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Abstract We present the extension of our all-atom
force field BILFF (Bio-polymers in Ionic Liquids
Force Field) to the co-solvent dimethyl sulfoxide
(DMSO). BILFF already includes force field param-
eters for several imidazolium- and triazolium-based
ionic liquids, water, and the bio-molecule cellulose.
DMSO is known to increase the cellulose solubility of
[EMIm][OAc] when applied as an additive. Our focus
is on a correct reproductionof the hydrogenbonds in the
ternary systemof [EMIm]+, [OAc]−, water andDMSO
compared to ab initiomolecular dynamics simulations.
For this purpose, the results from force field MD sim-
ulations such as radial and distance–angle distribution
functions are comparedwith the referenceAIMDsimu-
lation.Based on this, the forcefield parameters (starting
fromOPLS–AA)are iteratively adjusted. Four systems,
pure and aqueous DMSO as well as DMSO in pure and
aqueous [EMIm][OAc], are considered and addition-
ally compared to DMSO-free [EMIm][OAc] systems.
A very good agreement with respect to the microstruc-
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ture of the quantum chemical reference simulations as
well as to experimental data such as density, diffusion
coefficients, enthalpy of vaporization, compressibility
and thermal expansion coefficients can be observed
over a wide temperature range. BILFF thus enables
accurate simulations of larger systems of solvated cel-
lulose in (aqueous) [EMIm][OAc] and the co-solvent
DMSO.

Keywords DMSO · Force field molecular dynamics
simulation · Cellulose Co-solvent · Ionic liquid ·
Solvent structure · Hydrogen bond lifetime · Cal-
culated volume expansion coefficient · Calculated
compressibility

Introduction

Cellulose is recognized as a nearly limitless resource
to fulfill the growing need for environmentally friendly
and biocompatible products (Azimi et al. 2022, Klemm
et al. 2005, Nanda et al. 2022, Payne et al. 2015).
It has diverse applications, spanning from packaging
materials and writing surfaces to biofuels (Himmel
et al. 2007), bioplastics (Fang et al. 2023), anti fun-
gal membranes (Wanichapichart et al. 2012), lami-
nates (Yousefi Shivyari et al. 2016), and phosphores-
cent materials (Zhang et al. 2022), among other inno-
vative uses (Abeer et al. 2014, Sun and Cheng 2002,
Thomas et al. 2018). Some processes require the dis-
solution of cellulose. However, the solubility of cel-
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lulose in conventional solvents is a challenge due to
its extensive inter- and intramolecular hydrogen bond-
ing. Industrially used derivatizing solvents such as car-
bon disulfide (CS2) or N-methylmorpholine N-oxide
(NMMO) have several disadvantages such as toxic-
ity, insufficient solvent stability, degradation of both
cellulose and solvent and significant stabilizer require-
ments (Azimi et al. 2022, Olsson and Westman 2013).
A direct dissolution of raw cellulose not only sim-
plifies the processing but also circumvents byproduct
generation. Therefore, there is a strong interest in dis-
covering environmentally friendly and non-toxic sol-
vents capable of dissolving cellulose without requir-
ing derivatization. In 2002, Swatloski discovered that
such a cellulose solvent are ionic liquids (ILs) (Swat-
loski et al. 2002). A technically relevant cellulose sol-
ubility is achieved, for example, in the IL 1-ethyl-
3-methylimidazolium acetate ([EMIm][OAc]), which
has become the focus of research due to its additional
high chemical stability (Froschauer et al. 2013, Le et al.
2012). However, while IL-based methods for process-
ing biomass show promise for large-scale applications,
certain ILs can be expensive and have a high viscos-
ity, creating challenges for scaling up (Li et al. 2013).
A combination of an IL and polar organic co-solvents,
such as dimethyl sulfoxide (DMSO) exhibits a lower
viscosity than the pure IL and improves the solubil-
ity of cellulose (Anokhina et al. 2017, Mohan et al.
2016, Tomimatsu et al. 2019, Xu et al. 2013, Yang
et al. 2019b). However, it is still debated how precisely
DMSO enhances the cellulose solubility, while water,
also a polar molecule, reduces it: To dissolve cellu-
lose, it is necessary to replace the inter- and intramolec-
ular cellulose hydrogen bonds with solvent–cellulose
hydrogen bonds formed primarily by the anion of the
IL.However, these interactions are hindered by a strong
association between the cation and the anion (Brehm
et al. 2019, 2020a). A common theory is that DMSO
separates the ions from each other and, by additionally
reducing the viscosity and thereby increasing the mass
transfer rate (Le et al. 2014), promotes the formation
of anion–cellulose hydrogen bonds (Anokhina et al.
2017, Brehm et al. 2019, 2020a, Manna and Ghosh
2019, Mohan et al. 2016, Paiva et al. 2022, Tomimatsu
et al. 2019).

Although several studies on cellulose in
[EMIm][OAc] and DMSO have been published, the
influence of water on the underlying hydrogen bond
network has hardly been investigated.However, in view

of the fact that the IL is hygroscopic and that cellulose
reprecipitates even in the presence of small amounts
of water (Froschauer et al. 2013, Le et al. 2012), the
importance of water should not be ignored. To gain
a thorough understanding of the intricate interactions
present within the cellulose/IL/DMSO/water system at
the atomic level, molecular dynamic (MD) simulations
can be utilized. However, despite its accuracy, quantum
chemical techniques are impractical for studying these
large systems due to their high computational demand
and time-consuming nature. To overcome these lim-
itations, force fields can be utilized as an empirical
alternative for representing the interactions. A force
field describes the interactions between molecules in
a simplified way by representing the total potential
energy as the sumof the contributions frombonds, bond
angles, torsion angles, and electrostatic and van der
Waals energies. These energy components are parame-
terized using empirical functions, allowing a force field
to focus on specific application fields.

There are already several force field parameter sets
available for the molecule DMSO, which have been
optimized to accurately describe the thermodynamic
properties of pure DMSO and aqueous DMSO (Bordat
et al. 2003, Fox and Kollman 1998, Geerke et al. 2004,
Strader and Feller 2002). However, there is currently no
force field specifically designed to accurately describe
the microstructure between an ionic liquid, particularly
[EMIm][OAc], water, andDMSO, aswell as the hydro-
gen bonds between them. Inaccurate modeling of these
directed interactions may lead to an imprecise descrip-
tion of the delicate hydrogen bond network. Therefore,
we have developed optimized force field parameters for
DMSO in this complex mixture to achieve the level of
accuracy comparable to quantum chemical MD simu-
lations (ab initio MD (AIMD) simulations).

