
Iterative Methods for Solving Nonlinear Monotone
Operator Equations with Applications in
Compressive Sensing and Motion Control

Dissertation

zur Erlangung des Doktorgrades der Naturwissenschaften

(Dr. rer. nat)

der

Naturwissenschaftlichen Fakultät II, Chemie, Physik und Mathematik

der

MARTIN–LUTHER–UNIVERSITÄT HALLE–WITTENBERG

vorgelegt von

Herrn Abubakar Bakoji Muhammad

geboren in Gombe, Nigeria

Gutachter:

1. Frau Prof. Dr. Christiane Tammer (Martin–Luther–Universität Halle–Wittenberg)

2. Herr Prof. Dr. Axel Kröner (Martin–Luther–Universität Halle–Wittenberg)

3. Herr Prof. Dr. Jen-Chih Yao (China Medical University Taiwan)

Tag der Einreichung: 10.06.2024

Tag der Verteidigung: 28.10.2024

To my family

Acknowledgments

My profound gratitude goes out to my able supervisor, Prof. Dr. Christiane Tammer, for her unwaver-

ing support, guidance, insightful conversations, and innovative ideas. She is also very kind and patient,

especially during difficult times. Her encouragement during the course of this program is truly excep-

tional, among the best one could find anywhere, and is most appreciated. It was a great joy and a unique

experience to work with her. When I joined her research group, she accepted me warmly and helped me

with both my research and my personal life. Our conversations were always quite fruitful because of

her warmth and extensive knowledge of the subject, which gave me a lot of confidence when things got

tough. Secondly, I would like to thank Dr. Rosalind Elster most sincerely for the joint work and careful

reading of the thesis, which provided many valuable suggestions. I can’t find the right words to express

my gratitude for all the support you’ve provided. In addition, I would like to express my gratitude to all of

my coauthors for their inspirational collaborative work, for dedicating time to mathematical discussions,

and for their friendship.

In addition, I would like to thank my colleagues at the Institute of Mathematics, Uni-Halle, in particular

all the current and former members of the working group on Optimization and Stochastics, including Dr.

Christian G., Dr. Niklas H., Dr. Ernest Q., Dr. Bettina Z., Dr. Marcus H., Dr. Marcel M., Baharey K.,

Khalid I. U., and Mustapha I. Special thanks to Tuan An Vuh and his beloved wife, Tam Thanh Le, for

their support during my early challenging years in Halle. I also want to thank our former and present

administrative staff for their support. Also, to Mrs. Smykalla of the university’s former International

Office and Mrs. Klaube of the Dean’s office, I say a very big thank you.

Furthermore, I am grateful to the Nigerian-German scholarship program, specifically PTDF Nigeria and

DAAD Germany, for providing financial support for my PhD program. I also acknowledged the support

from my home university, Gombe State University, Nigeria.

I would like to express my profound gratitude to my family for always being there for me. A special

thanks to my beloved parents for their constant support, prayers, and unconditional love; without their

sacrifices, I would not have made it this far. I am very much indebted to my dear wife, Mrs. Zainab Isah,

and our beloved children, Al’ameen and Abdallah, for their patience, constant prayers, and emotional

support during the hardest times. I am especially grateful to all my siblings and extended family members

for their unwavering love and support. Special thanks to my second family in Halle, Maman Chinaza and

her kind husband, Mr. Eric Ezeani. You guys are wonderful. Lastly, I would like to express my profound

gratitude to all of my friends for their support, prayers, and trust in me. I will always remember your

contributions, in one way or another.

Contents

1 Introduction 1

2 Mathematical Background 10
2.1 Fundamentals of Functional Analysis . 10

2.1.1 Linear Spaces and Order Structure . 10

2.1.2 Metric Spaces . 16

2.1.3 Normed Spaces . 17

2.1.4 Lipschitz Continuity . 23

2.2 Properties of Operators and Functions . 24

2.3 Reformulation of ℓ1–Norm Regularization in Compressive Sensing 35

2.4 Line Search . 36

2.5 Overview of Solution Methods for Unconstrained Optimization Problems 38

2.5.1 Steepest Descent Method . 39

2.5.2 Newton Methods . 40

2.5.3 Quasi–Newton Methods . 41

2.5.4 Conjugate Gradient Method . 42

2.5.5 Spectral Gradient Method . 45

2.5.6 Spectral–Conjugate Gradient Methods . 45

3 Derivative–Free Algorithms for Nonlinear Systems of Equations 47
3.1 Algorithm 1: Modified Dai–Yuan Projection Methods (MDY) 48

3.2 Algorithm 2: HCDLS Method . 52

3.3 Algorithm 3: Three–term Dai–Liao Projection (TDLP) Method 54

3.4 Convergence Analysis of Algorithms 1, 2 and 3 . 57

4 Two–Step Projection Methods 64
4.1 Inertial–Type Projection Method . 64

4.1.1 Conjugate Gradient and Spectral Gradient Algorithms with Inertial–Step 65

4.1.2 Convergence Analysis of Algorithm 4 (CGAIS) and Algorithm 5 (SAIS) 68

4.2 Two–Step Hybrid Spectral Gradient Projection Method 72

4.2.1 Proposed Algorithm . 73

4.2.2 Convergence Analysis of THSP Algorithm . 78

CONTENTS vii

5 Numerical Experiments 81
5.1 Experiments with the Derivative–Free Algorithms . 81

5.1.1 Numerical comparisons of Algorithms 1, 2 and 3 82

5.1.2 Numerical Comparisons of Algorithm 3 (TDLP) with DPP and CGPM Methods 86

5.2 Numerical Experiments and Comparisons for Algorithms 4 and 5 87

5.2.1 Numerical Comparisons of Algorithm 4 (CGAIS) With CGWOI Method 88

5.2.2 Numerical Comparisons of Algorithm 5 (SAIS) With DAIS 1 and DAIS 2 Methods 90

6 Applications in Compressive Sensing and Motion Control Problems 92
6.1 Applications in Compressive Sensing . 92

6.2 Applications in Motion Control Problems . 99

7 Application for Solving Vector-Valued Approximation Problems 104
7.1 Formulation of the Problem . 104

7.2 Solution Concepts in Vector Optimization . 105

7.3 Weighted Sum Scalarization Approach . 107

7.4 Formulation of the Multiobjective Approximation Problem 110

7.5 Application of Algorithm 3 (TDLP) for Solving Vector-Valued Approximation Problems 112

8 Conclusion and Outlook 115
8.1 Conclusion . 115

8.2 Future Outlook . 117

8.3 Summary of Contributions . 117

List of Symbols and Abbreviations

:= equal by definition

Z set of integers

N natural numbers, that , N := {1,2,3, . . .}
N0 N∪{0}
R real numbers

Rn n-dimensional Euclidean space

Rn
+ nonnegative orthant of Rn

Rn standard ordering cone in Rp

R+ set of nonnegative real numbers

R++ positive real numbers

R R := R∪{+∞}
∥ · ∥ norm ∥ · ∥ : X → R
⟨·, ·⟩ Euclidean scalar product or inner product

∥ · ∥1 Manhattan norm ∥ · ∥1 : Rn → R (also known as ℓ1-norm or Lebesgue norm)

∥ · ∥2 Euclidean norm ∥ · ∥2 : Rn → R (also known as ℓ2-norm)

∥ · ∥∞ Maximum norm ∥ · ∥∞ : Rn → R (also known as ℓ∞-norm or Chebyshev norm)

∥ · ∥p p–Norm, 1 ≤ p ≤±∞ (also known as ℓp-norm)

E(f) Epigraph of f : X → R
X ,Y,Z, . . . real linear spaces or topological linear spaces

K cones (in X ,Y,Z)

K-convex cone-convex (function)

intK interior of a cone K

K∗ dual cone to K

≥K , ≤K a partial ordering relation generated by K

X∗ the topological dual space of X

f : X → Y function with preimage space X and image space Y

||·||X , ||·||∗ norm in X , norm in X∗

dom f domain of a vector–valued function f : X → Y

F : X ⇒ Y Set-valued mapping

D(F) domain of a set–valued function F : X ⇒ Y

G(F) graph of F : X ⇒ Y

(X ,⟨·, ·⟩) inner product space

(X ,∥ · ∥X) norm space

∂ f (x0) Fenchel subdifferential of a function f : X → R at x0 ∈ X

N(x0,E) normal cone N of the set E at the point x0

xn → x (strong) convergence of a sequence {xn} to x

xn ⇀ x weak convergence of a sequence {xn} to x

f [E] f [E] := ∪x∈E f (x) for f : E → Y

Eff(f [E],K) set of Pareto efficient element E w.r.t. objective function f and the cone K, i.e.,

Eff(f [E],K) := {y0 ∈ E | f [E]∩ (y0 − (K \{0})) = /0}
EffW(f [E],K) set of weakly minimal elements of E w.r.t. objective function f and the cone K, i.e.,

EffW(f [E],K) := {y0 ∈ E | f [E]∩ (y0 − intK) = /0}
EffP(F [E],K) set of properly efficient elements of E with respect to the cone K, i.e.,

EffP(F [E],K) := {y0 ∈ E | f [E]∩ (y0 − (K̄ \{0})) = /0}
Min(f [E],K) set of minimal solutions of E w.r.t. objective function f and the cone K, i.e.,

Min(f [E],K) := {x ∈ E| f (x) ∈ Eff(f [E],K)}
MinW(f [E],K) set of weakly minimal solutions of E w.r.t. objective function f and the cone K, i.e.,

MinW(f [E],K) := {x ∈ E| f (x) ∈ EffW (f [E],K)}
CS Compressive Sensing

MDY Modified Dai-Yuan method

HCDLS Hybrid CG method as a convex combination of Conjugate Descent and Liu–Storey

TDLP Three term Dai–Liao Projection method

CGAIS Conjugate Gradient Algorithm with Inertial–Step

CGWOI Conjugate Gradient algorithm WithOut Inertial–Step

SAIS Spectral gradient Algorithm with Inertial–Step

TSHP Two-Step Hybrid Spectral Gradient Projection Method

List of Figures

1.1 The original Mars image (top left), the blurred image (top right), the restored image by

MDY1 (bottom left) and by MDY2 (bottom right) . 2

1.2 A 2-dimensional planar robot arm. 5

2.1 Unit balls for the norms: ∥ · ∥1,∥ · ∥2 and ∥ · ∥∞ on R2. 19

2.2 Representation of: convex, concave, non-convex and epigraph of the functional f (where

f : X → R∪{+∞}) [reprinted from [94, Figures: 2.1, 2.4, 2.5, 2.6]. 22

3.1 Illustration of the metric projection of Algorithm 1 adapted from the Figure 1 in Abubakar

et al. [1] . 52

5.1 Performance profile based on number of: Iterations, Function Evaluations CPU Time. . . 85

5.2 Percentage Data Profile of MDY2, HCDLS and TDLP methods. 86

5.3 Performance profile based on number of: Iterations, Function Evaluations CPU Time . . 87

5.4 Performance profiles based on number of iterations (ITER) [reprinted from [125, Figure

1]]. 89

5.5 Performance profiles based on number of function evaluations (FVAL) [reprinted from

[125, Figure 2]]. 89

5.6 Percentage Data Profile of CGAIS, CGWOI and HSS methods [reprinted from [125,

Figure 3]]. 90

5.7 Performance profiles based on number of iterations and function evaluations [reprinted

from [125, Figures 4 and 5]]. 91

6.1 Reconstruction of sparse signal. From top to bottom is the original signal, the measure-

ment and the reconstructed signals by the: TDLP, HCDLS and MDY1. 97

6.2 Comparison results of the TDLP, HCDLS and MDY1 Algorithms. The x–axis represents

the number of iterations (top and bottom left) and the CPU time in seconds (top and
bottom right), while the y–axis represents the MSE (top left and right) and the function

values (bottom left and right). 97

6.3 Original images (first column), blurred images (second column), restored images by: the

TDLP Algorithm (third column), the HCDLS Algorithm (fourth column) and the MDY2

Algorithm (fifth column) . 99

x

6.4 The robot’s trajectories path and residual errors ε(tk+1) along x and y axes of the motion

control model for the Lissajous curve q(1)dk of Algorithm 7 (MCGAIS) [reprinted from

[125, Figure 6]]. 102

6.5 The robot’s trajectories path and residual errors ε(tk+1) along x and y axes of the motion

control model for the Lissajous curve q(2)dk of Algorithm 7 (MCGAIS) [reprinted from

[125, Figure 7]]. 103

7.1 The set Eff(F,K) and the set EffW(F,K) of a set F w.r.t. K = R2
+ with y1,y2 /∈ Eff(F,K). 106

7.2 Representatives of the set of approximate solutions of Problem (Pm) generated for λ̄ =

[1,1], λ̂ = [4,4] using Algorithm 8 (where Algorithm 3 (TDLP) is involved in Step 3)

and the involved Problems (P(tk+1, λ̄ , λ̂)). The element (f1(x0), f2(x0)) (in red) is the

approximate solution of (Pτ) with τ = 0.008∥AT b∥∞ generated in Section 6.1 using Al-

gorithm 3. 113

List of Tables

5.1 The initial points used for Algorithm 1, 2, 3, 4 and 5 . 82

6.1 Twenty experimental results for sparse signal recovery. 95

6.2 Approximate solutions x̄ := xk ∈ Rn for the sparse signal recovery experiments of Algo-

rithm 1 (MDY1), Algorithm 2 (HCDLS) and Algorithm 3 (TDLP). 96

6.3 Numerical results of TDLP, HCDLS and MDY2 methds in image restorations. 98

Chapter 1

Introduction

Mathematics as an important tool for understanding diverse areas of applications in sciences and engi-

neering as well as social sciences, is worth devoting ample time and energy to study it more. In recent

years, different areas of interesting and fascinating real-world applications in science and engineering,

medicine, social sciences, and finance have continued to emerge. It is therefore of utmost importance to

develop algorithms to solve these mathematical problems. The algorithms developed in this thesis are

very important for solving real world problems as described in the following.

Problem P1: Compressive Sensing
The study of Compressive Sensing (CS) usually comes up in electrical engineering, computer science,

and applied mathematics. The term compressive sensing was coined based on the idea that data acquisi-

tion and compression can be performed simultaneously.

It has been noted in the literature that different types of signals are sparse. This suggests that a small

number of non-zero coefficients can be optimally approximated on an acceptable basis. This is why

many signals are compressible and compression algorithms like the Joint Photographic Experts Group

(JPEG), Moving Picture Experts Group (MPEG), or MP3 work well in practice. JPEG, for example, takes

advantage of the fact that images are typically sparse in the Discrete Cosine Basis (DCT) or wavelet basis

and compresses them by merely storing the greatest DCT coefficients. When decompressing an image,

all non-stored coefficients are simply set to zero. Figure 1.1 illustrates how natural images are sparse

in the wavelet domain. The goal is usually to recreate these types of vectors using incomplete linear

information. This results in an under-determined linear system. In general, an under-determined linear

system can have an infinite number of solutions. However, by including more sparsity information, it is

possible to identify the correct solution under certain conditions.

The CS are widely used in the medical sciences, biological engineering and other fields of science and

engineering [21, 36]. The CS problem involves recovering a sparse signal, x, from the linear system

Ax = b,

where the vector b ∈ Rk represents the observations, while the sensing matrix is represented by the

linear operator A ∈Rk×n(k << n). In an attempt to search for the sparsest signal among the solution set,

1

2

the above system of linear equations is converted into the following so-called ”ℓ0–norm” optimization

problem with constraints:

Figure 1.1: The original Mars image (top left), the blurred image (top right), the restored image by

MDY1 (bottom left) and by MDY2 (bottom right)

min
x
{∥x∥0 : Ax = b}, (1.1)

where ∥x∥0 is given by the number of non-zero components of a vector x ∈ Rn and is called ℓ0-norm.

Unfortunately, ∥ · ∥0 does not satisfy the conditions of being a norm or a positively homogeneous set.

However, due to the difficulty associated with ∥ · ∥0, an alternative approach is to replace it with the

ℓ1–norm (see [38]), that is,

min
x
{∥x∥1 : Ax = b}, (1.2)

where ∥x∥1 :=
n
∑

i=1
|xi|. Under some mild assumptions, problem (1.2) has been shown to produce the

desired results with some acceptable degrees of accuracy. When the measurements are affected by some

noise, the constraint in (1.2) is usually relaxed to the following regularized least squares problem (in the

literature [31, 64, 78] also named Lasso problem):

min
x

τ∥x∥1 +
1
2
∥Ax−b∥2

2, (1.3)

where τ is a positive regularization parameter, ∥ · ∥2 represents the Euclidean norm of Rn. We refer the

reader to Chapter 2, Section 2.3 for the reformulation of ℓ1–norm regularization in compressive sensing.

3

Some algorithms for signal reconstruction have been developed over the years. However, researchers

continue to propose algorithms designed to operate with a limited number of measurements. As a result,

there is an interesting and important area of research dedicated to developing optimal explicit measure-

ment matrices and all known ”good” matrix constructions that involve randomness. This discovery has

a lot of potential applications in signal and image processing.

Problem P2: Robotic Motion Control Problem
On the other hand, the study of robotics is an important aspect that takes engineering toward synthesis.

This makes this field so interesting to investigate. This area of study focuses on the goal of synthesizing

some difficult aspects of human function through the use of mechanisms, computers, actuators, and

sensors.

There are basically two major reasons for the growth in the number of robots used in industries. One

is cost effectiveness, that is, working with robots has become relatively cheaper compared to the cost of

human labor. The second reason is the ability of the robot to effectively carry out tasks that might be

dangerous or even impossible for human workers to perform.

In general, the study of the mechanics and control of manipulators is not a new science, but rather a

collection of topics derived from ”classical” sciences. Mechanical engineering provides strategies for

studying machines in both static and dynamic conditions. Mathematics provides the necessary tools for

characterizing spatial motions and other properties of manipulators. Control theory provides tools for

creating and evaluating algorithms that achieve the desired motions or force applications. Electrical en-

gineering skills are used to construct sensors and interfaces for industrial robots, while computer science

provides a foundation for programming these devices to accomplish a particular task, see, for example,

the book by John [97].

The location of objects in a three-dimensional space is of great interest in robotics research. The objects

involved in the manipulator’s operations, such as its linkages, parts and tools, are characterized by two

attributes, namely, location and orientation. The mathematical representation and manipulation of these

quantities is the point of interest in our study.

In what follows, we give a brief introduction to the following useful terminologies:

A Description of position and orientation

The positioning of objects in a three-dimensional space is an ongoing problem in robotics research.

These objects include the manipulator’s connections, the components and equipment it uses, and other

items located in its surroundings. We can summarize these elements into two fundamental yet crucial

characteristics: position and orientation. Of course, one area of urgent concern is how we express and

manipulate these quantities mathematically.

Every time we describe a body’s orientation and position in space, we firmly attach a coordinate system

or frame to it. The frame’s location and orientation relative to a reference coordinate system is then stated.

We frequently consider converting or changing the description of a body’s location and orientation from

one frame to another since any frame might serve as a reference system for representing these features.

4

Forward kinematics of manipulators

Kinematics is the study of motion, regardless of the forces that cause it. The area of kinematics science

focuses on the study of position, velocity, acceleration, and other higher-order derivatives. Position

variables relate to time or other factors. Therefore, the study of manipulator kinematics encompasses all

geometrical and time-based aspects of motion.

Virtually rigid links, connected by joints that allow neighboring links to move relative to one another,

make up manipulators. These joints generally include position sensors, which allow for monitoring

the relative positions of adjacent links. These displacements are known as joint angles in rotary or

revolute joints. Some manipulators include sliding (or prismatic) joints. These joints translate the relative

displacement between links, also referred to as the joint offset.

The manipulator’s number of degrees of freedom refers to the number of independent position variables

required to locate each component of the mechanism. This broad term applies to any mechanism. De-

spite having three movable components, a four-bar connection has just one degree of freedom. Industrial

robots have the same number of joints as degrees of freedom because their manipulators are open kine-

matic chains with a single variable describing each joint position.

The end-effector is located at the free end of the manipulator’s link chain. The robot’s end-effector could

be a gripper, an electromagnet, a welding torch, or another device, depending on its intended purpose. To

define the position of the manipulator, we frequently establish the relationship between the base frame,

which is coupled to the manipulator’s stationary base, and the tool frame, which is attached to the end-

effector.

Forward kinematics is a fundamental issue in mechanical manipulation studies. This is the static geo-

metrical problem of determining the manipulator’s end-effector’s location and orientation. The forward

kinematic problem specifically aims to determine the orientation and location of the tool frame with re-

spect to the base frame given a set of joint angles. You can also conceptualize this as transforming the

joint space description of the manipulator position into a Cartesian space description.

According to [176], the discrete–time kinematics equation for a two-jointed planar robot manipulator at

the position level is given as

f (θk) = qk. (1.4)

The vectors θk ∈R2 and qk ∈R2 represent the joint angle and the end effector location, respectively. The

function f (·) is a kinematics mapping that maps the position and orientation of a robot’s end effector,

say, qk = (xe,ye)
T with the following known structure

f (θk) =

ℓ1 cos(θ1)+ ℓ2 cos(θ1 +θ2)

ℓ1 sin(θ1)+ ℓ2 sin(θ1 +θ2)

 , (1.5)

where ℓi (i = 1,2) is the length of the ith rod. In view of robotic control, we need to solve the following

minimization problem

min
qk∈R2

f (qk), where f (qk) =
1
2
∥qk −qdk∥2, (1.6)

5

Figure 1.2: A 2-dimensional planar robot arm.

qdk is the end-effector control track at each computational time intervals tk ∈ [0, t f], where t f is the end

of task duration. The end-effector is controlled to track a Lissajous curve, expressed as

qdk =

 3
2 +

1
5 sin(πtk

5)
√

3
2 + 1

5 sin(2πtk
5 +(π

3))

 , (1.7)

see the geometrical representation of a 2-dimensional robot planar arm in Figure 1.2. For further infor-

mation about robotic motion control, we refer the reader to Chapter 6, specifically, Section 6.2.

Like the specific Problems P1 and P2 mentioned above, there are numerous real-world problems that

arise in engineering, biology, economics, mathematical finance, machine learning, statistics, physics,

and other branches of science that usually lead to nonlinear optimization problems of the form

min{ f (x) : x ∈ Rn}, (1.8)

with the continuously differentiable cost function f : Rn →R bounded from below. Nonlinear optimiza-

tion problems are of significant interest from a theoretical as well as practical point of view. In general,

one of the greatest difficulties associated with solution methods for nonlinear problems, of which (1.8)

is a specific example, is the inability to always obtain exact solutions analytically, meaning that the exis-

tence of solutions or their well-posedness and compactness may not always be guaranteed. As a result,

people turn to iterative techniques as a substitute for obtaining their approximate solutions.

An iterative method is a mathematical procedure that uses an initial estimate, say x0, of the solution, say

x∗, to generate a sequence of approximations, say x1, x2, . . . , that converges in the vicinity of the solution

x∗. The main objective of an iterative technique is to create methods that converge to the approximate

solution from the given initial estimate as quickly as possible. Iterative methods are often useful for

problems with a large number of variables in which analytical methods would be prohibitively expensive.

6

Iterative methods such as Newton methods, quasi-Newton methods, conjugate gradient methods, spectral

gradient methods, and so on, have been widely employed to solve the general unconstrained optimization

Problem (1.8). One of the efficient approaches usually employed to solve (1.8) is the use of line search

method; see, for example, [57, 90, 129]. Given a suitable starting point x0 ∈Rn, such methods utilize the

following iterative procedure:

xk+1 := xk +αkdk, k ≥ 0. (1.9)

The scalar αk > 0 represents the step–size or step–length, at iteration k, usually computed with the

aid of suitable line search techniques. The vector dk ̸= 0 represents the search direction, determined

using various methods (namely, Newton methods, quasi–Newton methods, spectral gradient methods,

conjugate gradient methods and so on).

It is worth noting that under the differentiability assumption, a well–known necessary optimality condi-

tion for Problem (1.8) is:

x∗ is a minimizer of f =⇒ ∇ f (x∗) = 0.

This fact is called the first-order necessary optimality condition for a minimizer x∗ of Problem (1.8).

Now, we consider the following system of nonlinear equations with constraint x ∈ Ψ ⊆ Rn such that

F(x) = 0. (1.10)

The gradient of f in Problem (1.8) is viewed as the function F : Rn → Rn in Problem (1.10), that is,

F := ∇ f . Note that the objective function in Problem (1.8) is a real-valued function, but its gradient is a

vector-valued. As a result, algorithms for solving the general unconstrained optimization Problem (1.8)

can be adapted to handle the nonlinear monotone operator Problem (1.10).

The main goal of the line–search is to produce step–lengths that will guarantee {∥F(xk)∥} is nonincreas-

ing in every successive iterations. On the other hand, the search direction dk ∈ Rn is a crucial part of the

recursive formula (1.9) and can be computed by different methods. For instance, the classical choice for

the search direction dk := −F(xk) for all k is the most popular choice because it mimics the behaviour

of the well-known steepest descent method for solving general unconstrained optimization problem; see

[24, 33, 57, 90, 138] for further details.

The following are different approaches for determining the search direction dk in (1.9) which lead to

different iterative methods:

• Newton methods: d0 = −F(x0) and dk = −J(xk)
−1F(xk), for k ≥ 1, J(xk) = ∇F(xk) is the exact

Jacobian matrix, see, for examples, [26, 57, 90, 99, 100, 101, 102, 121, 128] and the references

therein,

• Quasi–Newton methods: d0 = −F(x0) and dk = −A(xk)
−1F(xk), for k ≥ 1, A(xk) is an approxi-

mation of the Jacobian matrix, see, for examples, [124, 134, 151] with further references therein,

• Spectral gradient methods: d0 = −F(x0) and dk = −λkF(xk), for k ≥ 1, λk > 0 is the spectral

gradient parameter, see for examples [29, 30, 125, 141],

• Conjugate gradient methods: d0 = −F(x0) and dk = −F(xk)+ βkdk−1, for k ≥ 1, βk > 0 is the

conjugate gradient parameter, see [1, 46, 59, 61, 82, 115, 135, 137] and the references therein,

7

• Spectral conjugate gradient methods: d0 =−F(x0) and dk =−λkF(xk)+βkdk−1, for k ≥ 1, λk > 0

and βk > 0 are the spectral and conjugate gradient parameters, see [14, 28, 113, 123],

For more details about the aforementioned methods for finding the search directions dk, we refer the

reader to Chapter 2, Section 2.5.

In this thesis, we consider Problem (1.10), where the point x is constrained within the set Ψ⊆Rn. Specif-

ically, we are looking for a vector x ∈ Ψ ⊆ Rn for which (1.10) holds. The feasible set Ψ is assumed to

be nonempty, closed, and convex. Thus, we refer to Problem (1.10) as a system of nonlinear monotone

operator equations which has numerous practical applications across different fields. Many mathematical

problems arising from many applications, such as fixed point problems, differential equations, variational

inequality problems, and so on, can be reformulated into Problem (1.10) (see [104, 116, 154, 155]). Fur-

thermore, Problem (1.10) also appears as a sub-problem in generalized proximal algorithms that use

Bregman’s distances [89]. Optimization problems containing least square errors and ℓ1–norm regular-

ization problems arising in compressive sensing can equally be translated into Problem (1.10) [75, 167].

These applications underline the importance of Problem (1.10) and also the importance of efficient algo-

rithms with minimal computational costs for solving it.

The iterative technique (1.9) can be modified by incorporating two starting points, say x0 and x−1. The

technique is known as Inertial-type algorithm, which defines its recursive formula as

wk := xk +αk(xk − xk−1), k ≥ 0, α > 0. (1.11)

Inertial-type algorithms are iterative algorithms that use an inertial step (1.11). These methods are based

on the heavy-ball approach pertains to the second-order-in-time dissipative dynamical system. In 1964,

Polyak [136] began investigating inertial extrapolation as a speed-up approach for solving smooth convex

minimization problems. Inertial-type methods are two-step iterative schemes in which the next iterate is

determined by using the previous two iterates [25]. In order to speed up the iteration process, an inertial

extrapolation term is required to accelerate the iterative sequence. Inertial-type methods speed up the

iterative process to get the desired output. There is a growing interest in inertial-type algorithms for

optimization, variational inequalities, and monotone inclusions, as evidenced in the references [17, 50,

143, 144, 146, 162]. Several studies have shown that iterative algorithms for solving the aforementioned

nonlinear problems with an inertial step perform better numerically in terms of the number of iteration

and time of execution compared to their counterparts without the inertial step. These two key advantages

attract the researcher’s interest in developing novel inertial–like methods.

Given a starting point, say x0, a classical iterative algorithms (such as Newton’s method and its variants

as well as quasi-Newton methods) use the formula (1.9) to update their sequence of iterates. The search

direction dk in (1.9) is updated based on xk and its preceding point xk−1 as well as their images, that

is F(xk) and F(xk−1) (see, for example, [1, 73, 167, 168]). Incorporating the inertial step (1.11) into

algorithms for solving variational inequalities and split feasibility problems improves their numerical

performance. This brings up the following question: Does incorporating an inertial effect into a search

direction improve the numerical performance of conjugate gradient-like algorithms? This question is

answered in Chapter 5 (Sections 5.2.1 and 5.2.2, respectively).

8

The main new results in this thesis are listed below:

• Many algorithms have been presented and demonstrated to be efficient for solving convex con-

strained monotone operator equations of the type (1.10) in the literature. However, some of these

iterative methods may not be well-defined and do not satisfy the descent condition, which is very

critical to establishing global convergence results. As a result, we propose new derivative-free like

iterative algorithms by modifying the search directions (or, in some cases, proposing new ones)

and introducing new parameters, allowing us to get well-defined algorithms that satisfy the descent

condition while also having global convergence.

• We establish global convergence of the new algorithms under weaker assumptions, as seen in

the literature (for example, [1, 45, 46, 59, 114, 115, 123, 124, 175] and the references therein),

particularly under pseudomonotonicity assumptions and other classical assumptions.

• In the numerical experiments, we demonstrate that the new algorithms outperform established

methods in the literature [16, 178].

• We incorporate new inertial-like conjugate and spectral gradient algorithms that are well-defined

and satisfy the descent conditions. The obtained numerical performance of the new algorithms are

better than the state-of-the-art of similar existing methods; see, for example, [17, 125].

• Furthermore, we study several applications of our new methods, such as:

– The proposed methods aim to minimize a non-smooth minimization problem that includes a

least-squares data fitting term and a ℓ1-norm regularization term. Therefore, we tested our

new algorithms for solving the ℓ1-norm regularization problem in compressive sensing to

recover sparse signals and blurred images.

– In addition, we apply the inertial–like conjugate and spectral gradient algorithms for solving

motion control problems.

– Finally, we apply our methods for solving vector-valued approximation problems using a

suitable interactive procedure based on scalarization.

Structure of the Thesis
This thesis is structured as follows:

Chapter 2 provides the required mathematical background. For this reason, essential results from the

fields of linear algebra, linear and non-linear functional analysis, properties of operators and functions

as well as some basic notions from the field of multi-objective optimization will be reviewed. This

chapter also provides a reformulation for ℓ1–norm regularization in compressive sensing. An overview

of solution methods for unconstrained optimization problems will also be provided.

In Chapter 3, we establish the main results concerning the derivative-free algorithms for nonlinear sys-

tems of equations. Motivated by the results from the literature and Section 2.5, we introduce three main

iterative algorithms for solving Problem (1.10), namely:

9

• Algorithm 1 (MDY): Modified Dai–Yuan [46] projection methods for solving nonlinear monotone

operator Problem (1.10)

• Algorithm 2 (HCDLS): Hybrid conjugate gradient algorithm with spectral parameters as a convex

combination of the Conjugate Descent (CD) proposed by Fletcher in [59] and the method by Liu–

Storey (LS) derived in [115] for solving nonlinear monotone operator Problem (1.10)

• Algorithm 3 (TDLP): Three–term Dai–Liao [45] Projection method for solving nonlinear mono-

tone operator Problem (1.10).

We demonstrate that the descent condition of Algorithms 1, 2 and 3 is satisfied. Additionally, the con-

vergence analyses for the proposed new algorithms are provided.

Chapter 4 presents the second part of our main results, which involves two-step projection methods. This

chapter proposes a two-step inertial-like projection approach based on Solodov and Svaiter’s hyperplane

projection [150] and inertial-like algorithms. The algorithm uses two starting points, x−1 and x0, to

update the sequence of iterates. In this chapter, the search direction dk is updated using xk and its

preceding point xk−1 as well as their images F(xk) and F(xk−1). This differs from the classical iterative

algorithms given in Chapter 3 that employ xk+1 := xk +αkdk, k ≥ 0, αk > 0 to update the sequence of

iterates. A two-step hybrid algorithm based on the Barzilai and Borwein (BB) [22] spectral parameters

is proposed to solve a nonlinear monotone operator equation (1.10). These BB spectral parameters

can be considered as Jacobian approximations using scalar multiple identity matrices. Some important

convergence results for these newly developed algorithms are also presented.

The computational performances of the theoretical results described in Chapters 3 and 4 have received a

lot of attention in Chapter 5, which compares solutions to state-of-the-art large-scale convex constrained

optimization problems. Plenty of Dolan and Morè [49] performance profiles and Morè and Wild [122]

data profiles, to demonstrate the behaviour of the proposed algorithms are established.

In Chapter 6, practical applications of Algorithms 1, 2 and 3 (introduced in Chapter 3) for sparse signal

reconstruction and image restoration in compressing sensing are described. The chapter applies Algo-

rithms 4 and 5 from Chapter 4 to motion control problems with a two-joint planar robotic manipulator.

In Chapter 7, we study applications for solving vector-valued approximation problems. A vector-valued

approximation problem is formulated. We investigate its solution concepts, specifically the so-called

Pareto Optimality. Furthermore, we study the weighted (surrogate) sum scalarization approach and give

the formulation of the multiobjective approximation problem. In addition, we study the application of

Algorithm 3 for generating approximate solutions to multiobjective approximation problems.

Chapter 2

Mathematical Background

In this chapter, we introduce some preliminary concepts that will be used throughout the thesis. First, we

review some well-known fundamental concepts of functional analysis such as linear spaces, monotone

operators, normed spaces and Lipschitz continuity. Section 2.4 covers various concepts of line searches,

while Section 2.5 provides an overview of methods for solving unconstrained optimization problems such

as quasi-Newton methods, conjugate gradient methods, spectral gradient methods and spectral-conjugate

gradient methods.

2.1 Fundamentals of Functional Analysis

Here, we begin by discussing some fundamental concepts such as linear spaces, monotone operators,

metric spaces, normed spaces and Lipschitz continuity. Throughout this thesis, N, Z and R represent

the set of natural numbers, integers and real numbers, respectively. In addition, we denote the set of all

nonnegative real numbers by R+, which is defined as R+ := {x ∈ R : x ≥ 0}. Furthermore, we define

Rn
+ := {y = y1, y2, . . . , yn) ∈ Rn : yi ≥ 0, i = 1, 2, . . . , n} and the n-dimensional Euclidean space is

denoted by Rn.

2.1.1 Linear Spaces and Order Structure

In this section, we provide the following definitions which are taken from [93, 159]. The properties of

linear spaces are essential in deriving and analysing our proposed algorithms throughout Chapters 3 and

4 of this thesis. Furthermore, we will make use of the ordering cone in Chapter 7 for the formulation of

the solution concepts of vector-valued approximation problems.

Definition 2.1.1. ([159]). A (real) linear space X is a nonempty set which is equipped with a mapping

+ : X ×X → X , called addition, and with a mapping · : R×X → X , called multiplication by scalars,

satisfying the following conditions:

(i) ∀ x, y, z ∈ X : (x + y) + z = x + (y + z),

(ii) ∀ x, y ∈ X : x + y = y + x,

(iii) ∃ 0 ∈ X ∀ x ∈ X : x + 0 = x,

10

2.1. Fundamentals of Functional Analysis 11

(iv) ∀ x ∈ X ∃ x′ ∈ X : x + x′ = 0,

(v) ∀ x, y ∈ X ∀ λ ∈ R : λ · (x + y) = λ · x + λ · y,

(vi) ∀ x ∈ X ∀ λ ,µ ∈ R : (λ + µ) · x = λ · x + µ · x,

(vii) ∀ x ∈ X ∀ λ ,µ ∈ R : λ · (µ · x) = (λ · µ) · x,

(viii) ∀ x ∈ X : 1 · x = x.

This space, denoted as (X , +, ·), called a (real) vector space or a set equipped with a linear structure.
The elements of a vector space are called vectors or points. The vector 0 in condition (iii) is known as

the zero vector of X and is usually denoted as 0X . The vector x′ in condition (iv) is the additive inverse
of x, denoted by −x. We will write λx instead of λ · x, for λ ∈ R and x ∈ X .

A linear space X is said to be nontrivial if X ̸= {0}.
We will consider real linear spaces only and omit the word real later on.

Clearly, Rℓ with ℓ ∈ N> is a linear space when defining

x + y := (x1 + y1, . . . ,xℓ + yℓ)T

λx := (λx1, . . . ,λxℓ)T

for x = (x1, . . . ,xℓ)T ∈ Rℓ, y = (y1, . . . ,yℓ)T ∈ Rℓ and λ ∈ R.
In linear spaces F consisting of extended real-valued functions on some space X or of functions mapping

X to another linear space Y, addition and multiplication by scalars are defined for all f ,g ∈ F and λ ∈ R

(f +g)(x) := f (x)+g(x) for each x ∈ X

(λ f)(x) := λ f (x) for each x ∈ X

Throughout this thesis, we will use the following notation. Assume that A, B are nonempty subsets of a

linear space X , that Λ is a nonempty subset of R, x ∈ X , and γ ∈ R. Then

A + B := {x + y | x ∈ A, y ∈ B}, A + /0 := /0 + A := /0,

x + A := A + x := {x} + A,

Λ A := Λ · A := {λx | λ ∈ Λ, x ∈ A}, Λ · /0 := /0,

γ A := γ · A := {γ} · A, −A := (−1) · A,

A − B := A +(−B) = {x− y | x ∈ A, y ∈ B}.

Ordering Cones

Here, we will state some basic notions of cones of a vector space Y which we are going to use later in

Chapter 7 when dealing with vector-valued approximation problems of this thesis. These concepts can

be found, for example, in [68, 96, 98, 147]. The cones induce a class of binary relations, which are

compatible with the linear structure of Y .

2.1. Fundamentals of Functional Analysis 12

Definition 2.1.2. A nonempty set K ⊆ Y is said to be a cone if tx ∈ K for every x ∈ K and every t ≥ 0.

The cone K is called:

(i) convex if K +K ⊆ K,

(ii) proper if K ̸= {0Y} and K ̸= Y ,

(iii) reproducing if K −K = Y ,

(iv) pointed if K ∩ (−K) = {0Y}.

Obviously, if K is a cone, then 0Y ∈ K.

In what follows, we give some examples of a cone.

Example 2.1.3. ([159], Example 2.2.13).

1. The nonnegative orthant of the p-dimensional Euclidean space is given by

Rp
+ := {(x1, . . . ,xp)

T ∈ Rp | ∀ i ∈ {1, . . . , p} : xi ≥ 0}.

This is a nontrivial pointed convex reproducing cone, which is the usual ordering cone. The interior

of the Euclidean space Rp
+ is defined as

intRp
+ := {(x1, . . . ,xp)

T ∈ Rp | ∀ i ∈ {1, . . . , p} : xi > 0}.

2. ([93]). For X = Rp, the ordering cone of the component-wise partial ordering on Rp is given by

K := {x ∈ Rp | ∀ i ∈ {1, . . . , p} : xi ≥ 0}= Rp
+.

It is also called the natural ordering cone. Other ordering cones in Rp are for instance

{x ∈ Rp | xi ≥ 0 for all i ∈ {1, . . . , p} and

xi = 0 for all i ∈ {m+1, . . . , p}} for some 1 ≤ m < p

or {0Rp} and Rp itself. R+, R−,{0} and R are the only ordering cones in R.

3. Another nontrivial pointed convex reproducing cone in Rp, p > 1, is given by

C :=

(
p⋃

i=1

Ci

)
∪{0},

where Ci := {(x1, . . . ,xp)
T ∈ Rp | xi > 0, x j = 0 for all j < i}.

4. For the space of continuous functional C[a,b],

C[a,b]+ := {x ∈ C[a,b] | ∀ t ∈ [a,b] : x (t)≥ 0}

is a nontrivial pointed convex reproducing cone with a nonempty interior with respect to the topol-

ogy generated by the supremum norm ∥ · ∥∞.

2.1. Fundamentals of Functional Analysis 13

5. Let C1[a,b] be the real vector space formed for all continuously differentiable real-valued functions

defined on the interval [a,b]⊂ R and equipped with the norm

∥ f∥1 :=
(∫ b

a
(f (t))2dt +

∫ b

a
(f ′(t))2dt

) 1
2

for any f ∈C1[a,b]. The natural ordering cone

C1[a,b]+ := { f ∈C1[a,b] | f ≥ 0}

has nonempty interior.

Pre-order Structure

Next, we consider order relations with respect to (w.r.t.) a given convex cone K in a linear space Y

between two vectors and two nonempty sets. The order structure (in particular partial order) plays an

important role for introducing solution concepts in vector-valued approximation problems (see, for ex-

ample, Chapter 7 of this thesis). In that chapter, the sets of maximal or minimal elements are denoted by

EffMax(M0,R) and EffMin(M0,R), respectively. Furthermore, these sets are known as the (maximal- or

minimal-) efficient points of M0 with respect to R. We may use ”Max” or ”Min” instead of ”maximum”

or ”minimal” for clarity.

Definition 2.1.4. Assuming M is a nonempty set, M×M refers to the set of ordered pairs of elements of

M, defined as

M×M :=
{
(x,y) | x,y ∈ M

}
.

If R is a nonempty subset of M ×M, it is referred to be a binary relation on M. The notation xRy

represents (x,y) ∈ R. The pair (M,R) is known as a set M with binary relation R. Two elements

x,y ∈ M are said to be comparable if xRy or yRx holds.

The binary relation R is called:

(i) reflexive if xRx for every x ∈ M;

(ii) transitive if for all x,y,z ∈ M: xRy and yRz imply that xRz;

(iii) symmetric if for all x,y ∈ M: xRy imply that yRx;

(iv) antisymmetric if for all x,y ∈ M: xRy and yRx imply that x = y;

(v) complete if any two elements of M are comparable.

(vi) a preorder if R is reflexive and transitive;

(vii) a partial order if R is reflexive, transitive and antisymmetric;

(viii) an equivalent relation if R is reflexive, symmetric and transitive.

2.1. Fundamentals of Functional Analysis 14

We will now provide the following examples of order relation.

Example 2.1.5.

1. ([68]). Let X be a nonempty set and M :=P(X) denote the class of subsets of X . The binary relation

R := {(A,B) ∈ M×M | A ⊂ B} is a partial order on M. If X contains at least two elements, then

R is not a linear order.

