

zur Erlangung des akademischen Grades

angenommen durch die Fakultät für Informatik
der Otto-von-Guericke-Universität Magdeburg

von

geb. am in

Gutachterinnen/Gutachter

Magdeburg, den

Stream Learning with Entity-Centric Models and Active Feature
Acquisition

Doktoringenieur (Dr.-Ing.)

M. Sc. Christian Beyer

10.08.1987 Haldensleben

Prof. Dr. Myra Spiliopoulou
Prof. Dr. Allan Tucker
Prof. Dr. Sławomir Nowaczyk

21.11.2024

Abstract

Data stream mining addresses environments where data arrives continuously, often at
high volumes and velocities, and requires models that adapt incrementally to changes
in the data. In many cases, data stream instances are linked to specific entities,
such as product reviews (instances) being linked to a particular product (entity).
However, current practices generally utilize a single model per stream, disregarding
the relationship between entities and their instances. Another common assumption is
that arriving instances are feature-complete or that missing features must be imputed
due to their unavailability.

This thesis is organized into two parts. The first part introduces the concept
of entity-centric learning on data streams, where the relationship between entities
and their instances is explicitly modeled in the stream’s data space. Entity-centric
learning involves creating individual prediction models for each entity, allowing model
learning and adaptation to account for each entity’s unique characteristics. This
approach contrasts with traditional methods that apply a single model across the
entire stream. The analysis demonstrates that entity-centric learning can improve
prediction quality in data streams.

Initial experiments focused on comparing an entity-ignorant (global) model, which
accessed features but pooled data from all entities, with basic entity-centric models
that relied solely on an entity’s labels, such as a moving average. Results highlighted
that, for some entities, even a simple entity-centric model outperformed a more
complex entity-ignorant one. However, entities with fewer instances showed better
results with the entity-ignorant model.

A hybrid ensemble approach combining entity-centric and entity-ignorant models
was proposed to address this. This ensemble significantly improved prediction quality
across most entities. However, maintaining separate models for each entity posed a
challenge for memory management. To resolve this, a memory management system
was introduced, differentiating between active and inactive entities. Models for active
entities were kept in primary memory, while those for inactive entities were moved
to secondary storage. This makes entity-centric learning feasible on data streams
with a large number of entities.

The second part of the thesis shifts focus from the data space to the feature space,
tackling the problem of missing features. One of the first studies on active feature
acquisition (AFA) for data streams is presented, exploring scenarios where missing
features can be acquired at a cost under budget constraints.

The initial approach assumed equal feature costs and allowed the acquisition of one
missing feature per instance. Using a stream feature selection metric to assess feature
importance, it was shown that acquiring the most valuable feature outperformed
random acquisition, usually a competitive baseline in the field of active learning.

Subsequent work extended this method to handle varying acquisition set sizes and
differing feature costs. Experiments across multiple cost distributions and levels of
missingness demonstrated that the proposed methods consistently outperformed a
random baseline. The experiments also highlighted that a feature importance metric
that considers each feature independently can lead to superfluous acquisitions in the

III

case of feature correlations, which wastes the available budget.
This was addressed in the final study, which introduces a two-stage decision process

for budget optimization, where imputation is considered before feature acquisition.
A specialized imputation method, the feature-pair-imputer, was developed to predict
missing features based on available ones, tracking imputation performance. This
approach allowed for informed decisions on whether to impute or acquire missing
features, achieving budget savings without significantly compromising prediction
accuracy compared to an AFA-only strategy.

In conclusion, this thesis presents novel methods for both entity-centric learning
on data streams and active feature acquisition. Various experimental frameworks
were developed to support these investigations, including synthetic dataset gener-
ators for exploring aspects such as concept drift, complex label dependencies, and
feature correlations. The results demonstrate that entity-centric models can enhance
prediction quality with minimal computational cost, while active feature acquisition
enables cost-effective handling of missing features in data streams.

IV

Zusammenfassung

Das Lernen auf Datenströmen befasst sich mit Umgebungen, in denen Daten kon-
tinuierlich, oft in großen Mengen und mit hoher Geschwindigkeit eintreffen, und
erfordert Modelle, die sich inkrementell an Veränderungen in den Daten anpassen.
In vielen Fällen sind Datenstrominstanzen mit bestimmten Entitäten verknüpft, wie
z.B. Produktbewertungen (Instanzen), die einem bestimmten Produkt (Entität) zu-
geordnet sind. Die derzeitigen Praktiken verwenden jedoch in der Regel ein einzelnes
Modell pro Datenstrom und ignorieren dabei die Beziehung zwischen Entitäten
und ihren Instanzen. Eine weitere häufige Annahme ist, dass die eintreffenden In-
stanzen keine fehlenden Attribute haben oder dass fehlende Attribute aufgrund ihrer
Nichtverfügbarkeit imputiert werden müssen.

Diese Dissertation ist in zwei Teile gegliedert. Der erste Teil führt das Konzept des
entitätszentrierten Lernens auf Datenströmen ein, bei dem die Beziehung zwischen
Entitäten und ihren Instanzen explizit im Datenraum des Stroms modelliert wird.
Das entitätszentrierte Lernen umfasst die Erstellung individueller Vorhersagemodelle
für jede Entität, was eine Anpassung und das Lernen der Modelle an die spezifischen
Charakteristiken jeder Entität ermöglicht. Dieser Ansatz steht im Gegensatz zu
traditionellen Methoden, die ein einziges Modell über den gesamten Strom anwen-
den. Die Analyse zeigt, dass entitätszentriertes Lernen die Vorhersagequalität in
Datenströmen verbessern kann.

Die ersten Experimente konzentrierten sich auf den Vergleich eines entitätsigno-
ranten (globalen) Modells, das auf Attribute zugriff, aber die Daten aller Entitäten
verarbeitete, mit naiven entitätszentrierten Modellen, die sich ausschließlich auf die
Labels einer Entität stützten, wie z.B. einen gleitenden Durchschnitt. Die Ergebnisse
zeigten, dass für einige Entitäten selbst ein einfaches entitätszentriertes Modell ein
komplexeres entitätsignorantes Modell übertraf. Allerdings erzielten Entitäten mit
weniger Instanzen bessere Ergebnisse mit dem entitätsignoranten Modell.

Um dies zu lösen, wurde ein hybrider Ensemble-Ansatz vorgeschlagen, der entität-
szentrierte und entitätsignorante Modelle kombiniert. Dieses Ensemble verbesserte
die Vorhersagequalität für die meisten Entitäten signifikant. Die Aufrechterhal-
tung separater Modelle für jede Entität stellte jedoch eine Herausforderung für das
Speichermanagement dar.

Um diese Herausforderung zu adressieren, wurde ein Speichermanagementsystem
eingeführt, das zwischen aktiven und inaktiven Entitäten unterscheidet. Modelle für
aktive Entitäten wurden im Primärspeicher gehalten, während Modelle für inaktive
Entitäten in den Sekundärspeicher verschoben wurden. Dies macht entitätszentriertes
Lernen auf vielen Datenströmen praktikabel.

Der zweite Teil der Dissertation verlagert den Fokus vom Datenraum auf den
Attributsraum und befasst sich mit dem Problem fehlender Attribute. Es wird eine
der ersten Studien zur aktiven Attributsakquisition für Datenströme vorgestellt, die
Szenarien untersucht, in denen fehlende Attribute zu Kosten unter Budgetbeschränkun-
gen erworben werden können.

Der anfängliche Ansatz ging von gleichen Attributkosten aus und ermöglichte den
Erwerb eines fehlenden Attributs pro Instanz. Mithilfe einer Metrik zur Attribu-

V

tauswahl im Datenstrom, die die Wichtigkeit der Attribute bewertete, wurde gezeigt,
dass der Erwerb des wertvollsten Attributs eine zufällige Akquisition übertraf.

Darauf aufbauend wurde diese Methode erweitert, um unterschiedliche Akquisition-
sgrößen und variierende Attributkosten zu berücksichtigen. Experimente über ver-
schiedene Kostenverteilungen und Ausmaße des Fehlens zeigten, dass die vorgeschla-
genen Methoden eine zufällige Baseline konstant übertrafen. Die Experimente zeigten
auch, dass eine Metrik zur Attributwichtigkeit, die jedes Attribut unabhängig be-
trachtet, zu überflüssigen Akquisitionen führen kann, wenn Attributkorrelationen
vorliegen, was das verfügbare Budget verschwendet.

Dies wurde in der letzten Untersuchung aufgegriffen, die einen zweistufigen Entschei-
dungsprozess zur Budgetoptimierung einführt, bei dem die Imputation vor der At-
tributakquisition in Betracht gezogen wird. Eine spezialisierte Imputationsmethode,
der "Feature-Pair-Imputer", wurde entwickelt, um fehlende Attribute basierend auf
verfügbaren vorherzusagen und die Imputationsleistung zu verfolgen. Dieser Ansatz
ermöglichte fundierte Entscheidungen darüber, ob fehlende Attribute imputiert oder
akquiriert werden sollten, wodurch Budgeteinsparungen erzielt wurden, ohne die
Vorhersagegenauigkeit im Vergleich zu einer rein auf aktiver Attributsakquisition
basierenden Strategie signifikant zu beeinträchtigen.

Diese Dissertation präsentiert Methoden sowohl für das entitätszentrierte Lernen
auf Datenströmen als auch für die aktive Attributsakquisition. Verschiedene Soft-
ware wurden entwickelt, um diese Untersuchungen zu unterstützen, einschließlich
synthetischer Datengeneratoren zur Erkundung von Aspekten wie Concept Drift,
komplexen Label-Abhängigkeiten und Attributskorrelationen. Die Ergebnisse zeigen,
dass entitätszentrierte Modelle die Vorhersagequalität bei minimalen Rechenkosten
verbessern können, während die aktive Attributsakquisition eine kosteneffiziente
Handhabung fehlender Attribute in Datenströmen ermöglicht.

VI

Contents

1 Introduction . 1
1.1 Research Questions . 3
1.2 Summary of Scientific Contributions 4
1.3 Outline of the Thesis . 5

2 Stream Mining Underpinnings . 7
2.1 Data Streams . 7
2.2 Evaluation Schemes and Performance Metrics for Supervised Stream

Mining . 8

I Dealing with the Data Space in Stream Mining 11

3 Motivation & Background - Entity-Centric Learning on Data Streams . 13
3.1 Challenges for Entity-Centric Learning 15

4 Entity-Centric Learning without Features 17
4.1 Related Work . 18

4.1.1 The Polarity Learning Problem 18
4.1.2 Target Entity Analysis . 18
4.1.3 Learning on a Data Stream 19
4.1.4 Stream Recommenders . 19

4.2 Polarity Predictors on Entity-Level Substreams 20
4.2.1 Entity-Level Substream and Models 20

4.3 Entity-Centric and Entity-Ignorant Predictors 20
4.4 Evaluation Framework . 22

4.4.1 Aligning a Stream of Opinions to their Target Entities 23
4.4.2 Entity-Centric Evaluation . 23

4.5 Experiments . 24
4.5.1 Datasets of the Experiments 24

4.6 Results and Discussion . 26
4.7 Conclusion . 28

5 Entity-Centric Ensemble . 29
5.1 Related Work . 29
5.2 Entity-Centric Evaluation Scheme 30
5.3 An Ensemble with Two Voting Members 33

5.3.1 Ensemble Variants Based on Weighting 33
5.4 Experiments and Results . 34

5.4.1 Evaluation Procedure . 34
5.4.2 RMSE and Number of Entities 35

VII

Contents

5.4.3 Impact of Entity-Length on Performance 36
5.4.4 Significance Testing . 38
5.4.5 Overhead of the Entity-Centric Ensembles 38

5.5 Conclusion . 39

6 Resource Management of Entity-Centric Models 41
6.1 Related Work . 42

6.1.1 Learning at the Entity Level 42
6.1.2 Error-Weighted Predictions and Clustering Entities 42
6.1.3 Memory Efficient Item Set Mining on Data Streams 43

6.2 Methods For Memory Footprint Reduction 43
6.2.1 Entity Management with Lossy Counting 43
6.2.2 Memory Reduction through Text-Ignorant Models 44

6.3 Experiments . 44
6.3.1 Evaluation . 44

6.4 Results . 45
6.4.1 Entity-Centric MNBF vs. Majority-Label 45
6.4.2 Memory Footprint Comparison 48
6.4.3 Discussion . 50

6.5 Conclusion . 50

7 Additional Reflections on Entity-Centric Learning 53
7.1 Efficient Entity-Model Management using Databases and Deletion . 53
7.2 A New Performance Metric for Data Streams? 54

8 Entity-Centric Learning on Data Streams: Discussion and Conclusion . 55
8.1 Limitations . 56
8.2 Open Questions and Future Work . 56

II Dealing with the Feature Space in Stream Mining 59

9 Motivation & Background - Active Feature Acquisition on Data Streams 61
9.1 Challenges for AFA on Data Streams 64

10 Active Feature Acquisition on Data Streams under Feature Drift 65
10.1 Related work . 65
10.2 Methods . 66

10.2.1 Budgeting Acquisitions on a Stream with an IPF 66
10.2.2 Budgeting Acquisitions on a Stream with an SBM 67
10.2.3 Modelling Feature Importance on a Stream 67
10.2.4 Modelling Instance Quality 69

10.3 Evaluation Scheme and Datasets . 70
10.4 Evaluation Framework . 70
10.5 Experimental Setup . 71
10.6 Results . 72
10.7 Conclusion . 77

11 Cost-Aware AFA . 79
11.1 Related Work . 81
11.2 Methods for Acquiring Sets of Features 81

VIII

Contents

11.3 Methods for Dealing with Feature Cost and Absolute Budgeting . . 82
11.3.1 Adapting the IPF-Threshold with a Penalty: 83
11.3.2 Replacing Quality Score with Quality Gain: 85

11.4 Experimental Setup and Evaluation 88
11.5 Results and Discussion . 89

11.5.1 Performance Analysis on Regular Datasets 89
11.5.2 Performance Analysis on Evenodd Datasets 91
11.5.3 Impact of Quality and Merit Functions 91
11.5.4 Budget Usage . 92
11.5.5 Threshold for the Incremental Percentile Filter 93

11.6 Conclusion . 93

12 Reducing Costs with Strategic Imputation 95
12.1 Related Work . 95
12.2 Methods . 96

12.2.1 Feature Pair Imputer (FPI) 97
12.2.2 Feature Pair Imputer Threshold Skip (FPITS) 98

12.3 Experiments . 99
12.3.1 Datasets . 99
12.3.2 Experiment Parameters . 100

12.4 Results . 101
12.4.1 FPI Performance . 101
12.4.2 FPITS Behavior . 102
12.4.3 Budget Comparison at Similar Performance 104

12.5 Conclusion . 105

13 Additional Reflections on Active Feature Acquisition 107
13.1 Generation of Tree-Based Acquisition Sets 107
13.2 Realizing a Cost-Sensitive Performance Bound using Genetic Program-

ming . 109

14 Active Feature Acquisition on Data Streams: Discussion and Conclusion 111
14.1 Limitations . 112
14.2 Open Questions and Future Work . 112

15 Overall Conclusion . 113
15.1 Future Work . 114

III Appendix 117

A Appendix . 119
A.1 Appendix: Entity-Centric Learning 121

A.1.1 Error Analysis of Simple Entity-Centric Models in Chapter 4 121
A.1.2 Additional Results for Entity-Centric Ensembles on Watches

Dataset Chapter 5 . 122
A.2 Appendix: Active Feature Acquisition 125

A.2.1 Additional Feature Importance Metrics of Chapter 10 125
A.2.2 Extensive Result Tables from Chapter 10 125
A.2.3 New Experiment on Adult Dataset Chapter 10 128

IX

Contents

Bibliography . 135
A.3 Nutzung von generativer KI für Abschlussarbeiten 137

X

List of Figures

1.1 Visualization of Entity-Centric Learning 1
1.2 Horizontal and Vertical View of a Data Stream 2

2.1 Depictions of Different Types of Concept Drift 8

3.1 Error Reduction Using Clustering . 13
3.2 Visualisation of Entity-Centric Stream Learning 14

4.1 Simple Entity-Centric Model vs. Complex Entity-Ignorant Model on
Three Products . 17

4.2 Allocation of Instances to the Training and Test Stream of an Entity 23
4.3 Label Distribution on Tools and Watches Datasets 24
4.4 Average Product Rating over Time for Tools and Watches Datasets . 25
4.5 Heatmaps of Arrival of First Instances of the Entities 25
4.6 Percentages of Entities Left after Filtering for Training and Testing . 25
4.7 Results of Entity-Centric Learning with Text-Unaware Entity-Centric

Models . 27

5.1 Second Entity-Centric Evaluation Framework 31
5.2 RMSE Comparison on Tools and Watches Datasets 35
5.3 Error-Types of Each Ensemble with Entities Binned According to

Their Length . 35
5.4 RMSE of Ensembles Given x Training Instances per Entity on Tools

Dataset . 36
5.5 Top: Percentage of Ensemble Wins Against Entity-Ignorant Model.

Bottom: Number of Entities Available at Given x on Tools Dataset . 37
5.6 Significance Tests on Ensemble Performance Given x Training In-

stances on Tools Datasets . 38
5.7 Visualization of Increasing Memory Requirements on Tools Dataset . 39

6.1 Comparison of Memory Requirements of Entity-Ignorant Learning vs.
Entity-Centric Learning . 41

6.2 RMSE of the Best Ensemble with Lossy Counting vs. Majority-Label
Classifier on Tools, Watches and Yelp Datasets 46

6.3 Performance of All Ensembles with Lossy-Counting vs. Majority-Label
Classifier . 47

6.4 Comparison of Memory Requirements on Tools, Watches and Yelp
Datasets . 48

6.5 Comparison of Arrival of Entities and Entity-Centric Models Kept in
Primary Memory on Tools, Watches and Bars5 Datasets 49

9.1 Figure of Pool-Based AL from Settles. Reproduced with permission
from [74] . 63

XI

List of Figures

10.1 Visualization of Incremental Percentile Filter (IPF) 67
10.2 Results of AFA with AED vs. Random Baseline on 3 Streaming Datasets 73
10.3 Results of AFA with AED vs. Random Baseline on 6 Static Datasets 74
10.4 Average Euclidean Distance (AED) Score of Three Features on GEN

Dataset with Concept Drift . 76

11.1 Depiction of Cost-Sensitive AFA Framework 80
11.2 Visualization of Behavior of Different AFA Strategies on the Same

Instance . 82
11.3 Comparison of Budget Expenditure with Penalty Term and without 84
11.4 Depiction of Overspending When Feature Costs are High 85
11.5 Scenario where Frugal Strategies Perform Well 89
11.6 Scenario of Underspending . 90
11.7 Critical Distance Plot Summary . 90
11.8 Critical Distance Plot on EvenOdd Dataset 91

12.1 Scatterplot of Instances Showing FPITS Threshold and BM Threshold102
12.2 Examples of Underspending Under Extreme Conditions 103
12.3 CD Plots Showing Cost Savings at a Given Threshold and Correspond-

ing Ranking . 105

13.1 Example of Genetic Algorithm . 109
13.2 Fitness Example of Genetic Algorithm 110

A.1 Error Distribution According to Entity Length on Tools and Watches
Dataset . 121

A.2 RMSE of Ensembles Given x Training Instances per Entity on Watches
Dataset . 122

A.3 Top: Percentage of Ensemble Wins Against Entity-Ignorant Model.
Bottom: Number of Entities Available at Given x on Watches Dataset 123

A.4 Significance Tests on Ensemble Performance Given x Training In-
stances on Watches Dataset . 124

XII

List of Tables

2.1 Confusion Matrix of a Binary Classifier 9

4.1 Overview of Entities and Instances on Tools and Watches Datasets . 24

6.1 Overview of Tools, Watches, Bars5 and BarsFull Datasets 44

10.1 Overview of Datasets in First AFA Paper 70
10.2 Mean Kappa Values on Magic Dataset 72

11.1 Terminology of AFA Algorithm . 86
11.2 Overview of Acquisition Strategies 87
11.3 Descriptions of Datasets in Second AFA Paper 88
11.4 Overspending Analysis of Each Strategy 92

12.1 Definition of Imputation Error for Feature Pair Imputer 97
12.2 Overview of Datasets in Third AFA Paper 99
12.3 Comparison of Feature Pair Imputer vs. Simple Imputer 101
12.4 Summary of Potential Cost Savings 104

A.1 Mean Kappa Values on Electricity Dataset 125
A.2 Mean Kappa Values on Nursery Dataset 126
A.3 Mean Kappa Values on SEA Dataset 126
A.4 Mean Kappa Values on GEN Dataset 126
A.5 Mean Kappa Values on Adult Dataset 126
A.6 Mean Kappa Values on Occupancy Dataset 127
A.7 Mean Kappa Values on Pendigits Dataset 127
A.8 Mean Kappa Values on Abalone Dataset 127
A.9 Additional AFA Results on Adault Dataset 128

XIII

List of Acronyms

AED Average Euclidean Distance

AFA Active Feature Acquisition

AL Active Learning

IG Information Gain

IPF Incremental Percentile Filter

MAR Missing At Random

MCAR Missing Completely At Random

MNAR Missing Not At Random

RA Random Acquisition

RQ Research Question

SBM Simple Budget Manager

SU Symmetric Uncertainty

XV

1. Introduction

The advent of smartphones and Web 2.0 led to a dramatic increase in user-generated
data. People engage with each other on social networks, streaming platforms, and
various apps that track or monitor user behavior, such as weight and fitness trackers.
Therefore, many businesses are confronted with a continuous influx of new data at
a high speed, which changes as user behavior adapts to current trends and events.
High volume, high velocity, and high volatility are the characteristics of data streams.
In contrast to classical machine learning methods designed for static data, analyzing
data streams poses special challenges that need to be considered. In most streaming
scenarios it is unfeasible to retrain a machine learning model every time a new
instance arrives on the stream, but we need models that can be updated efficiently in
an incremental manner. Furthermore, these models need to be able to forget outdated
information in order to present up-to-date predictions to the users of these models.
The users, also called entities, are often diverse in their behavior, likes, dislikes,
and needs. This diversity was mostly ignored in the stream mining community
where a one-model-fits-all approach is most common. The first part of this thesis
explores an alternative approach, where global/entity-ignorant models, which see the
data from all entities, are supplemented with entity-centric models that were solely
trained on an entity’s data to improve prediction quality; see Figure 1.1. Storing an
ever-growing number of entity-centric models can put huge strains on our memory
requirements, which is a challenge that needs to be addressed, as well as the question
of how entity-centric models can be incorporated with entity-ignorant ones.

Entity-
Centric
Model

Entity-
Centric
Model

Entity-
Centric
Model

Entity-
Centric
Model

Figure 1.1.: Instances depicted as packages arrive on a data stream, and the color
codes the entity they belong to. Each entity has a dedicated model
trained on the instances belonging to that entity, called the entity’s
substream. In contrast, an entity-ignorant model would be trained on
all instances.

1

1. Introduction

Another common assumption is that all the instances used to train our machine
learning models are feature-complete, which is rarely true in real-world applications.
People skip questions in a questionnaire, sensors feeding a data stream can break, and
doctors do not send their patients to all available diagnostic tests but only a select
few. If we know that a particular feature is crucial to making a reliable prediction
and is missing, we often could actively query for that feature. For instance, a user
could be prompted to fill out a missing question with a note explaining that it is
crucial in their assessment. This process of active feature acquisition often invokes a
cost, as users get tired and hesitant or just the financial burden of demanding an
additional diagnostic test. Therefore, the second part of this thesis will focus on
cost-sensitive methods that can alleviate the problem of missing features in a data
stream and facilitate data stream mining in real-world scenarios.

StreamID Entity Col1 Col2 Col3 Col4 Col5 Col6 ?

1 e1 NaN NaN

2

3 e1

4 e1 NaN

5

6 NaN

7 NaN NaN

8 e1 NaN

9

10 e1 NaN

11

12 NaN

13 NaN

?

Part 1:
Learning over
horizontal view

P
ar

t 2
: L

ea
rn

in
g

ov
er

 v
er

tic
al

 v
ie

w

Figure 1.2.: In the horizontal view, we can see that instances belong to particular
entities, which we can exploit to enrich our models with this information.
The vertical view concerns the features of the instances and what role
they play in the data mining task. This information can be exploited
when we can acquire missing features (NaN) for a cost.

Each part of the thesis deals with data streams, but the first part focuses on the
horizontal view and the second on the vertical view of the data; see Figure 1.2. Both
parts aim to improve data quality to enhance stream mining methods. This follows
a current trend in the data mining sphere, where famous figures like Andrew Ng
urge data scientists to be ‘More Data-Centric And Less Model-Centric’1. In the next
section, the research questions that are addressed in this thesis are introduced.

1Article on data quality, visited 20.08.2024, https://analyticsindiamag.com/intellectual-ai-
discussions/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-
centric-and-less-model-centric/

2

https://analyticsindiamag.com/intellectual-ai-discussions/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-centric-and-less-model-centric/
https://analyticsindiamag.com/intellectual-ai-discussions/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-centric-and-less-model-centric/
https://analyticsindiamag.com/intellectual-ai-discussions/big-data-to-good-data-andrew-ng-urges-ml-community-to-be-more-data-centric-and-less-model-centric/

1.1. Research Questions

1.1. Research Questions
The thesis is divided into two main parts. Part I addresses the entity-instance
relationship in the data space of a data stream, covered by research questions 1 and
2. Part II focuses on the feature space, specifically exploring how Active Feature
Acquisition (AFA) can manage missing feature values, as examined in research
questions 3 and 4. Each Research Question (RQ) will be highlighted in more detail
before moving to the main contributions of this thesis in the next section.

RQ1: To what extent can entity-centric models improve performance compared to
an entity-ignorant model? Entity-centric models typically receive far less training
data than entity-ignorant models, as the latter are trained on all instances within
the data stream, while the former are limited to the substream of instances specific
to a particular entity. A smaller amount of training data is often associated with
poorer performance during testing, so the performance of entity-centric models is
generally expected to be inferior to that of entity-ignorant models. RQ1 explores this
assumption by examining the percentage of entities that benefit from entity-centric
models, the impact of the number of available training instances on their performance,
and the classification performance of methods that combine entity-centric and entity-
ignorant predictions.

RQ2: How can the memory footprint of entity-centric models be reduced?
Creating a prediction model for each entity in a data stream can result in prohibitively
high memory demands, which must be mitigated. RQ2 focuses on experiments aimed
at reducing the memory footprint of entity-centric models while preserving potential
performance gains

RQ3: How can Active Feature Acquisition be realized in a data stream setting?
Active Learning (AL) on data streams typically assumes that labels, rather than
features, are missing, that all missing labels have the same acquisition cost, and that
one label can be obtained per instance. However, the presence of missing features
introduces new challenges, as multiple features can be missing for a given instance,
and the cost of acquiring each feature may vary. Additionally, unlike static AFA,
decisions regarding which features to acquire must be made immediately as instances
arrive. RQ3 investigates how AFA can be effectively implemented in a data stream
setting

RQ4: How can varying feature costs be considered during AFA on streams? RQ4
focuses on the integration of feature costs in AFA for data streams and its impact
on budgeting. This includes decisions related to budget allocation and strategies for
optimizing budget usage across the stream. Additionally, it explores how AFA and
imputation can be intelligently combined to minimize costs further.

3

1. Introduction

1.2. Summary of Scientific Contributions
Part I focuses on the data space and covers entity-centric learning, where a pre-
diction model is created for each entity appearing in a data stream. The goal is to
improve prediction quality with models tailored to an entity’s characteristics and
behavior.

A good example of entity-centric learning is how LLMs like ChatGPT 4o are
increasingly used as personal assistants, which can now recall specific memories of
interactions with specific users (entities) - ’We’re testing memory with ChatGPT.
Remembering things you discuss across all chats saves you from having to repeat
information and makes future conversations more helpful...You’ve explained that you
prefer meeting notes to have headlines, bullets and action items summarized at the
bottom. ChatGPT remembers this and recaps meetings this way.’2.

This work addresses entity-centric learning in a data stream setting, which has its
particular challenges, and the main contributions are:

1. Introduction of an entity-entric, ensemble-based learning approach that com-
bines entity-centric and entity-ignorant models’ predictions, improving predic-
tion quality.

2. Introduction of methods for managing the growing memory requirements
resulting from creating new models as new entities arrive on the data stream.

3. Showing that even very simple entity-centric models that solely rely on labels
can improve prediction quality while having a very low impact on memory
requirements.

Part II focuses on the feature space. It addresses the issue of missing features on a
data stream, as most machine learning methods require feature-complete instances
to make predictions. In data stream settings, it is common that missing features
are imputed (guessed) using various models that either use other features to predict
missing ones or rely on the distribution of a feature and then sample from that
distribution.

This work investigates scenarios where missing features can be acquired under
budget constraints, which can be a preferable alternative in many scenarios. For
example, if the blood type of an incoming patient is crucial to the diagnosis, it
is better to run a costly lab test than to use imputation, but depending on the
symptoms and other factors, it might be unnecessary to run the blood test on every
incoming patient. The main contributions in this part are:

1. Introduction of methods that realize AFA under equal feature costs when only
a single missing feature can be acquired.

2. Development of methods that allow for bigger acquisition sets and can handle
varying feature costs while aiming for optimal usage of the available budget.

3. Introduction of a hybrid approach that relies on strategic imputation to further
reduce costs.

The next section will briefly outline the thesis’s structure before moving to the
underpinnings, which are necessary for both parts of the thesis.

2https://openai.com/index/memory-and-new-controls-for-chatgpt/, visited 14th September
2024

4

https://openai.com/index/memory-and-new-controls-for-chatgpt/

1.3. Outline of the Thesis

1.3. Outline of the Thesis
The structure of the thesis is as follows. First, the foundational concepts of data
stream mining, such as concept drift and common evaluation metrics, are introduced
in chapter 2. This sets the stage for the first main part of the thesis, which focuses
on entity-centric learning (chapter 3).

Chapter 4 begins by presenting the initial work using simple, text-unaware entity-
centric models to predict the polarity of product reviews. This approach is extended
in chapter 5, where text-aware entity-centric models are combined with an entity-
ignorant model in various ensemble configurations. Chapter 6 then addresses the
challenge of reducing memory requirements in entity-centric learning. The first part
concludes with additional reflections in chapter 7 and a general conclusion, including
limitations, in chapter 8.

The second main part of the thesis (chapter 9) focuses on Active Feature Acquisition
(AFA) on data streams. Chapter 10 introduces AFA on data streams, allowing for
the acquisition of one feature per instance, assuming equal feature costs. This work
is expanded in chapter 11, which presents methods for handling acquisition sets
of varying sizes and budget management strategies for handling variable feature
costs. Chapter 12 presents a hybrid approach that integrates AFA with strategic
imputation to reduce budget expenditures. Additional reflections follow in chapter
13, and the second part concludes with limitations and future work in chapter 14.

The thesis ends with chapter 15, which summarizes the results, synthesizes the
findings from both parts of the thesis, and explores more ambitious directions for
future research.

5

2. Stream Mining Underpinnings

This chapter introduces general concepts of data streams and data stream mining.
We first discuss what characteristics are typical for a data stream in contrast to static
data and will introduce typical stream evaluation schemes and metrics.

2.1. Data Streams

The introduction mentioned the three ‘Vs’ that characterize data streams: Velocity,
Volume, and Variety, but the main difference to static data is that new instances
constantly arrive and need to be incorporated into our models [6]. The three ‘Vs’
describe additional characteristics that emphasize why we often cannot simply apply
solutions developed for handling static data iteratively.

Velocity: In a data stream, instances typically arrive with a high velocity and must
be processed by our stream learning models immediately [45]. Consequently, our
models must be able to process incoming instances faster than the stream’s velocity
so that we do not build a stack of unprocessed instances. Furthermore, the stream
mining models must support fast updates to incorporate the latest information. Most
static models can fulfill the first requirement but struggle to meet the second, as
each new instance would require retraining the whole model, which can be incredibly
demanding concerning time and computational resources. The growing volume of
data aggravates this challenge.

Volume: Stream mining usually assumes an infinite number of instances to arrive,
which means we cannot store all incoming data in primary memory, and we also
cannot consider all available data for training or re-training our models, as the
temporal and computational demands would increase with each incoming instance.
Therefore, stream mining methods must be able to work under memory constraints
[6]. Due to the potentially high velocity and volume of the arriving data, most
stream mining algorithms work incrementally, which means they can be trained one
instance at a time. This is sometimes called online training. For example, very fast
decision trees [22] can be trained incrementally in contrast to the conventional CART
algorithm [14].

Variety and Concept Drift: The third ‘V’ addressed the challenge that our target
variable’s distribution and the distributions of our features might change over time.
These changes in distribution are called concept drift [2], see Figure 2.1. For example,
music genres might rise and fall in popularity on a streaming platform, the average
complexity of song lyrics changes over time [64], and the average amount of money a
user spends might change according to the economic situation. These changes must
be detected and then incorporated into our models. Consequently, our models should
be able to forget outdated knowledge. For example, in [51], the authors present a
forgetting mechanism for the k-nearest-neighbor classifier.

7

2. Stream Mining Underpinnings

Figure 2.1.: Depiction of different kinds of concept drift. Reproduced with permission
from [84] ©CC0 1.0 Universal.

Additional challenges for stream mining that have been discussed in [6] are potential
label delay, which impacts the training of our models as we have to wait for an update
till the label arrives or work with surrogate labels in the meantime. Furthermore,
high-dimensional data can bring extra challenges as it typically requires more
computational resources and processing time. This can impact the speed of our
model regarding incremental updates and degrade performance due to the curse of
dimensionality. Lastly, imbalanced classes can be problematic as models designed
to generalize might ignore the minority class, which can be exacerbated by employing
forgetting techniques.

2.2. Evaluation Schemes and Performance Metrics for
Supervised Stream Mining

The dynamic nature of data streams and their potential infinite length pose a
challenge when evaluating a model’s performance. Models and their performances
change across the data stream, which makes splitting a stream into training and test
streams a sub-optimal solution [29]. Instead the most common way to do evaluation
is to use a combination of prequential evaluation and a rolling window of the chosen
performance metric [29, 88].

Prequential Evaluation means that each incoming instance is first used for testing
and subsequently for the training of our model. This ensures that all instances are
used for testing and that concept drift can be picked up by our model as each instance
is also used for training. With all the predictions available one can calculate the
overall performance across the whole stream but because of the assumed dynamic
nature it is more common to move a window over the stream and to calculate the
performance at a certain time point, given the instances in the current window. The
window can be rolling or realized as non-overlapping chunks of data. The size of the
window is typically hand-chosen but can also be calculated and doesn’t have to be
fixed [88]. When we use such an evaluation method we often see low performance
scores at the beginning of the stream as few instances have been available for training
yet, which is called the cold start problem.

