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Nomenclature

Roman symbols

Symbol Meaning Dimension

a speed of sound (m s−1)
a strain rate (s−1)
c reaction progress variable (-)
cp,k specific heat capacity of species k

at constant pressure (J kg−1 K−1)
cv specific heat capacity at

constant volume (J kg−1 K−1)
Ck molar concentration of species k (mol m−3)
Cr molar concentration of reactive intermediates (mol m−3)
D enstrophy (s−1)
Dkl binary component diffusion coefficient (m2 s−1)
Dk diffusion coefficient of species k (m2 s−1)
DT thermal diffusion coefficient
Ea activation energy (J mol−1)
fi flame index (-)
Fl laminar flame surface area (m2)
Ft turbulent flame surface area (m2)
hs sensible enthalpy (J kg−1)
hs,k sensible enthalpy of species k (J kg−1)
H mean curvature (m−1)
k turbulent kinetic energy (m2 s−2)
k1, k2 principal curvatures (m−1)
kB Boltzmann constant (1.380662 ·10−23J K−1)
kf , kb kinetic rate coefficients
K Gaussian curvature (m−2)
l characteristic length (m)
lk length scale of Kolmogorov (m)
L integral length scale (m)
Lf longitudinal integral length scale (m)
Lg lateral integral length scale (m)
Ld size of domain (m)
mk mass of species k (kg)
Nr number of reactions (-)
NS number of species (-)
n normal vector to flame front (-)
p thermodynamic pressure (Pa)
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Roman symbols

Symbol Meaning Dimension
R perfect gas constant (J mol−1 K−1)
Rij correlation tensor (m2s−2)
sd displacement flame speed (m s−1)
Sℓ laminar flame speed (m s−1)
St turbulent flame speed (m s−1)
S shape factor (-)
t time (s)
tk time scale of Kolmogorov (s)
T temperature (K)
Tb temperature of burnt gases (K)
Tu temperature of unburnt gases (K)
T integral time scale (s)
u characteristic velocity (m s−1)
ui velocity component in the

ith direction (m s−1)
urms root mean square of velocity

component (m s−1)
u velocity vector (m s−1)
vk velocity scale of Kolmogorov (m s−1)
Vk,i component of diffusion velocity

of species k in direction i (m s−1)
w molar reaction rate (mol m−3 s−1)
W molar mass of the mixture (kg mol−1)
Wk molar mass of species k (kg mol−1)
xi spatial coordinate (m)
Xk mole fraction of species k (-)
Yk mass fraction of species k (-)
Z ′

i element mass fraction of element i (-)
Z mixture fraction (-)
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Greek symbols

Symbol Meaning Dimension

α thermal diffusivity (m2 s−1)
β temperature coefficient in Arrhenius law (-)
δij Kronecker’s symbol (-)
δ0
L thermal flame thickness (m)

δt
L total flame thickness (m)

ε rate of dissipation of kinetic energy (m2 s−3)
κ wave number (m−1)
λ thermal conductivity (W m−1 K−1)
λk thermal conductivity of species k (W m−1 K−1)
λ Taylor length scale (m)
λf longitudinal Taylor length scale (m)
λg lateral Taylor length scale (m)
µ dynamic viscosity (kg m−1 s−1)
µk dynamic viscosity of species k (kg m−1 s−1)
µn moment of order n
µD bulk viscosity (kg m−1 s−1)
ν kinematic viscosity (m2 s−1)
νk,j stoichiometric coefficient of species k

in reaction j
ρ fluid mass density (kg m−3)
ρij correlation coefficient (-)
Φij energy spectrum tensor
τc chemical time scale (s)
τk time scale of Kolmogorov (s)
τphys physical time scale (s)
τij components of viscous stress tensor (Pa)
σ diameter of molecule (m)
χ scalar dissipation rate (s−1)
ω vorticity (s−1)
ω̇k mass reaction rate of species k (kg m−3 s−1)
ω̇t heat release (kg m−3 s−1)
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Dimensionless numbers

Symbol Meaning

Da Damköhler number
Lek Lewis number of species k
Ma Mach number
Re Reynolds number
Ret Reynolds number based on integral scale
Rek Reynolds number based on micro-scale of Kolmogorov
Reλ Reynolds number based on micro-scale of Taylor
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Zusammenfassung

Weltweit wird mehr als 80% der Primärenergie über die Verbrennung von fossilen Brennstoffen
nutzbar gemacht. Diese Brennstoffe sind endlich beziehungsweise nur begrenzt wirtschaftlich
abbauwürdig, während ihr Verbrauch stetig steigt. Zudem entstehen bei derartigen Verbren-
nungsprozessen umweltbelastende Schadstoffe und Treibhausgase. Klimakonventionen und
Umweltschutzauflagen verlangen jedoch eine Reduzierung derartiger Emissionen. Dies erfordert
die Erforschung von Verbrennungsvorgängen zur Optimierung des Wirkungsgrades und der
Leistungsausbeute und zur Minimierung des Verbrauchs und der ausgestossenen Schadstoffe.

Die Verbrennungsforschung gliedert sich in experimentelle Untersuchungen und numerische
Simulationen. Bei den numerischen Simulationen unterscheiden wir:

• Direkte numerische Simulationen (DNS)

• zeitlich gefilterte Turbulenzmodellierung (RANS)

• Grobstruktur- oder Large Eddy Simulationen (LES)

• und PDF-Methoden mit Wahrscheinlichkeitsdichtefunktionen (Probability Density Func-
tions).

Die direkte numerische Simulation löst die Navier-Stokes-Gleichungen ohne irgendeine Art von
Mittelung, wobei alle räumlichen und zeitlichen Skalen aufgelöst werden. Eine Turbulenzmod-
ellierung ist deshalb nicht notwendig. Dabei wird ein höchstmögliches Mass an Genauigkeit
erreicht. Der Preis ist jedoch ein enorm hoher Aufwand an Rechenzeit und Speicherplatz,
zunehmend mit Reynoldszahl und Anzahl der Speciesgleichungen. Das macht das Forschung-
werkzeug DNS für die meisten praktischen Konfigurationen ungeignet. Die detailierten DNS
Ergebnisse sind jedoch eine optimale Ausgangsbasis für die Entwicklung praxisnaher Modelle.
Um sämtliche nützliche Informationen aus den immensen Mengen Rohdaten zu ziehen, müssen
diese sorgfältig ausgewertet werden. Diese Informationen können dann genutzt werden, um

• RANS- und LES-Modelle

• PDF-Methoden

• oder Methoden zur Reduzierung von Reaktionsmechanismen

zu entwickeln, zu validieren oder zu verbessern.

Derartige Werkzeuge zur Auswertung dieser Daten stehen derzeit weder frei zur Verfügung
noch sind sie auf dem kommerziellen Markt erhältlich. Jeder Nutzer entwickelt seine eigenen
Werkzeuge. In der Hoffnung, diese Prozedur schneller und efficienter zu machen, wurde eine
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Toolbox mit Skripts zu wichtigen Auswerteschritten entwickelt. Die Toolbox wurde in Matlab
geschrieben.
Sie erlaubt die Auswertung von

• 2D- und 3D Flammen,

• vorgemischten sowie nichtvorgemischten Flammen,

• Wasserstoff- sowie Kohlenwasserstoffflammen.

Mit Hilfe der Toolbox wurden wichtige Eigenschaften und Grössen sowohl von kalten Geschwindig-
keitsfeldern als auch von Flammen untersucht. Zwei-dimensionale und drei-dimensionale tur-
bulente Geschwindigkeitsfelder wurden verglichen. Die Wechselwirkung zwischen Turbulenz
und Flammen wurde untersucht, sowohl für nicht vorgemischte 2D-Wasserstoff/Stickstoff/Luft-
Flammen als auch für vorgemischte 3D-Methan/Luft-Flammen.

Bei Verwendung detaillierter Reaktionsmechismen in einer DNS verursacht den grössten Aufwand
die Lösung der zahlreichen Teilchenerhaltungsgleichungen und die Bestimmung der chemischen
Quellterme. Zum Beispiel verursacht bei der Beschreibung einer Wasserstofflamme mit de-
tailiertem Reaktionsmechanismus der Chemieteil etwa 70 % der Rechenzeit. Dieser hohe Auf-
wand erfordert Näherungsmethoden, mit denen man die Anzahl der Gleichungen im chemischen
Reaktionssystem reduzieren kann, ohne die Genauigkeit wesentlich zu beeinflussen. Eine Möglich-
keit, dieses Ziel zu erreichen sind die sogenannten Mannigfaltigkeitsmethoden. Diese versuchen,
den Zustandsvektor durch eine niedrigdimensionale Version zu ersetzen, ohne dabei wesentlich
an Genauigkeit zu verlieren.

Die meisten dieser Mannigfaltigkeitesmethoden arbeiten entweder mit einer fest vorgegebe-
nen Dimension der Mannigfaltigkeit oder sie erwarten eine benutzer-definierte Angabe für die
Dimension.
Im Rahmen dieser Arbeit wurde eine Methode entwickelt, um die geeignete Dimension einer
Mannigfaltigkeit zu finden, damit ein vorgegebenes Mass an Genauigkeit erfüllt wird. Zu diesem
Zweck wurde eine turbulente nicht vorgemischte Wasserstoff/Stickstoff/Luft-Flamme unter-
sucht. Um den Einfluss von Chemie und Transport auf die Dimension der Mannigfaltigkeiten
zu untersuchen, wurden zwei Fälle mit unterschiedlichen Transportmodellen betrachtet.
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Abstract

Today combustion of fossil fuels is the most important way to cover our energy needs. Presently,
more than 80% of our energy requirement is produced by combustion of fossil fuels. Energy
consumption is increasing rapidly, while fossil fuels are limited. Our air is influenced by emis-
sions of pollutants and many governments impose limits on such emissions. Therefore, we have
to improve efficiency in order to reduce fuel consumption and pollutant emissions.

The main strategies to investigate turbulent flames are experimental investigations and nu-
merical simulations, relying in particular on:

• Direct numerical simulations (DNS),

• Reynolds-averaged Navier-Stokes equations (RANS),

• Large Eddy Simulations (LES),

• Probability density function methods (PDF).

In direct numerical simulations the complete Navier-Stokes equations are solved without any
averaging. All spatial and time scales of turbulent motion are resolved. Turbulence modeling
is not necessary any more. When DNS can be applied it is the ”simplest” method of approach
with the highest level of accuracy and description. On the other side DNS is time- and memory-
intensive, increasing with Reynolds number and number of species equations. Therefore, DNS
is not suitable for practical configurations. But DNS is an optimal method to foster model
analyses and development for industrial needs. In order to gain all useful information from the
huge amount of DNS data, they have to be post-processed carefully. This information can be
used to develop, validate or improve:

• RANS- and LES-Models,

• PDF-Methods,

• Methods to reduce reaction mechanisms.

Such post-processing tools for turbulent reacting flows are not available (freely or commercially).
Every user develops his own tools. In the hope to make this procedure faster and more efficient,
a toolbox containing essential post-processing methods has been developed. The toolbox was
written in Matlab. The toolbox allows post-processing of:

• 2D as well as 3D results,

• Premixed as well as non-premixed flames,

• Hydrogen as well as hydrocarbon flames.
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In this project the toolbox was used to investigate important properties of cold turbulent flow-
fields as well as of turbulent flames. Two-dimensional and three-dimensional flow fields were
compared. The interaction between turbulence and flames was investigated for non-premixed
2D-hydrogen/nitrogen/air-flames as well as for premixed methane/air-flames.

For combustion simulations with detailed reaction mechanisms, the large number of balance
equations for chemical species and the computation of chemical source terms takes the main
time and cost of the simulation. For example, describing chemistry with nine species and 37 re-
actions in a field of homogeneous isotropic turbulence, the supplementary costs of the chemistry
part amount to about 70 % of the total computational costs. These high computer requirements
make necessary simplification approaches based on reducing the number of chemical variables
to a lower dimensional system without noticeably compromising the accuracy of the descrip-
tion. One possibility to achieve this goal are so-called manifold methods. These methods try to
replace the state vector by a lower-dimensional version without noticeably compromising the
accuracy.

Most of these methods work either with a predefined dimension of the manifolds or they expect
a user-defined instruction for the dimension.
In this project we developed a methodology to find the appropriate dimension of low-dimensional
manifolds for reaching a given level of accuracy. For that purpose a turbulent non-premixed
H2/N2/air flame was investigated. In order to investigate the impact of chemistry and transport
on the dimension of the manifold, two different transport models were considered.

13



Chapter 1

Introduction

1.1 Importance of combustion research

The evolution of mankind is directly connected to the domination of fire and the ability to
ignite and to use it. Wood was the first and for many thousand years the only energy carrier.
Fire could be used for cooking, for lightening and heating of caves, but also to produce tools
to melt and forge (non-iron) metals. With raising temperatures the employment of more and
better materials got possible. But wood was not only used as energy carrier but also to build
housings, ships or vehicles or to produce paper. The raising consumption of wood leaded to
damages in the environment. Secondly the scarcity of wood made it necessary to search for a
new energy carrier.
In the middle of the 18th century in Europe wood was replaced by coal as energy carrier. Fur-
ther evolution in industry and mining got possible. With the invention of the steam engine the
industrial age could start. In the 20th century oil and natural gas became available as further
energy carriers. With their utilization the development of combustion engines and gas turbines
got possible. The drawback of this development was, that the environment was influenced
through pollution of air and waters [123].
Today combustion of fossil fuels is still the most important and common process in our world-
wide energy support. More than 80% of our energy requirement is produced by combustion of
fossil fuels. Combustion systems are variously employed, for example for transport purposes in
cars and ships [46] or airplanes [89], for power generation in stationary power plants [69], for
heating of factories, residence homes and several other kinds of buildings, in industrial burn-
ers [124] for the production of steel or glass, or in heating processes in refineries. According
to the International Energy Agency (IEA) we have to expect an explosive growth of energy
consumption in the coming years at least till 2030.
On the other hand fossil fuels are limited and the quality of our air is influenced by emissions
of pollutants, such as NOx, SOx, CO, greenhouse gases such as CO2 or particles such as soot.
While the environmental problem started as a local one, meanwhile it has grown to a global
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one. Environmental constrains are getting stronger and many governments impose limits on
such emissions. Therefore, it is necessary to extend our knowledge of combustion processes in
order to improve the efficiency of combustion engines, to reduce fuel consumption and pollu-
tant emissions. In the future, fossil fuels and combustion of fossil fuels will have to be replaced
by new energy sources or energy carriers and technologies to gain energy. One of the most
important new carriers might be hydrogen or synthetic gas and, again for energy conversion,
combustion will play a predominant role.
But we must not forget, when constructing sustainable, energy efficient buildings, infrastruc-
ture and transportation systems, that the safety of the public and the protection of property
against loses due to fire must not be compromised [66].

1.2 Investigation of turbulent combustion

In spite of the great economic and technical importance of combustion, combustion science
is a relatively young discipline. The reason is that combustion processes are a combination
of several interrelated complex phenomena. The fundamentals of different processes had to
be understood before several disciplines could merge to a science. According to Liñán and
Williams, combustion science can be defined as “the science of exothermic chemical reactions
in flows with heat and mass transfer. As such, it involves thermodynamics, chemical kinetics,
fluid mechanics, and transport processes.”[76]

As dimensions of technical equipments are often large and processes are fast, most combustion
processes take place in turbulent flow fields. There are two complementary ways to investigate
turbulent reacting flows: an experimental and an analytical or numerical one. Experimental
investigations of such flows are very interesting but difficult and time and cost intensive. The
diagnostics must not affect the flow or the flame and have to be usable for example at high
temperatures or velocities. Some variables are very difficult to measure. Therefore, there is
increasingly the tendency to model additionally such flows by mathematical methods.
But the simulations can not replace the experiments completely and both are better seen as two
complementary ways for the study of turbulent combustion [117]. For example experimental
data are always required for validation of numerical models [1, 97].

The relationship among the various quantities occurring in many physical sciences such as
combustion science can be expressed by a system of conservation equations. The system of
equations to describe Newtonian fluid motion was introduced by Navier [90] in 1822 and Stokes
[128] in 1845. At least for turbulent flows the complicated system of coupled non linear differ-
ential equations is not solvable by analytical methods. With the advent of electronic computers
about one century later it became possible to solve the problem by numerical methods. For
turbulent reacting flows the problem is much more complex because the two phenomena tur-
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bulence and chemical reactions as well as their interaction have to be considered. Balance
equations for several species have to be solved additionally. Transport processes and reaction
mechanisms have to be taken into account.
Power and memory capacities of modern computers are steadily increasing and with them the
possibilities to solve extensive and complicated equation systems [151].

According to different requirements in research and practice in the industry there are dif-
ferent strategies to simulate turbulence as well as combustion processes with different levels of
expense and accuracy. An overview about the numerical description of combustion phenomena,
different modeling strategies, perspectives and progress in the last years is given for example
in [12, 20, 21]. Today, pollutant formation and stability limits belong to the most important
topics in combustion science [9]. In order to investigate these topics transport processes and
multiple chemical reaction steps have to be considered. The impact of transport processes and
reaction schemes is extensively reviewed in [49].

The main strategies to simulate turbulent flows and flames are:

• Direct Numerical Simulations (DNS),

• Reynolds-averaged Navier-Stokes equations (RANS),

• Large Eddy Simulations (LES)

• and Probability-density-function methods (PDF).

The DNS method consists in solving the full Navier-Stokes equations. All spatial and time scales
of turbulent motion are resolved. No modeling is necessary. When DNS can be applied it is the
”simplest” method of approach with the highest level of accuracy and description. DNS results
contain very detailed information about the flow and its variables of interest. When the grids
are fine enough DNS gives us nearly exact results and is also called ”numerical experiment”.
On the other side DNS is time- and memory-intensive. For reacting flows, chemistry takes
the main time and the main costs of the simulation. Even if the theory was well known, the
application of DNS was not possible till the 70s of the last century, because of lack of computer
power. DNS was published for the first time in 1972 [93]. DNS is not suitable for practical
applications. But DNS appears to be in principle the best possible research tool [4, 88].
In industrial applications, mainly mean flow-fields, mean values and major trends are of inter-
est, but not time-dependent fluctuations. The concept of the RANS approach is, following the
proposal of Reynolds [109], to average out the unsteadiness from the instantaneous quantities
and to solve for the mean values of all quantities. The balance equations for averaged quantities
are obtained by averaging the instantaneous balance equations. However, this system is not
closed any more and contains unknown quantities that need to be modeled. This means that
turbulence models as well as turbulent combustion models (TCM) are required. Historically
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the RANS method was the first possible approach because of less computer requirements and
therefore, there are more years of experience compared to DNS.
The method of LES is a combination of DNS and RANS. LES started in the 1960s with the
work of Smagorinsky [120]. The scales of turbulent motion are divided in large structures and
small structures by a filter operation [72]. Large structures are resolved as in DNS, while the
effects of the small structures need to be modeled as in RANS. The method of LES is quite
established for non-reacting flows but for reacting flows there are still many unsolved issues.

The most important unknown terms in RANS and LES approaches are

• the Reynolds stresses in the momentum equations,

• the turbulent scalar transport in the energy equation

• and the chemical source terms in the species equations.

Closing properly the chemical source term is the key issue in combustion simulations.
Modeling of the chemical source term can be avoided by the use of probability density function
(PDF) methods. Two types of PDF approaches can be distinguished: The transported PDF
method of Pope [101] and the presumed PDF method.
Since in DNS the large number of chemical species and the computation of chemical source
terms takes the largest time and cost of the simulation, simplification approaches based on
reducing the number of chemical variables to a lower dimensional system without noticeably
compromising the accuracy of the description are required. This goal can be achieved by
methods based on physical considerations or by mathematical approaches such as manifold
methods. An overview on manifold methods is given for example in [44, 83]. Manifold methods
are based on the separation of fast and slow chemical timescales and a separate treatment
of these processes. The system dynamics is then reduced to low-dimensional structures in
state space where the slow dynamics occurs, the so called low-dimensional manifolds. Most
of these methods work either with a predefined dimension of the manifolds or they expect a
user-defined instruction for the dimension. In Section 2.6.3 we introduce a methodology to find
the appropriate dimension of low-dimensional manifolds for reaching a given level of accuracy.
In Section 6.4 we investigate dimensions of manifolds in a H2/N2/air flame.

1.3 Post-processing the results

DNS results produce a huge amount of raw data, which is increasing with increasing possibili-
ties of numerical computation. For example for the 3D synthetic gas flame with 201 grid points
per direction analyzed in Section 6.2.2 we obtain 1.8 GB of raw data per time output. For
each species, the velocity components and the temperature we get information in more than
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Figure 1.1: Isosurface of
mass fraction of CH2O at
16 % of its maximum

Figure 1.2: Isosurface of
mass fraction of HCO at
16 % of its maximum

,

Figure 1.3: Isosurface of
mass fraction of H2O at
16 % of its maximum

8 million grid points. Even when extracting the variables only along the flame front (see sec-
tion 4.2.1) we still have information in nearly 160 000 points. The ranges of values the different
variables can take are completely different. For example the temperature is running from 315
to 2168 K, while the velocity components are running from -19 to 29 m/s. The species mass
fraction of CO2 is running from 0 to 0.198, while the species mass fraction of OH is running
from 0 to 0.005 in the whole domain and running from 0.0012 to 0.0031 along the flame surface
defined by CO2. Isosurfaces of species mass fractions at the same level (relative to the maxi-
mum value) are looking completely different. While for CH2O we have only some small islands
(see Figure 1.1), for HCO we obtain many larger islands (see Figure 1.2) and for H2O we have
a complete coherent surface (see Figure 1.3). The necessity to post-process these data carefully
in order to draw as much useful information as possible from them is obvious.

To cite Hamming:

“The purpose of computing is insight, not numbers” [45].

There are three possible concepts to do this:

• post-processing,

• co-processing,

• in-situ processing.

Current tools almost exclusively operate in a post-processing mode. This means that data are
stored at run time, then pulled back onto the system later for analysis and visualization. This
can be a problem as dataset sizes continue to grow.
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Some scientists have moved to a co-processing approach. Co-processing is done using a ded-
icated visualization machine connected to the supercomputer. Simulation output is directly
transferred to the visualization machine for immediate processing, and the resulting imagery is
either stored to a disk or shipped to a desktop machine for viewing. In practice, however, this
approach was seldom adopted because of two reasons: First, most scientists were reluctant to
use their supercomputer time for visualization calculations. Second, it could take a significant
effort to couple the parallel simulation code with the visualization code. In particular, the do-
main decomposition optimized for the simulation is often unsuitable for parallel visualization,
resulting in the need to replicate data for speeding up the visualization calculations [86].
In situ-processing and visualization side-steps the deficiencies of both of these approaches by
performing some analysis functions on the data during simulation run-time while it still re-
sides on the system. The advantage is, these operations reduce the data size before the data is
transferred to storage [85, 86]. But compared with a visualization in traditional post-processing
fashion in-situ visualization also brings some unique challenges:
First of all, the visualization code must interact directly with the simulation code, which re-
quires both the scientist and the visualization specialist to commit to this integration effort.
To optimize memory usage, they have to find a way for the simulation and visualization codes
to share the same structures to avoid replicate data. Second, visualization workload balancing
is more difficult to achieve since the visualization has to comply with the simulation architec-
ture and be tightly coupled with it. Unlike parallelizing visualization algorithms for standalone
processing where one can partition and distribute data best suited for the visualization calcu-
lations, for in-situ visualization, data partition and distribution is dictated by the simulation
code. Moving data frequently among processors is not an option for visualization processing.
One needs to rethink to possibly balance the visualization workload so the visualization is at
least as scalable as the simulation [86].

1.4 Intention of this work

Despite the huge dataset sizes we decided here to keep and store our results and do the post-
processing afterwards. The main advantage is that we do not loose data and we can post-process
every quantity or item at any time we need, even years after completing the DNS.
For this purpose a toolbox containing essential post-processing methods has been developed.
The library contains flexible and efficient methods to investigate 2D as well as 3D results, pre-
mixed and non-premixed flames, hydrocarbon and hydrogen flames. A first description of parts
of the toolbox was already published in [155]. The scripts are written in the language of the
widely available commercial program Matlab [87].

Employing this toolbox, the DNS results can be used as an optimal database in order to

• improve our physical understanding of combustion processes,
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• develop, improve or validate RANS- or LES models,

• develop, improve or validate combustion models,

• develop, improve or validate PDF methods,

• develop, improve or validate methods to reduce reaction mechanisms.

Today (2015) the toolbox has users in more than 40 different universities and institutions in
several countries in Europe, in America and in Asia. The users are listed in Table 1.1. Figure
1.4 shows how the different users are spread over the world.

no institute country
1 Istituto di recherche sulla combustione, Napoli Italy
2 Politecnico di Milano Italy
3 Italian Aerospace Research Centre (CIRA) Italy
4 Stork termeq Netherlands
5 Eindhoven University of Technology Netherlands
6 Leiden University, Medical Center Netherlands
7 Lund University Sweden
8 Chalmers University of Technology,Gothenburg Sweden
9 University of Southampton UK
10 Cranfield academy UK
11 Cambridge University UK
12 University of Western Macedonia Greece
13 Ecole Centrale, Paris France
14 University of Miskolc Hungary
15 KIT, Karlsruher Institut für Technologie Germany
16 TU Bergakademie Freiberg Germany
17 Hochschule Bochum Germany
18 TU-Braunschweig Germany
19 RWTH-Aachen Germany
20 Universität Duisburg-Essen Germany
21 TU-Darmstadt Germany
22 Deutsches Zentrum für Luft- und Raumfahrt (DLR) Germany
23 Otto-von-Guericke Universität Magdeburg Germany
24 Los Alamos National Laboratory USA
25 North Carolina State University USA
26 Stony Brook University, New York USA
27 Stanford University, California USA
28 Purdue University USA
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29 University of New Brunswick Canada
30 Federal University of Paraná, Curitiba Brasilia
31 Teheran university Iran
32 K.N.Toosi university, Teheran Iran
33 Rajamangala University of Technology Suvarnab-

humi
Thailand

34 Zhejiang University, Laboratory of Clean Energy Uti-
lization,

China

35 Zhejiang University, Institute for Thermal Power En-
gineering,

China

36 Yonse University South Corea
37 King Abdullah University of Science and Technology

( KAUST)
Saudiarabia

38 Institute of chemical Technology, Matunga, Mumbai India
39 JNCASR, Bangalore India
40 Bandung Institute of Technology, Meteorology De-

partment
Indonisia

41 Technological Institute of Israel,CS department Israel

Table 1.1: Users of the toolbox (April 2015)
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Figure 1.4: World map of Anaflame users
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1.5 Structure of this work

This thesis is organized as follows:
The next chapter gives a basic introduction into the theory of turbulent combustion. In Sec-
tions 2.1 and 2.2 the phenomena connected to turbulence and flames are explained. The
governing equations for turbulent combustion and transport processes are presented in Sec-
tions 2.3 and 2.4. Sections 2.5 and 2.6 deal with reaction kinetics and methods to simplify
kinetics. Low-dimensional manifolds are discussed and a methodology to find the appropriate
dimension of a low-dimensional manifold for reaching a given level of accuracy is introduced.

In Chapter 3 the most common modeling strategies of turbulent reacting flows are described.
We compare what kind of information they need and what kind of information they give us. Ad-
vantages and limitations are discussed. As the toolbox is developed mainly for post-processing
DNS data, the focal point of the chapter are direct numerical simulations. Principles and
limitations of DNS are explained. Simplification methods to reduce computational costs are
introduced. An impression is given about the huge amount of data produced by DNS. The
necessity of post-processing them carefully is demonstrated for 2D as well as for 3D simulation
results.

Chapter 4 deals with scales and quantities that are post-processed in the toolbox. Scales
describing turbulence, scales describing flames and those describing probability are introduced.

Chapter 5 deals with the Matlab toolbox for post-processing DNS data. First the program
Matlab is briefly introduced. The different kinds of tools to investigate turbulent flow fields,
flames, interaction between turbulence and flames and dimensions of manifolds are demon-
strated.

Chapter 6 discusses selected applications using the developed toolbox. 2D and 3D turbulent
flow fields are analyzed, involving non-premixed as well as premixed flames. Their interaction
with turbulence is investigated. A PDF analysis of a non-premixed flame is done. Finally,
the appropriate dimension for a low-dimensional manifold is determined for a non-premixed
turbulent H2/N2/air flame.

Chapter 7 closes the thesis with a summary and an outlook.
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Chapter 2

Basic theory of turbulent combustion

Turbulent combustion is a complex phenomenon characterized by combining hydrodynamic
turbulence, molecular transport, mixing and chemical reactions as well as by the interaction
between turbulence and chemistry. The most important feature of turbulence concerning en-
gineering applications is the ability to increase significantly properties of the flow like momen-
tum-, heat- or mass transfer and to accelerate mixing rates by orders of magnitudes compared
to molecular diffusion. In combustion devices it is important that mixing processes take place
as fast and effectively as possible. Perfect mixing of the reactants is the presupposition of
chemical reaction. Afterwards the pollutant streams have to be diluted and cooled before they
are released into the atmosphere.
In Section 2.1 turbulence and its features are introduced. Section 2.2 gives an overview about
combustion and a description of the different kinds of flames. The balance equations and
transport terms are introduced in Sections 2.3 and 2.4. Finally Sections 2.5 and 2.6 deal with
reaction kinetics and simplification methods for reaction mechanisms.

2.1 Phenomenological description of turbulence

Turbulence itself, even for non-reacting flows, belongs to the most interesting and complex
phenomena of fluid physics, and is a focus of scientific research, too. An extensive discussion
about several aspects of turbulent motion can be found among others in [50, 74, 103, 113, 118,
133]. Special information about homogeneous turbulence is given for example in [2]. Finally
[65, 73, 146] deal with the special case of two-dimensional turbulence.

Laminar and turbulent flows
In fluid mechanics we can distinguish two kinds of flows, laminar flows and turbulent flows.
Turbulent flows differ from laminar ones in some important items. Laminar flows consist of
smooth and ordered layers. Disturbances are damped by viscous forces and the flows keep
their regularity. In turbulent flows macroscopic fluid elements of different sizes, called eddies,
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move more or less randomly forward, backward and across the layers. Turbulent flows are the
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Figure 2.1: Turbulent flow field obtained by DNS at Re=1800

consequence of instabilities that can no longer be damped. Reynolds [108] introduced a di-
mensionless number to distinguish between laminar and turbulent flows, which bears his name
today:

Re =
lu

ν
(2.1)

where l is a characteristic length, u a characteristic velocity and ν is the kinematic viscosity
(see Section 2.4). Figure 2.1 shows a turbulent flow field at a Reynolds number Re=1800. The
Reynolds number Re can be considered as the ratio between inertia forces and viscous forces.
For low Reynolds numbers the viscous damping forces are dominant, which means the flow is
laminar. At a critical value of the Reynolds number inertia forces, leading to instabilities be-
come dominant and a transition from laminar to turbulent flow takes place. When the Reynolds
number is high enough we obtain a stable turbulent flow. In this thesis only turbulent flows
are considered. The choice of characteristic length- and velocity scales depends on the specific
problem considered. Therefore, we obtain different Reynolds numbers for different problems,
and we have to take care which characteristic scales Re is based on.

Properties of turbulent flows
There is no uniform definition of turbulence in the literature. According to Tennekes and Lum-
ley [133], it is nearly impossible to give a definition of turbulence, it is only possible to list some
characteristic items of turbulence:

• Irregularity and randomness,
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• Diffusivity,

• Large Reynolds numbers,

• Rotational and three-dimensional,

• Dissipation.

The definition formulated by Hinze [50] reads:”Turbulent fluid motion is an irregular condition
of flow in which the various quantities show a random variation with time and space coordi-
nates, so that statistically distinct average values can be discerned.”

Turbulent scales
The turbulent eddies mentioned above are characterized by a wide range of length- and time
scales. The magnitude of the turbulent scales is bounded from above by the dimensions of
the aperture where the flow occurs and bounded from below by viscosity effects. The smallest
scales are decreasing in size with increasing velocity of the average flow. Some special scales
play specific roles in the description of turbulent flows:

• Integral- or Macro-scales
The integral length scale L can be considered as the size of the largest eddies or the
distance a large eddy moves before dissolving. The magnitude of these scales depends on
the geometry and the boundary conditions of the flow. The largest eddies do the main
part of transport and mixing. The integral time scale T can be considered as the time
the eddy uses to pass a certain point.