2. ([68]). Let N be the set of nonnegative integers and

RN := {(n1,n2) ∈ N×N | ∃ p ∈ N : n2 = n1 + p}.

Then N is well-ordered by RN. Of course, RN defines the usual order relation on N and n1RNn2

will always be denoted by n1 ≤ n2 or equivalently, n2 ≥ n1.

3. The nonnegative orthant of the p-dimensional Euclidean space is given by

Rp
+ := {(x1, . . . ,xp)

T ∈ Rp | ∀ i ∈ {1, . . . , p} : xi ≥ 0}.

This is a nontrivial pointed convex reproducing cone, which is the usual ordering cone. The interior

of the Euclidean space Rp
+ is defined as

intRp
+ := {(x1, . . . ,xp)

T ∈ Rp | ∀ i ∈ {1, . . . , p} : xi > 0}.

For K := Rp
+, the relation RK is the relation ” ≤ ”. A base of K is given by{

(x1, . . . ,xT
p ∈ Rp

+ |
n
∑

i=1
xi = 1

}
. For K := 1 ∈ Rp, the norm ∥ · ∥K,k becomes the maximum norm

∥ · ∥∞.

4. ([159]). The usual partial order defined on Rp is

Rp := {(x,y) ∈ Rp ×Rp | ∀ i ∈ {1, . . . , p} : xi ≤ yi},

where x = (x1, . . . ,xp)
T and y = (y1, . . . ,yp)

T . It is called a linear order if and only if n = 1. On Rp,

we will denote Rp by ≤ and R−1
p by ≥ . Furthermore, we consider on Rp the asymmetric transitive

relation

R< := {(x,y) ∈ Rp ×Rp | ∀i ∈ {1, . . . , p} : xi < yi},

we denote R< by < and R−1
< by > .

Definition 2.1.6. Let R be a binary relation on a nonempty set M and assume M0 ⊆ M. An element

x̄ ∈ M0 is called a maximal or a minimal element of M0 w.r.t. R if for every x ∈ M0:

x̄Rx =⇒ xRx̄ or

xRx̄ =⇒ x̄Rx, respectively.

Max(M0,R) represents the set of all maximal elements of M0, while Min(M0,R) represents the set of all

minimal elements of M0.

2.1. Fundamentals of Functional Analysis 15

If R is a partial order on M, a subset M0 ⊆M may have none, one or several minimal (maximal) elements.

Definition 2.1.7. Let R be a binary relation on a nonempty set M with M0 a subset of M. M0 is said to be

bounded below (or above) with regard to R if there is some a ∈ M such that aRx (xRa, correspondingly)

for all x ∈ M0. In this case, the element a is referred to as the lower (or upper) bound of M0.

If R is a partial order, an element a ∈ M is called the infimum (or supremum) of M if a is a lower (or

upper) bound of M0 and for any lower (or upper) bound a′ of M0 we obtain a′Ra (aRa′, respectively).

Definition 2.1.8. Let Y be a vector space and R be a binary relation on Y. We say that R is compatible

with the linear structure of Y if the following properties are met:

(i) for all λ ≥ 0, x, y ∈ Y : xRy =⇒ λxRλy,

(ii) for all x, y, z ∈ Y : yRz =⇒ (x+ y)R(x+ z).

Definition 2.1.9. Assume Y is a vector space and K is a proper, convex cone in Y . A nonempty set B of K

is considered a base for K if each nonzero element y ∈ K has a unique representation of the form y = λb

where λ > 0 and b ∈ B.

In the vector space Y , we consider an ordering relation ≥K generated by a proper, convex cone K ⊆ Y .

This order relation is defined as

x ≥K y if and only if x− y ∈ K for all x,y ∈ Y. (2.1)

If there is no confusion, we will often use the notation ≤K as an ordering relation on Y , that is x ≤K y ⇔
y ≥K x.

We state some features of ≥K in the following proposition.

Proposition 2.1.10. [68] Let Y be a vector space and K a convex cone in Y . Then ordering relation ≥K

defined by (2.1) has the following properties:

(i) x ≥K x for all x ∈ Y (reflexive),

(ii) x ≥K y, y ≥K z implies x ≥K z for all x,y,z ∈ Y (transitive),

(iii) x ≥K y implies x+ z ≥K y+ z for all x,y,z ∈ Y ,

(iv) x ≥K y implies λx ≥K λy for all λ ≥ 0 and x,y ∈ Y .

(v) If K is pointed, then ≥K is antisymmetric. Furthermore, ≥K is considered a partial order.

The theorem below provides a significant characterization of a partial order in a real linear space.

Theorem 2.1.11. [93] Let Y be a real linear space.

(i) If ≤ is a partial order on Y, then the set

K := {x ∈ Y | 0Y ≤ x}

is a convex cone. If, in addition, ≤ is antisymmetric, then K is pointed.

2.1. Fundamentals of Functional Analysis 16

(ii) If K is a convex cone on Y , then the binary relation

≤K := {(x,y) ∈ Y ×Y | y− x ∈ K}

is referred to as a partial order on Y . If, in addition, K is pointed, then ≤K is antisymmetric.

Next, we define metric and normed spaces. These are of extremely important in our work for two

reasons. First, normed spaces are distance functions, which are fundamental tools in the definition of the

subdifferential of not necessarily convex functions. Secondly, in the later course of this thesis (especially

in Chapter 7), we intend to investigate some vector-valued approximation problems in which the distance

functions are induced by norms.

2.1.2 Metric Spaces

First, let us recall the following definition of a topological space.

Definition 2.1.12. [93] Let X be a nonempty set. A topology τ on X is defined to be a subset of X

satisfying the following axioms:

(i) the empty set /0 and the entire set X belong to τ.

(ii) every union of sets of τ belongs to τ.

(iii) every finite intersection of sets of τ belongs to τ.

A topological space is defined as a set X with a particular topology τ .

A topological space is defined as an ordered pair (X ,τ) that consists of a set X and a topology τ on X ,

but we often omit the specific mention of τ to avoid confusion.

If X is a topological space with topology τ, a subset U of X is considered an open set of X if U belongs

to the collection τ. Using this terminology, one can say that a topological space is a set X together with

a collection of subsets of X , called open sets such that /0 and X are both open, and such that arbitrary

unions and finite intersections of open sets are open.

Example 2.1.13. (i) If X is any set, the collection of all subsets of X is a topology on X, referred to as

the discrete topology. The indiscrete topology, often known as the trivial topology, is a topology

on X that includes only X and /0.

(ii) Assume X is a set. Define τc as the collection of all subsets U of X such that X \U is either

countable or whole of X . Then τc is a topology on X .

An important class of topological spaces is the so-called metric space, given in the following definition.

Definition 2.1.14. [93] Let X be a nonempty set. A metric d on X is defined as a function d : X ×X →R
that satisfies the following conditions for all x, y, z ∈ X

(i) d(x, y) = 0 ⇐⇒ x = y (definiteness)

(ii) d(x, y) = d(y, x) (symmetry),

2.1. Fundamentals of Functional Analysis 17

(iii) d(x, z)≤ d(x, y) + d(y, z) (triangle inequality).

The pair (X , d) is called a metric space.

A very important class of metric space is the class of normed space.

2.1.3 Normed Spaces

Definition 2.1.15. [93] Let X be a linear space. A norm on X is a function ∥ · ∥ : X → R+ that holds the

following properties for all x, y ∈ X and all λ ∈ R :

(i) ∥x∥= 0 ⇐⇒ x = 0X (definiteness),

(ii) ∥λx∥= |λ |∥x∥ (positive homogeneity),

(iii) ∥x+ y∥ ≤ ∥x∥+∥y∥ (triangle inequality),

where 0X denotes the origin in the linear space X . The pair (X ,∥ · ∥) is called a normed space.

Observe that if (X ,∥ · ∥) is a normed space, then the norm ∥ · ∥ always induces a metric on X given by

for all x,y ∈ X : d(x,y) := ∥x− y∥.

Assuming that the pair (X ,∥ ·∥) is complete (every Cauchy sequence {xn} ∈ X converges to x ∈ X), then

the space is called Banach space. The Euclidean space (Rn,∥ ·∥) with respect to the norm ∥ ·∥ : Rn →R
provides one well-known example of a Banach space. The set C(X ,R) of all continuous functions on

a metric space X is a real Banach space. Other examples of Banach spaces include ℓ∞, ℓp and C[0,1].

Notice that, in the case that X is a normed space, we assume that the topology τ of X is generated by the

metric induced by the norm ∥ · ∥.
We call a norm ∥ ·∥ : X →R strictly convex if for any x,y ∈ X , x ̸= y, with ∥x∥= ∥y∥= 1, it follows that

]x,y[⊆ {x ∈ X : ∥x∥< 1}.

A normed space (X ,∥·∥) with the underlying strictly convex norm ∥·∥ : X →R is called strictly convex.

In addition, the normed space (X ,∥ · ∥) is considered reflexive if the canonical embedding of X into its

bidual space (X∗)∗ (where X∗ is the dual space of X), namely J : X → (X∗)∗, defined for any x ∈ X , by

J(x)(x∗) = x∗(x), x∗ ∈ X∗,

is surjective. Every reflexive normed space is a Banach space, while each finite-dimensional Banach

space is reflexive.

An important class of strictly convex normed spaces are the inner product spaces.

Definition 2.1.16. [93] Let X be a real linear space. A function ⟨·, ·⟩ : X ×X → R is called an inner

product on X if for all x, y, z ∈ X and for all λ ∈ R, the function ⟨·, ·⟩ satisfies the following conditions:

(i) ⟨x, x⟩> 0 for x ̸= 0X (positivity),

2.1. Fundamentals of Functional Analysis 18

(ii) ⟨x, y⟩= ⟨y, x⟩ (symmetry),

(iii) ⟨λx, y⟩= λ ⟨x, y⟩ (positive homogeneity),

(iv) ⟨x+ y, z⟩= ⟨x, z⟩+ ⟨y, z⟩ (additivity).

The pair (X ,⟨·, ·⟩) is known as inner product space (or pre-Hilbert space). Assuming that (X ,⟨·, ·⟩) is

complete, the space is called Hilbert space.

Notice that each inner product space is a normed space with the underlying norm

∥ · ∥ :=
√

⟨·, ·⟩.

Furthermore, each Hilbert space is both an inner product space and a reflexive normed space. In contrast,

an inner product space, often known as a normed space, does not always correspond to a Hilbert space.

However, in a finite-dimensional case, each inner product space is a Hilbert space. Hence, the space

(Rn,⟨·, ·⟩) with respect to an inner product space that is defined by

⟨x,y⟩ :=
n

∑
i=1

xiyi,

for all x = (x1, . . . ,xn),y = (y1, . . . ,yn) ∈ Rn, is a Hilbert space. In a normed space (X ,∥ · ∥), the open

and closed balls with respect to the center x and the radius r > 0 are denoted by BX(x,r) and BX [x,r]

respectively, and are defined as

BX(x,r) := {y ∈ X | ∥x− y∥< r},

and

BX [x,r] := {y ∈ X | ∥x− y∥ ≤ r}.

In addition, BX stands for the unit closed ball of X .

We will talk about some well-known norms in the finite-dimensional space Rn in the next example. These

norms will be very helpful in our study, especially in Section 2.3 and when we deal with vector-valued

approximation problems in Chapter 7 of this thesis.

Example 2.1.17.

1. The Manhattan norm, often known as the city block norm or the rectangular norm, it is defined

for all x ∈ Rn by

∥x∥1 := |x1|+ . . .+ |xn|=:
n

∑
i=1

|xi|.

In vector-valued approximation problems (see Chapter 7), the Manhattan norm is extremely es-

sential. Apart from its use in vector-valued approximation problems, it is also used in the city

networks, that is, in location theory. The Manhattan norm is also employed in machine engineer-

ing and the branch of robotics (see Section 6.2).

2.1. Fundamentals of Functional Analysis 19

Figure 2.1: Unit balls for the norms: ∥ · ∥1,∥ · ∥2 and ∥ · ∥∞ on R2.

2. The Euclidean norm in Rn represents the length of the vector x = (x1, . . . ,xn) ∈ Rn in the form

∥x∥2 :=
√

x2
1 + . . .+ x2

n =:

(
n

∑
i=1

|xi|2
) 1

2

The Euclidean norm is the most well-known norm in Rn. It allows movement in all directions and

is employed in the reformulation of ℓ1-norm regularization problems in compressive sensing, as

shown in Section 2.3 and Chapter 6 of this thesis.

3. The Maximum norm is defined for all x ∈ Rn as:

∥x∥∞ := max{|xi| | i = 1, . . . ,n}.

In Figure 2.1, we illustrate the closed unit balls for the special case n = 2 of the norms given in the

following example

B∥·∥i(0R2 ,1) := {x ∈ R2 | ∥x∥i ≤ 1}, i ∈ {1,2,∞}.

All of these norms measure the length of a vector in some sense, and they are equivalent in the sense that

each one is bounded above and below by a multiple of the other. To be precise, we obtain for all x ∈ Rn,

the following relationships exist among the three norms defined above:

∥x∥∞ ≤ ∥x∥2 ≤ ∥x∥1,

and

∥x∥1 ≤
√

n∥x∥2 ≤ n∥x∥∞.

For 1 ≤ p ≤ ∞, the p-norm is defined for all x ∈ Rn as

∥x∥p :=

(∑n
i=1 |xi|p)

1
p , for 1 ≤ p < ∞,

max{|x1|, . . . , |xn|}, for p = ∞.
(2.2)

Obviously, for p = 1 yields the Manhattan norm while p = 2, yields the Euclidean norm. The limit

p → ∞ in (2.2) implies the maximum norm as shown in Example 2.1.17. Figure 2.1 shows examples of

unit balls with a special p-norm.

2.1. Fundamentals of Functional Analysis 20

Example 2.1.18. ([159]).

1. Rn is a Banach space when equipped with one of the norms ∥ · ∥p, 1 ≤ p < +∞, and also when

equipped with the norm ∥ · ∥∞, where

∥x∥p := p

√
n

∑
i=1

|xi|p and ∥x∥∞ := max
i=1,...,n

|xi| for all x = (x1, . . . ,xn)
T ∈ Rn.

∥x∥∞ is called the Chebyshev norm or maximum norm on Rn.

∥x∥2 is said to be the Euclidean norm. The related norm topology on Rn is the so-called Euclidean

topology τ0. Equipped with this topology, Rn is called the Euclidean space. In R, the open sets in

this topology are the empty set and all unions of open intervals.

2. Consider the space of real sequences x = (xi)i∈N with the norms ∥ · ∥p, 1 ≤ p ≤+∞, defined by

∥x∥p := p

√
∑
i∈N

|xi|p if i ≤ p < ∞, and ∥x∥∞ := sup
i∈N

|xi|.

Each space ℓp, 1≤ p≤+∞, of real sequences x with ∥x∥p <+∞ is a Banach space when equipped

with ∥ · ∥p. The subspace c0 of all sequences in ℓ∞ converging to zero is a Banach space as well.

This space contains each space ℓp, 1 ≤ p <+∞.

3. The space C[a,b] of all real-valued functions that are continuous on the interval [a,b] equipped

with Chebyshev or supremum norm ∥ · ∥∞ defined by

∥x∥∞ := sup
t∈[a,b]

|x(t)|,

is a Banach space.

The above norms have been found to be useful in many practical problems not limited to location prob-

lems which can be considered as special approximation problems, compressive sensing, machine engi-

neering and many other areas of applications. For more details, we refer the reader to [68, 109, 167, 168]

and the references therein. For applications and more details of these norms, we refer the reader to

Section 2.3, Chapter 6 and 7 of this thesis.

An important class of sequences in normed spaces are those that satisfy Cauchy’s property.

Definition 2.1.19. Suppose (X ,∥·∥X) is a normed space and {xk}k≥1 is a sequence in X . If ∥xn−xm∥→
0, the sequence {xk}k≥1 is Cauchy.

The following results concerning projection operator can be found in [172]. The projection and its corre-

sponding properties are very important for deriving the algorithms proposed in this thesis (see Chapters

3 and 4).

Theorem 2.1.20. Let Ψ be a nonempty, closed, and convex subset of a Euclidean norm of Rn. Then, for

any x ∈ Rn, its projection onto Ψ denoted by PΨ(x), is defined as

PΨ(x) := argmin{∥x− y∥2 : y ∈ Ψ}. (2.3)

The operator PΨ(x) : Rn → Ψ is known as a metric projection with the following properties:

2.1. Fundamentals of Functional Analysis 21

(i) PΨ is non-expansive, which means ∥PΨ(x)−PΨ(y)∥2 ≤ ∥x− y∥2 for all x, y ∈ Rn.

(ii) It holds ∥PΨ(x)− y∥2 ≤ ∥x− y∥2 for all y ∈ Ψ.

(iii) It holds ⟨PΨ(x)−PΨ(y), x− y⟩ ≥ ∥x− y∥2
2 for all x,y ∈ Rn.

(iv) It holds ∥PΨ(x)∥2 ≤ ∥x∥2 for all x ∈ Rn.

Next, we define the convex map using the following terms:

Definition 2.1.21. [93] Assume X and Y are real linear spaces. A map T : X → Y is called linear, if

for all x, y ∈ X and all λ ,µ ∈ R,

T (λx+µy) = λT (x)+µT (y).

The set of continuous (bounded) linear maps between two real normed spaces (X ,∥ · ∥X) and (Y,∥ · ∥Y)

is a linear space as well and it is denoted by B(X ,Y). The norm ∥ · ∥ : B(X ,Y)→ R defined by

∥T∥= sup
x ̸=0X

∥T (x)∥Y

∥x∥X
for all T ∈ B(X ,Y)

(B(X ,Y),∥·∥) is also a normed space. Furthermore, the class of linear maps is contained within the class

of convex maps.

Convex sets and convex functions are very important in optimization theory. The useful properties of

convex sets along with the differential ability of convex functions make the search for a minimum much

easier. However, not all models in the applications deal with convexity, but when they do, it is much easier

to ensure the existence of solutions and set algorithms that provide optimal solutions to the problem.

Definition 2.1.22. Let S be a subset of a real linear space X . S is called convex if λx+(1− λ)y ∈ S

whenever x,y ∈ S and λ ∈ [0,1].

We call the set [x,y] := {λx+(1−λ)y ∈ S} the line segment connecting the points x and y. Geometri-

cally, a set S is convex if and only if the line segment of each two points of S is completely included in

S.

Example 2.1.23.

(i) The whole space X, the empty set and any singleton set are all convex sets.

(ii) Hyperplanes and halfspaces in Rn are convex sets.

(iii) The intersection of any collection of convex sets is convex.

(iv) If A and B are convex sets, then their sum (also called the Minkowski sum)

A+B := {a+b|a ∈ A,b ∈ B}

is convex. Note that if A = {a} then the sum {a}+B is usually written a+B. The set a+B is a

convex set whenever B is convex. Also the set −A is convex, whenever A is convex.

2.1. Fundamentals of Functional Analysis 22

(a) (b)

(c) (d)

Figure 2.2: Representation of: convex, concave, non-convex and epigraph of the functional f (where

f : X → R∪{+∞}) [reprinted from [94, Figures: 2.1, 2.4, 2.5, 2.6].

Definition 2.1.24. [93] Let X be a real linear space and f : X →R∪{+∞} be a functional. The function

f is called convex if for all x,y ∈ X and for all λ ∈ [0,1] :

f (λx+(1−λ)y)≤ λ f (x)+(1−λ) f (y) (2.4)

(see Figure 2.2 (a) and (c)).

A map f : X → R∪{+∞} is considered concave if − f is convex (see Figure 2.2(b)).

If f is a linear map, then both f and − f are convex maps.

Definition 2.1.25. Let X be a real linear space and f : X → R∪{+∞}. A function f is called quasi-

convex if the level set

L≤(r) := {x ∈ X | f (x)≤ r}

is convex for all r ∈ R.

Since some part of this thesis deals with multiobjective optimization, we speak about generalized types

of convex vector-valued functions using an ordering cone in Chapter 7.

Example 2.1.26.

(i) Some functions are neither convex nor concave. Linear functions are the only ones that may be

both convex and concave simultaneously.

2.1. Fundamentals of Functional Analysis 23

(ii) Norms are convex functions (see Section 2.1.3).

For the function f : X → R∪{+∞}, the set

dom f := {x ∈ X | f (x)<+∞}

is known as the domain of f and the effective domain when f is extended real-valued.

Definition 2.1.27. [74] Let X and Y be real linear spaces and F : X → Y be a map. Then, the graph of

F denoted by G(F), is defined by

G(F) := {(x,y) ∈ X ×Y | y = F(x)}. (2.5)

Convex sets and convex functions have a strong relationship, as demonstrated in the following definition.

Definition 2.1.28. [93] Assume X is a real linear space and f : X →R∪{+∞}. The set is known as the

graph of a function F while the set

E(f) := {(x,r) ∈ X ×R | (f (x)≤ r)} (2.6)

is known as the epigraph of f (see Figure 2.2(d)).

We can easily prove that f is a convex function if and only if E(f) is a convex set (for the proof, see for

example [69]).

2.1.4 Lipschitz Continuity

Here, we give the notion of Lipschitz continuity of a function over a nonempty, closed and convex subset

X0 ⊆ X . The concept of Lipschitz continuity belongs to the most important assumptions in the proof of

the global convergence of our proposed algorithms as we shall see in Chapters 3 and 4 of this thesis. For

more information on the concept of Lipschitz continuity of extended real-valued functions, we refer the

reader to the book by Tammer and Weidner [159].

Definition 2.1.29. Let X be a normed space, F : X → R∪{−∞,+∞}, X0 ⊆ X and X0 ̸= /0. A function

F is said to be Lipschitz continuous on X0 if F is finite-valued on X0 and there exists a constant L ∈ R+

such that for all x,y ∈ X0

|F(x)−F(y)| ≤ L∥x− y∥. (2.7)

In this case, L is called a Lipschitz constant of F on X0. F is called Lipschitz continuous if F is Lipschitz

continuous on X . Furthermore, F is called Lipschitz function if there is a constant L ∈ R+ such that

(2.7) holds for all x,y ∈ X0.

Note that Lipschitz continuity at a point depends only on the behaviour of the function near that point.

For F to be Lipschitz continuous at x, the inequality (2.7) must hold for all y sufficiently near x, but it

is not necessary that (2.7) holds if y is not near x. Also, F may be Lipschitz continuous at other points,

but different values of L may be required for (2.7) to hold near those points. For example, F(x) = 1
x for

x > 0 is Lipschitz continuous at each x > 0, but there is no single L for which (2.7) holds for all x > 0.

2.2. Properties of Operators and Functions 24

If F is Lipschitz continuous at x, then it is continuous at x. If F is a real-valued function defined on

X0 ⊆ X that is differentiable at x ∈ X0 then, F is Lipschitz continuous at x. In fact, this is more generally

true: a function F : X0 ⊆ X → R∪{−∞,+∞} is Lipschitz continuous at x ∈ X0 if it is differentiable at x.

In summary, we have

differentiable at x =⇒ Lipschitz continuous at x =⇒ continuous at x.

The converse implications of the above statement does not hold. Specifically, for F(x) =
√
|x| is contin-

uous at x = 0 but not Lipschitz continuous at x = 0 because its derivative is unbounded as x approaches

zero. Also, the function F(x) = |x| is Lipschitz continuous at x = 0 but not differentiable at x = 0. In

summary, we have

differentiable at x ⇍= Lipschitz continuous at x ⇍= continuous at x.

F is said to be locally Lipschitz continuous on X0 if for each x ∈ X0, there exists a neighborhood U of x

such that F is Lipschitz continuous on U ∩X0. F is locally Lipschitz continuous if F is a finite-valued

functional that is locally Lipschitz continuous on X .

2.2 Properties of Operators and Functions

In the following sections, we will collect some relevant results from the field of monotone operators and

differentiability properties of functions. It is one of the most significant assumptions in the proofs of the

thesis’s convergence results. This can be seen clearly in Chapters 3, 4 and 7. These results can be found

in [173].

In linear and convex optimization, solving the dual problem for a given original problem may be simpler

and faster. When the dual problem is formulated, and a solution to it exists, then we get more information

and possibly a solution to the original problem.

Dual Spaces

For a linear space X , the algebraic dual space is

X ′ := {x́ : X → R | x́ is linear}.

For a linear topological space X the topological dual space is

X∗ := {x∗ : X → R | x∗ is linear and continuous}.

A linear functional x́ : X → R considered bounded if there exists a number M ≥ 0 such that |
x́(x) | ≤ M∥x∥ for all x ∈ X . Linearly continuous and linearly bounded functionals are equivalent.

The norm for x∗ ∈ X∗ is defined as

∥x∗∥∗ := sup
x ̸=0

| x∗(x) |
∥x∥

.

2.2. Properties of Operators and Functions 25

It is easy to verify that ∥ · ∥∗ is a norm on the space X∗. We refer to ∥ · ∥∗ as the dual norm of ∥ · ∥.

Furthermore, it holds that

∥x∗∥∗ = sup
x ̸=0

| x∗(x) |
∥x∥

= sup
∥x∥=1

| x∗(x) |= sup
∥x∥≤1

| x∗(x) |= sup
∥x∥≤1, x ̸=0

| x∗(x) |
∥x∥

.

The following theorem describes the set X∗, which includes all linear continuous functionals on X .

Theorem 2.2.1. ([69, Theorem 3.1]). Assume (X ,∥ · ∥) is a normed space and X∗ represents the set of

all linearly bounded functional on X. The set X∗ is both a linear space and a normed space with the norm

∥x∗∥∗. The generalized Schwarz’s inequality states that

| x∗(x) | ≤ ∥x∗∥∗∥x∥ for all x ∈ X , x∗ ∈ X∗. (2.8)

The dual space (X∗,∥ · ∥∗) is always complete and therefore a Banach space. The dual space X∗ has a

double dual space, represented by X∗∗. The double dual space has a Banach norm of ∥ ·∥∗∗. The normed

space (X ,∥ · ∥) is considered reflexive when X = X∗∗ and the inclusion X ⊂ X∗∗ is always true (see [69,

Theorem 3.1]). The spaces Rn, Cn and all Hilbert spaces are reflexive, where C represents the set of

complex numbers.

Dual Cone

We now give some more properties of cones. Let X be a normed space and K ⊂ X be a cone. The set

K∗ := {x∗ ∈ X∗ | ∀ x ∈ K : x∗(x)≥ 0} (2.9)

is known as the dual cone of K.

Example 2.2.2.

1. We consider the standard ordering cone in Rp :

Rp
+ = {y ∈ Rp | ∀ i = 1, . . . , p : yi ≥ 0}. (2.10)

Then

(Rp
+)

∗ = {z∗ ∈ (Rp)∗ = Rp | ∀ y ∈ Rp
+ : (z∗)T y ≥ 0}= Rp

+.

In particular, (R2
+)

∗ = R2
+.

2. For K =Rp, K∗ = {z∗ ∈ (Rp)∗ =Rp | ∀ y ∈Rp : (z∗)T y ≥ 0}= {0}. Conversely, if K = {0}, then

K∗ = {z∗ ∈ (Rp)∗ = Rp | (z∗)T 0 ≥ 0}= Rp.

The previous examples show that (K∗)∗ = K.

Orthogonality

Geometrical features such as orthogonality and projection can be well described in Hilbert spaces using

the structure of the inner product. The property of orthogonality is defined as below.

2.2. Properties of Operators and Functions 26

Definition 2.2.3. Let X be a Hilbert space. For x,y ∈ X we say that x is orthogonal to y, denoted by

x ⊥ y, if ⟨x,y⟩ = 0. For the sets A,B ⊂ X , we say that A ⊥ B if ⟨x,y⟩ = 0 for all x ∈ A and all y ∈ B.

Additionally, we define the orthogonal complement of a subset A ⊂ X as

A⊥ := {x ∈ X | ∀ y ∈ A : x ⊥ y}. (2.11)

For each subset A ⊂ X , we can show that A⊥ is a closed linear subspace of the Hilbert space X . Addi-

tionally, it is clear that A∩A⊥ = {0}.

Theorem 2.2.4. (Complementary subspaces [83]). If A is a complete subspace of the inner product

space X , then every x ∈ X can be uniquely represented as:

x = u+ v : u ∈ A, v ∈ A⊥.

This implies that the orthogonal decomposition A⊕A⊥ = X . The subspaces A and A⊥ are considered

complimentary subspaces.

Theorem 2.2.4 applies in the particular case where X is a Hilbert space and A is a closed subspace.

The following two theorems establish the existence and uniqueness of optimal solutions to a general

optimization problem in inner product spaces.

Theorem 2.2.5. ([83, Theorem 21.1]). Assume (X ,⟨·, ·⟩) is an inner product space. If S ̸= /0 is a convex

and complete subset of X , then for x ∈ X , the problem ∥x− y∥ → miny∈S has a unique solution in S,

that is, there exists a unique element y0 ∈ S with ∥x− y0∥ ≤ ∥x− y∥ for every y ∈ S.

In particular, the assumptions of Theorem 2.2.5 are also fulfilled when X is a complete space (a Hilbert

space) and S is a nonempty, convex and closed subset of X .

Theorem 2.2.6. ([83, Theorem 21.2]). Let S be a linear subspace of the inner product space (X ,⟨·, ·⟩).
If the problem ∥x− y∥ → miny∈S for some element x ∈ X has ever a solution y0 ∈ S, then y0 is the only

solution in S and x− y0 ⊥ S.

Definition 2.2.7. Let (X ,∥ · ∥X) be a normed space with f : X → X∗. Then f is called:

(i) continuous at the point x ∈ X if xn → x implies f (xn) → f (x). f is called continuous if it is

continuous at each point in X .

(ii) hemicontinuous if the real function t 7→ ⟨ f (x+ ty), z⟩ is continuous on [0,1] for all x, y, z ∈ X .

Definition 2.2.8. Let (X ,∥ · ∥X) be a normed space with f : X → X∗. Then f is called:

(i) monotone if ⟨ f (x)− f (y), x− y⟩ ≥ 0 for all x, y ∈ X ,

(ii) strictly monotone if ⟨ f (x)− f (y), x− y⟩> 0 for all x, y ∈ X with x ̸= y,

(iii) strongly monotone if there exists a constant c > 0 such that ⟨ f (x)− f (y), x− y⟩ ≥ c∥x− y∥X for

all x, y ∈ X ,

2.2. Properties of Operators and Functions 27

(iv) pseudomonotone if x ⇀ X and limsup
n→+∞

⟨ f (xn), xn − x⟩ ≤ 0 implies for all y ∈ X

⟨ f (xn), x− y⟩ ≤ liminf
n→+∞

⟨ f (xn), xn − y⟩.

Definition 2.2.9. Let (X ,∥ · ∥X) be a normed space. A set-valued operator F : X ⇒ X∗ is called:

(i) monotone if it holds

⟨x∗− y∗, x− y⟩ ≥ 0, for every (x, x∗), (y, y∗) ∈ G(F),

(ii) maximal monotone if F is monotone, it follows from (x, x∗) ∈ X ×X∗ and

⟨x∗− y∗, x− y⟩ ≥ 0, for every (y, y∗) ∈ G(F)

that (x, x∗) ∈ G(F).

Definition 2.2.10. Let X be a real Banach space. A set-valued operator F : X ⇒ X∗ is called semi-

monotone if D(F) = X ×X and the following conditions are satisfied:

(i) For any u ∈ X , F(u, ·) : X ⇒ X∗, is maximal monotone with D(F(u, ·)) = X .

(ii) Let x ∈ X and {un} ⊆ X be a sequence such that un ⇀ u. Then, for every w ∈ F(u,x), there exists

a sequence {wn} ∈ X∗ such that {wn} ∈ F(un,x) and wn ⇀ w.

Separation Theorems for Convex Sets

There are many well-known fundamental theorems that play a role in the background of our results, such

as Zorn’s Lemma and Hahn-Banach-Theorem.

The following separation theorem is an important result from functional analysis that is based on the

Hahn-Banach-Theorem. The separation theorem is useful for characterizing vector-valued approxima-

tion solutions (see Section 7.3, in particular Theorem 7.3.7).

Theorem 2.2.11. (Separation Theorem [69, Theorem 5.11]). Let X be a real normed space. Let B,C ⊂ X

be nonempty convex sets with int B ̸= /0 and int B∩C = /0. Then there exists a continuous linear functional

x∗ ∈ X∗ and a real number α such that

∀ s ∈ B, ∀ t ∈C : x∗(s)≤ α ≤ x∗(t). (2.12)

If the sets B and C are open, then the separation in (2.12) is strict and made by a continuous linear

functional x∗ ∈ X∗ \{0X∗} and a real number α such that

∀ s ∈ B, ∀ t ∈C : x∗(s)< α < x∗(t). (2.13)

Theorem 2.2.12. (Separation Theorem [93, Theorem 3.18]). Let X be a real locally convex space and

B be a nonempty, closed convex subset of X . Then x ∈ X \B if and only if there exists a continuous linear

functional, i.e., x∗ ∈ X∗ \{0} and a real number α such that

∀ s ∈ B : x∗(x)< α ≤ x∗(s). (2.14)

2.2. Properties of Operators and Functions 28

Differentiability Properties of Functions

In this section, we will review the concepts of directional derivatives in order to define the subdifferential

of a convex function, especially of the norm. The subdifferential is our primary tool for determining the

optimality conditions in Section 7.2.

Next, we define the directional derivative, which is an extension of the well-known derivative in real

space. For examples of literature, see [69, Definition 3.34], [93, Definition 2.12] and the well-known

book [145].

Definition 2.2.13. (Gâteaux Derivative): Consider X a linear space, S a nonempty subset of X , Y a

normed space, and f : S → Y a mapping. For xo ∈ S, h ∈ X , the mapping f is called Gâteaux differen-

tiable at xo in the direction h if there exists an ε > 0 with [xo − εh, x0 + εh]⊂ S and if the limit

f ′(xo, h) := lim
t→0

f (x0 + th)− f (x0)

t
(2.15)

exist. f ′(xo, h) is the Gâteaux derivative of f at x0 in the direction h. If this limit exists for all h ∈ X , f

is called Gâteaux differentiable at x0 and f ′(xo, ·) is called Gâteaux derivative of f at x0.

The following definition does not include the entire interval [x0 − εh, x0 + εh]. Later on, we discover

that this scenario may be sufficient for our research at times.

Definition 2.2.14. (Right-Hand side Gâteaux Derivative). Consider the assumptions outlined in Defini-

tion 2.2.13. For xo ∈ S, h ∈ X , if ε > 0 exists with only [x0, x0 + εh]⊂ S and the limit

f ′+(x
o, h) := lim

t→+0

f (x0 + th)− f (x0)

t
(2.16)

exists, then f ′(x0, h) is called directionally differentiable at x0 in the direction h and f ′+(x
o,h) is called

right-hand side direction derivative (or direction derivative) of f at x0 in the direction h.

Similarly, if [x0 − εh, x0]⊂ S and t →−0 in the limit, we refer to the left-hand side direction derivative

as f ′−(x
o, h).

We illustrate some properties of Gâteaux derivative and the direction derivative (defined in 2.2.13 and

2.2.14, respectively) and the relationship between them. It is easy to show that the following statements

are true:

• f ′(x0, ·) is positively homogeneous but not always linear. (A mapping A : X → Y is considered

positively homogeneous when A(α x) = α A(x) for all x ∈ X and α ∈ R+).

• Consider the assumptions outlined in Definition 2.2.13. The function f is Gâteaux differentiable

at x0 ∈ S in the direction h if and only if f is right-hand side and left-hand side directionally dif-

ferentiable at x0 in direction h and f ′+(x
0, h) = f ′−(x

0, h). The equation is f ′(x0, h) = f ′+(x
0, h) =

f ′−(x
0, h).

• If the function f is left-hand side differentiable at x0 in the direction h, then it is also right-hand

side differentiable in the direction −h. The equation f ′−(x
0, h) = f ′+(x

0, −h) is always valid.

2.2. Properties of Operators and Functions 29

Other generalized definitions of derivatives can be found in the literature. The Fréchet derivative, an

extension of the directional derivative in Banach spaces, is a stronger condition than the Gâteaux deriva-

tive.

We now present some differential properties of a function under convexity assumptions. Let X be a linear

space and S ⊂ X be convex. If f : S → R∪{+∞} is convex, then f is right hand-side and left-hand side

Gâteaux differentiable at every algebraic interior point x0 of S with f (x0) ∈ R, in every direction h ∈ R,
and the Gâteaux derivative mapping f ′(x0, ·) : X → R is linear (see [69, Theorem 3.32]). Furthermore,

it preserves the monotonicity of the difference quotient. The following theorem highlights an important

inequality for determining optimality conditions under convexity assumptions.

Theorem 2.2.15. ([69, Theorem 3.33]). Let X be a linear space and S ⊂ X a convex set with S = core(S)

(S consists only of algebraic interior points). If the function f : X → R is Gâteaux differentiable at all

the points in S , then the following propositions are equivalent:

1. f is convex.

2. f ′(x0, ·) is linear for all x ∈ S and the following subgradient inequality holds for all x,x0 ∈ S :

f ′(x0, x− x0)≤ f (x)− f (x0). (2.17)

In the example below, we compute the Gâteaux derivative of certain convex functions, specifically the

norm. The norm as a distance function is the primary tool for studying our vector-valued approxima-

tion problems in Chapter 7. The differentiability properties of the norm are particularly evident when

establishing the optimality conditions in Section 7.2.

Example 2.2.16. ([69]). Let (X ,⟨·, ·⟩) be a Hilbert space with the norm ∥x∥ :=
√

⟨x,x⟩. Consider the

function f (x) := ∥x− x0∥2 for a given x0 ∈ X .

We compute the Gâteaux derivative f ′(x,h) of the function f for x,h ∈ X . To this end, we compute the

following quotient for t ∈ R :

f (x+ th)− f (x)
t

=
⟨x+ th− x0, x+ th− x0⟩−⟨x− x0, x− x0⟩

t

=
⟨x− x0, x+ th− x0⟩+ ⟨th, x+ th− x0⟩−⟨x− x0, x− x0⟩

t

=
⟨x− x0, x− x0⟩+ ⟨x− x0, th⟩+ ⟨th, x− x0⟩+ ⟨th, th⟩−⟨x− x0, x− x0⟩

t

=
2⟨x− x0, th⟩+ ⟨th, th⟩

t
=

2t⟨x− x0, h⟩+ t2⟨h, h⟩
t

= 2⟨x− x0, h⟩+ t⟨h, h⟩.

Computing the limit yields

f ′(x,h) = lim
t→0

f (x0 + th)− f (x0)

t
= 2⟨x− x0,h⟩.

2.2. Properties of Operators and Functions 30

Subdifferentials of Convex and Nonconvex Functions

The subdifferential of convex functions play an important role in nonlinear optimization. In general,

distance functions are not differentiable. The search for a more general concept of differentiability leads

to the subdifferential of a function, which turns to be an important tool to formulate optimality conditions,

particularly in location theory or vector-valued approximation problems (see Chapter 7). Next, we give

the following definitions.

Definition 2.2.17. (The Subdifferential [93]). Assume X is a real Banach space, f : X →R∪{+∞}, x, x0 ∈
X at x0 in the direction x. If f ′+(x

o, ·) given in (2.16) exists, the set

∂G f (x0) := { x∗ ∈ X∗ | ∀ x ∈ X : x∗ (x) ≤ f ′+ (x0, x)} (2.18)

is called a subdifferential of f at x0 and the elements of ∂G f (x0) are called subgradients.

In the following definitions, we consider the normal cone and the subdifferential in the sense of convex

analysis (Fenchel subdifferential) of convex functions defined as follows:.

Definition 2.2.18. (Fenchel Subdifferential [171, Section 2.4]). Let X be a real Banach space and

f : X → R∪ {+∞} a proper convex function, the subdifferential or Fenchel subdifferential of f at

x0 ∈ dom f is defined by

∂ f (x0) := {x∗ ∈ X∗ | ∀ x ∈ X : x∗(x− x0)≤ f (x)− f (x0)}, (2.19)

for x0 /∈ dom f , one puts ∂ f (x0) = /0. If ∂ f (x0) is nonempty, f is said to be subdifferentiable at x0.

Note:

1. The elements of the subdifferential are functionals from the dual space which we call the subgra-

dients, that means the subdifferential ∂ (·) is a set-valued operator.

2. If f is convex, then ∂G f (x0) = ∂ f (x0) for x0 ∈ X .

Definition 2.2.19. (Normal Cone). Let E be a nonempty convex subset of a real Banach space X. The

normal cone N of the set E at the point x0 is defined by

N(x0,E) := {x∗ ∈ X∗ | x ∈ E : x∗(x− x0)≤ 0}.

Observe that if x0 is an interior point of the set E, then the normal cone of E at x0 is N(x0,E) = {0}.
It follows directly from Definition 2.2.18 and 2.2.19 that the normal cone to a set E at a given point can

also be equivalently defined by the subdifferential of the indicator function associated with this set at that

point,

N(x0,E) = ∂δE(x0), (2.20)

where δE is the indicator function of E.

The following theorem demonstrates, under which conditions the subdifferential of a convex function

exists.

Theorem 2.2.20. ([69, Theorem 5.12]). Let X be a real Banach space, x0 ∈ X and f : X → R∪{+∞}
be a convex functional. If f (x0)<+∞ and f is continuous at x0, then

∂ f (x0) ̸= /0.

2.2. Properties of Operators and Functions 31

Calculus Rules for Subdifferentials

To apply optimality conditions in some applications and algorithms, we must compute the subdifferential

of the sum of functions. As a result, we recall the following theorem about the sum rule for convex

functions:

Theorem 2.2.21. (The Subdifferential Sum Rule, [69, Theorem 5.13]). For n ≥ 2, let f1, . . . , fn : X →
R∪{+∞} be convex functionals on a Banach space X . If the values f1(x0), . . . , fn(x0)<+∞ exist for an

element x0 and f1, . . . , fn−1 are continuous at x0, then it holds for all x ∈ X that

∂

(
n

∑
i=1

fi(x)

)
=

n

∑
i=1

∂ fi(x). (2.21)

The right side of equation (2.21) represents the Minkowski sum of the sets of subdifferentials ∂ fi(x) of

the functions fi.

The Subdifferential for Norm Functions

The subdifferential for norm functions plays an important role in the computation of the p-norms, in-

cluding ∥ · ∥1, ∥ · ∥2 and ∥ · ∥∞. These are norm-induced distance functions (or norm-squared). For the

calculation of the subdifferentials of the norms, we resort to the following well-known result, which can

be found in the book by Göpfert, Riedrich and Tammer [69, Theorem 5.15].

Theorem 2.2.22. Let X be a Banach space. Then the norm ∥ · ∥X is subdifferentiable and the following

holds:

∀ x ∈ X \{0} : ∂∥ · ∥X(x) := {x∗ ∈ X∗ | ⟨x∗, x⟩= ∥x∥ and ∥x∗∥∗ = 1},

at x = 0 ∈ X : ∂∥ · ∥X(x) := {x∗ ∈ X∗ | ∥x∗∥∗ ≤ 1}.

