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ABSTRACT

Interactions between the cardiac and respiratory systems play a pivotal role in physiological functioning. Nonetheless, the intricacies of cardio-
respiratory couplings, such as cardio-respiratory phase synchronization (CRPS) and cardio-respiratory coordination (CRC), remain elusive,
and an automated algorithm for CRC detection is lacking. This paper introduces an automated CRC detection algorithm, which allowed
us to conduct a comprehensive comparison of CRPS and CRC during sleep for the first time using an extensive database. We found that
CRPS is more sensitive to sleep-stage transitions, and intriguingly, there is a negative correlation between the degree of CRPS and CRC when
fluctuations in breathing frequency are high. This comparative analysis holds promise in assisting researchers in gaining deeper insights into
the mechanics of and distinctions between these two physiological phenomena. Additionally, the automated algorithms we devised have the
potential to offer valuable insights into the clinical applications of CRC and CRPS.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0177552

The cardiac and respiratory systems are key in maintaining
healthy physiologic function. Pathological deviations from nor-
mal cardiac and respiratory dynamics have been linked to
increased risk of disability and mortality, and often, heart dis-
eases affect respiratory health and vice versa due to their mutual
coupling. Quantifying cardio-respiratory coupling is a challeng-
ing problem, as little is known about the specific nature of
this interaction and how it changes with different physiologic
states, such as sleep/wake transitions and sleep stages. In our
work, we focus on two phenomena of cardio-respiratory coupling:
cardio-respiratory phase synchronization and cardio-respiratory
coordination. We suggest two methods to detect and quantify
these interactions automatically and apply these methods to
sleep recordings that include heart rate, breathing, and wrist

actigraphy. We find that heart rate and breathing are more in
sync or coordinated during deep sleep than during rapid eye
movement sleep. We also find that the kind of interaction and
coexistence of synchronization and coordination depends on how
stable or variable the breathing rate is. Our work can contribute to
a better understanding of the mechanisms and benefits of cardio-
respiratory interactions and help diagnose diseases that affect
them.

I. INTRODUCTION

The cardiac and respiratory systems are integral to human
life and interact through various complex mechanisms, such as
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vagal afferent and efferent activity, baroreceptor coupling, and
other unknown factors.1–3 These mechanisms can result in syn-
chronized rhythms between the systems, which, in turn, improves
the efficiency of pulmonary gas exchange.4 A long-known phe-
nomenon of cardio-respiratory interaction is respiratory sinus
arrhythmia (RSA), which, during normal breathing frequencies,
shows an increase in heart rate during inspiration and a decrease
during expiration.5 Besides RSA, researchers have found other,
less noticeable cardio-respiratory couplings, including cardio-
respiratory phase synchronization (CRPS)6,7 and cardio-respiratory
coordination (CRC),8 which both were shown to be independent of
RSA.9,10

Weakly coupled oscillators can synchronize their phases
even when the amplitudes vary chaotically and are actually
uncorrelated.11 However, phase synchronization is only one form of
synchronization, and over the past decades, various other states of
synchronization have been extensively investigated. These include
complete or identical synchronization, lag synchronization, gen-
eralized synchronization, intermittent lag synchronization, imper-
fect phase synchronization, and almost synchronization (for more
details, see the review papers of Refs. 12–14).

Phase synchronization is also observed in the cardio-
respiratory system,6,7,9,15 and cardio-respiratory phase synchroniza-
tion (CRPS) is detected when the R peaks in the electrocardiogram
(ECG) consistently appear at the same respiratory phases. This can
be visualized conveniently by the cardio-respiratory synchrogram,6

in which epochs of CRPS are identified through horizontal paral-
lel lines. Recent studies have enriched our understanding of CRPS,
indicating that physical fitness enhances CRPS, and athletes show
higher levels of synchronization.16 Additionally, controlled breath-
ing based on heartbeat detection and biofeedback has been found
to significantly increase CRPS, emphasizing the impact of respira-
tory patterns on heart–lung interaction.17 Moreover, analyses under
free-running conditions reveal a complex array of synchroniza-
tion patterns in healthy humans.18 CRPS has also been found to
change significantly across sleep stages9 and is affected by aging19

and obstructive sleep apnea.20 Since CRPS has such strong sleep-
stage dependency, it has also been used as a feature in automatic
sleep-stage classification.21

Another form of cardio-respiratory interaction is cardio-
respiratory coordination (CRC). First described by Riedl et al.,8 CRC
is a generalized form of cardioventilatory coupling found by Gal-
letly and Larsen.22 The main difference between CRPS and CRC is
that the latter is in the time domain and focuses on the time dif-
ference between R peaks and respiration onsets. In contrast, CRPS
works in the phase domain utilizing the respiratory phase at a heart-
beat (i.e., the R peak). Just as analyzing CRPS requires the use of a
synchrogram, a coordigram is used for CRC analysis, and, accord-
ingly, horizontal parallel lines in the coordigram indicate epochs of
CRC. CRC has been found to increase during sleep apnea8 and in
preeclampsia.23 Even though previous articles have demonstrated
the association of CRC with certain diseases, these works have
obtained their findings from a rather small number of samples. At
this stage, studying CRC in large databases is hampered by the lack
of automated methods for CRC detection.

