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Zusammenfassung 
 

Belohnung ist eine der größten Einflussgrößen für Verhalten bei Tieren und 

Menschen. Viele Publikationen haben bereits einen Einfluss von Belohnung auf die 

visuelle Wahrnehmung sogar auf frühen Stufen sensorischer Verarbeitung 

dokumentiert. Selektive Aufmerksamkeit versetzt Individuen in die Lage, wichtige 

Information aus einer Flut von visuellen Reizen zu extrahieren. Sie spielt 

insbesondere bei visueller Suche eine große Rolle, indem sie ermöglicht, Stimulus-

Eigenschaften (Englisch “features”) des gesuchten Ziels bevorzugt zu verarbeiten. 

Diese bevorzugte Verarbeitung von attendierten Features schlägt sich in 

Amplitudenerhöhungen der neuromagnetischen Hirnaktivität nieder. Features, 

welche mit Belohnung assoziiert werden, scheinen eine ähnliche bevorzugte 

neuronale Verarbeitung hervorzurufen. Maunsell (2004) weist jedoch darauf hin, 

dass solche belohnungsspezifischen Effekte insbesondere in Tierversuchen nicht 

korrekt interpretiert worden sein könnten, da die experimentellen Bedingungen hier 

typischerweise keine Trennung von Belohnungsreiz und attendiertem Zielreiz 

zulassen (d.h. der attendierte Stimulus ist der, für den es auch die Belohnung gibt). 

Um die frühe visuelle Verarbeitung von belohnungs-assoziierten Features 

untersuchen zu können, wurden im Versuchsaufbau dieser Arbeit Ziel- und 

Belohnungsreiz operational getrennt. Menschliche Probanden suchten in einem 

visuellen Experiment auf der Basis einer definierten Farbe (Zielfarbe) nach einem 

zweifach kolorierten Zielobjekt. Belohnt wurde diese Suche, wenn das Suchziel die 

Zielfarbe in Kombination mit einer Belohnung-definierenden Farbe (Belohnungsfarbe) 

aufwies. Die Mehrheit der Durchgänge wurde jedoch nicht belohnt, und das Auftreten 

der Belohnungsfarbe in Distraktorobjekten war für die Aufgabe vollkommen 

irrelevant. In visuellen Suchexperimenten dieser Art entwickeln Probanden eine 

„Aufmerksamkeitsgrundeinstellung“ (attentional set) für die Aufgabe und die 

Farbeigenschaft.  
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Die Arbeit untersucht im Speziellen, ob und wie die Hirnantwort zu irrelevanten 

Farbstimuli (Distraktoren) von der Farbrelevanz (aufmerksamkeits-, belohnungs-

relevant, komplett irrelevant) abhängt. Die Prädiktionen der Arbeit orientieren sich an 

der einflussreichen Theorie der kontingenten attentionalen Orientierung (contingent 

involuntary orienting, siehe Folk et al., 1992), welche postuliert, dass ein Distraktor 

unwillentlich mehr Aufmerksamkeit auf sich zieht, wenn er Eigenschaften des 

Zielreizes teilt. In Experiment 1 und 2 wurden aufmersamkeitsanziehende 

Distraktoren (hier „Probes“ genannt) zwischen den Suchaufgaben präsentiert, d.h. zu 

einem komplett aufgabenirrelevanten Zeitpunkt der Experimente. Die von der 

“Zielfarbe” ausgelöste Aufmerksamkeitsorientierung war in den Experimenten dieser 

Arbeit eindeutig nachzuweisen. D.h. zwischen 180 und 280 ms nach der 

Präsentation des Probes löste die Zielfarbe des Zielreizes im Vergleich zur 

“Referenzfarbe” eine erhöhte elektromagnetische Aktivierung im ventralen 

extrastriären Kortex aus. Für die Belohnungsfarbe wurde solch eine Aktivierung nicht 

gefunden. Selbst nach Erhöhung der Belohnung auf das Doppelte (10 Cent) im 

zweiten Experiment, war keine bevorzugte Verarbeitung der Probes nachzuweisen. 

Allerdings kam es hier zu einer verminderten extrastriären Antwort zwischen 220 und 

250 ms. Interessanterweise zeigte sich, dass der Grad der Verminderung der 

extrastriären Antwort mit der zuvor (160-180 ms) erhöhten Aktivität im dorsalen 

anterioren cingulären Kortex (dACC) korrelierte. Letztere Beobachtung spricht dabei 

für eine aktive Suppression der belohnungs-abhängigen Farbantwort im extrastriären 

Kortex, die unter strategischer Kontrolle von dorsomedialen frontalen Hirnstrukturen 

erfolgt.  

Eine ähnliche strategische Suppression der belohnungsabhängigen extrastriären 

Antwort zeigte sich bei der Analyse der Hirnantwort, die während Diskrimination des 

Suchzieles ausgelöst wurde. Bei moderater Belohnungshöhe lösten Distraktoren mit 

der Belohnungsfarbe, eine erhöhte Antwort im kontralateralen extrastriären Kortex 

aus. Unter Bedingungen von erhöhter Belohnungserwartung (Experiment 2) war die 

gesteigerte Antwort jedoch nicht mehr nachzuweisen. 
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Experiment 3 erlaubte mit einem modifizierten Paradigma (fixer Fokus der 

Aufmerksamkeit) die Analyse der Hirnantwort von Distraktoren mit der Ziel- oder 

Belohnungsfarbe, sowie deren Kombination während Diskrimination des Suchzieles. 

Unter diesen Bedingungen lösten Ziel- und Belohnungsfarbe ähnliche Antworten in 

überlappenden extrastriären Arealen aus, wobei die Amplitude der Antworten additiv 

war. D.h. die Höhe der Antwort auf die kombinierte Präsentation der Ziel- und 

Belohnungsfarbe glich nahezu perfekt der Summe der separaten Antworten auf die 

Ziel- und Belohnungsfarbe. 

Zusammenfassend lässt sich sagen, dass sich Belohnung und Aufmerksamkeit 

beide durch denselben Mechanismus visueller Selektion im visuellen Kortex zu 

manifestieren scheinen, wohingegen dieser jedoch von hierarchisch höher 

gelegenen (frontalen) Hirnarealen durch Belohnung und Aufmerksamkeit unabhängig 

moduliert wird. So können belohnungsbezogene Merkmale im Sinne effektiver 

Verhaltensadaptation  unterdrückt werden, während gleichzeitig die Repräsentation 

aufgaben-relevanter Merkmale gesteigert wird. 
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Summary 
 

Reward is a major driving force of human behavior. So far, however, there have been 
only a few attempts to investigate the influence of reward on perception at 
elementary levels of feature processing. In particular the question whether reward-
based modulations represent an effect that is independent of the effects of attention, 
or whether both refer to the same modulation is currently debated (cf. Maunsell, 
2004). To address this issue effectively, it is important to avoid confounding top-down 
settings defining task-relevance with those defining reward-relevance. In the 
experiments reported here we aimed at a dissociation of the target’s definition 
(attention to color) from reward-relevance (color associated with reward).  
To analyze the effect of reward and attention I compared the neuromagnetic brain 
responses to task-irrelevant color probes drawn in the target- and reward-color. I 
observed an enhanced activity between 180 and 280 ms in ventral extrastriate cortex 
for the target but not for the reward-color (Experiment 1). Doubling the reward 
prospect (Experiment 2) caused a response-attenuation for the reward-color  
(220-250 ms). Notably, the degree of attenuation was found to correlate with the 
latency of a prior activity enhancement (160-180 ms) in dorsal anterior cingulate 
cortex, suggesting that the neural attenuation of the reward-color reflects active top-
down suppression. A further analysis of the response to task-relevant search arrays 
supports this interpretation. The reward-color presented in search distractors 
produced a relative response enhancement in Experiment 1, but this was eliminated 
when doubling the reward prospect in Experiment 2.  
A third experiment aimed at analyzing the response enhancement under moderate 
reward expectations in more detail. Here a modified experimental setup was used to 
allow for a direct comparison of the brain response to the reward- and target-color 
outside the focus of attention. We observed comparable modulations in overlapping 
areas of the ventral extrastriate cortex. The response to the reward-color was 
delayed but otherwise roughly identical to the early modulation underlying target 
feature selection. The latter effect has been shown to reflect the feature template-
matching phase of global feature-based attention (Bartsch et al. 2014). Importantly, 
independent of their relative time-course, the modulations to the target- and reward-
color added up to match the response size of their combined presentation.  
The present results suggest that reward and attention recruit the same visual global 
feature selection mechanisms in extrastriate cortex, but that they are under top-down 
control from independent sources. The brain may not be able to entirely “ignore” 
reward information but it may be effective in eliminating its distracting effect via top-
down suppression. 
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1  Introduction 

 

 

1.1  Reward and Attention  
 

In every moment that we are awake our eyes and brain are exposed to a sheer 

bombardment of sensory stimuli. But processing capacities are inherently limited, so 

that only a small amount of this visual input reaches conscious perception.  Selective 

attention modulates ongoing processing of visual input by resolving competition 

between stimuli. Thereby especially behaviorally relevant stimuli gain access to 

perceptual awareness. The link between visual selective attention and goal-directed 

behavior is subject to this work. 

Reward is beneath punishment the greatest driving force of goal-directed behavior. 

Already in the beginning of the twentieth century Thorndike (1911) used reward in 

animal experiments to study learning behavior. Within the scope of his learning 

theory he postulated the “law of effect” saying that a reaction, which is followed by a 

“satisfying state of affairs” (reward) will strengthen the association between these 

positive situation and the respective behavior. Thorndike´s work paved the way for 

behaviorism known for learning theories like operant conditioning (Skinner, 1938). In 

contrast to classical pavlovian conditioning, explaining behavior on a reflex-like 

stimulus-response basis, operant conditioning links normal behavior (of animals) to 

reward. Here, reward is used to reinforce learning (positive reinforcer) leading to 

increased frequency and intensity of behavior needed for the acquisition of goal 

objects. Also volitional goal-directed behavior requires the detection of reward 

information. For their decision behavior animals and humans consciously or 

unconsciously evaluate benefits and costs associated with attaining primary rewards 

(like food) or secondary rewarding objects (like money in humans). (Schultz, 2000) 

Or as Gottlieb (2012) put it recently, the brain has not just the highly complex task to 

analyze visual input, but also to “determine the significance and value of that 

information”.  
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1 Introduction 
 

But Reinforcement1 and punishment are not only registered and linked to certain 

stimuli to affect behavior, but might but also influence sensory processing itself, i.e. 

reward could have the capability to alter perception for instance via attentional 

modulations. 

At this point it might be reasonable to elaborate on attention in general to avoid 

verbal confusion. The term attention refers to many different meanings in everyday 

language. These involve consciousness, awareness, alerting and attentiveness. For 

example, alertness overlaps with notions like sustained attention and vigilance and 

all can be defined as “the ability to increase and maintain response readiness in 

preparation for an impending stimulus” (Raz and Buhle, 2006). Sturm (2005) 

developed a taxonomic table for attention based on neurological dysfunctions and 

common clinical paradigms that test for attention. He splits attention into two 

categories: The intensity dimension of attention - including alertness, sustained 

attention and vigilance - comes close to the non-scientific understanding of attention 

and concerns changes in global state or arousal of an animal or human being. The 

second is the selective dimension of attention comprising selective and divided 

attention. In the work presented here the word “attention” always refers to the 

selective aspect of sensory processing of visual stimuli.  

Pashler (1998) annotates that “Folk psychology postulates a kind of substance or 

process (attention) that can be devoted (paid) to stimuli or withheld from them. 

Whether or not attention is allocated to a stimulus is usually thought to depend on a 

voluntary act of will (…). Sometimes however, attention is directed or grabbed 

without any voluntary choice having taken place, even against strong wishes to the 

contrary; this is the phenomenon of distraction.” The phenomenon of distraction 

described by Pashler bases on stimulus-driven or bottom-up visual selection. 

Considerable experimental evidence suggests that the sudden onset of an 

unexpected visual stimulus can draw attention in an automatic fashion - an effect 

referred to as attentional capture (Yantis, 1996, 1998, Theeuwes, 2010). In other 

words, the features of an item and in particular its feature contrast with other items in 

a scene, makes the item standing out and therefore capture visual attention. 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The term “reinforcement” in the behaviorist sense means strengthening of a habit, 
but here reinforcement is extended to describe the reward-related increase of a 
neural response (for a discussion see Berridge and Robinson, 1998).  



	   3	  

1 Introduction 
 

Such an attention-capturing item is called to be salient. But behavior is not just 

stimulus driven but also controlled by personal goals and will. Voluntary control of 

attention acts “top-down” on selection of visual stimuli (Corbetta and Shulman, 2002). 

Most behavior seems to lie between the two extremes of responding in a reflexive 

way to a stimulus or being guided by goal-directed behavior. The distinction of top-

down and bottom-up control of attention is not absolute. Bottom-up attention caused 

by salient items can be influenced involuntary by top-down processes. For example, 

orienting towards a salient item in visual search is stronger if one feature of this item 

(color, form or orientation), matches the features of the target. Looking for a person 

wearing a red hat causes a red scarf of another person to catch my attention. This 

would be not the case, if I searched for a person with a green hat. The red scarf 

shares the feature color with the target and therefore catches attention in a bottom-

up way, but contingent on the goal of the search (contingent involuntary orienting 

theory by Folk et al., 1992). Provided that subjects of a visual search experiment 

(such as the search for hat-shaped objects in red) are instructed well, they will 

develop an executive task set (Dosenbach et al., 2006) to perform the task and 

therefore enable attentional capture contingent on high-level goals.  

The association of reward with visual features might lead to biasing of sensory 

selection in extrastriate cortex analogue to task-relevant features. And if so, the 

question remains if reward processing is a class of its own or resembles the selection 

operation seen for attentional selection. (Buschschulte et al., 2014, Hopf et al., 2015) 
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1 Introduction 
 

1.2  Functional Anatomy of the Visual System 
 

The visual system is the part of the central nervous system, which enables 

organisms to interpret information from visible light to build a representation of the 

surrounding environment. Vision is the highest developed sense in primates and also 

the best studied.  

 

 
 
Figure 1: The visual system. Shown are eye, optic nerve, lateral geniculate nucleus 
(LGN), optic radiation and visual cortical areas in different colors. With exception of 
the middle temporal (MT) and lateral occipital area (LO) all visual areas begin with V 
for visual and are consecutively numbered from 1 to 8 (a = anterior, v = ventral). The 
borders of the brain lobes (frontal, parietal, temporal, occipital) are marked with red 
lines (modified according to a picture originating from a Stanford University lecture 
2009 (www.brain-maps.com)). 
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About 50% of cerebral cortex in macaque monkeys and 20–30% in humans is 

devoted to vision. The auditory cortex for example makes up only 3% of the cerebral 

cortex in monkeys and 8% in humans. (Orban et al., 2004) Contrary to introspection 

the visual system does not gain information about a complex visual scene in an 

automatic way like a camera. The transformation of light information into a coherent 

internal representation of the environment is by no means simple.  

In the retina of the eye photoreceptors (rods and cones) convert information of light 

into membrane potentials, which are then transformed into action potentials for 

further processing in sensory neurons. All sensory neurons, for example ganglion 

cells or neurons in visual cortex, have receptive fields (RF), describing the region of 

space in which the presence of a stimulus will alter the firing of the neuron. A cortex 

neuron with a big RF processes information from many ganglion cells and 

photoreceptors. As illustrated in Figure 1 about 90% of all axons of the optical nerve 

project to the lateral geniculate nucleus (LGN) of the thalamus and further on via the 

optic radiation (radiatio optica) to the primary visual cortex (V1). Another name for V1 

is “striate cortex”, and all other visual areas subsume under “extrastriate cortex” 

respectively. The remaining 10% of the optical fibers innervate subcortical structures 

like the pulvinar nucleus of the thalamus and the superior colliculus (SC) of the 

midbrain. The optic nerves from both eyes meet and cross before LGN at the optic 

chiasm (not shown in Figure 1). At this point the information coming from both eyes is 

combined and then splits according to the visual field (VF). The corresponding halves 

of the field of view (right and left) project to the left and right halves of the brain. So 

the right side of primary visual cortex (V1) gets information from the left half of the 

field of view from both eyes and vice versa. Beyond area V1 visual information is 

conveyed to a huge number of extrastriate areas (see Figure 1), which exhibit a 

hierarchical order (Felleman and Van Essen, 1991). 

 

Despite the complexity of interconnections between these different areas, two 

general “streams” have been identified in the macaque monkey brain as illustrated 

schematically in Figure 2. Both streams proceed together from V1 via extrastriate 

areas V2 to V3 and then split into a ventral, or occipitotemporal pathway and a 

dorsal, or occipitoparietal pathway. (Ungerleider and Mishkin, 1982, Goodale and 

Milner, 1992)  
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The ventral stream continues via V4, TEO, and TE and leads to the inferior temporal 

cortex (IT), which is believed to be the last area in the processing hierarchy that is 

feature selective (cf. Baluch and Itti, 2011). Functionally this stream is sometimes 

called “what-pathway”, because it is specialized for object recognition and 

perception. For instance, V4 is one of the best-studied areas within the ventral 

stream. V4 neurons are selective for color, orientation, disparity (Hinkle and Connor, 

2001, Watanabe et al., 2002), as well as 3D contour (Hinkle and Connor, 2002) and 

can be localized in the area of fusiform and lingual gyrus and the collateral sulcus 

(Desimone and Schein, 1987, Schein and Desimone, 1990, McKeefry and Zeki, 

1997). The Outputs of V4 provide the principal visual inputs to the highly complex 

neurons in the inferotemporal areas TEO and TE.  

 

 
Figure 2: General scheme showing dorsal and ventral stream in visual information 
processing. Visual areas are schematically depicted in boxes. The way and direction 
of visual information beginning in the retina of the eye, continuing via visual areas in 
hierarchical order is shown in blue arrows. Information of the ventral stream, also 
called „what-pathway“, is conveyed from V1 over V2, the ventral part of the third 
visual areaV3/VP, and V4 to temporo-occipital cortex (TEO), lateral occipital cortex 
(LO) and the inferior temporal cortex (TE). Analogue the dorsal stream or „where-
pathway” starts in V1/V2 and continues over V3a to parieto-occipital (PO), middle 
temporal (MT) and posterior parietal cortex (PPC). For orientation also the 
dorsolateral prefrontal cortex is labeled. (with courtesy of Steven Hillyard (modified), 
2011) 
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1 Introduction 
 

The dorsal stream continues via V3a to posterior parietal regions and is also called 

“where-pathway”. Spatial perception such as the sense of depth, object location, as 

well as object relations in space are functions of this pathway. Here V5/MT (middle 

temporal area) is the best investigated area involved in motion processing, which lies 

at the junction of parietal, temporal and occipital cortex (Zeki et al., 1991, Tootell et 

al., 1995). Although one has to be cautious to generalize from monkey to human, 

neuroimaging evidence suggests, that the dissociation in ventral and dorsal stream is 

also present in humans (Haxby et al., 1991, Culham and Kanwisher, 2001, Tootell et 

al., 2003). The visual cortex represents the visual scene retinotopically. That is, 

nearby locations in environment are represented nearby in visual areas V1 to V8. 

Receptive field (RF) sizes increase from V1 to higher areas, so that the complexity of 

stimulus representation increases. That is, for instance V1-Neurons with their small 

RFs code fine spatial and featural details, while neurons in later areas have large 

RFs and code more complex visual aspects such as whole objects.  

This is meaningful for attentional selection. To be able to recognize or locate objects 

unnecessary information has to be removed. Competitive selection separates the 

wheat from the chaff because stimuli compete for dominance in all hierarchy levels. A 

current model suggests that visual stimuli or their electrophysiological correlates 

compete in apriority map, a topographical 2D network where the activity of the cells 

in the map represents the priority or salience of a given spatial location (Koch and 

Ullman, 1985, Itti and Koch, 2000, 2001). Salient features of the visual environment 

are combined with top-down influences into a general measure of priority and 

represented by a “peak” on a spatial map. To resolve the competition between stimuli 

selective attention plays a major role. According to the model mentioned above, 

attentional selection occurs on the basis of a “winner-takes-it-all” and moment-to-

moment competition between dynamically changing peaks on the priority map. 

Possible locations for the proposed priority map are lateral intraparietal cortex (LIP), 

frontal eye fields (FEF), and superior colliculus (SC) (Baluch and Itti, 2011).  

Attentional modulations have been shown to occur in all visual areas and they follow 

the retinotopical organization of the visual system. (e.g. Tootell et al., 1998, Cook and 

Maunsell, 2002, Serences and Yantis, 2006) 
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1.3  Reference Frame of Selective Attention 
 

Yantis (2003) says “to see is to attend”, because even masses of neurons are not 

able to process and analyze all visual inputs. Therefore as Knudsen (2007) puts it “to 

behave adaptively in a complex world, an animal must select, from a wealth of 

information available to it, the information that is most relevant at any point in time.” 

There were and still are many models and theories how, where and when visual 

attentional selection takes place. Theories in the 1950ies and 60ies proposed a filter 

mechanism, influencing either “early” or “late” stages of visual processing. That is, for 

“early” selection a stimulus does not have to be analyzed completely to be selected 

(or rejected), whereby “late” selection means that also ignored stimuli reach a stage 

of semantic analysis. (Gazzaniga, 2009) 

In behavioral studies (which were apart from lesion-studies the only possible studies 

before advent of modern neuroimaging/electrophysiological techniques) the main 

difficulty is to determine the stage or neuroanatomical locus of selection, because 

behavior reflects the output of processing and does not directly reveal the individual 

steps that led to that output.  

Broadbent (1958) proposed a filter theory based on “early selection” of physical 

stimulus properties. According to this theory, distracting stimuli would not reach 

higher processing stages. The early selection theory was expanded by Treisman 

(1964). She proposed that unattended information would not be completely filtered 

out, only attenuated (“attenuation theory”). Information could reach higher stages of 

analysis with greatly reduced signal strength. Her later “feature integration theory” 

assumes that features like color or orientation are coded automatically and in parallel 

without attention. To select objects, attention is needed to bind features for object -

identification.  

Late selection theories hypothesize that all stimuli are processed equivalently by the 

perceptual system and that selection takes place only at higher processing stages. 

Then the system “decides” whether stimuli should gain complete access to 

awareness or not. (Deutsch and Deutsch, 1963)  
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According to the late selection account every stimulus in the visual field is fully 

identified, but only attended stimuli are stored in working memory so that they can be 

reported or a response can be initiated. (Duncan and Humphreys, 1989, Duncan and 

Humphreys, 1992, Duncan et al., 1997)  

Nowadays the discussion, were the processing bottleneck could be located, faded, 

because there is evidence for more than one attentional mechanism. Research in 

this expanding field made clear, “that multiple selection processes cooperate in a 

flexible manner to guarantee the adaptability of attention to a wide range of 

circumstances” (Hopf et al., 2009).  

In the context of stimulus and task properties selective attention can be traditionally 

assigned to three different categories. Attention can refer to a location in the visual 

field (spatial attention), to a certain object (object-based attention) or to single 

features (feature based-attention) of one or more items in the visual field. 

 

1.3.1   Spatial Selection 
Spatial attention has been envisioned as a spotlight that illuminates a circumscribed 

region in the visual scene, and which can be directed to a location without moving the 

eyes (covert attentional orienting) (Helmholtz, 1909-1911). Within the spotlight 

information is processed faster and more efficient. This can be shown for example 

with the spatial-cuing task – a paradigm that has the following general design: While 

subjects focus the center of a screen they are asked to covertly attend to a target 

stimulus appearing at the right or left side of the screen. Before the target appears a 

central cue (e.g. arrow) is presented telling the subject the location (left/right) where 

the target will appear with a certain probability. If the target appears at the cued 

location the trial is said to be valid, otherwise it would be invalid (or neutral if the cue 

gives no information regarding the target´s location). Under typical circumstances 

subjects respond faster and more correctly on validly compared to invalidly cued 

trials. (Posner, 1980) Relative to a neutral condition a cue causes costs and benefits 

in performance. The cue itself is thought to attract spatial attention due to 

contingency on target features or simply because it has an abrupt onset (e.g. Sawaki 

and Luck, 2010) (for closer consideration see section 1.4 Contingent Attentional 

Capture). 
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1.3.1.1  Electrophysiological Evidence 

Early evidence for spatial attention was provided by Goldberg and Wurtz (1972). 