8

2.2. Evaluation Schemes and Performance Metrics for Supervised Stream Mining

Table 2.1.: Confusion matrix of a binary classifier.
Confusion Matrix predicted positive predicted negative
real positive true positive (TP) false negative (FN)
real negative false positive (FP) true negative (TN)

Evaluation Metrics: In this work, we use accuracy, balanced accuracy, κ and κ+
for classification tasks. Given a confusion matrix over a window or the whole data
stream, see Table 2.1, accuracy is defined as follows:

accuracy = TP + TN

TP + TN + FP + FN
(2.1)

Accuracy has the issue that it is not suited for imbalanced classes. If the classifier
is good at predicting the majority class, it can vastly overestimate the classification
performance.

For example, if we have 100 people and we want to predict their cancer risk, and
only 10 people in our dataset have cancer (90 are cancer-free), then a simple majority
classifier that labels every instance as not having cancer would reach an accuracy of
90% (90/100).

Balanced accuracy aims to remedy this issue by giving equal weight to all classes.

sensitivity = TP

TP + FN

specificity = TN

TN + FP

balancedAccuracy = sensitivity + specificity

2 (2.2)

Another issue with using accuracy on data streams is that it ignores temporal
patterns. This is why Bifet et al. [13] propose an adjustment to the popular Cohen’s
Kappa performance metric, which adjusts the performance estimates by comparing
a model’s performance against a classifier that propagates the last observed label
(no-change classifier). This ensures that the performance is not overestimated, as it
will be 0 or negative if our model performs similarly to or worse than the no-change
classifier. If the model’s prequential accuracy is p0 and a no-change classifier would
reach a prequential accuracy of p

′
e then κ+ is defined as:

κ+ = p0 − p
′
e

1− p′
e

(2.3)

The κ+ statistic is more reliable when facing imbalanced classes and simple
temporal patterns whereas κ can be used when such temporal patterns are absent.

For numerical or ordinal labels, we employ RMSE as a metric that penalizes
predictions ŷ, which are further off from the true label y.

RMSE(y, ŷ) =

√∑N−1
i=0 (yi − ŷi)2

N
(2.4)

The basic concepts introduced here provide a sufficient overview to follow our
proposed solutions to learn entity-centric models on streams in Part I (chapters: 4, 5
and 6), and acquiring the best features to learn from over a data stream with missing
values in Part II (chapters: 10, 11 and 12).

9

Part I.

Dealing with the Data Space in
Stream Mining

11

3. Motivation & Background -
Entity-Centric Learning on Data
Streams

The first part of this thesis covers the work on the data space of data streams,
particularly when data points/instances are tied to specific entities. We investigate if
and how the knowledge of an entity-instance relationship can be leveraged to improve
prediction quality on a data stream. In many scenarios, stream mining algorithms are
employed on data streams where the incoming instances belong to particular entities.
For example, online posts belong to a specific social media platform user, product
reviews belong to a specific product, and incoming temperature measurements belong
to a specific weather station. Knowing which entity an instance belongs to can inform
a stream learner and give particular context, especially in the case of opinion stream
mining, which we consider in our work. For example, ‘thin’ may be positive when
referring to a cell phone but negative when referring to a winter coat.

Different entities and their instances often show varying label and feature distribu-
tions. One common approach to dealing with different distributions on static data
is to apply clustering to the instances first so that similar instances are grouped
together. Afterwards, classifiers can be built for each individual cluster, forming
a Multi-Classifier System (MSC), which can apply different knowledge to a test
instance depending on which cluster it belongs to.

Figure 3.1.: The figure depicts the decision boundary of a one-class-classifier that
sees all instances of a class on the left and a group of four classifiers
applied on the same data after clustering to the right. It shows that
the white space within the decision boundary, where errors can occur,
becomes smaller when the cluster-based approach is used. Reproduced
with permission from [43] ©Science Direct 2020

In [43], Krawczyk et al. propose a MSC in which they first filter all training
instances by class, then they cluster all the instances of each class into multiple
groups, next they train a one-class-classifier on each individual group and lastly

13

3. Motivation & Background - Entity-Centric Learning on Data Streams

they fuse the predictions of their classifiers. Figure 3.1 shows that the cluster-based
approach captures the distribution of training instances better than a model that
sees all the instances of a class. The authors report that the cluster-based approach
outperformed a single-model-multiclass approach in 13 out of 20 experiments and
was superior to an ensemble of one-class-classifiers without clustering in 16 out of 20
experiments.

Inspired by the findings in [43] and similar ones [53, 75], we want to investigate
the potential of building one model per entity in a data stream setting so that an
entity-centric model is only trained on the instances belonging to the substream
of a particular entity; see Figure 3.2. Clustering entities and building models for
groups of similar entities is out of the scope of this work. We will start with the
most extreme case, which employs one model per entity.

E1 E2 E3 E1 E4 E4 E1 E1 E3 E2 E3 E4 E3 E1 E2 E4 E3... ...

Train E1 Model

Train E3 Model

Train E2 Model

Train E4 Model

...

...

Train ... Model

Figure 3.2.: Each instance on the data stream at the top belongs to a certain entity
signified by its color. The instances of an entity build a substream, which
is the sole input to the entity-centric models seen on the right.

The association between an opinionated document and its “target entity" is being
studied intensively. For example, in [38], Jakob and Gurevych elaborate on the
potential of Conditional Random Fields for the identification of the entity to which
an opinion refers. Qiu, et al. combine the task of target extraction with the
exploitation of the words in an opinionated document to assess polarity [67]. Zhang
and Liu elaborate on the aspects of an entity, which are conveyed in opinionated
documents, and distinguish further between opinions on an entity and comparative
opinions, which involve more than one entities [86]. In [19], Deng and Wiebe use
probabilistic modeling to predict the polarity of an opinionated document and of the
target of this opinion simultaneously, whereas Fudholi et al. [26] propose the use of
a BERT-based language model for the highlighting of named entities in the form of
tourist attractions from search results.

While much research focuses on recognizing and extracting target entities in the
form of Named Entity Recognition (NER) [47], our research concerns scenarios where
the entity-instance relationship is known in advance. For example, the product ID
contained in the metadata of a product review identifies the product (entity) it refers
to, so there is no need to extract the target entity from the review text.

Furthermore, this thesis focuses on entity-centric learning on data streams, which
brings unique challenges.

14

3.1. Challenges for Entity-Centric Learning

3.1. Challenges for Entity-Centric Learning
Deploying one model per entity can be quite challenging because, in many scenarios,
the substreams for each entity are orders of magnitude smaller than the stream
covering instances from all entities. For example, while there are millions of product
reviews on Amazon, most individual products receive only very few reviews. Conse-
quently, the amount of training data for each entity is much smaller as well, which
will affect the quality of the resulting entity-centric models. Furthermore, outliers
have a bigger impact on entity-centric models, as each sample will have a higher
weight if the number of samples is reduced, i.e., an outlier among 10 instances is worse
than an outlier among 1000 instances. This can then lead to entity-centric overfitting.
Another challenge is the growing memory footprint of storing entity-centric models
if we work in a scenario with many entities or potentially unlimited entities. This
effect also strongly depends on the chosen machine learning models which will be
applied on an entity level, while having one decision tree per entity might be feasible,
it might not be computationally or monetarily feasible to train and keep a deep
learning model for each entity.

Considering the above-mentioned challenges of building robust entity-centric mod-
els, we early on considered merging entity-centric models, which have a local per-
spective, with an entity-ignorant model, which has a global perspective. This brings
the challenge of combining entity-centric and entity-ignorant predictions.

This work will address the challenges of incorporating entity-centric models on
a data stream and managing their memory footprint. This concerns the following
research questions posed in section 1.1:

• RQ1: To what extent can entity-centric models improve performance compared
to an entity-ignorant model?

• RQ2: How can the memory footprint of entity-centric models be reduced?

Chapters 4 and 5 present proposed solutions for RQ1, while chapter 6 contains
solutions to RQ2. In chapter 4, entity-centric models are introduced that operate
solely on the substream of labels belonging to an entity, without accessing the features
of incoming instances. Chapter 5 relaxes this assumption, exploring how an ensemble
of entity-ignorant and entity-centric models improves performance compared to a
single global model applied to the entire dataset. Chapter 6 addresses the issue of
the prohibitive memory demands associated with maintaining numerous entity-level
models. It also combines the approaches from chapters 4 and 5 by introducing an
ensemble that includes an entity-ignorant model with access to features, alongside a
simple entity-centric model that relies solely on labels.

Part I concludes with additional reflections on entity-centric learning in chapter 7,
followed by a final summary in chapter 8.

15

4. Entity-Centric Learning without
Features

This part covers the work published in [7], additional unpublished material, and
addresses:

RQ1: To what extent can entity-centric models improve performance
compared to an entity-ignorant model?

The initial intuition behind entity-centric learning was that it would be most
beneficial for entities that significantly deviate from the general population and, as a
result, cannot be effectively predicted by an entity-ignorant model. It was expected
that such entities would exhibit different label patterns compared to the majority of
instances in the data stream, which motivated the focus on the substream of labels
associated with each entity.

Increasing
Decreasing

H
igh Variance

0 10 20 30 40 50

1.0
2.0
3.0
4.0
5.0

1.0
2.0
3.0
4.0
5.0

1.0
2.0
3.0
4.0
5.0

Bucket of 5 Opinions

Av
er

ag
e

Op
in

io
n

Sc
or

e/
Pr

ed
ic

ti
on

SMA

Increasing
Decreasing

H
igh Variance

0 10 20 30 40 50

1.0
2.0
3.0
4.0
5.0

1.0
2.0
3.0
4.0
5.0

1.0
2.0
3.0
4.0
5.0

Bucket of 5 Opinions

Av
er

ag
e

Op
in

io
n

Sc
or

e/
Pr

ed
ic

ti
on

MNB

Figure 4.1.: Development of reviews scores from example Amazon products. The
solid line represents the bucket average of review scores; dashed lines
show predictions of entity-centric, text-unaware Simple Moving Average
(SMA, left) and entity-ignorant, text-aware Multinomial Naive Bayes
(MNB. right) using a window length of 5. Especially for the product with
decreasing scores, entity-centric SMA performs better than the MNB.

Figure 4.1 illustrates that entity-centric, text-ignorant predictors, which rely solely
on past labels, can accurately approximate the arriving labels for certain entities. In
fact, these models can even outperform text-aware approaches in some cases. For
instance, the product displayed in the middle of the figure demonstrates that the
simple-moving-average (SMA) model over the substream of labels exhibits a smaller
error than a Multinomial Naive Bayes classifier (MNB) that had access to the full
review text. This chapter specifically examines how well the labels of opinionated
texts referring to a particular entity can be predicted when only the substream of
labels associated with that entity is available and no access to textual features is
provided. The Amazon review dataset is used for this investigation, treating each

17

4. Entity-Centric Learning without Features

product as a distinct entity that receives a substream of opinionated reviews, with
the star rating serving as the target label for prediction.

The evaluation compares simple, text-unaware entity-centric models, which only
use labels from the substream of a particular product, against a text-aware, entity-
ignorant model that is trained and tested on all arriving reviews, regardless of the
product or entity to which they belong. The sections 4.6 and 4.7 are based on their
counterparts in [7].

4.1. Related Work

The stated objective is to predict the next label of an opinion associated with a specific
entity, without utilizing the opinion text itself. This task intersects with several
research areas, including polarity learning, target entity analysis, and stream-based
recommenders.

4.1.1. The Polarity Learning Problem

In [63], the authors decompose a document into individual sentences, treating each
sentence as a distinct instance, and apply weighted Multiple Instance Regression
(MIR) to predict the overall polarity of the document. Unlike these sentence-focused
approaches, the present work does not consider the document’s semantics or its
sentences. Instead, the focus is exclusively on the target entity, assuming that the
entity is known beforehand.

As summarized by [78], earlier research in static opinion mining generally achieved
accuracy rates ranging from 60% to 90%, primarily addressing binary or three-class
classification problems (positive, negative, neutral). In contrast, the task explored
here involves a multi-class classification problem with five classes, similar to the work
of [62], where Support Vector Machines (SVMs) were employed to predict star ratings
for movie reviews. However, while [62] developed models for each individual review
author, the approach in this work is more closely aligned with stream recommender
systems, a topic further elaborated in section 4.1.4. The advent of large language
models (LLMs) and text embeddings revolutionized text mining [60, 4] in recent
years, but they are some of the most computationally expensive models to train and
also to adjust to concept drift [83, 21], which is why they are not yet commonly used
on data streams [6].

4.1.2. Target Entity Analysis

In [19], the authors employ probabilistic models to predict both the polarity of an
opinionated document and the polarity of the document’s target entity. Jakob and
Gurevych, in [38], explore the potential of Conditional Random Fields for identifying
the specific entity to which an opinion refers. Similarly, Qiu et al. combine target
extraction with an analysis of the words in an opinionated document to assess its
polarity [67]. Zhang and Liu extend this further by examining the aspects of an entity
conveyed in opinionated texts, differentiating between direct opinions on a single
entity and comparative opinions that involve multiple entities [86]. Vakulenko et al.
formalize the problem of linking sentiment to a target in opinionated documents.
They define "sentiment-target linking" as the task of pairing sentiment tokens with
target tokens extracted from a sentence, ensuring that the sentiment is correctly
attributed to the target entity [80].

18

4.1. Related Work

While these works focus on target extraction or linking sentiment to targets, our
approach differs significantly. We concentrate on predicting the polarity of opinionated
documents for which the target entity is already known—such as products on rating
platforms, or opinions on hotels, restaurants, and events. Additionally, this work
addresses this task in a stream setting, where the goal is to predict the polarity of
the most recent opinion on a given entity without considering the content of the
opinion.

4.1.3. Learning on a Data Stream
In a data stream setting, consider the timepoints t1, t2, . . . , tj , . . ., at which opinion-
ated documents—referred to as instances—arrive. At each timepoint, tj , a model
Mj is built based on all instances observed up to that point. When a new instance
arrives at tj+1, the model processes the incoming instance, predicts its label, and
updates itself based on the actual label, producing Mj+1.

The goal of stream classifiers is to quickly adapt to changes in the data, known
as concept drift [12]. Stream learning algorithms differ in the amount of historical
data they retain and the types of information they prioritize. A key consideration is
memory retention, or the application of forgetting mechanisms. For a comprehensive
discussion on forgetting strategies in stream learning, refer to [30].

Research has shown the advantages of online linear and discriminant analysis
for handling streaming data [3]. In [82], both aggressive and gradual forgetting
strategies were examined for the classification of opinionated documents, with our
work referencing the gradual method from that study, which will be employed as the
text-aware entity-ignorant model.

4.1.4. Stream Recommenders
From a technical perspective, the approach presented here shares several character-
istics with stream-based recommender systems. Recommenders typically predict
whether a user will like an item by analyzing the user’s prior ratings, the item’s rating
history, and the similarities between both users and items. In systems utilizing matrix
factorization, this prediction task is framed as a regression problem, where a model
of the rating matrix is learned to predict missing values. In streaming environments,
recommendation systems adopt strategies to handle outdated ratings, as outlined
in [81] and [57]. These strategies frequently adjust the retention of information,
preserving more data about infrequently rated items compared to frequently rated
ones.

Despite these technical similarities, the techniques used in stream recommenders
are not directly applicable to our task. The objective here is not to generate
recommendations, so factors such as a user’s past opinions or their similarity to other
users are irrelevant. Likewise, item-item similarity is not a key consideration; for
instance, even if two hotels offer nearly identical services or two watches share the
same features, the opinions received for these items may differ significantly due to
factors like brand perception or geographical location.

19

4. Entity-Centric Learning without Features

4.2. Polarity Predictors on Entity-Level Substreams

A stream of opinions explicitly linked to predefined entities, such as products, movies,
hotels, and restaurants, is considered. Let E = {e1, e2, ..., en} represent the set of
entities, and t1, t2, . . . , tj , . . . denote the timepoints at which these opinions arrive.
Each opinion, or instance, is represented as a pair ik,j , where ek ∈ E refers to the
associated entity and tj indicates the time of arrival. Similar to traditional opinion
stream classifiers, the task is to predict the polarity label(ik,j) ∈ L, where L signifies
the set of possible labels. However, the approach presented here differs in terms of
the data used for learning and whether this data is processed within a single model
or distributed across multiple models.

4.2.1. Entity-Level Substream and Models

For each entity ek ∈ E, a substream substream(ek, tj) is constructed and maintained,
storing all instances observed for ek up to time tj . Thus, at tj , this substream contains
a list of instances substream(ek, tj) = [ik,k1 , . . . , ik,kl

], where tkl
≤ tj represents the

most recent timepoint at which an opinion about ek was received. The number of
instances associated with different entities can vary significantly, leading to substantial
differences in the length of each entity’s substream and the amount of training data
available for model learning.

It has been postulated that for entities benefiting from entity-centric learning,
the substream of labels would differ from the overall population. This led to the
conjecture that an entity’s label history alone might suffice to predict future labels
effectively.

To investigate this postulation, entity-centric predictors are developed, and a
model for each entity ek is learned and adapted. These predictors are divided into
two categories: those that only utilize the labels of the instances in substream(ek, tj)
and those that also consider each instance’s content (features). Additionally, models
are built that generalize across all entities, again distinguishing between those that
access only the labels and those that also exploit instance content. A conventional
opinion stream classifier is used as a baseline. This classifier builds a model using all
incoming instances, accessing their features but disregarding the entities they refer
to.

4.3. Entity-Centric and Entity-Ignorant Predictors

A family of entity-centric predictors (denoted as "E") is proposed, where a distinct
model is developed for each entity, considering only the labels of the opinions
associated with that entity. The primary distinction between these predictors lies
in the extent of historical information they retain. Among the various forgetting
mechanisms commonly applied in stream classification [30], a sliding window approach
is adopted, thereby distinguishing between window-based models and those that retain
all-past data.

This family of predictors is contrasted with two baseline groups: the baselines
(denoted as "B"), which construct a single model from the entire dataset, and the
entity-centric baselines, which also utilize the content of the opinions for each entity.

20

4.3. Entity-Centric and Entity-Ignorant Predictors

(E1) Entity-centric, all-past-based predictors.

Each predictor of this subfamily builds a model Mk per entity ek. More precisely,
a predictor builds a model Mk,kj

with all data remembered until tkj
and adapts it

upon arrival of the next instance on ek, at tkj+1 . Each model of this subfamily is
only updated when a new instance arrives for the respective entity.

The predictors are:

Prior Let ik,j+1 be the opinion arrived at tj+1. Since it refers to ek, the label
assigned to it is drawn from substream(ek, tj).

This model predicts the next label to be the most frequently observed label in the
substream of ek before tj+1. Alternatively, it is called the majority-label classifier.

HMM-based predictors For each entity ek, a Gaussian HMM with three states
is learned on substream(ek, tj) and adapted whenever a new opinion comes for ek.
The states are intended to capture (1) the tendency for entities to receive mostly
negative opinions, (2) the tendency for entities to receive mostly positive opinions,
and (3) other tendencies.

The motivation behind these states is that people’s opinions towards an entity
may drift towards more positive/negative values. For example, an eagerly expected
release of a cellphone may provoke enthusiastic opinions at first, later shifting towards
negative ones, e.g. if some expected functionalities are unavailable or if some flaws or
construction errors emerge. Improvements may lead again to positive opinions. Such
transitions are also expected in opinions on hotels or restaurants, where temporary
changes at the service level may lead to more positive or negative ones. To predict
label(ik,j+1), each candidate label from L is added to the sequence of already observed
labels (label(iek,k1), label(iek,k2), . . . , label(iek,kj

)) and we compute for each potential
label the likelihood of being observed in this sequence of labels given the current
HMM parameters. The candidate label with the highest score is then selected as the
prediction label(ik,j+1).

(E2) Entity-centric, window-based predictors.

For each of the predictors mentioned earlier, a window-based variant is derived,
applying a sliding window of length w (in terms of instances) over each substream.
These models consider only the instances within the window for learning, resulting
in the WindowedPrior and WHMM predictors, which utilize only the labels.

In the specific case where labels are numerical, as can be the case with ordinal
labels like the considered star-ratings, two additional predictors are introduced:

Regression The label for ik,j+t is predicted using a linear regression model trained
within the window. Since the regression model returns real values, the prediction is
rounded to the nearest ordinal label.

Simple Moving Average(SMA) This predictor sets as
label(ik,j+1) the average over all labels within the window, after rounding to the
closest integer.

21

4. Entity-Centric Learning without Features

(B) Baselines for the Predictors.

To evaluate our approach, various baselines are introduced as counterparts to the
aforementioned methods.

Entity-centric, all-past-based one-nearest neighbor
("KNN") This algorithm exploits the contents of the instances in substream(ek, tj),
as well as the contents of the instance ik,j+1. For vectorization of the opinions, a
bag-of-words approach is used after stopword removal. Then, the label assigned
to ik,j+1 is the label of the most similar instance to it among the instances in
substream(ek, tj).

Entity-centric, window-based one-nearest neighbor
("WKNN") The counterpart of the aforementioned baseline, considering only the
instances that are inside the window.

Global, window-based one-nearest-neighbor
("GKNN") This simplistic baseline considers the N most recently observed opinions
and assigns to ik,j+1 the label of its nearest neighbor among those N . In our
experiments, we set N = 1000.

Global, all-past-based baseline "Global Prior" A baseline that forgets none of
the past data is atypical in stream learning because it is irresponsive to drift. We
still consider such a baseline, which ignores the texts but remembers the labels and
assigns to an opinion the most likely label observed thus far in the stream.

Reference Strategy: "Multinomial Naive Bayes with Forgetting" All prediction
methods are compared against a multinomial Naive Bayes (MNB) classifier with
forgetting introduced in [82], which uses the review text to make label predictions.
The MNB classifier was optimized for the use on data streams and uses occurrence
counts for each label and conditional counts, tracking the occurrences of each tracked
feature with each label to make predictions using Bayes’ theorem. The 1000 most
frequently occurring words make up the features1. Of the two forgetting MNB
variants proposed in [82], this work uses the the ‘fadingMNB’ approach, which decays
word counts more gradually than the ‘aggressiveFadingMNB’. A traditional MNB,
without forgetting, is also employed for reference but takes much longer to execute
as it is not optimized for data streams.

The review text was subject to basic preprocessing steps, such as removing non-
alphanumeric characters, stemming (reducing derived words to their roots), and
stopword elimination (removing words like ‘and’, ‘the’, ‘a’, etc.).

4.4. Evaluation Framework
The proposed entity-centric learning approach differs greatly from conventional
opinion stream mining due to the nature of the information being exploited. To
ensure fair comparisons, the stream alignment method and evaluation settings of the
framework are outlined next.

1In case the data for the whole period does not fit in memory, the frequent words are computed on
the first half of the dataset

22

4.4. Evaluation Framework

Figure 4.2.: 1) A stream of opinions with four entities, time is progressing from left to
right; 2) removal of entities having fewer than 2 ·w opinions, where w = 2
(the orange entity is removed as 3 < 2 · 2); 3) the first w = 2 opinions per
entity are placed in the training stream, and 4) the remaining opinions
are placed in the evaluation stream. Figure reproduced with permission
from [7] ©ACM 2018 Copyright held by the owner/author(s).

4.4.1. Aligning a Stream of Opinions to their Target Entities

A predictor that leverages the target entity e of an opinion i for label prediction
requires at least one prior opinion on e. For evaluation purposes, a sufficient number
of opinions per entity must be available for both training and testing. The stream is
therefore divided into a training stream and an evaluation stream as follows:

1. A threshold w ≥ 1 is set as the minimum number of opinions (instances)
required for prediction. In our experiments, this threshold is varied.

2. Entities with fewer than 2 · w opinions are excluded from the stream.

3. For each remaining entity e, the first w opinions are allocated to the training
stream.

4. The remaining opinions for e are allocated to the evaluation stream.

This process is illustrated in Figure 4.2, where time progresses from left to right.
In the figure, two boxes of the same color represent opinions on the same entity. The
example includes four entities (depicted in blue, orange, yellow, and green).

Figure 4.2, line 1) shows the original stream. The gaps in line 2) indicate removed
entities: w = 2, therefor the opinions on the orange entity were skipped. In line 3),
we see the first w = 2 opinions of each retained entity as part of the training stream.
The remaining ones are placed in the evaluation stream, cf. line 4).

This setup allows to compute prediction performance for each entity individually.
It also ensures that all entities included in the evaluation provide at least w instances
for training and testing so that the models can actually learn and predict.

4.4.2. Entity-Centric Evaluation

The framework provides two distinct types of evaluation: one that mirrors conven-
tional stream evaluation and another that operates at the entity level.

The first approach uses prequential evaluation on the evaluation stream, excluding
all instances assigned to the training stream. This filters out the w instances used to
initialize the entity-centric models. The goal is to assess the performance of these
models after initialization with w instances and at least w test instances. In this
evaluation, all entity-centric models are treated as a single aggregated model, and a

23

4. Entity-Centric Learning without Features

unified performance score is calculated. The performance metrics considered include
accuracy, balanced accuracy, and κ+ for nominal labels, and RMSE for ordinal or
numeric labels. For κ+, an entity-centric no-change classifier is employed, which
propagates the last seen label of an entity to the next incoming instance of that entity.
Performance is calculated over the whole stream instead of employing a window or
chunk-based evaluation, as the overall performance is of interest, not the performance
at certain points in time.

The second evaluation method operates at the entity level, where performance is
calculated separately for each entity. For each prediction method M and entity e,
performance is evaluated on the entity’s substream Se, based on the true labels ySe

and the predicted labels ŷMe,Se on the evaluation stream:

performancee(Se, Me, metric) = metric(ySe , ŷMe,Se) (4.1)

Following this, a pairwise comparison is conducted between each pair of prediction
models M1, M2 ∈Models. The percentage of entities where performancee(Se, M1e , metric) >
performancee(Se, M2e , metric) is then calculated.

4.5. Experiments
The predictors and baselines outlined in 4.3 are compared in this experiment. For
all entity-based predictors and baselines, the minimum number of opinions per
entity, denoted as w, is varied with values of 5, 10, 15, and 20. For the window-
based subfamily, window sizes of 5, 10, 15, and 20 instances are considered, with
the constraint that the window size cannot exceed the value of w. Given that w
is relatively small in this set of experiments, the values of w and W are varied
simultaneously, i.e., w = W .

4.5.1. Datasets of the Experiments

0

300,000

600,000

900,000

1,200,000

5 4 3 2 1

Label

#O
pi

ni
on

s

0

2,000

4,000

6,000

8,000

5 4 3 2 1

Label

#O
pi

ni
on

s

Figure 4.3.: Distribution of opinion labels for tools (green) and watches (orange)

For the experiments, subsets of the Amazon review dataset [34] are used, namely
the ’Tools and Home Improvement’ denoted as tools hereafter, and the set of
opinions on watches, extracted from the 5-core version2 of the ’Clothing, Shoes and
Jewelry’ subset and denoted as watches hereafter. An overview of the two datasets
can be found in Table 4.1.

Collection #entities #opinions
tools 260,659 1,926,047
watches 1,221 13,027

Table 4.1.: Entities and reviews in tools and watches

2http://jmcauley.ucsd.edu/data/amazon/links.html

24

http://jmcauley.ucsd.edu/data/amazon/links.html

4.5. Experiments

3

4

5

Q1-2005

Q3-2005

Q1-2006

Q3-2006

Q1-2007

Q3-2007

Q1-2008

Q3-2008

Q1-2009

Q3-2009

Q1-2010

Q3-2010

Q1-2011

Q3-2011

Q1-2012

Q3-2012

Q1-2013

Q3-2013

Q1-2014

Q3-2014

Quartal

Av
er

ag
e

Op
in

io
n

Sc
or

e

3

4

5

Q1-2005

Q3-2005

Q1-2006

Q3-2006

Q1-2007

Q3-2007

Q1-2008

Q3-2008

Q1-2009

Q3-2009

Q1-2010

Q3-2010

Q1-2011

Q3-2011

Q1-2012

Q3-2012

Q1-2013

Q3-2013

Q1-2014

Q3-2014

Quartal

Av
er

ag
e

Op
in

io
n

Sc
or

e

Figure 4.4.: Average product rating over time for tools (green) and watches (orange).
The height of the background histogram depicts the rating density within
the quarter.

19
99

20
00

20
01

20
02

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

0 2,000 4,000 6,000 8,000

#Opinions

20
03

20
04

20
05

20
06

20
07

20
08

20
09

20
10

20
11

20
12

20
13

20
14

Dec
Nov
Oct
Sep
Aug
Jul
Jun
May
Apr
Mar
Feb
Jan

0 20 40 60

#Opinions

Figure 4.5.: First opinions on an entity for tools (green) and watches (orange).

Figure 4.3 illustrates the distribution of opinion labels (1 to 5 stars) for the tools
(green) and watches (orange) datasets. The class distribution is clearly skewed, with
the label "5" being more frequent than all other labels combined in tools and the
most frequent label in watches. Treating the labels as numerical values, the average
rating exceeds 4, reflecting a strong tendency towards positive opinions.

Figure 4.4 further confirms this trend by showing the average product rating for
each quarter from 2005 onwards. After some initial fluctuations, particularly in
watches, the average rating stabilizes slightly above 4, while the volume of posted
opinions increases significantly after 2010.

Figure 4.5 presents calendar heatmaps for both datasets, illustrating the number of
first opinions on entities over time. The increasing intensity in the heatmaps indicates
a growing number of entities receiving opinions. For tools, this proliferation begins
steadily in late 2012, whereas for watches, a peak is observed in December 2012,
followed by a subsequent decline.

Although Figure 4.5 indicates that more and more entities have received an opinion

100.0 %

13.0 %
6.8 % 4.4 % 3.2 %

0

100,000

200,000

1
(all)

10
(w=5)

20
(w=10)

30
(w=15)

40
(w=20)

#Opinions

#E
nt

it
ie

s

100.0 %

33.4 %

9.2 % 4.3 % 2.0 %
0

500

1,000

5
(all)

10
(w=5)

20
(w=10)

30
(w=15)

40
(w=20)

#Opinions

#E
nt

it
ie

s

Figure 4.6.: Entities with at least 2 · w opinions for tools (green) and watches
(orange).

25

4. Entity-Centric Learning without Features

in the last years, most entities do not go beyond this number. As can be seen in
Figure 4.6, only around 12% of the tools and of the watches have at least 2 · 5
opinions (for w = 5), and this percentage drops rapidly as we increase the w. Hence,
the evaluation is done on a small part of the original stream. This detailed description
of the datasets was part of unpublished work concerning [7].

4.6. Results and Discussion

The overall prediction quality is first evaluated by analyzing performance across the
entire data stream, followed by a comparison of model performance at the entity
level. Since the results are similar across both datasets, the discussion will focus on
the tools dataset, which includes a larger number of instances and entities. The
results for the watches can be found in the appendix.

The upper section of Figure 4.7 presents the key metrics of interest, including
accuracy, balanced accuracy, RMSE, κ+, and execution time. The lower section
displays pairwise comparisons between the models based on κ+.

Prediction Quality

Entity-centric models are aggregated into a single conglomerated global model (see
subsection 4.4.2). Predictably, text-aware global models outperform these conglom-
erated models, primarily due to the integration of historical texts and labels.

Among the entity-centric methods, the conglomerated text-ignorant SMA exhibits
the lowest RMSE, surpassing even text-aware models such as KNN and WKNN, as
well as the global model GKNN. Additionally, SMA has a notably faster execution
time (see the last column), making it particularly suited for numerical label tasks.

For categorical labels, the conglomerated version of WPrior emerges as the best
entity-centric method that does not incorporate text data, though it is still surpassed
by the text-aware models. The variation in performance across methods—especially
when comparing RMSE with accuracy and balanced accuracy—suggests that RMSE
is a more effective metric in scenarios with skewed class distributions, such as the
5-star ratings in our datasets.

The underperformance of the conglomerated entity-centric HMM and WHMM,
combined with their excessive execution times, renders HMMs a less appealing choice
for text-ignorant entity-centric learning. A more detailed analysis of model-specific
errors is presented in Appendix A.1.

Finally, the conglomerated models yield a κ+ value of zero, as κ+ is computed over
the entire data stream, while entity-centric algorithms are optimized for individual
entities. As illustrated in Figure 4.1, entity-centric models can surpass global models
for specific entities. Therefore, κ+ is further examined on an entity-by-entity basis
in the following section, as it was designed for streams and considers the temporal
trends of each entity. For example, a product that received a 1-star review is more
likely to receive a 1-star review in the near future, compared to a product, which
recently received a 5-star review.

Pairwise Comparison of Prediction Quality for each Entity

The lower section of Figure 4.7 provides a pairwise comparison of predictors, showing
the percentage of entities where the row predictor achieves a higher κ+ than the
column predictor. For instance, Prior (first row) outperforms Regression (fourth

26

4.6. Results and Discussion

column) for 44% of the entities, as indicated by a green bar filling 44% of the cell.
Conversely, Regression outperforms Prior for only 1% of the entities (see fourth row,
first column), with both performing equally for the remaining 55% of the 33,989
entities.

Notably, MNB and MNBF outperform other predictors for up to 58% of entities.
However, for more than 40% of entities, their κ+ is zero or matches that of another
predictor. Specifically, MNB and MNBF are surpassed by SMA for 6% of the entities,
by Prior for 18%, and by WPrior for 13%. These results suggest that entity-centric
models offer distinct advantages for certain entities, highlighting the importance of
identifying these characteristics in future research.

Exec. Time

#predictions: 1247724 [min:sec]

Prior 0.592 1.505 0.242 0.000 00:06

WPrior 0.521 1.567 0.259 0.000 00:08

SMA 0.385 1.332 0.244 0.000 00:07

Reg 0.370 1.648 0.229 0.000 05:12

HMM 0.580 1.530 0.242 0.000 443:09

WHMM 0.471 1.638 0.247 0.000 1193:26

KNN 0.512 1.439 0.290 0.000 67:40

WKNN 0.482 1.544 0.269 0.000 36:52

Text-ign. GPrior 0.598 1.552 0.200 0.001 00:05

MNB 0.652 1.184 0.409 0.224 294:06

MNBF 0.653 1.180 0.409 0.227 12:48

GKNN 0.484 1.580 0.278 0.000 244:20

E
n
ti
ty

-C
e

n
te

re
d

Text-

ignorant

Text-

aware

G
lo

b
a
l

Text-

aware

κ+

loc. p.