At first glance, the coordigram and synchrogram methods
seem very similar; however, CRC and CRPS are very different

physiological phenomena as discussed in Krause et al.24 Addition-
ally, phase synchronization is known from nonlinear dynamics and
thought to minimize the overall energy of coupled systems for cer-
tain phase values;25 thus, CRPS could be modeled by considering the
cardiovascular and respiratory systems as two coupled oscillators.26

On the contrary, for CRC, there is no nonlinear dynamics-inspired
model yet, but Galletly and Larsen have proposed an empirical
model based on their experimental results. According to this model,
CRC develops when inspiration is triggered by some unknown
afferent signal related to the heartbeat.27

In our study, we will elaborate on the differences between CRC
and CRPS by analyzing an extensive dataset of cardio-respiratory
signals collected during nocturnal sleep. To this end, we introduce
an automated method for the detection of CRC, while automated
procedures for CRPS detection in long-term data are already avail-
able (for a comprehensive review and comparison, please refer to
Ref. 28). Our findings reveal that akin to CRPS, CRC also exhibits
sleep-stage dependence. Furthermore, we observe that CRPS and
CRC can co-occur when fluctuations in breathing frequency remain
sufficiently limited. Demonstrating the robustness of CRPS and
CRC detection, even when utilizing cardio-respiratory data recon-
structed from actigraph recordings, could potentially pave the way
for investigating these phenomena in large cohort studies such as the
German National Cohort (GNC),29 which includes about 200 000
subjects. Such investigations could also facilitate correlations with
clinical parameters, ultimately shedding light on the physiological
mechanisms that trigger and influence CRPS and CRC.

II. DATA

We conducted the comparative analysis using data from 226
subjects recorded at the Charité Hospital Berlin in Germany dur-
ing a project funded by the German–Israeli Foundation (GIF). The
study received ethical approval from the hospital’s ethics committee,
and all participants provided written informed consent prior to the
study. During their initial diagnostic night at the sleep laboratory, all
subjects wore a SOMNOwatch™ plus device (SOMNOmedics, Ran-
dersacker, Germany). This device simultaneously recorded 3D wrist
acceleration of the non-dominant arm at a sampling rate of 128 Hz,
as well as a single-channel electrocardiogram (ECG) at 256 Hz.

Additionally, full polysomnography (PSG) was conducted, cap-
turing various physiological signals such as electroencephalogra-
phy (EEG), electrooculography (EOG), electromyography (EMG),
ECG, photoplethysmography (PPG), oxygen saturation, respira-
tory effort, and more. The PSG data was recorded using either an
ALICE system (Philips, Amsterdam, Netherlands), an Embla® sys-
tem (Natus, Pleasanton, USA), or a SOMNOscreen™ PSG system
(SOMNOmedics, Randersacker, Germany). Sleep stages based on
30-s epochs have been determined from the PSG data by trained
experts following standard guidelines of the American Academy of
Sleep Medicine (AASM)30 to distinguish light sleep (stages N1 and
N2), deep sleep (stage N3), and rapid eye movement (REM) sleep.

Due to the differential recording capabilities of the devices
used, namely, the SOMNOwatch™ for accelerometry and the PSG
systems for sleep stages and reference respiratory activity, it was
necessary to synchronize the recordings as an initial step. Synchro-
nization was achieved by utilizing the R-peak positions detected in
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TABLE I. Overview of the GIF dataset used in this study.

Mean ± STD

Male / female 117 / 109
Age (y) 48.6 ± 13.9
Weight (kg) 83.7 ± 18.8
BMI (kg/m2) 27.9 ± 5.7
Apnea–hypopnea index (/h) 14.5 ± 18.7
Periodic limb movement index (/h) 13.8 ± 23.7
Time in bed (min) 455.3 ± 46.3
Sleep onset latency (min) 18.4 ± 15.9
Total sleep time (min) 377.1 ± 72.3
Wake after sleep onset (min) 59.8 ± 49.1
Fraction of N1 0.204 ± 0.150
Fraction of N2 0.440 ± 0.123
Fraction of N3 0.186 ± 0.101
Fraction of REM 0.170 ± 0.081

the ECG recordings of both devices. For a more comprehensive
description, we refer to.31–33 Subsequently, each measurement was
trimmed to include data solely between the “lights off” and “lights
on” time stamps, which demarcated the sleep opportunity period.
We also note that respiratory data need to be “narrow-banded”
before determining the respiratory phase through the analytic sig-
nal approach. Thus, we applied a second-order Butterworth filter
in the frequency range [0.1, 0.8] Hz. For an overview and detailed
information about the database, see Table I.

In this paper, we analyzed the heartbeat and respiration data
recorded by the PSG systems as well as heartbeat and respiration sig-
nals reconstructed from accelerometry (ACT). The reconstruction
procedure employed the algorithms detailed in Zschocke et al.,33

which were applied to the SOMNOwatch actigraphy data. In brief,
the derivation of heartbeat signals involved extracting information
from pulse pressure waves that induce subtle, high-frequency vibra-
tions at the wrist. Similarly, respiratory activity was reconstructed
through the detection of minuscule, periodic turns of the wrist. Both
of these phenomena are discernible through the employment of the
high-resolution accelerometer recordings of the SOMNOwatch.

III. METHODS

A. Synchrogram and coordigram

The most common methods used to probe for cardio-
respiratory phase synchronization (CRPS) and cardio-respiratory
coordination (CRC) are synchrogram and coordigram, respectively.
The synchrogram has been introduced by Schäfer et al.6 and is
obtained by plotting the times of heartbeat occurrences on the x axis
and the corresponding respiratory phases on the y axis. Horizontal
parallel lines in the synchrogram indicate epochs of synchronization
between heartbeat and respiration [gray shaded area in Fig. 1(a)].
Heartbeat timings are computed using the open-source package
biosppy34 by either detecting the R peaks in the ECG (PSG data)
or the maximum of the reconstructed pulse wave (ACT data). The
analytic signal approach yields the instantaneous respiratory phase

8(t) = arg (xs(t)), where the analytic signal xs(t) is calculated using
the Hilbert transform of the respiratory signal.25

While the synchrogram reveals the synchronization or phase-
locking between heartbeat and respiration, the coordigram tracks
the time coordination between respiratory onset and heartbeats.22

Thus, for creating a coordigram, the times of respiratory onset are
plotted on the x axis, and the time differences between the onset
of respiration and the occurrence of heartbeats are plotted on the y
axis (we chose the respiratory onset to coincide with the maximum
of the respiratory signal as suggested by Riedl et al.8). Again, hor-
izontal parallel lines in the coordigram indicate cardio-respiratory
coordination [Fig. 2(a)].

