteresis

of the stress response is represented for the specific case of loading conditions

(T =0.413Tm, εA =0.79εn) in Fig. 3.5b.

The experimentally measured lifetime of the material at the different load-

ing conditions is given in terms of the number of cycles to rupture in Fig. 3.6.

The experimental results are given for the above-mentioned set of tempera-

tures and different amplitudes of applied strain.

It must be mentioned, that damage in LCF test may be induced only by

cyclic inelastic deformations and normally leads to the failure at NA ∈ [103, 5 ·

103] accounting to different loading conditions. Thereby, only the experimen-

tal data corresponding to the above-mentioned conditions can be used for the

identification with the frame of current research. However, experimental data
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Figure 3.6: Number of cycles to rupture of GJV cast iron at the different load-

ing conditions

lying out of mentioned range are also utilized in the secondary identification

with significantly reduced weighting factors.

3.2.5 Cyclic thermo-mechanical loading

Experimental data from the thermo-mechanical fatigue tests (TMF) are also

available for the GJV cast iron. The results of above-mentioned tests can be

used for the identification of the constitutive model for the inelastic material

behavior and creep-fatigue damage model. Similar to LCF tests, the experi-

mental results for initial and steady loading cycles can be used in the iden-

tification of inelastic material properties. Available experimental numbers of

cycles to rupture can be used for the identification of the constitutive model

for GJV cast iron. The complicated loading profile of strain and temperature

can be used to perform the verification of the identified constitutive model for

inelastic material behavior and creep-fatigue damage.

TMF tests are performed by the application of cyclic strain and tempera-

ture. Within the framework of provided experimental data, the strain profiles

differ by the shape of the loading profile and by the magnitude (see Fig. 3.7b).

The temperature profiles are similar (see Fig. 3.7a). The shown temperature
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Figure 3.7: Loading profiles of TMF tests (– Probe 1, – Probe 2, – Probe 3): (a)

temperate, (b) mechanical strain (3.3)

and strain profiles are particular cases of loading profiles utilized within the

different TMF tests. It must be noted that variable εm represented in Fig. 3.7b

is the mechanical part of strain (3.3). The stress responses on the mentioned

above loads are shown in Fig. 3.8.

εm
= ε−εth (3.3)

The lifetime of the material sample measured at the TMF test can be also

used for the identification and verification of the constitutive model for the

creep-fatigue damage. It must be noted, that except the LCF tests, the ac-

cumulation of damage in current case can not be described in terms of the

amplitudes of strains and stresses, because the profile of the applied loads in

this case plays significant role and, unfortunately, can not be completely rep-

resented by means of amplitudes. The absence of reliable discrete models is

one of the reasons for the development of the continuous damage model.

In addition, the degradation of the stiffness of the material can be esti-

mated by means of the TMF tests. The bounding values of the stress response

is shown in Fig. 3.9 for the particular TMF test. The reduction of stresses is typ-

ically observed at the last cycles of the test and corresponds to the last stage

of the damaging, when the macrocrack growth in the material. The significant

reduction stress at the last cycles of the TMF test is assumed to be the result of

above-mentioned damaging process.

Also it must be noted, that the reduction of stresses is typically observed

at cycles N > 0.9NA and can be easily neglected, because the scatter of the

experimental estimation of the lifetime can reach higher values. Moreover,

the error of estimation provided by the constitutive model for creep-fatigue
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Figure 3.8: Experimental data from TMF tests: (a) stress response at N = 1,

(b) stress response at N = NA/2
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Figure 3.9: The stress bounds during the TMF tests

damage can have in the best case factor two. Thereby, the reduction of the

stiffness of the material within the frame of current research is considered only

for the sake of complicity.

3.3 Identification strategy

The current section presents the general strategy of the identification. Obvi-

ously, the proper identification must include the determination of the struc-

ture of the constitutive model based on the phenomenological approach and

the determination of the material parameters including the consideration of

the generalized model response in the different kinds of the experiments.

Thus, in this work, the constitutive model is developed in order to represent

the behavior of the material at creep regime, strain controlled tensile loads,

isothermal cyclic loads with saw-type strain loading profile, cyclic loads with

complicated strain and temperature loading profiles, etc. Therefore, the for-

mulation of the constitutive model and determination of material parame-

ters must take into account the entire set of the experimental data mentioned

above.
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3.3.1 Primary identification step

The starting point of the solution of the identification problem is the determi-

nation of the structure of the constitutive model. Particularly, the structure

identification problem can be resolved by means of the phenomenological

modeling of the process observed in the general response of the material on

the applied loads. This part of the solution of the structure identification prob-

lem (see Chapt. 2) is general and valid for wide class of materials representing

the similar behavior. However, the material-dependent functions introduced

in the constitutive model must be identified with respect to each specific ma-

terial.

Mainly, the primary identification is performed using the trial and hand-

fitting identification approaches. Simple plotting of the experimental data

in the different scales may give the sufficient volume of information for the

formulation of the structure of the relations able to describe the considered

data. However, the mentioned above method requires the specific type of the

experimental data, where identifying processes are reflected in explicit form.

For instance, the temperature relation of Young’s modulus may be identified

by means of hand-fitting approach because it is not affected by other im-

plicit phenomenological processes. However, the damage is exception of this

statement, because it exhibits the significant influence on the elastic material

properties at the terminal stage of the cyclic tests preceding to the failure.

The identification of the constitutive model for the inelastic material be-

havior in general case can be performed independently to the elastic proper-

ties. However, the application of tensile tests in this part of identification re-

quires the information about the elastic material properties that makes oblig-

atory the preliminary identification of the elastic properties. Obviously, the

influence of the damage on the elastic material properties can be neglected

at this stage of the identification. It should be noted, that constitutive model

identified upto current stage is able to represent the inelastic material behav-

ior on the primary and secondary creep stages of the creep tests and com-

pletely describe the response of the material in stresses and inelastic strains

during the cyclic loading.

In order to predict the material behavior at the tertiary creep stage the

identification of the creep damage model is required. It can be performed

only in the case, when the constitutive model of the elastic and inelastic ma-

terial properties is completely identified. Thereby, the identification of elastic

and inelastic material properties must precede the identification of the creep

damage.

The structure of the fatigue damage model and preliminary estimation of
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the material parameters can be identified with use of the idealized stress hys-

teresis, which can be obtained under the assumption about the ideal plasticity

of the material. In principle, the identification of the fatigue damage model

can be performed independently from the elastic and inelastic material prop-

erties because it mainly based on the experimental data. Thus, the primary

identification of the fatigue damage model can be performed independently

from the rest part of the constitutive model.

According to the structure of the current constitutive model, the men-

tioned above three stages of the identification belongs to the primary identi-

fication step. The identification of advanced phenomenon taking place in the

material during the complex thermo-mechanical loads (i.e. hardening rate,

creep-fatigue damage interaction) can not be performed by means of only

hand-fitting and trial identification approaches and requires more sophisti-

cated scheme of the identification.

3.3.2 Secondary identification step

When the primary identification step is completed, the secondary identifica-

tion step based on the optimization technique can be performed. The advan-

tage of the optimization-based identification is the good flexibility and unpre-

tentiousness to the experimental data. In the secondary identification step

entire set of the available experimental data can be used, including tests with

complex loads. Within the frame of the current work, such tests are repre-

sented by LCF and TMF.

The application of the optimization approach requires the definition of

the error function. The different types of experimental data require detailed

consideration of the specific error functions for the each case. Moreover, the

output error must be normalized in order to unify the influence of the com-

paring data of different type, i.e. stress, inelastic strain, number of cycles to

rupture, etc.

In order to take into account the different influence of the experimental

data onto the general result, the weight factors are considered. Within the

current research the choice of the weights including the following aspects:

• The trustability of the experimental data must be taken into considera-

tion. The presence in experimental data the artificial noises, interrup-

tions, non-realistic abrupt jumps, etc., requires corresponding regula-

tion of the weight factor. The significant decreasing or even elimination

of the weight allows us to include into the identification the experimen-

tal data with even low trustability and quality.
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• The formulation of the constitutive model must account the main op-

eration conditions of material. The focusing of the constitutive model

onto the strict operation conditions can be regulated by means of the

decrease of the weights for the experimental data, which are not corre-

spond to the mentioned range of the loading conditions. For instance,

if a constitutive model is needed for the simulation of the material be-

havior subjected to constant load, than experimental data from creep

tests must include the major contribution into the error function. If the

constitutive model is developed for the description of the cyclic material

behavior, then weights corresponding to the cyclic tests must be signif-

icantly higher than rest.

The important point of the secondary step of the identification is the

choice of the optimization method. Within the particularity of the current

problem, the zero-order optimization approaches, i.e. Simplex method [53,

86] or Powell’s method [70, 71, 74], are preferable. Mainly they are related

to the quality of the experimental data: the application of high-performance

gradient-base optimization methods requires the existence and smoothness

of the error function for each next iteration of the algorithm, which is not sat-

isfied due to the quality of experimental data. However, the application of

Powell’s method becomes very time-consuming with a number of material

parameters more than 20. In this case the application of Simplex approach

is recommended.

3.4 Summary

Within the current chapter general strategy of the solution of the identification

problem is discussed, main approaches for solution of a structure and param-

eters identification problem are described, step-by-step approach for the so-

lution of the identification problem for the specific material is presented. The

identification is recommended to split onto the primary and secondary steps,

which differs by the definition of the solving problem, methodology and re-

quirements to the experimental data.

Given for the particular material, the presented strategy of the identifica-

tion is valid for constitutive models describing the inelastic material behavior

including creep-fatigue damage in the wide class of cast irons. The identifi-

cation of the inelastic material properties and material damage model is rec-

ommended to divide onto the primary step, which is focused on the structure

identification and determination of the preliminary vector of material param-



54

Processing of exp. data

Elastic properties

Inelastic properties

Creep damage

Fatigue damage

Creep-fatigue interaction

Assign weights

Identification of inelastic
material model including

creep damage

Identification of
creep-fatigue damage

P
ri

m
ar

y
 i

d
en

ti
fi

ca
ti

o
n

S
ec

o
n

d
ar

y
 i

d
en

ti
fi

ca
ti

o
n

Preliminary estimation
for constitutive model

Figure 3.10: General structure of the identification scheme

eters, and the secondary step based on the numerical optimization-based ap-

proach and focused on the solution of the parameters identification problem.

Identification of the complete constitutive model is preferable to perform

through the decomposing the constitutive model into the independent or

one-side dependent constituents classified by the phenomenological types

(i.e. elastic and inelastic properties, creep and creep-fatigue damage, etc.).

The consecutive identification of the conditionally independent parts of the

constitutive model allows us to decompose the problem into the indepen-

dent units with the particular "parent-child" dependence. However, the men-

tioned identification structure leads to certain difficulties related to the chain

of the modifications induced by the change of "parent" unit. The mentioned

difficulties are mainly belong to the primary identification step, whereas the

secondary identification is not vulnerable to the modification of constitutive

model. Resultant identification scheme described within the framework of

the current chapter is shown in Fig. 3.10.



CHAPTER

4
Primary identification

In this chapter, the primary stage of the identification problem is discussed.

Mainly, the primary step is based on the trial and hand fitting identifica-

tion approaches and needed for the determination of the material dependent

functions g (ω), R(T ), f
(
σvM

)
, µh, β∗, F , r (ω), C(T,σσσ,εεεp,ε̇εεp), F (T,σσσ,εεε,εεεp) and

the estimation of guessing values for the material parameters.

The behavior of the material, subjected to complex operation conditions,

includes different phenomena, such as elasticity, inelastic behavior, creep-

fatigue damage, etc. The majority of the above-mentioned processes are inde-

pendent or one-side dependent. Therefore, the identification problem for the

complete constitutive model, in particular, can be decomposed on the iden-

tification problems of less dimension for the independent (or one-side de-

pendent) material properties. The reduction of the problem size allows us to

utilize the different identification approaches for different nature of processes

observed in the material at the operation conditions. Moreover, the applica-

tion of identified material parameters allows us to process the available exper-

imental data in order to clarify phenomena taking place in material.

4.1 Reduction of constitutive model

The identification procedures require the simplification of the constitutive

model for the uniaxial case. The stress tensor at the uniaxial loading of the

material sample is following:

σσσ=σe1 ⊗e1,⇒σ=σσσ · ·e1 ⊗e1, (4.1)
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where the unit vector e1 designate the loading direction.