Proof. a) It follows from Hahn–Banach Theorem that for all x0(̸= 0)∈ X , a linear continuous functional

x∗0 ∈ X∗ exists, where

x∗0(x0) = ∥x0∥X and ∥x∗0∥∗ = 1. (2.22)

This results in

x∗0(x− x0)≤ ∥x∗0∥∗∥x∥X − x∗0(x0) = ∥x∥X −∥x0∥X , (2.23)

That is, x∗0 ∈ ∂∥ · ∥X(x0).

b) Conversely, for x∗0 ∈ ∂∥ · ∥X(x0), it holds from (2.23) that

∀ x ∈ X , ∥x0∥X −∥x∥X ≤ x∗0(x0 − x). (2.24)

Now, if we set x = λx0 (λ ∈ R, λ ≥ 0), we can conclude from (2.24) that

(1−λ)(x∗0(x0)−∥x0∥X)≥ 0. (2.25)

If we take λ > 1 and λ < 1, we get

x∗0(x0) = ∥x0∥X .

2.2. Properties of Operators and Functions 32

Using (2.24), we can conclude that x∗0(x)≤ ∥x∥X for any x ∈ X and ∥x∗0∥∗ = 1.

c) For x0 = 0, the statement follows directly from the Definition 2.2.17 of the subdifferential. Indeed, for

x0 = 0, we obtain

∂∥x0∥= {x∗ ∈ X∗ | x∗(x)≤ ∥x∥ (x ∈ X)}.

We now use the result of Theorem 2.2.22 to compute the subdifferentials of the p-norms (p= 1,2 and p=

∞) of Example 2.1.17 in the following theorems, along with their proofs for the reader’s convenience

which are essential for numerical computations as shown in the following results.

Theorem 2.2.23. ([94]). For p = 1, we compute the subdifferential of the ℓ1-Norm (Manhattan Norm)

for f : Rn → R where f (x) = ∥x∥1 =
n
∑

i=1
|xi|. For the Fenchel subdifferential it holds that

∂∥ · ∥1(x) =


x∗ ∈ Rn | x∗i ∈


{1}, for xi > 0

[−1,1], for xi = 0, i = 1, . . . ,n

{−1}, for xi < 0


.

Proof. For x = 0, using Theorem 2.2.22 and (∥ · ∥1)∗ = ∥ · ∥∞

∂∥ · ∥1(0) = {x∗ ∈ X∗ | (∥x∗∥1)∗ ≤ 1}

= {x∗ ∈ Rn | ∥x∗∥∞ ≤ 1}

= {x∗ ∈ Rn | x∗i ∈ [−1,1]}

= {x∗ ∈ Rn | x∗i ∈ [−1,1], for xi = 0, i = 1, . . . ,n}.

Let x ∈ Rn \{0}, then using Theorem 2.2.22 and (∥ · ∥1)∗ = ∥ · ∥∞ we can conclude that,

∂∥ · ∥1(0) = {x∗ ∈ X∗ | ⟨x∗,x⟩= ∥x∥1, (∥x∗∥1)∗ = 1}

=

{
x∗ ∈ Rn |

n

∑
i=1

x∗i xi =
n

∑
i=1

|xi|, ∥x∗∥∞ = 1

}
= {x∗ ∈ Rn | x∗i xi = |xi|, for all i = 1, . . . ,n, ∥x∗∥∞ = 1}.

The last equation follows for all i = 1, . . . ,n, ∥x∗∥∞ = 1, implying that |x∗i | ≤ 1 and therefore x∗i xi ≤ |xi|
holds. For xi < 0, the theorem applies to x∗i = −1, but for xi > 0, x∗i = 1. Since at least one component

of x differs from 0, it follows that ∥x∗∥∞ = 1 is satisfied. It also follows that for xi = 0, x∗i ∈ [−1,1] and

hence the assertion of the theorem holds.

Theorem 2.2.24. ([94]). For p = 2, we compute the subdifferential of the ℓ2-Norm (Euclidean Norm)

for f : Rn → R where f (x) = ∥x∥2 =

(
n
∑

i=1
x2

i

) 1
2

. For the Fenchel subdifferential, it holds that

For all x ∈ Rn \{0}, ∂∥ · ∥2(x) =
{

x
∥x∥2

}
.

Similarly, ∂∥ · ∥2(0) = {x∗ ∈ Rn | ∥x∗∥2 ≤ 1}.

2.2. Properties of Operators and Functions 33

Proof. According to Theorem 2.2.22, if x = 0, the statement (∥ · ∥2)∗ = ∥ · ∥2 holds.

Let x ∈ Rn \{0}, then it follows from Theorem 2.2.22 that

∂∥ · ∥2(x) = {x∗ ∈ X∗ | ⟨x∗,x⟩= ∥x∥2, ∥x∗∥2 = 1}

⊆ {x∗ ∈ Rn | ⟨x∗,x⟩⟨x∗,x⟩= ∥x∥2
2, ∥x∗∥2

2 = 1}

= {x∗ ∈ Rn | ⟨x∗,x⟩2 = ⟨x,x⟩, ⟨x∗,x∗⟩= 1}

= {x∗ ∈ Rn | ⟨x∗,x⟩2 = ⟨x,x⟩⟨x∗,x∗⟩, ⟨x∗,x∗⟩= 1}.

The Cauchy–Schwarz inequality, for any x,y∈Rn, it always holds that ⟨x,y⟩2 ≤ ⟨x,x⟩⟨y,y⟩. This inequal-

ity is only valid when x and y are linearly dependent. So we obtain x∗ = r · x with r ∈ R. Furthermore,

∥r · x∥2 = ∥x∗∥2 = 1. In particular, ∥x∥2 ̸= 0 and hence r = 1
∥x∥2

. For the remaining two possibilities, we

obtain for x∗1 =
x

∥x∥2
and x∗2 =− x

∥x∥2
, one may verify by substituting that x∗1 ∈ ∂∥·∥2(x) and x∗2 /∈ ∂∥·∥2(x)

holds.

Theorem 2.2.25. ([94]). For p = ∞, we compute the subdifferential of the ℓ∞-Norm (Maximum Norm)

for

J :=
{

j | j ∈ {1, . . . ,n}, |x j|= max
i∈{1,...,n}

|xi|
}
, for any x ∈ Rn.

The ℓ∞-Norm is defined for f : Rn → R as f (x) = ∥x∥∞ = maxi∈{1,...,n} |xi|. The Fenchel subdifferential

have the following property

∂∥ · ∥∞(x) ={x∗ ∈ Rn | ∑
j∈J

|x∗j |= 1, sgn(x∗j) = sgn(x j) ∀ j ∈ J,

x∗k = 0 ∀ k ∈ {1, . . . ,n}\ J} for x ∈ Rn \{0},

∂∥ · ∥∞(0) ={x∗ ∈ Rn | ∥x∗∥1 ≤ 1}.

Proof. The subdifferential at x = 0 follows (∥·∥∞)∗ = ∥·∥1, as stated in Theorem 2.2.22. Now for x ̸= 0,

the first statement of Theorem 2.2.22 provides

∂∥ · ∥∞(x) = {x∗ ∈ X∗ | ⟨x∗,x⟩= ∥x∥∞, ∥x∗∥1 = 1}

=

{
x∗ ∈ Rn |

n

∑
i=1

x∗i xi = max
i∈{1,...n}

|xi|,
n

∑
i=1

|x∗i |= 1

}
.

For xk, with k ∈ {1, . . . ,n}\ J,
n
∑

i=1
x∗i xi ≤ x∗kxk +(1−|x∗k |) max

i∈{1,...,n}
|xi| ≤ max

i∈{1,...,n}
|xi| is holds for x∗k ̸= 0.

This yields x∗k = 0 for all such k.

2.2. Properties of Operators and Functions 34

Now from the definition of J in the statement of the theorem, we obtain

∂∥ · ∥∞(x) =

{
x∗ ∈ Rn |

n

∑
i=1

x∗i xi = max
i∈{1,...,n}

|xi|,
n

∑
i=1

|x∗i |= 1

}

=

{
x∗ ∈ Rn | x∗k = 0 ∀ k ∈ {1, . . . ,n}\ J, ∑

j∈J
x∗jx j = max

i∈{1,...,n}
|xi|, ∑

j∈J
|x∗j |= 1

}

=

{
x∗ ∈ Rn | x∗k = 0 ∀ k ∈ {1, . . . ,n}\ J, ∑

j∈J
x∗j sgn(x j) = 1, ∑

j∈J
|x∗j |= 1

}

=

{
x∗ ∈ Rn | x∗k = 0 ∀ k ∈ {1, . . . ,n}\ J, x∗j sgn(x j) = |x∗j | ∀ j ∈ J, ∑

j∈J
|x∗j |= 1

}

=

{
x∗ ∈ Rn | x∗k = 0 ∀ k ∈ {1, . . . ,n}\ J, sgn(x j) = sgn(x∗j) ∀ j ∈ J, ∑

j∈J
|x∗j |= 1

}
,

hence, the assertion holds.

The structure of the subdifferential is important for deriving algorithms, especially the proximal algo-

rithms.

Optimality Condition

One of the primary goal of optimization theory is to find the best solution and determine whether or

not it exists. Here, we introduce different formulations of necessary and sufficient optimality condi-

tions using the right-hand side direction derivative (defined in 2.2.13), the Gâteaux-derivative, and the

subdifferential of convex functions. As mentioned above, convexity assumptions yield the existence of

Gâteaux-derivative (see also [69, Theorem 3.32]).

The following necessary and sufficient optimality condition is given by a variational inequality.

Theorem 2.2.26. ([69]). Consider X a linear space, S a convex set and f : S → R a convex function.

Then, for x,x0 ∈ S it holds:

1. x0 is a minimal solution to the nonlinear optimization problem min
x∈S

f (x), if and only if for all x ∈ S :

f ′+(x
0, x− x0)≥ 0.

2. If S is a linear subspace and f is Gâteaux-differentiable, then x0 is a minimal solution of the

nonlinear optimization problem min
x∈S

f (x), if and only if for all x ∈ S,

f ′(x0, x) = 0.

Remark 2.2.27. The necessary and sufficient optimality condition for a minimal solution to the nonlinear

optimization problem given in Theorem 2.2.26(2) is the same as the first–order necessary conditions for

a local minimizer used for nonlinear monotone operator problem stated in Theorem 2.5.3 (see Section

2.5).

2.3. Reformulation of ℓ1–Norm Regularization in Compressive Sensing 35

The following theorem provides a necessary and sufficient optimality condition for minimal solutions

to min
x∈X

f (x). We employ this type of optimality criterion later in our results in Chapter 7, specifically in

Section 7.4.

Theorem 2.2.28. ([69, Theorem 5.14]). Assume X is a Banach space and f : X → R∪{+∞} is convex

with f (x)<+∞. It holds that x0 ∈X is a minimal solution of the nonlinear optimization problem min
x∈X

f (x)

if and only if

0 ∈ ∂ f (x0). (2.26)

The proof follow easily from (2.19).

Lemma 2.2.29. (Minty Lemma). Assume Ψ is a nonempty, closed and convex subset of a normed space

(X ,∥ · ∥X) and F : X → X∗ is monotone and hemicontinuous. Then x ∈ Ψ satisfies

⟨F(x), y− x⟩ ≥ 0, for every y ∈ Ψ, (2.27)

if and only if it satisfies

⟨F(y), y− x⟩ ≥ 0, for every y ∈ Ψ. (2.28)

Theorem 2.2.30. (Hartmann-Stampacchia Theorem). Assume Ψ is a nonempty, closed and convex sub-

set of a normed space (X ,∥ · ∥X) and F : X → X∗ is monotone and hemicontinuous. If in addition either

the set Ψ is bounded or F is coercive, that is, there exists x0 ∈ Ψ such that

lim
∥x∥X→+∞

x∈Ψ

⟨F(x)−F(x0), x− x0⟩
∥x− x0∥X

=+∞.

The variational inequality (2.27) has a solution.

Remark 2.2.31. If F is also strictly (or strongly) monotone, it is clear that the solution to variational

inequality (2.27) is unique, assuming it exists.

2.3 Reformulation of ℓ1–Norm Regularization in Compressive Sensing

The following result is deduced from the Lasso Problem (1.3) as described in Chapter 1 and is given as

Remark 2.3.1 below.

Remark 2.3.1. The difficulty of solving (1.3) is that the solution solely depends on the choice of the

regularization parameter τ . In order to get rid of this difficulty, reformulation of (1.3) without a regu-

larization parameter τ is essential. The corresponding formulation takes the following form of a vector

optimization problem with two objective functions f1 := ∥x∥1, f1 : Rn → R1, f2 := ∥Ax − b∥2
2 and

f2 : Rn → R1 such that

min
x∈Rn

f (x) = min
x∈Rn

(f1(x), f2(x)), (2.29)

where the function f : Rn → R2 is vector-valued and f1 and f2 are real valued functions. We will study

vector optimization problems of type (2.29) in Chapter 7.

2.4. Line Search 36

Iterative methods for solving Problem (1.3) have been presented in several papers, (see [25, 29, 58, 75]).

Due to the fact that the proposed algorithms in this thesis are derivative–free, they can be applied to

handle nonsmooth problems that are in the form of (1.10) effectively. Therefore, we solve the nonsmooth

Problem (1.3) in a different way by converting it into the form of (1.10). Fortunately, Hu, Wang and Xiao

[167] translated problem (1.3) into a nonlinear system of equations based on the work of Figueiredo,

Nowak and Wright [58] as follows:

Let x be any vector in Rn. Then x can be split into positive and negative parts, that is,

x = u− v, u ≥ 0, v ≥ 0,

where u ∈ Rn, v ∈ Rn and ui = (xi)+, vi = (−xi)+, for all i = 1,2, ...,n with (·)+ = max{0, ·}. The ℓ1–

norm of a vector x can be represented as ∥x∥1 = eT
n u+ eT

n v, where en = (1,1, ...,1)T ∈ Rn. Hence, the

ℓ1–norm problem (1.3) is transformed as

min
u,v

1
2
∥b−A(u− v)∥2

2 + τeT
n u+ τeT

n v, such that τ ≥ 0, u ≥ 0, v ≥ 0. (2.30)

However, from [58], problem (2.30) can also be rewritten as a quadratic programming problem with box

constraints

min
z

1
2

zT Dz+ cT z, such that z ≥ 0, (2.31)

where z =

[
u

v

]
, c = τe2n +

[
−x

x

]
, x = AT b and D =

[
AT A −AT A

−AT A AT A

]
.

Clearly, D is a positive semi–definite matrix, which implies that problem (2.31) is a convex quadratic

problem.

Hu, Wang and Xiao [167] translated problem (2.31) into a linear variable inequality problem which is

equivalent to a linear complementary problem. Furthermore, they pointed out that z is a solution of the

linear complementary problem if and only if it is a solution of the nonlinear equation:

F(z) = min{z, Dz+ c}= 0, (2.32)

where F(·) is said to be Lipschitz continuous and monotone, see [131, 167]. Hence, solving problem

(1.3) is equivalent to solve Problem (1.10). Therefore, our proposed algorithms (see the algorithms

proposed in Chapters 3 and 4) can be applied to solve problem (1.3) effectively (see, for example Chapter

6, in particular Section 6.1 for the application).

In the next section, let us discuss the main procedures for step-size determination in the frame of line

search strategy for unconstrained optimization. After that an overview on solution methods for uncon-

strained optimization methods will be presented.

2.4 Line Search

Iterative techniques usually employ line search to determine step length. The goal of this strategy is to

discover the ideal step length that minimizes or maximizes a specified objective function along a specific

2.4. Line Search 37

search direction. Line search involves iteratively adjusting the step length to find a good solution. At

each iteration, the objective function is evaluated at the new step length, and the step length is modified

in accordance with the function value and specific parameters.

The Armijo rule (see, for example [12]), is a widely used criterion in unconstrained optimization prob-

lems for determining the step length. It entails multiplying the step length by a factor of less than one

until an adequate reduction in the objective function is attained. The Wolfe condition [166] are a widely

used criterion that requires examining the curvature and sufficient decrease conditions to guarantee that

the step length is in the direction of the steepest descent and is sufficiently small.

Line search for finding step length is a strong technique that may be applied to a variety of optimization

problems. It is especially beneficial for problem solving in optimization algorithms such as the popular

Newton method, quasi-Newton method, conjugate gradient methods, and so on (1.10). The algorithm

selects a direction dk and the current iterate xk and searches for a new iterate with a lesser function value.

Starting with an initial guess, say x0, the iterations are generated via the following updating formula

xk+1 := xk +αkdk, k = 0,1,2, . . . , (2.33)

where dk ∈ Rn is the search direction along which the values of f are reduced and αk ∈ R is the step-
size or step-length determined by a line search procedure. To ensure the algorithm’s effectiveness, the

search direction dk at iteration k must be a descent direction, with

dT
k g(xk)< 0, (2.34)

In (2.34), g(xk) = ∇ f (xk) = F(xk) represents the gradient of f at a point xk. To ensure global conver-
gence, the iterative algorithm (2.33) requires a reasonable step-length αk in the direction dk to fulfill the

sufficient descent condition, which states that

F(xk)
T dk ≤−t∥F(xk)∥2, where t is a positive constant, (2.35)

(see, for example, [6, 135, 139, 179] and the references therein).

Algorithms for nonlinear equations aim to choose αk that significantly reduce the norm of the function

value, ∥F(xk)∥, in each iteration. Choosing a step-length αk such that

αk := argmin
α>0

∥F(xk +αdk)∥,

results in an exact line search, with αk being the optimal step length. If we select a step-length αk such

that

∥F(xk +αkdk)∥< ∥F(xk)∥.

This type of line search is referred to as an inexact line search, whereas αk refers to the approximate
step-length.

Obtaining the optimal step-size in actual computation is often extremely costly if not impossible. Inex-

act line search is a preferred alternative due to its lower computing effort. Solodov and Svaiter [150]

developed an inexact line search strategy for nonlinear systems of equations. They claimed that the step

length αk should fulfil

−F(xk +αkdk)
T dk ≥ λ (1−ρk)µk∥dk∥2, µk > 0, ρk ∈ [0,1), λ ∈ (0,1). (2.36)

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 38

This line search technique has undergone some adjustments in order to improve its efficiency, see [18,

39, 70, 72, 175]. Finding a suitable stepsize αk using an inexact line search can be challenging, as it must

avoid being too long or too short. Inexact line search methods focus on selecting a suitable stepsize,

ensuring that αk is neither too long or too short, and creating a sequence of updates that meets these

condition.

2.5 Overview of Solution Methods for Unconstrained Optimization Prob-
lems

In this section, we give some of the most important solution methods for unconstrained optimization

problems based on the gradient computation, insisting on their definition, their advantages and disad-

vantages, as well as on their convergence properties. The main difference among these methods is the

procedure for the computation of the search direction dk. For stepsize αk computation, the most used pro-

cedure is that of Wolfe (standard). The following methods are discussed: the steepest descent, Newton,

quasi–Newton, conjugate gradient, spectral gradient and spectral–conjugate gradients. Before discussing

the solution methods, we begin by recalling the formulation of a general optimization problem and give

an overview of optimality conditions with respect to solution methods.

Many applications give rise to the unconstrained optimization problem of the form of (1.8) given by

min{ f (x) : x ∈ Rn},

where f : Rn → R is a continuously differentiable function at x ∈ Rn and bounded from below. By

continuously differentiable, we mean
(

∂ f
∂xi

)
(x) exists and is continuous, i = 1,2, . . . ,n. A function

f : Rn → R is twice continuously differentiable at x ∈ Rn if
(

∂ 2 f
∂xi∂x j

)
(x) exists and is continuous.

In order to formulate optimality conditions for problem (1.8), it is necessary to introduce some concepts

which characterize an improving direction along which the values of the function f decrease.

Definition 2.5.1. (Descent direction, Andrei [11]). Suppose that f :Rn →R is continuous at x∗. A vector

d ∈ Rn is a descent direction for f if there exists δ > 0 such that f (x∗+λd)< f (x∗) for any λ ∈ (0,δ).

The cone of descent directions at x∗, denoted by Kdd(x∗) is given by

Kdd(x∗) := {d : there exists δ > 0 such that f (x∗+λd)< f (x∗), for any λ ∈ (0,δ)}.

Assume that f is a differentiable function. Then, to get an algebraic characterization for a descent

direction for f at x∗, we define the set

K0(x∗) := {d : ∇ f (x∗)T d < 0}.

The following result shows that every d ∈ K0(x∗) is a descent direction at x∗.

Proposition 2.5.2. (Algebraic Characterization of a Descent Direction, Andrei [11]). Suppose that

f : Rn → R is differentiable at x∗. If there exists a vector d such that ∇ f (x∗)T d < 0, then d is a descent

direction for f at x∗, that is, K(x∗)⊆ Kdd(x∗).

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 39

In the next results, we provide the first and second-order necessary conditions for a local minimum.

However, one can also use Theorem 2.2.26(2) in place of Theorem 2.5.3, because both theorems are

saying the same thing.

Theorem 2.5.3. (First-Order Necessary Condition for a Local Minimum, Andrei [11]). Suppose that

f : Rn → R is differentiable at x∗. If x∗ is a local minimum, then ∇ f (x∗) = 0.

Theorem 2.5.4. (Second-Order Necessary Condition for a Local Minimum, Andrei [11]). Suppose that

f :Rn →R is twice differentiable at x∗. If x∗ is a local minimum, then ∇ f (x∗) = 0 and ∇2 f (x∗) is positive

semi-definite.

In the above theorems, we have presented the necessary conditions for a point x∗ to be a local minimum.

However, a point satisfying these necessary conditions need not be a local minimum. In the following

theorems, the sufficient conditions for a global minimum are given, provided that the objective function

is convex on Rn.

The following theorem shows that the convexity assumption is crucial in global nonlinear optimization.

Theorem 2.5.5. (First-Order Sufficient Conditions for a Strict Local Minimum, Andrei [11]). Suppose

that f : Rn → R is differentiable at x∗ and convex on Rn. If ∇ f (x∗) = 0, then x∗ is a global minimum of

f on Rn.

The following theorem gives the second-order sufficient conditions characterizing a local minimum point

for those functions which are strictly convex in a neighborhood of the minimum point.

Theorem 2.5.6. (Second-Order Sufficient Conditions for a Strict Local Minimum, Andrei[11]). Suppose

that f : Rn → R is twice differentiable at point x∗. If ∇ f (x∗) = 0 and ∇2 f (x∗) is positive definite, then

x∗ is a local minimum of f .

2.5.1 Steepest Descent Method

The steepest descent method is a fundamental approach for solving unconstrained optimization problems.

The simplest method, proposed by Cauchy in 1847 (see [35]), requires the search direction dk to be

computed as

dk :=−g(xk), (2.37)

where g(xk) is the gradient of the function f at a point xk. At the current point xk, the negative gradient

points in the most optimal path to search for the minimum of the function f . However, once we start

moving in this direction, it no longer remains the optimal choice and gradually worsens until it becomes

orthogonal to −g(k), meaning that the procedure starts taking little steps without making substantial

progress towards the minimum. The main disadvantage of this is that the steps it takes are too long. In

other words, there are some points zk on the line segment linking the points xk and xk+1, where −∇ f (zk)

gives a more optimal new search direction than −∇ f (xk+1). The steepest descent method exhibits global

convergence when used with a wide range of inexact line search procedures. In addition, the rate at

which it converges is linear (a restriction) and it is significantly impacted by ill-conditioning (Akaike,

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 40

[5]). The rate at which this method converges is heavily influenced by the distribution of the eigenvalues

of the Hessian matrix of the function being minimized.

The algorithm exhibits global convergence to a local minimizer regardless of the initial starting point x0.

Many other algorithms for optimization employ the steepest descent approach when they fail to achieve

significant advancements. However, it also has the following drawbacks. The property of scale invariance

is not present, meaning that altering the scalar product on Rn will result in a modification of the concept

of gradient. In addition, it typically exhibits a significant degree of slowness, namely in terms of its

convergence rate being linear. In terms of numerical analysis, it frequently lacks convergence entirely.

Andrei [7] provided an enhanced version of the steepest descent method with backtracking, which was

further examined by Babaie-Kafaki and Rezaee [20].

2.5.2 Newton Methods

The Newton method is based on the quadratic approximation of the function f and the exact minimization

of this quadratic approximation. Therefore, in the vicinity of the current iteration point xk, the function

f is estimated using the truncated Taylor series

f (x)∼= f (xk)+∇ f (xk)
T (x− xk)+

1
2
(x− xk)

T
∇

2 f (xk)
T (x− xk), (2.38)

known as the local quadratic model of f about xk. The search direction of the Newton method is calcu-

lated by minimizing the right-hand side of equation (2.38) using the formula

dk :=−∇
2 f (xk)

−1g(xk). (2.39)

Therefore, the Newton method is defined as

xk+1 := xk −αk∇
2 f (xk)

−1g(xk), k = 0,1, . . . , (2.40)

where αk represents the stepsize. In the context of the Newton method (2.40), it can be observed that dk

is a descent direction if and only if ∇2 f (xk) is a positive definite matrix. If the initial point x0 is in close

proximity to x∗, then {xk} generated by the Newton method converges to x∗ at a quadratic rate.

The primary limitation of this method is the requirement to calculate and store the Hessian matrix, which

is an n×n matrix. Occasionally, during the iteration process, the Hessian ∇2 f (xk) may become singular

or non-positive definite. If the Hessian matrix is singular at the solution point, the quadratic convergence

property of the Newton method is compromised. To address this situation, the solution is to choose a

positive definite matrix Mk in a manner that ensures that the sum of the Hessian matrix ∇2 f (xk) and Mk

is positive definite enough. Then, we may solve the equation (∇2 f (xk)+Mk)dk = −g(xk) to find the

solution. The selection of the regularization term Mk is commonly based on the spectral decomposition

of the Hessian. An alternative approach to improving the Newton method involves utilizing the modified

Cholesky factorization, as described by Gill and Murray [66]. Certainly, the Newton approach is unsuit-

able for solving problems of significant magnitude. Furthermore, if the solution is located far outside the

region of convergence, the Newton method is likely to diverge. Put simply, the Newton method lacks

the property of global convergence. This is because the search direction (2.39) may not be an accept-

able descent direction, even if g(xk)
T dk < 0 . Additionally, using a unit stepsize might not result in a

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 41

decrease in the function values when minimizing. To address this issue, one should employ globalization

strategies. The first method is the line search, which adjusts the size of the step. The second method is

the trust-region, which affects both the step size and the direction. Furthermore, after each iteration, the

Newton method requires the computation of the Hessian matrix ∇2 f (xk), which can be difficult, partic-

ularly for problems with large-scale and when seeking to solve a linear system. An alternative approach

is to substitute the analytical Hessian with a finite difference approximation, as demonstrated by Sun and

Yuan [153]. However, this approach is costly because n additional evaluations of the minimizing function

are required at each iteration. Quasi-Newton algorithms can be employed to decrease the computational

effort. These techniques produce estimations of the Hessian matrix by using the information gathered

from the previous iterations. In order to eliminate the need to solve a linear system for the computation of

the search direction, one can use variants of the quasi-Newton methods which generate approximations

to the inverse Hessian. Regardless, the Newton approach is the most optimal when executed.

2.5.3 Quasi–Newton Methods

It is commonly known that the Newton method, the most famous method for solving unconstrained

optimization problems, computes its search direction using exact Hessian matrices. However, for a

variety of problems, computing the Hessian matrices is quite expensive, and the Hessian may not always

be available analytically. Quasi-Newton methods rely solely on the gradients of the objective function

f : Rn → R, to construct a sequence of Hessian approximations. They also ensure a relatively rapid rate

of convergence.

Quasi-Newton search directions provide an attractive alternative to Newton’s approach by eliminating

the need for correct computation of the exact Hessian matrices while yet achieving a superlinear rate

of convergence. Instead of using the exact Hessian ∇2 f (xk), an approximation Ak of the Hessian is

employed, which is updated at each iteration to incorporate the additional information gained during the

preceding iteration. The update utilizes the fact that changes in the gradient ∇ f (x) yield insights into the

second derivative of f along the search direction.

The quasi-Newton search direction is obtained by using the formula

dk :=−A−1
k g(xk), (2.41)

where the matrix Ak is an approximation of ∇2 f (xk) such that the following equation is satisfied

Ak+1sk = yk, (2.42)

with yk := g(xk+1)− g(xk) and sk = xk+1 − xk. Equation (2.42) is commonly referred to as the quasi-

Newton equation or the secant equation. There are several formulae for updating the value of Ak but the

most widely used ones are the well-known Broyden–Fletcher–Goldfarb–Shanno (BFGS) and Symmetric

Rank–One (SR1) methods, respectively. These methods are defined as follows:

Ak+1 := Ak −
AksksT

k Ak

sT
k Aksk

+
ykyT

k

yT
k sk

(2.43)

Ak+1 := Ak +
(yk −Aksk)(yk −Aksk)

T

(yk −Aksk)T sk
. (2.44)

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 42

The two updating formulae (2.43) and (2.44) produce matrices that exhibit symmetry. If the initial

approximation A0 is positive definite and sT
k yk > 0, then the BFGS update (2.43) generates positive

definite approximations of Hessian matrix. However, the SR1 update (2.44) does not guarantee positive

definiteness.

If Qk = A−1
k represents the approximated inverse of the Hessian matrix of function f at point xk, then the

BFGS and SR1 formulas are defined as follows:

Qk+1 =

(
I −

skyT
k

sT
k yk

)
Qk

(
I −

yksT
k

sT
k yk

)
+

sksT
k

sT
k yk

(2.45)

Qk+1 = Qk +
(sk −Qkyk)(sk −Qkyk)

T

(sk −Qkyk)T yk
. (2.46)

Quasi-Newton methods exhibit local superlinear convergence, and when combined with appropriate line

search techniques, they achieve global convergence. Other quasi-Newton updating formulae include the

Davidon–Fletcher–Powell (DFP) method, as well as diagonal updating formula, among others. One im-

portant drawback of the quasi-Newton approach is its avoidance of computing an exact Hessian matrix

and solving linear systems of equations in each iteration, which are significant limitations of the New-

ton’s method. Nevertheless, the most crucial aspect of several quasi-Newton methods is the generation

and subsequent storage of an n×n matrix approximation of the Hessian matrix, which can be an exceed-

ingly costly task when solving problems of large scale. As a result, several researchers have modified

certain quasi-Newton search directions to imitate the characteristics of widely used conjugate gradient

algorithms. Conjugate gradient methods are efficient in handling large-scale problems because they do

not need to generate or store matrices during the iteration processes.

Zhang et al. [175] proposed a three-term conjugate gradient algorithm for addressing general uncon-

strained optimization problems using the BFGS updating formula and the Polak–Ribière–Polyak con-

jugate gradient parameter [135, 137]. Their method was proven to be globally convergent using the

Armijo-type line search. Furthermore, Andrei [10] introduced a simple three-term conjugate gradient

technique for solving unconstrained optimization problems, which relies on the BFGS updating formula.

The search direction given in reference [10] meets both the descent and conjugacy criterion, regardless of

the line search approach employed. Awwal et al. [16] proposed a three-term derivative-free method that

effectively solves problems (1.10) with convex constraints, using a similar approach. Their approach was

created by integrating the modified Perry conjugate gradient parameter [134] into the modified BFGS up-

dating formula. Their algorithm was also utilized to restore some disturbed signals. Abubakar et al. [4]

recently introduced a new method for solving Problem (1.10) with convex constraints. This method is

based on a modified scaled SR1 updating formula and the projection technique of Solodov and Svaiter

[150], and it does not require the use of derivatives. Their method’s convergence analysis was established

by relying on the assumption of monotonicity and Lipschitz continuity of the underlying mapping.

2.5.4 Conjugate Gradient Method

Conjugate gradient methods are widely used iterative techniques for optimizing large-scale problems.

This is because they do not create or store matrices during the iteration process. The linear conjugate

gradient approach was initially introduced by Hestenes and Stiefel [82] in the 1950s as a method to solve

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 43

linear systems that are symmetric and positive-definite. In the 1960s, Fletcher and Reeves [61] modi-

fied the methods used to minimize a positive definite quadratic function, resulting in the first nonlinear

conjugate gradient method for unconstrained minimization problems.

Conjugate gradient algorithms possess the qualities of low memory usage, simple implementation, and

global convergence properties. Given an initial point x0 ∈ Rn, a nonlinear conjugate gradient method

generates a sequence of iterates {xk} using the update formula xk+1 = xk +αkdk, k = 0,1,2, The

search direction dk is determined according to the following rule:

dk :=

−g(xk), if k = 0,

−g(xk)+βkdk−1, if k ≥ 1,
(2.47)

g(xk) represents the gradient of the function f : Rn → R at xk and βk is the conjugate gradient parameter

that is updated at each iteration. The conjugate gradient parameter βk can be calculated using many

formulae, and each choice of βk corresponds to a distinct conjugate gradient parameter. Whenever the

value of βk = 0, the conjugate gradient method employs the widely recognized steepest descent method to

calculate its search direction dk. The selection of the conjugate gradient parameter βk is a well-established

fact that significantly impacts the numerical performance of the conjugate gradient method.

Remark 2.5.7. In the context of a system of nonlinear equations, the gradient g(xk) of the function f

is substituted by the value of the function F at the point xk, that is, F(xk). Recall that F is a vector-

valued. This assertion is from the first-order optimality conditions (see, for example, Theorem 2.2.26(2)

or Theorem 2.5.3), that is, x∗ is a minimizer of f =⇒ ∇ f (x∗) = 0. Hence, we consider the system of

nonlinear equation F(x) = 0, where the gradient of f is viewed as the function F : Rn → Rn, that is,

F := ∇ f .

A variety of nonlinear conjugate gradient algorithms are known. There are two main differences be-

tween them: the method used to update the search direction and the mechanism for computing the step

size along this direction. The primary criterion for the search direction in conjugate gradient methods

is to fulfill the descent–like or sufficient descent-like condition. The stepsize is determined by using

the Wolfe line search conditions or certain variations of them. The conjugate gradient algorithms can

be categorized into various types, including standard, hybrid, modified versions of the standard conju-

gate gradient algorithms, memoryless BFGS preconditioned, three-term conjugate gradient algorithms,

among others.

The most significant standard conjugate gradient methods include Fletcher and Reeves (FR) [61] meth-

ods, the Dai and Yuan (DY) [46] method and the Conjugate Descent (CD) method proposed by Fletcher

[59]. These methods with the specified parameters (where g(xk−1) ̸= 0, dT
k−1yk−1 ̸= 0 and −dT

k−1g(xk−1) ̸=
0):

β
FR
k :=

∥g(xk)∥2

∥g(xk−1)∥2 , β
DY
k :=

∥g(xk)∥2

dT
k−1yk−1

, β
CD
k :=

∥g(xk)∥2

−dT
k−1g(xk−1)

,

exhibit strong convergence properties but may have limited practical performance due to jamming [8].

However, the Polak–Ribiére [135] and Polyak (PRP) [137] methods, the Hestenes and Stiefel (HS) [82]

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 44

method and the Liu and Storey (LS) [115] method with the parameters:

β
PRP
k :=

g(xk)
T yk−1

∥g(xk−1)∥2 , β
HS
k :=

g(xk)
T yk−1

dT
k−1yk−1

, β
LS
k :=

g(xk)
T yk−1

−dT
k−1g(xk−1)

,

may not always converge, but they often exhibit superior computational efficiency [8]. The denominators

of the CG parameters FR, DY, CD, PRP, HS, and LS are presumed to be non-zero. Conjugate gradient

methods using the above parameters do not always guarantee a direction of descent without the inclusion

of a line search procedure. If the objective function is a strongly convex quadratic and the line search

is performed exactly, then, theoretically, all possible selections for the search direction in standard con-

jugate gradient algorithms yield the same results. However, when dealing with non-quadratic functions,

the choice of the search direction results in standard conjugate gradient algorithms that exhibit varying

levels of performance.

Hybrid conjugate gradient algorithms aim to combine standard conjugate gradient methods to take ad-

vantage of the attractive features of each method. Hybrid conjugate gradient algorithms can be obtained

by combining the standard schemes in two distinct manners. The first combination is based on the con-

cept of projection. The concept behind these methods involves the use of a pair of standard conjugate

gradient methods, with one of them being employed when a specific requirement is met. Once the condi-

tion has been violated, the alternative standard conjugate gradient from the pair is employed. The second

category of hybrid conjugate gradient methods is derived from the convex combination of the standard

methods. The purpose of each of these techniques is to select a pair of standard methods and merge them

in a convex manner, with the parameter in the convex combination determined through the use of either

the conjugacy condition or the Newton search direction. Generally speaking, hybrid methods that use a

convex combination of standard schemes performs better than hybrid methods that rely on the projection

concept. Hybrid methods exhibit superior efficiency and robustness compared to standard methods.

A significant category of conjugate gradient algorithms is derived by modifying the standard methods. It

is possible to improve the numerical efficiency of any standard conjugate gradient method by modifying

it to ensure that the search direction is always in the direction of descent. The most effective conju-

gate gradient algorithms currently available include the CGDESCENT algorithm developed by Hager

and Zhang [72], and the DESCON algorithm developed by Andrei [9]. CG-DESCENT is an algorithm

that uses conjugate gradient methods and ensures that the objective function decreases at each itera-

tion. CG-DESCENT can be considered as a modified version of the Dai and Liao conjugate gradient

method, where its parameter is assigned a specific value to make it adaptive. The search direction of

CG-DESCENT is linked to the memoryless quasi-Newton direction of Perry-Shanno. DESCON is an

iterative optimization technique that ensures both descent and conjugacy criteria, and incorporates a

modified Wolfe line search. Primarily, it is a modification of the Hestenes–Stiefel conjugate gradient

algorithm.

In 1976, Perry established in [134] the initial link between the conjugate gradient algorithms and the

quasi-Newton algorithms. According to Perry, the Hestenes-Stiefel search direction is a matrix that

multiplies the negative gradient. In 1978, Shanno [149] demonstrated that the conjugate gradient methods

are precisely equivalent to the BFGS quasi-Newton methods. Each iteration of those methods resets the

approximation to the inverse Hessian to the identity matrix. We can describe conjugate gradient methods

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 45

as memoryless quasi-Newton methods. This marked the inception of a highly productive field of study

focused on memoryless quasi-Newton conjugate gradient algorithms. The problem at hand is how to

include the second-order information from the minimizing function in the procedure for updating the

search direction.

Beale [23] and Nazareth [127] proposed the three-term conjugate gradient algorithms. The convergence

rate of the conjugate gradient method may be improved from linear to n-step quadratic by restarting the

method with the negative gradient direction after n iterations. One such restart technique was proposed

by Beale [23]. During the restarting method, the restart direction is determined by combining the nega-

tive gradient with the prior search direction. This previous search direction includes information about

the second-order derivative, which is obtained by searching along the previous direction. Therefore, a

conjugate gradient with three terms was obtained. Nazareth [127] suggested a conjugate gradient ap-

proach that utilizes three terms for the search direction, ensuring limited convergence for an arbitrary

initial search direction. There are numerous algorithms for three-term conjugate gradients that are well-

known. The concept of a three-term conjugate gradient is an interesting development. Nevertheless, the

numerical performance of these methods is modest.

2.5.5 Spectral Gradient Method

The spectral gradient method is an appropriate strategy for handling large-scale unconstrained optimiza-

tion problems. The first implementation of the spectral gradient approach is attributed to Barzilai and

Bowein [22] for unconstrained optimization problems. Later, La Cruz and Raydan [108] extended this

method to solve large-scale systems of equations. One attractive feature of this method is its simplicity

in implementation and its property of achieving global convergence.

Spectral gradient method generates its sequence of iterates {xk} using xk+1 := xk +αkdk, k = 0,1,2, . . . ,

where the search direction dk is defined as

dk :=

−g(xk), if k = 0,

−λkg(xk), if k ≥ 1,
(2.48)

λk > 0 is the spectral gradient parameter and g(xk) is the gradient of the function that has to be minimized.

The scalar parameter λk should be strictly positive. The spectral gradient method becomes the steepest

descent method when λk = 1. Spectral gradient methods differ depending on the spectral parameter λk

used.

2.5.6 Spectral–Conjugate Gradient Methods

Liu and Li [113] suggested that the spectral gradient method may cause the iterates to zigzag, which is

a similar drawback to the steepest descent method. In order to address this limitation, it is logical to

combine the spectral gradient parameter and the conjugate gradient parameter to create a formula that

generates the search direction dk. This search direction is a combination of a steepest descent and the

2.5. Overview of Solution Methods for Unconstrained Optimization Problems 46

previous search direction. The formula is defined as follows

dk :=

−g(xk), if k = 0,

−λkg(xk)+βkdk−1, λk,βk > 0, if k ≥ 1.
(2.49)

The iterative techniques that generate the search direction dk described in (2.49) are called spectral con-

jugate gradient methods. If λk = 1 for all k > 0, the search direction dk in (2.49) reduces to the conjugate

gradient search direction dk defined in (2.47), while if βk = 0, the spectral-conjugate gradient search

direction (2.49) reduces to the spectral gradient search direction (2.48).

Chapter 3

Derivative–Free Algorithms for Nonlinear
Systems of Equations

In this chapter, we discuss the first part of our main results. Most of the results of this chapter are

from our work published in Muhammad et al., [1, 123, 124]. We begin by recalling the problem under

consideration. Iterative methods such as Newton methods, quasi–Newton methods and conjugate gradi-

ent methods, have widely been successfully applied to deal with the general unconstrained optimization

problems of the form (1.8), that is,

min{ f (x) : x ∈ Rn},

where f : Rn → R is a continuously differentiable function and bounded from below. Unlike quasi–

Newton methods, which require the storage of n×n matrices in every iteration, conjugate gradient (CG)

methods require the storage of n×1 vectors at each iteration. Moreover, the CG methods are of particular

interest due to their global convergence property and simplicity of implementation.

The CG method computes its sequence of iterates {xk} using the following updating formula:

xk+1 := xk +αkdk, k ≥ 0.

The scalar αk > 0 denotes the step–length that is obtained via a suitable line–search strategy and the

vector dk is a search direction given by

d0 :=−F(x0) and dk :=−F(xk)+βkdk−1, for all k ∈ N,

where F := ∇ f and βk (called the CG parameter) is a scalar that is updated in every iteration.

Under the differentiability assumption, a well-known necessary optimality condition for problem (1.8)

is:

x∗ is a minimizer of f =⇒ ∇ f (x∗) = 0.

This fact is called the first–order necessary optimality condition for the minimizer x∗ of problem (1.8).

Therefore, we consider the following system of nonlinear equations:

In this context, we interpret the gradient of f in Problem (1.8) as the operator F in Problem (1.10), that

is, F := ∇ f .

47

3.1. Algorithm 1: Modified Dai–Yuan Projection Methods (MDY) 48

In the literature, many algorithms have been proposed and shown to be efficient for solving a convex

constrained monotone operator equation of the form (1.10). However, some of these iterative algorithms

may not be well-defined, have poor numerical performance, cannot generate descent search directions

and therefore, fail to converge globally to the solution of Problem (1.10). As a result, we need to improve

these iterative algorithms by either modifying the search directions (or proposing new search directions)

and introducing new parameters so that we can have algorithms that are well-defined, satisfying the

descent–like conditions, converge globally to the solution of Problem (1.10) and exhibit good numerical

convergence. Sections 3.1, 3.2, 3.3 and 3.4 clearly demonstrate this.