B. Reduced synchrogram method (RSM)

There are several reliable methods to detect cardio-respiratory
phase synchronization automatically; for a review, see Kuhnhold
et al..28 The reduced synchrogram method (RSM)15 is particularly
well-suited to avoid the detection of spurious synchronization.28 For
RSM, the synchrogram is divided into overlapping time windows,
and then, within each window, the phase points are arranged into n
subgroups of heartbeats. The phase points in the synchrogram are
labeled as 8m(t) = 9(t) mod 2mπ , where 9(t) is the cumulative
respiratory phase of m respiratory cycles. To detect CRPS automat-
ically, many n : m synchronization ratios are probed systematically.
If phase synchronization occurs in a particular time window, the
subgroups will form n parallel horizontal lines. For an illustration
of the typical CRPS ratios, we refer to Fig. 3 in Bartsch et al.7

Specifically, the steps of RSM for each n : m ratio are as follows:

• Arrange the phase points 8m(ti) into n subgroups.
• Calculate the mean phase for each subgroup by using the superpo-

sition of unit vectors. Thus, for the jth subgroup, the mean phase
is defined as

〈

8m
j

〉

= arg
∑

l

ei8m(tnl+j). (1)

• Subtract the mean phase from the phase points of each subgroup

8m∗(tnl+j) = 8m(tnl+j) −

〈

8m
j

〉

, (2)

thus centering all phase points around zero to obtain a reduced
synchrogram.

• Calculate the width WS of the reduced synchrogram as the differ-
ence between the maximum and minimum phase value.

• Repeat the procedure for m = 1, n = 1, . . . , 6, and m = 2,
n = 5, . . . , 12 until all n : m ratios have been tested. Of all ratios,
choose the lowest value of WS · n/m.

• If this WS · n/m value is smaller than a threshold TS (Table II), the
window is classified as synchronized. The threshold TS has been
determined by surrogate data analysis (see below).

Figure 1(b) shows an example of the RSM; the gray-shaded region
indicates CRPS.

C. Automated coordigram method (ACM)

Although there are several methods for the automated detec-
tion of CRPS, to our knowledge, suitable algorithms to automatically
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FIG. 1. Reduced synchrogram method (RSM) to detect cardio-respiratory phase synchronization (CRPS). (a) Synchrogram for a 5 : 1 synchronization ratio. Here, five
heartbeats are assumed to fall within one breathing cycle; the heartbeats are plotted at the respective phases 81(t5l+1) . . . 81(t5l+5) of the lth breathing cycle; the order of
the heartbeats within the breathing cycle is color-coded, same colors correspond to the same subgroup. To detect CRPS automatically, several n : m synchronization ratios
are probed systematically (see Methods section). (b) Reduced synchrogram is obtained by subtracting the mean phase of the jth subgroup from each phase81(t5l+j) within
a fixed window size [Eq. (2)]. Heartbeat and respiration are synchronized if the width WS of the reduced synchrogram within a 25-s window is below a threshold (Table II).
Following this procedure, the gray-shaded region between 1000 and 1025 s is identified as exhibiting CRPS.

determine epochs of CRC in long-term recordings are missing. Gal-
letly and Larsen35 calculate the Shannon entropy of the RI plot
(which is similar to the coordigram, and the time intervals between
each R wave and the following inspiratory onset are plotted against
the time of R wave occurrence). However, this measure is strongly
affected by the heart rate as higher heart rates or lower breath-
ing rates yield more lines in the RI plot, making higher entropy
values more likely. For our automated coordigram method (ACM),

TABLE II. Choice of parameters for the reduced synchrogram method (RSM) and

automated coordigram method (ACM). Parameters were optimized using surrogate

data analysis (see Methods); note that the threshold for RSM depends on the number

of subgroups n (i.e., the number of lines in the synchrogram.).

Method Window size Overlap Threshold

RSM 25 s 20 s Ts = 5.9 rad
ACM 25 s 20 s Tc = 0.25 s

we consider R-peak time differences between all neighboring heart-
beats in a chosen time window. As a first step, we obtain the times
of respiratory onsets when the respiratory phase is equal to 81 = π .
These times of respiratory onsets are plotted on the horizontal axis;
see Figs. 2(a) and 2(b). For all heartbeats within 4 s before and 0.5 s
after a respiratory onset, the differences between respiratory onset
time and the time of heartbeats are plotted on the vertical axis, form-
ing the cardio-respiratory coordigram. Note that a given heartbeat
will appear twice in the coordigram if it occurred less than 4 s before
one respiratory onset but also less than 0.5 s after the subsequent
respiratory onset. For ACM, the coordigram is divided into over-
lapping time windows (Table II), and the points in the coordigram
are paired to examine the time shifts [e.g., within the red ovals in
Figs. 2(a) and 2(b)]. Specifically, the steps of ACM are:

• Calculate the time shifts between each pair of neighboring
heartbeats [e.g., red ovals in Figs. 2(a) and 2(b)], but also for all
pairs that appear below them in the considered time window.
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FIG. 2. Automated coordigram method (ACM) to detect cardio-respiratory coordination (CRC). (a) and (b) Coordigrams are obtained by plotting the difference between
respiratory onset time and R-peak time (y axis) vs respiratory onset time (x axis) (i.e., the dashed line indicates the simultaneous occurrence of R-peak and respiratory
onset). Similar to CRPS in the synchrogram, CRC occurs when heartbeats organize in horizontal parallel lines. For automatic CRC detection, we calculate the R-peak time
differences between all neighboring heartbeats within a time window (red ovals highlight the first line for the heartbeats closest to respiratory onsets). (c) In the case of CRC,
the distribution of these time differences is narrow, and the width of the distribution, WC = 0.19 s, is below the threshold 0.25 s. (d) In contrast, a broad distribution of time
differences suggests the absence of CRC (here,WC = 0.83 s). The red line in (c) and (d) depicts the estimated histogram by using kernel density estimation.