Single cell recordings in neurons of the superior colliculi of rhesus monkeys 

performing a saccadic cuing-task showed that the neurons response was enhanced if 

the stimulus in its receptive field was the monkeys´ saccade target compared to an 

ignored stimulus.  

Electroencephalography (EEG) is a powerful non-invasive method to visualize 

cortical brain activity in response to visual (and other) stimuli in humans. Under 

experimental conditions electrical potentials that correlate with the a repeated 

presentation of a visual stimulus - so called event related potentials (ERPs) - are 

averaged over many experimental trials and analyzed in regard to different 

experimental conditions. Visual selective attention has been demonstrated to be 

reflected by amplitude modulations of early-latency sensory ERP-components as 

shown schematically in Figure 3.  

 

 
Figure 3: Example for visual cortical event-related potentials evoked by a left-field 
stimulus under an attended and a not attended condition. EEG-waveforms show a 
similar topography like the one drawn here and are typically recorded from an 
occipital electrode site contralateral to stimulus presentation. The components are 
named after their positive or negative deflection and their ordinal position (P1 = first 
positive deflection). Attended stimuli (blue trace) elicit ERPs with greater amplitude 
than unattended stimuli (dashed red trace) do. Note, in contrast to standard 
conventions negativity is plotted upwards here.   
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In particular the initial sensory components, the first positive (P1) and negative 

voltage (N1) show enhanced amplitudes when elicited by a stimulus at an attended 

versus an unattended location. The enlarged P1 (at 80 – 130 ms post stimulus) and 

N1 (at 130 – 200 ms) components are modulated in tandem for choice-reaction tasks 

and the modulation is strongest over the lateral occipital scalp contralateral to the VF 

of target presentation. The P1-deflection reflects a modulation of the attentional 

distribution in space per se and the subsequent N1-modulation reflects discriminative 

processing of the stimulus within the focus of attention (Mangun and Hillyard, 1991, 

reviewed in Hopf et al., 2009). Magnetoencephalography (MEG) can be used 

analogous to EEG (cf. Hopf et al., 2002b) and is explained in detail in section  

3.1 “Magnetoencephalography Basics”. 

Attention can be exogenously attracted to a location with a visual cue preceding the 

target stimulus. Is the interstimulus interval (ISI) short, meaning less than about 250 

ms, response times are faster at cued than at uncued locations. Hopfinger and 

Mangun (1998, 2001) could demonstrate that ERPs for such reflexive cuing 

paradigms show an enlarged occipital P1-modulation for targets that quickly follow 

the cue. Both, reflexive (bottom-up) and voluntary (top-down) shifts in spatial 

attention induce similar electrophysiological modulations in early visual processing. 

Notably, longer periods between cue and target reverse the effect and the P1-

response is diminished or may be even inhibited. The latter effect presumably 

reflects a consequence of Inhibition of Return (lOR). IOR was originally discovered 

by Posner et al. (1984) and Berlucchi et al. 1987 (Lupianez et al., 2006) with reaction 

time measurements in human subjects (see Figure 4). As the name suggests the 

recently attended location becomes inhibited over time such that following responses 

to stimuli in that location are slowed. Posner and Cohen (1984) suggest “(…), that 

the inhibition effect evolved to maximize sampling of the visual environment.” and 

therefore encourages foraging towards novel and uninspected items (Klein and 

MacInnes, 1999, Wang and Klein, 2010). To prove the “foraging-hypothesis” Klein 

(1988) developed a “probe-following-search” paradigm, in which a visual search task 

serves as “cue”, while a probes presented at item locations following the search array 

serves to assess the IOR effect. 
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Figure 4: Idealized illustration of the Inhibition of Return-effect. The underlying simple 
cue-target experiment consists of two possible locations for cue and target beneath 
central fixation on the screen. Subjects have to make a speeded detection response 
to the target. Reaction times are plotted against the ISI between cue and target. A 
cued target (red curve) follows at the same position as the cue, an uncued target 
(green curve) at the position opposite to the cue´s position. Faster response times to 
cued targets at the shorter ISIs (till about 200 ms) reflect the facilitatory effect of 
reflexive orienting of attention toward the cue. IOR is reflected in the slower 
responding to targets at the cued location at longer ISIs (longer than 200 ms; orange 
box). (modified after  Klein, 2000) 
 

In difficult search tasks the inhibition can be object- or scene-based, so that when the 

scene is removed in most cases IOR effects are removed as well (Tipper et al., 1994, 

Wang and Klein, 2010). Nonetheless location-based components are involved in 

eliciting IOR (Muller and von Muhlenen, 2000, Leek et al., 2003). The time-course of 

IOR turns out to depend on experimental conditions. Inhibition begins earlier when 

saccadic responses are made as compared to when manual responses are required 

(Klein, 2000). Earliest crossover points, where facilitation changes into inhibition 

occur at 200 ms inter stimulus interval (ISI) between cue and target for a simple cue-

target task (see Figure 4), whereas difficult discrimination tasks can show crossover 

latencies between 500 and 600 ms ISI. IOR can last for several seconds (Klein, 

2000).  
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To anatomically localize the cortical areas that generate ERP- or analogue MEG-

components, EEG-and MEG-recordings were combined with functional magnetic 

resonance imaging (fMRT) or positron emission tomography (PET). Generators of 

the P1-and N1-attention effect were found to originate in ventral extrastriate cortex. 

(Heinze et al., 1994, Di Russo et al., 2001, Martinez et al., 2001) Amplitude 

enhancements of the P1/N1 component typically occur without changes in 

component latencies or scalp topographies, which was taken to indicate that spatial 

attention selects visual input during early processing stages by exclusively controlling 

the gain of the cortical response to the input (Hillyard et al., 1998). Single-unit studies 

in the monkey support such a gain control mechanism (Luck et al., 1997, Maunsell 

and Cook, 2002, Lee et al., 2007). 

The focus of attention can vary in form and size depending on task demands. Its form 

has been linked to a spotlight, a zoom lens (Eriksen and James, 1986), or a 

Gaussian gradient (Downing and Pinker, 1985). (cf. Hopf et al., 2009) It has been 

shown recently that the spatial distribution of attention can resemble a Mexican hat 

profile (Hopf et al., 2006). The processing of stimuli is most enhanced central, 

suppressed next to the center and then again progressively enhanced in the 

periphery.  

 

1.3.2  Feature-based Selection  
The ability to enhance the representation of image components throughout the visual 

field that are related to a particular feature is referred to as feature-based attention 

(FBA) or selection. FBA is particularly important in visual search. For example, 

identifying my red car on a crowded parking lot makes the color red an important 

feature for my search. Common to all visual search paradigms is the requirement to 

detect a target item (red car) among distractor items (cars in other colors) based on 

previously known feature descriptions with the target differing from distractors in at 

least one feature-dimension, such as color, form or orientation. As FBA enhances the 

representation of image components that match the attended feature (e.g. the color 

red or a vertical orientation) (e.g. Maunsell and Treue, 2006) search is biased 

towards target identification. Global feature-based attention is the phenomenon of 

FBA expanded to target-relevant features outside the focus of attention (Hopf et al., 

2009).  
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1.3.2.1  Electrophysiological Evidence 

The enhancement/decrement of a certain component of the visual scene 

corresponds physiologically with a modulation of cell firing rates in visual neurons. 

Such sensory gain control through attentional selection can operate by increasing the 

gain of neuronal representations that match the attended feature (Motter, 1994, 

Treue and Martinez Trujillo, 1999, Maunsell and Treue, 2006) or by attenuating 

neuronal activity of irrelevant feature representations (Chelazzi et al., 1993, Chelazzi 

et al., 1998, Lennert and Martinez-Trujillo, 2011). Corbetta et al. (1990, 1991) were 

amongst the first to report, that paying attention to non-spatial stimulus features 

results in enhanced neural activity in the cortical regions specialized in processing 

these features. Attention to non-spatial features elicits typical ERP-responses known 

as selection negativities (120-300 ms after stimulus presentation) or selection 

positivities with highest amplitudes over occipital scalp regions (Harter and Aine, 

1984, Anllo-Vento and Hillyard, 1996, Anllo-Vento et al., 1998).  

Based on single-cell-recordings in monkeys Motter (1994) found that attention to 

color increased activity of color-selective neurons in V4, if  the color-stimulus in their 

RF was drawn in the neurons’ preferred color. This firing-enhancement was 

independent of the localization of the focus of attention. Treue and Martinez-Trujillo 

(1999, 2004) report a similar finding in the motion-sensitive area MT. If the monkey 

attended to a certain motion-direction in one visual field, neurons tuned to that 

motion-direction showed an enhanced response even when their RF was in the 

opposite (unattended) visual field. Treue and Martinez-Trujillo (1999) developed the 

feature-similarity gain hypothesis, which states that FBA changes the sensitivity of 

visual neurons. Importantly, their studies revealed that the degree of enhancement is 

a function of the similarity between the attended motion direction and the cell´s 

directional preference. On the neuronal population level feature-based selection not 

only increases the selectivity for attended features by increasing the responses of 

neurons preferring this feature value, but also decreases that of neurons tuned to the 

opposite feature value (motion direction) (Martinez-Trujillo and Treue, 2004). 

The operation of global FBA was also revealed at the neuronal population level. 

Boynton et al. (2006) observed that a single motion stimulus on one side of the visual 

field induced a motion aftereffect in the opposite visual field.  
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Saenz et al. (2002) demonstrated in a fMRI experiment spatially global neuronal 

modulation due to FBA (motion/color) across multiple early stages of cortical visual 

processing. Subjects solved a speeded detection task in one VF and neuronal 

activation increased for stimuli with the same feature value in the other unattended 

VF. The effect was visible across multiple early stages of cortical visual processing. 

The authors note that, “a feature-based mechanism of attention may thus work in 

parallel with a spatial mechanism to influence the earliest stages of cortical visual 

processing”. However, Maunsell and Treue (2006) hypothesized, that the similarity of 

the neuronal implementation of feature-based and spatial attention suggest a unified 

attentional system treating the location of a stimulus as one of its features. 

In a visual search EEG/MEG-study Hopf et al. (2004) documented a short phase of 

parallel location-independent feature selection prior to target localization and 

selection. The task was a simple color-orientation conjunction search (Treisman and 

Gelade, 1980) with distracters. Half of the distracters shared an orientation feature 

(or feature value) with the target and half of them did not. A lateralized brain 

response indicating the presence of the relevant orientation feature preceded the 

N2pc (second negative deflection posterior contralateral) response by about 30 ms, 

and indicates the position of the target in space. The N2pc reflects attention shifts 

towards the target (Hopf et al., 2009) and has been shown to arise from source 

activity in extrastriate cortex (Hopf and Mangun, 2000, Hopf et al., 2002a, Hopf et al., 

2004). The N2pc component can be seen as an index of attentional focusing (Kiss et 

al., 2008a, Kiss et al., 2008b, Leblanc et al., 2008, Ansorge et al., 2009). Hayden and 

Gallant (2005, 2009) support the idea that spatial and feature-based attention are 

mediated by discrete cortical substrates and suggest that both forms of attention act 

by enhancing the excitability of visual neurons. Priority of feature- or location-based 

selection may be flexible adjusted according to task demands. 

As already mentioned above a very notable property of FBA is that it can enhance 

responses to non-spatial features outside the focus of attention, i.e. the selection of a 

feature at one location triggers selection of that feature at another location, which is 

referred to as global feature-based attention. This has been widely documented for 

monkeys (e.g. Martinez-Trujillo and Treue, 2004, Maunsell and Treue, 2006) and 

human observers (e.g. Saenz et al., 2002, Hopf et al., 2004, Boehler et al., 2011b).  
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Recent research revealed, that global FBA also occurs in the absence of feature 

competition in the focus of attention, but might be dependent on a simultaneous 

presentation of attended and distractor features having the same onset and offset 

(Bartsch et al., 2014). This study also revealed that global color-based selection is 

reflected by a sequence of two response modulations, i.e. an initial phase around 

200 ms, which is thought to reflect the presence of a target-defining color (compare 

section 1.5 Task and Attention Control for the role of task sets), dubbed attentional 

template matching and a later phase around 280 ms, which was named 

discrimination matching, because it reflects the color selection at an unattended 

location/object as a result of the discrimination process in the focus of attention. 

Apparently, the later phase was localized more downstream in the visual hierarchy in 

ventral extrastriate cortex (V3/V4) than the initial phase, which was localized in lateral 

occipital complex (LOC - in monkeys presumably TEO), an area processing object 

information, giving rise to the assumption that global color selection works as a 

recurrent process in the backward direction from coarser to more fine-grained visual 

representations. This reminds of the proposal Hochstein and Ahissar (2002) made in 

their paper outlining vision in general. They suggest that for “vision with scrutiny” 

(attention) visual routines advance in reverse hierarchical direction in contrast to 

“vision at a glance” taking place at high-level areas. 

 

1.3.3  Object-based Selection 
To interact with things, we need to perceive our visual world in coherent unitary 

objects having many different features. If you want to grab a chair to sit down, you 

need to know which parts belong to the chair and which to the table or the 

environment.  

As described in section 1.2 “Functional Anatomy of the Visual System”, vision in low-

level visual areas, beginning with V1, fragments the visual scene into small featural 

details like texture patches and short contour elements. Ascending the ventral stream 

receptive fields of visual neurons become larger until they have the capability to 

represent larger parts of the visual scene. But how are different features like color, 

motion, and orientation, which are represented in diverse cortical areas, bound 

together to form a unified percept?  
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A widely accepted solution to the so called “binding problem” is proposed by the 

“integrated competition model” (Duncan et al., 1997, O'Craven et al., 1999). 

According to this model, directing attention to one feature of an object biases the 

processing of unattended features of that object. A further development of this model 

based on the observation, that objects meeting criteria of the Gestalt laws 

(Wertheimer, 1923), like similarity, proximity, connectedness or good continuation, 

may not be necessarily processed with the same speed (Jolicoeur et al., 1986). 

Roelfsema and Houtkamp (2011) proposed a two-part mechanism they dubbed 

“incremental grouping”. In a first process features represented by neurons with the 

same tuning shall be bound together. Afterwards the incremental part of the theory 

comes into play, because “base grouping” might not be sufficient to bind all 

necessary feature dimensions for an object, i.e. this will be a time-consuming and 

capacity-limited process requiring spreading neural activity over all neurons 

representing the corresponding image elements. 

 

1.3.3.1  Electrophysiological Evidence 

Experimental evidence for feature binding (O'Craven et al., 1999, Schoenfeld et al., 

2003) showed that the neural representations of all other non-attended features, 

including the ones that were not relevant for the task are activated. In a visual search 

experiment Boehler et al. (2011b) measured ERPs and could demonstrate that the 

object-based bias for an irrelevant feature can also appear in another unattended 

object when it shares that feature with the target object, suggesting that the selection 

of irrelevant features is not confined to the attended object and acts in a more global 

way. The findings of Schoenfeld et al. (2014) proved further evidence for binding 

across feature dimensions to form a unitary perception of an object. In a MEG-study 

subjects were shown two superimposed moving dot arrays that were perceived as 

transparent surfaces. Subjects were asked to attend to only one of them on the basis 

either of color or speed of motion. The authors found a rapid sequential activation of 

the relevant and irrelevant feature modules depending on the specific task. MEG-

waveforms showed increased responses in the motion-specific cortical area starting 

at ~150 ms after motion onset, when surface motion was attended, followed by 

enhanced activity in the color-specific area ~60 ms later on.  
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When surface color was attended the picture reversed and increased responses in 

color-specific areas could be measured prior to enhancements in motion-specific 

areas.



	   19	  

1 Introduction 
 

1.4  Contingent Attentional Capture 
 
The differentiation between voluntary and involuntary attentional orienting is related 

to the distinction between exogenous vs. endogenous attention control (Posner, 

1980), or between automatic vs. non-automatic attention control (Jonides, 1981). The 

notion of exogenous orienting is inspired from the neurological reflex. The concepts 

of automatic and exogenous control suggest that the control of selective attention lies 

outside of the organism, such that the stimulus itself attracts attention in a bottom-up 

fashion. The counterpart is called endogenous, non-automatic, voluntary or top-down 

control, where attention is shifted to locations, features or objects to meet the 

individual’s performance goals.  

It should be noted, that shifting attention according to individual goals is regarded to 

be top-down, but must not necessarily be voluntary. The segregation between 

bottom-up and top-down is not strict, meaning automatic (bottom-up) attentional 

capture (cf. section 1.1, Yantis, 1996) can be influenced by top-down factors, which 

was demonstrated in a seminal paper by Folk and Remington (1992). They noted 

that previous studies of involuntary attentional capture always used distracter stimuli, 

that had the same stimulus properties which did also define the target. In their 

experiments Folk et al. studied attentional capture by carefully controlling the relation 

between properties of the distracter and the target. They tested two unique distracter 

properties (color, abrupt stimulus onset) against unique target-defining properties 

(again, color, abrupt onset). Confirming previous results, they found that when 

distracter and target properties matched, distracters captured attention. But when 

they did not match, even the abrupt-onset of a distracter did not capture attention. 

The critical point is the relationship of distracter properties to the target-finding 

properties. Folk et al. proposed that cognitive goals determine attentional control 

settings before the task, so that stimuli matching these settings will capture attention 

in the task. They dubbed their hypothesis contingent involuntary orienting hypothesis, 

because the reflexive allocation of attention is contingent on attentional control 

setting (cf. Pashler et al., 2001). 
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A whole body of follow-up studies confirmed the findings of Folk and Remington 

(Bacon and Egeth, 1994, Gibson and Kelsey, 1998, Lamy et al., 2004, Eimer and 

Kiss, 2008, Kiss et al., 2008a, Leblanc et al., 2008, Lien et al., 2008). Also notable to 

this regard is the influence of working memory on attentional capture. Recent 

evidence suggests that capture is stronger when working memory resources are 

reduced, e.g. due to a discrimination task. (Lavie, 2005, Fukuda and Vogel, 2009) 

Recently the contingent capture hypothesis has been objected (Theeuwes, 2010). 

Theeuwes has put forward the hypothesis, that all salient stimuli in the visual field 

automatically attract attention bottom-up, regardless of the attentional set for a 

search task. Only after spatial attention has shifted towards the stimulus, 

disengagement of attention is subject to top-down control. But still, in this hypothesis 

the attentional set is important for the process of disengagement: If the attention-

capturing stimulus resembles the target, disengagement shall be slow and effortful. 

Sawaki and Luck (2010, 2011, 2013) merged both hypotheses and called it “signal 

suppression hypothesis of controlled attention capture” (Sawaki and Luck, 2011). 

Like in the bottom-up saliency hypothesis by Theeuwes they propose that salient 

items are detected irrespective of top-down control settings, meaning that all salient 

items generate an „attend-to-me“ signal. Similar to the contingent involuntary 

orienting hypothesis they propose that top-down control settings can influence 

whether this attend-to-me signal actually leads to the allocation of attention. 

Taken together, top-down descriptions may entail a selection bias for one or a set of 

simple target-defining features (e.g., color, orientation) and may also refer to a 

selection bias contingent on the general behavioral relevance of a target object, for 

example, its emotional significance, or association of reward.  

 

1.4.1   Electrophysiological Evidence 

Salient stimuli capturing attention evoke enlarged ERP-/ERMF-amplitudes of early 

visual components compared to stimuli that do not attract attention. Distractors also 

sharing features of the attentional set entail contingent involuntary orienting reflected 

by enhanced P1 and N1 amplitudes. For example, Arnott et al. (2001) provided 

evidence for orienting contingent on target properties in a search task with location 

unpredictable cues. Two conditions (abrupt onset and color) were compared.  
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In the onset condition (onset targets) color cues did not capture attention and in the 

color condition (color targets) onset cues did not capture attention. Response times 

as indicator for attentional capture were dependent on the location of the preceding 

cue (same or other position than target), but only in those blocks in which the cue 

shared the uniquely relevant target feature. An N1-component enhancement could 

only be seen for cue-stimuli matching the target features. Moreover, several studies 

have reported the appearance of an N2pc component as an index of contingent 

attentional capture. The N2pc (N2-posterior-contralateral) is known to reflect 

attentional focusing (Luck and Hillyard, 1990, Luck and Hillyard, 1994). Eimer and 

Kiss (2008) found an N2pc in a cue-target search experiment for cues sharing 

features with the target, not for cues that shared no feature. Other authors had 

similar findings (Leblanc et al., 2008, Lien et al., 2008).  

Sawaki and Luck (2010, 2011, 2013) put forward the hypotheses that all irrelevant, 

but salient distractor items were detected in the visual system and therefore catch 

attention in a bottom-up fashion. If those stimuli were behaviorally irrelevant they 

could be overridden with top-down suppression only afterwards if needed. The 

existence of such an “attend-to-me” signal for salient distractor items was inferred 

from an observed ERP component called distractor positivity (Pd) instead of the 

N2pc component seen for attended stimuli. The Pd modulation Sawaki and Luck 

found in their experiments occurred irrespective of attentional focusing and was 

previously shown to reflect the suppression of distractors in a discrimination task 

(Hickey et al., 2009).  
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1.5  Task and Attention Control 

 
Overt or covert visual selective attention can be measured as amplitude modulation 

in electrophysiological or magnetic brain responses in visual cortex areas (Figure 3). 

But how is attention guided to behaviorally relevant locations or features?  

A widely believed idea is that these modulations seen in visual cortex are caused by 

an attentional control network, that integrates momentary behavioral goals in 

perception. Hopfinger et al. (2000) suggest such a system of top-down control of 

spatial attention that modulates activity in extrastriate cortex. The cues of a spatial 

cuing paradigm evoked fMRI responses in superior frontal cortex areas, the inferior 

parietal cortex, superior temporal cortex, as well as portions of the posterior cingulate 

cortex and insula. In contrast, targets and areas for visual processing of the cue 

showed different activations, so that the proposed network is likely to represent the 

source of attentional selection.  

In natural scenes eye movements are essential for stimulus selection, so that 

saccade planning and directing attention to a location might engage similar or same 

mechanisms (Corbetta et al., 1998). PPC and lateral intraparietal cortex (LIP) are 

areas responsive for saccade planning and may also represent salience. Koch, Itty 

and Ullman propose the existence of a “saliency map”, which is able to guide 

attention faster to a salient stimulus in the visual scene than top-down influences 

could, because visual input would not have to be processed completely (Koch and 

Ullman, 1985, Itti and Koch, 2001). This hypothetical map is possibly located in 

posterior parietal cortex (PPC, see Figure 2) and should work as follows. Early 

stages of visual processing decompose the incoming visual input through feature-

selective filtering processes and as a result feature maps emerge. These feed into a 

unique “saliency map” consisting of a two-dimensional (2-D) topographic 

arrangement of neurons that represent stimulus saliency throughout the visual scene. 

Feature saliency for different feature categories (color, motion, etc.) may merge into 

a superior saliency map. (Itti and Koch, 2001) Bisley and Goldberg (2003, 2010) see 

area LIP as a possible location for a similar “priority map” computing both, bottom-up 

and top-down inputs in order to represent overall behavioral relevance that can be 

used for attention and eye movements.  



	   23	  

1 Introduction 
 

Moore and Armstrong (2003) expanded the idea that motor systems engaged in 

saccade programming provide the basis for covert visual attention and modulate 

processing not only in dorsal stream visual areas, but also in ventral stream areas 

like V4. Gilbert and Sigman (2007) go further in their review and describe top-down 

modulation as a general principle in all cortex areas, where selective attention with all 

its categories like features and objects is only one part next to expectation and the 

perceptual task. They suggest that any cortical area works as “adaptive processor” 

computing retinal bottom-up input and contextual and experience-dependent top-

down feedback in a moment-to-moment process setting the cortex in a certain 

working mode – a “brain state”.  