• Micro-scales of Kolmogorov
The Kolmogorov scales lk, tk, vk are the smallest scales occurring in turbulent motion.
Viscous terms prevent the generation of infinitely small scales of motion by dissipating
small scale energy into heat.

• Micro-scales of Taylor
The Taylor micro-scale λ has no physical but a mathematical meaning. It can be used to
determine other important properties of turbulence. Its size is between the Kolmogorov
scale and the macro-scale.

How to calculate turbulent scales is introduced in Section 4.1.

Special kinds of turbulence
If certain conditions are fulfilled the problem can be simplified and the velocity field can be
considered as homogeneous or isotropic.
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Homogeneous turbulence
A velocity field is called homogeneous if it has quantitatively the same structure in all its parts
and if its statistics are invariants under a shift in position.

Isotropic turbulence
According to the definition of Hinze [50]: ”Isotropic turbulence is the simplest type of turbu-
lence, since no preference for any specific direction occurs and a minimum number of quantities
and relations are required to describe its structure and behavior. The condition of isotropy is
defined by the invariance under rotation of the coordinate system and under reflection with re-
spect to the coordinate planes of the statistically averaged properties of the turbulence.”
In real velocity fields global isotropy does not exist. The large scales indeed behave anisotropic.
But there exist regions of small scales, which can be considered as locally isotropic, as explained
below. The concept of isotropy plays an important role: The knowledge of the characteristics
of isotropic turbulence can be used as a basis for research and understanding of actual, non
isotropic turbulence. When treating non isotropic cases the assumption of isotropy can be used
as first approximation. A huge part of turbulence theory is based on it, many simulations as-
sume homogeneous isotropic turbulence, in many wind tunnel experiments great care is taken
to reach isotropic conditions as far as possible. The assumption of homogeneous isotropic tur-
bulence is often used as initial condition in this thesis.

The energy cascade
A characteristic feature of turbulent motion is the well known energy cascade, pictorially de-
scribed by Richardson [111] in a poem:”Big whorls have little whorls that feed on their velocity,
and little whorls have lesser whorls and so on to viscosity.” The concept of the energy cascade
is that turbulent kinetic energy enters the turbulent system at the largest scales of motion.
The Reynolds number Re is large and the effect of viscosity is negligible. The large eddies are
quite unstable, break up and their energy is transferred to smaller and smaller eddies, whereby
the eddies are stretching each other. This process continues until, at the smallest scales, Re is
small enough so that the motion is stable and the energy gets dissipated into heat by viscous
action. The rate at which this dissipation occurs is called dissipation rate ε. The dissipation
rate ε depends on the eddies and the processes at the beginning of the cascade and is also the
rate at which energy is transferred from larger to smaller eddies. If there is no continuous ex-
ternal source of energy at the beginning of the cascade, to keep up the turbulent motion and to
compensate the dissipation at the end, turbulence and the turbulent kinetic energy will decay
[103, 113, 133]. The smallest scales, lk, introduced above were first identified by Kolmogorov
[62] and bear his name today.
In Section 4.1 we calculate the turbulent kinetic energy and the dissipation rate. The question
how the turbulent kinetic energy is distributed according to the different scales is discussed
as well.
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Hypotheses of Kolmogorov
In connection with the energy cascade Kolmogorov formulated now-famous hypotheses:

Hypothesis of local isotropy
The hypothesis of local isotropy says that in an arbitrary turbulent flow with a sufficiently high
Reynolds number the turbulence can be considered as locally isotropic with good approxima-
tion in sufficiently small domains not lying near the boundaries of the flow or its singularities.
A small domain means a domain whose linear dimensions are small in comparison with the size
L of the largest eddies [62].

First hypothesis of similarity
The first hypothesis of similarity says that for locally isotropic turbulence the statistical dis-
tributions are uniquely determined by the quantities ν and ε [62]. This range of small scale
motions is referred to as universal equilibrium range. In this range the energy generating pro-
cesses get more and more unimportant.

Second hypothesis of similarity
The second hypothesis of similarity says that if the scales are large in comparison with the
Kolmogorov scale lk but small in comparison with the large scales L, the statistical distribu-
tions are uniquely determined by the quantity ε and do not depend on ν [62]. This part of the
universal equilibrium range is called inertial subrange. In this range the transfer of energy takes
place. Viscous effects are negligible. The second part is called dissipation range. Here all the

Inertial
subrange

Energy−contaning
range

Dissipation 
range

Universal     equilibrium     range

Transfer of energy to 

successively smaller eddies

ProductionDissipation

l k L

Figure 2.2: The energy cascade: Transfer of energy in different subranges

dissipation takes place. Figure 2.2 shows schematically the energy cascade with the transfer of
energy and its different ranges.

Refinement of Kolmogorov hypotheses
The original hypotheses of Kolmogorov are based on a uniform mechanism of transfer of energy
from the coarser vortices to the finer ones and did not take into account the random character
of this mechanism and the fluctuations of the dissipation rate ε about its mean value. The
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interested reader can find refined theories in the papers of Kolmogorov [63] and Oboukhov [92].

Different Reynolds numbers
As already mentioned we can define different Reynolds numbers depending on the characteristic
scale we use:

• The Reynolds number based on the micro-scales of Kolmogorov
The Reynolds number calculated for the micro-scales of Kolmogorov is one:

Rek =
vklk
ν

= 1 (2.2)

This means that viscous forces play a major role at this scale.

• The turbulent Reynolds number
Knowing velocity fluctuations urms (see Eq. (4.3)):

Ret =
urmsL

ν
(2.3)

In scientific considerations as in this thesis the turbulent Reynolds number is based on
the integral scale L in contrast to engineering problems where it is based on the size or
the hydraulic diameter of the device. Typically, this scientific Reynolds number is about
0.01 times the macroscopic technical Reynolds number.

• The Reynolds number based on the micro-scale of Taylor
In homogeneous turbulence the Reynolds number is often based on the (lateral) micro-
scale of Taylor λg:

Reλ =
urmsλg

ν
(2.4)

Properties of 2-dimensional turbulence
”Two-dimensional turbulence has the special distinction that it is nowhere realized in nature
or the laboratory but only in computer simulations” [65]. For non-reacting flows turbulence is
intrinsically three-dimensional. Only in a few special cases, for example for flames the shape
of which is more cylindrical than spherical, turbulence can sometimes be considered as locally
two-dimensional. Two dimensional simulations might still be suitable to investigate chemistry
issues, to develop models for chemistry reduction or source terms.
The behavior of two-dimensional and tree-dimensional turbulence is very different. The most
important item is there is no vortex stretching in two-dimensional turbulence. The consequences
of the missing vortex stretching on the energy cascade are discussed in Section 4.1.4.
Two-dimensional and three-dimensional turbulent velocity fields are investigated and compared
later in Section 6.1.
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2.2 Phenomenological description of flames

Combustion theory and phenomena in general considering several kinds of flames and fuels are
extensively discussed for example in [22, 59, 67, 76, 96, 100, 145, 150, 152].

2.2.1 Categories of flames

The most important criteria to classify flames in flow fields are:

• premixed and non-premixed flames,

• flames in laminar and turbulent flow fields,

• flames with high or low effects of compressibility,

• flames with slow and fast chemistry.

Premixed and non-premixed flames
Depending on whether fuel and oxidizer are already mixed before they enter the combustion
chamber or they are transported into the flame from opposite sides, flames can be divided into
two main classes: premixed flames (Section 2.2.2) and non-premixed flames (Section 2.2.3).

Laminar and turbulent flames
The above groups can be further divided into laminar and turbulent flames, depending on the
flow field. Turbulent flow fields were discussed in the previous section.
In most combustion equipments the flow in which combustion takes place is turbulent, but
laminar flames are studied in order to have a basis for a better understanding of turbulent
flames. For example numerically solving for laminar flames may be used to validate chemical
models. In many turbulent combustion models laminar flames are the elementary building
blocks of turbulent flames [95, 100]. Contrary to laminar flows, turbulent flows are character-
ized by fluctuations in velocity, which lead to fluctuations in density, temperature and mixture
composition and so to reaction rates. Transport processes and mixing are enhanced compared
to the laminar case.
According to [67, 150], compared to laminar flames the main features of turbulent flames are:

1. The flame surface is very complex and it is difficult to locate the various surfaces that are
used to characterize laminar flames.

2. For premixed flames the turbulent flame speed is much greater than the laminar one
because of the enhanced transport properties. It increases as the Reynolds number in-
creases.

3. The height of a turbulent jet flame is smaller than that of a laminar one for the same flow
rate and fuel to air ratio. It decreases as the turbulence intensity increases.
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4. The reaction zones of turbulent flames are thicker than the reaction zones of laminar
flames.

Compressible and incompressible flows
We can distinguish three kinds of flows. The first ones are incompressible flows with constant
density and constant pressure. Normally, reacting flows can not be considered as incompressible.
The second ones are fully compressible flows with variable density and variable pressure. In
the third ones the density is variable but independent of pressure, which means acoustic waves
are filtered out. This assumption is also called low Mach number approximation. A measure
for the compressibility is the Mach number, which is defined in the following manner:

Ma =
u

a
(2.5)

The Mach number Ma compares the flow speed u and the speed of sound a. The speed of sound
is the velocity at which disturbances of pressure spread. For low flame speeds and low Mach
numbers it is allowed to neglect the influence of acoustic waves.

Slow and fast chemistry
Turbulent combustion regimes can be further divided by considering the chemistry.

• Infinitely fast chemistry
Many chemical reactions take place so fast that the chemicals react to equilibrium as
soon as they mix (”mixed is burnt”) and the whole problem may be reduced to a mixing
problem. The flame structure is not affected by turbulent motion and is similar to that
of a laminar flame, wrinkled by turbulent motion. These regimes are called flamelets.

• Slow chemistry
If the time needed for chemical change is greater than the time needed for changes induced
by fluid motion, nearly all turbulent eddies are embedded in the reaction zone. It is not
possible any more to identify a clear flame front. This regime is called well-stirred reactor.
The overall reaction rate is controlled by the chemistry.

• Finite-rate chemistry
However, real chemistries typically have a wide range of timescales for different species.
Many problems like ignition processes and pollutant formation usually can not be de-
scribed only by slow or infinitely fast chemistry.

The dimensionless number used to distinguish between fast and slow chemistry is the Damköhler
number Da. Da is the ratio between a physical time-scale τphys and a chemical time-scale τc

associated with the combustion reaction:

Da =
τphys

τc

(2.6)
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As physical time-scale often the turbulent integral time scale T is used.
For values of Da>> 1 the chemical time scale is shorter than the turbulent one. This limit
defines the flamelet regime or fast chemistry.
For values of Da<< 1 the chemical time scale is larger than the turbulent one. This limit
defines the well stirred-reactor or slow chemistry.

2.2.2 Premixed flames

Scientific research of turbulent premixed flames began with the experimental and theoretical
investigations of Damköhler in 1940 [24]. Recent reviews especially on premixed flames can be
found for example in [11, 102].
A premixed flame can occur when the fuel and oxidizer are mixed together before ignition.
Mixing between fuel and oxidizer should be complete to the molecular level before combustion
takes place. Fresh and burnt gases are separated by a thin reaction zone (about 0.1-1 mm).
This zone, the flame front, has the ability to propagate towards the mixture of fresh gases. The
rate of propagation is the most important property of premixed flames, since it quantifies the
rate at which the flame can process reactants into products and hence describes the rate of heat
release. For a laminar premixed flame the propagation rate is usually specified in terms of the
laminar burning velocity Sℓ which is defined as the velocity of advance of the flame relative to
the reactants, in the direction locally normal to itself and towards the reactants. If the laminar
burning velocity Sℓ of the flat flame is smaller than the velocity of the unburnt gases the flame
normally blows off. The propagation speed Sℓ depends on the equivalence ratio of the mixture,
the temperature of the fresh gases and the pressure [22, 100, 145]. Different ways to define Sℓ

can be found in [100].
Premixed flames are very sensitive to changes in product temperature, and even moderate heat
losses from the products adjacent to the flame may cause rapid extinction [22].
The typical structure of a premixed flame is shown in Figure 2.3. Laminar premixed flames can
be divided into two zones, a preheat zone where gases are heated by conduction and a reaction
zone in which chemical enthalpy is converted into sensible enthalpy. Between burnt and fresh
gases a strong temperature gradient is observed (the temperature ratio is about 5-7). Because
of this gradient and the corresponding heat flux the fresh gases are preheated in the preheat
zone before entering the most intense reaction zone where they start to burn [145].
A premixed flame is called stoichiometric if fuel and oxidizer consume each other completely.
If there is an excess of fuel the system is called rich, if there is an excess of oxygen it is called
lean.
Eddies of different length scales influence an initially laminar flame in different ways: Suffi-
ciently large-scale eddies wrinkle the initially planar flame surface without significantly modi-
fying its internal structure. The wrinkling leads to an increase in flame surface area and hence
to faster propagation. The small-scale eddies primarily affect the local internal structure of the
flame and the transport processes inside the flame [11, 24]. These regimes were first identified
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Figure 2.3: Structure of a premixed flame

by Damköhler. Today they are distinguished by the Damköhler number Da, introduced in
Eq. (2.6).
In turbulent premixed flames the flame fronts propagate into a turbulent fluid flow with a
turbulent propagation speed St higher than the corresponding laminar one. The increase of
the turbulent flame speed St compared to the laminar flame speed Sℓ is mainly due to the
increase of the turbulent flame surface area Ft compared to a laminar one Fl through the effect
of wrinkling [24].

St

Sℓ
=

Ft

Fl
(2.7)

In some cases the turbulence may be strong enough to tear the flame sheet into pieces and
to cause local extinction of the flame. Global extinction is possible with sufficiently intense
turbulence.
An example for a laminar premixed flame is the flame of a Bunsen burner when the air intake is
open. Turbulent premixed flames can be found for example in spark ignited automotive engines.

2.2.3 Non-premixed flames

Reviews especially dealing with non-premixed flames can be found among others in [6, 8, 144].
In non-premixed flames, fuel and oxidizer are initially separated and are mixed during the
combustion process itself by convection and diffusion. Fuel and oxidizer diffuse towards the
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flame zone where chemical kinetics convert them into products with liberation of energy. The
product species and energy diffuse away from the flame zone into both fuel and oxidizer sides.
Far away on each side of the flame, the gas is either too rich or too lean to burn. Chemical
reactions can proceed only in a limited region, where fuel and oxidizer are mixed adequately.
The flame can not propagate into the fuel without oxidizer or into the oxidizer without fuel.
Thus, the flame front is fixed to the interface near the location of the stoichiometric composition
and where the temperature is highest. Because non-premixed flames do not propagate, they
can not be characterized directly by a propagation speed.
Non-premixed flames usually include more complex chemistry than premixed flames, because
the whole range from pure air to pure fuel is covered and there is a strong interaction between
mixing processes and chemistry. Non-premixed flames are safer to operate because they can
not propagate or flashback. However their burning efficiency is reduced because mixing reduces
the speed at which chemical reactions may proceed [100, 150].
The structure of a non-premixed flame is shown in Figure 2.4. The flame structure plotted

reaction zone diffusion zone

fuel oxidizer

heat release

temperature

diffusion zone

Figure 2.4: Structure of a non-premixed flame

in Figure 2.4 is steady only when strain is applied to the flame, i.e. when fuel and oxidizer
streams are pushed against each other at given speeds.
Because they do not propagate, non-premixed flames are unable to impose their own dynamics
on the flow field and are more sensitive to turbulence. Therefore, non-premixed flames are
more sensitive to stretch than turbulent premixed flames: critical stretch values for extinction
of non-premixed flames are one order of magnitude smaller than for premixed flames. Non-
premixed flames are also more likely to be quenched by turbulent fluctuations [100].
An example for a laminar non-premixed flame is the flame of a candle. Turbulent non-premixed
flames can be found for example in Diesel engines or in aircraft engines.
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2.3 Balance equations for turbulent reactive flows

The physical processes in turbulent reactive flows described above phenomenologically can
be described mathematically by a system of balance equations. This system consists of the
classical Navier-Stokes equations for non reacting flows, which are supplied for example in
[50, 91, 103, 113, 133]. As combustion involves multiple species reacting through multiple
chemical reactions, the system needs to be completed by a set of balance equations depending
on the species and reactions considered. The balance equations for turbulent multi-species
reacting flows are supplied for example in [67, 100, 145, 152]. In the following equations we use
the summation equation of Einstein for repeated indices.

Balance equation for mass
The balance equation for mass is written [100]:

∂ρ

∂t
+

∂(ρui)

∂xi
= 0 (2.8)

where ρ is the fluid mass density and ui is the ith component of the fluid velocity. This equation
is also well known as continuity equation.

Balance equation for momentum
The balance equation for momentum is written [100]:

∂(ρuj)

∂t
+

∂(ρuiuj)

∂xi
= − ∂p

∂xj
+

∂τij

∂xi
(2.9)

where p is the thermodynamic pressure, τij is the viscous tensor for Newtonian fluids. (In this
thesis, only Newtonian fluids are considered). The viscous tensor τij is then given by:

τij = µ
(∂ui

∂xj

+
∂uj

∂xi

)
+ (µD − 2

3
µ)

∂uk

∂xk

δij (2.10)

where µ is the dynamic viscosity (see Section 2.4), µD is the bulk viscosity and δij is the
Kronecker symbol. Often µD is neglected (according to the hypothesis of Stokes) and Eq. (2.10)
becomes:

τij = µ
(∂ui

∂xj
+

∂uj

∂xi

)
− 2

3
µ

∂uk

∂xk
δij (2.11)

The balance equations for momentum are also well known as Navier-Stokes-equations.

Balance equation for energy
There are several possibilities to formulate an equation for the energy or the enthalpy. Here
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the equation for the sensible enthalpy is written [100]:

∂(ρhs)

∂t
+

∂ρuihs

∂xi
= ω̇t +

Dp

Dt
+

∂

∂xi

(
λ

∂T

∂xi

)
− ∂

∂xi

(
ρ

NS∑

k=1

Vk,iYkhs,k

)
+ τij

∂ui

∂xj
(2.12)

where ω̇t is the heat release due to combustion, T is the temperature, λ is the thermal con-
ductivity (which is explained in the next paragraph), Vk,i is the diffusion velocity of species k
in direction i, Yk is the mass fraction of the species k in the total mass, hs,k is the sensible
enthalpy of species k and NS is the total number of chemical species. The mass fraction Yk of
a species k is defined:

Yk =
mk

mtot

(2.13)

where mk is the mass of species k present in a given volume and mtot is the total mass of gas
in this volume.
The sensible enthalpy of species k is defined:

hs,k =
∫ T

T0

cp,kdT (2.14)

Balance equation for species
In chemical reactions species are consumed and produced. Therefore, for each species a separate
balance equation with source term exists [100] and has to be added to the above system:

∂(ρYk)

∂t
+

∂(ρuiYk)

∂xi
= −∂(ρVk,iYk)

∂xi
+ ω̇k (2.15)

where ω̇k is the chemical rate of production of the species k.

By definition:
NS∑

k=1

YkVk,i = 0 and
NS∑

k=1

ω̇k = 0 and
NS∑

k=1

Yk = 1 (2.16)
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Relations to close the equation system
Obviously the above system is not closed. We need a relation between temperature, pressure
and local composition, which is given here by the ideal gas equation:

p = ρ
R

W
T (2.17)

where R=8 314 J mol−1K−1 is the perfect gas constant and W is the mean molar mass of the
mixture. W is given by:

1

W
=

NS∑

k=1

Yk

Wk
(2.18)

with Wk the molar mass of species k. Additionally the system contains unknown variables:

1. the dynamic viscosity µ

2. the thermal conductivity λ

3. the diffusion velocity Vk,i

4. the chemical source term ω̇

which need to be determined. Expressions for the first three variables are derived in Section 2.4.
The source term ω̇ is discussed in Section 2.5.

2.4 Molecular transport processes

In order to close the equation system of Section 2.3 relations for the transport processes for
momentum, for the heat flux and for the transport of species are necessary. Molecular transport
processes have in common that the corresponding physical properties are transported by the
movement of the molecules in the gas. First we consider transport coefficients for single species
gases, then we extend the results to mixtures. We follow now the explanations in [150]. For
the interested reader more detailed information on the kinetic theory of gases and transport
processes can be found in [10, 51].

Transport of momentum
The viscous tensor τij in Eq. (2.11) contains as unknown value the dynamic viscosity µ. Vis-
cosity quantifies the transport of momentum caused by velocity gradients. Momentum is trans-
ported from regions of high velocity to regions of low velocity. The flux of momentum is
proportional to the gradient of velocity.

jmv = −µ
∂u

∂x
(2.19)
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Dynamic viscosity µk of a species k
The viscosity µk of a pure species k can be estimated by the kinetic theory of gases:

µk =
5

16

√
πmkBT

πσ2
(2.20)

where m is the mass of the molecule, kB is the Boltzmann constant, T is the temperature in K
and σ is the diameter of the (spherical) molecule.

Dynamic viscosity µ of a mixture
For mixtures as in combustion systems with many different species, empirical approximations
are in use to calculate mixture-averaged values for µ, like:

µ =
1

2

[ NS∑

k=1

Xkµk + (
NS∑

k=1

Xk

µk
)−1

]
(2.21)

where Xk is the mole fraction of the species k.
When a higher accuracy is necessary the formula of Wilke (with the modification of Bird [10])
can be used [49]:

µ =
Ns∑

k=1

Xkµk
∑NS

j=1 XjΦkj

(2.22)

with

Φkj =
1√
8

(
1 +

Wk

Wj

)−1/2 ·
(

1 +
(µk

µj

)1/2(Wj

Wk

)1/4)2
(2.23)

Kinematic viscosity
In the previous section often the kinematic viscosity ν was used. The connection between the
dynamic viscosity µ and the kinematic viscosity ν is simply:

ν =
µ

ρ
(2.24)

Transport of heat
In Eq. (2.12) we have two terms of heat flux:

• the term −λ ∂T
∂xi

, which is caused by heat conduction;

• the term ρ
∑Ns

k=1 Vk,iYkhs,k, which is caused by the transport of enthalpies of different
species.
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In this thesis we neglect the radiative heat flux and the Dufour heat flux, which describes the
energy transport caused by concentration gradients.

Heat conduction is the transport of energy caused by temperature gradients.

jq = −λ
∂T

∂x
(2.25)

The heat flux occurs from a region of high temperature towards a region with lower temperature.
The coefficient λ is called thermal conductivity. Like the viscosity µ it depends on the square
root of the temperature and not on the pressure. Often a second quantity, the thermal diffusivity
α is used:

α = λ/(ρcp). (2.26)

Conductivity λk of a species k
The conductivity λk of a pure species k again can be estimated by the kinetic gas theory:

λk =
25

32

√
πmkT

πσ2

cv

m
(2.27)

where cv is the molecular heat capacity at constant volume.

Conductivity λ of a mixture
In combustion processes where the gas is composed of many different species, λ of the mixture
must be determined. The thermal conductivity of a mixture composed of NS species can be
calculated from the λk’s of the pure species in the following manner:

λ =
1

2

[ NS∑

k=1

Xkλk + (
Ns∑

k=1

Xk

λk
)−1

]
(2.28)

Transport of mass
The transport of mass caused by concentration gradients is called diffusion.

jm = −Dρ
∂c

∂x
(2.29)

The coefficient D is called diffusion coefficient.

Diffusion coefficient D of a species k
For a single species k the diffusion coefficient Dk can be calculated by:

Dk =
3

8

√
πmkT

πσ2

1

ρ
(2.30)
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Diffusion coefficient D in a mixture
In the most general case the diffusion velocities Vk of species k in Eqs. (2.12) and (2.15) are
obtained by solving the system [100, 152]:

∇Xk =
NS∑

l=1

XkXl

Dkl
(Vl − Vk) + (Yk − Xk)

∇p

p
+

ρ

p

NS∑

l=1

YkYl(fk − fl) +
NS∑

l=1

[
(
XkXl

ρDkl

)(
DT,l

Yl

− DT,k

Yk

)
]
(
∇T

T
); (k = 1, . . . , Ns) (2.31)

DT is the thermal diffusion coefficient.
Dkl is the multi-component mass diffusion coefficient of the species.
For most combustion processes the following assumptions are allowed:

• The flux due to pressure gradients may be important for high-speed or rotating gases,
but is negligible in most combustion processes.

• External body forces f may occur for example through electric fields. This term is negli-
gible, too, in most combustion processes. Gravity can be assumed to be the same for all
species.

• The temperature gradient drives light molecules towards hot regions and heavy molecules
towards cold regions of the flow. This effect is known as Soret effect. In many cases the
mass flux due to temperature gradients can be neglected. But for light species like H, H2

(as in hydrogen combustion) or for He it can be important [49].

Neglecting the last three terms Eq.(2.31) reduces to:

∇Xk =
NS∑

l=1

XkXl

Dkl

(Vl − Vk) (2.32)

which is known as Stefan-Maxwell equation [152].

Approximations for diffusion velocity and coefficients
The system in Eqs. (2.31) and (2.32) is of size N2

S and must be solved in each direction at each
point and at each instant for unsteady flows. Mathematically this task is difficult and costly.
Therefore, approximations are often used.
The diffusion matrix D = (Dkl) can be expanded in terms of convergent series. These series
then yield approximate expressions for the transport coefficients. Different levels of approxima-
tion of the transport coefficients can be found depending on the order at which the expansion
of the diffusion matrix is truncated. In what follows we give a short summery of the methods of
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approximation. The interested reader can find detailed information and discussion for example
in [49].

First-order-approximation
The first two terms in the convergent series mentioned above are kept. This leads to the most
accurate expression of the diffusion coefficients. Cross-diffusion, Soret effect and Dufour effect
are accounted for.

Zeroth-order-approximation
This approximation is also known as Hirschfelder-Curtiss approximation. The diffusion coeffi-
cient for species k in the mixture, D∗

k, is calculated as:

D∗
k = (1 − Yk) ·

(
W

NS∑

l=1,l 6=k

Yl

WlDkl

)−1
(2.33)

Here Dkl is the binary mass diffusion coefficient, depending on species pair properties, pressure
and temperature. In the diffusion matrix only diagonal terms are accounted for. Cross-diffusion,
Soret effect and Dufour effect are not considered. This approximation is equivalent to an ap-
proximation where only the first term of the series expansion is kept.

Fick’s law
The diffusion velocity of species k into the mixture is determined by:

YkVk = −Dk∇Yk (2.34)

where Dk is the diffusion coefficient of species k into the mixture.

Constant Lewis number approach
First we have to introduce the Lewis number.
The laws of transport of momentum in Eq. (2.19), of transport of heat in Eq. (2.25) and of
transport of mass in Eq. (2.29) are very similar. The dimensions of the diffusivity of momentum
ν, of the thermal diffusivity α and of the diffusivity of mass D are the same: m2 s−1. Therefore,
dimensionless numbers can be defined as the ratios made from different combinations of these
diffusivities.
The Lewis number of species k is defined as the ratio between thermal diffusivity of the mixture
and the mass diffusivity of the species:

Lek =
λ

ρcpDk
=

α

Dk
(2.35)

The Lewis number Lek compares the diffusion speeds of heat and of species k. Lek is a local
quantity but, in most cases, it changes little from one point of the flame to another [100]. A
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simple and attractive approach to express the diffusion coefficient Dk is to suppose that the
Lewis number is constant for each individual species. The diffusion coefficient of species k in
the mixture can then be expressed by:

Dk =
λ

ρcpLek

(2.36)

This means that the knowledge of the value of the heat diffusion coefficient is sufficient to
express the diffusion coefficients for all species. Different diffusion velocities of different species
can be accounted for. The accuracy of this approximation depends on the configuration.

Unity Lewis number approach
Going one step more is the assumption that all Lewis numbers are constant and equal to one.
This means that for all species the diffusion coefficient is the same as the heat coefficient and
therefore different diffusion velocities of different species can not be considered. The unity Lewis
number approach is very useful for analytical developments. It is often a poor approximation,
in particular for hydrogen combustion.

Impact of diffusion models
The importance of an accurate description of the diffusion processes is demonstrated for exam-
ple in [47, 48]. In [48] a turbulent non-premixed H2/ air flame was simulated twice using two
different modeling levels for the diffusion velocities. Results for a zeroth-order approximation
and for a unity Lewis number approximation are compared. Significant differences are shown
for the flame temperature, for the heat release and for the scalar dissipation rate concerning
peak values as well as distribution. In [47] a constant Lewis number approach is considered ad-
ditionally. For example the flame structure is symmetric in the case of the unity Lewis number
approach but when taking into account different diffusion velocities the flame structure is not
symmetric any more.

In Section 6.4 we determine the dimension of a low-dimensional manifold of a non-premixed
hydrogen/nitrogen/air flame twice, using either a zeroth-order approximation or a unity Lewis
number approximation. For the detailed model we need one dimension more compared to the
simplified model in order to reach the same accuracy. The first results were published in [156].

2.5 Reaction kinetics

The most important term in combustion research is the source term ω̇k in the balance equation
for species Eq. (2.15). In the case where chemical reactions are fast compared to the transport
processes systems can be described by thermodynamics alone. But, in practice, the chemical
reactions occur mostly on timescales comparable with that of the molecular transport processes.
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Then, information is needed about the rates of chemical reactions to find expressions for the
chemical source terms ω̇k [150].

Reaction rates and rate coefficients
The reaction rate may be expressed in terms of the concentration of the reactants. The rate
of reaction depends on the conditions of the system, on the concentrations of the chemical
compounds, temperature, pressure, presence of a catalyst or inhibitor [67].
For a reaction:

A + B...
k−→ D + E... (2.37)

the reaction rate for the consumption of species A is:

d[A]

dt
= −k[A]a[B]b... (2.38)

where a, b... are the reaction orders and k is the rate coefficient.
The rate coefficients strongly depend on the temperature according to an Arrhenius law which
states: only molecules that possess an energy greater than the activation energy Ea will react
and lead to products, following

k = AT β exp(− Ea

RT
) (2.39)

where the pre-exponential factor A represents the collision frequency and the exponential term
represents the fraction of collisions that have high enough energy to react. Ea is the activation
energy, R the perfect gas constant and T the temperature.

Chemical reaction system
A complete chemical system consists of NS species reacting through Nr reversible or irreversible
elementary reactions. Each reversible elementary reaction can be written in the form:

NS∑

k=1

ν ′
k,jAk ⇀↽

NS∑

k=1

ν ′′
k,jAk (j = 1...Nr) (2.40)

where Ak denotes species k and νk,j are the stoichiometric coefficients of species k in reaction j.
The rate law for the molar formation rate wj of the jth reaction is given by:

wj = kf,j

NS∏

k=1

C
ν′

k,j

k − kb,j

NS∏

k=1

C
ν′′

k,j

k (2.41)

where Ck is the molar concentration of species k. kf and kb are the rate coefficients for the
forward and backward reactions and are calculated by an Arrhenius law according to Eq. (2.39).
For a mechanism consisting of a set of Nr reactions of NS species the rate of formation of a
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species is given by summation over the rate equations of all elementary reactions. Now the
mass reaction rate ω̇k, the source term in the balance equation for species, is given by:

ω̇k = Wk

Nr∑

j=1

νkjwj (2.42)

with Wk the molar mass of species k. In chemical reactions the total mass must be conserved.
This is expressed by:

NS∑

k=1

ω̇k = 0 (2.43)

Therefore, all species, reactions and values of the Arrhenius parameters must be determined
before computations can be carried out [49]. In the ideal case for each species involved in the
combustion process a separate balance equation has to be solved. In many cases the complete
reaction mechanisms consist of dozens of species leading to several hundreds of elementary re-
actions. This leads for example to consider roughly 10 species and 40 reactions for hydrogen
combustion, or over 40 species and over 100 reactions for methane combustion [150]. Inves-
tigating such a system by a complete mechanism is very demanding in computing time and
memory. In many cases, it is even impossible. Therefore, it is necessary to simplify the system.
Corresponding methods are explained below. In this thesis reaction mechanisms and their sim-
plification of gases like H2, synthetic gas or methane are investigated. Reaction mechanisms
and rate determining mechanisms for the combustion of coal particles are described for example
in [125, 126].