• If the distribution of the time shifts does not significantly deviate
from zero mean (as probed by a t-test; p < 0.05) and the width
WC of the distribution (i.e., the difference between maximum
and minimum) is smaller than a threshold TC (Table II), CRC is
detected in this window [Figs. 2(c) and 2(d)]. Again, the threshold
has been determined by surrogate data analysis (see below).

Figure 2 shows two examples for the ACM—for coordinated data
(a) and (c) and non-coordinated data (b) and (d). Note that perfect
CRC would yield a delta distribution of time shifts and WC = 0.

D. Surrogate tests and parameter optimization

We have determined the thresholds TS and TC using surrogate
data and applying RSM and ACM, respectively. The surrogate data
were generated by taking the heartbeat signal from one subject and

randomly pairing it with the respiratory signal from a different sub-
ject. Then, for a given threshold TS for RSM (or TC for ACM), one
obtains a percentage of CRPS (or CRC) for both real and surrogate
data.

The optimized thresholds are determined by identifying the
largest Kullback–Leibler divergence between the real and surrogate
results. The Kullback–Leibler divergence is a measure of how one
probability distribution P differs from a second reference probability
distribution Q. It is defined by36

DKL(P ‖ Q) =
∑

x∈X

P(x) log

(

P(x)

Q(x)

)

. (3)

The parameters optimized through surrogate data tests are
shown in Table II. Despite the availability of two datasets, namely,
the PSG and ACT data, the optimization of parameters was done
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FIG. 3. CRPS and CRC are most pronounced during deep sleep N3 and much lower during REM sleep. The figures show the group average and standard error of CRPS
and CRC percentages of time for the different sleep stages. (a) CRPS calculated from heartbeat and respiration data obtained from PSG. (b) CRPS when heartbeats
and respiration were reconstructed from actigraphy data recorded by a smartwatch (see Methods). (c) and (d) show the results for CRC when using PSG and ACT data,
respectively. Note that the sleep-stage stratification is most pronounced for CRPS applied to PSG data and is somewhat reduced when reconstructed heartbeat and respiration
are used. On the other hand, CRC slightly increases for ACT data. Our results indicate that CRPS and CRC can reliably be determined at home by reconstructing heartbeat
and respiration signals from the actigraphy recordings of wrist-worn smart devices. The mean fraction represents the average time CRPS and CRC are observed across all
subjects throughout the night, calculated by averaging individual subject measures regardless of sleep stage.

solely on the ECG and respiration signals derived from the PSG
dataset. It is important to note that the optimal window size of
25 s and overlap of 20 s, as shown in Table II, facilitate the most
effective differentiation between actual and surrogate data. These
specific values do not need to be in correspondence with sleep-
stage scoring, which is typically done in 30 s windows. Alterations
to these parameters can significantly influence the outcomes; for

example, a reduced window size may increase the detection of
spurious synchronization. The comprehensive analysis provided in
Ref. 28 validates that a window size of 25 s and an overlap of
20 s are optimal for RSM. The RSM and ACM algorithms were
employed on the PSG and ACT datasets of each participant to sys-
tematically identify episodes of CRPS and CRC across various sleep
stages.
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TABLE III. Group average percentage of CRPS and CRC for the different sleep

stages for both PSG and ACT datasets.

Wake N1 N2 N3 REM

CRPS(PSG) 7.12% 9.31% 12.65% 15.52% 7.15%
CRPS(ACT) 5.80% 6.97% 10.44% 15.52% 8.10%
CRC(PSG) 5.84% 5.67% 7.38% 9.19% 5.00%
CRC(ACT) 7.28% 6.95% 8.61% 10.18% 5.37%

IV. RESULTS AND DISCUSSION

The means and standard errors of the group-averaged percent-
ages of CRPS and CRC for the different sleep stages for PSG and

ACT data sets are presented in Fig. 3 and Table III. The comparison
between the results obtained from PSG (recorded heartbeat and res-
piration activity) and ACT data (heartbeat and respiration activity
reconstructed from wrist acceleration) demonstrates a high level of
agreement for both CRC and CRPS. These group-averaged results
are also confirmed by the analysis of the data from individual sub-
jects (Fig. 4). However, we note that there is a significant reduction
in CRPS for wake and light sleep in the reconstructed data (Fig. 4,
top panel in middle column). This could be explained by the vari-
ability in pre-ejection and pulse arrival times, which may modulate
the cardiac phase in the reconstructed signal but not the respira-
tory phase. This, in turn, would reduce overall CRPS. In contrast,
changes in pre-ejection and pulse arrival times represent an offset in
the difference between R-peak time and respiratory onset and thus

