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Morphology of nanoporous glass: Stochastic 3D modeling, stereology and the influence of pore width
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Excursion sets of Gaussian random fields are used to model the three-dimensional (3D) morphology of
differently manufactured porous glasses (PGs), which vary with respect to their mean pore widths measured
by mercury intrusion porosimetry. The stochastic 3D model is calibrated by means of volume fractions and
two-point coverage probability functions estimated from tomographic image data. Model validation is performed
by comparing model realizations and image data in terms of morphological descriptors which are not used
for model fitting. For this purpose, we consider mean geodesic tortuosity and constrictivity of the pore space,
quantifying the length of the shortest transportation paths and the strength of bottleneck effects, respectively.
Additionally, a stereological approach for parameter estimation is presented, i.e., the 3D model is calibrated using
merely two-dimensional (2D) cross-sections of the 3D image data. Doing so, on average, a comparable goodness
of fit is achieved as well. The variance of the calibrated model parameters is discussed, which is estimated on the
basis of randomly chosen, individual 2D cross-sections. Moreover, interpolating between the model parameters
calibrated to differently manufactured glasses enables the predictive simulation of virtual but realistic PGs with
mean pore widths that have not yet been manufactured. The predictive power is demonstrated by means of
cross-validation. Using the presented approach, relationships between parameters of the manufacturing process
and descriptors of the resulting morphology of PGs are quantified, which opens possibilities for an efficient
optimization of the underlying manufacturing process.
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I. INTRODUCTION

Porous glass (PG) is characterized by a precisely control-
lable mean pore width, a narrow distribution of pore widths as
well as a regular interconnected pore structure [1]. By man-
ufacturing nano-PGs, three-dimensional (3D) reaction spaces
with mean pore widths ranging from a few (∼2 nm) to several
thousand nanometers can be designed [2]. In the pore system,
interactions between different substances as well as interac-
tions of substances with the pore wall can be investigated.
This is of particular interest for mechanistic studies on the
interaction, flow, and diffusion of liquids as a function of their
complexity [3–5] as well as biologically active substances,
e.g., for enzymes, viruses, bacteria, catalytic reactions, and
protein dynamics [6–8]. Moreover, PG can be used as a reser-
voir, e.g., for storage and sustained release of drugs [9].
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PGs are produced in two ways: by the sol-gel [10] and
the controlled PG (CPG) process, also known as the Vycor
process [11]. In both cases, phase separation is induced in
a homogeneous mixture. The separation can be chemically
initiated in the case of sol-gel materials or thermally ini-
tiated in CPG. The resulting porosity and pore width are
mainly controlled by three factors, namely, the composition
of the homogeneous mixture as well as time and temperature
of phase separation. In the case of CPG, the aim of phase
separation is to create two chemically different phases with
an interconnected structure, where one of the phases has a
composition of >96 mol. % SiO2. Due to different solubil-
ity, the nonsilicate-rich phase can be dissolved, resulting in
an open porous 3D SiO2 component after a cleaning and
drying step [12,13]. Since these pore structures can be repro-
ducibly manufactured with high accuracy regarding the pore
width, PGs are used as calibration materials for standard pore
structure analytics such as nitrogen adsorption and mercury
intrusion. Furthermore, they are suitable as a model system to
investigate volume and surface effects on crystallisation and
diffusion processes [14–18].

In addition to porosity and mean pore width, further mor-
phological descriptors of the transport phase, i.e., the pore
space in our case, have a strong influence on physical prop-
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erties such as, e.g., effective diffusivity. Thus, a quantitative
understanding of relationships between parameters of the
manufacturing process, morphological descriptors of the 3D
nanostructure, and physical materials properties is required to
generate nano-PGs with predefined morphological and physi-
cal properties. Note that this kind of morphological influence
has been quantified for porous silica manufactured by sol-gel
processes in Ref. [19] as well as for larger classes of porous
or composite materials in Refs. [20–24].

In this paper, we use stochastic 3D modeling to generate
digital twins of 3D image data representing the morphology
of nano-PG. In this way, we can quantify the influence of
mean pore width, measured by mercury intrusion porosimetry
and adjustable during the manufacturing process, on further
morphological descriptors that are experimentally not acces-
sible. For the latter, we consider descriptors for the length
of transportation paths and the strength of bottleneck effects,
which in turn have a strong influence on physical transport
properties, like effective diffusivity [22] and liquid imbibi-
tion [25,26], where we consider three CPGs with different
mean pore widths and one silica monolith manufactured as
described in Refs. [27,28], respectively.

Our modeling approach is based on excursion sets of Gaus-
sian random fields, see chap. 16 in Ref. [29]. This means
that the model can be directly calibrated to the materials
morphology observed in 3D image data instead of modeling
the movement of atoms and molecules during the manufac-
turing process. Thus, the presented approach conceptually
differs from previous models for CPGs, which use molecular
dynamics simulations [30,31]. Note that excursion sets of
Gaussian random fields have been exploited to model the mor-
phology of various functional materials, such as electrodes
in solid oxide fuel cells [32–35], electrodes in gas-diffusion
electrodes [36], aerogels [37], concrete [38], nanoporous
gold [39], and Vycor glass [40]. The excursion set model
used in this paper allows for statistically mimicking the 3D
nanostructure of the considered glasses with only three model
parameters. Model validation is performed by comparing mor-
phological descriptors of simulated and measured image data,
which have not been used for model fitting. Since our model
calibration is based on 3D image data, the acquisition of which
is costly and time consuming, we also show how to use two-
dimensional (2D) cross-sections to stereologically estimate
the model parameters. Moreover, we discuss the quality of
these estimates in detail. In this paper, we use excursion sets
of Gaussian random fields, as the microstructures represented
in image data look rather similar to realizations of such excur-
sion set models. This visual impression is formally justified
by the model validation, where good accordance between
model realizations and data is observed. However, note that,
for morphologically different microstructures or nanostruc-
tures, there are further 3D models available in the literature
allowing for an efficient model fitting based on 2D data. In ad-
dition to models from stochastic geometry and mathematical
morphology [29,41,42], this includes, e.g., machine-learning
approaches [43], simulated and hierarchical annealing [44,45]
as well as approaches based on phase retrieval [46].