2.6 Simplification of reaction mechanisms

Depending on the question of interest many reactions can sometimes be neglected in order
to reduce the mechanism. A good description of the most common methods to analyze and
simplify reaction schemes is given for example in [49, 67, 150]. In the sequel the most important
ones are explained.

2.6.1 Reduction based on chemistry

Quasi steady-state approximation
The quasi steady state approximation is a simplification applied to the description of interme-
diates. Some intermediates are very reactive and therefore have a negligibly short lifetime. The
rate of consumption of these intermediates is assumed to be approximately equal to the rate of
formation and it can thus be written:

d[Cr]

dt
∼ 0 (2.44)
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where [Cr] is the concentration of a very reactive intermediate species. These radicals can thus
be removed from the complete scheme and the scheme gets simplified.

Partial equilibrium
For high temperatures the reaction rates of forward and backward reactions of some interme-
diates are so fast that one obtains partial equilibrium for these reactions. In the equilibrium
case forward and backward reaction rates are equal and the system may be simplified again
by removing the corresponding intermediate radicals and expressing their concentrations in
terms of the concentrations of the stable species. A drawback of this method is that partial
equilibrium only occurs at relatively high temperature levels (above about 1600 K).

Sensitivity analysis
Using this method, the rate limiting reaction steps are identified in the following manner: the
parameters (for example the rate coefficients kj) of the system are changed slightly. Then, it is
investigated how does the solution, that means the final concentrations, change.
If the change of the parameters kj has little or no effect on the concentrations, quasi-steady
state or partial equilibrium can be assumed. Reactions in which the change of the rate coeffi-
cients has large influence on the solution are the important rate-determining and limiting steps.
The dependence of the concentrations on the parameters is called sensitivity.

2.6.2 Reduction based on invariant manifolds

The reduced mechanisms mentioned above normally are devised for certain conditions of tem-
perature and mixture compositions and provide poor approximations outside these conditions.
Using manifold methods, in contrast to conventional reduced mechanisms, no information is
required concerning which reactions have to be assumed to be in partial equilibrium, nor which
species are assumed to be in steady-state.
The idea of low-dimensional manifolds is the following: The thermo-chemical state of a homoge-
neous reacting system can be described by a (n=NS+2)-dimensional vector Y = (Y1, Y2, .., YNS

),
representing the mass fractions of NS chemical species and two thermodynamic quantities as
pressure and enthalpy. The system of governing equations for purely reacting flows can then
be symbolically written [18]:

∂Y

∂t
= F (Y ) Y ⊂ Rn (2.45)

where F is the chemical source term, representing the reaction mechanism. From a mathemati-
cal point of few, a model reduction based on a manifold is a reformulation process of Eq. (2.45)
in an appropriate form by introducing a reduced space θ=(θ1,...,θm), m < n consisting of a new
variable set, such that the solution of Eq. (2.45) will be accurately described by the reduced
model:

∂θ

∂t
= F̃ (θ) θ ∈ Rm (2.46)
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In order to reduce the system one needs to determine the relation between these spaces. The
reduced space can be represented in an explicit form:

M =
{
Y = Y (θ) θ ∈ Rm

}
(2.47)

by a low-dimensional manifold M embedded in the detailed system (2.45). Then, the system
(2.45) can be projected onto the manifold, which means a transformation of the system to the
new coordinates [18].
In [44, 83, 104, 107] several methods reducing chemistry via slow manifolds are discussed. In
the following sections we introduce some specific manifold techniques considered in the rest of
this work.

Intrinsic Low-Dimensional Manifolds - ILDM
The method of Intrinsic Low-dimensional Manifolds (ILDM) was introduced by Maas [79,
80, 81]: Chemical reaction corresponds to a movement along a trajectory in the (NS+2)-
dimensional state space spanned by the enthalpy h, the pressure p and the NS species mass
fractions. Starting from different initial conditions, the reactive system evolves until it reaches

Figure 2.5: Trajectories in a system of methane oxidation in CO2 - H2O plane [150]

the equilibrium point. Figure 2.5 shows an example of such trajectories for a stoichiometric
CH4-air system in the CO2 - H2O plane.
The underlying governing processes occur at time scales that differ by orders of magnitude.
The timescales of chemical reactions cover a much wider range than the time scales of physical
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transport processes. The very fast timescales in chemical kinetics are usually responsible for
equilibrium processes and they can be decoupled. From the system of NS +2 equations an
attractive subspace is then determined by looking at the eigenvalues and eigenvectors of the
Jacobian matrix of the system of equations and by neglecting and cutting off fast timescales
smaller than a given time limit. The inverse of the eigenvalue represents the corresponding
chemical time scale. The complicated curves or surfaces in the state space can thus be re-
duced to simple ones. Depending on the cut off time scale, one, two or more coordinates of
this state space are enough to accurately reproduce the kinetic properties of the full reactive
system [79, 80, 81, 150]. Figure 2.6 shows a one-dimensional manifold obtained by neglecting
the fastest time scales, (in this example the first 50 µs) in the above system. The number of

Figure 2.6: One-dimensional manifold [150]

the coordinates of the manifold corresponds to the minimum number of species m that need
to be transported in order to describe with a sufficient accuracy the full reactive system. All
other species, thermodynamic properties and reaction rates are obtained from a look-up table.
Calculating the chemical rates of change directly would be much more time consuming [81].
After tabulating the resulting manifold, it becomes possible to use particle- (PDF) methods to
model the chemical reactions in a turbulent flow.

Drawbacks of ILDM
In the general case of non-homogeneous systems the system of governing equations for arbitrary
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reacting flows can then be written [16, 17]:

∂Y

∂t
= F (Y ) − v.∇Y − 1

ρ
div(D∇Y ) (2.48)

where v is the flow velocity and D is the diffusion matrix. The first term is related to the
chemical source term (as before) and the second and third ones describe transport processes,
convection and diffusion, respectively.
This means that there are two limiting cases: The first limiting case is a purely homogeneous
system where the system dynamics are governed by the source term and chemical kinetics
only. The second limiting case is a system without chemical source term, which is governed by
convection and diffusion processes only. Originally, ILDM is designed for purely homogeneous
systems where it gives good approximations. However there are two problems concerning the
second case: The first is the low temperature zone, where the source term is negligible. The
second is the coupling of some chemical modes with fast physical ones, which disturb the system
from the low dimensional manifold. This means that a manifold which is defined on the basis of
reaction processes only, cannot describe directly the coupling between reaction and transport
processes [16]. Methods to overcome these problems are discussed below.

Low temperature regions
As highly reduced ILDM manifolds cut off the fastest time scales, phenomena associated with
these timescales, as the low temperature regions, can not be reproduced correctly. Treating
the low temperature regions of a flame by increasing the number of dimensions of the manifold
would increase computation time and memory requirements immensely. Therefore, one needs
somehow to extend the ILDM manifold in these regions.
One solution to the problem is to model the manifold for the low temperature zone by the results
of computations of a collection of one-dimensional freely propagating laminar (premixed) flames
obtained with detailed reaction schemes. As a whole, this leads to a pre-tabulation of all species
values and their thermodynamic coefficients as a function of a small number of coordinates (two
to three), based on the data of a collection of laminar premixed flames. This database is then
used instead of the classical ILDM manifold. There are two similar independently developed
methods to do so: flame prolongation of ILDM (FPI) [40] and the flamelet-generated manifold
method (FGM) [143].
In the original FPI method the first coordinate YZ is based on the mixture fraction and re-
produces the local mixture between fuel and oxidizer whereas the second one is based on the
reaction progress variable Yc and represents the progress of reaction [40]. A third variable based
on the enthalpy h can be added in order to reproduce enthalpy variations or heat losses [32].
FPI can also consider non-premixed and partially premixed flames [33]. An advantage of using
FPI is, that a relative coarse grid step is possible, since only the coordinates of the look-up table
have to be resolved on the computational grid. All other species will be deduced from these co-
ordinates and do not directly lead to specific requirements for the grid resolution [134, 139, 140].
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Coupling between reaction and transport processes
One method for treating transport and diffusion processes relies on reaction-diffusion manifolds
(REDIM). REDIM implements a relaxation process that is governed by an equation system
of strongly coupled chemical and transport processes, Eq. (2.48). Then, it is supposed that
for Eq. (2.48) there is again a reduced space θ and a reduced model, as in Eq. (2.46), and a
manifold M , as in Eq. (2.47) determining the reduced system dynamics as well. Then, the
system in Eq. (2.48) is projected onto the new manifold. Now both reaction and diffusion in-
fluence the reduced model behavior through the manifold’s structure. An initial solution of the
approximate manifold is constructed using the extended ILDM method. The REDIM-Method
is detailed in [16].
While FPI and FGM are based on physical considerations, the REDIM method, similar to
ILDM, is based on a rigorous mathematical approach and is therefore independent of the flame
topology.

2.6.3 Dimension of manifolds

Most manifold methods are either working only for a certain dimension of the manifold or they
expect that the user already knows the required dimension. We have developed in this work a
method to determine the appropriate dimension of a low-dimensional manifold for reaching a
defined level of accuracy. This method is described in [156].
The DNS simulations deliver, at each spatial and temporal point, a state vector Y as described
in Section 2.6.2, which contains, besides other variables (for example temperature) the species
mass fractions

Yk (k = 1, 2, ..., NS) (2.49)

as its components. With an appropriate species numbering scheme, the index k can simply run
over numbers, k = 1, . . . , NS, where NS is the number of chemical species. To ascertain how
well the DNS-data can be described by low-dimensional manifolds, the following procedure was
taken:
For a selected data point (state vector Y ) from the DNS data matrix, a set of N nearest
neighbor points was determined, based on the distance to this point in state space, similar to
the method used by Maas and Thévenin [82]. The distance between two points a = (Yk,a) and
b = (Yk,b) was determined as

da,b =

√√√√
NS∑

k=1

(
Yk,a − Yk,b

wk

)2

, (2.50)

where the wk > 0 are scaling factors; the significance of these will be studied later.
The N nearest neighbors form a small ”cloud” of points in state space; note that they need
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Figure 2.7: Clouds of nearest neighbors

not be close in geometrical space, i.e., points in a state-space neighborhood can stem from very
different locations in the turbulent flame. Figure 2.7 shows some clouds of nearest neighbors
in the N2-H2-OH-space.
Alternatively, instead of considering species mass fractions only it is also possible to consider
temperature as an additional state vector component when searching for nearest neighbors.
A third method to find clouds of nearest neighbors is not to define a certain number of neighbors
but to define a prescribed radius (in state space) of the clouds.
In the next step it is checked how well this cloud can be approximated by a linear subspace of
a given dimension.
In all cases first the data points in the cloud are centered by subtracting the cloud mean from
each species, and then divided by the weights wk. This results in a centered and scaled version
(xk,l) of the data in the cloud:

xk,l =
Yk,l − Y k

wk
(k = 1, . . . , NS, l = 1, . . . , N) (2.51)

where Y k = 1
N

∑N
m=1 Yk,m is the cloud mean of the k-th species.

The representability of the (xk,l) by low-dimensional linear subspaces is assessed by a singular
value decomposition (SVD) [43]. The SVD decomposes the NS − by − N matrix (xk,l) into
the product of two orthonormal matrices u and v and a diagonal matrix σ with non negative
components according to

(xk,l) = (uk,j)(σk,l)(vl,m)T (k, j = 1, . . . , NS , l, m = 1, . . . , N) (2.52)

The entries (σk,k ≥ 0, k = 1, . . . , ns) along the diagonal, called singular values, are decreasing.
The columns of u are mutually orthonormal; they form a basis of the composition space, which
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can be used alternatively to the conventional species basis. The matrix q obtained from the
matrix product of σ and vT , qk,l ≡ (σk,l)(vl,m)T can then be interpreted as coordinates of the
data points, expressed in the basis formed by the columns of uk,j:

xk,l = uk,1q1,l + uk,2q2,l + . . . + uk,NS
qNS ,l (k = 1, . . . , NS) (2.53)

The significance of the SVD is, loosely speaking, that the new basis defined by u is, among all
possible orthonormal bases of composition space, the one that is ”optimally aligned” with the
trend of the data in the local neighborhood. The first basis vector in u points in the direction
in state space of maximum variance, so that the first contribution uk,1q1,l conveys most of the
information about the data in x, while the second term uk,2q2,l contains more information than
the third, and so on.
By truncating (2.53) after the first term, the best (in a least squares sense) one-dimensional

linear approximation (x
(1)
k,l ) of xk,l can be obtained:

xk,l ≈ (x
(1)
k,l ) = uk,1q1,l (k = 1, . . . , NS) (2.54)

Including more terms from (2.53), yields increasingly better approximations of successively
higher dimension d ≤ NS:

xk,l ≈ (x
(d)
k,l ) = uk,1q1,l + . . . + uk,dqd,l (k = 1, . . . , NS) , (2.55)

until at d = NS, the data in x are reproduced exactly.
The reconstructed mass fractions can be obtained from the d-dimensional reconstruction x

(d)
k,l

via
Y

(d)
k,l = Y k + x

(d)
k,l wk

Note that there is the degenerate case of d = 0, with

Y
(0)
k,l = Y k

where the whole cloud is approximated by one single point, the cloud mean.
For illustration, Figure 2.8 shows on the left a set of artificially generated data points, two
center points (red +), the local neighborhood for each point (marked with red o), and the
corresponding singular vectors describing the local neighborhood. Note how, for both clouds,
the first basis vectors u(:, 1) align with the local trend of the data, and provide locally one-
dimensional linear representations of the small neighborhoods. However, a one-dimensional
linear structure could not globally represent the nonlinear dataset well. The right figure shows
a detail from the leftmost cloud. Even though the data points reside in 2D-space, they can
locally be approximated by a one-dimensional linear structure (broken line, spanned by the first
vector, u(:, 1)). The projected points (reconstruction based on one dimension) are depicted as
black stars.
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The dimension d is then varied, and the deviation ∆
(d)
k,l = |xk,l−x

(d)
k,l | between the d-dimensional

approximation and the original data is determined for all points in the cloud.
To obtain a simple overall measure of the deviation between original and low-dimensional
reconstruction for each species, two quantities were considered. First, the sum of the deviations
over all points,

∑N
l=1 |xk,l −x

(d)
k,l | was normalized by that sum for reconstruction with dimension

0, leading to

δ
(d)
k =

∑N
l=1 |xk,l − x

(d)
k,l |

∑N
l=1 |xk,l − x

(0)
k,l |

(2.56)

as a cloud-global, normalized deviation measure for species k. Note that the δ
(d)
k are independent

of the cloud size (extent in state space).
Additionally, the correlation coefficient between original and reconstructed values has been
computed for each species as well:

N
∑

xk,lx
(d)
k,l −

∑
xk,l

∑
x

(d)
k,l√(

N
∑

x2
k,l −

(∑
xk,l

)2
)(

N
∑

(x
(d)
k,l )

2 −
(∑

x
(d)
k,l

)2
) , (2.57)

where the summation again is over index l (the points in the clouds). We first calculate the
correlation coefficients for each cloud and then we determine the mean value of all correlation
coefficients.
This analysis is repeated for about 3000 to 4000 locations (cloud centers) scattered throughout
state space, and information about the approximation quality of linear subspaces of various
dimension is obtained. The procedure relies on the notion of a distance in composition space.
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Since some species mass fractions are typically very small (minor radicals), they hardly con-
tribute to the distance between two given points, which is therefore determined almost entirely
by the major species. This imparity causes a statistical bias towards the major species in the
method, first, for neighborhood selection, and then also for the SVD analysis. This can be
mitigated by adjusting the scaling weights wk in Eq.(2.50). Two cases were studied:

• The weights wk were set to one for all species, i.e., the original mass fractions were used.

• The weights were set to the difference between maximum and minimum of each species in
the DNS dataset: wk = maxk(Yk,l)−mink(Yk,l). This removes the imparity in magnitude
of minor and major species mass fractions. All species then occupy the whole interval
[0,1].

The Matlab tools to determine in this way manifolds dimension are introduced in Section 5.2.7.
In Section 6.4 we investigate the resulting dimensions of a diluted hydrogen air flame.
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Chapter 3

Simulating and modeling turbulent
flames

The complicated system of coupled nonlinear differential equations given in Section 2.3 is not
solvable by analytical methods in general. Therefore, the system has to be solved by numerical
methods. According to different requirements in research and practice in the industry there
are different strategies to do so, in particular:

• Direct numerical simulation (DNS),

• Reynolds-Averaged-Navier-Stokes-Methods (RANS),

• Large-Eddy-Simulations (LES),

• Probability-density-function (PDF) Methods.

The advantage of one is the drawback of the others and vice versa. In this chapter the different
concepts are introduced and advantages and drawbacks are compared. Further discussions can
be found among others in [31, 103] for non reacting flows, and in [34, 100] for reacting flows.
In Section 3.1 principles and limitations of direct numerical simulations are introduced. Meth-
ods to reduce computational costs are explained. The huge amount of data produced by direct
numerical simulations and the necessity of post-processing DNS results carefully is demon-
strated. In Section 3.2 RANS-methods, averaged balance equations and models to close the
unknown terms are introduced. Section 3.3 deals with Large-Eddy-simulations and Section 3.4
with PDF-methods. In this short chapter, only aspects relevant for the present study are
discussed.
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3.1 Direct numerical simulation (DNS)

3.1.1 Principles and limitations of DNS

Concept
The concept of DNS for non reacting flows is extensively discussed for example in [14, 88] and
for reacting flows in [4]. In direct numerical simulations the full instantaneous Navier-Stokes
equations are solved. All scales of motion from the largest turbulent eddies which are in the
order of the macro-scale to the smallest scales, where dissipation takes place, the micro-scale
of Kolmogorov, lk, are resolved without any turbulence model. Therefore, the computational
domain must be at least a few times as large as the integral scale and on the other hand the
cell size of the grid must not be larger than the micro-scale of Kolmogorov. However, according
to Moin and Mahesh [88] this criterion is too stringent and it is enough to resolve scales in the
order of magnitude of lk.

Limitations
The Kolmogorov scale can be estimated in terms of the macro-scale and the turbulent Reynolds
number: L

lk
≃Re

3/4
t . This means that for one direction the number of nodes N grows propor-

tionally to Re
3/4
t [20, 21]:

N ∝ Re3/4 (3.1)

which limits the possible Reynolds number in a DNS. Since turbulence is three-dimensional this
number of points must be employed in each direction, which leads to a total of N ∝Re9/4. Ad-
ditionally with increasing Reynolds numbers the characteristic timescale decreases with Re−1/2.
Thus, on the whole the expend of simulation increases proportionally to Re

11/4
t [14, 20, 21].

In a reactive case the inner flame structure has to be resolved additionally by at least Q = 10
grid points [20, 21]. Considering a premixed flame in term of the flame thickness δ, the size
of the computational domain Ld is then given by Ld ≃ (N

Q
)δ. The condition that the integral

length scale L must be smaller than the domain size Ld leads to the inequality:

L

δ
<

Ld

δ
<

N

Q
(3.2)

With the Damköhler number Da= T
τc

, where T = L
u′

and τc = δ
Sℓ

and δ ≃ ν
Sℓ

, the product of
the Reynolds by the Damköhler number is:

ReDa =
L2Sℓ

νδ
=
(L

δ

)2
(3.3)

leading to the computational grid condition for a premixed flame [20, 100]:

ReDa <
(N

Q

)2
(3.4)
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Thus, DNS for turbulent reacting flows is limited to low Reynolds and low Damköhler num-
bers and laboratory conditions. For example for a two dimensional domain with a number of
grid points of 1000 × 1000 = 106, one would have Re < 104 for resolving all turbulent scales.
When resolving the flame front by 10 cells the product ReDa is (1000/10)2 = 104. To reach
a Damköhler number of 10 it will be necessary to limit the Reynolds number to 1000 [20, 21].
A Reynolds number of 1000 seems small but in scientific computations the Reynolds number
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Figure 3.1: Limitations of DNS for non-premixed flames [21]

is usually built using the macro-scale and not the dimensions of the device, like in industrial
cases. Macro-scale-based Reynolds numbers are typically 10 to 100 times smaller than the
diameter-based Reynolds number for the same conditions [100].
For non-premixed flames the condition associated with a correct resolution of the reactive layer
is even more stringent [20, 21]. Figure 3.1 shows the Damköhler- and Reynolds number limita-
tions in a combustion diagram.
Since in direct numerical simulations the solution depends on the initial conditions, it is nec-
essary to repeat the computations and to average it. This means that the needed computing
time is increasing immensely. Working with parallel super computers seems the only possible
solution to investigate more complicated problems at acceptable costs [136, 138].

Boundary conditions
The choice of initial and boundary conditions introduces additional difficulties because the
classical Dirichlet and von Neumann conditions do not work for compressible DNS. Another
technique, called Navier-Stokes Characteristic Boundary conditions (NSCBC) is generally used
for compressible simulations. These boundary conditions are out of scope of this work. For the
interested reader they are explained in [5, 99, 137].
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Discretization
The conservation equations of Section 2.3 are very complex and difficult to solve, because they
are non linear and normally fully coupled. In most cases they can not be solved analytically
and numerical methods are necessary. This means that the differential equations must be
approximated by a system of algebraic equations which can be solved by a computer. The
approximations are applied to small domains in space and time. Thus the numerical solution
provides results at many discrete locations in space and time [31]. The most important dis-
cretization approaches are the finite difference, the finite volume, the finite element and spectral
methods.
The accuracy of the solution depends on the quality of the discretization. We need a scheme
with very high accuracy, low dissipation, and low numerical diffusion. As explained for example
in [31] upwind methods are dissipative. That means, they naturally include a diffusive term
that will dissipate energy in a time dependent calculation. When these methods are used in
DNS, the dissipation produced is often much greater than that due to physical viscosity and the
results obtained often have little connection with the physics of the problem. Therefore, due to
precision requirements, direct numerical simulation techniques often use centered schemes for
spatial derivatives and provide only a very small amount of numerical damping. The behavior
in time must be modeled as accurately as the behavior in space, which means we need very
small time steps. The discretization errors in space and time should be as equal as possible.
Therefore, for the integration in time high precision methods are required, too. For large time
steps explicit methods can get instable [31, 91]. But the small time steps necessary in our case
lie within the stable range. Compared to implicit methods, explicit formulations are easy to
parallelize, need relative low memory storage and have easy access to high-order discretization,
so that they will be used in this work [138].
For the interested reader more about discretization methods in space and time can be found
for instance in [14, 31]. The code used to conduct the DNS calculations post-processed in this
thesis is called Parcomb. The original version is described in [136, 138]. Parcomb uses sixth-
order central derivatives in space and a fourth order fully explicit Runge-Kutta integration in
time. Many additions and new developments have been implemented in Parcomb during the
last fifteen years [36].

3.1.2 Classical simplifications to reduce computational costs

In order to get acceptable computational costs simplifications are often necessary to reduce the
complexity. This is especially true for 3D-simulations. Classical methods used to reduce the
computational costs are:
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Methods to reduce the physical complexity

• by considering incompressible flows:
In this simplification the density is considered as constant and independent of pressure
and temperature. Flame-induced flow modifications due to heat release can not be taken
into account, which is a major limit.

• by using a low Mach number approximation
Like in the incompressible case, flame acoustic/interactions are not captured and the
density is independent of pressure. But the density may still change due to temperature
variations, for example because of heat release. For most applications of interest, such as
for example furnaces and boilers, but also inside the combustion chambers for automo-
tive or aeronautical/aerospace applications, the maximum Mach number is generally quite
small, at least in the region where combustion takes place. It is then unnecessary and
inefficient to employ a fully compressible formulation to investigate numerically such con-
figurations. The low Mach number approximation allows an important speedup, since the
stability restrictions associated in particular with the Courant-Friedrichs-Lewy condition
are practically released [134, 140]. Moreover, the equations are considerably simplified
since several viscous terms become negligible, in particular in the energy equation [139].

• by considering chemical reactions without heat release.

Methods to reduce the space dimensions
As mentioned above the grid size is mostly determined by the number of cells within the flame
front. Thus, flame fronts with a thickness of 0.1 mm require mesh sizes of the order of microns.
For example, a DNS simulation of a three-dimensional turbulent flame at atmospheric pressure
typically requires at least 1 to 2 million grid points for a computational box corresponding to
a physical size of 5 × 5× 5 mm3 [100]. One way to simplify the problem is to perform reacting
flow simulations in two dimensions. Of course all three-dimensional effects of real turbulence
get lost. This approximation is generally not suitable for non reacting flows because turbulent
fluctuations are intrinsically three-dimensional.
For premixed combustion, however, some direct simulations show that the probability of finding
locally cylindrical 2D flame sheets is higher than the probability of finding 3D spheroidal flame
surfaces. Two-dimensional flames appear more probable even though the flow field ahead of
these flames is fully three-dimensional. Considering the prohibitive costs of three-dimensional
reacting flow computations, two-dimensional simulations remain quite valuable, in particular
for systematic studies.

Methods reducing the chemical schemes
As explained in Section 2.6 chemistry is the most complex and expensive part of the simu-
lation. In order to reach realistic simulation times reduction techniques are often used. The
most important techniques leading to a reduced mechanism were explained in Section 2.6. For
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example, combining the low-Mach number approach and the chemistry reduction using FPI
leads to a typical speed-up of two orders of magnitude compared to a fully compressible formu-
lation employing complete reaction schemes [21, 135]. Thanks to this considerable acceleration,
three-dimensional DNS become feasible for computational costs comparable to those of present
two-dimensional compressible direct simulations with detailed chemistry.

3.1.3 Advantages and drawbacks

Advantages
When DNS can be applied it is the simplest method with the highest level of accuracy and de-
scription. As no models for turbulence and combustion are required all effects can be simulated
where other methods fail, like ignition and extinction or flame-turbulence interaction.
The flow field obtained can be seen as the result of a ”numerical experiment”. Often, the DNS
data are even resolved better than in any experiment. Some data like for example high-order
correlations can be determined far more accurately by DNS than in an experiment. Addition-
ally, experiments often are even more cost and time intensive than simulation by DNS.
The DNS results contain very detailed information about the flow and its variables of interest
like for example velocity. With this information the flow can be analyzed quite exactly: A
physical understanding of the flow becomes possible. The information obtained by DNS can
then be used to model similar flows or the results can be used to improve existing or to vali-
date new RANS-models, subgrid scale models for LES or methods to reduce chemical reaction
schemes.

Drawbacks
One major problem of DNS is how to handle and store all these data in a reasonable manner.
The costs of DNS are extremely high and computing time and computer requirements increase
immensely with increasing Reynolds numbers. Thus, DNS is limited to low Re numbers and to
laboratory conditions. On the whole the cost of DNS increases proportionally to Re11/4 [14, 21],
as explained previously.
The statistical evaluation of all the data obtained by DNS takes a lot of time, too. Normally
DNS is too expensive to be used as a design tool.
For combustion simulations, where chemical reactions take place and a balance equation for
each species has to be considered additionally, the computing time increases even more. For ex-
ample, describing chemistry with 9 species and 37 reactions in a field of homogeneous isotropic
turbulence, the supplementary costs of the chemistry part amount to about 70 % of the total
computational costs [21].
Therefore, DNS is mainly a research tool, but a very interesting one. Now, the main question
remains: how can we extract as much information as possible from a DNS?
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3.1.4 Example for a 2D-direct numerical simulation of a partially
premixed flame

As already mentioned a lot of data is produced by DNS. In fact the main problem is how to
handle and store all these data in a reasonable manner. This detailed information about the
flow- and species field and all variables of interest like for example velocity, temperature, heat
release or concentrations need to be post-processed. In order to extract as much useful data
as possible from the raw variables the commercial program Matlab is used in the present
work. The most important post-processed variables are introduced in Chapter 4. The post-
processing procedure and the post-processing tools, which have been developed during this
work are explained in detail in Chapter 5. Here, we give a first impression about the extent of
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Figure 3.2: Flame front defined as crestline of H2O2 (black stars); in the background, isolevels
of vorticity magnitude

the produced data and the necessity to handle and post-process them carefully.
For example for simulating an initially partially premixed H2/O2 flame using a detailed chemical
scheme of nine species in a domain of 1 cm by 1 cm and 401 grid points in each direction, we
obtain an array of 401 × 401 data points for each species mass fraction for each time output.
The same is true for all further quantities like velocities, temperature, pressure, heat release,
density, vorticity and quantities derived from them like curvature or strain rate, the flame
index, the reaction progress variable or the mixture fraction. . . . Figure 3.2 shows the flame
front on top of the vorticity field. The flame front is here identified by the crestline of the
radical H2O2 (crestline is explained in Section 5.2.2). Variables of interest like temperature,
strain rate or curvature can be extracted along the flame front. Examples for the extraction of
those variables are given in Figures 3.3 to 3.5. These extracted quantities play an important
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Figure 3.5: Strain rate
along flame front defined
as crestline of H2O2, see
Figure 3.2

role in combustion modeling, as discussed in more details later.

3.1.5 Example for a 3D-direct numerical simulation of a premixed

flame

Even if we use the FPI method, allowing a relative coarse grid the amount of produced data
is much higher for a three dimensional simulation than for a two dimensional simulation. For
example for simulating a fully premixed methane/air flame in a domain of 6.5 mm by 6.5 mm
by 6.5 mm and 119 grid points in each direction we obtain a cube of more than one and a
half million data points. Considering the cube as a batch of two-dimensional slices we obtain
119 arrays of 119 by 119 data points. This is true for the FPI coordinates and species mass
fractions deduced from the database as well as for all quantities like velocities, temperature,
pressure, heat release, density, vorticity and quantities derived from them like reaction progress
variables or strain rate. . . . Figure 3.6 shows slices of the species CO2 through the domain.
In this example the flame front is defined by the isolevel 0.03 of the mass fraction of the species
CO2. Figure 3.7 shows the isosurface of the flame front defined in this manner. Extracting
variables along the flame front we obtain information at more than 20 000 points for each
variable. It is not an easy task to handle all this information for a single variable and it
becomes even more difficult when we are interested for example in correlations between two
extracted variables. Figure 3.8 shows the normal strain rate extracted along the flame front.
In order to handle the information obtained in several thousands of points it is appropriate to
arrange the data in an histogram. Figure 3.9 shows the histogram of the strain rate extracted
along the flame front surface. If we want to define our flame front between two boundaries
of course the task becomes even more complicated. At some point, it becomes impossible to
analyze the corresponding data with simple methods, and advanced tools must be developed
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Figure 3.6: Slices of CO2 mass
fraction through the domain

Figure 3.7: Flame front de-
fined by the isolevel 0.03 of
CO2 mass fraction

Figure 3.8: Normal strain rate
along flame front defined by
the isolevel 0.03 of CO2

−6000 −4000 −2000 0 2000 4000
0

500

1000

1500

2000

2500

3000

3500

fr
eq

ue
nc

y

strain rate [1/s]

Figure 3.9: Histogram of nor-
mal strain rate extracted along
the above flame front, see Fig-
ure 3.7

62



for this purpose as described in Chapter 5.

3.2 Reynolds-Averaged Navier-Stokes-methods (RANS)

3.2.1 Concept

Unfortunately, for real technical processes with high Reynolds numbers or more complex ge-
ometries the quantity of data obtained by DNS is too big and computational time is too long.
On the other side engineers are often only interested in the mean values of the turbulent quan-
tities but not in the time-dependent fluctuations or higher order moments.
The concept of RANS-methods is to do the statistics first and to average out the unsteadiness.
According to the proposal of Osborne Reynolds [109] every variable in the Navier-Stokes equa-
tions in Section 2.3 can be written as the sum of a mean value and fluctuations about that mean
value. Then, the averaged Navier-Stokes equations are solved for the mean flow field. The new
conservation equations, however, contain new terms which can not be represented as functions
of the mean quantities, which means that the system of equations is not closed any more. The
new unknown correlation terms that describe the influence of the turbulent fluctuations on the
mean flow field and on the flame need to be modeled. Detailed information about associated
turbulent combustion modeling can be found for example in [34, 59, 100, 145].
In non-reacting and incompressible flows the density can be considered as constant and den-
sity fluctuations can be neglected. Then, classically ensemble-averaged equations according to
Reynolds are used for mass and momentum. But in reacting turbulent systems, there are large
fluctuations of density because of volume expansion and heat release. Density changes can not
be neglected. In order to limit the number of unknown correlations that need to be modeled
the density-weighted averaging method introduced by Favre [30] is preferred.