FIG. 4. Statistical comparisons of CRPS and CRC based on PSG and reconstructed data. We applied a one-sided Wilcoxon rank test to the results of individual subjects to
probe for significant differences in CRPS and CRC in the different sleep stages. Each matrix depicts the significance level for this pairwise comparison given the hypothesis
that CRPS (CRC) in the sleep stage indicated on the y axis is larger than the CRPS (CRC) in the sleep stage indicated on the x axis. A matrix element in white recommends
rejection of the hypothesis (p > 0.05), whereas colored elements show statistical significance at different levels (gray for p < 0.01 and dark gray for p < 0.001). The middle
column depicts the significance levels for the direct comparison between PSG and reconstructed data using a two-sided Wilcoxon rank test. Overall, these results confirm
the observation of a sleep-stage stratification pattern in CRPS and CRC in both PSG and reconstructed data, as shown in Fig. 3. The significant difference between CRPS
in PSG and reconstructed data during wake and light sleep could be due to the variability in pre-ejection and pulse arrival times that modulate the cardiac phase in the
reconstructed signal.
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FIG. 5. Distributions of the durations of CRPS and CRC episodes. This log-linear
plot displays the durations of CRPS and CRC episodes as detected by the auto-
matic algorithms. Notably, both distributions exhibit a nearly exponential decay.
Although CRPS is detected more frequently (Fig. 3), long CRC episodes are
slightly more frequent.

should not affect the coordigram very much so that no significant
changes occur.

Previous studies7,9 have reported a pronounced stratification
pattern of CRPS across different sleep stages in healthy individu-
als. While the GIF database contains mainly patients with mild to
moderate obstructive sleep apnea (see Leube et al.32 for a table of

diagnoses), we find that this sleep-stage stratification pattern is pre-
served. CRPS is more frequent in NREM sleep and most robust
for N3 (deep) sleep. In contrast, CRC does not show such a clear
sleep-stage stratification pattern, but nevertheless, CRC is highest
during N3 sleep and lowest during REM. During N1, CRC occur-
rences are as frequent as during wake, unlike CRPS occurrences. For
CRC, the percentage increases by 1.6 from wake to N3, while the
corresponding factor is 2.2 for CRPS.

In Fig. 5, we compare the durations of CRPS and CRC episodes.
Both distributions exhibit an exponential decay. However, longer
durations are slightly more frequent for CRC than for CRPS, albeit
CRC is less frequent overall.

In addition to the overall group-averaged percentages of CRPS
and CRC during different sleep stages, we are also interested in
CRPS and CRC on an individual level, i.e., whether subjects with
more CRPS or CRC during sleep also have more CRPS/CRC dur-
ing wake. To this end, we investigate the width of the reduced
synchrogram WS and the width of the CRC time-shift distri-
bution WC during wake and sleep. For better comparison, we
rescaled both measurements to the range between 0 and 1, WS

= 1 −
WS
2π

and WC = 1 −
WC
1.5 s

, since we only consider shifts between
two R peaks shorter than 1.5 s. The closer the observed value is
to one, the higher the degree of CRPS or CRC. The averaged
WS and WC for wake and sleep have been calculated for each
subject.

Figure 6 illustrates a strong correlation between sleep and wake
in both CRPS and CRC measurements, indicating that individuals
with a high degree of wake CRPS (or CRC) are likely to exhibit a high
degree of CRPS (or CRC) during sleep. However, we note that for
CRPS, the measurements during sleep are higher than during wake
[as shown also in Figs. 6(a), 3(a), 3(b)]. In contrast, for CRC, the

FIG. 6. Sleep–wake correlations for (a) CRPS and (b) CRC. Subjects who show high values of synchronization or coordination during sleep are likely also to have high

synchronization or coordination during wake and vice versa. Degrees of CRPS and CRC are characterized by the normalized values of the widths,WS andWC, respectively;
all four sleep stages have been combined. Spearman’s rank correlation coefficients are (a) ρ = 0.68 (p < 10−5, for CRPS) and (b) ρ = 0.76 (p < 10−5, for CRC). Only
the PSG data were used for this analysis.
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FIG. 7. CRPS and CRC coexist and are influenced by breathing rate fluctuations. Sleep data from a single subject indicate that despite considerable fluctuations in the
inter-breath intervals (IBI, top panel), i.e., fluctuations in breathing rate, the cardiac and respiratory rhythms can synchronize (red dots, middle panel) or coordinate (red
dots, bottom panel). Particularly interesting is the period from about 14 710–14 800 s with pronounced CRPS and no CRC, perhaps because of high fluctuations in the
breathing rate. Of note, for relatively constant breathing frequencies, CRPS and CRC coexist (e.g., from 14 650 to 14 710 s—interrupted by a fast breathing cycle at around
14 680 s—and from 14 820 to 14 850 s).

differences between sleep and wake are relatively small (in accor-
dance with Figs. 3(c) and 3(d).

Another interesting question is about the relationship between
CRPS and CRC, as both were shown to coexist but are believed
to be independent of respiratory sinus arrhythmia (RSA).10,37 To
shed light on this, we investigated the dynamics of CRPS and CRC,
simultaneously plotting reduced synchrograms and coordigrams for
individual subjects. Figure 7 shows an example of the coexistence of
CRPS and CRC, which may be affected by fluctuations in the breath-
ing rate. In fact, for moderately to highly fluctuating breathing rates,
lower levels of CRC but a high level of CRPS could occur if the
phase of the heart rate oscillator changes in synchronization with
the respiratory oscillator (see, e.g., the time period between 14 710
and 14 800 s in Fig. 7; note that the opposite can also be observed10).
The figure also suggests that for relatively constant breathing rates,
CRPS, and CRC coexist.

The breathing-rate dependence of CRPS–CRC correlations
during sleep is systematically investigated in Fig. 8. Our results
indicate a transition from positive CRPS–CRC correlations at rel-
atively constant breathing rates to CRPS-CRC anti-correlations if
fluctuations in the breathing rate are large. This anti-correlation and
strong dependence on the stability of the breathing cycle implies that
different physiological mechanisms could trigger CRPS and CRC.

