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Abstract

Motivated by advancing climate change and ever-increasing environmental pollution,
our research is concerned with cost-aware adaptive sampling methods for environ-
mental sensing. We consider the problem of reconstructing unknown environmental
phenomena (black-box functions) based on samples taken by a mobile robot, where
both the sampling process and the robot’s travel incur substantial costs. Existing
methods from the field of global metamodeling and Bayesian optimization focus on
sampling of potentially complex black-box functions (e.g., functions containing jumps)
on mixed-domain (continuous, discrete, categorical, etc.) and often high-dimensional
design spaces. However, they do not take into account application-specific conditions
relevant in environmental sensing, such as the robot’s travel costs, characteristics
of the design space, and properties of the environmental phenomenon. Advances in
battery and sensor technology have facilitated the increased use of mobile robots in
environmental sensing. Applied methods utilize real-time capable sensors to record
numerous samples along the robot’s path. However, these methods are unsuitable
for scenarios where each sample incurs a significant cost. We address this gap by
proposing novel cost-aware space-filling and adaptive sampling methods, specifically
designed for their application in environmental sensing.

Initially, we consider the metamodeling of Lipschitz-continuous black-box functions
on low-dimensional design spaces with equally scaled dimensions. For this we derive
three novel space-filling sampling criteria that outperform existing methods with
respect to the resulting global accuracy of the metamodel. Subsequently, we examine
the sensing of positive-valued environmental phenomena, such as concentration
distributions. For this, we employ adaptive sampling, which leverages the available
information about the black-box function to select sample points, obtaining more
information per sample compared to space-filling sequential methods. We introduce
the novel class of weighted explorative sampling criteria (WESC) that takes into
account the properties of the considered type of environmental phenomena, thereby
outperforming existing adaptive sampling criteria. Finally, we extend the space-filling
and adaptive sampling methods to take into account the location-dependent sampling
costs and the robot’s travel costs. For this purpose, we define a Pareto-optimal
sampling criterion for each scenario: considering location-dependent costs, travel
costs, and both costs combined. Moreover, we develop a receding horizon cost-
aware adaptive sampling (RHCaAS) algorithm, which drastically reduces travel costs
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Abstract

without significantly impacting metamodel accuracy. Subsequently, we combine the
methods from both considerations to account for both types of costs in a manner
that optimally leverages their strengths.

All the presented methods are evaluated in extensive numerical simulations, demon-
strating their superiority over those found in the literature. We expect that the
methods presented will increase the information yield in environmental sensing and
lead to considerable cost savings, especially when using mobile robots for the evalua-
tion of expensive-to-evaluate environmental phenomena. This applies in particular
to decontamination in hostile environments, seabed sampling by diving robots, or
extraterrestrial observation, such as with a Mars rover.
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Zusammenfassung

Motiviert durch den fortschreitenden Klimawandel und die zunehmende Umwelt-
verschmutzung befasst sich die vorliegende Arbeit mit kosteneffizienten, adapti-
ven Samplingverfahren für die Umwelterfassung. Wir betrachten das Problem der
Rekonstruktion unbekannter Umweltphänomene (Black-Box-Funktionen) auf der
Grundlage von Messungen, welche von einem mobilen Roboter durchgeführt wer-
den, wobei sowohl die Messung als auch die Bewegung des Roboters erhebliche
Kosten verursachen. Bestehende Methoden aus dem Bereich der globalen Metamo-
dellierung und der Bayes’schen Optimierung befassen sich mit potenziell komplexen
Black-Box-Funktionen (z.B. Funktionen, die Sprünge enthalten) auf gemischten
(kontinuierlichen, diskreten, kategorialen, etc.) und oft hochdimensionalen Para-
meterräumen. Allerdings berücksichtigen diese nicht die für die Umwelterfassung
relevanten anwendungsspezifischen Rahmenbedingungen, wie z.B. die Reisekosten
des Roboters, die Merkmale des Parameterraums und die Eigenschaften des Umwelt-
phänomens. Durch die Fortschritte in der Batterie- und Sensortechnologie werden
vermehrt mobile Roboter zur Umwelterfassung eingesetzt. Die dazu verwendeten
Methoden setzen auf am Roboter angebrachte, echtzeitfähige Sensoren, mit welchen
zahlreiche Messungen während der Bewegung des Roboters entlang dessen Route
aufgezeichnet werden. Diese Methoden sind jedoch ungeeignet für Anwendungen, bei
denen jede Messung mit erheblichen Kosten verbunden ist. Mit unseren neuartigen,
speziell für die Anwendung in der Umwelterfassung entwickelten, kosteneffizienten,
raumfüllenden und adaptiven Samplingmethoden schließen wir diese Lücke.

Zunächst betrachten wir die Metamodellierung von Lipschitz-stetigen Black-Box-
Funktionen auf niederdimensionalen Parameterräumen, deren Dimensionen dieselbe
Skalierung aufweisen. Wir leiten drei neuartige raumfüllende Samplingkriterien her,
welche existierende Verfahren bezüglich der resultierenden globalen Genauigkeit des
Metamodells übertreffen. Anschließend untersuchen wir adaptive Samplingverfahren
zur Erfassung positivwertiger Umweltphänomene (z.B. Konzentrationsverteilungen).
Durch die Berücksichtigung vorhandener Informationen über die Black-Box-Funktion
erzielen adaptive Samplingverfahren einen höheren Informationsgehalt pro Messung
und somit eine bessere Modellgenauigkeit für eine gegebene Anzahl von Messun-
gen. Wir führen die Klasse der gewichteten explorativen Samplingkriterien (WESC)
ein, welche durch die Berücksichtigung der Eigenschaften der betrachteten Umwelt-
phänomene existierende adaptive Samplingkriterien bezüglich der resultierenden
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Zusammenfassung

Modellgenauigkeit übertreffen. Zuletzt erweitern wir die raumfüllenden und adapti-
ven Samplingverfahren um die Berücksichtigung der ortsabhängigen Samplingkosten
sowie der Reisekosten des mobilen Roboters. Dazu definieren wir jeweils ein Pareto-
optimales Samplingkriterium für die Berücksichtigung der ortsabhängigen Kosten,
der Reisekosten sowie der gleichzeitigen Berücksichtigung beider Kostenarten. Zudem
entwickeln wir den RHCaAS-Algorithmus (Receding Horizon Cost-aware Adaptive
Sampling), der eine drastische Reduktion der Reisekosten ohne wesentliche Auswir-
kung auf die Genauigkeit des Metamodells ermöglicht. Abschließend kombinieren wir
RHCaAS mit dem Pareto-optimalen Kriterium auf eine Weise, welche die Stärken
beider Ansätze optimal zur Berücksichtigung beider Kostenarten vereint.

Alle vorgestellten Methoden werden in umfangreichen numerischen Simulationen
evaluiert sowie deren Überlegenheit gegenüber den Literaturverfahren demonstriert.
Wir erwarten, dass die vorgestellten Methoden die Informationsausbeute bei der
Umwelterfassung erhöhen und zu erheblichen Kosteneinsparungen führen werden.
Dies gilt insbesondere beim Einsatz mobiler Roboter für die Rekonstruktion von
Umweltphänomenen, deren Messung mit signifikanten Kosten verbunden ist. Bei-
spiele stellen die Dekontamination in lebensfeindlichen Umgebungen, die Entnahme
von Proben auf dem Meeresgrund durch Tauchroboter oder die extraterrestrische
Beobachtung (z. B. mit einem Mars-Rover) dar.
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CHAPTER1
Introduction

Environmental sensing is becoming increasingly important in the context of global
warming, the associated climate change, and the steadily increasing environmental
pollution. Remote sensing is invaluable for large-scale and long-term monitoring,
offering a comprehensive overview of environmental conditions using imagery such as
hyperspectral, multispectral, high-resolution panchromatic, and synthetic aperture
radar (SAR) images, which are commonly captured by satellites as well as airborne
platforms including unmanned aerial vehicles (UAVs) and aircraft [1]. Examples
include land use classification based on satellite data [2, 3] and the assessment of
environmental damage using image data [1, 4], both leveraging deep artificial neural
networks trained on large amounts of data.

In addition to remote sensing, advances in sensor technology, wireless communication
networks, and the miniaturization of computing and storage units have enhanced in-
situ measurements for sensing various physical, chemical, and biological parameters,
thereby enabling faster, more targeted, and hence more effective interventions in
response to problematic environmental changes, pollution, disasters, etc. [5–8].

Mobile robots play a crucial role in performing in-situ measurements, as they can
operate in hostile environments, are often more cost-effective than manned missions,
and can flexibly navigate to required sample points. Equipped with sensors, mobile
robots are employed for tasks such as detecting gas leaks indoors [9], measuring soil
properties in agriculture [10, 11], or tracking phytoplankton blooms [12, 13]. Existing
solutions utilize real-time capable sensors that permit samples at regular intervals
(such as a specific sampling rate) during the robot’s motion. However, there are
also applications where the robot has to interrupt its motion to perform expensive
sampling (in terms of energy and/or time) and the number of samples is limited by
constrained resources (e.g., battery capacity, time limit).

A prominent example is the ROBDEKON project [14], which investigates the use of
autonomous construction machines for the decontamination of contaminated sites.
The autonomous construction machine performs expensive and time-consuming
dynamic probing to collect samples, which are then used to reconstruct the unknown
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Figure 1.1: Metamodeling of an unknown function f(x) (black-box function) involving a space-filling

initial design (crosses) and an adaptive design (dots) on a two-dimensional parameter
space (design space). The adaptive design iteratively exploits the existing knowledge
about the black-box function to intensify sampling in regions of interest.

distribution of pollutants in the soil. This reconstruction allows for the precise
identification and removal of regions exceeding legal contamination limits, ensuring
effective site decontamination.

The project illustrates that there may only be a limited number of expensive samples
available for modeling the phenomenon, necessitating a preference for data-efficient
methods over large artificial intelligence (AI) models, such as those used in satellite
data processing. Additionally, there may be location-dependent differences in sam-
pling costs due to variations in soil composition, slopes, vegetation, or even obstacles.
Furthermore, travel costs incurred by the mobile robot between sample points may
vary significantly depending on the sequence of the points.

The process of reconstructing an unknown function (black-box function) based on a
finite set of expensive samples is referred to as metamodeling [15, 16], as illustrated
in Fig. 1.1 on the right. A metamodel (also known as surrogate model or response
surface model [16]) represents the relationships between target variables (outputs)
and parameters (inputs) in physical experiments (e.g., wind tunnel tests [17]) and
computer experiments (e.g., numerical simulations [18]) [15, 16]. In the context of
industry 4.0 metamodels are also referred to as digital twins [19] with applications
in manufacturing, smart cities, healthcare and retail [20]. The rapidly evaluable
metamodel mimics the physical relationships across the entire parameter space and
serves as a surrogate for the experiments [21].

When using the metamodel as a substitute for the black-box function, ensuring
sufficient model accuracy is of critical importance. However, the accuracy of the
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Train metamodel

Figure 1.2: Simplified adaptive sampling procedure for environmental sensing.

metamodel depends crucially on the selection of the points in the parameter space at
which the black-box function is evaluated [15, 16, 22, 23]. Design of Experiments
(DoE) represents a class of methods that generate parameter combinations to accu-
rately capture the variations of the black-box function within the parameter space
[24]. In this process, adaptive sampling (also known as active learning [21]) tech-
niques are utilized to select the parameter combinations for training the metamodel
in such a way that it achieves maximum model accuracy or identifies the optimum
of the underlying causal relationships [15, 25]. In some cases, cost-aware methods
are applied, aiming to achieve the best possible results within a given budget by
considering the parameter-dependent experimental costs [17, 26].

Thanks to advances in mobile robotics, battery technology, and sensor technology,
adaptive sampling methods are becoming increasingly important in environmental
sensing and monitoring. As shown in Fig. 1.2, the adaptive sampling procedure
iterates by selecting the next sample point, sampling the environmental phenomenon
at the selected point, and then training the new data points into the metamodel.
This sequential approach allows for the selection of subsequent sample points to be
adapted based on the most recent knowledge about the phenomenon, thereby gaining
more information per sample than would be obtained using non-adaptive sampling
methods (e.g., distance-based space-filling designs [21, 27]) [15]. An example of a
space-filling initial design and an adaptive design is illustrated in Fig. 1.1.

Adaptive sampling was employed in environmental sensing for the exploration and
reconstruction of scalar fields (such as depth maps or concentration distributions)
using unmanned surface vehicles (USV) [28–30]. However, as in the aforementioned
examples, real-time capable sensors were employed, which recorded samples at regular
intervals along the robot’s route and while it was in motion. In contrast, in the context
of global metamodeling, expensive (adaptive) sample points are chosen to maximize
the information gained about the black-box function per sample. Furthermore,
global metamodeling typically addresses high-dimensional mixed-domain (continuous,
discrete, categorical, various scalings, etc.) parameter spaces and highly nonlinear or
even discontinuous black-box functions (e.g., functions containing jumps) [27].

3
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However, no methods in the literature combine the challenges of global metamod-
eling with environmental sensing using mobile robots, along with their associated
conditions and application-specific costs. In this thesis, we address this gap by
considering the scenario of environmental sensing motivated by the ROBDEKON
project, where a continuous black-box function (e.g., a concentration distribution) is
to be reconstructed on the (low-dimensional and equally scaled) location space based
on expensive samples. Additionally, incurred costs are to be taken into account,
including the robot’s travel costs as well as potentially location-dependent sampling
costs.

To our best knowledge, there are no methods that collectively address these chal-
lenges. We address this gap by integrating methods from machine learning, adaptive
sampling, global multi-objective optimization strategies, and model predictive con-
trol. By considering the characteristics of environmental phenomena and the specific
requirements for deployment in environmental sensing with mobile robots, we have
achieved significant contributions within our field of research listed in the following
structure of this thesis:

Chapter 2 – Review on Adaptive Sampling for Global Metamodeling This
chapter provides an overview of the literature relevant to this thesis, introducing
global metamodeling with a focus on Gaussian process regression, as well as various
space-filling and adaptive sampling techniques. Both Gaussian process regression
and the sampling methods are central tools in all subsequent chapters. Additionally,
a contextualization within topic-specific literature is provided at the beginning of
each chapter.

Chapter 3 – Space-filling Designs for Environmental Sensing We consider
the scenario where no information about the unknown environmental phenomenon is
used for selecting sample points. Drawing on global error measures for the metamodel,
we derive three novel sampling criteria, for which we establish both sequential and
one-shot variants. In this process, we exploit properties of the design space as
well as assumed continuity properties of the phenomenon. Through comprehensive
simulation studies, we demonstrate that these novel criteria surpass existing methods
reported in the literature.

Contribution: Three novel space-filling sampling criteria (MD, RMSD, mod.
maximin) designed for metamodeling of Lipschitz-continuous black-box func-
tions.

Chapter 4 – Weighted Explorative Sampling Criteria for Environmental
Sensing We consider the reconstruction of positive-valued environmental phenomena
(e.g., concentration distributions). In this context, the model accuracy in regions
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of high concentration values should be enhanced compared to surrounding regions,
to precisely model and delineate peaks. For this, we define the class of explorative
sampling criteria (ESC) and illustrate how most existing space-filling criteria can
be transformed into such. Building on the ESC, we introduce the class of weighted
explorative sampling criteria (WESC) and demonstrate through comprehensive
simulations the superiority of two specific WESC over conventional methods in the
literature for the described problem scenario.

Contribution: The novel class of WESC, tailored to the application in envi-
ronmental sensing.

Chapter 5 – Cost-aware Adaptive Sampling for Environmental Sensing We
extend the approaches discussed in previous chapters to include practically relevant
constraints. Initially, we examine the inclusion of location-dependent sampling costs
and the robot’s travel costs separately. Subsequently, we combine the methods from
both considerations to account for both types of costs in a manner that optimally
leverages their strengths. Each scenario is extensively simulated, and the advantages
of our novel methods over existing approaches are demonstrated.

Contribution: The novel receding horizon cost-aware adaptive sampling
(RHCaAS) algorithm that significantly reduces the robot’s travel cost with
minimal impact on model accuracy, independent of the criterion used. In addi-
tion, the formulation of the cost-aware adaptive sampling criteria PoLC and
PoTC based on multi-objective optimization for consideration of the location-
dependent (LC) and travel costs (TC) as well as PoLTC for consideration of
both cost types. Finally, the integration of PoLTC and RHCaAS to combine
advantages of both methods.