For the investigation of the bio-molecule solu-
tion process with force field simulations, we have
already published optimized force field parameters for
the ionic liquids 1-ethyl-3-methylimidazolium acetate
([EMIm][OAc]) (Roos and Brehm 2021), 1-ethyl-
3-methyl-1,2,3-triazolium acetate ([EMTr][OAc]), 1-
ethyl-3-methyl-1,2,3-triazolium benzoate ([EMTr]
[OBz]), 1-ethyl-3-methylimidazolium benzoate ([EMI
m][OBz]) (Roos et al. 2023a), water, and cellulose.
This article presents the extension of the force field
BILFF (Roos and Brehm 2021, Roos et al. 2023b, a)
(Bio-Polymers in Ionic Liquids Force Field) to the co-
solvent DMSO. For this purpose, we compared vari-
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ous analyses regarding the microstructure and dynam-
ics of the system from force field MD simulations with
the results of reference quantum chemical MD simu-
lations and minimized the deviations by varying the
force field parameters. This allowed us to develop an
optimal parameter set with a focus on the hydrogen
bonds of the system simultaneously in anhydrous and
aqueous [EMIm][OAc]. For validation, further simu-
lations of pure and aqueous DMSO in the absence of
the ionic liquid were calculated and the system densi-
ties, self-diffusion coefficients, thermal volume expan-
sion coefficient, and the compressibility were com-
pared with experimental data. In addition, the repro-
ducibility of the quantum chemical results at elevated
simulation temperature was investigated. Furthermore,
the lifetime of the investigated hydrogen bonds, densi-
ties and self-diffusion coefficients were compared with
the results from force field simulations of DMSO-free
[EMIm][OAc] and thus the influence of DMSO on the
system was discussed.

Computational details

The force field parameters for DMSO in mixtures with
[EMIm][OAc] were developed simultaneously in both
the presence and absence of water at 350K. The force
field parameters were iteratively adjusted by compar-
ing various analyses of the force field MD simulation
with reference AIMD simulations (see “Optimization
procedure”). The initial configurations for these AIMD
simulationswere generated from thefinal configuration
of a 20nsNpT force field simulationwith the force field
parameters of OPLS–AA (Jorgensen et al. 1996, Pon-
der and Case 2003, Sambasivarao and Acevedo 2009)
for DMSO, BILFF (Roos and Brehm 2021, Roos et al.
2023b, a) for [EMIm][OAc], and TIP4P–EW (Horn
et al. 2004) (with constrained bonds and angles using
theRATTLEalgorithm (Andersen 1983,Ryckaert et al.
1977) for water. The simulation parameters such as the
number of molecules, the size of the simulation cell
and the final system density are listed in Table 1. The
AIMD simulations were performed—analogously to
those in our previously published article on the force
field parameters for [EMIm][OAc] (Roos and Brehm
2021)—with CP2k (Hutter et al. 2014, Kühne et al.
2020, The CP2K developers group 2017). The Quick-
step method (VandeVondele et al. 2005) and orbital
transformation (OT) (VandeVondele and Hutter 2003)

were used. For the description of the electronic struc-
ture, density functional theory (Hohenberg and Kohn
1964, Kohn and Sham 1965) was applied using the
BLYP functional (Becke 1988, Lee et al. 1988) and the
dispersion correction D3(BJ) of Grimme et al. (2010,
2011) together with the revised damping parameters of
Smith et al. (2016). The DZVP–MOLOPT–SR–GTH
(VandeVondele and Hutter 2007) were applied as basis
sets, andGTHpseudopotentials (Goedecker et al. 1996,
Hartwigsen et al. 1998) were utilized. The plane-wave
energy cutoff was set to 350Ry.

The first 15ps of the AIMD simulations of the
DMSO/IL/(H2O) systems and the first 20ps of the
AIMD simulations of pure DMSO and DMSO/H2O
were discarded as equilibration. The resulting physical
simulation times are listed in Table 1.

The force field MD simulations for the force field
optimization were performed analogously to our pre-
vious article on BILFF (Roos and Brehm 2021). Using
Packmol (Martínez et al. 2009), the molecules were
statistically distributed in the simulation box. Pre-
equilibrations were performed at first at 500K in the
NVE ensemble using a Berendsen thermostat (Berend-
sen et al. 1984) with a coupling constant of 1.0 fs
and a physical simulation time of 25ps, followed by
100ps of equilibration at 350K in the NpT ensem-
ble using a Nosé–Hoover thermostat (Martyna et al.
1992, Nose 1984a, b) (coupling constant of 100 fs) and
aNosé–Hoover barostat (coupling constant of 2000 fs).
The resulting acoustic shock waves were subsequently
damped in another simulation intervalwith the help of a
Langevin thermostat (Dünweg and Paul 1991, Schnei-
der and Stoll 1978). After calculating the final volume
of the simulation box as average over the NpT simu-
lation, the simulation cell size was adjusted in a 10ps
simulation interval. In a next step, the shock waves
were damped again and the system was equilibrated.
Finally, the production run was performed in the NVT
ensemble using a Nosé–Hoover thermostat (Martyna
et al. 1992, Nose 1984a, b) with a physical simulation
time of 10ns and an integration time step of 0.5 fs. As in
our previous studies, the Lennard-Jones cutoff radius
was set to 800pm. For the electrostatic interactions,
the PPPM long-range solver from LAMMPS (Plimp-
ton 1995) was utilized.

In addition, to validate the force field, anAIMD sim-
ulation and a force field MD simulation of pure and
aqueous DMSO at 350K were performed. To inves-
tigate the temperature dependence of the force field,
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Table 1 Simulation parameters of the final equilibrated ab initio and force field MD simulations of DMSO in pure and aqueous
[EMIm][OAc] for development and validation of the force field

System Number of Sim. time Box size Density
Molecules / ps / pm / gcm−3

AIMD

DMSO 64 DMSO 90 1962 1.100

DMSO/H2O 24 DMSO 31 1687 0.947

48 Water

DMSO/IL 12 DMSO 135 2052 1.064

27 IL pairs

DMSO/IL/H2O 12 DMSO 120 2055 1.067

26 IL pairs

12 Water

FFMD

DMSO 250 DMSO 10000 3143 1.045

DMSO/H2O 150 DMSO 10000 3031 1.022

300 Water

DMSO/IL 60 DMSO 10000 3485 1.086

135 IL pairs

DMSO/IL/H2O 36 DMSO 10000 2945 1.088

78 IL pairs

36 Water

Fig. 1 Snapshot of the
force field MD simulation
of a) pure DMSO, b)
aqueous DMSO as well as
c) DMSO/IL, and d)
DMSO/IL/H2O (atom color
code: yellow – S; red – O;
blue – N; gray – C; white –
H)

a) b)

c) d)
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AIMD simulations of DMSO in [EMIm][OAc] and
[EMIm][OAc]/water, as well as force field MD sim-
ulations of all four systems at an elevated temperature
of 450K, were carried out. After discarding the first
15ps of the AIMD simulation of the DMSO/IL/(H2O)
system for equilibration, the resulting physical simu-
lation lengths of the AIMD simulations at 450K are
91ps (DMSO/IL) and 90ps (DMSO/IL/H2O).

Snapshots of the force field MD simulations of the
four different systems are shown in Fig. 1.