The substitution of (4.1) into Hooke’s law (2.24), neglecting influence of

the damage of the elastic properties and further simplifications lead to the

well known expression for the stress σ = Eεel. The uni-axiallity conditions

(4.1), the co-axiallity assumption for the backstress and stress tensors and the

uniaxial representation of the backstress ααα= βe1 ⊗e1 lead to reduction of the

relations for the stress (2.24), inelastic strain rate (2.35), backstress evolution

rate (2.42), creep and fatigue damage rates (2.48, 2.54) to the following set of

equations:

σ= Eεel, (4.2a)

ε̇p
= R(T ) f (σ)sgnσ, σ=σ−β, (4.2b)

β̇=
1

µh

dµh

dT
Ṫβ+µh

[
|ε̇p

|− ε̇p β

β∗

]
, (4.2c)

ω̇c = H(σ)H(εp)r (ω)C(T,σ,εp, ε̇p)|ε̇p
|, (4.2d)

ω̇f = H(σ)r (ω)F
(
T,σ,ε,εp

)
|ε̇p

|, (4.2e)

ω̇= F (ω̇f,ω̇c). (4.2f)

where H is Heaviside’s function, sgn is the sign function. The damage influ-

ence on the stiffness is excluded from the basic equations used in the majority

of identification procedures.

The derived system of the constitutive equations is valid for the descrip-

tion of the material behavior under the cyclic loads, e.g. low-cycle fatigue

tests, thermo-mechanical fatigue tests. The reduction of general constitutive

model to the uniaxial loading case allows us to reduce the number of solv-

ing constitutive equations from 20 to 5. Further reduction is possible for the

loading conditions observed in the creep tests. The reduction can be reached

by means of the resolving of the differential equation for the backstress (4.2c)

taking into account constant stress and temperature during the test. In ad-

dition, the fatigue damage function can be neglected according to definition

of the fatigue damage, and evolution equation for the creep damage resolved

and included into the expression for inelastic strain rates according to [25, 75].

Thereby, the system of the constitutive equations can be reduced to single dif-

ferential equation for the inelastic strain rates as follows:

ε̇p
= R(T ) f



σ−β∗

(
1−exp

(
−

µhε
p

β∗

))

1− (Cεp)l


 (4.3)
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The reduction of the dimensionality of basic equations is strongly recom-

mended for the application of trial identifications as well as for the identifica-

tion based on the optimization approaches. Decomposition of complete iden-

tification problem into independent sub-problems allows us to reduce com-

putational cost significantly and to utilize principally different approaches.

4.2 Elastic material properties

The temperature dependence of the material stiffness parameters affects the

inelastic material behavior and damage processes. However, it may be identi-

fied independently based on the concomitant processes. The profile of E (T )

can generally be represented by the nth order polynomial (4.4).

E (T )=
n∑

i=0

Ei T i (4.4)

The parameter of the polynomial can be determined by means of the lin-

ear least-square approach [36]. The important aspect of the identification is

the order of the polynomial: the application of polynomial high order terms

improves the correlation of the resulting function for each single data point,

however leads to undesirable fluctuations of the function which are magni-

fying during the evaluation of the derivative. Therefore, the reduction of the

number of parameters in above-mentioned problem is one of the purposes of

the identification.

The accepted identification result corresponding to the optimal ratio be-

tween the correlation with experimental data and the number of material pa-

rameters, is shown in Fig. 4.1 and represented by the following expression:

E (T )= Ea +EbT 3, (4.5)

where Ea and Eb are the material parameters.
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Figure 4.1: Identified temperature dependence of Young’s modulus

4.3 Inelastic material behavior

The identification of inelastic material behavior is divided into several sub-

problems. Performing a decompositions allows us to reduce computa-

tional costs and to apply different identification approaches within each sub-

problem. Moreover, the decomposition into sub-problems simplifies the un-

derstanding of the physical background of each component of process.

The following experimental data may be used within the primary identifi-

cation of the inelastic material properties: creep tests, tensile tests, LCF and

TMF tests. The accuracy of the experimental data must be considered and

in the particular case inaccurate experimental data can be excluded from the

problem. However, the influence of inaccurate experimental data can be ac-

counted by means of the weights system, which may be chosen according to

the quality of experimental data.

4.3.1 Inelastic strain rates

The standard operation conditions of a typical turbine housing require to

identify the inelastic strain rates from different tests. The design is subjected

to steady loads the major part of lifetime, which proceeds in the secondary

creep regime characterized by minimal inelastic strain rates. However, the

presence of transient loading regimes requires a detailed consideration of pri-

mary creep stage, which, in general, is characterized by higher values of in-

elastic strain rates.
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Figure 4.2: Collecting of input data for identification of inelastic steady strain

rates: (a) measurement of inelastic steady strain rate by creep

tests, (b) measurement of saturated stress by tensile tests

Within the framework of the current section, the problem of the identifica-

tion of inelastic strain rates is considered. The majority of approaches useful

for the identification of inelastic strain rates are based on the experimental

data of creep tests at constant loading. Within the current research, the en-

chanted identification approach is used. In contrast to widely used identifica-

tion methods accounting only the inelastic strain rate in the steady regimes of

creep, the inelastic behavior of the material at initial moment of load is consid-

ered. The identification of creep models is normally starting with computing

inelastic strains rates from creep curves. The experimental data from tensile

tests can be used as well.

The application of tensile tests in the identification requires a detailed

consideration of the stress-strain curves. Taking into account the constant

temperature during the test, the slope of the stress-inelastic strain curve is de-

fined by the following expression:

dσ

dεp
=

σ̇

ε̇p
= E

(
ε̇

ε̇p
−1

)
,⇒ ε̇p

=
ε̇

1+E−1 dσ
dεp

(4.6)

where ε̇ is the constant value applied in test. Values of dσ
dεp can be measured

by means of the experimental curve. When the elongation is started, but no

inelastic deformations are reached, the slope value dσ
dεp tends into infinity and

inelastic strain rate ε̇p is nearly to zero. On the other hand, when the large

elongation is reached and the response stress is saturated, the slope dσ
dεp be-

comes almost zero and inelastic strain rates ε̇p tends to the rate of the applied

strain ε̇.
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Figure 4.3: Collecting of input data for identification of inelastic initial strain

rates: (a) measurement of initial inelastic strain rates by experi-

mental data from creep tests, (b) measurement of initial inelastic

strain rates by experimental data from tensile tests

Steady inelastic strain rate ε̇
p
s corresponds to the saturated strain rate,

which can be easily determined from creep curves (see Fig. 4.2) or from ten-

sile curves (see Fig. 4.2b). In particular, inelastic steady strain rates in the case

of creep tests corresponds to the secondary stage of the creep curve, where

minimum creep strain rates are observed. Thereby, in the case of creep tests

the inelastic steady strain rates ε̇
p
s corresponds to minimum inelastic strain

rates ε̇
p

min
. In the case of tensile tests, inelastic steady strain rate corresponds

to the stage of the stress-strain curve, in which stress exhibits a saturation to

some asymptotic value. Inelastic steady strain rates for the mentioned stage

of a tensile test tend to the rates of applied loads: ε̇
p
s → ε̇.

The initial inelastic strain rate ε̇
p

i
corresponds to the inelastic strain rate

at the beginning of the creep process. Two approaches are available for the

estimation of initial strain rate ε̇
p

i
from creep curves: extrapolation and direct

measurement. Within the direct measurement the inelastic strains are mea-

sured at the point of a creep curve, in which some preassigned amount of plas-

tic deformations is reached. Thereby, results obtained in this case are slightly

underestimated. The alternative approach is based on the extrapolation of ini-

tial strain rates. The extrapolative approach gives the values of inelastic strain

rates directly at the initial moment of time. However, the above-mentioned

method have a significantly reduced accuracy, which reduction is mainly re-

lated to the great scatter of experimental data at the initial loading moment

and limited accuracy of an experimental set-up.

The measured inelastic initial and steady strain rates are collected in the
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Figure 4.4: Primary identification of steady inelastic strain rates

representative sets of data, which used further for the identification of the ma-

terial model. Inelastic steady strain rates with respect to different tempera-

tures and stresses are shown in Fig. 4.4. The represented data are related to

slow loading regimes with ε̇p << 0.1 h−1 corresponding to creep processes and

fast loading regimes with ε̇p ≥ 0.1 h−1, which correspond to the behavior of the

cast irons in low-cycle fatigue and tensile tests.

Obviously, an increase of the operating temperature leads to the growth of

steady strain rates. The influence of the temperature on the inelastic strain

rates in the current constitutive model is represented by the temperature re-

sponse functions Ri(T ) and Rs(T ). Taking into account the particular prop-

erties of GJV cast iron considered within the current work, the influence of

the temperature differs for 0.199Tm-0.359Tm and 0.359Tm-0.573Tm. Thereby,

the constitutive model require the special mechanisms in order to represent

low and high temperature regimes, which switching approximately between

0.359Tm and 0.413Tm . Therefore, the application of the standard Arrhenius-

type expression (2.38) for the temperature response function is not sufficient.

It should be noted, that some experimental data are excluded form the

primary identification by the accuracy reasons. Majority of excluded data are

belongs to the creep and tensile tests at temperature 0.359Tm and overloaded

creep tests.
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The relationship between inelastic strain rates and stress represents the

duality as well. Within the frame of single temperature conditions, the depen-

dence of the steady and initial inelastic strain rates on the stress variation can

be characterized as follows:

• The power-law relationship of inelastic strain rates with stresses is ob-

served for low stresses. The accumulation of the inelastic deformations

at low loads with low rate characterizes creep processes.

• The exponential influence of the stresses on the inelastic strain rates is

observed for high loads. Such combination represents well the behavior

of the material in tensile, LCF and TMF tests.

Prandtl [73] and Garofalo [20], among others, proposed the stress re-

sponse functions, which are able to represent the above-mentioned behavior:

Prandtl [73]: f (σ) = sinh
(σ

B

)

Garofalo [20]: f (σ) =
[

sinh
(σ

B

)]n

Both functions characterize the inelastic strain rate dependence, however, the

stress response function proposed by Garofalo [20] includes as well the func-

tion of Prandtl [73] as the specific case at n = 1. Thereby, the identification is

based on the model proposed by Garofalo [20], due to a higher flexibility of

the stress response function.

The inelastic strain rate functions ε̇
p
s (T,σ) and ε̇

p

i
(T,σ) are identified taking

into account the general sketch of the constitutive model (2.37) represented in

Sect. 2.6. The resultant expressions for initial and steady inelastic strain rates

are represented as follows:

ε̇
p
s (T,σ) = Rs(T ) fs(σ), ε̇

p

i
(T,σ) = Ri(T ) fi(σ), (4.7)

where Rs(T ) and Ri(T ) are Arrhenius type temperature response functions

with two regimes, fs(σ) and fi(σ) are Garofalo stress response functions:

fs(σ) = As

[
sinh

(
σ

Bs

)]ns

, fi(σ) = Ai

[
sinh

(
σ

Bi

)]ni

,

Rs(T ) = exp

(
−
αH

s

T

)(
1+exp

(
−(αH

s −αL
s )(

1

T s
∗

−
1

T
)

))
,

Ri(T ) = exp

(
−
αH

i

T

)(
1+exp

(
−(αH

i −αL
i )(

1

T i
∗

−
1

T
)

))
.

(4.8)
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Figure 4.5: Primary identification of initial inelastic strain rates

Here αH
s , αH

i , αL
s , αL

i , T s
∗, T i

∗, As, Ai, Bs, Bi, ns and ni are the identified ma-

terial parameters. The obtained relations for the initial and steady inelastic

strain rates are shown in Fig. 4.5 and Fig. 4.4. The solid lines in both figures

represent the determined inelastic strain rate functions. Obviously, the appli-

cation of experimental points measured in tensile tests completes the creep

data at the high strain rates. Thereby, the identification of the unified con-

stitutive model for low and high inelastic strain rates can be performed. The

experimental points at temperature 0.359Tm are excluded from the identifica-

tion of the initial inelastic strain rates by the reason of low accuracy induced

by the extrapolation.