3.2.2 System of averaged balance equations

Every value is now decomposed into:
φ = φ̃ + φ′′ (3.5)

with

φ̃ =
ρφ

ρ̄
and ρφ′′ = 0 (3.6)

The mean value of a density averaged fluctuation vanishes. The Favre averaged Navier-Stokes
equations are written [100]:

Balance equation for Mass

∂

∂t
(ρ̄) +

∂(ρ̄ũi)

∂xi

= 0 (3.7)
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Balance equation for Momentum

∂

∂t
(ρ̄ũi) +

∂

∂xi
(ρ̄ũiũj) = − ∂p̄

∂xj
+

∂

∂xi
(τ̄ij − ρ̄ũ′′

i u
′′
j ) (3.8)

Balance equation for Enthalpy

∂(ρ̄h̃s)

∂t
+

∂(ρ̄ũih̃s)

∂xi

= ω̇T +
Dp

Dt
+

∂

∂xi

(
λ

∂T

∂xi

− ρu′′
i h

′′
s

)
+ τij

∂ui

∂xj

− ∂

∂xi

(
ρ

NS∑

k=1

Vk,iYkhs,k

)
(3.9)

Balance equation for Species mass fractions

∂(ρ̄Ỹk)

∂t
+

∂

∂xi
(ρ̄ũiỸk) = − ∂

∂xi

(
ρVk,iYk + ρ̄ ˜u′′

i Y
′′
k

)
+ ω̇k (3.10)

In the above equations new unknown terms occur:

• ρ̄ũ′′
i u

′′
j is the Reynolds stress tensor,

• ρ̄ ˜u′′
i Y

′′
k is the turbulent species transport,

• and ω̇k is the mean reaction rate.

These terms need to be modeled.

3.2.3 Closure of unknown terms

Turbulence Closure
The first new term is the Reynolds stress tensor ρ̄ũ′′

i u
′′
j in the momentum equation Eq. (3.8). It

is possible to formulate transport equations for this term. But these equations now contain new
unknown triple-correlations like ρ̄ ˜u′′

i u
′′
ju

′′
k. An equation describing the triple-correlations would

produce fourth-order correlations and so on. This is the closure problem of RANS modeling.
Therefore, one has to break up the formulation of equations and to model the unknown values.
Reviews on modeling strategies for the Reynolds stress tensor are given for example in [110, 127].
Some well-known models are among others:

• Prandtl mixing length model [105],

• Prandtl-model [106],

• k-ǫ model [57],

• second order closures [58, 68].
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Turbulent species transport models
For isotropic turbulence the transport term ρ̄ ˜u′′

i Y
′′
k is traditionally described by a gradient eddy

viscosity model [21, 34, 145]. Information concerning an extension to non-isotropic turbulence
can be found in [34].

Reaction rate models
The mean reaction rate is significantly affected by turbulent fluctuations, especially fluctua-
tions in temperature. As shown in Eq. (2.39) the rates of chemical reactions have a strong
dependence on temperature. It is well known that in turbulent cases ¯̇ω 6= ω̇(Ỹ , T̃ ). Both sides
of this equation can differ by orders of magnitude. Therefore, it is the main difficulty and one
of the most important challenges in combustion modeling to find good models for the source
term ¯̇ωk. Several models are reviewed in detail for example in [145]. Some well-known models
are among others:

• The Eddy-Break-Up (EBU) model for premixed combustion [121, 122],

• The Magnussen model for non-premixed combustion [84],

• Flamelet modeling [95, 96],

• Bray-Moss-Libby Model [13],

• Flame surface density models [129],

• Conditional moment closures [61].

3.2.4 Advantages and Drawbacks

Advantages
In engineering and industrial applications it is important to minimize time and costs, which is
the main advantage of the RANS-models compared to the other methods. Because the com-
puter requirements are not so high, RANS modeling could start earlier and there are more
years of experience compared to LES and DNS. RANS models, especially the k-ε-model family
are included into commercial codes and they are easily usable.

Drawbacks
Because all scales must be modeled and the large scales are very sensitive to boundary and
initial conditions it is nearly impossible to find universal models that are valid for several sit-
uations and geometries. The models contain empirical constants that can not be optimized
for several different flows at the same time. RANS models can not describe instantaneous
processes, rotation or strong curvature of, e.g., flame surfaces.
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3.3 Large Eddy Simulation (LES)

3.3.1 Concept

LES is a compromise between DNS and RANS-models. The larger eddies at the beginning of
the energy cascade contain most of the energy, contain also the information about initial and
boundary conditions, are three-dimensional and unsteady and are responsible for the main part
of the turbulent transport. All this information can be described exactly by DNS but nearly
gets lost in statistical methods. On the other hand, at the end of the energy cascade the smaller
eddies are much weaker concerning turbulent kinetic energy and transport. At small scale, the
flow field itself can be considered to be nearly isotropic and it is easier to find an adequate
model for it. Therefore, it makes sense to distinguish between a large scale and a fine scale
field, to describe the large eddies exactly and to model only the effects of the smaller ones by
so called subgrid scale models (Figure 3.10). Ideally the field of the large eddies should contain
about 80 % of the turbulent kinetic energy. To separate the large scales from the small ones,

resolved in LES

resolved in DNS / modeled in RANS

−1
leslog l log k

log E(k)

k−5/3

modeled
in LES

Figure 3.10: Classical energy spectrum for a homogeneous and isotropic turbulent flow

following the proposal of Leonard [72], a filtering operation is introduced, which also leads to
unknown terms that need to be modeled.
Concept of and progress in Large Eddy Simulations are reviewed for example in [75, 98, 112].
The theory, filter methods and subgrid scale models is extensively exposed for example in the
textbooks [14, 115] for non-reacting, incompressible flows. Large eddy simulations in compress-
ible flows are discussed in [28]. Finally, special information concerning reacting flows can be
found for example in [100, 145].
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3.3.2 Advantages and drawbacks

Advantages
The first advantage of LES compared to RANS-modeling is that the large scales in which the
large-scale mixing between fuel and oxidizer occurs are simulated directly and are not averaged.
Mixing plays an important role in combustion. Secondly, because the small scales are modeled,
the LES method is not limited to such low Reynolds numbers like DNS. The small scales can be
described by less complicated and more universal models than those used in RANS-modeling
where the whole spectrum must be described. Therefore, LES is a good method when DNS
is too expensive because the Reynolds number is too high and when a statistical model is not
accurate enough or even fails. Cases where LES can be used will increase with increasing com-
puter capacity.

Drawbacks
Even if LES is not as expensive as DNS it still takes a lot of computer time and costs. One
problem of LES is to handle initial and boundary conditions, particularly near walls and to
take into account the backscatter effect. Methods to describe reactive flows are still under
development.

3.4 Probability-density function methods (PDF)

3.4.1 Concept

The key problem in combustion modeling is to find a closure for the chemical source term in
the species balance equation. Modeling of the chemical source term can be avoided by the use
of probability density function (PDF) methods. PDF methods combine an exact treatment of
chemical reactions with a closure for the turbulence field. Two types of PDF approaches can
be distinguished: The transported PDF method of Pope [101] and the presumed PDF method.
In the first one for each species a balance equation is resolved for the velocity-composition PDF
wherein the chemical source term appears in closed form. The shape of the PDF may evolve
freely. The one-point joint velocity composition PDFs describe the velocity components, chem-
ical species and scalars exactly. When the velocity-composition-probability-density-function in
a point is known, all statistics in that point are known.
A description of transported PDF methods can be found for example in [34, 101].
In the presumed PDF methods the shape of the PDF is given by a mathematical function
defined by the first couple of moments. Typically, Gaussian or β-functions are in use. That is
justified because in many cases the chemical source term is relatively insensitive to the shape
of the PDF.
Unfortunately it is very hard to define an assumed PDF that describes the statistical distribu-
tion of all source term variables. The greatest problems arise from the coupling of temperature
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and gas composition. Therefore, at the present state statistical independence of temperature
and gas composition is usually assumed [37, 39], though it is questionable. A description of
presumed PDF methods can be found for example in [38].

3.4.2 Advantages and drawbacks

The main advantage of the transported PDF method is that there is no a priori assumption
concerning the shape of the PDF. Moreover it does not suffer from assumptions of statistical
independence of temperature and species mass fractions. It is more accurate in general but
it requires substantially more computational resources and time compared to the presumed
PDF method. In principle all source terms of all species can be treated if the complete chem-
ical scheme is known. But in practice, in many cases for example for hydrocarbon flames the
scheme must be reduced because of computer requirements. Because of their efficiency com-
pared to the full PDF methods the presumed PDF methods are often preferred in practical
applications.

Before describing the post-processing library developed during this thesis, it is now necessary,
as a last step, to explain all quantities of interest and their importance.
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Chapter 4

Post-processed scales and quantities

In Sections 2.1 and 2.2 a phenomenological description of turbulence and flames was given. In
this chapter we introduce the corresponding quantitative scales that can be calculated by the
post-processing toolbox. In Section 4.1 we explain scales calculated in the turbulence part of
the toolbox. Section 4.2 deals with scales calculated in the combustion part of the toolbox.
Quantities describing probability are important for combustion modeling. These quantities are
introduced in Section 4.3 and can be determined by the statistical part of the toolbox.

4.1 Scales and quantities characterizing turbulence

Scales calculated in the turbulence part of the toolbox are based on velocity components be-
cause in turbulent flow fields velocity is the most important item. In Sections 4.1.1 and 4.1.2 we
explain scales derived from one-point and from two-point statistics. In Section 4.1.3 we intro-
duce scales concerning the energy cascade. Section 4.1.4 deals with two-dimensional turbulence.
Finally in Section 4.1.5 a table summarizes the quantities calculated in the turbulence part of
the toolbox, while the corresponding Matlab tools are introduced later in Section 5.2.4.

4.1.1 Quantities derived from one-point statistics

According to the proposal of Reynolds [109], in turbulent flows quantities are decomposed in
mean (or average) values of the quantity and deviations (or fluctuations) around those mean
values. In one-point statistics mean values, fluctuations and moments at a single fixed point
are considered.

• Mean value
Depending on the system of interest, different averages (in space, in time, over different
realizations) must be computed. They are explained in Appendix A.
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• Fluctuations
The fluctuations u′

i of the velocity component ui are defined by:

u′
i = ui − ui (4.1)

By definition the mean value of the fluctuations is u′
i=0. Therefore u′

i is not a useful value
to measure turbulence. More convenient quantities to describe turbulence is the variance,
which measures the dispersion around the mean value in a distribution or the standard
deviation, which measures the absolute value of the mean fluctuations.

• Variance

u′2
i = σ2 = V ar(ui) =

∫ ∞

−∞
(ui − ui)

2 · f(ui)dui (4.2)

The square-root of the variance Var(ui) is called standard deviation urms.

urms =
√

u′2
i (4.3)

Often the standard deviation is the preferred quantity because it has the same dimension
as the original value.

• Turbulent kinetic energy
The variance can be used to quantify the turbulent kinetic energy k, which we know from
the energy cascade:

k =
1

2
u′

iu
′
i (4.4)

• Vorticity
A further important quantity in turbulent flow fields is the vorticity ω which is defined
as the curl or rotation of the velocity field.

ω = ∇× u =

( ∂
∂x1

∂
∂x2

∂
∂x3

)
×
( u1

u2

u3

)
(4.5)

Sometimes in the literature vorticity is defined as half the rotation of the velocity field.
In this work and in the toolbox the factor 1

2
is not used.

4.1.2 Quantities derived from two-point statistics

In turbulent flow fields, influence and relations between fluctuations in neighboring points or
at different instants of time are of great importance. Therefore, it is necessary to extend the
consideration to several velocity components at several local points and several instants. In
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statistics this dependence is described and measured by correlations. If the local or temporal
distance between two local or temporal points is smaller than the size or the lifetime of the
largest turbulent eddies there is a dependence or correlation between the velocity components
in the two points. The correlation is different from zero. For greater distances the correlation
gets lost. Correlations between velocity components as a quantity to describe turbulence were
first introduced by Taylor [130]. Based upon these correlations von Kármán introduced corre-
lation tensors [147].
Two-point correlations give information how the fluctuations in neighboring points are related.
From such velocity correlations integral scales and the micro-scales of Taylor can be determined.

Correlation functions in a general flow field
Definitions of correlation functions are given for example in [50, 113].

• General correlation function
In the most general case the correlation function for fluctuations in different directions
u′

i, u′
j, at two different local points x1, x2, and different time instants, t1, t2, is defined as:

Rij(x1, t1, x2, t2) = u′
i(x1, t1)u′

j(x2, t2) (4.6)

• Spatial correlation function
If the flow field is homogeneous according to space, and the averages are taken with
respect to space, we do not have to consider the dependence on time. For t2 =t1 =t the
spatial correlation function at the instant t is defined:

Rij(x1, x2, t) = u′
i(x1, t)u′

j(x2, t) (4.7)

• Auto correlation function
When fluctuations in the same direction are considered ui = uj the correlations are called
auto correlation:

Rii(x1, t1, x2, t2) = u′
i(x1, t1)u′

i(x2, t2) (4.8)

• Correlation coefficients
Correlation functions can be normalized by standard deviations (here we consider spatial
correlation functions):

ρij(x1, x2, t) =
Rij(x1, x2, t)√

u′2
i (x1, t)

√
u′2

j (x2, t)
(4.9)

The quantities u′
i and u′

j being components of two vectors, von Kármán argued that the quan-
tities Rij and ρij are components of a tensor and introduced the concept of correlation tensors
[147]. Rij and ρij are second order tensors with 9 components u′

i(x1)u′
j(x2) for 3D turbulence
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Figure 4.1: Correlation between velocity components in two points in general case

and four components for 2D turbulence. Figure 4.1 illustrates an example for a two point
correlation tensor. This means that depending on location and direction there are several pos-
sibilities to define correlation tensors.

Correlation functions in homogeneous isotropic turbulence
When the flow field is homogeneous and isotropic the problem can be simplified and the cor-
relation tensor can be described by only two special types of correlation. Due to the condition
of continuity (see Section 2.3) there is a relation between the two correlations and the tensor
is completely determined by only one scalar function [148].
We follow the explanations of [2, 50, 113]. In homogeneous turbulence the correlation tensor is
independent of location and only a function of the distance vector r:

Rij(r) = u′
i(x)u′

j(x + r) (4.10)

According to the definition of isotropy, any relation between turbulence quantities must be
invariant under rotation of the coordinate system and under reflection with respect to the
coordinate planes. This means for the correlation tensor:

• Rij(r) = u′
i(x)u′

j(x + r) = 0 for i 6= j,

• and from the remaining three correlations u′
i(x)u′

i(x + r) two must be the same.

• The root mean square of the velocity fluctuations is the same for all directions:√
u′2

i =
√

u′2
j =

√
u′2 = urms.

In isotropic turbulence including spherical and reflectional symmetry a second-order-two-point
tensor has the following form:

Rij(r) = F (r)rirj + G(r)δij (4.11)
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Figure 4.2: Longitudinal and transverse velocity correlation

where F and G are arbitrary scalar functions of r2. The interested reader can find the deriva-
tion in [2, 50, 113].

Longitudinal and transversal correlations
It is found convenient, for example in connection with experimental work, to introduce an
alternative pair of scalar functions f(r) and g(r) defined by:

f(r) =
u′

p(x)u′
p(x + r)

√
u′2

p

√
u′2

p

, g(r) =
u′

n(x)u′
n(x + r)√

u′2
n

√
u′2

n

(4.12)

where up and un denote velocity components parallel and normal respectively to the vector sep-
aration r (Figure 4.2) [2]. That is, f(r) is the longitudinal auto correlation coefficient and g(r)
is the transverse auto correlation coefficient for two points of distance r apart in any direction.

Integral- or Macro-scales in isotropic Turbulence
From the two correlation coefficients f(r) and g(r), integral lengths scales can be defined [113]:

Lf =

∞∫

0

f(r)dr (4.13)

and

Lg =

∞∫

0

g(r)dr (4.14)

73



where Lf is the longitudinal and Lg is the transverse or lateral integral scale. The relation
between Lf and Lg is:

Lg =
1

2
Lf (4.15)

Micro-scales of Taylor
The second pair of length scales which can be obtained from f(r) and g(r) are the longitudinal
and lateral micro-scales of Taylor:

1

λ2
f

= −1

2

[∂2f

∂r2

]
r=0

(4.16)

1

λ2
g

= −1

2

[∂2g

∂r2

]
r=0

(4.17)

Considering velocity components parallel to the coordinate axes we can write for the longitu-
dinal micro-scale [103]:

(∂u′
1

∂x1

)2
=

2u′2

λ2
f

(4.18)

and for the lateral micro-scale [103]:

(∂u′
1

∂x2

)2
=

2u′2

λ2
g

(4.19)

The relation between λf and λg is:

λf = λg

√
2 (4.20)

4.1.3 Quantities characterizing the energy cascade

The energy cascade in wave number space
In Section 2.1 a phenomenological description of the energy exchange between eddies of different
sizes in the energy cascade was given. But this picture did not give us any information about
the way eddies of different sizes exchange energy with each other. A way to overcome this lack
of information is to consider spectra instead. The value of the spectrum at a given wavenumber
is the mean energy in that wave. Spectra are decompositions of a function (for example the
turbulent kinetic energy) into waves of different specific wavelengths. They can be obtained by
Fourier transforms of velocity correlations of the corresponding eddies. Here, we only introduce
the spectrum tensor Φij and the wave-number κ. For homogeneous turbulence the spectrum
tensor Φij and the correlation tensor Rij from Eq. (4.10) form the following Fourier transform
pair:

Φij(κ) =
1

(2π)3

∞∫

−∞

∞∫

−∞

∞∫

−∞

e−iκrRij(r)dr (4.21)
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and

Rij(r) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

Φij(κ)eiκrdκ (4.22)

where r is the physical variable and κ is the Fourier variable or wavenumber. The wavenumber
has the dimension 1/length. For the interested reader these Fourier transforms are derived in
Appendix C.
The distribution of the turbulent kinetic energy on the different length scales and their corre-
sponding wave-numbers is given by the energy spectrum (see Figure 4.3): E(κ) is large at low

k−5/3

−1log lDIlog l EI log k

log E(k)

Dissipation
range

Energy 
containing
range

Inertial subrange

−1

Figure 4.3: The energy spectrum, L−1
EI is the wavenumber at the beginning of the inertial

subrange and l−1
DI the wavenumber at the end of the inertial subrange.

wavenumbers (large eddies) and low at high wavenumbers (small eddies). The area under the
curve E(κ) over κ represents the turbulent kinetic energy. There is a range of wavenumbers,
where the spectrum decreases as κ−5/3. This slope is a characteristic feature of the energy
spectrum and takes place in the inertial subrange introduced in the Kolmogorov hypotheses in
Section 2.1. At high wavenumbers, in the dissipation range, viscous effects become important
and the spectrum decays rapidly [22, 103].
In the inertial subrange the spectrum function is:

E(κ) = Cε2/3κ−5/3 (4.23)

where C is the Kolmogorov constant.
This is the famous κ−5/3 law introduced by Kolmogorov [62] and independently derived by
von Weizsäcker [149].
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The dissipation rate ε
The turbulent kinetic energy k = 1

2
u′

iu
′
i decays if there is no continuous external energy supply

for example through shear at the beginning of the cascade to compensate the dissipation at the
end. The rate of dissipation of energy in a fluid at any instant depends only on the viscosity,
ν, and on the instantaneous distribution of the velocity [131]. The general expression for the
rate of dissipation is:

ε = ν
(
2
(∂u′

1

∂x1

)2
+ 2(

∂u′
2

∂x2
)2 + 2(

∂u′
3

∂x3
)2

+(
∂u′

2

∂x1
+

∂u′
1

∂x2
)2 + (

∂u′
3

∂x2
+

∂u′
2

∂x3
)2 + (

∂u′
1

∂x3
+

∂u′
3

∂x1
)2
)

(4.24)

For isotropic turbulence several simplifications are possible and the dissipation rate can be
expressed as follows [131]:

ε = 15ν
(∂u′

1

∂x1

)2
= 7.5ν

(∂u′
1

∂x2

)2
(4.25)

for 3-dimensional turbulence.

Micro-scales of Kolmogorov
In his theses Kolmogorov introduced length and time scales based only on ν and ε by dimen-
sional analysis.

• Time scale:

tk =
(ν

ε

) 1

2 (4.26)

• Length scale:

lk =
(ν3

ε

) 1

4 (4.27)

4.1.4 Scales of 2-dimensional turbulence

Enstrophy
As mentioned in Section 2.1 there is no vortex stretching in 2D-turbulence. This means we
have to introduce a new quantity, the enstrophy D, in order to describe the specific vorticity
behavior. The enstrophy D is calculated from the vorticity ω defined in Eq. (4.5) in the fol-
lowing manner [73, 74]:

D =
1

2
ω2 (4.28)

In two-dimensional turbulence enstrophy is conserved in addition to the turbulent kinetic en-
ergy, while in three-dimensional turbulence enstrophy is not conserved. Now two kinds of
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inertial transfer similarity ranges, energy transfer and vorticity (or enstrophy) transfer ranges,
exist.
Kolmogorov’s energy spectrum Eq. ( 4.23) is valid in two dimensions as well as in three:

E(κ) = Cε2/3κ−5/3 (4.29)

The alternate assumption in two dimensions is that the enstrophy spectrum depends on only
η and κ and yields [64, 65, 73]:

E(κ) = C ′η2/3κ−3 (4.30)

where η is the enstrophy dissipation rate.
The energy and enstrophy cascades in 2D-turbulence are discussed controversially in the lit-
erature. According to the classical papers [3, 64, 70] in 2D-turbulence the energy cascade is
downward in wavenumber and the vorticity cascade is upward in wavenumber. These transfers
are mutually exclusive. The energy spectrum can not transfer enstrophy and the enstrophy
spectrum can not transfer energy.
However, according to for example [41, 42] there are double cascades of energy and enstrophy
both in upscale and downscale directions.

Dissipation rate
For 2D velocity fields Eq, (4.24) for the dissipation rate becomes [146]:

ε = 2ν
((∂u′

1

∂x1

)2
+
(∂u′

1

∂x2

)2)
= 8ν

(∂u′
1

∂x1

)2
(4.31)

Scales
In 2D velocity fields the scale relations differ from 3D velocity-fields in the following manner:
Equation (4.15) becomes [146]:

 Lg = 0 (4.32)

Equation (4.20) becomes [146]:
λf = λg

√
3 (4.33)

In Section 6.1, 2D and 3D velocity fields are compared and differences are shown.
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4.1.5 Table of available turbulent quantities and corresponding tools
to post-process them

The following table summarizes the quantities of the turbulent flow field that are calculated or
visualized in the post-processing toolbox and the corresponding post-processing tools. These
tools are later demonstrated in Section 5.2.4.

quantity tool
2D-velocity field streamlines2

quivplot2
streamsliceplot2

3D-velocity field streamlines3
quivplot3
coneplot3
streamsliceplot3
streamslicebatch

2D-velocity fluctuations and
std’s

ekinturb2

3D-velocity fluctuations and
std’s

ekinturb3

2D-auto correlation functions corrfunctline
along lines /columns corrfunctcol
3D-auto correlation functions corrfunctionall3all

corrfunctall3allcol
2D-Integral-length-scale corrfunctline

corrfunctcol
spectrum2d

3D-Integral-length-scale corrfunctionall3all
corrfunctionall3allcol
spectrum3d

2D-turbulent kinetic energy ekinturb2,
spectrum2d

2D-slope of kinetic energy slope2
2D-enstrophy enstrophy
slope of enstrophy slope2enst
3D-turbulent kinetic energy ekinturb3,

spectrum3d
3D-slope of kinetic energy slope3
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2D-vorticity vort2dord2
vort2dord4
vort2dord6
vort2dord6pb

3D-vorticity vort3dord2
vort3dord4
vort3dord6

2D-dissipation rate dissip2dord2
dissip2dord4
dissip2dord6

3D-dissipation rate dissip3dord2
dissip3dord4
dissip3dord6

Taylor scales taylor2
taylor3

Kolmogorov scales kolmogorov2
kolmogorov3

spatial LES filter lesfilter3d

Table 4.1: Tools calculating and visualizing quantities of the turbulent flow field

4.2 Scales and quantities describing flames

In Section 4.2.1 we introduce common and general quantities used to characterize flames and
turbulent combustion. Sections 4.2.2 and 4.2.3 deal with items in order to describe premixed
and non-premixed flames, respectively. Finally, in Section 4.2.4 a table summarizes the quan-
tities calculated in the toolbox, while the corresponding Matlab tools are introduced later in
Sections 5.2.2, 5.2.3 and 5.2.5.

4.2.1 Common quantities for all flames

The flame index
The dimensionless number to distinguish premixed and non-premixed flames or regions of flames
is the flame index [141, 153]:

fi = ∇YFuel · ∇YOxidizer (4.34)

where YFuel and YOxidizer are the mass fractions of Fuel and Oxidizer, respectively. For pos-
itive flame indices the flame is of a premixed type and for negative indices the flame is of a
non-premixed type. The absolute value increases as the supplying rate of fuel and oxygen by
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molecular diffusion increases [153]. The Matlab tool to determine the flame index is intro-
duced in Section 5.2.3.

Flame front
When analyzing combustion processes the first question is, what is the flame and where is the
flame? To define and locate the flame in the flow field and to define the flame front is not an
easy task since there is no unified definition in the literature to define it. The most common
possibilities to define the flame front are:

• as user-defined isolevel of the mixture fraction (see Eqs. (4.52),(4.54)),

• as user-defined isolevel of the reaction progress variable (see Eqs. (4.42),(4.43)),

• as user-defined isolevel of an arbitrary variable,

• as crestline of a variable.

The Matlab tools to identify the flame front are introduced in Section 5.2.2.

Quantities influenced by turbulence
Turbulence does not only increase transport processes and reaction rates. Through turbulence
the geometrical shape of the flame is influenced and may change significantly. For example
flames get stretched, that means strained and curved, an effect which can lead to quenching,
partial or even total extinction of a flame.
Therefore, we have to consider the geometrical parameters carefully. The most important
geometrical quantities are:

• flame length,

• surface area,

• normals to the flame front,

• flame thickness,

• flame strain,

• flame curvature,

• flame stretch.

Flame length and surface area
We need to calculate the flame surface area and its rate of change when we investigate flame
stretch. The Matlab tools to calculate flame length and surface area are introduced in Sec-
tion 5.2.2.
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Flame normal
The unit vector normal to the flame front n is defined by the gradient of the flame surface Θf :

n = − ∇Θf

|∇Θf |
(4.35)

where n points by convention into the fresh gases for premixed flames [100] and into the oxidizer
side for non-premixed flames. We need normal vectors because for example:

• The curvature along a flame is expressed in terms of normals and their rate of change.

• Normal vectors are used to define the direction of linear cuts in order to explore the flame
structure or the flame thickness.
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Figure 4.4: Local normals to flame front of a premixed flame pointing by convention toward
fresh gases

The Matlab tools to compute normal vectors are introduced in Section 5.2.2.

Flame thickness
Defining and estimating a flame thickness is an obvious requirement for many numerical com-
bustion problems because this thickness controls the required mesh resolution [100]. There are
several possibilities to define the flame thickness:
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• by user-defined boundaries
In the most general case the flame thickness can be defined as real flame extension along
user-defined cuts between user-defined boundaries.

• thermal flame thickness
The thermal thickness δ0

L is obtained by using the temperature profile:

δ0
L =

Tb − Tu

max(|∂T
∂x
|) (4.36)

where Tb and Tu are the burnt and the unburnt gas temperature. Since it measures
temperature gradients it is usually considered as the most appropriate thickness [100].

A specific definition to determine the thickness of premixed flames is given in Section 4.2.2.
The corresponding Matlab-tools to determine the different flame thicknesses are introduced
in Section 5.2.2.

Flame stretch
Flame stretch was introduced by Karlovitz et al. as the specific rate at which the flame surface
area is locally increased by turbulent motions [60]. Flame stretch is discussed, for example, in
[11, 19, 100, 152]. For our definitions we follow the explanations of [19, 100]. The flame stretch
κ is defined by the fractional rate of change of a flame surface element A:

κ =
1

A

dA

dt
(4.37)

Strain rate
Flames have the tendency to become instable in regions of high velocity gradients. This insta-
bility can lead to local or even global extinction. The strain rate can be used as a parameter to
describe the departure from stable burning conditions. Therefore, it is important to investigate
the strain rate carefully.
The important role of strain effects due to turbulence is shown for example in [23, 114]. Along
the flame front, the strain rate can be separated into tangential and normal components.
The tangential component is:

at = tt : ∇u = titj
∂ui

∂xj
(4.38)

The normal component is:

an = nn : ∇u = ninj
∂ui

∂xj
(4.39)

where n and t are the unit normal and tangential vectors to the flame front and u is the velocity
of the flow field. For a 3D flame the tangential part consists of two orthogonal vectors defining a
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p

mn

flame front

Figure 4.5: Schematic representation of an element of flame surface

tangential plane to the flame. In Figure 4.5 m and p are the two orthonormal vectors belonging
to the local tangent plane of the flame. In this thesis we define the tangential strain rate in 3D
as sum of the two parts in the tangential plane following [19, 100]:

at = (mm + pp) : ∇u (4.40)

The tools to calculate the strain rate are introduced in Section 5.2.5.

Curvature
The role of curvature effects, in particular due to turbulence, is demonstrated for example in
[23, 55, 114]. As mentioned above curvature is expressed by the normal vector and its rate of
change. The term ∇ · n is the curvature of the flame front and is linked to the flame surface
radii of curvature R1 and R2 by:

∇ · n = −
( 1

R1

+
1

R2

)
(4.41)

where 1
R1

= k1 and 1
R2

= k2 measure the highest surface curvature and the surface curvature
in the perpendicular direction, respectively.
Often the following definitions are in use (see for example [71]):

• 1
R1

= k1 and 1
R2

= k2 are called main or principal curvatures.

• H = 1
2
(k1 + k2) is defined as mean curvature

• K = 1
R1R2

is defined as Gaussian curvature.
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• Following [114] the shape factor S is defined as the smallest principal curvature divided
by the largest curvature.

S =





k1

k2

if |k1| ≤ |k2|

k2

k1
otherwise

where

S =





-1 means the flame has a local saddle point
0 means the flame is cylindrically curved
1 means the flame is spherically curved

How to calculate the different kinds of curvature is derived in Appendix B. By convention, a
curvature is positive when the flame surface is convex toward the fresh gases. The correspond-
ing Matlab-tools to calculate the different curvatures and the shape factor are introduced in
Section 5.2.5.
An important reason for calculating flame curvature in 3D is that three-dimensional DNS com-
putations of reacting flows with a realistic chemistry, produce extremely high numerical costs.
Therefore, two-dimensional simulations are still a very valuable alternative for all configura-
tions where three-dimensional effects are small [100]. Knowing the curvature of the flame
surface quantitatively we can find out, whether the flame front can be considered as mostly
cylindrical (and thus dominated by two-dimensional features) or spherical (and therefore fully
three-dimensional).

4.2.2 Quantities and scales to describe premixed flames

The reaction progress variable c
In order to describe the propagation of a premixed flame front a variable is introduced that
reproduces the progress of combustion, the so-called reaction progress variable c. The reaction
progress variable takes on values between 0 for fresh and 1 for fully burnt gases. The reaction
progress variable also may be used to locate the flame front. It can be defined as a reduced
temperature or reduced mass fraction of fuel or a final product, for example CO2:

c =
T − Tu

Tb − Tu
(4.42)

where T , Tu and Tb are the local, the unburnt and the burnt gas temperature respectively, or:

c =
YP − Y u

P

Y b
P − Y u

P

(4.43)

where YP ,Y u
P and Y b

P are the local, the unburnt and the burnt mass fractions of a combustion
product [145]. For unity Lewis numbers the two definitions are equivalent, and it becomes
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possible using some complementary hypotheses to write a balance equation for the reaction
progress variable c:

∂(ρc)

∂t
+ ∇ · (ρuc) = ∇ · (ρD∇c) + ω̇ (4.44)

The Matlab tool to calculate the reaction progress variable is introduced in Section 5.2.3.

