
Which and how many soil sensors are ideal to predict key soil properties: A
case study with seven sensors

J. Schmidinger a,b,*, V. Barkov a,b, H. Tavakoli b, J. Correa b, M. Ostermann c, M. Atzmueller a,d,e,
R. Gebbers b,f, S. Vogel b

a Osnabrück University, Joint Lab Artificial Intelligence and Data Science, Osnabrück, Germany
b Leibniz Institute for Agricultural Engineering and Bioeconomy (ATB), Department of Agromechatronics, Potsdam, Germany
c Federal Institute for Materials Research and Testing (BAM), Process Analytical Technology, Berlin, Germany
d German Research Center for Artificial Intelligence (DFKI), Research Department Plan-Based Robot Control, Osnabrück, Germany
e Osnabrück University, Semantic Information Systems Group, Osnabrück, Germany
f Martin Luther University Halle-Wittenberg, Institute of Agricultural and Nutritional Sciences, Halle, Germany

A R T I C L E I N F O

Keywords:
Proximal soil sensing
Remote sensing
Sensor fusion
Machine learning
Precision agriculture
In-situ measurements

A B S T R A C T

Soil sensing enables rapid and cost-effective soil analysis. However, a single sensor often does not generate
enough information to reliably predict a wide range of soil properties. Within a case-study, our objective was to
identify how many and which combinations of soil sensors prove to be suitable for high-resolution soil mapping.
On a subplot of an agricultural field showing a high spatial soil variability, six in-situ proximal soil sensors (PSSs)
next to remote sensing (RS) data from Sentinel-2 were evaluated based on their capabilities to predict a set of soil
properties including: soil organic carbon, pH, moisture as well as plant-available phosphorus, magnesium and
potassium. The set of PSSs consisted of ion-selective pH electrodes, a capacitive soil moisture sensor, an apparent
soil electrical conductivity measuring system as well as passive gamma-ray-, X-ray fluorescence- and near-
infrared spectroscopy. All possible combinations of sensors were exhaustively evaluated and ranked based on
their prediction performances using model stacking. Over all soil properties, data fusion demonstrated a
considerable increase in prediction accuracy. Five out of six soil properties were predicted with an R2 ≥ 0.80
with the best sensor fusion model. Nonetheless, the improvement derived from fusing an increasing number of
PSSs was subject to diminishing returns. Sometimes adding more PSSs even decreased prediction performances.
Gamma-ray spectroscopy and near-infrared spectroscopy demonstrated to be most effective, both as single
sensors or in combination with other sensors. As a single sensor, RS outperformed three out of six PSSs. RS
showed especially potential for fusion with single PSSs but was of limited benefit when multiple PSSs were fused.
Model stacking proved to be more robust than using single base-models because sensor performances were less
model-dependent.

1. Introduction

Precision agriculture (PA) has been identified as a promising strategy
by which latest advancements in technology and data analysis can help
mitigate soil depletion, while maintaining high agricultural output
(Keesstra et al., 2016). The underlying concept of PA is to site-
specifically adopt farming practices that match the spatial variability
of soil characteristics within a field (Gebbers and Adamchuk, 2010).
This requires a large amount of spatial information about the soil in
order to produce reliable, high-resolution soil maps for farmers.
Obtaining these data by conventional approaches, which rely on sample

collection and consecutive analysis in a laboratory, is usually too
expensive and time consuming. Therefore, soil sensing based data
acquisition emerged as a cost-efficient alternative for high-resolution
soil mapping (Viscarra Rossel and Bouma, 2016). Soil sensors usually
do not measure the actual target soil properties directly but proxies
related to them. Nonetheless, statistical prediction models can be
developed, which describe the quantitative relationship between the
proxies (i.e., predictors) and the target soil properties. The concept of
spatially modelling the soil with a set of predictors is known as Digital
Soil Mapping (DSM) (McBratney et al., 2003).

A large number proximal soil sensors (PSSs) have been developed,
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which can be mounted on terrestrial vehicles for high-resolution soil
mapping purposes (Viscarra Rossel and Bouma, 2016). PSSs measure
specific soil characteristics within close proximity to the soil surface or
through direct contact. Their measurements require minimal to no
sample preparation, which allows in-situ measurements i.e., direct
deployment and use in the field. Together with short measurement du-
rations, mobile PSSs produce data with very high sampling densities,
while simultaneously remaining cost-efficient (Adamchuk et al., 2011).
As compared to PSSs, remote sensing (RS) from satellites is limited in
terms of measurement principles and depth profile exploration due to
measuring from large distances. E.g., RS cannot be done by mechanical,
chemical or biological sensors, which require direct contact with the
soil. However, RS has huge advantages regarding spatial coverage, cost
for data, and field access (Grunwald et al., 2015). In particular, multi-
spectral data from the Sentinel-2 mission are available free of charge and
have a relatively high spatial resolution (Drusch et al., 2012), making it
potentially attractive for PA.

There is no single soil sensor based on which all relevant soil prop-
erties can be reliably predicted (Gebbers, 2018). This is because the
pedosphere is a dynamic and complex system, shaped by natural and
anthropogenic processes. In addition, measurements of a sensor may be
affected and confounded by various factors that are impossible to con-
trol within field conditions (Adamchuk et al., 2011). Fusing data from
multiple sensors can address these issues, as different sensors ideally
provide complementary information. In fact, sensor fusion has proven
capable of enhancing the prediction accuracy and − consistency
(Adamchuk et al., 2011; Mouazen and Shi, 2021; Shi et al., 2022;
Tavakoli et al., 2022; Vogel et al., 2022). Consequently, the integration
of different PSSs into a versatile and mobile multi-sensor platform has
continuously sparked interest within the DSM and PA community (e.g.
Adamchuk et al., 2004; Tavakoli et al., 2022).