It should be mentioned, that the major purpose of the primary identifi-

cation is the determination of the structure of the constitutive relation and

estimation of material parameters. Taking into account the statement above,

the quality of identification of the initial and steady inelastic strain functions

is sufficient for further development of the model. However, the application of

the identified constitutive model for the simulation of the GJV cast iron behav-

ior is possible only in restricted cases corresponding to the loading conditions

in creep tests.

There are some particular features in the evolution of inelastic strain rates

in creep tests. Obviously, the inelastic strain rate at the initial point of the
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creep curve is close to the identified initial inelastic strain rate. Taking into

account the uni-axiallity of creep tests and the absence of the backstress in

the initial state, the following relationship is valid:

ε̇
p

vM
(T,σ) = ε̇

p

i
(T,σ) (4.9)

The primary stage of the creep curve can be characterized by the suf-

ficiently fast decrease of the inelastic strain rate till some minimal value is

reached. This strain rate corresponds to the secondary stage of the creep curve

and coincides with the identified steady inelastic strain rate. Thus, the inelas-

tic strain rate for the secondary creep stage can be represented as follows:

ε̇
p

vM
(T,σ) = ε̇

p
s (T,σ) (4.10)

Thereby, initial and steady inelastic strain rates are the particular cases of

the inelastic strain rate function ε̇
p

vM
(T,σσσ):

ε̇
p

vM
(T,σ) = ε̇

p

i
(T,σ−β) (4.11)

4.3.2 Hardening saturation

The backstress evolution equation requires the explicit definition of the hard-

ening saturation functionβ∗(T,σσσ). There are two approaches in order to iden-

tify this function. The most simple is based on the evaluation of the exper-

imental data by means of expression for inelastic strain rates (4.11) resolved

with respect to the backstress β:

β=σ− f −1
i

(
ε̇

p

vM

Ri(T )

)
(4.12)

The substitution of experimental values of the inelastic strain rates into

expression (4.12) allows us to obtain the experiment-based data representing

the backstress β in the explicit form (see Fig. 4.6a). This approach is inde-

pendent from the shape of the functions, which used for initial and steady

inelastic strain rates, and allows instantly determine the shape of the hard-

ening saturation β∗ and hardening rate µh functions according the particular

experimental data. The evaluated examples of the hardening saturation and

hardening rate functions for the particular loads (creep tests at T =0.519Tm,

σ=0.29σn) are shown in Fig. 4.6.



65

0 1 2 3 4 5 6
εp /ε p

n , [−]

0.2
0.4
0.6
0.8
1.0
1.2

β
/σ

n
×1

0
−1

,
[−

]

(a)

0.0 0.5 1.0 1.5 2.0
εp /ε p

n , [−]

0.0
0.5
1.0
1.5
2.0
2.5
3.0

µ
h
/σ

n
×1

0
2
,
[−

]

(b)

Figure 4.6: Estimation of backstress and hardening rates: (a) extracted back-

stress values, (b) extracted hardening rate values

The backstress contribution in the creep process evaluated through (4.12)

is shown in Fig. 4.6a. Because the backstress is defined as increasing func-

tion of the inelastic strain, obviously, the description of the evaluated curve

at εp > 1.976ε
p
n requires the consideration of additional phenomena such as

softening, high geometrical nonlinearity, volume change induced by the in-

elastic deformation, damage, etc. In particular, in the current work, the creep

damage is considered in order to represent the increase of the inelastic strain

rates during tertiary stage of creep curves. Within the sake of simplicity, the

constitutive equations describing the softening phenomena are not included

into the material model. The constitutive model is focused on the descrip-

tion of the material behavior at specific operation conditions, which contain

mainly the primary stage and initial part of the secondary creep stage. There-

fore, the contribution of the softening phenomena in the material behavior is

neglected.

The hardening rate function represents the rate of the redistribution of the

internal stresses in the polycrystalline material. In practice, the rate of the

transformation of the creep curve from the initial point into the primary stage,

and then into the secondary, is the basic meaning of hardening rate µh. The

evaluation of the experimental data according to expression (4.12) and known

values of the hardening saturation β∗ allows us to extract the experiment-

based estimation for the hardening rate µh(see Fig. 4.6b). The mentioned ex-

tracting procedures are described in details in Sect. 4.3.3. As it mentioned

before, the processing of the experimental data with assumed deterministic

expressions induce an additional error. Thus, the mentioned above approach

is valid only for the preliminary estimation of the hardening rate function, and
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requires the secondary identification step.

The approach (4.12) allows us to determine the value of function β∗ for

specific loads. The application of above-mentioned expression in the case,

when the constitutive model must be identified for the wide range of temper-

atures and applied stress, can lead to the excessive efforts and error induced by

the structure of identification itself. Thereby, the first approach is not recom-

mended in cases, when the designed model is required for the limited range

of the loading conditions.

The second approach is based on the initial and steady inelastic strain rate

functions. Identified analytic expressions for initial and steady inelastic strain

rates allow us to derive the hardening saturation function in the purely ana-

lytical way. Considering (4.10) and (4.11), the following relationship can be

obtained:

ε̇
p
s (T,σ) = ε̇

p

i
(T,σ−β∗) ⇒ Rs(T ) fs(σ) = Ri(T ) fi(σ−β∗) (4.13)

where, functions Rs(T ), fs(σ), Ri(T ) and fi(σ) are known (Sect. 4.3.1). Thereby,

expression (4.13) may be resolved with respect to hardening saturation func-

tion β∗ as follows:

β∗ (T,σ) =σ− f −1
i

[
Rs(T )

Ri(T )
fs(σ)

]
(4.14)

The above expression is valid for any particular case of the functions Ri(T ),

Rs(T ), fi(σ), and fs(σ) within the framework of the current structure of the

constitutive model. The presented sequence of the identification allows us

to determine the hardening saturation function with respect to temperature

ans stress in the analytical form. However, in contrast to the simple approach

presented in the beginning of section, only hardening saturation function can

be identified by that way. Thereby, the identification of the hardening rate µh

must be performed in addition.

Within the current research, the identification of the hardening saturation

β∗ is performed according to the second approach. Taking into account the

identified expressions and material parameters for the initial and steady in-

elastic strain rates, the explicit form of β∗ for the uniaxial case can be repre-

sented as follows:

β∗(T,σ) =σ−Bi arcsinh

[(
AsRs(T )

AiRi(T )

)1/ni

sinh

(
σ

Bs

)ns/ni
]

(4.15)

The identified expression for the hardening saturation function presented

above is mainly based on the measured initial and steady inelastic strain rates
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Figure 4.7: Hardening saturation function (primary identification)

and does not require additional material parameters. The hardening satura-

tion function can be extended for three-dimensional cases by means of appli-

cation of equivalent von Mises stress: The results of the primary identification

of the hardening saturation function evaluated according GJV cast iron are

shown in Fig. 4.7.

There are several requirements to the hardening saturation functions

based on the features of the phenomenological model used within the current

work:
σ1 >σ2,T1 = T2 ⇒β∗(T1,σ1) ≥β∗(T2,σ2),

σ1 =σ2,T1 > T2 ⇒β∗(T1,σ1) ≤β∗(T2,σ2).
(4.16)

The obtained hardening saturation function β∗ is based on the initial and

steady inelastic strain rates determined independently according only to the

available experimental data. Thereby, the requirements (4.16) in general can

be not satisfied, that is observed in Fig. 4.7 for the temperature 0.253Tm and

0.306Tm. Within the current particular case, the successful application of the

backstress saturation function in the current form can be performed only in

the range of the operation conditions corresponding to the available experi-

mental data from creep tests. The application of the model outside of men-

tioned above range of the operation conditions requires to provide the sec-

ondary step of the identification.
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4.3.3 Hardening rate

The backstress evolution equation (4.2c) in particular case of creep regime can

be resolved analytically:

β=β∗

[
1−exp

(
−
µhε

p

β∗

)]
(4.17)

Taking into account identified function β∗ (4.15), hardening rate can be

determined as follows:

µh =−
β∗

εp
ln

(
β∗−β

β∗

)
, (4.18)

where β is the evaluated according to (4.12). The experimental data from

creep tests can be processed according to expression (4.18) by the use of the

identified hardening saturation function β∗(T,σ). The estimated according

to (4.18) hardening rates for the particular case of the experimental data (creep

tests at T =0.519Tm, σ=0.29σn) are shown in Fig. 4.8a. The estimated value of

the hardening rate functionµh here is obtained taking into account the low ac-

curacy of the experimental data at the initial moment of the creep tests. There-

fore, the presented estimation of µh is correlated mainly for the experimen-

tal data, which correspond to inelastic strains ε̇p >0.396ε
p
n. The measured for

the particular experimental data value of µh and β∗ allows us to estimate the

backstress evolution for the corresponding loading conditions (see Fig. 4.8b).

The numerical values of the hardening rate function µh obtained for differ-

ent thermal conditions allows us to determine shape of µh with respect to the

temperature (see Fig. 4.8c).

It should be mentioned, that estimation of the hardening rate by means of

the approach presented above must take into account the experimental data

corresponding to the primary stage of creep curves, because the change of the

backstress takes place directly at this stage of creep curve.

Taking into account the relationship between the hardening rate µh and

elastic material properties (2.43) mentioned by Naumenko and Altenbach

[50], the general profile of the function µh(T ) is defined in the similar way

to the temperature dependence of Young’s modulus (4.5) (see Fig. 4.8c) and

represented by the following expression:

µh(T ) =µa +µbT 3, (4.19)

where µa and µb are resulting material parameters.
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Figure 4.8: Identification of the hardening rate modulus µh: (a) evaluated

hardening rates according to experimental data and estimated

value, (b) extracted from experimental data backstress evolution

and rough estimation by the constitutive model, (c) primary esti-

mation of the hardening rate function µh vs temperature
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4.4 Creep damage

The identification of the constitutive equations for the creep damage can be

provided only after identification of the elastic and inelastic material proper-

ties. Mainly, the source of the experimental data used by this identification is

the tertiary stage of creep curves (Sect. 3.2.2).

The creep regime of loads allows us to perform the identification based

on the single differential equation for inelastic strain rate (4.3). It should be

noted, that at the current stage of identification model for elastic and inelas-

tic material behavior is formulated, and further task includes the determina-

tion of the state function C and parameter l of accumulated damage response

function r (ω). The following expressions represent the state of material at rup-

ture moment:

ω=Cεp
= 1 ⇒C=

1

ε
p
∗

, (4.20)

where ε
p
∗ is the inelastic strain at the rupture moment. The substitution

of (4.20) into (4.2d) leads to the creep damage evolution equation (2.53) men-

tioned in Sect. 2.7.1.4. The proposed definition for the creep damage state

functionC is preferable for the use, because the ruptures strains concept gives

the clear representation of the mechanisms lying behind this function. How-

ever, in order to apply creep damage equation for general case of loads, the

stress and temperature dependence of the state function C must be deter-

mined.

The identification of the functionC requires the experimental values of the

inelastic rupture strains at different temperatures and stresses. The above-

mentioned data may be generated from creep curves. The obtained set of ex-

perimental values is shown in Fig. 4.9.

Obviously, the temperature and the stress have significant influence on the

inelastic rupture strains. The increase of the temperature leads to ductility of

the material, and, therefore, to the increase of the inelastic strains at the rup-

ture moment. The level of the mechanical loads affects the inelastic strain

rates as well, and, finally, also leads to change of the rupture strains ε
p
∗. There-

fore, the rupture strain function ε
p
∗ must include the temperature and stress

response functions.