This chapter is divided into four sections where Section 3.1 proposes a Modified Dai-Yuan (MDY1 and

MDY2) algorithm. Section 3.2 introduces a Hybrid Conjugate Descent and a Liu and Storey algorithm

simply represented by HCDLS algorithm while Section 3.3 establishes a Three-term Dai-Liao Projec-

tion algorithm denoted by TDLP algorithm. Lastly, we present a convergence analyses of the proposed

algorithms of Sections 3.1, 3.2 and 3.3 in Section 3.4.

The following Assumption 3.0.1 is a standing assumption in the whole chapter.

Assumption 3.0.1. Consider problem (1.10) and suppose the following conditions on the underlying

mapping F : Rn → Rn,, which are useful in the analyses of our proposed algorithms throughout this

chapter.

A1. The solution set χ of Problem (1.10) is nonempty.

A2. The mapping F is Lipschitz continuous.

A3. The mapping F is monotone.

A4. The mapping F is pseudomonotone.

3.1 Algorithm 1: Modified Dai–Yuan Projection Methods (MDY)

In [46], Dai and Yuan proposed a conjugate gradient algorithm for solving the unconstrained optimiza-

tion problem of the form of (1.8). Dai and Yuan’s CG method defined their search direction dk, in the

following way:

dk :=

−g(xk) if k = 0,

−g(xk)+β DY
k dk−1 if k ≥ 1,

(3.1)

where β DY
k is a scalar called the CG parameter by Dai and Yuan method and is defined as

β
DY
k :=

∥g(xk)∥2

dT
k−1yk−1

,

and g(xk) := ∇ f (xk) is the gradient of f at xk, with g : Rn → Rn, ∀ k ∈ N0.

Liu and Feng [112] proposed a modified version of the Dai and Yuan’s [46] conjugate gradient method

(known as PDY) for solving monotone system of nonlinear equations of the form of (1.10) that is,

F(x) = 0 such that x ∈ Ψ ⊆ Rn,

3.1. Algorithm 1: Modified Dai–Yuan Projection Methods (MDY) 49

where the function F : Rn → Rn is assumed to be Lipschitz continuous and monotone. The search

direction for the PDY method is given by

dk
PDY :=

−F(xk) if k = 0,

−θkF(xk)+β PDY
k dPDY

k−1 if k ≥ 1,
(3.2)

where

β
PDY
k :=

∥F(xk)∥2

wT
k−1dPDY

k−1
, θk := c+

F(xk)
T dPDY

k−1

wT
k−1dPDY

k−1
, c > 0,

wk−1 := yk−1 + tk−1dPDY
k−1 , (3.3)

yk−1 := F(xk)−F(xk−1) and tk−1 := 1+max
{

0,− yT
k−1dPDY

k
∥dPDY

k−1 ∥2

}
We quickly give the following useful remark.

Remark 3.1.1. It is easy to see that from the definition of dk
PDY in (3.2) and wk−1 in (3.3) that

wT
k−1dPDY

k−1 ≥ yT
k−1dPDY

k−1 +∥dPDY
k−1 ∥2 − yT

k−1dPDY
k−1 = ∥dPDY

k−1 ∥2. (3.4)

Following the success recorded by the work of Liu and Feng [112], we propose a new modification of

the Dai and Yuan [46] conjugate gradient method for generating a solution of Problem (1.10). This new

modification has helped greatly in improving the numerical performance of Dai and Yuan’s method (see,

for example, Section 4 of Abubakar et al. [1] or Section 5.1.1 of this thesis) as well as in applying the

new method to compressive sensing (see also, Section 4.1 of Abubakar et al., [1] or Section 6.1 of this

thesis). We refer to this method as A Modified Dai–Yuan (MDY) Method where the proposed new

search direction is defined as

dk :=

−F(xk) if k = 0,

−F(xk)+β PDY
k dk−1 −θkF(xk) if k ≥ 1,

(3.5)

where for all k ∈ N
β

PDY
k :=

∥F(xk)∥2

dT
k−1wk−1

, (3.6)

wk−1 := yk−1 + tk−1dk−1, yk−1 := F(xk)−F(xk−1)+ rsk−1,

sk−1 := xk − xk−1, tk−1 := 1+max

{
0,−

dT
k−1yk−1

dT
k−1dk−1

}
.

In our new approach, the coefficient θk in (3.5) will be obtained in two different ways, such that, dk

satisfies the descent–like condition given by the inequality

F(xk)
T dk ≤−t∥F(xk)∥2, (3.7)

where t is a positive constant.

In what follows, we define two new different modified Dai-Yuan descent–like search directions for non-

linear monotone operator equations depending on the value of θk.

3.1. Algorithm 1: Modified Dai–Yuan Projection Methods (MDY) 50

First, we introduce the modified Dai-Yuan search direction called MDY1 Direction. From the definition

of dk in (3.5) and β PDY
k in (3.6), we obtain for all k ∈ N

F(xk)
T dk =−∥F(xk)∥2 +

∥F(xk)∥2

dT
k−1wk−1

F(xk)
T dk−1 −θk∥F(xk)∥2

=
−∥F(xk)∥2(dT

k−1wk−1)
2 +∥F(xk)∥2(dT

k−1wk−1)F(xk)
T dk−1

(dT
k−1wk−1)2 −

θk∥F(xk)∥2(dT
k−1wk−1)

2

(dT
k−1wk−1)2 .

(3.8)

Taking u := 1√
2
(dT

k−1wk−1)F(xk), v :=
√

2∥F(xk)∥2dk−1 and using the following relation

uT v ≤ 1
2
(∥u∥2 +∥v∥2),

we conclude from (3.8) that

F(xk)
T dk ≤− 3

4
∥F(xk)∥2(dT

k−1wk−1)
2

(dT
k−1wk−1)2 +

∥F(xk)∥4∥dk−1∥2 −θk∥F(xk)∥2(dT
k−1wk−1)

2

(dT
k−1wk−1)2

=− 3
4
∥F(xk)∥2 +

∥F(xk)∥4∥dk−1∥2

(dT
k−1wk−1)2 −θk∥F(xk)∥2.

Choosing

θk :=
∥F(xk)∥2∥dk−1∥2

(dT
k−1wk−1)2 , (3.9)

it follows that

F(xk)
T dk ≤−t1∥F(xk)∥2, where t1 =

3
4
. (3.10)

Definition 3.1.2. For every k ∈ N, the search direction dk given by (3.5), together with β PDY
k given by

(3.6) and θk given by (3.9) is called the MDY1 direction.

Furthermore, we introduce a second modified Dai-Yuan search direction called the MDY2 Direction
analogously to the procedure given above. Taking into account (3.8) and choosing

θk :=
F(xk)

T dk−1

dT
k−1wk−1

, (3.11)

for all k ∈ N, it follows that F(xk)
T dk =−∥F(xk)∥2. So, the inequality (3.7) holds with t = 1.

Now, the coefficient θk of the MDY2 search direction in (3.5) is obtained in such a way that it consists of

two parts: the first part is (3.11), while the second part is chosen such that the inequality (3.7) is satisfied,

we deduce that

θk :=
F(xk)

T dk−1

dT
k−1wk−1

+
∥F(xk)∥2

(dT
k−1wk−1)2 . (3.12)

Using θk obtained in (3.12), dk given in (3.5) and β PDY
k given in (3.6), the inequality (3.7) holds in the

following

F(xk)
T dk =−∥F(xk)∥2 +

∥F(xk)∥2F(xk)
T dk−1

dT
k−1wk−1

−

(
F(xk)

T dk−1

dT
k−1wk−1

+
∥F(xk)∥2

(dT
k−1wk−1)2

)
∥F(xk)∥2

=−∥F(xk)∥2 − ∥F(xk∥4

(dT
k−1wk−1)2

≤−t2∥F(xk)∥2, with t2 = 1. (3.13)

3.1. Algorithm 1: Modified Dai–Yuan Projection Methods (MDY) 51

Definition 3.1.3. For every k ∈ N, the direction dk given by (3.5), together with β PDY
k given by (3.6) and

θk given by (3.12) is called the MDY2 direction.

Note: One can quickly choose three other different values of θk such that the inequality (3.7) holds. The

three choices are:

(i) θ̄k := F(xk)
T dk−1

dT
k−1wk−1

,

(ii) θ̂k := ∥F(xk)∥
∥dk−1∥ , ∥dk−1∥ ≠ 0, (this follows from the Cauchy–Schwarz inequality and Remark 3.1.1),

(iii) θ̃k := ∥F(xk)∥2∥dk−1∥2

(dT
k−1wk−1)2 , (this follows from squaring (i) and the Cauchy–Schwarz inequality).

Now, we state the Modified Dai–Yuan (MDY) algorithm for solving Problem (1.10), see Muhammad et

al., [1] for more details about Algorithm 1 (MDY).

Algorithm 1: Modified Dai–Yuan (MDY) Algorithm [for solving Problem (1.10)]
Input: Given an initial point x0 ∈ Ψ and parameters κ > 0, r > 0, 0 < γ < 2, σ > 0, 0 < ρ < 1,

Tol > 0. Set k = 0.

Step 1: Compute F(xk) and set dk :=−F(xk).

Step 2: If ∥F(xk)∥ ≤ Tol, xk is a solution and the iteration process stops.

Step 3: Set

υk := xk +ηkdk, (3.14)

where ηk := κρ i, such that i is the smallest nonnegative integer satisfying

−⟨F(xk +κρ
idk), dk⟩ ≥ σκρ

i∥dk∥2∥F(xk +κρ
idk)∥1/q, q ≥ 1. (3.15)

Step 4: If ∥F(υk)∥ ≤ Tol, stop. Else, compute the next iterate

xk+1 := PΨ

[
xk − γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

]
, ∥F(υk)∥ ̸= 0. (3.16)

Step 5: Set k := k+1 and update dk using (3.5), (3.6) with (3.9) for MDY1 direction or with

(3.12) for MDY2 direction, then repeat the process from Step 2.

Definition 3.1.4. Algorithm 1 with MDY1 direction is called MDY1 Algorithm and with MDY2 direction

is called MDY2 Algorithm.

Next, we give a pictorial description of the metric projection of Algorithm 1 where we let

ζk := ⟨F(υk), xk−υk⟩
∥F(υk)∥2 , F(υk) ̸= 0.

3.2. Algorithm 2: HCDLS Method 52

x0

x0 −ζ0F(υ0)

x1

−
ζ

0 F
(υ

0)

x1 −ζ1F(υ1)

−ζ1F(υ1)

x2
η0d0

υ0

η1d1

υ1

Figure 3.1: Illustration of the metric projection of Algorithm 1 adapted from the Figure 1 in Abubakar et

al. [1]

Note: From Remark 3.1.1 and equation (3.7), we can conclude that for all k ≥ 0, dT
k−1wk−1 ≥ t2∥Fk−1∥2,

which indicates the positivity of dT
k−1wk−1 when the solution of (1.10) is not achieved. In other words, it

means that the parameters β PDY
k and θk are well-defined.

Remark 3.1.5. The line search (3.15) is well–defined. That is, for all k ≥ 0, there always exists a step–

size ηk satisfying (3.15) in a finite number of iterations.

Suppose on the contrary that there exists some k0 such that for any i = 0,1,2, . . . , (3.15) does not hold,

that is

−⟨F(xk0 +κρ
idk0), dk0⟩< σκρ

i∥dk0∥
2∥F(xk0 +κρ

idk0)∥
1/q, κ > 0 and q ≥ 1. (3.17)

By the continuity of F and the fact that 0 < ρ i < 1, (i = 0,1,2, . . .), letting i → ∞ together with (3.17)

yields

⟨F(xk0), dk0⟩ ≥ 0. (3.18)

It is clear that the inequality (3.18) contradicts (3.7). Hence, the line search (3.15) is well–defined.

3.2 Algorithm 2: HCDLS Method

Let θ ,β1 and β2 be real numbers. For 0 ≤ θ ≤ 1, we call β ∗ = (1−θ)β1 +θβ2 the convex combination

of the parameters β1 and β2, where θ is called a convex combination parameter. It is not difficult to

see that when θ = 1, then β ∗ = β2 and when θ = 0, then β ∗ = β1. This means that β ∗ takes both β1

and β2 as special cases. As a result, researchers often take the convex combination of two different CG

parameters with the aim of enhancing the numerical performance of Problem (1.10). Recently, Abubakar

et al. proposed in [87] a CG method for solving Problem (1.10) where their CG parameter is defined as

a convex combination of Liu and Storey (LS) and Fletcher and Reeves (FR) CG parameters. However,

the convex combination of their CG parameters may assume values that are outside the interval [0,1].

Therefore, the authors have to attach some conditions to the convex combination of parameters. In order

3.2. Algorithm 2: HCDLS Method 53

to relax such conditions, we propose a new convex combination of two different CG parameters such that

the convex combination of parameters is always in [0,1] independent of any condition. Our approach was

found to improve the numerical performance of Problem (1.10) (see, Muhammad, Tammer and Abubakar

[123] for more details).

Consider the conjugate descent (CD) conjugate gradient parameter βCD
k := ∥F(xk)∥2

−dT
k−1F(xk−1)

proposed by

Fletcher in [59] and the modified version of Liu and Storey (LS) [115] CG parameter β LS
k := F(xk)

T yk−1
−dT

k−1F(xk−1)
,

−dT
k−1F(xk−1) ̸= 0, where yk−1 := F(xk)−F(xk−1)+ rsk−1, r > 0 and sk−1 := xk − xk−1, Andrei in [8]

commented that the CD CG method possesses strong convergence properties, but may have poor practi-

cal performance due to the effect of jamming while the LS CG method may not always be convergent,

they often have better computational performances. Consequently, we consider the convex combination

of βCD
k and β LS

k with the aim of improving the numerical performance and achieving convergence of

Problem (1.10).

Here, we propose the new search direction as follows:

dk
H :=

−F(xk) if k = 0,

−τkF(xk)+β H
k sk−1 if k ≥ 1,

(3.19)

β
H
k := θkβ

CD
k +(1−θk)β

LS
k , (3.20)

where τk is a positive spectral parameter such that (3.7) is fulfilled for dk given by (3.19).

Let us consider the following choice for the convex combination parameter θk in (3.20)

θk :=
∥yk−1∥2

yT
k−1s∗k−1

, s∗k−1 := sk−1 + yk−1, yk−1 := F(xk)−F(xk−1)+ rsk−1, r > 0. (3.21)

Claim: yT
k−1s∗k−1 > 0 and subsequently, θk ∈ [0,1].

Proof of the claim: By the definition of s∗k−1 and yk−1 in (3.21) together with the monotonicity assump-

tion on F, we obtain

yT
k−1s∗k−1 = yT

k−1sk−1 +∥yk−1∥2

= (F(xk)−F(xk−1)+ rsk−1)
T sk−1 +∥yk−1∥2

= (F(xk)−F(xk−1))
T (xk − xk−1)+ r∥sk−1∥2 +∥yk−1∥2

≥ r∥sk−1∥2 +∥yk−1∥2. (3.22)

From (3.22), we can deduce the following two conditions:

yT
k−1s∗k−1 ≥ r∥sk−1∥2 > 0, (3.23)

yT
k−1s∗k−1 ≥ ∥yk−1∥2. (3.24)

Inequality (3.23) shows that yT
k−1s∗k−1 > 0, for all k ∈ N.

Moreover, from inequality (3.24), we get

1 ≥ ∥yk−1∥2

yT
k−1s∗k−1

≥ 0. (3.25)

Taking into account (3.21), it means that θk ∈ [0,1] for all k ∈ N.

3.3. Algorithm 3: Three–term Dai–Liao Projection (TDLP) Method 54

Remark 3.2.1. In order to determine the spectral parameter τk such that (3.7) is fulfilled for dk given

by (3.19), we proceed as follows: Let k ≥ 1 and F(xk) ̸= 0. Then, we obtain from the definition of dk in

(3.19) that

F(xk)
T dk =−τk∥F(xk)∥2 +β

H
k F(xk)

T sk−1

=−
(

τk −
β H

k F(xk)
T sk−1

∥F(xk)∥2

)
∥F(xk)∥2.

(3.26)

If we set

τk ≥ 1+
β H

k F(xk)
T sk−1

∥F(xk)∥2 for all k ∈ N,

then, the search direction dk given by (3.19) satisfies the descent–like condition (3.7).

Without lost of generality, we choose the following value of τk in the proposed method as

τk := 1+
β H

k F(xk)
T sk−1

∥F(xk)∥2 for all k ∈ N.

In what follows, we will derive a hybrid conjugate gradient algorithm with spectral parameter as a convex

combination of CD and LS methods for solving the nonlinear monotone operator Problem (1.10). For

the sake of simplicity, we refer to this algorithm as HCDLS algorithm, see Muhammad et al., [123] for

more details about Algorithm 2 (HCDLS).

Algorithm 2: HCDLS Algorithm [for solving Problem (1.10)]
Input: Give the same inputs as in Algorithm 1.

Realize Step 1 to Step 4 of Algorithm 1, but replace Step 5 by:

Step 5: Set k := k+1 and update dH
k using (3.19), (3.20) and (3.21), then, repeat the process

from Step 2.

Remark 3.2.2. From the definition of dH
k in (3.19), it is easy to see that the following holds

F(xk)
T dk =−t3∥F(xk)∥2 f or all k ≥ 0, (3.27)

where t3 = 1. This means that the search direction dH
k in (3.19) generated by Algorithm 2 always satisfies

the sufficient descent–like condition (3.7).

Remark 3.2.3. The search direction dH
k generated by Algorithm 2 is well-defined. Taking into account

(3.23) and (3.25), it can be observed that θk is well defined. Also, since Remark 3.2.2 holds for all k ≥ 0,

so is −dT
k−1F(xk−1) = ∥F(xk−1)∥2 > 0 for all k ∈ N, provided the solution of Problem (1.10) has not

been achieved. This implies that βCD
k and β LS

k are also well–defined.

3.3 Algorithm 3: Three–term Dai–Liao Projection (TDLP) Method

Let f : Rn →R be a continuously differentiable function. Suppose that at certain iteration say, k−1, the

Hessian of f , that is ∇2 f , is approximated by a certain matrix Ak−1 such that Ak can be updated using

updating formula

Ak := λkAk−1 +

(
1+

yT
k−1Ak−1yk−1

yT
k−1sk−1

)
sk−1sT

k−1

yT
k−1sk−1

−

(
sk−1yT

k−1Ak−1 +Ak−1yk−1sT
k−1

yT
k−1sk−1

)
, (3.28)

3.3. Algorithm 3: Three–term Dai–Liao Projection (TDLP) Method 55

where λk ∈ R, sk−1 := xk − xk−1, yk−1 := F(xk)−F(xk−1) and it is assumed that yT
k−1sk−1 ̸= 0. Note

that when λk = 1 for all k, (3.28) reduces to the classical Broyden–Fletcher–Goldfarb–Shanno (BFGS)

updating formula.

Consider the following search direction

dk :=−AkF(xk), k ≥ 0. (3.29)

Now, replacing the matrix Ak−1 in (3.28) with an identity matrix, that is, Ak−1 = I, (3.28) becomes

Ak = λkI +

(
1+

yT
k−1yk−1

yT
k−1sk−1

)
sk−1sT

k−1

yT
k−1sk−1

−

(
sk−1yT

k−1 + yk−1sT
k−1

yT
k−1sk−1

)
. (3.30)

Multiplying equation (3.30) from the right hand side by F(xk) we get

AkF(xk) =λkF(xk)+

[(
1+

∥yk−1∥2

⟨yk−1, sk−1⟩

)
⟨sk−1, F(xk)⟩
⟨yk−1, sk−1⟩

− ⟨yk−1, F(xk)⟩
⟨yk−1, sk−1⟩

]
sk−1 −

⟨sk−1, F(xk)⟩
⟨yk−1, sk−1⟩

yk−1.

(3.31)

Substituting (3.31) into (3.29) gives

dk =−λkF(xk)+

[
⟨yk−1, F(xk)⟩
⟨yk−1, sk−1⟩

−
(

1+
∥yk−1∥2

⟨yk−1, sk−1⟩

)
⟨sk−1, F(xk)⟩
⟨yk−1, sk−1⟩

]
sk−1 +

⟨sk−1, F(xk)⟩
⟨yk−1, sk−1⟩

yk−1.

(3.32)

Since the coefficient of sk−1 and yk−1 are scalars, the search direction dk in (3.32) can be written in the

form of a three–term CG direction, that is,

dk :=−λkF(xk)+βksk−1 +
⟨sk−1, F(xk)⟩
⟨yk−1, sk−1⟩

yk−1, (3.33)

where the scalar βk is a suitable CG parameter. In this context, the CG parameter βk is replaced by the

following Dai and Liao CG parameter [45]

β
DL
k :=

⟨F(xk), yk−1 − tsk−1⟩
⟨yk−1,dk−1⟩

, t ≥ 0, (3.34)

yk−1 :=F(xk)−F(xk−1) and sk−1 := xk−xk−1. However, for some functions, the inner product ⟨yk−1, dk−1⟩
may become zero which will make the parameter β DL

k (3.34) undefined. As a result, we slightly modify

(3.34) as follows

β
T DLP
k :=

⟨F(xk), ϑk−1 − tsk−1⟩
⟨ηk−1, sk−1⟩

, (3.35)

where

ηk−1 := ϑk−1 +

(
1+max

{
0,−⟨sk−1, ϑk−1⟩

∥sk−1∥2

})
sk−1, (3.36)

ϑk−1 := F(xk)−F(xk−1)+ rsk−1, r > 0, sk−1 := xk − xk−1 and xk ̸= xk−1. Note that TDLP stands for

Three–term Dai–Liao Projection). Obviously, it is clear that the CG parameter β T DLP
k given by (3.35) is

well–defined (see Remark 3.3.1 for more details).

Using similar approach of Li, Zhang and Zhou in [175], we propose the following new search direction

dk :=


−F(xk) if k = 0,

−λkF(xk)+β T DLP
k sk−1 +

⟨sk−1, F(xk)⟩
⟨ηk−1, sk−1⟩

ϑk−1 if k > 0,
(3.37)

3.3. Algorithm 3: Three–term Dai–Liao Projection (TDLP) Method 56

where λk is a scalar parameter to be determined in such a way that the search direction dk given by (3.37)

satisfies the following inequality

⟨F(xk), dk⟩ ≤ −t4∥F(xk)∥2, t4 > 0. (3.38)

This means that the search direction dk in (3.37) generated by Algorithm 3 always satisfies the sufficient

descent–like condition (3.7).

Remark 3.3.1. To show that β T DLP
k is well–defined, by the definition of ηk−1 in (3.36), we consider two

cases as follows:

If max
{

0,− ⟨sk−1, ϑk−1⟩
∥sk−1∥2

}
̸= 0 in the definition of ηk−1 in (3.36), we obtain

⟨sk−1, ηk−1⟩=
〈

sk−1, ϑk−1 + sk−1 −
⟨sk−1, ϑk−1⟩
∥sk−1∥2 sk−1

〉
= ⟨sk−1, ϑk−1⟩+∥sk−1∥2 − ⟨sk−1, ϑk−1⟩

∥sk−1∥2 ∥sk−1∥2

= ∥sk−1∥2 > 0, if xk ̸= xk−1.

(3.39)

Otherwise, we get

⟨sk−1, ηk−1⟩= ⟨sk−1, ϑk−1⟩+∥sk−1∥2

= ⟨sk−1, F(xk)−F(xk−1)+ rsk−1⟩+∥sk−1∥2

= ⟨sk−1, F(xk)−F(xk−1)⟩+ r∥sk−1∥2 +∥sk−1∥2

≥ (r+1)∥sk−1∥2 > 0.

(3.40)

The last inequality follows from the definition of sk−1 and the monotonicity of F. This means that

⟨sk−1, ηk−1⟩> 0. Hence, β T DLP
k is well–defined.

Remark 3.3.2. In order to determine λk such that (3.7) is fulfilled for dk given by (3.37), we proceed as

follows: Let k > 0, then by taking the inner product of F(xk) and dk defined in (3.37), we obtain

⟨F(xk), dk⟩=−λk∥F(xk)∥2 +2
⟨F(xk), ϑk−1⟩⟨F(xk), sk−1⟩

⟨ηk−1, sk−1⟩
− t

⟨F(xk), sk−1⟩2

⟨ηk−1, sk−1⟩

≤ −λk∥F(xk)∥2 +2
⟨F(xk), ϑk−1⟩⟨F(xk), sk−1⟩

⟨ηk−1, sk−1⟩

≤ −λk∥F(xk)∥2 +2
∥F(xk)∥2∥ϑk−1∥∥sk−1∥

⟨ηk−1, sk−1⟩

=−
(

λk −2
∥ϑk−1∥∥sk−1∥
⟨ηk−1, sk−1⟩

)
∥F(xk)∥2.

(3.41)

The first inequality in (3.41) is obtained by dropping the third term in the preceding line since from

Remark 3.3.1, the denominator is positive. The second inequality is obtained by applying the Cauchy–

Schwarz inequality. Therefore, for the search direction (3.37) to satisfy the inequality (3.7), we only

need

λk ≥ c+2
∥ϑk−1∥∥sk−1∥
⟨ηk−1, sk−1⟩

, c > 0 for all k ∈ N.

Without loss of generality, we choose the following value of λk in the proposed method as

λk := c+2
∥ϑk−1∥∥sk−1∥
⟨ηk−1, sk−1⟩

for all k ∈ N. (3.42)

3.4. Convergence Analysis of Algorithms 1, 2 and 3 57

In what follows, we present the steps of the proposed Three–term Dai–Liao like Projection (TDLP) al-

gorithm for solving a system of nonlinear monotone equations according to (1.10). See also Muhammad

et al. [124] for more details of Algorithm 3 (TDLP).

Algorithm 3: Three-term Dai-Liao Projection (TDLP) Algorithm [for solving Problem (1.10)]
Input: Give the same inputs as in Algorithm 1.

Realize Step 1 to Step 4 of Algorithm 1, but replace Step 5 by:

Step 5: Set k := k+1 and update dk using (3.37), (3.35) and (3.42), then repeat the process

from Step 2.

3.4 Convergence Analysis of Algorithms 1, 2 and 3

In this section, the convergence analysis of Algorithms 1, 2 and 3 (that is, MDY1, MDY2, HCDLS

and TDLP methods) are provided. Throughout the section, it is assumed that F(xk) ̸= 0 for all k ∈ N0,

otherwise, the solution of Problem (1.10) has been achieved.

Remark 3.4.1. Consider the relations (3.10), (3.13), (3.27) and (3.38) and setting t := Min{t1, t2, t3, t4},
then the sequence of the search directions generated by MDY1, MDY2, HCDLS or TDLP satisfy the

inequality (3.7) given by

dT
k F(xk)≤−t∥F(xk)∥2, t > 0. (3.43)

The assertion in the next lemma concerning Algorithm 1, 2 or 3 corresponds to the assertion in [1,

Lemma 3.3] for the modified Dai–Yuan algorithm (MDY), [123, Lemma 3.3] for the hybrid conjugate

gradient algorithm with spectral parameters (HCDLS) or [124, Lemma 2.2] for the Three–term Dai–Liao

like Projection method (TDLP), respectively. We modify the proofs based on the corresponding results

found in [1, 123, 124].

Lemma 3.4.2. Let γ ∈ (0,2) and σ > 0 be suitable constants. Suppose that {xk} is the sequence gener-

ated by Algorithm 1, 2 or 3. If the mapping F is pseudomonotone, then the following assertions hold

(i) {xk} and {∥F(xk)∥} are bounded and lim
k→∞

∥xk − x̂∥ exists.

(ii) {υk} and {∥F(υk)∥} are bounded.

(iii) The sequence of the search direction {∥dk∥} generated by Algorithm 1, 2 or 3 is bounded.

(iv) lim
k→∞

ηk∥dk∥= 0.

(v) lim
k→∞

∥xk+1 − xk∥= 0.

Proof. (i). From the nonexpansive property of projection operator, we obtain∥∥∥∥PΨ

(
xk − γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

)
− x̂
∥∥∥∥≤ ∥∥∥∥xk − γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)− x̂

∥∥∥∥ . (3.44)

3.4. Convergence Analysis of Algorithms 1, 2 and 3 58

Since x̂ is a solution of Problem (1.10), then F(x̂) = 0. Therefore, ⟨F(x̂), υk − x̂⟩ ≥ 0 and by the pseu-

domonotonicity of F , it implies ⟨F(υk), υk − x̂⟩ ≥ 0. This means

⟨F(υk), xk −υk⟩ ≤ ⟨F(υk), xk −υk⟩+ ⟨F(υk), υk − x̂⟩

= ⟨F(υk), xk −υk +υk − x̂⟩

= ⟨F(υk), xk − x̂⟩. (3.45)

From (3.44), (3.45) and the definition of xk+1 in (3.16), we get

∥xk+1 − x̂∥2 ≤
∥∥∥∥xk − x̂− γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

∥∥∥∥2

= ∥xk − x̂∥2 −2γ
⟨F(υk), xk −υk⟩

∥F(υk)∥2 ⟨F(υk), xk − x̂⟩+ γ
2 ⟨F(υk), xk −υk⟩2

∥F(υk)∥2

≤ ∥xk − x̂∥2 −2γ
⟨F(υk), xk −υk⟩

∥F(υk)∥2 ⟨F(υk), xk −υk⟩+ γ
2 ⟨F(υk), xk −υk⟩2

∥F(υk)∥2

= ∥xk − x̂∥2 − γ(2− γ)
⟨F(υk), xk −υk⟩2

∥F(υk)∥2 (3.46)

≤ ∥xk − x̂∥2. (3.47)

The relation (3.47) implies that for all k ≥ 0, ∥xk+1− x̂∥ ≤ ∥xk − x̂∥ ≤ ∥xk−1− x̂∥ ≤ . . .≤ ∥x0− x̂∥, where

x0 is one of the given starting points. This means that lim
k→∞

∥xk − x̂∥ exists and so {xk} is bounded. Let

b1 := L∥x0 − x̂∥, since F is Lipschitz continuous, then for all k ≥ 0, we obtain

∥F(xk)∥= ∥F(xk)−F(x̂)∥

≤ L∥xk − x̂∥
...

≤ L∥x0 − x̂∥

= b1. (3.48)

(ii). By the definition of υk in (3.14), (3.45) and the boundedness of {xk}, we obtain for all k ≥ 0, {υk}
is bounded. By the Lipschitz continuity of F and the boundedness of {υk}, there exists some constant,

say b2, such that for all k ≥ 0

∥F(υk)∥= ∥F(υk)−F(x̂)∥

≤ L∥υk − x̂∥
...

≤ L∥υ0 − x̂∥

= b2. (3.49)

where b2 := L∥υ0 − x̂∥.

3.4. Convergence Analysis of Algorithms 1, 2 and 3 59

(iii) We divide this proof into four cases as follows:

Case I: Consider the MDY1 search direction defined by (3.5), (3.6), (3.9), (3.10), (3.48) and Remark

3.1.1, we obtain

∥dk∥=

∥∥∥∥∥−F(xk)+
∥F(xk)∥2

dT
k−1wk−1

dk−1 −
∥F(xk)∥2∥dk−1∥2

(dT
k−1wk−1)2 F(xk)

∥∥∥∥∥
≤ ∥F(xk)∥+

∥F(xk)∥2∥dk−1∥
dT

k−1wk−1
+

∥F(xk)∥3∥dk−1∥2

(dT
k−1wk−1)2

≤ ∥F(xk)∥+
∥F(xk)∥2∥dk−1∥

∥dk−1∥2 +
∥F(xk)∥3∥dk−1∥2

∥dk−1∥4

≤ ∥F(xk)∥+
∥F(xk)∥2

∥dk−1∥
+

∥F(xk)∥3

∥dk−1∥2

≤ b1 +
b2

1
cω

+
b3

1
(cω)2

= M1, (3.50)

where M1 := b1 +
b2

1
cω

+
b3

1
(cω)2 .

Case II: Similarly, consider the MDY2 search direction defined by (3.5), (3.6), (3.12), (3.13), (3.48) and

Remark 3.1.1, we get

∥dk∥=

∥∥∥∥∥−F(xk)+
∥F(xk)∥2

dT
k−1wk−1

dk−1 −

(
F(xk)

T dk−1

dT
k−1wk−1

+
∥F(xk)∥2

(dT
k−1wk−1)2

)
F(xk)

∥∥∥∥∥
≤ ∥F(xk)∥+

∥F(xk)∥2∥dk−1∥
dT

k−1wk−1
+

∥F(xk)∥2∥dk−1∥
dT

k−1wk−1
+

∥F(xk)∥3

(dT
k−1wk−1)2

≤ ∥F(xk)∥+
∥F(xk)∥2∥dk−1∥

∥dk−1∥2 +
∥F(xk)∥2∥dk−1∥

∥dk−1∥2 +
∥F(xk)∥3

∥dk−1∥4

= ∥F(xk)∥+2
∥F(xk)∥2

∥dk−1∥
+

∥F(xk)∥3

∥dk−1∥4

≤ b1 +2
b2

1
cω

+
b3

1
(cω)4

= M2, (3.51)

where M2 := b1 +2 b2
1

cω
+

b3
1

(cω)4 .

Case III: Consider the HCDLS search direction defined by (3.37), (3.20) and (3.21), we obtain

dk =−
(

1+β
H
k

F(xk)
T sk−1

∥F(xk)∥2

)
F(xk)+β

H
k sk−1,

and

β
H
k := θkβ

CD
k +(1−θk)β

LS
k , β

CD
k ;=

∥F(xk)∥2

−dT
k−1Fk−1

, β
LS
k :=

F(xk)
T yk−1

−dT
k−1Fk−1

.

Simplifying β H
k , we get

|β H
k |= |θkβ

CD
k +(1−θk)β

LS
k |,

since θk ∈ (0,1), it implies that

|β H
k | ≤ |βCD

k |+ |β LS
k |.

3.4. Convergence Analysis of Algorithms 1, 2 and 3 60

From (3.27) and Remark 3.2.3, it holds that for all k ≥ 0,

|dT
k F(xk)|= ∥F(xk)∥2 ≥ r2. (3.52)

Therefore, from (3.20), (3.21), (3.37), (3.48) and (3.52), we get

∥dk∥=
∥∥∥∥−(1+β

H
k

F(xk)
T sk−1

∥F(xk)∥2

)
F(xk)+β

H
k sk−1

∥∥∥∥
≤ ∥F(xk)∥+ |β H

k |∥F(xk)∥2∥sk−1∥
∥F(xk)∥2 + |β H

k |∥sk−1∥

= ∥F(xk)∥+2|β H
k |∥sk−1∥

≤ ∥F(xk)∥+2(|βCD
k |+ |β LS

k |)∥sk−1∥

= ∥F(xk)∥+2
∥F(xk)∥2∥sk−1∥

|dT
k−1Fk−1|

+2
∥F(xk)∥∥yk−1∥∥sk−1∥

|dT
k−1Fk−1|

≤ ∥F(xk)∥+2
∥F(xk)∥2∥xk − xk−1∥

|dT
k−1Fk−1|

+2L
∥F(xk)∥∥xk − xk−1∥2

|dT
k−1Fk−1|

≤ ∥F(xk)∥+2
∥F(xk)∥2(∥xk∥+∥xk−1∥)

|dT
k−1Fk−1|

+2L
∥F(xk)∥(∥xk∥+∥xk−1∥)2

|dT
k−1Fk−1|

≤ b1 +
4b1ω(b1 +2Lω)

r2

= M3, (3.53)

where M3 := b1 +
4b1ω(b1+2Lω)

r2 .

Case IV: Lastly, consider the TDLP search direction defined by (3.35), (3.37) and (3.42). For k > 0, by

the definition of ϑk−1 and the Lipschitz continuity of F, we get

∥ϑk−1∥= ∥F(xk)−F(xk−1)+ r(xk − xk−1)∥

≤ ∥F(xk)−F(xk−1)∥+ r∥xk − xk−1∥

≤ L∥xk − xk−1∥+ r∥xk − xk−1∥

= (L+ r)∥sk−1∥, r > 0. (3.54)

Substituting (3.35) and (3.42) into (3.37) and using (3.48), we obtain

∥dk∥=
∥∥∥∥−λkF(xk)+β

T DLP
k sk−1 +

⟨sk−1, F(xk)⟩
⟨ηk−1, sk−1⟩

ϑk−1

∥∥∥∥
≤ c∥F(xk)∥+2

∥ϑk−1∥∥sk−1∥
⟨ηk−1, sk−1⟩

∥F(xk)∥+2
∥F(xk)∥∥ϑk−1∥∥sk−1∥

⟨ηk−1, sk−1⟩
+

t∥F(xk)∥∥sk−1∥2

⟨ηk−1, sk−1⟩

≤ c∥F(xk)∥+4
∥ϑk−1∥∥sk−1∥

∥sk−1∥2 ∥F(xk)∥+
t∥F(xk)∥∥sk−1∥2

∥sk−1∥2

≤ c∥F(xk)∥+4
(L+ r)∥sk−1∥2

∥sk−1∥2 ∥F(xk)∥+
t∥F(xk)∥∥sk−1∥2

∥sk−1∥2

= c∥F(xk)∥+4(L+ r)∥F(xk)∥+ t∥F(xk)∥

= [c+4(L+ r)+ t]∥F(xk)∥

≤ [c+4(L+ r)+ t]b1

= M4, (3.55)

3.4. Convergence Analysis of Algorithms 1, 2 and 3 61

where M4 := [c+4(L+ r)+ t]b1.

Now, from (3.50), (3.51), (3.53) and (3.55), if we let M := Min{M1,M2,M3,M4} we obtain

∥dk∥ ≤M for all k ∈ N0. (3.56)

(iv). From (3.46), we can deduce that

⟨F(υk), ηkdk⟩2 ≤ ∥F(υk)∥2

γ(2− γ)
(∥xk − x̂∥2 −∥xk+1 − x̂∥2). (3.57)

By the definition of ηk in Algorithms 1, 2 or 3 and (3.15), we get

σ
2
η

4
k ∥dk∥4∥F(υk)∥2/q ≤ ⟨F(υk), ηkdk⟩2, q ≥ 1. (3.58)

Combining (3.57) and (3.58), we obtain

σ
2
η

4
k ∥dk∥4∥F(υk)∥2/q ≤ ∥F(υk)∥2

γ(2− γ)
(∥xk − x̂∥2 −∥xk+1 − x̂∥2). (3.59)

Using (3.49) and the fact that σ > 0, 0 < γ < 2 and lim
k→∞

∥xk − x̂∥ exists, then from (3.59), we obtain

lim
k→∞

η
4
k ∥dk∥4 ≤ 1

γ(2− γ)σ2 lim
k→∞

∥F(υk)∥2−2/q(∥xk − x̂∥2 −∥xk+1 − x̂∥2)

≤
b2−2/q

2
γ(2− γ)σ2 lim

k→∞

(∥xk − x̂∥2 −∥xk+1 − x̂∥2)

= 0.

This implies that,

lim
k→∞

ηk∥dk∥= 0. (3.60)

(v). Using the nonexpansive property of the projection operation, (3.14), (3.60) and the Cauchy–Schwarz

inequality, we obtain

lim
k→∞

∥xk+1 − xk∥= lim
k→∞

∥∥∥∥PΨ

[
xk −

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

]
−PΨ(xk)

∥∥∥∥
≤ lim

k→∞

∥∥∥∥xk −
⟨F(υk), xk −υk⟩

∥F(υk)∥2 F(υk)− xk

∥∥∥∥
≤ lim

k→∞

∥F(υk)∥∥xk −υk∥
∥F(υk)∥2 ∥F(υk)∥

= lim
k→∞

∥xk −υk∥

= lim
k→∞

ηk∥dk∥

= 0.

Using the same idea as in the proof of [1, Theorem 3.5] for the MDY algorithm, [123, Theorem 3.5]

for the HCDLS algorithm or [124, Theorem 2.1] for the TDLP algorithm, we establish the following

convergence result for Algorithm 1, 2 or 3, respectively. We modify the proofs presented in the relevant

literature [1, 123, 124].

3.4. Convergence Analysis of Algorithms 1, 2 and 3 62

Theorem 3.4.3. Suppose that Assumption 3.0.1 holds. For κ > 0, let {xk} be the sequence of iterates

and dk be the search direction generated by Algorithm 1, 2 or 3. Furthermore, let the sequence {xk} be

convergent to a point x̂. Then,

lim
k→∞

inf∥F(xk)∥= 0 and F(x̂) = 0. (3.61)

Proof. We claim that the sequence of iterates {xk} generated by Algorithm 1, 2 or 3 satisfies (3.61). Let

us assume that (3.61) does not hold. Then, there exists a sufficiently large K such that for all k ≥ K

∥F(xk)∥ ≥ ε, (3.62)

where ε > 0 is a given positive constant. Suppose η ′
k := ρ−1ηk, ρ ∈ (0,1) and define υ ′

k := xk +η ′
kdk. If

ηk ̸= κ, then, η ′
k does not satisfy (3.15), that is,

F(υ ′
k)

T dk +ση
′
k∥F(υ ′

k)∥1/q∥dk∥2 > 0, q ≥ 1.

Since x̂ is in the solution set of Problem (1.10) it implies that F(x̂) = 0. By the Lipschitz continuity of F

and the boundedness of ∥dk∥ in (3.56), we obtain for all k ≥ 0

∥F(υ ′
k)∥= ∥F(υ ′

k)−F(x̂)∥

≤ L∥xk +η
′
kdk − x̂∥

≤ L∥xk − x̂∥+Lη
′
k∥dk∥

≤ L∥x0 − x̂∥+Lη
′
k∥dk∥

≤ u1 +Lρ
−1

ηkM

≤ u1 +Lρ
−1M,

where u1 := L∥x0 − x̂∥. The last inequality follows from the fact that ηk ≤ 1, for all k ≥ 0. Now, letting

u3 := u1 +Lρ−1M, we get

∥F(υ ′
k)∥ ≤ u3. (3.63)

From the inequality (3.43), Lipschitz continuity of F and by Cauchy–Schwarz inequality, we obtain for

all k ≥ 0,

t∥F(xk)∥2 ≤−⟨F(xk), dk⟩

<−⟨F(xk), dk⟩+ ⟨F(υ ′
k), dk⟩+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

= ⟨F(υ ′
k)−F(xk), dk⟩+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

≤ ∥F(υ ′
k)−F(xk)∥∥dk∥+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

≤ Lη
′
k∥dk∥2 +ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

= ρ
−1

ηk(L+σ∥F(υ ′
k)∥1/q)∥dk∥2.

This further gives

ηk∥dk∥ ≥
ρt∥F(xk)∥2

(L+σ∥F(υ ′
k)∥1/q)∥dk∥

≥ ρtε2

(L+σu1/q
3)M

, (3.64)

where the last inequality follows from (3.56) and (3.63).