The contributions listed above have led to several peer-reviewed publications that
can be found in [31–34]. In Appendix A, we discuss the problem addressed in this
work within the broader context of recent developments in the field of data-efficient
artificial intelligence.
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CHAPTER2
Review on Adaptive Sampling for
Global Metamodeling

Metamodeling refers to the process of constructing a metamodel (also known as
surrogate model, response surface model [16], or digital twin [19]) of an expensive-to-
evaluate (and unknown) black-box function f : X → R based on a finite number of
samples yl = f(xl) + ϵl ∈ R obtained by evaluating the black-box function at the
sample points xl ∈ X , where ϵl is a noise term and X ⊂ Rn is the design space of
dimension n [15, 16]. In general, the design space may be composed of continuous,
discrete, and categorical dimensions [25] and the response of the black-box function
may be multi-dimensional. The vast majority of the literature on global metamodeling,
however, considers continuous design spaces and single response black-box functions
(e.g., [15–18, 21, 35–37]). Throughout this thesis, the design space is assumed to be
an n-dimensional nonempty set of real numbers and a single response metamodel
is considered. While local metamodels are utilized by an optimization algorithm to
determine the global optimum of the black-box function (and are dropped afterwards),
global metamodels are to mimic the characteristics of the black-box function and
serve as a cheap replacement of the black-box function [21]. The latter is applied in
various disciplines of engineering design where metamodels of physical experiments
and computer experiments, such as crash tests [35], wind tunnel experiments [17],
numerical simulations [18], and hyperparameter optimization of artificial neural
networks (ANNs) [25] are built. In case of deterministic black-box functions (e.g.,
deterministic computer simulations [23]) the noise term ϵl disappears. Among
modeling techniques like ANNs, support vector machines, polynomial regression, etc.
the Gaussian process [38] is most frequently used [16, 22, 39] and most intensively
investigated as a metamodel [15, 17] and will also be the model of choice in this
thesis.

When relying on the metamodel as a replacement of the black-box function it is
crucial to ensure sufficient model accuracy. However, the accuracy of the metamodel
decisively depends on the choice of sample points xl [15, 16, 22, 23]. Design of
Experiments (DoE) represents a class of methods that generate sample points in the
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Figure 2.1: This figure shows the process of conditioning a GP on noise free samples yl = f(x) of

an unknown function f(x). The upper left plot shows the prior GP. Then, one sample
is added per plot until the GP is conditioned on three samples in the bottom right plot.
The solid blue line indicates the mean function of the GP, the gray area has a width of
one predictive standard deviation above and below the mean function, respectively, and
represents model uncertainty; the dashed blue functions are sample functions of the GP.

design space in such a way that the variations of the black-box function in the design
space are reflected as precisely as possible [24]. A basic distinction is made between
one-shot designs and sequential designs [15, 21]. One-shot designs like factorial
designs, Latin hypercubes, and orthogonal arrays [21, 23, 27] generate a predefined
number of space-filling sample points at once (space-filling means that the sample
points cover the entire design space as evenly as possible). Sequential designs can
again be divided into space-filling and adaptive approaches [15].

Adaptive approaches sequentially determine one or more next sample points based
on the already existing samples or metamodel [15]. Note that most space-filling
sequential designs only depend on the already existing sample points (e.g., [21]) but
do not depend on samples of the black-box function. Hence, just like the one-shot
approaches, they can be computed prior to the first evaluation of the black-box
function. However, unlike one-shot designs, they allow to easily add more sample
points to the existing design if required [23] (e.g., until a termination condition is
satisfied).

In the following sections of this chapter, Gaussian process regression is introduced in
Sec. 2.1 and the sampling methods for global metamodeling are discussed in Sec. 2.2
including space-filling one-shot designs in Sec. 2.2.1, space-filling sequential sampling
in Sec. 2.2.2, and adaptive sampling in Sec. 2.2.3.
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2.1. Gaussian Process Regression

2.1 Gaussian Process Regression

Gaussian process regression (GPR) is a non-parametric Bayesian regression method
that is applied across various domains, such as machine learning [38], Bayesian
optimization [25, 40], control theory [41, 42], reinforcement learning [43–45], and
environmental sensing [28, 46]. In geostatistics GPR is also known as Kriging [15,
16, 38] which was initially developed by Krige [47] in 1951 and later extended by
Matheron in the context of his work on regionalized variable theory [48]. According
to [38], the Gaussian process (GP) is defined as follows:

Definition 2.1.1 (Gaussian process). A Gaussian process is a collection of random
variables, any finite number of which have a joint Gaussian distribution.

As stated in [38, 49], a real GP

g(x) ∼ GP
(
µ(x), k(x, x′)

)
(2.1)

is fully specified by its mean function

µ(x) = E {g(x)} (2.2)

and its covariance function, also called kernel

k(x, x′) = E
{
(g(x) − µ(x))(g(x′) − µ(x′))

}
. (2.3)

The GP can be considered a distribution over functions whose characteristics are
determined by the mean function and kernel. In that sense it is a generalization of a
multivariate Gaussian distribution to a stochastic process [38]. According to Def. 2.1.1
we can consider the GP at any finite number M of points X = [x1, . . . , xM ]⊤ and
will obtain a random vector

g ∼ N
(
µ(X), K(X, X)

)
(2.4)

that follows a multivariate Gaussian distribution, where the batch evaluation K(X, X) =
[k(xi, xj)]Mi,j=1 ∈ RM×M of the kernel is the covariance matrix of g and µ(X) =
[µ(x1), . . . , µ(xM )]⊤ is a batch evaluation of the mean function. This property of
the GP is exploited when using it for regression of an unknown function f(x) based
on the dataset D = {(xl, yl)}m

l=1 containing m samples yl = f(xl) + ϵl ∈ R taken
at sample points xl, where ϵl ∼ N (0, σ2

l ) is a Gaussian noise term and σ2
l is the

sampling noise variance. First, the joint multivariate Gaussian distribution[
y

g∗

]
∼ N

([
µ(X)
µ(X∗)

]
,

[
K(X, X) + Σ K(X, X∗)

K(X∗, X) K(X∗, X∗)

])
(2.5)

of the samples y = [y1, . . . , ym]⊤ and the random vector g∗ of function values at the
evaluation points X∗ is defined. Under the assumption of uncorrelated sampling noise
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(E {ϵiϵj}i ̸=j = 0) the matrix Σ = diag([σ2
1, . . . , σ2

M ]⊤) is a diagonal matrix containing
the sampling noise variances. In practice the sampling noise is often assumed to
be stationary (σl = σ) which simplifies the matrix to Σ = σ2I. Subsequently, the
conditional distribution

g∗|y, X, X∗ ∼ N
(
µ̂, Σ̂

)
(2.6)

is formed, where

µ̂ = µ(X∗) + K(X∗, X)
(
K(X, X) + Σ

)−1(y − µ(X)) (2.7)

is the vector of expected function values at the evaluation points and

Σ̂ = K(X∗, X∗) − K(X∗, X)
(
K(X, X) + Σ

)−1
K(X, X∗)

is the covariance matrix of the random vector g∗. Based on Def. 2.1.1, the conditional
distribution of g∗ in (2.6) can again be interpreted as a finite selection of the GP

ĝ(x) ∼ GP
(
µ̂(x), k̂(x, x′)

)
(2.8)

that is conditioned on the dataset, where

µ̂(x) = µ(x) + k(x, X)
(
K(X, X) + Σ

)−1(y − µ(X)) (2.9)

is the predictive mean function,

k̂(x, x′) = k(x, x′) − k(x, X)
(
K(X, X) + Σ

)−1
k(X, x′) (2.10)

is the predictive covariance function (or kernel). k(x, X) is a row vector of covariances
between x and each point in X (points contained in the dataset) and k(X, x′) is a
column vector of covariances between x′ and each point in X. When summarizing
the constant terms in (2.9) as wGP =

(
K(X, X) + Σ

)−1(y − µ(X)) the predictive
mean

µ̂(x) = µ(x) +
m∑

i=1
wGP

i k(xi, x) (2.11)

can be written as a weighted sum of kernel functions added to the prior mean. It is
worth noticing that the properties of a GP let us consider it at a finite number of
points, perform inference (compute the posterior distribution), and yield the same
result as if we had taken into account all the infinitely many other points [38].

In contrast to many other regression techniques, the GP allows us to directly query
the predictive covariance function and thereby obtain an uncertainty measure of
our predictions [38]. Most applications are specifically interested in the predictive
variance

σ̂2(x) = k̂(x, x) (2.12)

10
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which is the predictive kernel evaluated at the point of interest (or predictive standard
deviation σ̂(x) =

√
k̂(x, x), respectively). Fig. 2.1 illustrates how knowledge about

the unknown function f(x) is incorporated into the distribution over functions by
conditioning the GP on samples of f .

In Bayesian terms g(x) is called the prior distribution over functions (short prior)
and ĝ(x) is called the posterior distribution over functions (short posterior). The
prior may be chosen to reflect all the knowledge available about the unknown function
f(x). Often little (or nothing at all) is known about the prior mean function which is
why it is commonly set to zero everywhere [50]. By defining the correlation between
the function values the kernel implies the class of functions that can be represented
by the GP. When using the term kernel in the context of a GP we refer to a positive
definite kernel which is defined as follows in [49]:

Definition 2.1.2 (Positive definite kernels). Let X be a nonempty set. A symmetric
function k : X × X → R is called a positive definite kernel, if for any n ∈ N,
w1, . . . , wn ∈ R and x1, . . . , xn ∈ X ,

n∑
i=1

n∑
j=1

wiwjk(xi, xj) ≥ 0. (2.13)

More loosely speaking the above definition says that the covariance matrix constructed
by evaluating k(·, ·) for any finite number of points in X must be positive semidefinite
in order for k(·, ·) to be a positive definite kernel [49]. Many kernels can be found in
literature, such as the linear, polynomial, exponential, periodic, squared exponential,
and Mathern kernel [38]. One of the most frequently used kernels is the squared
exponential (SE) (or radial basis function (RBF)) kernel [38, 49]

kSE(x, x′) = exp
(

−1
2(x − x′)⊤Θ−1(x − x′)

)
(2.14)

with hyperparameters Θ = diag([θ2
1, . . . , θ2

n]). Any sum or product of a kernel is
again a valid kernel [38]. This way the properties of multiple kernels can be combined
to construct a kernel that suits the application (details on combining kernels are well
described, e.g., in [50]). E.g., the prior uncertainty about the mean function can
be expressed by multiplying the SE kernel with the constant kernel kconst(x) = σ2

f ,
where σf is a hyperparameter.

In the first sentence of this section, the GP was introduced as a non-parametric
regression method. This is true for a given kernel, since then the posterior distribution
in (2.8) and hence the predictive mean in (2.9) as well as predictive covariance in
(2.10) can be computed based on the kernel and dataset. However, the choice of
the kernel and even the choice of hyperparameters for a selected kernel have a great
impact on the regression result. In Fig. 2.2 the effect of different choices of the
hyperparameter on the SE kernel and samples of the corresponding GP prior is
shown.
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Figure 2.2: In this figure, a GP with an SE kernel kSE(x, x′) = exp(− (x−x′)2

2θ2 ) is considered for
different hyperparameters θ to illustrate how the characteristics of the GP depend on the
choice of hyperparameter. On the left, the kernel is shown over the Euclidian distance
|x − x′| between the evaluation points and on the right are sample functions from the
prior GP.

The process of selecting the kernel and its hyperparameters is known as model
selection. For that, a measure is needed to evaluate how well the model fits the data.
In case of a GP we can compute the marginal likelihood

p(y|X) =
∫

p(y|g, X)︸ ︷︷ ︸
likelihood

p(g|X)︸ ︷︷ ︸
prior

dg (2.15)

by integrating the likelihood of the samples weighted by the prior over all possible
function values [38] (which can be thought of as a weighted average over all possible
function values of the GP at the sample points in the dataset). The marginal
likelihood is again a multivariate Gaussian distribution that reflects the probability
of the observed samples in the dataset given a kernel and its hyperparameters. Hence,
it can be used for determination of the optimal model through maximization w.r.t
the kernel and hyperparameters. Instead of maximizing the marginal likelihood we
can instead maximize the log marginal likelihood [38]

log p(y|X) = − 1
2(y − µ(X))⊤(K(X, X) + Σ)−1(y − µ(X))︸ ︷︷ ︸

model to data fit

(2.16)

− 1
2 log det(K(X, X) + Σ)︸ ︷︷ ︸

model complexity

− m

2 log 2π︸ ︷︷ ︸
constant

which in practice is usually computed by means of Cholesky factorization to improve
numerical stability [38, 51]. The first term in (2.16) measures how well the model fits
to the dataset, the second term measures the complexity of the model and provides
regularization, and the third term is a constant (thus not relevant for optimization).
As mentioned above, the prior mean function is often set to zero if there is no
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Figure 2.3: A GP with a zero-mean prior and an SE kernel is fit to two sample sets of the same

underlying function. The upper row shows the predictive mean (solid blue line) and
standard deviation (gray shaded area) of the GP after fitting the GP to 15 samples on
the left and to four samples on the right (black crosses) by maximizing the log marginal
likelihood in (2.16) w.r.t. the hyperparameter. In the bottom row, each summand of the
sum in (2.11) (weighted covariances between the sample points xl and the evaluation
points x) is plotted separately. The sum of the curves shown adds up to the respective
predictive mean function shown above. Note that the predictive standard deviation is
almost not recognizable since the (large) optimized hyperparameters cause the model to
have a strong confidence (low predictive variance) in its predictions between the sample
points.

knowledge about the mean function. However, this leads to the predictive mean
approach the prior mean in regions where no samples are available. If a global mean or
a trend is expected, the mean function can also be modeled as a parametric function
whose parameters can be estimated along with the hyperparameters by maximizing
the log marginal likelihood [38]. In the special case that the mean function can
be represented as a sum of weighted basis functions (such as a polynomial) with
Gaussian distributed weights, then the weights can be integrated out which yields
another GP that has the basis functions incorporated into its equations [38].

The optimization of the hyperparameters affects our prior assumptions about the
characteristics of the unknown function. For an SE kernel, e.g., increasing the hyper-
parameter causes the regression function to have smaller maximum rates of change.
In addition, the prediction variance is significantly dependent on the hyperparame-
ters. Especially if few samples are available, this can lead to an underestimation of
the model uncertainty. Fig. 2.3 shows the regression result of the same underlying
function based on two different sample sets. Less samples do not cause the model to
be less confident in regions where there are no samples available, since the hyperpa-
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Figure 2.4: A GP with a zero-mean prior and an SE kernel is fit to two sets of samples of the same

underlying function. Five noise-free samples were used in the top row and 25 noisy
samples (σ2 = 0.252) in the bottom row. The hyperparameter θ of the SE kernel was
optimized by maximizing the log marginal likelihood in (2.16) w.r.t. the hyperparameter.
In the left column the sample noise variance in the GP equations (Σ = σ2I) was set
to zero and in the right column it was optimized along with the hyperparameter. The
solid blue line indicates the mean function of the GP, the gray area has a width of one
predictive standard deviation above and below the mean function, respectively, and
represents model uncertainty; the dashed blue functions are sample functions of the GP.

rameter (indicated by the kernel functions) after optimization takes a larger value.
This implies a low rate of change as prior knowledge about the unknown function
which then leads to the predictive variance increase slowly with distance to the
existing samples. Hence, the optimum of the log marginal likelihood may, dependent
on the application, lead to unrealistic prior assumptions about the unknown function
(which has to be considered or taken care of by the user, respectively).

Note that if no sampling noise is considered in the equations the GP performs
interpolation of the samples. Since adding to the diagonal of the covariance matrix
improves numerical stability of matrix inversion, it is common practice to set the
noise level to a small number (e.g., σ2 = 10−5) even if the samples should be
interpolated. If the sampling noise is unknown but should be taken into account, it
can be optimized along with the hyperparameters. By adding sampling noise (Σ) to
the equations the predictive mean function no longer has to run exactly through the
samples. This effect is often exploited in practice to achieve a regularization of the
Gaussian process by manual adjustment of the noise variance.

Fig. 2.4 shows how optimizing the sampling noise variance σ2 along with the hyperpa-
rameter impacts the optimization result for the hyperparameter. For a large number
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Figure 2.5: Two-dimensional RGS with four levels per dimension on the left and three or five levels

per dimension on the right.

of noisy samples, the predictive mean function captures the course of the underlying
function, and the estimated noise variance is close to the actual one. However,
this automatic regularization leads to the GP averaging between the sample points.
Especially for a small number of samples, this may lead to the GP interpreting true
variation in the data as noise. In practice this can be controlled by either manually
providing the noise variance or by constraining the optimization to reasonable bounds
for the noise variance.

For more details on the derivation of the GP, associated formulas, numerically stable
implementations, and further discussion on GP regression, we refer to [38, 49, 51].

2.2 Sampling Methods

The distribution of sample points on the design space has a significant impact on
the accuracy of the metamodel [15, 16, 22, 23]. Accordingly, a variety of sampling
methods for global metamodeling can be found in the literature. In this section, the
sampling methods relevant to this thesis from the context of global metamodeling are
presented. First, the space-filling sampling methods are discussed in Sec. 2.2.1 and
Sec. 2.2.2. Then, the general adaptive sampling procedure for global metamodeling
and the adaptive sampling criteria are introduced in Sec. 2.2.3.

2.2.1 Space-filling One-shot Designs

One-shot designs are sampling methods that generate a predefined number of samples
at once in the design space. They include a wide variety of methods that can be
divided into two classes. On the one hand, the points can be constructed according
to a predefined scheme, such as regular grid sampling, Hammersley sampling, and
Latin hypercube sampling. On the other hand, the points can be optimized w.r.t.
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Figure 2.6: Two space-filling designs (16 points on the left and 49 points on the right) created with

Hammersley sampling on a two-dimensional design space.

a criterion using global optimization techniques. In the following, the space-filling
one-shot designs relevant to this thesis are presented.