Obviously, the mechanism with which the temperature affects the rup-

ture strain is similar with the influence of the temperature on inelastic strain

rates. Therefore, the temperature response function may be represented by

the Arrhenius-type function. On the other hand, the stress response function

must be chosen according to the particular properties of the identified mate-

rial. Within the current work, the stress response function proposed in [50] is
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Figure 4.9: Inelastic rupture strains function (4.20)

chosen. Thus, the following structure of the inelastic rupture strain function

is used:

ε
p
∗(T,σσσ) = ǫbrD(T )︸ ︷︷ ︸

εbr(T )

+
D(T )aε

1+bεe
−

σvM
cε

, D(T ) = exp
(
−
αD

T

)
, (4.21)

where εbr(T ) is the strain of brittle rupture of the material, D(T ) is the

Arrhenius-type function of temperature, ǫbr, aε, bε, cε and αD are the material

parameters. The identified state function C is shown in Fig. 4.9. Equation 4.21

can be extended to the three-dimensional case as follows:

ω̇c = H(σσσ)Y (εεεp)r (ω)
|ε̇

p

vM
|

ε
p
∗(T,σσσ)

. (4.22)

The parameter l of accumulated damage response function r (ω) is also

must be estimated. Mainly, the variation by this parameter allows to regulate

the intensity of tertiary stage of creep curves simulated by means of the pro-

vided constitutive model. Schematically this influence is shown in Fig. 4.10.
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4.5 Fatigue damage

The primary identification of the fatigue damage model can be performed

only based on the formulated and identified constitutive model for the inelas-

tic material behavior. The identification is based on the results of the low-

cycle fatigue tests (see Fig. 3.6). On the initial identification step the consti-

tutive model of the fatigue damage is considered in terms of integral charac-

teristics: the amplitudes of strains εA, the amplitudes of stresses σA and the

number of loading cycles N . The above-mentioned form of the constitutive

model is convenient for the identification, because it requires the integration

over the cycles N except the continuous damage models requiring the inte-

gration over time t that is much faster. However, the approach includes the

significant error involved by the required idealization of the LCF response cy-

cle in stress, therefore it can be used only for the preliminary identification

step.

In order to switch to time-scale measured in the cycles the several simpli-

fication must be used:

• The material is assumed to be perfectly plastic

• Only positive part of the stress is accounting

The idealized representative cycle and experimental one for the particular

case of T =0.519Tm and εA =0.632εn are shown in Fig. 4.11.
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Within the specific case of GJV case iron, the state function F is assumed

to be the power-law function of the strain energy density. For the uniaxial

loading case the following expression for F is assumed:

F= S
(
σεm

)n
, (4.23)

where S and n are the material parameters, which must be determined, εm

is the mechanical strain including the elastic and plastic strain components.

The above-mentioned function is based on the assumption that the fatigue

damage accumulation rates are proportional to the dissipated strain energy∫
cycleσε̇

pdt . However, the proposed state function includes the mechanical

strain εm in order to take into account the particular cases of high-cycle fatigue

observed in the experiments.

The proposed above state function F leads to the following expression for

the fatigue damage accumulation rates:

ω̇= H(σ)r (ω)S(σεm)n
|ε̇p

| (4.24)

The fatigue damage evolution equation (4.24) is given for the uniaxial load-

ing case and requires some modification for the use in the general three-

dimensional case. Assuming isotropy of the damage, the equation (2.54) can
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be rewritten as follows:

ω̇= H(σσσ)r (ω)S(σvMεeq)n
|ε̇

p

vM
|, (4.25)

where εeq is the equivalent total strain sensitive to the tension/compression

modes of the loading:

εeq =
σvMSσσσ

E
+ε

p

vM
Sεεεp (4.26)

The functions Sσσσ and Sεεεp , which involves the influence of the ten-

sion/compression modes, are derived based on the stress and strain tensors

as follows:
Sσσσ = sgn(σI −δ) , δ<< 1

Sεεεp = sgn

(
ε

p

I
+ε

p

I I I

2

)
.

(4.27)

In order to switch to the cycles-based time-scale, equation (4.24) must be

integrated for the single cycle of loads under the perfect plasticity assumption

(see Fig. 4.11). Therefore, the cycle-based fatigue damage accumulation law

can be represented as follows:

∆ω

∆N
=

r (ω)S

n +1

(σA

2

)n
[(εA

2

)n+1
−

(σA

2E

)n+1
−

(σA

E
−
εA

2

)n+1
]

(4.28)

The following analytic relation between the damage ω and number of cycle N

can be further obtained:

ω= (C N )l , C =
S

n +1

(σA

2

)n
[(εA

2

)n+1
−

(σA

2E

)n+1
−

(σA

E
−
εA

2

)n+1
]

, (4.29)

where C is the part of (4.28) constant for each loading cycle. The fatigue rup-

ture is reached when ω=ω∗. From this condition the expression for the num-

ber of cycles to rupture NA can be obtained:

NA =C−1ω1/l
∗ (4.30)

The value of ω∗ corresponding to the failure of material on practice is about

0.95−0.99.

The primary identification of the material parameters of the fatigue dam-

age accumulation law (4.24) can be performed by means of the experimental

data (see Fig. 3.6) and reduced fatigue damage evolution equation (4.28). The

estimation of the material parameters n and S of the cycle-based fatigue dam-

age accumulation rates is performed using the trivial and hand-fitting identi-

fication approaches and shown in Fig. 4.12.
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Figure 4.12: Primary estimation of fatigue damage model: (a) prediction for

the number of cycles to rupture, (b) temperature response func-

tion S (4.31)
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The results shown in Fig. 4.12 are obtained independently for each tem-

perature based on the available experimental data. The parameter n is as-

sumed to be temperature independent, therefore the same parameter value

is used for each temperature. However, the material parameter S represents

the influence of the temperature on the fatigue damage accumulation rate,

therefore it is determined independently for each temperature. The obtained

values of S for different temperatures are shown in Fig. 4.12b. The shown tem-

perature dependence can be approximated by the exponential function with

the sufficient accuracy and minimun number of parameters:

S(T )= sa exp(sbT ), (4.31)

where sa and sb are the material parameters.

Nevertheless, the application of material parameters obtained within the

current section leads to excessive error, which is included into the considera-

tion through the assumed restrictions concerning the perfect plasticity (see

Fig. 4.11). Therefore, the identification of the continuum fatigue damage

model can not be performed only by means of the primary identification step

described above and requires the direct integration of the constitutive equa-

tions within the global time-scale. The current section is focused only on the

determination of the structure of the state functionF and guess of the material

parameters for the further optimization-based identification step.
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Figure 4.13: Damage fraction function
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4.6 Derivation of the cycle based fatigue evolution

law

The primary identification of the fatigue damage requires the simplification

of the evolution law (4.25) to the cycle based evolution law. In order to switch

form the integration by the general time to the integration by the number of

cycle, the following transformation must be considered:

ω̇=
∂ω

∂N

d N

dt
,⇒

∂ω

∂N
=

t0+tc∫

t0

ω̇dt , (4.32)

where tc is the period of the single loading cycle. The analytic integra-

tion (4.32) may be performed only in situation, when changes of stress and

inelastic strain are the explicit functions of time. Therefore, in order to obtain

such solution, idealized hysteresis shown in Fig. 4.14 is considered.

The stress hysteresis presented in Fig. 4.14 is based on the assumption

about the ideal plastic behavior of the material after the reaching some yield

stress level σy. Now let us consider the stages of the loading cycles presented

above:

t ∈ [t0, t1]: ε̇p = 0, ω̇= 0

t ∈ [t1, t2]: σ=σy, ε̇p = ε̇, ω̇> 0

t ∈ [t2, t4]: ε̇p = 0, ω̇= 0

t ∈ [t3, t6]: H(σ) = 0, ω̇= 0

t ∈ [t5, t7]: ε̇p = 0, ω̇= 0

t ∈ [t7, t8]: σ=σy, ε̇p = ε̇, ω̇> 0

Thereby, the integration of the fatigue damage evolution equation for

complete loading cycle can be reduced as follows:

∆ω=

t0+tc∫

t0

ω̇dt∆N =




t2∫

t1

ω̇dt +

t8∫

t7

ω̇dt


∆N (4.33)

Despite of fatigue damage, the change of stress and inelastic strain must

be considered on the complete integration interval. However, the integration

of the corresponding constitutive equations can be performed analytically for

idealized cycle shown in Fig. 4.14. Thereby, the stress and inelastic strain are

known functions of time, and fatigue damage increment for one cycle can be

obtained analytically and the assumption that the change of damage ω within

the framework of single loading cycle is negligible value.
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Figure 4.14: Idealization of LCF test: (a) stress hysteresis, (b) stress response

vs time
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t ∈ [t1, t2]: I1 =

t2∫

t1

r (ω)S(σε)n ε̇pdt =

∣∣∣∣∣
σ=σA/2, ε= ε̇t ε̇p

= ε̇

t1 =
σA

2E ε̇
, t2 =

εA

2ε̇

∣∣∣∣∣=

= r (ω)S
(σA

2

)n ε̇n

n +1
t n+1

∣∣∣∣
t2

t1

=
r (ω)S

n +1

(σA

2

)n
((εA

2

)n+1
−

(σA

2E

)n+1
)

(4.34)

t ∈ [t7, t8]: I2 =

t8∫

t7

r (ω)S(σε)n ε̇pdt =

∣∣∣∣∣∣

σ=σA/2, ε=−2εA + ε̇t , ε̇p
= ε̇

t7 =
1

ε̇

(
3

2
εA +

σA

E

)
, t8 =

2εA

ε̇

∣∣∣∣∣∣
=

= r (ω)S
(σA

2

)n ε̇n

n +1

(
t −

2εA

ε̇

)n+1∣∣∣∣
t8

t7

=−
r (ω)S

n +1

(σA

2

)n (σA

E
−
εA

2

)n+1
(4.35)

Thereby, the increment of fatigue damage can be computed as follows:

∆ω

∆N
=

r (ω)S

n +1

(σA

2

)n
[(εA

2

)n+1
−

(σA

2E

)n+1
−

(σA

E
−
εA

2

)n+1
]

(4.36)

It must be noted, thatσA for specific material is the function of amplitudes

εA and temperature T , and can be computed according to the identified con-

stitutive model for the inelastic material behavior. Obviously, the increment
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of the fatigue damage (4.35) can not be a negative, therefore the values of n

can not be even. The function of stress amplitude is evaluated according to

the current constitutive model and presented in Fig. 4.15. Within the current

work, the function of the stress amplitudes is computed numerically through

the simulation of the material behavior under cyclic loads at different strain

amplitudes and temperatures. It must be noted, that determination of this

function requires the formulated constitutive model for the inelastic material

behavior.

4.7 Creep-fatigue damage interaction

The important aspect of the creep-fatigue damage is the structure mixture

function F (2.63). The profile of this function depends on the several con-

ditions including the quality of the available set of the experimental data.

The principal difference between creep tests, where only creep damage ac-

cumulation is observed, and low-cycle fatigue damage are rates of the inelas-

tic strain. Within the framework of current research, the inelastic strain rate

observed in the creep tests reach the highest values ε̇p ≈ 0.01 h−1, while the

low-cycle fatigue tests and tensile tests are performed at the assigned strain

rates ε̇ = 3.6 h−1. Therefore, in particular cases, the creep damage during the

cyclic loading of high rates can be neglected. However, the consideration of

the complete creep-fatigue damage model is necessary especially in cases of

the mechanical loads observed in the thermo-mechanical fatigue tests.

Within the frame of current work the following profile of the creep-fatigue

interaction function F is assumed:

F (ω̇c,ω̇f) =ϑω̇c + (1−ϑ)ω̇f,

ϑ(ε̇εεp) =
1

2

[
1− tanh

(
ϑa(ε̇

p

vM
−ϑb)

)]
,

(4.37)

where ϑ is the function formulated taking into account available experimen-

tal data. The parameters of above-mentioned function are not included in

the optimization-based secondary identification step. The material parame-

ters ϑa = 200 h and ϑb = 0.1293 h−1 are chosen in order to satisfy the require-

ments to the constitutive model: the intergranular damage corresponds to the

slow loading regimes, transgranular damage corresponds to the cyclic loads

with high rates of strains. The function ϑ identified within the current work

is shown in Fig. 4.13. In addition, the above-mentioned formulation of the

creep-fatigue damage interaction function (4.37) allows us to apply the de-

fined creep damage evolution equation (4.22) and to take into account the
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fatigue damage evolution equation (2.54), which is predefined in the primary

identification step (Sect. 4.5).