3.4. Convergence Analysis of Algorithms 1, 2 and 3 63

By taking the limit in (3.64), we obtain

lim
k→∞

ηk∥dk∥ ≥
ρtε2

(L+σu1/q
3)M

, (3.65)

which clearly contradicts (3.60). Hence, the assertion (3.61) holds.

Furthermore, by the continuity of F and the boundedness of {xk}, there exists an accumulation point

x̂ of {xk} such that F(x̂) = 0. Since {∥xk − x̂∥} converges (according to Lemma 3.4.2) and x̂ is an

accumulation point of {xk}, it follows that {xk} converges to x̂.

However, in order to see the numerical performance and the robustness of all the algorithms proposed

in this chapter (that is, Algorithm 1, 2 and 3), we provide their numerical comparison in Section 5.1.1.

Secondly, a numerical experiment of the best performing algorithm in terms of efficiency and robust-

ness (that is, Algorithm 3) will be chosen and compare with the state-of-the-art algorithms in Section

5.1.2. Furthermore, the application of Algorithm 1, 2 and 3 in compressive sensing is given in Section

6.1. Lastly, we incorporate Algorithm 3 (TDLP) in Step 3 of Algorithm 8 for solving vector–valued

approximation problem (Pm) in Section 7.5 of Chapter 7.

Chapter 4

Two–Step Projection Methods

In this chapter, we present the second part of our main results by considering two-step methods. In

Section 4.1, with the help of the hyperplane projection of Solodov and Svaiter [150] and the inertial-like

algorithms, we propose a two-step inertial-type projection method where we use two starting points say

x−1 and x0 to update our sequence of iterates, unlike the classical iterative algorithms (such as Newton’s

method and its variants as well as in quasi–Newton methods and so on) that use the formula

xk+1 := xk +αkdk, k ≥ 0, αk > 0, (4.1)

to update their sequence of iterations. Here, the search direction dk in (4.1) is usually updated using xk

and its preceding point xk−1 as well as their images F(xk) and F(xk−1) (see, for example, Sections 3.1,

3.2 and 3.3 or [1, 114, 123, 124]). Going by the fact that incorporating an inertial step

wk := xk +αk(xk − xk−1), αk > 0, (4.2)

into algorithms for solving variational inequalities, split feasibility problems, and so on, speeds up the

numerical performance, which is why we incorporated it in our search directions and its effect can be

seen clearly in Section 5.2. Secondly, using Solodov and Svaiter’s hyperplane projection techniques

[150], we proposed a two-step hybrid algorithm that uses two search directions defined using the well-

known Barzilai and Borwein (BB) spectral parameters to solve a system of nonlinear monotone operator

equations in the form of (1.10). The BB spectral parameters can be viewed as the approximations of

Jacobians with scalar multiples of identity matrices. Section 4.2.2 provides the convergence analysis of

the two-step hybrid projection algorithm.

4.1 Inertial–Type Projection Method

Given two starting points, say x0 and x−1, we consider an inertial step (4.2)

wk := xk +αk(xk − xk−1), k ≥ 1, αk > 0.

Iterative algorithms that incorporate the inertial step (4.2) are popularly referred to as inertial–type algo-

rithms. These algorithms originated from the heavy–ball method of the second–order–in–time dissipa-

tive dynamical system. In 1964, Polyak [136] began by considering inertial extrapolation as a speed–up

64

4.1. Inertial–Type Projection Method 65

method to solve smooth convex minimization problems. Inertial–type methods are two–step iterative

schemes and the next iterate is defined by making use of the previous two iterates, see [25]. In order to

speed up the iteration process, an inertial extrapolation term is required to boost the iterative sequence.

These inertial–type methods are basically used to accelerate the iterative sequence towards the required

solution. Recently, there has been a growing interest in studying inertial–type algorithms for optimiza-

tion, variational inequalities and monotone inclusions, see, for example, [17, 50, 143, 144, 146, 162]

and the references therein. Various studies have shown that iterative algorithms for solving the above

nonlinear problems with an inertial step have better numerical performance in terms of the number of

iterations and a time of execution compared to their counterparts without the inertial step. These two

impressive advantages enhance the researcher’s interest in developing new inertial–like methods.

Given a starting point, say x0, classical iterative algorithms (such as Newton’s method and its variants as

well as quasi–Newton methods among others) use the formula (4.1) to update their sequence of iterates.

The search direction dk in (4.1) is usually updated using xk and its preceding point xk−1 as well as their

images F(xk) and F(xk−1) (see, for example, [1, 73, 167, 168]). As stated above, going by the fact that

incorporating the inertial step (4.2) into algorithms for solving variational inequalities, split feasibility

problems and so on, speeds up the numerical performance, so we pose the following question: Does

incorporating a search direction with the inertial effect (4.2) enhance the numerical performance of the

conjugate gradient–like algorithms? To answer this question, given a step size αk ∈ [0,1] and any two

starting points, say x−1 and x0, we compute the sequence of inertial steps {wk} as well as their images

using wk := xk +αk(xk −xk−1) and then use them to build the search direction of the proposed algorithm.

4.1.1 Conjugate Gradient and Spectral Gradient Algorithms with Inertial–Step

Let x0 and x−1 be the given two starting points and let

wk := xk +αk(xk − xk−1), k ≥ 1,

be an inertial step with αk ∈ [0,1]. We begin this section by recalling Problem (1.10) (that is, for x ∈ Ψ ⊆
Rn nonempty, closed and convex, F : Ψ ⊆ Rn → Rn continuous and monotone, F(x) = 0 is fulfilled)

and suppose the following assumptions are vital in the proof of convergence analysis of the proposed

algorithms throughout the chapter.

Assumption 4.1.1.
We suppose the following assumptions throughout the chapter

A. The solution set χ of Problem (1.10) is nonempty.

B. The function F : Rn → Rn is monotone and Lipschitz continuous.

C. The sequence {αk} ∈ [0,1] fulfill lim
k→∞

αk = 0.

In what follows, we derive two new Inertial–Step Projection Algorithms for solving Problem (1.10).

4.1. Inertial–Type Projection Method 66

Algorithm 4: CG Algorithm with Inertial–Step (CGAIS) [for solving Problem (1.10)]
Input: Given x−1, x0 ∈ Ψ, κ, r > 0, γ ∈ (0,2), σ , ρ ∈ (0,1), αk ∈ [0,1] and Tol > 0.

Step 0: Set k = 0, compute d0 :=−F(x0) and w0 := x0 +α0(x0 − x−1).

Step 1: If ∥F(xk)∥ ≤ Tol, then xk is a solution and the iteration process stops.

Step 2: Set

υk := xk +ηkdk and ηk := κρ
i, (4.3)

where i is the smallest non–negative integer such that

−⟨F(xk +κρ
idk), dk⟩ ≥ σκρ

i∥dk∥2∥F(xk +κρ
idk)∥1/q, q ≥ 1. (4.4)

Step 3: If ∥F(υk)∥ ≤ Tol, stop. Else, compute the next iterate using the following formula

xk+1 := PΨ

[
xk − γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

]
, ∥F(υk)∥ ̸= 0. (4.5)

Step 4: Compute wk+1 := xk+1 +αk(xk+1 − xk).

Step 5: Set k := k+1, update the search direction and repeat the process from Step 1.

dk :=−θ̂kF(xk)+βk(wk −wk−1)−uk−1zk−1, (4.6)

βk :=
⟨zk−1, F(xk)⟩

⟨zk−1, wk −wk−1⟩
, wk ̸= wk−1, (4.7)

uk−1 :=
⟨wk −wk−1, F(xk)⟩
⟨zk−1, wk −wk−1⟩

, wk ̸= wk−1, (4.8)

where

zk−1 := F(wk)−F(wk−1)+ r(wk −wk−1), (4.9)

θ̂k :=

λk, if θk ≤ 0 or ⟨zk−1, F(xk)⟩= 0,

θk, otherwise,
(4.10)

θk :=
1

⟨zk−1, F(xk)⟩

〈
F(xk), wk −wk−1 + zk−1 −

wk −wk−1

⟨wk −wk−1, zk−1⟩
∥zk−1∥2

〉
, (4.11)

λk :=
∥wk −wk−1∥2

⟨zk−1, wk −wk−1⟩
. (4.12)

Algorithm 5: Spectral Algorithm with Inertial–Step (SAIS) [for solving Problem (1.10)]
Input: Given the same inputs as in Algorithm 4.

Realize Step 0 to Step 4 of Algorithm 4, but replace Step 5 by:

Step 5: Compute

dk :=−θ̂kF(xk), (4.13)

where θ̂k is defined in (4.10).

Remark 4.1.1. Observe that Algorithm 5 is obtained by setting βk = uk−1 = 0 in (4.6) of Algorithm 4.

4.1. Inertial–Type Projection Method 67

Remark 4.1.2. By the definition of zk−1 and the monotonicity assumption on F, we get

⟨zk−1, wk −wk−1⟩= ⟨F(wk)−F(wk−1)+ r(wk −wk−1), wk −wk−1⟩

= ⟨F(wk)−F(wk−1), wk −wk−1⟩+ r⟨wk −wk−1, wk −wk−1⟩

≥ r∥wk −wk−1∥2 > 0, if wk ̸= wk−1. (4.14)

Next, we show that θk is well–defined. We begin by showing that λk (according to (4.12)) is bounded. By

the Lipschitz continuity of F, we get

⟨zk−1, wk −wk−1⟩= ⟨F(wk)−F(wk−1), wk −wk−1⟩+ r∥wk −wk−1∥2 ≤ (L+ r)∥wk −wk−1∥2. (4.15)

From (4.14) and (4.15) we get
1

L+ r
≤ ∥wk −wk−1∥2

⟨zk−1, wk −wk−1⟩
≤ 1

r
. (4.16)

This implies that λk is bounded.

Therefore, from (4.10), we can find some constants, say t1 > 0 and t2 > 0 such that

t1 ≤ θk ≤ t2. (4.17)

Combining (4.16) and (4.17) gives

p ≤ θ̂k ≤ q, (4.18)

where p ∈ [t1, 1
L+r] and q ∈ [1

r , t2].

If the search direction dk defined by (4.6) or (4.13) satisfies the following sufficient descent–like condition

F(xk)
T dk ≤−t∥F(xk)∥2, t > 0, (4.19)

then, it is said to be a descent–like direction (see [6, 135, 139, 179]). It is worth mentioning that the

inequality (4.19) is very important for conjugate gradient–like iterative algorithms to be globally conver-

gent.

The following lemma shows that the proposed search directions satisfy (4.19) independent of the line

search strategy used and the result can be found in [125, Lemma 2.1].

Lemma 4.1.3. The search directions (4.6) and (4.13) generated by Algorithms 4 and 5 satisfy the

descent–like condition defined in (4.19).

Proof. Taking the inner product of the search direction dk defined by (4.6) with F(xk), for k = 0, it

follows that ⟨F(x0), d0⟩ ≤ −∥F(x0)∥2. For k > 0, we get

⟨F(xk), dk⟩=−θ̂k∥F(xk)∥2 +
⟨zk−1, F(xk)⟩

⟨zk−1, wk −wk−1⟩
⟨F(xk), wk −wk−1⟩

− ⟨wk −wk−1, F(xk)⟩
⟨zk−1, wk −wk−1⟩

⟨F(xk), zk−1⟩

=−θ̂k∥F(xk)∥2

≤−p∥F(xk)∥2.

(4.20)

The last inequality follows from (4.18). This shows that the search direction dk is a descent–like direction.

4.1. Inertial–Type Projection Method 68

Remark 4.1.4. The line search (4.4) is well–defined. That is, for all k ≥ 0, there always exists a step–size

ηk satisfying (4.4) in a finite number of iterations.

Suppose on the contrary that there exists some k0 such that for any i = 0,1,2, . . . , (4.4) does not hold,

that is,

−⟨F(xk0 +κρ
idk0), dk0⟩< σκρ

i∥dk0∥
2∥F(xk0 +κρ

idk0)∥
1/q, κ > 0 and q ≥ 1. (4.21)

By the continuity of F and the fact that 0 < ρ i < 1, (i = 0,1,2, . . .), letting i → ∞ together with (4.21)

yields

⟨F(xk0), dk0⟩ ≥ 0. (4.22)

It is clear that the inequality (4.22) contradicts (4.19). Hence the line search (4.4) is well–defined.

4.1.2 Convergence Analysis of Algorithm 4 (CGAIS) and Algorithm 5 (SAIS)

In this section, we show the global convergence of Algorithm 4 (CGAIS) and Algorithm 5 (SAIS). In

what follows, we assume that F(xk) ̸= 0 and F(υk) ̸= 0 for all k ∈ N0. If F(xk) = 0, xk is already a

solution of Problem (1.10).

The results in the next lemma are presented in our paper [125, Lemma 2.2] with a similar proof.

Lemma 4.1.5. Suppose that Assumption 4.1.1 holds and let 0< γ < 2. Let x̂ be an element of the solution

set of Problem (1.10). If the sequences {wk}, {υk}, {dk} and {xk} are generated by (4.2), (4.3), (4.5) and

(4.6) as well as the sequences of scalars {αk} and {ηk} in Algorithm 4 or 5 with the Lipschitz constant

L, then the following assertions hold:

(i) {xk} and {wk} are bounded and lim
k→∞

∥xk − x̂∥ exists.

(ii) The sequence of the search direction {∥dk∥} is bounded.

(iii) {υk} and {∥F(υk)∥} are bounded.

(iv) lim
k→∞

ηk∥dk∥= 0.

Proof. (i). Since x̂ is a solution of Problem (1.10), then F(x̂) = 0, that is, ⟨F(x̂), υk − x̂⟩ = 0. Mono-

tonicity of F gives ⟨F(x̂), υk − x̂⟩ ≤ ⟨F(υk), υk − x̂⟩. Furthermore,

⟨F(υk), xk −υk⟩= ⟨F(υk), xk −υk⟩+ ⟨F(x̂), υk − x̂⟩

≤ ⟨F(υk), xk −υk⟩+ ⟨F(υk), υk − x̂⟩

= ⟨F(υk), xk −υk +υk − x̂⟩

= ⟨F(υk), xk − x̂⟩. (4.23)

By the definition of xk+1 in Step 3 of Algorithm 4, the nonexpansive property of the metric projection

and (4.23), we get

4.1. Inertial–Type Projection Method 69

∥xk+1 − x̂∥2 =

∥∥∥∥PΨ

(
xk − γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

)
−PΨ(x̂)

∥∥∥∥
≤
∥∥∥∥xk − x̂− γ

⟨F(υk), xk −υk⟩
∥F(υk)∥2 F(υk)

∥∥∥∥2

= ∥xk − x̂∥2 −2γ
⟨F(υk), xk −υk⟩

∥F(υk)∥2 ⟨F(υk), xk − x̂⟩+ γ
2 ⟨F(υk), xk −υk⟩2

∥F(υk)∥2

≤ ∥xk − x̂∥2 −2γ
⟨F(υk), xk −υk⟩

∥F(υk)∥2 ⟨F(υk), xk −υk⟩+ γ
2 ⟨F(υk), xk −υk⟩2

∥F(υk)∥2

= ∥xk − x̂∥2 − γ(2− γ)
⟨F(υk), xk −υk⟩2

∥F(υk)∥2 (4.24)

≤ ∥xk − x̂∥2. (4.25)

The relation (4.25) implies that for all k ≥ 0, ∥xk+1− x̂∥ ≤ ∥xk − x̂∥ ≤ ∥xk−1− x̂∥ ≤ . . .≤ ∥x0− x̂∥, where

x0 is one of the given starting points. This means that lim
k→∞

∥xk − x̂∥ exists and so {xk} is bounded. From

Assumption 4.1.1(C), since αk ∈ [0,1] and the sequence {xk} is bounded, then it implies that {wk} is also

bounded.

Let b1 := L∥x0 − x̂∥. Since F is Lipschitz continuous, then for all k ≥ 0, we get

∥F(xk)∥= ∥F(xk)−F(x̂)∥

≤ L∥xk − x̂∥
...

≤ L∥x0 − x̂∥

= b1. (4.26)

To show (ii), let k = 0, by the definition of the search direction dk in (4.6), we get

∥d0∥= ∥F(x0∥ ≤ b1. (4.27)

By the Lipschitz continuity of F , we get

∥zk−1∥= ∥F(wk)−F(wk−1)+ r(wk −wk−1)∥

≤ L∥wk −wk−1∥+ r∥wk −wk−1∥

= (L+ r)∥wk −wk−1∥. (4.28)

4.1. Inertial–Type Projection Method 70

Suppose k > 0,

∥dk∥= ∥− θ̂kF(xk)+βk(wk −wk−1)−uk−1zk−1∥

≤ θ̂k∥F(xk)∥+ |βk|∥wk −wk−1∥+ |uk−1|∥zk−1∥

= θ̂k∥F(xk)∥+
∣∣∣∣ ⟨zk−1, F(xk)⟩
⟨zk−1, wk −wk−1⟩

∣∣∣∣∥wk −wk−1∥+
∣∣∣∣⟨wk −wk−1, F(xk)⟩
⟨zk−1, wk −wk−1⟩

∣∣∣∣∥zk−1∥

≤ θ̂k∥F(xk)∥+
∥zk−1∥∥F(xk)∥

⟨zk−1, wk −wk−1⟩
∥wk −wk−1∥+

∥wk −wk−1∥∥F(xk)∥
⟨zk−1, wk −wk−1⟩

∥zk−1∥

= θ̂k∥F(xk)∥+2
∥zk−1∥∥F(xk)∥

⟨zk−1, wk −wk−1⟩
∥wk −wk−1∥

≤ 1
r
∥F(xk)∥+2

(L+ r)∥wk −wk−1∥2

r∥wk −wk−1∥2 ∥F(xk)∥

=

[
1
r
+2

(L+ r)
r

]
∥F(xk)∥. (4.29)

The first and the second inequalities follow from triangle inequality and Cauchy–Schwarz inequality,

respectively. The third inequality follows from (4.14) and (4.28).

If we let b̂2 :=
[

1
r +2 (L+r)

r

]
, then (4.29) becomes

∥dk∥ ≤ b̂2∥F(xk)∥. (4.30)

Combining (4.30) and (4.27) gives

∥dk∥ ≤ b for all k ≥ 0, (4.31)

where b := b1b̂2.

(iii). By the definition of υk in (4.3), the boundedness of dk in (4.31) and the boundedness of {xk}, we

obtain for all k ≥ 0, {υk} is bounded. Hence, we can find some constant, say b2, such that ∥υk − x̂∥ ≤ b2.

Subsequently, by the Lipschitz continuity of F, there exists some constant, say b2 such that for all k ≥ 0,

∥F(υk)∥= ∥F(υk)−F(x̂)∥ ≤ L∥υk − x̂∥ ≤ b2, (4.32)

where b2 := Lb2.

(iv). From (4.24), we can deduce that

⟨F(υk), ηkdk⟩2 ≤ ∥F(υk)∥2

γ(2− γ)
(∥xk − x̂∥2 −∥xk+1 − x̂∥2). (4.33)

By the definition of ηk in Step 3 of Algorithm 4 and (4.4), we get

σ
2
η

4
k ∥dk∥4∥F(υk)∥2/q ≤ ⟨F(υk), ηkdk⟩2, q ≥ 1. (4.34)

By combining (4.33) and (4.34), we get

σ
2
η

4
k ∥dk∥4∥F(υk)∥2/q ≤ ∥F(υk)∥2

γ(2− γ)
(∥xk − x̂∥2 −∥xk+1 − x̂∥2). (4.35)

4.1. Inertial–Type Projection Method 71

Using (4.32) and the fact that σ > 0, 0 < γ < 2, and the existence of lim
k→∞

∥xk − x̂∥, then from (4.35), we

get

lim
k→∞

η
4
k ∥dk∥4 ≤ 1

γ(2− γ)σ2 lim
k→∞

∥F(υk)∥2−2/q(∥xk − x̂∥2 −∥xk+1 − x̂∥2)

≤
b2−2/q

2
γ(2− γ)σ2 lim

k→∞

(∥xk − x̂∥2 −∥xk+1 − x̂∥2)

= 0.

This implies

lim
k→∞

ηk∥dk∥= 0. (4.36)

A corresponding result to the next theorem is shown in [125, Theorem 2.1].

Theorem 4.1.6. Suppose that Assumption 4.1.1 holds. For κ > 0, let {xk} be the sequence of iterates and

dk the search direction generated by Algorithm 4 or 5. Furthermore, let the sequence {xk} be convergent

to a point x̂. Then,

liminf
k→∞

∥F(xk)∥= 0 and F(x̂) = 0. (4.37)

Proof. Suppose that for all k > 0, ∥dk∥ ̸= 0. Then, from (4.30), we get

∥F(xk)∥
∥dk∥

≥ 1

b̂2
, ∥dk∥ ̸= 0, (4.38)

with b̂2 :=
[

1
r +2 (L+r)

r

]
, L is a Lipschitz constant and r > 0 is a positive constant.

Let υ ′
k := xk +η ′

kdk and suppose that ηk ̸= κ, κ > 0. Then, for ρ ∈ (0,1), η ′
k := ρ−1ηk does not satisfy

(4.4), that is,

⟨F(υ ′
k), dk⟩+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2 > 0, q ≥ 1. (4.39)

By Assumption 4.1.1, x̂ is an element of the solution set of Problem (1.10). By the Lipschitz continuity

of F, the boundedness of ∥dk∥ in (4.31) with b = b1b̂2 and for any given starting point, say x0, we get

∥F(υ ′
k)∥= ∥F(υ ′

k)−F(x̂)∥

≤ L∥xk +η
′
kdk − x̂∥

≤ L∥xk − x̂∥+Lη
′
k∥dk∥

≤ L∥x0 − x̂∥+Lη
′
k∥dk∥

≤ b1 +Lρ
−1

ηkb,

≤ b1 +Lρ
−1b,

where b1 := L∥x0 − x̂∥. Now, letting b3 := b1 +Lρ−1b, we obtain for all k ≥ 0,

∥F(υ ′
k)∥ ≤ b3. (4.40)

4.2. Two–Step Hybrid Spectral Gradient Projection Method 72

Substituting (4.39) in the descent–like condition (4.19) and applying the Lipschitz continuity of F to-

gether with the Cauchy–Schwarz inequality, we get for all k ≥ 0,

t∥F(xk)∥2 ≤−⟨F(xk), dk⟩

<−⟨F(xk), dk⟩+ ⟨F(υ ′
k), dk⟩+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

= ⟨F(υ ′
k)−F(xk), dk⟩+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

≤ ∥F(υ ′
k)−F(xk)∥∥dk∥+ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

≤ Lη
′
k∥dk∥2 +ση

′
k∥F(υ ′

k)∥1/q∥dk∥2

= ρ
−1

ηk(L+σ∥F(υ ′
k)∥1/q)∥dk∥2.

This implies that

ηk ≥
ρt∥F(xk)∥2

(L+σ∥F(υ ′
k)∥1/q)∥dk∥2 ≥ ρt

(L+σb1/q
3)

1

b̂2
2

, (4.41)

where the last inequality follows from (4.38) and (4.40). By combining (4.36) and (4.41), we get

liminf
k→∞

∥dk∥= 0. (4.42)

Furthermore, we can deduce the following relation from (4.19),

t∥F(xk)∥2 ≤−F(xk)
T dk ≤ ∥F(xk)∥∥dk∥, t > 0,

which further gives

∥dk∥ ≥ t∥F(xk)∥, t > 0. (4.43)

Therefore,

0 = liminf
k→∞

∥dk∥ ≥ t liminf
k→∞

∥F(xk)∥, (4.44)

which gives (4.37).

Furthermore, there is an accumulation point of {xk}, say x̂, for which ∥F(x̂)∥ = 0, since F is Lipschitz

continuous and the sequence {xk} is bounded. Because {xk} is bounded, we can identify a subsequence

of {xk}, say {xk j}, for which limk→∞ ∥xk j − x̂∥= 0. Lemma 4.1.5 states that limk→∞ ∥xk− x̂∥ exists, hence

we can deduce that limk→∞ ∥xk − x̂∥= 0 and the proof is complete.

4.2 Two–Step Hybrid Spectral Gradient Projection Method

In order to further improve the results from the literature, we propose a two-step hybrid iterative algo-

rithm based on the projection technique for solving a system of nonlinear monotone equations (1.10).

The proposed algorithm uses two search directions, which are defined using the well-known Barzilai

and Borwein (BB) spectral parameters. The BB spectral parameters are approximations of Jacobians

using scalar multiples of identity matrices. It has been demonstrated that convex combinations of the BB

parameters improve the numerical performance of iterative algorithms, thus, we raise the following ques-

tion: Can the numerical performance of the method proposed by Awwal et al. in [18] be improved when

incorporated with a convex combination of the BB parameters? To answer this question, we propose a

two-step hybrid method as a convex combination of BB1 and BB2 spectral parameters, as we shall see

in the following section. In Section 4.2.1, we state the proposed algorithm, while in Section 4.2.2, we

present the convergence analysis of the proposed two-step hybrid spectral gradient algorithm.

4.2. Two–Step Hybrid Spectral Gradient Projection Method 73

4.2.1 Proposed Algorithm

The search direction in (4.1) is usually defined as dk := −B−1
k F(xk) where Bk is either the approximate

Hessian matrix in the quasi-Newton method or the exact Hessian matrix ∇2 f (xk) in the case of Newton’s

method. It is necessary to approximate the Hessian matrix, Bk, in order to satisfy the following secant

equation

Bksk−1 = yk−1, k > 0, (4.45)

sk−1 := xk − xk−1 and yk−1 := F(xk)−F(xk−1).

One of the primary shortcomings of the well-known Newton method is the requirement to compute the

second derivative of the objective function in each iteration, which led to the development of the quasi–

Newton method. However, it is not suitable for large-scale problems because it necessitates storing n×n

matrices during the iteration process. The matrix-free method proposed by Barzilai and Borwein (BB)

[22] is an important solution developed to address the quasi–Newton method’s storage difficulty. The BB

method generate the next iteration using (4.1), with the search direction given by dk := −F(xk), k ≥ 0

and the stepsize taken as a diagonal matrix Dk := λkI, which is meant to fulfill the secant equation

(4.45). However, since λkI produces diagonal matrices with identical diagonal elements, it is usually

very difficult to find λk for which D−1
k = λ

−1
k I satisfies (4.45) when the dimension is greater than one.

Consequently, Barzilai and Borwein required that D−1
k approximately satisfies (4.45) by finding λk ∈ R

that minimizes the following least squares problems

min
λ

∥λ sk−1 − yk−1∥2, (4.46)

and

min
λ

∥sk−1 −λyk−1∥2. (4.47)

The solutions of the minimization problems (4.46) and (4.47) are respectively given as

λ
BB1
k :=

∥sk−1∥2

⟨yk−1, sk−1⟩
and λ

BB2
k :=

⟨yk−1, sk−1⟩
∥yk−1∥2 . (4.48)

By Cauchy–Schwarz inequality, we see that the stepsize produced by λ BB1
k in (4.48) is always greater

than or equal to the one produced by λ BB2
k whenever ⟨yk−1, sk−1⟩> 0. Barzilai and Borwein proved that

the iterative scheme (4.1) with αk := λ BB1
k and dk := −F(xk) converge with an R-superlinear rate for

two-dimensional strictly convex quadratic problems.

However, if the objective function is not convex, the stepsizes λ BB1
k and λ BB2

k could go negative, which

is a drawback of the BB approach. As a result, Dai et al. [42] developed and analyzed the subsequent

positive stepsize

λ̂k :=
∥sk−1∥
∥yk−1∥

. (4.49)

For λ BB1
k and λ BB2

k , the geometric mean is the stepsize (4.49). The iterative scheme (4.1) with αk = λ̂k has

been demonstrated to have an equivalent rate of convergence with the stepsize λ BB1
k in (4.48) for strictly

convex quadratic functions that are two-dimensional under certain conditions. A family of gradient

4.2. Two–Step Hybrid Spectral Gradient Projection Method 74

algorithms with a stepsize that is a convex combination of λ BB1
k and λ BB2

k was recently proposed by Dai

et al. in [43]. One obtains the stepsize by resolving the subsequent problem

Ψξ (λ) = ∥ξ [(1/λ)sk−1 − yk−1]+ (1−ξ)[sk−1 −λyk−1]∥2 . (4.50)

The equation dΨξ (λ)

dλ
= 0, was demonstrated to have a unique solution in the closed interval [λ BB1

k , λ BB2
k]

for 0 ≤ ξ ≤ 1 and ⟨yk−1, sk−1⟩ > 0. They also demonstrated that for two-dimensional strictly convex

quadratics and any finite-dimensional case, respectively, their method is R-superlinearly and R-linearly

convergent. Readers who are interested in the convergence analysis of the BB stepsizes may look at the

following references [30, 44, 41, 60, 141, 142].

Conversely, La Cruz and Raydan [108] have expanded the BB method with the stepsize λ BB1
k in (4.48)

to solve unconstrained nonlinear equations. Their technique is based on the nonmonotone line search

strategy, which ensures the method’s global convergence. The method they have provided competes

with certain well-established methods, as indicated by the numerical tests. On the other hand, their

algorithm needs descent–like directions relative to the residual’s squared norm. This implies that each

iteration requires the computation of a directional derivative or an approximation of it. As a result, La

Cruz et al. [106] proposed an additional BB method for solving unconstrained nonlinear equations that

uses a new nonmonotone line-search strategy. Their method has an advantage over the previous one in

that the directional derivative computations are completely avoided. Zhang and Zhou [174] developed

an intriguing projection spectral method, which can be seen as a variant of the method given in [106,

108], based on the projection technique of Solodov and Svaiter [150]. They proposed a new line search

technique that considers the monotonicity of F and does not require a merit function. They presented

various numerical experiments that demonstrated the method’s computational advantage and established

the method’s global convergence under some appropriate assumptions. Zhang and Zhou’s [174] method

for solving nonlinear systems of equations with convex constraints was further extended by Yu et al.

[170]. Under some moderate conditions, their method is globally convergent, and preliminary numerical

results demonstrate that the method performs well and is far better than the projection method proposed in

[164]. Mohammad and Abubakar [120] proposed a positive spectral gradient method for unconstrained

nonlinear monotone operator equations. It was based on the projection technique that Solodov and

Svaiter [150] proposed. In their work, they propose a convex combination of the modified λ BB1
k and

τ̂k for the spectral parameter. Their method works well and was extended to solve monotone operator

equations with convex constraints in Reference [15] as well as signal and image restoration by Abubakar

et al. in [3]. Recently, Awwal et al. [18] proposed a novel two–step spectral gradient method for system

of nonlinear monotone equations based on the projection technique which is first of its kind. They

also introduced a new line search technique for generating the separating hyperplane projection step of

Solodov and Svaiter [150] that generalizes the one used in most of the existing literature. Their method

is globally convergent under some suitable conditions, followed with some numerical experiments that

demonstrated the computational advantages of their proposed method. Finally, their method was applied

for image deblurring problems in compressive sensing.

In order to improve the numerical performance of the method proposed in [18], we propose a two-step

hybrid iterative scheme based on the projection technique for solving a system of monotone nonlinear

4.2. Two–Step Hybrid Spectral Gradient Projection Method 75

equations with convex constraints. The new scheme proposed here is a convex combination of the Barzi-

lai and Borwein (BB1 and BB2) spectral parameters with modifications. Let I be an identity map in Rn,

if we set d := (F − I), then equation (4.1) is closely related to the well-known Mann iterative scheme

[118]

uk+1 := uk +αk(F(uk)−uk), (4.51)

where 0 ≤ αk < 1. Mann iteration has been used to address a variety of nonlinear problems with success.

Its convergence speed is somewhat modest, nevertheless. Numerous investigations have demonstrated

that the well-known two-step Ishikawa iterative method [88]

vk := (1−αk)uk +αkF(uk),

uk+1 := (1−βk)uk +βkF(vk),
(4.52)

where αk, βk ∈ [0,1), converges faster than the one-step Mann iteration.

Let d̄k := (F − I)uk and d̂k := F(vk)−uk, then the Ishikawa iterative scheme can be rewritten as follows

vk := uk +αkd̄k,

uk+1 := uk +βkd̂k.
(4.53)

In this thesis, we propose a two-step hybrid iterative scheme incorporating nonnegative BB parameters

with a projection strategy to solve nonlinear monotone systems of equations with convex constraints.

This scheme is based on the observation that the two-step Ishikawa iterative scheme has a faster conver-

gence speed than the one-step Mann iterative scheme. For the proposed two-step hybrid system, given a

starting point x0 ∈ Ψ and αk, βk ∈ (0,1], we define the updating formula as follows

wk := xk +αkdI
k,

xk+1 := PΨ

[
xk −

⟨F(zk), xk − zk⟩
∥F(zk)∥2 F(zk)

]
,

(4.54)

where zk := xk +βkdII
k , PΨ(·) is a projection operator and

dI
k :=−F(xk) if k = 0,

dI
k :=−τ I(xk)F(xk) if k > 0,

dII
k :=−τ II(wk)F(xk) for k ≥ 0.

(4.55)

For simplicity, we denote τ I(xk) := τ I
k and τ II(wk) := τ II

k . The parameters τ I
k and τ II

k are modifications of

the BB parameters (4.48) given as follows
τ I

k := ∥sI
k∥2

⟨yI
k, sI

k⟩
,

τ II
k := (1−θk)

⟨yII
k , sII

k ⟩
∥yII

k ∥2 +θk
∥sII

k ∥
∥yII

k ∥
,

(4.56)

4.2. Two–Step Hybrid Spectral Gradient Projection Method 76

where 

yI
k := F(xk+1)−F(xk)+ rsI

k, r > 0,

yII
k := F(wk)−F(xk)+ tsII

k , t > 0,

sI
k := xk+1 − xk,

sII
k := wk − xk.

(4.57)

Lemma 4.2.1. If {αk} ∈ (0,1) and lim
k→∞

αk = 0, then η ≤ τ I
k ≤ µ and δ ≤ τ II

k ≤ γ, where η := 1
L+r ,

µ := 1
r , δ := max

{
t

(t+L)2 ,
1

t+L , t 1
t+L

}
and γ := min

{ t+L
t2 , 1

t ,
t+L
t2 + 1

t

}
.

Proof. The monotonicity of F gives ⟨F(xk+1)−F(xk), xk+1 − xk⟩ ≥ 0. Therefore, by the definition of

yI
k and yII

k in (4.57), we get

⟨yI
k, sI

k⟩= ⟨F(xk+1)−F(xk), sI
k⟩+ r⟨sI

k, sI
k⟩ ≥ r∥sI

k∥2. (4.58)

⟨yII
k , sII

k ⟩= ⟨F(wk)−F(xk), sII
k ⟩+ t⟨sII

k , sII
k ⟩ ≥ t∥sII

k ∥2. (4.59)

On the other hand, by the Lipschitz continuity and the Cauchy–Schwarz inequality, we obtain

⟨yI
k, sI

k⟩= ⟨F(xk+1)−F(xk), sI
k⟩+ r⟨sI

k, sI
k⟩ ≤ (L+ r)∥sI

k∥2. (4.60)

⟨yII
k , sII

k ⟩= ⟨F(wk)−F(xk), sII
k ⟩+ t⟨sII

k , sII
k ⟩ ≤ (t +L)∥sII

k ∥2. (4.61)

∥yII
k ∥= ∥F(wk)−F(xk)+ t(wk − xk)∥ ≤ (t +L)∥sII

k ∥. (4.62)

Also, by the monotonicity of F, we obtain

∥yII
k ∥2 = ⟨F(wk)−F(xk)+ t(wk − xk), F(wk)−F(xk)+ t(wk − xk)⟩

= ∥F(wk)−F(xk)∥2 +2t⟨F(wk)−F(xk), (wk − xk)⟩+ t2∥wk − xk∥2

≥ ∥F(wk)−F(xk)∥2 + t2∥wk − xk∥2

≥ t2∥(wk − xk)∥2.

(4.63)

This together with (4.62) gives

t2∥sII
k ∥2 ≤ ∥F(wk)−F(xk)+ t(wk − xk)∥2 ≤ (t +L)2∥sII

k ∥2. (4.64)

Therefore, from (4.59), (4.61) and (4.64) we get

t
(t +L)2 ≤

⟨yII
k , sII

k ⟩
∥yII

k ∥2 ≤ t +L
t2 . (4.65)

Also, from (4.64), we get
1

t +L
≤

∥sII
k ∥

∥yII
k ∥

≤ 1
t
. (4.66)

Now, if for all k, θk = 0, then τ II
k =

⟨yII
k , sII

k ⟩
∥yII

k ∥2 and so it follows from (4.65) that t
(t+L)2 ≤ τ II

k ≤ t+L
t2 . Fur-

thermore, if for all k, θk = 1, then τ II
k =

∥sII
k ∥

∥yII
k ∥

and therefore, (4.66) gives 1
t+L ≤ τ II

k ≤ 1
t . Lastly, if for

all k, 0 < θk < 1, then there exists a constant t > 0 such that θk > t and 1− θk > 0. Thus, we obtain

t ∥sII
k ∥

∥yII
k ∥

< τ II
k ≤ ⟨yII

k , sII
k ⟩

∥yII
k ∥2 +

∥sII
k ∥

∥yII
k ∥

and from (4.65) and (4.66), it follows that t 1
t+L < τ II

k ≤ t+L
t2 + 1

t .

4.2. Two–Step Hybrid Spectral Gradient Projection Method 77

Remark 4.2.2. The following observations are made

(i) The search directions dI
k and dII

k satisfy the descent–like condition (4.19) based on Lemma 4.2.1,

that is, ⟨dI
k, F(xk)⟩ ≤ −η∥F(xk)∥2,

⟨dII
k , F(xk)⟩ ≤ −δ∥F(xk)∥2.

(4.67)

(ii) The two search directions dI
k and dII

k satisfy the following inequalitiesη∥F(xk)∥ ≤ ∥dI
k∥ ≤ µ∥F(xk)∥,

δ∥F(xk)∥ ≤ ∥dII
k ∥ ≤ γ∥F(xk)∥.

(4.68)

We now state the steps of the proposed Two-step Hybrid Spectral gradient Projection algorithm (denoted

as THSP) for solving Problem (1.10).

Algorithm 6: THSP method [for solving Problem (1.10)]
Input: Given x0 ∈ Ψ, 0 < κ ≤ 1, r, t > 0, σ ,ρ ∈ (0,1) and {αk} ∈ (0,1). Set k = 0.

1 Step 1: Compute dI
k :=−F(xk).

2 Step 2: if dI
k = 0, then

3 xk is a solution and the iteration process stops.

end
4 Step 3: Compute wk := xk +αkdI

k.

5 Step 4: Compute dII
k :=−τ II

k F(xk).

6 Step 5: Define a set {κ,κρ,κρ2, . . . ,κρn},
7 while

−⟨F(xk +κρ
idII

k), dII
k ⟩ ≥ σκρ

i∥dII
k ∥2∥F(xk +κρ

idII
k)∥1/q, q ≥ 1, (4.69)

do
8 set βk := κρ i where i is the smallest nonnegative integer.

end
9 Step 6: Set zk := xk +βkdII

k ,

10 if zk ∈ Ψ and ∥F(zk)∥ ≤ Tol, then
11 stop,

else
12

xk+1 := PΨ

[
xk −

⟨F(zk), xk − zk⟩
∥F(zk)∥2 F(zk)

]
, ∥F(zk)∥ ̸= 0. (4.70)

end
13 Step 7: Set k := k+1, update dI

k :=−τ I
kF(xk) and go to Step 2.

4.2. Two–Step Hybrid Spectral Gradient Projection Method 78

Remark 4.2.3. We claim that there exists a step-size βk satisfying the line search (4.69) for any k ≥ 0.

Assume, however, that there exists some k0 such that for each i = 0,1,2, . . . , the line search (4.69) is not

satisfied, that is

−⟨F(xk0 +κρ
id(wk0)), d(wk0)⟩< σκρ

i∥d(wk0)∥
2∥F(xk0 +κρ

id(wk0))∥
1/q. (4.71)

Since F is continuous and τ II
k is bounded for all k, letting i → ∞ yields

∥F(xk0)∥ ≤ 0. (4.72)

It is clear that the inequality (4.72) cannot hold. Hence the line search (4.69) is well-defined.

The next Lemma is highly important for the convergence of Algorithm 6.

4.2.2 Convergence Analysis of THSP Algorithm

Lemma 4.2.4. The sequences {wk}, {zk} and {xk} generated by Algorithm 6 are bounded if Assumption

4.1.1 is satisfied. Furthermore, there exist some positive constants b1, b2 and b3 such that
∥F(xk)∥ ≤ b1

∥F(wk)∥ ≤ b2

∥F(zk)∥ ≤ b3.

(4.73)

Additionally,

lim
k→∞

βk∥dII
k ∥= 0, (4.74)

and

lim
k→∞

∥xk+1 − xk∥= 0. (4.75)

Proof. Let x̂ be a solution of Problem (1.10), then by monotonicity of F, we get

⟨F(zk), xk − x̂⟩= ⟨F(zk), xk − zk + zk − x̂⟩

= ⟨F(zk), xk − zk⟩+ ⟨F(zk), zk − x̂⟩

≥ ⟨F(zk), xk − zk⟩.

(4.76)

By the definition of xk+1 in Step 6 of Algorithm 6 and (4.76) we obtain

∥xk+1 − x̂∥2 =

∥∥∥∥PΨ

[
xk −

⟨F(zk), xk − zk⟩
∥F(zk)∥2 F(zk)

]
−PΨ(x̂)

∥∥∥∥2

≤
∥∥∥∥xk − x̂− ⟨F(zk), xk − zk⟩

∥F(zk)∥2 F(zk)

∥∥∥∥2

= ∥xk − x̂∥2 −2
⟨F(zk), xk − zk⟩

∥F(zk)∥2 ⟨F(zk), xk − x̂⟩+ ⟨F(zk), xk − zk⟩2

∥F(zk)∥2

≤ ∥xk − x̂∥2 −2
⟨F(zk), xk − zk⟩

∥F(zk)∥2 ⟨F(zk), xk − zk⟩+
⟨F(zk), xk − zk⟩2

∥F(zk)∥2

= ∥xk − x̂∥2 − ⟨F(zk), xk − zk⟩2

∥F(zk)∥2

≤ ∥xk − x̂∥2.

(4.77)

4.2. Two–Step Hybrid Spectral Gradient Projection Method 79

This implies that ∥xk − x̂∥ ≤ ∥x0− x̂∥ for all k, and therefore the sequence {xk} is bounded and lim
k→∞

∥xk −
x̂∥ exists. Let b1 be a positive constant such that ∥x0 − x̂∥ = b1/L, since F is Lipschitz continuous, we

get

∥F(xk)∥= ∥F(xk)−F(x̂)∥

≤ L∥xk − x̂∥

≤ L∥x0 − x̂∥

= b1.