Regular Grid Sampling Regular grid sampling (RGS) (also referred to as factorial
experimental design) divides each dimension of the design space into levels of equal
spacing. Each dimension can have a different number of levels. In this way, space-
filling sample points can be efficiently generated. Fig. 2.5 shows examples of RGS
for different levels per dimension.

Hammersley Sampling Hammersley sampling uses the Hammersley sequence (or
set) to compute quasi-random sample points. The Hammersley sequence belongs
to the class of low-discrepancy sequences [52, 53]. Low-discrepancy sequences are
deterministic mathematical formulas for computation of sample points which are
provably more uniformly distributed than random numbers drawn from a uniform
distribution [54] and are vastly applied in computer graphics, numerical integration,
and global optimization. In addition, most low-discrepancy sequences show Latin
hypercube properties [54]. For a given number of sample points in an (n-dimensional)
unit cube, discrepancy is defined for any subinterval within the unit cube as the
difference between the proportion of sample points that fall into the subinterval and
the volume of the subinterval. Formal definitions of discrepancy and low-discrepancy
sequences can be found e.g., in [52, 55–57]. Note that the unit cube is used in the
definition without loss of generality (and can be formulated for any n-dimensional
volume). The lower the maximum discrepancy of points within a given volume, the
more uniformly the points are distributed. A set of m two-dimensional Hammersley
sample points {(

H2(l), l

m

)}m

l=1
(2.17)
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Figure 2.7: Two optimized maximin designs (16 points on the left and 49 points on the right) on a

two-dimensional design space. The designs were optimized as described in Sec. 3.2.1.

in a unit square can be defined by elements of the van der Corput sequence Hb(l) in
base b and fractions l

m of the interval [0, 1] [53]. Hb(l) can be efficiently computed
by means of bit-wise operations. For that the integer representation of l in base b

is reversed as the fractional part of a fixed-point number [53]. Refer to [55] for a
formal definition of the van der Corput sequence and to [58] for the definition of
the n-dimensional Hammersley sequence. Fig. 2.6 shows examples of Hammersley
sampling for different numbers m of sample points on a two-dimensional design space.

Maximin Sampling The maximin criterion is one of the most popular space-filling
sampling criteria due to its numerical robustness and space-filling properties [21].
For a given set X = {x1, . . . , xm} ⊂ X of sample points the maximin criterion

ϕmaximin(X) = min
xi,xj∈X

i ̸=j

d(xi, xj) (2.18)

computes the minimum distance d(xi, xj) between any two sample points xi, xj ∈ X

with i ̸= j. Mostly (and throughout in this thesis) the l2-norm (Euclidian distance)
d(xi, xj) = ||xi − xj || is used to calculate the distance between the points. In general,
however, the maximin criterion also allows the use of other distance measures. As
its name suggests, the optimal maximin design

X∗ = arg max
X⊂X

min
xi,xj∈X

i ̸=j

d(xi, xj) = arg max
X⊂X

ϕmaximin(X) (2.19)

is obtained by (global) maximization of the maximin criterion w.r.t. the sample
points X on the design space X . Two maximin designs on a two-dimensional design
space with a different number of sample points are shown in Fig. 2.7.
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Figure 2.8: Two (suboptimal) minimax designs (16 points on the left and 49 points on the right) on

a two-dimensional design space. Despite extensive optimization efforts (as described in
Sec. 3.2.1), no global optimum was found.

Minimax Sampling The minimax criterion is closely related to the maximin
criterion. In fact, given a set X = {x1, . . . , xm} ⊂ X of sample points, the minimax
criterion

ϕminimax(X) = max
x∈X

min
xi∈X

||x − xi|| (2.20)

is defined as the maximum distance that a point in the design space can have to its
nearest given sample point in X. A set of points

X∗ = arg min
X⊂X

max
x∈X

min
xi∈X

||x − xi|| = arg min
X⊂X

ϕminimax(X) (2.21)

that minimize the minimax criterion form an optimal minimax design. When
considering a Lipschitz-continuous function f that is to be approximated on the
design space by a model trained on samples of f taken at the sample points X,
then optimizing (2.21) is equal to minimizing the maximum Lipschitz error [59, 60]
(since the maximum distance an evaluation point can have to its closest sample
point is minimized). Hence the minimax design leaves smaller gaps between the
sample points on the design space [60] and places less samples on the boundary of
the design space than the maximin design [59]. Fig. 2.8 shows two minimax designs
on a two-dimensional design space with a different number of sample points. Note
that finding an optimal maximin design (even on a two-dimensional design space) is
challenging and practically intractable for higher dimensions or a large number of
points. However, finding an optimal minimax design is an even harder problem [59].

Centroidal Voronoi Tessellation Given a set of unique (discrete) points X =
{xi}m

i=1 ⊂ Rn (the generators) in an n-dimensional Euclidian space, the Voronoi
region Ri = {x ∈ Rn : ||x − xi|| ≤ ||x − xj || ∀j ∈ {1, . . . , m}\i} (also referred to
as Voronoi cell) associated with point xi contains all points in Rn that are closer
(by a distance measure, here the Euclidian distance) to xi than to any other point
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Figure 2.9: A Voronoi tessellation (left) and its clipped variant (right) with 9 points.
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Figure 2.10: Voronoi tessellation of 9 random sample points (left) and a CVT of size 9 (right).

in X [23, 61]. The Voronoi tessellation (or Voronoi diagram) is the set of Voronoi
regions {xi}m

i=1 corresponding to the generators X. In practice, usually only an
open bounded subset X ⊂ Rn of Rn is considered. Hence, all m Voronoi regions
Rclipped

i = {x ∈ X : ||x − xi|| ≤ ||x − xj || ∀j ∈ {1, . . . , m}\i} of the clipped Voronoi
diagram have a finite volume. Fig. 2.9 shows a Voronoi tessellation before and after
it was clipped to a bounding box.

A centroidal Voronoi tessellation (CVT) is a special variant of a Voronoi tessellation
where for each Voronoi region Ri the corresponding generator point xi is also the
mass centroid zi of the Voronoi region [62, 63], making it a space-filling design. The
mass centroid for the Voronoi region Ri is defined as

zi =
∫

Ri
xρ(x)dx∫
Ri

xdx
, (2.22)

where ρ(x) ≥ 0 is a probability density function that is defined on Ri [63, 64].
Many algorithms exist for efficient computation of the CVT for a given probability
density function, such as quasi-Newton-based methods, conjugate gradient-based
methods, Lloyd’s method, and MacQueen’s algorithm [61, 62]. Note that a CVT for
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Figure 2.11: Two Latin hypercube designs with 9 samples (correlated design on the left and a

random design on the right) on a two-dimensional design space. The gray grid marks
the discretization levels, and the dashed black cross illustrates that there is exactly one
sample point located in each row and column (or generally axis-aligned hyperplane).
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Figure 2.12: OLHS with 16 samples on the left and 49 samples on the right on a two-dimensional

design space. The enhanced stochastic evolutionary (ESE) algorithm [65] was used along
with the maximin criterion to compute the optimal LHs, as described in Sec. 3.2.1.

a given probability density function is in general not unique [64]. Examples for a
(non-centroidal) Voronoi tessellation and a CVT are shown in Fig. 2.10.

Latin Hypercube Sampling Latin hypercube sampling (LHS) is a popular method
for generating sample points that form a Latin hypercube. A Latin hypercube (LH)
is constructed by discretizing each dimension of an n-dimensional design space
into m equidistant levels and placing m samples on the resulting n-dimensional
grid such that there is exactly one sample point contained in each axis-aligned
hyperplane [21] as shown in Fig. 2.11. Hence, the LH is composed of points that are
unique in each dimension, making it a non-collapsing design (which implies good
projective properties) [15, 21, 27]. When projecting an n-dimensional LH onto an
(n−1)-dimensional space along one axis, no points ever coincide [21, 27].
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Design space X , m = M0,
initial sample points X = {xl}M0
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Figure 2.13: General procedure of sequential sampling for global metamodeling.

However, LHs are not guaranteed to have good space-filling properties, especially
when they are randomly generated [21, 27]. Optimal Latin hypercube sampling
(OLHS) generates an optimal LH w.r.t. a space-filling criterion (such as e.g., the
maximin criterion in 2.2.1) by means of global optimization techniques. Even for
a small number of samples OLHS guarantees a good coverage of the design space
[21, 66]. Fig. 2.12 shows optimal LHs for different numbers of samples. Since it is
computationally demanding to generate optimal LHs many near-optimal solutions
have been researched [66]. It is worth noticing that LHs do not degenerate for a large
number n of dimensions which means that they keep their properties for large n and
do not suffer from the curse of dimensionality (as many other methods do) [18].

2.2.2 Space-filling Sequential Sampling

One-shot designs like the ones in Sec. 2.2.1 provide an optimal distribution of sample
points on the design space according to some sampling criterion (e.g., the maximin
criterion) or deterministic procedure (e.g., Hammersley sampling). However, the
optimization required can be complex and computationally demanding [27, 59]. In
addition, one-shot designs need the total number M of sample points to be known
a priori which can result in gathering too many or too few samples (oversampling
/ undersampling) [23]. In contrast, sequential sampling iteratively determines one
(or multiple) next sample point(s) taking into account the existing sample points
X = {xl}m

l=1. Hence, just like the one-shot approaches, they can be computed prior
to the first evaluation of the black-box function. However, unlike one-shot designs,
they allow to easily add more sample points to the existing design if required [23]
(e.g., until a termination condition is satisfied) as illustrated in Fig. 2.13. To start
the sequential sampling procedure, at least M0 initial sample points are required
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Figure 2.14: Two sequential maximin designs with 16 sample points initialized with different initial

sample points (surrounded by circle). This illustrates the impact of the choice of the
initial sample point on the resulting sequential design.

depending on the method used. The methods considered in this thesis (except of
random sampling) require at least one initial sample point (M0 ≥ 1). In addition,
one next sample point is determined in each iteration of the sequential sampling
algorithm. Fig. 2.14 shows two sequential designs that were generated using the same
space-filling sequential criterion but varying initial sample points. This illustrates
how significantly the choice of the initial sample point affects the resulting design.
Note, however, that there is no general way for selecting the initial sample point(s).
The following sections present the space-filling sequential sampling methods relevant
to this work.

Random Sampling Random sampling randomly selects sample points on the
design space according to a probability distribution. In the context of space-filling
designs samples are drawn from the uniform distribution. Hence, in contrast to other
sequential space-filling sampling methods, the choice of the next sample point does
not depend on the existing sample points [21]. As shown in Fig. 2.15, this leads to
poor space-filling properties (uneven coverage of the design space). Especially for a
small number of samples, several samples may be located close to each other while
leaving big gaps in the design space [21, 23].

Sequential Maximin Sampling Sequential maximin sampling uses a sequential
formulation of the maximin criterion in Sec. 2.2.1. Instead of considering the distances
between all existing sample points, the sequential maximin criterion

φmaximin(x) = min
xi∈X

||x − xi|| (2.23)

computes the minimum distance of the point x to its nearest existing sample point.
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Figure 2.15: Sequential random sampling of 16 samples on the left and 49 samples on the right.
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Figure 2.16: Sequential maximin designs of 16 samples on the left and 49 samples on the right.

The point on the design space that maximizes (2.23) is in each iteration selected as
the next sample point

xm+1 = arg max
x∈X

min
xi∈X

||x − xi|| = arg max
x∈X

φmaximin(x) (2.24)

and added to the existing samples. Examples for sequential maximin designs are
shown in Fig. 2.16.

Voronoi Sampling In Voronoi sampling (VS) a Voronoi tessellation (as defined in
2.2.1) is constructed on the existing sample points X = {xl}m

l=1. The hypervolume
v[j] of the jth Voronoi region (the Voronoi region associated with the jth existing
sample point) is used as cell selection criterion

SVS(j) = v[j] , (2.25)
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Figure 2.17: The polygons (black lines) represent the Voronoi cells constructed based on the existing

sample points. The selected cell (the cell with the largest hypervolume) is hatched.
The vertex of the selected cell that is farthest from the corresponding existing sample
point xj∗ is selected as the next sample point xm+1.

where v are the hypervolumes of the Voronoi regions and j ∈ {1, . . . , m} is the index
of the Voronoi region [21]. Taking the maximum of the cell selection criterion in
(2.25) yields the index

j∗ = arg max
j

SVS(j) (2.26)

of the Voronoi region that is largest by hypervolume. As illustrated in Fig. 2.17, the
vertex of the Voronoi region Rj∗ that is farthest from the existing sample point xj∗

associated with Rj∗ is then selected as the next sample point xm+1 [21]. Fig. 2.18
shows two space-filling designs with different numbers of samples generated by
Voronoi sampling.

2.2.3 Adaptive Sampling

Adaptive sampling methods (also called sequential designs [23] or active learning
[21]) sequentially determine one or multiple next sample points based on the existing
samples or metamodel. In contrast to space-filling sequential sampling methods that
try to spread samples as evenly as possible over the entire design space, adaptive
sampling bases its suggestion for the next sample point on the existing knowledge
about the black-box function. In this way, the information per sample about the
course of the black-box function on the design space should be maximized [21].

Since initially no information about the black-box function is available, a space-filling
initial design D0 = {xl, yl}M0

l=1 is first created to cover the design space X as evenly
as possible [15, 27]. This is done by first determining M0 initial sample points using
a space-filling sampling scheme (e.g., one described in Sec. 2.2.1 or Sec. 2.2.2) at
which the black-box function f is evaluated. The metamodel f̂ is trained for the first
time on the complete initial design D0. It has been shown that the more evenly the
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Figure 2.18: Two space-filling designs with 16 samples on the left and 49 samples on the right,

generated by sequential Voronoi sampling. The polygons (black lines) represent the
Voronoi cells.

points are distributed, the lower the expected model error becomes [16, 23]. Thus,
the better the initial design gathers information from all regions of the design space,
the better the adaptive algorithm can subsequently place samples at points of interest
w.r.t. the criterion used, thereby reducing the uncertainty of the model.

The initial design and metamodel are used to warm-start the adaptive sampling
algorithm. Then, until a termination criterion (e.g., maximum number of iterations,
estimated model accuracy, available budget) is met, the following steps are repeated
in each iteration i of the algorithm:

• determine the next sample point xm+1 using some criterion

• evaluate the black-box function f at xm+1 and obtain ym+1

• add the new data to design Di+1 = Di ∪ {xm+1, ym+1}

• train the metamodel f̂ on the current data set Di+1.

Fig. 2.19 shows the general procedure of adaptive sampling for global metamodeling.

The resulting adaptive design is significantly dependent on the sampling criterion
used, since it determines the choice of the next sample point in each iteration of the
algorithm. A sampling criterion φ : X → R (also called acquisition function) maps
the design space X to the real line and indicates how interesting a point is in the
design space. Consequently, the point xm+1 = arg maxx∈X φ(x) on the design space
that maximizes the sampling criterion is selected as the next sample point. Fig. 2.20
illustrates how the next sample point is selected by optimization of a sampling
criterion on the design space.
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Figure 2.19: General procedure of adaptive sampling for global metamodeling.

Adaptive sampling methods need to perform a trade-off between exploration and
exploitation [27, 36], where exploitation increases the local model accuracy and
exploration ensures that no relevant regions of the design space are omitted. Numerous
distance-, variance-, gradient-, and cross-validation-based exploration and exploitation
strategies have been researched [15]. However, there is no general solution to how the
trade-off between exploration and exploitation is realized. Most adaptive sampling
criteria are mathematically formulated to inherently execute a trade-off between
exploration and exploitation. One way to do this is to combine an exploratory term
and an exploitative term into one criterion in the form of a weighted sum. Some
more advanced methods formulate the weights as a function of the iteration of the
algorithm, thus allowing a smooth transition from exploration to exploitation as the
number of samples increases or switching between exploration and exploitation at
certain intervals [15].

The criteria can also be differentiated according to the type of exploitation. In global
metamodeling, the black-box function should be reconstructed on the entire design
space, while in global optimization the optimum of the black-box function is to be
localized as precisely as possible [15, 25]. Adaptive sampling methods for global
optimization of black-box functions, in which a GP is used as a metamodel, are
known as Bayesian optimization (BO) [25, 26]. The most popular sampling criteria
in the context of BO are probability of improvement (PI), expected improvement
(EI), upper confidence bound (UCB), and extensions of these, such as expected
improvement global fit (EIGF) [25, 26, 40, 67]. Besides BO, GPs are by far the most
commonly used metamodel in the field of global metamodeling (including geostatistics
and environmental sensing) [15, 17, 68] and are also used as a metamodel in this
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Figure 2.20: Initial and adaptive design shown on a sampling criterion φ(x). As indicated in the

figure, the maximizer of the criterion is selected as next sample point.

thesis. The following paragraphs introduce the adaptive sampling criteria relevant to
this thesis.