Top-down feedback to visual cortices is possible within the hierarchy to a lower area, 

and from known attention areas (in monkeys) as FEF, LIP, and PFC, which have 

connections to visual areas (reviewed in Baluch and Itti, 2011). Interestingly, area LIP 

might compute even higher cognitive information like behavioral value (Louie et al., 

2011). In a recent review Gottlieb (2012) comes to the conclusion, that neurons in 

LIP, which are responsible for target selection encode the “relative value of 

alternative actions”. The area LIP gets input from PFC, an area dealing with a 

number of executive control processes like shifts of attention, or working memory and 

also likely the representation of reward (Goldman-Rakic, 1995, Miller and Cohen, 

2001, Tanji and Hoshi, 2008, Wise, 2008). And the dorsolateral prefrontal cortex 

(DLPFC, Figure 2) in turn is associated with visuo-spatial working memory (Smith et 

al., 1996). According to Knudsen (2007) working memory is inevitably interconnected 

with top-down attentional modulations, because it does not only store information for 

some seconds, in doing this, it represents the objects of attention. And not to forget, 

in respect to visual search working memory is essential for holding the target in mind 

(Tanji and Hoshi, 2008).  

Visual search and contingent attentional capture in general are based on attentional 

sets (Corbetta and Shulman, 2002) or task sets – mental programs that orchestrate 

performance of search and other complex tasks. According to Norman and Shallice 

(1986) behavior in familiar tasks is controlled by unconscious schemata, which select 

and coordinate the elementary processes that take place in task execution (cf. 

Meiran, 1996, Dosenbach et al., 2006).  
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Before every search task subjects get a detailed instruction and develop a specific 

task set making sure that in a moment-to-moment process the task is performed 

properly. Such a task set is part of executive brain functions or cognitive control 

processes that enable the brain to optimize the flexible use of limited cognitive 

resources to currently prioritized tasks. Our brain needs to detect environmental 

changes to allocate more cognitive and/or attentional resources to prioritize tasks 

when necessary.  

Executive control may trigger overriding of habitual responses, shifts between 

different tasks or inhibition of distracting stimuli. Current research suggests that the 

anterior cingulate cortex (ACC) and the DLPFC play a special role in cognitive 

control. ACC is thought to monitor or detect a present conflict between task-relevant 

and task-irrelevant information and may exert executive control by selectively biasing 

processing in favor of task-relevant information. Alternative, ACC may just detect the 

conflict and then convey information to DLPFC, which then exerts cognitive control. 

(Mansouri et al., 2009) 

Dosenbach et al. (2006) where able to extract top-down task set signals out of visual 

experiments and identified three different types of signals. One in the beginning of a 

task block to implement the task set, one to maintain it throughout the task and an 

error-related feedback-signal. They suggest that the dACC and the medial superior 

frontal cortex (msFC) play a core role in an executive control system. Furthermore, 

there has been broad evidence for the notion, that the role of dACC might not only lie 

in monitoring conflicts between task and distractors, but also in focusing attention on 

behaviorally relevant stimuli (Pardo et al., 1991, Posner and Dehaene, 1994, 

Weissman et al., 2005). 

Importantly, in humans, top-down settings for task-relevant stimulus properties can 

be set by plain verbal instruction without resorting to the direct application of reward, 

which makes it easier to separate task- and reward-relevant top-down settings 

(Boehler et al., 2011a), but see section 1.8 “Effects of Reward on Visual Selection” 

for more details on the possible confound of reward- and attention-based 

experimental effects.  
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1.6  Learning and Reward 
 

To review the whole topic of reward in all its facets including higher cognitive 

functions like decision making or overt behavior (Schultz, 2000) would go beyond the 

scope of this work. However, to think of attention as the only variable in visual 

sensory processing may fall short of the mark. True that an incoming visual stimulus 

has to pass attentional selection to reach consciousness or working memory. But 

reward may either shape attentional control or even exert direct neuromodulatory 

influence on stimulus selection as well (see section 1.8. “Effects of Reward on Visual 

Selection”). For instance the neuromodulator dopamine is besides its prominent role 

in subcortical reward mechanisms is also thought to facilitate learning (Schultz, 

2000). By contrast, perceptual learning as a prerequisite for achieving practical skills 

is also in the visual domain classically thought to depend on practice, i.e. repeated 

presentation of a - normally attended - stimulus. But this view has been challenged 

by the finding that stimulus-reward pairing is sufficient to evoke perceptual learning 

effects of unconsciously perceived stimuli (Seitz et al., 2009). Taken together, in the 

triangular relationship of attention, reward and learning, depending on circumstances 

everyone dates everyone and sometimes all three go together. 

 
1.6.1  Neural Correlates of Reward 

In literature is often referred to a “reward system”. This term typically denotes several 

interconnected brain structures that process reward-related information. Traditionally, 

the reward system is thought to consist of two major pathways, the mesocortical and 

mesolimbic dopamine systems. Both pathways originate in the ventral tegmental 

area. The mesolimbic pathway connects to the nucleus accumbens in the ventral 

striatum, while the mesocortical pathway connects to the cortex, especially the frontal 

lobes. In their influential paper Berridge and Robinson (1998) review the role of these 

dopamine pathways. Their “incentive salience hypothesis” differs from other models 

in the assumption of a “hedonic” component, i.e. a difference between “liking” and 

“wanting”. In a first step a “hedonic activation” shall take place, followed by the 

association between stimulus and hedonic consequences as second step, and finally 

“incentive salience” shall be attributed to an event or stimulus.  
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They found that “dopamine-depleted rats still ‘like’ rewards, and still know the 

rewards they ‘like’. They simply fail to ‘want’ rewards they ‘like’.” (Berridge and 

Robinson, 1998) To stick to rats, the septal area became famous for an experiment 

from Olds and Milner (1954), where rats pushed a lever to stimulate themselves, and 

this made the idea of a reward circuit centered around nucleus accumbens and 

ventral tegmental area popular (Haber and Knutson, 2010). Unfortunately, more 

recent studies draw an anatomically and functionally more complicated picture. 

Haber and Knutson see a focus on midbrain areas and ventral striatum, which 

receives main cortical input from ACC and orbital frontal cortex and major 

dopaminergic input from the midbrain. Brain structures of this system include among 

others the cortico-basal ganglia system, Amygdala and Hippocampus.  

Substantia nigra pars compacta and ventral tegmental area contain most of the 

dopamine releasing neurons, which distribute dopamine in a “normal” “tonic” or 

reward-related “phasic” mode (Schultz, 2000). Interestingly these phasic dopamine 

responses are not triggered by reward per se, but can rather reflect a ‘‘reward 

prediction error’’, reporting the difference between actually received and predicted 

reward (Schultz et al., 1997). But dopaminergic neurons encode far more than the 

prediction error, so that a recent proposal divides the neural population into salience 

coding dopaminergic and value coding dopaminergic neurons responsible for so 

different functions like general motivation, orienting, and cognitive processing or 

value learning, evaluation, and seeking, respectively, including also responses to 

none-reward events (Bromberg-Martin et al., 2010). 

But note, that signals reflecting value might be ubiquitous in the brain (Vickery et al., 

2011). In line with the nature of reward and value at large there is no single structure 

representing reward only. But for example, whatever the exact function of dopamine 

in reinforcement learning or motivation may be, it is of minor interest for this work that 

concentrates on the effects of reward on visual processing. The reward contingency 

of a stimulus is by then detected by the “reward system”. But if reward alters 

perception via attention or maybe a ubiquitous reward signal also biasing perception 

is worth to be considered in the following sections. 
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1.6.2  Perceptual Learning 

Locals spot small frogs on rainforest leaves, where tourists just see a green hell. 

However, with training every subject improves skills of perception. Karni and Sagi 

(1993) found perceptual learning effects stable over years and attributed their 

findings to plasticity in early visual cortex. Evidence is mixed to the question to what 

extent increased performance due to perceptual learning stems from early-level 

modifications or is mainly attributed to improvements in higher-level readout stages. 

After all, both may be true and depending on task demands. Paradigms, where 

subjects have to make difficult discriminations of fine featural details may lead to 

plasticity in early visual cortex, while easy tasks over many locations and feature 

values suggest plasticity in higher representational areas. Paradigms like the one 

used in this work on the basis of easy to discriminate features, might also be learned 

independent of plasticity in visual cortex as stimulus-response mappings. (Roelfsema 

et al., 2010) 

But it seems, that even though high frequency may signal ecological relevance, only 

practice is not sufficient for perceptual learning to occur. Stimuli have either to be 

attended (Ahissar and Hochstein, 1993, Jiang and Chun, 2001) or to be reward-

associated, even when not attended (Seitz and Watanabe, 2005, Seitz et al., 2009). 

Perceptual learning can also occur for non-attended stimuli, that are even to weak to 

be perceived (Watanabe et al., 2001), but this might be also explained with reward. 

Subjects performed a task with rapid serial visual presentation of target digits on a 

background of a sub-threshold motion stimulus. Remarkably, subjects motion 

discrimination performance increased for the paired direction. Thus, a positive task 

outcome might generate an intern reward needed for pairing the attended stimulus 

with the subliminal stimulus (Seitz and Watanabe, 2005). But an external reward is 

also sufficient. In another experiment human subjects were deprived of food and 

water and then exposed to visual stimuli of which some were rendered unconscious 

by continuous flash suppression and paired with drops of water as reward. The direct 

association of the stimulus with a primary reward also seemed to evoke perceptual 

learning in the context of pavlovian conditioning in monkeys (Franko et al., 2010) and 

even in the absence of attention in humans (Seitz et al., 2009). 
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1.6.3  Perceptual Priming 

 

“Priming describes the effect of a (sometimes subliminal) stimulus on subsequent 

perception of (other) stimuli and/or behavioral responses” (Fahle and Poggio, 2002). 

Perceptual priming also differs from perceptual learning in the durability of the effect, 

because priming effects usually vanish after tens of seconds (Fahle and Poggio, 

2002). Even though perceptual priming is in most cases not attributed to any 

attentional mechanisms, it is an interesting phenomenon in respect to modulatory 

effects in extrastriate cortex ascribed to reward contingency in visual experiments. 

In contrast to episodic or semantic explicit memory perceptual priming involves 

unconscious implicit memory (Schacter, 1987). Word-completion tasks are classical 

priming experiments. Subjects read a word list and after a delay period word 

fragments are presented, which they are asked to complete. Subjects show better 

performance for words that were previously shown to them even if they cannot 

remember the word list explicitly. The fact that small children and amnesic patients 

show veritable perceptual priming effects lead to the idea, that this form of memory 

does not rely on memory-circuits in medial temporal lobe, but instead on 

mechansims in perceptual cortex areas. (Tulving and Schacter, 1990)  

The simplest form of priming is repetition priming. Every perceived stimulus is primed 

and if the same stimulus is experienced the next time, performance is enhanced. 

Studies investigating repetition priming with different methodologies could show that - 

while enhancing performance - perceptual priming decreases stimulus processing 

activity (Squire et al., 1992, Li et al., 1993, Gruber and Muller, 2002, Wig et al., 2005, 

Moldakarimov et al., 2010) possibly via sharpening of the stimulus representation in 

early visual cortex, which in turn leads to a more selective activation of up-steam 

neurons representing more complex stimulus properties in higher cognitive cortex 

areas (Moldakarimov et al., 2010).  

Priming that improves performance is also called positive priming in contrast to the 

more complicated concept of negative priming, which weakens performance. Positive 

priming simply requires experiencing the stimulus, whereas negative priming means 

a slower or more error prone response caused by a previously ignored stimulus. Two 

major hypotheses try to explain negative priming. One popular model is a memory 

mechanism named “episodic retrieval model” (Neill et al., 1992).  
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This hypothesis states that ignored stimuli will be tagged “do-not-respond” and during 

memory retrieval the tag would cause a conflict. Another possibility is an attention-

driven mechanism involving distractor inhibition (Houghton and Tipper, 1996). 

Perceptual priming seems to be dependent on attention in a way that previously 

attended stimuli lead to the known performance increases and neural response 

decrease with repetition, while previously unattended stimuli can be associated with 

negative priming behavior and neural response enhancement linked to inhibition 

(Vuilleumier et al., 2005). In a visual scene with several similar items the target pops 

out in case it differs in one feature from the distractors. For example a red colored 

singleton pops out among green objects with the same shape. Priming also happens 

during visual search, which has been investigated for “pop-out” targets (Maljkovic 

and Nakayama, 1994). This kind of repetition priming was considered to be not 

influenced by top-down goals and settings (e.g. Theeuwes, 2006, Kristjansson, 

2008), but reward contingencies do seem to seem to alter search and priming effects 

(Kristjansson et al., 2010), but see the following section for further elaboration on this 

aspect. 
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1.7   Effects of Reward on Visual Selection 

 
Traditionally studies of visual selective attention investigate physical aspects of 

selection described with stimulus characteristics like luminance, contrast, color, 

motion, being an object or not, and so on. Non-visual contextual information like 

reward-association has only been studied more intense for one or two decades. 

Schultz (2000) mentioned “the possibility that the dopamine activation might encode 

a specific form of attention that is only associated with rewarded events”. Until now in 

the context of visual search research has failed to proof evidence for a direct 

modulatory impact of the reward-system on early sensory cortex areas bypassing 

top-down attentional control. But research is still in progress to define the role of 

reward and attention in visual stimulus processing. 

 

1.7.1  Reward as (more or less) Independent Factor for Visual Selection 

Hickey and colleagues (2010) managed to separate reward from target features in a 

visual search paradigm. Subjects searched for a shape singleton (target) among 

similar colored items and one color-singleton drawn in a different color (color-

distractor). Color was completely task-irrelevant and subjects were given high or low 

reward upon correct target discrimination on every trial. Colors could swap from trial 

to trial, with the color of the target becoming that of the distractor or could remain the 

same. Meaning the distractor was either presented in the previously high or low 

rewarded color. The critical observation was that color distractors appearing in the 

color that was combined with high reward on a previous trial elicited an enhanced 

contralateral P1-response – an enhancement not seen when the same color was 

associated with low reward on the previous trial. A P1-enhancement typically reflects 

an effect of location selection associated with a gain-amplification of neural 

processing in retinotopically corresponding extrastriate visual areas (Hillyard and 

Anllo-Vento, 1998), suggesting that reward-relevance biased processing in 

extrastriate cortex, even though color was generally task-irrelevant and non-

predictive as to the target´s location. The authors stress the point that reward does 

not only influence goal-directed behavior through strategy or attentional set, but has 

direct impact on visual stimulus processing. 
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This notion gets support from the finding, that reward may create salience in the 

oculomotor system causing the eyes to orient towards a reward-associated stimulus 

irrespective of individual goals (Hickey and van Zoest, 2012, Theeuwes and 

Belopolsky, 2012).  

Other authors also argue that value-based factors like the reward-relevance of a 

stimulus may be separable from task relevance at the level of sensory selection 

(Shuler and Bear, 2006, Seitz et al., 2009, Weil et al., 2010, Arsenault et al., 2013).  

Shuler and Bear (2006) trained rats to expect reward (water after x licks from a water 

tube) after full VF illumination by face mounted goggles. Half of all trials were 

unrewarded. The time span to reward delivery was longer for right eye stimulation 

than for left eye stimulation. Using single cell-recordings they found that naive rats 

just showed a response to visual stimuli, whereas the activity of V1-neurons from 

experienced rats correlated with reward time associated with the light cue. The 

observed post-stimulus activity appeared to be related to reward-time prediction and 

not to reward delivery per se, because it also occurred during the unrewarded trials. 

In a follow-up study Chubykin, Roach, Shuler and Bear (2013) identified plastic 

changes in primary visual cortex underlying reward-timing activity. In their 

experiments with rats they selectively removed cholinergic input from basal forebrain 

to V1 with the result that cue-reward intervals could not be learned any more, but 

previously learned intervals still showed intact expression. These results show, that 

cholinergic input to V1 does not represent a direct visual stimulus-reward-

association, but the finding of ACh-dependent conditioned learning of reward-timing 

as early as in V1 is striking. Consistent with the finding that visual neurons predict 

reward, Weil et al. (2010) also found distinct effects for reward and spatial attention 

with fMRI in human visual cortex. In both hemifields gratings were presented to 

subjects, which had to discriminate the orientation in one visual field and to ignore 

the other similar grating. Auditory feedback was given on the amount of reward for 

every correct trial to avoid stimulation of visual cortex. Feedback on reward increased 

the blood-oxygen-level-dependent (BOLD) signal in area V3 in spite of the missing 

visual stimulation. In V1 enhanced activity due to reward was found depending on the 

previous trial, which had to be rewarded. 
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Shuler and Bear (2006) found V1 activity rather depending on reward-timing than 

reward itself, while Weil and colleagues (2010) failed to find cue-specific reward-

modulation in “early” visual cortex. Having in mind that there may be differences 

across species (rat, monkey, human) to this regard, Arsenault et al. (2013) provided 

more direct evidence for reward cues and reward itself modulating visual cortex 

areas in monkeys, including at least V2, V3, V4 and TEO, independent of attention. 

Monkeys were trained to perform a fMRI experiment with a 2 x 2 factorial design. 

With the same probability juice reward could be delivered after a cue or without cue, 

and trials without reward could be cued or not cued (fixation). When delivering 

reward without visual stimulation, they had the counterintuitive finding of a decreased 

BOLD signal in visual cortex. Visual attention in the absence of visual stimulation is 

thought to induce an enhanced BOLD response (Kastner et al., 1999). That reward, 

instead, lead to a relative attenuation, is suggested to not represent stimulus 

deactivation, but rather an increase in stimulus information, which could be mediated 

through a decrease of baseline activity and a subsequent boost of the signal-to-noise 

ratio. Additionally, the authors speculate on the basis of the observation of the cue-

reward association being strengthened by un-cued reward events, that there is a 

mechanism turning an unspecific dopamine signal in visual cortex into a stimulus-

selective one. Similar to the theory of perceptual learning by Roelfsema, Oyen and 

Watanabe (2010) claiming that reward as a reinforcer causes diffuse distribution of 

the neuromodulators ACh and dopamine gating plasticity in order to enable 

attentional feedback to “highlight the chain of neurons” from perception to action. 

Arsenault et al. (2013) propose an interplay between sensory representation of the 

cue and reward feedback to “tag” the stimulus representation. In a second step, a 

diffuse reward signal generated by uncued delivery of reward may interact with the 

previously “tagged” stimulus representation explaining the selective visual cortex 

modulation they observed at the location of the cue. That reward might be able to 

bias visual selection independent of attention gets support from the elegant 

behavioral study from Seitz et al. (2009) already mentioned in section 1.6 “Learning 

and Reward”. Human subjects deprived of food and water viewed stimuli rendered 

unconscious by continuous flash suppression but paired with drops of water as 

reward. Stimulus-reward pairing seemed to evoke perceptual learning in the absence 

of attention.  
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1.7.2  Reward as Determinant of Attention 

The connection of reward and attention has been made for area LIP and PFC for 

instance, because they are known for their role in guidance of attention as well as for 

coding of reward. A possible candidate for the encoding of reward to modulate visual 

attention lies in PFC. The LPFC plays a role in a number of executive control 

processes including shifts of attention, working memory, strategy implementation, 

representation of rules/categories/objects, and response inhibition among other 

functions (for detailed reviews, see Goldman-Rakic, 1996, Miller and Cohen, 2001, 

Tanji and Hoshi, 2008, Wise, 2008). PFC has close connections to LIP and neurons 

in LIP also show modulations due to reward (Platt and Glimcher, 1999). Peck et al. 

(2009) trained monkeys to make a saccade to a target stimulus and additionally 

presented a task-irrelevant cue signaling reward and a second cue signaling no 

reward for the trial. Even though the cue was uninformative for saccade planning, 

neurons in LIP encoded an attentional bias toward the location of the reward-cue and 

inhibition of the location of the non-reward cue. These findings suggest area LIP to 

code the “value of information” and convert this information into top-down attention. 

(reviewed in Baluch and Itti, 2011)  

Lets assume that reward alters deployment of selective attention, how then is reward 

bound to a visual feature, if cognitive cortical areas encoding value or reward-

relevance per se are blind for fine-grained visual features? Baluch and Itti (2011) 

state, that cortical areas like LIP, FEF or a subcortical structure like the SC might 

normally be “feature agnostic”, while visual cortical areas, IT and PFC might operate 

in a “feature-committed mode”. They suggest, that the pulvinar works as a 

bidirectional translator and converts featural top-down signals into coarser feature-

agnostic signals and vice versa. 

Recent literature proofs an association of reward with visual features and objects, so 

that major effects on visual selection and task performance can be observed (for 

review see Chelazzi et al., 2013). In studies using the spatial cuing paradigm 

(Posner, 1980) (see section 1.3.1) performance changes due to reward indicate 

facilitation of relevant and de-emphasizing of irrelevant input (Engelmann and 

Pessoa, 2007, Engelmann et al., 2009).  
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Studies with a training phase - test phase - design showed a similar performance 

effect of a learned reward contingency for cues (Anderson et al., 2011a, b), and even 

for non-salient cues (Failing and Theeuwes, 2014). On a trial-to-trial basis reward 

also affected performance. A (high) reward-associated feature (color) becoming a 

target feature in the next trial resulted in faster response latencies in latter trial 

(Hickey et al., 2010). The attentional phenomenon of negative priming (for Perceptual 

Priming see section 1.6) - in this case slower performance for a subsequent target 

stimulus after presentation of a prime stimulus containing both distracting and target 

features – could be observed for high reward stimuli in contrast to low reward stimuli 

(Della Libera and Chelazzi, 2006). In a follow-up study the learned reward 

association induced negative priming also several days later even though the test 

phase did not involve any delivery of reward (Della Libera and Chelazzi, 2009). “Pop-

out priming” (section 1.6) results in better performance on successive trials, when 

singleton properties are repeated and is thought not to be influenced by top-down 

voluntary control or task sets (reviewed in Kristjansson et al., 2010). However it 

seems to be prone to changes of the reward level, as performance improved with 

high reward compared to low reward even without explicit knowledge of reward 

associations (Kristjansson et al., 2010). These findings of implicit biasing suggest 

that reward has a direct modulatory impact on visual attentional selection (Hopf et al., 

2015). 

Behavioral goals and value influence attentional control, but the question remains 

how reward information exerts its influence on visual stimulus processing. Maunsell 

(2004) explicitly alluded to the risk of confounding reward and attention effects under 

experimental conditions. Especially in animal research the reward- and attention 

experiments are constructed similar and animals are rewarded for performing 

attention tasks. He emphasized the importance to distinguish between “neuronal 

signals related to expectations about future rewards” and “those related to attention 

to particular locations, stimuli or stimulus features”. Since this “admonition” ten years 

ago, research has changed direction to this regard. In a recent article Chelazzi and 

coworkers reviewed many experiments and proposed that “rewards ‘‘teach’’ visual 

selective attention so that processing resources will be allocated to objects, features 

and locations which are likely to optimize the organism’s interaction with the 

surrounding environment and maximize positive outcome” (Chelazzi et al., 2013).  



	   35	  

1 Introduction 
 

Depending on the specific task this shall come about either by enhanced motivation 

influencing strategic attention control, or by a direct increase of stimulus priority 

during attentional selection. The latter is thought to be a mechanism based on 

learning, because effects are measurable even when reward is not part of the task 

anymore (cf. Della Libera and Chelazzi, 2009). 

A growing number of studies – some of them were mentioned above - document the 

impact of reward on behavioral performance and visual sensory processing leaving 

open the question if these effects arise from same or different modulatory influences 

in visual cortex as the ones for visual attentional selection. (Buschschulte et al., 

2014, Hopf et al., 2015)  

Some authors found that stimuli with reward-relevance are processed like attended 

stimuli (Della Libera and Chelazzi, 2009, Kiss et al., 2009, Franko et al., 2010, 

Stanisor et al., 2013). In a single-cell study with two macaque monkeys Franko et al. 