(4.78)

∥dI
k∥ ≤ µb1 and ∥dII

k ∥ ≤ γb1 are deduced from (4.68). Moreover, (4.54) implies that {wk} is bounded.

Since F is Lipschitz continuous, then ∥F(wk)∥ ≤ b2 for some positive constant b2 > 0. {zk} is bounded

since {dII
k } is bounded, which follows from the definition of zk in Step 6 of Algorithm 6. Also, there is a

constant b3 for which there exists a Lipschitz continuity of F, such that

∥F(zk)∥ ≤ b3. (4.79)

Since the step-size βk in Step 5 of Algorithm 6 satisfies βk ≤ 1 for all k, then from (4.69), we obtain

σ
2
β

4
k ∥dII

k ∥4∥F(zk)∥2/q ≤ σ
2
β

2
k ∥dII

k ∥4∥F(zk)∥2/q ≤ ⟨F(zk), βkdII
k ⟩2, q ≥ 1.

Combining with (4.77) gives

σ2β 4
k ∥dII

k ∥4∥F(zk)∥2/q

∥F(zk)∥2 ≤
⟨F(zk), βkdII

k ⟩2

∥F(zk)∥2 ≤ ∥xk − x̂∥2 −∥xk+1 − x̂∥2, q ≥ 1. (4.80)

From (4.79) and (4.80), we get

σ
2
β

4
k ∥dII

k ∥4 ≤ ∥F(zk)∥2− 2
q
(
∥xk − x̂∥2 −∥xk+1 − x̂∥2)≤ b

2− 2
q

3

(
∥xk − x̂∥2 −∥xk+1 − x̂∥2) .

Now, as k → ∞, we obtain

σ
2 lim

k→∞

β
4
k ∥dII

k ∥4 = 0. (4.81)

Hence

lim
k→∞

βk∥dII
k ∥= 0. (4.82)

This, together with the definition of zk in Step 6 of Algorithm 6 yields

lim
k→∞

∥zk − xk∥= 0. (4.83)

From the nonexpansive property of metric projection, we get

lim
k→∞

∥xk+1 − xk∥= lim
k→∞

∥∥∥∥PΨ

[
xk −

⟨F(zk), xk − zk⟩
∥F(zk)∥2 F(zk)

]
− xk

∥∥∥∥
≤ lim

k→∞

∥∥∥∥xk −
⟨F(zk), xk − zk⟩

∥F(zk)∥2 F(zk)− xk

∥∥∥∥
≤ lim

k→∞

∥xk − zk∥

= 0.

(4.84)

4.2. Two–Step Hybrid Spectral Gradient Projection Method 80

Theorem 4.2.5. Suppose that Assumption 4.1.1 holds. Let {xk} be the sequence of iterates and dk be the

search direction generated by Algorithm 6. Furthermore, let the sequence {xk} be convergent to a point

x̂. Then liminf
k→∞

∥F(xk)∥= 0 and F(x̂) = 0.

Proof. We begin by proving that

liminf
k→∞

∥F(xk)∥= 0. (4.85)

Suppose on the contrary that (4.85) does not hold, then there exists ε > 0 for which

∥F(xk)∥ ≥ ε for all k ≥ 0. (4.86)

Algorithm 6 employs a backtracking approach to compute βk starting from κ. When βk ̸= κ, then ρ−1βk

does not satisfy (4.69), that is,

−⟨F(xk +ρ
−1

βkdII
k), dII

k ⟩< σρ
−1

βk∥dII
k ∥2∥F(xk +ρ

−1
βkdII

k)∥1/q, q ≥ 1. (4.87)

Consequently, we obtain from Remark 4.2.2 (i) that

δ∥F(xk)∥2 ≤−⟨dII
k , F(xk)⟩

=−⟨dII
k , F(xk)−F(xk +ρ

−1
βkdII

k)+F(xk +ρ
−1

βkdII
k)⟩

=−⟨dII
k , F(xk)−F(xk +ρ

−1
βkdII

k)⟩−⟨dII
k , F(xk +ρ

−1
βkdII

k)⟩

<−⟨dII
k , F(xk)−F(xk +ρ

−1
βkdII

k)⟩+σρ
−1

βk∥dII
k ∥2∥F(xk +ρ

−1
βkdII

k)∥1/q

≤ ∥dII
k ∥∥F(xk +ρ

−1
βkdII

k)−F(xk)∥+σρ
−1

βk∥dII
k ∥2∥F(xk +ρ

−1
βkdII

k)∥1/q

≤ L∥dII
k ∥∥xk +ρ

−1
βkdII

k − xk∥+σρ
−1

βk∥dII
k ∥2∥F(xk +ρ

−1
βkdII

k)∥1/q

≤ Lρ
−1

βk∥dII
k ∥2 +σρ

−1
βk∥dII

k ∥2∥F(xk +ρ
−1

βkdII
k)∥1/q

≤ (Lρ
−1b+σρ

−1bb1/q
4)βk∥dII

k ∥,

where b is the boundedness of dII
k and ∥F(xk +ρ−1βkdII

k)∥ is bounded from above by a positive constant

say b4. This means

βk∥dII
k ∥ ≥

ρδ∥F(xk)∥2

b(L+σb1/q
4)

≥ ρδq2

b(L+σb1/q
4)

.

By considering the limits on both sides as k → ∞, we arrive at the following

lim
k→∞

βk∥dII
k ∥> 0. (4.88)

This contradicts (4.82). Hence (4.85) must hold. Since F is continuous and the sequence {xk} is bounded,

then there exists an accumulation point of {xk}, say x̂, for which ∥F(x̂)∥= 0. The boundedness of {xk},
allows us to find a subsequence {xk j} of {xk} such that lim

j→∞
∥xk j − x̂∥ = 0. The proof of Lemma 4.2.4

demonstrates that lim
k→∞

∥xk − x̂∥ exists. Thus, we can conclude that lim
k→∞

∥xk − x̂∥ = 0 and the proof is

complete.

Furthermore, to demonstrate the efficiency and robustness of Algorithms 4 and 5, we provide their nu-

merical experiments in Chapter 5 (particularly, Sections 5.2.1 and 5.2.2). Section 6.2 describes the

applications of Algorithms 4 and 5 in motion control problems.

Chapter 5

Numerical Experiments

This chapter focuses extensively on the computing efficiency of the theoretical outcomes of the algo-

rithms proposed in Chapters 3 and 4 of this thesis. It includes comparisons for solving large-scale

convex constrained optimization problems. A great deal of Dolan and Morè [49] performance profiles

and Morè and Wild [122] data profiles have been provided to demonstrate the behavior of the proposed

algorithms. The main purpose of this chapter is to illustrate the computational capabilities of the algo-

rithms presented in Chapters 3 and 4. These algorithms were tested in solving large-scale constrained

monotone nonlinear equations and were compared to state-of-the-art algorithms, as discussed in various

sections of the chapter. Most of these results are derived from the research conducted by Muhammad et

al. in references [1, 123, 124, 125].

5.1 Experiments with the Derivative–Free Algorithms

In this section, we present some numerical experiments to assess the performance of our proposed al-

gorithms as well as their computational advantages. The experiment is divided into two parts where the

first part compares the performance of Algorithms 1, 2 and 3, that is,

• A Modified Descent Dai–Yuan Conjugate Gradient Method for Constraint Nonlinear Monotone

Operator Equations proposed by Abubakar, Ibrahim, Muhammad and Tammer in [1] denoted as

MDY1 and MDY2

• A Hybrid Conjugate Gradient Algorithm With Spectral Parameters for Solving Monotone Oper-

ator Equations With Convex Constraints and Application proposed by Muhammad, Tammer and

Abubakar in [123] denoted as HCDLS

• A Dai–Liao–Like Projection Method for Solving Convex Constrained Nonlinear Monotone Equa-

tions and Minimizing the ℓ1–Regularized Problem proposed by Muhammad, Tammer, Awwal and

Elster in [124] denoted as TDLP

for solving constrained monotone nonlinear equations while the second part demonstrates the perfor-

mance of the best algorithm amongst our proposed algorithms, that is, Algorithm 3 (TDLP) in compari-

son to

81

5.1. Experiments with the Derivative–Free Algorithms 82

• A Perry–Type Derivative–Free Algorithm for Solving Nonlinear System of Equations and Mini-

mizing ℓ1–Regularized Problem, proposed in Awwal et al. [16] (denoted as DPP) and

• A Conjugate Gradient Projection Method for Solving Equations With Convex Constraints pro-

posed in Zheng et al. [178] denoted as CGPM.

The executed algorithms were written on Windows 10 ASUSTek personal computer with Intel(R) Core(TM)

i7-7500U processor with 8.00GB of RAM and CPU of 2.70GHz using MATLAB R2017a software.

5.1.1 Numerical comparisons of Algorithms 1, 2 and 3

In this experiment, we compare the performances and efficiency of Algorithms 1, 2 and 3, that is, MDY

(MDY1, MDY2), HCDLS and TDLP methods on Test Problems 5.1.1, 5.1.2, 5.1.3, 5.1.4, 5.1.5, 5.1.6,

5.1.8, 5.1.9, 5.1.10 and 5.1.11. In order to get the best possible results, the following parameters:

κ = 1, ρ = 0.4, γ = 1.99, σ = 0.0001, r = 0.01, q = 5, c = 10 and t = 0.1 were chosen for Algo-

rithm 1 (MDY1 & MDY2), Algorithm 2 (HCDLS) and Algorithm 3 (TDLP). Furthermore, all runs were

terminated whenever ∥F(xk)∥ < 10−6. If this condition is not satisfied after 1000 iterations, failure is

declared.

The Test Problems were taken from the existing literature and the function F is taken as

F(x) = (f1(x), f2(x), . . . , fn(x))T , fi : Rn → R, for i = 1,2, . . . ,n. However, the associated initial points

for these Test Problems are given in Table 5.1. All the Test Problems were solved using the dimension

(DIM) of n = 1000, 5000, 10000, 50000 and 100000.

Table 5.1: The initial points used for Algorithm 1, 2, 3, 4 and 5

Initial Points (INP) Values

x1 (1,1,1, . . . ,1)T

x2
(1

10 ,
1
10 ,

1
10 , . . . ,

1
10

)T

x3

(
1
2 ,

1
22 ,

1
23 , . . . ,

1
2n

)T

x4
(
1− 1

n ,1−
2
n ,1−

3
n , . . . ,0

)T

x5
(
0, 1

n ,
2
n , . . . ,

n−1
n

)T
,

x6
(
1, 1

2 ,
1
3 , . . . ,

1
n

)T

x7
(n−1

n , n−2
n , n−3

n , . . . ,0
)T

x8
(1

n ,
2
n ,

3
n , . . . ,1

)T

x9 rand(0,1)

x10
(3

2 ,
3
2 ,

3
2 , . . . ,

3
2

)T

x11 (2,2,2, . . . ,2)T

x12
(1

2 ,
1
2 ,

1
2 , . . . ,

1
2

)T

x13 5min(ih, 1− ih), 1 ≤ i ≤ n, h = 1/(n+1)

x14

(
−1
4 , 2

5 ,
−3
6 , . . . , (−1)n

n+3

)T

5.1. Experiments with the Derivative–Free Algorithms 83

Test Problems:

Problem 5.1.1. [107]:

f1(x) = ex1 −1,

fi(x) = exi + xi−1 −1, for i = 1,2, . . . ,n−1 and Ψ = Rn
+.

Problem 5.1.2. [107]:

fi(x) = ln(xi +1)− xi

n
, for i = 2,3, . . . ,n,

and Ψ = {x ∈ Rn :
n

∑
i=1

xi ≤ n,xi >−1, i = 1,2, . . . ,n}.

Problem 5.1.3. [13]:

fi(x) = 2xi − sin |xi|, i = 1,2, . . . ,n and Ψ = Rn
+.

Problem 5.1.4. [18]:

fi(x) = exi −1, i = 1,2, . . . ,n and Ψ = Rn
+.

Problem 5.1.5. [27]:

f1(x) = x1 − ecos(h(x1+x2)),

fi(x) = xi − ecos(h(xi−1+xi+xi+1)), i = 2, . . . ,n−1,

fn(x) = xn − ecos(h(xn−1+xn)), where h =
1

n+1
and Ψ = Rn

+.

Problem 5.1.6. [168]:

fi(x) = xi − sin(|xi −1|), i = 1,2, . . . ,n−1,

and Ψ = {x ∈ Rn :
n

∑
i=1

xi ≤ n, xi ≥−1, i = 1,2, . . . ,n}.

Problem 5.1.7. [16]:

fi(x) = (exi)2 +
3
2

sin(2xi)−1, i = 1,2, . . . ,n and Ψ = Rn
+.

Problem 5.1.8. [2]:

f1(x) =
5
2

x1 + x2 −1,

fi(x) = xi−1 +
5
2

xi + xi+1 −1, i = 2, . . . ,n−1,

fn(x) = xn−1 +
5
2

xn −1 and Ψ = Rn
+.

Problem 5.1.9. [19]:

f1(x) = 2x1 − x2 + ex1 −1,

fi(x) =−xi−1 +2xi − xi+1 + exi −1, i = 2, . . . ,n−1,

fn(x) =−xn−1 +2xn + exn −1 and Ψ = Rn
+.

5.1. Experiments with the Derivative–Free Algorithms 84

Problem 5.1.10. [107]:

fi(x) =
i
n

exi −1, for i = 1,2, . . . ,n and Ψ = Rn
+.

Problem 5.1.11. [178]:

f1(x) = x1 + sinx1 −1,

fi(x) =−xi−1 +2xi + sinxi −1, i = 2, . . . ,n−1,

fn(x) = xn + sinxn −1 and Ψ ∈ [−3,+∞].

The metrics used for the comparison include ITER (number of iterations), FVAL (number of function

evaluations), and TIME (CPU time in seconds), along with NORM (norm of the objective function at

the solution). The table of the numerical results is available in the following link https://github.

com/AMBakoji/CGAIS-CGWOIS. The NORM values represent whether or not an algorithm effectively

produces an approximate solution to a certain problem.

Based on the NORM values presented in the Tables, it is evident that the MDY1, MDY2, HCDLS, and

TDLP methods effectively solved all of the Test Problems. Considering the ITER values reported in the

Tables, though all the four methods recorded relatively low ITER, it can be seen that the TDLP method

recorded the least values of ITER in most cases. When comparing the FVAL values obtained from the

MDY1, MDY2, HCDLS and TDLP methods, it is observed that the TDLP method requires the lowest

FVAL in order to acquire the solutions for the Test Problems. Finally, the Tables demonstrate that the

four methods are able to solve the majority of the Test Problems in less than one second. However,

for problems with a dimension of 100000, the TDLP method takes longer to compute than the HCDLS

method, while the MDY1 and MDY2 methods require more computing time than both the TDLP and

HCDLS methods. This could be due to multiple parameters that need to be computed using the MDY1

and MDY2 methods. Upon careful evaluation, it is evident that the TDLP method demonstrates superior

performance compared to the MDY1, MDY2 and HCDLS methods.

In order to obtain a graphical representation of the numerical performance of the four methods, that is,

MDY1, MDY2, HCDLS, and TDLP, we summarized the information on the Tables of our numerical

experiments and used the performance profile proposed by Dolan and Morè in [49]. The performance

profile takes into account the number of iterations (ITER), the CPU time in seconds (TIME), and the

number of function evaluations (FVAL). The process is as follows:

Let P be the set of test problems and np the number of test problems. S denotes the collection of

methods/solvers, whereas ns represents the number of solvers. For each solver s ∈ S and problem p ∈ P,

let jp,s denote either the ITER, FVAL or TIME required to solve a problem p by a solver s. To compare

a solver’s performance on a problem p to that of other solvers, we use the performance ratio defined as

rp,s :=
jp,s

min{ jp,s : s ∈ S}
.

The performance ratio of a solver s is calculated using the (cumulative) distribution function. The ρ

profile is defined as follows:

ρs(τ) :=
1
np

size{p ∈ P : log2 rp,s ≤ τ},

https://github.com/AMBakoji/CGAIS-CGWOIS
https://github.com/AMBakoji/CGAIS-CGWOIS

5.1. Experiments with the Derivative–Free Algorithms 85

where τ > 0 and rp,s represents the performance ratio. ρ(τ) is the probability for solvers s ∈ S that a

performance ratio rp,s is within a factor τ ∈ R (which is in log2 scale) of the best possible ratio. The

performance profile demonstrates the efficiency and robustness of the proposed algorithms compared to

other state-of-the-art algorithms, SOTA. We define an algorithm as efficient when it has the lowest relative

cost of the metric, number of function evaluations, and robust when it has the most solved problems in

comparison to others. In general, the solver with the highest performance profile value ρs(τ) is regarded

as the effective method for a given τ value. Put simply, the solver that exhibits the highest degree of

dominance at the top of the curve is the most efficient method when compared to the others.

Figure 5.1(a) shows the performance profile of the four solvers based on ITER, Figure 5.1(b) shows the

performance profile based on FVAL while Figure 5.1(c) shows the performance profile based on TIME

(CPU time in seconds). Figures 5.1(a), 5.1(b) and 5.1(c) show that the TDLP solver outperforms the

MDY1 and MDY2 solvers, as well as the HCDLS solver, in terms of iteration and function evaluations.

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

MDY1

MDY2

HCDLS

TDLP

(a) Iterations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

MDY1

MDY2

HCDLS

TDLP

(b) Function Evaluations

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

MDY1

MDY2

HCDLS

TDLP

(c) CPU Time

Figure 5.1: Performance profile based on number of: Iterations, Function Evaluations CPU Time.

However, in order to know the cost optimization of the solvers for the Test Problems with expensive

function evaluations, we use the Data Profile proposed by Moré and Wild in [122]. In this scenario, the

performance metric is determined by the number of function evaluations (FVAL) as it is considered to

be the primary cost per iteration. Performance profiles provide a precise assessment of the comparative

performance of solvers based on a specific number of function evaluations, as depicted in Figure 5.1(b).

Performance profiles, unfortunately, do not provide adequate information for a user dealing with a costly

optimization problems.

Users who have expensive optimization problems that need significant resources are frequently con-

cerned about the performance of solvers in relation to the number of function evaluations. In other

words, these users are interested in the percentage of problems that can be solved (given a tolerance τ)

using a specific number of µ function evaluations. Performance profiles and data profiles are cumula-

tive distribution functions, which means they are step functions that increase monotonically and have a

range between 0 and 1. However, performance profiles provide a comparison of various solvers, whereas

data profiles present the raw data without any modifications. Specifically, performance profiles do not

indicate the exact number of function evaluations needed to solve any of the problems. It is important to

understand that the data profile of a specific solver say s ∈ S, is not influenced by other solvers. However,

5.1. Experiments with the Derivative–Free Algorithms 86

this is not true for performance profiles [122].

Data profiles are useful to users with a specific computational budget who need to choose a solver that is

likely to reach a given reduction in function value. The user must specify the computational budget using

simplex gradients and analyze the data profile values for all solvers. For instance, if the user has a budget

of 10 simplex gradients (FVAL), then the data profiles in Figure 5.2 (top-left, top-right and bottom-left)

indicate that the MDY2 solver successfully solves approximately 24% of the problems at this level of

accuracy. In comparison, the HCDLS solver solves around 11% of the problems and the TDLP solver

solves about 28% of all the problems. In addition, when a user is limited to 30 simplex gradients (FVAL),

the data profiles indicate that MDY2 solver successfully solves approximately 60% of the problems while

HCDLS and TDLP solvers solve about 50% and 62%, respectively. Finally, if a user has a budget of 50

simplex gradients, then the data profiles show that MDY2 solver solves about 69% of the problems while

HCDLS and TDLP solvers solve about 85% and 86% of the Test Problems, respectively. This means

that at some point, all the three solvers are in a high competition with MDY2 and HCDLS methods

been more computationally expensive compared to the TDLP method in order to successfully solve

certain percentage of the entire seven hundred (700) Test Problems we have considered. However, this

information is not available from the performance profile in Figure 5.1(b). This interpretation means that

data profile measures the reliability of the solver for a given tolerance as a function of the budget.

0 50 100 150 200

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

MDY2

0 50 100 150

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

HCDLS

0 50 100 150

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

TDLP

0 50 100 150 200

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

MDY2

HCDLS

TDLP

Figure 5.2: Percentage Data Profile of MDY2, HCDLS and TDLP methods.

5.1.2 Numerical Comparisons of Algorithm 3 (TDLP) with DPP and CGPM Methods

In this experiment, we are comparing the performance of Algorithm 3 (TDLP) with two other algorithms.

The first algorithm, proposed by Awwal et al., [16], is a derivative-free algorithm for solving nonlinear

5.2. Numerical Experiments and Comparisons for Algorithms 4 and 5 87

systems of equations and minimizing ℓ1-regularized problems (denoted as DPP). The second algorithm,

proposed by Zheng et al., [178] is a conjugate gradient projection method for solving equations with

convex constraints, (denoted as CGPM). We have successfully solved Test Problems: 5.1.1, 5.1.2, 5.1.3,

5.1.4, 5.1.6, 5.1.7, 5.1.8, 5.1.9, 5.1.10 and 5.1.11 using the three solvers. The parameters for Algorithm

3 (TDLP) were selected as follows: κ = 1, ρ = 0.4, γ = 1.99, σ = 0.0001, r = 0.01, q = 5, c = 10 and

t = 0.1. The values for the DPP and CGPM methods were set according to the information provided in

references [16] and [178], respectively. Seven hundred (700) Test Problems were solved using the same

initial points and dimensions as specified in Table 5.1.

The metrics employed for comparison in this experiment are ITER (number of iterations), FVAL (num-

ber of function evaluations), and TIME (CPU time in seconds). The information regarding these met-

rics, along with NORM (norm of the objective function at the solutions), is presented. The numerical

findings can be found in the table provided at the following link: https://github.com/AMBakoji/

CGAIS-CGWOIS. We summarized these information in Figure 5.3(a), 5.3(b) and 5.3(c) using the Dolan

and Moré performance profile [49]. Based on the experimental results, it is evident that the proposed

TDLP algorithm consistently outperforms the two other algorithms in terms of ITER, FVAL, and CPU

TIME. The superiority of the proposed TDLP algorithm is clearly demonstrated in Figure 5.3(a), 5.3(b)

and 5.3(c) where it outperforms other two algorithms with approximately 73% higher ITER, 80% higher

FVAL, and improved CPU TIME.

0 1 2 3 4 5 6
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

TDLP

DPP

CGPM

(a) Iterations

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

TDLP

DPP

CGPM

(b) Function Evaluations

0 1 2 3 4 5 6 7 8
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

TDLP

DPP

CGPM

(c) CPU Time

Figure 5.3: Performance profile based on number of: Iterations, Function Evaluations CPU Time .

5.2 Numerical Experiments and Comparisons for Algorithms 4 and 5

In this section, we present some numerical experiments to assess the performance of Algorithms 4 and

5 as well as their computational advantages in comparison with some existing methods. We implement

these algorithms to solve a collection of monotone system of nonlinear equations, see Test Problems for

Algorithm 4 (Section 5.2.1), also known as Conjugate Gradient Algorithm with Inertial Step (CGAIS)

as well as Algorithm 5 (Section 5.2.2) that is, Spectral Algorithm with Inertial Step (SAIS).

https://github.com/AMBakoji/CGAIS-CGWOIS
https://github.com/AMBakoji/CGAIS-CGWOIS

5.2. Numerical Experiments and Comparisons for Algorithms 4 and 5 88

5.2.1 Numerical Comparisons of Algorithm 4 (CGAIS) With CGWOI Method

This experiment aims to evaluate the performance of Algorithm 4(CGAIS) in comparison to a modified

version of the same algorithm called CGWOI (Conjugate Gradient WithOut Inertial step) as well as

Algorithm 1 of Awwal et al. in [19], denoted as HSS. The evaluation is conducted on Test Problems:

5.1.1, 5.1.3, 5.1.4, 5.1.5, 5.1.6 and 5.1.10. In other words, we aim to evaluate the numerical efficiency

of a method that includes an inertial step in comparison to two other methods that do not incorporate

an inertial step. In order to have best possible results, the following parameters were chosen for the

implementation of CGAIS and CGWOI methods used the following parameters to get optimal results:

σ = 10−4, r = 0.01, c = 2, ρ = 0.50, γ = 1.99, κ = 1 and αk =
1

(k+1)2 . The settings for the HSS method

were selected according to the information provided in reference [19]. In addition, the iteration process

for the Test Problems is terminated whenever the inequality ∥F(xk)∥< 10−6 or ∥F(υk)∥< 10−6 is met.

If the number of iterations exceeds 1000 and the aforementioned termination requirement has not been

satisfied, it is considered a failure.

However, since our proposed algorithm uses two starting points, that is, x−1 and x0, then for each x j,

j = 1,2, . . . ,14, taken from Table 5.1, we set x−1 := {x1
j + i,x2

j + i, . . . ,xn
j + i}, i ≥ 0, and update them

subsequently. All the Test Problems were solved using the same dimension (DIM) of n = 1000, 5000,

10000, 50000 and 100000 as in Section 5.1.1.

In this section, the same metrics used for the comparison in Section 5.1.1 are utilized. These metrics

include ITER (number of iterations), FVAL (number of function evaluations), and TIME (CPU time in

seconds). Additionally, the NORM (norm of the objective functions at the solutions) is also supplied

along with this information. The Table of the numerical results can be accessed using the following link:

https://github.com/AMBakoji/CGAIS-CGWOIS.

The NORM values reported indicate that each solver successfully obtained solutions of virtually all

the Test Problems with least ITER and FVAL. These information are summarized in Figures 5.4 and

5.5 based on the Dolan and Moré performance profile [49]. Figure 5.4 (a) compare the performance

between CGAIS and CGWOI methods based on ITER while Figure 5.4 (b) illustrates the Dolan and

Moré performance profile of CGAIS and HSS methods based on ITER, respectively. Figure 5.5 (a) and

(b) demonstrates the performance profile based on FVAL of CGAIS with CGWOI and FVAL of CGAIS

with HSS methods, respectively. We see from Figure 5.4 ((a) and (b)) and Figure 5.5 ((a) and (b))

that CGAIS solver perform better with higher percentage win of ITER and FVAL than CGWOI and HSS

solvers for solving all the four hundred and twenty (420) Test Problems. In other words, this experiment

reveals that CGAIS solver has advantage over CGWOI and HSS solvers with regards to ITER and FVAL.

Thus, we may conclude that the inertial step incorporated in Algorithm 4 have impacted positively in

improving the numerical performance of the proposed algorithm.

However, to determine the cost optimization of the solvers for the Test Problems with expensive function

evaluations, we once again utilize the Data Profile proposed by Moré and Wild in [122] as previously

explained. In this context as well, the performance metric is determined by the number of function

evaluations (FVAL) as it is considered to be the primary cost per iteration. Performance profiles offer

a precise assessment of the comparative performance of solvers based on a specific number of function

https://github.com/AMBakoji/CGAIS-CGWOIS

5.2. Numerical Experiments and Comparisons for Algorithms 4 and 5 89

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(

)
CGAIS

CGWOI

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

CGAIS

HSS

(b)

Figure 5.4: Performance profiles based on number of iterations (ITER) [reprinted from [125, Figure 1]].

0 1 2 3 4 5 6 7
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

CGAIS

CGWOI

(a)

0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

CGAIS

HSS

(b)

Figure 5.5: Performance profiles based on number of function evaluations (FVAL) [reprinted from [125,

Figure 2]].

evaluations, as depicted in Figure 5.5. For instance, if the user’s budget is 20 simplex gradients (FVAL),

the data profiles in Figure 5.6 (top-left, top-right, and bottom-left) indicate that the proposed CGAIS

solver achieves a success rate of approximately 99% at this level of precision. In contrast, the CGWOI

solver solves around 50% of the problems while the HSS solver solves about 63% of all the problems.

The CGWOI and HSS methods are more computationally costly than the proposed CGAIS method

when solving a specified percentage of the total four hundred and twenty 420 Test Problems we have

examined. Unfortunately, the performance profile in Figure 5.5 does not provide this information. This

interpretation implies that the data profile measures the reliability of the solver based on a specified

tolerance level and budget constraints.

5.2. Numerical Experiments and Comparisons for Algorithms 4 and 5 90

0 20 40 60

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

CGAIS

0 500 1000 1500

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

CGWOI

0 50 100 150 200

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

HSS

0 500 1000 1500

FVAL

0

0.2

0.4

0.6

0.8

1

%
N

P

CGAIS

CGWOI

HSS

Figure 5.6: Percentage Data Profile of CGAIS, CGWOI and HSS methods [reprinted from [125, Figure

3]].

5.2.2 Numerical Comparisons of Algorithm 5 (SAIS) With DAIS 1 and DAIS 2 Methods

Similar to the experiment one, we assess the performance of Algorithm 5 (SAIS) in comparison to

Algorithms 1 and 2 of Awwal et al. [17], which are referred to as DAIS 1 and DAIS 2, respectively.

All three solvers are spectral gradients and each of them includes an inertial step. This indicates that

the three solvers share comparable characteristics. The objective of this experiment is to assess and

contrast their numerical capabilities. We have successfully solved Test Problems 5.1.1, 5.1.3, 5.1.7,

5.1.8, 5.1.9 and 5.1.10 using all three solvers. The values used for Algorithm 5 (SAIS) are as follows:

σ = 10−4, r = 0.01, c = 2, γ = 1.99, ρ = 0.45, κ = 1 and αk =
1

(k+1)2 . The parameters for DAIS 1 and

DAIS 2 were chosen according to the information provided in reference [17]. A total total of 420 Test
Problems were solved, using same initial points and dimensions as in experiment one (see, for example,

Section 5.1.1). Specific numerical findings from the table are provided and can be accessed through the

following link: https://github.com/AMBakoji/CGAIS-CGWOIS.

To visually compare the numerical performance of the SAIS solver with the DAIS 1 and DAIS 2 solvers

in terms of the ITER and FVAL metrics, we utilize the Dolan and Moré performance profile. Figure

5.7(a) depicts the performance profile of the three solvers using ITER, whereas Figure 5.7(b) showcases

the performance profile using FVAL. By examining Figure 5.7(a) and 5.7(b), it is evident that the SAIS

solver achieved the lowest number of iterations (ITER) and function values (FVAL), winning almost 90%

https://github.com/AMBakoji/CGAIS-CGWOIS

5.2. Numerical Experiments and Comparisons for Algorithms 4 and 5 91

0 2 4 6 8 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
(

)
SAIS

DAIS 1

DAIS 2

(a) Iterations

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

(
)

SAIS

DAIS 1

DAIS 2

(b) Function Evaluations

Figure 5.7: Performance profiles based on number of iterations and function evaluations [reprinted from

[125, Figures 4 and 5]].

of all the experiments conducted. Our proposed algorithm (SAIS) demonstrated superior performance

compared to DAIS 1 and DAIS 2 algorithms, respectively. To put it simply, the experiment demonstrates

that the SAIS solver outperforms the DAIS 1 and DAIS 2 solvers in terms of the ITER and FVAL metrics.

To obtain more comprehensive information regarding the numerical experiments discussed in this chap-

ter, we direct readers to the research conducted by Muhammad et al. as documented in [1, 123, 124, 125]

and the related references.

Chapter 6

Applications in Compressive Sensing and
Motion Control Problems

In this chapter, we provide a practical application of Algorithm 1 (MDY), Algorithm 2 (HCDLS) and

Algorithm 3 (TDLP) described in Chapter 3 in the reconstruction of sparse signals and image restoration

in compressive sensing. Furthermore, the chapter also presents application of Algorithm 4 (CGAIS) and

Algorithm 5 (SAIS) studied in Chapter 4 of this thesis in motion control problem involving a two–joint

planar robotic manipulator as can be seen in Section 6.2. These results are mostly from the work by

Muhammad et al., in [1, 123, 124, 125].

6.1 Applications in Compressive Sensing

Let us quickly recall the description and reformulations ℓ1-norm in compressive sensing, which were

discussed in Chapters 1 and 2 and are brought to the attention of the readers for their convenience. Com-

pressive sensing (CS) is an important function that is utilized in a variety of scientific and engineering

fields, including medical sciences, biological engineering, and other fields [21, 36]. The CS problem

involves the process of recovering a sparse signal, denoted as x, from a linear system Ax = b. In this sys-

tem, the vector b ∈ Rk represents the observations, and the linear operator A ∈ Rk×n(k << n) represents

the sensing matrix within the system. The preceding system of linear equation is transformed into the

following so-called ”ℓ0–norm” optimization problem with constraints

min
x
{∥x∥0 : Ax = b},

where the expression ∥x∥0 is determined by the number of non-zero components of a vector x ∈Rn. The

objective of this conversion is to search for the solution set that contains the fewest elements. Regrettably,

the set of values ∥ · ∥0 does not exhibit a positive homogeneity and does not constitute a norm. On

the other hand, because of the challenges that are connected with problems involving the ℓ0–norm, an

alternative approach is to replace it with the ℓ1–norm (see [38]), that is,

min
x
{∥x∥1 : Ax = b},

92

6.1. Applications in Compressive Sensing 93

where ∥x∥1 :=
n
∑

i=1
|xi|. It has been demonstrated that the aforementioned problem can give the necessary

outcomes with some degree of precision that is acceptable, provided that certain assumptions are made.

When the measurements are influenced by a certain amount of noise, the constraint in the ℓ1–norm is

usually relaxed to the following regularized least squares (also known as Lasso) problem

min
x

τ∥x∥1 +
1
2
∥Ax−b∥2

2, (Pτ)

where τ represent a positive regularization parameter and ∥ · ∥2 represents the Euclidean norm of Rn.

This is exactly the repetition of Problem (1.3), which will also be studied in Chapter 7 as a scalarization

of a vector-valued approximation problem (see Section 7.5).

Iterative methods for solving (Pτ) have been presented in several papers, (see [25, 29, 58, 75]). Due to

the fact that the proposed algorithms are derivative–free, they are able to successfully handle nonsmooth

problems that are in the form of (1.10). Therefore, in order to solve the nonsmooth Problem (Pτ), we

change (Pτ) into the form of (1.10). Hu, Wang, and Xiao [167] were able to successfully translate the

Lasso Problem (Pτ) into a nonlinear system of equations. This translation was based on the work of

Figueiredo, Nowak, and Wright [58].

Let x be any vector in Rn. Then, x can be divided into positive and negative components, defined as

x := u− v, u ≥ 0, v ≥ 0, where u ∈ Rn, v ∈ Rn and ui = (xi)+, vi = (−xi)+, for all i = 1,2, ...,n with

(·)+ = max{0, ·}. The ℓ1–norm of a vector x can be represented as ∥x∥1 = eT
n u + eT

n v, where en =

(1,1, ...,1)T ∈ Rn. Hence, the ℓ1–norm Problem (Pτ) can be transformed as

min
u,v

1
2
∥b−A(u− v)∥2

2 + τeT
n u+ τeT

n v, such that τ ≥ 0, u ≥ 0, v ≥ 0.

However, according to reference [58], the above mentioned problem can alternatively be reformulated as

a quadratic programming problem with box constraints

min
z

1
2

zT Dz+ cT z, such that z ≥ 0,

where z =

[
u

v

]
, c = τe2n +

[
−x

x

]
, x = AT b and D =

[
AT A −AT A

−AT A AT A

]
.

Clearly, D is a positive semi–definite matrix, which implies that the aforementioned problem is a convex

quadratic problem.

Hu, Wang and Xiao [167] translated minz
1
2 zT Dz+ cT z, z ≥ 0, into a linear variable inequality problem

which is equivalent to a linear complementary problem. Furthermore, they underlined that z can be

viewed as a solution to the linear complementary problem if and only if it also solves the nonlinear

equation

F(z) = min{z, Dz+ c}= 0,

where F(·) is considered to be continuous and monotone as referenced in [131, 167]. So, the solution

to Problem (Pτ) is the same as the solution to Problem (1.10), which is to say that F(x) = 0. Conse-

quently, the algorithms that we have proposed, namely Algorithm 1 (MDY), Algorithm 2 (HCDLS) and

Algorithm 3 (TDLP), have the capability to accomplish the task of solving (Pτ) in an efficient manner.

6.1. Applications in Compressive Sensing 94

The process of signal reconstruction has involved the development of a variety of algorithms over the

course of time. On the other hand, with the intention of working with a small number of measurements,

there are still proposals being made for algorithms that are both efficient and robust. Accordingly, there

is a research field that is both interesting and significant, and it is committed to the process of developing

optimal explicit measurement matrices as well as all known ”good” matrix constructions that consist of

randomness. In the field of signal and image processing, this discovery offers a great deal of potential

applications.

Since they do not necessitate the knowledge of the derivative of the objective function, the algorithms

that we proposed are suitable for treating nonsmooth functions. This is the primary advantage that our

algorithms propose. In order to apply Algorithm 1 (MDY1), Algorithm 2 (HCDLS) and Algorithm 3

(TDLP) in the reconstruction of a sparse signal in compressive sensing, we take into consideration a

typical compressive sensing scenario. In this scenario, the ultimate objective is to reconstruct a sparse

signal of length n from k observations (k << n) with Gaussian noise. The number of samples required for

this reconstruction is significantly smaller than the size of the original signal. In this test, we considered

a small size of signal with n = 212, k = 210 because our personal computer has a restricted amount of

memory. For the original signal, x, there are 27 elements that are not zero and are chosen at random. The

quality assessment of the restored signal is based on the mean squared error (MSE) to the original signal

x, which is calculated using the following equation:

MSE :=
1
n
∥x − x∗∥

where x∗ represents the restored or recovered signal. This method is similar to the ones described in

[163, 167, 168]. In this test, we generate the random matrix A using the Matlab command rand(n,k). In

addition, the noise is appropriately added to the observed data computed by

b := Ax + µ

where µ represents the Gaussian noise that is normally distributed with a mean of 0 and a variance of

10−4. The parameters that are used in the implementation of the TDLP, HCDLS, and MDY1 methods

are as follows: κ = 10, ρ = 0.8, σ = 10−4, q = 5, c = 9 and γ = 1.99. The parameter τ in the merit

function f (x) = τ∥x∥1 + 1
2∥Ax − b∥2

2 was selected in accordance with reference [103]. The value of τ

was determined to be τ = 0.008∥AT b∥∞ and the initial points for all the methods begin at x0 = AT b. The

process are terminated whenever the inequality holds

Tol :=
∣∣∣∣ f (xk) − f (xk−1)

f (xk−1)

∣∣∣∣< 10−5,

where f (xk) denotes the function value at xk. For the purpose of this test, it is important to note that we

only observe the convergence behavior of each method in order to achieve a solution with comparable

accuracy.

It is not difficult to understand, in light of the plots that are displayed in Figure 6.1, that the original

signal is effectively recovered by the three methods with the least amount of computing time (TIME),

the least number of iterations (ITER), and the least mean square error (MSE). When it came to decoding

6.1. Applications in Compressive Sensing 95

the sparse signal, however, the TDLP succeeded. Iterations (ITER), computing time (TIME), and most

significantly, mean squared error (MSE) are all lower, which is a reflection of this fact. Using twenty

distinct noise samples, we repeated the experiment in order to provide a more comprehensive illustration

of the effectiveness of the TDLP in comparison to the HCDLS and MDY1. Each time the experiment is

carried out, the TDLP method is shown to be more effective in terms of the amount of time utilized by

the CPU, the number of iterations and most importantly the mean square error (MSE). In Table 6.1, you

can find a summary.

Table 6.1: Twenty experimental results for sparse signal recovery.

TDLP HCDLS MDY1

ITER TIME MSE ITER TIME MSE ITER TIME MSE

53 1.05 4.59E-05 80 1.64 2.19E-05 63 1.59 2.09E-05

59 1.02 4.83E-05 100 1.64 2.19E-05 56 0.94 2.20E-05

72 1.20 5.76E-05 96 1.52 2.51E-05 67 1.11 2.54E-05

58 1.00 6.57E-05 96 1.45 2.60E-05 64 1.05 2.66E-05

58 1.08 6.02E-05 91 1.52 2.60E-05 58 1.02 2.61E-05

57 1.03 4.59E-05 88 1.30 1.69E-05 60 1.02 1.68E-05

58 1.03 3.51E-05 87 1.34 1.95E-05 65 1.05 4.99E-05

57 1.05 4.30E-05 94 1.48 2.28E-05 61 1.03 2.28E-05

50 0.77 5.77E-05 83 1.28 2.42E-05 69 1.20 2.38E-05

53 0.89 4.26E-05 93 1.44 1.81E-05 63 1.06 3.32E-05

64 1.14 2.14E-05 77 1.19 2.07E-05 66 1.16 4.65E-05

55 1.27 4.36E-05 89 1.56 2.07E-05 68 1.22 1.56E-05

57 1.06 2.03E-05 86 1.31 1.52E-05 64 1.03 1.50E-05

51 0.81 2.15E-05 89 1.41 2.12E-05 68 1.03 2.13E-05

60 1.00 4.30E-05 89 1.36 2.29E-05 66 1.02 6.11E-05

55 1.02 5.85E-05 83 1.22 2.17E-05 55 0.91 3.93E-05

62 1.00 7.40E-05 100 1.50 3.76E-05 61 0.97 3.76E-05

71 1.27 6.65E-05 91 1.52 2.57E-05 69 1.11 2.61E-05

79 1.28 7.00E-05 89 1.36 2.83E-05 111 1.80 5.68E-05

57 0.94 4.72E-05 87 1.34 2.63E-05 68 1.11 4.27E-05

Average 59.3 1.05 4.84E-05 89.4 1.42 2.31E-05 66.1 1.12 3.15E-05

6.1. Applications in Compressive Sensing 96

Table 6.2: Approximate solutions x̄ := xk ∈ Rn for the sparse signal recovery experiments of Algorithm

1 (MDY1), Algorithm 2 (HCDLS) and Algorithm 3 (TDLP).

TDLP HCDLS MDY1

x̄T DLP x̄HCDLS x̄MDY 1

0 0 0

0.002046 0 0

0 0 0

0 0 0

0 0 0

-0.00126 -7.56E-05 -2.00E-06

-0.00134 -0.00012 -2.95E-06

0 0 0

0.000773 -0.00012 -4.73E-06

-0.00053 -0.0001 -3.51E-06

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

0 0 0

-0.00928 8.55E-05 1.75E-05

0 0 0

0 0 0

0 0 0

...

0.001939 0.000118 3.07E-06

-4.42E-05 -1.98E-05 -5.75E-07

0 0 0

0 0 0

0.002397 0.000221 5.58E-06

0.000924 3.45E-05 -5.86E-06

0 0 0

0 0 0

-0.00274 -7.41E-05 -2.22E-06

-0.00243 -0.00017 -4.37E-06

-0.00175 -0.00017 -3.80E-06

0 0 0

0 0 0

0 0 0

-0.0017 -9.20E-05 -8.53E-07

0 0 0

-0.012 0.000185 1.06E-05

0 0 0

0 0 0

-0.00096 -0.00011 -3.14E-06

6.1. Applications in Compressive Sensing 97

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

Original (n = 4096, number of nonzeros = 128)

0 100 200 300 400 500 600 700 800 900 1000

-0.5

0

0.5

Measurement

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

TDLP (MSE = 5.06e-05, Iter=89, Time=1.42s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

HCDLS(MSE = 1.97e-05, Iter=95, Time=1.31s)

0 500 1000 1500 2000 2500 3000 3500 4000

-2
0
2

MDY1 (MSE = 1.99e-05, Iter=64, Time=1.02s)

Figure 6.1: Reconstruction of sparse signal. From top to bottom is the original signal, the measurement

and the reconstructed signals by the: TDLP, HCDLS and MDY1.