Maximum Variance and Maximum Mean Squared Error Criteria In many
applications, sample points are selected such that they maximize the information
collected [16]. In the case of GPs, this can be achieved by the maximum variance
(MV) criterion

φMV(x) = σ̂2(x) , (2.27)

which corresponds to the predictive variance σ̂2 of the GP and thus also to the
maximum entropy criterion [24]. The predictive standard deviation σ̂ of a GP is also
known as the mean squared error (MSE) [16, 69]. Hence the maximum mean squared
error (MMSE) criterion φMMSE(x) = σ̂(x) and the MV criterion yield identical
adaptive sample points.

Integrated Mean Squared Error Criterion The integrated mean squared error
(IMSE) is defined as the integral of the MSE over the entire design space (IMSE =∫

X σ̂(x)dx) and often serves as a measure for overall model performance [69, 70]. In
adaptive sampling, the IMSE criterion

φIMSE(x) =
∫

X
σ̂Di(ν)dν −

∫
X

σ̂Di∪{x}(ν)dν (2.28)

indicates how much the IMSE of the model trained on the current design Di is
reduced by the addition of the sample point x [16, 24]. In contrast to the MMSE
criterion, which selects the maximizer of the MSE as next sample point and hence
minimizes the worst cast error, the IMSE criterion maximizes the average model
performance. To evaluate the IMSE criterion for a point x, two computationally
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Figure 2.21: The space-filling initial design (16 points) and the adaptive sample points (33 points)

generated based on the MV criterion are shown on the black-box function (left) and the
MV criterion (right), where the MV criterion was evaluated on the GP that was trained
on all initial and adaptive sample points. As indicated in the figure, the maximizer of
the criterion is selected as next sample point.

expensive steps are required. The model has to be conditioned w.r.t. Di ∪ {x} (the
model parameters have to be adjusted) and the MSE must be integrated over the
entire design space. The global optimization of the IMSE criterion to determine the
next sample point requires a large number of evaluations of the IMSE criterion.
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Figure 2.22: The space-filling initial design (16 points) and the adaptive sample points (33 points)

generated based on the IMSE criterion are shown on the black-box function (left) and
the IMSE criterion (right), where the IMSE criterion was evaluated on the GP that
was trained on all initial and adaptive sample points. The maximizer of the criterion
is selected as next sample point.
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Figure 2.23: The space-filling initial design (16 points) and the adaptive sample points (33 points)

generated based on the CVV criterion are shown on the black-box function (left) and
the Voronoi tessellation constructed on the existing sample points (right). Each Voronoi
cell is colored according to the corresponding value of the CVV criterion. The selected
Voronoi cell is indicated by hatching and its vertex that is farthest from the associated
existing sample point is selected as next sample point.

Cross-validation Voronoi Criterion Some adaptive sampling methods use
Voronoi diagrams to determine the next sample point. To do this, a Voronoi diagram
is first constructed on the existing sample points (just as for Voronoi sampling in
Sec. 2.2.2), which is clipped to the design space as described in CVT in Sec. 2.2.1.
Instead of a continuous sampling criterion, a cell selection criterion S : j → R is used
that maps the index of the respective Voronoi cell to the real line. Then the cell
j∗ = arg maxj S(j) that maximizes the selection criterion is selected and the vertex
of the selected cell which is farthest from the corresponding existing sample point xj∗

is used as the next sample point xm+1. In the leave-one-out cross-validation Voronoi
(CVV) approach [36], the cell selection criterion

SCVV(j) =
∣∣∣f̂−j(xj) − f̂(xj)

∣∣∣ (2.29)

is defined as the leave-one-out cross-validation error of the metamodel, where xj is
the sample point associated with the jth cell, f̂ is the metamodel trained on the
current design Di, and f̂−j is the metamodel trained on the current design leaving
out the sample of the jth Voronoi cell Di \ {xj , yj}.
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CHAPTER3
Space-filling Designs for Environmental
Sensing

Space-filling designs play a central role in global metamodeling as they guarantee
information about the black-box function is collected from all regions of the design
space [15, 16]. Coverage of the entire design space is particularly relevant when no
information about the course of the black-box function is available [21, 27]. In this
case, the more uniformly the sample points are distributed in the design space, the
lower the expected global model error [21]. To do this, space-filling sampling methods
must reliably identify the region in the design space with the lowest density of
sample points [21]. Numerous mathematical formulations for describing space-filling
properties as well as the resulting sequential and one-shot sampling methods for
generating space-filling designs (such as the ones in Sec. 2.2.1 and Sec. 2.2.2) can be
found in the literature and continue to be the subject of current research.

Global metamodeling is often used to replace an expensive simulator (e.g., numerical
simulation [18]) or a physical experiment (e.g., wind tunnel testing [17]) with an
easy to evaluate metamodel [15, 27, 71]. Applications in this context mostly have a
high-dimensional mixed-domain design space and the black-box function is highly
nonlinear or even discontinuous [27]. Therefore, in addition to good space-filling
properties (e.g., measured via discrepancy [52]), other properties such as a large
projected distance, a large intersite distance, or orthogonality of the design are
desirable [27]. The projected distance dproj = minl∈{1,...,n} |xi[l] − xj [l]| between the
points xi, xj is the minimum distance between the two points along any dimension
of the design space [27], where x[l] is the l-th element of x. Hence, it defines the
minimum distance between the points xi, xj when projected from an n-dimensional
to an (n−1)-dimensional design space along any axis. A design with a large minimal
projected distance (a large projected distance between any two points of the design)
is said to have good projected properties.

Latin hypercubes provide good projective properties by definition (refer to Sec. 2.2.1
for the definition of the Latin hypercube) and good space-filling properties when
optimized using a space-filling criterion [27, 65, 72]. In addition, they scale well
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to high-dimensional design spaces which makes them one of the most widely used
space-filling designs [18]. The requirement for good projective properties is based
on the assumption that there are regions in the design space where a variation of
a parameter (displacement of a point x along one axis in the design space) does
not (or only slightly) result in a change of the black-box function [27]. Sample
points that only differ in the dimension of such a parameter would lead to redundant
evaluations of the black-box function [18, 72]. Since an evaluation of the black-box
function is expensive and therefore the maximum information about the black-box
function should be obtained per evaluation, sample points are generally preferred
whose coordinates differ in all spatial directions.

However, environmental sensing differs significantly from applications such as com-
puter simulations or complex physical experiments in terms of prerequisites. The
design space is the location space. Hence, it is low-dimensional (usually two- or
three-dimensional) and all dimensions are continuous and have the same scale [30,
73]. The black-box function is assumed to be Lipschitz continuous (e.g., a concentra-
tion distribution resulting from diffusion processes) and its variations depend on all
dimensions of the design space [28, 29] which questions the need for good projective
properties. Rather, it raises the question of which space-filling sampling methods
provide the best results under the aforementioned circumstances.

In this chapter, we investigate space-filling sampling methods for global metamodeling
of Lipschitz-continuous black-box functions on low-dimensional continuous design
spaces. Based on considerations of model error, we derive three novel space-filling
sampling methods in Sec. 3.1, one involving a modification of the maximin criterion.
For each of our novel criteria we formulate a variant for one-shot as well as for
sequential sampling. We evaluate our methods through extensive simulation and
compare their performance to existing space-filling sampling methods in terms of
global model error in Sec. 3.2.

3.1 Novel Space-filling Sampling Criteria for Lipschitz-
continuous Black-box Functions

In this section, we derive three novel space-filling criteria for global metamodeling of
black-box functions f : X → R on a low-dimensional continuous design space X ⊂ Rn

(e.g., X = [0, 1]2), where n is the number of dimensions. We assume the black-box
function f to be Lipschitz continuous on X which implies that there exists an L > 0
such that |f(xi) − f(xj)| ≤ L||xi − xj || ∀xi, xj ∈ X . A metamodel f̂ : X → R is
trained on error-free evaluations yl = f(xl) ∈ R of the black-box function at sample
points X = {xl}m

l=1. The goal is to find space-filling sample points that minimize the
expected global model error.
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Pronzato et al. [59] motivate the minimax design for approximation of Lipschitz
continuous functions. Based on the fact that the one-shot minimax criterion ϕminimax

in (2.20) is defined as the maximum distance a point on the design space can have
to its closest existing sample point, they conclude that the maximum model error

max
x∈X

|f(x) − f(xi∗(x))| ≤ L max
x∈X

||x − xi∗(x)|| = Lϕminimax(X) (3.1)

with i∗(x) = arg min
i∈{1,...,m}

||x − xi||

is proportional to the minimax criterion. Hence, minimizing the minimax criterion
also minimizes the upper limit for the maximum model error [59].

However, there are several difficulties associated with the minimax design. On the
one hand, it is extremely difficult to compute [59]. Even for a small number of sample
points in a low-dimensional design space, a (near-)optimal design is usually not found.
On the other hand, the overall model performance is usually evaluated based on
the global model error in global metamodeling, not the maximum possible model
error. Numerous works in the field, such as [15, 17, 21, 23, 68, 74], have employed
the global error between the true function and the metamodel (mean absolute error,
mean squared error, (normalized) root mean squared error) on the design space for
evaluation.

Another widely used method is to minimize the integral of the predictive standard
deviation

∫
X σ̂(x)dx over the design space of a linear model (usually GPs / Kriging)

conditioned on the sample points w.r.t. the sample points to determine the optimal
design (cf. IMSE criterion in Sec. 2.2.3) [24, 65, 72]. However, this entails difficulties:
the design is significantly dependent on the hyperparameters of the kernel function
[65], and it is unclear how these must be selected. Second, it is often argued that the
hyperparameters are independent of the samples [59]. However, this is only correct if
the hyperparameters are specified independently of the samples. In fact, however, the
hyperparameters are usually optimized as described in Sec. 2.1 based on the existing
samples [38]. The optimal hyperparameters are then dependent on the samples
and thus also the choice of the sample points, if the predictive standard deviation
is used to determine the design. In addition, a sufficiently accurate estimation
of the hyperparameters requires a minimum number of samples (while in case of
an one-shot design no samples exist initially that could be used to determine the
hyperparameters).

In Sec. 3.1.1 and Sec. 3.1.2, space-filling sampling criteria are derived based on
global error measures. In addition, in Section Sec. 3.1.3, the maximin criterion is
modified such that no sample points fall on the boundary of the design space and
the properties of a minimax design are approximated. Finally, Sec. 3.1.4 defines
a modified version of RGS with no sample points on the boundary, motivated by
literature as well as by Sec. 3.1.1, Sec. 3.1.2.
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Figure 3.1: One-shot (left) and sequential (right) MD design of size 7. The distribution of the

sequential samples is highly dependent on the initial sample point.

3.1.1 Mean Distance Criterion

Let the black-box function and the metamodel be Lipschitz continuous. Let there
be an L > 0 (Lipschitz constant) such that |f(xi) − f(xj)| ≤ L||xi − xj || and
|f̂(xi) − f̂(xj)| ≤ L||xi − xj || ∀xi, xj ∈ X . Then for any x ∈ X the absolute error

|f(x) − f̂(x)| ≤ 2L min
xi∈X

||x − xi|| (3.2)

between the black-box function and the metamodel will in the worst case be the
distance between x and its closest existing sample point scaled by twice the Lipschitz
constant. The factor of two arises since the variations of the black-box function and
the metamodel evolve in opposite directions in the worst case with maximum rate of
change. By integrating the absolute model error in (3.2) over the entire design space,
we obtain the mean absolute error (MAE)∫

X
|f(x) − f̂(x)|dx ≤ 2L

∫
X

min
xi∈X

||x − xi||dx (3.3)

as a measure of global model performance. It follows that minimizing the integral
over the distance from each point in the design space to the nearest exiting sample
point minimizes the upper bound for the MAE. On this basis, we define the mean
distance (MD) criterion

ϕMD(X) =
∫

X
min
xi∈X

||x − xi||dx (3.4)

as the integral of the distance from each point x in the design space to its nearest
point in X. The optimal one-shot MD design is obtained by optimization of the MD
criterion in (3.4). A sequential version of the MD criterion

φMD(x) =
∫

X
min

xi∈X∪{x}
||u − xi||du (3.5)
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Figure 3.2: One-shot (left) and sequential (right) RMSD design of size 7. The distribution of the

sequential samples is highly dependent on the initial sample point.

can be formulated by fixing the existing sample points X and optimizing the criterion
w.r.t. the location of the next sample point x only. Fig. 3.1 shows examples for an
one-shot and a sequential MD design.

3.1.2 Root Mean Squared Distance Criterion

In analogy to the considerations in Sec. 3.1.1, we aim to employ the root mean
squared error (RMSE) √∫

X
(f(x) − f̂(x))2dx (3.6)

in this section as the foundation for establishing space-filling sampling criteria. To
do so, we first square the absolute model error in (3.2)

|f(x) − f̂(x)|2 = (f(x) − f̂(x))2 ≤ 4L2(min
xi∈X

||x − xi||)2 (3.7)

to get the inner term of the RMSE in (3.6). Substituting the inequality in (3.7) into
the RMSE in (3.6)√∫

X
(f(x) − f̂(x))2dx ≤ 2L

√∫
X

(min
xi∈X

||x − xi||)2dx (3.8)

we obtain an upper bound for the RMSE, depending on the location of the sample
points in the design space.

On this basis we define the root mean squared distance (RMSD) criterion

ϕRMSD(X) =
√∫

X
(min
xi∈X

||x − xi||)2dx (3.9)
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as the integral of the root mean squared distance of all points x on the design space
to their nearest existing sample point in X. As with all one-shot criteria, the optimal
one-shot RMSD design is obtained by optimizing the RMSD criterion in (3.9) w.r.t.
the locations of the sample points X. A sequential version of the RMSD criterion

φRMSD(x) =

√√√√∫
X

(
min

xi∈X∪{x}
||u − xi||

)2

du (3.10)

can be formulated by fixing the existing sample points X and optimizing the criterion
w.r.t. the location of the next sample point x only. Fig. 3.2 shows examples for an
one-shot and a sequential RMSD design.

Remark. For implementation, the integral contained in the MD and RMSD criterion
can be approximated using Monte Carlo integration in low-dimensional design
spaces. As the dimensionality of the design space increases, Monte Carlo integration
suffers from the cause of dimensionality, which makes the evaluation of the integral
computationally intensive. In addition, the integral improves the robustness and
efficiency of the global optimization of the one-shot designs because, unlike minimax
and maximin based criteria, a gradient can be used for local search.

3.1.3 Modified Maximin Criterion

The maximin design described in Sec. 2.2.1 is one of the most widely used space-
filling designs. Since the maximin criterion maximizes the minimum distance between
sample points, more sample points are placed on the boundary of the design space
than in the minimax design [59, 75]. This results in larger gaps in the design space
[60], leading to a larger possible model error for the maximin design than for the
minimax design, as shown in (3.2). Intuitively, this can be explained by the fact that
due to the limited rate of change of f , a sample approximates the function value of f

well near the sample point and the approximation decreases with distance from the
sample point. Thus, when sample points are on the boundary of the design space,
regions where the sample provides a good representation of the actual function value
lie outside the design space and the resulting larger gaps between sample points
within the design space increase the upper bound for the model error there.

The MD and RMSD criteria intrinsically account for this by integrating distance
measures over the design space, yielding an even distribution of sample points with
no sample point on or close to the boundary, as shown in Fig. 3.1 and Fig. 3.2. We
define the modified maximin (mod. maximin) criterion

ϕmod. maximin(X) = min
(

min
xi,xj∈X

i ̸=j

||xi − xj ||, 2 min
xi∈X

||xi − b∗(xi)||
)

(3.11)
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Figure 3.3: One-shot (left) and sequential (right) mod. maximin design of size 7. The distribution

of the sequential samples is highly dependent on the initial sample point.

which takes into account the distance to the boundary ∂X of the design space in addi-
tion to the distance between the sample points, where b∗(xi) = arg minx∈∂X ||x − xi||
is the point in ∂X that is closest to xi.

This ensures that the mod. maximin design exhibits the space-filling characteristics
of the maximin design while avoiding the placement of points on or near the boundary
of the design space. Thus, the modified maximin criterion combines properties of the
MD criterion and the maximin criterion. In addition, the mod. maximin criterion
can be considered an approximation to the minimax criterion. This is because the
maximin and minimax designs are related as described in Sec. 2.2.1. In fact, an
inward-shifted maximin design can serve as a good approximation of a minimax
design [59]. Unlike the minimax design, however, the mod. maximin design no longer
contains points near the boundary of the design space. A sequential version of the
mod. maximin criterion

φmod. maximin(x) = min
(
min
xi∈X

||x − xi||, 2 min
b∈∂X

||x − b||
)

(3.12)

can be formulated by fixing the existing sample points X and considering the distances
between the location of the next sample point x and the existing samples as well as
the boundary only. Fig. 3.3 shows examples for an one-shot and a sequential mod.
maximin design.