The analyses shown in this article were performed
with the trajectory analysis program package TRAVIS
(Brehm and Kirchner 2011, Brehm et al. 2020b) and
visualized using xmgrace (Grace Development Team
1996), WolframMathematica (Wolfram Research, Inc.
2010), and VMD (Humphrey et al. 1996) with the
Tachyon renderer (J. Stone 1998). To calculate the life-
time of the hydrogen bonds, the autocorrelation for-
malism (Rapaport 1983) was applied.

Optimization procedure

In developing the force field parameters for DMSO in
[EMIm][OAc], special attention was paid to the hydro-
gen bonds in the system, in particular the hydrogen
bond between the oxygen atom of DMSO and the ring
protons of the imidazolium cation. In the literature, the
interaction between the cation and DMSO is consid-
ered to play an important role for the increased cel-
lulose solubility (Mohan et al. 2016). The DMSO–
DMSO interaction was also considered for the force
field development. However, since this hydrogen bond
is increasingly weakened by the ionic liquid above a
molar fraction beyond χIL = 0.46, its optimization
was subordinated to the DMSO–cation hydrogen bond
(Paiva et al. 2022).

The force field adjustment was performed simulta-
neously for both pure and aqueous [EMIm][OAc] at
350K to also accurately reproduce the interactions of
the system for a consideration of the subsequent pre-
cipitation process of cellulosewithwater. Amolar frac-
tion of DMSO of χDMSO = 0.31 was chosen in pure
[EMIm][OAc], since at this point the cellulose solubil-
ity is sufficiently high (Tomimatsu et al. 2019, Xu et al.
2013).

For DMSO in aqueous [EMIm][OAc], a molar frac-
tion of DMSO of χDMSO = χwater = 0.24 (equiva-
lent to 3.9wt.% water) was determined, since cellulose

becomes insoluble in [EMIm][OAc] above 15wt.%
water content even at higher temperature of 323–353K
(Froschauer et al. 2013, Le et al. 2012).

To optimize the force field parameters, the radial
and distance–angle distribution functions of the cation–
DMSO hydrogen bond calculated from force field MD
simulations were compared with reference AIMD sim-
ulations.

The force field parameters q and σ for all atoms of
DMSO were iteratively adjusted via a trial-and-error
method until the deviations of the radial distribution
function were minimized.

Furthermore, a comparison of the system density
with experimental data was used for the optimization
of σ (cf. Table 3). In the ESI†, also a comparison of the
partial charges of DMSOwith common other literature
force fields (Bordat et al. 2003, Fox and Kollman 1998,
Geerke et al. 2004, Strader and Feller 2002) based on
AMBER (Cornell et al. 1995) andGROMOS (Liu et al.
1995) can be found.

The bonded interactions were adjusted by com-
paring the statistical occurrence of the bond lengths,
angles, and dihedral angles appearing in the refer-
ence AIMD simulations with the force field simula-
tions and modifying the corresponding force constants
and height of the potential barriers. This resulted in,
for example, a modification of the C–S bond length
from 179.0pm to 184.3pm to reflect the statistically
most frequent equilibrium bond length. Furthermore,
it should be noted that dihedral angles were not speci-
fied in the reference force field OPLS–AA (Jorgensen
et al. 1996, Ponder and Case 2003, Sambasivarao and
Acevedo 2009) and were introduced in our force field.
The nomenclature used for atom types can be found
in Fig. 2. All force field parameters are shown in the
ESI†.

Fig. 2 Nomenclature of atom types in our force field BILFF
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Microstructure of the system

Radial distribution functions

To analyze the microstructure, a distribution function
of the averaged distances between a reference and an
observed particle is calculated. The resulting radial pair
distribution function (RDF) gives the probability of
finding the observed particle at a given distance from
a reference particle, relative to the uniform density of
observed particles throughout the simulation cell. In
the following, the hydrogen bonding of the different
DMSO systems in the presence and absence of water
is investigated via RDFs. The reproducibility of the
microstructure of the AIMD simulations using BILFF
for DMSO is discussed in comparison to the litera-
ture force field OPLS–AA (Jorgensen et al. 1996, Pon-
der and Case 2003, Sambasivarao and Acevedo 2009).
Figure 3 shows the RDF between the oxygen atom of
DMSO and the ring protons of [EMIm]+ in both the
pure and aqueous DMSO/IL systems. The RDFs of the
individual hydrogen bondswere averaged over all three
ring protons. The oxygen atomofDMSO form a hydro-
genbond to the cation [EMIm]+ with a particle distance
of about 208pm and a g(r) = 1.5−1.6, as can be seen
from the first maximum of the RDF. The agreement
of the RDF with the AIMD-based result is very good.
To achieve this, the partial charge of the DMSO oxy-
gen atom was increased by about 13% from −0.420
to −0.474 compared to the literature force field (Jor-
gensen et al. 1996, Ponder and Case 2003, Sambasi-
varao and Acevedo 2009). A comparison between the
results of the literature force field and the AIMD simu-
lation shows clear deviations and emphasizes the need
for optimization of the force field parameters in order to
accurately reproduce the hydrogen bonds. Comparing
the DMSO–cation RDF in the presence and absence
of water reveals similar residence probabilities, indi-
cating that water does not influence the strength of the
hydrogen bonding.

Considering the hydrogen bond betweenDMSOand
water (cf. Fig. 4), a maximum in the RDF calculated
from the reference AIMD simulation at a particle dis-
tance of about 180pm and a height of g(r) = 4.2 can
be observed.While the averaged hydrogen bonding dis-
tance between these atoms in the AIMD simulation is
correctly reproduced by the force field MD simulation
with BILFF and agrees very well with quantum chem-
ical distances calculated in the literature (Kirchner and

Reiher 2002), the residence probability is slightly too
low. Nevertheless, the agreement between the results
of the reference AIMD simulation and a force field
simulation with BILFF is much better than the result
calculated with the literature force field. Finding a bal-
ance between the accuracy of the description of the
complicated interactions between the protons of the
cation vs. water and the DMSO oxygen atom is not
trivial. However, our main goal is to accurately repro-
duce the cellulose/[EMIm][OAc]/DMSO system, so
we have accepted the deviation in the replication of
the DMSO-water hydrogen bond. As a result, the force
field parameters of DMSO have not been further mod-
ified. A comparison between the DMSO–cation and
the DMSO–water hydrogen bond shows a significantly
higher g(r) in the second case, which allows conclu-
sions to be drawn about a stronger interaction with
water.

In order to verify the transferability of the force field
to different concentration ratios of DMSO and water,
additional simulations were performed with a mixing
ratio ofDMSO towater of 1:1.AnRDFof the hydrogen
bond between DMSO and water can be found in Fig.
S–3 in the ESI†. Again, the particle distance from the
AIMD simulation can be reproduced correctly, but the
height of the g(r) is a little too low.