Furthermore, we use the model to quantify relationships
between mean pore width of the glasses and their morphology.
For this purpose, we perform interpolations in the parameter

space; we can predict the morphology of CPGs with mean
pore widths that have not been investigated by 3D imaging
or that have not even been manufactured so far. Thus, the
presented data-driven modeling approach provides a frame-
work to generate a comprehensive database of virtual (but
nevertheless realistic) nano-PGs, which in future work can be
used as an input for numerical simulations of effective physi-
cal properties, such as considered, e.g., in Refs. [25,47]. This
allows us, in addition to investigating relationships between
parameters of the manufacturing process and descriptors of
the resulting morphology, to quantitatively study relationships
between morphology and physical materials properties with a
reduced experimental effort.

In other words, in this paper, we present the following four
main topics: (i) Model validation is performed with respect
to transport-relevant microstructure descriptors such as con-
strictivity and geodetic tortuosity, which is not standard in the
literature and provides additional insight into the goodness of
model fit, particularly with respect to its applicability for in-
vestigating relationships between morphology and transport.
(ii) A detailed analysis is performed of how the variance of the
estimated model parameters behaves in the case of estimation
from single 2D image cross-sections and particularly how this
affects tortuosity and constrictivity. (iii) Furthermore, the dis-
cussion provided regarding the choice of covariance functions
of the underlying Gaussian random fields is also an important
contribution to the state of the art. In the literature (see for
example, Ref. [39]), it is assumed that spinodally decomposed
materials can be modeled by covariance functions of the form
ρ(h) = sin(ah)/ah, for some parameter a > 0. However, our
data-driven approach shows that the microstructures consid-
ered in this paper cannot be modeled sufficiently well with
these kinds of covariance functions. (iv) Last but not least,
using interpolation in the space of model parameters, we can
predict the overall morphology of nano-PGs with different
pore sizes. Cross-validation shows that our approach works
well.

The rest of this paper is organized as follows. Descriptions
of materials and 3D imaging are provided in Sec. II. Then in
Sec. III, the stochastic 3D model for the generation of digital
twins of nano-PGs as well as its calibration to 3D image data
is explained. The estimation of model parameters based on 2D
cross-sections is discussed in Sec. IV. In Sec. V, relationships
between parameters of the manufacturing process and descrip-
tors of the 3D morphology are investigated, which is the basis
for the predictive simulation of nano-PGs not yet observed by
3D imaging. Finally, Sec. VI concludes.

II. MATERIALS AND 3D IMAGING

A. Description of materials

CPGs in the shape of thin plates with mean pore widths of
100, 150, and 200 nm were prepared as follows. Glass blocks
with compositions in the Vycor range (7Na2O–23B2O3–
70SiO2 in wt. %) are heated at 570 ◦C < T < 700 ◦C for 8 h
to induce phase separation, which determines the morphology
of the pore system. These blocks are then cut into rectangular
cuboids with a size of 25×25×0.1 mm using a diamond saw.
Ultra-thin plates are extracted in 1 N HCl at 90 ◦C for 1 h to
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FIG. 1. Top row: Three-dimensional (3D) renderings of tomo-
graphic image data representing cubic cutouts (with a side length
of 4.8 µm) of the samples (a) CPG100, (b) CPG150, (c) CPG200,
and (d) CPG1000. Bottom row: Digital twins drawn from the models
fitted to (e) CPG100, (f) CPG150, (g) CPG200, and (h) CPG1000.
This visualization shows cutouts of equal physical size and does not
cover all available image data, cf. Table I.

dissolve the borate-rich phase, followed by a 1 h treatment
with 0.5 N NaOH at room temperature to remove dispersed
silicates. The resulting CPG plates are neutral washed and
air-dried overnight between each leaching step. For more in-
formation, see Ref. [27]. Additionally, a silica monolith with
a mean pore width of 1000 nm was prepared via a sol-gel
process using the procedure reported in Ref. [28]. The mean
pore widths have been determined by means of mercury in-
trusion porosimetry. For the 1000 nm sample, a solution of
urea and polyethylene oxide (PEO) was prepared in distilled
water under vigorous stirring for 30 min at room tempera-
ture. Afterwards, sulfuric acid and tetraethoxysilane (TEOS)
were added. Then after an additional 30 min of vigorous stir-
ring, the mixture was poured into a polytetrafluoroethylene
(PTFE)-lined stainless steel autoclave. The reaction mixture,
consisting of 17 g of H2O, 4.21 g of urea, 2.20 g of PEO,
2.52 g of H2SO4, and 15.51 g of TEOS, was submitted to
thermal treatment. In a first step, gelation was performed at
40–50 ◦C for 24 h. In a second step, hydrothermal treatment
was performed at 120 ◦C for 20 h. After cooling, the wet
gel obtained was removed from the autoclave and washed
with water until the pH was neutral. The wet gel was then
submerged in water inside a plastic tube and dried at 120 ◦C
for 24 h. Thereafter, the xerogel obtained was calcined at
600 ◦C for 8 h, using a heating rate of 3 ◦Cmin−1 starting
from room temperature. In the following, we denote the sam-
ples described above by CPG100, CPG150, CPG200, and
CPG1000, respectively, depending on the corresponding mean
pore width, see Fig. 1 for visualizations of tomographic image
data and corresponding model realizations.

B. 3D imaging and image preprocessing

Imaging experiments were performed with an x-ray micro-
scope Zeiss Xradia 810 Ultra that operates with a chromium
x-ray source (5.4 keV) using phase-contrast imaging mode.
For this purpose, a gold phase ring, with a thickness designed
to produce a phase shift of 3π/2 of the nondiffracted x-ray
beam, was positioned near the back focal plane of the zone

TABLE I. Summary of conditions (exposure time texp, voxel size
ϑ , size of the sampling window W in voxel) under which 3D imaging
was performed.