3.1.4 Modified Regular Grid Sampling

As introduced in Sec. 2.2.1, RGS maximizes the intersite distance between the
sample points while providing an even distribution of space-filling sample points [27].
However, it contains a large number of sample points on the boundary of the design
space which negatively impacts the expected global model error, as discussed for
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Figure 3.4: Mod. RGS (left) and RGS (right) with 16 sample points.

the maximin design in Sec. 3.1.3. Following the same reasoning as in Sec. 3.1.3, we
define modified regular grid sampling (mod. RGS) as an inward shifted variant of
RGS, where the distance between the lowest and highest level to the bounds is half
the distance between the equally spaced levels in each dimension of the design space.
This results in a more even occupancy of the design space. Each sample point of the
mod. RGS design represents the same proportion of the design space, which is not
true for the RGS design. If the design space is an n-dimensional hypercube (a square
in 2d), then in the RGS design each sample point in the corner of the design space
represents a 2−nth of the proportion and each sample point on the sides represents a
2−n+1th of the proportion occupied by an inner sample point. A mod. RGS and a
RGS design are shown in Fig. 3.4.

3.2 Evaluation

In this section our novel space-filling criteria MD, RMSD, and mod. maximin
introduced in Sec. 3.1.1 – Sec. 3.1.4 are evaluated against state-of-the-art literature
described in Sec. 2.2.1 and Sec. 2.2.2. First the experimental setup is described
in Sec. 3.2.1. Then the properties of the MD and RMSD designs are analyzed in
Sec. 3.2.2 and an intensive numerical comparison to literature methods is provided
in Sec. 3.2.3.

3.2.1 Experimental Setup

For evaluation, the space-filling designs from this chapter and the literature methods
from Sec. 2.2.1 – Sec. 2.2.2 were computed for the design space X = [0, 1] × [0, 1].
The one-shot designs were computed as follows:
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CVT: To calculate the CVT, the class CVTSampling of the Python package
IDAES [76] was used, which uses McQueens algorithm to optimize the CVT.

LHS: The implementation of the enhanced stochastic evolutionary (ESE) al-
gorithm [72] of the Python surrogate modeling toolbox (SMT) [77] was used
along with the maximin criterion for OLHS.

Hammersley: The implementation of the Python package Scikit-Optimize [78]
was used for Hammersley sampling.

One-shot designs based on criteria: One-shot designs were generated by
optimizing the criteria through the genetic algorithm (GA) optimizer of the
Python package PyMOO [79] for a duration of 24 h per design and number
of sample points with subsequent local gradient-based optimization through
the L-BFGS-B algorithm of Python package SciPy [80]. In addition, local
optimizations were performed, each starting from 250 randomly generated
initial distributions of sample points. The best design w.r.t. the criterion of the
two approaches was then selected.

Sequential designs that include optimization of a sequential sampling criterion for
computation of the next sample point in each iteration of the algorithm were treated
differently based on their numerical properties. The maximin and mod. maximin
criteria were first evaluated on a grid of 104 candidate points. Then, the best candidate
point was used as starting point for a local gradient-based optimization. Since the MD
and RMSD criterion require the computation of an integral they are computationally
more expensive to evaluate. Hence, each vertex of a Voronoi tessellation constructed
on the existing sample points was used as starting point for a local gradient-based
optimization (performing multiple gradient-based optimizations from varying starting
points is often referred to as n-starts optimization). Then, the best optimization
result was selected as next sample point. The integral over the distance measures
of the MD and RMSD criteria in (3.5) and (3.10) were approximated by means of
Monte Carlo integration using 2502 Hammersley sample points. The point [1

3 , 1
3 ] was

chosen as initial sample point of the sequential designs.

All designs were computed for different numbers of samples and used to evalu-
ate N runs = 100 randomly generated black-box functions fq, q ∈ {1, . . . , N runs}.
Deterministic evaluations (no sampling noise) of the black-box functions were per-
formed. Each of the black-box functions was modeled as weighted sum of ten squared
exponential functions

fq(x) =
10∑

t=1
wt · e− 1

2 (x−x̄t)⊤S−1
t (x−x̄t) , (3.13)

where wt ∈ [0, 1] are uniformly distributed random weights, the locations of the
squared exponentials x̄t ∈ X are uniformly distributed on the design space X , and
St are covariance matrices (positive semidefinite, and symmetric matrices with non-
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Figure 3.5: One-shot and sequential MD and RMSD designs for different numbers m of sample

points in square.

negative diagonal elements). The covariance matrices were generated by rotating a
diagonal matrix with uniformly distributed random entries between [0.001, 0.01] by a
uniformly distributed random angle using a rotation matrix. This resulted in smooth
distributions that could already be well approximated with 100 samples. A GP
with an SE kernel was used as a metamodel and the hyperparameters of the kernel
were obtained by optimizing the log marginal likelihood as described in Sec. 2.1.
To evaluate the accuracy of the metamodel, the design space X was discretized
into X eval ⊂ X by means of a 100 by 100 mod. RGS, resulting in N eval = 10, 000
evaluation points xη∈X eval, η = 1, . . . , N eval. Based on the evaluation points, the
normalized root-mean-square error

NRMSE =

√
1

Neval
∑Neval

η=1

(
f̂(xη) − f(xη)

)2

fmax − fmin
(3.14)

and the normalized mean absolute error

NMAE =
1

Neval
∑Neval

η=1

∣∣∣f̂(xη) − f(xη)
∣∣∣

fmax − fmin
(3.15)
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Figure 3.6: One-shot MD and RMSD designs for different numbers m of sample points in square.

were computed as a measure for the overall error between the black-box function
and the metamodel, where fmax = max

η
f(xη) and fmin = min

η
f(xη).

3.2.2 Properties of the MD and RMSD Designs

In this section we investigate the properties of space-filling designs based on the
MD and RMSD criteria introduced in Sec. 3.1.1 and Sec. 3.1.2. Specifically, we
compare the distribution of sample points on the design space and compare the
resulting model error. Since the MD and RMSD criteria have been derived based on
different error measures (MAE and RMSE), we evaluate whether this is reflected in
the error measures used to evaluate the global model error of the metamodel trained
on samples of the black-box function, taken at sample points generated by means of
the criteria.

Fig. 3.5 shows the one-shot and sequential MD and RMSD designs for the square
numbers from 9 to 36 of sample points. Interestingly, the One-shot MD and RMSD
designs are identical except for minor numerical differences (varying termination of
the local gradient-based optimization close to the optimum). For a number of m = 9
sample points, the design forms a mod. RGS, while for m ∈ {16, 25, 36}, the designs
look like mod. RGS, where every second row of points is parallel and slightly shifted
relative to the other parallel rows (or columns, since the value of the criterion is
invariant to transposition of the design on a square). Hence the characteristics of the
one-shot MD and RMSD designs are similar to mod. RGS. In contrast to mod. RGS,
the one-shot MD and RMSD designs can be computed for any number of samples
and are not limited to a number of samples that can form a grid (square numbers in
2d), as shown in Fig. 3.6 for m ∈ {5, 6, 7, 8}.
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Figure 3.7: Existing (Hammersley) sample points and next sequential sample point on top of the

sequential MD and RMSD criteria (high values are represented by yellow and low values
by purple) evaluated using the existing sample points. The next sample point is located
at the maximum of the respective criterion.

The sequential designs in Fig. 3.5 differ for the MD and RMSD criterion. However,
their distribution of sample points is similar. This results from the sequential MD
and RMSD criteria having similar characteristics, which is illustrated in Fig. 3.7 and
Fig. 3.8. When the existing samples are evenly distributed across the design space
(Fig. 3.7), the maxima of the two criteria are located very close to each other. In
case of unevenly distributed sample points, such as randomly generated points that
leave gaps in the design space and cluster in other parts, the criteria still have the
same characteristics but take the maximum value at different points in the design
space, as shown in Fig. 3.8.

Fig. 3.9 shows the mean NMAE and RMSE of the one-shot and sequential MD and
RMSD designs over all N runs = 100 random black-box functions versus the number
of sample points. For both error measures, the curves of the sequential designs and
the one-shot designs are nearly identical, respectively. Accordingly, no difference
in the performance of the MD and RMSD criteria can be found for the two error
measures. However, it is noticeable that the difference between the sequential and
one-shot designs is larger for the NRMSE than for the NMAE. For the NMAE the
sequential designs are even slightly below the one-shot designs for a small number of
sample points. In general, the one-shot designs lead to smaller model errors, which
is due to the global optimization of all sample points. Since the MD and RMSD
designs yield the same performance we will use only the MD design in the following
sections for better clarity. In addition, we will only use the NRMSE to evaluate the
model error in the remainder of the thesis.
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Figure 3.8: Existing (randomly generated) sample points and next sequential sample point on top

of the sequential MD and RMSD criteria (high values are represented by yellow and low
values by purple) evaluated using the existing sample points. The next sample point is
located at the maximum of the respective criterion.

3.2.3 Numerical Comparison to Literature Methods

In this section, we compare the performance of the sequential MD, mod. maximin,
and mod. RGS designs from Sec. 3.1 with the literature methods from Sec. 2.2.
To limit the number of curves per figure, Fig. 3.10 and Fig. 3.11 first compare the
one-shot and sequential designs from the literature in terms of NRMSE. The best
literature methods are then compared with the MD and mod. maximin designs in
Fig. 3.13 and Fig. 3.14.

In Fig. 3.10, CVT, LHS, minimax design, RGS, Hammersley sampling, maximin
design, and RGS are evaluated. It should be noted that despite the extensive global
optimization of the designs (except Hammersley sampling, RGS, and mod. RGS,
as these are constructed) it cannot be guaranteed that a global optimum has been
found. This is especially true for the minimax design, which is visibly suboptimal
even for m = 16 sample points and can no longer be meaningfully used for evaluation
for m > 25 sample points.

In the sequential designs in Fig. 3.11, random sampling is outperformed by sequential
maximin and sequential Voronoi. Sequential maximin and sequential Voronoi yield
almost identical results. Therefore, only sequential maximin is used in the further
course of the evaluation.

When comparing the one-shot designs from the literature with the MD, mod. maximin,
and mod. RGS in Fig. 3.13, the NRMSE of mod. maximin and LHS show an almost
identical course. For a few sample points, mod. maximin is slightly below LHS. In
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Figure 3.9: The mean of the error measures NMAE and NRMSE over N runs = 100 randomly

generated black-box functions versus the number of sample points.

the range of 36 ≤ m ≤ 64, mod. maximin and LHS are close to each other and for
m > 64 mod. maximin diverges upward. This is because as the number of sample
points increases, no optimum was found in the global optimization and no sufficient
local optimum was found. For illustration, mod. maximin designs for 36 and 81
sample points are shown in Fig. 3.12. It can be easily seen that with a larger number
of sample points, gaps appear in the design space and thus uniform coverage by
sample points is no longer guaranteed. The One-shot MD design and mod. RGS
provide an almost identical NRMSE in Fig. 3.13 and outperform both mod. maximin
as well as LHS.

The sequential MD and mod. maximin designs also yield an almost identical NRMSE
and outperform the sequential maximin design, as shown in Fig. 3.14.

3.3 Summary

In this chapter, we presented three novel space-filling designs that minimize the
expected global model error when approximating a Lipschitz-continuous black-box
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Figure 3.10: The mean of the NRMSE over N runs = 100 randomly generated black-box functions of

space-filling one-shot designs from the literature versus the number of samples.
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Figure 3.11: The mean of the NRMSE over N runs = 100 randomly generated black-box functions of

space-filling sequential designs from the literature versus the number of samples.
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Figure 3.12: Mod. maximin designs of size 36 (left) and 81 (right) that have been optimized as

described in Sec. 3.2.1. Both are suboptimal solutions to the global optimization
problem, with the solution getting worse as the number of sample points increases
(gaps in the design space due to an uneven distribution of sample points).
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Figure 3.13: The mean of the NRMSE over N runs = 100 randomly generated black-box functions of

the best space-filling one-shot designs from the literature and our novel one-shot MD
and mod. maximin designs versus the number of samples.
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Figure 3.14: The mean of the NRMSE over N runs = 100 randomly generated black-box functions of

the best space-filling sequential designs from the literature and our novel sequential
MD and mod. maximin designs versus the number of samples.

function by a metamodel when no information about the black-box function is known
and hence not considered for selection of the sample points. The MD and RMSD
criteria were derived using the MEA and RMSE, respectively, between the metamodel
and the black-box function. The mod. maximin criterion is a modification of the
widely used maximin criterion, in which the distance to the boundary of the design
space is taken into account and thus the disadvantages of the maximin design (points
on the boundary of the design space and consequently larger gaps between the sample
points in the design space) are prevented.

For all three criteria, both an one-shot and a sequential variant were defined. During
the simulative evaluation it was shown that the proposed criteria outperform the
methods commonly used in the literature. An exception is the mod. RGS, which
provides the same NRMSE as the one-shot MD and RMSD design. However, the
MD and RMSD design can be computed for any number of sample points, while the
mod. RGS requires that a grid can be constructed using the sample points. The
one-shot designs provide a smaller NRMSE between the model and the black-box
function due to the global optimization (or construction) of the space-filling design.

Interestingly, the mean errors for the MD and RMSD criteria are almost identical
regardless of the error measures NMAE and NRMSE used. Thus, the derivation
based on different error measures is not directly reflected in the distribution of sample
points. The minimax criterion is so challenging to optimize that no practically usable
design can be found even for a small number of sample points after excessive global
optimization. Global optimization of the other criteria cannot guarantee that an
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optimal design will be found as well – especially for a large number of sample points.
However, it has been found that the optimization of the MD and RMSD criteria
are more robust due to the integral included. More robust in the sense that a
homogeneous distribution in the design space is achieved even for a larger number
of sample points, although the design may only be a suboptimum of the global
optimization.
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CHAPTER4
Weighted Explorative Sampling Criteria
for Environmental Sensing

In this chapter we introduce a novel class of adaptive sampling criteria, specifically
designed for adaptive sampling of non-negative Lipschitz-continuous environmental
phenomena, such as concentration functions. In the following, the context of the
problem considered in this chapter is first explained, followed by a formal definition
of the problem in Sec. 4.1. Subsequently, our novel class of adaptive sampling criteria
is introduced in Sec. 4.2 and simulatively evaluated in Sec. 4.3.

In Chap. 3, we investigated space-filling designs for the approximation of Lipschitz-
continuous black-box functions. We assumed that no prior knowledge about the
black-box function is available, which is why we used space-filling designs that select
sample points without any information about the black-box function. The adaptive
sampling methods presented in Sec. 2.2.3 iteratively add new sample points to the
design, taking into account all available information about the black-box function to
select the next sample point (or the next sample points, if multiple sample points are
suggested per iteration [71]) [15, 21]. Since the choice of sample points in adaptive
sampling methods is based on prior knowledge about the black-box function, adaptive
sampling methods are usually warm-started with a space-filling initial design. As
the knowledge about the black-box function improves with each iteration of the
algorithm, the choice of sample points can also become more targeted as the number
of samples increases [21]. In this way, adaptive sampling methods aim to collect
more information about the black-box function per sample and thus achieve better
model accuracy with the same number of samples than the space-filling methods
from Chap. 3 [16].

In this chapter, we use these properties of adaptive sampling methods to reconstruct
positive-valued environmental phenomena (e.g., concentration functions) as precisely
as possible for a given number of sample points (or to achieve a good reconstruction
of the phenomenon with as few sample points as possible). We examine the sce-
nario in which a mobile robot undertakes sequential, expensive sampling operations.
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Specifically, this requires the mobile robot to interrupt its travel in order to perform
time-consuming and/or energy-intensive sampling. This necessitates maximizing
the informational yield from each sample. Furthermore, the model should exhibit
increased accuracy (more sample points should be placed) in regions of high function
values than in regions of low function values of the phenomenon.

A prime example for this scenario is the project ROBDEKON [14], where an au-
tonomous construction machine is used to carry out an expensive and time-consuming
dynamic probing on a contaminated site. The resulting samples are then used to
reconstruct the distribution of pollutants in the soil. Based on the metamodel of the
pollutant distribution, regions that exceed a legal limit value are then to be precisely
removed. Accordingly, it is important to achieve high model accuracy in regions
with high concentration values, while in regions with low concentration values it is
sufficient to know that there is little (or no) contamination. A formal definition of
the considered problem can be found in Sec. 4.1.

As already described in Sec. 2.2.3, there are many adaptive sampling criteria in
the literature that pursue different strategies for selecting particularly informative
sample points [15]. The MV and IMSE criteria defined in Sec. 2.2.3 are based on
the predictive uncertainty of the metamodel [16, 70] (usually the predictive standard
deviation of a GP). While the MV criterion corresponds directly to the predictive
variance evaluated at a candidate point x in the case of a GP, the GP needs to be
conditioned on x when the IMSE criterion is evaluated. As a result, when optimizing
the IMSE criterion in the design space, the GP must be reconditioned very frequently,
which makes the use of the IMSE criterion for selecting the next sample point
computationally expensive.

Other popular adaptive sampling methods are Lipschitz sampling [39], LOLA-Voronoi
[23], and CVV [36], which exploit Voronoi tessellations based on the existing sample
points. Lipschitz sampling [39] uses the Voronoi cells for estimation of the local
Lipschitz constant. Based on this, a continuous criterion is defined that favors
points that have both a large distance to the existing sample points and a large
local Lipschitz constant (large gradient). In LOLA-Voronoi [23], the Voronoi cell
with the largest estimated local gradient is identified and then the vertex of the cell
furthest from the corresponding existing sample point is selected as the next sample
point. The CVV criterion described in Sec. 2.2.3 is among best known adaptive
sampling criteria in the context of global metamodeling. It owes its popularity to its
performance and robustness for a variety of different black-box functions. There are
several related methods based on the cross-validation error in the literature, such as
[71, 81–84].