The analysis of the DMSO–DMSO interactions
shows that the g(r) between the DMSO carbon atoms
and the protons (see Fig. 5) in the DMSO/IL and
DMSO/IL/H2O systems in the AIMD simulation dif-
fer slightly from each other. The g(r) of the force field
simulation with BILFF lies within the average of these
two RDFs. However, the RDF of the hydrogen bond
between two DMSO molecules (cf. Fig. S-2) in the
forcefield simulations shows a slight deviation from the
AIMD-based results regarding the location and inten-
sity of the initial peak. This difference is observed in
both force field simulations utilizing the literature force
field and BILFF. It underscores the challenge of accu-
rately capturing the intricate interactions within this
complex system.

Combined distance–angle distribution functions

Considering the combined distance–angle distribution
functions of two molecules, information is provided
whether certain molecule arrangements occur prefer-
entially. Such a combined distribution function (CDF)
between an example ring proton of [EMIm]+ and the
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Fig. 3 Comparison of the
RDFs between the reference
AIMD simulation and a
force field MD simulation
with the OPLS–AA force
field (Jorgensen et al. 1996,
Ponder and Case 2003,
Sambasivarao and Acevedo
2009) and BILFF between
the DMSO oxygen atom
and the ring protons of
[EMIm]+. The RDFs are
averaged over all three ring
protons

System AIMD Force Field 
BILFF

Force Field
OPLS

DMSO/IL

DMSO/IL/H2O

System AIMD Force Field 
BILFF

Force Field
OPLS

DMSO/H2O

Fig. 4 Comparison of the RDFs between the reference AIMD
simulation and a force field MD simulation with the OPLS–AA
force field (Jorgensen et al. 1996, Ponder and Case 2003, Sam-

basivarao and Acevedo 2009) and BILFF between the DMSO
oxygen atom and the water protons in the DMSO/H2O system
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System AIMD Force Field 
BILFF

Force Field
OPLS

DMSO/IL

DMSO/IL/H2O

Fig. 5 Comparison of the RDFs between the reference AIMD
simulation and a force field MD simulation with the OPLS–AA
force field (Jorgensen et al. 1996, Ponder and Case 2003, Sam-

basivarao and Acevedo 2009) and BILFF between the DMSO
carbon atom and the DMSO protons

DMSO oxygen atom is presented in Fig. 6 showing
the distance ODMSO · · ·HEMIm and the corresponding
angle �(ODMSO, CHEMIm, HEMIm) as depicted in the
illustration. The CDF of the AIMD simulation (top)
and the FFMD simulation with BILFF (bottom) exhibit
a strong overall agreement. The peak at 80–280pm,
117–180◦ represents the hydrogen bond between the
two molecules. Here, the force field MD simulation
depicts a slightly wider angle range, plausibly due to
a better statistical sampling than the AIMD simula-
tion. The second peak (395–520pm, 50–80◦) corre-
sponds to the hydrogen bonding involving the isolated
CH group of [EMIm]+, resulting in an increased pres-
ence of DMSO on the ”opposite” side of [EMIm]+.

Considering the CDF of DMSO and water (cf.
Fig. 7), a similar good agreement of the overall pattern
can be obtained between the results of the AIMD and
FFMD simulations. The first peak (30–240pm, 145–
180◦) shows the hydrogen bond between DMSO and

water. The second maximum at 295–350pm and 40–
70◦ arises from the ”second” water proton. Again, the
AIMD simulation infers a marginally stronger local-
ization than the force field.

Spatial distribution functions

Themicrostructure of the system can be further investi-
gated using spatial distribution functions (SDFs). Fig-
ure 8 shows the arrangement of the different com-
pounds in the DMSO/IL/H2O system around a DMSO
molecule, where preferential orientations can be iden-
tified. Around the oxygen atom of a DMSO molecule,
protons from neighboring DMSO molecules (shown
in gray), [EMIm]+ cations (shown in red), and water
(shown in blue) are arranged in a circular forma-
tion in layers, resulting from the directional depen-
dence of hydrogen bonding and the free rotation of
the DMSO oxygen atom. Here, the competition of the
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Occurrence

AIMD

Distance / pm

200 400 600 800

BILFF

180

/
elgnA

eerge
D

135

90

45

0

/
elgnA

eerge
D 90

45

0
0

180

135

α

Fig. 6 Distance–angle distribution function between an exam-
ple ring proton of [EMIm]+ and the DMSO oxygen atom in the
DMSO/IL system comparative as a result of a reference AIMD
simulation and a force field MD simulation with BILFF. The
black rectangle shows the geometric criterion for calculating the
lifetime of the hydrogen bonds. The depicted angle is for illus-
trative purposes only

hydrogen bond donors for the acceptor oxygen atom of
DMSO becomes apparent, which is also discussed in
the Sankey diagrams in Figs. 10 and 11. Within the
molecule layers around the DMSO oxygen atom, a
water bi-layer is formed around [EMIm]+, resulting
in being isolated from DMSO.

α

Occurrence

Distance / pm

200 400 600 800

180

/
elgnA

eerge
D

135

90

45

0
/

elgnA
eerge

D

90

45

0
0

180

135

AIMD

BILFF

Fig. 7 Distance–angle distribution function between the protons
of water and the DMSO oxygen atom in the DMSO/H2O sys-
tem comparative as a result of a reference AIMD simulation and
a force field MD simulation with BILFF. The black rectangle
shows the geometric criterion for calculating the lifetime of the
hydrogen bonds. The depicted angle is for illustrative purposes
only

The protons of a DMSO molecule are surrounded
by acetate (shown in green), water (shown in blue), and
other DMSO molecules (shown in gray) in a competi-
tive manner. The directed interactions of the hydrogen
bonding partners, combined with the repulsion asso-
ciated with the dihedral angles and the rotational free-
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DMSO
Water
EMIm+

OAc-

EMIm+ OAc-

DMSO Water

Fig. 8 Spatial distribution function (SDF) of the arrangement
of molecules around DMSO with protons and oxygen atoms of
DMSO (gray, oxygen: 4nm−3; proton: 2nm−3) and water (blue,
2.5nm−3), the ring protons of [EMIm]+ (red, 5nm−3) and the
oxygen atom of acetate (green, 5nm−3) in the DMSO/IL/H2O
system calculated with BILFF

dom of the methyl groups in DMSO, result in a circular
alignment of these molecules in three distinct regions.

A consideration of the spatial distribution functions
of the neighboring molecules around an [EMIm]+
cation (cf. Fig. 9) shows that DMSO arranges nearly
uniformly around the cation without a preferred ori-
entation. This is in contrast to the orientation of the
oxygen atoms of water and acetate around the ring pro-
tons of [EMIm]+ as well as an orientation of the ring
center of the next cation in top of one another due to
π −π -stacking. These results are in agreement with the
observations for the [EMIm][OAc]–water system in the
absence of DMSO, which were discussed in our pre-
viously published article on BILFF (Roos and Brehm
2021). Thus, the presence of DMSO in the aqueous

DMSO

EMIm+ (RC)

DMSO
Water
EMIm+

OAc-

Water

OAc-

Fig. 9 Spatial distribution function (SDF) of the arrangement of
molecules around [EMIm]+ with the protons and oxygen atoms
of DMSO (gray, 3nm−3) and water (blue, 6nm−3), the ring cen-
ter of [EMIm]+ (red, 7nm−3) and the oxygen atom of acetate
(green, 10nm−3) in the DMSO/IL/H2O system calculated with
BILFF

ionic liquid does not significantly change the arrange-
ment of the anion and water around the cation, though
it does compete with the hydrogen bonds of the anion
and water for the cation, which will be discussed in the
following section.