(2010) investigated if a rewarded stimulus would be processed different than a non-

rewarded stimulus. They found an increased neural response in local field potentials 

(LFP) to simple stimulus–reward pairings in area V4 outside the context of a task and 

relate an early modulation to enhanced attention and a later modulation to perceptual 

learning. Stanisor et al. (2013) also recorded from neurons in macaque monkeys 

performing a curve-tracing task with different levels of reward. In earliest sensory 

processing levels they found that firing effects due to selective attention and reward 

were indistinguishable in terms of changes in neural firing rate and latency. They 

suggest, that reward and attention depend on the same modulations in V1, because 

reward and attention effects could be observed in the same neuron. 

Contrary to animal experiments in humans top-down settings for task-relevant 

stimulus properties can be set by plain verbal instruction without resorting to the 

direct application of reward, which makes it easier to separate task- and reward-

relevant top-down settings. Kiss et al. (2009) could show enhanced N2pc-effects in 

ERPs of human observers for search targets paired with greater rewards compared 

to targets paired with less rewards. In their experiments all targets were rewarded. 

The results of this and other studies (e.g. Della Libera and Chelazzi, 2009) combining 

value information with target information are compatible with the interpretation that 

reward alters attentional selection. 



	   36	  

 

2  Hypotheses 

 

The literature on the role of reward in vision is expanding, but how reward influences 

early visual stimulus processing is still under debate. Attention to task-relevant 

features leads to a biasing of sensory selection in extrastriate cortex. The question is, 

if this is also true for reward-associated stimuli and if so, if these sensory effects are 

mediated by attentional mechanisms or arise from separable modulatory sources. To 

address this issue properly, top-down settings defining reward-relevance were 

separated from those defining task-relevance. The state of neural biasing for the 

target- and reward-relevant color feature was assessed with analyzing the 

neuromagnetic brain response under task-relevant conditions and under task-

irrelevant conditions. In Experiment 1 and 2 in between search-frames 

asynchronously presented irrelevant color probes drawn in the target-defining color, 

the reward-relevant color, and a completely irrelevant color as a reference were part 

of the contingent attentional capture part of both experiments, while unattended 

distractor stimuli presented within the search task were analyzed under task-relevant 

conditions. The variation of reward magnitude addressed the question, whether the 

prospect to gain higher reward would alter the processing of reward-relevant color-

probes. The null hypothesis for the probe analysis was, that the reward-color would 

lead to an enhanced response comparable with the one for the target-color (which 

was not the case). 

The fixed target position in the third Experiment enabled a direct comparison 

between the effects of the target-, and the reward-color under task-relevant 

conditions. Here the null hypothesis was a bias for the reward-color (which was 

observed). Reward effects were analyzed in respect to the phenomenon of global 

feature-based selection under the hypothesis that reward effects will overlap with 

those of feature-based attention. 

Overall, this work contributes to the assumption that reward is not just perceived and 

then alters motivational states of higher cognitive brain areas, but under certain 

conditions also alters sensory perception itself. 
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3  Methods 

 

 

3.1  Magnetoencephalography Basics 
 

How to investigate the neural activity in visual brain areas non-invasively with 

sufficient temporal resolution? One way is to measure electrical potentials over the 

human scalp another way to measure magnetic fields. Both are oriented 

perpendicular to each other (right-hand rule). Hans Berger invented the 

Electroencephalography technique, the EEG and published his discovery in 1929 

(Berger). Almost 40 years later in 1968 the first magnetoencephalographic signals 

were measured by David Cohen (1968). To study event-related mental events with 

EEG only became possible when a small computer called CAT (“computer of 

average transients”) came into use toward the end of the 1950s (Eiselt, 1995). It was 

summing up potentials evoked by repetition of equal stimuli, which is still an up-to-

date method to uncover the invariant electric answers to the stimulus that is hidden in 

the background EEG. After Zimmerman et al (1970) had developed the SQUID 

(superconducting quantum interference device) Magnetoencephalography (MEG) 

could be used analogue to EEG. SQUIDs detect tiny magnetic fields and translate 

them into electrical current, which then can be measured. At 10 femtotesla  

(1fT =10-15 tesla) for most cortical activity and about 100 fT for the human alpha 

rhythm, the brain's magnetic field is considerably smaller than the ambient magnetic 

noise in an urban environment, which is on the order of 108 fT. This is the reason for 

the magnetically shielded chamber used for all MEG-experiments. In favor of MEG it 

has to be mentioned that magnetic fields are less distorted than electric fields by skull 

and scalp (resistors), which results in a better spatial resolution of the MEG.  

A central problem in assessing the neuro-electric/-magnetic brain response in human 

observers is that magnetic/electric fields of a single experimental trial do not stand 

out from spontaneous background activity. Measuring and averaging event-related 

potentials (ERPs) over the human scalp solves this problem and maps brain activity 

with high temporal resolution (milliseconds-range).  
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ERPs are obtained from the electroencephalogram of the whole cortex and averaged 

afterwards according to stimulus conditions (e.g. average all ERPs evoked by blue 

stimuli, by red stimuli and so on). The analogue method is to measure event-related 

magnetic fields (ERMF) with MEG. Both ERPs and ERMFs originate from ionic 

electrical currents across the membranes of active neurons, more precisely the 

summation of these currents. The electrical current across the membranes of a 

pyramidal cell in cortex elicit an electrical dipole. Pyramidal cells are oriented 

orthogonal to the cortex surface and parallel to each other. The excitatory or 

inhibitory postsynaptic potentials (EPSP, IPSP) of pyramidal cell assemblies produce 

measurable summation potentials. This is referred to as “open field situation” so that 

a detectable signal stands out from surrounding brain activity. Activity generated in 

brain structures like the thalamus cannot be detected with MEG, because they have 

irregular oriented neurons (“closed field situation”) and their small electric currents do 

not add up to a macroscopic current.  

While MEG and EEG provide very high temporal resolution another important issue 

is to localize the sources of brain activity. This requires mathematical models for 

estimating the localization of current sources based on the measured 

electric/magnetic field distribution. But here is a computational problem, because the 

measured field distribution can be explained by many different source configurations 

in the brain. This so-called electromagnetic inverse problem (Helmholtz, 1853) can 

only be solved by introducing a priori assumptions about the generation of MEG (or 

analogous EEG) signals in the cortex (Michel et al., 2004). The key to rendering the 

inverse problem solvable in a reasonable way was to introduce anatomically realistic 

assumptions. To this end CURRY 6.0 (Compumedics Neuroscan, Charlotte, NC, 

USA) was used to minimize errors due to the inverse problem.  

Brain activity was visualized in two different ways in this work. Figure 5 shows an 

example for a topographic map (a) containing the distribution of MEG field potentials, 

while CURRY-calculated spatial maps (b) show the result of mathematical source 

computation. 
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(a) Topomaps (topographic maps) plot MEG data (in fT) on a standard head shape 

by interpolating between amplitude measures at 248 MEG-sensors at a given time-

point. Areas in red colors have positive values and indicate magnetic efflux, while 

areas in blue have negative values and indicate magnetic influx. In a typical 

constellation efflux and influx may represent the same underlying source. The exact 

source location, however, cannot be inferred by merely inspecting a magnetic field 

distribution.  

(b) CURRY uses spatial filters, like the MNLS method (minimum norm least squares), 

to estimate brain activity at an arbitrary defined position in the cortex. This 

computation in every defined volume element of the cortex generates a 3-D-surface 

distribution of neuronal sources underlying the measured magnetic field distribution. 

The location of highest current source density (in µA/mm2) corresponds with the 

location with the highest probability of brain activation (at a given time). 

 

 
Figure 5: Visualized field distribution and corresponding source localization. The 
MEG-response elicited by a flash-stimulus presented in the right VF. The topomap 
(a) shows the magnetic field distribution for contralateral occipital brain activity. 
Because vision is represented occipital a view from the back is appropriate. The 
black arrow indicates the approximate current source (dipole), while the yellow 
arrows depict the magnetic field. Magnetic influx and efflux are represented in a blue-
to-red scale in fT, deeper colors standing for higher field strength. Based on the 
same MEG-data the electrical source localization is shown in a 3D-surface 
distribution (b). The current source density distribution (µA/mm2) was estimated with 
CURRY 6.0. In a black-to-yellow scale, yellow stands for maximum source density. 
Highest activity is also seen contralateral to stimulus presentation, but compared to 
the topomap precisely located lateral occipital in extrastriate cortex. 
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3.2  General Methods  
 

In this section details of the methodological background regarding all experiments will 

be summarized. Specific information regarding the particular experiments and 

subjects will be given in the following experiments section. Experiment 1 and 2 (see 

also methods in Buschschulte et al., 2014) both follow the same basic principles, 

whereas in Experiment 3  (see also methods in Hopf et al., 2015) a variation of the 

color search task of the first two Experiments was used and will be explained 

separately. 

 

3.2.1   Stimuli and Task – Experiment 1 and 2 

The basic paradigm for both experiments consisted of two components: (1) A search 

for a color-defined target (search task) to establish a task set, i.e. associations with 

task-defining and reward-defining features, and (2) a probe-stimulation phase to 

assess the sensory biasing for the selection of the task- and the reward-related color 

during a task-irrelevant phase of the experiment.  

(1) Stimuli of the color search task were double-colored 3D spheres as shown in 

Figure 6, that subtended a visual angle of 2.7°. Each stimulus frame contained a 

fixation cross (0.1° diameter visual angle) and two spheres, one presented in the left 

VF and one in the right VF centered at a distance of 5° to the left and right from 

fixation and 2.7° below the horizontal meridian. Each sphere - divided vertically into 

two halves – was composed of two colors taken from a set of five colors (red, green, 

blue, yellow, grey), which were randomly assigned to the left and right half of the 

spheres. All half-spheres in a search-array were always drawn in different colors. 

Both spheres appeared on a homogenously grey colored background (luminance: 24 

cd/m2). Colors had following luminance values (in cd/m2): red = 24, yellow = 85, 

green = 80, blue = 9, grey = 48. Spheres were designed with Matlab (MathWorks 

Inc., Natick, MA, USA). 

Subjects read an instruction before the task and practiced it before recording a 

session. Central fixation had to be maintained throughout the task. Figure 6 explains 

the task requiring subjects to report the location of the previously defined target-color.  
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The half-sphere drawn in the target-color could occur either on the left or the right 

side of the sphere. Subjects had to report the side of the target-color within the 

sphere by two-alternative button press of the right hand (index finger: left; middle 

finger: right) as fast and accurate as possible. On each trial, the target-color (red in 

Figure 6) was assigned to one of the four half-spheres, while three of the other four 

colors were assigned to the remaining half-spheres as follows. A second color was 

defined being the reward indicating color (green in Figure 6).  

 

 
Figure 6: Experimental design (search task). Subjects were instructed before each 
trial block, which color would be the target-color (here red) and which would indicate 
reward (here green) when combined with the target. The task was to detect the 
target-color in the sphere in the left or right VF and than to decide if it appeared on 
the left or right side of the sphere. An example for correct responses is illustrated in 
the two search arrays on the left. The two arrays also show examples for non-
rewarded trials. A rewarded trial is shown on the right. The left sphere is composed 
of target and the reward-color. The immediate feedback for a correct button press 
would be “5 Cent”. For a slow or incorrect response “0 Cent” would be displayed. 
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Reward was delivered upon correct performance in case the target-color was 

combined with the reward-color in the target-sphere (red and green at right-hand side 

of Figure 6 “reward condition”, 1/3rd of all trials), while a combination of two irrelevant 

colors (grey and blue) appeared in the distractor sphere. 

Two thirds of all trials were not rewarded (Figure 6, left “no reward condition”). Here, 

the target-color was randomly combined with one of the three control-colors (blue in 

the example in the array left, down). The distractor sphere could either contain a 

combination of the remaining control-colors (grey and yellow, bottom left in Figure 6), 

or one half-sphere of the distractor could be drawn in the reward-color (i.e. green in 

the example). The two different distractor conditions were equiprobable for non-

rewarded trials. In case the reward-relevant color appeared in the distractor (upper 

search frame in Figure 6 “no reward condition”), no reward was given. Notably, the 

number of rewarded trials was set to a comparably low proportion of one third of the 

trials to minimize the incentive for subjects to take the specific combination of target- 

and reward-color as defining the target. Such combined target definition is more likely 

to occur with a higher proportion of rewarded trials and would clearly undermine the 

present aim to dissociate task- and reward-relevance.  

In case of a rewarded trial a correct button press was rewarded with 5 Eurocent or 10 

Eurocent in Experiment 2, respectively. After every reward-trial subjects received 

immediate feedback  “5 Cent” (or “10 Cent”) for a correct response, or “0 Cent” for a 

false or omitted response. The amount of gained money was added up and paid after 

completion of the session. 

 

(2) The contingent involuntary orienting part of the experiment was implemented as 

shown in Figure 7 a). In 50 % of all trials a to-be-ignored, but nevertheless attention-

capturing square (the probe) was flashed for a duration of 50 ms between the 

search-frames in the same position as the spheres. This probe subtended 1.8° x 1.8° 

visual angle and could randomly appear either in the left or the right VF position. 

Colors were randomly assigned to the probe according to respective conditions. One 

third of the probes were drawn in the target-color, one-third in the reward-color, and 

one-third in the remaining “control”-colors. A probe was never directly followed by 

another probe.  
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Figure 7: a) Experimental design and color assignment (probe-presentation). The 
presentation of search frames was randomly interleaved by the unilateral 
presentations of a color probe, which could only be presented after a search frame 
(including feedback). Also in a random order, probes were presented either in left or 
right VF. For example, picture a) shows the color-assignment for block 2: Target-
color is red, reward-color green; blue, yellow and grey remain control-colors. On the 
right (b) the color combinations for all 20 blocks is shown. Subjects searched for a 
red half-sphere as target in block 1-4, reward-relevant color was yellow in block 1, 
green in block 2, blue in block 3 and grey in block 4. After 4 blocks the “target-color” 
changed into green for another 4 blocks and the “reward-color” from red in block 5 
over yellow and blue to grey in block 8 and so on till all colors served as target- and 
reward-relevant color in every possible combination. For clarity respective control-
colors are not depicted. For instance in block 20 the ”control-colors” would be red, 
green and blue, because grey and yellow are assigned to target and reward. 
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Figure 7 a) down left shows an example for an instruction presented on the screen in 

order to inform subjects about the actual target and reward for the experimental block 

to come. Subjects decided individually, when to start the next block. As mentioned 

before the experiment consisted of the search task and the probe-presentation. The 

electromagnetic response for both parts was analyzed separately in the following 

way. 

The MEG-response to the color-probes was analyzed as a function of their color 

being associated with “target” or “reward” relative to no association (“control”). 

Probes were always task-irrelevant. The comparison “target” versus “control”, and 

“reward” versus “control” was taken to reveal neural processing depending on the 

target and/or reward association of the colors, respectively.  

With regard to their assignment to the experimental conditions, all five colors were 

counterbalanced. Figure 7 b) shows the block design of the color-search task for all 

experiments. One session consisted of 20 blocks. The target-color remained 

constant for 4 blocks, while reward-color changed in every block. For example in 

block 9, target-color was blue, reward-color was grey, and the remaining three colors 

(red, green, yellow; not shown in Figure 7b)) served as control. In sum, each color 

served as “target” and “reward” for the same duration of time. 

 

The MEG-responses to search frames (spheres) were analyzed according to reward-

color-presentation as shown in Figure 8. Only non-rewarded trials (lower two search 

frames) were analyzed as a function of whether the reward-color was present or 

absent in the distractor-sphere. The dashed circles mark the target-sphere and 

attended VF. To assess neural biasing for the target-color a different experimental 

design becomes necessary, which was realized in Experiment 3.  
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Figure 8: Conditions for the analysis of the MEG-responses to search frames of 
Experiment 1 and 2. Exemplary search frames are shown for the same color 
assignment used in previous figures. Containing the target-color the encircled 
spheres are marked task-relevant. Two conditions of the non-rewarded trials in the 
two bottom search frames were analyzed in respect to presence or absence of the 
reward-color in the unattended distractor sphere (no dashed circles). 
 

Timeline and duration of stimulus-presentation are illustrated in Figure 9.  

 

 
Figure 9: Timing of stimulus presentation. Search arrays were presented for 700 ms 
followed by an inter-stimulus-interval (ISI) randomly varied between 1000 and  
1500 ms. In the example shown here the subject made a correct response to the 
rewarded search frame far left and the feedback “5 Cent” came up after 1000 – 1500 
ms. In the following interval of 2 seconds (also blinking pause) the fixation cross 
reappeared after 1 second to secure fixation for the following stimulus presentation. 
The following frame could either be a search array or a probe stimulus. In case of the 
non-rewarded search frames 2 and 3 no feedback was shown. In between a probe 
(red probe in the middle of the figure) and the next search frame the ISI varied 
between 600 and 900 ms. 
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In Experiment 1 and 2 every block lasted for 2,5 minutes. Due to an inter-stimulus-

Interval (ISI) varying from 1000 to 1500 ms or 600 to 900 ms after probe-presentation 

stimuli were presented irregularly in time preventing subjects from establishing a 

response-rhythm. The 2 seconds of feedback-pause after rewarded trials could be 

used for blinking. Probes were flashed for 50 ms, search frames were presented for 

700 ms, and feedback-frames for 400 ms. Randomized presentation of search 

frames and interleaving probe frames made all stimuli unpredictable to subjects. 

 

3.2.2   Stimuli and Task – Experiment 3 

The third experiment (cf. methods in Hopf et al., 2015) aimed at a direct comparison 

between the neural modulations underlying the reward-associated and the target-

associated color outside the focus of attention during target-discrimination. 

Apparently such situation is impossible to accomplish with a typical visual search 

task. The setup of the previous experiments was modified to allow a fixed target 

location in the left VF, but leaving the overall stimulus configuration comparable.  

Without visual search subjects did not need to localize the target sphere based on 

target-color, only to discriminate the position of the target-half-sphere within the left 

sphere. Therefore it was possible to present both, the target and the reward-color, in 

the unattended right VF, and to compare the brain response elicited by respective 

colors. Otherwise the sphere stimuli were identical to the ones used in the first two 

experiments. Timing of stimulus presentation was also the same with the exception 

that no probe stimuli were presented. As in experiments 1 and 2 subjects had to 

report whether the target-color appeared on the left or right side of the target sphere 

with a two-alternative button press of the right hand (index finger: left, middle finger: 

right). Subjects read an instruction before the task and practiced it before recording 

the session. And also subjects were informed about the colors defining target and 

reward at the beginning of each experimental block. Colors were counterbalanced 

across conditions (see Figure 10).  

In 25 % of all trials target- and reward-color were presented together in the left-hand 

sphere, i.e. they were rewarded trials and excluded from MEG-data analysis. Figure 

10 depicts the four non-rewarded conditions comprising four distractor-configurations 

in right VF that were examined.  
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The color assignment in this example is like in the examples before: Target is red, 

reward is green, blue, yellow, and grey are control-colors. The dotted circle indicates 

the attended target-location in left VF. The uppermost array shows the control 

condition (C), i.e. the unattended sphere in the right-VF contains two control-colors, 

here yellow and grey. In the array below, the target-color (red in the example) is not 

only presented in the task-relevant left VF, but also in the distractor sphere together 

with a control-color in right VF characterizing the target condition (T). The third frame 

from above shows the situation with the reward-color (here green) appearing in the 

distractor sphere (R). At the bottom both, the target- and reward-color are presented 

together in the distractor sphere (T&R). 

 

 
Figure 10: Distractor conditions of Experiment 3. While fixating the center cross 
subjects attended the sphere in left VF marked with a white dotted circle to localize 
the position of the target-color. Subjects were asked to report with a button press 
whether the red half was on the left or right side (here always on the right side). In 
this example red served as target-color and green as reward-color. On the 
unattended right VF color examples for four different distractor conditions are shown. 
(C) Control condition: the distractor sphere could either contain two irrelevant colors 
in the control condition, (T) Target condition: the distractor contained the target-color 
+ a control-color (R) Reward condition:  the distractor contained the reward-color + a 
control-color (T + R) Target and reward condition: the distractor contained both the 
reward- and target-color. 
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Each subject performed 20 blocks and the assignment of target-, reward- and 

control-color was changed from block to block as explained for Experiment 1 and 2 

(see Figure 7 b). Block design and timing (except that no probe was presented) were 

identical to Experiment 1 and 2. One block lasted for 3 minutes. The amount of 

reward to be gained for every correct answer to a rewarded trial was 5 Euro-Cent 

with an immediate feedback presented to the subjects.  

 

3.2.3   Data Acquisition and Instruments 

Figure 11 shows the recording of MEG-signals in a magnetically shielded room by 

using a BTI Magnes 3600 WH 248-channel whole-head device (4D Neuroimaging, 

San Diego, CA; USA).  

 

 
Figure 11: Experimental setup. The cryostat with the MEG-sensors resides in the 
magnetically shielded room. The picture shows me as a subject sitting on a bed 
under the cryostat, wearing an EEG-cap with the response box lying on her lap. The 
search array with two spheres visible on the backside of the screen is presented at  
1 m distance to the subject´s eyes. 
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Besides the 248 SQUID sensors that register brain activity, reference sensors (5 

gradiometer and 6 magnetometer) measure the environmental magnetic field. The 

activity measured at those reference sensors is used to cancel environmental noise 

contamination of the brain-MEG-signal. (Robinson, 1989) A LCD-projector (model 

DLA-G150CL, Covilex GmbH, Magdeburg, Germany) placed outside the chamber, 

projected stimuli via an opening in the wall on a semi-transparent screen inside the 

chamber (Covilex GmbH, Magdeburg, Germany). The stimulus sequence was written 

in and presented with the Presentation program (Version 5.5, Neurobehavioral 

Systems Inc., Albany, CA, USA). The viewing distance was 1.0 m. With a LUMItouch 

Response System (Photon Control Inc., Burnaby, DC, Canada) button presses of the 

right index and middle finger were recorded. Stimulation-event codes, button presses 

and eye movements were registered simultaneously. Eye movements were recorded 

with a horizontal and vertical electrooculogram (EOG) using bipolar electrode 

placements at the temples (horizontal), as well as a unipolar electrode below the left 

eye (vertical). Impedances of the Ag/AgCl-electrodes were kept below 5 kΩ (EEG-

cap and Abralyt light gel, Easycap, Herrsching, Germany) and EOG-signals were 

amplified with an EPA-6 amplifier (Sensorium, Inc., Charlotte, VT, USA). The MEG 

and EOG signals were filtered online from direct current (DC) to 50 Hz low-pass and 

0.01 Hz high-pass and digitized with a sampling rate of 254.31 Hz. Artifacts due to 

sweating (very slow potential changes) or muscle artifacts (> 100 Hz) were largely 

eliminated with these filters. Further artifact rejection was performed off-line. In 

addition central fixation was continuously monitored using a zoom-lens infrared 

camera mounted inside the MEG chamber.  

To co-register anatomical and functional data, three anatomical landmarks (nasion 

and left and right preauricular points) were digitized with a Polhemus 3Space Fastrak 

system (Polhemus Inc., Colchester, VT, USA). These landmarks were then brought 

into reference with magnetic marker fields generated by five coils on defined 

positions on the EEG-cap (Easycap, Herrsching, Germany) all subjects wore. After 

repeated digitalization, i.e. registration of landmark positions on the head, the total 

deviance had to be smaller than 0.30 cm. A “coil-measurement” before and after 

each MEG recording session registered small position changes of the subject´s 

head, which may occur during a session and should not exceed certain limits. 
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3.2.4  Data Analysis 

Primary MEG data analysis included off-line artifact rejection applied to epochs of 

interest with peak-to-peak amplitudes exceeding a threshold of 2.0 to 3.0 x10 pT. 

Epochs containing peak-to-peak EOG amplitudes exceeding 100 to 150 µV 

(depending on individual data quality) were considered to contain eye movement 

artifacts - blinks or leaving fixation – and were excluded from further analysis. This 

resulted in an average rejection rate of 18.0% for Experiment 1, 13.2% for 

Experiment 2, and 21,4% for Experiment 3, with no significant difference between 

experimental conditions. (Software: magnetic source imaging; Biomagnetic 

Technologies Inc., San Diego, CA, USA)  

For subsequent data analysis and visualization the event-related potential software 

ERPSS (Event-Related Potential Laboratory, University of California, San Diego, La 

Jolla, CA, USA)) was used. Following artifact rejection epochs of interest, ranging 

from 200 ms before (baseline) to 750 ms after stimulus-onset, were extracted for 

each subject and averaged according to relevant experimental conditions. 