Bal.

Acc.Acc. RMSE

#e: 33989 P
ri

or

W
P

ri
or

S
M

A

R
e

g

H
M

M

W
H

M
M

K
N

N

W
K

N
N

G
P

rio
r

M
N

B

M
N

B
F

G
K

N
N

Prior .22 .37 .44 .20 .40 .35 .37 .01 .18 .18 .42

WPrior .01 .26 .33 .09 .29 .24 .26 .01 .13 .13 .32

SMA .01 .01 .12 .03 .10 .08 .08 .01 .06 .06 .13

Reg .01 .01 .02 .01 .02 .03 .03 .01 .02 .02 .06

HMM .03 .17 .31 .37 .33 .28 .31 .02 .15 .15 .36

WHMM .02 .02 .13 .18 .03 .10 .11 .01 .05 .05 .19

KNN .04 .08 .19 .24 .07 .19 .15 .04 .08 .08 .23

WKNN .03 .05 .15 .20 .05 .14 .08 .03 .06 .06 .19

GPrior .09 .28 .42 .48 .26 .45 .39 .42 .20 .20 .46

MNB .37 .43 .53 .58 .42 .54 .50 .52 .35 .04 .55

MNBF .38 .44 .54 .58 .42 .54 .51 .53 .35 .06 .56

GKNN .05 .07 .11 .13 .07 .10 .09 .10 .04 .04 .04

Figure 4.7.: The top subtable compares the performance and execution time of
all predictors on tools with w = 5. Higher scores are preferable for
(balanced) accuracy and κ+, while lower values are favored for RMSE.
The best results are highlighted in bold, and the top-performing text-
ignorant predictors are underlined. The bottom subtable shows the
percentage of entities where the κ+ of the predictor in the row exceeds
that of the predictor in the column. Figure reproduced with permission
from [7] ©ACM 2018 Copyright held by the owner/author(s).

27

4. Entity-Centric Learning without Features

4.7. Conclusion
In this chapter, the impact of incorporating entity-specific information into the
prediction of opinion labels is explored. A framework for entity-centric document
polarity prediction is introduced, where a distinct model is developed for each entity,
utilizing the substream of instances associated with that entity. Some of the proposed
predictors are text-aware, while others rely solely on historical label data. This
chapter focuses on the performance of entity-centric methods that rely on labels.
This is based on the intuition that entities that are hard to predict by an entity-
ignorant model probably show label distributions that differ from the overall trend.
Experiments were conducted on two Amazon review datasets where entities are
products and instances are reviews (opinions) pertaining to these products.

Depending on the performance metric, up to 18% of the entities benefit from simple,
text-ignorant predictors, which outperform more complex methods that consider the
full opinion stream without factoring in the connection between the opinion and the
corresponding entity. However, for the majority, models constructed from the entire
opinionated stream yield better outcomes.

The framework includes both basic entity-based predictors, such as those that
fit a regression line to past labels or select the most frequently observed label, and
more sophisticated methods like Hidden Markov Models (HMMs). Nonetheless,
experimental results show that the extended processing time required for more
complex models does not always lead to improved predictions, with simpler predictors
often being more competitive.

These findings are subject to certain caveats. The two datasets used in the
experiments exhibit a class distribution heavily skewed toward the most positive
label, which may affect the relative performance of entity-centric models when
compared to traditional stream classifiers. Moreover, variations in the number of
opinions and class distribution across entities were not taken into account.

Entity-centric predictors require a minimum number of opinions before they can
predict future opinions, whereas traditional stream classifiers are able to predict
opinion labels even without prior data for a specific entity, as long as they have been
initialized with data from other sources. Consequently, this entity-centric approach
should be viewed not as a replacement for traditional stream learning methods, but
as a low-resource complement.

These findings have prompted a deeper investigation into the characteristics of
entities for which entity-centric models perform well. Here, it was first assumed that
an entity’s label distribution is indicative of its model performance. Unfortunately,
initial investigations in this direction were inconclusive. The results were very sensitive
to the distributions themselves and also to the degree to which two distributions
need to differ before they can be called ‘different’.

A more obvious characteristic that is known to impact model performance is
the length of an entity’s substream, i.e., the amount of training data available
for constructing the entity-centric model. The next chapter extends this work by
developing an evaluation framework focused on substream length and combining the
predictions from entity-centric and entity-ignorant models to enhance performance
even when only a few instances are available for a given entity.

28

5. Entity-Centric Ensemble

This chapter describes the work published in [8]. It addresses the following RQs:

RQ1: To what extent can entity-centric models improve performance
compared to an entity-ignorant model?
RQ2: How can the memory footprint of entity-centric models be
reduced?

Its primary focus is RQ1, but it also highlights the growing memory demands of
employing entity-centric models, which relates to RQ2.

The initial work on entity-centric learning, discussed in chapter 4, demonstrates that
simple entity-centric models can enhance performance for specific entities. However,
it also emphasizes that the traditional entity-ignorant stream mining algorithm,
which processes instances from all entities without differentiation, achieves the best
overall performance. It is assumed that the length of an entity, and thus the amount
of available training data, plays a significant role in the applicability of entity-centric
learning for that entity.

To test this assumption, a new entity-centric evaluation framework is proposed.
This framework focuses on the number of instances in an entity’s substream available
for training and assesses how many training instances are required for an entity-centric
model to reach an RMSE comparable to that of an entity-ignorant model.

Additionally, several ensemble models that combine predictions from both entity-
centric and entity-ignorant models are introduced. The newly developed framework
is used to identify the point at which an ensemble’s predictions surpass those made by
either purely entity-centric or purely entity-ignorant models. Given that entity-centric
models relying only on label data were frequently outperformed by the text-aware
entity-ignorant model, the best-performing text-aware model (MNBF) from chapter
4 is utilized for the entity-centric predictions as well.

This chapter begins with a review of related work, followed by a detailed explanation
of the evaluation framework in section 5.2. Next, the various ensemble models that
combine entity-centric and entity-ignorant predictions are introduced in section 5.3.
The chapter ends with a discussion of the experimental results in section 5.4 and
concluding remarks in section 5.5. The sections in this chapter are based on their
counterparts in [8].

5.1. Related Work
Stream algorithms that relax the assumption of independence between incoming
reviews and product ratings are particularly relevant to our research, especially
those that take into account the relationship between a rating and its corresponding
product for both learning and forgetting.

One of the earliest references to the connection between an entity, such as a product,
and its associated temporal events is captured in the concept of ’context.’ In [36], Hong
et al. define ‘Context as any information that can be used to describe the situation of
an entity.’ Similarly, [61] demonstrates how context-aware features can enhance the

29

5. Entity-Centric Ensemble

performance of recommender systems. Unlike context-aware learning, which defines
an entity within a particular, predefined or learned context, our approach emphasizes
the relationship between an entity and the various observations associated with it
over time, using this connection to inform the model.

Several works align more closely with our notion of entity-centric processing over
a stream of observations, including those by [25, 79, 58] and [7]. In [25], Fafalios et
al. present entity-specific metrics, such as popularity and sentiment, extracted from
the Twitter social stream to track the evolution of individual entities. [58] introduce
a text stream classification algorithm that manages changes in the feature space
by tracking the historical data of each feature. Their ensemble approach predicts
future values by identifying patterns such as regular, seasonal, autoregressive, and
short-term bursts, all handled by individual base predictors. In this context, each
feature acts similarly to an entity with a corresponding historical record.

In [79], Unnikrishnan et al. propose connecting all observations related to an
entity into an ongoing time series, leveraging similarities across entities to develop a
predictor capable of forecasting labels for both near-term and long-term observations.
Although their method also handles a stream of observations, they assume only an
initial set of labels is provided, aiming to predict future labels far into the future.
In contrast, our method adheres to a conventional stream classification framework,
where new labels are revealed incrementally as the stream progresses.

In this chapter, the MNB with gradual forgetting [82] is employed as both the
entity-centric and entity-ignorant model, which gives the entity-centric models access
to the review text. Next, a description of the motivation and design of the evaluation
framework will be provided before going deeper into the ensemble methods.

5.2. Entity-Centric Evaluation Scheme
As previously mentioned, it is hypothesized that the amount of available training
data, particularly the length of an entity’s substream, is a crucial factor influencing
the performance of entity-centric models. This observation led to the development
of an entity-centric evaluation framework aimed at determining how many entities
benefit from entity-centric learning based on the given quantity of training data.

To ensure fair comparisons among entity-centric models, it was necessary to control
the amount of training and test data per entity, allowing performance scores to be
calculated from the same number of predictions across all entities.

Thus, the evaluation framework was designed to begin with a conventional pre-
quential evaluation, followed by an assessment in an entity-centric context, focusing
on performance relative to a specific amount of training and test data.

This chapter uses RMSE as the performance metric due to its suitability for ordinal
labels, where larger prediction errors are penalized more heavily than smaller ones.
For example, predicting a 5-star review as 4 stars is more favorable than predicting
it as 1 star.

The evaluation framework is depicted in Figure 5.1, where ECCE represents an
ensemble method based entirely on entity-centric predictions, while EIGC is an
entity-ignorant classifier. Further details on ECCE and other ensemble models are
provided in section 5.3, but for now, it is important to note that ECCE generates
entity-centric predictions, whereas EIGC delivers predictions that do not incorporate
entity-specific information.

30

5.2. Entity-Centric Evaluation Scheme

Figure 5.1.: This figure illustrates the entity-centric evaluation process, using ECCE
as an example, which delivers solely entity-centric predictions. On the
left, entities are aligned, and the next n observations are extracted
according to a specified threshold x, which represents the number of
training instances per entity. Entity E_1 in blue does not meet the
criteria, as it lacks the n required observations at threshold x. Moving
along the arrow to the right, the n observations of each entity are used
to form vectors of true labels and predictions from ECCE (dashed
lines for entity-centric predictions) and EIGC (diagonal dashed lines
for entity-ignorant predictions). Following the downward arrow, the
result of the first component, the RMSE at threshold x, is displayed.
To the right, the RMSE for each entity is shown, which contributes to
the second component (percentage of wins) and the third component
(statistical significance test). Figure reproduced with permission from
[8] ©2019 ACM.

31

5. Entity-Centric Ensemble

The framework is organized around three key components:

First Component - The Effect of Available Training Data per Entity: The process
begins by aligning the substreams of entities and generating a vector of n predictions
for each entity at a given threshold x, which corresponds to the amount of training
data available for the entity-centric models. This prediction vector is denoted as
VP , with VT representing the true labels. The RMSE between these two vectors
is then computed (e.g., RMSE(VECCE , VT)), and the result is compared to the
entity-ignorant baseline (RMSE(VEIGC , VT)). This process is illustrated in Figure
5.1, following the first arrow to the right and then the downward arrow.

Second Component - Evaluating Error Reduction per Entity: To assess how
many entities benefit from entity-centric and ensemble-based methods, the RMSE
is calculated for the next n predictions for each entity, as shown in the table on
the right side of Figure 5.1. If the entity-centric ensemble results in a lower RMSE
compared to the baseline for a given entity, it is marked as a "win" for the ensemble.
This enables the calculation of the percentage of entities for which the entity-centric
approach outperforms the baseline.

Third Component - Statistical Testing Over Time: At each threshold x, the table
from the second component is used to determine whether the performance of the
ensemble method at the entity level is statistically superior to the baseline using a
Wilcoxon signed-rank test. This process is depicted under the downward arrow on
the right side of Figure 5.1.

This framework is employed to explore the following questions:

• What percentage of entities benefits from entity-centric stream learning, offering
improved classification of opinionated texts compared to conventional stream
classification given a specific amount of training data x?

• How much training data is necessary before entity-centric models match the per-
formance of entity-ignorant models, and what are the differences in performance
when limited training instances are available (the cold-start problem)?

In addition to these evaluation methods, performance metrics are presented in a con-
ventional format, showing the RMSE across various methods using non-overlapping
chunks, with each chunk consisting of 1000 predictions.

Through this framework, it was observed that between 400 to 500 training instances
per entity were required before the performance of the entity-centric models began
to match that of the entity-ignorant model on our datasets; see section 5.4.2. This
number is substantially higher than the average number of instances per entity. For
example, on the bigger dataset tools only 3.2% of the entities have at least 40
instances, see section 4.5.1. This makes learning approaches relying solely on entity-
centric models infeasable, which led to the idea of combining the predictions from
both entity-centric and entity-ignorant models into various ensembles, as discussed
in the next section.

32

5.3. An Ensemble with Two Voting Members

5.3. An Ensemble with Two Voting Members

The proposed ensemble methods comprise two primary components: a traditional
entity-ignorant stream classifier, which treats all observations as independent, and a
set of Single-Entity Classifiers (SECs), with each SEC being responsible for processing
the substream of data related to a specific entity. The functioning of the SECs is
explained first, followed by a description of how the overall ensemble operates.

The Entity-Centric Ensemble Member

For each entity e ∈ E, a Single-Entity Classifier (SECe) is trained and continuously
updated to process only the observations associated with that entity, denoted by
Se = {obse,1, obse,2, . . .}. Whenever a new entity e is encountered, a corresponding
SECe is created. The SECe is activated to classify and update itself only when an
observation related to that entity arrives.

Each SEC utilizes a Multinomial Naive Bayes classifier with a ’gradual fading’
mechanism, as described in [82]. This mechanism decreases the word count for each
class as time progresses since the word was last observed for that class. Within the
substream Te, this fading causes the word count per class to decrease depending
on when the word was last seen for that specific entity. Since each SEC operates
exclusively on its designated substream Te, the fading process and word counts vary
from one entity to another.

The Entity-Ignorant Ensemble Member

The second component is a traditional stream classifier that does not differentiate
between entities and is referred to as the ’Entity IGnorant Classifier’ (EIGC).

The EIGC works within the same feature space F as the SECs but processes all
the observations from the stream D. It is initialized with the first observation and is
continuously updated as new data arrives, both for learning and prediction purposes.
Similar to the SECs, the EIGC also employs the gradual fading Multinomial Naive
Bayes method outlined in [82], but the fading is applied to the entire stream rather
than entity-specific substreams.

Next, the different strategies for combining the SECs and EIGC into ensembles
are discussed.

5.3.1. Ensemble Variants Based on Weighting

Following the descriptions in sections 3.2 and 3.3 of [8], three distinct weighting
strategies are explored for combining the SECs and EIGC, each leading to a different
ensemble variant.

Variant 1: The Entity-Centric Classifier Ensemble (ECCE) The ECCE variant is
based on the premise that a classifier requires a certain minimum number of training
observations, denoted by x, before it can produce reliable predictions. At the start of
the stream, ECCE initializes both the EIGC and a SEC for the entity e associated
with each observation. Once the SEC for an entity e has accumulated x observations,
it becomes eligible to make predictions, and ECCE transitions from using the EIGC
to using the specific SECe for future predictions concerning that entity. As the
EIGC is trained on the entire stream, it becomes the first operational component,

33

5. Entity-Centric Ensemble

addressing the cold-start problem for new or infrequently observed entities. The
EIGC continues to be updated alongside the SECs as more data arrives.

Variant 2: The Entity-Centric Weighted Ensemble (ECWE) In the ECWE vari-
ant, even after the cold-start phase, the EIGC continues to contribute to predictions
of all entities. Specifically, ECWE assigns a weight w to the SECs and a weight of
1−w to the EIGC, with the final prediction determined by the weighted combination
of votes from the SECs and EIGC.

Variant 3: The Entity-RMSE Weighted Ensemble (ERWE) The ERWE variant
differs from ECWE by using dynamic weights based on the prediction error of each
ensemble member, giving greater voting power to the model with the lower error
rate. For each new observation o, let e represent the corresponding entity.

The weight assigned to SECe is calculated as:

wSEC(e) = RMSE(EIGCe)
RMSE(EIGCe) + RMSE(SECe)

The weight assigned to EIGC for entity e is:

wEIGC(e) = RMSE(SECe)
RMSE(EIGCe) + RMSE(SECe)

In this context, the RMSE is used as the classification error metric, assuming the
labels are ordinal. For binary classifications (positive or negative labels), a standard
misclassification error can be used instead of RMSE.

The weight assigned to the EIGC for a given observation depends on the perfor-
mance of the SEC for the corresponding entity. This enables ERWE to assign higher
weight to the EIGC when the SEC has not yet achieved good performance, while
prioritizing the SECs as soon as they outperform the EIGC. Furthermore, unlike
ECWE, ERWE does not require predefined weights, making it parameter-free.

5.4. Experiments and Results
The first RQ of this thesis asks: To what extent can entity-centric models
improve performance compared to an entity-ignorant model?, which this
chapter aims to address using the proposed evaluation framework and the proposed
methods. For the evaluation, the performance of the proposed entity-centric ensembles
is compared with that of the entity-ignorant classifier (EIGC), using the same
datasets: tools (33,989 entities and 1,416,766 instances) and watches (8,162 entities
and 487,741 instances), as described in Section 4.5.1 of the previous chapter.

5.4.1. Evaluation Procedure
Following the evaluation framework outlined in Section 5.2, the RMSECl is calculated
for each classifier Cl ∈ {ECCE, ECWE, ERWE, EIGC} once each entity has
received at least x ≥ 2 instances. Although EIGC is capable of making predictions
earlier, the aim of this evaluation is to assess the contributions made by the entity-
centric models. Therefore, performance is only measured after the Single-Entity
Classifiers (SECs) have accumulated enough observations to begin making predictions.
To maintain fairness, the first prediction from each classifier is excluded, as it is not
based on sufficient prior data.

34

5.4. Experiments and Results

The threshold x, which represents the number of observations available for training
each SEC, is incrementally adjusted for the ensembles ECCE, ECWE, and ERWE.

Additionally, the evaluation tracks the number of entities that benefit from entity-
centric learning, as well as those excluded from the evaluation as the threshold x
increases. While the RMSE values for ECCE, ECWE, ERWE, and EIGC are
based on the same number of predictions, it is important to note that EIGC has
access to a larger volume of data at each point in time. This is due to the fact
that EIGC starts learning from the beginning of the stream, while the SECs need
to collect a minimum number of observations before they can make predictions.
Consequently, it is expected that EIGC will show lower RMSE, particularly when
the threshold x is small.

Figure 5.2.: Datasets tools (left) and watches (right): RMSE on non-overlapping
chunks (chunk size = 1000 predictions); lower values represent better
performance. The error-weighted ensemble ERWE (dark blue) shows
the best performance (EIGC in light blue). Figure reproduced with
permission from [8] ©2019 ACM.

Figure 5.3.: Dataset tools: The "Absolute error," showing the gap between predicted
and actual star ratings, is charted against the number of predictions
per entity, divided into 5 bins. Lower percentages of error are more
desirable, particularly for the largest errors (4-star discrepancy). Figure
reproduced with permission from [8] ©2019 ACM.

5.4.2. RMSE and Number of Entities

The evaluation begins by analyzing the conventional RMSE across non-overlapping
chunks of data. The results, presented in Figure 5.2, compare performance on the
tools dataset (left) and the watches dataset (right). For both datasets, ECCE

35

5. Entity-Centric Ensemble

exhibits the weakest performance, whereas ERWE consistently achieves the best
results. On the tools dataset, ECWE outperforms EIGC, although it falls slightly
behind on the watches dataset.

Figure 5.3 offers a more detailed analysis for the tools dataset by grouping entities
according to the number of predictions they contribute. Entities are divided into
five bins, ranging from those with fewer than 24 predictions to those with over 264
predictions. Within each bin, the percentage of errors is displayed, based on the gap
between the true and predicted labels, using a star-rating scale. The legend indicates
the severity of the error, from 0 to 4 stars.

As shown in Figure 5.3, ECCE performs poorly for entities contributing fewer
predictions but demonstrates similar performance to the other models for entities
with more than 264 predictions. This may explain why ECWE and ERWE generate
fewer accurate predictions compared to EIGC but still improve overall RMSE as in
Figure 5.2. The entity-centric component mitigates larger errors (differences of 3 or
4 stars) more effectively than the entity-ignorant one but leads to more minor errors
(1 or 2 stars difference), which is supported by Figure 5.3.

5.4.3. Impact of Entity-Length on Performance
The impact of entity-centric learning is further evaluated by analyzing the percentage
of entities where SECs improve predictions, varying the threshold x. The results of
the smaller dataset watches are presented in the Appendix.

The entity-centric RMSE for the tools dataset is shown in Figure 5.4, while
Figure A.2 shows the results for watches.

Figure 5.4.: Dataset tools: Entity-centric RMSE given x training instances per
entity; lower values indicate better performance. ECCE starts to show
better performance than EIGC when around x = 500 instances are
available for training per entity. Figure reproduced with permission from
[8] ©2019 ACM.

36

5.4. Experiments and Results

The percentage of entities benefiting from entity-centric learning is displayed in
the upper sections of Figures 5.5 and A.3, while the absolute number of entities is
shown in the lower sections.

For the tools dataset (Figure 5.4), ECCE begins to show a lower RMSE than
EIGC when approximately x = 500 observations per entity are available for training,
and ERWE shows the best overall performance. A similar trend is observed for
watches, where ECCE starts to outperform EIGC at around x = 400 instances
(Figure A.2).

The top section of Figure 5.5 indicates that for tools, the majority of entities
benefit from ECCE once x > 700 instances are available. For ECWE and ERWE,
more than 50% of entities show improved results compared to EIGC.

The intersections occur at different points because the number of wins is more
restrictive than the entity-centric RMSE. An entity-centric learning approach may
improve entity-centric RMSE even before these improvements are reflected for the
majority of entities. For instance, consider a scenario with 5 entities: if 2 of them
are perfectly predicted by ERWE, but for 3, the RMSE of EIGC is slightly better
than that of ERWE, the entity-centric RMSE of ERWE across all 5 entities may
already outperform that of EIGC. However, the number of wins would only be 2
out of 5, thus remaining below 50

Figure 5.5.: Dataset tools - Top: Proportion of entities at threshold x where the
RMSE of entity-centric models surpasses that of EIGC: ECCE vs
EIGC (red), ECWE vs EIGC (orange), and ERWE vs EIGC (blue).
Higher Values are better. The Straight red line marks 50%.
Bottom: Count of entities still present at threshold x. Figure reproduced
with permission from [8] ©2019 ACM.

37

5. Entity-Centric Ensemble

Figure 5.6.: Significance testing using the Wilcoxon signed-rank test (p = 0.025)
comparing the RMSE of EIGC with ECCE and ERWE. A value
of 1 means the entity-centric ensemble outperforms EIGC, while -1
means EIGC performs better. ERWE demonstrates superior results
for most x values and is never significantly worse. Figure reproduced
with permission from [8] ©2019 ACM.

5.4.4. Significance Testing
Statistical significance tests were performed using the Wilcoxon signed-rank test (with
p = 0.025) to compare the performance of ECCE and ERWE against EIGC. The
results, displayed in Figure 5.6, reveal that for the tools dataset, ECCE initially
underperforms compared to EIGC until approximately x = 490, but demonstrates
improvement beyond this threshold. In contrast, ERWE consistently outperforms
EIGC across nearly all values of x.

For the watches dataset, ECCE does not significantly outperform EIGC at any
point, likely due to the smaller number of entities with a high volume of observations.
However, ERWE outperforms EIGC for most values of x, as shown in Figure A.4.

5.4.5. Overhead of the Entity-Centric Ensembles
The memory consumption and execution time of EIGC were compared against the
entity-centric ensembles. Figure 5.7 presents these metrics for the tools dataset.
While no significant difference in execution time was observed, the memory usage of
the entity-centric ensembles was notably higher, largely dependent on the number
of entities. On average, the entity-centric models required 6GB of memory, with
a peak of 9.3GB, compared to 2GB (peaking at 2.9GB) for EIGC. Running the
entity-centric approach on the complete tools dataset (w=0) even led to system
crashes, which impacts the viability of entity-centric learning on data streams with
many entities and will be addressed in the chapter 6.

38

5.5. Conclusion

Figure 5.7.: Dataset tools: Comparison of memory consumption and execution time
between the entity-centric ensemble and EIGC, along with the number
of entities encountered (dotted line). The entity-centric model shows
growing memory demands, but its execution time is similar to EIGC.
Figure reproduced with permission from [8] ©2019 ACM.

5.5. Conclusion
This chapter examines how the availability of training data impacts the effectiveness
of entity-centric models. It also proposes an ensemble method that combines an
entity-ignorant learner, which processes the entire data stream, with a set of single-
entity learners, each trained on the substream corresponding to a specific entity. The
results show that entity-centric learning becomes more effective as the amount of
training data per entity increases. Furthermore, classification performance in data
streams is enhanced when entity-centric and entity-ignorant models are combined
in an ensemble, particularly when weighted voting is employed, as in the ERWE
ensemble.

While ERWE consistently achieves strong performance across both datasets, the
simpler ECCE ensemble seldom surpasses the entity-ignorant baseline, highlighting
the importance of combining both entity-ignorant and entity-centric models. Notably,
the ERWE voting scheme maintains its advantage even for entities with relatively few
observations, making entity-centric learning feasible in many scenarios. This addresses
RQ1: To what extent can entity-centric models improve performance
compared to an entity-ignorant model?

An evaluation framework was developed to conduct this comparative analysis that
goes beyond traditional window-based RMSE typically used in stream classification.
This framework aligns entities, disregarding absolute time, and incorporates a training
phase that filters out entities with very few observations. At least five entities, each
with a minimum of n = 100 observations, are required in our experiments. This
framework provides valuable insights by indicating how many entities benefit from
entity-centric learning, offering a clearer understanding of its applicability to a given
dataset. Once this determination has been made, further performance evaluations
can be conducted by calculating the RMSE over non-overlapping chunks or rolling
windows.

A major challenge for deploying entity-based learning in practice is the increasing
memory demands as more entities require personalized models to be stored. The next
chapter introduces two methods to reduce the memory footprint of entity-centric
models while preserving the performance improvements demonstrated here.

39

6. Resource Management of
Entity-Centric Models

This chapter covers the work published in [10] addressing:

RQ1: To what extent can entity-centric models improve performance
compared to an entity-ignorant model?
RQ2: How can the memory footprint of entity-centric models be
reduced?

Chapter 5 demonstrated that entity-centric learning can enhance prediction perfor-
mance on data streams when combined with an entity-ignorant model in an ensemble.
However, one of the challenges observed was the significant increase in memory
demand, resulting from creating individual prediction models for each entity; see
Figure 6.1.

Figure 6.1.: Comparison of memory consumption between an entity-ignorant model
and a combined model incorporating both entity-ignorant and entity-
centric predictions, without memory optimization. The entity-ignorant
model maintains a steady memory usage of approximately 2GB, while
the combined model’s memory consumption rises to nearly 6.5GB. Figure
reproduced with permission from [10] under CC BY 4.0.

Additionally, as discussed in chapter 4, the majority of entities in the datasets
analyzed have short substreams, meaning many of the entity-centric models remain
inactive and do not receive new instances for prediction.

This chapter proposes two methods to address the increasing memory requirements.
The first approach employs the Lossy Counting algorithm [56] to detect inactive
entities and store their corresponding models in secondary memory, thereby freeing
up primary memory while retaining access to the models if needed later.

41

6. Resource Management of Entity-Centric Models

The second approach integrates the methods from chapters 4 and 5, replacing the
memory-intensive entity-centric MNBF with a simpler, lightweight majority-label
classifier. This drastically reduces the memory consumption of the entity-centric
models while still enhancing prediction performance, albeit to a lesser extent compared
to using MNBFs.

The chapter begins with a review of related work, followed by a detailed explanation
of the proposed memory-reduction methods in Section 6.2. The experimental setup
is described in Section 6.3, with the results and conclusions presented in Sections 6.4
and 6.5. The sections in this chapter are based on their counterparts in [10].

6.1. Related Work

This section provides an overview of additional relevant literature. It begins by
examining work on entity-centric learning, followed by a technique aimed at efficiently
tracking frequent items in streams to optimize memory usage.

6.1.1. Learning at the Entity Level

Spitz et al. [77, 76] introduced an entity-centric method for processing news articles
in streams. They constructed an entity-centric network, a graph structure that links
named entities (such as locations and organizations) to sentences and documents.
This graph also connects entities that co-occur within the same text, allowing for
entity-centric tasks like topic exploration, as detailed in [76].

Liu and Hauskrecht [54] applied a similar entity-centric approach in the context of
patient data. Initially, they developed an entity-ignorant model to capture population-
wide patterns. They then introduced a multivariate residual time series for each
patient, representing the deviation from the population model’s predictions, which
allowed for personalized forecasting using a multi-task Gaussian process.

6.1.2. Error-Weighted Predictions and Clustering Entities

An approach similar to the error-weighted ensemble proposed in this work comes
from the time series domain, published in 2019 [69]. The authors combined entity-
ignorant and entity-centric Gaussian Processes to model time series data. They
found that individual entity-centric models performed poorly, but integrating them
with entity-ignorant models led to significant improvements. Unlike the present work,
their integration was achieved through a regression model. A related approach from
the data panel field used performance-weighted ensembles based on AUC instead of
RMSE [24]. Here, the weighting was based on model performance over different time
steps, applied to financial data across multiple years.

Dynamic ensemble classifiers utilizing error-based weighting have also been explored
in the context of data streams [70], although they did not take entity-instance
relationships into account. In [50], a weighted ensemble was developed to manage
concept drift, combining models based on mean squared error, but entities were not
considered.

Clustering entities to enhance model performance has also been investigated. Lu
et al. [55] clustered entities to develop more specialized models, while [68] proposed
an algorithm to cluster evolving substreams, which could be relevant for future
applications of this work.

42

6.2. Methods For Memory Footprint Reduction

6.1.3. Memory Efficient Item Set Mining on Data Streams

Lossy Counting, introduced by Manku et al. [56], is a technique designed to reduce
memory consumption by tracking only the most frequent items in a stream, while
allowing an acceptable error margin in frequency estimates. The algorithm maintains
a data structure, D, that tracks recently encountered items, determining whether to
retain or discard them based on their frequency.

This technique will be employed to identify entities that frequently receive new
instances. It will ensure that their models remain in primary memory, while inactive
entities will have their models moved to secondary storage.

The following section details how lossy counting, combined with label-only entity-
centric models, is applied to reduce memory usage in entity-centric learning.

6.2. Methods For Memory Footprint Reduction

This section briefly introduces how Lossy Counting works for frequent item set
mining, before showing how it can be applied to identify active and inactive entities.
An alternative approach to reduce memory requirements is then described, which
involves using lightweight, text-ignorant, entity-centric models.

Lossy Counting minimizes the number of retained item sets on a data stream,
while ensuring that their frequency estimates remain within a user-specified error
margin.

The algorithm uses a data structure, D, to store the counts of recently observed
item sets. An item set remains in D as long as its frequency meets predefined
criteria; otherwise, it is removed. Users specify two parameters: the minimum
support threshold s and an error tolerance ϵ. The memory required by the algorithm
is guaranteed to be at most 1

ϵ log(ϵM), where M is the length of the stream up to
the current point. To manage memory, the stream is divided into buckets of size
w =

⌈
1
ϵ

⌉
, with each bucket assigned an ID starting from 1. The current bucket ID is

denoted as bcurrent.
Each entry in D is represented by a triple ⟨e, f, ∆⟩, where e denotes the item set,

f is the estimated frequency of the set, and ∆ is the maximum error in this estimate.
When a new item set e is encountered, its frequency f is updated if the item already
exists in D. Otherwise, a new entry is created with ⟨e, 1, bcurrent − 1⟩. When the
current bucket is filled, any item sets in D where f + ∆ ≤ bcurrent are deleted to
conserve memory.

6.2.1. Entity Management with Lossy Counting

In this approach, instead of tracking frequent item sets, the percentage of instances in
a stream corresponding to specific entities (e.g., Amazon product IDs) is monitored.
At the end of each bucket, inactive (infrequent) entities are identified and removed
from D. Their associated models are saved to secondary memory, freeing up primary
memory resources. Models for entities still present in D remain in primary memory.
If an entity stored in secondary memory reappears in the stream, its model is reloaded
into primary memory for further use.

To implement this mechanism, a secondary data structure L is introduced to track
whether an entity has appeared previously. If an entity is found in L but not in D,
this indicates that its model needs to be retrieved from secondary storage.

43

6. Resource Management of Entity-Centric Models

6.2.2. Memory Reduction through Text-Ignorant Models
The second strategy for reducing memory consumption is motivated by the work
presented in chapter 4, where simplified entity-centric models based solely on labels
were introduced, disregarding features like review texts. This label-only method
improved prediction accuracy for some entities, although the entity-ignorant MNBF
model generally demonstrated better performance.

In chapter 5, it was shown that combining entity-ignorant MNBF with entity-centric
MNBF models enhanced prediction outcomes. Expanding on this, lightweight, label-
only, entity-centric models are combined with an entity-ignorant MNBF. These label-
only models significantly reduce memory requirements while maintaining predictive
performance. The most effective label-only model from chapter 4, predicts the most
frequently observed label for each entity. This majority-label model is applied due to
its simplicity and efficiency in reducing memory overhead.

6.3. Experiments
In the experiments,1 a comparison of the memory usage between the two strategies
outlined in section 6.2 was conducted using the tools and watches datasets described
in section 4.5.1. For the tools dataset, entities with fewer than 10 reviews were
excluded to align with previous experiments that lacked memory management. This
exclusion was necessary as earlier tests of entity-centric learning without memory
optimization led to RAM exhaustion and system crashes.

Additionally, a subset of the Yelp dataset,2 specifically focusing on reviews related
to ’bars and restaurants,’ was used. Due to its large size, the scope was narrowed to
include reviews from five cities (Toronto, Las Vegas, Phoenix, Montréal, and Calgary)
to enable testing of memory management strategies while maintaining performance
comparisons with the full dataset. The full Yelp dataset consists of 4,198,061 reviews
and 59,372 entities.

An overview of the datasets used in our experiments is provided in Table 6.1.

Name #Ent. #Inst. #Feat. #Classes
tools 33,990 1,417,499 10,000 5
watches 78,220 487,907 10,000 5
bars5 25,110 2,224,710 10,000 5
barsFull 59,372 4,198,061 10,000 5

Table 6.1.: Overview of datasets: tools, watches, bars5, and barsFull. Table
reproduced from [10].

6.3.1. Evaluation
A prequential evaluation setup is employed, where each new observation is first used
to predict the label, followed by updating both the entity-ignorant and entity-centric
models with the correct label.