Approaches also exist that weight a criterion based on the prediction variance with
the cross-validation error [84, 85]. This combines two different ways of estimating the
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model error (quantification of the model error by cross-validation and the prediction
variance). Further work deals with correction factors and broad mechanisms to make
such methods more robust [84]. In the area of conditional optimization and reliability
analysis, the metamodel should often have a particularly high accuracy around a
specified target value of the black-box function [69]. The authors in [69] present
a modified variant of the IMSE criterion, which weights the predictive standard
deviation within the integral over the design space with a Gaussian weighting function
around the specified target value and thus achieves a greater density of sample points
in the associated regions of the design space.

The aforementioned variance-based and cross-validation-based adaptive sampling
methods have been evaluated in numerous publications for various black-box functions
[15, 16, 21, 23, 24, 36, 71]. However, real-valued functions are always assumed, some
of which may even have discontinuities (e.g., jumps) [27]. The only publication [69]
(to the best of our knowledge) that considers the function value of the black-box
function sets a known target value of the black-box around which the function is to
be approximated with greater accuracy. For the problem considered in this chapter,
neither a target value is relevant (nor would it be known), nor is the maximum value
of the black-box function known. Rather, the model accuracy should increase with
increasing value of the black-box function, and it should be taken into account that
the black-box function is a non-negative continuous function with a limited rate of
change. This problem is not addressed by any of the existing methods.

4.1 Problem Formulation

We consider a Lipschitz-continuous, non-negative, and bounded black-box function
f : X → R which takes values in the interval [0, fmax], where fmax = maxx∈X f(x)
is a positive and finite real number. The black-box function is to be approximated
within the bounded domain X ⊂ Rn (the design space), where n is the number of
dimensions. The approximation is based on noisy samples yl ∈ R, taken at sample
points xl ∈ X for l = 1, . . . , m, where m is the number of existing samples. The
samples

yl = f(xl) + ϵl (4.1)

are given by the value of the black-box function f(x) at sample points xl disturbed
by additive, zero-mean noise modeled by a Gaussian noise term ϵl ∼ N (0, σ2

l ).
Furthermore, the approximation should be “more accurate" (according to a given
metric) where the black-box function f(x) takes large function values and should
hence be sampled more densely in the corresponding regions of the design space.
Given the existing design Dm = {xl, yl}m

l=1, the task is to find the optimal choice of
xm+1.
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4.2 Weighted Explorative Sampling Criteria

In this section, we introduce our concept of weighted explorative sampling criteria
(WESC) – a novel way of defining weighted adaptive sampling criteria, tailored to
the problem statement in Sec. 4.1. For this, we first define the class of explorative
sampling criteria (ESC) in Sec. 4.2.1 and show that most existing distance-based
and variance-based sampling criteria can easily be transformed into such. Building
on ESC we then present the novel concept of WESC in Sec. 4.2.2.

4.2.1 Explorative Sampling Criteria

First, we define the class of explorative sampling criterion (ESC), which will serve as
a basis for the formulation of WESC in Sec. 4.2.2.

Definition 4.2.1. Consider a sampling criterion φ : X → R on a design space
X ⊂ Rn, where n is the number of dimensions. A sampling criterion φ(x) is an
explorative sampling criterion if it satisfies the following conditions:

1. It is an adaptive or a sequential sampling criterion.

2. It is a non-negative and bounded function on the design space X which takes
values in the interval [0, φmax], where φmax is the maximum value φ(x) takes
on the design space (φmax = arg maxx∈X φ(x)).

3. It is to be maximized for determination of the next sample point, hence xm+1 =
arg maxx∈X φ(x).

4. It exhibits at least one of the following properties

(a) Uncertainty minimization: It effectively minimizes the uncertainty of the
metamodel, measured by an uncertainty metric, such as the maximum
predictive variance of the metamodel.

(b) Space-filling: It ensures an even coverage of the design space according to
a space-filling metric, such as the maximin distance.

Def. 2.1.1 summarizes all space-filling sequential and uncertainty-based adaptive
criteria that have certain properties to the class of ESC. Essential properties are
that they are to be maximized, thus the next sample point is the maximizer of the
criterion in the design space, and that the criterion is non-negative. The criteria
maximin from Sec. 2.2.2 and mod. maximin from Sec. 3.1.3 as well as MMSE and
MV from Sec. 2.2.3 are examples of ESC. Most distance-based space-filling sequential
criteria and variance-based adaptive criteria can easily be transformed into ESC
by negation and / or shifting. E.g., the sequential MD and RMSD criteria from
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Sec. 3.1 have a positive and bounded range and must be minimized to determine
the next sample point. By negating (the negated criterion is now to be maximized)
and subtracting the minimum that the negated criterion takes in the design space
(the shifted criterion has a positive value range), they can easily be transformed into
an ESC. As an example, we state the transformation of the sequential MD criterion

φMD-ESC(x) = −φMD(x) + max
x∈X

φMD(x) , (4.2)

where maxx∈X φMD(x) = − minx∈X (−φMD(x)) was used to turn the subtraction of
the negated minimum into an addition of the maximum.

4.2.2 Weighted Explorative Sampling Criteria

The basic idea behind the WESC is the weighting of an ESC φESC(x) with the
function value f(x) of the black-box function. By combining an ESC with the
(non-negative) function value of the black-box function, the explorative samples are
placed in favor of high function values of the black-box function, thus addressing
the problem stated in Sec. 4.1. While the ESC guarantees exploration and avoids
clustering of samples, the weighting by the black-box function ensures more sample
points in regions of high function values.

However, when formulating the according WESC f(x) ·φESC(x), we encounter several
challenges. First, the black-box function is not known, so we have to approximate it
by the metamodel, resulting in f̂(x) ·φESC(x). The metamodel has large uncertainties
in unexplored regions of the design space and in the case of a GP with a prior mean
of zero (which is commonly used as metamodel in global metamodeling [15, 16]
and environmental sensing [28, 46]), the function value of the metamodel vanishes
in these regions of the design space. Consequently, this approach may result in
certain regions remaining unexplored, potentially overlooking regions of interest. In
order to ensure exploration of unseen regions, we clamp the function value of the
metamodel to the lower bound α · f̂max, where α ∈ [0, 1] is the exploration parameter
and f̂max = maxx∈X f̂(x) is the maximum of the metamodel in the design space.
Finally, we define the WESC

φWESC(x) = max
(
αf̂max, f̂(x)

)
· φESC(x) (4.3)

as the product of the maximum of the lower bound and the function value of the
metamodel (the weighting function) and the ESC. Note that the WESC is again an
adaptive sampling criterion that is to be maximized for determination of the next
sample point, hence xm+1 = arg maxx∈X φWESC(x). Fig. 4.1 shows the effect of the
exploration parameter α on the resulting WESC.

Next, we present two examples of WESC. The first criterion is based on the MV
criterion from Sec. 2.2.3 while the second criterion is based on the mod. maximin
criterion from Sec. 3.1.3.
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Figure 4.1: The effect of the exploration parameter α of the WESC is illustrated in a one-dimensional

example. Without enforced exploration (α > 0), regions where the metamodel f̂(x)
vanishes but the black-box function f(x) takes significant values are likely to be missed.

Weighted Maximum Variance Criterion The weighted maximum variance
(WMV) criterion [31]

φWMV(x) = max
(
αf̂max, f̂(x)

)
· σ̂2(x) (4.4)

uses the MV criterion as ESC and weights it by the clipped function value of the
metamodel, as described in (4.3). Note we assume the metamodel to be a GP
(analogous to the definition of the MV criterion in Sec. 2.2.3) with the predictive
variance σ̂2(x). By weighting the predictive variance, the adaptive sample points are
placed in the design space where the model uncertainty and the metamodel take on
high values.

Weighted Square Modified Maximin Criterion The WMV criterion requires
the use of a GP as a metamodel. By using the distance-based mod. maximin criterion
from Sec. 3.1.3 as ESC, the weighted square modified maximin (WMM) criterion

φWMM(x) = max
(
αf̂max, f̂(x)

)
· min

(
min
xi∈X

||x − xi||, 2 min
b∈∂X

||x − b||
)2 (4.5)

is independent of the metamodel used. Utilizing the WMM criterion allows for the
placement of sample points near the boundary of the design space, even though the
mod. maximin design does not distribute sample points in these regions. This is
because the weighting of the mod. maximin criterion by the clipped function value of
the metamodel significantly influences the maximum of the WMM criterion and thus
the placement of the sample points. However, it is not possible for sample points to
be placed exactly on the boundary, as the mod. maximin criterion vanishes there.
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Figure 4.2: Existing sample points and next adaptive sample point on top of the adaptive WMV

criterion (left) and WMM criterion (right), both computed for an exploration parameter
α = 0.025. The next sample point is located at the maximum of the respective criterion.

In contrast, the prediction variance of the GP increases at the boundary of the design
space, since there are no sample points beyond the boundary, thereby increasing
model uncertainty. Accordingly, the WMV criterion exhibits an inherent tendency to
place sample points on the boundary of the design space if the function value of the
metamodel is significant in these regions. Example evaluations of the two criteria
WMV and WMM are shown in Fig. 4.2.

4.3 Evaluation

In this section, the two adaptive criteria WMV and WMM as representatives of
the class of WESC are compared against the adaptive criteria CVV and the MV
criterion from literature (defined in Sec. 2.2.3). We show that the WESC are better
suited for metamodeling of non-negative, Lipschitz-continuous black-box functions
(detailed in the problem statement in Sec. 4.1) than the literature methods. First,
the experimental setup is described in Sec. 4.3.1, followed by an extensive numerical
comparison of the WESC with the literature methods in Sec. 4.3.2.

4.3.1 Experimental Setup

For evaluation, the adaptive WMV, WMM, CVV, and MV designs were computed on
the design space X = [0, 1] × [0, 1] using the adaptive sampling procedure described
in Fig. 2.19. LHS of 16 samples, computed as described in Sec. 3.2.1, was for each
criterion used as space-filling initial design to warm-start the adaptive sampling
algorithm.
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All designs were computed for different numbers of samples and used to evaluate
N runs = 100 randomly generated black-box functions fq, q ∈ {1, . . . , N runs}. Each of
the black-box functions was modeled as weighted sum of ten squared exponential
functions

fq(x) =
10∑

t=1
wt · e− 1

2 (x−x̄t)⊤S−1
t (x−x̄t) , (4.6)

where wt ∈ [0, 1] are uniformly distributed random weights, the locations of the
squared exponentials x̄t ∈ X are uniformly distributed on the design space X , and
St are covariance matrices (positive semidefinite, and symmetric matrices with non-
negative diagonal elements). The covariance matrices were generated by rotating
a diagonal matrix with uniformly distributed random entries between [0.001, 0.01]
by a uniformly distributed random angle using a rotation matrix. This resulted in
smooth distributions that could already be well approximated with 100 samples.
Sampling noise was modeled by adding a random number drawn from the distribution
N (0, 0.012) to the value of the black-box function when evaluating the black-box
function at the adaptive sample points according to (4.1).

A GP with an SE kernel was used as a metamodel and the hyperparameters of the
kernel were obtained by optimizing the log marginal likelihood as described in Sec. 2.1.
To evaluate the accuracy of the metamodel, the design space X was discretized into
X eval ⊂ X by means of a 100 by 100 mod. RGS, resulting in N eval = 10, 000
evaluation points xη∈X eval, η = 1, . . . , N eval. Based on the evaluation points, the
normalized root-mean-square error

NRMSE = 1
fmax − fmin

√√√√√ 1
N eval

Neval∑
η=1

(
f̂(xη) − f(xη)

)2
(4.7)

and the normalized weighted root-mean-square error

NWRMSE = 1
fmax − fmin

√√√√√ 1
Neval

∑Neval
η=1 f(xη)

(
f̂(xη) − f(xη)

)2

∑Neval
η=1 f(xη)

(4.8)

were computed as a measure for the overall error between the black-box function and
the metamodel, where fmax = max

η
f(xη) and fmin = min

η
f(xη). The NWRMSE

weights the squared deviations of the metamodel from the black-box function and
was introduced specifically to evaluate the WESC. In this way, it can be evaluated
whether the model accuracy using the WESC as adaptive sampling criteria results in
greater model accuracy in regions of high black-box function values compared to the
model accuracy achieved with the criteria from the literature. This is possible as the
black-box function is known when computing the error measures in the evaluation
(while it is assumed unknown for the adaptive sampling algorithm when selecting
the adaptive sample points).
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Figure 4.3: Space-filling initial design (16 samples) and adaptive design (84 samples) on top of

a black-box function that was randomly generated as outlined in Sec. 4.3.1. For all
criteria the adaptive sampling algorithm was warm-started with the initial design. The
top row displays the adaptive designs generated based on our novel criteria WMV and
WMM as examples of WESC. The bottom row shows the designs based on the criteria
CVV and MV from literature. The exploration parameter was set to α = 0.025 for the
WMV criterion and α = 0.1 for the WMM criterion.
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4.3.2 Numerical Comparison to Literature Methods

In this section, the two criteria WMV and WMM as representatives of the class of
WESC are compared against the criteria CVV and MV from literature (defined in
Sec. 2.2.3).

Fig. 4.3 shows examples of the corresponding adaptive designs for a randomly
generated black-box function as described in Sec. 4.3.1. It can be clearly seen that
the WESC place more sample points in regions of high black-box function values
than the literature methods. The MV criterion distributes the sample points more
evenly in all regions of the design space but does not take into account the local
complexity of the black-box function. Consequently, the regions with significant
function values or rates of change are not approximated with greater accuracy than
the remaining regions of the design space. Unlike the MV criterion, many sample
points are placed in regions of high complexity when using CVV. However, this often
leads to the situation that not all regions of interest are identified and sampled, as
illustrated in Fig. 4.3.

This is also reflected in the results of the numerical simulations. The WESC provide
a better approximation of the black-box function than CVV and MV for each number
of samples, with CVV consistently performing better than MV. This applies to both
the mean NRMSE and NWRMSE. WMV and WMM deliver comparable results,
with WMM achieving a slightly lower mean NRMSE and WMV a slightly lower mean
NWRMSE. The gap between the WESC and CVV is greater for the mean WNRMSE
than for the mean NRMSE. This can be explained by the fact that the WESC
generate a greater density of sample points in regions of high black-box function
values and thus achieve better accuracy of the metamodel in these regions, as shown
in Fig. 4.3.

4.4 Summary

In this chapter we introduced our new concept of weighted explorative criteria
(WESC), specifically designed for metamodeling of non-negative, Lipschitz-continuous
environmental phenomena (black-box functions), such as concentration distributions.
For this purpose, we first defined the class of explorative criteria (ESC), which
comprises all sequential and adaptive criteria that effectively generate space-filling
or uncertainty-minimizing samples, are non-negative, and are to be maximized for
determination of the next sample point. We showed that many space-filling sequential
and adaptive sampling criteria already have these properties and how other criteria
can easily be transformed to an ESC by negation and / or shifting. Building on
ESC, we then introduced the class of WESC that weight ESC by the lower-bounded
function value of the metamodel to achieve enhanced model accuracy in regions
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Figure 4.4: The mean (lines) and standard deviation (shaded area) of the NRMSE (top) and

NWRMSE (bottom) over N runs = 100 randomly generated black-box functions vs the
number of sample points.
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of the design space where the black-box function takes high values, compared to
regions where it takes low values. This addresses the problem of sensing non-negative,
continuous phenomena with a limited rate of change (e.g., concentration distributions)
as detailed in Sec. 4.1. We show that WESC vastly outperform the literature methods
in the numerical evaluation by taking into account the properties of the black-box
function.
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CHAPTER5
Cost-aware Adaptive Sampling for
Environmental Sensing

In this chapter, we consider location-dependent (local) and travel costs that are
important in the application of sequential and adaptive sampling methods for envi-
ronmental sensing using mobile robots. Mobile robotic systems are widely used for
various tasks in the field of environmental sensing and monitoring. Examples are
the measurement of air quality in urban regions [86] or the detection of gas leaks
indoors [9] using mobile robotic systems with gas sensors. Mobile robotic systems
have also been equipped with an electronic nose (miniature sensor array) for soil
sensing in agriculture in order to measure fertilization and moisture [10] or have been
used for soil health sensing [11]. Others have used a stationary drilling robot for
subsurface soil exploration [87]. Algorithms have been developed for phytoplankton
peak capturing using autonomous underwater vehicles (AUVs) [12, 13]. Furthermore,
an AUV has been used as autonomous water sampler for oil spill response [88].

The aforementioned and many other comparable applications use real-time capable
sensors that record data along the robot’s path while the robot is moving. This
requirement is not met if the mobile robot has to interrupt its motion to carry out
expensive sampling, as in the scenario considered in this thesis. One example is the
ROBDEKON project [14], in which an autonomous construction machine is used to
perform expensive dynamic probing on a contaminated site, on the basis of which
the distribution of pollutants in the soil is then to be reconstructed. The sampling
costs (time, energy) depend on the subsoil (different compositions (e.g., sand, clay,
gravel), degree of compaction) and the accessibility (e.g., vegetation, slopes) of the
sample points, resulting in location-dependent sampling costs.