Nonetheless, the success of sensor fusion depends on the combina-
tion of PSSs and their relation to the target soil properties. Specific PSSs
may not create synergistic effects when fused or only do so for a subset of
target soil properties (Ji et al., 2019; O’Rourke et al., 2016; Tavares
et al., 2021; Vasques et al., 2020; Xu et al., 2019; Xue et al., 2023).
Sensor fusion stumbles when the data of the combined PSSs contain
mainly redundant information or when the additional PSSs provide in-
formation that is not meaningfully related to the target soil property. In
such cases, sensor fusion may foster model overfitting, causing a
decrease in performance. Additionally, creating unnecessary data is
economical inefficient. The number of PSSs on a multi-sensor platform
must be restricted, because efforts for investment, operation, mainte-
nance, and data processing must be kept at a minimum in practical
applications (Adamchuk et al., 2004; Gebbers, 2018). Therefore, the
combination of PSSs must be carefully selected to increase the prediction
accuracy for as many key soil properties as possible, while limiting the
required efforts for a multi-sensor system.

Multiple studies have examined and explored PSS fusion by
comparing a study-specific PSS combination to a single-sensor approach
with no fusion (e.g., O’Rourke et al., 2016; Shi et al., 2022; Tavakoli
et al., 2022; Vasques et al., 2020; Vogel et al., 2022; Xue et al., 2023).
However, there is a lack of studies which compared and ranked the
performance of different combinations of PSSs with at least two or more
PSSs. Exceptions are Chen et al. (2021), Ji et al. (2019), Xu et al. (2019)
and Tavares et al. (2021), which exhaustively tested the model perfor-
mance of all possible PSS combinations, given their study-specific set of
PSSs. Yet, in these studies, a maximum of three to four PSSs were used,
which limited the total number of combinations to be examined. A
comprehensive evaluation using a wider range of state-of-the-art PSSs
within a single study is lacking. The outcome of such a comparative
study may provide useful insight for the future development of new
multi-sensor platforms.

Data from remote sensing (RS), such as multispectral data of
Sentinel-2, is often accessible without acquisition costs for the user.
Since RS collects data from huge spatial distances and gather

information without direct contact to the soil, it is not surprising that
models fitted on PSS data have shown better prediction accuracies
compared to models based on RS data for predictions of topsoil organic
carbon (Bao et al., 2023; Biney et al., 2021). Nonetheless, fusing PSSs
with Sentinel-2 multispectral data may improve model performances, as
demonstrated for various soil properties (Bao et al., 2023; Wang et al.,
2022; Wang et al., 2024). However, it needs to be further explored how
Sentinel-2 data interacts with different types of PSSs.

Our objective was to identify promising sensor combinations for the
prediction of multiple key soil properties on a field-scale. To achieve
this, we exhaustively tested all possible PSS combinations given a
dataset with six PSSs. However, for simplicity reasons, in the following,
we only focus on combinations of up to five PSSs. Thereby, we evaluated
how the number of PSSs affects the prediction accuracy and explored the
capabilities of the different PSS combinations, both with and without
consideration of RS data. To our knowledge this is the largest set of
distinctive soil sensors that have been tested within a single field-scale
case-study.

2. Methodology

2.1. Study area

The study was conducted on a 2.5 ha representative subplot within a
larger agricultural field located in eastern Brandenburg, Germany
(Fig. 1). The study area mostly consists of sandy soil, apart from
increased clay contents in the middle of the field (Schmidinger et al.,
2024), which are presumably deposits from a former stream. This small-
scale spatial heterogeneity is characteristic for the Northeast German
Plain, which was strongly influenced by peri- and interglaciation.
Therefore different soil formation processes shaped the area (Vogel
et al., 2022). Three parallel transects of approximately 800 to 1,000 m
length were established along the main gradient of soil variability for
reference sampling. The elevation of the study area ranged from 50 to
80 m a.s.l. The climate is characterized by an average of 550 mm annual
rainfall and a mean annual temperature of 9 ◦C.

2.2. Study design

Six top-layer soil properties were examined in this study: soil organic
carbon (SOC), pH, moisture content, plant-available phosphorus (P),
magnesium (Mg) and potassium (K) (see Section 2.3). Six state-of-the-
art PSSs were used for the predictions: ion-selective pH electrodes (pH-
ISE), a capacitive soil moisture sensor (CSMoist), an apparent soil
electrical conductivity measuring system (ECa) as well as passive
gamma-ray- (γ), X-ray fluorescence- (XRF) and near-infrared (NIR)
spectroscopy (see Section 2.4.1). Bare soil multispectral RS data were
obtained from Sentinel-2 (see Section 2.4.2). From a single PSS up to
five PSSs, all possible combinations of PSSs were generated. For each
combination, we created two versions for the analysis, one including and
one excluding RS data. This led to a total set of C=124 distinct combi-
nations. We exhaustively tested and compared the model performances
of all C combinations.

Stacking was used for the modelling, in which Cubist, extreme
gradient tree boosting (XGBoost), random forest (RF), support vector
regression (SVR) and ridge regression (RR) were embedded as base-
models and multiple linear regression (MLR) used as meta model (see
Section 2.5). The model performance was evaluated through K-fold
cross validation (CV), where K=10. The prediction error was quantified
by the coefficient of determination (R2) and root mean squared error
(RMSE) (see Section 2.6). Grid search was run within a nested L-fold
CV, where L=5. In the grid search, model specific hyperparameters and
the number of principal components for NIR data were optimized for the
model training in the outer-loop. The systematic workflow for this study
is summarized in Fig. 2.
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2.3. Target soil properties

The soil samples were collected along three parallel transects,
running from the south-west to the north-east. These transects were 12
m apart, closely following the typical path taken by field machinery.
Along each transect, we gathered 53 samples at 15-meter intervals (i.e.,
regular grid sampling), resulting in a total of 159 sampling points. The
soil samples were collected from a depth of 0 to 30 cm (Fig. 1) where
each soil sample was composed of three subsamples taken in a radius of
0.5 m around the center. Soil samples analyzed for soil organic carbon
(SOC) were collected in May 2017. Samples analyzed for soil pH,
moisture content as well as concentrations of plant-available P, K and
Mg were taken in August 2021. SOC was analyzed through dry com-
bustion of air-dried soil (DIN ISO 10694). In a suspension with 0.01 M
CaCl2 and air-dried soil, pH was determined with a glass electrode after
an equilibration time of 60 min (DIN ISO 10390). Soil moisture was
measured by the weight difference before and after drying fresh soil at
70 ◦C. P and K were extracted in a calcium acetate-lactate solution and
measured photometrically (VDLUFA I A 6.2.1.1). Mg was extracted with
calcium chloride solution and measured through atomic absorption
spectrophotometry at 285.2 nm (VDLUFA I A 6.2.4.1). Appendix A in-
cludes information about the intercorrelation (Fig. 1A), values at the
sampling locations (Fig. 2A) and descriptive statistics (Table 1A) of the
six target soil properties.