Surface density function
A further important quantity is the surface density function, SDF, which is defined as the
magnitude of the gradient of the reaction progress variable |∇c|:

SDF = |∇c| (4.45)

The term |∇c| and correlations between SDF and other variables are important in combustion
modeling. The Matlab tool to calculate SDF is introduced in Section 5.2.3. Correlations
between |∇c| and other important variables like curvature, strain rate and flame thickness are
discussed in Section 6.2.2

Scalar dissipation rate and burning rate
The burning rate may be quantified as a function of turbulent mixing described by the scalar
dissipation rate χ:

χ = 2D|∇c|2 (4.46)

The scalar dissipation rate directly measures the decay of fluctuations via turbulent micro mix-
ing. Since the burning rate depends on the contact between the reactants, in many models, the
scalar dissipation rate enters directly or indirectly the expression for the mean burning rate.
Assuming very fast chemistry and a combustion limited by mixing the mean burning rate is
proportional to the scalar dissipation rate. Dissipation rate of scalars is a key concept of tur-
bulent combustion. Directly or indirectly, χ appears in many tools used to model flames [145].
For example in the Eddy-Break-Up model (EBU) the burning rate is expressed as [21]:

ω̇F = CEBU
χ

τt
(4.47)

The laminar flame speed
According to [100] the flame speed can be defined in three ways:

• by the absolute flame front speed relative to a fixed reference frame,

• by the displacement speed of the flame front relative to the flow,

• by the speed at which reactants are consumed.
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In this thesis we consider the displacement speed: The displacement speed measures the front
speed relative to the flow, i.e., the difference between the flow speed u and the front speed w:

sd = (w − u).n = sa − u.n (4.48)

Since the flow accelerates through the flame front the displacement speed changes too and
depends on the position where it is measured. Equation (4.44) can be rewritten in the following
manner [145]:

∂c

∂t
+ u.∇c =

1

ρ

[∇(ρD∇c) + ω̇

|∇c|
]
|∇c| = sd|∇c| (4.49)

|∇c| is discussed and investigated in Section 6.2.2.

The total thickness δt
L

It is often defined as the length over which the reaction progress variable c changes from 0.01
to 0.99 between fresh and fully burnt products [100, 145]. The Matlab tool to calculate the
total thickness is introduced in Section 5.2.2.

4.2.3 Quantities and scales to describe non-premixed flames

In Section 2.2.1 we introduced the combustion regimes of infinitely fast and finite rate chem-
istry. In reactions with infinitely fast chemistry where the problem is reduced to a mixing
problem a standard assumption is that the instantaneous molecular species concentrations and
the temperature are functions only of a conserved scalar concentration at this instant. The
statistics of all thermodynamic variables can be obtained from the knowledge of the statistics
of that scalar. The need to evaluate mean reaction rates is thus removed. A typical choice for
that scalar is the mixture fraction Z, which is introduced below.
In reactions with finite rate chemistry, where the reaction rate is dependent on the action of the
turbulent field on the local flame structures, the conserved scalar approach is still useful, but
another parameter has to be introduced to quantify the departure from infinitely fast chemistry
and equilibrium condition. The two most often used parameters are the strain rate and the
scalar dissipation rate χ.

Element mass fraction
In order to determine mixture fractions we first have to introduce element mass fractions. The
element mass fraction is defined locally by the ratio between the mass mi,e of an element i and
the total mass mtot in the mixture.

Z ′
i =

mi,e

mtot
(4.50)

Z ′
i can be expressed using species mass fractions as well:

Z ′
i =

NS∑

k=1

µikYk i = 1, .., M (4.51)
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where NS is the number of species and M the number of elements in the system. The coeffi-
cients µik are the mass percentage of the ith element in the kth species.
Element mass fractions are introduced because elements are not produced or consumed, due to
chemical reactions, in contrast to species.

Mixture fraction
Mixing is one of the most important issues in non-premixed flames. The mixture fraction Z is
the variable that describes the level of mixing between the reactants in a non-premixed flame
front. As a chemical reaction is only possible in a region where fuel and oxidizer are mixed
adequately (nearly stoichiometric), a non-premixed flame usually lies in the vicinity of the sto-
ichiometric iso-level. The mixture fraction Z takes on values between 0 for pure oxidizer and
1 for pure fuel. The iso-level of Z corresponding to stoichiometric conditions is often used to
identify the flame front (Z = Zst).

1

The mixture fraction can be calculated from the element mass fractions. Like the element mass
fractions it is also a so-called passive or conserved scalar. This means that its value changes
because of diffusion and convection but not because of reaction.

Mixture fraction based on a certain element
For a problem where only the reaction of the two streams fuel (index 1) and oxidizer (index 2)
is considered the mixture fraction based on element i can be calculated in the following manner
[6, 7, 150]:

Zi =
Z ′

i − Z ′
i,2

Z ′
i,1 − Z ′

i,2

(4.52)

where Z ′
i is the element mass fraction of the element i, and the subscripts 1 and 2 refer to the

fuel and oxidant streams. For flames with unity Lewis numbers (for all species) the mixture
fractions based on different elements are equal. The balance equation for the mixture fraction
at unity Lewis numbers can then be written:

∂(ρZ)

∂t
+

∂

∂xi
(ρuiZ) =

∂

∂xi
(ρD

∂Z

∂xi
) (4.53)

The advantage of balance equations of conserved scalars is that they do not have a source term.
For unity Lewis numbers all diffusion coefficients D are equal.

Mixture fraction based on all elements
For flames where species have different Lewis numbers different formulations for the mixture
fraction can be found in the literature. Eq. (4.52) is still valid, but different elements now have
different mixture fractions. It is also possible to define a common mixture fraction based on all
elements as linear combination of the different element mass fractions. The most common one

1In the literature the mixture fraction is sometimes also denoted as f .
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is according to Bilger [7]:

Z =
2(Z ′

C − Z ′
C,2)/WC + 1

2
(Z ′

H − Z ′
H,2)/WH − (Z ′

O − Z ′
O,2)/WO

2(Z ′
C,1 − Z ′

C,2)/WC + 1
2
(Z ′

H,1 − Z ′
H,2)/WH − (Z ′

O,1 − Z ′
O,2)/WO

(4.54)

where Z ′
i is the element mass fraction of the element i, Wi is the atomic mass of element i, the

subscripts C, H and O refer to carbon, hydrogen and oxygen, respectively and the subscripts
1 and 2 refer to the fuel and oxidant streams, respectively.
Tools to calculate several kinds of mixture fractions are given in Section 5.2.3.

For non-unity Lewis numbers the mixture fractions based on species and the Bilger mixture
fraction may differ significantly. Figures 4.6 to 4.9 show for example the mixture fractions of a
H2/CO/O2 flame at Reynolds-number of 3000 based on different elements. Figure 4.10 shows
the corresponding mixture fraction according to Eq. (4.54). Such discrepancies highlight the
need for clear definitions before comparisons can be proposed.
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Scalar dissipation rate χ
This parameter describes the departure from the infinitely fast chemistry assumption. The
scalar dissipation rate characterizes the local mixing rate, because it controls the gradient of Z.
It is the inverse of a diffusive time and a measure for the speed at which the reactants move
towards each other on a molecular level, but also the speed at which heat diffuses to and away
from the reaction zone, depending on the chosen diffusion coefficient:

χ = 2D|∇Z|2 (4.55)

where D is the local diffusion coefficient.
χ is directly influenced by strain. When the flame strain rate increases, χ increases. In cases
where each species has its own diffusion velocity and there is no unique diffusion coefficient D,
a reduced scalar dissipation rate χ̄ is sometimes introduced:

χ̄ = |∇Z|2 (4.56)

As a common alternative, the scalar dissipation rate is computed while choosing for D the heat
diffusion coefficient.

4.2.4 Table of available flame quantities and corresponding tools to

post-process them

The following table gives an overview of quantities characterizing premixed and non-premixed
flames that are calculated or visualized in the post-processing toolbox, the corresponding post-
processing tools and sections where the tools are explained.

quantity tool section
2D-flame front flamefront 5.2.2

crestline 5.2.2
3D-flame front flamefront3 5.2.2

flamefrontslice 5.2.2
crestbatch 5.2.2
slicebatchorth 5.2.2

flame length flamelength 5.2.2
crestlength 5.2.2

flame surface area surfarea 5.2.2
2D-flamethickness flamethicklin, 5.2.2
extension flamethicknonlin 5.2.2

flamethicklincrest 5.2.2
flamethicknonlincrest 5.2.2
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2D-flamethickness flamethicklintherm 5.2.2
thermal flamethicknonlintherm 5.2.2

flamethicklinthermcrest 5.2.2
flamethicknonlinthermcrest 5.2.2

2D-flamethickness flamethickc 5.2.2
total
3D-flamethickness flamethicklin3, 5.2.2
extension flamethicknonlin3 5.2.2
3D-flamethickness flamethicklintherm3 5.2.2
thermal flamethicknonlintherm3 5.2.2
3D-flamethickness flamethickc3 5.2.2
total
2D-normal vectors normal 5.2.2

normtoff 5.2.2
normtocrest 5.2.2

3D-normal vectors normal3 5.2.2
normtoff3 5.2.2

2D-flame curvature kappanew, kappanewlev 5.2.5
curvatureall, curvaturelev

shape factor shapefactor 5.2.5
3D-principal curvature curv3new,curvlev3new 5.2.5
3D-gaussian curvature
3D-mean curvature 5.2.5
2D-strain rate strainrateall, 5.2.5

strainratelev 5.2.5
3D-strain rate strainrate3 5.2.5

strnlev3 5.2.5
flame index flameindex 5.2.3

flameindex3
reaction progress variable reacprog 5.2.3

reacprog3
mixture fraction (Bilger) mixfrac 5.2.3
for H2 flames mixfrac3
mixture fraction based on mixfracspec 5.2.3
species for H2 flames mixfracspec3
mixture fraction (Bilger) mixfracsyng 5.2.3
for syngas-flames mixfracsyng3
mixture fraction based on mixfracspecsyng 5.2.3
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species for H2 flames mixfracspecsyng3
scalar dissipation rate scalardissZ 5.2.3
based on mix. frac. Z scalardiss3Z
scalar dissipation rate scalardissc 5.2.3
based on react. progr. var. c scalardiss3c
2D-flame structure extract 5.2.3

crestextract 5.2.3
flamehot 5.2.3

3D-flame structure extractbatch 5.2.3
extract3 5.2.3
flamehot3 5.2.3

2D-cuts lincut 5.2.3
lincutcrest 5.2.3
nonlincut 5.2.3
nonlincutcrest 5.2.3

3D-cuts lincut3 5.2.3
nonlincut3 5.2.3

2D integral values along cuts intcutlin 5.2.3
intcutnonlin 5.2.3
intcutlincrest 5.2.3
intcutnonlincrest 5.2.3

3D integral values along cuts intcutlin3 5.2.3
intcutnonlin3 5.2.3

Table 4.2: Tools for calculating and visualizing quantities of turbulent flames

4.3 Scales and quantities describing probabilities

In this section some basic concepts of probability theory will be given. General background
information about stochastic processes can be found for example in [29, 94, 116]. Statistical
methods especially for turbulent flows can be found in [103]. Section 4.3.1 introduces the basic
theory of univariate probability density functions. In combustion modeling joint probabilities
and conditional probabilities are important, which are considered in Sections 4.3.2 and 4.3.3,
respectively. In Section 4.3.4 a table summarizes the quantities defined in the toolbox, while
the corresponding Matlab tools are introduced in Section 5.2.6.
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4.3.1 Univariate probability

Probability is a measure of likelihood that a variable will take on values within some range. A
way to describe probabilities is to use a probability density function.

Probability density function (PDF)
The probability density function (PDF) of a variable φ has the following properties.

• A valid probability density function is non-negative:
f(φ) ≥ 0

• The total area under the curve must equal 1:∫∞
−∞ f(φ)dφ = 1

• For φ tending to infinity or to minus infinity f(φ) tends to zero.
limφ→∞ f(φ) = limφ→−∞ f(φ) = 0

Figure 4.11 shows schematically a PDF of a random variable φ.

Probability between limits
For a discrete distribution the PDF is the probability that a variable takes a certain value. For
continuous distributions the probability that a variable takes a certain value is zero. Therefore,
small intervals around that value are considered instead. We thus have to calculate the integral
of the variable f(φ) over the interval of interest. For example, the probability that the variable
Φ falls in a particular interval [a, b], is given by:

P (a ≤ Φi ≤ b) =
∫ b

a
f(φ)dφ (4.57)

The gray area in Figure 4.12 represents the probability that φ takes on values between a and b.

Moments
Probability distributions can be described by moments around the mean value φ (or µ). Some
moments we already know from Section 4.1, where we discussed turbulent flow fields. For a
general quantity φ moments of order n are defined by:

µn =
∫ ∞

−∞
(φ − µ)n · f(φ)dφ (4.58)

• Mean value
In the most general case the mean value is defined by:

µ =
∫ ∞

−∞
φ · f(φ)dφ (4.59)
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Different methods of taking averages and different kinds of average or mean values are
explained in Appendix A.

• Variance
The second-order moment is called variance.

V ar = µ2 =
∫ ∞

−∞
(φ − µ)2 · f(φ)dφ (4.60)

Variance is a measure of dispersion in the distribution. If a random variable has a large
variance, then an observed value of the random variable is more likely to be far away from
the mean value µ. The square root of the variance is called standard deviation σ.

• Skewness
The third-order moment is called skewness.

S = µ3 =
∫ ∞

−∞
(φ − µ)3 · f(φ)dφ (4.61)

Skewness describes the symmetry or asymmetry of the distribution. The following ratio
is defined as coefficient of skewness:

s =
µ3

µ
3/2
2

(4.62)

For symmetric distributions the coefficient of skewness is zero. Distributions that are
skewed to the left have a negative coefficient of skewness, and distributions that are
skewed to the right have a positive value.
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• Kurtosis
The fourth-order moment is called kurtosis.2

K = µ4 =
∫ ∞

−∞
(φ − µ)4 · f(φ)dφ (4.63)

Kurtosis is a measure of how outlier-prone a distribution is. The following ratio is defined
as coefficient of kurtosis:

k =
µ4

µ2
2

(4.64)

A coefficient of kurtosis greater than 3 indicates that the distribution is more outlier-prone
than the normal- or Gaussian distribution and a coefficient of kurtosis less than 3 indi-
cates that the distribution is less outlier-prone than the normal (or Gaussian) distribution.

Gaussian distribution
An important distribution in statistics and engineering is the normal or Gaussian distribution.
Its probability density function is given by:

f(φ) =
1√
2πσ

· e−(φ−µ)2/2σ2

(4.65)

The shape and location of a Gaussian distribution is determined by its characteristic numbers
mean value µ and standard deviation σ: the curve has a symmetric bell shape, is centered at
the mean value µ and its spread is measured by the standard deviation σ.
The coefficient of skewness is 0: s = 0.
The coefficient of kurtosis is 3: k = 3.
The drawback of the Gaussian PDF is that it is quite inflexible in shape because it is symmet-
rical and has exactly one peak.

Gaussian PDFs play an important role in combustion modeling. When we have to presume the
shape of the PDF the Gaussian PDF is a common candidate [77]. For homogeneous isotropic
turbulence the velocity field satisfies such a Gaussian distribution [50].

Γ-distribution
To describe distributions that have low probabilities for intervals close to zero, increasing proba-
bility when the interval moves in positive direction and decreasing probability when the interval
moves to the extreme positive side, the Γ-distribution is a common candidate.
The Γ-probability density function is given by:

f(φ) =





1

Γ(α)βα
φα−1e−φ/β φ ≥ 0

0 elsewhere

(4.66)

2Sometimes in the literature the name flatness is used.
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where α and β are (positive) parameters that determine the specific shape of the curve. In
contrast to the normal distribution also asymmetric shapes are possible now. Γ(α) is the
Γ-function and is defined by:

Γ(α) =
∫ ∞

0
φ(α−1)e−φdφ (4.67)

The mean value of the Γ-distribution is:

µ =
∫ ∞

−∞
φf(φ)dφ =

∫ ∞

0
φ

1

Γ(α)βα
φα−1e−φ/βdφ = αβ (4.68)

The variance of the Γ-distribution is:

V ar = αβ2 (4.69)

β-distribution
The most common distribution used for presumed PDF’s is the β-distribution. The β-PDF is
more flexible than the Gaussian and the Γ distribution and covers a range of different shapes
depending on the values of its parameters α and β. Also bimodal shapes are allowed. The
β-distribution is useful to model the behavior of properties that are constrained to fall in an
interval from zero to one [0, 1]. It is defined in the following manner:

f(φ) =





Γ(α + β)

Γ(α)Γ(β)
φ(α−1)(1 − φ)(β−1) 0 ≤ φ ≤ 1

0 elsewhere

where α and β are positive constants. The constant term is necessary so that

∫ 1

0
f(φ)d(φ) = 1 (4.70)

That means (for positive α and β):

∫ 1

0
φ(α−1)(1 − φ)(β−1)dφ =

Γ(α)Γ(β)

Γ(α + β)
(4.71)

The mean value of a β-distribution is given by:

µ =
∫ 1

0
φ

Γ(α + β)

Γ(α)Γ(β)
φ(α−1)(1 − φ)(β−1)dφ =

α

α + β
(4.72)

The variance of a β-distribution is given by:

αβ

(α + β)2(α + β + 1)
(4.73)
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The parameters α and β are then determined as

α = φ̄
[ φ̄(1 − φ̄)

φ′2
− 1

]
(4.74)

and

β = α
[1

φ̄
− 1

]
(4.75)

4.3.2 Joint probability theory

In combustion modeling the state of the combustion is often described by two or more vari-
ables and modeled by the joint PDF of these variables. Therefore, the knowledge of the joint
probability density function of a set of variables is necessary.

Joint Probability density function (PDF)
The joint probability density function (JPDF) of two variables φ1 and φ2 has the following
properties.

• A valid joint probability density function is non-negative:
f(φ1, φ2) ≥ 0

• The total area under the surface must equal 1:∫∞
−∞

∫∞
−∞ f(φ1, φ2)dφ1dφ2 = 1

• For φ1 or φ2 tending to infinity or to minus infinity f(φ1, φ2) tends to zero.
limφ1→∞ f(φ1, φ2) = limφ1→−∞ f(φ1, φ2) = limφ2→∞ f(φ1, φ2) =
limφ2→−∞ f(φ1, φ2) = 0

Probability between limits
For example, the probability that the variable Φ1 falls in a particular interval [ab] while the
variable Φ2 simultaneously falls in a particular interval [cd] is given by:

P (a ≤ Φ1 ≤ b, c ≤ Φ2 ≤ d) =
∫ b

a

∫ d

c
f(φ1, φ2)dφ1dφ2 (4.76)

A common way to visualize the joint PDF is to plot the data pairs (φ1, φ2) in a contourplot,
where important features become evident. Figure 4.13 shows isocontours of a joint PDF of
curvature and strain rate in a premixed flame as an illustration.

Covariance and correlation
An important quantity in joint distributions is the covariance or correlation.
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Figure 4.13: Isocontours of joint PDF of curvature and strain rate in a turbulent premixed
flame

The mean value of the product of the fluctuations of two variables is called covariance or
correlation.

φ′
1φ

′
2 =

∫ ∞

−∞
(φ1 − φ1)(φ2 − φ2) · f(φ1, φ2)dφ1dφ2 (4.77)

Correlations between variables in a single fixed point, for example between different velocity
components or between velocity components and species mass fractions play a central role in
turbulence theory and modeling. Correlations can be measured by the correlation coefficient:

corr(φ1, φ2) =
φ′

1φ
′
2√

φ′2
1

√
φ′2

2

(4.78)

Two variables are completely correlated if the absolute value of the correlation coefficient
|corr(φ1, φ2)| = 1 and are completely uncorrelated if corr(φ1, φ2) = 0.
Joint-pdf’s and correlations between two variables are investigated in Section 6.2.2.

4.3.3 Conditional probability

In combustion modeling the statistical analysis of a variable conditioned on another variable is
often of particular importance.

P (φ1 | φ2) =
P (φ1 ∩ φ2)

P (φ2)
(4.79)
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P (φ1 | φ2)dφ1 is the probability that the first variable φ1 lies in the range dφ1 around φ1 under
the condition that the second variable takes the value φ2. In combustion modeling variables
are typically conditioned on the mixture fraction for non-premixed flames or on the reaction
progress variable for premixed flames.

4.3.4 Table of available statistical quantities and corresponding tools

to post-process them

The following table summarizes the statistic quantities which are calculated or visualized in
the post-processing toolbox and the corresponding post-processing tools. These tools are later
described in Section 5.2.6

quantity tool
moments 1-4, true pdf, varstat
Gaussian pdf of 2D-variable
moments 1-4, true pdf, varstat3
Gaussian pdf of 3D-variable
2D-conditioned moments on
mixture

condmeanfilt2

fraction or reaction progress
variable
2D-conditioned moments on condmeanfilt22
arbitrary variable
3D-conditioned moments on
mixture

condmeanfilt3

fraction or reaction progress
variable
3D-conditioned moments on condmeanfilt33
arbitrary variable
2D-correlation coefficient of correlationcut
two variables along a cut,
scatterplot
2D-correlation coefficient of correlationex
two variables along flamefront,
scatterplot
2D-correlation coefficient of correlationgen
two 1-d variables scatterplot
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3D-correlation coefficient of correlationcut3
two variables along a cut,
scatterplot
3D-correlation coefficient of correlationex3
two variables along flamefront,
scatterplot
3D-correlation coefficient of correlationgen3
two 1-d variables scatterplot
true pdf, gaussian pdf, β-pdf compdf2of
of normalized 2D-variable
true pdf, gaussian pdf, β-pdf compdf3of
of normalized 3D-variable
joint probability of 2 2D-
variables

statbivar2

joint probability of 3 2D-
variables

statbivar3

joint probability of 2 3D- vari-
ables

statbivar3d

Table 4.3: Tools for calculating statistic quantities
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Chapter 5

Post-processing tools for DNS data

As demonstrated in Sections 3.1.4 and 3.1.5 the results of DNS contain a huge amount of
information in space and time for many variables, which we have to handle and post-process in
order to gain as much useful information as possible. In this chapter we introduce our toolbox
that has been developed for that purpose based on the commercial program Matlab. In
Section 5.1 the program Matlab with its possibilities is introduced. In Section 5.2 the general
procedure of post-processing is demonstrated and the most important tools are introduced.
Further applications will be presented in Chapter 6.

5.1 The program Matlab

Matlab was developed by the company The MathWorks, Inc. The name Matlab stands for
matrix laboratory.
In university and research centers as well as in industry Matlab is a wide-spread computa-
tional tool for engineering and science. The two main reasons to use Matlab in this work are
its comprehensive mathematical library and its extensive graphic tools.
Matlab is an interactive system whose basic data element is a matrix or an array that does
not require dimensioning. This allows to solve many technical computing problems, especially
those with matrix and vector formulations, in a fraction of the time it would take to write a
program in a scalar non interactive language such as C or Fortran.
Matlab is a high performance language integrating computation, visualization and program-
ming where problems and solutions are expressed in familiar mathematical notation. Typical
uses include [87]:

• Applied mathematics and computation,

• Algorithm development,

• Modeling, simulation, and prototyping,
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• Data analysis, exploration, and visualization,

• Scientific and engineering graphics.

Sometimes, the massive data generated by DNS or by experiments cannot be expressed directly
in terms of mathematical functions. In these cases the most suitable way to analyze the
data is through graphical visualization by appropriate plots. Matlab provides many graphics
functions that allow to create such plots of the data, like contour plots to visualize scalars,
vector graphs for example to investigate gradients or to display velocity fields or plots for data
statistics, for example histograms or scatterplots.
Matlab also offers several volume visualization techniques to present 3D data like isosurfaces,
vector plots and methods to draw 2D slices.

5.2 The Matlab Toolbox

Parts of this section have already been published in [36, 155]. A detailed documentation of the
toolbox is available under [154].
The toolbox developed during this project is mainly intended for post-processing data produced
on a square or cubic regular grid. Values obtained on an irregular grid must be interpolated on
a regular grid before continuing.

5.2.1 Overview on different groups of tools

The post-processing toolbox developed in this project consists of two subgroups:

• The first group contains the tools for post-processing 2D-results,

• The second group contains the tools for post-processing 3D-results.

Each group can be divided into six different sub-categories of complementary tools. We begin
first by listing all these tools before illustrating the obtained results in the next section.

1. The first category contains all the tools for a direct geometrical analysis of the raw data:

• for example tools to define and locate the flame front,

• tools to compute all purely geometrical parameters, e.g. the flame length, flame
surface area or the flame thickness,

• tools to find crestlines or crestsurfaces,

• tools to calculate normal vectors.

2. The second category contains all the tools to investigate the flame structure:
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• for example tools to calculate the flame index,

• tools to calculate mixture fractions for non-premixed flames,

• tools to calculate reaction progress variables for premixed flames,

• tools to calculate surface density function for premixed flames,

• tools to extract the variables of interest along the flame front,

• tools to draw linear and non linear cuts through the flame front,

• tools to extract variables along these cuts,

• tools to compute integral values of extracted variables along these cuts.

3. The third group contains all the tools needed to investigate and quantify the properties
of turbulent flow fields:

• tools to visualize 2D-and 3D-velocity fields,

• tools to calculate velocity fluctuations,

• tools to calculate the turbulent kinetic energy,

• tools to calculate the dissipation rate,

• tools to calculate the energy spectrum,

• tools to calculate and plot vorticity fields,

• tools to calculate turbulent scales,

• tools to calculate velocity correlation functions,

• tools allowing spatial data filtering.

4. The fourth group contains tools to investigate the interaction between turbulence and
flames:

• for example tools to calculate the components of the strain-rate,

• tools to calculate curvatures of flames in 2D and 3D cases,

• a 3D tool to calculate the shapefactor.

5. The fifth group contains tools allowing statistical investigations of the variables of interest:

• for example tools to compute the moments of order one to four of a distribution,

• tools to represent graphically such distributions using, e.g., histograms and PDFs,

• tools for statistical analysis of a variable conditioned on another one,

• tools to calculate the joint PDF of two variables,
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• tools to calculate correlation coefficients between two variables.

6. The sixth and last group contains tools to determine appropriate dimensions of reduced
manifolds in composition space:

• tools to find nearest neighbors,

• tools to reconstruct data in lower dimensions,

• tools to compute correlation coefficients between original and reconstructed data,

• tools to quantify deviations between original and reconstructed data.

In what follows, the usage of all post-processing routines is illustrated in more details.

5.2.2 Tools for geometrical investigations

The first group is employed for the geometrical investigation of the raw data in the light of
combustion modeling. In a 2D field isocontours, i.e. lines where the variables have a certain
value, must be identified. In a 3D field the corresponding equivalent to an isocontour is an
isosurface.

• The main task is to find and locate the contour defining the flame front. Typical vari-
ables used to identify the flame front are for example the mixture fraction Z, the reaction
progress variable c, the temperature, the mass fraction Y of a radical or the heat release.
Optionally the user can define upper and lower limits for the extension of the flame by
certain isolevels of the corresponding variable.
To find the flame front in a 2D-field the toolbox-tool flamefront is used. Flamefront

uses the Matlab-tools contour and contourc to calculate and display the user-defined
isocontours.
In order to discover where interesting regions exist in a set of volume data sliceplanes can
be employed for probing the 3D-field. The toolbox offers single slices as well as a batch
modus to scan the whole domain. This is true for all coordinate directions.
In order to locate the flame front the toolbox tool flamefrontslice allows to take
slices in several directions through the flame front at a user-defined location. The tool
slicebatchorth allows to scan the domain along a user-defined axis by a batch of or-
thogonal slices.
In order to define the flame front by an isosurface of a variable we use the tool flamefront3.
Flamefront3 uses the Matlab-tool isosurface to calculate and display the user-defined
isosurface.
As an example for a 2D-flame we consider a non-premixed H2/N2/O2-flame. We define
the flame front by the stoichiometric isolevel Z=0.5 of the mixture fraction Z. The flame
front is bounded from above by the isolevel Z=0.9 on the fuel side and bounded from
below by the isolevel Z=0.1 on the oxidizer side. In Figure 5.1 the flame front with
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boundaries is shown.
As an example for a 3D-flame we consider a premixed CH4 flame. We choose the isolevel
of the mass fraction Y (CO2)=0.03 as flame front. Figure 5.2 shows such a slice through
the CO2 field in Y direction. In Figure 5.3 the flame front is shown. It is also possible to
visualize user-defined boundaries, but they are not shown here in order to obtain a better
visualization of the flame front surface.
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Figure 5.1: Flame front
based on mixture frac-
tion, together with flame
limits, X and Y are spa-
tial coordinates in m

Figure 5.2: Slice
through CO2 field for
Y =constant, X, Y and
Z are spatial coordinates
in m

Figure 5.3: Flame front
surface based on mass
fraction Y (CO2)=0.03;
X, Y and Z are spatial
coordinates in m

• Additionally to isocontours the toolbox allows to define the flame front by the crestline
of a variable like temperature, heat release or the mass fraction Y of a radical. Crestline
is defined as the line connecting peak values of a variable, higher than a user-defined
threshold.
In order to find the crestline the program starts in the absolute maximum of the variable,
scans a square field of predefined size around the maximum, searches for the next highest
value, jumps to the new maximum and scans a new field around that new maximum in
all directions except backwards. The procedure is repeated until either the boundary of
the domain is reached or the newest maximum value falls below a prescribed threshold.
When the first branch is complete, the program returns to the main maximum, blocks the
known branch(es) and searches for further branches. The complex underlying procedure
is described in detail in [155].
The crestline can be computed using the toolbox-tool crestline. Figure 5.4 shows the
crestline of temperature embedded in the temperature field of the flame.
The equivalent to the crestline in a 3D-field is the crestsurface of a variable. The crestsur-
face can be computed as a batch of slices using the toolbox-tool crestbatchy. Figure 5.5
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shows points of the crest surface of heat release in a slice for Y =constant through the
field of heat release.
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Figure 5.4: Flame front de-
fined as crestline of tempera-
ture (black stars) embedded in
temperature field of the flame,
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• The next necessary steps are to calculate flame length (for 2D-flames), or flame surface
area (for 3D-flames). The flame length can be computed as the maximum of the isolevel
defining the flame front using the toolbox-tool flamelength. The analogon to the flame
length is for our 3D-flame the flame surface area. The flame surface area can be calculated
using the toolbox tool surfarea. The flame surface is considered as a triangulated patch
and the surface area is the sum of the areas of the triangles according to Eq. (B.10).

• The toolbox offers different tools to define the flame thickness in the different manners
explained in Section 4.2:

– as real extension of the flame between user-defined boundaries along linear or non-
linear cuts (see later Figures 5.10 and 5.11). The appropriate toolbox-tools are
flamethicklin and flamethicknonlin for 2D-flames and flamethicklin3 and
flamethicknonlin3 for 3D-flames.

– as thermal flame thickness based on the maximum temperature gradient. The ap-
propriate toolbox-tools are flamethicklintherm and flamethicknonlintherm for
2D-flames and flamethicklintherm3 and flamethicknonlintherm3 for 3D-flames.

106



– as the total flame width via the reaction progress variable c. The appropriate
toolbox-tools are flamethickc for 2D-flames and flamethickc3 for 3D-flames.

The toolbox offers a batch modus to calculate the flame thickness at several points all
over the length or the surface of the flame.