In the previous chapters, we considered sampling methods that trade-off between
exploration and exploitation in order to maximize the information content per
sample. However, successive sample points often lie in entirely different regions of
the design space. In the application, this would result in the mobile robot (in the
case of ROBDEKON, a heavy construction machine) having to travel long distances
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between the sample points, which would incur high travel costs. Therefore, to achieve
optimal reconstruction of an environmental phenomenon within a defined (finite)
budget, it is essential to account for location-dependent sampling costs and travel
costs in addition to the trade-off between exploration and exploitation anchored in
the sampling criterion. An exclusive focus on the sampling criterion may provide
informative samples but may lead to increased costs. Increased costs could deplete
the budget more quickly, thereby reducing the number of possible samples and thus
negatively impacting the quality of the reconstruction. Conversely, excessive cost
avoidance can lead to insufficient information being obtained per sample, resulting
in poor reconstruction despite a large number of samples.

Accordingly, compared to the previous chapters, competing objectives must be
compromised. This can be achieved by means of multi-objective optimization,
the required basics of which are introduced in Sec. 5.1. In the further course of
this chapter, Sec. 5.3 and Sec. 5.4 define our novel methods for considering travel
costs and location-dependent (local) sampling costs, followed by Sec. 5.5 which
introduces a novel means of combining both types of cost concentration in a way that
leverages their strengths. Each section of this chapter includes an excessive simulative
evaluation of the methods, with the experimental setup detailed in Sec. 5.2. Finally,
Sec. 5.6 summarizes this chapter.

5.1 Pareto-optimal Multi-objective Optimization

A multi-objective optimization problem (MOP) is a type of optimization problem that
involves more than one objective function to be optimized simultaneously [89–91]. If
the number of objective functions to be optimized gets large, this is usually referred
to as a many-objective optimization problem [92, 93]. These objectives often conflict
with each other, making the task of finding the best solution more complex than
single-objective optimization. Mathematically, we define a vector of 2 ≤ Q < ∞
objectives

J(x) = [J1(x), . . . , JQ(x)]⊤ ∈ J ⊂ RQ (5.1)

that are to be minimized

min
x

J(x) s.t. x ∈ X ,

where Ji(x) are the competing objective functions, x ∈ X is a vector of n decision
variables, X ⊂ Rn is the decision space, and J is the image of the mapping J : X → J
[89–91]. The decision space is a nonempty and compact set that contains all feasible
decision vectors [89], which corresponds to the design space in the context of this
thesis.
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Figure 5.1: Dominance relationships w.r.t. a reference point (black square) illustrated in a two-

dimensional objective space. The green area contains the dominating points, the orange
area the dominated points and the gray area contains the points that cannot be compared
by dominance relationship.

In general, there is no unique optimal solution for a MOP [91]. However, we can find
Pareto-optimal (or Pareto-efficient) solutions that can be defined using dominance
relationships. A solution x ∈ X is said to dominate another solution x′ ∈ X (x ≺ x′)
if and only if Ji(x) ≤ Ji(x′) ∀i ∈ 1, 2, . . . , Q and ∃j ∈ 1, 2, . . . , Q Jj(x) < Jj(x′) [89,
91]. If for a solution x ∈ X , there does not exist a solution x′ ∈ X that dominates x,
then x is Pareto-optimal. The Pareto set X ∗ = {x ∈ X : ∄x′ ∈ X , x′ ≺ x} is the set
of all Pareto-optimal solutions. Fig. 5.1 illustrates the dominance relationships in
the objective space.

When applying the mapping J(·) to the Pareto set, we obtain the Pareto front
J ∗ = {J(x) ∈ J : x ∈ X ∗} [92, 93]. The Pareto front is the set of all objective
vectors whose components cannot be further optimized without worsening at least
one other component [89], as shown in Fig. 5.2.

Note that there exist solutions that do not dominate each other (x ⊀ x′ and x′ ⊀ x)
and can hence not be compared by dominance relation [94].

Two characteristic points in the objective space are the ideal point

J ideal = [min
x∈X

J1(x) . . . min
x∈X

JQ(x)]⊤ (5.2)

representing the lower bound of the non-dominated points and the nadir point

Jnadir = [max
x∈X

J1(x) . . . max
x∈X

JQ(x)]⊤ (5.3)

representing the upper bound of the dominated points [93, 95].

A common way to trade-off between multiple competing objectives is to transform
the MOP into a single optimization problem (SOP)

min
x

s(J(x)) s.t. x ∈ X ,
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Figure 5.2: Decision space X (gray area) and scattered sample points on the left and the objective

space on the right. The objective space contains the image J (blue area) of the mapping
J : X → J containing the mapped scattered sample points. In addition, the Pareto
front (orange line) as well as the ideal and nadir points are shown.

using a real-valued scalarization function s : X → S, where S ⊂ R is the image of
the scalarization function [96]. Most scalarization functions involve parameters to
control the trade-off [89].

One of the most widely used scalarization functions is the weighted sum

sws(J(x)) =
Q∑

i=1
wiJi(x) (5.4)

that linearly combines the objective functions [96], where wi are weights. However,
the weighted sum has the major drawback that it cannot find the Pareto-optimal
solutions in the non-convex parts of the Pareto front [79, 96]. The Chebyshev
scalarization function

scheby(J(x)) = max
i∈{1,...,Q}

(wi|Ji(x) − J ideal[i]|) (5.5)

is a simple means to overcoming this limitation [79, 94, 96]. Instead of summing
the objective functions it minimizes the maximum weighted distance to the ideal
point in the objective space. Augmented versions of the Chebyshev scalarization
function exist that avoid weakly Pareto-optimal solutions [95]. Refer to e.g., [96] for
an overview on scalarization functions.

5.2 Experimental Setup

This section describes the experimental setup used to evaluate the sampling methods
presented in Sec. 5.3 – Sec. 5.5.
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As in Sec. 3.2 and Sec. 4.3, the sampling methods were evaluated on the design space
X = [0, 1] × [0, 1]. The adaptive sampling methods were warm-started with an initial
design of 16 space-filling sample points. Since multiple initial designs were evaluated,
the method used for generating the space-filling design is specified in the according
section. However, if LHS was used, it was generated as described in Sec. 3.2.1.

All designs were computed for different numbers of samples and applied to N runs = 100
randomly generated black-box functions fq(x), q ∈ {1, . . . , N runs}. Each of the black-
box functions was modeled as weighted sum of ten squared exponential functions

fq(x) =
10∑

t=1
wt · e− 1

2 (x−x̄t)⊤S−1
t (x−x̄t) , (5.6)

where wt ∈ [0, 1] are uniformly distributed random weights, the locations of the
squared exponentials x̄t ∈ X are uniformly distributed on the design space X , and
St are covariance matrices (positive semidefinite, and symmetric matrices with non-
negative diagonal elements). The covariance matrices were generated by rotating
a diagonal matrix with uniformly distributed random entries between [0.001, 0.01]
by a uniformly distributed random angle using a rotation matrix. This resulted in
smooth distributions that could already be well approximated with 100 samples.
Sampling noise was modeled by adding a random number drawn from the distribution
N (0, 0.012) to the value of the black-box function when evaluating the black-box
function at the adaptive sample points as defined in (4.1).

The location-dependent sampling costs cx
q (x) were modeled analogously to the black-

box functions as a sum of 25 squared exponential functions, whose covariance matrices
were generated by rotating a diagonal matrix with uniformly distributed random
entries between [0.0005, 0.005] by a uniformly distributed random angle using a
rotation matrix. An offset of 0.1 has been added to all cost functions to account for
a positive minimum sampling cost.

A GP with an SE kernel was used as a metamodel (and as a cost model for ap-
proximation of the location-dependent sampling costs, in case needed) and the
hyperparameters of the kernel were obtained by optimizing the log marginal like-
lihood as described in Sec. 2.1. The metamodel was initialized with a zero mean
prior and the cost model was initialized with a constant prior mean of 0.1 to account
for the minimum location-dependent sampling cost. To evaluate the accuracy of
the metamodel, the design space X was discretized into X eval ⊂ X by means of
a 100 by 100 mod. RGS, resulting in N eval = 10, 000 evaluation points xη∈X eval,
η = 1, . . . , N eval. Based on the evaluation points, the normalized root-mean-square
error

NRMSEq = 1
fq,max − fq,min

√√√√√ 1
N eval

Neval∑
η=1

(
f̂q(xη) − fq(xη)

)2
(5.7)
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was computed as a measure for the overall error between the black-box function and
the metamodel, where fq,max=max

η
fq(xη) and fq,min=min

η
fq(xη).

The evaluation points were also used to numerically approximate the integrals needed
to compute mean location-dependent sampling cost

c̄x
q =

∫
x∈X cx

q (x)dx∫
x∈X 1dx

≈ 1
N eval

Neval∑
η=1

cx
q (xη) (5.8)

on the design space by means of Monte Carlo approximation. To evaluate the
cost-effectiveness of the sampling methods, we considered the model accuracy as a
function of the budget used. Since the cost functions were randomly generated and
could therefore result in different average sampling costs, we defined a multiple of
the average sampling cost as a budget

bx
q = M · c̄x

q (5.9)

for each of the cost functions, where M = 100. Note that the budget bx
q corresponds

to the expected sampling costs when selecting M random sample points.

To illustrate how the costs per sample evolve for each of the sampling methods, we
defined the normalized mean cost per sample (NMCPS)

NMCPSx
q = 1

m · c̄x
q

m∑
i=1

cx
q (xi)︸ ︷︷ ︸

cx
cum,q

=
cx

cum,q

m · c̄x
q

, (5.10)

which describes the average cost generated up to the number of m samples, normalized
by dividing them by the expected cost c̄x

q for the respective cost function. To analyze
the model accuracy achieved per budget spent, we defined the normalized cumulative
cost (NCC)

NCCx
q = 1

M · c̄x
q

m∑
i=1

cx
q (xi) =

cx
cum,q

bx
q

= m

M
· NMCPSx

q (5.11)

which takes values in the interval [0, 1]. It can be interpreted as the normalized
budget already spent and can be computed from NMCPSx

q (and vice versa).

Without loss of generality, we defined the travel costs

c∆x(xm, xm+1) = ||xm+1 − xm|| (5.12)

for the robot to travel from its current position xm to the next sample point xm+1

as the Euclidean distance between the two points.

The measures NRMSEq, NMCPSx
q , and NCCx

q were defined for a single run q of the
simulation and hence a unique set of black-box function, cost function or metamodel.
In order to evaluate these statistically, their mean values NRMSE, NMCPSx, and
NCCx (and partly standard deviations) over all q were considered in the figures.
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In order to compare the performance of a sampling method to a reference sampling
method, we first defined the mean cumulative travel cost (MCTC)

MCTC = 1
Q

Q∑
q=1

m−1∑
i=1

c∆x(xq,m, xq,m+1)︸ ︷︷ ︸
c∆x

cum,q

= 1
Q

Q∑
q=1

c∆x
cum,q (5.13)

as the mean cumulative travel cost over all Q runs of the simulation, where xq,m is
the m-th sample point in run q. Then, for each number of samples m, the relative
mean cumulative travel cost saving (Rel. MCTCS)

Rel. MCTCS = MCTCref − MCTC
MCTCref = 1 − MCTC

MCTCref (5.14)

was defined as a measure of the relative travel cost savings of a sampling method
over a reference sampling method, indicated by the superscript ’ref’.

For application of the Chebyshev scalarization function defined in (5.5), its parameters
were applied to the normalized objectives

Jnorm(x) =
[

J1(x)−J ideal[1]
Jnadir[1]−J ideal[1] · · · JQ(x)−J ideal[Q]

Jnadir[Q]−J ideal[Q]

]⊤
(5.15)

to make the parameters more comparable across various objectives.

5.3 Travel Costs in Adaptive Sampling of Expensive-to-
evaluate Environmental Phenomena Using Mobile
Robots

As described in the beginning of the chapter, the use of mobile robots to monitor
environmental phenomena incurs both location-dependent costs and travel costs. In
this section, we first address the travel costs of the mobile robot. As in the previous
chapters, we consider the case where sampling (evaluation of the black-box function)
is expensive, but sampling costs are independent of the sample location and hence
constant across the design space.

The literature contains a number of works that use adaptive sampling methods
for environmental sensing. Bin Zhang et al. [29] presented an adaptive sampling
method that minimizes the integrated mean squared error of a local linear model
while optimizing the path w.r.t. the energy available to the robot. To facilitate path
optimization, the design space was discretized and then path planning was performed
using the Breadth First Search Algorithm. Stankiewicz et al. [30] developed the
Gaussian Process Adaptive Sampling (GPAS) method, which, depending on the
available computational capacity, uses branch-and-bound techniques or cross-entropy
optimization on a receding horizon to generate a trajectory with particularly informa-
tive sample points in order to obtain the maximum information with limited energy
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and runtime. In each iteration of the algorithm, the control inputs are optimized to
maximize the accumulated values of the UCB acquisition function within the horizon,
considering vehicle dynamics and obstacles as constraints. Then the first control input
is applied, and the optimization is restarted. The Gaussian process (metamodel) is
updated after each sampling of the phenomenon. Thus, highly localized regions of
interest (ROI) could be resolved with lower energy consumption and higher accuracy
than with a meandering coverage of the design space.

The aforementioned use real-time capable sensors that record data along the robot’s
path while the robot is moving. This requirement is not met if the mobile robot has
to interrupt its motion to carry out expensive sampling, as in scenario considered in
this thesis. In contrast to algorithms like GPAS, we require the samples to be taken
at points in the design space where the criterion takes large values to gain most
information per (expensive) sample. However, following the sequential and adaptive
sampling algorithms used in the previous chapters would lead to the successive sample
points mostly being far apart and thus the cumulative travel costs become large.

Choi et al. [17] proposed cost-aware adaptive sampling criteria for consideration of
costs generated by parameter changes in wind tunnel experiments. In their work,
cost was incorporated by dividing variance- and distance-based criteria by the cost
function. They found, that division by the cost function made the combined criterion
excessively sensitive to changes of the cost function which potentially leads to the
cost function dominating the criterion [17]. Similar approaches can also be found
in the field of Bayesian optimization for the consideration of parameter-dependent
costs [25] and will be discussed in more detail in Sec. 5.4.

However, these methods are outperformed by the cost-aware sampling criterion
contextual expected improvement (CEI) [97] (also for Bayesian optimization)

φCEI(x) =

−cx(x) if φEI(x) ≥ (1 − λ) maxx∈X φEI(x)

−∞ otherwise
(5.16)

based on the EI criterion, where cx(x) is a cost function describing the parameter-
dependent sampling costs. When applying the CEI criterion, the cheapest sample
point is selected within the regions of the design space where the EI criterion takes
values greater than (1 − λ) times its maximum value. This approach minimizes cost
while ensuring the information gain specified by the parameter λ ∈ [0, 1], thereby
guaranteeing a Pareto-optimal solution.

To summarize, there are no adaptive sampling methods from the field of environmental
sensing that take expensive sampling into account. The most promising approach is
CEI, which is used to account for parameter-dependent costs in global optimization of
mixed-domain parameter spaces using Bayesian optimization (mainly hyperparameter
optimization of machine learning methods). It has not yet been investigated how well
comparable Pareto-optimal sampling strategies can be transferred to the consideration
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of travel costs of mobile robots in adaptive sampling methods for environmental
sensing.

In this chapter, we close this gap by presenting two approaches that use different
techniques to account for travel costs. The first approach sets up an MOP in
Sec. 5.3.2 as motivated by the literature and uses a scalarization function to define a
cost-aware sampling criterion. Depending on the choice of parameters this turns into
the equivalent of the CEI criterion. Subsequently, in Sec. 5.3.3, we present our novel
model predictive approach that predicts future sample points on a receding horizon
and places them in a cost-optimal order to drastically reduce travel costs while
maximizing information per sample. This approach is tailored to the application
of mobile robots in environmental sensing of expensive-to-evaluate phenomena and
can also be combined with other approaches, such as Pareto-optimal criteria. The
two approaches represent solutions to the problem specified in Sec. 5.3.1 and are
extensively evaluated in Sec. 5.3.4.

5.3.1 Problem Formulation

We consider a Lipschitz-continuous, non-negative, and bounded black-box function
f : X → R which takes values in the interval [0, fmax], where fmax = maxx∈X f(x)
is a positive and finite real number. The black-box function is to be approximated
within the bounded domain X ⊂ Rn (the design space), where n is the number of
dimensions. The approximation is based on noisy samples yl ∈ R, taken at sample
points xl ∈ X for l=1,. . . ,m, where m is the number of existing samples. The samples

yl = f(xl) + ϵl (5.17)

are given by the value of the black-box function f(x) at sample points xl disturbed
by additive, zero-mean noise modeled by a Gaussian noise term ϵl ∼ N (0, σ2

l ). For
reconstruction of the phenomenon f , a metamodel f̂ : X → R is trained on the
samples of the phenomenon.