Sample texp ϑ Size of W (voxel)

CPG100 100 16 nm 643×595×529
CPG150 80 32 nm 350×316×504
CPG200 70 32 nm 362×317×420
CPG1000 75 128 nm 358×314×310

plate. In the imaging experiments, a total of 901 projections
was obtained over 180◦ with exposure time texp and detector
binning depending on the given sample, see Table I. Image
reconstruction was performed by the filtered backprojection
algorithm [48] implemented in the software XMReconstruc-
tor, which is part of the Xradia 810 Ultra.

The commercial software Thermo Scientific Avizo (ver-
sion 9.4.0) was used for image preprocessing. First, a nonlocal
means filter as described in Ref. [49] is applied in 3D with
a fixed search window of 21×21×21 and a cubic similarity
neighborhood of 5×5×5 voxel, where the similarity factor
is chosen to be 1. The segmentation of image data, i.e., the
classification of each voxel as either pore or solid, was per-
formed using the auto threshold module in Avizo with the
IsoData criterion. Note that this Avizo module was also used
in Ref. [50] for the segmentation of image data representing
glass foams. For CPG200 as an example, a comparison be-
tween the grayscale image after noise reduction by filtering
and the segmented image is shown in Fig. 2.

III. STOCHASTIC 3D MODELING

We now present a stochastic model for mimicking the 3D
morphology of the nano-PGs described in Sec. II A. The mod-
eling idea, together with some fundamental formulas, is stated
in Sec. III A. These formulas are then used in Sec. III B for
the calibration of model parameters. In Sec. III C, a physico-
chemical interpretation is given for the parametric covariance
model considered in Sec. III B. Furthermore, model validation
is explained in Sec. III D, where morphological descriptors

FIG. 2. (a) Two-dimensional (2D) cross-section of the grayscale
image of sample CPG 200 after noise reduction by filtering and
(b) the corresponding segmented cross-section, where the solid phase
is represented in blue and the pore space in dark gray.
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not used for model calibration are compared with each other
for image data of real and simulated nano-PGs.

A. Model description and some fundamental formulas

The solid phase of the nano-PGs is modeled by motion-
invariant (i.e., stationary and isotropic) excursion sets of
Gaussian random fields, see also Refs. [29,41,42]. For an
introduction to Gaussian random fields and their geometric
properties, we refer to Refs. [41,51]. The assumption of mo-
tion invariance is justified, as there is no preferred direction in
the manufacturing process. Moreover, this assumption is con-
firmed on image data by use of the chord-length distributions
[see sec. 6.3.4 in Ref. [41]], provided in the Appendix. Con-
sider a motion-invariant Gaussian random field X = {X (u) :
u ∈ R3} such that EX (u) = 0 and VarX (u) = 1 for each u ∈
R3. Let ρ : R3×R3 → R denote the covariance function of X ,
i.e., ρ(u, v) = Cov(X (u), X (v)) for all u, v ∈ R3. Note that,
by the motion invariance of X , the value ρ(u, v) does only
depend on the distance |u − v| between u, v ∈ R3. Hence,
with some abuse of notation, we write ρ(h) = ρ(u, v) for any
h ∈ [0,∞), where u, v ∈ R3 are arbitrary points in the 3D
Euclidean space R3, with h = |u − v|.

By considering the (random) subset of R3, where the ran-
dom field X exceeds a predefined value λ ∈ R, we obtain
a so-called excursion set � = {u ∈ R3 : X (u) > λ}, which is
then used to model the solid phase of the CPGs. Note that,
under the conditions mentioned above, the distribution of X
depends only on the covariance function ρ : R3×R3 → R.
Thus, the distribution of the random set � is uniquely defined
by ρ and the threshold λ ∈ R. This means that to properly
calibrate the model, ρ and λ must be estimated based on
information from the 3D image data described in Sec. II B.

For this purpose, we make use of some fundamental for-
mulas, which are true for volume fractions and two-point
coverage probability functions of excursion sets of motion-
invariant Gaussian random fields. First, we consider the
volume fraction ε = E(ν3(� ∩ [0, 1]3)) of the stationary ran-
dom set �, where ν3 denotes the 3D Lebesgue measure. It can
be easily shown that ε = P (X (o) > λ), where o ∈ R3 denotes
the origin. Thus, we get that

ε = 1 − 	(λ), (1)

where 	 : R → [0, 1] denotes the distribution function of the
standard normal distribution. We can therefore estimate the
threshold λ through Eq. (1) by estimating the volume fraction
ε from 3D image data, see Sec. III B below.

Moreover, we consider the two-point coverage probabil-
ity function C : [0,∞) → [0, 1] of �, which is defined by
C(h) = P (o ∈ �, u ∈ �) for each h � 0, where u ∈ R3 is an
arbitrary point, with |u| = h. Note that the random excursion
set � inherits its motion invariance from the corresponding
property of the underlying random field X . Furthermore, the
two-point coverage probability function C of � can be ex-
pressed via an analytical formula by the covariance function
ρ of X , where

C(h) = ε2 + 1

2π

∫ ρ(h)

0

exp
( − λ2

1+z

)
√

1 − z2
dz, (2)

for each h ∈ [0,∞), see proposition 16.1.1 of Ref. [29].

TABLE II. Estimates for volume fraction and model parameters.

Sample ε̂ λ̂ â [1/ µm] b̂ [1/ µm2]

CPG100 0.503 −0.007520 26.88 38.20
CPG150 0.503 −0.007520 19.28 14.87
CPG200 0.487 0.03259 15.32 5.813
CPG1000 0.460 0.1004 3.900 1.270

B. Model calibration by 3D image data

The procedure for calibrating the level-set model � de-
scribed in Sec. III A is as follows. We first compute an
estimator ε̂ for the volume fraction ε of � from image data, as
described in Sec. 6.4.2 of Ref. [41]. Then in view of Eq. (1),
an estimator for λ is given by

λ̂ = 	−1(1 − ε̂ ). (3)

Numerical results for ε̂ and λ̂, which have been obtained for
the four samples CPG100, CPG150, CPG200, and CPG1000,
are shown in Table II.