Furthermore, incorrect button-presses were eliminated from the data. Averages 

represented collapses over the different colors and were computed relative to a  

200-ms-pre-stimulus baseline.  

For Experiment 1, averages were computed as a function of the reward-color location 

in the search frames (present or absent in non-target VF) and the three different 

probe categories (target, reward, control) in the left and right VF, thereby collapsing 

data across the different colors. For Experiment 2 the same averages were 

computed, but separately for high- and low-reward condition, respectively, after 

collapsing the data of both experimental sessions for every subject. In Experiment 3 

all non-rewarded arrays were analyzed according to the four distractor categories 

(target, reward, target and reward, control). Colors were also counterbalanced. 

Neuromagnetic responses to rewarded trials were not analyzed, because the signal-

to-noise-ratio of those trials was too low to allow comparability with the unrewarded 

trials. Furthermore, the comparison between conditions is limited as there were no 

rewarded T&R-trials.   
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The statistical validation of waveform-differences was performed using a repeated 

measures analysis of variance (rANOVA) approach. If necessary, violations of data-

sphericity were corrected (Greenhouse-Geisser epsilon). Respective data were 

reported with the original degrees of freedom, but with an adjusted level of 

significance (p-value). The statistical validation of onset latency differences was 

performed using a sliding t-test approach applied to subsequent time samples 

(window width of 20 msec; Guthrie and Buchwald, 1991). The first sample showing a 

significant difference in a sequence of at least thee subsequently significant time 

samples was taken to mark the onset latency. 

Current source localization based on the co-registration of anatomical and functional 

data (see previous section). The sources of the ERMFs were then localized with a 

distributed source model using the minimum norm least squares (MNLS) approach 

with the Laplacian-weighted minimum norm, which provides the mathematical basis 

for the standardized low-resolution electromagnetic tomographic analysis (sLORETA) 

as implemented in the multimodal software CURRY 6.0 and CURRY 7.1 

(Compumedics Neuroscan, Charlotte, NC, USA) (Fuchs et al., 1999). Current source 

estimates (CSD) for the grand-average data can be visualized in a 3-D-surface 

distribution. Therefore the CSD-distribution is overlaid onto a 3-D-surface 

segmentation of the cortical grey-matter layer of the MNI-brain, which serves as 

source compartment for the computation (Fuchs et al., 1998). Before averaging 

magnetic waveforms across subjects, the sensor array of each subject was brought 

into register with a reference sensor set (selected from 1500 recording sessions) 

representing the most canonical positioning of the sensor array relative to the 

anatomical landmarks. The grand average sensor data for each subject were then 

brought into reference with the anatomical data of the MNI brain (Montreal 

Neurological Institute). The standard MNI brain is a realistic anatomical model based 

on 152 averaged MRI T1-weighted stereotaxic volumes (used as standard template 

of the International Consortium for Brain Mapping (ICBM)). Specifically, first the MNI 

brain served as standard to create a lead field for every subject. Afterwards the 

inverted individual lead field was combined with the MNI-based lead field for the 

reference sensor set to re-compute the field distributions (using a MNLS 

representation of the data) as if measured with this reference sensor set. 
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3.2.5   Behavioral Data Analysis 

To evaluate the effect of the different probe conditions on behavior (response time 

and percentages of correct responses) in Experiment 1 and 2, the amount of 

exogenous cuing entailed by the different probe-types was examined indexing the 

power of the probes to capture spatial attention. To this end, visual search part 

performance was analyzed as a function of whether the probe appeared in the VF of 

the target sphere (valid probe) versus in the opposite VF (invalid probe) as illustrated 

in Figure 12. 

 

 
Figure 12: Example for a valid (above) and an invalid search-trial. A valid probe 
appeared on the same side of the VF like the subsequent target and an invalid probe 
on the opposite side, respective. 
 

Given that the probe-target stimulus-onset asynchrony (SOA) varied between 600 

and 900 ms (see Figure 9, ISI), the expected cuing effect is one of inhibition of return 

(Posner and Cohen, 1984, Klein, 2000), that is, a relative slowing of the response for 

valid relative to invalid probes.  

All data were analyzed with MATLAB (Version 7.4, MathWorks Inc., Natick, MA, 

USA) and statistically validated with SPSS (Version 11.5, SPSS Inc. (IBM), Chicago, 

IL, USA). rANOVA and T-Test on Response time and accuracy in all Experiments 

were also computed with SPSS. 
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3.2.6   Subjects 

All experiments were undertaken with the understanding and written consent of the 

subjects. All subjects were right-handed, had normal color vision and normal or 

corrected-to-normal visual acuity. They were tested for MEG compatibility in 

advance, so that no artifacts due to metallic implants or heart artifacts could 

compromise data acquisition. Subjects were paid for participation and received 

additional payment based on their performance in the rewarded trials. Monetary 

reward from every trial and every block was added up in the end and paid together 

with the money for participation. All experiments were approved by the ethics review 

board of the Otto-von-Guericke University Magdeburg. 
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3.3  Experiments – Quantitative Facts 
 

3.3.1   Experiment 1 

Twenty subjects (mean age 26.1 years, age range: 21 – 32, 14 females) participated 

in the first experiment. The payoff for rewarded trials was 5 Eurocent per trial and 

ranged from 10.70 to 12.00 € in total. To consider all possible combinations of color 

assignment to the probes, including the different control-colors and their positions, 

the experiment had to be divided into version A and B to avoid session durations 

exceeding one hour. Twelve of 20 subjects carried out version A and eight carried 

out version B. Each block consisted of 36 sphere- and 18 probe-stimulus 

presentations, yielding at 720 sphere stimuli and 360 probe stimuli in total and 60 

probe stimuli for every condition (6 conditions: reward, target, control; for left and 

right visual field, respectively) per subject after 20 blocks.  

For the analysis of the MEG responses to the search frames only the non-rewarded 

search frames could be taken into consideration. These 480 sphere-stimulus 

presentations were split into four conditions (reward present in RVF, reward present 

in LVF, reward absent in RVF, reward absent in LVF) with 120 stimulus presentations 

each for the unattended distractor stimuli. 

 

3.3.2   Experiment 2 

16 subjects (mean age 26.5 years, age range: 23 – 31, 14 females) participated in 

the second experiment. The payoff for rewarded trials per session ranged from 15.85 

to 18.00 €. Stimuli and stimulus presentation were identical to Experiment 1. 

However, the experiment consisted of high- and low-reward blocks. For the former 

the amount of reward to be gained on a rewarded trial was doubled (10 Cent) in 

comparison to the low-reward blocks where subjects were rewarded with 5 Cent 

(same as in Experiment 1). This modification doubled the number of probe conditions 

as summarized in Figure 13. 
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Figure 13: Probe-stimulus conditions in Experiment 2. L and R stand for left and right 
VF yielding in 12 possible probe-conditions in total. 
 
Low-reward blocks and high-reward blocks alternated in an experimental session (for 

the different color-assignment in blocks see Figure 7 b). The doubling of 

experimental conditions means 40 blocks instead of 20 like in Experiment 1. Besides 

the remaining two versions A and B the experiment was subdivided into another two 

scenario versions. Inset (a) all uneven block numbers were high reward blocks, in set 

(b) all even numbers were high reward blocks. Subjects were told together with the 

color instruction before each block whether it was a high or a low reward block. All 

subjects had to perform two experimental sessions (on different days) with set (a) 

and (b), so that all blocks had been associated once with high and with low reward. 

As mentioned before, all other experimental conditions were kept the same. 

Experiment 1 already consisted of two sets, following the logic above Experiment 2 

needed to have four versions: (1a), (1b) and (2a), (2b). A given subject performed set 

(a) and (b) either of version (1) or (2). Version (1) and (2) together guaranteed that all 

control-color combinations were used in equal proportion. Versions (1) and (2) were 

distributed equally between subjects (8 subjects performed version (1), 8 subjects 

performed version (2)). 

After two sessions of the second experiment, 60 probe stimuli for all 12 conditions 

were presented to every subject, yielding at total of 360 probe-stimuli for the low-

reward condition and 360 probe-stimuli for the high-reward condition. 
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For the analysis of the MEG responses to the non-rewarded search frames 960 

sphere-stimulus presentations were split into two times four distractor-stimuli 

conditions as follows:  

Low reward:   reward present (RVF), reward present (LVF),  

   reward absent (RVF), reward absent (LVF);  

High reward:  reward present (RVF), reward present (LVF),  

   reward absent (RVF), reward absent (LVF). 

Like in Experiment 1 this means 120 stimulus presentations for every condition. 

 

3.3.3  Experiment 3 

18 subjects (mean age 26.2 years, age range: 22 – 32, 14 females) participated in 

Experiment 3. The payoff for rewarded trials was 5 Eurocent and ranged per session 

from 14.35 to 15.95 €. Subjects had to perform 20 blocks with the duration of 3 

minutes and with the same color assignment as Experiment 1 and 2 (see Figure 7 b), 

but without attention capturing color probes. 

Each block consisted of 16 rewarded arrays and 48 non-rewarded arrays, yielding at 

320 rewarded trials and 960 non-rewarded trials. Out of the 960 non-rewarded trials 

the four to be analyzed conditions as explained in section 3.2.2 and Figure 10 

(control, target, reward and target + reward) in left VF had 240 sphere-stimulus 

presentations each per subject.  

To limit the number of rewarded trials to 25% of all stimuli only three conditions of 

distractor stimuli in the unattended LVF were shown. Two third were control-

condition, and one third were target and reward condition, respectively. In order to 

avoid confusing the subjects with two target + reward spheres together in one search 

frame the theoretically possible target + reward condition has been omitted for 

rewarded trials. 
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4  Results 

 

The results of Experiment 1 and Experiment 2 are reported in Buschschulte et al. 

(2014) and the results of Experiment 3 in Hopf and colleagues (2015). In this section 

the results for attentional-capture part and for the visual search part of the same 

experiments are presented separately.  

 

4.1   Experiment 1 

 

4.1.1   Contingent Attentional Capture Part of Experiment 1 

 
4.1.1.1  Behavioral Performance as a Function of Probe Color  

   and Probe Location (Experiment 1) 

Subjects were to ignore the probes, so that no direct behavioral data reflecting 

stimulus feature processing is available. Nevertheless, probes were designed to 

capture spatial attention and would therefore impart an exogenous spatial cuing 

effect on performance in the subsequent task-relevant search frame (Posner, 1980). 

Specifically, the appearance of the probe and the target in the same versus the 

opposite VF is named “valid” versus ”invalid”, respectively (see section 3.2.5). As the 

probe-target SOA (see ISI in Figure 9) varied between 650 and 950ms, the expected 

cuing effect would be inhibition of return (IOR), i.e. a performance decrement, for 

validly cued targets. Note that faster responses typically seen after valid cues are 

only obtained for much shorter SOA (<250 ms) (Klein, 2000). Taken together, the 

amount of cuing elicited by the different probe types will provide an index of the 

degree to which spatial attention was captured.  

Figure 14 a shows the IOR-effect in response time for the valid relative to the invalid 

conditions. On average valid probes lead to an 11 ms slower response than invalid 

probes. Consistently, a two-way rANOVA with the factors probe validity (valid/invalid) 

and probe condition (target, reward, control) yielded a significant main effect for 

probe validity (F(1,19)=19.9; p<0.0001), but no probe validity x probe condition 

interaction (F(2,38)=0.66; p=0.57). 
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Figure 14: Task-performance as a function of probe-location for Experiment 1. On the 
left hand side mean response times (a) and on the right hand side accuracy (b) 
averaged over all 20 subjects is displayed. The conditions target, reward and control 
refer to the color of the probe, shown prior to the search task arrays. For every probe 
condition the exogenous cuing effect is visible in the comparison of the valid (blue 
bars) and invalid (red bars) condition. Probes presented in the same VF as the target 
are valid probes, while probes presented in the opposite VF are invalid. The vertical 
white bars on top index the standard error of mean for every condition. 
 

Post-hoc T-tests comparing validity within probe conditions showed significant 

differences between valid an invalid probes for target  (t (1,19)=2.64; p<0.05), reward 

(t(1,19)=4.06; p<0.005), and control (t(1,19)=2.82; p<0.05). There was a small 

difference in RT between probe conditions, but the main effect of probe condition did 

not reach significance (F(2,38)=2.76; p=0.09). RTs were slightly slower for targets 

following reward-probes compared to target or control-probes.  

Figure 14 b illustrates the effect of probe validity with respect to the accuracy 

measures (%-correct responses). Response accuracy (RA) was significantly higher 

for valid than for invalid probes as the respective rANOVA shows  

(F(1,19)=4.87; p<0.05) supporting the idea of a general attention capturing effect of 

the probes. But no interaction of probe validity with probe condition could be 

observed for RA (F(2,38)=0.03; p=1.0).  
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Like for RT there was a trend toward a main effect of probe condition for performance 

accuracy (F(2,38)=2,83; p=0.08), indicating that accuracy was slightly reduced for 

targets after reward-probes relative to target and control-probes.  

Having in mind that the overall IOR effect is rather small and the effect of probe 

condition is not significant for RA and RT, however, the general response pattern 

should be taken just as a hint at a reward effect for performance (slightly increased 

IOR effect), which of course cannot be guarantied with these data.  

In general the small, but significant IOR-effect for valid probes validates the presence 

of an attentional capture effect which is a prerequisite for further ERMF-analysis of 

the probes in their respective color conditions. 

 

4.1.1.2 MEG Responses to the Color Probes (Experiment 1) 

ERMF waveforms and respective field distributions of probe color conditions (target, 

reward, control) are shown in Figure 15. The waveforms of Figure 15 a on the left 

were recorded at selected sensor sites, which are marked with arrows over the left 

and right occipito-temporal cortex contralateral to the VF of probe presentation in the 

respective topomaps on the right. Waveforms and topomaps for probes in the RVF 

are depicted in the upper row, for probes in left VF in the lower row. Target-probes 

(red traces) showed an enhanced neuromagnetic response at ~180-280 ms after 

probe-onset relative to control-probes (black traces). Reward-probes (green traces) 

elicited no enhanced amplitude, and their response remained almost 

indistinguishable from control-probe-waveforms. 

The topomaps on the right (Figure 15 a) show the average ERMF response between 

180 and 280 ms for the three probe conditions. The influx-efflux configuration for the 

activation contralateral to the presentation of the probe stimulus is marked with black 

ellipses over the lateral occipito-temporal cortex. (See also section 3.1 

“Magnetoencephalography Basics” and Figure 5) A high density of black contour 

lines in an influx-efflux transition zone suggest a strong underlying current source. 

Efflux and influx components together form the magnetic field that is generated by 

source activity as shown in Figure 15 b. The source is located under the transition 

zone between both components marked with an asterisk in Figure 15 a. Enhanced 

waveform amplitudes correspond with deeper blue and red colors in the topomaps.  
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Figure 15: MEG responses to color probes of Experiment 1. (a) On the left: ERMF-
waveforms elicited by probes in target (red), reward (green) and control-color (black). 
Notice, that the colors are only used for demonstration and do not represent stimulus 
colors! Waveforms are averaged over 20 subjects and recorded at the sensor sites 
indicated by small arrows contralateral to the VF of probe presentation (right VF: 
upper row, left VF: lower row). On the right: Magnetic field distributions (topomaps) 
for mentioned conditions. The response to the probes is represented by an influx-
efflux field configuration, which is marked with black ellipses. The probable location 
of the underlying source in the transition zone between influx and efflux is marked 
with an asterisk. (b) Corresponding source-waveforms (right) and current source 
density (CSD) distributions (left). The source waveforms represent time-course of 
source density estimates at a certain location and are normalized. The respective 
cortical regions centered at the source density maximum are highlighted with small 
white circles. The CSD distributions in (b) confirm the source localization of the influx-
efflux configuration in (a). 
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The difference in response strength is also visible here, because a stronger field 

effect for target-probes relative to reward and control-probes can be seen, with the 

latter two showing effects of comparable size. A statistical analysis validates these 

observations. A three-way rANOVA with the factor probe condition (target, reward, 

control) was performed on the mean ERMF response between 180 and 280 ms post 

stimulus for probes presented in both VFs separately at respective contralateral 

sensor sites (arrows in Figure 15 a). In RVF the respective sensor is A196 and in 

LVF sensor A245. The analysis yielded a significant main effect for probe condition 

for both, RVF-probes (F(2,38)=5.2, p<0.01), and LVF probes (F(2,38)=4.66, p<0.05). 

Subsequent paired comparisons (paired-samples t-tests) confirm the visible 

waveform differences between probe conditions. So target-probes differed 

significantly from control (RVF probes: p=0.0048, LVF probes: p=0.014) and reward-

probes (RVF probes: p=0.0018, LVF probes: p=0.041), while reward and control-

probes did not differ (RVF probes: p=0.68, LVF probes: p=0.29).  

To localize the ERMF effects shown in Figure 15 a the current source density (CSD) 

analysis was performed on the neuromagnetic responses to the three probe-types in 

both VFs. The results in µA per mm2 are shown in Figure 15 b for probes in RVF in 

the upper row and for probes in LVF in the lower row. The CSD-distribution (MNLS 

estimates, see methods section) was visualized in the six topographical maps on the 

right hand side. The distribution was overlaid onto a 3-D surface segmentation of the 

cortical grey matter layer on the MNI-brain. Stimulation in left and right VF did not 

result in exactly mirrored ERMFs or exact same sources, but qualitatively similar 

response patterns. Effects between probe conditions were more prominent for 

probes in right VF. In line with the field distributions in Figure 15 a the estimated CSD 

strength was maximal for target-probes, while reward and control-probes elicited 

comparable but smaller effect sizes on both sides of presentation. Maxima of all 

three probe-types appear in similar regions of the inferior occipito-temporal cortex 

contralateral to the VF of stimulus presentation. 

On the left hand side of Figure 15 b this is further illustrated by the time-course of 

CSD-estimates obtained from regions of interest (ROIs, white circles) at the CSD-

maximum for all three probe conditions. The CSD of target-probes (red) increased 

beyond that of reward (green) and control-probes (black), starting at about 180 ms 

after probe onset and lasting till about 280 ms. 
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In summary, the comparison of the ERMF waveforms as well as the underlying 

current source density distribution of the three probe-types revealed that reward-

probes elicited a response in ventral extrastriate cortex roughly indistinguishable from 

control-probes, suggesting that a reward-relevant feature, which is not task-relevant, 

does not automatically entail modulatory effects in visual cortex. In contrast, the color 

of the target-probe, which was relevant for subsequent target performance, produced 

a significantly enhanced activity in extrastriate visual cortex. 

 

 

4.1.2   Color Search Part of Experiment 1 

 
4.1.2.1  Behavioral Performance as a Function of Reward-Color Location  

  (Experiment 1) 

In contrast to the results to probe stimuli reported in the previous section, for the  

search task direct behavioral data was available. In Figure 16 the response time (a) 

and response accuracy (b) measures in Experiment 1 are summarized as a function 

of where the reward-color was presented in the search frames. In rewarded trials 

reward-color was present in the target. In non-rewarded trials the reward-color could 

only be present in the opposite distractor sphere, while subjects were asked to ignore 

it in in favor of proper target-color discrimination. In one third of the search frames the 

reward-color was absent, because in these non-rewarded trials the distractor sphere 

contained two control-colors. 

Interestingly, when the reward-color appeared in the distractor sphere RT  

(Figure 16 a) was slowed relative to when it was combined with the target (rewarded 

trial) or was absent. This finding could be validated with a three-level factor rANOVA 

for reward location (in target, in distractor, absent) by showing a significant effect  

(F(2,38)=30.7; p<0.0001). Post hoc pairwise comparisons confirmed this effect of 

decreased reaction time for the reward-color appearing in the distractor relative to the 

other conditions (reward-color in target versus in distractor: p<0.0001; reward-color 

absent versus in distractor: p<0.0001). Notably, subjects did not respond faster to 

rewarded trials with the combination of both, the reward- and the target-color in one 

sphere than for reward-color absent trials (p=0.112). 
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Figure 16: Behavioral performance data of the search task of Experiment 1 in respect 
to reward-color location. All Data were averaged over the 20 subjects of Experiment 
1. The “in target” condition (red bar) refers to target and reward-color together in one 
sphere, “in distractor” condition (blue bar) to the reward-color in the opposite sphere 
to the target and “absent” condition (black bar) means that no reward-color appeared 
on the screen. Response times (a) are shown on the left and accuracy (b) on the 
right. Slowest response times and decreased accuracy can be seen for the “in 
distractor” condition. The vertical grey bars on top of the big bars index the standard 
error of mean for every condition. 
 

Reward-color did also influence response accuracy in percentage correct responses 

(Figure 16 b) in a significant way. A respective rANOVA yielded a significant result  

(F(2,38)=11.3; p<0.005). While accuracy was generally high, subjects were more 

prone to errors with the reward-color present on the screen than in reward-color 

absent trials. This was confirmed with post hoc pairwise comparisons showing that 

reward-color absent trials yielded in higher accuracy than when the reward-color was 

combined with the target (p<0.005), or within the distractor (p<0.0001). Subjects 

performed also more accurate when the reward-color was part of the target-sphere 

than when it appeared in the distractor, but this effect was not significant (p=0.102). 

Theoretically, a subject could have just concentrated on the target, disregard the 

reward-color and would have been able to perform the task equally well. This is not 

the case. 
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While the focus of attention was directed to the VF containing the target sphere, the 

reward-color presented in the opposite VF apparently seemed to be salient and 

therefore distracting. The best performance was observed for target-only trials where 

no reward appeared and competed for cognitive resources. In sum, these behavioral 

data indicate that during the search task the reward-relevant color feature influenced 

stimulus-processing resulting in decreased performance for reward-stimuli. 

 

4.1.2.2  MEG Responses to the Search Frames (Spheres) (Experiment 1) 

The MEG response to color probes showed an increased response to probes drawn 

in the task-relevant target-color, but not for reward-associated or control-probes. 

However, the analysis of the ERMF-response to the search frames investigates 

whether a similar picture can be observed for respective colors in the unattended 

distractor sphere during the search task. As the target-color was never present in the 

distractor sphere, only the reward-color could be compared with the control-colors in 

the distractor sphere.  

Figure 17 below shows waveforms elicited by the sphere-stimuli of the non-rewarded 

trials. Green traces reflect the response to distractor spheres containing the reward-

color, whereas black traces represent the response to the control-colored distractor 

in the absence of reward. These waveforms were recorded from a selected sensor 

site showing the maximum modulatory effect over the hemisphere contralateral to the 

unattended VF of distractor presentation. Apparently, the reward-color causes a 

response enhancement relative to the control in the second waveform deflection 

starting around 200 ms after search frame onset.  

For each VF rANOVAs with the factor reward-color (present/absent in non-target VF) 

on mean amplitude measures between 200-280 ms confirm this finding by yielding 

significant effects for the RVF (F(1,19)=10.09, p<0.005) as well as the LVF  

(F(1,19)=8.3, p<0.01).  

The topographical maps displayed above the respective waveforms in Figure 17 

show the results of the current source localization analysis, which was based on the 

ERMF difference between the reward-color present minus absent condition. The 

current source maxima can be observed over ventral lateral extrastriate visual cortex, 

contralateral to the side of reward-color presentation.  
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Figure 17: MEG responses to search frames of Experiment 1. ERMF waveforms 
were elicited by non-rewarded search frames, with the reward-color being present 
(green waveforms) or absent (black waveforms) measured contralateral to the VF of 
distractor presentation. Respective sensors over the left and right visual hemifield are 
marked with RH-/LH-sensor. The topographical maps in the upper row show the 
corresponding CSD distributions in a dark red to light yellow scale estimated for the 
reward-minus-control difference. Current source maxima can be seen over the 
contralateral extrastriate cortex. 
 