The primary aim of this evaluation is to assess how effectively the two proposed
methods reduce memory usage in entity-centric models. Memory consumption
is monitored over time and compared against two baselines: an entity-ignorant

1Code is available at: https://github.com/m-vishnu/entity-memory-management
2The dataset is available at: https://www.yelp.com/dataset

44

https://github.com/m-vishnu/entity-memory-management
https://www.yelp.com/dataset

6.4. Results

model and a combined entity-ignorant and entity-centric model without memory
management. For the Lossy Counting method, the parameter ϵ is set to 0.001.

A secondary objective is to determine whether replacing entity-centric MNBFs
with majority-label classifiers continues to provide performance improvements over
the entity-ignorant model, and how this approach compares to using a separate
MNBF for each entity. Although memory reduction is the main focus, it is also
important to ensure that simplifying the model does not result in a substantial drop
in performance.

Performance is evaluated using RMSE, as outlined in Section 2.2. RMSE is
selected because it reflects the ordinal nature of the labels and assigns greater
penalties to predictions that deviate significantly from the actual label.

RMSE is calculated in non-overlapping chunks of 10,000 observations, with the
first prediction for each entity excluded, as at least one observation is required to
initialize an entity-specific model.

6.4. Results
In this section, the predictive performance of entity-centric models utilizing MNBFs
is compared to that of models based on the majority label for each entity. The
latter part of the section focuses on the primary objective of this research: reducing
memory usage.

To clarify the results, the ensemble acronyms are reintroduced. The evaluation
compares the performance of a model that uses only entity-centric predictions (ECCE)
against a baseline model relying solely on entity-ignorant predictions (EIGC), a
model that averages both predictions (ECWE), and a model that incorporates error
weighting (ERWE).

6.4.1. Entity-Centric MNBF vs. Majority-Label
The central question is whether majority-label classifiers can replace entity-centric
MNBFs while still improving RMSE compared to an entity-ignorant MNBF. Results
across all datasets confirm that this is achievable with the error-weighted ensemble
(ERWE). The majority-label approach performs only marginally worse than MNBFs,
as illustrated in Figures 6.2 and 6.3. On the watches dataset, the majority-label
method even slightly outperforms MNBFs. Similarly, on the barsFull dataset, the
majority-label classifier performs effectively in an error-weighted ensemble, resulting
in an overall performance improvement. In this dataset, which experiences periodic
bursts of new entity arrivals (see Figure 6.5), a temporary increase in RMSE above the
entity-ignorant model (EIGC) is observed when many entities arrive simultaneously,
but this effect diminishes quickly.

The ensemble relying solely on entity-centric models (ECCE) consistently performs
worse than all other methods, consistent with findings of chapter 5. This again
emphasizes the necessity of integrating the entity-centric models with a strong
entity-ignorant model.

Importantly, the majority-label classifier demonstrates that it can compete with
the more complex MNBF model while using considerably less memory, as further
explored in the following section.

45

6. Resource Management of Entity-Centric Models

Figure 6.2.: RMSE comparison between entity-centric MNBFs using Lossy Counting
and majority-label models on 10k-review non-overlapping chunks. Top
Left: tools; Top Right: watches. Bottom: barsFull. RMSE
values are close, with Lossy Counting slightly outperforming on tools
and barsFull and majority-label models performing better on watches.
Figures reproduced with permission from [10] under CC BY 4.0.

46

6.4. Results

Figure 6.3.: RMSE comparison across models: entity-centric predictions (ECCE),
entity-ignorant predictions (EIGC), a combined model averaging both
(ECWE), and an error-weighted ensemble (ERWE). RMSE is measured
in non-overlapping chunks of 10k reviews. Top row: tools; middle
row: watches; bottom row: barsFull. Left panel: results with MNBFs;
right panel: results with majority-label classifiers. The error-weighted
ensemble consistently outperforms the entity-ignorant model. Figure
reproduced with permission from [10] under CC BY 4.0.

47

6. Resource Management of Entity-Centric Models

6.4.2. Memory Footprint Comparison
Both methods lead to significant reductions in primary memory usage, as shown in
Figure 6.4. The majority-label approach has the smallest memory footprint, nearly
matching the memory usage of the entity-ignorant model. With Lossy Counting,
the number of entities stored in memory drops quickly and remains nearly constant
thereafter, although memory usage continues to increase slightly. This increase is
due to the L data structure, which tracks all previously seen entities, even if they
are no longer in primary memory.

Figure 6.4.: Comparison of primary memory usage for different models: entity-
ignorant model (blue), combined model without memory management
(orange), combined model with Lossy Counting (green), and combined
model using majority-labels (red). Top Left: tools; Top Right:
watches. Bottom: bars5. The entity-ignorant model uses the least
memory, followed by the combined model with majority-labels. Memory
usage for Lossy Counting grows slightly, while the model without memory
management shows a sharp increase. Figures reproduced with permission
from [10] under CC BY 4.0.

48

6.4. Results

Figure 6.5.: Lossy Counting: comparison between the number of entities observed
and those retained in memory, along with the percentage of entities kept
over time. tools (top), watches (middle), and bars5 (bottom). While
the number of seen entities increases rapidly, the count of entities in
memory stays steady and significantly lower (left). The percentage of
entities in memory drops sharply early on, followed by a more gradual
decline (right). Figure reproduced with permission from [10] under CC
BY 4.0.

49

6. Resource Management of Entity-Centric Models

6.4.3. Discussion

Both memory-reduction approaches effectively reduce memory consumption while
preserving strong predictive performance. The results indicate that the majority-label
method offers greater advantages in memory savings, with only a slight increase in
RMSE when compared to the Lossy Counting method on the tools and barsFull
dataset. Additionally, it outperforms the Lossy Counting approach on the watches
dataset. This discrepancy in performance could be attributed to the high number
of entities with relatively few observations in these datasets, where most of the
predictive information is stored in the label distribution rather than word counts.
This effect is particularly noticeable on watches, where the average entity length is
considerably shorter (6.2 in watches compared to 41.7 in tools).

However, these findings are specific to the datasets used, and further research is
needed to determine whether these trends hold across datasets with different entity
characteristics.

Although it is theoretically possible to combine the two approaches—storing
majority-label models in secondary memory using the Lossy Counting method—the
potential memory savings would likely be minimal. This is because the majority-label
approach already has a memory footprint close to that of the entity-ignorant model.

6.5. Conclusion

The previous chapter identified the increasing memory demands of entity-centric
models as a major challenge for implementing entity-centric learning in data streams,
as the full tools dataset caused system crashes due to insufficient primary memory.

This chapter introduces two methods aimed at reducing memory requirements. The
first method employs Lossy Counting to detect inactive entities, whose models can
then be transferred to secondary memory and retrieved only when new observations
for those entities are received. The second method replaces entity-centric MNBFs
(Multinomial Naive Bayes with Fading) with a simpler majority-label classifier, which
significantly lowers memory consumption.

Both approaches effectively reduce memory usage for entity-centric models, main-
taining nearly constant memory consumption while still surpassing the performance
of the entity-ignorant model. The majority-label approach is the most efficient in
terms of memory usage, requiring approximately 2GB, compared to 2.6GB for the
Lossy Counting method and 6.5GB for the previous memory-intensive approach on
the tools dataset. Across all datasets, the majority-label approach closely matches
the memory requirements of the entity-ignorant model, indicating that prediction
quality can be enhanced with minimal additional memory cost.

On the tools and barsFull datasets, the majority-label approach results in a slight
reduction in predictive performance compared to the entity-centric MNBFs. However,
this decline is minimal, and in the watches dataset, the majority-label classifier
even slightly outperforms the MNBFs. This suggests that combining a complex
entity-ignorant model trained on a large amount of data with simple entity-centric
models trained on limited data can improve prediction quality.

It is hypothesized that this outcome is due to the nature of the datasets, where
many entities have few observations, making it difficult to train MNBFs effectively.
Datasets with many short-lived entities are common, which makes this finding
significant for future research. This also explains why the performance discrepancy is
more pronounced on the barsFull dataset, as it contains fewer short-lived entities,

50

6.5. Conclusion

allowing MNBFs to perform better at the entity level.
Overall, both methods present promising solutions for making entity-centric learn-

ing feasible in real-world applications where memory constraints are a concern.
The next chapter goes into additional reflections of Part I before it is concluded in

chapter 8.

51

7. Additional Reflections on
Entity-Centric Learning

This chapter contains additional reflections on how entity-centric learning can be
realized efficiently and how the results presented in this thesis might warrant a new
stream evaluation metric.

7.1. Efficient Entity-Model Management using Databases
and Deletion

Chapter 6 introduced two methods for managing the growing memory demands
of an entity-centric learning approach, where new models have to be created and
stored for each entity encountered in a data stream. The first presented option
stores complex entity-centric models of inactive entities in secondary memory to
retrieve them later in case new instances regarding those entities appear. The second
approach replaces complex models with much simpler entity-centric models that have
a negligible impact on the required memory.

The analysis of the presented datasets showed that the majority of entities have
very short substreams, which means they receive few instances. In such circumstances,
it might be more resource-efficient to delete entity-centric models flagged for storage
rather than actually moving them to secondary memory for later retrieval, as long
as the training data is stored so that they can be reconstructed later. For example,
in many scenarios, user data has to be kept for multiple years because of legal
requirements, but this does not extend to models of inactive users. Furthermore,
storing all available information in databases and data warehouses is very common
in many domains, like eCommerce, so retrieving the necessary training data to
reconstruct a model should be possible.

This can also be realized as an additional step so that the secondary memory acts
like a buffer:

1. Inactive entities are identified with lossy counting.

2. Their models are moved to secondary storage and kept there for a defined time
period T so they can quickly be recovered in case new instances arrive

3. After T has passed, delete the models.

4. If later new instances referring to such an entity arrive again, reconstruct the
entity-centric model from the stored training data.

A more radical approach would be to delete inactive models for good and to
start a new entity-centric model once these entities become active again. Such an
approach could be applied where the benefits of storing all potential training data
are outweighed by the cost of doing so.

53

7. Additional Reflections on Entity-Centric Learning

7.2. A New Performance Metric for Data Streams?
In chapter 4, we used κ+ [13] as one of the evaluation metrics, which compares the
performance of a classifier against a model that propagates the last observed label.
The assumption was that entities that benefit from entity-centric learning the most
would probably show different label distributions; therefore, propagating an entity’s
last observed label to the next arriving instance of that entity made intuitive sense.

The authors of [13] developed an additional metric for performance evaluation
on data streams [88] κm which compares a classifier against a simple model that
assigns the most observed label to an instance - a majority-label classifier. The
results from chapter 6 indicate that, at least in some scenarios, the combination of an
entity-ignorant classifier as well as a majority-label classifier leads to improvements
outperforming each of the individual models. These improvements were almost for
’free’ as the additional computational and memory requirements were negligible. The
employed performance metric was RMSE and not kappa, which motivates future
research that investigates if this is also true for the κ metric in the case of ordinal class
labels. It also motivates non-entity-centric experiments where two entity-ignorant
models’ predictions are combined, one of them being a majority-label classifier, and
comparing the performance of the combined approach against each model individually.
Such experiments could give rise to a new (entity-centric) performance evaluation
metric on data streams, which would evaluate if a model is justified in not taking the
for free improvements of combining with a (entity-centric) majority-label classifier.

If Pcombined is the performance of the combined model and Psingle is the performance
of the original model then κcombined could be defined as:

κcombined = Pcombined − Psingle

1− Psingle
(7.1)

Values around 0 would indicate no advantage in combining with a majority-label
classifier, negative values would show that combining is actually detrimental and
positive values would show that it would beneficial. This metric could be used in
conjunction with the metrics proposed in [13] and [88].

54

8. Entity-Centric Learning on Data
Streams: Discussion and Conclusion

In Part I of this thesis, the entity-instance relationship within the data space of
data streams is examined, demonstrating its potential to enhance the quality of
predictions for opinionated documents.

RQ1: To what extent can entity-centric models improve performance compared
to an entity-ignorant model? Chapter 4 emphasizes that entity-centric models,
even without text-awareness, yield superior predictions for a subset of entities in the
Amazon review dataset. Further analysis in chapters 5 and 6 show that combining
entity-centric and entity-ignorant models results in improved predictive performance
compared to using only entity-ignorant models. However, the increasing number
of entities presents a significant challenge for memory management, making entity-
centric approaches impractical without proper handling.

RQ2: How can the memory footprint of entity-centric models be reduced? To
address memory constraints, chapter 6 introduces two strategies. The first uses
lossy-counting to monitor entities likely to receive new instances, archiving others
in secondary memory for potential retrieval. The second combines the simplicity of
entity-centric models from chapter 4 with the predictive power of entity-ignorant
models. Both approaches effectively reduce memory consumption while maintaining
predictive quality, confirming the viability of entity-centric learning.

Additionally, frameworks are developed to facilitate entity-centric learning, resource
management and evaluation schemes that account for the length of entity substreams,
i.e., the available training data. These frameworks enable:

• Investigation of the percentage of entities benefiting from entity-centric learning,

• Analysis of the minimum number of instances required per entity to make
entity-centric learning advantageous,

• Comparison of ensemble methods, combining entity-centric and entity-ignorant
predictions, against a single entity-ignorant model.

• Monitoring and analysis of memory requirements of entity-centric models in
relation to the number of encountered entities.

Overall, it is demonstrated that entity-centric learning in data streams can offer
cost-effective performance improvements, although open challenges remain. These
limitations, open challenges and future work are discussed below.

55

8. Entity-Centric Learning on Data Streams: Discussion and Conclusion

8.1. Limitations

The presented work has limitations, which we will briefly list here for clarity and
revisit in the following section on open questions and future directions.

• In all three studies, entity-centric models are built for each entity, regardless
of the entity’s length or characteristics. However, the results indicate that
entity-centric models are particularly effective for long entities that do not
conform to the overall trend captured by the entity-ignorant model.

• Very short entities are often excluded to ensure a fair comparison between
models. They represent a substantial portion of the dataset, which leaves room
for future work especially focused on the handling of very short entities.

• The datasets and models selected are specifically focused on opinionated docu-
ments from particular domains. However, as instance-entity relationships are
common across various other domains, our approach has the potential to be
adapted and expanded to new areas in future work.

• The ensemble-based approach utilizes the same text-aware model (MNBF) for
both entity-centric and entity-ignorant models, which has proven effective in
the current setup. Exploring different models at the entity and global level
could offer further performance improvements and adaptability.

8.2. Open Questions and Future Work

The open challenges, grouped by the chapter in which they arise, are discussed in
this section.

Chapter 4 - Entity-Centric Learning without Features: This chapter shows that
while some entities benefit from exclusive entity-centric learning, the majority do not.
A key challenge is determining whether identifiable characteristics can predict when
entity-centric learning will be effective. For example, do these entities have distinctive
label or feature distributions? Are these distributions different from those of the
general population? Preliminary experiments suggest that entity-centric learning
is most effective for entities with labels that differ from the overall dataset, but
this observation was based on limited visual inspection, with follow-up work being
inconclusive. Future work will involve quantifying these differences and developing
predictive models to identify when entity-centric learning is likely to be beneficial or
detrimental.

Chapter 5 - Entity-Centric Ensemble: In this chapter, ensembles combining
predictions from both entity-centric and entity-ignorant models are used, with a
separate entity-centric model built for each entity. If characteristics can indeed predict
the viability of entity-centric approaches, an avenue for future exploration would
be to build entity-centric models only for entities where the approach is promising,
combining them with entity-ignorant models.

Another challenge arises from the limited training data available for each entity-
centric model, which increases susceptibility to outliers. A potential solution is
to group similar entities into clusters and build models for these clusters. While

56

8.2. Open Questions and Future Work

stream clustering introduces its own difficulties, some methods, such as [44], may be
applicable.

Future work will also involve exploring alternative base models beyond MNBF and
applying these models to datasets from various domains, rather than relying solely
on opinionated review data. Additionally, modifications to the evaluation scheme
could enable the use of more of the available data, as the current approach requires
a fixed amount of training and test data per entity, which limits the usable dataset.

Chapter 6 - Resource Management of Entity-Centric Models: The balance
between model complexity, prediction quality, and memory requirements warrants
further investigation. The majority-label classifier, used as an entity-centric model
in chapter 4, performed best according to κ+, but when using RMSE, a simple
moving-average performed better. Revisiting some experiments with alternative
text-unaware, entity-centric models is planned. Furthermore, chapter 7 motivates
experiments that favor the deletion of inactive entity-centric models over storage, as
well as a general investigation of whether an entity-ignorant model combined with
a majority-classifier could serve as a new performance baseline in certain stream
mining scenarios.

This concludes the first part of the thesis. The second part shifts the focus from
the data space to the feature space, exploring how active feature acquisition and
imputation methods can address missing feature values in data streams.

57

Part II.

Dealing with the Feature Space in
Stream Mining

59

9. Motivation & Background - Active
Feature Acquisition on Data Streams

The previous chapters discussed how entity-centric models can improve prediction
quality and how these models can be realized efficiently on a data stream. All
the aforementioned work assumed that instances arriving on the data stream are
feature-complete and therefore easy to work with, but this is not always true. Sensors
in a smart home can break, users can skip questions in a personal health app, and
doctors do not send all the arriving patients to all the available tests, but only a
selected few.

Let us consider an industrial plant where we have multiple sensors that continuously
record humidity, pressure, and temperature. The missingness is classified according
to [72] into three categories.

Missing Completely At Random (MCAR): Data is considered to be missing
completely at random if the mechanism leading to a missing feature value neither
depends on observable features nor on unrecorded additional information regarding
the instance or the feature value itself. This can be simulated by randomly deleting
feature values. An example of MCAR would be if a temperature sensor randomly
fails to record data at certain times due to occasional power glitches. The missing
readings are not related to the actual temperature, the location of the sensor, or
any other external factor. The failure happens randomly, making the missing data
unrelated to both observed and unobserved variables.

Missing At Random (MAR): In the case of MAR the missingness of a feature
depends on observable data. An example of Missing at Random (MAR) using sensors
would be if a humidity sensor is more likely to fail and not record data when the
temperature is particularly high. In this case, the missing humidity readings are not
random but depend on an observable feature (temperature).

Missing Not At Random (MNAR): MNAR concerns scenarios that neither fall
into the MCAR nor MAR category. This entails situations where the missingness
of a feature can be explained by the feature value itself, e.g. if a pressure sensor
malfunctions under very high pressure. Another form of MNAR is, when the
missingness of a feature value is dependent on unrecorded additional information,
for instance, if a temperature sensor tends to miss recordings during maintenance
periods, but the timing of these maintenance activities is not logged in the dataset.

In a static setting, it is custom to deal with missing data during preprocessing,
where missing data is traditionally addressed in three ways [72].

Deletion: The most obvious way to handle missing values is to delete all instances
with missing values from our dataset, which is also called complete-case analysis.
If only certain features are necessary for a task, then one can also delete instances

61

9. Motivation & Background - Active Feature Acquisition on Data Streams

that have these features missing while other features are ignored. This is called
available-case analysis. Alternatively, it can also make sense to delete certain features
that express a high degree of missingness. This method limits the amount of available
training data, which can affect how representative our training data is as well as our
model performance. Considering available-case analysis it also has the disadvantage
that tasks that use different sets of features might not be comparable as they will
have sampled from different populations. In the case of deleting whole features,
there is also a chance that we ignore predictive features which in turn can negatively
impact the performance of models, that will be trained on the preprocessed data.
The advantages of deletion are that it is easy and in case of MCAR missingness it
would not introduce biases into our dataset as long as the total size after deletion is
still big enough to be representative.

Single Imputation: In the case of single imputation, missing values of a feature
are imputed in a way that solely relies on other values expressed by that single
feature. Prominent examples are the use of statistics like mean and mode or linear
interpolation. The latter is useful when we have temporal data with missing values.
Another prominent method in the case of temporal data is to carry forward the last
observed value. Single imputation has the advantages that we don’t throw away any
data and that the imputation can be conducted quickly as the used methods and
statistics can be computed rather quickly. The main disadvantages are that single
imputation will inevitably introduce biases into our data, and that we ignore the
other featurest that were available for an instance and might help to give a more
unbiased estimate of a missing feature.

Model-Based Imputation: Model-based imputation entails multiple types of meth-
ods, which, for the most part, consider multiple features at the same time when
imputing a missing value. Often an iterative strategy is employed where firstly all
missing values are imputed using single imputation, which then enables the training
of a model to predict a target feature using the other features. When training the
model we only consider instances where the target feature was not missing. Missing
values of the target feature can now be imputed by the aforementioned model. This
is usually done one feature at a time and then repeated until the imputed values
stabilize. Popular models are regression models, nearest-neighbor approaches, and
random forests. Model-based approaches have the disadvantage that the predicted
values can be unreliable if the features used for making the prediction are independent
of the target feature. They are also usually much slower than single imputation due
to the complexity of the predictive model and the iterative nature of the approach.
Still, they usually introduce less biases into the dataset than single imputation and
also retain the size of the original dataset.

We can see, that each of these methods has certain advantages but also disad-
vantages like reducing the sample size that is available for training or introducing
unwanted biases. In certain scenarios, it is possible to acquire missing features for a
cost. For instance, asking a study participant to answer a question that they have
missed or running a lab test on a material to figure out a missing property. In such
scenarios, one of the most pressing questions is:

For which instances should we acquire which features under budget
constraints?

62

The research field that addresses this question is called Active Feature Acquisition
(AFA) which is part of the bigger and more well-known field of Active Learning (AL).

In static AL, we traditionally face the situation that labels and not features are
missing for the vast majority of the instances. Settles [74] describes an iterative
approach where first a model is trained on the small pool of labeled instances.
Afterward, the model is exploited to pick instances from the big pool of unlabelled
data for labeling. Next, an oracle labels the chosen data, and the newly labeled
instances are added to the pool of labeled data. The process starts again with the
updated pools until a stopping criterion is met, see Figure 9.1. The most common
stopping criterion is that the budget available for labeling has been expended.

Figure 9.1.: Figure of Pool-Based AL from Settles. Reproduced with permission from
[74]

In a static AFA scenario, we usually see a similar loop, where we have a pool of
feature-incomplete instances from which we pick instances for feature acquisition
and subsequently retrain a predictive model. Static approaches differ on how many
features are bought per instance, in [59] the authors suggest that all missing features
are purchased for a selected instance, irrespective of how much the missing features
contribute to the machine learning task at hand and also irrespective of the features
costs. A different approach is presented in [71] where the authors suggest testing every
possible feature set combination but realize that this is computationally infeasible,
so they rely on random sampling or a confidence-based approach to choose for
which instances all possible acquisition scenarios are generated. In contrast to the
aforementioned methods [20] presents a feature selection method that iteratively
selects features for acquisition and then acquires the selected features for all instances
where the respective features are missing. All three approaches share the commonality
that they use a static test set to evaluate their newly trained models, which guides the
selection process. They also have in common that feature values that have not been
acquired either necessitate imputation of the values or to ignore the corresponding
feature altogether during the learning phase of the models.

63

9. Motivation & Background - Active Feature Acquisition on Data Streams

9.1. Challenges for AFA on Data Streams
Retaining a hold-out set for guiding the selection process and being able to consider
all instances and acquisition-set options is unrealistic in a data stream. Facing concept
drift, a hold-out set would have to change, to still be representative. Furthermore,
we often face the scenario in streaming environments where we have a continuous
influx of new instances, and decisions have to be made close to the arrival time of an
instance. This means we cannot wait with our acquisition decisions until we have
seen the whole data stream but we have to find new mechanisms that allow us to
make decisions much quicker. This decision making process also has to consider the
budget and how budget is modeled in a data stream. In contrast to a static setting
the budget cannot be defined as finite because a stream is considered to be endless
which would mean that once a finite budget has been expended no more acquisitions
could be made at all. This would be especially detrimental in case of concept drift
because the drift of a feature with high missingness might be detected late or not at
all.

The following sections describe our work in the field of AFA on data streams which
addresses these challenges and successively loosens the constraints we have built into
our frameworks to make the different aspects of the decision-making process more
controllable. Our presented work address the following research questions of this
dissertation:

• RQ3: How can Active Feature Acquisition be realized in a data stream setting?

• RQ4: How can varying feature costs be considered during AFA on streams?

RQ3 is explored in Chapters 10, 11, and 12, while RQ4 is addressed in Chapters
11 and 12. Chapter 10 outlines our initial work, where we assume equal feature costs
and limit acquisition to one missing feature per instance. Chapter 11 expands on
this by considering larger acquisition sets and incorporating varying feature costs.
Finally, Chapter 12 demonstrates how combining AFA with strategic imputation can
reduce costs while maintaining performance levels similar to an AFA-only approach.
Part II ends with additional reflections on stream-based AFA in chapter 13 and a
conclusion of the part in chapter 14.

64

10. Active Feature Acquisition on Data
Streams under Feature Drift

This chapter is based on the work presented in [9], where the goal was to build one
of the first AFA methods that can be applied to data streams and that addresses
some of the challenges mentioned earlier. It addresses:

RQ3: How can Active Feature Acquisition be realized in a data stream
setting?

The primary challenge encountered was how to model budget expenditure in a
data stream environment, where potentially unlimited instances could arrive. This
problem was addressed by drawing inspiration from a study on budgeting for active
learning on data streams [41], which introduced an Incremental Percentile Filter
(IPF) to manage missing label acquisition.

In this context, two key assumptions are made: first, that all features incur
the same cost, and second, that at most one missing feature can be acquired per
instance. The first assumption allows classification performance to serve as a proxy
for evaluating Active Feature Acquisition (AFA) strategies, as feature cost does
not influence the decision. The second assumption simplifies the budgeting process,
enabling the use of a relative budgeting approach without the need to account for
absolute feature costs.

The following sections will cover related work, introduce the proposed methods,
describe the experimental setup, and conclude with a discussion of the results and
final remarks.

10.1. Related work
This section is based on the related work section presented in [9]. The concepts of
active feature acquisition (AFA) and active feature selection (AFS) often overlap, and
many papers do not strictly distinguish between the two. AFA focuses on completing
feature-incomplete instances to boost performance, whereas AFS deals with selecting
specific features from feature-complete instances to reduce dimensionality without
compromising model accuracy. Although these areas differ in their primary objectives,
they share common methodologies in identifying the most relevant features.

In the static context, Huang et al. [37] propose a matrix completion-based AFA
method. This approach minimizes both classification error and matrix reconstruction
error through accelerated proximal gradient descent, allowing the informativeness of
unknown feature values to fluctuate across iterations. By dividing the informativeness
value by the cost of feature acquisition, the method incorporates basic cost consider-
ations. Tests on six datasets demonstrated consistent performance improvements,
but the method is not designed for streaming data.

Saar-Tsechansky et al. [71] present an alternative AFA method called Sampled
Expected Utility, which estimates the utility of feature acquisition based on expected
acquisition values and their impact on model performance. To compute this utility, the

65

10. Active Feature Acquisition on Data Streams under Feature Drift

method assesses both the likelihood of a feature value and the resulting performance
gain from adding that feature. Although highly effective in static settings, the
method’s complexity limits its application in stream environments.

Melville et al. [59] offer another AFA method designed for partially completing
training data in a pool-based setting. By identifying misclassified, incomplete
instances and acquiring their missing features, the method iteratively builds a model
that achieves approximately 17

DesJardins et al. [20] develop a confidence-based approach to AFA, which involves
training successive models on increasingly larger feature sets. Starting with zero-cost
features, the method acquires additional features for uncertain instances until no
more features can be added or all uncertain instances are resolved. This method,
like the others, is designed for static use cases.

In the context of streaming data, Yuan et al. [85] introduce a batch-based AFS
method. Their work ranks features based on how well they separate class labels,
using metrics such as Average Euclidean Distance. While their goal is to reduce
dimensionality to enhance classifier performance, this method is adapted here to
acquire missing features that would otherwise need to be imputed.

To manage feature acquisition budgets in stream environments, the approach
of Kottke et al. [42] is employed. Their method uses an Incremental Percentile
Filter (IPF) that maintains a sorted list of usefulness values for label acquisition
decisions. When a new label’s usefulness score exceeds the top percentile, the label
is acquired. This dynamic approach allows budget management to adapt to concept
drift, ensuring acquisition decisions remain efficient over time. In the presented
method, feature scores are presented to the IPF instead of label scores.

10.2. Methods

This section outlines the methods developed to implement budgeting for Active
Feature Acquisition (AFA) on a data stream. It covers how feature importance and
the associated feature cost was modeled as feature merit and how this merit was
used to assess the quality of an instance, guiding acquisition decisions.

10.2.1. Budgeting Acquisitions on a Stream with an IPF

The Incremental Percentile Filter (IPF) was originally designed for budgeting based
on a relative allocation, such as acquiring 50% of the missing labels. To function,
the IPF requires a score that estimates the utility of acquiring a missing label. The
IPF uses this score to determine whether a label should be purchased. It operates by
maintaining a sliding window of fixed length, where scores are stored in an ordered
manner. As new scores arrive, the oldest score in the window is removed.

Using the relative budget—in this case, 50%—and the window length, a rank
threshold is computed by multiplying the two values. This threshold indicates the
rank a score must reach to trigger the acquisition. For instance, with a window
length of 6 and a budget of 0.5 (50%), any score that ranks in the top 3 (6 ∗ 0.5 = 3)
will prompt an acquisition. Figure 10.1 provides a visual representation of how the
IPF operates.

Unless the distribution of the scores changes over time, this setup leads to a budget
expenditure close to the user-defined limit.

66

10.2. Methods

Figure 10.1.: Incremental Percentile Filter with a window length of 6, a relative
budget of 0.5 (50%), and the oldest score being dropped if the maximum
window length is reached. Figure reproduced with permission from the
author from [41].

10.2.2. Budgeting Acquisitions on a Stream with an SBM

An alternative budgeting mechanism, the Simple Budget Manager (SBM), was
proposed as a comparison to the IPF. The SBM operates by monitoring the ratio of
triggered acquisitions to instances with missing features, checking if this ratio falls
below a user-defined threshold. If the current ratio is below the threshold, the SBM
triggers an acquisition; otherwise, it holds off until the ratio decreases below the
threshold again.

For example, with a threshold of 0.1, if one feature has been acquired out of 11
instances with missing features, the ratio remains below the threshold (1/11 < 0.1),
prompting the SBM to trigger a feature purchase for the next instance. However, once
2 acquisitions have been made out of 12 instances, the ratio exceeds the threshold
(2/12 > 0.1). As a result, no further acquisitions are triggered until 21 instances with
missing features are encountered, at which point the ratio falls below the threshold
again (2/21 < 0.1).

With both the IPF and SBM available, and under the assumption of equal feature
costs and acquiring a maximum of one feature per instance, the AFA problem was
simplified to one resembling traditional Active Learning (AL). This allowed the
problem to be modeled in relative terms rather than absolute costs. For instance, in a
stream containing 1000 instances per day, with a feature cost of 5€ and a daily budget
of 100€, only 20 features can be acquired per day (100/5 = 20), which corresponds
to acquiring features for 2% of the instances (20/1000 = 0.02). The IPF threshold,
in this case, would be set at 0.02.

The next step was to develop a score that could be used by the IPF to guide
the acquisition of valuable features for instances that would benefit the most. The
requirements for this scoring system are twofold: it must address both the features
themselves and the characteristics of the instance.

10.2.3. Modelling Feature Importance on a Stream

The presented approach employs metrics originally developed for subset selection
on data streams [85]. In subset selection, the aim is to disregard irrelevant features
and train a classifier using a smaller subset of features, which typically reduces

67

10. Active Feature Acquisition on Data Streams under Feature Drift

computational complexity and mitigates the risk of overfitting [46]. To achieve this,
it is crucial to assess the contribution of each feature to the classification task.

The authors of [85] propose several metrics that can be efficiently updated on data
streams and assume feature independence. These include average Euclidean distance
(AED), symmetric uncertainty (SU), and information gain (IG). Among these, AED is
highlighted due to its simplicity, ease of implementation, and comparable performance
to the other metrics in the experiments. Detailed explanations of the other metrics
can be found in Appendix A.2.1.

AED calculates the mean value MV (Fic) of a feature Fi for each possible class c
among the L classes and then computes the Euclidean distance between the class-
conditional means to determine how far apart they are. This process is described in
Equations 10.1 and 10.2.

MV (Fic) = 1
|Fic|

|Fic|−1∑
n=0

F n
ic (10.1)

AEDnum(Fi) =
√ ∑

0≤c<k<L

(MV (Fic)−MV (Fik))2 (10.2)

In the case of categorical features, the metric compares how many instances of a
particular class share that specific feature value compared to all the other classes.
Here Ficv denotes the set of instances that belong to class c, where the feature Fi has
value v and Vi denotes all the categorical values that Fi can take. The categorical
AED is then calculated as in equation 10.3.

AEDcat(Fi) =
∑

0≤c<k<L

 1
|Vi|

∑
v∈Vi

(|Ficv|
|Fic|

− |Fikv|
|Fik|

) (10.3)

Merit of a feature is defined to be the feature’s importance g(Fi) (e.g., AED(Fi))
divided by the feature’s cost Ci, see equation 10.4. The merits of all features are
kept in a vector based on the current window W and the costs of the features C,
equation 10.5

merit(Fi) = g(Fi)
Ci

(10.4)

merits(W, C) = (merit(F0, C0), . . . , merit(F|F |−1, C|C|−1))T (10.5)

This definition of merit allows for experiments with varying feature costs later on
and to replace the feature importance metric according to the use case.

Feature Importance Windows: For the purpose of calculating feature importance,
only true feature values are considered, with imputations being disregarded. Since
a windowing approach is employed to mitigate potential concept drift, several
alternatives exist for computing streaming feature importance. One method, referred
to as the single window (SW), maintains a single window for all features, while the
second method, referred to as multiple windows (MW), retains distinct windows for
each feature and class combination. Let w denote the size of the window. In the
SW approach, the most recent w instances are stored, while MW retains the most
recent w available feature values for each feature-class combination. For instance, in
a dataset with three features and two classes, MW would require 3× 2 = 6 windows,
whereas SW would only use a single window for feature importance computation.

68

10.2. Methods

The primary benefit of SW is that the merit estimates for each feature are derived
from identical instances and span the same time period. However, a drawback is that
the window may not contain w instances for every feature, as the absence of a feature
in the stream reduces the number of values retained within the window. Conversely,
MW ensures that up to w feature values are kept per class for each feature, but
the time span covered by the windows may vary, depending on the distribution of
missing data and class balance within the stream.

Both windowing methods were employed in the AED metric experiments, detailed
in section 10.5. Ultimately, the SW option was selected to ensure that the merit of
each feature is based on the same temporal range and derived from the same set of
instances.