2.4. Sensor data

2.4.1. Proximal soil sensing
Two mobile multi-sensor platforms were used for in-situ measure-

ments in this study: Veris MSP3 (VERIS Technologies, Salinas, USA) and
RapidMapper (Tavakoli et al., 2022). Their measurements were taken
around the three transects. There was a disparity between the reference
soil samples and sensor measurements in terms of number and location.
Therefore, the sensor data were interpolated to the 159 sampling loca-
tions of the target soil properties (Fig. 1). For the spatial interpolation,
we used ordinary kriging from the package automap (Hiemstra et al.,
2008) in R (R Core Team, 2023). Soil samples for XRF sensor mea-
surements were directly taken at the sampling locations and analyzed in

Fig. 1. Study area and sampling locations (n = 159) based on regular grid sampling in eastern Brandenburg, Germany. The area in which sensor measurements were
taken is highlighted within the larger test-field on a ©2018 Google satellite base map.

Fig. 2. Systematic workflow used for the modelling in this study.
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the laboratory. Soil samples for XRF were not processed before lab
measurement i.e., contained fresh field moisture content to simulate in-
situ field conditions. Further information about the data collection can
be found in Table 1 and about the measurement locations and inter-
correlation in Figs. 3A and 4A, Appendix A.

The RapidMapper is a multi-sensor platform mounted with different
PSSs. Three PSSs of the platform included γ, ECa and NIR. The passive γ
spectrometer (model MS-2000-CsI-MTS, Medusa Radiometrics BV,
Groningen, Netherlands) with its accompanying software was used to
detect the naturally occurring radionuclides: Potassium-40 (40K),
Uranium-238 (238U) and Thorium-232 (232Th), the human-made
radionuclide Caesium-137 (137Cs), as well as the total gamma counts.
An NIR spectrometer (C11118GA, Hamamatsu Photonics K.K., Shizuoka
Prefecture, Japan) with an average resolution of 15 nm measured
subsurface soil diffuse reflectance at a depth of 10 to 15 cm through a
furrow opening ‘shoe’. The spectral data was harmonized to 1 nm in-
tervals through interpolation and the noisy edges were discarded, which
led to a spectrum ranging from 1,000 to 2,400 nm. We used principal
component analysis (PCA) for dimensionality reduction instead of using
all resulting 1,400 bands. The number of principal components used for
the modelling ranged from 5 to 20 and was determined through grid
search. ECa of the RapidMapper is based on the galvanic contact re-
sistivity technique developed by the Geophilus company (Caputh, Ger-
many). The effective depth of ECa investigation is 0 to 50 cm.

The Veris MSP3 platform also consists of multiple integrated PSSs
but for this study, only pH-ISE was examined. pH-ISE is based on the ‘pH
manager’, which measures the pH value on-the-go using two ion-
selective antimony pH electrodes on naturally moist soil samples that
are taken while driving across the field. If there were deviations (≥0.4)
between the two measurements at a sampling location, the sampling
location was discarded from the data set. The Veris MSP3 was addi-
tionally equipped with CSMoist originally from the Veris iScan to
measure the volumetric soil moisture.

A handheld XRF sensor (model Vanta M Series, Olympus, Waltham,
USA) has been used for XRF measurements. During XRF measurements,
soil samples are exposed to high-energy X-rays from a 50 kV Rhodium
anode. The consequential excitement of electrons and the succeeding
relaxation emits secondary (fluorescence) x-rays, which can be
measured and associated with specific elements. A sensor-specific cali-
bration mode called GeoChem (2-beam) has been used to obtain an

initial estimation of element contents. For the estimation, GeoChem uses
theory-based parameters and corrects for interelement effects. Ulti-
mately, element contents of Al, Si, P, Ca, Mn, Fe, Zn, Pb and Mg have
been used for this study. Other elements fell below the detection
threshold.

This set of PSSs includes specialized sensors such as CSMoist and pH-
ISE that are known for their direct relationship to one specific soil
property. Yet, it also includes sensors that could be more multifunc-
tional, as they relate to various soil properties, like NIR, XRF, ECa and γ
(Gebbers, 2018).

2.4.2. Remote sensing
Sentinel-2 is a space mission consisting of two twin satellites

launched by the European Space Agency (Drusch et al., 2012). Both
satellites are equipped with an optical sensor for acquisition of multi-
spectral data at 13 spectral bands. Due to the small size of the study area
(see Section 2.1), we excluded three bands with the lowest resolution of
60 m. The ten remaining spectral bands had a spatial resolution of 10 to
20 m. Their spectral measurements were scattered within the 490 to
2,190 nm range. A cloudless bare-soil image of the study area from the
10th of September 2021 during the vegetation free period was used. The
spectral values were extracted from the raster map at the corresponding
sampling locations. We retrieved the processed data from Copernicus
Data Space Ecosystem as level-2A product (Louis et al., 2016).