V. SUMMARY AND OUTLOOK

In this paper, we introduced the automated coordigram
method (ACM)—an algorithm to detect epochs of CRC in long-
term data and quantify the degree of CRC. Applying ACM to sleep
data, we found a pronounced sleep-stage dependence, with the high-
est level of CRC during N3 (deep) sleep and the lowest during
REM. This dependence is similar to the sleep-stage stratification pat-
tern that we observe in CRPS and which was previously reported

for a cohort of healthy subjects.9 Specifically, our findings are in
close agreement with the age groups of 35–49 and 50–64 years in
Ref. 9 (corresponding to the mean age ± STD of 48.6±13.9 years of
our database). While the overall percentage of CRC during sleep is
lower than for CRPS, and the sleep-stage differences are less distinct,
episodes of CRC tend to be slightly longer than CRPS episodes.

Our algorithms work similarly well for ACT data, recovering
the same sleep-stage stratification pattern so that data from smart
watch devices could be used for CRPS and CRC analysis. These
findings demonstrate that reconstructed data can also be used to
reliably measure both CRPS and CRC, offering a cost-effective and
widely accessible method for detecting these conditions at home
without the need for a sleep lab and medical devices to measure
ECG and respiration. We note that sleep-stage classification can also
be obtained from wrist acceleration data (and reconstructed heart-
beats), as was recently shown with an approach using a convolution
neural network combined with a dilated convolution neural network
and transfer learning.38

Generally, subjects with higher synchronization during sleep
are also more likely to have higher synchronization in the wake;
the same holds for CRC. It should be noted that CRPS and CRC
should come from different physiological mechanisms, even though
the synchrogram and coordigram look similar. They respond to the
change of sleep stages and certain chronic diseases differently.8,10,39

Also, the synchrogram and coordigram cannot show a perfect hori-
zontal line at the same time when the breathing frequency fluctuates,
but CRC and CRPS will be indistinguishable when the breathing fre-
quency shows no fluctuation. This hypothesis is supported by the
transition from a positive correlation to a negative correlation as the
standard deviation of IBI increases.

Our systematic research shows that CRPS and CRC are two
independent phenomena that result from different physiologi-
cal mechanisms. Although CRPS is more sensitive to sleep-stage
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FIG. 8. The nature of CRPS and CRC correlation during sleep depends on fluctuations of the breathing frequency. For small fluctuations in the breathing frequency (i.e.,
the standard deviation (STD) of IBI < 0.1 s), CRPS and CRC are positively correlated; for moderate to highly fluctuating breathing frequencies, CRPS and CRC are

anti-correlated, showing the highest level of anti-correlations at an IBI STD of about 0.25 and 0.9 s. CRPS–CRC correlations were calculated from the scatter plots of WC

vs WS using Spearman’s rank correlation (see the two insets for positive and negative correlations for different IBI STD). Each point in the scatterplot represents a single

subject from the GIF-PSG database, for which their correspondingWC andWS values for windows in the selected interval of IBI STD were averaged. Spearman’s ρ-values
are significant (p < 0.05) for all IBI STDs except for the range of 0.1–0.13 s (red dot).

transitions, CRC is highly affected by disorders such as sleep apnea,8

or preeclampsia.39 Both measures have the potential to be used in
clinical diagnosis, and they are very likely to respond differently to
various cardiovascular diseases. They become indistinguishable only
under constant breathing rates but exhibit rather similar change
directions with sleep stages, also when studied for individual sub-
jects. We have shown that these changes can be reliably retrieved
using fully automated annotation algorithms for CRPS and CRC,
even if respiration and heartbeat activity are not measured but
merely reconstructed from actigraphy data. Using these reconstruc-
tion algorithms will, therefore, help to investigate CRPS and CRC
in large population-based cohort studies, where physiological data
are commonly recorded by wrist (or hip) actigraphy. Such a study
with thousands of subjects as available, for example, in the German
Cohort Study,29 would be essential to prove significant relationships
of CRC and CRPS to diseases and risk factors.

AUTHOR DECLARATIONS

Conflict of Interest

The authors have no conflicts to disclose.

Author Contributions

Yaopeng J. X. Ma: Data curation (equal); Formal analysis (equal);
Investigation (equal); Methodology (equal); Software (equal); Visu-
alization (equal); Writing – original draft (equal); Writing – review
& editing (equal). Johannes Zschocke: Data curation (equal); For-
mal analysis (equal). Martin Glos: Data curation (equal). Maria
Kluge: Data curation (equal). Thomas Penzel: Data curation
(equal); Funding acquisition (equal); Project administration (equal).
Jan W. Kantelhardt: Conceptualization (equal); Data curation
(equal); Funding acquisition (equal); Investigation (equal); Method-
ology (equal); Validation (equal); Writing – original draft (equal);
Writing – review & editing (equal). Ronny P. Bartsch: Conceptu-
alization (equal); Funding acquisition (equal); Investigation (equal);
Methodology (equal); Supervision (equal); Validation (equal); Writ-
ing – original draft (equal); Writing – review & editing (equal).

DATA AVAILABILITY

All analyses were performed using Python scripts. The code
is publicly available at https://github.com/AlexMa123/CRC_CRPS_
Detection. Further inquiries can be directed to the corresponding

Chaos 34, 043118 (2024); doi: 10.1063/5.0177552 34, 043118-10

© Author(s) 2024

 12 D
ecem

ber 2024 06:39:16

https://pubs.aip.org/aip/cha
https://github.com/AlexMa123/CRC_CRPS_Detection


Chaos ARTICLE pubs.aip.org/aip/cha

authors. We utilize de-identified multi-channel recordings, includ-
ing ECG, respiration, wrist actigraphy, and sleep hypnograms from
clinical sleep laboratories at the Charité Hospital Berlin, Germany.
These data can be obtained upon reasonable request by contacting
Dr. Martin Glos (martin.glos@charite.de).