With a merit function suitable for streaming data, it is now possible to assign a
score to an instance using its available features as well as the missing feature with
the highest merit.

10.2.4. Modelling Instance Quality

We assume a scenario where we must decide immediately whether we want to acquire
missing features for each incoming instance. This decision is guided by estimating
the value of acquiring the most informative missing feature for the current instance.

To perform this estimation, the previously introduced merit function is applied.
The quality of an instance x is calculated by first summing the merits of all known
features f ∈ x.known, then adding the merit of the highest-ranked missing feature.
This combined value is then normalized by the total number of features, as shown
in equations 10.6 and 10.7. The normalization ensures that instances with fewer
missing features are not disproportionately favored when deciding whether to acquire
additional features.

best_f(x) = argmaxf /∈x.knownmerit(f) (10.6)

quality(x, merits(W, C)) =
∑

f∈x.known merit(f) + best_f(x)
|x.known|+ 1 (10.7)

For each incoming instance, the quality score can now be calculated and plugged
into the IPF to decide whether to trigger an acquisition, see algorithm 10.1.

Algorithm 10.1 AFA-Stream
Require: stream X, budgetmanager bm, costs C
Ensure: window W initialized

for all instance x in X do
m← merits(W, C) // described in 10.5
q ← quality(x, m) // described in 10.7
if bm(q) then

acquire feature with highest merit // described in 10.4
end if
update W

end for

69

10. Active Feature Acquisition on Data Streams under Feature Drift

10.3. Evaluation Scheme and Datasets
Random Sampling is a widely used baseline in Active Learning research [74], and
in certain cases, it can be surprisingly challenging to outperform. Consequently, a
Random Acquisition (RA) baseline was implemented, employing the Simple Budget
Manager (SBM) discussed in section 10.2.1. This baseline randomly selects a missing
feature for acquisition whenever the ratio of acquisitions to instances with missing
features falls below a predefined user threshold.

To assess the effectiveness of the approach, the classification performance was
compared across nine datasets using a prequential evaluation approach. Cohen’s
Kappa was chosen as the performance metric due to its suitability for handling
class imbalance, as outlined in section 2.2. It was used in favor of κ+ as temporal
aspects, and the performance of the classifier are not of interest, but the performance
difference given an AFA strategy.

The method was tested on six static datasets and three stream-based datasets, listed
in Table 10.1. The static datasets, abalone, adult, magic, nursery, occupancy,
and pendigits, are all accessible through the UCI machine learning repository1

[40]. The stream datasets consist of electricity, sea, and gen. The SEA dataset is
synthetic and commonly used in stream mining experiments, comprising four distinct
concepts, each spanning 15,000 instances. The GEN dataset is another synthetic
stream dataset, developed for this work, which has 10 concepts, each lasting for 500
instances. During each concept, a categorical feature is made to resemble the label,
enabling an assessment of how the feature importance metric responds to concept
changes.

In order to facilitate reproducibility and support future experimentation with
alternative Active Feature Acquisition strategies and feature importance metrics, an
evaluation framework was established, which will be detailed in the following section.

Table 10.1.: All datasets that were used for the experiments. Table reproduced from
[9].

Dataset Instances Labels Features Type Purpose

sea 60,000 2 0 cat. 3 num. synth. stream determine if two specific
features greater than threshold

electricity 45,312 2 1 cat. 7 num. stream determine if the market price of
electricity rises or drops

adult 32,561 2 4 cat. 8 num. static determine if yearly income of
individual is above $50,000

occupancy 20,560 2 1 cat. 7 num. static determine whether an office room
is occupied

magic 19,020 2 0 cat. 10 num. synth. static determine if signal is gamma ray
based on Cherenkov radiation

nursery 12,960 5 8 cat. 0 num. static determine the rank of child
application for nursery school

pendigits 10,992 10 0 cat. 16 num. static determine digit written on a pad
gen 5,000 2 3 cat. 0 num. synth. stream find the current feature describing the label

abalone 4,177 3 0 cat. 8 num. static determine sex of abalones

10.4. Evaluation Framework
The evaluation framework2 evaluates various AFA strategies by measuring their
impact on the performance of a stream classifier applied to the same data stream. The

1https://archive.ics.uci.edu/, visited 29th of May 2024
2https://github.com/Buettner-Maik/afa-stream

70

https://archive.ics.uci.edu/
https://github.com/Buettner-Maik/afa-stream

10.5. Experimental Setup

core assumption is that an effective AFA strategy will acquire missing features that
contribute to significant improvements in classification performance. Performance is
assessed using Cohen’s Kappa, chosen for its robustness in handling class imbalance.

Simulation of Missingness: To ensure consistency across runs, a feature-complete
dataset X is used. Missing values are introduced according to the Missing Completely
at Random (MCAR) mechanism, whereby a user-defined threshold is applied to
randomly delete a specified percentage of selected feature values based on a uniform
distribution. The missing values are then imputed using the mean for numerical
features and the most frequent value for categorical features. Running a stream
classifier on the imputed dataset without any feature acquisitions establishes a lower
performance bound, while the feature-complete dataset provides the upper bound.

The specific choice of imputation method is arbitrary; however, the better the
imputation, the closer the lower bound may be to the upper bound. For this reason,
basic imputation methods were selected. While mean and most frequent value
imputation are not the most accurate methods, they simplify the visualization of
results. Additionally, the framework includes the random baseline discussed earlier,
and for any AFA strategy to be considered successful, it must perform better than
both the lower bound and the random baseline.

10.5. Experimental Setup
The evaluation framework was realized by extending an existing framework for AL
on data streams3 which was designed for streams with an evolving feature space.

Stream of Batches: The original framework processes incoming streams in batches,
and this setup was maintained throughout the experiments. However, as the developed
methods are also compatible with conventional data streams, reimplementation is
currently underway using the widely adopted Python online machine learning library,
River4.

For the experiments, each dataset is divided into batches of 50 instances, with the
first batch used to initialize the classifier. To ensure that all labels are represented
during initialization, one instance from each label is randomly selected and added
to the first batch. For static datasets, the order of instances is randomized for each
run to ensure robust performance estimates. In contrast, for stream datasets, the
chronological order is maintained to accurately reflect concept drift and preserve the
original temporal sequence of the data.

Parameters for Missingness and Budget: In the experiments, Missing Completely
at Random (MCAR) missingness is simulated across seven levels, specifically with
12.5%, 25%, 37.5%, 50%, 62.5%, 75%, and 87.5% of the feature values being missing.
Additionally, eight different budget scenarios are applied, allowing for the acquisition
of one missing feature per instance in 12.5%, 25%, 37.5%, 50%, 62.5%, 75%, 87.5%,
and 100% of the instances.

Classifier and Number of Runs: A stochastic gradient descent support vector
machine (SGD SVM) from the scikit-learn library was employed with a limit of 100

3https://github.com/elrasp/osm
4https://riverml.xyz/latest/, visited 7th of June 2024

71

https://github.com/elrasp/osm
https://riverml.xyz/latest/

10. Active Feature Acquisition on Data Streams under Feature Drift

iterations to achieve a tolerance of 0.001 using log-loss. This choice was driven by
the requirements of the framework, though it is not crucial for the experiments, as
selecting a different classifier would mainly impact the performance bounds but not
the ranking of the Active Feature Acquisition (AFA) strategies.

To account for the inherent randomness in the experiments, each static dataset
was permuted 10 times for every combination of parameters (Budget Mechanism,
Budget, Degree of Missingness, Window Mode, and Feature Importance Metric). For
the streaming datasets, only one run was performed, preserving the original sequence
of instances. Initial experiments were conducted using the AED metric, but it was
observed that there was no significant difference between the single window (SW)
and multiple windows (MW) approaches. Given that MW was more complex to
implement and manage, the SU and IG feature importance metrics were implemented
solely using the SW approach.

This resulted in a total of 5180 runs for static datasets and 518 runs for stream-
based datasets.

10.6. Results

The experiments had the following aims:

1. Find out if the stream-based AFA methods outperform a random baseline.

2. Investigate if AED is a suitable feature importance metric.

3. Investigate what effect the two different budgeting mechanisms have on perfor-
mance.

With respect to the first point, it can be stated with confidence that the proposed
AFA methods outperform the random acquisition (RA) baseline on 7 out of the 9
datasets. The only exceptions are the adult and abalone datasets, as well as the
gen dataset at very low missingness levels, as shown in Figures 10.2 and 10.3. These
figures illustrate model performance across different budgets with 75% of the feature
values missing. It is evident that SWAED, regardless of the budgeting mechanism,
consistently surpasses the RA baseline, with this effect becoming more pronounced
as the proportion of missing features increases. The specific results for the magic
dataset are detailed in Table 10.2, while the results for the remaining datasets are
available in the Appendix, sections A.1 to A.8.

Table 10.2.: Mean kappa values over 10 runs on the magic dataset using an SGD
classifier. SWAED + IPF always outperforms RA + SBM . Table
reproduced from [9].

mean kappa over 10 runs on data set magic
missingness 0.25(kappa ∈ [0.319, 0.409]) 0.5(kappa ∈ [0.229, 0.409]) 0.75(kappa ∈ [0.131, 0.41])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.344 0.357 0.375 0.395 0.27 0.303 0.333 0.367 0.185 0.226 0.276 0.321
MWAED+SBM 0.337 0.357 0.375 0.394 0.26 0.292 0.326 0.364 0.177 0.224 0.274 0.321
SWAED+IPF 0.347 0.358 0.377 0.391 0.265 0.302 0.339 0.366 0.185 0.23 0.27 0.323
SWAED+SBM 0.34 0.357 0.376 0.395 0.261 0.296 0.333 0.368 0.174 0.223 0.274 0.317

SWIG+IPF 0.341 0.353 0.372 0.391 0.259 0.29 0.32 0.358 0.173 0.205 0.256 0.301
SWIG+SBM 0.34 0.357 0.375 0.392 0.259 0.289 0.326 0.361 0.165 0.209 0.256 0.299
SWSU+IPF 0.336 0.353 0.37 0.391 0.256 0.287 0.32 0.359 0.171 0.205 0.251 0.299
SWSU+SBM 0.337 0.354 0.376 0.393 0.257 0.29 0.325 0.361 0.169 0.212 0.254 0.304

RA+SBM 0.326 0.334 0.34 0.355 0.232 0.248 0.26 0.266 0.142 0.151 0.159 0.171

72

10.6. Results

The only exceptions are the abalone and adult datasets. In the case of abalone,
the most likely reason is that we created an almost unsolvable classification task
from a dataset, which is usually used for regression. A strong indicator is the very
low upper bound, which reaches, at most, a Kappa value of 0.252 when all features
are available. This means there is very little to learn in the first place, which is
supported by the fact that at 25% missingness, the lower performance bound, where
all missing features are imputed, lies at 0.226, which is just below the upper bound
of 0.238, which means that 25% of the features missing made almost no difference
to the classifier. On adult the issue seems to be that the artificial restriction to
only be able to acquire one feature per instance, is too limiting. This assessment
is supported by the huge gap between all strategies and the upper bound, which
can be seen in Figure 10.3. Eventhough, the proposed methods were not clearly
favorable on the two aforementioned scenarios, they still performed similarly to the
random baseline. Summarizing one can say that the proposed methods outperform
the random baseline in the vast majority of cases and only occasionally perform
similar to the random baseline which is mostly due to the restriction of being only
able to purchase a single feature, as well as using a dataset for testing which seems
not suitable to the task.

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.2

0.3

0.4

0.5

0.6

m
ea

n
ka

pp
a

sea: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.10

0.15

0.20

0.25

0.30

0.35

0.40

0.45

m
ea

n
ka

pp
a

gen: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.20

0.25

0.30

0.35

0.40

0.45

0.50

m
ea

n
ka

pp
a

electricity: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

Figure 10.2.: Mean kappa performance comparison over ten runs of Single Window
Average Euclidean Distance (SWAED) configurations on three stream
datasets, with a fixed feature missingness rate of 0.75. Figure reproduced
with permission from [9] under CC BY 4.0.

73

10. Active Feature Acquisition on Data Streams under Feature Drift

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.4

0.5

0.6

0.7

0.8

0.9

m
ea

n
ka

pp
a

occupancy: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.15

0.20

0.25

0.30

0.35

0.40

m
ea

n
ka

pp
a

magic: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

m
ea

n
ka

pp
a

nursery: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

m
ea

n
ka

pp
a

pendigits: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.16

0.18

0.20

0.22

0.24

m
ea

n
ka

pp
a

abalone: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

0.0 0.2 0.4 0.6 0.8 1.0
budget

0.15

0.20

0.25

0.30

0.35

0.40

0.45

m
ea

n
ka

pp
a

adult: missingness 0.75

SWAED+IPF
SWAED+SBM
RA+SBM
Upper
Lower

Figure 10.3.: Mean kappa performance comparison across ten runs of Single Window
Average Euclidean Distance (SWAED) configurations on six static
datasets, with a fixed feature missingness rate of 0.75. Figure reproduced
with permission from [9] under CC BY 4.0.

74

10.6. Results

Investigating AED as a Feature Importance Metric: All three feature importance
metrics, Average Euclidean Distance (AED), Information Gain (IG) and Symmetric
Uncertainty(SU), usually outperform the baseline. Still, it was observed that IG and
SU performed better on all datasets containing categorical features. Unfortunately,
SU and IG require a discretization step [27], which noticeably slows down the
processing of the stream. Therefore AED is the preferred option, which performs
well and is fast, but a more detailed investigation of which feature importance metric
fits which data and if there are heuristics that can tell us which metric to use on
a given dataset are still open for future work. One obvious drawback of using the
proposed metrics to suggest acquisition candidates is, that they consider each feature
independently, ignoring correlation and other inter-feature dependencies. This aspect
is highlighted more in chapter 11 where a synthetic dataset is introduced, where the
label is decided by the configuration of multiple features, and in chapter 12 where a
synthetic dataset is introduced that contains multiple strong correlations among the
features. An alternative approach using decision trees to generate is currently in the
works and being prepared for publication, see section 13.1.

Effects of Budgeting Mechanism: The experiments did not reveal a substantial
difference between the Simple Budget Manager (SBM) or Incremental Percentile
Filter (IPF), which can be visually confirmed in the Figures 10.2 and 10.3. In most
cases the two lines match each other, or are very close even when one dominates the
other. This wasn’t a big surprise as both methods show the same behavior at the
thresholds 0 and 1, as they never acquire features in the former and always a acquire
the best missing feature in the latter case. So the only expected difference would
be the shape of the curve. A slight advantage of the IPF was anticipated, as it can
contextualise its current decision within the window of past scores, which in principle
should lead to better decisions than just buying when you can. While there seems
to be a slight advantage in using the IPF, the experiments did not underscore this
expectation sufficiently. Therefore, a more in depth investigation into the behavior
and performance impacts of budgeting mechanisms, is part of the open future work.

AED, Window Length and Concept Drift The principal method to deal with
potential concept drift in this paper is to use a windowing approach when calculating
the merits of our features and training the classifier. Windows of static size have
the disadvantage though, that they can miss change our react late if they are too
big and might overreact to short fluctuations and outliers if they are to small. An
example of a scenario where the window length is too long can be seen in Figure
10.4, where our metrics only reacted to a new concept after half of the respective
instances were seen. Potential solutions that can address this issue in the future are
the use of change detection algorithms and adaptive windowing [11].

75

10. Active Feature Acquisition on Data Streams under Feature Drift

0 1000 2000 3000 4000
index

0.0

0.2

0.4

0.6

0.8

1.0

no
rm

al
ize

d
m

er
it

Confidence plot for SWAED
feature 0
feature 1
feature 2

Figure 10.4.: The merit of each feature is plotted over time on the gen dataset, with
concepts lasting 500 instances, indicated by vertical lines. In each
concept phase, one feature aligns with the label. The AED calculation
uses the same window size of 500, meaning it takes half a window to
detect the current concept. Figure reproduced with permission from
[9] under CC BY 4.0.

76

10.7. Conclusion

10.7. Conclusion
Missing feature values in a data stream can degrade prediction performance. They
are usually treated with imputation, which relies on educated guessing of the missing
values. An alternative approach is active feature acquisition, where true feature
values can be acquired for a cost.

This work represents one of the initial efforts to investigate how Active Feature
Acquisition (AFA) can be applied to data streams, where budgeting must account
for an endless flow of incoming instances. As part of this investigation, a framework
for conducting AFA experiments on data streams is provided, though it is subject
to the limitation of allowing only one missing feature to be acquired per instance.
Additionally, all features were assumed to have equal costs, as the focus was on
evaluating the effectiveness of the selected feature importance metrics rather than
being influenced by varying feature costs, which can differ across datasets.

To evaluate how well an AFA strategy identifies the missing features that most
influence classification outcomes, the performance of a stream classifier is measured
using Cohen’s Kappa. The framework incorporates three feature importance metrics
(AED, IG, and SU), two stream budgeting mechanisms (IPF and SBM), and a
random acquisition baseline for comparison. It also calculates and displays the lower
and upper performance bounds: the lower bound reflects the classifier’s performance
when no missing features are acquired and all missing values are imputed, while the
upper bound represents the classifier’s performance in the absence of any missing
features.

The results successfully demonstrate that utilizing streaming feature importance
heuristics in combination with a stream-appropriate budgeting mechanism generally
leads to superior acquisition decisions compared to a random baseline on 7 out of the 9
datasets. The abalone and adult datasets presented exceptions where the proposed
AFA methods performed similar to the random baseline. In the case of abalone,
the learning task was considered intractable, while for adult, the limitation of
acquiring only one feature per instance likely proved too restrictive. This hypothesis
is supported by subsequent experiments, as shown in Table A.9.

In terms of the two budgeting methods, no definitive conclusion was reached
regarding their relative effectiveness; however, IPF appeared to perform marginally
better. Consequently, SBM was discontinued in future experiments, except when
used for the random baseline.

One of the key questions was whether AED would serve as a suitable metric for
estimating feature importance, particularly given its applicability to both numerical
and categorical data without requiring costly discretization. The results indicate that
AED is indeed effective, consistently outperforming the random baseline. Nevertheless,
SU and IG tend to deliver superior results on datasets with categorical features.
Despite this slight advantage, the additional cost of discretization was deemed
unnecessary, and thus AED was selected for use in future experiments.

In the next chapter this work is extended by introducing cost-aware AFA on data
streams with the potential for larger acquisition sets, which addresses the two most
important limitations of this chapter.

77

11. Cost-Aware AFA

This chapter covers the work published in [15] which addresses:

RQ3: How can Active Feature Acquisition be realized in a data stream
setting?
RQ4: How can varying feature costs be considered during AFA on
streams?

The previous chapter focused on the initial realization of AFA on a data stream,
addressing RQ3. This follow-up work focuses on RQ4 while also extending RQ3 by
allowing for the acquisition of more than one feature per instance and adjusting the
scoring function for the IPF accordingly. Furthermore, statistical tests are introduced
to validate the results better.

One of the biggest drawbacks of the approach presented in chapter 10 is, that it
was tried to model AFA in a way similar to AL. This resulted in the constraints
that we can only acquire one missing feature per instance, akin to purchasing a label
for an instance. The second limitation was that all features are assumed to cost
the same, which made it possible to model the problem in terms of relative budget,
enabling the use of a preexisting budgeting mechanisms for AL on data streams.

The work presented in this chapter had the main goals to enable varying feature
costs and bigger acquisition sets. This means a budgeting mechanism that works
in absolute terms and enables the acquisition of multiple features per instance is
needed, which also makes changes to the budgeting mechanism and the scoring of
instances necessary. The main contributions are:

• Providing an updated research framework for AFA on data streams

• Changing the budgeting model to deal with multiple feature acquisitions per
instance

• Modelling budget in absolute terms and enabling varying feature costs

• Providing a mechanism to deal with overspending by means of a penalty to
the IPF threshold

The major changes to the framework described in the previous chapter can be seen
in Figure 11.1. They encompass multiple strategies for feature set selection (fss),
changing the score handed to the IPF from estimated quality to estimated quality
gain, acquiring a set of features instead of the single best missing feature and lastly
a necessary update to the IPF threshold in order to deal with changing acquisition
set sizes and their associated costs. The sections 11.1, 11.4 and 11.5 are based on
the respective counterparts in [15].

79

11. Cost-Aware AFA

Figure 11.1.: The framework figure shows fully colored blue nodes for new elements,
while shaded blue nodes represent elements modified from chapter 10.
Reproduced with permission from [15] ©2022 IEEE.

80

11.1. Related Work

11.1. Related Work
Two more recent works that address AFA and extend the related work presented in
the previous chapter, use reinforcement learning.

In [48] the authors model feature acquisition as a Markov decision process (MDP).
In this framework, the state space consists of different sets of known features, along
with a terminal state representing the end of the acquisition process. Feature
acquisition is viewed as state transitions, with actions corresponding to acquiring
additional features. Rewards are assigned based on information gain and instance
uncertainty, making this method adaptable to stream environments.

Building on this, [49] introduces hierarchical decision chains for high-dimensional
feature spaces, clustering actions and incorporating out-of-distribution detection.
This refinement enhances the method’s accuracy and flexibility, though the authors
do not address budget management for feature acquisition, which is the central focus
of this chapter.

11.2. Methods for Acquiring Sets of Features
In order to make the AFA framework of chapter 10 more realistic to real-life situations,
it was necessary to lift the artificial constraint of only being able to acquire a single
feature per instance. Therefore, three types of strategies which accomplish this goal
were designed. In case of all three strategies the user defines a k which sets the
maximum number of features that can be acquired per instance.

k-Best Strategy: All missing features of an instance x will be ranked according to
their merit and then the top k missing features will be put into the acquisition set
for x.

k-GlobalBest Strategy: All features are ranked according to their merit, irrespective
of the instance under consideration, and only features within the global top k ranks
are eligible for acquisition. This approach imposes a stricter limitation compared
to the k-Best strategy, as budget can only be spent on the global top k features,
regardless of which features are actually missing in a given instance x. Consequently,
if x has multiple missing features but none of them are ranked within the global
top k based on their merit, no acquisition is allowed. In contrast, with the k-Best
strategy, up to k features could still be acquired, even if they do not belong to the
global top k ranked features.

k-MaxMean: First the quality of an instance x is calculated without any acquisitions,
formula 11.1

quality(x) =
∑

f∈known(x)
merit(f)/|known(x)| (11.1)

Then iteratively the feature with the highest merit is added as long as the quality(x)
improves. This strategy often ends up selecting only one or two features for the
acquisition.

81

11. Cost-Aware AFA

We can see the differences in behavior of these strategies in Figure 11.2, for
instance how 4−GlobalBest is more restrictive than 4−Best on instance 1, as it
only considers features f2, f1,f3 andf5 as these have the highest merits (15, 11, 9,
6) and of those 4 globally best features instance 1 has onlyf2 andf3 missing so its
other missing features are not considered by 4−GlobalBest but would be considered
under 4−Best. One can also see how 4−MaxMean would only purchase 2 features
as well, as instance 1 starts with a quality of 6 based on its available attributes
(quality(instance1) = (11 + 6 + 1)/3), goes up to 8.25 if we add the best missing
feature f2, goes to 8.4 when adding f3 and would have dropped to 7.66 if we had
added the next best feature f7.

Figure 11.2.: Examples of k − Best, k − GlobalBest, and k −MaxMean on two
instances from [15]. Missing features are indicated by white squares.
The merit of each feature is displayed at the top, with selected features
for each fss-strategy shown in grey and the resulting instance quality
at the end of each row. Reproduced with permission from [15] ©2022
IEEE.

The figure shows how different fss-strategies lead to very different acquisition sets,
which in turn will lead to very different strains on our available budget, so let us
consider next how budgeting is being realized in the framework and which steps were
taken to facilitate the full usage of the available budget.

11.3. Methods for Dealing with Feature Cost and Absolute
Budgeting

In the proposed framework, the budget is distributed incrementally for each incoming
instance, rather than making the entire budget available at once. With every
new instance, a budget increment Bgain is received, and the total budget received
(Breceived) and spent (Bspent) are tracked accordingly; see Figure 11.1.

82

11.3. Methods for Dealing with Feature Cost and Absolute Budgeting

In a real-world application, this would require estimating the number of instances
to be processed within a specific time frame, and dividing the overall allocated budget
by this estimated number of instances.

This design was chosen to facilitate an even distribution of the budget across the
stream. Without this approach, especially in high-missingness scenarios, a significant
portion of the budget could be spent on consecutive instances, which could lead to
missing important events such as concept drift.

The objective of the budget mechanism is to ensure that all available budget
is utilized without exceeding it, so the ratio of spent budget to received budget
Bused = Bspent

Breceived
should approach 1. To achieve this, the IPF allows for more

acquisitions when there is surplus budget and restricts acquisitions when overspending
occurs, limiting further spending until the necessary budget has accumulated.

To enable this behavior, the threshold used by the IPF is dynamically adjusted
according to the current budget usage.

11.3.1. Adapting the IPF-Threshold with a Penalty:

When transitioning from relative feature costs to absolute feature costs, it became
necessary to estimate an initial value for the threshold T used by the IPF. As a
reminder, T represents the percentage of decisions for which the IPF should decide
positively. Let A denote the acquisition set, and AC the associated cost of acquiring
A. The average acquisition cost, AC , is then defined. The initial value of the
threshold is calculated as the fraction of the budget gained per instance over the
average acquisition cost:

Tpre = Bgain

AC
(11.2)

Since the true average acquisition costs are typically unknown, two different
approaches were implemented to estimate the threshold. The first approach assumes
the worst-case scenario, using the maximum possible acquisition costs, while the
second approach tracks recent acquisition costs to provide an estimate of the average.
Let C represent the set of feature costs, where each Cf denotes the cost of feature f .
The threshold in the worst-case scenario is determined by using the maximum cost
from the set C:

Tpre = Bgain∑
f∈F Cf

(11.3)

Alternatively, the costs of past acquisitions can be tracked and then used to
estimate AC using the mean of the recorded costs ÂC .

Tpre = Bgain

ÂC

(11.4)

As a batch-based framework is used to process the streams, the threshold is only
updated after the first batch has been processed; see Figure 11.1.

The advantage of assuming the maximum cost is that it generally ensures the
budget is not exceeded, but it often leads to underutilization of the available budget.
In contrast, the second method, which tracks recent acquisition costs, tends to
overspend and requires the collection of examples to estimate ÂC . Both behaviors
were found to be unsatisfactory, as the aim is to avoid both overspending and leaving
budget unutilized.

83

11. Cost-Aware AFA

To address this,the threshold is dynamically recalculated based on the actual
budget usage Bused:

Tbasic = Tpre

Bused
(11.5)

Second, a penalty term is added, which triggers in case of overspending, as initial
experiments showed that adjusting with Bused was still not enough to deal with
overspending.

P = ⌊pc · (Bused − 1)⌋+ 2 (11.6)

T =
{

Tbasic ifBused ≤ 1
Tbasic

P otherwise
(11.7)

A comparison of all three methods can be seen in Figure 11.3 where it can be
observed that the red line denoting the maximum cost approach often stays under
the target value of 1, which means the available budget was underutilized. The green
line denotes the tracking-based approach with ÂC , which often stays over the target
value of 1, meaning it spends more budget than was available. The blue line denotes
the final version, including a penalty for overspending, which mostly stays at the
target value of Bused = 1.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
Missingness

0.6

0.7

0.8

0.9

1.0

1.1

1.2

Bu
dg

et
 U

se
d

Ideal
4-MaxMean Tbasic ACmax
4-MaxMean Tbasic
4-MaxMean

Figure 11.3.: The figure shows the budget usage on the pendigits dataset. Assuming
maximum costs (red line) results in underspending, tracking actual costs
(green line) leads to overspending, while introducing a penalty term
achieves near-optimal budget utilization. Reproduced with permission
from [15] ©2022 IEEE.

Overspending can still be an issue, especially in scenarios with high missingness,
low budget, AFA strategies that select many features, and high feature costs. High
missingness means the methods often want to trigger acquisitions, which strains the
budget, and high costs amplify this issue. A lot of features missing means that the
strategies might want to buy more missing features, which, in the case of high costs
and AFA strategies that allow for bigger acquisition sets, translates into high average
costs per instance for which acquisitions are triggered. In certain scenarios, even a
few positive acquisition decisions can lead to overexpenditure. No matter how the
IPF threshold is adjusted, if an instance arrives with a higher score than currently

84

11.3. Methods for Dealing with Feature Cost and Absolute Budgeting

included in our IPF, it will move to the front of the IPF, which will always trigger
an acquisition; see Figure 11.4.

0 25 50 75 100 125 150 175 200
Batch

0

1

2

3

4

5

Bu
dg

et
 U

se
d

Target
1-Best
4-Best
16-Best

Figure 11.4.: The figure illustrates how the 16−Best strategy (pink line) overspends
due to high acquisition costs, even with fewer triggers. In contrast,
4−Best and 1−Best remain near the target value of 1. Reproduced
with permission from [15] ©2022 IEEE.

During early experiments, the insight was gained that using the instance quality
as the score that is being handed to the IPF has certain disadvantages, which will
be discussed next.

11.3.2. Replacing Quality Score with Quality Gain:

In chapter 10 the quality of an instance was calculated after the potential acquisition
of the best missing feature. The quality score was handed to the IPF, which then
decided whether to trigger the acquisition. The quality was defined as follows:

quality(x) =
∑

f∈known(x)
merit(f)/|known(x)| (11.8)

Using the quality directly wastes information about an instance’s initial quality,
which can negatively affect budgeting. For example, let us consider two instances x1
and x2, where x1 has the feature with the highest merit fm1 , but lacks the feature
with the second highest merit fm2 , x2 on the other hand lacks the feature with
the highest merit fm1 but has the feature with the second highest merit available
fm2 . If we assume that both instances share all the other features, then this means
that quality(x1) > quality(x2). The use of the 1 − Best strategy, would consider
fm2 for x1 and fm1 for x2. The resulting quality estimates after acquisition would
be the same, which makes these instances look the same to our budget manager
quality(x1 ∪ fm2) = quality(x2 ∪ fm1). This is the case even though x1, according
to the merits, had a better quality to begin with and could also lead to a waste of
budget. In an extreme scenario where the decision must be made to acquire either
fm2 for x1 or fm1 for x2, the preference would be to allocate the budget to x2 because
this would provide greater information gain according to our metrics.

As a result, we now calculate the quality of an instance after adding a feature
set A to x (quality(x ∪ A)) and compare it to the quality before the acquisition

85

11. Cost-Aware AFA

(quality(x)). The resulting gain in quality is then passed to the budget manager to
inform future acquisition decisions.

qualitygain(x, A) = quality(x ∪A)− quality(x) (11.9)

Using qualitygain can have the theoretical disadvantage that budget might be left
unused. This would be the case for instance 2 in Figure 11.2, which has all features
missing except the feature with the highest merit. The way quality(x) is defined,
does not allow for any improvements as adding any feature with a lower merit will
reduce the instances quality and therefore lead to a negative qualitygain, which makes
acquisitions very unlikely. The choice which score to use and hand to the budget
manager influences the acquisition behavior independent of which AFA strategy and
merit metrics are being used. Therefore, the optimal choice depends on the specific
scenario of an application.

Algorithm 11.1 formally describes the framework using the terminology depicted
in Table 11.1.

Table 11.1.: Terminology for the AFA algorithm which was taken from [15]
Symbols Meaning
X the data stream
W the window
Xi the i-th batch of the stream
x an instance
f a feature
C the set of feature costs
Cf the cost of feature f

A a feature set
AC the accumulated feature costs of feature set A

bm the budget manager
fss the active feature set selection strategy
Bgain the budget added for every instance
T the budget threshold for the budget manager
Breceived the total budget received so far
Bspent the total budget spent so far
Bused the fraction of budget used Breceived/Bspent so far

86

11.3. Methods for Dealing with Feature Cost and Absolute Budgeting

Algorithm 11.1 AFA-Stream as in [15]
Require: stream X, budgetmanager bm, active feature set selection fss, feature

costs C, budget gain Bgain

Ensure: window W initialized
1: for all batch Xi in X do
2: Breceived ← Breceived + Bgain

3: if i > 0 then
4: update threshold T // described in 11.3.1
5: end if
6: for all instance x in Xi do
7: m← merits(W, C)
8: A← fss(x, m) // described in 11.2
9: qgain ← quality(x ∪A, m)− quality(x, m)

10: if bm(qgain) then
11: acquire feature set A // described in 11.3
12: Bspent ← Bspent + AC

13: end if
14: update W
15: end for
16: end for

Table 11.2.: Description of the acquisition strategies presented in [15]
Strategy Description

1-Best Buys at most the one locally best missing
feature according to the merits using the IPF

2-Best Buys at most the two locally best missing
features according to the merits using the IPF

3-Best Buys at most the three locally best missing
features according to the merits using the IPF

4-Best Buys at most the four locally best missing
features according to the merits using the IPF

100-Best Buys at most the hundred locally best missing
features according to the merits using the IPF

4-GlobalBest Buys at most 4 missing features if these features
have the highest global merits using the IPF

4-MaxMean Buys up to four features to maximize the
instance’s mean merit using the IPF

4-Random SBM
Random baseline that acquires at most 4 random

missing features as long as budget is available
by SBM

87

11. Cost-Aware AFA

11.4. Experimental Setup and Evaluation

In the experiments 8 different AFA-methods were evaluated, see Table 11.2, on 15
different data sets, see Table 11.3. The data sets adult, occupancy, magic, nursery,
pendigits, abalone, electricity and sea were also used in the previous chapter
and are described in Section 10.3.

Similarly to the sea dataset, the evenodd datasets were generated to test how
well AFA-methods perform when labels depend on multiple variables, but without
introducing concept drift. This dependency is determined using an even/odd function:
if the sum of the dependent features is odd, the label is 1; otherwise, it is 0. For
instance, in the evenoddf9d5 dataset, there are 9 features, of which 5 are the
dependent features that determine the label, while the remaining 4 are noise.

The evenodd datasets replace the gen dataset from chapter 10.
Each dataset is tested with three different feature cost distributions. The first,

equal, replicates chapter 10 by assigning the same cost to all features. The second,
increasing, assigns feature costs based on their position, where the first feature costs
1 unit, the second 2 units, and so on. The third, decreasing, reverses the order, with
the last feature costing 1 unit, the second to last costing 2 units, etc.

Additionally, we evaluate these cost settings under budgets (Bgain) of 1, 2, and
3 units. Each configuration is tested under seven levels of missingness, assuming
Missing Completely At Random (MCAR), where random entries are deleted uniformly
across the datasets. This results in a total of 3 · 7 · 3 · 15 = 945 experiments for each
AFA method, repeated 10 times for static datasets and once for stream datasets.