Confirming the behavioral observations (search task) the reward-color led to a 

response modulation. While the ERMF responses to task-irrelevant reward-probes 

had no modulatory effect on extrastriate processing, an enhancement was seen 

when subjects performed the task. Hence, reward-relevance did in fact bias color 

feature processing, but respective bias is only revealed when subjects actually 

perform the visual search task. 
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4.2  Experiment 2 

 

4.2.1   Contingent Attentional Capture Part of Experiment 2 

 
The first experiment revealed, that there is a bias in extrastriate cortex for a color 

feature associated with reward during visual search. In contrast, it seems that 

involuntary orienting was not influenced by the reward-color when presented in a 

task-irrelevant color probe. Hence, it is the possible that modulatory effects to reward 

were absent because the reward size was not significant enough. To test this 

possibility, two levels of monetary reward were introduced in Experiment 2. First, the 

experiment was run in blocks with moderate reward level (5 Euro-Cent), which was 

the same as in Experiment 1 (low-reward trials). Second, we run blocks where the 

amount of reward was doubled (10 Euro-Cent). Subjects performed alternating high- 

and low-reward blocks. Besides the change in to be gained reward, stimulation, trial 

structure, and experimental task remained identical to Experiment 1 (see methods 

section for details). 

 
4.2.1.1  Behavioral Performance as a Function of Probe Color  

  and Probe Location (Experiment 2) 

As in Experiment 1 an IOR effect for valid versus invalid probes could be observed 

for Experiment 2. Figure 18 a illustrates that valid probes following the target sphere 

in the same VF lead to slower response times than invalid probes, which follow in the 

opposite VF of target presentation. RT was also generally faster under high-reward 

condition than under low-reward condition. For probe validity a three-way rANOVA 

with the factors validity (valid/invalid), probe condition (target, reward, control), and 

reward size (low, high) confirmed significant main effects (F(1,15)=43.2; p<0.0001). 

The main effect for reward size (F(1,15)=13.8; p<0.005) was also significant, in 

contrast to the main effect of probe condition (F (2,30)=1.1; p<0.4). The interactions 

of reward size x probe condition (F(2,30)=1.4; p<0.3), probe validity x probe condition 

(F(2,30)=2.0; p<0.15), reward size x probe validity (F(1,15)=0.54, p<0.5) were not 

significant.  
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Accuracy (Figure 18 b) is with over 96% higher than in the first experiment. But 

accuracy reveals only minimal variation with experimental conditions, without any 

systematic effect of probe validity, probe condition or reward size. Consistently a 

respective rANOVA reveals that neither of the respective main effects was 

significant, i.e. probe validity (F(1,15)=0.29, p<0.6), probe condition (F(2,30)=1.03 

p<0.4), and reward size (F(1,15)=0.49, p<0.5). 

In sum, probe condition had no systematic effect on cuing, but the IOR-effect 

observed for Experiment 1 is also true for response times in Experiment 2. 
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Figure 18: Task-performance as a function of probe-location for Experiment 2. 
Shown are mean response times (a) and percent correct (accuracy) (b) values for 
targets following color probes in the same VF as the probe (valid, blue bars) or in the 
opposite VF (invalid, red bars). Averaged data over 16 subjects are shown separately 
for probes drawn in the target-color (target), the reward-color (reward), and the 
control-color (control). Additionally for all probe conditions the low reward condition 
(low) and the high reward condition (high) is displayed. The vertical white bars 
represent the standard error of mean for every condition. 
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4.2.1.2  MEG Responses to the Color Probes (Experiment 2) 

Figure 19 shows waveforms and ERMF distributions of target-, reward- and control-

probes presented in right VF. Note that the pattern of probe-effects was smaller but 

qualitatively similar in the left visual hemifield. The upper row depicts the low-reward 

condition (a), the high-reward condition (b) is shown below. 

The probes ERMF response under the low-reward condition (a) perfectly reproduced 

the pattern seen in the first Experiment. Target-probes (red traces) elicited an 

increased response in ventral extrastriate cortex between ~180-270 ms relative to 

reward (green traces) and control-probes (black traces), with the latter probe types 

being nearly indistinguishable.  

Although response sizes were generally smaller the probe response pattern under 

the high-reward condition (b) between 190-220 ms resembles the low reward 

condition, i.e. higher amplitude of the target waveform and nearly undistinguishable 

reward and control waveforms. However a difference to the low-reward condition was 

visible starting at 220 ms post stimulus, where the response to reward-probes 

decreased relative to target and control-probes lasting until about 250 ms.  

The corresponding topomaps on the right side of Figure 19 confirm these 

observations. They show the distribution of the mean probe-response for the three 

probe-types of the low-reward condition at 200 ms (a), as well as the high-reward 

condition at 200 ms (upper row maps in panel b) and at 230 ms (lower row maps in 

panel b). At 200 ms post stimulus the ERMF response to target-, reward-, and 

control-probes field distributions and amplitude pattern for both, low- and high-reward 

condition, look very similar. That is, target-probes elicited stronger field responses 

(black ellipses) over the left lateral occipito-temporal cortex than reward- and control-

probes. This is reflected by stronger colors and more contour lines of the influx-efflux 

configuration in the map. The picture changed around 220 ms (lowest row) after 

probe-onset for the high-reward condition. Here target- and control-probes show an 

influx-efflux configuration of similar size, whereby the middle topomap for the reward 

condition shows a significantly reduced response pattern over the left lateral occipito-

temporal cortex. 
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Figure 19: MEG responses to color probes of Experiment 2. Shown are waveforms 
and topomaps for the RVF for target- (red trace), reward- (green trace) and control-
probes (black trace) under low (a) and high reward condition (b), averaged over 16 
subjects. Waveforms originate from sensor sites indicated by the small arrow in (a) 
and correspond with the sensor site shown in Figure14 (a) for Experiment 1. The 
topomaps on the right hand side show the ERMF-response distribution at 200 ms 
after probe-onset indicated by the black arrowheads in the waveforms on the left. 
Under high reward conditions (b) topomaps at 200 ms and 230 ms are shown. Black 
ellipses highlight the influx-efflux field configuration, which represent the response to 
the probes. 
 

In the time range from 190 - 220 ms and from 220 - 250 ms the ERMF-effects for the 

mean responses were statistically validated with a rANOVA with the factors probe-

condition (target, reward, control) and reward-size (low, high). In the earlier time-

range from 190 - 220 ms probe condition (F(2,30)=3.9, p<0.05; sensor A214) yielded 

a significant the main effect.  
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This validates that the response to target-probes was enhanced relative to reward 

and control-probes with no difference between low- and high-reward condition, 

because no interaction for probe condition with reward size (F(2,30)=0.69) was 

observed. A subsequent planned comparison confirmed the difference between 

target and control-probes (F(1,15)=9.45, p<0.01) with a significant effect. For reward 

and control-probes (F(1,15)=0.27) no effect could be observed. The main effect of 

reward-size (F(2,30)=7.07, p<0.05) indicates that the ERMF-responses to the probes 

were generally smaller under high- than under low-reward conditions. Between 220 

and 250 ms, the factor probe condition showed no statistical effect  

(F(2,30)=0.29, sensor A214). Importantly, the interaction of probe-condition with 

reward-size (F(2,30)=3.7, p<0,05) was significant, which validates the attenuated 

response to reward-probes under high-, but not under low-reward conditions. Even 

though the response to the probes was smaller under high- than under low-reward 

condition in this later time range, the main effect of reward-size did not reach 

significance (F(2,30)=2.73, p=0.14). 

 

Figure 20 shows the results of the source localization analysis performed on the 

mean target-minus-control differences and reward-minus-control difference 

temporally corresponding with the ERMF effects. Analogous to Figure 19, these 

source density estimates are shown for RVF probes only. On the left the target-

minus-control difference between 190 and 220 ms is shown for the low-reward 

condition at the top and the high-reward condition at the bottom. Current sources are 

scaled from black to yellow and maxima are highlighted by a white and a green dot. 

Apparently, CSD maxima are located over the left ventral-lateral occipito-temporal 

cortex consistent with current source maxima in Experiment 1 (cf. Figure 15 b, upper 

row). 

On the left of Figure 20 the reward-minus-control difference of the high-reward-

condition between 220 and 240 ms is shown. The map is scaled in blue colors to 

highlight that the CSD distribution shows the reduced response to reward-probes 

relative to control-probes. The maximum of the reward-minus-control difference is 

marked with a red dot and also appears over the ventral occipital cortex, but at a site 

more posterior than the maxima of the target-minus-control differences. For better 

orientation the white and green dot of these maxima are also depicted in this map. 
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Figure 20: Current source density analysis for responses to probes in Experiment 2. 
Left: CSD distributions (minimum norm least square) estimated for the response 
difference target-probes minus control-probes (Target-minus-Control) for the low-
reward condition at the top and the high-reward condition at the bottom. CSD 
maxima are highlighted with small dots (white, green).  
Right: CSD distributions estimated for the response difference reward-probes minus 
control-probes (Reward-minus-Control). The CSD maximum is marked with the red 
dot. For comparison the maxima of the Target-minus-Control estimates are also 
shown (white and green dot). 
 

To sum up briefly, the low-reward condition of Experiment 2 perfectly replicates the 

results of Experiment 1: The reward-relevant feature does not automatically entail 

modulatory effects in visual cortex. This also applies to the initial response of the 

high-reward condition (until 220 ms). Between 220 and 250 ms, however, the 

response to reward-probes was attenuated, presumably reflecting an inhibitory effect 

on neural processing. The attenuation effect is located at a more posterior site in 

ventral extrastriate cortex (Figure 20), consistent with an inhibitory modulation that 

serves to block forward activity at an early level of visual processing (see section 4.3 

Effects to Color Probes outside the Visual Cortex for Experiment 1 and  

Experiment 2). 
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4.2.2   Color Search Part of Experiment 2 

 
4.2.2.1  Behavioral Performance as a function of Reward-color Location in the 

  Search Frames (Experiment 2) 

Figure 21 shows response time (a) and response accuracy (b) measures of 

Experiment 2 as a function of the location of the reward-color in the search array. 

This was done separately for the low-reward condition shown on the left and high-

reward condition shown on the right, respectively. The reward-color could either 

appear in the target-sphere (red and pink columns), in the distractor (blue columns) 

or could be absent (black and grey columns).  

 

 
Figure 21: Behavioral performance data of the search task of Experiment 2 in respect 
to reward-color location. All Data were averaged over the 16 subjects of Experiment 
2. The “in target” condition (red/pink bar) refers to target and reward-color together in 
one sphere, “in distractor” condition (blue/light blue bar) to the reward-color in the 
opposite sphere to the target and “absent” condition (black/grey bar) means that no 
reward-color appeared on the screen. Data is shown separately for the low-reward 
(in a and b on the left) and the high-reward (in a and b on the right) condition. 
Response times (a) are shown on the left and accuracy (b) on the right. Slowest 
response times and decreased accuracy can be seen for the “in distractor” condition 
under low- and high-reward condition. The vertical white bars index the standard 
error of mean for every condition. 
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Consistent with the observation in Experiment 1 (see Figure 16), RTs were slowed 

for the reward-in-distractor condition relative to the reward-in-target condition 

(rewarded trial) or when the reward-color was absent. In addition, subjects reacted 

slightly slower when the reward-color was presented together with target-color 

relative to the reward absent condition. This pattern could be observed for both the 

low- and high-reward condition. 

A two-way rANOVA with the factors reward location (in target, in distractor, absent) 

and reward size (low, high) confirms these observations by showing a significant 

main effect of reward location (F(2,30)=23.2, p<0.0001), but no interaction of reward 

location x reward size, (F(2,30)=0.49, p=0.58). However, there was a significant main 

effect of reward size (F(1,15)=12.3, p<0.005), which confirms the observation that RT 

was generally faster under high-reward conditions. Pairwise post hoc comparisons 

revealed a decreased RT for the reward-in-distractor condition relative to the reward-

in-target condition (F(1,15)=19.2, p<0.005), and the reward absent condition  

(F(1,15)=27.9, p<0.0001). Subjects were also slightly slower in the reward-in-target 

than in the reward-absent condition and this effect also reached significance  

(F(1,15)=13.6, p<0.005).  

Together, these observations indicate that the presence of the reward-color had a 

generally distracting effect, which was largest when appearing in the distractor.  

The response pattern for accuracy shown in Figure 21 b illustrates the distracting 

effect of reward as well, leading to decreased performance for the reward-in-

distractor condition relative to conditions where the reward-color appeared in the 

target or was absent. Again, reward size did not affect this effect.  

This was confirmed by a two-way rANOVA with the factors reward location (in target, 

in distractor, absent) and reward size (low, high) resulting in a significant main effect 

of reward location (F(2,30)=7.6, p< 0.01), without a significant interaction effect for 

reward location x reward size (F(2,30)=0.86, p=0.43). And also no main effect of 

reward size (F(1,15)=1.2, p=0.29) could be observed. Subsequent planned 

comparisons revealed that subjects performed worse for the reward-in-distractor 

condition relative to the reward-in-target condition (F(1,15)=5.5, p<0.05), and the 

reward-absent condition (F(1,15)=9.5, p<0.01). The small RA decrement observed 

for the reward-in-target condition versus the reward-absent condition was also 

significant  (F(1,15)=6.5, p<0.05). 
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4.2.2.2  MEG Responses to the Search Frames (Spheres) 

The bottom of Figure 22 shows waveforms representing non-rewarded search 

frames. Green traces represent the reward-color-present condition, while black 

traces represent the reward-color-absent condition for distractor spheres in the non-

target VF. Waveforms at the top show the results for low-reward blocks and 

waveforms at the bottom the results for high-reward blocks. Like in Experiment 1 

(compare Figure 17), the reward-color elicited an enhanced ERMF response 

between 200 and 260 ms after search frame onset under low-reward condition. At 

the top of Figure 22 the corresponding topographical CSD distributions for both visual 

hemifields again reveal a current source maximum in ventral extrastriate cortex 

contralateral to the VF of reward-color presentation. Remarkable is the finding that 

this modulatory effect is abolished under high-reward condition, i.e. the response to 

the reward-colored distractors was indistinguishable from the response to the double 

control-colored spheres. 

For statistical validation, a two-way rANOVA with the factors reward-color in non-

target VF (present/absent) and reward size (low, high) was computed on mean 

amplitude measures between 200 and 260 ms post stimulus. A significant main effect 

of reward-color (F(1,15)=6.09, p<0.05), and a significant interaction between reward-

color and reward size (F(1,15)=4.62, p<0.05), but no main effect of reward size  

(F(1,15)=0.08) was observed. Post hoc pairwise comparisons yielded a significant 

effect of reward-color for low-reward trials (F(1,15)=7.49, p<0.05), but no such effect 

for high-reward trials (F(1,15)=0.11). 

The results for the search task under low-reward condition reveal that reward-colors 

were not ignored and confirm the respective behavioral data for the search task. This 

also corresponds to the findings of Experiment 1. For the high-reward condition no 

such effect can be seen, as the waveforms of the reward-present condition roughly 

resemble the waveforms of the reward-absent condition. Presumably, a stronger 

focus on task-relevant colors due to higher monetary incentive abolished the reward-

effects seen for the low-reward condition.  
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Figure 22: MEG response to search frames of Experiment 2. ERMF waveforms were 
elicited by non-rewarded search frames, with the reward-color being present (green 
waveforms) or absent (black waveforms) measured contralateral to the VF of 
distractor presentation. High-reward (bottom waveforms) and low-reward condition 
are shown separately. Respective sensors of the left and right visual hemifield are 
marked with RH/LH-sensor. At the top of the picture the topographical maps display 
the corresponding CSD distributions estimated for the reward-minus-control 
difference of the low-reward condition with maxima over the contralateral extrastriate 
cortex. 
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4.3   Effects to Color Probes outside the Visual Cortex for  

  Experiment 1 and Experiment 2 
 

Besides the fact that the high-reward condition of Experiment 2 revealed an 

abolished response to reward-associated color features during the search task, 

another finding concerning color probes distinguished this condition from the low-

reward condition and Experiment 1. Here, an increased ERMF response to reward- 

and target-probes was found over fronto-central sensors, i.e. at sensor sites outside 

visual cortex areas. Figure 23 shows respective waveforms for all three probe 

conditions (a) and the corresponding field configuration (b) with the efflux in red over 

left lateral-frontal regions and the influx marked with the arrow in blue over central-

parietal regions. The waveforms shown in Figure 23 illustrate that no such effect 

could be seen in Experiment 1 (d) and the low-reward condition of Experiment 2 (c), 

in which the reward magnitude was the same. In Figure 23 a the increased response 

elicited by reward-probes under high-reward conditions of Experiment 2 is visible with 

a maximum at ~170 ms after probe-onset (red arrow). Notably, this occurs roughly 20 

ms prior to the earliest modulation elicited by target-probes, and 40 ms prior to the 

attenuation effect to reward-probes in ventral extrastriate cortex (cf. Figure 20). As 

marked by colored horizontal bars on the x-axis of Figure 23 a the response to 

reward-probes was clearly increased compared to control-probes starting 

approximately around 160 ms (light blue colored area), whereas the enhancement for 

target-probes arose later between ~200 and 270 ms with the maximum at 230 ms 

(light red colored area). For responses to probes under low-reward condition (Figure 

23 c) no such enhancement was present, neither for reward nor for target-probes.  

 

A rANOVA with the factors probe-condition (target, reward, control) and reward-size 

(low, high) was computed on the mean ERMF response between 160-180 ms. The 

probe-condition x reward-size interaction (F(2,30)=3.52, p<0.05) was significant and 

validates the observation that the enhanced response to reward-probes was only 

evident under high-reward conditions. For reward-size (p=0.34) and probe-condition 

(p=0.11) no significant main effects were observed.  
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The observation that the response enhancement to target-probes is only visible 

under high-reward condition was confirmed in the later time range between  

200-270 ms with a significant probe-condition x reward-size interaction  

(F(2,30)=5.0, p<0.05). The corresponding main effects of probe condition (p=0.28) 

and reward-size (p=0.37) were not significant. 

 

 
Figure 23: MEG effects outside the visual cortex for Experiment 1 and 2. ERMF-
responses to the three different probe types of the low-reward condition of 
Experiment 2 (c), of Experiment 1 (d), and the high-reward condition of Experiment 2 
(a). Waveforms elicited by target-probes are drawn in red, the ones elicited by 
reward-probes in blue, and the ones elicited by color probes in black (Figures a, c, d). 
The topomap in (b) shows the waveform distribution for the reward-minus-control 
difference under the high-reward condition of Experiment 2 (light blue colored area in 
(a)). The black arrow marks the sensor site over parietal cortex, from where the 
waveforms were recorded. Here the deep blue color in the red-to-blue color scale 
marks an influx maximum. The small colored horizontal bars attached to the x-axis in 
(a) index the time range of significant amplitude differences between reward and 
control-probe condition (blue) and between target and control-probe condition (red). 
The results of a CSD analysis for the reward effect are shown in Figure 24 and the 
red arrow in (a) marks the respective time point. 
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A sliding window t tests (see Methods section, 3.2.4 Data analysis) on the reward-

minus-control and the target-minus-control differences revealed a response onset for 

reward-probes at 155 ms, 45 ms prior to target-probes with an onset at 190 ms. 

Hence, the relative time course of frontal activations relative to the modulation seen 

in extrastriate cortex would be consistent with the fronto-parietal activations exerting 

a causal influence on the modulations in visual cortex (see correlation analysis below 

for further supporting evidence). (see Figure 23 a) 

 

The results of the source localization analysis (sLORETA estimates, see Methods 

section, 3.2.4 Data analysis) are shown in Figure 24. The reward-minus-control 

ERMF difference at 170 ms was overlaid onto transsections of the MNI-brain. The 

analysis yielded a source density maximum located at a medial frontal cortex area of 

the dorsal anterior cingulate cortex (dACC). 

 

 
Figure 24: Source analysis for MEG effects outside the visual cortex. For the reward 
effect depicted in Figure 23 a the current source density estimates (LORETA) are 
shown in (a). The difference of the reward- minus the control-condition was 
computed at 170 ms post stimulus, which is highlighted in Figure 23 a with the red 
arrow. In (b) and (c) normalized source waveforms measured from the source 
density maximum computations are shown. Blue traces reflect the reward-minus-
control and red traces the target-minus-control ERMF difference. The normalized 
source waveforms in (b) are taken from the CSD analysis shown in (a) and reflect 
neural activity in anterior cingulate. The waveform shown in (c) was taken from the 
location of the ventral extrastriate CSD maximum of the target-minus-control 
difference of the high reward condition (green circle in Figure 20). 
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For the CSD-maximum visualized in (Figure 23 a) respective source-waveforms are 

shown in (b). The blue trace is a difference waveform of reward- minus control-

condition, while the red trace reflects the target-minus-control difference. The 

response to reward-probes appeared earlier than the one to target-probes. 

Furthermore, in line with the ERMF waveform effects shown in Figure 23 the 

difference waveforms in Figure 24 (b) and (c) show that the response to reward-

probes in dACC (a and b) arised about 20 ms prior to the activity enhancement 

elicited by target-probes in ventral extrastriate cortex (c). This difference in latency is 

reflected by the distance between the blue and red dashed lines. In contrast, the 

response enhancement to target-probes in anterior cingulate reflected by the red 

trace in (b) did not arise prior to the response in ventral extrastriate cortex (c).  

Given that the response in dACC to reward-probes under high-reward conditions of 

Experiment 2 appeared before the attenuation of the ERMF response in ventral 

extrastriate visual cortex, it is reasonable to ask whether the attenuation is linked to 

activity changes in dACC. Such a direct modulatory influence of frontal lobe activity 

on processes of attentional selection in visual cortex has been has been repeatedly 

documented (see section 1.5 Task and Attention Control). To address this possibility, 

the extent of response attenuation to reward-probes in extrastriate cortex was 

analyzed as a function of the amplitude and latency variation in dACC across 

subjects. To this end, the correlation between peak amplitude/peak latency measures 

in dACC (reward-minus-control ERMF difference) and the mean response 

attenuation between 220 and 250 ms in ventral extrastriate cortex was analyzed. 

This analysis revealed no correlation between amplitude measures  

(r=0.213, t(16)=0.816). However, a significant correlation between response latency 

in dACC and the amplitude reduction in ventral extrastriate cortex  

(r=0.426, t(16)=1.76, p<0.05) was found. The scatterplot in Figure 25 illustrates this 

correlation between response latency in the dACC and response attenuation in 

extrastriate cortex. It shows that subjects with progressively shorter dACC latencies 

showed an increasing effect of attenuation of the ERMF response to reward-probes 

in extrastriate visual cortex. 
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Figure 25: Correlation between effects in dACC and extrastriate cortex for the high-
reward condition of Experiment 2. In the scatter diagram the mean amplitude 
reduction between 220-250 ms in ventral extrastriate cortex is plotted at the y-axis 
against the peak-response latency in dACC at the x-axis. The black dots represent 
every subject (n=16). The line represents the linear regression between measures. 
 