REFERENCES
1T. E. Dick, Y.-H. Hsieh, R. R. Dhingra, D. M. Baekey, R. F. Galán, E. Wehrwein,
and K. F. Morris, “Cardiorespiratory coupling: Common rhythms in cardiac, sym-
pathetic, and respiratory activities,” in The Central Nervous System Control of
Respiration, Progress in Brain Research, edited by G. Holstege, C. M. Beers, and
H. H. Subramanian (Elsevier, 2014), Vol. 209, Chap. 10, pp. 191–205.
2R. P. Bartsch, K. K. Liu, Q. D. Ma, and P. C. Ivanov, “Three independent forms
of cardio-respiratory coupling: Transitions across sleep stages,” in Computing in
Cardiology 2014 (IEEE, 2014), pp. 781–784.
3T. Penzel, Y. Ma, J. Krämer, N. Wessel, M. Glos, I. Fietze, and R. P. Bartsch,
“Sleep-related modulations of heart rate variability, ECG, and cardio-respiratory
coupling,” in Physics of Biological Oscillators: New Insights into Non-Equilibrium
and Non-Autonomous Systems (Springer, 2021), pp. 311–327.
4F. Yasuma and J.-I. Hayano, “Respiratory sinus arrhythmia: Why does the
heartbeat synchronize with respiratory rhythm?,” Chest 125, 683–690 (2004).
5A. Angelone and N. A. Coulter, Jr., “Respiratory sinus arrhythmia: A frequency
dependent phenomenon,” J. Appl. Physiol. 19, 479–482 (1964).
6C. Schäfer, M. G. Rosenblum, J. Kurths, and H.-H. Abel, “Heartbeat synchro-
nized with ventilation,” Nature 392, 239–240 (1998).
7R. Bartsch, J. W. Kantelhardt, T. Penzel, and S. Havlin, “Experimental evidence
for phase synchronization transitions in the human cardiorespiratory system,”
Phys. Rev. Lett. 98, 054102 (2007).
8M. Riedl, A. Müller, J. F. Kraemer, T. Penzel, J. Kurths, and N. Wessel, “Cardio-
respiratory coordination increases during sleep apnea,” PLoS One 9, e93866
(2014).
9R. P. Bartsch, A. Y. Schumann, J. W. Kantelhardt, T. Penzel, and P. C.
Ivanov, “Phase transitions in physiologic coupling,” Proc. Natl. Acad. Sci. 109,
10181–10186 (2012).
10H. Krause, J. F. Kraemer, T. Penzel, J. Kurths, and N. Wessel, “On the difference
of cardiorespiratory synchronisation and coordination,” Chaos: An Interdisci-
plinary Journal of Nonlinear Science 27, 093933 (2017).
11M. G. Rosenblum, A. S. Pikovsky, and J. Kurths, “Phase synchronization of
chaotic oscillators,” Phys. Rev. Lett. 76, 1804–1807 (1996).
12S. Boccaletti, J. Kurths, G. Osipov, D. Valladares, and C. Zhou, “The synchro-
nization of chaotic systems,” Phys. Rep. 366, 1–101 (2002).
13L. M. Pecora and T. L. Carroll, “Synchronization of chaotic systems,” Chaos 25,
097611 (2015).
14T. Stankovski, T. Pereira, P. V. E. McClintock, and A. Stefanovska, “Coupling
functions: Universal insights into dynamical interaction mechanisms,” Rev. Mod.
Phys. 89, 045001 (2017).
15E. Toledo, S. Akselrod, I. Pinhas, and D. Aravot, “Does synchronization reflect
a true interaction in the cardiorespiratory system?,” Med. Eng. Phys. 24, 45–52
(2002).
16S. Perry, N. Khovanova, and I. Khovanov, “Physical fitness contributes to
cardio-respiratory synchronization,” in 2019 41st Annual International Confer-
ence of the IEEE Engineering in Medicine and Biology Society (EMBC) (IEEE,
2019), pp. 4957–4960.
17Y. Ren and J. Zhang, “Increased cardiorespiratory synchronization evoked by
a breath controller based on heartbeat detection,” Biomed. Eng. Online 18, 1–13
(2019).
18C. Schäfer, M. G. Rosenblum, H.-H. Abel, and J. Kurths, “Synchronization in
the human cardiorespiratory system,” Phys. Rev. E 60, 857–870 (1999).