For classification, a Support Vector Machine (SVM) is trained via stochastic
gradient descent for most datasets, except for the evenodd datasets, where a Decision
Tree (DT) is used, based on an optimized CART algorithm with a maximum depth of
5. The κ metric is used to evaluate the performance of each method, and statistical
significance is determined through a Friedman-Test with a Nemenyi post-hoc test as
recommended by [18]. All classifiers are evaluated in a prequential manner [28].

The framework extends the basic active feature acquisition framework of the
previous chapter, which itself is an extension of the active stream mining framework
from [73], and is implemented in Python. The classification algorithms are built
using the scikit-learn library [65].

Table 11.3.: Descriptions of the datasets taken from [15]
Dataset Instances Labels Cat. Features Num. Features Purpose

sea 60000 2 0 3 determine if two specific
features exceed a threshold

electricity 45312 2 1 7 determine if electricity prices
increase beyond a threshold

adult 32561 2 4 8 determine if annual income
exceeds $50,000

occupancy 20560 2 1 7 determine whether an office
room is occupied

magic 19020 2 0 10 determine if signal is a gamma ray
based on Cherenkov radiation

nursery 12960 5 8 0 determine rank of a child’s
nursery school application

pendigits 10992 10 0 16 determine digit written on a pad

evenoddfxdy 10000 2 0 x

out of a set of x features, determine the
outcome of an y-wide even/odd function

(x,y) ∈ {(3, 3), (5, 3), (7, 3),
(9, 2), (9, 3), (9, 4), (9, 5)}

abalone 4177 3 0 8 determine sex of abalones

88

11.5. Results and Discussion

11.5. Results and Discussion

The performance of different acquisition strategies is first analyzed on the 8 regular
datasets and 7 evenodd datasets separately, followed by a comparison aimed at
understanding the significance of the quality and merit functions. The evaluation
then continues with an analysis of the budget behavior of the IPF, concluding with
a discussion on how the thresholds for the IPF were determined.

11.5.1. Performance Analysis on Regular Datasets

Across the regular datasets, all proposed AFA methods outperform the random
baseline in the majority of scenarios. The best-performing strategy, however, varies
based on the dataset, cost distribution, budget, and level of missingness. In low-
budget settings, strategies like 2-Best, 1-Best, and 4-MaxMean dominate, but these
strategies tend to leave a lot of budget unused in high-budget scenarios, as seen in
Figure 11.5 versus Figure 11.6. In contrast, with higher budgets, strategies such as
4-Best and 4-GlobalBest catch up or surpass 2-Best, 1-Best, and 4-MaxMean, with
4-GlobalBest generally outperforming 4-Best.

Figure 11.5.: In low-budget settings with a few highly predictive features, strategies
that acquire fewer features per instance (1-Best, 4-MaxMean) excel by
focusing on the best features for more instances. They also maintain
better performance with increasing missingness, as they avoid spending
on irrelevant features. This effect becomes more prominent as the
missingness increases (x-Axis). Reproduced with permission from [15]
©2022 IEEE.

Interestingly, despite its simplicity, the 1-Best strategy ranks second overall in
average performance across all datasets. This is attributed to the fact that in some
cases, a single highly predictive feature has a disproportionately large impact on the
classification outcome compared to larger feature sets.

The statistical analysis begins with a Friedman-Test, confirming that the perfor-
mance of different AFA strategies significantly differs (p = 2.24e− 145). A Nemenyi
post-hoc test for pairwise comparison reveals that, on non- evenodd datasets, 2-Best
ranks highest, followed by 1-Best and 4-MaxMean. The 2-Best method performs

89

11. Cost-Aware AFA

Figure 11.6.: Strategies with limited feature acquisitions per instance (1-Best, 4-
MaxMean) fail to achieve optimal results in high-budget scenarios,
despite having budget available. This effect becomes more prominent as
the missingness increases (x-Axis). Reproduced with permission from
[15] ©2022 IEEE.

significantly better than most other strategies, with the exception of 1-Best, sug-
gesting that k = 2 is an optimal value given the combinations of dataset, budget,
missingness, and cost distributions that were tested. Lower-ranked strategies, such
as 4-Best, 100-Best, and 4-Random+SBM, perform worse, with the results being
statistically significant, as illustrated in Fig. 11.7.

3 4 5 6 7

CD

2-Best

1-Best

4-MaxMean

4-GlobalBest

3-Best

4-Best

100-Best

4-Random SBM

Figure 11.7.: Critical distance plot across all datasets except evenodd (CD=0.47).
Reproduced with permission from [15] ©2022 IEEE.

90

11.5. Results and Discussion

2 3 4 5 6

CD

4-Random SBM

100-Best

4-Best

3-Best

4-GlobalBest

2-Best

1-Best

4-MaxMean

Figure 11.8.: Critical distance plot for evenodd datasets (CD=0.50). Reproduced
with permission from [15] ©2022 IEEE.

11.5.2. Performance Analysis on Evenodd Datasets

To better understand the behavior of the proposed AFA strategies and eliminate the
influence of single highly predictive features, the evenodd datasets were created —
designed as a worst-case scenario—where the label depends on knowing all relevant
feature values. Since AED relies on individual features for predicting label distri-
butions, it struggles to prioritize features in these datasets, treating features more
randomly. In this case, methods that acquire a greater number of dependent features
tend to perform best.

As expected, the order of top-performing AFA strategies on the evenodd datasets
differs from that on the regular datasets. Here, methods like 100-Best and 4-Best
outperform 1-Best, 2-Best, and 4-MaxMean, which were dominant on other datasets,
as shown in Figs. 11.7 and 11.8.

Statistical analysis of the evenodd datasets, conducted separately from the regular
datasets, yields a Friedman-Test result of p = 4.10e− 99.

The evenodd experiments also highlight differences between using the IPF and
a simple budget model. Notably, the random baseline AFA method ranks highest
across these experiments, primarily due to its straightforward budget strategy, which
acquires up to four features whenever budget permits, showing a bias toward acquiring
smaller, cheaper feature sets that complete instances. In contrast, the quality gain
provided by IPF prioritizes acquisition sets that favor very incomplete instances
missing several key features.

Thus, on the evenodd datasets, the random baseline with a simple budget strategy
performs significantly better than the other approaches. Among the k-Best strategies,
a positive correlation emerges between the size of the acquisition set and performance,
as shown in Fig. 11.8. The 4-MaxMean strategy performs the worst, largely due to its
reluctance to complete instances and inefficient use of available budget. Meanwhile,
4-GlobalBest performs comparably to the more flexible 3-Best strategy.

11.5.3. Impact of Quality and Merit Functions

The experiments on the evenodd datasets reveal that single-feature-based merit
functions, like AED, struggle to guide effective feature acquisition when the label
is dependent on multiple features. Additionally, the current quality function sums
up the merits of available features without considering whether those features are
highly correlated. These limitations explain why the random baseline outperforms all
our devised methods on the evenodd datasets. To address this, the aforementioned
tree-based acquisition strategy is currently being developed, see section 13.1.

91

11. Cost-Aware AFA

Table 11.4.: Percentage of runs where each strategy exceeded budget and average
percentage of overspending on the 8 regular datasets. Table reproduced
from [15].

Strategy % Runs Avg. % over Budget
1-Best 0.2 0.01
2-Best 0.4 0.02
3-Best 1.79 0.03
4-Best 3.17 0.06
100-Best 32.74 12.95
4-GlobalBest 23.41 0.22
4-MaxMean 7.34 0.16
4-Random SBM 0 0

11.5.4. Budget Usage
In analyzing budget usage, the focus is placed on overspending, which is particularly
significant in real-world applications. The frequency with which each strategy
exceeded its budget and the average amount by which it was exceeded were recorded,
as shown in Table 11.4. This analysis covers only the 8 regular datasets. The baseline
4-Random strategy, which employs a simple budget manager (SBM), ensures that
it never exceeds its budget, as it only acquires features when sufficient budget is
available.

The methods using the IPF are more informative, as their behavior is influenced
by the cost and quality of missing features as well as the degree of missingness.
Most IPF-based methods stay within budget more than 90% of the time, with the
exceptions being 100-Best and 4-GlobalBest. The 100-Best method, as expected,
frequently overspends since it aims to acquire all features for an instance, which can
quickly deplete the budget when expensive features are missing. The 4-GlobalBest
method selects up to 4 of the globally best features by merit, which can also lead to
overspending when the selected features are costly.

For all methods except 100-Best, the average overspend is less than 1%, whereas
100-Best exceeds the budget by an average of 12.95% in overspending scenarios.
Given this, it can be concluded that 1-Best is a solid baseline for future experiments
due to its strong performance and minimal budget overspend among IPF-based
methods. Additionally the k-MaxMean strategy is recommended (k = 4 in our
experiment) for its adaptability in adjusting feature set size dynamically and its
performance, which rivals that of 1-Best.

However, one drawback of both 1-Best and k-MaxMean is their frugality in high-
budget scenarios, where they leave large portions of their budget unused. This
is evident in Figure 11.6, where both strategies underperform due to insufficient
investment, even being outperformed by the random baseline up to certain levels
of missingness. On the other hand, spending fewer features per instance can be
advantageous when only a few features are highly predictive and the budget is
low, as seen in Figure 11.5. For the occupancy dataset, only a few features are
required for high classification performance, and thus 1-Best and 4-MaxMean show a
slower decline in performance as missingness increases, avoiding wasteful spending
on unnecessary features. In contrast, other strategies suffer a steady decline in
performance as they acquire incomplete instances.

92

11.6. Conclusion

Dynamic strategies that adjust the number of features k purchased per instance
according to the available budget present interesting avenues for future work, with
the aim of optimizing budget usage and potentially enhancing classifier performance.

11.5.5. Threshold for the Incremental Percentile Filter

In the initial experiments, a conservative threshold Tbasic based on a worst-case
approach ACmax was compared with a threshold Tbasic, which is based on the estimated
average cost ÂC . Both methods initially applied basic threshold adjustments. The
estimated average cost version often overspent its budget, while the conservative
method stayed closer to the ideal budget usage. However, the conservative method
sometimes underutilized the available budget, especially in cases of low missingness,
which prompted the addition of a penalty term.

Figure 11.3 illustrates how both basic versions deviate from optimal budget usage,
and how the penalty term improves adherence to budget limits. The penalty term
(pc = 16) was tuned using one dataset and it was found that this value generalized
well to most other datasets. Future work should focus on developing a heuristic for
setting the penalty term automatically, though it is recommended to start with this
experimentally determined value.

11.6. Conclusion

This chapter introduces novel methods for active feature acquisition in data streams,
considering real feature costs. Furthermore, several acquisition strategies are proposed,
all of which can acquire multiple missing features per instance. This addresses the
main limitations of the initial work presented in chapter 10.

The strategies presented either select the top k features with the highest merit for
each instance or, in the case of the k-GlobalBest strategy, acquire up to k features
from the globally top k features within the current stream window. Additionally,
a dynamic strategy, k-MaxMean (k = 4), is proposed. This strategy adjusts the
number of features purchased per instance to optimize the average instance quality,
while limiting the acquisition to a maximum of k features.

To make these strategies practical, the Incremental Percentile Filter (IPF) has
been adapted to work with absolute budgets, as it was originally designed for relative
budgets. A method is also introduced for configuring and dynamically adjusting
the IPF threshold using a penalty term to ensure optimal budget usage over time.
The strategies are then compared against a random baseline, which acquires up to 4
random features. Experiments are conducted across 12 datasets, using three feature
cost configurations (equal, decreasing, increasing) and seven levels of missingness.

The results show that the proposed strategies consistently outperform the random
baseline, with most strategies staying within the defined budget in over 90% of cases.
However, strategies utilizing the IPF occasionally exceed the budget in scenarios with
high missingness and a very limited budget, an issue that requires further exploration.

In summary, this chapter offers a robust framework for active feature acquisition
in data streams, considering varying feature costs and absolute budget constraints.
Multiple acquisition strategies are proposed, and recommendations for their use
in different contexts are provided. These promising initial results suggest further
investigation into more advanced acquisition strategies and budget management
techniques is warranted.

93

11. Cost-Aware AFA

In this chapter, as well as the previous one, a feature importance metric was
utilized that evaluates each feature independently. The experiments conducted on
the evenodd datasets revealed that this type of metric encounters difficulties when
guiding the acquisition process in cases where the label depends on multiple features.

Another limitation of such metrics is their tendency to lead to the acquisition of
correlated features, especially if these features receive a high feature importance score.
For instance, consider an extreme scenario where a duplicate of the most important
feature is introduced into the dataset. The proposed AFA method would likely
allocate significant budget to acquiring this duplicate, even if the original feature is
already available. This, of course, would not result in better class separation but
would instead waste the available budget.

The following chapter will address this inefficiency and explore strategies for
reducing costs by selectively using imputation in certain situations.

94

12. Reducing Costs with Strategic
Imputation

The previous chapter highlighted how certain feature importance metrics could
misguide the acquisition process in the presence of correlated features, leading to
unnecessary costs. This chapter examines the hybrid approach for handling missing
feature values in data streams, as described in [16], using a two-stage process aimed
at optimizing budget usage.

This chapter addresses the following research questions:

RQ3: How can Active Feature Acquisition be realized in a data stream
setting?
RQ4: How can varying feature costs be considered during AFA on
streams?

In the first stage, a subset of missing features from an instance is selected for
acquisition based on their estimated merit. Feature merit measures the contribution
of a feature to class separation [85, 32].

In the second stage, each feature in the selected acquisition set is evaluated to
determine its predictability using the available features of the instance. If the
prediction appears promising, imputation may be chosen over acquiring the missing
feature to conserve the budget.

The primary contributions of this approach include a method that optimizes budget
allocation by selecting imputation when feasible as an alternative to Active Feature
Acquisition (AFA), as well as an imputation technique that monitors the predictive
relationships between features.

The sections in this chapter are based on their counterparts in [16].

12.1. Related Work
In addition to the related work presented in the chapters 10 and 11, this chapter
addresses related work concerning imputation.

Imputation refers to the process of replacing missing values with estimates based
on statistical methods, information-theoretic approaches, or model-driven techniques
[52, 1]. These techniques range from basic methods, such as substituting missing
numerical features with the mean or using the nearest neighbors for imputation [39],
to more advanced methods, including multiple imputation by chained equations [5]
or deep learning-based imputation [33].

Imputation in data streams presents additional complexities compared to static
learning, as new data is constantly arriving and must be integrated. Additionally,
feature distributions may shift due to concept drift [87]. One approach to handle this
continuous data flow is to use incremental models that update in real-time, avoiding
the need for full retraining [66]. Another strategy involves focusing only on a sliding
window of recent data points [23], which helps manage data growth and addresses
concept drift by discarding outdated information. In this chapter, an imputation

95

12. Reducing Costs with Strategic Imputation

method similar to [66] is proposed, using individual linear regression models for pairs
of features, selecting the most suitable model for imputation. A windowed approach
is also incorporated, as suggested in [23].

12.2. Methods

Algorithm 12.1 Simplified pseudo-code of the hybrid framework published in [16].
Require: Initial data Xinit, A data stream consisting of batches X, a sliding window

of batches W , a classifier C, a budget manager BM , an imputation model I, a
feature importance metric afa, the cost of features C, a feature set selection
method fss, an initial budget threshold Tinit, the budget added for each instance
Bgain

Ensure: Bspent ← 0, Bgiven ← 0, Bsaved ← 0
1: add Xinit to W
2: train initial model C0 on W
3: for Xi in X, i ≥ 1 do
4: update I with Xi

5: adjust budget threshold T
6: for x in Xi do
7: update merits using afa, W and x
8: Bgiven ← Bgiven + Bgain

9: get acquisition set A of x using fss
10: calculate quality gain of x ∪A
11: determine acquisition decision of BM according to quality gain of x ∪A
12: determine confidence decision of I given x
13: if (I) BM wants to acquire and I is confident then
14: Bspent ← Bspent + AC

15: Bsaved ← Bsaved + AC

16: else if (IV) BM wants to acquire and I is not confident then
17: Bspent ← Bspent + AC

18: acquire A for x
19: end if
20: end for
21: impute remaining missing values of Xi using I
22: evaluate Xi using Ci

23: add imputed Xi to W
24: train new model Ci+1 on W
25: end for

At the core of this chapter is an imputation model called the Feature Pair Imputer
(FPI), which tracks the ability of each feature to impute other features. This allows
the model to assess how accurately each missing feature can be predicted based on
the available features. Algorithm 12.1 outlines the updated framework, and in line
12, it can be seen that, in addition to qualitygain, the confidence in the imputation
model’s ability to predict the missing features of an instance x is calculated. If there
is high confidence in the imputation quality, the features are treated as if they were
purchased, but the budget is saved and added to Bsaved, as shown in lines 13 and
15. It is still added to the spent budget (line 14) to prevent the saved budget from
being used on later instances, as the IPF threshold would otherwise adjust to allow

96

12.2. Methods

for more acquisitions.
Furthermore, the mean and most-frequent-value imputation methods are replaced

with the FPI method, as indicated in line 21. The following section provides a
detailed explanation of how the FPI functions and how it helps conserve the budget.

12.2.1. Feature Pair Imputer (FPI)
The Feature Pair Imputer (FPI) is designed to work efficiently in data streams by
providing a fast mechanism to evaluate imputation quality. It maintains separate
sliding windows WFi,Fj (denoted as Wi,j for simplicity) with a size of wF P I for each
feature pair (i, j), as well as for each individual feature (i, i), resulting in a total
of

∑|F |
i=1 i windows. These sliding windows store feature value pairs and train two

imputation models, Mi,j and Mj,i, for each pair. These models are also evaluated
using the data stored in the sliding windows.

The imputation model and error calculation method depend on the types of input
and output features, as summarized in Table 12.1. For self-imputation, a simple mean
imputer is used for numeric features, while a mode imputer is used for categorical
features, both using the relevant error metrics shown in Table 12.1.

Feature In Feature Out Imputation Error

numeric numeric linear regression
model

RMSE(Mi,j)
max(Wi,j)−min(Wi,j)

categorical numeric
mean of the posterior
distribution of output values
given the input value

RMSE(Mi,j)
max(Wi,j)−min(Wi,j)

categorical categorical
mode of the posterior
distribution of output values
given the input value

1− Jaccard(Wi,j [:, j], Mi,j)

numeric categorical 1-d nearest neighbour
mapping 1− Jaccard(Wi,j [:, j], Mi,j)

Table 12.1.: Methods used for feature pair imputations and their error calculation
methods. Table reproduced from [16].

The imputation errors are stored in an error matrix E ∈ [0, 1]|F |×|F |, where rows
represent input features and columns represent output features. Therefore, Ei,j

corresponds to the imputation error of model Mi,j .
Given the error matrix E and a vector mask known(x) = {1, 0}|F | representing

the known features of instance x, where known(x)i = 1 if feature i is known, the
contribution of imputation models to imputing the missing features of x can be
estimated by creating a weight matrix based on the errors. The known features of x
are referred to as Kx. The weight matrix, weight, is computed using the reciprocal
of the error values as follows:

weighti,j =
{

(Ei,j + ϵ)−1 if ∃a∃bEa,b = 0
E−1

i,j otherwise
(12.1)

This ensures that imputation models with lower errors contribute more to the
imputation process. A small constant ϵ = 0.001 is added to all error values if any
Ea,b = 0, to avoid division by zero.

Using the weight matrix weight, the known feature mask known(x), and the
predicted values from the models, the missing values for x can be imputed. A specific
weight matrix Z for instance x is computed as:

97

12. Reducing Costs with Strategic Imputation

Zi,j = weighti,j · known(x)j + weighti,j · Ii,j (12.2)

where I is the identity matrix of size |F |. The left side of the equation is applied
when i ̸= j, and the right side is used when i = j.

Let X ′ be the matrix of imputed values from the models M , given the known
feature values of x. Depending on the importance strategy, the imputed value for
the missing feature j in x, denoted as f̂j , can be computed using one of the following
methods:

Weighted Approach

f̂j =


∑|F |

i=1 Zi,j ·X′
i,j∑|F |

i=1 Zi,j

if isNumerical(Fj)

X ′
m,j , m = argmax1≤i≤|F |Zi,j otherwise

(12.3)

Choose Best Approach

f̂j = X ′
m,j , m = argmax1≤i≤|F |Zi,j (12.4)

In this chapter, the focus is on the choose best approach, where missing values are
imputed using the model with the lowest error.

12.2.2. Feature Pair Imputer Threshold Skip (FPITS)
The FPI framework quickly calculates a confidence value for imputing the missing
features of an instance based on the known features. Before performing any calcu-
lations, the system distinguishes between three cases depending on the number of
known features for an instance x:

FPIconf (x) =


0 if known(x) = 0
1 if known(x) = |F |
1−max(Missmin(x)) otherwise

(12.5)

For instances with at least one missing feature and one known feature, the FPI
confidence FPIconf is calculated using the highest reconstruction error among the
missing features, representing the potential error in imputation. Given the set
of known features Kx for an instance x and the current error matrix E, the FPI
computes the ease of imputing x’s missing values.

For each missing feature j in x, the corresponding error vector Vj is extracted
from E, which contains all the errors Ei,j , where i ∈ {Kx ∪ j}. These represent the
errors of models that could be used for imputation. According to the "choose best
approach" described in equation 12.4, the smallest error for each missing feature is
selected. These minimum errors are stored in a set Missmin(x):

Missmin(x) =
F⋃

j /∈Kx

min(Vj)

The maximum of these errors reflects the worst-case error for imputing x. Therefore,
the FPI confidence is calculated as:

FPIconf (x) = 1−max(Missmin(x))

98

12.3. Experiments

A value closer to 1 indicates a high confidence in the FPI’s ability to accurately
impute the missing features for x.

This confidence value is integrated into the decision-making process alongside the
framework’s budget manager. A new decision-making method, named Feature Pair
Imputer Threshold Skip (FPITS), further refines the acquisition process. FPITS
imposes an additional constraint: it allows the acquisition of a feature set A for
instance x only if both the budget manager’s IPF decides to acquire A and the FPI
confidence threshold deems x difficult to impute (line 12).

FPITS is designed to reduce budget consumption by avoiding unnecessary acqui-
sitions in cases where a feature set is considered highly informative but the FPI
is confident that the missing features can be imputed accurately. This additional
constraint ensures more efficient budget usage in scenarios where imputation is highly
reliable, for instance, in the case of highly correlated features.

12.3. Experiments
To evaluate the effectiveness of the proposed method, multiple experimental runs
were conducted using the proposed framework1. The following sections provide an
overview of the datasets used, outline the framework’s hyperparameters, and present
the experimental results and discussion.

12.3.1. Datasets

Dataset Instances Labels Cat. features Num. features
electricity 45312 2 1 7

adult 32561 2 4 8
magic 19020 2 0 10
cfpdss 13000 2 5 5
nursery 12960 5 8 0

pendigits 10992 10 0 16

Table 12.2.: Datasets used in our experiments. Table reproduced from [16].

The majority of the datasets are the same as described in section 10.5. They
including four static datasets (adult, magic, nursery, and pendigits) and two
data streams (cfpdss and electricity). Both magic and pendigits consist
solely of numerical features, while nursery contains only categorical features. The
datasets adult, cfpdss, and electricity include a mix of categorical and numerical
features. The method was tested on static datasets to validate the imputation model’s
performance in the absence of concept drift.

The differences between datasets are important to note, as mixed and categor-
ical features tend to have a negative impact on the performance of FPI, which
requires careful evaluation. All datasets except cfpdss are available through the
UCI repository [40].

The cfpdss dataset is a synthetic dataset generated for this work, designed with
various feature-to-feature correlations and shifts in feature and label generation
every thousand instances to simulate concept drift, including incremental, gradual,
and sudden changes. These drifts are synchronized with specific types of feature

1https://github.com/Buettner-Maik/caafa-stream

99

https://github.com/Buettner-Maik/caafa-stream

12. Reducing Costs with Strategic Imputation

correlations, meaning that only features involved in a particular correlation are
affected by concept changes. This setup allows the FPI and its imputation models
to be evaluated effectively.

The correlations in the data include linear relationships between numerical features
with slight noise, numeric-to-bicategorical correlations based on threshold values, and
linear combinations of features influencing another feature’s value, also with added
noise. The label function is determined by three numerical features, each linearly
correlated with another feature, while one categorical feature is also correlated with
other features. This setup allows for accurate imputation using the FPI’s linear
regressions and other models, as missing features that strongly predict the label,
can often be imputed using a known correlated feature. This dataset replaces the
previously used gen and evenoddfxdy datasets from earlier works, and more details
are available in the online repository.

12.3.2. Experiment Parameters
Incomplete data streams were generated according to the type of dataset being
used. For static datasets, the data was shuffled, and an initial batch consisting of
50 instances plus one example for each label was created. For stream datasets, the
order of instances was maintained, with the first 50 instances forming the initial
batch. The remaining data was split into batches of 50 instances each. Based on
the missingness parameter m, features of the instances were randomly infused with
missing values in a completely at random manner. This process was repeated 10
times across 7 levels of missingness, resulting in 70 distinct permutations of data
streams for each dataset.

The classification model used in the experiments was a Support Vector Machine
(SVM) with default parameters from the sklearn library. An initial classifier was
trained on the first batch (line 2), and a new classifier was trained after each
acquisition and imputation step (line 24); see Algorithm 12.1. As in the other
chapters a prequential evaluation method was used [29]. For acquisitions, the single-
window average Euclidean distance function was used to calculate feature merit [85],
and a budget manager in the form of an incremental percentile filter with a window
size of wIP F = 50 was employed, along with a 4-Best feature set selection strategy;
see section 11.2. The cost of each feature was uniformly set to 1.

The FPI used the choose best approach for imputation with a feature pair window
size of wF P I = 25. Thresholds for the FPITS method were selected from the values
0, 0.1, 0.2, . . . , 0.9, and 1.0. A threshold of 0.0 corresponds to a method without
FPITS, so AFA-only, while a threshold of 1.0 means no feature values are acquired,
so every missing value is imputed. The IPF used by the FPI had a window size of
wIP F _F P IT S = 100, meaning the window was fully updated every two batches.

To contextualize the performance results, two reference methods are used: a lower
bound, representing minimal performance when no budget is spent, and an upper
bound, representing maximum performance when all feature values are acquired.

100

12.4. Results

Data set p-value FPI mean rank SI mean rank
adult < 0.001 1.896 1.104
cfpdss < 0.001 1.246 1.754

electricity 0.717 1.529 1.471
magic 0.371 1.504 1.496

nursery < 0.001 1.739 1.261
pendigits < 0.001 1.046 1.954

Table 12.3.: Comparison of Feature Pair Imputer vs. Simple Imputer using Wilcoxon
test results for each dataset, with 280 paired sample points per dataset
(7 missingness levels, 4 budgets, and 10 iterations). Winning strategies
are highlighted in bold. Table reproduced from [16].

12.4. Results
The performance of the FPI was evaluated in comparison to the simple imputers
discussed in chapters 10 and 11. This evaluation was followed by a detailed analysis
of the FPI’s behavior under different conditions. Subsequently, the challenges of
working with tight budget constraints were addressed, and finally, an exploration
of the potential budget savings achievable with the FPI was conducted, while
maintaining similar classification performance.

12.4.1. FPI Performance
To assess the effectiveness of the FPI and its imputation models, comparisons were
made against the Simple Imputer (SI), which relies on mean and mode imputation
methods. These comparisons were carried out across several datasets, incorporating
seven missingness levels (m = {0.125, 0.25, . . . , 0.875}), four budget settings (Bgain =
{0, 0.5, 1, 2}), and 10 iterations per configuration, leading to a total of 280 comparisons
for each dataset. A Wilcoxon test (α = 0.05) was performed to determine whether
there were statistically significant differences between the two methods. Additionally,
method rankings were used to identify which approach performed better on each
dataset. The results, along with the corresponding p-values, are presented in Table
12.3.

The FPI exhibited superior performance over SI on the pendigits and cfpdss
datasets, which is expected for the cfpdss dataset due to its strong linear correlations
between features. The better results on the pendigits dataset suggest a notable
linear dependence between features, and the static nature of the dataset further
contributed to FPI’s advantage. However, when missingness levels increased, the
FPI took more time to adjust to new patterns in the data.

In contrast, SI outperformed FPI on the adult and nursery datasets. The results
from the nursery dataset highlight a limitation of FPI in accurately predicting
categorical features when only one other categorical feature is available. The largest
gap in performance was observed on the adult dataset.

For the electricity and magic datasets, no significant difference was observed,
with both methods showing comparable performance.

101

12. Reducing Costs with Strategic Imputation

12.4.2. FPITS Behavior

0.20 0.15 0.10 0.05 0.00 0.05 0.10 0.15
Quality Gain

0.0

0.2

0.4

0.6

0.8
FP

I C
on

fid
en

ce

III

III IV

0

1

2

3

4

5

6

7

8

9

1 0 1 2 3
Quality Gain

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

FP
I C

on
fid

en
ce

III

III IV

0

1

2

3

4

5

6

7

Figure 12.1.: Scatter plots of the decision variables seen by both decision makers.
The left plot shows data set magic and the right data set nursery each
on a single missingness m = 50% run and the number of known features
of an instance encoded in the color. Figure reproduced with permission
from [16] ©Springer Nature 2023.

To better understand the operation of the FPITS method, consider Figure 12.1,
which shows the quality gain values of the budget manager for the selected acquisition
set A and the FPI’s confidence values FPIconf for its corresponding instance x on
single runs for the magic and nursery datasets. Each point in this figure represents
a single instance, and its position indicates whether the instance’s features should be
acquired or imputed.

The vertical and horizontal lines represent the mean decision thresholds for the
budget manager and FPI, respectively, dividing the graphs into four quadrants.
Instances in quadrants QI and QIV (which meet the threshold on the x-axis) are
candidates for feature acquisition, while instances in quadrants QII and QIII will only
be imputed. Whether an instance in QI will be imputed or selected for acquisition
(QIV) is determined by the FPI based on its threshold.

The ratio of values in QI to the total in QI and QIV indicates how much budget
is conserved.

It is worth noting that during the execution, the thresholds shift according to recent
stream history. In the right-hand plot for nursery, which contains only categorical
features, the nature of the categorical imputation models results in well-defined ratios
when calculating FPIconf . The combined distribution of quality gain and FPIconf

values determines how well the user-defined FPI threshold translates into budget
conservation. As the FPI’s confidence increases with the number of known features
in an instance, FPIconf positively correlates with the number of known features.
Meanwhile, the averaging nature of the quality function causes changes in quality
to become less pronounced as more features are known. As a result, the quality
gain values for the acquisition sets tend to cluster around the mean on the x-axis.
This relationship is visualized through the color bar, which represents the number
of known feature values in an instance. Most instances with many known features
(lighter colors) appear in QII , meaning they are not selected for acquisition and do
not require FPITS intervention.

102

12.4. Results

FPITS in budget-constrained scenarios

In scenarios with increasingly constrained budgets (i.e., high levels of missingness
and low budgets), it is expected that the proposed method will utilize a greater
portion of the available budget. This occurs because the distributions of FPIconf and
quality gain values shift towards quadrant IV (QIV), and as more features become
missing, more instances are mapped to QIV . Since the ratio of skipped acquisitions
is represented by |QI |/(|QI ∪QIV |), this shift towards quadrant IV results in fewer
skipped acquisitions.

This behavior is intentional, as higher levels of missing data typically necessitate
the acquisition of more features to compensate for the lack of information. Figure
12.2 illustrates this effect by showing the relationship between Bspent and the missing
feature probability m for the pendigits and nursery datasets.

However, an adverse effect is observed when missingness levels become extremely
high, and thresholds are set at elevated levels. In such cases, the number of instances
with all features missing increases, leading to a rise in instances where FPIconf = 0.
When the FPITS’ IPF window becomes saturated with these zero values, i.e., when
more than wIP F _F P IT S · thr values in the window are equal to zero, the IPF will
compare the FPIconf of incoming instances to a threshold of 0. As any incoming
value will be greater than or equal to zero, the IPF will skip acquisitions.

In extreme cases, this situation can persist indefinitely, causing the FPITS to
continuously skip acquisitions, which leads to a sharp decline in budget expenditure.
This is evident in Figure 12.2, where the lowest line on the left and the three lowest
lines on the right indicate this behavior at higher thresholds.

The expected minimum critical threshold, at which the IPF will begin evaluating
incoming instances with a comparison value of 0 for a given missingness probability
m ∈ [0, 1], can be computed as follows:

thrcritical ≤ 1−m|F | (12.6)

0.2 0.4 0.6 0.8 1.0
m

0.0

0.2

0.4

0.6

0.8

1.0

b_
us

ed

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

0.2 0.4 0.6 0.8 1.0
m

0.0

0.2

0.4

0.6

0.8

1.0

b_
us

ed

0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Figure 12.2.: Budget spent by various FPITS methods with thr values ranging from
0.0 (top) to 0.9 (bottom) on the pendigits dataset (left) and the
nursery dataset (right) at Bgain = 1. As missingness increases, budget
expenditure rises, except when IPF becomes saturated with zeros,
causing a sharp drop in spending (lowest line on the left and three
lowest lines on the right). Figure reproduced with permission from [16]
©Springer Nature 2023.