• Last but not least normal vectors to the flame front can be calculated in order to define
linear cuts (see Section 5.2.3) or to prepare the calculation of curvature or strain rate (see
Section 5.2.5). The unit vector normal to isolevels or isosurfaces can be determined using
the toolbox-tool normtoff for 2D-flames or normtoff3 for 3D-flames. By convention n
is pointing towards the fresh gases for premixed flames and towards the oxidizer side for
non premixed flames. Figure 5.6 shows normal vectors starting in several points along
the isolevel Z =0.5 of our 2D-flame. Of course their direction is to the oxidizer side.
Figure 5.7 shows normal vectors starting in selected points along the flame front of our
3D flame.
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Figure 5.6: Normal vectors
along 2D-flame front

Figure 5.7: Normal vectors
along 3D-flame front

The 2D flame in Figure 5.1 and the 3D flame of of Figure 5.3 will be used in the rest of this
chapter to demonstrate the different tools of the toolbox.
The tools to calculate and plot geometrical features and quantities with their input and output
arguments are listed in Table D.1.

5.2.3 Tools to investigate the flame structure

The second group is dedicated to investigations of the flame structure.
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• For this purpose all the variables computed during any step of the post-processing can
be extracted along the flame front either defined as a certain isovalue or as crestline or
along any prescribed iso-level or iso-surface of an existing variable.
For that purpose the tools extract for 2D-flames and extract3 and extractbatch for
3D-flames are employed. Variables of interest are for example:

– temperature profiles,

– heat release,

– mixture fraction,

– reaction progress variable,

– flame index,

– strain rate,

– flame front curvature,

– flame thickness,

– scalar dissipation rate χ.

For a 2D-flame extract returns the coordinates of a user-defined isolevel, a curvilinear
coordinate along this isolevel and the profile belonging to the variable extracted along
the isolevel. The curvilinear coordinate and the extracted values run from the top to
the bottom of the figure, that means from higher to minor values of the Y-coordinate.
The tool also calculates and plots a histogram and the PDF of the extracted variable.
For a 3D-flame extract3 returns the vertices and faces of the isosurface, and the values
of the variable extracted over the isosurface in the corresponding vertices, a plot of the
variable extracted over the surface, a histogram and a PDF of the values of the variable.
To demonstrate extract3 we extract the normal strain rate along the flame front defined
by an isosurface of the reaction progress variable. Figure 5.8 shows the normal strain
rate extracted along the flame front. The distribution of this normal strain-rate is shown
as an histogram in Figure 5.9, allowing a better quantification of the huge strain-rate
variations. The tool extractbatch extracts values of a variable along an isolevel of the
variable defining the flame front, in several 2D slices in a user-defined direction.

• The tools flamehot and flamehot3 allow to consider a user-defined region of a flame.
They determine values of a variable (for example the temperature) between boundaries
defined by an other variable (for example isolevels of the mixture fraction).

• In addition to an investigation in the direction along the flame front the toolbox allows an
investigation in the direction across the flame front. Linear and non linear cuts through
the flame front can be calculated and visualized using the tools lincut and nonlincut

for 2D-flames or lincut3 and nonlincut3 for 3D-flames. The direction of such a linear
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Figure 5.8: Normal strain rate
(1/s) extracted along flame
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Figure 5.9: Histogram corre-
sponding to strain rate visual-
ized in Figure 5.8

cut is constant and normal to the iso-level or iso-surface defining the flame front.
Non-linear cuts follow the direction of the steepest gradient of a user-chosen variable.
Depending on the size and the position of the flame in the domain often only a part of
the domain is of interest for values along the linear and non-linear cuts. Both linear and
non linear cuts can then be limited by the boundaries of the flame front.
Figure 5.10 shows a linear cut through the flame front between the boundaries Z=0.1
and Z=0.9. Of course, if required, also cuts running through the whole domain along the
black dashed line are possible.

Figure 5.11 shows a nonlinear cut through the flame front, again with the limits Z=0.9 and
Z=0.1. Any variable of interest can be extracted and integrated along these cuts using
the tools intcutlin and intcutnonlin for 2D-flames or intcutlin3 or intcutnonlin3
for 3D-flames.
Again, the toolbox offers a batch modus to determine the integral values along linear and
nonlinear cuts all over the flame length or flame surface.

• To distinguish between premixed and non-premixed flames or parts of flames the toolbox
contains a tool flameindex to determine the flame index. For positive values of the flame
index the flame is of premixed type, for negative values the flame is of non-premixed type.

• Tools to calculate the mixture fraction can be used to describe non-premixed flames or to
define the flame front. Mixfrac and mixfrac3 calculate the mixture fractions according to
the formula of Bilger, Eq (4.54) and plot isolevels or isosurfaces of the mixture fraction for
hydrogen flames. Mixfracspec and mixfracspec3 calculate the mixture fraction based
on different species (N, O, H) according to Eq. (4.52) for hydrogen flames.
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Figure 5.10: Linear cut be-
tween flame limits (fuel side,
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Figure 5.11: Non linear cut be-
tween flame limits (fuel side,
green line, Z=0.9; oxidizer
side, blue line, Z=0.1), X and
Y are spatial coordinates in m

Mixfracsyng and mixfracsyng3 calculate the mixture fractions according to the formula
of Bilger for synthetic gas-flames. Mixfracspecsyng and mixfracspecsyng3 calculate
the mixture fraction based on different species (N, O, H, C) for synthetic gas-flames.
As shown in Section 4.2.3 the different mixture fractions can differ significantly.

• For premixed flames the tools reacprog and reacprog3 calculate the reaction progress
variable based on temperature according to Eq. (4.42). The tools reacprogco2 and
reacprog3co2 calculate the reaction progress variable based on the mass fraction of CO2

according to Eq. (4.43). Additionally they plot and calculate the surface density function
SDF and the mean value of SDF conditioned on the reaction progress variable.

The tools to investigate the flame structure with input and output arguments are listed in
Table D.2.

5.2.4 Tools to investigate velocity field and turbulence

As our flames are embedded in turbulent flow fields it is essential to analyze the main features
of the turbulent flow. These investigations are the task of the third group.

• To start with such investigations the toolbox offers 2D as well as 3D tools to visualize
the turbulent flow field and its vortical structures. Figure 5.12 shows the flame front
of our 2D-flame embedded in the velocity field. We can clearly recognize large vortical
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structures, typical of 2D turbulence.
In order to visualize the velocity field we use the toolbox tool quivplot2. Figure 5.13
visualizes the velocity field of the 3D-flame with a coneplot using the tool coneplot3.

• The tool vorticity2d calculates the vorticity values in the 2D velocity field and plots
isolevels of the vorticity. The tool vorticity3d calculates the vorticity values in the
3D velocity field. Vorticity is calculated according to Eq. (4.5). The vorticity can be
calculated in different levels of accuracy, namely with second, fourth and sixth order
central schemes for the velocity gradients for 2D as well as for 3D fields.

• The toolbox offers tools to calculate the turbulent kinetic energy in physical space as well
as in Fourier space. The tools ekinturb2 and ekinturb3 calculate velocity fluctuations
and the turbulent kinetic energy in physical space. An important item belonging to the
turbulent kinetic energy are spectra. The tools spectrum2d and spectrum3d calculate
the turbulent kinetic energy and the energy spectrum in Fourier space, considering circles
or spherical shells around the origin of wavenumber space, according to Eqs.(C.15) and
(C.16) for 2D-fields and according to Eqs.(C.5) to (C.7) in the 3D case. These tools
additionally compute the integral length scales according to Eqs. (C.8) and (C.17).

• The tools slope2 and slope3 compare the slope of the 2D- and 3D-energy cascade with
the theoretical values according to Eqs. (4.23) and (4.30).

• A further important item belonging to the turbulent kinetic energy is its dissipation rate.
Like vorticity the dissipation rate can be calculated in three different levels of accuracy.
The tools to calculate the dissipation rate are dissip2d and dissip3d.
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• Taylor scales can be calculated using the tools taylor2 and taylor3.

• The velocity correlation functions can be calculated along lines and along columns for lon-
gitudinal as well as for lateral correlations using the tools corfunctline and corfunctcol

for a 2D-field. For 3D-fields corfunctionall3all and corfunctionall3allcol can be
used. These tools also determine the integral length scales, as the length value where the
correlation coefficient is zero.

• Data filtering tools are useful to investigate subgrid scale issues for LES modeling.
The tool lesfilter3d allows spatial filtering of 3D DNS data with user-defined filter
size. Figures 5.14 and 5.15 illustrate the filtered and unfiltered x-velocity field. We use
here a spatial filter with a filter size of nine points by nine points by nine points.

The tools to visualize velocity fields and to calculate turbulent quantities are listed in Table D.3.
Because turbulence is one of the most important items in turbulent flames the turbulence tools
are demonstrated and discussed further in Section 6.1, where we investigate and compare 2D-
and 3D turbulent velocity fields.

5.2.5 Tools to investigate the interaction between turbulence and

flames

Flames and the turbulent flow fields interact with each other. Therefore, the fourth group of
post-processing tools allows the computation of important flow variables in order to describe
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and quantify this effect. In Section 4.2.1 strain rate and curvature were introduced as the most
important quantities of this interaction. They can be calculated in the whole domain as well
as along a certain isolevel, for example the flame front.

• In order to calculate the normal and tangential components of strain rate in a 2D field we
use the toolbox-tool strainrateall. The tool strainratelev calculates and displays the
normal and the tangential component of the strainrate along the curvilinear coordinate of
the user-defined flame front. The tool strainrate3 calculates the normal and tangential
components of the strain rate in a 3D field. In a 3D field the tangential component
consists of two parts. Here the tangential component is the sum of the two parts. We
use the tool strnlev3 in order to calculate and display the components of the strain rate
over the isosurface of the flame front. The normal strain rate over the flame surface has
already been shown in Figure 5.8.

• In order to calculate the curvature in a 2D field we use the toolbox-tool kappanew. The
formula to calculate the 2D-curvature is derived in Appendix B. The tool kappanewlev
calculates and displays the curvature along the curvilinear coordinate of the user-defined
flame front.

• For 3D flames the curvature tool curv3new calculates all parts of the curvature, the
principal curvatures, the mean- and the Gaussian curvature, respectively. The formulae to
calculate the different kinds of curvature are derived in Appendix B. As already mentioned
two-dimensional simulations are still a very valuable alternative, for all configurations
where three-dimensional effects are small [100]. The toolbox also offers a tool to calculate
the shape factor shapefactor in order to decide whether the flame can be considered as
a cylindrical or a spherical structure.

In Section 6.2.1 the influence of turbulence on a non-premixed flame is discussed for different
Reynolds numbers. In Section 6.2.2 we investigate the interaction between turbulence and a
premixed flame.
The tools to calculate strain rate components and curvature are listed in Table D.4.

5.2.6 Tools for statistical investigations

As mentioned earlier DNS data need a statistical evaluation after computation, which is the
topic of the fifth group of post-processing tools.

• In order to investigate the distribution of a variable the toolbox-tool varstat2 and
varstat3 were developed. Applying this tool we are able to calculate moments of order
one to four according to Eq. (4.58), to display the distribution in a histogram and a PDF
and to compare the distribution with a Gaussian distribution. Figure 5.16 shows the
distribution of the velocity component in x-direction of the 2D-flame.
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• The tools compdf2 and compdf3 calculate and plot the true PDF, the Gaussian PDF
and the β-PDF of a variable. As the β-pdf is only defined in the interval [0, 1] the input
variables are normalized. Figure 5.17 shows the histogram, the true PDF, the Gaussian
and the β distribution with the same moments for the normalized temperature of our
2D-flame. The temperature is considered in the hot burning region of the flame between
mixture fractions 0.5 and 0.6.

• From a modeling point of view, the statistical analysis of a variable conditioned on another
quantity, for example on the mixture fraction Z or the reaction progress variable c is
necessary, since this is a central quantity for most turbulent combustion models. The
toolbox-tool condmeanfilt2 is employed to calculate the mean value, the maximum, the
minimum and the standard deviation of a 2D-variable conditioned on another one. The
corresponding 3D-tool is condmeanfilt3. Figure 5.18 shows the temperature conditioned
on the mixture fraction Z of our 2D-flame.

• Often, the relationship between two variables is even more interesting than the statistics
of single variables. The tool correlationgen displays these relationships in scatter plots
and calculates the corresponding correlation coefficient.

• A further tool, statbivar, allows to calculate correlation coefficients and joint PDFs and
to display them in contour plots. In order to demonstrate these tools we consider flame
thickness and strain rate of our 2D-flame. Figure 5.19 shows a contour plot of the joint
PDF of the two variables.
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The statistic tools with their input and output arguments are listed in Table D.5.

5.2.7 Tools to determine appropriate dimensions of manifolds

The procedure to find the appropriate dimension for a low-dimensional manifold, allowing a
reduced description of chemical processes was explained in Section 2.6.3.

• The first step was to investigate the state space and to find clouds of nearest neighbors in
state space. We defined clouds in three different ways. Therefore, there are three different
kinds of tools to construct our clouds.

– Tools to investigate species mass fractions only and define clouds by a certain number
of N nearest neighbors.

– Tools to consider species mass fractions and temperature and define clouds by a
certain number of N neighbors.

– Tools to consider species mass fractions and define clouds by a prescribed radius in
state space.

As we know from Section 2.6.3, weighting plays a significant role for our results.

– Therefore, there are tools considering original species mass fractions

– and tools considering weighted species mass fractions (and temperature).
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The following tools are available:

– In order to find clouds for original species mass fractions the tool cloudorgvarnb is
used. The distances in state space are calculated by Eq. (2.50).
For weighted species mass fractions the tool cloudorgvarnbweigh is used. Weighted
mass fractions Yk,w are determined from the original mass fractions Yk in the follow-

ing manner: Yk,w = Yk−min(Yk)
max(Yk)−min(Yk)

.

The output is a three-dimensional NS - by - N - by - Cl matrix, where NS is
the number of species, N is the number of neighbors and Cl is the number of clouds.

– In order to consider species and temperature the tools cloudorgvarnbtemp and
cloudorgvarnbweightemp are used. Because of the great difference in magnitude
between temperature and species mass fractions often the weighted version is more
suitable. The output is now a three-dimensional NS+1 - by - N - by - Cl matrix.

In all tools points which are nearly identical in state space are considered as one point.
To summarize similar points to one point the tools call the Matlab internal tool iuniq.
The tools consider about 3000 cloud centers. The number of neighbors is a user-defined
option. An appropriate number of neighbors is typicaly between twelve and 25.

– In order to find clouds defined by a prescribed radius the tools cloudorgvarradweight
is used. As for a meaningful analysis, the number of points in the cloud must be
somewhat larger than the dimension of the full state space, the tool considers only
hyperspheres containing at least 12 points. Outputs are correlation coefficients, mean
correlation coefficients for one to five dimensional reconstructions and the number
of points in the clouds.

• In the next step we have to check whether the clouds can be approximated by a linear
subspace. We use Singular Value Decompositions (SVD) of the Cl NS × N matrices
and then we calculate lower dimensional approximations for those matrices according
to Eq. (2.55) as described in Section 2.6.3. The appropriate tool is svdmatrrecl. It
calculates singular values for the matrices of the original cloud and one- to five-dimensional
approximations for the matrices in the cloud.

• The final step is to determine the quality of our approximations. This can be done in two
ways. We can consider deviations between original and reconstructed clouds (matrices)
or we can consider correlation coefficients.
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– The tool to calculate the deviations is called devorgrecl.
The deviations are normalized by the deviation for dimension zero. (Thus the devi-
ations are independent of the cloud size). The normalized deviations are calculated
according to Eq. (2.56).

– The tool to calculate the correlation coefficients and mean correlation coefficients is
called corelmatrorgmatrrecl. The correlation coefficients are calculated according
to Eq.(2.57).

The tools to investigate manifolds with their input and output arguments are listed in Table D.6.

5.2.8 Tools in batch mode and parallelized tools

The tools mentioned in Sections 5.2.2 and 5.2.3 calculate flame thicknesses or integral values at
one certain point on the flame front. Often, we are interested in these values all over the flame
front or surface. Therefore, the toolbox also offers a batch mode for these tools considering
several or all points of the flame. The tools available in batch mode are listed in Table D.7.
The batch computations are typically very time-consuming, especially along non linear cuts
and for 3D flames. Therefore, for those tools a parallelized version was developed.
When thinking about parallel computing, we can loosely divide most algorithms used into two
types: data parallel (or fine-grained parallel) and task parallel (or coarse-grained parallel) com-
putation. Data parallelism refers to performing computations involving short, identical opera-
tions on large datasets in parallel lockstep, then communicating the results to other processors
before the next operation. Task parallelism refers to performing longer, non-communicating
computations in parallel, and then gathering the results at the end for analysis. The coarse
grained computation is distributed uniformly over the number of parallel processors. The com-
putations of the individual iterations are performed in complete isolation of the other iterations.
Therefore, task parallelism requires that the computation being performed is independent over
the iterations [53, 54]. Unrolling the for-loops in our tools working in batch mode is a typical
case of task parallelism.
At the beginning the program Star-P was used for parallelizing the developed post-processing
toolbox. Star-P was originally developed at the Massachusetts Institute of Technology. In-
teractive Supercomputing (ISC) was launched to commercialize Star-P. Star-P runs inside of
Matlab working environment. Star-P software runs on both the client and the server. To use
Star-P with Matlab, the user needs only one Matlab license, which is installed on the client
or front end. No copies of Matlab are required on the parallel computer since Star-P uses
dedicated numerical libraries to perform server-based calculations. This is the great advantage
of Star-P when running parallelized tools on a cluster [53]. In 2009 ISC, and with ISC Star-P
was bought by Microsoft and was not developed further. All parallel calculations were done at
the Leibnitz Rechenzentrum (LRZ) in Munich. Since Star-P is not supported any more by the
LRZ all parallelized tools had to be written in Matlab. The drawback when using directly
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Matlab for parallelizing is that one can only use as many workers as licensing allows.
The time profit of parallelized tools compared to the standard tools is around a factor of
six when using eight Matlab-workers. Figure 5.20 shows the computing time differences for
three selected parallel and standard tools. It is observed that a very good speed-up is obtained.
Therefore, the end-users are encouraged to use the parallel version of the tools whenever enough
Matlab-licenses are available.
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Chapter 6

Selected examples of applications

6.1 Analysis of a cold flow field

In Sections 2.1 and 4.1 we discussed the different behavior and the different scales for 2D- and
3D turbulence (especially the enstrophy and the energy cascade). In this section we demonstrate
how the turbulence tools we introduced in Section 5.2.4 can be used to compare and analyze
the velocity fields of a 2D and a 3D turbulent case.

• We begin with the visualization of the streamlines of both velocity fields using the tools
streamsliceplot2 and streamlines3. Figures 6.1 and 6.2 show the streamlines of both
turbulent velocity fields.
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Figure 6.1: Streamlines of the
2D turbulent velocity field

Figure 6.2: Streamlines of the
3D turbulent velocity field
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• Next, we determine the following quantities for both velocity fields: (see also Table 6.1)

– vorticity,

– autocorrelation functions,

– fluctuations and rms values of fluctuations,

– turbulent kinetic energy,

– energy spectrum,

– integral length scale,

– turbulent dissipation rate,

– micro-scale of Taylor,

– micro-scale of Kolmogorov.

• Vorticity
Figure 6.3 shows the 2D-vorticity field. The vorticity was calculated here with a fourth-
order scheme using the tool vort2dord4. The fourth-order scheme is a good compromise
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because it is far more accurate than the second-order scheme and the calculation is faster
than for the sixth-order scheme. Figure 6.4 shows the differences in vorticity when it is
calculated with a second-order and a sixth-order scheme. Figure 6.5 shows the differences
in vorticity when it is calculated with a fourth-order and a sixth-order scheme. In the
second case the differences are significantly smaller than in the first one. In the first case
the maximum difference is 5.2·103 s−1 or 12.5 % of the maximum value of the vorticity
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calculated with a sixth-order scheme. In the second case the maximum difference is
1.3·103s−1 or 3.1 % of the maximum value of the vorticity calculated with a sixth-order
scheme.
From the vorticity we then calculate the enstrophy according to Eq. (4.28) using the tool
enstrophy.

• Autocorrelation functions
For both velocity fields we compute the autocorrelation functions between two points
along the lines in x-direction according to Eq. (4.12), using the tools corrfunctline and
corrfunctionall3all. From the auto-correlation functions we determine the integral
length scale. Figure 6.6 shows the auto-correlation curve of the 2D field calculated along
all lines of the velocity field using the tool corrfunctline. Figure 6.7 shows the auto-
correlation curves of the 3D velocity field. As expected the correlation coefficient is 1 when
the distance between the two points is zero. The curve is monotonously decreasing until
the correlation coefficient is zero when the distance is equal or greater than the integral
length scale. The integral length scale is the length where the correlation coefficient is
zero, leading to the values listed in Table 6.1.

• Spectra
Using the tools spectrum2d and spectrum3d we first calculate velocity fluctuations in the
physical space, shift them into Fourier space and calculate the energy spectra according
to Eqs.(C.5), (C.6), (C.7). Figure 6.8 shows the energy spectrum over wavenumbers for
the 2D velocity field. Figure 6.9 shows the energy spectrum over wavenumbers for the 3D
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velocity field. For both curves we plot the famous κ−5/3- Kolmogorov slope of Eq. (4.23).
For the 2D fields we also represent the κ−3 slope of the enstrophy cascade according to
Eq. (4.30). The 2D-slopes were determined using the tool slope2enst. The 3D-slope
was determined using the tool slope3.
The spectrum-tools additionally calculate the integral length scales. The length scales
obtained by the spectrum-tools are in good agreement with the length scales obtained
by the autocorrelation-tools. (See Table 6.1).

• Turbulent dissipation rate
Next we calculate the turbulent dissipation rates for the 2D velocity field according to
Eq. (4.31) using the tool dissip2dord4 and for the 3D field according to Eq. (4.24) using
the tool dissip3dord4.

• Micro-scale of Taylor
In addition to the integral scale we calculate the micro-scale of Taylor. Here, we calculate
the longitudinal scales for both cases according to Eq. (4.18).

• Microscale of Kolmogorov
We calculate the microscale of Kolmogorov according to Eq. (4.27). For the dissipation
rate we used a fourth-order scheme.
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quantity in 2D-turbulence in 3D-turbulence
rms values of fluctuations 1.88 m

s
2.27 m

s

normalized turbulent kinetic energy 1.78 m2

s2
3.8 m2

s2

normalized enstrophy 5.0·107 1
s

———

turbulent dissipation rate 3141 m2

s3
3900 m2

s3

integral length scale
from energy spectrum 1.6 mm 1.1 mm
integral length scale
from auto-correlations 1.5 mm 0.97 mm
micro-scale of Taylor(long) 397 µm 554 µm
micro-scale of Kolmogorov 33 µm 31.6 µm

Table 6.1: Quantitative results for the analysis of 2D and 3D turbulence data

Table 6.1 quantifies the large differences found concerning the turbulence properties in the 2D
and the 3D configurations.
After having demonstrated the interest of the toolbox for cold turbulence, it is time looking
now at turbulent flames.

6.2 Analysis of flame properties

As already mentioned the toolbox allows post-processing of 2D-flames as well as of 3D-flames,
for different fuels (hydrogen, hydrocarbons), for premixed as well as non-premixed flames. In
order to demonstrate the flexibility of the toolbox we investigate in what follows both, a 2D
non-premixed hydrogen/nitrogen/air-flame and 3D premixed flames.

6.2.1 Flame/turbulence interaction for a 2D non-premixed flame

Configuration
We investigate first a H2/O2-flame in a 2D velocity field. In order to obtain realistic burn-
ing conditions, the fuel (H2) is diluted in nitrogen. The Navier-Stokes equations are solved
using centered explicit schemes of order six except at the boundaries, where the order is pro-
gressively reduced to four. Temporal integration is realized with a Runge-Kutta algorithm of
order four. Boundary conditions are treated with the help of the Navier-Stokes Characteristic
Boundary Condition (NSCBC) technique [5, 99]. Non-reflecting boundaries are employed in
the x-direction while periodicity is assumed in the y-direction (Figures 6.10 to 6.12). The initial
conditions correspond to a global mixture ratio φ = 0.8. The stoichiometric mixture fraction
given by theory is then Zs = 1/(1 + φ) = 0.55.
We investigate three increasing values of the Reynolds-number (Re1=245, Re2=426, Re3=1800).
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In this manner, the influence of turbulence on flame properties can be quantified. We are mainly
interested in the influence of turbulence on:

• tangential strain rate,

• flame front curvature,

• flame thickness.

As we know from Section 4.2 it is important to investigate strain and curvature carefully be-
cause these effects can lead to partial or even total extinction of a flame. We define our flame
front as the stoichiometric isolevel of the mixture fraction Z at Z = 0.55. The boundaries of
the flame front in order to determine the flame thickness are defined by Z = 0.8 and Z = 0.2.
Figures 6.10, 6.11 and 6.12 show the corresponding flame fronts at the different Reynolds num-

X

Y

 

 

0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
0.55
0.8
0.2

Figure 6.10: Flame front
defined by stoichiometric
isolevel of mixture frac-
tion Z = 0.55 at Re=245

X

Y

 

 

0 0.005 0.01 0.015 0.02 0.025
0

0.005

0.01

0.015

0.02

0.025
0.55
0.8
0.2

Figure 6.11: Flame front
defined by stoichiometric
isolevel of mixture frac-
tion Z = 0.55 at Re=426

X
Y

 

 

0 0.005 0.01 0.015 0.02
0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02
0.55
0.8
0.2

Figure 6.12: Flame front
defined by stoichiomet-
ric isolevel of mixture
fraction Z = 0.55 at
Re=1800

bers. The increasing deformation of the flame with Re is clearly observed.

Results

• Figures 6.13, 6.14 and 6.15 show the tangential strain rates extracted along the different
flame fronts at the different Reynolds numbers. In order to calculate the strain rate we
use the tool strainratelev. We clearly recognize that amplitudes and frequencies of the
alterations are increasing with increasing Reynolds numbers.

• Figures 6.16, 6.17 and 6.18 show the curvatures extracted along the different flame fronts
at the different Reynolds numbers. In order to calculate the curvatures we use the tool
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Figure 6.13: Tangential
strain rate at Re=245
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Figure 6.14: Tangential
strain rate at Re=426
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Figure 6.15: Tangential
strain rate at Re=1800

kappanewlev. Again, we clearly recognize that amplitudes and frequencies of the alter-
ations are increasing with increasing Reynolds numbers, as expected.
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Figure 6.16: Curvature
of flame front at Re=245
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• Figures 6.19, 6.20 and 6.21 show the flame thicknesses along the flame fronts at the
different Reynolds numbers. The flame thickness is defined as the extension of the flame
between the boundaries Z = 0.2 and Z = 0.8 along a linear cut. In order to calculate
the flame thickness in all points along the flame front we use the tool flamethicklinb.
Concerning the influence of turbulence on the flame thickness there are contradictory
observations in the literature, that are discussed for example in [25]. In our case maximum
thickness is increasing with increasing Reynolds number. On the other hand the minimum
thickness is decreasing with increasing Reynolds numbers as well. This means that, for
higher turbulence, both thicker flames and thinner flames are observed simultaneously,

125



0 0.005 0.01 0.015 0.02
0

1

2

3

4

5

6

7

curvilinear flame coordinate

fla
m

e 
th

ic
kn

es
s/

m
m

Figure 6.19: Thickness
of flame front between
Z = 0.2 and Z = 0.8 at
Re=245

0 0.005 0.01 0.015 0.02 0.025 0.03
0

2

4

6

8

10

12

curvilinear flame coordinate

fla
m

e 
th

ic
kn

es
s/

m
m

Figure 6.20: Thickness
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Re=426
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Figure 6.21: Thickness
of flame front between
Z = 0.2 and Z = 0.8 at
Re=1800

explaining controversial discussions in the scientific literature. Again the frequencies in
alteration are increasing with increasing Reynolds numbers.

quantity Re min mean max std
strain rate[1/s] 245 -1619 423 3949 1165
strain rate[1/s] 426 -3909 839 3641 1404
strain rate[1/s] 1800 -2161 1326 5622 1759
curvature [1/m] 245 -1215 -0.9 2570 543
curvature [1/m] 426 -4631 7.2 10260 965
curvature [1/m] 1800 -4925 4.4 9602 1147
thickness [mm] 245 0.85 2.7 6.4 1.6
thickness [mm] 426 0.75 3.0 11.9 1.6
thickness [mm] 1800 0.6 3.1 13.5 2.1

Table 6.2: Statistics of strain rate, curvature and flame thickness

As a whole, the standard deviation of all three flame properties increase with the Reynolds
number, i.e. with the turbulence intensity. This is particularly true for the curvature, the
flame thickness being only slightly affected.

Let us now concentrate on the more interesting case of a 3D turbulent flame.
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6.2.2 Flame/turbulence interaction for 3D premixed flames

Configuration
We are interested in the behavior of premixed flames expanding in a three-dimensional tur-
bulent isotropic velocity field. This situation typifies for example the flame development after
spark ignition in a gas turbine. We investigate two cases: Case 1: A methane-air flame at
low Reynolds number (Re=110) and Case 2: A synthetic gas flame at high Reynolds number
(Re=2300). In both cases we define the flame front as an isosurface of the mass fraction of
CO2:
Y(CO2)=0.45·max Y(CO2). This value corresponds to the steepest temperature gradient in
the associated one-dimensional laminar premixed flame.
In the first case a fully premixed methane-air flame interacts with an initially homogeneous and
isotropic turbulent flow field within a three-dimensional computational domain. The length of
this domain is 5 mm in each direction, discretized with 101 grid points. Figure 6.22 shows the
flame front of the low Reynolds number methane-flame.
In the second case we investigate a premixed synthetic gas flame at Re=2300. The length of
the domain is 15 mm in each direction, discretized with 201 grid points. Figure 6.23 shows the

Figure 6.22: Flame front of low Reynolds
number methane flame

Figure 6.23: Flame front of high Reynolds
number synthetic gas flame

flame front of the high Reynolds number synthetic gas flame.
We recognize clear differences in the two flame surfaces. While the surface of the low Reynolds
number flame is quite smooth, the surface of the high Reynolds number flame is highly wrinkled.
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We are interested in flame/turbulence interaction especially in terms of strain and curvature
because they control extinction limits. As we already know, turbulent combustion modeling
focuses on the closure of mean burning rates [21, 100, 145]. An important quantity to model
the burning rate is the scalar dissipation rate introduced in Section 4.2. Premixed flames prop-
agate towards the mixture of the fresh gases with the displacement speed we introduced in
Section 4.2. These quantities are determined by the gradient of the reaction progress variable.
Therefore, we investigate this variable carefully.
We begin with the investigation of single flame quantities. For modeling purposes, the interre-
lation between these quantities is even more interesting. In order to find possible correlations
between our variables we will then calculate bidimensional probability density functions and
correlation coefficients of the variables of interest.

Single quantities

• We then calculate the tangential component of the strain rate according to Eq. (4.38)
using the tool strnlev3: Figure 6.24 shows the PDF of the tangential strain rate along
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Figure 6.24: PDF of tan-
gential strain rate along
flame front of Case 1
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the flame surface of the Case 1 flame. Because the surface of the high Reynolds number
flame is more interesting we show for this case the tangential strain rate along the flame
surface (see Figure 6.27).

• How to calculate curvatures on 3D surfaces is explained in Appendix B. The mean
curvature was calculated according to Eq. (B.9). In order to calculate the curvatures we
use the tool curvlev3. Figure 6.25 shows the PDF of mean curvature of the flame surface
of the Case 1 flame. Figure 6.28 shows the mean curvature of the Case 2 flame.
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Figure 6.27: Tangential strain rate along
flame front of Case 2 flame

Figure 6.28: Mean curvature of flame front
of Case 2 flame

• The thermal thickness δ0
L was introduced in Section (4.2.1) and calculated according to

Eq. (4.36) using the tool flamethicklintherm3b. Figure 6.26 shows the PDF of the
thermal flame thickness of the Case 1 flame.