The SDFs calculated from the reference AIMD sim-
ulations can be found in the ESI†(cf. Figs. S-4 and S-5).

Competing hydrogen bonds

The multiple hydrogen bond donors and acceptors in
the quaternary system of DMSO, [EMIm][OAc] and
water engage in a competition with one another. In
order to analyze the intricate network of the hydrogen
bonds, Sankey diagrams are used (cf. Figs. 10 and 11).
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Fig. 10 Sankey diagram of
DMSO in anhydrous
[EMIm][OAc] calculated
from a force field MD
simulation using BILFF
with a comparison to the
coordination numbers from
a reference AIMD
simulation

Fig. 11 Sankey diagram of
DMSO in aqueous
[EMIm][OAc] calculated
from a force field MD
simulation using BILFF
with a comparison to the
coordination numbers from
a reference AIMD
simulation

Fig. 12 Radial distribution
function of the hydrogen
atoms of [EMIm]+
averaged over all ring
protons, with the oxygen
atom of DMSO in the
anhydrous DMSO/IL
system at 350 and 450K
simulated by AIMD and
FFMD using BILFF

System
DMSO/IL AIMD Force Field 

BILFF
350 K

450 K
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The left side of the diagram shows the hydrogen bond
donors, while the right side corresponds to the hydro-
gen bond acceptors. The width of the bars is propor-
tional to the number of hydrogen bonds that are formed
per donor/acceptor site on average. The numbers in
the bars represent the coordination numbers and result
from the number integral of the corresponding RDFs
up to the first minimum. In the anhydrous DMSO/IL
system (cf. Fig. 10), it is obvious that hydrogen bonds
are formed mainly between [EMIm]+ and [OAc]− but
DMSO competes strongly as a hydrogen bond accep-
tor. Thus, the oxygen atom of [OAc]− is surrounded by
about 5 protons of mostly [EMIm]+, but also of other
DMSO molecules. The DMSO oxygen atom, on the
other hand, is surrounded by 3 protons of other mole-
cules. This finding is in agreement with literature sim-
ulations (Paiva et al. 2022). Similar results are found
in the presence of water (cf. Fig. 11). The coordina-
tion number of the DMSO protons calculated from the
force field MD simulation increases from 0.52 in the
anhydrous system to 1.42 in the aqueous system. This
is due to the hydrate shell around DMSO. The compe-
tition for the protons of [EMIm]+, formerly between
[OAc]− and DMSO, is now dominated by water.

The coordination numbers from the AIMD simula-
tions, and thus themicrostructure of the systems, can be
well reproduced by force field simulations usingBILFF
in both the presence and absence of water.

Temperature dependence

Radial distribution functions at higher temperatures

BILFF was developed at a temperature of 350K for
DMSO in anhydrous and aqueous [EMIm][OAc]. For
validation at different temperatures, force field MD
simulations with the same simulation parameters (cf.
Table 1) were performed at 450K. In addition, force
fieldMDsimulations of anhydrous and aqueousDMSO
were performed and included in the validation of our
force field.

The radial distribution functions of the ring protons
of [EMIm]+ and the oxygen atom of DMSO in the
anhydrous and aqueous DMSO/IL system are com-
paredwith RDFs calculated from theAIMD simulation
(cf. Figs. 12 and 13). As expected, the residence prob-
ability g(r) of the observed atoms is decreasing with
increasing temperature in both systems. The average
distance between the molecules, which is in both sys-
tems at around 210pm, is not affected by temperature.

The force field simulation with our optimized
parameters can also reproduce the results of the AIMD
simulation at 450K.

Hydrogen bond lifetime

In order to describe the microstructure of the sys-
tems and to validate BILFF, several structural quan-

Fig. 13 Radial distribution
function of the hydrogen
atoms of [EMIm]+,
averaged over all ring
protons, with the oxygen
atom of DMSO in the
aqueous DMSO/IL system
at 350 and 450K simulated
by AIMD and FFMD using
BILFF

System
DMSO/IL/H2O

AIMD Force Field 
BILFF

350 K

450 K
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tities have been investigated so far. To further ana-
lyze the dynamics, we performed hydrogen bond
lifetime calculations at two different temperatures
and compared the results for six different systems,
including anhydrousDMSO, aqueousDMSO,DMSO–
[EMIm][OAc], DMSO–[EMIm][OAc]–water, and anh
ydrous and aqueous [EMIm][OAc]. Additionally, we
compared the results of force fieldMDsimulationswith
BILFF to the AIMD simulation.

Table 2 shows the lifetime of the most relevant
hydrogen bonds of the molecules in the investigated
systems at 350K and 450K resulting from AIMD sim-
ulations as well as force field simulations using BILFF.
A distinction was made between the calculation of a
continuous and intermittent hydrogen bond lifetime.
While the intermittent lifetime allows breaking and
reformation of hydrogen bonds, the continuous life-
time only considers hydrogen bonds without interrup-
tion in the autocorrelation. The distance and angle cri-
teria between the hydrogen bond partners of interest
were selected according to the maximum probability
of residence in the combined distance–angle distribu-
tion function and are tabulated in the ESI†(cf. Table
S-7). An example of the determination of these criteria
is given in Figs. 6 and 7 as shown by the black rectangle
in the CDFs.

The results of the lifetime calculation for the hydro-
gen bonds of the individual ring protons of [EMIm]+
are also listed in the ESI†(cf. Table S-8). The following
general conclusions can be drawn from the lifetime of
the hydrogen bonds:

– As expected, a significant decrease in hydrogen
bond lifetime can be observed with increasing tem-
perature and thus a decrease in their stability.

– In any case, the hydrogen bond lifetime until the
first interruption (the continuous lifetime) lasts only
a few picoseconds, which is a typical time interval
for hydrogen bonds (Brehm and Sebastiani 2018,
Gehrke et al. 2018, Roos and Brehm 2021).

– The water–anion and the cation–anion hydrogen
bonds generally have the longest observed lifetimes
and thus the largest stability in all four systems stud-
ied.

– In the presence of DMSO, the intermittent lifetimes
of the cation–anion, water–anion, and cation–water
hydrogen bonds in the aqueous systems are signifi-
cantly increased by a factor of up to more than two
compared to the systemswithout DMSO in our pre-
viously published article (Roos and Brehm 2021).
However, in the anhydrous system, the presence
of DMSO reduces the lifetime of the cation–anion
hydrogen bond.