103

12. Reducing Costs with Strategic Imputation

12.4.3. Budget Comparison at Similar Performance
To determine whether the proposed method can conserve budget while maintaining
comparable performance, a comparison was conducted using the Friedman test,
followed by post-hoc Nemenyi tests. The prequential classification accuracy was
compared across batches and iterations for 11 FPITS methods, with thresholds
ranging from 0.0 to 1.0 with increments of 0.1, and their performance was ranked
accordingly. An FPITS method with thr = 0 is equivalent to the previous SWAED
method using FPI as the imputation model, as acquisitions are always triggered
and no candidate set is imputed. Conversely, an FPITS method with thr = 1.0
represents the lower bound method, where every acquisition candidate set is imputed.
The comparison was based on ten iterations, and the number of batches (i.e., 10
iterations times (13000− 50)/50 = 259 batches), with the Friedman test applied to
assess significant differences in performance among the methods. When significant
differences were detected, the post-hoc Nemenyi test was used to further analyze
the rankings by calculating the mean ranks of the methods and the critical distance
at a confidence level of α = 0.05. For two methods to exhibit significantly different
performance, their mean ranks must be separated by a distance greater than the
critical distance. Intuitively, it would be expected that methods spending the highest
budget would achieve the best performance, resulting in the lowest ranks. As the
threshold increases, less budget is spent, leading to a deterioration in relative rank
(i.e., higher ranks). If the Nemenyi test shows that methods with higher thresholds
perform similarly to the method with thr = 0, the corresponding budget expenditures
can be compared to identify the method that conserved more budget while still
making effective acquisition decisions. All Friedman tests returned p-values below
2.2·10−16, validating the results of the post-hoc Nemenyi test, as shown in Figure 12.3.
The plots, generated using the autorank package [35], illustrate the critical distance
for the relevant results. A summary of these findings is provided in Table 12.4. In
one scenario, the method with thr = 0.4 achieved comparable performance to an
AFA-only method on the adult dataset, but required only 69% of the original budget
per batch to do so. Across various degrees of missingness (m = {0.25, 0.5, 0.75} and
Bgain = {0.5, 1.0, 1.5, 2.0}), budget savings ranged from 1% on the nursery dataset
to as much as 27% on the adult dataset, all while maintaining similar classification
performance.

adult cfpdss electricity magic nursery pendigits
cd 0.187 0.297 0.159 0.245 0.297 0.323

rank(thr = 0) 5.714 5.408 5.246 5.434 3.305 4.927
thrsim 0.4 0.3 0.1 0.5 0.0 0.3

rank(thrsim) 5.891 5.655 5.322 5.678 3.305 5.175
Bsaved 31% 23% 4% 15% 0% 8%

Table 12.4.: Overview of the relevant information of cd plots in Figure 12.3 with
m = 0.5 and Bgain = 1. The rank of the method without imputation
(rank(thr = 0)) is compared to the method that saves the most budget
while still performing similarly (rank(thrsim)). The amount of budget
saved is depicted in the last row. Table reproduced from [16].

104

12.5. Conclusion

567

(1.0, 0%)
(0.9, 11%)
(0.8, 24%)
(0.6, 51%)
(0.5, 60%)
(0.7, 40%)

(0.4, 69%)
(0.3, 77%)
(0.2, 85%)
(0.1, 92%)
(0.0, 100%)

CD
adult

567

(1.0, 0%)
(0.9, 10%)
(0.8, 21%)
(0.7, 33%)
(0.6, 43%)
(0.5, 54%)

(0.4, 65%)
(0.3, 77%)
(0.2, 87%)
(0.0, 100%)
(0.1, 96%)

CD
cfpdss

567

(1.0, 0%)
(0.9, 12%)
(0.8, 25%)
(0.7, 39%)
(0.6, 51%)
(0.5, 61%)

(0.4, 70%)
(0.3, 80%)
(0.2, 89%)
(0.1, 96%)
(0.0, 100%)

CD
electricity

5678

(1.0, 0%)
(0.9, 23%)
(0.8, 40%)
(0.7, 57%)
(0.6, 72%)
(0.5, 85%)

(0.4, 95%)
(0.3, 98%)
(0.1, 99%)
(0.2, 99%)
(0.0, 100%)

CD
magic

3456789

(1.0, 0%)
(0.9, 14%)
(0.8, 25%)
(0.7, 37%)
(0.6, 46%)
(0.5, 57%)

(0.4, 67%)
(0.3, 75%)
(0.2, 84%)
(0.1, 93%)
(0.0, 100%)

CD
nursery

456789

(1.0, 0%)
(0.9, 22%)
(0.8, 40%)
(0.7, 58%)
(0.6, 69%)
(0.5, 79%)

(0.4, 86%)
(0.3, 92%)
(0.2, 96%)
(0.1, 99%)
(0.0, 100%)

CD
pendigits

Figure 12.3.: CD-plots for six datasets with m = 0.5 and Bgain = 1. Tuples indicate
the threshold and percentage of budget spent relative to the method
without FPITS. The original method without imputation (threshold
= 0.0, budget = 100%) appears on the right with the lowest rank
(except for cfpdss), while the imputation-only method (threshold =
1.0, budget = 0%) is on the left with the highest rank, indicating worse
performance. Models with similar performance are linked by vertical
bars. For example, on electricity, the model at threshold = 0.1 performs
comparably to the original method, spending 96% of the budget and
saving 4%; see Table 12.4. Figure reproduced with permission from
[16] ©Springer Nature 2023.

12.5. Conclusion

The previous chapters highlighted the issue of budget wastage in datasets with
highly correlated features. In this chapter, a hybrid approach was introduced,
combining AFA for data streams with an intelligent imputation mechanism designed
to handle feature-incomplete instances. This mechanism helps avoid expensive
feature acquisitions when there is a strong likelihood that the missing features can
be accurately imputed using the available data.

Additionally, a novel, lightweight imputation model was proposed, capable of
self-evaluation even in very fast streams. Its plug-and-play nature allows it to flexibly
adapt to various simple feature-to-feature correlations.

Experiments were conducted across six different datasets, each with varying
budget constraints, levels of missingness, and targeted budget savings. The results
demonstrated that in terms of performance, the approach was comparable to methods
relying exclusively on AFA, while saving on average between 1% and 27% of the
budget, depending on the dataset.

Several limitations of the feature pair imputer were identified during the experi-
ments, which are intended to be addressed in future work. This includes incorporating

105

12. Reducing Costs with Strategic Imputation

more advanced pairwise models, such as stream-applicable Gaussian and deep re-
gression models, that are not limited to linear correlations. Additionally, improved
models are needed for handling categorical features, as the current methods were
often surpassed by simple mode imputation.

A significant challenge remains in identifying a unified error metric capable of
evaluating imputation losses for both numeric and categorical features or in mapping
these errors into a common space. One possible approach involves discretizing
numerical features into buckets, so that the categorical error metric can universally
applied or rescaling numeric and categorical errors to make them more comparable.

The next chapter will present additional reflections on AFA on data streams before
moving to the conclusion of part II.

106

13. Additional Reflections on Active
Feature Acquisition

This chapter contains additional reflections with regards to handling feature correla-
tions and providing cost-sensitive performance bounds.

13.1. Generation of Tree-Based Acquisition Sets
One of the discussed shortcomings of using independent feature importance metrics
like Average Euclidean Distance (AED) is that it can lead to the acquisition of
superfluous features in case they are correlated. As the total number of possible
feature combinations is 2n, it becomes obvious that it is infeasible to calculate all
feature set importance scores, especially in high dimensional settings.

It would, however, be feasible to co-train multiple stream-based decision trees [32]
or streaming forests [31]. The branches of a decision tree inherently avoid feature
correlations and give concrete feature expressions, making them ideal candidates for
generating potential acquisition sets.

The solutions that are currently being investigated and prepared for publication
use the branches of the decision trees to generate acquisition set candidates. For each
branch, it extracts which features were used on the path from the root to the leaf
node while making sure that the feature conditions on the branch match the known
features of an instance with missing features. If a branch is eligible according to the
feature expressions of our instance, then score the branch candidate Cb according to
some metric, e.g.

Score(Cb) = Leaf Purity(Cb)
TotalAcquisitionCost(Cb)

The score of the best candidate branch can then be presented to the IPF to decide
for or against acquisition; see Algorithm 13.1.

Such an approach will focus on the most important features according to the
decision tree, avoid acquiring correlated features and gives control over the maximum
acquisition set size as the allowed depth of a decision tree can be specified by the
users. Early results from ongoing work where the feature with the highest score
(according to AED) was duplicated indicate that it successfully avoids acquiring
correlated features, but that the scoring of the branches requires further refinement.

107

13. Additional Reflections on Active Feature Acquisition

Algorithm 13.1 Tree-Based Feature Acquisition
Require: Data stream S with instances x, features F , missing features M , known

features K, branches B of the streaming trees
Ensure: Candidate acquisition set with maximum score for each instance

1: for each instance x in data stream S do
2: for each branch b in B do
3: Generate candidate acquisition set Cb from branch b, consisting of features

fb ∈ b
4: if any feature values in K contradict feature values in Cb then
5: Remove candidate Cb

6: end if
7: end for
8: for each retained candidate Cb do
9: Calculate the total cost of missing features:

TotalCost(Cb) =
∑

m∈M

Cost(m)

10: Score each retained candidate Cb, using:

Score(Cb) = Leaf Purity(Cb)
TotalCost(Cb)

11: end for
12: Select the candidate acquisition set Cmax with the maximum score
13: Pass the score of Cmax to the Incremental Partial Forest (IPF) to decide

whether to acquire the features in Cmax
14: Process next instance in data stream S
15: end for

108

13.2. Realizing a Cost-Sensitive Performance Bound using Genetic Programming

13.2. Realizing a Cost-Sensitive Performance Bound using
Genetic Programming

The proposed frameworks show an upper and lower performance bound where either
all missing features are acquired, or all missing features are imputed. While it gives
an effect range for possible AFA improvements, it is not satisfactory in assessing how
effective an AFA strategy was given the budget it spent on acquisitions. Calculating
the globally optimal acquisition at a given budget is too computationally expensive,
so a locally optimal solution is being proposed.

This solution treats the stream as one static object and relies on a genetic algorithm
that creates random acquisition candidates under budget constraints and then refines
them iteratively using mutation and crossovers. To imagine the stream as a static
object, consider Figure 13.1, which shows the whole stream with missing features at
the top and two acquisition candidates that each acquire 3 features below.

Figure 13.1.: Top: Whole stream with 9 timepoints and missing features colored in
black. Middle and Bottom: two acquisition candidates which each
acquire 3 features.

Here is a brief description of each component of the algorithm.

Fitness Function: The fitness function in this case is the cumulative prequential
classification performance across the stream given a prediction Model M , which was
employed on a solution candidate Ci.

Budget Balancer BB: As mutation and crossover lead to new acquisition candidates,
it has to be made sure that each resulting candidate still respects the budget
constraints as much as possible. This is achieved by iteratively removing features
flagged for acquisition until the acquisition costs do not exceed the given budget
constraint. In case of unspent budget, it iteratively picks features randomly for
acquisition, as long as adding their feature costs will not exceed the given constraint.
This guarantees that a candidate stays equal or slightly below the given budget
constraint.

109

13. Additional Reflections on Active Feature Acquisition

Mutation: This Is realized by randomly selecting a percentage feature flagged for
acquisition (green) and features flagged for imputation (black) and swapping their
flags. Afterward, the BB is applied to the resulting candidates to ensure budget
conformity.

Crossover: Is realized by picking two candidates and cutting them vertically at
randomly chosen timepoint and then swapping their end parts. This will almost
always require the BB to ensure budget constraints are respected.

Initial results show that this approach does increase the classification performance
(fitness) and delivers locally optimal solutions; see Figure 13.2.

Figure 13.2.: Example of GA on the cfpdss with 50% of the features missing, showing
how the classification performance (fitness) of a Hoeffding-Tree increases
as the acquisition candidates evolve over time.

110

14. Active Feature Acquisition on Data
Streams: Discussion and Conclusion

Part II of this thesis explores strategies to address missing data in the feature space
of data streams, focusing on Active Feature Acquisition (AFA) and imputation
techniques. The contributions to each research question in this part are detailed
below, followed by a discussion on open challenges and future directions.

RQ3: How can Active Feature Acquisition be realized in a data stream setting?
One of the first methods to implement AFA in data streams is presented in chapter
10, where a feature importance metric is combined with a budgeting mechanism to
enable stream-based AFA. In that chapter, the assumption is that feature costs are
equal, and the acquisition of missing features is limited to one per instance. These
constraints are relaxed in chapter 11, where multiple acquisition strategies capable
of acquiring up to k features are introduced. Experimental results demonstrate that
these methods outperform a random acquisition baseline across most datasets.

RQ4: How can varying feature costs be considered during AFA on streams?
To incorporate varying feature costs, the budgeting mechanism from chapter 10 is
adapted by making the internal decision threshold dynamic. Chapter 11 presents two
ways to set the initial threshold, one based on the average cost and another on the
maximum cost, which assumes all features of an instance are missing. The threshold
is then adjusted dynamically to account for budget overspending or underspending.
Experiments with different feature costs confirm that the proposed methods outper-
form random baselines in all cases, except for datasets with interdependent features,
where performance was expected to decline due to the feature importance scoring,
which considers each feature independently. The work is extended in chapter 12 by
combining AFA with strategic imputation through the feature-pair-imputer (FPI),
which uses pairwise imputation models to predict missing features, saving acquisition
costs when appropriate. Results indicate that this hybrid approach can reduce budget
consumption while maintaining comparable performance to an AFA-only approach.

Furthermore, frameworks for conducting AFA experiments and generating datasets
are provided to facilitate the testing of AFA strategies under specific conditions.
These frameworks allow for:

• Developing and testing new stream-based AFA and imputation methods under
varying budgets and degrees of missing data.

• Comparing AFA strategies against random baselines, lower bounds where all
missing values are imputed, upper bounds with no missing features, and against
each other, including statistical significance tests.

• Generating datasets to assess performance on concept drift, data with interde-
pendent features and data with highly correlated features.

111

14. Active Feature Acquisition on Data Streams: Discussion and Conclusion

14.1. Limitations
The presented work has limitations, which we will briefly list here for clarity and
revisit in the following section on open questions and future directions.

• The proposed feature importance metrics consider each feature independently,
which can lead to problems when certain sets of features are needed to predict
a label or when features are highly correlated so that acquiring one of them
would be sufficient.

• Using the IPF as a budget manager can lead to under and overspending in
certain extreme situations, which should be addressed in the future.

• The FPI showed a subpar performance when applied on categorical features,
emphasizing the need for different pair-wise imputers when categorical features
are involved.

• While most experiments are conducted on static datasets and synthetic data
streams, these provide a strong foundation for testing. Expanding to more
diverse, real-world streaming datasets offers potential for further validation.

14.2. Open Questions and Future Work
Challenges in this section are not separated by chapter, as they mostly apply across
all three chapters: 10, 11, and 12.

All three AFA chapters rely on merit functions that do not account for inter-feature
dependencies, leading to suboptimal performance when interdependent features
influence the label of an instance (see Section 11.5.2). An ongoing effort is the
development of an AFA method that generates acquisition set candidates using
decision trees, ensuring that highly predictive features are not acquired if a correlated
feature has already been selected, see section 13.1.

Another challenge is the absence of a performance bound that represents the
optimal acquisition strategy given a specific budget. Current work addresses this
by applying genetic programming to generate a locally optimal acquisition baseline
based on the available budget, see section 13.2. Both of these extensions are being
prepared for publication.

Further research will evaluate the performance of the proposed methods on diverse
datasets, using different classifiers and feature importance functions beyond AED.
Additionally, efforts will be made to improve the comparability of imputation loss
across categorical and numerical features by developing error functions with similar
value ranges and scales. Another aspect concerning imputation is the improvement
of the FPI concerning the imputation quality of categorical attributes.

112

15. Overall Conclusion

This thesis approaches the study of data streams from two distinct perspectives. The
first, termed the horizontal view, focuses on the data space and examines how the
entity-instance relationship within a dataset can be utilized to assign data to entity-
centric models. The goal of this approach is to capture entity-specific characteristics
that might be overlooked by an entity-ignorant model, thereby enhancing the quality
of predictions.

The second perspective, referred to as the vertical view, concerns the feature space
of the data stream. It specifically investigates how missing features can be acquired
under budget constraints, with the objective of improving the performance of a
prediction model.

Both parts of the thesis share a common aim: to enhance prediction performance
while maintaining efficiency. For entity-centric learning, this involves managing
memory usage, and for active feature acquisition, it relates to optimizing budget
expenditure. Each part addresses two research questions, with one question evaluating
the effectiveness of the proposed approach and the other assessing its efficiency.

There is an inevitable overlap with the concluding chapters of each individual part
(8, 14), although those chapters provide a more detailed discussion of limitations and
future directions. In contrast, this chapter focuses on offering a brief summary and a
high-level perspective.

The findings of each part are now summarized and connected to the research
questions outlined at the beginning of the thesis. Following this, more ambitious
directions for future work are proposed, extending beyond what has been outlined in
chapters 8 and 14.

Entity-Centric Learning on Data Streams:

RQ1: To what extent can entity-centric models improve performance
compared to an entity-ignorant model?
RQ2: How can the memory footprint of entity-centric models be
reduced?

RQ1 has been addressed in chapters 4, 5, and 6, where it has been demonstrated how
simple entity-centric models, such as a majority classifier, can enhance predictions
for specific entities. Additionally, it was shown that combining entity-centric models
with an entity-ignorant model in an ensemble improves performance across the entire
data stream.

Chapter 5 emphasizes the growing memory demands of entity-centric models, as
each encountered entity necessitates the creation of a new model, potentially leading
to system crashes.

This challenge is tackled in chapter 6, which addresses RQ2 and introduces
two approaches to managing these memory demands effectively. The first method
reallocates models of inactive entities to secondary memory, thus freeing up primary
memory. The second approach reduces memory usage by creating lightweight, label-
only models for each entity, minimizing the burden on primary memory.

113

15. Overall Conclusion

Active Feature Acquisition on Data Streams:

RQ3: How can Active Feature Acquisition be realized in a data stream
setting?
RQ4: How can varying feature costs be considered during AFA on
streams?

RQ3 is addressed in chapters 10, 11, and 12, where the merit of a feature is defined
by its ability to separate classes and its associated cost. It is demonstrated that an
acquisition process based on feature merits often outperforms or delivers comparable
performance to a random acquisition baseline. Chapter 12 further addresses the
limitation of using a feature importance metric that evaluates features independently,
by introducing a feature-pair imputer (FPI) that considers feature correlations when
a selected feature can be imputed effectively from available features.

RQ4 is discussed in chapters 11 and 12. Chapter 11 introduces AFA methods
capable of handling varying feature costs, while chapter 12 presents a budget-saving
mechanism while maintaining a certain level of prediction performance.

15.1. Future Work

Chapters 8 and 14 outline open challenges as well as future work for each part of the
thesis, including the use of more datasets, metrics, and new classifiers. The most
straightforward extensions of the presented work are discussed in the chapters 7 and
13 containing additional reflections.

This section provides more ambitious future research directions.

Entity-Centric Learning Deep learning methods, especially Large Language Models
(LLMs), have gained widespread popularity due to their superior performance across
many domains. However, they are still not fully optimized for use in data streams.
Current concept drift adaptation techniques are often costly and batch-based [83],
presenting opportunities for improvement. Given their success in opinion mining,
it would be particularly interesting to explore the use of LLMs as base models for
both the entity-ignorant and entity-centric components. Although LLMs typically
require vast amounts of training data, once initialized, they can be applied to various
tasks [17], potentially reducing the impact of concept drift on textual data. For
instance, while opinions on a product may shift over time—leading to changes in the
vocabulary encountered in reviews — the underlying meaning of words is unlikely to
change in the short term. This suggests that an LLM scoring reviews based on text
could maintain robust performance over time.

To initialize an LLM for entity-specific tasks, few-shot learning could be employed,
using the short substreams of training instances for each entity as examples. This
approach would allow the use of a single model for the entire stream, rather than
one model per entity, with entity-specific adjustments made via prompts.

Another area of interest is clustering entities and building dedicated models for
each cluster. Cluster-based models could either serve as a third component in
the ensemble alongside entity-ignorant and entity-centric models or replace them,
depending on their performance. This would require the adaptation of substream
clustering techniques [68] to suit the specific requirements of this approach.

114

15.1. Future Work

Active Feature Acquisition The most pressing future work involves completing
the tree-based acquisition set approach, which aims to reduce the acquisition of
superfluous features and better handle scenarios where a combination of multiple
features determines the label of an instance. This approach will be compared against
existing methods, as well as a new performance bound that provides a locally optimal
acquisition strategy given the same budget. This performance bound, realized through
genetic programming, will be submitted for publication along with the tree-based
approach in the near future, see chapter 13.

More ambitious plans include scenarios where feature costs fluctuate over time.
For instance, laboratory costs for feature acquisition may vary depending on the
availability of certain services, necessitating strategic selection based on real-time
cost. This closely relates to improvements in the budget manager, which can still
under- or overspend in extreme cases depending on the chosen AFA strategy, see
section 12.4.2. One potential improvement could involve a hybrid approach using
both the IPF and the Simple Budget Manager (SBM), where the IPF is applied in
most situations, but switches to the SBM when an over- or underspending threshold
is reached. Another avenue for future work is combining the merit and imputation
error of a missing feature into a single score presented to the budget manager, instead
of the current two-stage approach (chapter 12) where merit and imputation error are
considered separately. Additionally, the interaction between entity-centric learning
and AFA can be investigated, particularly in scenarios where specific features are
highly predictive for certain entities.

This thesis demonstrates how entity-centric learning and AFA can be effectively
implemented on data streams, often leading to performance gains. As highlighted
here and in chapters 8 and 14, there is still a wealth of exciting future work to be
explored in both areas.

115

Part III.

Appendix

117

A. Appendix

119

A.1. Appendix: Entity-Centric Learning

A.1. Appendix: Entity-Centric Learning
This part of the Appendix covers additional material concerning Part I of the thesis.

A.1.1. Error Analysis of Simple Entity-Centric Models in Chapter 4
Figure A.1 shows the distribution of errors for all predictors on both datasets for
entities that have different numbers of reviews. The large skew in the dataset towards
5-star ratings is particularly apparent on inspection of GlobalPrior. Even though
the algorithm always predicts 5 stars, most ratings are correct. It can also be seen
that only MNB classifiers predict the exact label more often than GlobalPrior. In
addition, SMA also makes the least number of large prediction errors (four-off). The
high percentage of one-off errors is caused by the sensitivity towards outliers which
is shared by the regression predictor. The sensitivity of regression methods to outlier
ratings is further stressed by the fact that it yields the least number of exact label
predictions over all algorithms.

WindowedPrior SMA Prior Regression MNB MNBFading GlobalPrior

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

n ≤ 12

12 < n ≤ 17

17 < n ≤ 25

25 < n ≤ 47
n > 47

0%

25%

50%

75%

100%

Opinions Count Interval

Absolute error
4
3
2
1
0 (correct)

WindowedPrior SMA Prior Regression MNB MNBFading GlobalPrior

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

n ≤ 11

11 < n ≤ 13

13 < n ≤ 16

16 < n ≤ 22
n > 22

0%

25%

50%

75%

100%

Opinions Count Interval

Absolute error
4
3
2
1
0 (correct)

Figure A.1.: Distribution of absolute errors for selected predictors with w = 5 for
Tools (top) and Watches (bottom). Predictions are stratified by a
product’s review count into (nearly) equally sized groups.

121

A. Appendix

A.1.2. Additional Results for Entity-Centric Ensembles on Watches
Dataset Chapter 5

Figure A.2.: Dataset watches: Entity-centric RMSE; lower values indicate better
performance. ECCE starts to show better performance than EIGC
when around x = 400 instances are available for training per entity.
Figure reproduced with permission from [8] ©2019 ACM.

122

A.1. Appendix: Entity-Centric Learning

Figure A.3.: Dataset watches - Top: Proportion of entities at threshold x where the
RMSE of entity-centric models outperforms that of EIGC: ECCE
(red), ECWE (orange), and ERWE (blue). Higher values correspond
to better results.
Bottom: The count of entities remaining at threshold x. Figure
reproduced with permission from [8] ©2019 ACM.

123

A. Appendix

Figure A.4.: Significance testing using the Wilcoxon signed-rank test (p = 0.025)
comparing the RMSE of EIGC with ECCE and ERWE. A value
of 1 means the entity-centric ensemble outperforms EIGC, while -1
means EIGC performs better. ERWE demonstrates superior results
for most x values and is never significantly worse. Figure reproduced
with permission from [8] ©2019 ACM.

124

A.2. Appendix: Active Feature Acquisition

A.2. Appendix: Active Feature Acquisition
This part of the Appendix covers additional material concerning Part II of the thesis.

A.2.1. Additional Feature Importance Metrics of Chapter 10
Yuan et al. define Information Gain and Symmetric Uncertainty as follows:

“The formula used to calculate Information Gain (IG) for an attribute Xi and a
class attribute Y is defined as follows:

IG(Y |Xi) = H(Y)−H(Y |Xi) (4)

where H(Xi) is the entropy for an attribute Xi with N distinct values, given by
the following formula:

H(Xi) =
N∑

j=0
−P (Xi = xj) log P (Xi = xj) (5)

and H(Y |Xi) is the conditional entropy, given by:

H(Y |Xi) =
N∑

j=0
p(xj)H(Y |Xi = xj) (6)

Symmetric Uncertainty (SU) can be seen as a normalized version of Information
Gain and . . . the formula for Symmetric Uncertainty for an attribute X with the
class attribute Y is defined as follows:

SU(X, Y) = IG(X|Y)
H(X) + H(Y) (7)

” [85]

A.2.2. Extensive Result Tables from Chapter 10

Table A.1.: Mean kappa values over 1 run on the electricity dataset using an SGD
classifier. Table reproduced from [9].

mean kappa over 1 run on data set electricity
missingness 0.25(kappa ∈ [0.395, 0.477]) 0.5(kappa ∈ [0.308, 0.478]) 0.75(kappa ∈ [0.181, 0.486])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.404 0.418 0.431 0.437 0.325 0.335 0.347 0.37 0.212 0.23 0.253 0.263
MWAED+SBM 0.406 0.415 0.416 0.432 0.331 0.336 0.355 0.361 0.204 0.22 0.249 0.265
SWAED+IPF 0.41 0.422 0.435 0.459 0.33 0.362 0.375 0.424 0.248 0.281 0.331 0.386
SWAED+SBM 0.414 0.424 0.441 0.456 0.331 0.359 0.379 0.427 0.231 0.281 0.327 0.388

SWIG+IPF 0.419 0.431 0.452 0.463 0.34 0.351 0.385 0.445 0.244 0.272 0.334 0.403
SWIG+SBM 0.414 0.426 0.448 0.472 0.331 0.352 0.391 0.438 0.233 0.265 0.33 0.394
SWSU+IPF 0.427 0.436 0.439 0.471 0.336 0.361 0.398 0.44 0.249 0.3 0.349 0.417
SWSU+SBM 0.41 0.424 0.454 0.467 0.332 0.366 0.405 0.442 0.237 0.29 0.347 0.425

RA+SBM 0.404 0.416 0.43 0.443 0.317 0.322 0.333 0.352 0.205 0.22 0.231 0.255

125

A. Appendix

Table A.2.: Mean kappa values over 10 runs on the nursery data set using an SGD
classifier. Table reproduced from [9].

mean kappa over 10 runs on data set nursery
missingness 0.25(kappa ∈ [0.516, 0.84]) 0.5(kappa ∈ [0.3, 0.843]) 0.75(kappa ∈ [0.129, 0.842])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.577 0.632 0.69 0.75 0.385 0.458 0.549 0.65 0.225 0.317 0.43 0.566
MWAED+SBM 0.572 0.634 0.691 0.751 0.377 0.462 0.557 0.649 0.219 0.324 0.437 0.567
SWAED+IPF 0.586 0.645 0.704 0.761 0.385 0.467 0.558 0.654 0.222 0.313 0.424 0.568
SWAED+SBM 0.577 0.638 0.697 0.762 0.378 0.465 0.561 0.653 0.215 0.32 0.441 0.568

SWIG+IPF 0.599 0.661 0.735 0.779 0.401 0.494 0.594 0.683 0.232 0.335 0.458 0.591
SWIG+SBM 0.583 0.646 0.71 0.778 0.381 0.477 0.58 0.68 0.225 0.333 0.454 0.592
SWSU+IPF 0.598 0.666 0.734 0.777 0.401 0.494 0.598 0.684 0.233 0.336 0.46 0.589
SWSU+SBM 0.578 0.646 0.711 0.779 0.386 0.475 0.58 0.682 0.222 0.331 0.454 0.589

RA+SBM 0.549 0.584 0.614 0.646 0.321 0.346 0.371 0.398 0.147 0.169 0.189 0.209

Table A.3.: Mean kappa values over 1 run on the sea dataset using an SGD classifier.
Table reproduced from [9].

mean kappa over 1 run on data set sea
missingness 0.25(kappa ∈ [0.428, 0.593]) 0.5(kappa ∈ [0.275, 0.588]) 0.75(kappa ∈ [0.127, 0.583])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.469 0.493 0.529 0.562 0.339 0.402 0.442 0.49 0.189 0.254 0.34 0.389
MWAED+SBM 0.458 0.49 0.528 0.565 0.331 0.384 0.434 0.495 0.193 0.261 0.327 0.394
SWAED+IPF 0.468 0.5 0.526 0.564 0.343 0.399 0.447 0.497 0.199 0.255 0.345 0.397
SWAED+SBM 0.456 0.494 0.526 0.561 0.327 0.387 0.444 0.499 0.199 0.27 0.319 0.39

SWIG+IPF 0.467 0.496 0.523 0.561 0.336 0.412 0.441 0.499 0.19 0.263 0.34 0.393
SWIG+SBM 0.448 0.493 0.528 0.565 0.33 0.385 0.446 0.502 0.197 0.264 0.33 0.395
SWSU+IPF 0.476 0.499 0.518 0.567 0.341 0.408 0.444 0.496 0.195 0.255 0.335 0.394
SWSU+SBM 0.46 0.493 0.527 0.559 0.334 0.384 0.446 0.502 0.197 0.264 0.332 0.396

RA+SBM 0.453 0.483 0.518 0.544 0.314 0.359 0.399 0.442 0.174 0.229 0.264 0.319

Table A.4.: Mean kappa values over 1 run on the gen dataset using an SGD classifier.
Table reproduced from [9].

mean kappa over 1 run on data set gen
missingness 0.25(kappa ∈ [0.376, 0.503]) 0.5(kappa ∈ [0.225, 0.508]) 0.75(kappa ∈ [0.105, 0.463])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.403 0.415 0.438 0.471 0.27 0.339 0.379 0.437 0.169 0.223 0.303 0.355
MWAED+SBM 0.391 0.418 0.449 0.482 0.248 0.29 0.352 0.442 0.12 0.197 0.288 0.37
SWAED+IPF 0.406 0.424 0.459 0.436 0.289 0.35 0.395 0.465 0.179 0.237 0.364 0.37
SWAED+SBM 0.41 0.405 0.434 0.444 0.266 0.32 0.404 0.431 0.152 0.217 0.32 0.39

SWIG+IPF 0.404 0.437 0.437 0.459 0.312 0.353 0.415 0.438 0.226 0.275 0.319 0.415
SWIG+SBM 0.41 0.421 0.442 0.478 0.259 0.298 0.415 0.45 0.156 0.209 0.32 0.401
SWSU+IPF 0.437 0.445 0.433 0.509 0.321 0.354 0.413 0.478 0.185 0.291 0.305 0.392
SWSU+SBM 0.395 0.4 0.452 0.467 0.307 0.324 0.39 0.43 0.174 0.23 0.296 0.414

RA+SBM 0.365 0.436 0.444 0.476 0.265 0.3 0.298 0.371 0.129 0.204 0.19 0.253

Table A.5.: Mean kappa values over 10 runs on the adult dataset using an SGD
classifier. Table reproduced from [9].

mean kappa over 10 runs on data set adult
missingness 0.25(kappa ∈ [0.371, 0.445]) 0.5(kappa ∈ [0.283, 0.443]) 0.75(kappa ∈ [0.156, 0.445])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.379 0.38 0.385 0.401 0.285 0.294 0.304 0.32 0.16 0.172 0.186 0.204
MWAED+SBM 0.378 0.382 0.389 0.397 0.289 0.299 0.307 0.319 0.163 0.173 0.185 0.202
SWAED+IPF 0.376 0.381 0.388 0.399 0.286 0.288 0.299 0.312 0.164 0.172 0.185 0.199
SWAED+SBM 0.376 0.384 0.39 0.398 0.289 0.296 0.302 0.312 0.163 0.174 0.183 0.198

SWIG+IPF 0.385 0.388 0.396 0.407 0.29 0.302 0.318 0.337 0.175 0.193 0.216 0.242
SWIG+SBM 0.38 0.389 0.397 0.408 0.293 0.307 0.321 0.339 0.17 0.194 0.213 0.242
SWSU+IPF 0.379 0.385 0.392 0.407 0.29 0.299 0.309 0.335 0.171 0.188 0.208 0.232
SWSU+SBM 0.379 0.387 0.395 0.403 0.29 0.304 0.316 0.334 0.17 0.187 0.207 0.234

RA+SBM 0.375 0.386 0.392 0.396 0.291 0.295 0.304 0.314 0.165 0.177 0.187 0.204

126

A.2. Appendix: Active Feature Acquisition

Table A.6.: Mean kappa values over 10 runs on the occupancy dataset using an SGD
classifier. Table reproduced from [9].

mean kappa over 10 runs on data set occupancy
missingness 0.25(kappa ∈ [0.771, 0.949]) 0.5(kappa ∈ [0.595, 0.95]) 0.75(kappa ∈ [0.364, 0.948])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.803 0.837 0.874 0.93 0.645 0.701 0.781 0.887 0.484 0.58 0.695 0.849
MWAED+SBM 0.802 0.842 0.882 0.932 0.656 0.728 0.801 0.888 0.481 0.593 0.711 0.848
SWAED+IPF 0.809 0.848 0.894 0.945 0.666 0.733 0.822 0.934 0.504 0.624 0.75 0.918
SWAED+SBM 0.804 0.846 0.896 0.944 0.666 0.738 0.827 0.933 0.486 0.613 0.751 0.916

SWIG+IPF 0.806 0.846 0.883 0.946 0.667 0.735 0.814 0.937 0.51 0.613 0.752 0.931
SWIG+SBM 0.805 0.846 0.893 0.944 0.666 0.74 0.827 0.936 0.492 0.623 0.757 0.932
SWSU+IPF 0.818 0.854 0.898 0.945 0.685 0.759 0.841 0.94 0.525 0.651 0.777 0.93
SWSU+SBM 0.804 0.846 0.895 0.945 0.669 0.743 0.831 0.94 0.49 0.621 0.756 0.933

RA+SBM 0.787 0.805 0.821 0.843 0.62 0.642 0.662 0.685 0.397 0.432 0.458 0.497

Table A.7.: Mean kappa values over 10 runs on pendigits dataset using an SGD
classifier. Table reproduced from [9].

mean kappa over 10 runs on data set pendigits
missingness 0.25(kappa ∈ [0.654, 0.881]) 0.5(kappa ∈ [0.46, 0.879]) 0.75(kappa ∈ [0.22, 0.879])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.664 0.677 0.693 0.727 0.481 0.498 0.522 0.566 0.247 0.273 0.306 0.354
MWAED+SBM 0.666 0.683 0.698 0.725 0.481 0.503 0.53 0.564 0.241 0.271 0.307 0.355
SWAED+IPF 0.664 0.676 0.692 0.727 0.48 0.497 0.522 0.563 0.246 0.267 0.3 0.345
SWAED+SBM 0.666 0.68 0.698 0.727 0.478 0.502 0.528 0.565 0.24 0.267 0.298 0.345

SWIG+IPF 0.665 0.675 0.688 0.713 0.474 0.484 0.508 0.546 0.238 0.253 0.275 0.309
SWIG+SBM 0.663 0.674 0.692 0.715 0.472 0.49 0.514 0.546 0.234 0.251 0.278 0.305
SWSU+IPF 0.664 0.674 0.692 0.723 0.474 0.49 0.511 0.559 0.237 0.259 0.285 0.328
SWSU+SBM 0.665 0.679 0.695 0.721 0.476 0.495 0.521 0.561 0.235 0.257 0.288 0.328

RA+SBM 0.663 0.672 0.683 0.694 0.471 0.488 0.499 0.515 0.231 0.247 0.264 0.284

Table A.8.: Mean kappa values over 10 runs on the abalone dataset using an SGD
classifier. Table reproduced from [9].

mean kappa over 10 runs on data set abalone
missingness 0.25(kappa ∈ [0.226, 0.238]) 0.5(kappa ∈ [0.206, 0.249]) 0.75(kappa ∈ [0.163, 0.252])

budget 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0 0.25 0.5 0.75 1.0
MWAED+IPF 0.226 0.22 0.221 0.233 0.211 0.216 0.211 0.218 0.186 0.19 0.193 0.193
MWAED+SBM 0.224 0.232 0.229 0.223 0.204 0.208 0.215 0.22 0.166 0.179 0.186 0.198
SWAED+IPF 0.23 0.229 0.225 0.234 0.21 0.211 0.213 0.214 0.185 0.188 0.193 0.197
SWAED+SBM 0.223 0.229 0.227 0.229 0.205 0.207 0.215 0.214 0.166 0.181 0.191 0.197

SWIG+IPF 0.233 0.231 0.229 0.241 0.211 0.212 0.211 0.217 0.186 0.186 0.189 0.2
SWIG+SBM 0.222 0.228 0.232 0.234 0.212 0.211 0.215 0.222 0.178 0.179 0.199 0.202
SWSU+IPF 0.228 0.219 0.236 0.237 0.21 0.212 0.217 0.219 0.176 0.194 0.192 0.21
SWSU+SBM 0.229 0.222 0.233 0.236 0.206 0.21 0.211 0.214 0.165 0.184 0.201 0.205

RA+SBM 0.227 0.228 0.232 0.222 0.213 0.208 0.216 0.211 0.17 0.169 0.185 0.2

127

A. Appendix

A.2.3. New Experiment on Adult Dataset Chapter 10
The low performance on the adult dataset was thought to be a result of the restriction
of just being able to buy one single feature per entity and the restricted available
budget. While the experiments presented in Table A.9 were conducted with a different
version of the code and are not directly comparable, it shows that for equal feature
costs the 2-Best strategy with a budget of 2 achieves a higher Kappa value of 0.26
compared to the 1-Best method with budget 1 which only achieves a Kappa of 0.18
while being the closest to the original method presented in chapter 10. This supports
our assessment that allowing for more features to be bought and a higher budget
would improve the performance.

missingness 75% (kappa ∈ [0.15, 0.45])
distribution equal increasing decreasing

budget 0.5 1.0 2.0 0.5 1.0 2.0 0.5 1.0 2.0
1-Best IG 0.2 0.24 0.24 0.16 0.18 0.22 0.15 0.16 0.17
1-Best SU 0.19 0.22 0.22 0.16 0.18 0.22 0.15 0.16 0.18

1-Best 0.18 0.18 0.2 0.16 0.2 0.22 0.15 0.17 0.18
2-Best 0.19 0.22 0.26 0.16 0.16 0.18 0.15 0.16 0.17
3-Best 0.16 0.19 0.24 0.16 0.17 0.17 0.15 0.17 0.18
4-Best 0.16 0.19 0.23 0.14 0.16 0.17 0.15 0.16 0.17

100-Best 0.16 0.18 0.22 0.15 0.15 0.15 0.15 0.15 0.16
1-Global Best 0.17 0.17 0.17 0.17 0.18 0.23 0.16 0.18 0.18
2-Global Best 0.19 0.21 0.25 0.16 0.16 0.19 0.16 0.16 0.17
4-Global Best 0.17 0.19 0.23 0.16 0.16 0.17 0.16 0.15 0.17

4-Quality Gain 0.18 0.19 0.25 0.16 0.16 0.17 0.16 0.16 0.17
100-SSBQG 0.18 0.2 0.25 0.15 0.16 0.17 0.16 0.16 0.17
1-Best FPI 0.16 0.18 0.19 0.15 0.17 0.21 0.15 0.15 0.16

1-Best IMPTS 2% 0.16 - - 0.15 - - 0.14 - -
1-Best IMPTS 6% 0.16 - - 0.16 - - 0.15 - -
1-Best IMPTS 10% 0.16 - - 0.15 - - 0.14 - -

Table A.9.: Mean kappa values over 10 runs on adult data set with missingness =
75%.