In order to calculate the statistical moments we use the tool statvar3. Table 6.3 shows the
statistical moments of order one to four for the above quantities for both flames. The deviation
from a Gaussian function is particularly clear for the 3D case.

quantity mean std skewness kurtosis
Case 1: strain rate [1/s] 1024 2217 0.126 3.24
Case 2: strain rate [1/s] 2301 6164 0.402 7.57
Case 1: mean curvature [1/m] 1029 915 0.96 4.6
Case 2: mean curvature [1/m] 264 1865 -0.975 13.9
Case 1: thermal thickness [mm] 0.508 0.101 0.953 3.8
Case 2: thermal thickness [mm] 0.65 0.0845 0.786 6.26

Table 6.3: Moments of order one to four of tangential strain rate, mean curvature and ther-
mal flame thickness of both flames
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Interrelations between the single quantities
First, we are interested in possible correlations between different flame quantities like strain
rate, curvature and flame thickness. In order to find correlations we investigate the interrelation
between two of the above variables by considering a bidimensional PDF of the two variables
using the tool statbivar3d.

• Interrelation: tangential strain-rate - mean curvature
Figure 6.29 shows the plot of the bidimensional PDF of tangential strain rate and mean
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Figure 6.29: PDF of tan-
gential strain rate and
mean curvature of flame
front of Case 1 flame
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curvature of the Case 1 flame. We recognize a (weak) negative correlation between the
two variables. This negative correlation is consistent with the literature [56].

• Interrelation: thermal flame thickness - mean curvature
Figure 6.30 shows the plot of the bidimensional PDF of thermal flame thickness and mean
curvature of the Case 1 flame. Here a clear correlation between the two variables can be
recognized.

• Interrelation: thermal flame thickness - strain rate
Figure 6.31 shows the plot of the bidimensional PDF of thermal flame thickness and
tangential strain rate of the Case 1 flame.

For both flames a positive correlation between thermal flame thickness and mean curvature and
a negative correlation between thermal flame thickness and strain rate can be recognized. This
positive correlation between thermal flame thickness and mean curvature is consistent with the
literature [119, 134].
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quantities correlation coefficient
Case 1: strain rate-mean curvature -0.31
Case 2: strainrate-mean curvature -0.081
Case 1: thickness-mean curvature 0.745
Case 2: thickness-mean curvature 0.286
Case 1: thickness-strain rate -0.20
Case 2: thickness-strain rate -0.163

Table 6.4: Correlations coefficients between strain rate, curvature and flame thickness for
both flames
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Interrelation between quantities and surface density function
Secondly we are interested in correlations between the above flame quantities and the gradient
of the reaction progress variable |∇c|.

• Surface density function
We calculate the reaction progress variable c according to Eq. (4.43) and the absolute
gradient of the reaction progress variable |∇c|, also called surface density function (SDF).
In order to calculate the reaction progress variable c and the surface density function |∇c|
we use the tool reacprog3co2.

• Interrelation: gradient of c - mean curvature
Figure 6.32 shows the plot of the bidimensional PDF of |∇c| and mean curvature of the
Case 1 flame. We recognize a clear correlation between the two variables.
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quantity correlation coefficient
Case 1: |∇c|-mean curvature -0.94
Case 2: |∇c|-mean curvature -0.38
Case 1: |∇c|-strain rate 0.286
Case 2: |∇c|-strain rate 0.233
Case 1: |∇c|-thickness -0.79
Case 2: |∇c|-thickness -0.637

Table 6.5: Correlations coefficients between quantities and |∇c| of both flames

• Interrelation: gradient of c - tangential strain rate
Figure 6.33 shows the plot of the bidimensional PDF of |∇c| and tangential strain rate.
We recognize a (weak) positive correlation between the two variables.

• Interrelation: gradient of c - thermal flame thickness
Figure 6.34 shows the plot of the bidimensional PDF of |∇c| and thermal flame thickness.
We recognize a clear negative correlation between the two variables.

For both flames we recognize a (strong) negative correlation between |∇c| and the thermal
flame thickness. The negative correlation between |∇c| and the mean curvature and the posi-
tive correlation between |∇c| and the strain rate are consistent with the literature [56].

Results
We found clear correlations:

• between the thermal flame thickness and the mean curvature of the flame surface,

• between |∇c| and the mean curvature,

• between |∇c| and the thermal flame thickness.

6.3 PDF modeling of a 3D nonpremixed hydrogen/air

flame

Modeling correctly the PDF of mixture fraction in turbulent reacting flows is an essential is-
sue [96, 100, 145]. PDF methods and different shapes of PDFs were discussed in Sections 3.4
and 4.3. Here we investigate the PDF of the mixture fraction in a 3D non-premixed hydro-
gen/air flame. The following results have been published in [35].
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Numerical configuration
A laminar nonpremixed flame of hydrogen diluted in nitrogen and burning in air (0.21O2+0.79N2

in volume) is first ignited in a laminar, one-dimensional configuration. Afterwards, the resulting
profiles are uniformly extended along the y- and z-directions and a three-dimensional field of
synthetic turbulence is imposed on top of it. A chemical scheme involving 9 species (H2, O2,
H2O, H, O, OH, HO2, H2O2, and N2) and 19 reversible elementary reactions is used to describe
H2 oxidation. The initial conditions correspond to a global mixture ratio φ = 0.8. The stoi-
chiometric mixture fraction given by theory is then Zs = 1/(1 + φ) = 0.56. The computational
domain is a cube of sides 1.0 cm with 200 grid nodes in each direction, yielding a uniform mesh
size of 50µm.

PDF of mixture fraction
For most models and in particular when using the RANS approach, the form of the PDF is
usually presumed, using either β- or γ-functions as given by Eqs. (6.1) and (6.2) respectively:

P̃β(Z; x, t) =
Za−1(1 − Z)b−1

Γ(a)Γ(b)
Γ(a + b) (6.1)

P̃γ(Z; x, t) =
Zc−1

dcΓ(c)
exp(−Z/d) (6.2)

where Γ denotes the γ-function. The parameters a, b, c and d are determined using the Favre-
averaged mean Z̃ and variance Z̃ ′′2 of the mixture fraction by

a = Z̃α1; b = (1 − Z̃)α1; α1 =
Z̃(1 − Z̃)

Z̃ ′′2
− 1

c = α2; d = α2Z̃; α2 =
Z̃

Z̃ ′′2

When using turbulent combustion models, Z̃ and Z̃ ′′2 are usually obtained through supplemen-
tary, approximate transport equations. On the other hand, these quantities are readily available
from the DNS data, considering the y- and z-directions as homogeneous, corresponding to sep-
arate realizations. For this analysis the central part of the numerical domain in x-direction
(flame zone) is separated in 9 identical cubic sub-regions with a side length of 1/3 cm (roughly
twice the integral scale of turbulence). This dimension is typical for the grid size employed in
the RANS computation of a turbulent flame. In each sub-region the Favre-averaged mean Z̃
and variance Z̃ ′′2 of the mixture fraction are computed by post-processing the DNS data at
t = 0.94τ , and are afterwards used to reconstruct the PDF of Z following Eqs.(6.1) and (6.2).
These reconstructed PDF are compared with the exact PDF obtained from the DNS data
within the corresponding sub-region, as exemplified in Figures 6.35 and 6.36. All functions
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Figure 6.35: PDF of mixture
fraction Z in the 6th sub-region,
where the best agreement is ob-
served with the model. DNS:
solid line; reconstruction with a
β-function: dashed line; recon-
struction with a γ-function: dash-
dotted line.

Figure 6.36: PDF of mixture
fraction Z in the 9th sub-region,
where the worst agreement is ob-
served with the model. DNS:
solid line; reconstruction with a
β-function: dashed line; recon-
struction with a γ-function: dash-
dotted line.

are normalized to obtain a probability of 100% over the full Z-axis. The obtained agreement
is quantified by computing the correlation between the exact and reconstructed curves. The
correlation coefficients are listed in Table 6.6. The correlations demonstrate the superiority of

Sub-region number β γ

1 0.992 0.910

2 0.977 0.851

3 0.932 0.625

4 0.947 0.811

5 0.977 0.937

6 0.992 0.928

7 0.962 0.819

8 0.980 0.962

9 0.823 0.559

full slab 0.928 0.769

Table 6.6: Correlation coefficient between the exact PDF and the reconstructed PDF using
β- or γ-function.

the β-function for reconstructing the PDF. Without any exception, the correlation associated
with the β-function is considerably higher than with the γ-function. As a whole, the recon-
struction with the β-function is in quite good agreement with the exact PDF, as observed for
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example in Figure 6.35. Nevertheless, in one from the 9 boxes (or 11%) the agreement with
both reconstructions is quite poor (Figure 6.36). This is the only case where the exact PDF
exhibits three clear peaks. It is known that a good reconstruction is not possible using β-
or γ-functions in such cases. The correlation obtained when carrying out the analysis for the
full slab composed of the nine sub-regions is also given in Table 6.6, demonstrating again the
superiority of the β-function reconstruction.

6.4 Chemistry reduction

As already mentioned in Section 2.6.3, most manifold methods are either working only for
a certain dimension of the manifold or they expect that the user already knows the required
dimension. We have developed a methodology to determine the appropriate dimension of a low-
dimensional manifold for reaching a defined level of accuracy. When the appropriate level is
found chemical source terms can be reconstructed based on that level. In order to demonstrate
our methodology we investigate an extensive DNS dataset of a non-premixed H2/N2/air-flame.
The following results were partly published in [156].

6.4.1 Flame configuration

To assess the influence of transport and chemistry onto the low-dimensional manifold and the
required dimension for a given accuracy, the analysis is performed on two DNS datasets. In the
first one we consider a flame with a detailed transport model with mixture-averaged diffusion
coefficients and with Soret effect. In the second one we keep diffusion processes as simple as
possible and consider a flame at unity Lewis number for all species.
In order to check the possible influence of the turbulence level on the findings, two different
Reynolds numbers Ret = u′lt/ν, built with the turbulent velocity u′ and the Integral length
scale lt, are considered for each flame. For the flame with detailed transport (DT) model,
the Reynolds numbers are 723 (Case DT-1) and 965 (Case DT-2). For the unity Lewis (UL)
number flame the lowest Reynolds number is 505 (Case UL-1) and the higher Reynolds number
is 1152 (Case UL-2). In both cases, a spatial discretization of 25 µm is sufficient to resolve all
relevant scales in the DNS.
Figures 6.37 and 6.38 show the temperature field and the state space for N2 and H2O of our
flame with detailed transport model at Ret = 965 for a single time step. Being embedded into
a turbulent flow field, the flame displays a complex, strongly distorted structure, with high-
temperature regions existing as isolated, separated islands. This strong interaction of flow and
chemistry is also evident from the mass fraction scatter plot of N2 and H2O from the same DNS
data. In Figure 6.38 we plot only every tenth point for better representation and less memory
requirements.

135



X

Y

50 100 150 200 250 300 350 400

50

100

150

200

250

300

350

400

Figure 6.37: Turbulent tem-
perature field of the flame with
detailed transport model at
Re=965.
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Figure 6.38: State space of the
flame with detailed transport
model at Re=965.

6.4.2 Results for detailed transport model

Let us start by stating that the Reynolds number was found to have no noticeable influence on
the results in the investigated range. Exactly the same conclusions apply for Case DT-1 and
DT-2. As a consequence, and in order to increase the statistical content, the results obtained
for both values of Re will be combined in what follows. After initializing the computation, the
DNS results obviously vary with time. For datasets from the very first time steps, the required
dimension for a good reconstruction is simply one. This is understandable, since the system
is still very close to the initial conditions used for the DNS, which were taken from a laminar
flame.
Later on, the DNS delivers a truly turbulent flame. Five selected output times have been re-
tained to carry out the analysis, for 0.84τt < t < 6.16τt, where τt = lt/u

′ is the characteristic
time of turbulence. Since it was finally found that the result was independent of the solution
time step, combinations from different time outputs will be presented.
All these first results are for 15-point neighborhoods. The impact of scaling weights will be
later discussed as well.
Figure 6.39 shows scatter plots of one- to nine-dimensional reconstructions vs. original species
mass fractions of HO2. All points from the considered clouds in composition space (about 3000
for each condition) are drawn.
It is seen that the reconstruction quality is improving significantly as the dimension is increased
from three to four, while comparatively small further improvements are obtained for dimensions
higher than four. For an ideal reconstruction, the points would reside exactly on the diagonal
in each diagram.
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Figure 6.39: Scatter plots of original and reconstructed mass fractions of HO2 for one- to nine-
dimensional locally linear reconstructions (from left to right and top to bottom). Data points
sampled from DNS with detailed transport model, for both Reynolds numbers and all five
output times considered (without scaling). In the diagram, the mass fractions have been scaled
by a factor of 10000.

As a more comprehensive measure, Figure 6.40 shows the correlation coefficients between
original and reconstructed species mass fractions (without scaling). For four-dimensional recon-
structions, the mean correlation coefficients are better than 0.9 for all species. For the major
species, mean correlation coefficients above 0.9 are obtained already with three dimensions.
Figure 6.41 shows the mean value, taken over all clouds, of the normalized deviations δ

(d)
i for

all nine species mass fractions (without scaling). Deviations are normalized by deviation for
zeroth-order approximation. We recognize a significant difference in the deviations of major
species (O2, N2, H2O) and minor species (H2O2, H, HO2). The mean deviation averaged over
all nine species is better than 10% for a four-dimensional approximation (see Figure 6.42).
In order to demonstrate the influence of scaling, the analysis was repeated for a scaled version
of the species mass fractions, as described in Section 2.6.3.
The influence of scaling is obvious. For three dimensional approximations, the deviation for
major species H2, H2O, N2 and O2 is larger compared to the unscaled case, while for minor
species, especially for H2O2 and HO2, the deviation is smaller compared to the unscaled case.
For the scaled case, the difference between major and minor species nearly vanishes. Even
H2O2 and HO2 are now reconstructed well if a three-dimensional approximation is used.
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Figure 6.40: Correlation
coefficients for unscaled
mass fractions. DNS
data from detailed trans-
port model. Investi-
gated neighborhood size
15 points.
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Figure 6.41: Mean nor-
malized deviations for
unscaled mass fractions.
DNS data from detailed
transport model. Investi-
gated neighborhood size
15 points.
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Figure 6.42: Mean nor-
malized deviations for
unscaled mass fractions
from detailed transport
model. Deviations are
averaged over all nine
species.

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sv kept

co
rr

el
at

io
n 

M
or

g 
M

re
c

 

 

H
H2
H2O
H2O2
HO2
N2
O
O2
OH

Figure 6.43: Correlation coef-
ficients for scaled mass frac-
tions. DNS data from detailed
transport model. Investigated
neighborhood size 15 points.
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Figure 6.44: Mean normalized
deviations for scaled mass frac-
tions. DNS data from detailed
transport model. Investigated
neighborhood size 15 points.

Figures 6.43 and 6.44 show correlation coefficients and differences δ for the weighted species
mass fractions. Four dimensions are again required to achieve correlation coefficients better
than 0.9 and mean weighted deviations better than 10% for all species. The scaling strongly
influences the relative reconstruction accuracy between different species, but does not influence
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the overall dimension required to meet the accuracy criterion. However, while mean deviations
below 10% were only observed in the average in Figure 6.42 (without scaling), this condition is
now met by all species in Figure 6.44. Therefore, scaling leads as expected to a similar behavior
for all species.

6.4.3 Results for simplified transport model

To separately assess the influence of transport and chemistry onto the required dimension for a
given reconstruction accuracy, additional DNS data have been considered from a flame that was
computed with unity Lewis numbers for all species. In what follows, we again consider DNS
data collected from two Reynolds numbers (505 and 1152) and five time outputs. Again, both
scaled and unscaled species mass fractions were considered. Only the results for the 15-point
neighborhoods are discussed.
Figures 6.45 and 6.46 show the corresponding correlation coefficients and mean deviations for
the unscaled mass fractions.

Again we recognize a significant difference in the behavior of major species (O2, N2, H2O)
and minor species (H2O2, H, HO2). For three-dimensional approximations, the correlation
coefficients are already approaching the value one, and reconstructed and original species mass
fractions become nearly identical, meeting the retained accuracy criteria: correlation coefficients
are all larger than 0.9, and normalized deviations (mean value averaged over all nine species)
are below 10%, in spite of the slightly higher value for H2O2.
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Figure 6.45: Correlation
coefficients for unscaled
mass fractions. DNS
data from simplified
transport model. Inves-
tigated neighborhood
size 15 points.
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Figure 6.46: Mean nor-
malized deviations for
unscaled mass fractions.
DNS data from simplified
transport model. Investi-
gated neighborhood size
15 points.
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Figure 6.47: Mean nor-
malized deviations for
unscaled mass fractions
from simplified transport
model. Deviations are
averaged over all nine
species.

Figure 6.47 shows the normalized deviations averaged over all nine species. As can be seen,
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the dimension required for an accurate reconstruction is three.
Considering now scaled mass fractions, the reconstruction of the major species is improving
more slowly with increasing dimension, compared to the unscaled case. On the other hand,
the progress is faster for the minor species. Figures 6.48 and 6.49 show correlations and mean
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Figure 6.48: Correlation coef-
ficients for scaled mass frac-
tions. DNS data from simpli-
fied transport model. Inves-
tigated neighborhood size 15
points.
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Figure 6.49: Mean normalized
deviations for scaled mass frac-
tions. DNS data from simpli-
fied transport model. Inves-
tigated neighborhood size 15
points.

deviations for the scaled case. For a three-dimensional approximation, the values for correla-
tion coefficient and deviation of H2O2 are now similar to the corresponding values for all other
species. Both accuracy criteria are fulfilled again. Correlation coefficients for all species are
greater than 0.9 and nomalized deviations (mean value averaged over all nine species) are below
10%. This means, using both scaled and unscaled mass fractions, three dimensions are required
to meet the accuracy criterion for all species.
Compared to the case with detailed transport, the data from the simplified transport model
require one dimension less for the same reconstruction accuracy. This difference of one dimen-
sion between simplified and detailed transport model is understandable on the basis of the
elemental composition of the mixture. This elemental composition (given by the mass fractions
of the three elements H, O and N) can not be altered by chemical reactions, but only by mixing
processes. For the simplified transport model, the element composition is (for given boundary
conditions) determined by one single quantity, the mixture fraction. There is thus one degree of
freedom for the mixing field. In contrast, for the detailed transport model, the three elements
H, O and N can be varied independently by differential diffusion. But, since the element mass
fractions have to sum up to 1, only two degrees of freedom remain for the mixing field.
Apparently, in both cases (detailed and simplified transport), two additional degrees of free-
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dom (corresponding to two additional dimensions of the underlying low-dimensional manifold)
are induced by the dynamics of chemistry. The combined dynamics of mixing and chemistry
then yield the total of three (simplified transport model) or four (detailed transport model)
dimensions for the considered hydrogen/air system.

6.4.4 Analysis including temperature

In the next step, we consider the temperature as additional state vector component. Otherwise,
we follow the same procedure as above, first determining neighbourhoods, applying an SVD to
obtain locally linear approximations, and reconstructing data. Because of the large difference in
magnitude between temperature and species mass fractions, only the scaled case is considered.
The results obtained with state vectors containing temperature are almost identical to those
obtained from state vectors without temperature. Again, three dimensions are needed for the
simplified transport model, and four dimensions are needed for the detailed model, keeping
the same quality criterion. Figures 6.50 and 6.51 show the mean correlations for the detailed
transport model and the mean correlations for the simplified transport model, respectively.
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Figure 6.50: Correlation coeffi-
cients between original and re-
constructed scaled mass frac-
tions and temperature for one
to five-dimensional reconstruc-
tions. DNS data from detailed
transport model. Investigated
neighbourhood size 15 points.
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Figure 6.51: Correlation coeffi-
cients between original and re-
constructed scaled mass frac-
tions and temperature for one
to five-dimensional reconstruc-
tions. DNS data from detailed
transport model from simpli-
fied transport model. Inves-
tigated neighbourhood size 15
points.
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6.4.5 Neighbourhoods based on prescribed radius

The requirement for the point clouds is that they be sufficiently small to allow a good local
approximation of the manifold by a linear structure. This can be achieved by selecting a
predefined small number of close points for constructing the cloud (like it has been performed
in the previous sections), or also by defining a prescribed radius of the cloud. Therefore, clouds
are now considered which are constructed from all data points in a state-space hypersphere
of a given radius around a center point. For a meaningful analysis, the number of points in
the cloud must be somewhat larger than the dimension of the full state space. Therefore, only
hyperspheres containing at least 12 points are considered, a condition first met for spheres with
radius 0.05. The results regarding the dimensionality are the same as for clouds based on a
fixed number of neighbours: To meet the quality criterion, four dimensions are required for the
detailed transport model and three dimensions are required for the simplified transport model.
Note that those clouds then differ considerably in their number of neighbours. In the case of
the detailed transport model the considered clouds had 114 neighbours in the average, while
the maximum size exceeded 1000. Figures 6.52 and 6.53 show the mean correlations for the
detailed transport model and for the simplified transport model, respectively.
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Figure 6.52: Mean correlations
between original and recon-
structed scaled mass fractions
for one to five-dimensional
reconstructions. DNS data
from detailed transport model.
Neighbours are sampled in a
cloud of radius 0.05.
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Figure 6.53: Mean correlations
between original and recon-
structed scaled mass fractions
for one to five-dimensional re-
constructions. DNS data from
simplified transport model.
Neighbours are sampled in a
cloud of radius 0.05.
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6.4.6 Impact of large neighborhoods

Finally, the impact of very large neighborhoods has been considered. We consider clouds with
a large number of neighbors, namely 400 and clouds with a large radius in composition space,
namely 0.5. Results are discussed for the detailed transport model for scaled species mass
fractions only. Figure 6.54 shows the correlation coefficients for clouds with 400 neighbors,
while Figure 6.55 shows the correlation coefficients for clouds with radius 0.5.

1 2 3 4 5
0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

sv kept

co
rr

el
at

io
n 

M
or

g 
M

re
c

 

 

H
H2
H2O
H2O2
HO2
N2
O
O2
OH

Figure 6.54: Correlation
coefficients between original
and reconstructed scaled
mass fractions for one to
five-dimensional reconstruc-
tions. DNS data from detailed
transport model. Investigated
neighbourhood size 400 points.
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Figure 6.55: Correlation
coefficients between original
and reconstructed scaled
mass fractions for one to five-
dimensional reconstructions.
DNS data from detailed trans-
port model. Neighborhoods
are sampled in a cloud of
radius 0.5.

To obtain the same reconstruction quality, one dimension more is now required for the larger
neighborhoods, compared to the small ones. In both cases, for clouds with 400 neighbors as well
as for clouds with radius 0.5 five dimensions are now needed to obtain correlation coefficients
better than 0.9, compared to four dimensions with 15-neighbor clouds (see Figure 6.43) and
clouds of the small radius 0.05 (see Figure 6.52). This is a further indication of the non linearity
of the evolutions in composition space.
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6.5 Conclusion

All these examples have demonstrated the versatility and the interest of the developed Matlab
library to post-process complex DNS data describing turbulent flames. Obviously, many further
examples could be included, since only a small number of more than 200 tools existing in the
library have been used in Chapter 6. This will be the task of all library users listed in Table 1.1,
together collegues of the group in Magdeburg.
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Chapter 7

Summary

In this project a large toolbox for post-processing and analyzing turbulent flames was devel-
oped using the commercial program Matlab. The toolbox works for 2D and 3D flames, for
premixed and non-premixed regimes, for hydrogen and for hydrocarbon fields. This toolbox
is particularly useful to analyze DNS data, but could also be used in principle for many other
cases, for instance experimental data.
A phenomenological description of turbulent flow fields, of premixed and of non-premixed flames
was first given. The balance equations to describe turbulent reacting flows and methods to solve
the system with the focal point on direct numerical simulations were introduced. The necessity
of post-processing the huge amount of data obtained by DNS was demonstrated.
Reaction kinetics and methods to reduce reaction kinetics, in particular manifold methods were
discussed. A methodology to find the appropriate dimension of a low-dimensional manifold for
reaching a given level of accuracy was presented.
Scales and quantities that can be post-processed using the toolbox were explained. The pro-
gram Matlab was introduced and all the tools were presented in a systematic manner.

The toolbox contains tools for a direct geometrical analysis of the raw data,
tools to investigate the flame structure,
tools needed to investigate and quantify the properties of turbulent flow fields,
tools to investigate the interaction between flames and turbulence,
tools allowing a statistical investigation of the variables of interest and
tools to determine appropriate dimensions of manifolds.
For the most time-intensive tools running in batch mode a parallelized version was developed.
As a whole more than 200 tools are now available in the library. Twenty-seven different research
groups worldwide are using the toolbox in addition to the university of Magdeburg.
Important properties of flow fields and flames were analyzed using the Matlab toolbox. Two-
dimensional and three-dimensional turbulent flow fields were investigated and compared. The
interaction between turbulence and flames was investigated, for 2D and 3D flames, for premixed

145



and non-premixed flames with different fuels.
As a final example the determination of the appropriate dimension for a low-dimensional
manifold describing the chemistry in an accurate manner was investigated. A non-premixed
H2/N2/air flame was chosen, with two different transport models. For a simplified transport
model with Lewis number one a dimension of three was found for the reduced manifold, while
for a detailed transport model the required dimension was four. This difference of one di-
mension can be explained on the basis of the elemental composition of the mixture. For the
simplified transport model the mixture fraction there is one degree of freedom for the mixing
field, the mixture fraction. For the detailed transport model, the three elements H, O and N
can be varied independently, but, since the element mass fractions have to sum up to 1, only
two degrees of freedom remain for the mixing field.

Outlook
The turbulence part of the toolbox offers tools to calculate space-dependent spectra. These
tools could be expanded to time-dependent spectra as well.

The present version of the toolbox contains parallel tools to unroll for-loops and to distribute
repetitive, independent tasks on different workers. The size of the datasets generated by direct
numerical simulations continues to grow and their handling can lead to memory or storage
problems during post-processing, especially for 3D-results. The next step could be to split the
domain and to extend the toolbox to parallel jobs with distributed arrays.

We have found in our last application example the dimension of a low-dimensional manifold for
hydrogen flames, but the employed methodology is also working for other flames. The investi-
gation can now be expanded to synthetic gas and methane flames, when enough DNS data are
available. When the appropriate dimension is found the next step would be to reconstruct the
chemical source terms.
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Appendix A

Methods of taking averages

There are three methods of taking averages. Which one is to be preferred depends on the flow
field. If the flow field is stationary random, classically averaging with respect to time is used. In
a similar manner for homogeneous turbulence averaging with respect to space is used. In cases
where the flow field is neither homogeneous nor stationary, time averaging and space averaging
are not possible. Instead a large number of experiments has to be considered. This kind of
average is called ensemble average.

• Space average
For homogeneous turbulence the space averaged mean value is defined:

φ(t0) =
1

2X

∫ +X

−X
φ(x, t0)dx (A.1)

• Time average
For a stationary turbulence the time averaged mean value is defined:

φ(x0) =
1

2T

∫ T

−T
φ(t, x0)dt (A.2)

• Ensemble average
In the most general case the ensemble averaged mean value is defined:

φ(x0, t0) =
1

N

N∑

i=1

φi(x0, t0) (A.3)

For stationary and homogeneous turbulence the three methods lead to the same result. This
is known as ergodic theorem.
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Appendix B

Geometrical quantities

Curvature
In differential geometry planar curves are often given in explicit form. For example a planar
curve is described by y = f(x). Then its curvature is defined by [15]:

k =
y′′

(1 + (y′)2)3/2
(B.1)

where y′ and y′′ are the first and second derivatives of y.
A surface f is represented through the parameters u and v as f(u, v). Curvatures on surfaces
are more difficult to define as there are infinitely many curves and directions of curves through
a point. As we know from Section 4.2.1 among them we can identify one direction of maximal
curvature and one direction of minimal curvature.
These directions are called the principal directions t1 and t2.
The magnitudes of the curvatures along the principal directions t1 and t2 are called principal
curvatures k1 and k2.
The term K = k1k2 is called the Gaussian curvature.
The term H = (k1 + k2)/2 is called the mean curvature.

From section 4.2.1 we know that curvature properties depend on the direction and the rate
of change of their normals. We calculate the unit normal vector n as follows:

n =
∂f
∂u

× ∂f
∂v

| |∂f
∂u

× ∂f
∂v

| |
(B.2)

The local differential geometry, which means principal, Gaussian and mean curvature, at a
point of a surface is classically described by the so-called Weingarten matrix. Therefore, we
need to determine the Weingarten matrix.
The elements of the Weingarten matrix are the coefficients of the first and second fundamental
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form of the surface [26].
The first fundamental form is defined by the following coefficients:

E =
∂f

∂u
· ∂f

∂u
F =

∂f

∂u
· ∂f

∂v
G =

∂f

∂v
· ∂f

∂v

with: E ≥ 0 G ≥ 0 EG − F 2 ≥ 0

The second fundamental form is defined by the following coefficients:

L =
∂2f

∂u2
· n M =

∂2f

∂u∂v
· n N =

∂2f

∂v2
· n

As the second fundamental form contains the normal vector it describes the curvature properties
of the surface.
The Weingarten matrix is calculated using the values of the first and second fundamental form
as follows:

W =
( E F

F G

)−1( L M
M N

)
(B.3)

Knowing the Weingarten matrix we can calculate

• the principal curvatures and principal directions that respectively correspond to the eigen-
values and eigenvectors of the matrix.

• the Gaussian curvature, which corresponds to the determinant of the matrix.

• the mean curvature, which corresponds to half the trace of the matrix.
The Gaussian curvature is hence calculated as follows:

K = det
[( E F

F G

)−1( L M
M N

)]
=

LN − M2

EG − F 2
(B.4)

The mean curvature is calculated as follows:

H =
1

2
trace

[( E F
F G

)−1( L M
M N

)]
=

EN − 2FM + GL

2(EG − F 2)
(B.5)

The principal curvatures are calculated by:

k1 = H +
√

H2 − K

k2 = H −
√

H2 − K (B.6)
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In computer results, however, points of planar curves and surfaces are given in implicit form:
A planar curve is then given in the form f(x, y) = 0.
A surface is then given in the form f(x, y, z) = 0.
The transfer of the above concept to implicit surfaces was derived by Dombrowski in the general
case of an n-dimensional space [27]. For the 3-dimensional space it is discussed in [52, 78, 142].
To calculate the curvatures again we need first- and second-order partial derivatives of f . For
convenience we use the following abbreviations:

fx =
∂f

∂x
, fy =

∂f

∂y
, fz =

∂f

∂z
,

fxx =
∂2f

∂x2
, fyy =

∂2f

∂y2
, fzz =

∂2f

∂z2
,

fxy =
∂2f

∂xy
, fxz =

∂2f

∂xz
, fyz =

∂2f

∂yz
.

Then, the curvature of a planar curve can be calculated in the following form [15]:

k =
(2fxfyfxy − f 2

xfyy − f 2
y fxx)

(f 2
x + f 2

y )3/2
(B.7)

The Gaussian curvature K of a surface can be calculated in the following form [78, 142]

K =
1

h2
[(f 2

x(fyyfzz − f 2
yz) + 2fyfz(fxzfxy − fxxfyz)

+f 2
y (fxxfzz − f 2

xz) + 2fxfz(fyzfxy − fyyfxz)

+f 2
z (fxxfyy − f 2

xy) + 2fxfy(fxzfyz − fzzfxy)] (B.8)

The mean curvature H of a surface can be calculated as [142], [78].

H =
1

2h3/2
[f 2

x(fyy + fzz) − 2fyfzfyz

+f 2
y (fxx + fzz) − 2fxfzfxz

+f 2
z (fxx + fyy) − 2fxfyfxy] (B.9)

where h = f 2
x + f 2

y + f 2
z .

The principal curvatures are calculated according to Eq. (B.6).

Surface area
We define the flame surface by a triangulated patch consisting of vortices and faces. The total
flame surface area is calculated as the sum of the areas of all triangles defined by the vortices
all over the patch. The areas of the triangles are calculated by the formula of Heron [15]:

A =
√

s(s − a)(s − b)(s − c) (B.10)

with s = (a + b + c)/2, where a, b, c are the lengths of the sides of the triangles.
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Appendix C

Fourier transforms

As mentioned in section 4.1.3 spectra can be obtained by Fourier transforms of velocity corre-
lations of the corresponding eddies. The relation between correlation functions and spectrum
functions as Fourier pairs was first introduced in turbulence theory by Taylor [132]. In this
section spectra and the relation between correlations and spectra are summarized shortly fol-
lowing the explanations of Batchelor [2] and Rotta [113]. More about the theory of spectra can
be found for example in [50, 103, 133].