4.8 Identification results

Within the framework of the primary identification the structure of the con-

stitutive model is determined and the preliminary estimation of the material

parameters is performed. Taking into account the determined functions and

material parameters, the constitutive model describing the inelastic behavior

of the GJV cast including the creep-fatigue damage is:

(2.15) εεε=εεεel
+εεεp

+εεεth,

(2.24) σσσ=
[
κ(ω)+χ

][
λ〈tr[εεεel]〉+I +2µεεεel

+

]
+

[
λ〈tr[εεεel]〉−I +2µεεεel

−

]
,

(2.21) λ=
νE

(1+ν)(1−2ν)
, µ=

E

2(1+ν)
, E (T ) = Ea+EbT 3,

(2.45) ε̇εεp
=

3

2

ε̇
p

vM

σvM
s, ε̇

p

vM
= R(T ) f

(
σvM

1−ω

)
, s = s −βββ,

(2.36) σvM =

√
3

2
(s −βββ) · ·(s −βββ),

(4.8) Rs(T ) = exp

(
−
αH

s

T

)[
1+exp

(
−

(
αH

s −αL
s

)( 1

T s
∗

−
1

T

))]
,

(4.8) Ri(T ) = exp

(
−
αH

i

T

)[
1+exp

(
−

(
αH

i −αL
i

)(
1

T i
∗

−
1

T

))]
,

(4.8) fs(σ) = As

[
sinh

(
σ

Bs

)]ns

, fi(σ) = Ai

[
sinh

(
σ

Bi

)]ni

,

(2.42) β̇ββ=
1

µh

dµh

dT
Ṫβββ+

2

3
µh

[
ε̇εεp

−
3

2
ε̇

p

vM

βββ

β∗

]
,

(4.15) β∗(T,σσσ) =σ−Bi arcsinh

[(
AsRs(T )

AiRi(T )

)1/ni
[

sinh

(
σ

Bs

)]ns/ni
]

,

(4.18) µh(T ) =µa +µbT 3,

(4.37) ω̇=ϑω̇c + (1−ϑ)ω̇f, ϑ=
1

2

(
1− tanh

(
ϑa(ε̇

p

vM
−ϑb)

))
,

(4.22) ω̇c = Hc(σσσ)Y (εεεp)r (ω)C(T,σσσ)ε̇
p

vM
,

(2.50) Hc(σσσ) =
σI +|σI |

2
, Y (εεεp) =

1

2

(
sgn(εp

I +εp
I I I )+1

)
,

(2.49),(4.20) r (ω) = lω1− 1
l , C(T,σσσ) = ε

p
∗(T,σσσ)−1,
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(4.21) ε
p
∗(T,σσσ) = ǫbrD(T )+

D(T )aε

1+bεe
−

σvM
cε

, D(T ) = exp
(
−
αD

T

)
,

(2.54) ω̇f = Hf(σσσ)r (ω)F
(
T,σσσ,εεε,εεεp

)
ε̇

p

vM
,

(2.60),(4.23) Hf(σσσ) = Hc(σσσ), F
(
T,σσσ,εεε,εεεp

)
= S(T )(σvMεeq)n ε̇

p

vM
,

(4.31) S(T ) = sa exp(sbT )

4.9 Summary

The primary identification step is focused on the formulation of the struc-

ture of the material-dependent functions and determination of the material

parameters for them. Mainly, the primary step is based in the trial and hand-

fitting identification approaches. Within the framework of current research,

the primary identification step allows us to determine complete constitutive

model describing the material behavior under the creep loads including the

creep and fatigue damage model, and particularly the inelastic behavior of the

material during the isothermal cyclic tests (LCFs). The obtained parameters

can be used as final result as well as for the secondary identification step as

guess values. It must be stated, that the accuracy of the primary identification

is low and can be sufficient only for the cases, when the constitutive model is

utilized for simulation of the material behavior under the similar conditions,

which were used in the identification. The resulting constitutive model can

give the inaccurate results in the simulations of the material behavior under

TMF loads, which is not used in the primary identification. Therefore, the sec-

ondary identification step is required.



CHAPTER

5
Secondary identification

The current chapter is mainly focused on the application of the numerical in-

tegration and optimization methods for the solution of the parameters identi-

fication problem. Within the framework of current part of the work, all avail-

able types of the experimental data including the creep tests, tensile tests,

LCF and TMF tests are used. The secondary identification step is focused on

the identification of the complete constitutive model (elasticity, inelasticity,

creep-fatigue damage, etc.). The identification of the creep-fatigue damage

model requires defined constitutive model for the inelastic behavior, there-

fore its identification is the initial step of the secondary identification prob-

lem. Taking into account the different nature of the inelastic deformations and

damaging process, the secondary identification of the corresponding parts of

the constitutive mode is performed separately.

5.1 Strategy of identification

The secondary identification is based on the minimization of the error func-

tion described in Sect. 5.2. Within the framework of current work, the min-

imization algorithm proposed by Powell [71] is used. The above-mentioned

approach representing the unconstrained zero-order conjugate directional

minimization algorithm, which can be used for the unrestricted minimization

of the target function. The opportunities to extend the unrestricted optimiza-

tion to the optimization with restriction are discussed in the Sect. 5.4.

One feature of the current identification problem includes the application

the different types of experimental data. The error values in the each specific



84

Model + Loads Simulation

1 thread
st

Simulation Simulation

2   thread
nd

Simulation

n thread
th

...

Experimental data Comparison Comparison Comparison

Weights Computing of error function

Minimizer

Parallel computing

Figure 5.1: Scheme of single iteration of the secondary identification step

case can be computed independently within the frame of the same set of ma-

terial parameters. Thereby, the large number of the different numerical com-

putations can be performed in the various computational threads. Therefore,

the computation scheme presented in Fig. 5.1 is utilized.

The optimization is used in the secondary identification problem within

two cases, when the constitutive model for the inelastic material properties

and creep-fatigue damage were determined. In the both cases the principal

computational scheme shown in Fig. 5.1 is used.

The information about the quality of the experimental data, level of the

confidence to specific tests may be also included

5.2 Computing of the error

The current section is focused on the formulations for the target error func-

tions. Within the framework of identification problem several different types

of experimental data can be used. For instance, in case of creep tests the re-

sults are inelastic strain, in case of cyclic tests the stress values and number

of cycles to rupture, etc. The aim of the current section is to formulate the er-

ror functions, which allows us to represent the deviation of the simulated and

experimental data taking into account the different nature and dimension.

The result of the creep test are inelastic deformations accumulated in the

sample. In the primary creep stage they reach the values upto 1%. Moreover,

the operation under the inelastic regime requires the comparison of data,

which in some cases can have different orders. In such cases, the logarithmic

length-scale is preferable.
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In addition, different values of the inelastic strains and strain rates at dif-

ferent loading conditions may lead to the situation, when the error values de-

pend on the loading conditions, that is artificial and non-realistic. Therefore,

the normalization of the experimental data must be applied. Taking into ac-

count the above-mentioned features, the Gauß function ξ within the each sin-

gle experiment can be calculated as follows:

ξi
=

∣∣∣∣
ln(e i )− ln(si )

ln(e i )

∣∣∣∣=
∣∣∣1− logei si

∣∣∣ , i ∈E1, (5.1)

where e i is the representative measure of i th experiment of the sub-set E1 of

the experimental dataE, which requires the logarithmic scale (inelastic strains

or strain rates), s is the value of corresponding measure estimated by the con-

stitutive model. However, the application logarithmic error definition in the

case of negative operating values is not possible, therefore in this case the

other definitions for the error must be considered.

The comparison of estimated and experimental stress responses is suffi-

cient to perform in the linear length-scale. However, by the objective reasons,

the normalization of the error is still required:

ξi
=

∣∣∣∣
e i − si

e i

∣∣∣∣ , i ∈E2, (5.2)

where E2 is the sub-set of the experimental data, where the resulting values

of the experiments and simulations at the different loading conditions have

approximately the same order. The above-mentioned condition is useful for

the stress comparison in the tensile, LCF and TMF tests.

In particular, in the case of cyclic tests the normalization of the error func-

tion (5.2) can lead to artefacts related to the zero division problem. The appli-

cation of the logarithmic scale is this case is also not possible, because positive

values of argument are required for logarithmic scale. Therefore, the maxi-

mum stress amplitude, measured within the each single experiments, can be

used for the normalization of the deviation:

ξi
=

∣∣∣∣
e i − si

∆e i

∣∣∣∣ , ∆ei = max(e i )−min(e i ), i ∈E2, (5.3)

where ∆e i is the maximal fluctuation amplitude of the representative mea-

sure.

The natural noise, presenting normally in the experimental data for each

kind of tests, can not be identified by using the deterministic constitutive
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model. Therefore, the additional mechanism is considered in order to ex-

clude the influence of experimental error on the identification quality. Ob-

viously, the quality of the identification of the constitutive model is sufficient,

when the deviation of the the model prediction and experimental data is min-

imal. However, the determination of the constitutive model with the accuracy

higher then the accuracy of the experimental data is not necessary. Therefore,

the following expression is proposed in order to include the above-mentioned

features:

ξ̃i
= ξi

e

(
ξi

ξi
e

)k̃

, i ∈E, (5.4)

where ξ̃i is updated value of Gauß function including the information about

deviation ξi
e of experimental data, k̃ is the coefficient, k̃ > 1. The increasing

of k̃ coefficient reduces the influence of the error ξi , if it is less then the error

of the experiment ξi
e. The proposed scheme can be used for any kinds of the

error functions mentioned above.

The error functions computed for the simulated LCF test at T =0.413Tm

and εA =0.79εn are shown in Fig. 5.2. Obviously, the linear (5.2) and logarith-

mic (5.1) error definitions are not useful for shown kind of tests, while the nor-

malized linear error function (5.3) and advanced error definition (5.4), taking

into account the accuracy of the experimental data, are more appropriate.

Different errors computed taking into account the specific experiments

contributes and summarized into the resultant error, which representing the

summary deviation of the constitutive model and experimental data. How-

ever, the weight factors must be taken into account during the computation

of the resulting error:

ξ=
∑

i∈E

w i ξ̃i
e (5.5)

where wi is the weight ratio of each single experiment. The choice of the

weights depends on different factors, including the field of application of the

constitutive model, the confidence of the experimental data, etc.
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Figure 5.2: Different types of error function in the simulation of LCF test

5.3 Choice of weights

The application of the weighting parameters in the secondary identification

allows us to manage the influence of the different factors affecting the effi-

ciency of the constitutive model. In general, the weights can be chosen with

respect to the factual features of the target material and also can include some

desired aspects, which may be required for the application of the constitutive

model. Mainly, the factual requirements are related to the amount, accuracy

and quality of the experimental data. However, the conditions of exploitation

of entire design, in which identified material is planned for application, can be

accounted during the choice of weights. Within the frame of current section

the several useful cases of the weights functions are considered.

On practice, the material model is normally develop for the fixed opera-

tion conditions, which are mainly take place in the mechanical parts. The in-

formation about the mentioned operation conditions can be used in the iden-

tification in order to reduce the influence of experimental data, which are not

included in the requirements to the model. For instance, weights may be cho-

sen according to temperatures, stresses, strains or plastic strains, which are

observed in the mechanical parts of the design. In this case the shape of the

weight functions can be represented by the arbitrary functions with the fol-
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Figure 5.3: Weight function of temperature

lowing requirements:

w(x) = wmax∀x ∈ [xmin, xmax],

w(x) = wmin∀x 6∈ [xmin, xmax]

where x is the assigned representative measure using for the calibration of

the constitutive model. Within the frame of current work only restrictions by

the range of temperature is used, however approach is not limited only by it.

The utilized shape of the weight function that regulates the influence of the

temperature conditions on the resultant vector of the material parameters is

shown in Fig. 5.3.

The proposed shape of the weight function is not restricted to be the same

for each controlling characteristic and can be chosen in the arbitrary way in

order to satisfy the particular requirements to the constitutive model. The

weights can be applied in order to manage the influence of the experimen-

tal data and to calibrate the target constitutive model for narrow range of the

loading profiles. Application of weights in this case can reduce the universal-

ity of the constitutive model, however increase the accuracy of description for

particular case of the mechanical loads.

Taking into account the different weight factors representing the varied

number of the requirements to the constitutive model, the general weight for
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certain test can be formulated as follows:

w =
∏

i

wi , (5.6)

where wi represents the weighting factor according to each considered crite-

ria.

5.4 Restricted optimization problem

The optimization problem consists of minimization of the target function.

The different kinds of the minimizers mentioned in Sect. 3.1.3 can be used

for solving of this kind of problems. However, from time to time, the specific

efforts appear, when the approaches designed for the unrestricted minimiza-

tion problem are necessary for the use in the minimization with restrictions.

The current section is focused on the solution of these contradictions.