2.5. Predictive modelling

By implementing model stacking, we aimed to achieve less model-
dependent results and derive more generalizable conclusions about
the effectiveness of the different PSS combinations. Additionally, model
stacking has shown capable of further increasing the prediction accuracy
(Leblanc and Tibshirani, 1996) because a set of learning algorithms can
capture different patterns of the data. Five base-models that are
commonly used in DSM (Wadoux et al., 2020) were embedded in the
stacking, namely Cubist, XGBoost, RF, SVR and RR. After determining
optimal hyperparameters for the base-models through grid search in the
nested CV, the predictions of the inner validation folds from the base-
model were aggregated. Lastly, the meta model based on MLR was
fitted on these aggregated predictions. Additional information about the
optimized hyperparameters, the selection of the numbers of principal
components for NIR data as well as the associated R-packages for the
implementation of the base-models can be found in Table 1B,
Appendix B and in the published code within a GitHub repository (https
://github.com/JonasSchmidinger/soil-sensor-fusion/tree/main).

XGBoost (Chen and Guestrin, 2016) is an adapted implementation of
gradient boosted decision trees (GBDTs). Boosting is an ensemble
learningmethod based on a principle of combining a set of weak learners
into a single stronger predictive model. A decision tree is a hierarchical
model that predicts the target variable by learning decision rules from
the predictors. It can be understood as a path of conditional if-then-else
statements. Gradient boosting is a generalization of boosting where the
process of generating weak learners is sequential and formalized as a
gradient descent over a differentiable loss function. Hence, GBDTs is an
ensemble of decision trees based on gradient boosting. Lastly, XGBoost
introduces multiple regularization parameters which further control the
model complexity which distinguishes it from standard GBDTs.

Cubist merges the concepts of decision trees and linear regression. It
originates from the M5 model tree introduced by Quinlan (1992) and
was formalized by Kuhn and Johnson (2013). A single decision tree is
grown in an initial step. In each node of the tree up to the terminal
nodes, individual linear regression models are fitted. The different paths
along the tree are then summarized to an initial set of so-called rules.
Each rule consists of a ‘smoothed’ regression model which is a function
of the regression models along the associated path in the tree. Cubist
further allows implementation of a boosting-like ensemble referred to as
committee and a k-nearest-neighbors-like adoption for the regression

Table 1
Overview of the measurements with different sensors in this study.

Sensor Number of
predictors

Pre-processing
method

Data collection Date of data
collection

ECa 1 None In-situ
(RapidMapper)

August
2021

γ 4 Moving average In-situ
(RapidMapper)

June 2020

XRF 9 GeoChem (2-beam) Laboratory with
fresh soil
samples

August
2021

NIR 5 – 20* Omitting noisy
edges of the
spectrum
Interpolation to 1
nm
PCA

In-situ
(RapidMapper)

April 2020

CSMoist 1 None In-situ (Veris
MSP3/iScan)

August
2021

pH-ISE 1 Double
measurement error
detection

In-situ (Veris
MSP3)

September
2017

Sentinel-
2

10 Level-2A
processing e.g.
atmospheric and
terrain corrections (
Louis et al., 2016)

Spaceborne September
2021

* Range of searched principal components in the grid-search.
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models in the final rules.
RF (Breiman, 2001) is a decision tree ensemble learning algorithm

based on bootstrap aggregating, referred to as bagging. Bagging is the
process of generating multiple equally weighted learners in which each
learner is trained on distinct and independent training data sets as well
as a random subset of predictors. These distinct sets are produced
through bootstrapping. This process generates an ensemble of diverse
decision trees yielding a more generalizable model. For regression tasks,
a final prediction of RF is obtained by averaging the predictions from all
individual decision trees within the ensemble.

SVR (Drucker et al., 1996) is a variant of Support Vector Machines
developed for regression tasks. SVR aims to find a hyperplane in the
multidimensional covariate space, by minimizing a loss function. The
loss function in SVR penalizes points that fall outside of a defined tube
around the hyperplane. Inside this tube, errors are accepted and not
penalized. This seeks to find a balance betweenmodel complexity and its
tolerance for deviations, aiming for a compromise between accuracy and
model simplicity to enhance generalization. Non-linearity in SVR is
introduced through the use of kernel functions. Kernel functions work by
projecting the input features into a higher-dimensional space, enabling
linear separation in cases where the data is not linearly separable.

RR (Hoerl and Kennard, 1970), is an extension of linear regression
that introduces an L2 regularization penalty on the coefficients of a
linear regression model. This approach helps to address the issue of
overfitting in the presence of multicollinearity. The performance of RR is
a natural baseline in comparison to the other more sophisticated

algorithms. More simple linear models may still prove viable, especially
when the training sample size is not too large (Schmidinger et al., 2024).

2.6. Validation metrics

For model validation we used the R2 and RMSE. RMSE is an absolute
validation metric for quantifying the prediction error. It shows how
much the predicted values deviate from the observed values:

RMSE =
1
n
∑n

i=1

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

(yi − ŷi)
2

√

, (1)

where n is the number of testing samples. ŷi (i = 1,⋯, n) and yi are the
predicted and the observed values for the target variable y of soil sample
i, respectively.

R2 is a relative error measure, which is equal to one in case of perfect
predictions. It becomes negative if predictions are worse than the
arithmetic mean of the test data y:

R2 = 1 −
∑n

i=1(yi − ŷi)
2

∑n
i=1(yi− y)2

. (2)

Fig. 3. R2 values for all combinations of proximal soil sensing (PSS) techniques, evaluated across six target soil properties. Combinations that incorporate remote
sensing (RS) data are shown in blue, while those that rely solely on PSS data are shown in red. The RS-baseline represents the performance using only RS data.
Interactive plots are provided in the Supplementary data and at https://plotly.com/~Schmidinger_plotly/38/dashboard/. For graphical consistency, the CSMoist
prediction for P without RS has been omitted from this figure due to its outlying R2 value of − 0.18.
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3. Results

3.1. Sensor fusion

Fig. 3 presents the performance of all PSS combinations for the
different target soil properties. The results indicate a varying degree of
success with sensor fusion. P, moisture, pH and Mg predictions benefited
considerably from synergies through sensor fusion. Their maximum R2

increased by 0.06 (P), 0.06 (moisture), 0.08 (pH), 0.10 (Mg), respec-
tively, when moving from a single sensor application without RS to the
optimal sensor fusion application. In contrast, sensor fusion had a
neglectable impact on SOC and K predictions. Their maximum R2

increased minimally by 0.01. In many cases, adding more PSSs even
decreased performances for these two target soil properties. Except for
K, all soil properties achieved an R2 ≥ 0.8 at some point through sensor
fusion.