0 20 40 60 80 100

Iterations

0

50

100

150

M
S

E

n=4096, k=1024, tau=0.00544105

TDLP

HCDLS

MDY1

0 0.5 1 1.5

CPU time (seconds)

0

50

100

150

M
S

E

n=4096, k=1024, tau=0.00544105

TDLP

HCDLS

MDY1

0 20 40 60 80 100

Iterations

0

5

10

15

20

O
b
jF

u
n

n=4096, k=1024, tau=0.00544105

TDLP

HCDLS

MDY1

0 0.5 1 1.5

CPU time (seconds)

0

5

10

15

20

O
b
jF

u
n

n=4096, k=1024, tau=0.00544105

TDLP

HCDLS

MDY1

Figure 6.2: Comparison results of the TDLP, HCDLS and MDY1 Algorithms. The x–axis represents the

number of iterations (top and bottom left) and the CPU time in seconds (top and bottom right), while

the y–axis represents the MSE (top left and right) and the function values (bottom left and right).

Next, we illustrate the effectiveness and robustness of Algorithms 1 (MDY2), Algorithm 2 (HCDLS) and

Algorithm 3 (TDLP) in image de-blurring problems. We carried out our experiment using some personal

images. The performance evaluation criteria to measure the quality of restoration by the methods are

6.1. Applications in Compressive Sensing 98

measured by the signal–to–noise ratio (SNR) defined by

SNR := 20× log10

(
∥x∥

∥x∗− x∥

)
,

the peak signal–to–noise ratio (PSNR) [32] and the structural similarity index (SSIM) [110]. To ensure

fairness when comparing algorithms, all iterations begin at x0 = AT b and end at Tol < 10−5. For the

image de-blurring problem, the following parameters were used in our implementation: κ = 0.001, ρ =

0.8, σ = 10−4, q = 5 and γ = 1.99. We tested several images including: P1(256×256), P2(256×256),

P3(256×256) and P4(256×256) which were degraded by Gaussian blur and 10% noise.

In Table 6.3, we report the performance for SNR, PSNR and SSIM of TDLP, HCDLS and MDY2 meth-

ods in the recovery of blurred and noisy images. We can see that the SNR, PSNR and SSIM of the test

images calculated by the HCDLS method are a bit higher than that by the TDLP and MDY2 methods,

respectively. The higher the value of SNR, PSNR and SSIM the better the quality of image restoration is

reflected.

Based on the performance reported in Table 6.3, all of the three methods were able to restore the blurred

and noisy images with a better quality of restoration, However, the HCDLS method obtains better quality

reconstructed images in an efficient manner. Figure 6.3 shows the original images (first column), the

blurred images (second column), the restored images by: TDLP (third column), the HCDLS (fourth

column) and the MDY2 (fifth column), respectively.

Table 6.3: Numerical results of TDLP, HCDLS and MDY2 methds in image restorations.

TDLP HCDLS MDY2

Image SNR PSNR SSIM SNR PSNR SSIM SNR PSNR SSIM

P1 24.46 29.12 0.89 24.54 30.11 0.89 24.34 28.68 0.88

P2 24.64 29.14 0.89 24.80 30.18 0.89 23.82 27.73 0.88

P3 25.34 29.88 0.88 25.75 30.23 0.89 24.28 28.22 0.88

P4 24.98 29.74 0.83 25.67 30.21 0.84 25.14 28.82 0.84

Average 24.86 29.47 0.87 25.19 30.18 0.88 24.40 28.36 0.87

6.2. Applications in Motion Control Problems 99

Original Blurred TDLP HCDLS MDY2

Original Blurred TDLP HCDLS MDY2

Original Blurred TDLP HCDLS MDY2

Original Blurred TDLP HCDLS MDY2

Figure 6.3: Original images (first column), blurred images (second column), restored images by: the

TDLP Algorithm (third column), the HCDLS Algorithm (fourth column) and the MDY2 Algorithm

(fifth column)

In the next section, we present application of Algorithm 4 (CGAIS) and Algorithm 5 (SAIS) in motion

control models.

6.2 Applications in Motion Control Problems

The problems that arise in the idea of a robot system are currently receiving a lot of attention, and several

approaches for addressing these issues have been suggested [119]. Zhang et al. [177] examined the

fundamental aspects of n-link robotics, specifically focusing on the 1-link robot system, which has a

broad range of applications. Motor dynamics, as described in reference [140], must be considered while

planning robot movement in order to meet stability and accuracy criteria. One of the requirements for a

motor’s dynamic is that the actual output of the system should closely follow the anticipated output with

a small error that is considered acceptable [160]. Several approaches have been proposed to address the

tracking control issues of a nonlinear system. Here, we can discuss the use of the proportional-integral-

6.2. Applications in Motion Control Problems 100

derivative (PID) control [91, 133], feedback linearization [37, 126], and optimal output tracking control

using an approximation technique [161]. Furthermore, some motion control models can be expressed

as a planar location problem in which distances are measured using norms relevant to the robot’s setup

and motion should be regulated. These location problems can be classified as special approximation

problems. Locational analysis provides excellent solutions for this type of scenario (see Hamacher [76]).

This experiment focuses on a motion control problem that involves a two-joint planar robotic manipula-

tor. Algorithm 4 is adapted to address the problems of the form

min{ f (x) : x ∈ R}

where f :Rn →R is a continuously differentiable and convex function. The modified algorithm is applied

to solve the subsequent motion control model.

Algorithm 7: Modified CGAIS (MCGAIS) [for solving Problem (1.8)] [125]
Input: For all k ≥ 0, give the same inputs as in Algorithm 4 but with αk = 0. Let σ ,κ > 0,

ρ ∈ (0,1) and F(xk) := ∇ f (xk).

Replace Step 2 and Step 3 of Algorithm 4 with the subsequent instructions:

Step 3: Calculate the step size ηk by setting ηk := κρ i where i is the smallest non-negative

integer that satisfies the condition

f (xk +κρ
idk)− f (xk)≤ σκρ

iF(xk)
T dk. (6.1)

Step 4: Compute the next iterate using the following

xk+1 := xk +ηkdk. (6.2)

Remark 6.2.1. Consider the bounded level set {x : f (x)≤ f (x0)} and the problem min{ f (x) : x ∈ R},
where f :Rn →R has a solution. Since F(x) is supposed to be Lipschitz continuous on Rn, [152, Theorem

2] yields liminf
k→∞

∥F(xk)∥= 0.

According to the description provided in reference [176], the equation for the discrete-time kinematics

of a two-joint planar robot manipulator at the position level is expressed as

f (θk) = qk. (6.3)

The joint angle vector, denoted by θk ∈ R2, and the end effector position vector, denoted by qk ∈ R2,

are respectively represented by the vectors described above. The kinematics mapping represented by the

function f (·) is characterized by the following known structure

f (θk) =

ℓ1c1 + ℓ2c2

ℓ1s1 + ℓ2s2

 , (6.4)

where ℓi (i = 1,2) represents the length of the ith rod, c1 = cos(θ1), c2 = cos(θ1 +θ2), s1 = sin(θ1) and

s2 = sin(θ1 + θ2). When considering robotic control, it is necessary for us to find a solution to the

6.2. Applications in Motion Control Problems 101

following optimization problem

min
qk∈R2

f (qk), where f (qk) =
1
2
∥qk −qdk∥2, (6.5)

qdk represents the end effector control track. Consider the computing time intervals with tk belonging to

the interval [0, t f], where t f represents the end of task duration.

In accordance with the approach described in [152, 169], we determine the length of the rod to be

ℓi = 1, (i= 1,2). The end effector is then controlled to follow the two Lissajous curves that are expressed

as

q(1)dk =

 3
2 +

1
5 sin(3tk)

√
3

2 + 1
5 sin(2tk)

 , (6.6)

and

q(2)dk =

 3
2 +

1
5 sin(tk)

√
3

2 + 1
5 sin(2tk)

 . (6.7)

In the implementation of Algorithm 7 (MCGAIS), we established the parameters ρ = 0.6, σ = 0.08 and

the task duration t f = 10 seconds. To determine the initial point, we select θ0 = [0, π

3]
T and split the

duration of the task t = [0,10], into 200 equal parts. For the Lissajous curves that are presented in q(1)dk

and q(2)dk , respectively, the numerical results that are generated by Algorithm 7 are depicted in Figures

6.4 and 6.5. It is demonstrated in Figures 6.4(A), 6.4(B), 6.5(A) and 6.5(B) that Algorithm 7 (MCGAIS)

is capable of successfully completing the task at hand for q(1)dk and q(2)dk , respectively (compare Figures 7

and 8 in [169]). Figures 6.4(C) and 6.4(D) illustrate the residual errors ε(tk+1) along the x and y axes,

respectively for q(1)dk . On the other hand, Figures 6.5(C) and 6.5(D) illustrate the residual errors along the

x and y axes, respectively for q(2)dk . When we examine the residual errors on both x and y axes of Figures

6.4(C), 6.4(D), 6.5(C) and 6.5(D), we can conclude that Algorithm 7 successfully recorded an error of

around 10−5, which is considered to be acceptable. Therefore, based on the two figures, we are able to

conclude that Algorithm 7 is capable of being used to successfully handle motion control models, which

are problems that occur in the real world.

6.2. Applications in Motion Control Problems 102

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

1.25 1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Desired path

Actual trajectory

(b)

0 20 40 60 80 100 120 140 160 180 200

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 e
1

(c)

0 20 40 60 80 100 120 140 160 180 200

10
-6

10
-4

10
-2

10
0

 e
2

(d)

Figure 6.4: The robot’s trajectories path and residual errors ε(tk+1) along x and y axes of the motion

control model for the Lissajous curve q(1)dk of Algorithm 7 (MCGAIS) [reprinted from [125, Figure 6]].

6.2. Applications in Motion Control Problems 103

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8

-0.4

-0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

1.3 1.35 1.4 1.45 1.5 1.55 1.6 1.65 1.7 1.75
0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

1.05

1.1

Desired path

Actual trajectory

(b)

0 20 40 60 80 100 120 140 160 180 200

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

10
0

 e
1

(c)

0 20 40 60 80 100 120 140 160 180 200

10
-6

10
-4

10
-2

10
0

 e
2

(d)

Figure 6.5: The robot’s trajectories path and residual errors ε(tk+1) along x and y axes of the motion

control model for the Lissajous curve q(2)dk of Algorithm 7 (MCGAIS) [reprinted from [125, Figure 7]].

Chapter 7

Application for Solving Vector-Valued
Approximation Problems

Vector optimization also known as multiobjective optimization is a method for handling many real-world

problems occurring in control theory, decision making, operations research, networking, economics and

other branches of science and engineering.

The Irish economist Francis Ysidro Edgeworth (1881) (see [51]) and the Swiss economist Vilfredo Pareto

(1896) (see [132]) were the first to develop a solution concept for multiobjective optimization problems.

It is based on the concept of finding a good compromise rather than a single solution, as with scalar

instances. In this work, we primarily apply Pareto optimum concepts in the fields of approximation and

location theory.

Several books and works have introduced the foundations of multiobjective optimization, including [52,

67, 68, 93, 98, 158]. For some examples of its various applications, see [53, 55, 77, 84, 105].

In this Chapter, we introduce some solution concepts in multiobjective optimization (vector optimization)

in Section 7.2. Then, a weighted sum scalarizations approach for multiobjective optimization (vector-

valued approximation) problems is given in Section 7.3. Furthermore, we formulate the general multi-

objective approximation problem in Section 7.4 and finally close the chapter by applying Algorithm 3

(TDLP) (see, for example, Chapter 3, Section 3.3) in an interactive procedure to solve multiobjective

optimization (vector-valued approximation) problems in Section 7.5.

In the following section, we formulate the vector-valued approximation problem.

7.1 Formulation of the Problem

In order to formulate the problem, let Rn be a linear space with fi(x) : Rn → R, i ∈ {1, . . . , p},
p ∈ N, p ≥ 2. We consider the vector-valued objective function f : Rn → Rp where

f (x) :=


f1(x)

...

fp(x)

 . (7.1)

104

7.2. Solution Concepts in Vector Optimization 105

A general multiobjective optimization problem is usually described asMinimize f (x)

subject to x ∈ E,
(MOP)

for a given nonempty feasible set E ⊆ Rn.

Notice that, in the formulation of (MOP), the components objective functions are conflicting in nature.

Therefore, one cannot find a single vector from the feasible set E that minimize them simultaneously.

Hence, there is need for us to study the solution concepts concerning the (MOP), in order to understand

the ”minimization” in the image space Rp.

7.2 Solution Concepts in Vector Optimization

In this section, we will introduce some well-known solution concepts in vector optimization, such as

[52, 67, 93].

In vector optimization, we employ cones with specific features to generalize the order relation in R.
K ⊂ Rp is a proper, convex, closed and pointed cone representing a partial ordering relation in Rp. This

is referred to as an ordering cone.

The cone K generates the following order relationship:

y1 ≤K y2 ⇐⇒ y2 − y1 ∈ K, for y1,y2 ∈ Rp.

The definition of the cone K incorporates the reflexivity of the aforementioned relation, 0 ∈ K. The

convexity of the cone K implies transitivity of the relation defined above, whereas its pointedness results

in antisymmetry of this relation. In several works of literature, the antisymmetry is sometimes ignored

by not requiring the cone to be pointed; however, in our research, the ordering cone should be always

pointed. Often, the ordering cone used in Rp is the standard ordering structure, which is Rp
+.

We now introduce the first concept of a solution, known as Pareto Optimality.

Definition 7.2.1. ([98, Efficiency]). Let F ⊂ Rp be a set and K ⊂ Rp a proper, convex, pointed and

closed cone. An element y0 ∈ F is said to be efficient with respect to the cone K if

F ∩
(
y0 − (K \{0})

)
= /0.

We represent by Eff(F,K) the set of all efficient elements in F relative to the cone K.

Remark 7.2.2. In the preceding definition, we did not use an index to denote the set of efficient elements

in F relative to the cone K for the minimization problem Eff(F,K). Later, we will use indices to distin-

guish between the minimization problem, represented by EffMin, and the maximization problem indicated

by EffMax .

The following definition introduces weakly efficient elements under the assumption that the ordering

cone has a nonempty interior; this is important mathematically. Furthermore, numerical algorithms often

generate weakly efficient elements.

7.2. Solution Concepts in Vector Optimization 106

Figure 7.1: The set Eff(F,K) and the set EffW(F,K) of a set F w.r.t. K = R2
+ with y1,y2 /∈ Eff(F,K).

Definition 7.2.3. ([98, Weak Efficiency]). Let F ⊂Rp be a set and K ⊂Rp a proper, convex, pointed and

closed cone. Let intK ̸= /0. An element y0 ∈ F is said to be weakly efficient with respect to the cone K if

F ∩ (y0 − intK) = /0.

The set of all weakly efficient elements in F with respect to the cone K is denoted by EffW(F,K).

Figure 7.1 is an illustration of Definitions 7.2.1 and 7.2.3.

Let X = Rn. Consider the vector optimization Problem (MOP) with E ⊆ X and f : E → Rp, where Rp

is partially ordered by proper, convex, pointed and closed cones. In Definitions 7.2.1 and 7.2.3, we use

F := f [E] := { f (x) | x ∈ E}.

An element x0 ∈ E for which f (x0) ∈ Eff(f [E],K) is called a minimal solution. We denote the set of

minimal solutions of E with respect to the objective function f and the cone K by Min(f [E],K). This

means that

Min(f [E],K) := {x ∈ E | f (x) ∈ Eff(f [E],K)}. (7.2)

The set of weakly minimal solutions for E with respect to the objective function f and the cone K is

denoted by MinW(f [E],K), that is,

MinW(f [E],K) := {x ∈ E | f (x) ∈ EffW(f [E],K)}. (7.3)

Using the prior solution concepts and notations, we formulate our optimization Problem (MOP) in the

following way:

Determine the set Eff(f [E],K). (P)

The formulations (P) and (MOP) are widely used in the literature.

Next, we present further efficiency results.

7.3. Weighted Sum Scalarization Approach 107

Definition 7.2.4. ([79, Proper Efficiency]). Let F ⊂ Rp be a set and K ⊂ Rp a proper, convex, pointed

and closed cone. An element y0 ∈ F is said to be a properly efficient element of F with respect to the

cone K, if there exists a proper convex cone K̃ ⊂ Rp with K \ {0} ⊂ int K̃ such that y0 is an efficient

element of F with respect to K̃, that is,

F ∩
(
y0 −

(
K̃ \{0}

))
= /0.

The set of all properly efficient elements in F relative to the cone K is denoted by EffP(F,K).

Assuming intK ̸= /0, we can simply demonstrate that every properly efficient element of a set F is an

efficient element of F. Additionally, every efficient element of F is a weakly efficient element of F with

respect to a certain cone K, that is,

EffP(F,K)⊆ Eff(F,K)⊆ EffW(F,K). (7.4)

Note: Taking F := f (Rn) in Definitions 7.2.1, 7.2.3 and 7.2.4, which is the image of Rn under f , the

solution concepts holds for (MOP).

Proper efficiency can be described in a different way when convexity assumptions are taken into account.

This can be achieved through scalarization using linear continuous functionals λ ∗ that correspond to the

interior of the dual cone K∗ to K (K∗ was introduced in Section 2.2, specifically Problem (2.9)), as given

in the following definition.

Definition 7.2.5. ([148, Schönfeld]). Let F ⊂Rp be a convex set and K ⊂Rp is a proper, convex, pointed

and closed cone. We call y0 ∈ F a properly efficient element of F with respect to the cone K (in the sense

of Schönfeld), if an element α∗ ∈ intK∗ exists such that

∀ y ∈ F : α
∗(y0)≤ α

∗(y).

The set of all properly efficient elements of F with respect to the cone K in the sense of Schönfeld is

denoted by EffPSch(F,K).

7.3 Weighted Sum Scalarization Approach

The idea behind scalarization is to replace a multiobjective optimization problem with a suitable scalar

problem, that is, an optimization problem with a real-valued objective function (compare Definition

7.2.5). The solutions to the multiobjective optimization problem can, under some assumptions, be char-

acterized through the solutions to the scalar problem. This is very interesting, as the study of a scalar

optimization problem is greatly developed. There are many possibilities for formulating the surrogate

scalar problem (see e.g. [52, 56, 67]). One of the well-known methods is the weighted sum scalarization,

where a multiobjective optimization problem like (MOP) with the objective function f = (f1, . . . , fp)
T

(see (7.1)) can be transformed into a scalar problem of the form:
Minimize

p
∑

i=1
wi fi(x)

subject to x ∈ E,
(SP)

7.3. Weighted Sum Scalarization Approach 108

by choosing some suitable weights wi ≥ 0, i ∈ {1, . . . , p}, p ∈ N and p ≥ 2 which are to be determine

by the decision maker. Weights represent the importance of a particular objective function. In this

section, we give some properties and conditions for characterizing (weakly, properly) efficient elements

(cf. Definition 7.2.5) through scalarization (e.g. by using a scalarizing functional belonging to the dual

cone). To this end we introduce monotonicity properties of a scalarizing functional z : Rp → R :

Definition 7.3.1. Let K ⊂ Rp be a proper, convex, pointed and closed cone with y1, y2 ∈ Rp. The func-

tional z : Rp → R is said to be:

• K-monotone increasing if y2 ∈ y1 +K =⇒ z(y1)≤ z(y2).

• Strictly K-monotone increasing if y2 ∈ y1 +(K \{0}) =⇒ z(y1)< z(y2).

The following example demonstrates the monotonicity properties of elements belonging to the dual cone

of K.

Example 7.3.2. Consider the standard ordering cone in Rp :

Rp
+ := {y ∈ Rp | ∀ i = 1, . . . , p, yi ≥ 0}.

The dual cone of Rp
+ is given by

(Rp
+)

∗ = {z∗ ∈ (Rp)∗ = Rp | ∀ y ∈ Rp
+ : (z∗)T y ≥ 0}= Rp

+.

The element z∗ ∈ Rp
+ \ {0} is a Rp

+-monotone increasing functional. Taking y2 ∈ y1 +Rp
+ implies that

z∗(y2 − y1) ≥ 0, based on the definition of the dual cone. It is clear that z∗(y1) ≤ z∗(y2). On the other

hand, z∗ ∈ intRp
+ is strictly Rp

+-monotone increasing, since y2 ∈ y1 +(Rp
+ \{0}) yields z∗(y2 − y1)> 0,

implying z∗(y1)< z∗(y2).

Theorem 7.3.3. ([67]). Let F ⊂ Rp be a nonempty set, K ⊂ Rp is a proper, convex, pointed and closed

cone and z : Rp → R. Suppose that for an element y0 ∈ F, it holds that for all y ∈ F, z(y0)≤ z(y). If z is

strictly K-monotone, then y0 ∈ Eff(F,K).

For the other direction, in order to apply the classical separation arguments, we suppose convexity as-

sumptions which are represented in the definition and theorem that follows.

Definition 7.3.4. Let K ⊂ Rp be a proper, convex, pointed and closed cone. Let E ⊆ X be a convex set.

The function f : X → Rp is considered K-convex, if

f (αx1 +(1−α)x2) ∈ α f (x1)+(1−α) f (x2)−K (7.5)

holds for all x1, x2 ∈ X and all α ∈ [0,1].

Remark 7.3.5. For p = 1 we get

∀ x1, x2 ∈ X , ∀ α ∈ [0,1] : f (αx1 +(1−α)x2)≤ α f (x1)+(1−α) f (x2),

which is the classic definition of the convexity of a function f : X → R.

7.3. Weighted Sum Scalarization Approach 109

Now we investigate the convexity of the set f [X] in the image space under the convexity assumptions for

X and f .

Theorem 7.3.6. ([67, Theorem 2.11]). Let K ⊆ Rp be a proper, convex, pointed and closed cone. Let

X ⊂ Rn be a convex set and f : X → Rp be K-convex. Then the set f [X]+K is convex.

Under convexity assumptions, we present a well known scalarization result: for any minimal solution x0

(with f (x0) ∈ Eff(f [X],K)), there exists a functional α∗ ∈ K∗ \{0} such that x0 is a minimal solution of

the scalarized problem. See also [93, Theorem 5.4].

Theorem 7.3.7. (Necessary Condition for an Efficient Element). Let K ⊆Rp be a proper, convex, pointed

and closed cone with intK ̸= /0. Let E ⊆X ⊂Rn be a convex set. Let the function f : X →Rp be K-convex.

Then

f (x0) ∈ Eff(f [X],K) =⇒
(
∃ α

∗ ∈ K∗ \{0}, ∀ x ∈ X : α
∗ f (x0)≤ α

∗ f (x)
)
.

For readers convenience, we repeat the proof as follows.

Proof. If f (x0) ∈ Eff(f [X], K), then f [X]∩
(

f (x0)− (K \{0})
)
= /0. This means that

(f [X]+K)∩
(

f (x0)− (K \{0})
)
= /0.

Suppose on the contrary the last statement does not hold, that is,

(f [X]+K)∩
(

f (x0)− (K \{0})
)
̸= /0,

this implies the existence of x1 ∈ X and k1 ∈ K with f (x1)+ k1 ∈ f (x0)− (K \{0}) =⇒

f (x1) ∈ f (x0)− (K \{0})− k1.

Since K is a convex and pointed cone, it follows that f (x1) ∈ f (x0)− (K \ {0}). This contradicts the

statement that f (x0) ∈ Eff(f [X],K). To apply the Separation Theorem 2.2.11, consider the two sets

B := (f (x0)−K) and C := f [X]+K,

B is nonempty and convex, with intB ̸= /0 while C is also nonempty and convex, with intB∩C = /0 (refer

to Theorem 7.3.6). Theorem 2.2.11 states that for all x ∈ X and all k1,k2 ∈ K,

α
∗(f (x0)− k1)≤ λ ≤ α

∗(f (x)+ k2). (7.6)

Since K is a cone, we get α∗ ∈ K∗ \ {0}. Alternatively, if α∗ /∈ K∗, then α∗(k) < 0 for some k ∈ K.

For some n ∈ N, we set α∗(n · k) small enough so that α∗(n · k) < λ −α∗(f (x)) for some fixed x ∈ X ,

contradicting (7.6). As a result,

∀ x ∈ X : α
∗(f (x0))≤ α

∗(f (x)).

7.4. Formulation of the Multiobjective Approximation Problem 110

However, the converse requirement in Theorem 7.3.7 does not apply since α∗ does not have strict mono-

tonicity. In the following theorem, we provide the necessary and sufficient condition for weakly efficient

element. The following result can be traced back to Focke [62, 63] as well as more recently to Jahn [93]

and Ehrgott [52], respectively.

Theorem 7.3.8. Consider the Problem (MOP). Let K ⊂ Rp be a proper, convex, pointed and closed

cone. Let E ⊂ Rn be a convex set and the function f : E → Rp be K-convex. Then f (x0) is a weakly

efficient element of the image set f [E] of Problem (MOP) if and only if ∃ α∗ ∈ K∗ \{0} such that

∀ x ∈ E : α
∗ f (x)≥ α

∗ f (x0).

The corresponding characterization for properly efficient elements in the sense of Schönfeld (see Defini-

tion 7.2.5) is given in Remark 7.3.9.

Remark 7.3.9. Consider the Problem (MOP). Let K ⊂ Rp be a proper, convex, pointed and closed

cone. Let E ⊂ Rn be a convex set and the function f : E → Rp be K-convex. In Definition 7.2.5, we get

for F = f [E] and y0 = f (x0) the following characterization: f (x0) is a properly efficient element of the

image set f [E] of Problem (MOP) if and only if ∃ α∗ ∈ intK∗ such that

∀ x ∈ E : α
∗ f (x)≥ α

∗ f (x0).

7.4 Formulation of the Multiobjective Approximation Problem

Many real-world problems can be described as an approximation problem. Besides problems with

one objective function, several authors have investigated vector–valued or multiobjective approximation

problems (see, for example, the book by Göpfert, Riahi, Tammer and Zalinescu [68] and the references

therein). Here, we will consider a general vector control approximation problem and derive necessary

conditions for approximate solutions of this problem.

In this section, we assume the following

(B1) X = Rn, Y = Rp and Z = Rm

(B2) K ⊂ Rp is a pointed closed convex cone.

If f : X → R∪{+∞} is convex, then the Fenchel’s subdifferential of f at x0 ∈ dom f (in the sense of

convex analysis) according to Definition 2.2.18 is the set

∂ f (x0) = {x∗ ∈ X∗ | ∀ x ∈ X : x∗(x− x0)≤ f (x)− f (x0)},

and for x0 ∈ X with f (x0) = +∞, we put ∂ f (x0) = /0.

It is well known that the minimality condition for convex function f : X → R∪ {+∞} (according to

Theorem 2.2.28) is: 
x0 ∈ X is a minimal solution of

the optimization problem min
x∈X

f (x)
⇐⇒ 0 ∈ ∂ f (x0).

7.4. Formulation of the Multiobjective Approximation Problem 111

Moreover, we assume that K is a cone with intK ̸= /0.

Next, we consider the general vector-valued approximation problem (Papp):

Determine the set Eff(f [E], Rp
+), (Papp)

the objective function f (x) is defined as follows

f (x) := f1(x)+


∥A1(x)−a1∥β1

1
...

∥Ap(x)−ap∥βp
p

 ,

where for each norm ∥ · ∥i, we consider the exponents βi ≥ 1, (i = 1, . . . , p) for the different norms,

f1 : Rn → Rp is a convex function, E ⊆ Rn with Y = Rp, ai ∈ Rm, Ai ∈ L(Rn,Rm), (i = 1, . . . , p),

(cf. Jahn [92], Gerth and Pöhler [65], Henkel and Tammer [80, 81], Jahn and Krabs [95], Tammer

[156, 157], Wanka [165], Oettli [130]).

Furthermore, we consider the scalarized approximation problem (see Section 7.3) to (Papp)

fλ (x) := λ
T (f1(x)) +

p

∑
i=1

λi∥Ai(x) − ai∥βi
i → inf

x∈E
, (Pλ)

where f : E ⊂ Rn → Rp, f1 ∈ L(Rn,Rp), ai ∈ Rm, λi ≥ 0, βi ≥ 1 and Ai ∈ L(Rn,Rm), (i = 1, . . . , p).

If in problem (Pλ), f1 ≡ 0 and for all i = 1, . . . , p, Ai = I, E = Rn, we get the special case of the real-
valued location problem

f̃λ (x) :=
p

∑
i=1

λi∥x − ai∥βi
i → inf

x∈Rn
. (P̃λ)

In the following, we describe important special cases of Problem (Papp):

1. Vector-valued optimal control problems given by (cf. Section 2.3, precisely Remark 2.3.1 with

p = 2, A1 = I, β1 = 1, β2 = 2, Y = R2 and K = R2
+) : For

f̂ (x) :=

(
∥x∥1

∥Ax−b∥2
2

)
, x ∈ Rn,

determine

Eff(f̂ [Rn], R2
+),

where ∥ · ∥1 and ∥ · ∥2 are the ℓ1– and ℓ2–norms, A ∈ L(Rn,Rm), b ∈ Rm, X ⊆ Rn is a nonempty

closed convex set, and R2
+ denotes the usual ordering cone in R2. Here x denotes the so-called

control variable; the image z = Ax denotes the state variable. We will apply Algorithm 3 (TDLP)

in an interactive procedure for generating representatives of the solution set of this multiobjective

approximation problem in Section 7.5.

2. Scalar location and approximation problems (Y = R, f1 ≡ 0, βi = 1, i = 1,2, . . . , p) :

p

∑
i=1

λi∥Ai(x)−ai∥→ inf
x∈Rn

, (P0
λ

)

where ∥ · ∥ is a norm in Z (see for example, [68, Section 3.7 and 4.2]).

7.5. Application of Algorithm 3 (TDLP) for Solving Vector-Valued Approximation Problems 112

3. Linear vector optimization problems (for all i = 1, . . . , p, λi = 0).

4. Surrogate problems for linear vector optimization problems with an objective function

f (x) := f1(x) subject to x ∈ Rn and A(x) = a, for which the feasible set is empty.

5. Perturbed linear vector optimization problems.

6. Tychonoff regularization for linear vector optimization problems.

7.5 Application of Algorithm 3 (TDLP) for Solving Vector-Valued Ap-
proximation Problems

In this section, we consider the vector approximation Problem (Papp). A special case of this problem

was discussed in Chapter 1; see, for example, Problem 1. For instance, in Section 2.3, we mentioned

in Remark 2.3.1 that a special approximation problem of this type exists. We should discuss this type

of problem here but without the regularization parameter τ. The least squares problem (in the literature,

also named Lasso problem) was studied in Chapter 6, in particular, Section 6.1 as Problem (Pτ), i.e.,

min
x∈Rn

τ∥x∥1 +
1
2
∥Ax−b∥2

2,

where τ is a positive regularization parameter and ∥ · ∥2 denotes the Euclidean norm of Rm. Iterative

methods for solving (Pτ) have been presented in several papers, (see [25, 29, 58, 75]). Due to the fact

that the proposed algorithm is derivative–free, it can be applied to handle nonsmooth problems that are

in the form of (1.10) effectively.

The main difficulty associated with the Lasso Problem (Pτ) is that the solution solely depends on the

choice of the regularization parameter τ and most of the research reports only demonstrate results based

on a limited number of a priori selected values; see [86, 117] and the references therein. To get rid of this

difficulty, we consider instead of the least squares Problem (Pτ) a multiobjective optimization problem

without a regularization parameter τ is essential. The corresponding formulation takes the following

form of a vector optimization problem with two objective functions, as mentioned in Remark 2.3.1:

min
x∈Rn

(
∥x∥1

∥Ax−b∥2
2

)
, (Pm)

where A ∈ L(Rn,Rm), b ∈Rm, f1(x) := ∥x∥1, f2(x) := ∥Ax−b∥2
2, f = (f1, f2)

T : Rn →R2, the function

f : Rn → R2 is vector-valued, ∥ · ∥1 denotes the ℓ1–norm in Rn and ∥ · ∥2 denotes the Euclidean–norm

in Rm, respectively. Clearly, Problem (Pm) is a special case of Problem (Papp). In addition, (Pτ) could

be interpreted as a special scalarization of (Pm) with weights λ1 = τ and λ2 =
1
2 (see Problem (Pλ) or its

special case (P0
λ

) in Section 7.4). Hence, (Pm) can be scalarized using weights λ1 ≥ 0, λ2 ≥ 0, such that

we consider the scalar problem

min
x∈Rn

λ1∥x∥1 + λ2∥Ax−b∥2
2. (Pm

λ
)

Furthermore, we can use the interactive procedure proposed in [68] for generating representatives of

the solution set of (Pm) by using a scalarization (see (Pm
λ

)) and Algorithm 3 (TDLP) derived in Section

7.5. Application of Algorithm 3 (TDLP) for Solving Vector-Valued Approximation Problems 113

3.3. The procedure for the Interactive Algorithm is repeated for reader convenience, as given in [68] as

follows: In what follows, consider Λ ⊆ R2 as a given set of parameters: Λ = (λ1,λ2)
T with λi > 0 for

i = 1,2.

Algorithm 8: Interactive Algorithm for Generating Representatives of the Solution set of (Pm)

Step 1: Choose λ̄ ∈ Λ. Compute an approximate solution x0 to the Problem (Pm
λ

) with

Algorithm 3 (TDLP). If x0 is accepted by the decision-maker, then stop. Otherwise, go to Step
2.

Step 2: Put k = 0, t0 = 0. Choose λ̂ ∈ Λ, λ̂ ̸= λ̄ . Go to Step 3.
Step 3: Choose tk+1 with tk < tk+1 ≤ 1 and compute the approximate solution xk+1 of

min
x∈Rn

{(λ̄1 + tk+1(λ̂1 − λ̄1))∥x∥1 + (λ̄2 + tk+1(λ̂2 − λ̄2))∥Ax−b∥2
2}, (P(tk+1, λ̄ , λ̂))

with Algorithm 3 (TDLP) and use xk as a starting point. If an approximate solution of

P(t, λ̄ , λ̂) cannot be found for t > tk, then go to Step 1. Otherwise, go to Step 4.

Step 4: The point xk+1 is to be evaluated by the decision-maker. If it is accepted by the

decision-maker, then Stop. Otherwise, go to Step 5.
Step 5: If tk+1 ≥ 1, then go to Step 1. Otherwise, set k = k+1 and go to Step 3.

10
0

0.6

0.8

1

1.2

1.4

1.6

(f
1
(x

1
), f

2
(x

1
))

(f
1
(x

0
), f

2
(x

0
))

(f
1
(x

10
), f

2
(x

10
))

(f
1
(x

2
), f

2
(x

2
))

Figure 7.2: Representatives of the set of approximate solutions of Problem (Pm) generated for λ̄ =

[1,1], λ̂ = [4,4] using Algorithm 8 (where Algorithm 3 (TDLP) is involved in Step 3) and the involved

Problems (P(tk+1, λ̄ , λ̂)). The element (f1(x0), f2(x0)) (in red) is the approximate solution of (Pτ) with

τ = 0.008∥AT b∥∞ generated in Section 6.1 using Algorithm 3.

7.5. Application of Algorithm 3 (TDLP) for Solving Vector-Valued Approximation Problems 114

Remark 7.5.1. The point x0 generated using Algorithm 3 is an approximate solution of (Pτ) for τ =

0.008∥AT b∥∞ with the stopping criterion being Tol ≤ 10−6. This means that we have a certain approxi-

mation error and the element (f1(x0), f2(x0)) = (1.926, 0.778) is an approximate solution of the vector

optimization Problem (Pm). Consequently, from Figure 7.2, one can see that the approximate solution

(f1(x0), f2(x0)) is closed to the efficient frontiers. Taking into account Remark 7.3.9, the objective

function value of an exact solution to the scalarized Problem (Pτ) belongs to the efficient frontiers of

Problem (Pm). However, the objective function value (f1(x0), f2(x0)) does not belong to the efficient

frontiers (only to an approximation of the efficient frontiers). Furthermore, in Figure 7.2, we can observe

that there are much more minimal solutions to the Problem (Pm) that could be of interest to the decision

maker.

Remark 7.5.2. The generated objective function values (f1(x1), f2(x1)) = (2.828, 0.5277),

(f1(x2), f2(x2)) = (2.315, 0.686), . . . are shown in Figure 7.2. The points x1, x2, . . . are approximate

solutions of the scalarized Problem (P(tk+1, λ̄ , λ̂)) generated in Step 3 of Algorithm 8 for the parameters

λ̄ , λ̂ chosen as λ̄ = [1,1]T , λ̂ = [4,4]T , and the sequence tk is tk := 1
1+ek2 , k ≥ 0. Algorithm 8 is used

to obtain these points as representatives of the approximate solution set of (Pm). Step 3 of the procedure

for solving the Problem (P(tk+1, λ̄ , λ̂)) involves the use of Algorithm 3 (TDLP) (see Section 3.3).

Recall that Problem (Pm
λ

) is the scalarization of (Pm). By choosing the parameters in (Pm
λ

), we can obtain

solutions that correspond with the decision maker’s preferences. Therefore, Algorithm 8 generates rep-

resentative of an approximation of the efficient frontiers of the Problem (Pm). The points (f1(xi), f2(xi)),

i = 1,2, . . . ,n on the efficient frontiers (see Figure 7.2) are approximate solutions corresponding to the

decision maker’s preference, depending on the parameters chosen in (Pm
λ

). If the weights λ̄ = [1,1]T

and λ̂ = [4,4]T , the decreasing sequence tk := 1
1+ek2 , k ≥ 0, and all other parameters used for solving

(P(tk+1, λ̄ , λ̂)) are positive real numbers, one can conclude that the solutions generated using Algorithm

8 belong to the set of properly efficient points of Problem (Pm), taking into account Remark 7.3.9.

It is also possible to use Algorithm 8 to generate approximate solutions to other important multiobjective

approximation problems, particularly in radiotherapy treatment (see, for example, [34, 40, 54, 85, 111]

and the references therein) and special approximation problems (see [68, 71, 93, 98]) where the goal is

to generate Pareto optimal solution(s) based on the decision maker’s preferences.

Chapter 8

Conclusion and Outlook

8.1 Conclusion

In this dissertation, we have developed new algorithms for solving nonlinear systems of equations. These

algorithms are all matrix-free, thereby making them suitable for problems with a large sets of variables.

One of the notable advantages of our proposed algorithms is that the functions under consideration need

not be differentiable. This allowed the proposed new algorithms to comfortably deal with nonsmooth

problems. Interestingly, we have demonstrated the applicability of the proposed new algorithms in han-

dling problems arising from compressive sensing and two–arms robotic motion control. In the following,

we highlight some of our new results:

• In Chapter 3, we have introduced three new iterative projection algorithms. One of them is the

Modified Dai and Yuan (MDY) algorithm in Section 3.1. Unlike the classical Dai–Yuan’s CG

parameter where the denominator may go to zero as the iteration progresses, we succeeded in re-

defining the search direction in such a way that it remains well-defined throughout the iteration

process. This further made the MDY algorithm well-defined. The second algorithm defined its

CG parameter as a convex combination of two CG parameters. It is noteworthy that, in contrast to

certain previous research in the literature, it was demonstrated that the convex combination param-

eter θk, was shown to lie within the interval [0,1] without imposing additional conditions, unlike

what is obtained in some existing works in the literature. The last algorithm proposed in this chap-

ter incorporated the popular Dai-Liao CG parameter into the modified BFGS updating formula.

Remark 3.3.1 demonstrates the well-defined nature of the new search direction. Furthermore, we

constructed the spectral parameter associated with this algorithm to ensure the search direction sat-

isfied the important property known as the sufficient descent condition. Interestingly, the proposed

new algorithms mentioned above assumed a pseudomonotone function for global convergence.

This is a weaker assumption compared to the monotonocity condition usually imposed in most

existing methods found in the literature, (see, for example, [45, 46, 112, 175]).

• Chapter 4 leverages the fact that incorporating inertial steps into algorithms for solving variational

inequalities, split feasibility problems, and so on, speeds up their numerical performances estab-

lished in the literature. In this light, two multi-step inertial projection algorithms that use two

115

8.1. Conclusion 116

preceding iterates, say xk−1 and xk, as well as their respective images to update the sequence of

search directions have been proposed in Section 4.1. As we have demonstrated in the numerical

experiments, this approach has tremendously increased the numerical performance of the proposed

new inertial-like conjugate and spectral gradient algorithms, CGAIS and SAIS, respectively. Ad-

ditionally, we have introduced a new version of multi-step algorithm that mimic the Ishikawa

iterative scheme approach. This algorithm updates its sequence of iterations using two different

search directions, hence the name two-step hybrid algorithm. This approach confirmed the claim

made by some articles that the two step Ishikawa scheme converges faster than the one step Mann

iterative scheme, (see Chapter 5). Respective comprehensive convergence analyses of these new

inertial–like schemes have been discussed under mild conditions.

• Chapter 5 of this thesis focused on the numerical performances of the newly proposed algorithms.

We coded the proposed new algorithms using MATLAB, along with some existing state-of-the-art

algorithms selected from the literature for comparison. We have implemented each algorithm to

solve a collection of benchmark test problems. The performances recorded have been illustrated

with the aid of Dolan and Moré [49] Performance Profiles as well as Data Profiles of Moré and

Wild [122]. It is evident from the figures generated by these profiles that the newly proposed

algorithms performed better in almost all the metrics considered for the comparisons.

• We have demonstrated the applicability of Algorithm 1 (MDY), Algorithm 2 (HCDLS), and Al-

gorithm 3 (TDLP) in the reconstruction of sparse signals and the restoration of blurred images

in compressive sensing. Furthermore, we have applied the inertial–like conjugate and spectral

gradient projection algorithms to motion control problems.

• In the last chapter of this thesis, we introduce multiobjective optimization problems and their so-

lution concepts, that is, the concept of Pareto (weak, proper) efficiency. Furthermore, we studied

scalarization techniques, especially the weighted sum scalarization approach. In addition, we for-

mulated the general multiobjective approximation problem and described some of its important

special cases. Lastly, we closed the chapter by applying Algorithm 3 (from Section 3.3) in an

interactive procedure to solve multiobjective approximation problems for generating representa-

tives of the approximate solution sets for properly efficient elements. These points were obtained

with the help of an interactive algorithm for generating representatives of the (approximate) so-

lution set of (Pm), where Algorithm 3 (TDLP) was involved in Step 3 of Algorithm 8 for solving

Problem (P(tk+1, λ̄ , λ̂)) corresponding to the decision maker’s preferences for appropriate weight

selections.