Three-dimensional Fourier analysis
For homogeneous turbulence the spectrum tensor Φij and the correlation tensor Rij from
Eq. (4.10) form the following Fourier transform pair:

Φij(κ) =
1

(2π)3

∞∫

−∞

∞∫

−∞

∞∫

−∞

e−iκrRij(r)dr (C.1)

and

Rij(r) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

Φij(κ)eiκrdκ (C.2)

where r is the physical variable and κ is the Fourier variable or wavenumber vector. The
wavenumber has the dimension 1/length. To the nine components of Rij correspond nine spec-
trum functions which form the energy spectrum tensor Φij .

Considering Rij for |r|=0, Eq. (C.2) becomes:

Rij(0) = u′
i(x)u′

j(x) =

∞∫

−∞

∞∫

−∞

∞∫

−∞

Φij(κ)dκ (C.3)

Φij represents a density, in wavenumber space, of contributions to u′
i(x)u′

j(x). A knowledge

of all components of the tensor u′
i(x)u′

j(x) is necessary and sufficient to determine the energy
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associated with an arbitrary component of the velocity.

The energy spectrum function
Three-dimensional Fourier transforms are appropriate for a function of a vector argument, but
the tensors of the three-dimensional velocity spectra contain a lot of information, which is diffi-
cult to handle. A simpler though less complete description is provided by the energy spectrum
function E(κ), which is a scalar function of a scalar. Spectrum functions of a single scalar vari-
able can be obtained by averaging Rij(r) and Φij(κ) over all directions of the vector arguments
r and κ.

Sij(r) =
1

aπr2

∫
Rij(r)dA(r) (C.4)

Ψij(κ) =
∫

Φij(κ)dA(κ) (C.5)

where r = |r| and κ = |κ|, and the integration is over the surfaces of spheres of which dA is an
element. Sij(r) is the average correlation tensor for two points, distance r apart. Ψij(κ)dκ is
the contribution to the energy tensor u′

iu
′
j from wave-numbers whose magnitudes lie between

κ and κ + dκ.
Of particular physical interest is the energy spectrum function, which is half the trace of Ψij(κ).

E(κ) =
1

2
Ψii(κ) (C.6)

E(κ) describes the density of contributions to the kinetic energy k from all wavenumbers κ in
the infinitesimal shell κ ≤ |κ| < κ + dκ.
We obtain the total turbulent kinetic energy k by integration of E(κ) over all κ:

k =
1

2
u′

i(x)u′
i(x) =

∞∫

0

E(κ)dκ (C.7)

The longitudinal integral length scale is;

L11 =
π

2u2
rms

∫ E(κ)

κ
dκ (C.8)

In the Fourier space the dissipation rate ε is defined by:

ε =

∞∫

0

2νκ2E(κ)dκ (C.9)

Spectrum functions in isotropic turbulence
For isotropic turbulence [2, 113], the tensor Φij(κ) only depends on the single vector argument
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κ. Φii is a function of the wave number magnitude alone. The energy spectrum tensor in
Eq. (C.6) becomes:

E(κ) = 4πκ2 1

2
Φii(κ) (C.10)

The contribution to the total energy from that part of wave number space between spheres
of radii κ and κ + dκ is E(κ)dκ. The function E(κ) can be used as the single scalar function
defining Φij(κ). The spectrum tensor becomes:

Φij(κ) =
E(κ)

4πκ4
(κ2δij − κiκj) (C.11)

The energy cascade for two-dimensional turbulence
In Fourier space the enstrophy D is:

D =

∞∫

0

κ2E(κ, t)dκ (C.12)

The energy obeys the following conservation equation [73, 74]:

d

dt

∞∫

0

E(κ, t)dκ = −2ν

∞∫

0

κ2E(κ, t)dκ (C.13)

The enstrophy obeys the following conservation equation [73, 74]:

d

dt

∞∫

0

κ2E(κ, t)dκ = −2ν

∞∫

0

κ4E(κ, t)dκ (C.14)

Spectra
Spectra in 2D turbulence are discussed for example in [146]. In 2D turbulence the energy
spectrum function, Eq. (C.10), becomes:

E(κ) = πκΦii(κ) (C.15)

where E(κ) corresponds to the kinetic energy integrated on a circle of radius κ,
with:

Φij(κ) =
1

(2π)2

∞∫

−∞

∞∫

−∞

e−iκrRij(r)dr (C.16)

The integral length scale then becomes:

L =
2

u2
rms

∫ E(κ)

κ
d(κ), (C.17)
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Appendix D

Matlab tools
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Table D.1: Geometry tools

name task input output

flamefront draws flame front and boundaries X,Y,fdefine,level,s
iso1,iso2

plot

crestline calculates and plots crestline X,Y,t,cut,nf CREST,cc, plot
flamelength calculates length(s) of (several X,Y,fdefine,level,s,fig dflength,

parts) of flame flength
crestlength calculates length of crestline cc dflength, flength
flamethicklin calculates flame thickness defined as X,Y,xs,ys,nxs,nys, flthick

extension of a linear cut between fdefine, level, s,
boundaries iso1 and iso2 iso1, iso2
in a single point

flamethicknonlin calculates flame thickness along X,Y,xs,ys,fdefine,level, flthick
non linear cut between iso1, iso2 s, iso1, iso2
in a single point

flamethicklin calculates flame thickness defined as X,Y,xs,ys,nxs,nys, flthickcr
crest extension of a linear cut normal varbound, CREST,s,

to crestline in a single point iso1, iso2
flamethicknon calculates flame thickness along X,Y,xs,ys,varbound, flthickcr
lincrest non linear cut on crestline CREST, s, iso1, iso2

in a single point
flamethick calculates thermal flame X,Y,xs,ys,nxs,nys, flthickth300
lintherm thickness along linear cut using fdefine, level, s,

the maximal temperature gradient variable, iso1, iso2
in a single point

flamethick calculates thermal flame X,Y,xs,ys, flthickth300
nonlintherm thickness along non linear cut using fdefine, level, s,

the maximal temperature gradient variable, iso1, iso2
in a single point

flamethick calculates thermal flame X,Y,xs,ys,nxs,nys, flthickth300
linthermcrest thickness along linear cut normal varbound,CREST, s,
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Table D.1: Geometry tools (cont.)

name task input output

to crestline using variable
the maximal temperature gradient iso1, iso2,
in a single point

flamethicknon calculates thermal flame X,Y,xs,ys, varbound flthickth300
linthermcrest thickness along non linear cut CREST, s,

on crestline using variable
the maximal temperature gradient iso1, iso2
in a single point

flamethickc calculates flame thickness based on X,Y,xs,ys,nxs,nys, flthick
reaction progress variable c fdefine,c, level, s
in a single point

normal calculates normalized normal X,Y,variable xn,yn
vectors

normtoff calculates and plots normals X,Y,fdefine,level,s SNORM, plot
to flame front

normtocrest calculates and plots normals X,Y,CREST CRESTN, plot
to crestline

flamefront3 draws flame front and boundaries X,Y,Z,fdefine,level,s
iso1,iso2

plot

flamefrontslice plots orthogonal slice through flame front X,Y,Z,fdefine,level,s, plot
dsl,lsl,iso1,iso2

slicebatchorth batch of orthogonal slices through domain X,Y,Z,dsl,variable,v,sm plot
crestbatch computes and plots coordinates of X,Y,Z,t,level,s,cut fcrest,p

crestsurface
surfarea calculates area of a surface X,Y,Z,fdefine,level,s Area

defined as patch
flamethicklin3 calculates flame thickness along X,Y,Z,xs,ys,zs,nxs,nys,nzs, flthick3

linear cut between boundaries fdefine,dl,level,s,iso1,iso2
iso1, iso2 in a single point
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Table D.1: Geometry tools (cont.)

name task input output

flamethick calculates flame thickness along X,Y,Z,xs,ys,zs,fdefine, flthick3nonlin
nonlin3 non linear cut between iso1, iso2 dl,level,s,iso1,iso2

in a single point
flamethick calculates 3D flame thickness X,Y,Z,xs,ys,zs,nxs,nys,nzs, flthickth300
lintherm3 along linear cut based on fdefine,level,s,variable,

temperature gradient in a single point iso1,iso2
flamethick calculates 3D flame thickness along X,Y,Z,xs,ys,zs,fdefine,dl, flthickth300nl3
nonlintherm3 non linear cut based on temperature level,s,variable,iso1,iso2

gradient in a single point
flamethickc3 calculates flame thickness based on X,Y,Z,xs,ys,zs,nxs,nys,nzs, flthick3

reaction progress variable c fdefine,c,dl,level,s
in a single point

normal3 calculates normalized normal X,Y,Z,variable xn,yn,zn
vectors in a 3D field

normtoff3 calculates and plots normals X,Y,Z,fdefine,level,s,inc SNORM3
to flame front
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Table D.2: Structure tools

name task input output

flameindex calculates normalized flame X,Y,Y(H2),Y(O2), inn, in
index fdefine, level,s

reacprog calculates reaction progress X,Y, temperature c
variable based on temperature

reacprogco22d calculates reaction progress X,Y, Y(CO2) c, sdf, mv
variable based on CO2
and surface density function

mixfrac calculates mixture fraction Y(Species) X,Y Z(Bilger)
according to formula of Bilger

mixfacspec calculates mixture fraction based Y(Species) fH , fO, fN
on species

mixfracsyng calculates mixture fraction Y(Species) Z (Bilger)
according formula of Bilger

mixfacsyngspec calculates mixture fraction based Y(Species) fH , fO, fC , fN
on species

scalardissZ calculates scalar dissipation rate Z,st chired, chiredn
based on mixture fraction

scalardissc calculates scalar dissipation rate c,st chired, chiredn
based on reaction progress variable

crestextract extracts a variable along X,Y, crest, variable cc, cvar, plot
crestline of another one

extract extracts a variable along the X,Y,fdefine,level, xiso,yiso,siso,variso
isolevel of another one variable, s, fig fprob, plots

flamehot calculates values of a variable in var1,hval,lval,s,var2 var1red,var2red
user-defined hot region of the flame

linextract extracts a variable along a xmin,xmax,ymin,ymax, XX,YY,VV
linear cut through whole domain variable,xs,ys, plot
normal to flame front nxs,nys,dl, X,Y
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Table D.2: Structure tools (cont.)

name task input output

non extracts a variable along a non xmin,xmax,ymin,ymax, XX,YY,V
linextract linear cut through whole domain variable,xs,ys,nx,ny, plot

fdefine,dl,X,Y
lincut extracts a variable along X,Y,xs,ys,nxs,nys, xmin,xmax,ymin,

a linear cut with fdefine,variable,dl, ymax,xx1,yy1,vv1,
user-defined boundaries level,s, iso1,iso2 vv2,vvg,plot

lincutcrest extracts a variable along X,Y,xs,ys,nxs,nys, xmin,xmax,ymin,
a linear cut normal to crestline varbound,variable,dl, ymax,xx1,yy1,vv1,
with user-defined boundaries CREST,s,iso1,iso2 vv2,vvg,plot

nonlincut extracts a variable along a non X,Y,xs,ys,fdefine xmin,xmax,ymin,
linear cut with user-defined variable,dl,level,s, ymax,xx1,yy1,vv1,
boundaries iso1,iso2 vv2,vvg,plot

nonlincut extracts a variable along a non X,Y,xs,ys,varbound xmin,xmax,ymin,
crest linear cut from crestline with variable, dl,CREST,s, ymax,xx1,yy1,vv1,

user-defined boundaries iso1,iso2 vv2,vvg,plot
intcut calculates integral value along X,Y,xs,ys,nxs,nys, intvar
lin linear cut with boundaries fdefine,variable,dl

in a single point level,s, iso1,iso2
intcut calculates integral value along X,Y,xs,ys,nxs,nys, intvar
lincrest linear cut normal to crestline varbound,variable,dl

with boundaries in a single point CREST,s,iso1,iso2
intcutnon calculates integral value along X,Y,xs,ys,fdefine intvarn
lin nonlinear cut with boundaries variable, dl,level,s

in a single point iso1,iso2
intcutnon calculates integral value along X,Y,xs,ys,varbound intvarn
lincrest nonlinear cut from crestline variable,dl,CREST,s

with boundaries in a single point iso1,iso2
flamehot3 calculates values of a variable in user var1,hval,lval,s,var2 var1red,var2red

defined region of a 3d flame
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Table D.2: Structure tools (cont.)

name task input output

flameindex3 calculates normalized flameindex X,Y,Z,Y(H2),Y(O2), inn,variso
of a 3D flame fdefine,level,s

extractbatch extracts values of a variable along X,Y,Z,fdefine,variable, f,v,varisosl
in isovalue of another one level,npsl,dsl,s
in orthogonal 2d-slices

extract3 extracts a variable along an X,Y,Z,fdefine,level, variso,face,vert,fprob
iso-surface of another one variable,s,fig

lincut3 extracts a 3D-variable along a X,Y,Z,xs,ys,zs,nxs,nys,nzs, xmin,xmax,ymin,ymax,
linear cut with user- fdefine,variable, zmin,zmax,xx1,yy1,
defined boundaries dl,level,s,iso1,iso2 zz1,vv1,vv2,vvg

nonlincut3 extracts a 3D-variable along a X,Y,Z,xs,ys,zs,fdefine, xmin,xmax,ymin,ymax,
non-linear cut with user- variable,dl,level, zmin,zmax,xx1,yy1,
defined boundaries s,iso1,iso2 zz1,vv1,vv2,vvg

intcutlin3 calculates integral value of a X,Y,Z,xs,ys,zs,nxs,nys,nzs intvar
3D-variable along a linear cut fdefine,variable,dl,
with boundaries in a single point level,s,iso1,iso2

intcutnonlin3 calculates integral value of a X,Y,Z,xs,ys,zs,f intvarn
3D-variable along a non-linear define,variable,
cut with boundaries in a single point dl,level,s,iso1,iso2

mixfrac3 calculates mixture fraction of a Y(Species),X,Y,Z mixfr
3D-flame according to formula of Bilger

mixfracspec3 calculates mixture fraction of a Y(species) fH ,fO,fN
3D-flame based on species

mixfracsyng3 calculates mixture fraction of a Y(species) ZB
3D-flame according to formula of Bilger

mixfracsyngspec3 calculates mixture fractions of Y(Species) fH ,fO,fN
a 3D-flame based on species

reacprog3 calculates reaction progress variable of X,Y,Z,temperature,level c
a 3D-flame based on temperature
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Table D.2: Structure tools (cont.)

name task input output

reacprog3co2 calculates reaction progress variable of X,Y,Z,CO2,level c,sdf,mv
a 3D-flame based on CO2

scalardiss3f calculates scalar dissipation rate of f,st chired,chiredn
a 3D-flame based on mixture fraction

scalardiss3c calculates scalar dissipation rate of c,st chired,chiredn
a 3D-flame based on react. progr. var.
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Table D.3: Turbulence tools

name task input output

streamlines2 plots streamlines of 2D velocity field X,Y, xvelocity plot
without direction arrows yvelocity

quivplot2 draws vector plot of a 2D velocity field xvelocity,yvelocity plot
X,Y,(L1,L2,C1,C2)

streamsliceplot2 plots streamlines of a 2D velocity field xvelocity,yvelocity plot
with direction arrows X,Y

streamlines3 plots streamlines of a 3D velocity xvel,yvel,zvel, plot
field in user-defined points X,Y,Z, XS,YS,ZS

quivplot3 draws vector plot of a 3D velocity field xvel,yvel,zvel,X,Y,Z plot
(L1,L2,C1,C2,P1,P2)

coneplot3 draws cone plot of a 3D velocity field xvel,yvel,zvel,X,Y,Z plot
(L1,L2,C1,C2,P1,P2)

streamsliceplot3 draws orthogonal slice through xvel,yvel,zvel, plot
a 3D velocity field X,Y,Z,dsl,lsl

streamslicebatch draws batch of slices through xvel,yvel,zvel, plot
a 3D velocity field X,Y,Z,dsl,sm

ekinturb2 computes urms values, turb. kin. energy xvelocity, yvelocity u1rms,u2rms
of a 2D vel. field in physical space ekintnorm,ekintall

ekinturb3 computes urms values, turb. kin. energy xvel,yvel,zvel u1rms,u2rms,u3rms
of a 3D vel. field in physical space ekintnorm,ekintall

corrfunctline calculates and plots autocorrelation xvelocity, X meanrho,
coefficients along lines in a 2D field, meanrhok,L
calculates integral length scale

corrfunctcol calculates and plots autocorrelation yvelocity, Y meanrho,
coefficients along columns in a 2D field, meanrhok,L
calculates integral length scale

corrfunctionall3all calculates and plots autocorrelation xvel, X meanmeanrho,L
coefficients along lines in a 3D field,
calculates integral length scale
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Table D.3: Turbulence tools (cont.)

name task input output

corrfunctall3allcol calculates and plots autocorrelation yvel, Y meanmeanrho,L
coefficients along columns in a 3D field,
calculates integral length scale

spectrum2d calculates fluctuations, xvelocity,yvelocity, ENVP1,S1,S,k,
2D energy spectrum, L,nx,ny L11,rms
integral length scale

slope2 verifies slope of kinetic energy (2D) k,tdiss,ENVP1,nx,ny plot
spectrum3d calculates fluctuations, xvel,yvel,zvel, ENVP1,S1,S,k,

3D energy spectrum, L,nx,ny,nz L11,RMS
integral length scale

slope3 verifies slope of kinetic energy (3D) k,tdiss,ENVP1,nx,ny,nz plot
dissip2dord2 calculates turbulent dissipation rate xvel,yvel,st,(nu) tdiss

using a 2nd order scheme
in a 2D field

dissip2dord4 calculates turbulent dissipation rate xvel,yvel,st,(nu) tdiss
using a 4th order scheme
in a 2D field

dissip2dord6 calculates turbulent dissipation rate xvel,yvel,st,(nu) tdiss
using a 6th order scheme
in a 2D field

enstrophy calculates enstrophy of a 2D vorticity enstnorm,enstal
vorticity field

slope2enst plots slope of enstrophy k, vorticity, tdiss plot
ENVP1, nx ,ny, st

taylor2 calculates Taylor micro-scales xvel,yvel,X,Y, lambdaf, lambdag
in a 2D field L1,L2,C1,C2

taylor3 calculates Taylor micro-scales xvel,yvel,zvel,X,Y,Z lambdaf, lambdag
in a 2D field L1,L2,C1,C2,P1,P2

kolmogorov2 calculates Kolmogorov micro-scales xvel,yvel,temp,dens lkol, tkol, vkol
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Table D.3: Turbulence tools (cont.)

name task input output

in a 2D-field X,Y,L1,L2,C1,C2
kolmogorov3 calculates Komlogorov micro-scales xvel,yvel,zvel,temp,dens lkol, tkol, vkol

in a 3D-field X,Y,Z,L1,L2,C1,C2,P1,P2
dissip3dord2 calculates turbulent dissipation rate xvel,yvel,zvel,st,(nu) tdiss

using a 2nd order scheme
in a 3D field

dissip3dord4 calculates turbulent dissipation rate xvel,yvel,zvel,st,(nu) tdiss
using a 4th order scheme
in a 3D field

dissip3dord6 calculates turbulent dissipation rate xvel,yvelzvel,st,(nu) tdiss
using a 6th order scheme
in a 3D field

vort2dord2 calculates vorticity of a 2D vector field X,Y,xvelocity,yvelocity vortz
using a 2nd order scheme

vort2dord4 calculates vorticity of a 2D vector field X,Y,xvelocity,yvelocity vortz
using a 4th order scheme

vort2dord6 calculates vorticity of a 2D vector field X,Y,xvelocity,yvelocity vortz
using a 6th order scheme

vort2dord6pb calculates vorticity of a 2D vector field X,Y,xvelocity,yvelocity vortz
using a 6th order scheme, optional periodic
boundary conditions

vort3dord2 calculates vorticity of a 3D vector field xvel,yvel,xvel,step vortx,vorty,vortz
using a second order scheme

vort3dord4 calculates vorticity of a 3D vector field xvel,yvel,xvel,step vortx,vorty,vortz
using a 4th order scheme

vort3dord6 calculates vorticity of a 3D vector field xvel,yvel,zvel,step vortx,vorty,vortz
using a 6th order scheme

lesfilter3d filters a matrix in physical space f, step LBOXX
with a user-defined filter size

164



Table D.4: Tools describing interaction between turbulence and flames

name task input output

strainrateall calculates components of strain X,Y,xvel,yvel,fdefine strn, strt
rate in whole 2d field

strainratelev calculates components of strain X,Y,xvel,yvel,fdefine, siso, strnff,strtff
rate along flame front level, s

curvatureall calculates components of X,Y,fdefine curv
curvature in whole 2d field

curvaturelev calculates components of X,Y,fdefine, siso, curv
curvature along flame front level, s

curv3new calculates Gaussian-, mean-, X,Y,Z,fdefine KG.H,K1,K2
principal curvatures
in a 3D field

curvlev3new calculates Gaussian-, mean-, X,Y,Z,KG,H,K1,K2 var1,var2,var3,var4
principal curvatures fdefine,level,s
along flame surface

strainrate3 calculates strainrate X,Y,Z,xvel,yvel,zvel strn,strt
components in a 3D field fdefine

strnlev3 computes strainrate components X,Y,Z,str,fdefine str3,meanstr3,
along flame surface level,s stdstr3

shapefactor computes shape factor and var3,var4 s,xinterp,fp
histogram of a 3D flame plot
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Table D.5: Tools for statistical investigation

name task input output

maxi calculates coordinates and value of variable m,ii,jj
maximum of a variable

mini calculates coordinates and value of variable m, ii,jj
minimum of a variable

condmeanfilt2 calculates mean and rms values of X,Y, varcond, v, m, rms, mi, ma
a variable conditioned on mixture variable,dl,iso1,iso2, plot
fraction or reaction progress variable fu, fl

condmeanfilt22 calculates mean and rms values of X,Y, varcond, v, m, rms,mi, ma
a variable conditioned on variable,dl,iso1,iso2, plot
an arbitrary one fu, fl

condmeanfilt3 calculates mean and rms values of X,Y,Z varcond, v, m, rms,
a variable conditioned on mixture variable,dl,iso1,iso2, plot
fraction or reaction progress variable fu, fl

condmeanfilt33 calculates mean and rms values of X,Y,Z varcond, v, m, rms,
a variable conditioned on variable,dl,iso1,iso2, plot
an arbitrary one fu, fl

correlationgen calculates and displays var1, var2, cc, plot
correlation between two 1d variables

correlationex extracts two variables along flame front X,Y, fdefine,level, cc, plot
calculates and displays variable1,variable2
correlations between variables

correlationcut extracts two variables along X,Y, fdefine, cc, plot
linear cut through flame front variable1,variable2
calculates and displays xs,ys,nxs,nys,s,
correlations between the variables iso1,iso2,fu,fl

compdf2of calculates true pdf, gaussian pdf, var1 dpdf,npdf,bpdf
β-pdf of not Favre-av.2D-variable histogram, plot

compdf3of calculates true pdf, gaussian pdf, var1 dpdf.npdf,bpdf
β-pdf of not Favre-av.3D-variable histogram,plot
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Table D.5: Tools for statistical investigation (cont.)

name task input output

varstat calculates moments 1 to 4, plots PDf, variable1 xpdf, fprob, fgauss,
plots histogram, plots gaussian PDF STATVAR,

histogram, true pdf,
gaussian pdf

statbivar2 calculates joint PDF of two variable1,variable2 biprob, corr,
2D-variables xint, yint,
plots joint PDF contourplot

statbivar3 calculates joint PDF of three 2D-variables variable1,variable2, corr, contourplot
variable3

statbivar3d calculates joint pdf of two variable1,variable2 corr, contourplot
3D-variables
plots joint PDF

167



Table D.6: Tools to determine dimensions of manifolds

name task input output

cloudorgvarnb finds nearest neighbors in Ysp, TEMP, NN, inc Tref,N2ref,H2Oref,MCl

composition space for original
mass fractions for H2-flames

cloudorgvarnbsyng finds nearest neighbors in Ysp, TEMP, NN, inc Tref,N2ref,H2Oref,MCl

composition space for original
mass fractions for syngas-flames

cloudorgvarnbweigh finds nearest neighbors in Ysp, TEMP, NN, inc Tref,N2ref,H2Oref,MCl

composition space for weighted
mass fractions

cloudorgvarnbTnotw finds nearest neighbors in Ysp, TEMP, NN, inc Tref,N2ref,H2Oref,MCl

composition space for original
mass fractions and temperature

cloudorgvarnbTweigh finds nearest neighbors in Ysp, TEMP, NN, inc Tref,N2ref,H2Oref,MCl

composition space for weighted
mass fractions and temperature

cloudorgvarradweigh finds number of neighbors and correlations Ysp, TEMP,rad,inc nn,zz, m
in a user-defined radius in composition space
for weighted species mass fractions;

svdmatrrecl calculates singular values and MCl s1, u1, v1
reconstructed matrices of M31kept,M32kept,M3kept

dimension one to five M34kept,M35kept

corelmatrorgmatrrecl calculates correlation coefficients MCl, M3 cc
between original and reconstructed matrices

devorrreclnorm calculates mean weighted deviations MCl, M3 mdevsp

between original and reconstructed matrices

168



Table D.7: Tools in batch mode

name task input output
1 flamethickcb calculates flame thickness based on X, Y, fdefine, level, c, s sisok, flthick, maxfl,

reaction progress variable along flame front, minfl, meanfl
plots thickness along flame front

flamethicklinb calculates flame thicknesses based on X, Y, fdefine, level, s, sisok, flthick, maxfl,
linear cuts along flame front, iso1, iso2 minfl, meanfl
plots thickness along flame front

flamethicknonlinb calculates flame thicknesses based on X, Y, fdefine, level, s, sisok, flthick, maxfl,
non linear cuts along flame front, iso1, iso2 minfl, meanfl
plots thickness along flame front

flamethicklinthermb calculates thermal flame thicknesses X, Y, fdefine, level, s, sisok, flthickth300,
based on linear cuts along flame front, variable, iso1, iso2 maxfl, minfl, meanfl
plots thickness along flame front

flamethicknonlinb calculates thermal flame thickness X, Y, fdefine, level, s, sisok, flthickth300nl,
therm based on non linear cuts along flame front, variable, iso1, iso2 maxfl, minfl, meanfl

plots thickness along flame front
flamethicklincrestb calculates flame thickness based on X, Y, varbound, flthickcr, maxfl, minfl,

linear cuts along crestline, CRESTN, s, meanfl, siso
plots thickness along crestline iso1, iso2

flamethicknonlin calculates flame thickness based on X, Y, varbound, flthickcr, maxfl, minfl,
crestb non linear cuts along crestline, CREST , s, iso1, iso2 meanfl, siso

plots thickness along crestline
flamethicklintherm calculates thermal flame thickness X, Y, varbound, siso, flthickth300,
crestb based on linear cuts along crestline, CRESTN, variable, s, maxfl, minfl, meanfl

plots thickness along crestline iso1, iso2
flamethicknonlin calculates thermal flame thickness X, Y, varbound, siso, flthickth300nl,
thermcrestb based on non linear cuts along crestline, CRESTN, variable, s, maxfl, minfl, meanfl

plots thickness along crestline iso1, iso2

1Additionally periodic boundary conditions can be considered. The tools are then named ”*longp” for example

flamethicklinblongp
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Table D.7: Tools in batch mode (cont.)

name task input output

intcutlinb calculates integral values of a variable X, Y, fdefine, variable, intvar
based on linear cuts along flame front, dl, level, s, iso1, iso2
plots integral values vs flame front

intcutnonlinb calculates integral values of a variable X, Y, fdefine, variable, intvarn
based on non linear cuts along flame front, dl, level, s, iso1, iso2
plots integral values along flame front

intcutlincrestb calculates integral values of a variable X, Y, varbound, variable, intvar
based on linear cuts along crestline, dl, CRESTN, s, iso1, iso2
plots integral values vs crestline

intcutnonlincrestb calculates integral values of a variable X, Y, varbound, variable, intvarn
based on non linear cuts along crestline, dl, CRESTN, s, iso1, iso2
plots integral values vs crestline

flamethickc3b calculates flame thickness based on X, Y, Z, fdefine, flthick3, mathick,
reaction progress variable along SNORM3, dl, level, s, c mithick, meanth
flame surface, plots histogram of thickness

flamethicklin3b calculates flame thickness based on X, Y, Z, fdefine, flthick3, mathick,
linear cuts in user defined points SNORM3, dl, level, s, mithick, meanth
on flame surface, iso1, iso2
plots histogram of thickness

flamethicklin3b2 calculates flame thickness based on X, Y, Z, fdefine, dl, flthick3, flthickred,
linear cuts in several points on flame surface, level, s, iso1, iso2 mathick, mithick,
plots histogram of thickness meanthick

flamethicklnonin3b calculates flame thickness based on X, Y, Z, fdefine, flthick3nonl, mathick,
non linear cuts in user-defined points SNORM3, dl, level, mithick,meanth
on flame surface, s, iso1, iso2
plots histogram of thickness
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Table D.7: Tools in batch mode (cont.)

name task input output

flamethicklnonin3b2 calculates flame thickness based on X, Y, Z, fdefine, dl, flthick3nonl, mathick,
non linear cuts in several points on flame- level, s, iso1, iso2 mithick, meanth
surface, plots histogram of thickness

flamethicklin calculates thermal flame thickness based X, Y, Z, fdefine, flthickth300, mathick,
therm3b on linear cuts in user defined points on SNORM3, dl, level, s, mithick, meanth

flame surface, plots histogram of thickness variable, iso1, iso2
flamethicklin calculates thermal flame thickness based X, Y, Z, fdefine, flthickth300, mathick,
therm3b2 on linear cuts in several points on flame dl, level, s, mithick, meanth

surface, plots histogram of thickness variable, iso1, iso2
flamethicknonlin calculates thermal flame thickness based X, Y, Z, fdefine, flthick3nonl, mathick,
therm3b on non linear cuts in user defined points SNORM3, dl, level, mithick, meanth

on flame surface, plots histogram of thickness s, variable, iso1, iso2
flamethicknonlin calculates thermal flame thickness based on X, Y, Z, fdefine, dl, flthick3nonl, mathick,
therm3b2 non linear cuts in several points on flame level, s, variable, mithick, meanth

surface, plots histogram of thickness iso1, iso2
intcutlin3b calculates integral values of a variable X, Y, Z, SNORM3, intvarb

along linear cuts at several points fdefine, variable, dl,
of flame surface s, iso1, iso2

intcutnonlin3b calculates integral values of a variable X, Y, Z, SNORM3, intvarn
along linear cuts at several points fdefine, variable, dl,
of flame surface s,iso1,iso2
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[24] Damköhler, G. Der Einfluss der Turbulenz auf die Flammengeschwindigkeit in Gas-
gemischen. Z. Elektrochem., pages 601–626, 1940.

[25] Dinkelacker, F. Experimantal validation of flame regimes for highly turbulent pre-
mixed flames. Proceedings of the European Combustion Meeting, pages 158/1–158/7,
2003.

173



[26] do Carmo, M. Differentialgeometrie von Kurven und Flächen. Vieweg & Sohn Verlags-
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Informatique et en Automatique, Unité de Recherche Inria-Rocquencourt, 1992.

[143] van Oijen, J.A and de Goey L.P.H. Modelling of premixed premixed counterflow
flames using the flamelet-generated manifold method. Combust. Theory Modeling, 6:463–
478, 2002.

[144] Vervisch, L. and Poinsot, T. Direct numerical simulation of non-premixed turbulent
flames. Ann. Rev. Fluid Mech., 30:655–691, 1998.

[145] Veynante, D. and Vervisch, L. Turbulent combustion modeling. Prog. Energy
Combust. Sci., 28:193–266, 2002.

[146] v. Kalmthout, E., Poinsot, T. and Candel, S. Turbulence 2d: Théorie et simu-
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post-processing for turbulent reacting flows. Comput. Vis. Sci., 12:383–395, 2009.

[156] Zistl, C., Schießl, R., Fru, G. and Thévenin, D. The dimension of low dimen-
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