A similar pattern can be found in the averaged performances of all
soil properties (Fig. 4), where the maximum R2 increased from by 0.07
after optimal fusion. The positive effect of sensor fusion was particularly
noticeable when using up to three PSSs but the improvement diminished
when going beyond this number. Thus, the overall best performances
were achieved with four PSSs instead of five PSSs (Table 2).

We obtained inconclusive results from combining RS with PSSs. The
effectiveness varied with the target soil property, the type of PSS and the
number of PSSs used (Figs. 4 and 5). Fusion with RS generally had the
strongest impact, when using single PSSs. However, this effect was both
positive and negative depending on the type of PSS. For example, the
mean R2 for predictions with pH-ISE improved drastically over all soil
properties by 0.27, from 0.43 to 0.70 (Table 2 and Fig. 4), whereas it
slightly decreased for ECa. Additionally, results varied across the six
target soil properties. For instance, including RS data for K predictions
with γ decreased the R2 value by 0.04. Conversely, it increased by 0.06
for Mg predictions.

3.2. PSS performance ranking

While using one to three PSSs, the model performance exhibited
significant dependence on the specific PSS combination employed
(Figs. 3 and 4). Yet, as more PSSs were incorporated, the variation in

model performance decreased. For instance, with single PSSs, the range
of mean R2 values spanned from 0.26 to 0.72. In contrast, when
combining three and five PSS techniques, the ranges narrowed down to
0.65 to 0.76 and 0.74 to 0.77, respectively (Fig. 4). Due to this trend, we
will focus on identifying the most impactful PSS combinations for using
one to three sensors in the following sections.

While a variety of PSS combinations achieved strong performance,
specific PSS techniques outperformed others, both individually and
when combined (Figs. 3 and 4). NIR and γ emerged as the most effective
PSSs. Consequently, at least one of these sensors was consistently
included in the top-performing PSS combinations. (Table 2). Although
NIR excelled γ for predictions of SOC, Mg, and P, NIR data alone offered
no predictive power for K content (Fig. 5). Predicting K proved generally

Fig. 4. R2 values for all combinations of proximal soil sensing (PSS) techniques, averaged over all six target soil properties. Combinations that incorporate remote
sensing (RS) data are shown in blue, while those that rely solely on PSS data are shown in red. The RS-baseline represents the performance using only RS data. The
interactive plot is provided in the Supplementary data and at https://chart-studio.plotly.com/~Schmidinger_plotly/25.

Table 2
Top three PSS combinations ranked by mean R2 for each specific number of
fused PSSs. The mean R2 represents the average of all six target soil properties.

Number of PSSs RS PSS Mean R2 Rank

1 with RS NIR 0.722 1
with RS γ 0.721 2
with RS pH-ISE 0.703 3

2 with RS γ, NIR 0.752 1
without RS γ, ECa 0.748 2
with RS pH-ISE, NIR 0.747 3

3 with RS XRF, γ, NIR 0.763 1
with RS pH-ISE, γ, NIR 0.762 2
with RS XRF, γ, ECa 0.760 3

4 with RS XRF, γ, ECa, NIR 0.770 1
with RS pH-ISE, γ, ECa, NIR 0.768 2
without RS XRF, γ, ECa, NIR 0.765 3

5 with RS XRF, γ, CSMoist, ECa, NIR 0.765 1
without RS XRF, pH-ISE, γ, ECa, NIR 0.761 2
with RS pH-ISE, γ, CSMoist, ECa, NIR 0.760 3
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challenging as R2 values fell below 0.3. However, γ and ECa were the
only sensors exhibiting some slight relation to K, obtaining R2 values of
0.27 and 0.28, respectively. ECa exhibited strong individual perfor-
mances similar to those of NIR and γ when used without RS. Yet, ECa
was not as successful when incorporated into sensor fusion models.

pH-ISE and CSMoist were the least successful standalone PSSs. pH-
ISE only showed a strong relation to pH (Fig. 5). However, when pH-
ISE was combined with RS data, its performance improved signifi-
cantly, placing it among the most effective combinations (Table 2). It
also demonstrated reasonable synergies with other PSSs.

XRF achieved strong performances for soil moisture but its ability to
predict other soil properties was less exceptional, yielding only moder-
ate accuracy (Fig. 5). It generally underperformed compared to NIR, γ
and ECa for single-sensor predictions. Nonetheless, it was a frequent
component in top-performing combinations when three or more PSS

techniques were employed (Table 2), indicating a certain degree of
success for XRF in the context of sensor fusion.

CSMoist exhibited the weakest performance among the PSS tech-
niques. Despite being designed specifically for soil moisture measure-
ment, CSMoist was even outperformed by most other PSSs and RS for
moisture predictions (Fig. 3). Notably, its R2 value for moisture pre-
dictions (0.64) fell significantly short to the RS baseline (0.85).

Models utilizing RS data alone achieved decent performance across
all target soil properties, on average even surpassing XRF, pH-ISE, and
CSMoist (Fig. 4). Nonetheless, the most accurate single sensor pre-
dictions for each target soil property were always achieved by proximal
sensing.

Fig. 5. Mean RMSE values for the six target soil properties across all available PSS combinations that include the specified PSS technique. PSSs are ranked from top to
bottom based on their lowest mean RMSE, averaged across all combinations in which the PSS was included. Combinations incorporating remote sensing (RS) data are
depicted in blue, while those using only PSS data are shown in red. Symbols indicate the number of PSS techniques used in each combination.
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3.3. Model dependency

The results presented earlier were derived from model stacking, as
described in Section 2.5. This section provides a brief overview on how
the results depend on the selected prediction models. We compare the
performance of the base-models used within the stacking framework,
both against each other and to the final stacked model.