The typical minimization problem (3.1) taking into account the defined

error function (5.5) is:

p = argmin
p∈P

ξ(p), (5.7)

where P is the unbounded space of the material parameters.

Within the mentioned definition the resulting vector of the parameters p

corresponds to the minimum of Gauß function ξ. In general, the material pa-

rameters p are not restricted and can lay in the infinite space of parameters P.

In the current particular case, Gauß function ξ includes the information about

the mechanical processes taking place in the material. Thereby, the material

parameters must lay in bounded space P∗ , which corresponding the physical

meaning of declared functions.

The replacement of the unrestricted optimization problem by the re-

stricted one can be performed by the introduction of the following transition

function:
p̃ = T (p), p ∈P, p̃ ∈P∗

p = argmin
p∈P

ξ(p̃) (5.8)

The particular representations for the transition function T can be chosen in

the different way. The main idea laying behind this function is the smooth

transformation of parameters p on infinite interval to parameters p̃ in the

limited interval. There are many different opportunities for the design of the

function T . The various definitions of T considered in this work are given

in Table 5.1. In the Table 5.1 zi =
p i

max+p i
min

2
, ai =

p i
max−p i

min

2
, α is a parameter,
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Linear

p̃ i
= p i , if p i

∈ [p i
min, p i

max]

p̃ i
= p i

min, if p i
< p i

min

p̃ i
= p i

max, if p i
> p i

max

Tangential

p̃ = p̃ i ei , ∀i ∈ L(p̃),

p̃ i
= ai tanh

(
αp i

)
+ zi

Exponential

p̃ = p̃ iθθθi , ∀i ∈ L(p̃),

p̃ i
= zi

+ sgn(p i )ai
(
1−e−|αp i |

)

Table 5.1: Transition functions

which can be used for the regulation of the smoothness of the transition,θθθi is

the basis of the parameters space.

The proposed linear definition of the transition function T is the simplest

one, however it has the specific points p i = p i
max and p i = p i

min
, which lead to

the discontinuity of the function’s derivative. The above-mentioned feature of

the linear transition functions is not desirable in cases, when the gradient-

based minimization approaches are used. However, the application of the

zero-order minimization algorithms makes the influence of the derivative in-

significant.

The tangential and exponential definitions proposed in the Table 5.1, ex-

cept the linear one, give the continuous smooth derivative of transition func-

tion, that not affects the smoothness of the Gauß function ξ(T (p)). The con-

sidered transition functions used within the current research are shown in

Fig. 5.4. The exponential transition function is used in this work, because it

does not exhibit undesired features in the bounds like the linear function and

representing the lower time-consumption with respect to the tangential tran-

sition function.
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5.5 Extrapolation problem

The optimization-based identification step requires the determination of the

error function for the specific loading conditions. In the case of the simulation

of the material’s behavior under the conditions observed in creep tests, tensile

tests, LCF and TMF tests the evaluation of the error function can be performed

through the full integration of the constitutive equations for the correspond-

ing loading conditions. However, the above-mentioned approach is not useful

for the identification of the fatigue damage model. Mainly, it is related to the

necessity to compute the number of cycles to the rupture NA as the repre-

sentative measure constructing the error function in case of low-cycle fatigue

damage. In the combination with the iterative optimization procedure and

large number of LCF tests, the time-consuming integration of the constitutive

equations becomes unrealistic. Therefore, the additional steps to reduce the

computation costs must be considered.

The enchanted extrapolation approach is used in this work for the estima-

tion of the number of cycles to the rupture. In particular, the extrapolation

is available for the current type of constitutive model, because the simulation

of the LCF and TMF tests gives the power-law dependence of the damage pa-

rameter ω with time. The resulting growth of the damage parameter for the
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LCF loading conditions at T =0.519Tm and εA = 0.474εn is shown in Fig. 5.5.

Thereby, the accumulation of damage in the cases of LCF and TMF load-

ing profiles exhibits the asymptotic trend to the power-law function, which in

term of current notations can be represented as follows:

ln

[
ωi+1

ωi

]
= k ln

[
i +1

i

]
, (5.9)

where ωi and ωi+1 are accumulated damages at i th and (i +1)th cycles, respec-

tively, k is the effective damage growth rate. Equation 5.9 is derived taking into

account linearity of power-law functions in a double logarithmic scale. The ef-

fective damage growth rate k can be determined through differentiation of the

expression (5.9):

k =
d(ln(ω))

d(ln(N ))
=

N

ω

dω

dN
, k 6= const (5.10)

The resulting effective damage growth rate for the LCF loads at

T =0.519Tm and εA = 0.474εn is shown in Fig. 5.6. The asymptotic behavior

of the damage allows us to avoid the integration of the constitutive equations

until the rupture will be reached. However, the rate of the tendency of the da-
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Figure 5.5: The creep-fatigue damage in the LCF test simulation: comparison

of the direct integration and extrapolation
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mage parameter to the asymptote is such, that it requires the direct simulation

of several cycles of loading in order to reach the accuracy criteria:

|(ki+1 −ki )/ki | < η,

where ki and ki+1 are the effective damage rates computed for the i th and

(i + 1)th cycles, respectively, η = 0.01 provides the accuracy of extrapolation

≈ 99%. The proposed enchanted extrapolation scheme leads to the average

100 times reduction of the computation time.

5.6 Secondary identification of the inelastic mate-

rial properties

On the current step the primary identification of the constitutive model for

the inelastic material properties must be finished, and the structure of the

functions and guess values of the material parameters must be determined.

The step is focused on the further calibration of the constitutive model ac-

cording to the complete set of the available experimental data related to the

inelastic material behavior. Below, the secondary identification includes the
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Figure 5.7: The influence of the multiprocessing on the computation time

creep tests, tensile tests, considering the inelastic response in the LCF and

TMF tests. Complete list of the used experimental data is given in Table 5.2.

The experimental data from the creep tests and tensile tests can be used

within the secondary identification step in the processed format, which in-

cludes only information about the initial and steady inelastic strain rates at

the different loading conditions. The above-mentioned approach allows us to

avoid the simulation of these tests that saves the computational time spent on

the identification. However, the evaluation of the error requires the complete

simulation of the material behavior for the LCF and TMF loading profiles of

the loads, which are most time-consuming part of computation of the error

function.

In addition, the application of the experimental data corresponding to the

saturated material regime requires to simulate the several cycles of the LCF

and TMF tests. Thereby, the saturation of the constitutive model is considered

in order to determine the interruption conditions for the integration proce-

dures. On practice, the saturation of the model response for the TMF and LCF

loading profiles reaches at the third - fourth cycle.

The simulation of several loading cycles within the each type of test in-

duces the strong necessity for the consideration of the possibilities for in-

crease of efficiency of the algorithm. In particular, the computation of the
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error function within the each iteration of the minimization algorithm can be

performed by use of the parallel computing tools. Application of the multi-

threading computing allows us to reach the significant reduction the time of

parameters search. However, the parallel computation gives good results only

upto the certain number of computational threads. Moreover, excessive paral-

lelization leads to increase of the computation time. The approximate effect of

the parallelization computed for the modern eight-cores computer is shown

in Fig. 5.7.

The resulting steady and initial inelastic strain rates are shown in Fig. 5.8a

and in Fig. 5.8b, respectively. In particular for the initial inelastic strain rates

in except to the primary identification (see Fig. 4.5), the experimental data

for the low temperature T =0.359Tm from LCF and TMF tests were used for

secondary identification of the constitutive model.

The changes in the inelastic strain rate functions lead to the changes in the

hardening saturation function (4.15), which is shown in Fig. 5.9a. The hard-

ening rate function is also calibrated in the secondary identification stage ac-

cording to all available kinds of the experimental data. Within the frame of

the similar structure of the hardening rate function, the resultant temperature

dependence of the hardening rate µh is determined as shown in Fig. 5.9b.
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Tests Testing conditions Weights Details

C
re

e
p

te
st

s

T =0.359Tm, σ=3.88σn (1,1)

Only initial and steady inelas-

tic strain rates are used. The

weights are chosen according

to the quality of experimental

data and the purpose of the

model.

T =0.359Tm, σ=4σn (0.5,0.5)

T =0.359Tm, σ=4.45σn (0,0)

T =0.359Tm, σ=4.91σn (0,0)

T =0.466Tm, σ=0.57σn (0.5,0.5)

T =0.466Tm, σ=0.68σn (0.5,0.5)

T =0.466Tm, σ=0.8σn (0.5,0.5)

T =0.466Tm, σ=1.43σn (0,0.5)

T =0.466Tm, σ=1.71σn (0,0)

T =0.519Tm, σ=0.23σn (0.5,0.5)

T =0.519Tm, σ=0.29σn (0.5,0.5)

T =0.519Tm, σ=0.37σn (0.5,0.5)

T =0.519Tm, σ=0.46σn (0.5,0.5)

T =0.573Tm, σ=7.99 ·10−2σn (0.5,0.5)

T =0.573Tm, σ=0.11σn (0.5,0.5)

T =0.573Tm, σ=0.17σn (0.5,0.5)

T
e

n
si

le
te

st
s

(ε̇
=

3
.6

h
−

1
)

T =0.159Tm 0.1

The initial and steady inelas-

tic strain rates computed from

tensile tests data are used in

the identification. The weights

are chosen according to the

operating temperature.

T =0.199Tm 0.5

T =0.253Tm 0.9

T =0.359Tm 0.9

T =0.413Tm 0.9

T =0.466Tm 0.9

T =0.519Tm 0.9

T =0.573Tm 0.5

L
C

F
te

st
s

(ε̇
=

3
.6

h
−

1
)

T =0.253Tm, εA =0.79εn, N = 1 0.5 The constitutive model is inte-

grated for the saw-type load-

ing profile. The comparison of

obtained results is performed

for the few loading cycles and

for the saturated regime. The

weights are chosen according

to the quality of experimental

data and operating tempera-

ture.

T =0.359Tm, εA =0.79εn, N = 1 0.9

T =0.413Tm, εA =0.79εn, N = 1 0.9

T =0.519Tm, εA =0.632εn, N = 1 0.9

T =0.573Tm, εA =0.632εn, N = 1 0.5

T =0.253Tm, εA =0.79εn, N = NA/2 0.5

T =0.359Tm, εA =0.79εn, N = NA/2 0.9

T =0.413Tm, εA =0.79εn, N = NA/2 0.9

T =0.519Tm, εA =0.632εn, N = NA/2 0.9

T =0.573Tm, εA =0.632εn, N = NA/2 0.5

T
M

F
te

st
s Direct loading profiles:

Probes 3,4

Inverse loading profiles:

Probe 2

1

The constitutive model is in-

tegrated for the TMF loading

profiles. The comparison of

obtained results is performed

for the few loading cycles and

saturated regime.

Table 5.2: The experimental data used in the secondary identification of the

inelastic material properties
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Figure 5.8: Identified inelastic strain rates: (a) steady, (b) initial. Dashed lines

are the primary identification, solid lines are the secondary iden-

tification
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99

5.7 Identification of creep-fatigue damage

The current section is focused on the identification of the complete creep-

fatigue model based on the identified creep damage evolution equation (4.21)

and estimated guess of the parameters used by the creep-fatigue damage evo-

lution equation.

In general, the secondary identification of the creep-fatigue damage

model is performed according to the scheme shown in Fig. 5.1. However,

except the identification of the constitutive model for the inelastic material

behavior (see Sect. 5.6), the current approach uses the extrapolation (see

Sect. 5.5) for the estimation of the lifetime of the material at the LCF and TMF

loads.

The results obtained after the identification are shown in Fig. 5.10. The

identified constitutive model allows us to estimate the lifetime of the material

under the LCF and TMF loads with factor two (dashed line). The solid line in

Fig. 5.10 represents the direct correspondence of the experimental data to the

simulated one. The circled experimental points are excluded from the iden-

tification, because the numbers of cycles to rupture in these particular case

laying out of interval corresponding to the definition of the low-cycle fatigue.

The thermo-mechanical fatigue tests used in the secondary identification of

the creep-fatigue damage models are also represented in Fig. 5.10.