To obtain an estimator Ĉ for C, we use an algorithm based
on the fast Fourier transform, as described in sec. 6.2.3 of
Ref. [52]. This algorithm makes use of the assumption of
isotropy by averaging over differently oriented vectors of
length h when estimating C(h) for arbitrary h ∈ [0,∞). Since
the Fourier transform assumes that the underlying image data
is periodic, there are often undesirable boundary effects. To
avoid this, we first mirror the segmented image data along
the facets of the cubic sampling window W in the three axis
directions of R3 before estimating C. This increases the vol-
ume of the sampling window by a factor of 8 but removes
artifacts of the boundary in the Fourier domain. Note that,
for any h ∈ [0,∞), the right-hand side of Eq. (2) is strictly
increasing in ρ(h). Thus, after replacing C(h), ε, and λ with
their respective estimators, we can solve Eq. (2) for ρ(h) nu-
merically using the method of bisection for every h ∈ [0,∞).
This gives us a nonparametric estimator ρ̂ for ρ. The estimator
ρ̂ is then used as a basis for a parametric covariance model. It
turns out that a good fit can be achieved by assuming that ρ is
of the form:

ρ(h) = sin(ah)

ah
exp(−bh2), (4)

for each h ∈ (0,∞) and some parameters a, b > 0, see Fig. 3.
Here, one can observe that the location of the minimum of

ρ̂ is closely related with the mean pore width of the respective
sample. The estimators â and b̂ for the parameters a and b are
obtained by using a least-squares approach to fit a function
ρ̂â,̂b of the form given in Eq. (4) to the (nonparametrically)
estimated covariance function ρ̂, see Table II. Recall that the
latter one is numerically computed by means of Eq. (2), using
the two-point coverage probabilities Ĉ(h) directly estimated
from image data. Virtual glass morphologies generated by
the calibrated stochastic 3D model and cutouts of the cor-
responding tomographic image data are visualized in Fig. 1.
For simulating Gaussian random fields, we use the Fourier
approach described in Sec. 7 of Ref. [32].

045605-4



MORPHOLOGY OF NANOPOROUS GLASS: STOCHASTIC 3D … PHYSICAL REVIEW MATERIALS 8, 045605 (2024)

FIG. 3. Nonparametric estimator ρ̂ (blue) for the covariance
function ρ, computed for (a) CPG100), (b) CPG150, (c) CPG200,
and (d) CPG1000, together with its parametric least-squares (LS)
fit (red) using Eq. (4). For comparison, the best parametric fit for
ρ1(h) = sin(ah)/ah is also shown.

C. Interpretation of the parametric covariance model

The covariance function ρ(h) in Eq. (4) used in this paper
is the product of the covariance functions ρ1, ρ2 : [0,∞) →
R defined by ρ1(h) = sin(ah)/ah and ρ2(h) = exp(−bh2) for
each h > 0 and model parameters a, b > 0.

For Gaussian excursion sets, covariance functions of the
form ρ1 lead to dendritic patterns in the modeled structures,
see sec. 15.1 and Fig. 16.1 in Ref. [29]. However, based on
the physicochemical theory of phase separation [53], random
fields with such covariance functions have been used to model
the morphology of spinodally decomposed materials, see, e.g.,
Refs. [39,54].

The nano-PGs considered in this paper, manufactured as
stated in Sec. II A, can be described as spinodally decom-
posed materials. Nevertheless, one can clearly observe that the
nonparametric estimator ρ̂ of ρ computed from tomographic
image data, see Fig. 3, exhibits a faster decay than the best
fit with ρ1. A qualitatively similar effect has also been ob-
served in spinodally decomposed Vycor glass, see Fig. 12 in
Ref. [40]. Multiplying ρ1 with the Gaussian-type covariance
function ρ2 allows for appropriately describing the covariance
functions obtained from image data in our case. This leads
to an exponential decay of ρ = ρ1ρ2, where the influence of
ρ2 is stronger for larger values of the model parameter b > 0
introduced in Eq. (4).

For the expected surface area per unit volume S� of the
excursion set � with level λ > 0, analytical formulas are
known. It is given by S� = −4 limh↓0 C′(h), see eq. (6.164) in
Ref. [41]. Under the assumption that ρ is twice differentiable,
this leads to

S� = 2

π
exp

(−λ2

2

)√
−ρ ′′(0),

FIG. 4. Comparison of (a) volume fraction and (b) specific sur-
face area computed from tomographic (blue) and simulated (red)
image data. For the specific surface area, we also show the values
(green) which have been obtained by the analytical formula given in
Eq. (5).

see eq. (6.165) in Ref. [41]. The covariance functions con-
sidered in this paper, see Eq. (4), fulfill the differentiability
assumption and we obtain

S� = 2

π
√

3
exp

(
−λ2

2

) √
a2 + 6b. (5)

This means that, for a given threshold λ, the value of S� is
monotonously increasing in the parameters a and b, while for
given a and b, it takes its maximum at λ = 0, i.e., at a porosity
of ε = 0.5.

D. Model validation by morphological descriptors

The level-set model �, which has been introduced in
Sec. III A and calibrated by 3D image data in Sec. III B, is
evaluated by considering various morphological descriptors
of tomographic and simulated image data. More precisely,
for each of the four samples CPG100, CPG150, CPG200,
and CPG1000, we compare morphological descriptors com-
puted from tomographic image data with the corresponding
descriptors computed from model realizations, where we av-
erage over 10 realizations drawn from the calibrated model
with a size of 400×400×400 voxel. Note that, doing so, we
generate virtual nanostructures of different physical sizes for
each sample, see Table I for voxel and window sizes used for
the different samples. This is reasonable since larger window
sizes are needed for representation in the case of larger mean
pore widths. The latter effect is illustrated in Fig. 1 and quan-
titatively represented by the covariance functions shown in
Fig. 3.