Table 2 Overview of the lifetime τ of hydrogen bonds in the AIMD simulation and the force field MD simulation using BILFF at
different temperatures. Lifetimes in ps

Temp. Intermittent Continuous

τ (AIMD) τ (FFMD) τ (AIMD) τ (FFMD)

DMSO

(DMSO)H-O(DMSO)

350K 22.79 22.33 1.82 1.38

450K – 7.04 – 0.95

DMSO / H2O

(DMSO)H-O(DMSO)

350K 12.17 23.01 1.27 1.07

450K – 5.24 – 0.76

(H2O)H–O(DMSO)

350K 45.54 32.92 3.86 5.48

450K – 6.93 – 1.81

DMSO / [EMIm][OAc]

(DMSO)H-O(DMSO)

350K 52.55 121.08 2.10 1.54

450K 26.74 20.20 1.18 1.00
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Table 2 continued

Temp. Intermittent Continuous

τ (AIMD) τ (FFMD) τ (AIMD) τ (FFMD)

([EMIm])H–O(DMSO)

350K 64.06 95.21 2.02 2.40

450K (103.69) 17.88 0.92 1.28

([EMIm])H–O([OAc])

350K 424.66 547.30 4.12 4.78

450K 48.88 86.59 1.69 2.11

DMSO / [EMIm][OAc] / H2O

(DMSO)H-O(DMSO)

350K 114.34 118.41 2.22 1.52

450K 19.07 18.05 0.81 0.98

([EMIm])H–O(DMSO)

350K 78.17 93.75 2.13 2.31

450K 19.95 15.99 0.91 1.24

([EMIm])H–O([OAc])

350K 164.51 436.43 2.92 3.97

450K 57.04 67.32 1.40 1.89

([EMIm])H–O(H2O)

350K 34.89 99.74 0.73 0.93

450K 14.63 13.99 0.43 0.59

(H2O)H–O(DMSO)

350K (12.98) 141.73 0.38 3.71

450K 79.99 19.31 0.71 1.48

(H2O)H–O([OAc])

350K 443.35 455.55 0.02 0.20

450K 34.49 27.22 0.02 0.15

[EMIm][OAc] a

([EMIm])H–O([OAc])

350K 471.98 779.74 2.95 4.45

450K 87.72 95.83 1.61 1.95

[EMIm][OAc] / H2O a

([EMIm])H–O([OAc])

350K 73.15 146.00 1.26 1.83

450K 37.75 23.96 2.33 1.12

([EMIm])H–O(H2O)

350K 31.18 40.36 0.57 0.75

450K 9.81 5.70 0.40 0.50

(H2O)H–O([OAc])

350K 153.15 165.65 0.16 0.78

450K 44.89 19.83 0.10 0.45

a Calculated from the MD simulations of our already published article (Roos and Brehm 2021) with the same angle and distance
criteria
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– A consideration of the hydrogen bonds of the indi-
vidual ring protons of [EMIm]+ shows that the ring
proton H2 (between both nitrogen atoms) forms
longer lasting hydrogen bonds towater and [OAc]−
than the other two ring protons H4 and H5 (cf.
Table S-8 in the ESI†). This is in agreement with
the results of a DMSO-free IL/(H2O) system (Roos
and Brehm 2021). However, the [EMIm][OAc]–
DMSO hydrogen bonds are not affected by this
phenomenon.

– The DMSO–H2O hydrogen bonds are longer-lived
than the DMSO–DMSO hydrogen bonds.

– The presence of water decreases the lifetime and
thus the stability of the cation–anion hydrogen
bond. This is also the case in the DMSO-free sys-
tem (Roos and Brehm 2021). However, the DMSO
hydrogen bonds are not significantly affected.

The AIMD-based results can be reproduced well
in the case of the continuous hydrogen bond lifetime.
Larger deviations occur for the intermittent hydrogen
bond lifetime.On the one hand, dynamical properties—
and in particular hydrogen bond lifetimes—are very
sensitive to both the experimental conditions and the
potential energy surface, which is defined by the force
field parameters. Due to this high sensitivity, values
can easily be off by an order of magnitude, and the
agreement found here is still within acceptable limits
(Gehrke et al. 2018, Kohagen et al. 2011,Malberg et al.
2013). On the other hand, it is noteworthy that certain
lifetimes exceed the total simulation time of the AIMD
simulations (≈ 100ps). While this is in principle pos-
sible via Rapaport’s autocorrelation formalism, these
AIMD-based values bear a large uncertainty and should
be considered rough estimates. The force field simula-
tions, on the other hand, are certainly long enough so
that we can report the force field-based hydrogen bond
lifetimes with greater confidence.

Validation with respect to experiment

To further validate our optimized force field, the
densities, self-diffusion coefficients, thermal volume
expansion coefficient, and bulk modulus were inves-
tigated and compared to experimental data. In addi-
tion, the effect of DMSO on the self-diffusion coeffi-
cients is investigated by comparison with DMSO-free
[EMIm][OAc] systems (Roos and Brehm 2021).

A consideration of the densities of the different sys-
tems shows that the density of DMSO is significantly

influenced by the addition of water and the ionic liq-
uid (cf. Table 3). Comparing the density with literature
results (Ciocirlan and Iulian 2012, Paknejad et al. 2019)
shows an excellent reproduction of the density of pure
DMSO at 350K (cf. Table 3). The deviation is less than
1%. At 450K, the calculated system density from the
force field simulation is slightly lower than experimen-
tal data (Paknejad et al. 2019), but is still within an
acceptable range with a deviation of 4.7%.

In aqueous DMSO, the calculated system density
can also reproduce the experimental data with a devi-
ation of less than 3.8%, given that it was measured at
a lower temperature of 338K with a slightly different
molar ratio than used in ref. Cowie and Toporowski
(1961) and ref. Lü et al. (2016). Although the force
field was not optimized for pure and aqueous DMSO,
the nevertheless good agreement of the system density
with experimental data further validates the force field.

The density of the DMSO/IL system is in excellent
agreement with experimental data (Nisa et al. 2019)
and is replicated without any deviation.

As shown in our previous publication (Roos and
Brehm 2021), the density of [EMIm][OAc] in water
can be well reproduced using BILFF. To our knowl-
edge, no literature values of the density for the complex
DMSO/IL/H2Osystemwere published in a comparable
temperature and concentration range. But given that the
density of DMSO, DMSO/H2O as well as DMSO/IL
and IL/H2O show a good agreement with experimen-
tal data, it can be assumed that the calculated density
of the aqueous DMSO/IL system is also in a realistic
range.

In all four systems, simulations utilizing the litera-
ture force field OPLS–AA (Jorgensen et al. 1996, Pon-
der and Case 2003, Sambasivarao and Acevedo 2009)
exhibit a slightly too low system density when com-
pared to experimental data.

Furthermore, self-diffusion coefficients at a temper-
ature of 350K and 450K were calculated based on the
mean squared displacement (MSD) using the Einstein
equation and are shown in Table 4. The resulting dif-
fusion coefficients allow the following conclusions:

– In all systems, the self-diffusion coefficient increases
with increasing temperature as expected.