Model stacking yielded superior performance compared to the indi-
vidual base-models (Fig. 6). Notably, base-models that employed
regression trees within their algorithms, such as Cubist, RF and XGBoost,
generally achieved stronger results than SVR and RR. Nonetheless, in
terms of absolute values, the mean R2 values were relatively similar
among the different prediction techniques. Only RR showed a signifi-
cantly lower performance. Fig. 1B, Appendix B explores these results in
more detail, highlighting potential variations depending on the specific
target soil property.

Fig. 7 illustrates the dependence of optimal PSS combination on the
chosen modelling approach, as different PSS combinations achieved
superior performances with different models. For example, XGBoost
obtained the best predictions when used with ECa and without the in-
clusion of RS data. However, ECa did not rank among the top three
performing sensors for the stackedmodel (Table 2). RS proved to be only
helpful for certain modelling techniques. For instance, the combination
of γ and ECa produced the most accurate results for Cubist, Random
Forest (RF), and XGBoost models. However, only XGBoost successfully
incorporated RS data in this PSS combination. Cubist and RF relied
solely on the PSSs (i.e., γ and ECa) for their best predictions.

4. Discussion

4.1. Sensor fusion

As few as three properly chosen PSSs yielded accurate predictions for
multiple soil properties. Notably, combinations including pH-ISE, γ, NIR
and ECa exhibited strong performances. These PSSs have a well-
established history in proximal soil sensing and are already incorpo-
rated into various multi-sensor platforms (Adamchuk et al., 2011;
Tavakoli et al., 2022). This finding highlights the potential of already
existing multi-sensor platforms, like RapidMapper, for various agricul-
turally and environmentally related tasks. Adding more than three PSSs
did not substantially enhance the prediction accuracy. This diminishing
return suggests that there is a limit to the effectiveness of sensor fusion
with common PSSs. It highlights the importance of selecting a few
informative and complementary PSSs rather than simply increasing the
sensor quantity.

Our models achieved significantly higher absolute performances
compared to prior field-based sensor fusion studies (Ji et al., 2019;
Vasques et al., 2020), being comparable to lab-based sensor fusion
studies (Tavares et al., 2021; Xu et al., 2019). However, our results are
consistent with the patterns observed in all of these studies, i.e., sensor
fusion may not ultimately lead to significant improvements for the
prediction of every individual soil property. This lack of improvement
was particularly demonstrated in our study for SOC and K. Simply
adding more variables is not always a winning strategy. In fact, the
increased dimensionality from data fusion can even be harmful in some
cases. For instance, we showed that four PSSs returned slightly better
results compared to five PSSs (Table 2). This decrease in performance
with an increase in dimensionality is commonly referred to as ‘curse of
dimensionality’ or ‘Hughes phenomenon’ (Hughes, 1968). Nevertheless,
across multiple soil properties, sensor fusion has demonstrated its ability
to enhance and stabilize prediction performances. Specifically in our
study, predictions of P, moisture, pH and Mg benefited from synergies.

The combination of RS with PSSs gave inconclusive results. In several
cases, it improved performances considerably when using single PSSs (e.
g., in combination with pH-ISE) but in some cases, it led to a slightly
decreased accuracy (e.g., in combination with ECa). Nevertheless,
numerous other studies have shown that fusing PSSs with RS data i.e.,
Sentinel-2, can be more impactful (Bao et al., 2023; Wang et al., 2022;
Wang et al., 2024). We hypothesized that sensors like ECa, pH-ISE, and γ
would benefit from the incorporation of multispectral RS data, whereas
we expected less improvement for NIR due to potential overlap in
spectral information. However, this cannot be fully supported by our
results. While incorporating RS data enhanced predictions with γ and
pH-ISE, it also improved predictions based on NIR. Conversely, ECa did
not see any significant improvement with the addition of RS data.

4.2. PSS performance ranking

NIR and γ demonstrated remarkably strong model performances for
the majority of soil properties. Strong performances with in-situ γ in
comparison to other PSSs were also reported in Vasques et al. (2020) and
Ji et al. (2019). Since γ is not causally related to most of the target soil
properties, we suspect that soil texture, which is usually well predicted
by γ (Meyer et al., 2019; Vasques et al., 2020), was controlling a certain
degree of the overall spatial soil variability. We discuss the limitations of
exploiting such non-causal secondary-relationships in Section 4.4. NIR
is a well-established and versatile PSS for multivariate soil mapping
(Grunwald et al., 2015). Therefore, it was unsurprising that NIR data
proved valuable for various soil property predictions. Especially the
strong relation of NIR to SOC is in agreement with the literature (Bai

Fig. 6. The mean R2 values, averaged over all six target soil properties, for all PSS combinations in dependence to the different base-models and model stacking.
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et al., 2024; Ji et al., 2019; Tavakoli et al., 2022; Tavares et al., 2021).
NIR achieved poor performances for predictions of K, which aligns with
previous studies (Ji et al., 2019; Wenjun et al., 2014).

ECa was ranked closely behind γ and NIR, when excluding RS. Being
influenced by soil moisture, texture and ion concentration, ECa offers a
versatile tool for soil analysis (Grunwald et al., 2015). Hence, ECa per-
formed strongly for multiple soil properties. However, it did not
outperform the other PSSs for soil moisture predictions.

As expected, pH-ISE was strongly related to pH but showed weak
relations to the other soil properties. However, pH-ISE played a com-
plementary role in predicting other soil properties. Fusing it with
various other PSSs enhanced their performance. This highlights that pH-
ISE data contributed unique and less redundant information.

Unlike the promising performances of in-situ XRF measurements
reported by Vasques et al. (2020), our dataset yielded only moderate
performance with XRF. Particularly, the model performances for Mg and
P did not meet expectations, as XRF was outperformed by most other
PSSs. XRF was the only sensor in this study that can measure elemental P
and Mg directly. However, since P and Mg have low atomic numbers,
they are more difficult to determine. Furthermore, the target properties
were plant available P and Mg, which make only a small portion of the
total content. The correlation between the extractable forms and the
total content may be affected by several confounding factors (Gebbers,
2018). Surprisingly, strong predictions with XRF were achieved for soil
moisture. The natural soil moisture content most likely interfered with
XRF measurements, potentially explaining why predictions based on
XRF yielded underwhelming results for Mg and P. Alternatively, the
relationship between XRF and soil texture (Tavares et al., 2021; Vasques
et al., 2020) could also have been exploited for moisture predictions.
Note that we obtained much better results with XRF on dried soil sam-
ples for Mg and P in the same dataset. However, for comparability be-
tween the other in-situ soil sensors and XRF, we only presented results
based on moisturized soil samples in this study.