First, we consider two classical morphological descriptors
of binary image data: the volume fraction and the specific
surface area, i.e., the expected surface area per unit volume,
of the foreground phase. Recall that we use the point-count
method to estimate volume fractions from voxelized data, see
Sec. III B. Here, the local contribution to the surface area is
determined based on weighted 2×2×2 voxel configurations,
which reduces the influence of the voxel size. To do this for
the specific surface area, we exploit the algorithm described in
Refs. [52,55]. For the fitted level-set models, we additionally
compute the specific surface area by means of the analytical
formula given in Eq. (5). The obtained results are visualized
in Fig. 4. The good accordance between the values estimated
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FIG. 5. Comparison of spherical contact distribution functions
computed from tomographic and simulated image data.

from image data and the analytical ones can also be explained
by the fact that the algorithm to estimate the surface area does
not merely count the faces of voxels at the interface.

The volume fractions shown in Fig. 4 exhibit a nearly
perfect fit. This is not surprising, as they are used to estimate
the model parameter λ, see Sec. III B. The specific surface
areas computed from simulated image data also nicely co-
incide with those computed from tomographic image data.
Furthermore, similar values have been obtained by means of
the analytical formula given in Eq. (5).

Additionally, we evaluate the level-set models by means of
further morphological descriptors which have not been used
for model fitting. To begin with, we consider the spherical
contact distribution function H : [0,∞) → [0, 1] of the pore
space (see, e.g., Refs. [41,56,57]), where for each r � 0, the
value of H (r) is the (conditional) probability that the min-
imum distance from a randomly selected point of the pore
phase �c to the solid phase � is less or equal than r. Formally,

H (r) = 1 − E[ν3(�c � B(o, r))]

1 − ε
, (6)

for each r > 0, where B(o, r) denotes the ball with radius
r > 0 centered in the origin and �c � B(o, r) denotes the
morphological erosion of the pores space by the structuring
element B(o, r). Comparing the spherical contact distribution
functions computed from tomographic image data with those
of the simulated data shows an excellent fit for all four sam-
ples, see Fig. 5. For simulated data, the mean values over
10 realizations are shown. Note that the piecewise constant
progression of the functions shown in Fig. 5 is due to the
limited resolution of the underlying image data, cf. Table I.

Finally, we consider the mean geodesic tortuosity τ , which
relies on the notion of geodesic distances introduced in
Ref. [58], and the constrictivity β of the pore space, quanti-
fying the strength of bottleneck effects [59]. Both quantities
have a strong impact on effective transport properties such as
effective diffusivity or permeability, see, e.g., Refs. [22,23].
The mean geodesic tortuosity is defined as the quotient of
the expected length of the shortest paths through the material,
which are fully contained in the phase under consideration,
divided by the thickness of the material. However, note that
there are various notions of tortuosity considered in the lit-
erature that differ from this definition, see Refs. [60–62]
for an overview. Constrictivity is a morphological descrip-
tor, which quantifies the strength of bottleneck effects within
the nanostructure or microstructure under consideration. For
geometrically complex morphologies, this descriptor was in-

FIG. 6. Comparison of the transport relevant descriptors (a) τ ,
(b) rmin, (c) rmax, and (d) β computed from tomographic (blue) and
simulated (red) image data.

troduced in Ref. [63], where it is defined by β = r2
min/r2

max.
Here, rmax > 0 is the maximum radius such that at least
half of the pore space can be covered by (possibly over-
lapping) spheres with radius rmax that are fully contained in
the pore space. In other words, rmax is defined as median of
the continuous pore size distribution, which is computed via
morphological opening of the pore space. Note that there is a
one-to-one relationship, explicitly given in Ref. [36], between
the continuous pore size distribution and the granulometry
function from mathematical morphology [56].

On the other hand, rmin > 0 is the maximum value such
that half of the pore space can be reached by a ball with
radius rmin intruding into the pore space from a predefined
starting plane of the material. Thus, β = r2

min/r2
max describes

the strength of bottleneck effects within the pore space [22].
For a formal definition of the quantities τ, rmin, rmax, and β

and their respective estimators in the framework of stationary
random sets, we refer to Ref. [64]. Figure 6 shows the values
of τ, rmin, rmax, and β computed from tomographic image data
compared with the mean values of these descriptors computed
from 10 realizations of the respective model. Again, the quan-
tities computed from simulated image data nicely coincide
with those computed from tomographic image data. Further-
more, in Table III, the mean values and standard deviations of
τ, rmin, rmax, and β are given, along with the respective relative
error compared to the corresponding values obtained from
tomographic image data. Interestingly, for CPG100, CPG150,
and CPG200, the value of rmin is nearly identical to half of the
respective mean pore width, which is measured by mercury
intrusion porosimetry and characterizes the different samples
considered in this paper, cf. Sec. II A. This further justifies the
use of rmin for purposes of model validation. A more detailed
model validation is shown in Fig. 14, where the curves of
simulated mercury intrusion porosimetries [59] are provided
for measured image data and model realizations. These curves
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TABLE III. Values of τ , rmin, rmax, and β estimated as an average
of 10 model realizations, along with the respective standard devia-
tions (std.) and the relative errors compared with the corresponding
values obtained from tomographic image data.

CPG100 CPG150 CPG200 CPG1000

τ 1.0693 1.0719 1.0653 1.0610
Std. 4.01×10−4 1.76×10−4 2.50×10−4 2.04×10−4

Error 0.36% 1.26% 0.24% 0.96%
rmin[nm] 52.35 74.09 100.22 380.56
Std. [nm] 4.31×10−1 3.22×10−2 1.32 7.59×10−2

Error 3.31% 1.03% 4.24% 1.27%
rmax[nm] 66.60 94.95 131.38 450.12
Std. [nm] 6.91×10−3 7.39×10−3 1.44×10−2 6.49×10−2

Error 0.16% 0.10% 8.53% 2.54%
β 0.6179 0.6089 0.5820 0.7148
Std. 1.03×10−2 4.98×10−4 1.50×10−2 1.07×10−4

Error 6.39% 1.87% 7.74% 2.61%

also show good accordance between simulated and measured
data.