– In general, the diffusion coefficients in DMSO/IL/
(H2O) are increased compared to DMSO-free
IL/(H2O), which were considered in our previously
published article (Roos and Brehm 2021).
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Table 3 Comparison of the system densities from force field MD simulations (FFMD) using the literature force field OPLS–AA
(Jorgensen et al. 1996, Ponder and Case 2003, Sambasivarao and Acevedo 2009) and BILFF with experimental data at two different
temperatures

Temperature Box size ρ(OPLS) ρ(BILFF) ρ(Lit.)
/ pm /g·cm−3 / g·cm−3 / g·cm−3

DMSO

350K 3142.57 0.99 1.05 1.04 a / 1.04 b

450K 3305.94 – 0.90 0.94 c

DMSO / H2O

350K 3030.53 0.98 1.02 1.06 d / 1.06 e

450K 3193.82 – 0.87 –

DMSO / [EMIm][OAc]

350K 3496.76 1.06 1.07 1.07 f

450K 3599.64 – 0.99 –

DMSO / [EMIm][OAc] / H2O

350K 2953,89 1.07 1.08 –

450K 3041.72 – 0.99 –

The molar fractions are χDMSO=0.33 in the DMSO/H2O system and χDMSO=0.31 in the DMSO/IL mixture
a Measurements at 353.15K from ref. Ciocirlan and Iulian (2012).
b Measurements at T=353.15K from ref. Paknejad et al. (2019).
c Measurements at T=453.15K from ref. Paknejad et al. (2019).
d Measurements at T=338.15K with a molar fraction of DMSO of xDMSO=0.349 from ref. Cowie and Toporowski (1961).
e Measurements at T=338.15K with a molar fraction of DMSO of xDMSO=0.349 from ref. Lü et al. (2016).
f Measurements at T=353.15K with a molar fraction of DMSO of xDMSO=0.294 from ref. Nisa et al. (2019)

Table 4 Self-diffusion coefficients D from force field MD simulations using BILFF of pure and aqueous DMSO as well as DMSO in
pure and aqueous [EMIm][OAc] at different temperatures

Temperature D(FFMD) D(Lit.)
/ 10−11 m2 s−1 / 10−11 m2 s−1

DMSO

DMSO 350K 171.8 126.4 a

DMSO / H2O

DMSO 350K 114.5 65.0 b

450K 581.7 –

H2O 350K 200.9 110.0 b

450K 1038.7 –

DMSO / [EMIm][OAc]

DMSO 350K 27.5 31.4 c

450K 158.3 –

[EMIm]+ 350K 16.2 20.6 c

450K 112.0 –

[OAc]− 350K 14.0 20.2 c

450K 86.7 –
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Table 4 continued

Temperature D(FFMD) D(Lit.)
/ 10−11 m2 s−1 / 10−11 m2 s−1

DMSO / [EMIm][OAc] / H2O

DMSO 350K 26.3 –

450K 196.0 –

[EMIm]+ 350K 17.4 –

450K 102.7 –

[OAc]− 350K 11.7 –

450K 95.8 –

H2O 350K 19.7 –

450K 183.6 –

[EMIm][OAc] f

[EMIm]+ 350K 9.26 14 d / 0.98 e

450K 81.76 311d

[OAc]− 350K 6.72 13 d /0.84 e

450K 66.83 307d

[EMIm][OAc] / H2O f

[EMIm]+ 350K 21.77 4.17 e

450K 171.09 –

[OAc]− 350K 22.42 4.61 e

450K 155.76 –

H2O 350K 55.97 10.47 e

450K 378.47 –

Themolar fractions in the simulations are χDMSO=0.33 in DMSO–H2O, χDMSO=0.31 in DMSO/IL and χDMSO=0.24 in DMSO/IL/H2O.
For comparison, the diffusion coefficients of DMSO-free [EMIm][OAc] and [EMIm][OAc]/H2O are also shown from our previously
published article (Roos and Brehm 2021)
a Measurements at 328.15K from ref. Holz et al. (2000)
b Measurements at T=308.2K and χDMSO=0.3 from ref. Packer and Tomlinson (1971)
c Extrapolated to 350 K via Arrhenius plot from temperature-dependent experimental measurements at T=283–333K, see ref. Radhi
et al. (2015)
d Linearly extrapolated values of temperature dependent measurements at 283–333K from ref. Green et al. (2017)
e Measurement at T=313.15K with a molar fraction of [EMIm][OAc] of χIL=0.3 in the aqueous system (Hall et al. 2012)
f Calculated values of force field simulations with BILFF at 350K from our previously published article (Roos and Brehm 2021).
χIL=0.25 in the aqueous system

– In the pure and aqueous DMSO/IL mixture, the
self-diffusion coefficients are lower than in both
DMSO systems without ionic liquid. Accordingly,
the ionic liquid reduces the diffusion rate ofDMSO.

– Considering the simulations at a temperature of
350K, water also lowers the diffusion coefficient
of DMSO. This is consistent with the increase of
density in the presence of the ionic liquid and water
(cf. Table 3) although the viscosity decreases (Le
et al. 2014).

– The decrease in the diffusion rate caused bywater in
a DMSO/IL/H2O mixture at 350K thereby shows

the opposite effect to the increase of diffusion
in DMSO-free IL/H2O (Roos and Brehm 2021),
demonstrating the complexity of the underlying
hydrogen bond network.

– In both anhydrous and aqueous DMSO/IL, the
calculated self-diffusion coefficient of DMSO is
slightly larger than the self-diffusion coefficients
of [EMIm]+ and [OAc]−, which is in agreement
with experimental values for anhydrous DMSO/IL
(Radhi et al. 2015). The cation diffuses faster than
the anion at both temperatures. Furthermore, water
molecules diffuse faster than [EMIm][OAc] but
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Fig. 14 Calculation of the
thermal volume expansion
coefficient γ of the
DMSO/IL system at 350K
from multiple FFMD
simulations using BILFF at
constant pressure (1bar) and
different temperatures

slower than DMSO in the DMSO/IL/H2O mixture,
while in the absence of the ionic liquid,water shows
a significantly higher diffusion coefficient.

The results of the force field MD simulations
with BILFF reflect the general patterns observed in
the experimental data. Despite occasional numerical
fluctuations in the individual diffusion values and
slightly different temperatures and molar fractions of
DMSO in the measurements, the overall agreement of
this dynamic parameter with the experimental results
remains acceptable. The temperature dependence is
replicated across a range spanning more than one order
ofmagnitude. It should be noted that especially the qua-
ternary mixture DMSO/[EMIm][OAc]/water has been
little studied so far, so no experimental data are avail-
able.

All validations discussed above were focused on
the microscopic structure and dynamics of the liquid,
which is the main aim of our force field. However, to

obtain a more complete picture, we also performed
a few validations based on (macroscopic) thermody-
namic properties, as it will be discussed in the follow-
ing.