Temperature influence function

The resultant temperature influence function calibrated according to the

available experimental data is shown in Fig. 5.11. The minimization of the

error function leads to the change of the material parameters, and, therefore,

to the significant increase of the values of S with respect to primary identifica-

tion. However, the shape of temperature response function S is not changed.
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5.8 Stiffness degradation function

When the identification of the constitutive model for the inelastic material

behavior and creep-fatigue damage is finished, the stiffness degradation func-

tion used in the definition for the stress tensor (2.24) can be identified. Mainly,

the stiffness degradation feature is required in the constitutive model only in

the case, when the behavior of the material in the pre-rupture mode must be

described. The above-mentioned mode is represented in the experimental

data by the several cycles before the rupture with the significant reduction of

stress amplitude. However, the contribution of the pre-rupture mode into the

complete lifetime of the material is very low and reaches approximately 1%

of the complete lifetime. Thereby, taking into account the accuracy of the ex-

perimental data and the accuracy of the fatigue damage model, the stiffness

reduction can be neglected.

However, despite the above-mentioned statement, the stiffness reduction

opportunity is introduce into the constitutive model in order to generalize its

application for the wide class of the materials. The identification is based on

the experimental data of the thermo-mechanical fatigue tests (see Fig. 3.9),

which clearly shows the degradation of the stiffness at the last cycles of the

test. The accumulated damage here is assumed to be ω≈ 1, that corresponds

to the rupture of the material. However, the influence of the damage param-

eter at the beginning and intermediate stage of the test is not observed in the

experimental data. The stiffness reduction function must to reflect the above-

mentioned feature.

The following expression for the stiffness degradation function is defined:

κ(ω) = 1−ωm , (5.11)

where m is the parameter identified as m = 20. The stiffness degradation func-

tion κ(ω) is shown in Fig. 5.12. The simulated stress response according to the

TMF loading profiles is shown in Fig. 5.13.
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5.9 Summary

The current chapter is focused on the secondary identification of the constitu-

tive model for the GJV cast iron. The identification is based on the conjugate-

directional minimization approach proposed by [71]. The error functional

consists of the parts computed for the different kinds on the experimental

data. The secondary identification approach allows us to use the experimental

data with complicated thermal and mechanical loading profiles, when the de-

composition of the problem onto subproblems is not possible and complete

system of constitutive equations must be integrated.

Within the framework of target material of current research, the unified

constitutive model for large range of the loads is identified. The model is cal-

ibrated for simulation of the slow and fast inelastic material behavior (creep,

plasticity), strain hardening effects and estimation of the lifetime of the ma-

terial, which is normally a part of the risk analysis in the mechanical engi-

neering. In particular, the lifetime analysis is based on the continuous creep-

fatigue damage model, which can take into account the arbitrary loading

regimes.





CHAPTER

6
Verification

Within the framework of the current chapter, several approaches are consid-

ered for the verification of the determined constitutive model. The starting

point is the verification of the constitutive model for the inelastic material be-

havior. The mentioned stage of the verification includes the simulation of the

inelastic behavior of the GJV material performed for the loading conditions

corresponding to the creep tests, tensile tests, LCF tests, and TMF tests. The

verification of the creep-fatigue damage model is based on the experimental

data, which were not used within the identification procedures. In addition,

the simplified form of the constitutive model derived for the uniaxial loading

case is used. Finally, the equivalent measures introduced in the work are com-

pared with the components of the stress and strain tensors corresponding to

the uniaxial loading case.

6.1 Inelastic material behavior

The verification of the constitutive model is mainly performed by means of

the direct integration the constitutive equations for the corresponding loading

conditions. The verification of the constitutive model for the inelastic material

behavior is based of the simulation of the material response under thermo-

mechanical loads. The values of stress at the initial and steady loading cycles

are used for the comparison of model prediction with the experimental data.

It must be noted, that within the verification the experimental data from TMF

tests, which were not used in the identification of the constitutive model, are

utilized. The mentioned above set of the experimental data and prediction of
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the model are shown in Fig. 6.1.

The comparison of the experimental and simulated stresses is performed

for the first loading cycle N = 1 and for the cycle corresponding to the half

of lifetime of the specimen. The stress response on the first loading cycle in

the material corresponds to the non-saturated state of the material. The com-

parison of the results with the above-mentioned data allows us to check the

accuracy of the constitutive model at the transient loading regimes, which are

mainly governed by the tendency of the backstress value to saturate into some

steady cycle. The simulation of the thermo-mechanical loads until the reach-

ing of the steady cyclic stress response allows us to compare the obtained re-

sults with experimental data for N = NA/2, and to verify the constitutive model

for stabilized cycles. In practice, the current constitutive model exhibits the

stabilization at the cycles N = 3..6. Therefore, the simulation up to the half of

the lifetime of the material is not necessary.

The computed error functions used within the secondary identification

step are shown in Fig. 6.2a and Fig. 6.2b. These functions were obtained by

the substitution of the experimental and simulated values of stress into the

specific error function (5.3). As presented in figure, the constitutive model ex-

hibits the highest disagreement with the experimental values of stresses for

the temperatures T <0.359Tm, that mainly related to the underestimation of

the inelastic strain rates. The major reason for the inconsistency of the simu-

lation with experiments within the current case is related to the low tempera-

tures, and, therefore, to the presence of the rate-independent material behav-

ior in the experiments, which, unfortunately, is described by the constitutive

model with lower accuracy. However, the accuracy of the simulation within

the mentioned regimes is still sufficient and comparable with the accuracy of

TMF tests. In addition, the weight functions can be managed in order to com-

pensate the disagreement of the constitutive model for mentioned range of

the operation conditions.

In order to verify the constitutive model for the isothermal cyclic loads,

the behavior of the material under the LCF loads was simulated. The sim-

ulations were performed for the highest strain amplitudes of the available

experimental data at the temperatures 0.253Tm, 0.359Tm, 0.413Tm, 0.519Tm

and 0.573Tm. The quality assurance of the constitutive model within the cur-

rent part of the verification is performed by the comparison of simulated

stresses with the experimental values. The resulting and experimental hys-

teresis loops for the different testing temperatures are shown in Fig. 6.4. Ac-

cording to the presented results of simulations, the best correlation of the

constitutive model with experimental data is reached for the temperatures
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0.253Tm, 0.359Tm, 0.519Tm and 0.573Tm. However, the accuracy of stresses

at temperature 0.413Tm is lower.

The error values for the above-mentioned data evaluated according

to (5.3) are shown in Fig. 6.3. The highest error values correspond to the sim-

ulation of the LCF test at temperature 0.413Tm. However, the maximal dis-

agreement of the constitutive model with the experimental data is about 14%,

that comparable with the assumed accuracy of the experimental data.
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Figure 6.4: Simulation results of LCF tests at the different loading

conditions (– experimental data, – prediction by model):

(a) T = 0.253Tm, εA = 0.79εn; (b) T = 0.359Tm, εA = 0.79εn;

(c) T = 0.413Tm, εA = 0.79εn; (d) T = 0.519Tm, εA = 0.632εn;

(e) T = 0.573Tm, εA = 0.632εn
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6.2 Creep-fatigue damage

The verification of the creep-fatigue damage model is based on the complete

integration of the constitutive equations until the rupture of the material. The

rupture of sample is assumed if the damage variable ω reaches the value 0.97.

Within the framework of the verification of the creep-fatigue damage model

the experimental data from TMF and LCF tests are utilized. However, the ex-

periments, which were not used within the identification, are essential within

the verification procedures. Within the current part of the verification, the ac-

curacy of the identified constitutive model is checked by the comparison of

the experimental and estimated lifetime of the specimen.

According to Fig. 6.5 the identified constitutive model for creep-fatigue

damage, which is developed within the frame of the current work, is able to

predict the lifetime of GJV cast iron subjected to the thermo-mechanical loads

with accuracy of factor 2. Taking into account that the current model is mainly

focused on the prediction of the number of cycles to rupture for the interval

1.039N∗< N <10.395N∗, the accuracy of the constitutive model is sufficient

within the framework of the requirements of the current research.

6.3 Accuracy of extrapolation

The extrapolation approach was used within the secondary identification

step. Before the application of the approach, its accuracy was checked. This

is accomplished by the comparison of the predicted lifetime of the material

obtained by the extrapolation and after complete integration of the constitu-

tive equation until the rupture state is reached. Obviously, the same vector

of the material parameters was used within the extrapolation and the direct

approach. However, the verification of the extrapolation approach presented

within the framework of the current section is performed based on the result-

ing vector of the material parameters. The simulations are performed for the

LCF and TMF loading profiles and shown in Fig. 6.6. The error of the extrapo-

lation is computed by means of the following expression:

ξ= 1−
N extr

A

N int
A

,

where N extr
A

is the extrapolated number of cycles to rupture, N int
A

is the inte-

grated one. The expression above allows us to compute the deviation of the

extrapolated results with respect to the direct integration-based method, tak-

ing into account the sign of the deviation.
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Tests Testing conditions N int
A

N extr
A

ξ

L
C

F
te

st
s

(ε̇
=

3
.6

h
−

1
)

T =0.253Tm, εA =0.474εn 2.448N∗ 2.203N∗ 0.10023

T =0.253Tm, εA =0.632εn 0.217N∗ 0.208N∗ 0.0405

T =0.253Tm, εA =0.79εn 0.108N∗ 0.105N∗ 0.02547

T =0.359Tm, εA =0.474εn 1.212N∗ 1.337N∗ −0.10283

T =0.359Tm, εA =0.632εn 0.124N∗ 0.121N∗ 0.02679

T =0.359Tm, εA =0.79εn 6.236 ·10−2N∗ 6.133 ·10−2N∗ 0.01555

T =0.413Tm, εA =0.316εn 5.293N∗ 5.314N∗ −0.00393

T =0.413Tm, εA =0.474εn 0.272N∗ 0.26N∗ 0.04594

T =0.413Tm, εA =0.79εn 7.379 ·10−2N∗ 7.172 ·10−2N∗ 0.01575

T =0.413Tm, εA =1.186εn 2.493 ·10−2N∗ 2.493 ·10−2N∗ −0.00462

T =0.519Tm, εA =0.158εn 8.35N∗ 7.498N∗ 0.10205

T =0.519Tm, εA =0.238εn 3.22N∗ 2.974N∗ 0.07626

T =0.519Tm, εA =0.316εn 1.591N∗ 1.512N∗ 0.0493

T =0.519Tm, εA =0.474εn 0.557N∗ 0.539N∗ 0.03202

T =0.519Tm, εA =0.632εn 0.256N∗ 0.249N∗ 0.02815

T =0.573Tm, εA =0.158εn 12.894N∗ 11.967N∗ 0.07186

T =0.573Tm, εA =0.238εn 5.212N∗ 4.996N∗ 0.04144

T =0.573Tm, εA =0.316εn 2.613N∗ 2.505N∗ 0.04144

T =0.573Tm, εA =0.474εn 0.892N∗ 0.869N∗ 0.02533

T =0.573Tm, εA =0.632εn 0.44N∗ 0.428N∗ 0.02798

T
M

F
te

st
s

Probe 1 0.261N∗ 0.28N∗ −0.07443

Probe 2 5.141N∗ 4.268N∗ 0.16987

Probe 3 0.259N∗ 0.27N∗ −0.04538

Probe 4 0.251N∗ 0.262N∗ −0.04533

Probe 5 0.109N∗ 0.107N∗ 0.01725

Table 6.1: Verification of the extrapolation approach

In general, the extrapolation of the number of cycles to the rupture exhibits

the trend to underestimate the lifetime predicted by the complete integration

of the constitutive model. Within the the interval N ∈ (102,104), where the

rupture is assumed to be induced by the low-cycle fatigue damage. The ex-

trapolation exhibits an underestimation of the lifetime of approx 4−5%, which

is low if the general accuracy of the constitutive model is taken into account.

The detailed results of the verification of the extrapolation approach are

given in Table 6.1. As mentioned above, a major number of the results ex-

hibits the underestimation of 4−5%. However, there are exceptional cases of

the loads, when the error of the extrapolation is higher. The general growing

tendency of the extrapolation error allows us to conclude that the accuracy of

the estimation in the interval belonging to the high-cycle fatigue may not be

sufficient and, therefore, the above-mentioned extrapolation approach in this
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case can not be used in the current formulation. However, within the frame-

work of the constitutive modeling of the low-cycle fatigue of cast irons, the

accuracy of the extrapolation is sufficient.

6.4 Verification of the equivalent values

The application of the constitutive model within the industrial-oriented simu-

lations requires the three-dimensional formulation of the constitutive model.