IV. MODEL CALIBRATION BY 2D IMAGE DATA

The ability to properly calibrate a stochastic 3D model by
means of 2D image data is a great advantage for real-life
applications, as the acquisition of tomographic 3D imaging
is rather expensive in cost and time. Recall that the model
parameters of random excursion sets induced by motion-
invariant Gaussian random fields, considered in this paper,
are uniquely defined by the volume fraction and the two-
point coverage probabilities of the excursion sets. Moreover,
these descriptors can even be reliably estimated based on one-
dimensional (1D) information. Thus, it is possible to fit model
parameters using 2D image data. Examples, where stochastic
3D models are fitted to 2D scanning electron microscopy
(SEM) data of solid oxide fuel cells and composite silica
materials can be found in Refs. [32,65], respectively.

We now explain how to calibrate the 3D level-set model
�, which has been introduced in Sec. III A, by means of
individual 2D cross-sections of 3D image data and provide
a discussion of the robustness of this procedure in the case
of nano-PGs. Furthermore, the estimates obtained in this way
for the model parameters are compared with the estimates
obtained from 3D image data. For this, we fix an arbitrary 2D
cross-section of the 3D image data (orthogonal to one of the
three main axis directions). Note that the techniques described
in Sec. III B for estimating the model parameters λ, a, and b
from 3D image data can be directly applied to 2D data since
the volume fraction and, due to the motion invariance of the
level-set model �, also the two-point coverage probabilities
of � can be estimated from 2D data. The estimators for ε, λ,
a, and b obtained in this way will be denoted by ε̂2D, λ̂2D, â2D,
and b̂2D, respectively. Furthermore, the averages of these 2D
estimators for ε, λ, a, and b over all 2D cross-sections along
the three main axis directions are denoted by μ(̂ε2D), μ(̂λ2D),
μ(̂a2D), and μ(̂b2D).

Figure 7 shows the estimated probability densities of ε̂2D,
λ̂2D, â2D, and b̂2D, which we obtained by kernel density es-

TABLE IV. Mean values μ and standard deviations σ of model
parameters estimated from 2D cross-sections of tomographic 3D
image data and their respective relative errors compared with the
values obtained for the corresponding 3D estimators based on the
full tomographic datasets.

CPG100 CPG150 CPG200 CPG1000

μ(̂a2D) [1/ µm] 27.01 18.9 15.31 3.874
σ (̂a2D) [1/ µm] 0.72 1.4 0.22 0.24
Error 0.48% 1.70% 0.04% 0.66%
μ(̂b2D) [1/ µm2] 37.12 15.16 5.796 1.250
σ (̂b2D) [1/ µm2] 3.9 4.1 0.69 0.20
Error 2.82% 1.97% 0.30% 1.49%
μ(̂λ2D) −0.0072 −0.0083 0.0320 0.1016
σ (̂λ2D) 0.041 0.048 0.038 0.032
Error 3.67% 9.91% 1.93% 1.20%
μ(̂ε2D) 0.5029 0.5033 0.4873 0.4596
σ (̂ε2D) 0.016 0.019 0.015 0.013
Error 0.02% 0.06% 0.06% 0.09%

timation using the method described in Ref. [66]. Note that
the estimator for ε is in a direct functional relationship to the
estimator of λ through the cumulative distribution function of
the normal distribution. However, this relationship is nonlin-
ear, so that it is a priori unclear how it affects the variance
and expectation of the corresponding estimators. We have
therefore included the results on ε to assess the influence of
the nonlinearity and to allow for an easier interpretation of
the results through the more intuitive quantity ε. The mean
values of these 2D estimates, together with their standard
deviations and the respective relative errors compared with
the values obtained for the corresponding 3D estimators, are
provided in Table IV. Here, one can observe that, on average,
the 2D estimators lead to nearly identical values as their 3D
counterparts. However, the probability densities of the 2D
estimates shown in Fig. 7 reveal that, for individual 2D cross-
sections, the numerical differences between 2D estimators and
3D estimators can be relatively large. This is not surprising,
as an individual 2D cross-section contains significantly less
information than the complete 3D image. In this section, we
only show the results which we obtained for the samples
CPG150 and CPG200 since these are the samples with the
highest and lowest sum of relative errors, respectively. The
corresponding results obtained for CPG100 and CPG1000 are
shown in Fig. 13.

Note that, from the results shown in Fig. 7 and Table IV,
it cannot directly be concluded how the discrepancies in
terms of the estimated model parameters λ, a, and b influ-
ence transport-relevant morphological descriptors, such as the
tortuosity τ and the constrictivity β, of simulated image data
drawn from level-set models for given values of λ̂2D, â2D, and
b̂2D. We quantitatively study this effect under the assumption
that the volume fraction ε and, thus, the model parameter
λ are estimated correctly. This is a reasonable assumption
since, in many applications, the porosity ε can be reliably
determined not only from image data but also by means of
other experimental methods. The influence of the estimators
â2D and b̂2D is investigated by means of a simulation study as
follows.
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For each sample, we generate virtual nanostructures for
each of the following five specifications of the parameter
vector (a, b): (μ(̂a2D), μ(̂b2D)), (μ(̂a2D) + σ (̂a2D), μ(̂b2D) +
σ (̂b2D)), (μ(̂a2D) + σ (̂a2D), μ(̂b2D) − σ (̂b2D)), (μ(̂a2D) −
σ (̂a2D), μ(̂b2D) + σ (̂b2D)), (μ(̂a2D) − σ (̂a2D), μ(̂b2D) −
σ (̂b2D)), where σ (̂a2D) and σ (̂b2D) denote the standard
deviation of â2D and b̂2D, respectively, given in Table IV.
Then we compute the tortuosity τ and the constrictivity
β for simulated 3D image data drawn from the level-set
models with these five specifications of (a, b) and compare
the obtained values with the values of τ and β computed for
realizations of the level-set model � calibrated by means of
tomographic (3D) image data and for the tomographic image
data itself. The results obtained in this way for the samples
CPG150 and CPG200 are shown in Fig. 8. The corresponding
results for CPG100 and CPG1000 are shown in Fig. 12.