The bulk modulus of pure DMSO (cf. Fig. 14) and
the thermal expansion coefficient of the DMSO/IL sys-
tem (cf. Fig. 15) were calculated and compared with
experimental data. For this purpose, force field sim-
ulations were performed in the NpT ensemble at dif-
ferent temperatures/pressures, and the relative volume
change was represented as a graph. The two quantities
were calculated using a linear fit to the results close to a
temperature of 350K and a pressure of 1bar and were
compared to experimental data in Table 5. The com-
pressibilitywasmeasured at 353.15Kand5bar (Pakne-
jad et al. 2019) as well as at a temperature of 323.15K
and a pressure of 1.01bar (Egorov et al. 2010). The
thermal expansion coefficient for the DMSO/IL mix-
ture was measured at 353.15 K and a molar fraction

Fig. 15 Calculation of the
compressibility κ and the
bulk modulus K of pure
DMSO at 1bar from
multiple FFMD simulations
using BILFF at constant
temperature (350K) and
different pressures
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Table 5 Comparison of the calculated compressibility κ of a
force field MD simulation using BILFF of pure DMSO and
the calculated thermal expansion coefficient γ of DMSO in
[EMIm][OAc] (χIL=0.69) at 350K and 1bar with experimen-
tal data (Egorov et al. 2010, Paknejad et al. 2019, Yang et al.
2019a)

FFMD Experiment

DMSO

Compressibility κ 8.76 7.35 a / 7.04 b

/ 10−10 Pa−1

DMSO/[EMIm][OAc]

Thermal expansion 8.05 6.10 c

coeff. γ / 10−4 K−1

a Measurements at 353.15K and 5bar from ref. Paknejad et al.
(2019).
b Measurements at T=323.15K and 1.01bar from ref. Egorov
et al. (2010).
c Measurements at T=353.15K and χIL=0.65 from ref. Yang
et al. (2019a)

of the ionic liquid of χIL=0.647 according to ref. Yang
et al. (2019a).

A comparison of the calculated values for the com-
pressibility of pure DMSO and the thermal expansion
coefficient of DMSO in [EMIm][OAc] with experi-
mental data shows a good agreement, although the ther-
mal expansion was measured at a 30K lower temper-
ature and the force field was not optimized for pure
DMSO. In addition to the density (cf. Table 3) and the
self-diffusion coefficient (cf. Table 4), also these two
quantities can be well reproduced by BILFF for both
pure DMSO as well as a DMSO/IL mixture.

The final validation which we performed concerns
the enthalpy of vaporizationΔHVap of pureDMSO.We
have used the following computational protocol. Dur-
ing a liquid phase simulation of pure DMSO in NpT
ensemble, we averaged the total potential energy of
the system, which is equivalent to the internal energy
Uliquid. In addition, we performed a set of simulations
of oneDMSOmolecule in vacuum, starting fromdiffer-
ent initial configurations, and also averaged the poten-
tial energy, which corresponds to Ugas. Based on these
results, we were able to obtain the internal energy
of vaporization ΔUVap = Ugas − Uliquid. The final
step to the enthalpy is given via ΔHVap = ΔUVap +
pΔV . From the experimental liquid and vapor den-
sity of DMSO, 1100gL−1 and 3.43gL−1, respectively
(both at standard conditions), we obtained ΔV =

Table 6 Experimental and computed enthalpy of vaporization
ΔHVap of pure DMSO at 293K and 1bar, including the pV work
term pΔV ≈ 2.3kJmol−1. Experimental data taken from ref.
Douglas (1948)

ΔHVap / kJmol−1

Experiment a 52.89 ± 0.42

Simulation (BILFF) 54.14

Simulation (OPLS–AA) 51.13

a Measurement at 298.15K from ref. Douglas (1948)

22.71Lmol−1, and therefore pΔV = 2.3kJmol−1,
which needs to be added to the internal energies of
vaporization.

The results are presented in Table 6. We per-
formed the computational protocol with both the orig-
inal DMSO force field (OPLS–AA) and our optimized
force field (BILFF) and compare the obtained values to
the experimental reference value. While the resulting
enthalpy of vaporization based on OPLS–AA is 3.4%
too small, the value based on BILFF is 2.4% too large.
We conclude that the resulting enthalpies of vaporiza-
tion for pure DMSO based on both force fields are rea-
sonable and very well within the expected range, and
that the result based on BILFF is slightly better in com-
parison to experiment.

Conclusion

In this article, we present the extension of the all-atom
force field for Bio-Polymers in Ionic Liquids (short:
BILFF) to the co-solvent DMSO, which significantly
increases the solubility of cellulose in ionic liquids
such as [EMIm][OAc] (Anokhina et al. 2017, Mohan
et al. 2016, Tomimatsu et al. 2019, Xu et al. 2013,
Yang et al. 2019b). Previously, we published optimized
force field parameters for the ionic liquids 1-ethyl-
3-methylimidazolium acetate ([EMIm][OAc]) (Roos
and Brehm 2021), 1-ethyl-3-methyl-1,2,3-triazolium
acetate ([EMTr][OAc]), 1-ethyl-3-methyl-1,2,3
-triazolium benzoate ([EMTr][OBz]), and 1-ethyl-3-
methylimidazolium benzoate ([EMIm][OBz]) (Roos
et al. 2023a) and cellulose (Roos et al. 2023b).

The force field was developed for an accurate repro-
duction of the directed interactions in
DMSO/[EMIm][OAc] in the presence and absence of
water with a special focus on the hydrogen bonds.
For this purpose, the radial distribution functions, the
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distance–angle distribution functions, and the density
and statistical frequency of occurring bond lengths,
angles, and dihedral angles were analyzed and com-
pared with the results of reference AIMD simulations
as well as experimental density measurements. Based
on this comparison, the force field parameters were
iteratively adjusted until the deviations between the
results from the force field MD and AIMD simula-
tion were minimized. The force field was validated
by experimental data on density, self-diffusion coef-
ficients, enthalpy of vaporization, thermal expansion
coefficient and compressibility of the different sys-
tems, showing excellent or at least reasonable agree-
ment with literature data. Furthermore, an applicabil-
ity of our optimized force field parameters at higher
temperatures was shown based on a comparison with
reference AIMD simulations.

The simulation results show that DMSO forms a
solvation shell around [EMIm]+ and thus shields it
from [OAc]−. This is consistentwith the prevailing the-
ory in the literature that [OAc]− is more freely avail-
able for interaction with cellulose due to the DMSO
shielding, thus increasing cellulose solubility (Mohan
et al. 2016, Tomimatsu et al. 2019, Xu and Zhang
2015). In the aqueous system, the underlying hydrogen
bond network is more complicated, as water is also a
strong hydrogen bond donor forDMSO.The lifetime of
the cation–anion hydrogen bond in DMSO/IL/water is
even increased.Due to the complexity of the underlying
interaction network, no trivial answer to this apparent
contradiction can be given here.

The diffusion rate is increased by DMSO compared
to the pure IL, which is also consistent with the litera-
ture mechanism (Le et al. 2014, Tomimatsu et al. 2019)
and is considered to be another reason for the increased
cellulose solubility in DMSO/IL.
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