Therefore, the constitutive model formulated in terms of scalars must be veri-

fied for the general three-dimensional cases of the mechanical loads. For that

purpose, the three-dimensional problem of the rod deformation is solved.

The loading profiles used in the simulation are corresponding to TMF test

(Probe 1).

The representative values, which must be verified within the constitutive

model, are the equivalent von Mises stressσvM, the equivalent von Mises plas-

tic strain ε
p

vM
, and the equivalent mechanical strain εeq. The resulting equiv-

alent von Mises stress and equivalent plastic strain are shown in Fig. 6.7a and

in Fig. 6.7b, respectively. The equivalent values exhibit a good correlation with

the scalar variables used in the formulation of the constitutive model for the

uniaxial stress state.

The equivalent strains, computed according to (4.26), are shown in

Fig. 6.7c. They exhibit a good correlation of the uniaxial strain values used

in the simplified constitutive model for the uniaxial loading cases and the

equivalent strain values used by the complete constitutive model utilized in

the general formulation, respectively.

6.5 Summary

The current chapter is focused on the verification of the identified constitutive

model. The verification includes the check of the constitutive model for the

inelastic material behavior, the prediction of the lifetime of the material and

the check of the equivalent values used in the model.

The part of the constitutive model focused on the description of the inelas-

tic behavior of the GJV cast iron is verified based on the experimental data of

TMF tests (Sect. 6.1), which were not used in the identification of the constitu-

tive model. The response in stresses are used as the representative measures

for the estimation of the quality of the identification. The maximum deviation

of simulation results compared to experimental data is obtained for
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the low-temperature regimes. The peak value of the error is 16%. This dis-

agreement is comparable with the scatter of the results in the different TMF

tests under similar loading conditions.

The part of the constitutive model describing the creep-fatigue damage is

verified by the comparison of the estimated lifetime of the material with the

experimental one for similar loading conditions (Sect. 6.2). The verification

includes experimental data from LCF and TMF tests. Mainly, the constitutive

model for the creep-fatigue damage satisfies the accuracy requirements for

the range of the cycles to rupture 102 < NA < 104 corresponding to low-cycle

fatigue damage within the GJV material, and allows us to estimate the lifetime

of the material with accuracy factor of 2.

The accuracy of the extrapolation approach used in the identification of

the creep-fatigue damage model is checked through the comparison of the

estimated number of cycles to rupture obtained by the complete integration

of the constitutive equations with the extrapolated results (Sect. 6.3). Mainly,

the developed extrapolation approach within the range of low-cycle fatigue

exhibits an underestimation of the lifetime of 4 − 5%. Taking into account

general accuracy of the material’s lifetime prediction, the obtained accuracy

of the extrapolation is sufficient not only for the identification of the constitu-

tive model, but also for the application in the industrial-oriented simulations.

In order to check the correspondence of the uniaxial and the three-

dimensional formulations of the constitutive model and to check its realiza-

tion in program code, the equivalent values of stress σvM, strain εeq and in-

elastic strain ε
p

vM
are compared with the scalars utilized in the uniaxial model

(Sect. 6.4). The obtained results indicate that the constitutive model is cor-

rectly utilized inside the finite element code.

In general, the identified constitutive model exhibits the sufficient quality

in the description of the inelastic behavior and in the estimation of the lifetime

of the GJV cast iron.
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7
Conclusions

7.1 Summary

Within the current work, the step-by-step identification approach for the for-

mulation of constitutive models for cast irons was developed. The identified

constitutive model includes the elastic and inelastic material behavior, creep

damage, fatigue damage and creep-fatigue damage interaction. One of the

ideas followed within the work was to split the general identification problem

into sub-problems of less dimensions, which were solved by means of simple

and representative identification approaches and simplify the identification

of advanced constitutive models for mechanical engineers.

Before the identification problem, continuum mechanics relations were

discussed (Chapt. 2). According to the target class of materials, infinitesimal

strains were assumed. The strain tensor takes into account three parts includ-

ing the elastic, thermal and inelastic contributions into the deformation pro-

cess. The elastic part within the framework of current materials was assumed

to be physically linear for the undamaged state. The increase of damage above

0.9 leads to strong nonlinearity of elastic material properties. In order to de-

scribe the contribution of the thermal expansion, the linear isotropic constitu-

tive relation for thermal strains was used. The constitutive model used for the

inelastic behavior of the material is based on Odqvist flow rule [50, 60]. The

kinematic hardening is introduced by model of Frederick and Armstrong [19]

and implemented by means of active stress principle [39, 50]. The creep dam-

age is included into the material model according to Kachanov-Rabotnov ef-

fective square principle [25, 75]. In order to predict the lifetime of the material

during cyclic loading, the continuum fatigue damage model was considered
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and the non-linear creep-fatigue damage rule was introduced. In general, the

formulation of the sketch for the constitutive model includes the postulated

material-independent part and material-dependent functions requiring fur-

ther identification procedures.

Within Chapt. 3 the identification problem was presented in a generalized

way and in particular form for target class of cast irons. Within this chapter

the useful identification approaches were introduced. Additionally, the set of

experimental data for GJV cast iron was presented.

The complete identification problem has been split into the pri-

mary (see Chapt. 4) and secondary identification stages (see Chapt. 5). The

primary step is focused on the determination of the material-dependent func-

tions of the constitutive model and the preliminary estimation of the vector

of material parameters. This identification step requires experimental data

which may show the natural processes taking place in the material in ex-

plicit form. However, the approach is not completely limited by the above-

mentioned requirement because in some cases the processing and recalcu-

lation of the experimental data with respect to the determined part of the

constitutive model allows us to obtain the evaluated experimental values for

the implicit processes, i.e. hardening, damage, etc. In particular, the primary

identification step includes the following items:

1) The identification of the function for Young’s modulus according to

available experimental data.

Within the framework of current works, the elastic material properties

were given by the discreet values of Young’s modulus with respect to

temperature. The influence of the damage at this stage was neglected.

2) The identification of the inelastic behavior of the material.

Within the current step of identification, the concept of the initial and

steady inelastic strain rates was introduced. The identification of the

initial and steady inelastic strain rates utilized the experimental data

from the primary and secondary stages of creep curves and tensile

tests. The measurement scheme for representative values of the inelas-

tic strain rates were introduced. The response functions of stress and

temperature were determined within the current step of the identifica-

tion.

3) The identification of the hardening saturation and hardening rate func-

tions.

The identified functions for initial and steady inelastic strain rates al-

low us to determine the hardening saturation function β∗ analytically.
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The hardening rate function µh was determined by means of the de-

composition of the experimental data from the creep tests according to

the identified functions for the initial and steady inelastic strain rates

and hardening saturation function. In addition, the semi-analytical ap-

proach for the identification of the hardening saturation and hardening

rate for the specific loading conditions was developed.

4) The identification of the creep damage function.

The procedure used the experimental value of the inelastic strains at the

rupture moment. The identification is focused on the determination of

the inelastic rupture strain function ε∗p with respect to temperature and

stress loads.

5) The identification of the structure and guess of the material parameters

for the fatigue damage evolution equation.

The primary identification was based on the idealized isothermal cycle

with saw-type kinematic loads. The fatigue damage evolution law was

integrated for the single loading cycle and the increment of the fatigue

damage was obtained.

6) The creep-fatigue damage interaction model was described.

The introduced function was proposed in order to represent by the con-

stitutive model the damaging processes taking place at the slow creep-

like regimes and fast cyclic loads.

Finally, the primary identification step gave the complete constitutive model

of the material including the elastic, inelastic and damage properties. The ap-

plication of the constitutive model at the current stage of development was

limited only on the loads observed in the creep tests and LCF tests. The appli-

cation of the constitutive model for the simulation of the thermo-mechanical

behavior of the material is not recommended.

The secondary identification step was developed in order to include the

experimental data into the identification process, which were no used in

the primary identification. This data are mainly belong to TMF tests. The

secondary identification step was based on the numerical optimization ap-

proach. In particular, the following features and mechanisms were developed

within the secondary identification step:

1) The introduced weight functions allows us to involve into the identifi-

cation additional features to the constitutive model, i.e. restrictions in

the loading ranges, assurance of the experimental data, major regimes

of the loads in design, etc.
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2) The enchanted extrapolation algorithm was developed in order to re-

duce the computation cost during the simulation of the lifetime of the

material at certain loads.

3) The developed optimization-based identification algorithm includes

the facilities for the multiprocessing during the computation of the error

functional ξ, which significantly increases efficiency of the algorithm.

4) The different forms of error functions were considered. The estimated

errors of the experimental data were taken into account.

5) The facility of the transformation of the restricted optimization problem

into an unrestricted optimization problem was considered.

The constitutive model obtained after the secondary identification step can

be used for a range of the loading conditions, which was assigned by the

weights functions and available experimental data. It must be mentioned,

that the secondary identification is a time-consuming. However, the contri-

bution of the "hand work" within the current step is significantly lower then in

the primary identification step, and the major consumption of the approach

is due to the machinery time. For instance, in case of GJV cast iron, whose

complete constitutive model has 20 parameters, the comparison of the time-

consumption of the secondary identification step to the primary step is about

3/2.

The work is finalized by the verification procedures (see Chapt. 6), that is

necessary for the estimation of the quality of the obtained constitutive model.

The verification includes the following steps:

1) Verification of the extrapolation approach used within the secondary

identification.

2) Simulation of the TMF tests which were not used within the identifica-

tion.

a) Verification of the constitutive model for the inelastic material be-

havior. The simulation of the stress response during TMF loading

cycle and comparing with the experimentally observed stresses.

b) Verification of the creep-fatigue damage model. The numerical es-

timation of the time to the rupture and its comparison with the

experimentally measured lifetime of specimen are performed.

3) Verification of the equivalents used in the formulation of the constitu-

tive model for the three-dimensional loading case.
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7.2 Restrictions

The developed identification algorithm is valid for the materials which exhibit

the linear the elastic material properties, work at small deformations, and, do

not represent the significant softening behavior. The flow rule introduced in

the constitutive model is sufficient for description of the isotropic creep be-

havior and includes Kachanov-Rabotnov type of creep damage. The creep and

fatigue damage models proposed within the current work are valid for the es-

timation of the isotropic creep-fatigue damage in the material.

It must be mentioned, that the identification scheme do not require the

significant modification in case of the extension of the constitutive model for

the anisotropic elasticity.

7.3 Outlook

The further development of the presented identification technique can be

continued in different directions. The structure of the research is shown in

Fig. 7.1.
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Figure 7.1: Research scheme of the identification problem

As presented in Fig. 7.1, the research includes two main parts belonging

to the phenomenological structure of the constitutive model and methodol-

ogy utilized within the identification problem. The structure of the consti-

tutive model identified in the current work is restricted for a limited num-
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ber of cases. The changes in the structure of the constitutive model can

lead to the necessity to modify the primary identification scheme. For exam-

ple, the elastic properties are formulated as temperature-dependent functions

and affected by the damage on the final stage of cycling before the failure.

The consideration of the anisotropic elasticity in this case requires the addi-

tional development of the primary identification step. The inelastic flow rule

is formulated for the isotropic creep and switching to the anisotropic creep

model requires to consider a modified inelastic flow rule [50]. The changes of

the phenomenological structure of the constitutive model (e.g. including of

anisotropic creep-fatigue damage model, including multiple hardening func-

tions, introduction of the softening mechanisms) necessarily leads to the need

to change the primary identification step, and, therefore, requires to develop-

ment of corresponding identification strategy.

The application of the optimization-based identification is time-

consuming and, despite the flexibility, is not completely suitable for the

identification of the constitutive model for the fatigue damage. Therefore, the

perspective directions of the development of the approach is the replacement

of the conjugate-directional Powell’s method [72] by the Simplex method [53],

or even the complete replacing of an optimization by a neural network [88].

Besides the mentioned facilities, the enchanted extrapolation scheme may

be replaced by two time-scales approach [15], whose application in the

estimation of the lifetime of the material supposedly leads to a 5− 50 times

decrease of the computational time.

Finally, the simplification of the identification scheme for the use and its

realization in software with a unified user interface is one of the perspective

directions of current research. The simple, fast and convenient automation of

the developed identification strategy is an actual problem, whose solution is

attractive and useful for industrial mechanical engineers.
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