Except for the constrictivity β of sample CPG150, the val-
ues obtained for τ and β, when calibrating the level-set model
� by tomographic (3D) image data, are accurately reproduced
by the modified models, for which the parameter vector (a, b)
is chosen as described above, i.e., by adding or subtracting the
corresponding standard deviations to/from the averages of the
estimators â2D and b̂2D. The good accordance for CPG200,
see Fig. 8(d), can be attributed to the fact that the values of
â2D and b̂2D computed from individual 2D slices have only
small deviations from the corresponding 3D estimates, see
Table IV. In general, one can observe that the constrictivity
β is much more sensitive to changes in the model parame-
ters a and b than mean geodesic tortuosity τ . This is most
visible for sample CPG150, see Fig. 8. Here, the difference
between the parameters a and b estimated from 2D data and
those estimated from 3D data cause considerable deviations
in constrictivity β, while the tortuosity τ is almost entirely
unaffected.

V. RELATIONSHIPS BETWEEN MEAN PORE WIDTH AND
THE ENTIRE 3D MORPHOLOGY

In this section, we use the calibrated stochastic 3D model
to quantify relationships between the mean pore width, which
can be adjusted during the manufacturing process, and the
entire 3D morphology. In doing so, we aim at simulating the
morphology of nano-PGs, for which no 3D image data are
available or which have not even been manufactured so far.
For this purpose, we proceed similarly as in Refs. [67,68],
i.e., we quantify relationships between mean pore width and
model parameters to predict the 3D morphology of PG with a
predefined mean pore width.

Recall that the CPG samples considered in this paper are
labeled according to their respective mean pore widths of
100, 150, 200, and 1000 nm, which have been determined
by means of mercury intrusion porosimetry. For quantifying
relationships between the mean pore width and the parameter
vector (a, b) of the covariance function of the underlying
Gaussian random field X , see Sec. III B, it turns out that
parametric functions of the form f : [0,∞) → [0,∞), given
by

f (x) = c(1) exp(−c(2)x) + c(3), (7)

FIG. 7. Probability densities of the values obtained for
ε̂2D, λ̂2D, â2D, and b̂2D, respectively, for all two-dimensional (2D)
cross-sections along the three main axis directions. The vertical
lines show the respective averages μ(̂ε2D), μ(̂λ2D), μ(̂a2D), and
μ(̂b2D) (blue), and the values obtained for the corresponding
three-dimensional (3D) estimators (red).

for each x � 0, are an appropriate tool. Here, x represents
the mean pore width of the material under consideration, and
f (x) is the best predicted value of the model parameters a
and b, respectively, given that the mean pore width is equal
to x. We determine c(1)

a , c(2)
a , c(3)

a > 0 and c(1)
b , c(2)

b , c(3)
b > 0

for predicting the parameters a and b, respectively, by least-
squares fitting based on the values given in Table II, which
yields c(1)

a = 0.04703, c(2)
a = 0.007238, c(3)

a = 0.0039, c(1)
b =

2.791×10−4, c(2)
b = 0.02019, and c(3)

b = 1.158×10−6. The
corresponding prediction functions are denoted by fa and fb.
Moreover, note that inserting the parameters a = fa(x) and
b = fb(x) predicted by the functions given in Eq. (7) with
these regression coefficients into Eq. (5) yields a prediction
for the specific surface area S�, where we assume a porosity
of ε = 0.5 for all mean pore widths, see Fig. 9.

Model realizations with intermediate mean pore widths
based on the predicted parameters a and b are visualized in
Fig. 10, with an assumed porosity of ε = 0.5.
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FIG. 8. (a) Tortuosity and (b) constrictivity for CPG150 and as
well as (c) tortuosity and (d) constrictivity for CPG200, computed
from simulated three-dimensional (3D) image data drawn from level-
set models with different specifications of (a, b), together with the
corresponding values estimated from tomographic image data.

Using the idea of cross-validation, see sec. 7.10 in
Ref. [69], we assess the predictive power of the re-
gression model given in Eq. (7), where the coefficients
c(1)

a , c(2)
a , c(3)

a , c(1)
b , c(2)

b , and c(3)
b are now fitted twice, in each

case based on three samples only, i.e., disregarding CPG150
and CPG200, respectively. Then we evaluate the accuracy
of the relationships given in Eq. (7), where the regression
coefficients c(1)

a , c(2)
a , c(3)

a , c(1)
b , c(2)

b , and c(3)
b are computed as

described above. We compare the values obtained in this way
for the model parameters a and b for the mean pore widths
of 150 and 200 nm with the estimates â and b̂ computed from
tomographic (3D) image data for CPG150 and CPG200, as
described in Sec. III B. Here, we obtain relative errors of 4.27
and 4.35% for a and b of CPG150 and 7.38 and 8.00% for
a and b of CPG200, respectively. This shows that the inter-
polated model parameters are close to those estimated from
tomographic image data. The regression curves fitted without

FIG. 9. Regression curves for predicting the model parameters (a) a and (b) b for mean pore widths, for which no three-dimensional (3D)
image data are available. (c) Prediction of specific surface area using a combination of Eq. (5) with the relationships between mean pore width
and model parameters.

one of the samples CPG150 and CPG200 are provided in the
Appendix, see Fig. 15.