8.2. Future Outlook 117

8.2 Future Outlook

This research generates several ideas for further research.

• One can consider exploring the use of the proposed new algorithms or their modifications for

addressing a variety of problems including:

– Time-varying nonlinear equations.

– Problems arising from financial forecasting [47, 48].

• To derive optimality conditions for solutions to the Problem (Papp) and to develop the correspond-

ing algorithms based on these optimality conditions.

• In general, since most applications lead to a Problem (Papp) with more than two objective functions,

it is our goal in the future to consider a more general Problem (Papp), where p > 2.

• Furthermore, it would be an important area of interest to employ Algorithm 8 for applications

especially for generating approximate solutions of inverse problems in radiotherapy treatment for-

mulated as an approximation problem of type (Papp).

• Despite the good features associated with the proposed methods, theoretical convergence analyses

hugely depend on the line search procedure for obtaining the step length as the iteration progresses.

Therefore, we encourage further research on how to achieve global convergence with a constant

step length.

8.3 Summary of Contributions

Several findings presented in this thesis are based on the following four articles, which have been pub-

lished in international peer-reviewed journals:

MTAE2021a : A. B. Muhammad, C. Tammer, A. M. Awwal and R. Elster. A Dai–Liao–like projection

method for solving convex constrained nonlinear monotone equations and minimizing the ℓ1–

regularized problem. Appl. Set–Valued Anal. Optim., 3 (2021), 259–279. Available online at

http://asvao.biemdas.com, https://doi.org/10.23952/asvao.3.2021.3.02.

MTAEM2021b : A. B. Muhammad, C. Tammer, A. M. Awwal, R. Elster and Z. Ma. Inertial–type

Projection Method for Solving Convex Constrained Monotone Nonlinear Equations With Appli-

cation in Robotic Motion Control. J. Nonlinear Var. Anal., 5 (2021), 831–849, Available online at

http://jnva.biemdas.com, https://doi.org/10.23952/jnva.5.2021.5.13.

AIMT2020 : A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad and C. Tammer. A Modified Descent

Dai-Yuan Conjugate Gradient Method for Constraint Nonlinear Monotone Operator Equations.

Applied Analysis and Optimization, 4 (2020), 1–24.

http://asvao.biemdas.com
https://doi.org/10.23952/asvao.3.2021.3.02
http://jnva.biemdas.com
https://doi.org/10.23952/jnva.5.2021.5.13

8.3. Summary of Contributions 118

MTA2019 : A. B. Muhammad, C. Tammer and A.B. Abubakar. A Hybrid Conjugate Gradient Al-

gorithm With Spectral Parameters for Solving Monotone Operator Equations With Convex Con-

straints and Application. Nonlinear Analysis and Convex Analysis & International Conference on

Optimization: Techniques and Application (NACA-ICOTA2019), Yokohama Publishers, Japan, 2

(2019), 23–51.

In what follows, we summarize the author’s main new contributions to each chapter of this thesis:

• Chapter 3 is new, however within this chapter we use some ideas that were presented in the articles

AIMT2020, MTA2019 and MTAE2021a. Lemma 3.4.2 and Theorem 3.4.3 are new.

• In Chapter 4, Section 4.1 is based on the joint work MTAEM2021b, while Section 4.2 is new.

• The discussion of the numerical experiments given in Chapter 5 is based on the results from the

papers AIMT2020, MTA2019 and MTAE2021a. Section 5.1 is new while Section 5.2 is mainly

based on the paper MTAEM2021b.

• In Chapter 6, Section 6.1 is completely new and is the sole work of the author. Furthermore, the

results in Section 6.2 is based on the work MTAEM2021b.

• Chapter 7 is the sole work of the author.

Bibliography

[1] A. B. ABUBAKAR, A. H. IBRAHIM, A. B. MUHAMMAD, AND C. TAMMER, A modified descent

Dai–Yuan conjugate gradient method for constraint nonlinear monotone operator equations, Ap-

plied Analysis and Optimization, 4 (2020), pp. 1–24.

[2] A. B. ABUBAKAR AND P. KUMAM, A descent Dai-Liao conjugate gradient method for nonlinear

equations, Numerical Algorithms, (2018, DOI:10.1007/s11075-018-0541-z), pp. 1–14.

[3] A. B. ABUBAKAR, P. KUMAM, AND H. MOHAMMAD, A note on the spectral gradient pro-

jection method for nonlinear monotone equations with applications, Computational and Applied

Mathematics, 39 (2020), pp. 1–35.

[4] A. B. ABUBAKAR, J. SABI’U, P. KUMAM, AND A. SHAH, Solving nonlinear monotone operator

equations via modified SR1 update, Journal of Applied Mathematics and Computing, 67 (2021),

pp. 343–373.

[5] H. AKAIKE, On a successive transformation of probability distribution and its application to the

analysis of the optimum gradient method, Annals of the Institute of Statistical Mathematics, 11

(1959), pp. 1–16.

[6] M. AL-BAALI, Descent property and global convergence of the Fletcher–Reeves method with

inexact line search, IMA Journal of Numerical Analysis, 5 (1985), pp. 121–124.

[7] N. ANDREI, An acceleration of gradient descent algorithm with backtracking for unconstrained

optimization, Numerical Algorithms, 42 (2006), pp. 63–73.

[8] N. ANDREI, Another hybrid conjugate gradient algorithm for unconstrained optimization, Numer.

Algorithms, 47 (2008), pp. 143–156.

[9] N. ANDREI, Another conjugate gradient algorithm with guaranteed descent and conjugacy con-

ditions for large-scale unconstrained optimization, Journal of Optimization Theory and Applica-

tions, 159 (2013), pp. 159–182.

[10] N. ANDREI, A simple three-term conjugate gradient algorithm for unconstrained optimization,

Journal of Computational and Applied Mathematics, 241 (2013), pp. 19–29.

[11] N. ANDREI, Nonlinear conjugate gradient methods for unconstrained optimization, Springer,

2020.

119

BIBLIOGRAPHY 120

[12] L. ARMIJO, Minimization of functions having Lipschitz continuous first partial derivatives, Pacific

Journal of mathematics, 16 (1966), pp. 1–3.

[13] A. M. AWWAL, P. KUMAM, AND A. B. ABUBAKAR, A modified conjugate gradient method

for monotone nonlinear equations with convex constraints, Applied Numerical Mathematics, 145

(2019), pp. 507–520.

[14] A. M. AWWAL, P. KUMAM, AND A. B. ABUBAKAR, Spectral modified Polak–Ribiére–Polyak

projection conjugate gradient method for solving monotone systems of nonlinear equations, Ap-

plied Mathematics and Computation, 362 (2019), p. 124514.

[15] A. M. AWWAL, P. KUMAM, A. B. ABUBAKAR, A. WAKILI, AND N. PAKKARANANG, A new

hybrid spectral gradient projection method for monotone system of nonlinear equations with con-

vex constraints, Thai Journal of Mathematics, 16 (2018).

[16] A. M. AWWAL, P. KUMAM, H. MOHAMMAD, W. WATTHAYU, AND A. B. ABUBAKAR, A

Perry-type derivative-free algorithm for solving nonlinear system of equations and minimizing

ℓ1–regularized problem, Optimization, 70 (2021), pp. 1231–1259.

[17] A. M. AWWAL, P. KUMAM, L. WANG, S. HUANG, AND W. KUMAM, Inertial-based derivative-

free method for system of monotone nonlinear equations and application, IEEE Access, 8 (2020),

pp. 226921–226930.

[18] A. M. AWWAL, L. WANG, P. KUMAM, AND H. MOHAMMAD, A two-step spectral gradient

projection method for system of nonlinear monotone equations and image deblurring problems,

Symmetry, 12 (2020), p. 874.

[19] A. M. AWWAL, L. WANG, P. KUMAM, H. MOHAMMAD, AND W. WATTHAYU, A projection

Hestenes–Stiefel method with spectral parameter for nonlinear monotone equations and signal

processing, Mathematical and Computational Applications, 25 (2020), p. 27.

[20] S. BABAIE-KAFAKI AND S. REZAEE, Two accelerated nonmonotone adaptive trust region line

search methods, Numerical Algorithms, 78 (2018), pp. 911–928.

[21] M. R. BANHAM AND A. K. KATSAGGELOS, Digital image restoration, IEEE signal processing

magazine, 2 (1997), pp. 24–417.

[22] J. BARZILAI AND J. M. BORWEIN, Two-point step size gradient methods, IMA Journal of Nu-

merical Analysis, 8 (1988), pp. 141–148.

[23] E. BEALE, A deviation of conjugate gradients., Numerical methods for nonlinear optimization,

(1972), pp. 39–43.

[24] A. BECK, Introduction to nonlinear optimization: Theory, algorithms, and applications with

MATLAB, SIAM, 2014.

BIBLIOGRAPHY 121

[25] A. BECK AND M. TEBOULLE, A fast iterative shrinkage-thresholding algorithm for linear inverse

problems, SIAM journal on imaging sciences, 2 (2009), pp. 183–202.

[26] D. BERTSEKAS, Nonlinear programming, athena sci, Optim. Comput. Ser., 3rd ed., Athena Sci-

entific, Belmont, MA, (2016).

[27] Y. BING AND G. LIN, An efficient implementation of Merrills method for sparse or partially

separable systems of nonlinear equations, SIAM Journal on Optimization, 1 (1991), pp. 206–221.

[28] E. G. BIRGIN AND J. M. MARTÍNEZ, A spectral conjugate gradient method for unconstrained

optimization, Applied Mathematics and optimization, 43 (2001), pp. 117–128.

[29] E. G. BIRGIN, J. M. MARTÍNEZ, AND M. RAYDAN, Nonmonotone spectral projected gradient

methods on convex sets, SIAM Journal on Optimization, 10 (2000), pp. 1196–1211.

[30] E. G. BIRGIN, J. M. MARTÍNEZ, AND M. RAYDAN, Spectral projected gradient methods: review

and perspectives, Journal of Statistical Software, 60 (2014), pp. 1–21.

[31] C. M. BISHOP, Pattern recognition and machine learning, Springer google schola, 2 (2006),

pp. 1122–1128.

[32] A. C. BOVIK, Handbook of image and video processing, Academic press, 2010.

[33] S. P. BOYD AND L. VANDENBERGHE, Convex optimization, Cambridge university press, 2004.

[34] F. CARLSSON AND A. FORSGREN, Iterative regularization in intensity-modulated radiation ther-

apy optimization, Medical physics, 33 (2006), pp. 225–234.

[35] A. CAUCHY, Méthode générale pour la résolution des systemes d’équations simultanées, Comp.

Rend. Sci. Paris, 25 (1847), pp. 536–538.

[36] C. L. CHAN, A. K. KATSAGGELOS, AND A. V. SAHAKIAN, Image sequence filtering in

quantum-limited noise with applications to low-dose fluoroscopy, IEEE Transactions on Medi-

cal Imaging, 12 (1993), pp. 610–621.

[37] B. S. CHEN, H. J. UANG, AND C. S. TSENG, Robust tracking enhancement of robot systems

including motor dynamics: A fuzzy-based dynamic game approach, IEEE Transactions on Fuzzy

Systems, 6 (1998), pp. 538–552.

[38] S. S. CHEN, D. L. DONOHO, AND M. A. SAUNDERS, Atomic decomposition by basis pursuit,

SIAM review, 43 (2001), pp. 129–159.

[39] W. CHENG, A PRP type method for systems of monotone equations, Mathematical and Computer

Modelling, 50 (2009), pp. 15–20.

[40] D. CIARDO, M. PERONI, M. RIBOLDI, D. ALTERIO, G. BARONI, AND R. ORECCHIA, The

role of regularization in deformable image registration for head and neck adaptive radiotherapy,

Technology in cancer research & treatment, 12 (2013), pp. 323–331.

BIBLIOGRAPHY 122

[41] Y. H. DAI, A new analysis on the Barzilai-Borwein gradient method, Journal of the operations

Research Society of China, 1 (2013), pp. 187–198.

[42] Y. H. DAI, M. AL-BAALI, AND X. YANG, A positive Barzilai–Borwein-like stepsize and an

extension for symmetric linear systems, in Numerical Analysis and Optimization, Springer, 2015,

pp. 59–75.

[43] Y. H. DAI, Y. HUANG, AND X. W. LIU, A family of spectral gradient methods for optimization,

Computational Optimization and Applications, 74 (2019), pp. 43–65.

[44] Y. H. DAI AND C. X. KOU, A Barzilai–Borwein conjugate gradient method, Science China

Mathematics, 59 (2016), pp. 1511–1524.

[45] Y. H. DAI AND L. Z. LIAO, New conjugacy conditions and related nonlinear conjugate gradient

methods, Applied Mathematics and Optimization, 43 (2001), pp. 87–101.

[46] Y. H. DAI AND Y. YUAN, A nonlinear conjugate gradient method with a strong global conver-

gence property, SIAM Journal on optimization, 10 (1999), pp. 177–182.

[47] Z. DAI AND H. ZHOU, Prediction of stock returns: Sum-of-the-parts method and economic con-

straint method, Sustainability, 12 (2020), p. 541.

[48] Z. DAI AND H. ZHU, Stock return predictability from a mixed model perspective, Pacific-Basin

Finance Journal, 60 (2020), p. 101267.

[49] E. D. DOLAN AND J. J. MORÉ, Benchmarking optimization software with performance profiles,

Math. Program., 91 (2002), pp. 201–213.

[50] Q. DONG, Y. CHO, L. ZHONG, AND T. M. RASSIAS, Inertial projection and contraction algo-

rithms for variational inequalities, Journal of Global Optimization, 70 (2018), pp. 687–704.

[51] F. Y. EDGEWORTH, Mathematical psychics: An essay on the application of mathematics to the

moral sciences, CK Paul, 1881.

[52] M. EHRGOTT, Multicriteria optimization, vol. 491, Springer Science & Business Media, 2005.

[53] M. EHRGOTT AND M. BURJONY, Radiation therapy planning by multicriteria optimization, in

Proceedings of the 36th Annual Conference of the Operational Research Society of New Zealand,

2001, pp. 244–253.

[54] M. EHRGOTT, Ç. GÜLER, H. W. HAMACHER, AND L. SHAO, Mathematical optimization in

intensity modulated radiation therapy, Annals of Operations Research, 175 (2010), pp. 309–365.

[55] M. EHRGOTT, K. KLAMROTH, AND C. SCHWEHM, An MCDM approach to portfolio optimiza-

tion, European Journal of Operational Research, 155 (2004), pp. 752–770.

[56] G. EICHFELDER, Adaptive scalarization methods in multiobjective optimization, Vector Opti-

mization, Springer-Verlag, Berlin, 2008.

BIBLIOGRAPHY 123

[57] F. FACCHINEI AND J. S. PANG, Finite-dimensional variational inequalities and complementarity

problems, Springer, 2003.

[58] M. FIGUEIREDO, R. D. NOWAK, AND S. J. WRIGHT, Gradient projection for sparse reconstruc-

tion: Application to compressed sensing and other inverse problems, IEEE Journal of selected

topics in signal processing, 1 (2007), pp. 586–597.

[59] R. FLETCHER, Practical methods of optimization, A Wiley-Interscience Publication, John Wiley

& Sons, Ltd., Chichester, second ed., 1987.

[60] R. FLETCHER, On the Barzilai-Borwein method, in Optimization and control with applications,

Springer, 2005, pp. 235–256.

[61] R. FLETCHER AND C. M. REEVES, Function minimization by conjugate gradients, The computer

journal, 7 (1964), pp. 149–154.

[62] J. FOCKE, Vektormaximumproblem und parametrische optimierung, Mathematische Operations-

forschung und Statistik, 4 (1973), pp. 365–369.

[63] J. FOCKE, Strict linear inequalities with respect to conic semiorders, Statistics: A Journal of

Theoretical and Applied Statistics, 6 (1975), pp. 881–900.

[64] J. GARETH, W. DANIELA, H. TREVOR, AND T. ROBERT, An introduction to statistical learning:

with applications in R, Spinger, 2013.

[65] C. GERTH AND K. PÖHLER, Duality and algorithmic application in the vector location problem,

Optimization, 19 (1988), pp. 491–512.

[66] P. E. GILL AND W. MURRAY, Newton-type methods for unconstrained and linearly constrained

optimization, Mathematical Programming, 7 (1974), pp. 311–350.

[67] A. GÖPFERT AND R. NEHSE, Vector optimization: theory, methods and applications, vol. 74,

knight, 1990.

[68] A. GÖPFERT, H. RIAHI, C. TAMMER, AND C. ZALINESCU, Variational methods in partially

ordered spaces, vol. 17, Springer, 2003.

[69] A. GÖPFERT, T. RIEDRICH, AND C. TAMMER, Angewandte Funktionalanalysis, Springer, 2009.

[70] N. Z. GU AND J. T. MO, Incorporating nonmonotone strategies into the trust region method for

unconstrained optimization, Computers & Mathematics with Applications, 55 (2008), pp. 2158–

2172.

[71] C. GÜNTHER AND C. TAMMER, On generalized-convex constrained multi-objective optimiza-

tion, Martin-Luther-Universität Halle-Wittenberg, Naturwissenschaftliche Fakultät, 2017.

[72] W. W. HAGER AND H. ZHANG, A new conjugate gradient method with guaranteed descent and

an efficient line search, SIAM Journal on optimization, 16 (2005), pp. 170–192.

BIBLIOGRAPHY 124

[73] W. W. HAGER AND H. ZHANG, A survey of nonlinear conjugate gradient methods, Pacific journal

of Optimization, 2 (2006), pp. 35–58.

[74] B. HAIM, Analyse fonctionnelle, théorie et applications, collection mathématiques appliquées

pour la maitrise. ANNEXE, (1983).

[75] E. T. HALE, W. YIN, AND Y. ZHANG, A fixed-point continuation method for ℓ1-regularized min-

imization with applications to compressed sensing, CAAM TR07-07, Rice University, 43 (2007),

p. 44.

[76] H. W. HAMACHER, Mathematical solution methods for planar location problems, Springer-

Verlag, 2019.

[77] H. W. HAMACHER AND K. H. KÜFER, Inverse radiation therapy planning: A multiple objective

optimisation approach, in Monitoring, Evaluating, Planning Health Services, World Scientific,

1999, pp. 177–189.

[78] T. HASTIE, R. TIBSHIRANI, J. H. FRIEDMAN, AND J. H. FRIEDMAN, The elements of statistical

learning: data mining, inference, and prediction, vol. 2, Springer, 2009.

[79] M. HENIG, Proper efficiency with respect to cones, Journal of Optimization Theory and Applica-

tions, 36 (1982), pp. 387–407.

[80] E. C. HENKEL AND C. TAMMER, ε-variational inequalities for vector approximation problems,

Optimization, 38 (1996), pp. 11–21.

[81] E. C. HENKEL AND C. TAMMER, ε-variational inequalities in partially ordered spaces, Opti-

mization, 36 (1996), pp. 105–118.

[82] M. R. HESTENES AND E. STIEFEL, Methods of conjugate gradients for solving linear systems,

NBS Washington, DC, 1952.

[83] H. HEUSER, Funktionalanalysis, Teubner, Stuttgart, 1986.

[84] C. HILLERMEIER AND J. JAHN, Multiobjective optimization: survey of methods and industrial

applications, Surv. Math. Ind, 11 (2005), pp. 1–42.

[85] E. HODGSON, A Textbook of Modern Toxicology, Wiley Online Library, 2004.

[86] Y. HONJO AND N. KUDO, Matching objective and subjective information in geotechnical inverse

analysis based on entrophy minimization, in Inverse problems in engineering mechanics, Elsevier,

1998, pp. 263–271.

[87] A. H. IBRAHIM, P. KUMAM, A. B. ABUBAKAR, W. JIRAKITPUWAPAT, AND J. ABUBAKAR,

A hybrid conjugate gradient algorithm for constrained monotone equations with application in

compressive sensing, Heliyon, 6 (2020), pp. 1–17.

BIBLIOGRAPHY 125

[88] S. ISHIKAWA, Fixed points by a new iteration method, Proceedings of the American Mathematical

Society, 44 (1974), pp. 147–150.

[89] N. A. IUSEM AND V. M. SOLODOV, Newton-type methods with generalized distances for con-

strained optimization, Optimization, 41 (1997), pp. 257–278.

[90] A. F. IZMAILOV AND M. V. SOLODOV, Newton-type methods for optimization and variational

problems, vol. 3, Springer, 2014.

[91] E. M. JAFAROV, M. A. PARLAKCI, AND Y. ISTEFANOPULOS, A new variable structure PID-

controller design for robot manipulators, IEEE Transactions on Control Systems Technology, 13

(2004), pp. 122–130.

[92] J. JAHN, Mathematical vector optimization in partially ordered linear spaces, vol. 31, Peter Lang

Gmbh, Internationaler Verlag Der Wissenschaften, 1985.

[93] J. JAHN, Vector optimization, theory, applications, and extensions, 2004.

[94] J. JAHN, Introduction to the theory of nonlinear optimization, Springer Nature, 2020.

[95] J. JAHN AND W. KRABS, Applications of multicriteria optimization in approximation theory, in

Multicriteria Optimization in Engineering and in the Sciences, Springer, 1988, pp. 49–75.

[96] G. JAMESON, Ordered linear spaces, in Ordered linear spaces, Springer, 1970, pp. 1–39.

[97] J. C. JOHN, Introduction to robotics: Mechanics and control, 2005.

[98] A. A. KHAN, C. TAMMER, AND C. ZALINESCU, Set-valued optimization, Springer, 2016.

[99] P. D. KHANH, B. S. MORDUKHOVICH, V. T. PHAT, AND D. B. TRAN, Generalized damped

Newton algorithms in nonsmooth optimization with applications to Lasso problems, arXiv preprint

arXiv:2101.10555, (2021).

[100] P. D. KHANH, B. S. MORDUKHOVICH, V. T. PHAT, AND D. B. TRAN, Generalized damped

Newton algorithms in nonsmooth optimization via second-order subdifferentials, Journal of Global

Optimization, 86 (2023), pp. 93–122.

[101] P. D. KHANH, B. S. MORDUKHOVICH, V. T. PHAT, AND D. B. TRAN, Globally convergent

coderivative-based generalized Newton methods in nonsmooth optimization, Mathematical Pro-

gramming, (2023), pp. 1–57.

[102] P. D. KHANH, B. S. MORDUKHOVICH, AND D. B. TRAN, Inexact reduced gradient methods in

nonconvex optimization, arXiv preprint arXiv:2204.01806, (2022).

[103] S. J. KIM, K. KOH, M. LUSTIG, S. BOYD, D. GORINEVSKY, ET AL., A method for large-scale

ℓ1-regularized least squares, IEEE Journal on Selected Topics in Signal Processing, 1 (2007),

pp. 606–617.

BIBLIOGRAPHY 126

[104] F. KOHSAKA AND W. TAKAHASHI, Fixed point theorems for a class of nonlinear mappings

related to maximal monotone operators in Banach spaces, Archiv der Mathematik, 91 (2008),

pp. 166–177.

[105] K. H. KÜFER, A. SCHERRER, M. MONZ, F. ALONSO, H. TRINKAUS, T. BORTFELD, AND

C. THIEKE, Intensity-modulated radiotherapy–a large scale multi-criteria programming problem,

OR spectrum, 25 (2003), pp. 223–249.

[106] W. LA CRUZ, J. MARTÍNEZ, AND M. RAYDAN, Spectral residual method without gradient in-

formation for solving large-scale nonlinear systems of equations, Mathematics of Computation,

75 (2006), pp. 1429–1448.

[107] W. LA CRUZ, J. M. MARTÍNEZ, AND M. RAYDAN, Spectral residual method without gradient

information for solving large-scale nonlinear systems of equations, Mathematics of Computation,

75 (2006), pp. 1429–1448.

[108] W. LA CRUZ AND M. RAYDAN, Nonmonotone spectral methods for large-scale nonlinear sys-

tems, Optimization Methods and Software, 18 (2003), pp. 583–599.

[109] M. LAHANAS, E. SCHREIBMANN, AND D. BALTAS, Multiobjective inverse planning for inten-

sity modulated radiotherapy with constraint-free gradient-based optimization algorithms, Physics

in Medicine & Biology, 48 (2003), p. 2843.

[110] S. M. LAJEVARDI, Structural similarity classifier for facial expression recognition, Signal, Image

and Video Processing, 8 (2014), pp. 1103–1110.

[111] T. T. LE, Multiobjective approaches based on variable ordering structures for intensity problems

in radiotherapy treatment, Investigación Operacional, 39 (2018).

[112] J. LIU AND Y. FENG, A derivative-free iterative method for nonlinear monotone equations with

convex constraints, Numerical Algorithms, 82 (2019), pp. 245–262.

[113] J. LIU AND S. LI, Spectral DY-type projection method for nonlinear monotone systems of equa-

tions, Journal of Computational Mathematics, 33 (2015), pp. 341–355.

[114] J. K. LIU AND S. J. LI, A projection method for convex constrained monotone nonlinear equa-

tions with applications, Computers & Mathematics with Applications, 70 (2015), pp. 2442–2453.

[115] Y. LIU AND C. STOREY, Efficient generalized conjugate gradient algorithms. I. Theory, J. Optim.

Theory Appl., 69 (1991), pp. 129–137.

[116] T. L. MAGNANTI AND G. PERAKIS, Solving variational inequality and fixed point problems by

line searches and potential optimization, Math. program, 101 (2004), pp. 435–461.

[117] R. MAHNKEN, Gradient-based methods for parameter identification of viscoplastic materials,

Inverse problems in engineering mechanics, 137 (1994).

BIBLIOGRAPHY 127

[118] W. R. MANN, Mean value methods in iteration, Proceedings of the American Mathematical So-

ciety, 4 (1953), pp. 506–510.

[119] A. MIELE, T. WANG, AND S. MANCUSO, Optimization of missions to Mars for robotic and

manned spacecraft, Nonlinear Analysis: Theory, Methods & Applications, 47 (2001), pp. 1425–

1443.

[120] H. MOHAMMAD AND A. B. ABUBAKAR, A positive spetral gradient-like method for large-scale

nonlinear monotone equations, Bull. Comput. Appl. Math., 5 (2017), pp. 97–113.

[121] B. S. MORDUKHOVICH, X. YUAN, S. ZENG, AND J. ZHANG, A globally convergent proximal

Newton-type method in nonsmooth convex optimization, Math. Program., 198 (2023), pp. 899–

936.

[122] J. J. MORÉ AND S. M. WILD, Benchmarking derivative-free optimization algorithms, SIAM

Journal on Optimization, 20 (2009), pp. 172–191.

[123] A. B. MUHAMMAD, C. TAMMER, AND A. B. ABUBAKAR, A hybrid conjugate gradient algo-

rithm with spectral parameters for solving monotone operator equations with convex constraints

and application, Nonlinear Analysis and Convex Analysis & International Conference on Op-

timization: Techniques and Application (NACA-ICOTA2019), Yokohama Publishers, Japan, 2

(2019), pp. 23–51.

[124] A. B. MUHAMMAD, C. TAMMER, A. M. AWWAL, AND R. ELSTER, A Dai-Liao-like projection

method for solving convex constrained nonlinear monotone equations and minimizing the ℓ1–

regularized problem, Appl. Set-Valued Anal. Optim., 3 (2021), pp. 259–279.

[125] A. B. MUHAMMAD, C. TAMMER, A. M. AWWAL, R. ELSTER, AND Z. MA, Inertial-type pro-

jection methods for solving convex constrained monotone nonlinear equations with applications

to robotic motion control, JOURNAL OF NONLINEAR AND VARIATIONAL ANALYSIS, 5

(2021), pp. 831–849.

[126] J. NA, X. REN, AND D. ZHENG, Adaptive control for nonlinear pure-feedback systems with

high-order sliding mode observer, IEEE transactions on neural networks and learning systems, 24

(2013), pp. 370–382.

[127] L. NAZARETH, A conjugate direction algorithm without line searches, Journal of Optimization

Theory and Applications, 23 (1977), pp. 373–387.

[128] J. NOCEDAL AND S. WRIGHT, Numerical optimization, Springer Science & Business Media,

2006.

[129] J. NOCEDAL AND S. J. WRIGHT, Line search methods, Numerical optimization, (2006), pp. 30–

65.

BIBLIOGRAPHY 128

[130] W. OETTLI, Approximate solutions of variational inequalities, Quantitative Wirtschaftsforschung,

(1977), pp. 535–538.

[131] J. PANG, Inexact Newton methods for the nonlinear complementarity problem, Mathematical Pro-

gramming, 36 (1986), pp. 54–71.

[132] V. PARETO, Manuale di economia politica (manual of political economy), Milan, Italy: Societa

Editrice Libraia, (1906).

[133] V. PARRA-VEGA, S. ARIMOTO, Y. H. LIU, G. HIRZINGER, AND P. AKELLA, Dynamic sliding

PID control for tracking of robot manipulators: Theory and experiments, IEEE Transactions on

Robotics and Automation, 19 (2003), pp. 967–976.

[134] A. PERRY, A modified conjugate gradient algorithm, Operations Research, 26 (1978), pp. 1073–

1078.

[135] E. POLAK AND G. RIBIERE, Note sur la convergence de methodes de directions conjugées, Rev

Française Informat Recherche Operationelle, 3e Année, 16 (1969), pp. 35–43.

[136] B. T. POLYAK, Some methods of speeding up the convergence of iteration methods, USSR Com-

putational Mathematics and Mathematical Physics, 4 (1964), pp. 1–17.

[137] B. T. POLYAK, The conjugate gradient method in extremal problems, USSR Computational Math-

ematics and Mathematical Physics, 9 (1969), pp. 94–112.

[138] B. T. POLYAK, Introduction to optimization. optimization software, Inc., Publications Division,

New York, 1 (1987), p. 32.

[139] M. J. POWELL, Nonconvex minimization calculations and the conjugate gradient method, in Nu-

merical analysis, Springer, 1984, pp. 122–141.

[140] Y. QIANG, F. JING, J. ZENG, AND Z. HOU, Dynamic modeling and vibration mode analysis for

an industrial robot with rigid links and flexible joints, in 2012 24th Chinese Control and Decision

Conference (CCDC), IEEE, 2012, pp. 3317–3321.

[141] M. RAYDAN, On the Barzilai and Borwein choice of steplength for the gradient method, IMA

Journal of Numerical Analysis, 13 (1993), pp. 321–326.

[142] M. RAYDAN, The Barzilai and Borwein gradient method for the large scale unconstrained mini-

mization problem, SIAM Journal on Optimization, 7 (1997), pp. 26–33.

[143] H. U. REHMAN, P. KUMAM, A. B. ABUBAKAR, AND Y. J. CHO, The extragradient algorithm

with inertial effects extended to equilibrium problems. comput, Appl. Math, 39 (2020), pp. 1–26.

[144] H. U. REHMAN, P. KUMAM, I. K. ARGYROS, W. DEEBANI, AND W. KUMAM, Inertial extra-

gradient method for solving a family of strongly pseudomonotone equilibrium problems in real

Hilbert spaces with application in variational inequality problem, Symmetry, 12 (2020), p. 503.

BIBLIOGRAPHY 129

[145] R. T. ROCKAFELLAR, Convex analysis, Princeton university press, 2015.

[146] D. SAHU, Y. CHO, Q. DONG, M. KASHYAP, AND X. LI, Inertial relaxed CQ algorithms for

solving a split feasibility problem in Hilbert spaces, Numerical Algorithms, (2020), pp. 1–21.

[147] H. H. SCHAEFER, Topological vector spaces (4th printing), New York, (1980).

[148] P. SCHÖNFELD, Some duality theorems for the non-linear vector maximum problem, Un-

ternehmensforschung, 14 (1970), pp. 51–63.

[149] D. F. SHANNO, Conjugate gradient methods with inexact searches, Mathematics of operations

research, 3 (1978), pp. 244–256.

[150] M. V. SOLODOV AND B. F. SVAITER, A globally convergent inexact Newton method for sys-

tems of monotone equations, in Reformulation: Nonsmooth, Piecewise Smooth, Semismooth and

Smoothing Methods, Springer, 1998, pp. 355–369.

[151] L. STELLA, A. THEMELIS, AND P. PATRINOS, Forward–backward quasi-Newton methods for

nonsmooth optimization problems, Computational Optimization and Applications, 67 (2017),

pp. 443–487.

[152] M. SUN, J. LIU, AND Y. WANG, Two improved conjugate gradient methods with application in

compressive sensing and motion control, Mathematical Problems in Engineering, 2020 (2020).

[153] W. SUN AND Y.-X. YUAN, Optimization theory and methods: nonlinear programming, vol. 1,

Springer Science & Business Media, 2006.

[154] W. TAKAHASHI, Nonlinear Functional Analysis: Fixed Point Theory and its Applications, Yoko-

hama Publishers, 2000.

[155] W. TAKAHASHI, Introduction to nonlinear and convex analysis, Yokohama Publishers, 2009.

[156] C. TAMMER, Necessary conditions for approximately efficient solutions of vector approximation

problems. in: Approximation and optimization in the Caribbean II (Havana, 1993), Approx. Op-

tim., 8, Lang, Frankfurt am Main, (1995), pp. 651–663.

[157] C. TAMMER, Approximate solutions of vector-valued control approximation problems, Studies in

Locational Analysis, 10 (1996), pp. 151–162.

[158] C. TAMMER AND A. GÖPFERT, Theory of vector optimization, in Multiple criteria optimization:

state of the art annotated bibliographic surveys, vol. 52 of Internat. Ser. Oper. Res. Management

Sci., Kluwer Acad. Publ., Boston, MA, 2002, pp. 1–70.

[159] C. TAMMER AND P. WEIDNER, Scalarization and Separation by Translation Invariant Functions,

Springer, 2020.

BIBLIOGRAPHY 130

[160] G. Y. TANG, L. SUN, C. LI, AND M. Q. FAN, Successive approximation procedure of optimal

tracking control for nonlinear similar composite systems, Nonlinear Analysis: Theory, Methods

& Applications, 70 (2009), pp. 631–641.

[161] G. Y. TANG, Y. D. ZHAO, AND B. L. ZHANG, Optimal output tracking control for nonlinear

systems via successive approximation approach, Nonlinear Analysis: Theory, Methods & Appli-

cations, 66 (2007), pp. 1365–1377.

[162] N. T. VINH AND L. D. MUU, Inertial extragradient algorithms for solving equilibrium problems,

Acta Mathematica Vietnamica, 44 (2019), pp. 639–663.

[163] Z. WAN, J. GUO, J. LIU, AND W. LIU, A modified spectral conjugate gradient projection method

for signal recovery, Signal, Image and Video Processing, 12 (2018), pp. 1455–1462.

[164] C. WANG, Y. WANG, AND C. XU, A projection method for a system of nonlinear monotone

equations with convex constraints, Mathematical Methods of Operations Research, 66 (2007),

pp. 33–46.

[165] G. WANKA, On duality in the vectorial control-approximation problem, Zeitschrift für Operations

Research, 35 (1991), pp. 309–320.

[166] P. WOLFE, Convergence conditions for ascent methods, SIAM review, 11 (1969), pp. 226–235.

[167] Y. XIAO, Q. WANG, AND Q. HU, Non-smooth equations based method for ℓ1-norm problems

with applications to compressed sensing, Nonlinear Analysis: Theory, Methods & Applications,

74 (2011), pp. 3570–3577.

[168] Y. XIAO AND H. ZHU, A conjugate gradient method to solve convex constrained monotone equa-

tions with applications in compressive sensing, Journal of Mathematical Analysis and Applica-

tions, 405 (2013), pp. 310–319.

[169] M. M. YAHAYA, P. KUMAM, A. M. AWWAL, AND S. AJI, A structured quasi–Newton algorithm

with nonmonotone search strategy for structured NLS problems and its application in robotic

motion control, Journal of Computational and Applied Mathematics, (2021), p. 113582.

[170] Z. YU, J. LIN, J. SUN, Y. XIAO, L. LIU, AND Z. LI, Spectral gradient projection method

for monotone nonlinear equations with convex constraints, Applied numerical mathematics, 59

(2009), pp. 2416–2423.

[171] C. ZALINESCU, Convex analysis in general vector spaces, World scientific, 2002.

[172] E. H. ZARANTONELLO, Projections on convex sets in Hilbert space and spectral theory: Part

i. projections on convex sets: Part ii. spectral theory, in Contributions to nonlinear functional

analysis, Elsevier, 1971, pp. 237–424.

[173] E. ZEIDLER, IIA linear monotone operators, IIB nonlinear monotone operators, Nonlinear Func-

tional Analysis and Its Application I, (1990).

BIBLIOGRAPHY 131

[174] L. ZHANG AND W. ZHOU, Spectral gradient projection method for solving nonlinear monotone

equations, Journal of Computational and Applied Mathematics, 196 (2006), pp. 478–484.

[175] L. ZHANG, W. ZHOU, AND D. H. LI, A descent modified Polak–Ribière–Polyak conjugate gra-

dient method and its global convergence, IMA Journal of Numerical Analysis, 26 (2006), pp. 629–

640.

[176] Y. ZHANG, L. HE, C. HU, J. GUO, J. LI, AND Y. SHI, General four-step discrete-time zeroing

and derivative dynamics applied to time-varying nonlinear optimization, Journal of Computa-

tional and Applied Mathematics, 347 (2019), pp. 314–329.

[177] Y. ZHANG, W. LI, B. QIU, Y. DING, AND D. ZHANG, Three-state space reformulation and

control of MD-included one-link robot system using direct-derivative and hang-dynamics methods,

in 2017 29th Chinese Control And Decision Conference (CCDC), IEEE, 2017, pp. 3724–3729.

[178] L. ZHENG, L. YANG, AND Y. LIANG, A conjugate gradient projection method for solving equa-

tions with convex constraints, J. Comput. Appl. Math., 375 (2020), p. 112781.

[179] G. ZOUTENDIJK, Nonlinear programming, computational methods, Integer and nonlinear pro-

gramming, (1970), pp. 37–86.

Selbständigkeitserklärung

Hiermit erkläre Ich Muhammad, Abubakar Bakoji an Eides statt, dass ich die vorliegende Dissertation

selbständig und ohne fremde Hilfe angefertigt habe. Ich habe keine anderen als die angegebenen Quellen

und Hilfsmittel benutzt und die den benutzten Werken wörtlich oder inhaltlich entnommenen Stellen als

solche kenntlich gemacht.

Halle (Saale), den 29. November. 2024

132

Curriculum Vitae

Abubakar Bakoji Muhammad

Oct. 2018 - Oct. 2024 Doctoral Studies in Applied Mathematics

Martin-Luther-Universität Halle-Wittenberg

December 2015 Master of Science in Mathematics

Oct. 2014 - Dec. 2015 Master Studies in Applied Mathematics

University of Ilorin, Ilorin, Nigeria

September 2012 Bachelor of Science in Mathematics

Oct. 2006 - Sept. 2012 Bachelor Studies in Mathematics

Gombe State University, Nigeria

June 1999 Abitur

Sept. 1999 - July. 2005 Government Science Secondary School Gombe, Nigeria

Halle (Saale), December 4, 2024

(Abubakar Bakoji Muhammad)

133

Publications

1. A. B. Muhammad, C. Tammer and A.B. Abubakar. A Hybrid Conjugate Gradient Algorithm With

Spectral Parameters for Solving Monotone Operator Equations With Convex Constraints and Ap-

plication. Nonlinear Analysis and Convex Analysis & International Conference on Optimization:

Techniques and Application (NACA-ICOTA2019), Yokohama Publishers, Japan, 2 (2019), 23–51.

2. A. B. Abubakar, A. H. Ibrahim, A. B. Muhammad and C. Tammer. A Modified Descent Dai-Yuan

Conjugate Gradient Method for Constraint Nonlinear Monotone Operator Equations. Applied

Analysis and Optimization, 4 (2020), 1–24.

3. A. B. Muhammad, C. Tammer, A. M. Awwal, R. Elster and Z. Ma. Inertial–type Projection

Method for Solving Convex Constrained Monotone Nonlinear Equations With Application in

Robotic Motion Control. J. Nonlinear Var. Anal., 5 (2021), 831–849, Available online at http:

//jnva.biemdas.com, https://doi.org/10.23952/jnva.5.2021.5.13.

4. A. B. Muhammad, C. Tammer, A. M. Awwal and R. Elster. A Dai–Liao–like projection method

for solving convex constrained nonlinear monotone equations and minimizing the ℓ1–regularized

problem. Appl. Set–Valued Anal. Optim., 3 (2021), 259–279. Available online at http://asvao.

biemdas.com, https://doi.org/10.23952/asvao.3.2021.3.02.

134

http://jnva.biemdas.com
http://jnva.biemdas.com
https://doi.org/10.23952/jnva.5.2021.5.13
http://asvao.biemdas.com
http://asvao.biemdas.com
https://doi.org/10.23952/asvao.3.2021.3.02

	Introduction
	Mathematical Background
	Fundamentals of Functional Analysis
	Linear Spaces and Order Structure
	Metric Spaces
	Normed Spaces
	Lipschitz Continuity

	Properties of Operators and Functions
	Reformulation of 1–Norm Regularization in Compressive Sensing
	Line Search
	Overview of Solution Methods for Unconstrained Optimization Problems
	Steepest Descent Method
	Newton Methods
	Quasi–Newton Methods
	Conjugate Gradient Method
	Spectral Gradient Method
	Spectral–Conjugate Gradient Methods

	Derivative–Free Algorithms for Nonlinear Systems of Equations
	Algorithm 1: Modified Dai–Yuan Projection Methods (MDY)
	Algorithm 2: HCDLS Method
	Algorithm 3: Three–term Dai–Liao Projection (TDLP) Method
	Convergence Analysis of Algorithms 1, 2 and 3

	Two–Step Projection Methods
	Inertial–Type Projection Method
	 Conjugate Gradient and Spectral Gradient Algorithms with Inertial–Step
	Convergence Analysis of Algorithm 4 (CGAIS) and Algorithm 5 (SAIS)

	Two–Step Hybrid Spectral Gradient Projection Method
	Proposed Algorithm
	Convergence Analysis of THSP Algorithm

	Numerical Experiments
	Experiments with the Derivative–Free Algorithms
	Numerical comparisons of Algorithms 1, 2 and 3
	Numerical Comparisons of Algorithm 3 (TDLP) with DPP and CGPM Methods

	Numerical Experiments and Comparisons for Algorithms 4 and 5
	Numerical Comparisons of Algorithm 4 (CGAIS) With CGWOI Method
	Numerical Comparisons of Algorithm 5 (SAIS) With DAIS 1 and DAIS 2 Methods

	Applications in Compressive Sensing and Motion Control Problems
	Applications in Compressive Sensing
	Applications in Motion Control Problems

	Application for Solving Vector-Valued Approximation Problems
	Formulation of the Problem
	Solution Concepts in Vector Optimization
	Weighted Sum Scalarization Approach
	 Formulation of the Multiobjective Approximation Problem
	Application of Algorithm 3 (TDLP) for Solving Vector-Valued Approximation Problems

	Conclusion and Outlook
	Conclusion
	Future Outlook
	Summary of Contributions