 

 

 

 



	   82	  

4 Results 
 

4.4   Short Summary for the Results  

  of Experiment 1 and Experiment 2 
 

The attentional capture part of Experiment 1 revealed, that target-probes elicited 

significantly enhanced activity in extrastriate visual cortex, while the response to 

reward-probes was almost indistinguishable from control-probes, suggesting that a 

reward-relevant feature, which has no explicit task relevance, does not automatically 

entail modulatory effects in visual cortex. Experiment 2 confirmed this finding. After 

doubling the amount of money to be gained on rewarded trials, reward-probes did 

still not elicit an increased response in ventral extrastriate cortex as seen for the 

target-probes. Instead, in the high-reward condition a delayed attenuation of the 

response to reward-probes was observed in a more posterior ventral extrastriate 

region. In addition, reward and target-probes elicited an increased response in 

medial-frontal regions (dACC) under high-reward condition, with the response to 

reward-probes arising before the response to target-probes as well as before the 

attenuation effect in ventral extrastriate cortex. A correlation analysis revealed that 

the amount of delayed attenuation to reward-probes in posterior extrastriate visual 

cortex increased with shorter latencies of the response in ACC, suggesting a 

functional link between the speed of reward-representation in frontal cortex and the 

subsequent attenuation of sensory processing in visual areas. Finally, this 

observation dovetails with the differential effect of reward size on the response 

elicited by search arrays (spheres) in Experiment 2. The presentation of a reward-

color in a non-target distractor sphere led to a response enhancement under low-

reward condition. Doubling the amount of reward, however, eliminated this 

enhancement effect. 
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4.5  Experiment 3 

 
In contrast to the irrelevant color probes in Experiments 1 and 2, the response to the 

search frames (spheres) showed a selection bias for the reward color in extrastriate 

visual cortex. Unfortunately, because of the search paradigm, the reward effect could 

not be compared to the effect the target color would have elicited when presented in 

the distractor. Experiment 3 aims at a direct comparison between the color features 

associated with the target and reward outside the focus of attention when subjects 

performed a discrimination task. To this end, the previously used search paradigm 

was changed such that the focus of attention was fixed in the left visual field, and the 

distractor sphere always appeared in the right visual field. This manipulation allowed 

for presenting the target color also in the distractor. The experimental design yielded 

four possible color assignments to the distractor: target color only (T), reward color 

only a (R), target and reward combined (T&R), and control colors only (C). 

 

 

4.5.1   Behavioral Performance (Experiment 3) 
 

Figure 26 summarizes the response time (a) and response accuracy data (b). The 

latter was generally high and comparable across the four conditions. Shown are data 

for the non-rewarded trials only. For accuracy this similarity of conditions was 

confirmed with a non-significant rANOVA with the in the four-level factor distractor 

condition (Control, Target, Reward, and Target & Reward) (F(3,51)=0.118). However, 

the distractor condition had an influence on response time (Figure 26 a). Subjects 

responded fastest on C-trials, intermediate on T- and R-trials, and slowest on T&R-

trials. A respective rANOVA and post-hoc pairwise comparisons confirmed this RT 

pattern by yielding a significant effect of distractor condition (F(3,51)=35.013, 

p<0.0001). Planned pairwise comparisons revealed that all distractor conditions 

differed from each other (p<0.005), except for the statistically undistinguishable T- 

and R-trials (p=0.53). 
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Figure 26: Behavioral performance of unrewarded trials of Experiment 3. Response 
time (a) and response accuracy (b) were averaged over the 18 subjects. The four 
conditions refer to the color assignment to the distractor spheres presented in the 
unattended right VF. The distractor sphere could contain two irrelevant colors in the 
control condition (black), the target- and a control-color in the target condition (red), 
the reward- and a control-color in the reward condition (green) or the target and the 
reward-color in combination in the target-plus-reward condition (pink). Fastest 
response times could be seen for the control condition, slowest for the target-plus-
reward condition. The vertical white bars index the standard error of mean for every 
condition. 
 

On rewarded trials, which made up 25% of all trials, the overall performance dropped 

by 2.2% relative to unrewarded trials. Rewarded trials only contained the three 

distractor conditions Target, Reward, and Control, but no Target & Reward condition. 

RA was 96.1% for C-, 96.7% for R-, and 96.4% for T-trials. For a comparison 

between rewarded and unrewarded trials a two-way rANOVA with the factors 

distractor condition (C, T, R) and reward (rewarded, non-rewarded) was computed. It 

verified the observed difference with respect to the factor reward (F(1,17)=27.7, 

p<0.0001). No main effect for distractor condition (F(2,34)=0.22), and no interaction 

between distractor condition and reward (F(2,34)=0.22) was observed. Respective 

RTs for rewarded C-, R-, and T-trials were 456.0 ms, 450.9 ms, and 457.5 ms, i.e. on 

average 13 ms slower than RTs for unrewarded trials.  
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The RT-effects were confirmed by a rANOVA yielding a significant main effect of 

reward (F(1,17)=25.1, p<0.0001). The main effect of distractor condition 

(F(2,34)=3.38, p<0.05) and the distractor condition x reward interaction  

(F(2,34)=6.95, p<0.005) were also significant. 

 

 

4.5.2   MEG Responses to Unattended Spheres (Experiment 3) 

 
Figure 27 a shows the ERMF response to the distractor spheres presented in the 

right visual field separately for the four possible distractor color conditions: Target 

(red trace), Reward (green trace), Control (black trace) and Target & Reward (pink 

trace). Note that waveform colors do not represent the color-coding of the 

Experiment. Magnetic responses at sensors contralateral to stimulus presentation at 

the maxima of corresponding efflux and influx field components were collapsed in the 

presented waveforms. To collapse responses the influx response was polarity 

inversed and than averaged with the efflux response. In the time range from  

170-280 ms post stimulus the response to target- and reward-associated colors in 

the spheres was similar and both elicited significantly higher amplitudes than control-

colored spheres. Remarkably, the T&R condition represented by the pink waveform 

elicited bigger response than T-, and R-trials. The horizontal bars, shown at the x-

axis, highlight the time-range of significant (sliding window t-test, p<0.05) amplitude 

increases for T-, R- and T&R- trials relative to C-trials.  

Notably, the enhancement of T&R-trial differences, however, turned out to be almost 

exactly the sum of response enhancements of T- and R-trials relative to control. This 

is clearly highlighted in the respective bar graph on the right (Figure 27 b) displaying 

the mean amplitude increase between 170 and 250 ms. Shown are the response 

differences Target-minus-Control (red), Reward-minus-Control (green) and 

Target&Reward-minus-Control (pink). The differential response for T&R is about 

twice as big as the response differences for target- and reward-associated colors and 

almost matches the algebraic sum for T-, and R-trial differences ((T-C)+(R-C)), which 

is displayed with the dashed grey bar on the right. 
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Figure 27: MEG response to distractor stimuli of Experiment 3. The waveforms on 
the left (a) represent collapsed responses at the field maxima over left occipital 
cortex marked with white and black dots in Figure 28. Responses were elicited by 
distractor stimuli in the unattended RVF for the Target (red), Reward (green), Target 
& Reward (pink) and Control (black) condition. The horizontal bars attached to the x-
axis highlight the time-range of statistically significant amplitude increases of T-, R, 
and T&R-trials in respective colors relative to C-trials. The bar chart on the right (b) 
illustrates the mean response difference in a time window from 170-250 ms. The 
difference Target&Reward - Control (pink) is almost exactly as big as the sum of the 
Target - Control (red), and Reward - Control (green) amplitude, which is shown by 
the dashed grey column. 
 

In Figure 28 each row shows the magnetic field distributions and 3-D source 

localization maps for the differences T-, R-, and T&R-minus-C are shown at 220 ms 

after stimulus onset. The magnetic field distributions in the middle column depict 

efflux with white field lines and a black dot at the maximum and influx with black field 

lines and a white dot at the maximum. The influx/efflux maxima over left occipito-

temporal areas are very similar for all three conditions suggesting a similar cortical 

origin of the underlying modulations. To further investigate, if the modulatory effects 

due to reward and attention do really arise from the same populations of neurons in 

extrastriate cortex CSD distributions were estimated on the basis of the field 

distributions. The CSD estimates on the right are plotted above an arbitrary threshold 

to highlight the absolute maxima of the distribution. 
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Indeed, the CSD maxima for the T-C, R-C, and T&R-C differences can be seen at 

the same location over left ventral-lateral extrastriate cortex.  

 

 
Figure 28: Magnetic field maps and CSD distributions for responses to distractors of 
Experiment 3. In the top-view field distributions on the left the field maxima of the 
influx-efflux configurations are marked with black and white dots from where the 
waveforms in Figure 27 (a) were recorded. All maps were computed from response 
differences of T-, R-, and T&R-trials minus C-trials at 220 ms after stimulus onset. 
The white ellipse in the left upper topomap marks the influx-efflux configuration 
representing the template-matching effect (as described in the following section). The 
CSD maps on the right show the localization of effects shown in Figure 27 and are 
scaled differently to highlight the current source maximum. 
 
In sum, the observed modulatory effects due to reward and attention under task-

relevant condition are additive and arise from the same area in ventral extrastriate 

cortex. 
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Notably, the response enhancement for T-trials between 170 and 280 ms as well as 

the localization of the effect perfectly matches the response pattern found to index 

global color-based attention in Bartsch et al. (2014). In this study a comparable 

experimental setup revealed that global color-based attention is mediated by a 

sequence of two functionally and anatomically separable modulations in ventral 

extrastriate cortex (see also section 1.3.2, Feature-based Selection). The initial 

phase around 200 ms, referred to as template matching phase, is thought to reflect 

the (mere) registration of a task-relevant feature. The later phase around 280 ms, 

dubbed discrimination matching phase, was indexed by a modulation in more 

posterior areas of the ventral extrastriate cortex, which appeared as a result of the 

actual discrimination of the color target. The response enhancement found for T-trials 

likely reflects the template-matching phase of global color-based attention. What is 

notable is that a similar early response enhancement is seen for the reward color in 

the distractor (Figure 27 & 28).  The sliding-window t-test revealed that the response 

enhancement for R-trials arose around 200 ms which is about 30 ms later than the 

enhancement for T-trials (red bar), and stops at about 285 ms, i.e. 30 ms earlier than 

in T-trials. The duration of the effect seen for the T&R condition (pink bar) is 

comparable with the one seen for T condition. Beyond 260 ms the increased 

response to R-trials (green trace) disappears and decreases to match the one for C-

trials (black trace) at about 290 ms. In this later time range, however, the enhanced 

response to T- and T&R-trials is still present. Hence, the later discrimination-

matching phase is only present in T- and T&R-trials, but not in R-trials. This pattern 

of results is apparently consistent with the reward-color eliciting a template-matching 

effect, but no discrimination-matching effect.  

The late selection process can be seen in the magnetic field distribution shown in 

Figure 29 b. The white ellipses highlight the respective influx-efflux configuration for 

the T-C and (T+R)-C differences. Hence, for the R-C difference shown in the middle 

topomap no late discrimination matching effect is seen. Instead, the fading field 

distribution of the early selection effect shown in Figure 28 is visible at a more 

anterior site contralateral to stimulus presentation. Figure 29 (a) shows the mean 

amplitude differences for T-C, R-C, and T&R-C in selected time windows from  

180 ms to 300 ms after stimulus onset.  
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Figure 29: Mean response differences over time from 180 – 300 ms and late 
magnetic field distributions at 280 ms for Experiment 3. The response differences (a) 
facilitate a direct comparison between the amplitude sizes of the averages for T&R-C 
in pink, and T-C in red with R-C in green stacked atop for the four consecutive time 
windows. The R-C difference increases to about the same size as the T-C difference 
before fading towards 300 ms. The T&R-C condition almost perfectly matches the 
sum of T-C and R-C. In the magnetic field distributions (b) of T-C, and T&R-C the 
efflux-influx configurations representing the discrimination matching effect for global 
color selection are encircled by white ellipses, while no such effect for R-C can be 
seen. 
 

Most notable, the effect size on T&R-trials matches the sum of the response 

enhancements to T-, and R-trials over time, even though the relative proportion of the 

T-C and R-C response enhancements varies. The reward effect starts to contribute 

to the combined target-plus-reward effect at 280-300 ms, reaches its full size at  

200-260 ms at about the same magnitude as the target effect decreases towards  

300 ms.  
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4 Results 
  

4.5.3   Short Summary for the Results of Experiment 3 
 

Experiment 1 and 2 already showed an increased neuromagnetic response between 

200 and 260 ms for distractors in the reward-color presented during visual search. 

With the experimental modification made in Experiment 3 a direct comparison 

between the distractor-color conditions (reward-, target-, and both target&reward-

color) was possible. The results showed that both, the reward-, and the target-color 

led to similar increments in the MEG response between ~200-260 ms originating 

from the same extrastriate visual cortex areas. Most notable, the response to the 

target- and reward-color alone added up to match the response size of their 

combined presentation over the whole modulation time-range from ~180-280 ms. 

The observed response pattern also matches the characteristics of the global 

feature-based attention phenomenon (cf. Bartsch et al., 2014). The reward- and the 

target-color elicited a comparable response around 200 ms (template matching). The 

subsequent discrimination-matching phase at around 280 ms was observed for the 

target-color, and the combined Target&Reward condition, but not for the reward-

color. Taken together, the task-irrelevant reward-color elicited no discrimination-

matching effect, but the initial template-matching effect, which suggests that reward 

became part of the task-set. 
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5  Discussion 

 

 

The first two Experiments revealed that task-irrelevant color probes drawn in a target 

defining color led to enhanced neural activity between 180 and 280 ms in ventral 

extrastriate cortex contralateral to probe presentation. Probes matching the reward-

relevant color, in contrast, elicited no such response enhancement. Not even after 

increasing reward-relevance by doubling the amount of money to be gained in 

rewarded trials (Experiment 2) did reward-probes show an enhancement relative to 

control-probes.  

Nonetheless, reward showed an effect on extrastriate stimulus processing, when 

analyzing the brain response to the search frames. In Experiment 1, in the low-

reward condition of Experiment 2, and in Experiment 3 the reward-color was 

associated with an activity enhancement contralateral to the distractor starting 

around 200 ms in ventral extrastriate cortex. Under such task-relevant conditions 

both target- and reward-associations affected the behavioral performance and the 

visual processing of distractor colors/objects. Notably, the ERMF response 

enhancement for target- and reward-color in Experiment 3 was additive and equaled 

the response enhancement seen for the Target-plus-Reward condition. The reward-

color elicited a response comparable with the one to the target-color around 200 ms 

(template matching), although it was not relevant for discriminating the target. 

Consistently the reward-color elicited a template-matching effect but no subsequent 

discrimination-matching effect.  

Beyond the activity modulations in visual cortex, under high-reward conditions, the 

color target- and reward-probes elicited response enhancements in frontal cortex 

structures (dACC). Here, the response to the reward-color appeared earlier  

(~160-200 ms) than the one for the target-color (~200-260 ms), and the onset latency 

of the enhancement to the reward-color correlated with the response attenuation in 

extrastriate cortex between ~220 and 250 ms. 
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5 Discussion 
 

5.1   Reward Effects to Color Probes (Task-Irrelevant Condition)  
 

The results of Experiment 1 and 2 may be taken to suggest that the mere association 

of a color with reward, which is otherwise not part of the target-defining feature set, 

does not lead to a mandatory biasing of its neuronal processing in visual cortex. 

This observation seems to conflict with recent studies which report increased neural 

responses to stimulus-features paired with reward in early visual cortex areas (Shuler 

and Bear, 2006, Serences, 2008, Kiss et al., 2009, Franko et al., 2010, Hickey et al., 

2010) or even earlier in primate superior colliculus (Ikeda and Hikosaka, 2003). For 

example Serences (2008) led human observers perform a choice-task with two color 

gratings associated with changing reward probabilities. FMRI revealed larger BOLD 

responses to reward-associated gratings in early visual cortex areas, i.e. V1-V4, 

depending on the reward history of a stimulus and not on subjective valuation (self-

reported estimates of stimulus value). Franko et al. (2010) trained two macaque 

monkeys to fixate and led them passively view gratings of two different orientations 

with one orientation consistently paired with the subsequent delivery of reward. This 

kind of pavlovian conditioning led to an increase in local field potentials (LFP) in V4 

for the reward-paired orientation. The study provided also evidence for reward-

dependent perceptual learning as the effect lasted for a while after a reversal of 

stimulus-reward-pairing.  

Hence, evidence for reward-dependent modulations of sensory processing can be 

found in literature. The mentioned studies show such biasing effects in visual cortex 

even when the reward-defining feature is not subject to discrimination and therefore 

not task-relevant. However, in contrast to the present work the occurrence of a 

reward-feature was consistently associated with subsequent reward delivery or 

valuation of reward. In other words, the reward-feature cued the delivery of reward, 

i.e. directed attention towards the subsequent event of reward delivery or a stimulus 

signaling reward. This kind of reward-association did not influence performance in a 

negative, distracting way. In other words, there was no explicit or implicit incentive to 

counteract modulatory effects eventually brought about by reward-associated 

features.  
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5 Discussion 
 

The experimental design used here was developed to dissociate top-down definitions 

of reward- and task-relevance with feature biasing being probed by a distracting flash 

stimulus during a task-irrelevant phase of the experiment. A consequence of the 

design is that the appearance of the reward-color rendered any such probe primarily 

a distracting event than raising reward expectations.  

The behavioral results for the search task of the first two Experiments revealed, that 

even the combination of reward and target-color in the target sphere decreased 

performance, i.e. the reward-color impaired target discrimination performance not 

only when part of the distractor but also when presented in the target sphere. The 

fact that the reward-feature caused distraction suggests that this feature became part 

of a task set and was rendered significant. It is likely then, that subjects adopted a 

task set in which the reward-associated color gained some priority for identification. 

This could also facilitate more efficient distractor attenuation/suppression for the 

reward-color.  

Hickey and colleagues (2010) made different observations and found in their EEG 

studies increased responses to reward associated task-irrelevant features even after 

dissociating their reward contingency from endogenous attention settings. Following 

the considerations above, a task-irrelevant and unattended reward-feature should 

have a distracting impact and no positive biasing effects. Subjects searched for a 

shape singleton (target) among similar colored items and one color-singleton drawn 

in a different color (color-distractor). Color was completely task-irrelevant and 

subjects were given high or low reward upon correct target discrimination on every 

trial. Colors could swap from trial to trial, with the color of the target becoming that of 

the distractor or could remain the same. That is, the distractor was presented either 

in a color associated with high or low reward on the previous trial. Importantly, color 

distractors appearing in the color associated with high reward on a previous trial 

elicited an enhanced contralateral P1-response compared to the low-reward 

condition, when the same color on the previous trial was associated with low reward. 

An enhanced positive deflection in the P1-component typically occurs as an effect of 

location selection and reflects a gain-amplification of stimuli processed in 

retinotopically corresponding extrastriate visual areas (Hillyard and Anllo-Vento, 

1998).  
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In this respect the results of Hickey et al. (2010) run counter to the present 

observations and suggest that reward-relevance of color biased processing in 

extrastriate cortex irrespective of task-relevance. In the present experiments no 

positive biasing effect was associated with the reward-color.  

On the first sight the conflicting response pattern found in this work might be startling. 

A closer comparison of the experimental designs, however, reveals some significant 

differences presumably explaining these conflicting findings. The definition of task 

sets, differ in temporal aspects, but also regarding feature dimensions. In Hickey et 

al. (2010) reward was assigned to the feature color on a by trial-by-trial basis, 

because the color-reward association as well as reward size varied constantly from 

trial to trial. The present experimental conditions allowed for more consistent control 

settings, i.e. the color-reward association and reward size were both fixed within trial 

blocks. Additionally the color distractor in the experiments of Hickey and colleagues 

did always pop out among the presented objects only differing in shape, while the 

comparable distractor spheres in the present experiment did not pop out. Maybe in 

the present experiments subjects could adopt a stronger and more specific top-down 

inhibitory scheme to counter the distracting effect of the reward-color. Concerning 

feature dimensions there is another difference between experimental paradigms. 

Subjects in Hickey et al. (2010) searched for an object shape and reward 

contingency was only true for a simultaneously presented color not for the target-

shape unlike in the present experiments, where reward- and target-association were 

restricted to one feature-dimension (color). The association of target and reward to 

two feature dimensions might be easier to handle for guiding top-down control. In 

Experiment 1 and 2 the target-color is unambiguously belonging to the target and the 

reward-color can give additional information signaling a special worthwhile target, but 

it can also appear in a distractor giving no information. 

Taken together there is some sense in the hypothesis that reported experimental 

conditions cause different modes of top–down control. It may be stated again that 

reward-significance per se does not translate into a sensory bias in every case that 

would facilitate feature-selection in extrastriate visual cortex.  
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5.1.1  Contingent Capture and IOR 

In Experiment 1 and 2 the possible biasing effect of reward was probed by distracting 

flash stimuli during task-irrelevant phases of the experiment using contingent capture 

to explore the role of reward in early visual selection. Attentional capture is typically 

assumed to be an automatic, bottom-up driven of process. Folk and Remington 

(1992), however suggested, that even stimulus-driven, bottom-up attentional 

processes in the visual system might not be detached from top-down cognitive 

influence.  

There is an ongoing debate as to the circumstances under which attention is 

captured contingent on high-level goals or when it is purely stimulus-driven 

(Theeuwes, 2010). One party postulated that attention will be captured involuntarily 

by salient stimuli, especially abrupt onsets, irrespective to the observer´s goals or 

intentions (Yantis and Jonides, 1984, 1990, Theeuwes, 1991, 1992, 1994, Hickey et 

al., 2006). Others (Bacon and Egeth, 1994, Folk et al., 1994, Gibson and Kelsey, 

1998, Folk and Remington, 1999, Yantis and Egeth, 1999, Gibson and Amelio, 2000, 

Lamy et al., 2004) are proponents of the contingent involuntary orienting account by 

Folk et al. (1992) and emphasize that previous studies demonstrating capture by 

abrupt onsets used paradigms in which the target itself was an abrupt onset and 

therefore subjects had an attentional set for onsets so that capture was contingent on 

onset per se (Lien et al., 2008). Maybe subjects just looked “for any target that 

differed markedly from its surrounding items” (Egeth et al., 2010). The theory posits 

that the attention-capturing effect of an onset stimulus depends on the degree to 

which properties of that stimulus meet top-down defined target-descriptions. (for the 

recent debate in more detail see Theeuwes et al., 2010) While RT measures (used 

by Folk et al., 1992, 1994) are only an indirect indicator for the deployment of 

attention, ERPs and ERMFs provide a more direct method to investigate the brain 

mechanisms underlying attentional capture. 

The present results show a color-selective bias of neural processing in ventral 

extrastriate cortex for target-probes, suggesting that the increased response to the 

sudden appearance of a stimulus feature rendered task-relevant by top-down 

settings is part of the mechanism mediating capture. This observation generally lines 

up with a number of previous reports.  
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For example, Lien et al. (2008) provided evidence for attentional capture contingent 

on top-down control settings with an EEG experiment using the N2pc component as 

a direct indicator of spatial attention shifts. Arnott and colleagues (2001) replicated 

findings from Folk et al. (1992) measuring event-related potentials and found 

contingent attentional capture. In the color domain attentional capture was contingent 

on an attentional set and elicited an enhanced occipital N1 response contralateral to 

the capturing probe stimulus. Hopf et al. (2004) provided evidence for the notion that 

target features enhance neural activity at non-target locations.  

They found retinotopically consistent enhancement of neural activity for an 

orientation feature in ventral extrastriate cortex prior to spatial focusing onto the 

target with the same orientation. Although target-probes elicited an enhanced 

response in extrastriate cortex most likely reflecting attentional capture contingent on 

top-down task settings it should be noted, that this was not reflected in performance 

changes. The overall IOR effect did not significantly vary as a function of probe 

condition. Even though target-probes produced increased extrastriate activations 

they were not associated with an IOR effect that differed from control and reward 

condition. At a first glance, this observation seems to conflict with the notion that the 

stronger extrastriate modulation of target-probes relates to attentional capture. 

However, there is data suggesting that the IOR effect might be related to neural 

mechanisms that do not directly depend on the extrastriate bias for target-color 

observed here. That is, findings of IOR have been reported for the spatial attributes 

of a stimulus and for objects, but for the color-domain research has typically failed to 

demonstrate IOR (Kwak and Egeth, 1992, Gibson and Egeth, 1994, Schreij et al., 

2010). Although Law, Pratt, & Abrams (1995) could demonstrate some effects 

compatible with a color-based IOR, these were limited to the a special paradigm they 

used. The authors hypothesized, that attention (not spatially) had to be removed 

completely from the first stimulus and introduced a non-target distractor color 

between the color-cue and the color-target, which were all presented in the same 

central attended location. This is a situation, which is not comparable with the 

present experimental conditions. Taking into consideration that the probes were 

flashed unpredictable in time and occurred in one of two possible unattended 

locations, the mere onset of the probes may have caused IOR as a consequence of 

spatial orienting.  
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So the observed color-selective bias might not influence the IOR effect any further. 