Among the sensors evaluated, CSMoist provided the least value. As
discussed by Gebbers (2018), low reliability remains a common issue for
capacitive soil moisture sensors. Even models entirely based on RS data
outperformed those of CSMoist for soil moisture prediction. Given that
RS is freely available, a PSS or PSS combination should be capable to
outperform RS for most or at least specific soil properties. We encourage
future studies to also include a RS baseline to better evaluate the per-
formance of a PSS. In this study, RS showed decent performances but the

trade-off between cost-efficiency and accuracy was not regarded.

4.3. Model dependency

The best PSS or PSS combination can vary depending on the chosen
prediction model. While the evaluation of model-dependent outcomes is
valuable, we advocate for model stacking in order to achieve more
robust and generalizable conclusions. Stacking combines predictions
from multiple models, allowing to estimate the overall importance of
each sensor from a broader perspective. In contrast, most studies in the
literature relied on single-model approaches. Our model-dependent
findings suggest that using a single model might lead to less generaliz-
able and potentially misleading interpretations about sensor
effectiveness.

4.4. Limitations

Certain sensor measurements showed strong predictive power for
soil properties with which they do not have a causal relationship. E.g., in
our study, NIR and RS data, while not directly related to pH, could
predict pH with high accuracy. In contrast, previous studies (e.g., Ji
et al., 2019; Tavares et al., 2021) have reported limited success using
NIR for pH predictions. Our dataset showed a strong correlation between
pH and SOC (Fig. 1A, Appendix A). This exemplifies that second-order
relationships have likely been exploited to a certain degree, as SOC is
directly linked to NIR and RS measurements. It is difficult to estimate
how reproduceable our results are under different study settings with
less intercorrelation. Despite this limitation, this case study offers a
novel contribution by employing a diverse range of PSSs. This enabled a
comprehensive comparison of multiple PSS technologies commonly
used in PA and DSM, revealing both the potential and drawbacks of PSSs
and sensor fusion in general.

The study design lacked control over factors influencing sensor
performance, hindering a fully standardized comparison. Data collec-
tion across different dates (Table 1) and variations in the measuring
frequency (Fig. 3A, Appendix A) introduced technically conditioned
inconsistencies between the sensors. The time-gap of γ, NIR and pH-ISE
compared to the other PSSs, were a result of issues during the 2021
sensing campaign, so that sensor readings from previous sensing cam-
paigns had to be used. This time difference likely introduced a mismatch
between the moisture content during sensor readings and the moisture

Fig. 7. PSS combinations that achieved the highest mean R2 values across all six target soil properties. The R2 values are averaged considering different base-models
and model stacking techniques employed. For better visual clarity, only combinations utilizing up to three PSS techniques are included.
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content of the reference samples, because the absolute soil moisture
content is highly dynamic. Nonetheless, the time gap may not always be
an issue as the relative spatial moisture patterns in fields are usually
stable in time (Alijani et al., 2024) due to the strong relation to texture
(Huang et al., 2017). Therefore, it seems that the temporal disparity did
not disadvantage γ or NIR. These two sensors still demonstrated strong
performances, even for soil moisture. pH-ISE had the largest time-gap
compared to the other PSSs. However, the lab-measured pH values did
not change considerably since 2017, as shown by a previous sampling
campaign (Fig. 2B, Appendix B). For this reason, pH-ISE still provided
strong predictive capabilities. Also, the spatial pattern of soil nutrient
contents in 2017 was very similar compared to 2021 (Fig. 2B,
Appendix B).

This study utilized a high density of training data (>50 samples per
hectare) compared to what is typically available to PA providers
(Schmidinger et al., 2024). Hence, the reported R2 values for most soil
properties are potentially overoptimistic in comparison to what is
achievable with a more realistic number of training samples in practical
agriculture. Also, the ratio of training samples to predictor variables has
a strong effect on the prediction performance. Therefore, it is important
to acknowledge that the validity of our PSS ranking is limited to a sce-
nario with abundant training samples.

We recommend to further studies on the effectiveness of different
sensors to consider multiple fields for more robust conclusion and an
economic analysis about the cost-effectiveness as in e.g., Chatterjee et al.
(2021). We only evaluated Sentinel-2 data from RS but a multi-RS
approach (Gasmi et al., 2022) next to PSSs should be further explored.

5. Conclusion

In this study, we investigated the potential of fusing different prox-
imal soil sensors (PSSs) and remote sensing (RS) data. Six different types
of PSSs such as ion-selective pH electrodes (pH-ISE), a capacitive soil
moisture sensor (CSMoist), an apparent soil electrical conductivity
measuring system (ECa) as well as passive gamma-ray- (γ), X-ray fluo-
rescence- (XRF) and near-infrared (NIR) spectroscopy were used to
create all possible combinations (fusing one to five PSSs) in order to
predict six target soil properties: soil organic carbon (SOC), pH, moisture
content as well as plant-available phosphorus (P), − magnesium (Mg)
and − potassium (K). Additionally, we explored how incorporating RS
data from Sentinel-2 affects prediction accuracies. Thereby, we reached
the following conclusions:

Sensor fusion enhanced the overall prediction accuracy for the six
target soil properties. However, using more than three PSSs showed only
minimal further improvements, indicating that PSS fusion is subject to
diminishing returns. Therefore, it is important to select a few informa-
tive and complementary PSSs rather than simply increasing the sensor
quantity.