Based on the model parameters a and b obtained from
these regression models, we generate new (simulated) 3D
morphologies for CPG150 and CPG20. Furthermore, we com-
pare the average values of the transport-relevant descriptors
τ , rmin, rmax, and β obtained for 10 realizations of these 3D
morphologies with those obtained for 10 realizations of sim-
ulated 3D morphologies, where a and b have been estimated
from tomographic (3D) image data for CPG150 and CPG20
as described in Sec. III B, as well as with those values of τ ,
rmin, rmax, and β directly computed from tomographic image
data, see Fig. 11. The results obtained in this way show that
the simulated 3D morphologies for regression- and image-
based estimates of the model parameters a and b are overall
similar to those of tomographic image data. This validates our
prediction formulas. However, when applying the proposed
prediction formulas, one should keep in mind that regression
is performed with only four data points here.

VI. CONCLUSIONS

In this paper, we developed and calibrated a stochastic 3D
model for differently manufactured nano-PGs based on tomo-
graphic x-ray image data. Model validation is performed by
comparing morphological descriptors computed from model
realizations and image data, which are not used for model
calibration and are nevertheless matched with a high de-
gree of accuracy. We want to emphasize that the utilized
model, which is based on methods of stochastic geometry,
has certain advantages in comparison with nonparametric or
high-dimensional generative models, see also the discussion
in Ref. [70]. Namely, it is fully determined by three parame-
ters only, which allows us to physically interpret their values.
Moreover, we discuss the form of the correlation functions of
the underlying Gaussian random field and relate them to the
manufacturing process.

We also show that the model can be reliably calibrated
merely based on 2D information in the form of image cross-
sections taken from the complete 3D image data. Our analysis
showed that the average calibration over multiple cross-
sections leads to nearly identical results compared with the
calibration based on 3D image data. This means that, for
model calibration, a collection of sufficiently many 2D im-
ages can replace the need for the acquisition of tomographic
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3D image data. However, the variance among different 2D
cross-sections is not negligible and can have a large impact
on sensitive morphological descriptors, such as constrictivity,
which introduces a significant uncertainty if model calibration
is based only on single cross-sections.

The available image data covered samples of nano-PG with
different mean pore widths. By means of a parametric regres-
sion, we were able to quantify the relationship between the
mean pore width, which can be adjusted in the manufacturing
process, and the resulting morphological descriptors. This,
in turn, allows us to interpolate between the available data
samples and to predict virtual 3D morphologies with inter-
mediate mean pore widths that have not been manufactured
so far. We validated our predictive simulations by means of
cross-validation, which showed that using a subset of the
available samples to predict the properties of the remaining
samples leads to accurate results. A reliable virtual prediction
of nano-PG with predefined pore widths opens possibilities
for a resource efficient optimization of the 3D morphology of
nano-PG. More precisely, it allows for optimizing the mean
pore widths with respect to morphological descriptors that
cannot directly be adjusted during the manufacturing process.
Furthermore, combining stochastic modeling with numerical
simulation can be used in future work to optimize the mean
pore width with respect to physical properties like effective
diffusivity.
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APPENDIX

We provide plots analogous to those of Figs. 7 and 8
for the remaining samples CPG100 and CPG1000 which are
not shown in the main text, see Figs. 12 and 13. Figure 14

FIG. 10. Top row: Three-dimensional (3D) renderings of tomo-
graphic image data for mean pore widths of 100, 150, and 200 nm.
Bottom row: Predictively simulated 3D morphologies for mean pore
widths of 125, 175, and 250 nm.

FIG. 11. Comparison of the transport-relevant descriptors (a) τ ,
(b) rmin, (c) rmax, and (d) β, computed from simulated three-
dimensional (3D) morphologies for regression-based (red) and
image-based (green) estimates of the model parameters a and b, as
well as directly computed from tomographic image data (blue).

shows curves of simulated mercury intrusion porosimetry for
both tomographic image data and model realizations. The
simulation was performed along each main axis direction and
then averaged for visualization. The 50th percentile of this
curve is used in the definition of rmin, which in turn appears
in the definition of the constrictivity β. The plots of the

FIG. 12. (a) Tortuosity and (b) constrictivity for CPG100 and as
well as (c) tortuosity and (d) constrictivity for CPG1000, computed
from simulated three-dimensional (3D) image data drawn from level-
set models with different specifications of (a, b), together with the
corresponding values estimated from tomographic image data.
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FIG. 13. Probability densities of the values obtained for
ε̂2D, λ̂2D, â2D, and b̂2D, respectively, for all two-dimensional (2D)
cross-sections along the three main axis directions. The vertical
lines show the respective averages μ(̂ε2D), μ(̂λ2D), μ(̂a2D), and
μ(̂b2D) (blue) and the values obtained for the corresponding three-
dimensional (3D) estimators (red).

regression curves are shown in Fig. 15, which are used for
cross-validation of the predictive simulations considered in
Sec. V. In Fig. 16, we also provide the chord-length distri-
bution functions, see sec. 6.3.4 in Ref. [41], computed for the

FIG. 14. Simulated mercury intrusion porosimetry computed
from tomographic and simulated image data. The simulation was
performed along the direction of each major axis and averaged for
visualization.

FIG. 15. Regression curves for predicting the model parameters
a (left) and b (right) for mean pore widths, for which no three-
dimensional (3D) image data are available, disregarding CPG150
(top row) and CPG200 (bottom row), respectively.

tomographic image data along the three main axis directions.
For a predefined direction, the chord-length distribution func-
tion is the distribution function of the typical segment in this
direction, which is completely contained in the glass phase. In
the case of isotropy, the chord-length distribution functions in
all directions coincide. Figure 16 shows that, for all samples
considered in this paper, the chord-length distribution func-
tions in the three main axis directions are nearly identical.
This confirms the assumption of structural isotropy motivated
by the manufacturing process.

FIG. 16. Chord-length distribution functions of the samples
(a) CPG100, (b) CPG150, (c) CPG200, and (d) CPG1000 along the
three major axes. With respect to this geometrical descriptor, the data
show no signs of anisotropy.
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