To this regard Busse et al. (2006) had interesting findings for an experiment with two 

superimposed moving random dot arrays in both VFs. Effects of exogenous cuing 

were investigated for different cue-target combinations. A change in motion direction 

served as target, and the preceding cue could either be a color change or also a 

change in motion direction in one of the two superimposed dot arrays, yielding in 

spatial (valid/invalid) and featural (same motion direction or not) components.  

For long cue-target SOAs (600-800 ms) valid versus invalid cues produced the 

typical IOR effect, whereas the validity of motion-direction cues did not give rise to 

any IOR. The only effect found for the motion feature, was one of facilitation in an 

early time-range for targets with both, valid location and valid motion direction. For 

the present experiments there is also the possibility of a facilitation effect for target-

probes causing a stronger location-bias with the consequence of facilitated 

performance in target-selection after valid target-probes. However, such facilitating 

effect would be expected to appear for SOAs much shorter than the ones used in the 

present experiments (600-900 ms) (Hopfinger and Mangun, 1998). Taken together it 

is most likely, that the observed IOR effect here is based on the sudden onset of 

probes, but excluding the color-domain of features. 
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5.2   Reward Effects to Distractor Spheres  

  (Task-Relevant Condition)  
 

5.2.1 Global Color-Based Attention 

The reported neuromagnetic responses to unrewarded trials revealed increased 

responses to target (onset at 170 ms) and reward associated color (onset at 200 ms) 

compared to control. The target-, but not the reward-color showed a later second 

phase modulation around 280 ms over more posterior visual cortex. This neural 

signature for the target-color replicates findings of global feature-based attention 

observed for color (Bartsch et al., 2014). A similar effect has also been found for the 

orientation feature (Bondarenko et al., 2012). Global color-based selection was 

characterized having two steps, firstly the initial template matching phase around 200 

ms reflecting the mere presence of a target-defining color, secondly the 

discrimination matching phase around 280 ms reflecting color selection in the 

unattended distractor as a result of the discrimination process in the focus of 

attention. Notably, the initial phase seems to reflect a preset selection bias for any 

color being part of an attentional task set for task-relevant features, because it was 

also found for a task-relevant distractor color not present in the target. The exciting 

finding in this work was, that such template-matching effect was also found for the 

reward-color, which was not target-defining, but obviously part of the color template 

due to its behavioral relevancy, even though being irrelevant for the execution of the 

task. In a recent fMRI study Serences and Saproo (2010) also provided evidence for 

reward-dependent global feature selection outside the focus of attention. Subjects 

performed a forced-choice task on two orientation stimuli (gratings) in left and right 

VF, while simultaneously learning to associate reward sizes (high/low) to specific 

orientations. They analyzed BOLD responses (orientation-selective voxel tuning 

functions) in respect to orientation of the grating, the associated reward magnitude 

and whether the grating was attended or not. An orientation associated with high 

reward elicited a stronger and more tightly tuned response in early visual cortex 

areas than low-rewarded gratings. And this was found to be independent of the focus 

of attention as the effect was found for voxels retinotopically corresponding with the 

attended as well as the unattended stimulus grating.  
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The results of this study support the present findings of reward modulating feature 

selectivity in a spatially global way outside the focus of attention.  

Even though target and reward associated colors both elicited a template matching 

effect with a strong similarity in size and cortical origin, there were two major 

differences regarding onset of the template matching effect and the subsequent 

discrimination matching effect. The template-matching effect for Reward appeared at 

~200 ms with a delay of ~30 ms relative to Target suggesting a temporal priority of 

the target-color over the selection of the reward-color. The present paradigm aimed 

at the separation of top-down definitions of target and reward, so that reward 

rendered rather distracting than helping task performance, with the latter being 

reduced for rewarded relative to unrewarded trials. This observation is consistent 

with the relative temporal priority of the template matching effect for the target feature 

under present experimental conditions. This is by no means absolute. With a different 

experimental setup, for example when target- and reward-associations for features 

overlap, reward has been found to facilitate attentional selection eliciting an earlier 

N2pc component (Kiss et al., 2009). The missing discrimination matching effect for 

the reward-color could also be ascribed to the paradigmatic separation of reward and 

target features. Bartsch et al. (2014) found this later effect around 280 ms only for 

distractor colors also present in the target and only when the target object containing 

the color was under discrimination. In the present experiment this was impossible, as 

the reward-color was always without task-relevance and therefore not under 

discrimination and not part of the target object, because only non-rewarded trials 

were analyzed. Therefore the missing discrimination effect was expected. Notably, it 

is possible that the late discrimination effect of global color-based attention is not only 

color-based, but relies on a form of object-based selection (e.g. Schoenfeld et al., 

2014) as well. The target-color in the distractor sphere and in the target sphere do 

not form an object in perception, but they are linked in their task-relevance. 

 

Another interesting finding for Experiment 3 were the additive template-matching 

effects of reward and attention (Figure 29).  
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That is, the Target&Reward condition for the combined presence of target- and 

reward-color in one sphere elicited the same enhanced response in ventral lateral 

extrastriate cortex as the sum of both enhancements to reward-, and target-color 

presented separately throughout the complete modulation time-range  

(180 – 300 ms). Again, it is the separate definition of target- and reward-relevance, 

which might have forced subjects to form separate templates for both feature 

categories. Even if reward elicits global feature based selection, it might be special in 

terms of top-down control. However, based on the present data the possibility that 

subjects built a compound template for reward and target together - as presented in 

the sphere - cannot be excluded. The T&R response enhancement would be 100% 

and the individual T- and R-trials would have a partial match with round about 50% 

response enhancement each or in respective proportions yielding 100% together. 

The fact, that the template-matching effect for reward occurred with an onset latency, 

speaks against a compound template. For a compound template one would expect a 

common onset for the modulations of its components. On top of that, there is growing 

literature, describing reward as a more durable variable in terms of top-down control 

than a common attentional set. Anderson et al. (2012) found that stimulus-reward 

associations learned in one task can generalize on another task, and that stimuli 

signaling reward-delivery in one task, but serving as distractor in another task, 

involuntarily capture attention over half a year later (Anderson and Yantis, 2013). A 

persistent effect for reward-feature-selection is also true for stimulus-reward 

associations changing within the task (Hickey et al., 2010) or when the reward- 

association is not in effect any more (Della Libera and Chelazzi, 2009). That reward 

effects persist despite and beyond changing attentional settings, make two separate 

templates more likely than a composed template for reward and attention. 

 

5.2.2  Inhibitory Effects due to Reward 

The search task of all three experiments involved two spheres of which one 

contained the target and the other one served as distractor. The presence of the 

reward-color (in Experiment 3 also the target-color), in the distractor resulted in 

decreased task performance relative to control-colors. Doubling the amount of 

reward to be gained in under high-reward condition of Experiment 2 led to the same 

behavioral response pattern than under low-reward condition.  
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This observation is noteworthy, because it does not match the neuromagnetic 

response pattern. The response to the presentation of the reward-color in the 

distractor sphere led to a neural response enhancement under low-reward conditions 

in Experiment 2, which could also be observed for Experiment 1. Doubling the 

amount of reward, however, eliminated this enhancement, suggesting effective top-

down inhibitory control to eliminate reward-contingent effects (see 5.3.1 Top-Down 

Inhibitory Control of Reward). In terms of RA and RT the amount of decrement, 

however, was uninfluenced by reward size. One could predict, that increased top-

down inhibitory control for reward-associated stimuli under high-reward condition 

should result in less behavioral distraction. As this is not the case, the unchanged 

response pattern might not reflect the same situation as under low-reward condition, 

but an already suppressed state. Without top-down control an even greater impact of 

reward on task performance is thinkable. But if we assume that top-down inhibitory 

control aims at proper task execution the response pattern under high reward 

conditions is likely to reflect the consequence of top-down distractor attenuation. Of 

course, the validity of this interpretation cannot be warranted on the basis of the 

present data.  
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5.3  Top-Down Effects for Reward 
 

5.3.1  Top-Down Inhibitory Control for Responses to Color Probes  

Experiment 1 and 2 revealed that task-irrelevant probes drawn in the target-color led 

to increased neural responses (180-280 ms) in contralateral ventral extrastriate 

cortex. In contrast, color probes associated with reward showed no such response 

enhancement. Instead, under high-reward condition in Experiment 2 reward-probes 

produced a delayed response reduction (∼220-250 ms) relative to control-probes. 

Together with the effects for the distractor spheres reported in the previous section 

these observations suggest that reward contingent modulatory effects in extrastriate 

visual cortex are either not present for capture stimuli or under effective inhibitory 

top–down control. Specifically, reward-related biases of sensory stimulus processing 

in extrastriate visual cortex could have been present. But they may have been 

effectively eliminated or even suppressed by top–down inhibition. In Experiment 2 

such top–down inhibition was indeed seen with increased reward-relevance.  

In section 1.4 “Contingent Attentional Capture” the “signal suppression hypothesis of 

controlled attention capture” by Sawaki and Luck (2010, 2011, 2013) was introduced. 

According to this account all salient irrelevant distractor items are detected by the 

visual system thereby causing an attend-to-me signal. The attend-to-me signal could 

be overridden by top-down suppression, which is reflected by the Pd component. The 

signal suppression hypothesis of Sawaki and Luck is consistent with the results for 

capture probes in this work. Under high-reward conditions of Experiment 2 the 

general attenuation of the probe-elicited response suggests that such counteracting 

suppression appeared to some extent for all probe types. The attenuation to high-

reward probes in the later time range from ~220-250 ms peaking about 30 ms after 

the response to target-probes may correspond with an increased distractor positivity 

component. For the low-reward condition a suppression of smaller amplitude might 

have just cancelled a positive modulation bias as seen for target-probes.  

An effect of reward on present experiments is supported by the behavioral data, 

because RTs were slower under low- than under high-reward conditions.  
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The mere presence of the reward-color led to a performance decrement in the first 

two experiments and in Experiment 3 reward presented in the in the non-target 

sphere also had a distracting effect.  

In contrast to behavioral data the MEG responses for the target, but not the reward-

probes showed a significant response enhancement relative to control-probes under 

both low- and high-reward condition. This is an observation in line with the contingent 

involuntary orienting account (Folk et al., 1992). According to this theory, the 

attention-capturing effect of an onset stimulus depends on the degree to which 

properties of that stimulus meet the top-down definitions for the target stimulus (see 

section 1.4 “Contingent Attentional Capture”). Evidence for such contingent 

attentional capture in visual areas was proofed with an ERP-study by Arnott et al. 

(2001). Using the paradigm of Folk et al. (1992) they found that attentional capture 

contingent on a task-relevant color (or onset stimuli) elicited an enhanced occipital 

N1 response contralateral to the capturing probe stimulus. That task-irrelevant 

distractor stimuli sharing a target feature (e.g. orientation) are associated with a 

retinotopically consistent enhancement of neural activity shows that visual search 

relies on top-down settings for a task-relevant feature (Hopf et al., 2004).   

 

5.3.2  Effects Outside the Visual Cortex  

As mentioned above reward-probes were not associated with increased responses 

relative to control-probes in visual cortex. However, under high reward conditions 

reward-probes elicited an enhanced response in dorsal anterior cingulate cortex 

(dACC) with a maximum at 170 ms (see Figure 23). Target-probes also elicited an 

enhanced response in dACC, which had a smaller amplitude and a maximum roughly 

20 ms after the maximum for reward-probes. Notably, under low reward conditions a 

dACC-effect appeared neither for reward- nor for target-probes. Consistent with the 

low-reward conditions of Experiment 2, in Experiment 1 no such dACC modulation 

was observed.  

 

In sum, the present experiments suggest that reward effects are under strong top-

down inhibitory control. This preferrably inhibitory effect may relate to specific 

features if the experimental setup.  
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First, the reward-color had a generally distracting effect as indexed by the decrement 

in task performance due to the mere presence of the reward-color during visual 

search all three Experiments. Second, overall faster RTs under the high- than the 

low-reward condition of Experiment 2 match the finding that activity modulations in 

extrastriate cortex were generally smaller under the high- than under the low-reward 

condition. It is plausible to assume that subjects generally aimed at better task 

performance under high-reward conditions, which made them less distractible due to 

the response attenuation in visual sensory cortex. Furthermore, under the high-

reward conditions the earliest response enhancement to reward-probes was seen in 

dACC. That this response enhancement appeared before the response attenuation in 

ventral extrastriate cortex has a strong implication for a causal relationship. Indeed, 

evidence in support of a causal relationship was observed, as the latency of the 

dACC response was found to correlate with the amount of attenuation in extrastriate 

cortex (Figure 25). This presumably causal relation lines up with experimental data 

suggesting that the dACC is involved in the top–down (inhibitory) control of 

extrastriate sensory processing. For example, Danielmeier et al. (2011) found error-

related neural activity modulations in human posterior medial frontal cortex with fMRI 

that correlated with the suppressed activity in sensory visual cortex areas encoding 

task-distracting stimulus features. Also, the dACC is an area known to be involved in 

conflict-monitoring and executive control (Schall et al., 2002, Botvinick et al., 2004, 

Mansouri et al., 2009) and it is anatomically suited to link action and reward. ACC 

receives projections from orbito-frontal cortex, striatum and the mesolimbic dopamine 

system, which are all linked to reward processing, and DLPFC and supplementary 

and primary motor cortices, which are structures known to process locations and 

actions (summarized in Hayden and Platt, 2010). With single-cell recordings in 

monkeys Hayden et al. found neural activity in ACC is linked to fictive and 

experienced reward, and predicts saccade execution (Hayden et al., 2009, Hayden 

and Platt, 2010). Recently, Hickey et al. (2010) observed such a correlation between 

ACC activation and the reward-associated deployment of attention. They correlated 

reward processing in anterior cingulate cortex with behavioral performance measures 

(RT) and found that reward-magnitude dependent ACC activation predicted the 

deployment of attention.  
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For the present data the dACC activation could partly be explained by the conflict for 

the reward-relevant color being salient, but task-irrelevant and distracting. Likewise 

target-probes were task-relevant and distracting and also associated with a dACC 

activation. These results appear to align with the recent proposal that the dACC is a 

key part of a cortical system maintaining task-sets (Dosenbach et al., 2006). The 

increased magnitude of monetary reward may have caused the task- and reward-

associated color probes to be more potent in capturing attention. Then, the increased 

neural response found in dACC may have served to neutralize the bias for probes 

drawn in these colors, and therefore attenuate distraction and maintain the 

performance focus on the task-relevant search frames. The system that maintains 

task-sets might operate upon cues signaling increased demands on attentional 

control (Weissman et al., 2004, Weissman et al., 2005). The announcement of a 

high-reward block could have motivated subjects to actively orient away from the 

salient cues (target, reward) towards the visual search part (Woldorff et al., 2004). Of 

course, on the basis of the present data one can only speculate about the actual 

processes involved.  
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5 Discussion 
 

5.4  Reward or Attention? 

 
All present experiments showed extrastriate modulations for a color-feature 

associated with reward during the target selection. In Experiment 3 the response 

pattern to the reward-color presented in the distractor showed a perfect match in 

term of amplitude and localization in extrastriate cortex for the template-matching 

phase of global feature-based attention (cf. Bartsch et al., 2014). If the same initial 

process underlying global-feature based attention is also elicited by a reward-

associated feature one might assume that reward-biasing is simply brought about by 

attentional mechanisms. Chelazzi (2013) et al. recently developed a concept of how 

reward can influence visual selection. Based on a survey of the literature the authors 

proposed that reward might “teaches” visual attention via several mechanisms 

leading to a facilitation of sensory selection. Depending on experimental context and 

requirements, rewards could either motivate stronger top-down attentional 

engagement (explicit biasing), or implicit event-reward pairings may bias attentional 

selection akin to perceptual priming. In all cases, Chelazzi and coworkers propose 

reward effects to be attention-mediated, with the consequence that they are 

indistinguishable from effects to attention. Confirming experimental evidence comes 

from recent observations in monkey visual cortex. Stanisor et al. (2013) found that 

firing effects of reward and attention in V1 perfectly overlapped and suggest common 

underlying selection mechanisms. Of course, MEG recordings do not allow us to 

decide, whether the exact same neurons contributed to the global feature-based 

selection effects of reward and attention.  

Nonetheless, the selection effects in extrastriate cortex very likely reflect attentional 

modulations, but the origin of top-down control may not necessary be the same. In 

fact some of the present observations speak in favor of different top-down 

modulatory influences. Firstly the effects of Target and Reward in Experiment 3 were 

additive, but had different onset latencies. The relevance of reward and attention may 

be coded in separate areas of the prefrontal cortex, but their modulatory influence 

may converge on the same region in sensory cortex areas.  
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5 Discussion 
 
Orbito-frontal (Tremblay and Schultz, 1999, Schultz et al., 2000, Hikosaka and 

Watanabe, 2004, Padoa-Schioppa and Assad, 2006, Roesch and Olson, 2007) and 

dorso-medial fontal cortex, like the ACC (Gehring and Willoughby, 2002, Hayden et 

al., 2009) are often described to encode value. Visual selective attention is rather 

controlled by dorsolateral prefrontal cortex areas, in particular by the FEF (Moore et 

al., 2003, Moore and Fallah, 2004, Armstrong et al., 2006, Armstrong and Moore, 

2007, Heitz et al., 2010), for which direct connections to extrastriate visual cortex are 

known. So independent top-down influences from orbito-frontal/dorso-medial and 

dorsolateral-prefrontal cortex may converge on feature-selective neurons of the 

ventral-stream extrastriate cortex, where an additive bias is measurable. 

As an alternative, it is possible that value and attentional priority are represented 

independently in the same cortical structure. In such control structure their effects 

might be combined and an already added up signal would be transferred via a 

common top-down pathway to bias feature processing in visual cortex. Area LIP 

(lateral intraparietal) is a possible cortical control structure suitable to encode such 

biasing signal. LIP has been has been proposed to merge top-down behavioral goals 

and bottom-up saliency in a unified priority map that guides visual selective attention 

(Ipata et al., 2009, Bisley and Goldberg, 2010). Moreover, LIP has been found to 

code attention and reward value independently (Platt and Glimcher, 1999, Sugrue et 

al., 2004, Bendiksby and Platt, 2006, Peck et al., 2009, Louie et al., 2011). Hence, 

LIP may compute a priority signal reflecting the added effects of attention and 

reward, so that the single modulation for both entities, but also the combination of 

attention and reward would modulate visual selection in extrastriate cortex.  

Taken together, whatever the top-down mechanisms are that mediate the combined 

effect of attention and reward, both lead to the same sensory modulation in 

extrastriate visual cortex suggesting that the modulatory consequence at the site of 

selection is largely overlapping. 

Still, the results for the visual search part and the attentional capture part of this work 

give rise to partially conflicting interpretations. Distractor spheres containing the 

reward-color were associated with an enhanced response, as were distractor 

spheres containing the target-color. Color probes, instead, showed an enhanced 

response to the target-color, but no enhancement for the reward-color. 
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5 Discussion 
  
As mentioned above the reward-probes may not have been associated with an 

enhancement effect because a top-down inhibitory signal from frontal or parietal 

control-structures perfectly cancelled the effect (Experiment 1), or even produced a 

delayed suppression of the effect. An alternative is that no bias for the reward-probes 

appeared because the feature was presented at a completely task-irrelevant period 

of the experimental trial, where subjects were effective in eliminating the feature bias 

that is not performance-relevant at all. The bias for the performance-relevant target 

color, however, could not be eliminated, as on half of the trials the next stimulus 

frame could have been the next target. Hence, it is plausible to always bias the target 

color for optimal preparation to discriminate the target. During target discrimination, 

that is, when feature discrimination is required to perform the task, subjects may not 

be able to uphold a completely selective feature bias for only the target color, even 

though the top-down definition of task- and reward-relevance are operationally 

dissociated. The latter alternative, however, runs to some extent counter to the fact 

that there was a late attenuation for reward-probes under high-reward conditions in 

Experiment 2. In other words, the reward-feature was presumably a part of the top-

down template for onset stimuli in general and independent of the sphere task.  

In closing, it is clear that the results of the three reported experiments cannot decide 

among those alternatives. Further experiments are surely necessary for clarifying the 

issue. 
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5 Discussion 
  

5.5  Conclusion 

 
The reported experiments together show that when top-down settings for task- and 

reward-relevance are kept non-overlapping, the mere association of an item feature, 

like a particular color, with reward does not lead to an automatic sensory biasing of 

its selection in visual cortex. The biasing effect of reward turns out to critically depend 

on stimulation conditions and task requirements. Reward relevance led to increased 

feature responses during target discrimination but not during the presentation of task-

irrelevant color probes. Increasing reward relevance was indexed by a general 

suppression of the sensory bias of the reward-color during both task-relevant as well 

as task-irrelevant phases of the experiments. Finally, under high-reward conditions 

response enhancements were seen in dorsal anterior cingulate cortex (dACC) for 

both the reward- and the target-defining color. Most notably the onset of the reward-

associated dACC effect appeared prior to the target-associated effect, with the onset-

latency of the former (inversely) correlating with the amplitude reduction in ventral 

extrastriate cortex. I propose here that the dACC activation reflects the manifestation 

of the subjects strategic top-down control adjustments to improve performance under 

high-reward conditions. 

Experiment 3 revealed that reward-associated modulations in visual sensory cortex 

closely resemble the template-matching phase of global feature-based attention 

reported in Bartsch et al. (2014). These findings suggest independent top-down 

influences for attention and reward, with the modulatory effects in visual cortex being 

indistinguishable, because attention is the common denominator to bias visual 

selection. 

In sum, this work provides evidence for reward influencing early visual stimulus 

processing. In case reward information hinders task-performance, this influence can 

appear in form of sensory suppression to avoid a counterproductive reward-bias.  

Further research is needed to identify the nature of top-down influences underlying 

reward and attention. 
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List of Abbreviations 

 

Nomenclature of brain areas 

 
ACC  anterior cingulate cortex 

dACC  dorsal anterior cingulate cortex 

DLPFC dorsolateral prefrontal cortex 

FEF  frontal eye fields 

IT  inferior temporal 

LGN  lateral geniculate nucleus 

LIP  lateral intraparietal cortex 

LO  lateral occipital cortex 

LOC   lateral occipital complex  

LPFC  lateral prefrontal cortex  

MT  middle temporal area = V5 

msFC  medial superior frontal cortex 

PFC  prefrontal cortex 

PO  parieto-occipital area 

PPC  posterior parietal cortex 

SC  superior colliculus 

TE  anterior inferior temporal cortex 

TEO  posterior inferior temporo-occipital cortex 

V1  visual area 1 

V2  visual area 2 

V3  visual area 3 

V3a  visual area 3 anterior 

V3/VP  visual area 3 ventral part 

V5  visual area 5 = MT 

V4  visual area 4 

V4v  visual area 4 ventral 

V7  visual area 7 

V8  visual area 8 
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List of Abbreviations 
 

General Abbreviations 

 
BOLD  blood-oxygenation-level-dependent (fMRT) 

CSD  current source density 

CTOA  cue-target onset asynchrony 

EEG  electroencephalography 

EOG  electrooculogram 

EPSP  excitatory postsynaptic potential 

ERMF  event-related magnetic field 

ERP  event-related potential 

FBA  feature based attention 

ICBM  International Consortium for Brain Mapping (MNI brain) 

IOR  inhibition of return 

IPSP  inhibitory postsynaptic potential 

ISI  inter stimulus interval 

fMRI  functional magnetic resonance imaging 

LFP  local field potentials 

LVF  left visual field 

MNI  Montreal Neurological Institute (standard brain) 

MNLS  minimum norm least squares 

MEG  magnetoencephalography 

PET   positron emission tomography 

rANOVA repeated measures analysis of variance 

RA  response accuracy 

RF  receptive field 

RT  reaction time 

RVT  right visual field 

SDE  source density estimate 

sLORETA standardized low resolution brain electromagnetic tomography 

SOA  stimulus-onset asynchrony 

SQUID superconducting quantum interference device (MEG) 

VF  visual field
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