After sensor fusion, an R2 ≥ 0.8 has been achieved for five out of six
target soil properties. Only predictions for K were less successful (R2 <
0.3). NIR and γ proved to be the most successful sensors, both for sensor
fusion and as standalone sensors. Nonetheless, there were various
combinations of PSSs that demonstrated strong capabilities. Notably,
combinations including pH-ISE, γ, NIR and ECa performed strongly.
CSMoist was the weakest sensor and showed no real benefit over the

other PSSs. While fusing PSS with RS proved mostly successful when
having single PSSs, there were also cases in which adding RS decreased
performances. Using models entirely fitted on RS already yielded
reasonable performances (R2 > 0.5) for all soil properties but K.
Depending on the prediction technique, different PSSs or combinations
of PSSs performed best. This indicates that model stacking yields more
generalizable results. Lastly, model stacking also returned the highest
prediction accuracy.

Since there was considerable intercorrelation between the target soil
properties, it has to be considered that non-causal second order relations
between PSSs and specific target soil properties have been exploited.
Nonetheless, this study is unique in its number of distinctive PSSs that
were used within one coherent dataset, thereby revealing insightful
patterns about sensor fusion in the context of DSM and PA.
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Appendix A

Fig. 1A. Correlation matrix for the six target soil properties, where the correlation is given as Pearson’s correlation coefficient (R).

Table 1A
Descriptive statistics of the target soil properties.

Soil property Mean Median Standard deviation Min Max Skewness

SOC (%) 2.04 1.69 1.02 0.81 4.94 1.32
pH 6.31 6.20 0.69 4.90 7.50 0.12
Moisture (%) 9.95 10.21 2.62 4.99 16.95 0.43
P (mg P2O5 100− 1 g soil) 4.44 3.90 2.41 1.00 14.80 1.85
Mg (mg MgO 100− 1 g soil) 4.50 4.20 1.98 1.40 9.10 0.45
K (mg K2O 100− 1 g soil) 10.18 10.20 2.80 3.20 18.50 0.29
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Fig. 2A. Sampling locations of the six laboratory-measured target soil properties and their values.

J. Schmidinger et al. Geoderma 450 (2024) 117017 

12 



Fig. 3A. Spatial distribution of the PSS measurements after pre-processing.
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Fig. 4A. Correlation matrix for target soil properties and sensor data used for the modelling.

Fig. 5A. Contribution of different wavelength ranges from the NIR sensor on the principal components.

Appendix B

Table 1B
Overview about the base-models, their associated R-package and the hyperparameters as defined by the R-package. Hyperparameters inputted to
the grid search are given in brackets. If no further information is given about the hyperparameters, then the default values associated to the R
package were used.

Base-model R-package R-package reference Hyperparameters

RF randomForest Liaw and Wiener (2002) mtry* (0.2, 0.25, 0.33, 0.5, 0.67, 0.8, 1)
nodesize (3, 6, 9, 12)
samplesize* (0.6, 0.8, 1)

(continued on next page)
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Table 1B (continued )

Base-model R-package R-package reference Hyperparameters

Cubist Cubist Kuhn and Quinlan (2023) committee (80)
neigh (0, 1, 2, 4, 6, 8)
rules (4, 6, 12, 24)
sample* (0.6, 0.8, 1)

XGBoost xgboost Chen et al. (2023) colsample_bytree (0.5, 0.75, 1)
eta (0.005, 0.01, 0.05, 0.1)
gamma (0.5, 1, 2)
max_depth (4, 6, 8, 10)
min_child_weight (3)
nrounds (1000)
subsample (0.6, 0.8, 1)

RR penalized Goeman et al. (2022) lambda (0.001, 0.01, 0.1, 1, 10, 100, 1000)

SVR e1071 Meyer et al. (2023) cost (0.1, 1, 10, 100)
kernel (linear, radial)
gamma** (0.01, 0.1, 1, 10)

* Given as proportion. Actual input in R function took values in another format i.e., percentage or absolute value.** For radial kernel.

If NIR was included in the to be examined PSS combination, different numbers of principal components i.e., 5, 10, 15 and 20, were tested in the grid
search for NIR. This was done for all base-models. Hence, the selection of principal components was included as conditional hyperparameter within
the grid search (Eggensperger et al., 2014).

Fig. 1B. The obtained R2, for each target soil property, for all C PSS combinations in dependence to the different base-models and model stacking.

Even though R2 has some limitations (Alexander et al., 2015), we use it in this study as main metric since it is the most common scale independent
model performance measure. In the following we also included a ranking based on the mean ratio of performance to Inter Quartile distance (RPIQ) as
compared to the mean R2 in Table 2. RPIQ is defined as:

RPIQ =
Q3 − Q1
RMSE

. (1B)
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Q3 and Q1 respond to the 75 % and 25 % quantiles of the testing data, respectively.

Table 2B
Top three PSS combinations ranked by mean RPIQ for each specific number of fused PSSs. The mean RPIQ represents the average of all six target
soil properties.

Number of PSSs RS PSS Mean RPIQ Rank

1 with RS NIR 3.12 1
without RS NIR 3.02 2
with RS γ 2.97 3

2 with RS pH-ISE, NIR 3.41 1
with RS XRF, NIR 3.33 2
with RS γ, NIR 3.31 3

3 with RS XRF, γ, NIR 3.52 1
with RS pH-ISE, NIR, ECa 3.51 2
with RS pH-ISE, γ, NIR 3.49 3

4 without RS XRF, pH-ISE, γ, NIR 3.64 1
without RS XRF, pH-ISE, NIR, ECa 3.60 2
without RS pH-ISE, γ, ECa, NIR 3.60 3

5 without RS XRF, pH-ISE, γ, ECa, NIR 3.67 1
with RS XRF, pH-ISE, γ, CSMoist, NIR 3.66 2
without RS XRF, pH-ISE, γ, CSMoist, NIR 3.61 3

Fig. 2B. Soil property values from earlier sampling campaign (2017) in comparison to soil property values from 2021 campaign used for this study. Coloring-scale is
quantile based in contrast to Fig. 2A.

Appendix C. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.geoderma.2024.117017.
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