19D. Iatsenko, A. Bernjak, T. Stankovski, Y. Shiogai, P. J. Owen-Lynch, P.
Clarkson, P. V. McClintock, and A. Stefanovska, “Evolution of cardiorespiratory
interactions with age,” Philos. Trans. R. Soc. A 371, 20110622 (2013).
20M. M. Kabir, H. Dimitri, P. Sanders, R. Antic, E. Nalivaiko, D. Abbott, and M.
Baumert, “Cardiorespiratory phase-coupling is reduced in patients with obstruc-
tive sleep apnea,” PLoS One 5, e10602 (2010).
21M. Radha, P. Fonseca, A. Moreau, M. Ross, A. Cerny, P. Anderer, X. Long, and
R. M. Aarts, “Sleep stage classification from heart-rate variability using long short-
term memory neural networks,” Sci. Rep. 9, 14149 (2019).
22D. Galletly and P. Larsen, “Cardioventilatory coupling during anaesthesia,” Br.
J. Anaesth. 79, 35–40 (1997).
23K. Berg, J. F. Kraemer, M. Riedl, H. Stepan, J. Kurths, and N. Wessel, “Increased
cardiorespiratory coordination in preeclampsia,” Physiol. Meas. 38, 912 (2017).
24H. Krause, J. F. Kraemer, T. Penzel, J. Kurths, and N. Wessel, “On the difference
of cardiorespiratory synchronisation and coordination,” Chaos 27, 0 (2017).
25A. S. Pikovsky, M. G. Rosenblum, and J. Kurths, Synchronization: A Universal
Concept in Nonlinear Sciences (Cambridge University Press, Cambridge, 2001).
26K. Kotani, K. Takamasu, Y. Ashkenazy, H. E. Stanley, and Y. Yamamoto,
“Model for cardiorespiratory synchronization in humans,” Phys. Rev. E 65,
051923 (2002).
27D. Galletly and P. Larsen, “Inspiratory timing during anaesthesia: A model of
cardioventilatory coupling,” Br. J. Anaesth. 86, 777–788 (2001).
28A. Kuhnhold, A. Y. Schumann, R. P. Bartsch, R. Ubrich, P. Barthel, G. Schmidt,
and J. W. Kantelhardt, “Quantifying cardio-respiratory phase synchronization—A
comparison of five methods using ECGs of post-infarction patients,” Physiol.
Meas. 38, 925 (2017).
29German National Cohort (GNC) Consortium, “The German National Cohort:
Aims, study design and organization,” Eur. J. Epidemiol. 29, 371–382 (2014).
30R. B. Berry, S. F. Quan, A. R. Abreu, M. L. Bibbs, L. DelRosso, and S. M. Harding
et al., “The AASM manual for the scoring of sleep and associated events: Rules, ter-
minology and technical specifications, version 2.6” (American Academy of Sleep
Medicine, 2020).
31J. Zschocke, M. Kluge, L. Pelikan, A. Graf, M. Glos, A. Müller, R. Mikolajczyk,
R. P. Bartsch, T. Penzel, and J. W. Kantelhardt, “Detection and analysis of pulse
waves during sleep via wrist-worn actigraphy,” PLoS One 14, e0226843 (2019).
32J. Leube, J. Zschocke, M. Kluge, L. Pelikan, A. Graf, M. Glos, A. Müller, R.
P. Bartsch, T. Penzel, and J. W. Kantelhardt, “Reconstruction of the respiratory
signal through ECG and wrist accelerometer data,” Sci. Rep. 10, 14530 (2020).
33J. Zschocke, J. Leube, M. Glos, O. Semyachkina-Glushkovskaya, T. Penzel, R.
P. Bartsch, and J. W. Kantelhardt, “Reconstruction of pulse wave and respiration
from wrist accelerometer during sleep,” IEEE Trans. Biomed. Eng. 69, 830–839
(2021).
34C. Carreiras, A. P. Alves, A. Lourenço, F. Canento, H. Silva, and
A. Fred et al., “BioSPPy: Biosignal processing in Python,” available at
https://biosppy.readthedocs.io/en/stable (2015).
35D. Galletly and P. Larsen, “Cardioventilatory coupling in heart rate variabil-
ity: Methods for qualitative and quantitative determination,” Br. J. Anaesth. 87,
827–833 (2001).
36S. Kullback and R. A. Leibler, “On information and sufficiency,” Ann. Math.
Stat. 22, 79–86 (1951).
37R. P. Bartsch, K. K. Liu, Q. D. Ma, and P. C. Ivanov, “Three independent forms
of cardio-respiratory coupling: Transitions across sleep stages,” in Computing in
Cardiology 2014 (IEEE, 2014), pp. 781–784.
38Y. J. Ma, J. Zschocke, M. Glos, M. Kluge, T. Penzel, J. W. Kantelhardt, and R.
P. Bartsch, “Automatic sleep-stage classification of heart rate and actigraphy data
using deep and transfer learning approaches,” Comput. Biol. Med. 163, 107193
(2023).
39K. Berg, J. F. Kraemer, M. Riedl, H. Stepan, J. Kurths, and N. Wessel, “Increased
cardiorespiratory coordination in preeclampsia,” Physiol. Meas. 38, 912 (2017).

Chaos 34, 043118 (2024); doi: 10.1063/5.0177552 34, 043118-11

© Author(s) 2024

 12 D
ecem

ber 2024 06:39:16

https://pubs.aip.org/aip/cha
https://martin.glos@charite.de
https://doi.org/10.1378/chest.125.2.683
https://doi.org/10.1152/jappl.1964.19.3.479
https://doi.org/10.1038/32567
https://doi.org/10.1103/PhysRevLett.98.054102
https://doi.org/10.1371/journal.pone.0093866
https://doi.org/10.1073/pnas.1204568109
https://doi.org/10.1063/1.4999352
https://doi.org/10.1103/PhysRevLett.76.1804
https://doi.org/10.1016/S0370-1573(02)00137-0
https://doi.org/10.1063/1.4917383
https://doi.org/10.1103/RevModPhys.89.045001
https://doi.org/10.1016/s1350-4533(01)00114-x
https://doi.org/10.1186/s12938-019-0683-9
https://doi.org/10.1103/physreve.60.857
https://doi.org/10.1098/rsta.2011.0622
https://doi.org/10.1371/journal.pone.0010602
https://doi.org/10.1038/s41598-019-49703-y
https://doi.org/10.1093/bja/79.1.35
https://doi.org/10.1088/1361-6579/aa64b0
https://doi.org/10.1063/1.4999352
https://doi.org/10.1103/PhysRevE.65.051923
https://doi.org/10.1093/bja/86.6.777
https://doi.org/10.1088/1361-6579/aa5dd3
https://doi.org/10.1007/s10654-014-9890-7
https://doi.org/10.1371/journal.pone.0226843
https://doi.org/10.1038/s41598-020-71539-0
https://doi.org/10.1109/TBME.2021.3107978
https://biosppy.readthedocs.io/en/stable
https://doi.org/10.1093/bja/87.6.827
https://doi.org/10.1214/aoms/1177729694
https://doi.org/10.1016/j.compbiomed.2023.107193
https://doi.org/10.1088/1361-6579/aa64b0