128

Bibliography

[1] Adhikari, Deepak et al. “A Comprehensive Survey on Imputation of Missing
Data in Internet of Things”. In: ACM Comput. Surv. 55.7 (2022). issn: 0360-
0300. doi: 10.1145/3533381. url: https://doi.org/10.1145/3533381.

[2] Agrahari, Supriya and Singh, Anil Kumar. “Concept drift detection in data
stream mining: A literature review”. In: Journal of King Saud University-
Computer and Information Sciences 34.10 (2022), pp. 9523–9540.

[3] Anagnostopoulos, Christoforos et al. “Online Linear and Quadratic Discrim-
inant Analysis with Adaptive Forgetting for Streaming Classification”. In:
Statistical Analysis and Data Mining (2012). doi: 10.1002/sam.10151.

[4] Asudani, Deepak Suresh, Nagwani, Naresh Kumar, and Singh, Pradeep. “Impact
of word embedding models on text analytics in deep learning environment: a
review”. In: Artificial intelligence review 56.9 (2023), pp. 10345–10425.

[5] Azur, Melissa J et al. “Multiple imputation by chained equations: what is it
and how does it work?” In: International journal of methods in psychiatric
research 20.1 (2011), pp. 40–49.

[6] Bahri, Maroua et al. “Data stream analysis: Foundations, major tasks and tools”.
In: Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery
11.3 (2021), e1405.

[7] Beyer, Christian et al. “Predicting Polarities of Entity-Centered Documents
without Reading their Contents”. In: Proceedings of the Symposium on Applied
Computing. ACM. 2018. doi: https://doi.org/10.1145/3167132.317287.

[8] Beyer, Christian et al. “Exploiting Entity Information for Stream Classifica-
tion over a Stream of Reviews”. In: Proceedings of the 34th ACM/SIGAPP
Symposium on Applied Computing. ACM, 2019, pp. 564–573. doi: https:
//doi.org/10.1145/3297280.3297333. url: https://doi.org/10.1145/
3297280.3297333.

[9] Beyer, Christian et al. “Active feature acquisition on data streams under
feature drift”. In: Annals of Telecommunications 75 (2020), pp. 597–611. doi:
https://doi.org/10.1007/s12243-020-00775-2.

[10] Beyer, Christian et al. “Resource management for model learning at entity
level”. In: Annals of Telecommunications 75.9-10 (2020), pp. 549–561. doi:
10.1007/s12243-020-00800-4. url: https://doi.org/10.1007%2Fs12243-
020-00800-4.

[11] Bifet, Albert and Gavalda, Ricard. “Adaptive learning from evolving data
streams”. In: Advances in Intelligent Data Analysis VIII: 8th International
Symposium on Intelligent Data Analysis, IDA 2009, Lyon, France, August
31-September 2, 2009. Proceedings 8. Springer. 2009, pp. 249–260.

129

https://doi.org/10.1145/3533381
https://doi.org/10.1145/3533381
https://doi.org/10.1002/sam.10151
https://doi.org/https://doi.org/10.1145/3167132.317287
https://doi.org/https://doi.org/10.1145/3297280.3297333
https://doi.org/https://doi.org/10.1145/3297280.3297333
https://doi.org/10.1145/3297280.3297333
https://doi.org/10.1145/3297280.3297333
https://doi.org/https://doi.org/10.1007/s12243-020-00775-2
https://doi.org/10.1007/s12243-020-00800-4
https://doi.org/10.1007%2Fs12243-020-00800-4
https://doi.org/10.1007%2Fs12243-020-00800-4

Bibliography

[12] Bifet, Albert, Holmes, Geoffrey, and Pfahringer, Bernhard. “MOA-TweetReader:
real-time analysis in Twitter streaming data”. In: Proc. of the 14th Int’l. Conf.
on Discovery science. DS’11. Espoo, Finland: Springer-Verlag, 2011, pp. 46–60.
isbn: 978-3-642-24476-6.

[13] Bifet, Albert et al. “Pitfalls in benchmarking data stream classification and
how to avoid them”. In: Joint European Conference on Machine Learning and
Knowledge Discovery in Databases. Springer. 2013, pp. 465–479.

[14] Breiman, L et al. “Classification and Regression Trees”. In: (1984).
[15] Büttner, Maik, Beyer, Christian, and Spiliopoulou, Myra. “Reducing Missing-

ness in a Stream through Cost-Aware Active Feature Acquisition”. In: 2022
IEEE 9th International Conference on Data Science and Advanced Analyt-
ics (DSAA). 2022 IEEE 8th International Conference on Data Science and
Advanced Analytics (DSAA). 2022. doi: 10.1109/DSAA54385.2022.10032414.

[16] Büttner, Maik, Beyer, Christian, and Spiliopoulou, Myra. “Joining Imputation
and Active Feature Acquisition for Cost Saving on Data Streams with Missing
Features”. In: International Conference on Discovery Science. Springer. 2023,
pp. 308–322. doi: doi.org/10.1007/978-3-031-45275-8_21.

[17] Chen, Qijie et al. “An extensive benchmark study on biomedical text generation
and mining with ChatGPT”. In: Bioinformatics 39.9 (2023), btad557.

[18] Demšar, Janez. “Statistical comparisons of classifiers over multiple data sets”.
In: The Journal of Machine Learning Research 7 (2006), pp. 1–30.

[19] Deng, Lingjia and Wiebe, Janyce. “Joint Prediction for Entity/Event-Level
Sentiment Analysis using Probabilistic Soft Logic Models”. In: 2015 Conf. on
Empirical Methods in Natural Language Processing (EMNLP). Lisbon, Portugal:
Association for Computational Linguistics, 2015.

[20] desJardins, Marie, MacGlashan, James, and Wagstaff, Kiri L. “Confidence-
Based Feature Acquisition to Minimize Training and Test Costs”. In: Proceedings
of the 2010 SIAM International Conference on Data Mining. SIAM, 2010,
pp. 514–524.

[21] Ding, Chaoyue, Zhao, Jing, and Sun, Shiliang. “Concept drift adaptation for
time series anomaly detection via transformer”. In: Neural Processing Letters
55.3 (2023), pp. 2081–2101.

[22] Domingos, Pedro and Hulten, Geoff. “Mining high-speed data streams”. In:
Proceedings of the sixth ACM SIGKDD international conference on Knowledge
discovery and data mining. ACM. 2000, pp. 71–80.

[23] Dong, Wenlu et al. “An exploration of online missing value imputation in
non-stationary data stream”. In: SN Computer Science 2 (2021), pp. 1–11.

[24] Erdogan, Birsen Eygi, Özögür-Akyüz, Süreyya, and Atas, Pınar Karadayi. “A
novel approach for panel data: An ensemble of weighted functional margin
SVM models”. In: Information Sciences (2019). issn: 0020-0255. doi: https:
//doi.org/10.1016/j.ins.2019.02.045. url: http://www.sciencedirect.
com/science/article/pii/S0020025519301549.

[25] Fafalios, Pavlos et al. “Multi-aspect Entity-centric Analysis of Big Social Media
Archives”. In: International Conference on Theory and Practice of Digital
Libraries. Springer. 2017, pp. 261–273.

130

https://doi.org/10.1109/DSAA54385.2022.10032414
https://doi.org/doi.org/10.1007/978-3-031-45275-8_21
https://doi.org/https://doi.org/10.1016/j.ins.2019.02.045
https://doi.org/https://doi.org/10.1016/j.ins.2019.02.045
http://www.sciencedirect.com/science/article/pii/S0020025519301549
http://www.sciencedirect.com/science/article/pii/S0020025519301549

Bibliography

[26] Fudholi, Dhomas Hatta et al. “BERT-based tourism Named Entity Recognition:
making use of social media for travel recommendations”. In: PeerJ Computer
Science 9 (2023), e1731.

[27] Gama, Joao and Pinto, Carlos. “Discretization from data streams: applications
to histograms and data mining”. In: Proceedings of the 2006 ACM symposium
on Applied computing. 2006, pp. 662–667.

[28] Gama, Joao, Sebastiao, Raquel, and Rodrigues, Pedro Pereira. “Issues in
evaluation of stream learning algorithms”. In: Proceedings of the 15th ACM
SIGKDD international conference on Knowledge discovery and data mining.
2009, pp. 329–338.

[29] Gama, Joao, Sebastiao, Raquel, and Rodrigues, Pedro Pereira. “On evaluating
stream learning algorithms”. In: Machine learning 90 (2013), pp. 317–346.

[30] Gama, Joao et al. “A Survey on Concept Drift Adaptation”. In: ACM Comput.
Surv. 46.4 (2014). issn: 0360-0300. doi: 10.1145/2523813.

[31] Gomes, Heitor M et al. “Adaptive random forests for evolving data stream
classification”. In: Machine Learning 106 (2017), pp. 1469–1495.

[32] Gomes, Heitor Murilo et al. “Feature scoring using tree-based ensembles for
evolving data streams”. In: 2019 IEEE International Conference on Big Data
(Big Data). IEEE. 2019, pp. 761–769.

[33] Hallaji, Ehsan, Razavi-Far, Roozbeh, and Saif, Mehrdad. “DLIN: Deep lad-
der imputation network”. In: IEEE Transactions on Cybernetics 52.9 (2021),
pp. 8629–8641.

[34] He, Ruining and McAuley, Julian. “Ups and downs: Modeling the visual
evolution of fashion trends with one-class collaborative filtering”. In: Proceedings
of the 25th International Conference on World Wide Web. International World
Wide Web Conferences Steering Committee. 2016, pp. 507–517.

[35] Herbold, Steffen. “Autorank: A Python package for automated ranking of
classifiers”. In: Journal of Open Source Software 5.48 (2020), p. 2173.

[36] Hong, Jong-yi, Suh, Eui-ho, and Kim, Sung-Jin. “Context-aware systems: A
literature review and classification”. In: Expert Systems with applications 36.4
(2009), pp. 8509–8522.

[37] Huang, Sheng-Jun et al. Active Feature Acquisition with Supervised Matrix
Completion. 2018. doi: 10.48550/ARXIV.1802.05380. url: https://arxiv.
org/abs/1802.05380.

[38] Jakob, Niklas and Gurevych, Iryna. “Extracting Opinion Targets in a Single-
and Cross-Domain Setting with Conditional Random Fields”. In: 2010 Conf.
on Empirical Methods in Natural Language Processing (EMNLP). MIT, Mas-
sachusetts: Association for Computational Linguistics, 2010, pp. 1035–1045.

[39] Keerin, Phimmarin and Boongoen, Tossapon. “Improved knn imputation for
missing values in gene expression data”. In: Computers, Materials and Continua
70.2 (2021), pp. 4009–4025.

[40] Kelly, Markelle, Longjohn, Rachel, and Nottingham, Kolby. “The UCI machine
learning repository”. In: URL https://archive. ics. uci. edu (2023).

[41] Kottke, D. “Budget Optimization for Active Learning in Data Streams”. PhD
thesis. Master’s thesis, Otto von Guericke University Magdeburg, Germany (10
2014).

131

https://doi.org/10.1145/2523813
https://doi.org/10.48550/ARXIV.1802.05380
https://arxiv.org/abs/1802.05380
https://arxiv.org/abs/1802.05380

Bibliography

[42] Kottke, Daniel, Krempl, Georg, and Spiliopoulou, Myra. “Probabilistic active
learning in datastreams”. In: International Symposium on Intelligent Data
Analysis. Springer. 2015, pp. 145–157.

[43] Krawczyk, Bartosz, Woźniak, Michał, and Cyganek, Bogusław. “Clustering-
based ensembles for one-class classification”. In: Information Sciences 264
(2014). Serious Games, pp. 182–195. issn: 0020-0255. doi: https://doi.org/
10.1016/j.ins.2013.12.019. url: https://www.sciencedirect.com/
science/article/pii/S0020025513008694.

[44] Krempl, Georg, Siddiqui, Zaigham Faraz, and Spiliopoulou, Myra. “Online
clustering of high-dimensional trajectories under concept drift”. In: Machine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2011, Athens, Greece, September 5-9, 2011, Proceedings, Part II 22.
Springer. 2011, pp. 261–276.

[45] Kumar, Ashish and Singh, Ajmer. “Stream mining a review: tool and tech-
niques”. In: 2017 International conference of Electronics, Communication and
Aerospace Technology (ICECA). Vol. 2. IEEE. 2017, pp. 27–32.

[46] Kumar, Vipin and Minz, Sonajharia. “Feature selection”. In: SmartCR 4.3
(2014), pp. 211–229.

[47] Li, Jing et al. “A survey on deep learning for named entity recognition”. In:
IEEE transactions on knowledge and data engineering 34.1 (2020), pp. 50–70.

[48] Li, Yang and Oliva, Junier. “Active feature acquisition with generative surrogate
models”. In: International Conference on Machine Learning. PMLR. 2021,
pp. 6450–6459.

[49] Li, Yang et al. “Towards Robust Active Feature Acquisition”. In: CoRR
abs/2107.04163 (2021). arXiv: 2107.04163. url: https://arxiv.org/abs/
2107.04163.

[50] Liao, J. and Dai, B. “An Ensemble Learning Approach for Concept Drift”. In:
2014 International Conference on Information Science Applications (ICISA).
2014, pp. 1–4.

[51] Libera, Caio et al. “‘right to be forgotten’: analyzing the impact of forget-
ting data using k-NN algorithm in data stream learning”. In: International
Conference on Electronic Government. Springer. 2022, pp. 530–542.

[52] Lin, Wei-Chao and Tsai, Chih-Fong. “Missing value imputation: a review and
analysis of the literature (2006–2017)”. In: Artificial Intelligence Review 53
(2020), pp. 1487–1509.

[53] Lipka, Nedim, Stein, Benno, and Anderka, Maik. “Cluster-based one-class
ensemble for classification problems in information retrieval”. In: Proceedings
of the 35th international ACM SIGIR conference on Research and development
in information retrieval. 2012, pp. 1041–1042.

[54] Liu, Zitao and Hauskrecht, Milos. “Learning adaptive forecasting models from
irregularly sampled multivariate clinical data”. In: Thirtieth AAAI Conference
on Artificial Intelligence. 2016.

[55] Lu, Haibing and Huang, Shengsheng. “Clustering panel data”. In: SIAM
International Workshop on Data Mining held in conjunction with the 2011
SIAM International Conference on Data Mining. 2011, pp. 1–10.

132

https://doi.org/https://doi.org/10.1016/j.ins.2013.12.019
https://doi.org/https://doi.org/10.1016/j.ins.2013.12.019
https://www.sciencedirect.com/science/article/pii/S0020025513008694
https://www.sciencedirect.com/science/article/pii/S0020025513008694
https://arxiv.org/abs/2107.04163
https://arxiv.org/abs/2107.04163
https://arxiv.org/abs/2107.04163

Bibliography

[56] Manku, Gurmeet Singh and Motwani, Rajeev. “Approximate frequency counts
over data streams”. In: VLDB’02: Proceedings of the 28th International Con-
ference on Very Large Databases. Elsevier. 2002, pp. 346–357.

[57] Matuszyk, Pawel and Spiliopoulou, Myra. “Selective Forgetting for Incremental
Matrix Factorization in Recommender Systems”. In: Int. Conf. on Discovery
Science (DS’14). Vol. 8777. LNCS. Springer International Publishing, 2014,
pp. 204–215. doi: 10.1007/978-3-319-11812-3_18.

[58] Melidis, Damianos P., Spiliopoulou, Myra, and Ntoutsi, Eirini. “Learning
under Feature Drifs in Textual Streams”. In: Proceedings of the 2018 ACM
on Conference on Information and Knowledge Management. to appear. ACM.
2018.

[59] Melville, Prem et al. “Active feature-value acquisition for classifier induction”.
In: Fourth IEEE International Conference on Data Mining (ICDM’04). IEEE.
2004, pp. 483–486.

[60] Min, Bonan et al. “Recent advances in natural language processing via large
pre-trained language models: A survey”. In: ACM Computing Surveys 56.2
(2023), pp. 1–40.

[61] Oku, Kenta et al. “Context-aware SVM for context-dependent information
recommendation”. In: Proceedings of the 7th international Conference on Mobile
Data Management. IEEE Computer Society. 2006, p. 109.

[62] Pang, Bo and Lee, Lillian. “Seeing stars: Exploiting class relationships for
sentiment categorization with respect to rating scales”. In: Proceedings of the
43rd annual meeting on association for computational linguistics. Association
for Computational Linguistics. 2005, pp. 115–124.

[63] Pappas, Nikolaos and Popescu-Belis, Andrei. “Explicit Document Modeling
through Weighted Multiple-Instance Learning”. In: Journal of Artificial Intel-
ligence Research 58 (2017), pp. 591–626.

[64] Parada-Cabaleiro, Emilia et al. “Song lyrics have become simpler and more
repetitive over the last five decades”. In: Scientific Reports 14.1 (2024), p. 5531.

[65] Pedregosa, F. et al. “Scikit-learn: Machine Learning in Python”. In: Journal of
Machine Learning Research 12 (2011), pp. 2825–2830.

[66] Peng, Tao, Sellami, Sana, and Boucelma, Omar. “Iot data imputation with
incremental multiple linear regression”. In: Open Journal of Internet Of Things
(OJIOT) 5.1 (2019), pp. 69–79.

[67] Qiu, Guang et al. “Opinion word expansion and target extraction through
double propagation”. In: Computational Linguistics 37.1 (2011), pp. 9–27.

[68] Bi-Ru Dai et al. “Adaptive Clustering for Multiple Evolving Streams”. In: IEEE
Transactions on Knowledge and Data Engineering 18.9 (2006), pp. 1166–1180.

[69] Rudovic, Ognjen et al. “Meta-weighted gaussian process experts for personalized
forecasting of AD cognitive changes”. In: Machine Learning for Healthcare
Conference. 2019, pp. 181–196.

[70] Saadallah, Amal, Priebe, Florian, and Morik, Katharina. “A Drift-Based Dy-
namic Ensemble Members Selection Using Clustering for Time Series Forecast-
ing”. In: Machine Learning and Knowledge Discovery in Databases. Ed. by
Ulf Brefeld et al. Cham: Springer International Publishing, 2020, pp. 678–694.
isbn: 978-3-030-46150-8.

133

https://doi.org/10.1007/978-3-319-11812-3_18

Bibliography

[71] Saar-Tsechansky, Maytal, Melville, Prem, and Provost, Foster J. “Active
Feature-Value Acquisition”. In: Management Science 55.4 (2009), pp. 664–
684.

[72] Salgado, Cátia M et al. “Missing Data”. In: Secondary Analysis of Electronic
Health Records [Internet] (2016).

[73] Serrao, Elson and Spiliopoulou, Myra. “Active Stream Learning with an Oracle
of Unknown Availability for Sentiment Prediction”. In: Proceedings of the
Workshop on Interactive Adaptive Learning co-located with European Conference
on Machine Learning (ECML 2018) and Principles and Practice of Knowledge
Discovery in Databases (PKDD 2018), Dublin, Ireland, September 10th, 2018.
Pp. 36–47.

[74] Settles, Burr. “Active learning literature survey”. In: (2009).
[75] Sharma, Shiven, Bellinger, Colin, and Japkowicz, Nathalie. “Clustering based

one-class classification for compliance verification of the comprehensive nuclear-
test-ban treaty”. In: Advances in Artificial Intelligence: 25th Canadian Confer-
ence on Artificial Intelligence, Canadian AI 2012, Toronto, ON, Canada, May
28-30, 2012. Proceedings 25. Springer. 2012, pp. 181–193.

[76] Spitz, Andreas, Almasian, Satya, and Gertz, Michael. “TopExNet: Entity-
Centric Network Topic Exploration in News Streams”. In: Proceedings of the
Twelfth ACM International Conference on Web Search and Data Mining. 2019,
pp. 798–801.

[77] Spitz, Andreas and Gertz, Michael. “Exploring Entity-centric Networks in En-
tangled News Streams”. In: Companion Proceedings of the The Web Conference
2018. 2018, pp. 555–563.

[78] Thakkar, Harsh and Patel, Dhiren. “Approaches for sentiment analysis on
twitter: A state-of-art study”. In: arXiv preprint arXiv:1512.01043 (2015).

[79] Unnikrishnan, Vishnu et al. “Entity-Level Stream Classification: Exploiting
Entity Similarity to Label the Future Observations Referring to an Entity”.
In: Data Science and Advanced Analytics (DSAA), 2018 IEEE International
Conference on. to appear. IEEE. 2018.

[80] Vakulenko, Svitlana, Weichselbraun, Albert, and Scharl, Arno. “Detection of
Valid Sentiment-Target Pairs in Online Product Reviews and News Media
Articles”. In: 2016 IEEE/WIC/ACM Int. Conf. on Web Intelligence. IEEE,
2016. doi: 10.1109/WI.2016.24.

[81] Vinagre, JOao, Jorge, Alipio Mario, and Gama, Joao. “An Overview on the
Exploitation of Time in Collaborative Filtering”. In: Wiley Interdisciplinary
Reviews: Data Mining and Knowledge Discovery 5.5 (2015), pp. 195–215. issn:
1942-4795.

[82] Wagner, Sebastian et al. “Ageing-based Multinomial Naive Bayes Classifiers over
Opinionated Data Streams”. In: European Conference on Machine Learning and
Principles and Practice of Knowledge Discovery in Databases, ECMLPKDD’15.
Vol. 9284. 2015, pp. 401–416.

[83] Xiang, Qiuyan et al. “Concept drift adaptation methods under the deep learning
framework: A literature review”. In: Applied Sciences 13.11 (2023), p. 6515.

[84] Yu, Hang et al. “Automatic Learning to Detect Concept Drift”. In: CoRR
abs/2105.01419 (2021). arXiv: 2105.01419. url: https://arxiv.org/abs/
2105.01419.

134

https://doi.org/10.1109/WI.2016.24
https://arxiv.org/abs/2105.01419
https://arxiv.org/abs/2105.01419
https://arxiv.org/abs/2105.01419

Bibliography

[85] Yuan, Lanqin, Pfahringer, Bernhard, and Barddal, Jean Paul. “Iterative subset
selection for feature drifting data streams”. In: Proceedings of the 33rd Annual
ACM Symposium on Applied Computing, SAC 2018, Pau, France, April 09-13,
2018. 2018, pp. 510–517.

[86] Zhang, Lei and Liu, Bing. “Aspect and Entity Extraction for Opinion Mining”.
In: Data Mining and Knowledge Discovery for Big Data: Methodologies, Chal-
lenge and Opportunities. Ed. by Wesley W. Chu. Springer, 2014, pp. 1–40. doi:
10.1007/978-3-642-40837-3_1.

[87] Zhang, Peng et al. “SKIF: a data imputation framework for concept drifting
data streams”. In: Proceedings of the 19th ACM international conference on
Information and knowledge management. 2010, pp. 1869–1872.

[88] Žliobaitė, Indrė et al. “Evaluation methods and decision theory for classification
of streaming data with temporal dependence”. In: Machine Learning 98.3 (2015),
pp. 455–482.

135

https://doi.org/10.1007/978-3-642-40837-3_1

A.3. Nutzung von generativer KI für Abschlussarbeiten

A.3. Nutzung von generativer KI für Abschlussarbeiten
In dieser Arbeit wurde Grammarly1 verwendet, um die Rechtschreibung und den
Satzbau zu verbessern. Des Weiteren wurde ChatGPT-4o2 verwendet, um Lesbarkeit
und Verständlichkeit des Textes zu erhöhen. Dabei wurde wie folgt vorgegangen:

1. Einzelne Textpassagen wurden von mir voll ausgeschrieben.

2. ChatGPT-4o hat Anpassungsvorschläge unterbreitet

3. Vorschläge wurden überprüft, dass sie den Originaltext nicht verfälschen.

4. Je nach Qualität wurden Abschnitte oder einzelne Sätze übernommen.

5. Die übernommenen Teile wurden ggf. angepasst.

Generative KI kam nicht zum Einsatz, um Code, Abbildungen oder Auswertungen
zu erstellen.

1https://app.grammarly.com/
2https://openai.com/index/hello-gpt-4o/

137

https://app.grammarly.com/
https://openai.com/index/hello-gpt-4o/

Ich versichere hiermit, dass ich die vorliegende Arbeit ohne unzulässige Hilfe Dritter und
ohne Benutzung anderer als der angegebenen Hilfsmittel angefertigt habe; verwendete
fremde und eigene Quellen sind als solche kenntlich gemacht. Insbesondere habe ich
nicht die Hilfe eines kommerziellen Promotionsberaters in Anspruch genommen. Dritte
haben von mir weder unmittelbar noch mittelbar geldwerte Leistungen für Arbeiten
erhalten, die im Zusammenhang mit dem Inhalt der vorgelegten Dissertation stehen.

Ich habe insbesondere nicht wissentlich:
- Ergebnisse erfunden oder widersprüchliche Ergebnisse verschwiegen,
- statistische Verfahren absichtlich missbraucht, um Daten in ungerechtfertigter
 Weise zu interpretieren,
- fremde Ergebnisse oder Veröffentlichungen plagiiert,
- fremde Forschungsergebnisse verzerrt wiedergegeben.

Mir ist bekannt, dass Verstöße gegen das Urheberrecht Unterlassungs- und
Schadensersatzansprüche des Urhebers sowie eine strafrechtliche Ahndung durch die
Strafverfolgungsbehörden begründen kann. Die Arbeit wurde bisher weder im Inland
noch im Ausland in gleicher oder ähnlicher Form als Dissertation eingereicht und ist als
Ganzes auch noch nicht veröffentlicht.

Magdeburg, den

24.09.2024

Christian Beyer

	Introduction
	Research Questions
	Summary of Scientific Contributions
	Outline of the Thesis

	Stream Mining Underpinnings
	Data Streams
	Evaluation Schemes and Performance Metrics for Supervised Stream Mining

	Dealing with the Data Space in Stream Mining
	Motivation & Background - Entity-Centric Learning on Data Streams
	Challenges for Entity-Centric Learning

	Entity-Centric Learning without Features
	Related Work
	The Polarity Learning Problem
	Target Entity Analysis
	Learning on a Data Stream
	Stream Recommenders

	Polarity Predictors on Entity-Level Substreams
	Entity-Level Substream and Models

	Entity-Centric and Entity-Ignorant Predictors
	Evaluation Framework
	Aligning a Stream of Opinions to their Target Entities
	Entity-Centric Evaluation

	Experiments
	Datasets of the Experiments

	Results and Discussion
	Conclusion

	Entity-Centric Ensemble
	Related Work
	Entity-Centric Evaluation Scheme
	An Ensemble with Two Voting Members
	Ensemble Variants Based on Weighting

	Experiments and Results
	Evaluation Procedure
	RMSE and Number of Entities
	Impact of Entity-Length on Performance
	Significance Testing
	Overhead of the Entity-Centric Ensembles

	Conclusion

	Resource Management of Entity-Centric Models
	Related Work
	Learning at the Entity Level
	Error-Weighted Predictions and Clustering Entities
	Memory Efficient Item Set Mining on Data Streams

	Methods For Memory Footprint Reduction
	Entity Management with Lossy Counting
	Memory Reduction through Text-Ignorant Models

	Experiments
	Evaluation

	Results
	Entity-Centric MNBF vs. Majority-Label
	Memory Footprint Comparison
	Discussion

	Conclusion

	Additional Reflections on Entity-Centric Learning
	Efficient Entity-Model Management using Databases and Deletion
	A New Performance Metric for Data Streams?

	Entity-Centric Learning on Data Streams: Discussion and Conclusion
	Limitations
	Open Questions and Future Work

	Dealing with the Feature Space in Stream Mining
	Motivation & Background - Active Feature Acquisition on Data Streams
	Challenges for AFA on Data Streams

	Active Feature Acquisition on Data Streams under Feature Drift
	Related work
	Methods
	Budgeting Acquisitions on a Stream with an IPF
	Budgeting Acquisitions on a Stream with an SBM
	Modelling Feature Importance on a Stream
	Modelling Instance Quality

	Evaluation Scheme and Datasets
	Evaluation Framework
	Experimental Setup
	Results
	Conclusion

	Cost-Aware AFA
	Related Work
	Methods for Acquiring Sets of Features
	Methods for Dealing with Feature Cost and Absolute Budgeting
	Adapting the IPF-Threshold with a Penalty:
	Replacing Quality Score with Quality Gain:

	Experimental Setup and Evaluation
	Results and Discussion
	Performance Analysis on Regular Datasets
	Performance Analysis on Evenodd Datasets
	Impact of Quality and Merit Functions
	Budget Usage
	Threshold for the Incremental Percentile Filter

	Conclusion

	Reducing Costs with Strategic Imputation
	Related Work
	Methods
	Feature Pair Imputer (FPI)
	Feature Pair Imputer Threshold Skip (FPITS)

	Experiments
	Datasets
	Experiment Parameters

	Results
	FPI Performance
	FPITS Behavior
	Budget Comparison at Similar Performance

	Conclusion

	Additional Reflections on Active Feature Acquisition
	Generation of Tree-Based Acquisition Sets
	Realizing a Cost-Sensitive Performance Bound using Genetic Programming

	Active Feature Acquisition on Data Streams: Discussion and Conclusion
	Limitations
	Open Questions and Future Work

	Overall Conclusion
	Future Work

	Appendix
	Appendix
	Appendix: Entity-Centric Learning
	Error Analysis of Simple Entity-Centric Models in Chapter 4
	Additional Results for Entity-Centric Ensembles on Watches Dataset Chapter 5

	Appendix: Active Feature Acquisition
	Additional Feature Importance Metrics of Chapter 10
	Extensive Result Tables from Chapter 10
	New Experiment on Adult Dataset Chapter 10

	Bibliography
	Nutzung von generativer KI für Abschlussarbeiten