In order to obtain the best possible reconstruction of the phenomenon for each number
M of samples, the sample points are to be selected optimally according to a sampling
criterion φ(x) in an adaptive manner. Moreover, the cost to move the robot from
one sample point to the next is described by the cost function c∆x : X × X → R+

0 .
Depending on the application, the cost function may include the distance to be
traveled, the time or energy required to travel the path, the accessibility of the
terrain, etc. The goal is to sequentially suggest a new sample point to the robot,
such that the accumulated path costs

ccum =
M−1∑
l=1

c∆x(xl, xl+1) (5.18)

become minimal (with each xl being optimal w.r.t. φ(x)).
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5.3.2 Pareto-optimal Consideration of Travel Cost

In this section we formulate a cost-aware sampling criterion that takes into account
the robots travel costs, utilizing Pareto-optimal multi-objective optimization (detailed
in Sec. 5.1). For this, we first state the MOP

min
x

[
−φ(x)

c∆x(xm, x)

]
︸ ︷︷ ︸

JTC(x)

s.t. x ∈ X , (5.19)

where φ(x) is a sequential or adaptive sampling criterion that is to be maximized,
c∆x(xm, x) is the travel cost incurred by the robot when travelling from its current
position xm to x that is to be minimized, and JTC(x) is the vector of the two
competing objectives (TC indicates travel cost consideration). Since we formulate
the MOP as a minimization problem, the sampling criterion φ(x) is negated to turn
its maximization into a minimization.

Next, we turn the MOP in (5.19) into the SOP

min
x

scheby(JTC(x)) s.t. x ∈ X (5.20)

by applying the Chebyshev scalarization function from (5.5) to the competing
objectives. Using the parameters of the scalarization function, we can now set the
trade-off between the criterion and the travel costs. This trade-off favors solutions
that cause lower travel costs (which often implies that they are closer to the current
robot position). However, the parameters do not allow any conclusions to be drawn
about the specific value of the sampling criterion in the optimum of the optimization.
This contradicts the problem statement in Sec. 5.3.1, where it is required that the
sample points must be optimal w.r.t. the sampling criterion used. In fact, any
compromise is a violation of this requirement.

To enable a suboptimal solution with quantifiable guarantees, we add a condition to
the optimization problem in (5.20)

min
x

scheby(JTC(x)) s.t. x ∈ X : φ(x) ≥ (1 − λ) max
x∈X

φ(x) (5.21)

ensuring the criterion to be greater than (1 − λ) times its maximum for any possible
solution, where λ ∈ [0, 1]. Note that when applying (5.21) to sequential or adaptive
sampling, the minimizer of (5.21) will be the next sample point. Hence, we can
formulate the corresponding sampling criterion

φPoTC(x) =

−scheby(JTC(x)) if φ(x) ≥ (1 − λ) maxx∈X φ(x)

−∞ otherwise
(5.22)

that is to be maximized on the design space to obtain the next sample point. When
specific sequential or adaptive sampling criteria are plugged into φPoTC(x) we use
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the following notation φPoTC-(·)(x) (e.g., φPoTC-WMV(x) for the WMV criterion or
φPoTC-MD(x) for the MD criterion).

Remark 1. If the parameter in the scalarization function that weights φ(x) is set
to zero, the formulation in (5.22) aligns with that of CEI in (5.16) (except with a
different criterion and the travel costs instead of the parameter-dependent costs).
This simplifies the evaluation of the criterion, since the whole trade-off is reduced to a
constrained optimization of the cost function. We recommend using this formulation
for most scenarios. However, if the cost function contains (almost) flat regions we
encourage to set a small scalarization weight on the sampling criterion to shift the
solution towards more informative points without introducing (significant) additional
cost.

5.3.3 Receding Horizon Cost-aware Adaptive Sampling

In this section, we present our novel receding horizon cost-aware adaptive sampling
(RHCaAS) [34] algorithm for reducing the cumulative travel costs of the mobile
robot. In contrast to the Pareto-optimal criterion in Sec. 5.3.2, no trade-off is made
between the sequential or adaptive sampling criterion used, but the cumulative travel
costs are approximated and optimized over a prediction horizon.

The idea behind the algorithm is that if we knew the future sample points, we were
able to find the most cost-effective path that connects all points. However, the
number M of all samples is often unknown. In addition, the exact prediction of
future sample points is hindered by their dependence on the (unknown) black-box
function. Consequently, the algorithm predicts future sample points in each iteration
over a defined horizon based on the metamodel. These predicted points are then
arranged in a cost-optimal sequence, with the first point in the sequence selected as
the next sample point. This approach significantly reduces cumulative travel costs.
RHCaAS is composed of an outer loop (real sampling) and an inner loop (virtual
sampling) which are detailed in the following sections.

Real Sampling (Outer Loop)

In real sampling, sequential sampling is performed on the (real) phenomenon as shown
in Fig. 5.3. It is warm-started with a non-empty initial data set D0 = {(xl, yl)}M0

l=1,
where M0 is the number of initial samples which are taken in a (precomputed) cost-
optimal order. A space-filling initial design is used as a basis for an initial training
of the metamodel since this results in the least model error [21] when reconstructing
unknown functions [21, 27]. Then, in each iteration i, virtual sampling is used to
determine the next sample point

xm+1 = VirtualSampling(X , Di, f̂ , H) , (5.23)
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Design space X , m = M0, i = 0,
initial design D0, metamodel f̂

Compute next sample point
xm+1 using VirtualSampling

Evaluate black-box function at
xm+1 and add new data to design

Train metamodel f̂(x) on design Di+1

Stop? End
No

i
=

i
+
1
,

m
=

m
+
1
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Figure 5.3: Real sampling analogous to the adaptive sampling procedure in Sec. 2.2.3. Virtual
sampling is performed to determine the next sample point in each iteration.

the phenomenon is sampled at the next sample point xm+1 to obtain the next sample
ym+1, the new data {xm+1, ym+1} is added to the design

Di+1 = Di ∪ {xm+1, ym+1} , (5.24)

and the metamodel f̂ is trained based on the current design Di+1. The shading in
Fig. 5.3 indicates the step of real sampling where virtual sampling is performed.

Virtual Sampling (Inner Loop)

As described in (5.23), virtual sampling determines the next sample point based on
the design space X , the current design Di, the metamodel f̂ , and the horizon length
H. For this, adaptive sampling is again performed as described in Fig. 5.3. However,
virtual samples are taken from the metamodel instead of the (real) phenomenon.
The algorithm is warm-started with the current design Di as the initial design and
the metamodel f̂ . In addition, the virtual design D̃h = ∅ for h = 0 is initialized as
an empty set. In each iteration h, the next virtual sample point

x̃h+1 = arg max
x̃∈X

φ(x̃) (5.25)

is determined by maximizing the used sampling criterion φ, the metamodel is
evaluated at the next virtual sample point x̃h+1 to obtain the next virtual sample
ỹh+1, the virtual data {x̃h+1, ỹh+1} is added to the virtual design

D̃h+1 = D̃h ∪ {x̃h+1, ỹh+1} , (5.26)

and the metamodel f̂ is then trained based on the existing real and virtual samples
Di ∪ D̃h+1.
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Design space X , metamodel f̂ ,
design Di, virtual design D̃h = ∅,

horizon length H, h = 0

Compute next virtrual
sample point x̃h+1

Evaluate metamodel at x̃h+1 and
add new data to virtual design

Train metamodel f̂(x) on Di∪D̃h+1

h+1<H End
Yes

h
=

h
+
1

No

Figure 5.4: Virtual sampling procedure of RHCaAS with a horizon length of H virtual samples,
starting with the current design Di as initial design.

The loop is repeated until H virtual sample points are determined, where H denotes
the length of the prediction horizon. Next, the optimal permutation

π∗ = arg min
π

(
c∆x (xm, xπ1

)
+

H−1∑
l=1

c∆x
(
xπl

, xπl+1

))
(5.27)

of all permutations π = (π1, . . . , πH) is determined, which, starting from the current
sample point xm, minimizes the costs to visit all virtual sample points {x̃1, . . . , x̃H}.
Virtual sampling returns the virtual sample point x̃π∗

1
indexed by the first element

π∗
1 of the optimal permutation π∗ as the next sample point

xm+1 = x̃π∗
1

(5.28)

for evaluation of the (real) phenomenon to real sampling. The virtual sampling
algorithm is illustrated in Fig. 5.4.

Remark 2. Consider the case where the mean value of the metamodel equals the
real phenomenon on the entire design space (e.g., the virtual samples all have the
value that would also be measured in real at that location, neglecting measurement
noise) and the horizon length H is chosen such that M = M0 + H corresponds to the
desired total number of samples. Then the virtual sample points would be equal to
those that would have been determined even without virtual sampling. The optimal
permutation would then correspond to the cost-optimal solution according to (5.18)
for an initial design with M0 samples and H adaptive samples. However, since the
metamodel is error-prone, RHCaAS provides only a suboptimal solution. Moreover,
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x1
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1
Figure 5.5: Initial design (crosses) and adaptive design (dots) of RHCaAS-WMV for a horizon length

of H = 1 (no cost optimization) on the left and H = 8 on the right on top of a randomly
generated black-box function. The initial design was traversed in a cost-optimal order,
starting from a randomly selected initial sample point (indicated by the circle).

predictions over large horizons H are inaccurate, which is why the horizon practically
includes only a few next points.

Remark 3. RHCaAS is independent of the criterion used which extends beyond
the sequential and adaptive sampling criteria presented in Chap. 2 – Chap. 4. In
particular, this includes criteria such as φPoTC(x) defined in Sec. 5.3.2. As a result,
the consideration of travel costs in the scalarization function in (5.22) can be combined
with the minimization of cumulative travel costs over a horizon of RHCaAS (which will
be included in the evaluation in Sec. 5.3.4 and utilized in Sec. 5.5.1). When applying
RHCaAS with a specific sampling criterion, we use the notation φRHCaAs-(·)(x) (e.g.,
φRHCaAs-WMV(x) for the WMV criterion).

5.3.4 Evaluation

In this section, the following three methods for consideration of the mobile robot’s
travel costs are compared with each other.

PoTC-WMV: PoTC presented in Sec. 5.3.2 was used with the WMV criterion
(α = 0.025) in Sec. 4.2.2 and evaluated for different parameters λ. The weight
for the sampling criterion in the scalarization function was set to zero.

RHCaAS-WMV: RHCaAS from Sec. 5.3.3 was used along with the WMV
criterion (α=0.025) in Sec. 4.2.2 and evaluated for different horizon lengths H.

RHCaAS-PoTC-WMV: PoTC-WMV (α = 0.025, λ = 0.1) was used as a
sampling criterion for RHCaAS and evaluated for different horizon lengths H.
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OLHS of 16 sample points (computed as described in Sec. 3.2.1) was used in all
simulations as space-filling initial design. The experimental setup for the numerical
evaluation is described in Sec. 5.2.

In Fig. 5.6 and Fig. 5.7 the NRMSE and the Rel. MCTCS are shown versus the
number of samples. It can be seen that the parameter λ for PoTC-WMV has a major
impact on the NRMSE and the travel costs. For λ = 0.1, over 40 % of the total travel
costs can already be saved over 100 samples, while only a minimal degradation of the
model accuracy can be observed. With increasing λ, significant cost savings can be
achieved, leading to a drastic degradation of the NRMSE for all numbers of samples.
This can be explained by the fact that the robot is always given the opportunity to
select sample points close to its current position for large λ and thus, due to the
dominance of path costs in the optimization, mostly non-informative sample points
(w.r.t. the WMV criterion) are selected.

With RHCaAS-WMV, there is also a direct correlation between the horizon length
H and the savings in travel costs. However, a considerable degradation in model
accuracy can only be observed with a small number of samples, which decreases
with an increasing number of samples until the horizon length H no longer has a
significant impact on the NRMSE from about 70 samples. This has two reasons:

• The model error of the metamodel decreases with an increasing number of
samples, which leads to suboptimal predictions of the next sample points in
the virtual sampling loop, especially with a small number of samples.

• The collection of sample points in a more travel-cost-optimal order results in
the robot initially enhancing the local model accuracy before moving to other
regions of the design space. This implies that sample points, which would be
selected in future iterations without virtual sampling, are prioritized due to
cost optimization (and vice versa). As illustrated in Fig. 5.5, RHCaAS-WMV
selects globally informative sample points in a sequence that facilitates piecewise
local exploration of the black-box function.

RHCaAS-PoTC-WMV combines PoTC-WMV and RHCaAS-WMV by using PoTC-
WMV as a sampling criterion for RHCaAS. The combination is interesting because
PoTC-WMV for λ = 0.1 only achieves a small increase in NRMSE, but already a
comparable cost saving to RHCaAS-WMV with a horizon length of H = 6. As can
be seen in Fig. 5.6, the NRMSE of RHCaAS-PoTC-WMV is almost identical to
that of RHCaAS-WMV. However, RHCaAS-PoTC-WMV already achieves greater
cost savings than RHCaAS-WMV at a horizon length of H = 1, as shown in
Fig. 5.7. As the horizon length H increases, however, this effect decreases, resulting
in RHCaAS-PoTC-WMV achieving a comparable cost saving to RHCaAS-WMV
from H = 6.
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Figure 5.6: The mean (lines) and standard deviation (shaded area) of the NRMSE over N runs = 100

randomly generated black-box functions vs the number of sample points per method.
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Figure 5.7: The relative mean cumulative travel cost savings (Rel. MCTCS) over N runs = 100

randomly generated black-box functions vs the number of sample points per method.
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5.4 Local Sampling Costs in Adaptive Sampling of Expen-
sive-to-evaluate Environmental Phenomena Using
Mobile Robots

While the previous Sec. 5.3 focused on the robots travel costs, this section is con-
cerned with the consideration of location-dependent costs in adaptive sampling for
environmental sensing using mobile robots. By considering location-dependent costs
in the choice of sample points, better model accuracy can be achieved for a given
budget. However, to the best of our knowledge, there is no literature on location-
dependent sampling costs in the context of adaptive sampling for environmental
sensing using mobile robots and little literature from global metamodeling and
Bayesian (global) optimization to account for parameter-dependent sampling costs.

As mentioned in Sec. 5.3, there is one work by Choi et al. [17] in global metamodeling
considering the cost of altering the parameters in wind tunnel testing by dividing
distance- and variance-based criteria by the cost function. Similar approaches are
pursued in the context of Bayesian Optimization (BO) described in Sec. 2.2.3, where
the acquisition function EI (see Sec. 2.2.3) is divided by the cost function

φEIpu(x) = φEI(x)
cx(x) (5.29)

to obtain the expected improvement per unit (EIpu) [40]. EIpu was modified by Lee
et al. in their Cost Appointed BO (CArBO) [25] method

φCArBO(x) = φEI(x)
cx(x)τ

, τ ≥ 0 (5.30)

in such a way that the influence of the cost function decreases with the number of
samples (cost cooling). Division by the cost function often leads to it having too great
an influence on the choice of the next sample point [17]. This effect is particularly
significant if the cost function has a big range or the costs can become very small on
the design space.

In addition, in their CArBO paper [25] the authors proposed a cost-efficient initial
design, which we refer to as CeID in the following. To generate the CeID, the design
space is discretized, the cost function is evaluated at all discrete points and the results
are stored in a data set. In each iteration of the algorithm, the most expensive point
and the point closest to the existing sample points are then alternately removed from
the data set until only one point remains. This is then used as the next sample point.
The process is repeated until the cumulative sampling costs are below a certain
budget (or a sufficient number of sample points have been generated). In the first
iteration, the cheapest of the discrete points is used as the next sample point, as
there are no existing sample points.
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In one of our previous works, we presented the cost-aware Voronoi sampling algorithm
CAV [32], which performs a local optimization of the cost function within the
neighborhood of the most informative sample point. Unlike the methods that divide
by the cost function, the algorithm poses no requirements on the course of the cost
function [32]. It has also been shown that this approach clearly outperforms CeID
when used as an initial design.

The solutions of CArBO always lie on the Pareto front, whose position on the Pareto
front can be varied with the parameter τ [97]. In the CArBO method, the parameter
is not set to a fixed value, but is constantly reduced depending on the remaining
budget (cost-cooling), which leads to exploration of more costly regions of the design
space with increasing number of samples.

Guinet et al. introduce the cost-aware sampling criterion contextual EI (CEI) [97]
based on the EI acquisition function as defined in (5.16) in Sec. 5.3. By minimizing
φCEI(x), the minimizer of the cost function in the regions of the design space in
which the criterion is greater than (1 − λ) times its maximum value on the design
space is obtained as next sample point, where λ ∈ [0, 1]. CEI outperforms CArBO in
various global optimization tasks (hyperparameter optimization of machine learning
methods) since it dynamically adjusts the compromise between the objectives on the
Pareto front in each iteration of the adaptive sampling algorithm and is less sensitive
to the type and range of cost function [97].

Note that if the cost function is not known a cost model needs to be trained in
addition to the metamodel of the black-box function [25, 40] in all methods that
take into account parameter-dependent sampling costs.

None of the methods mentioned are tailored for use in adaptive sampling for environ-
mental sensing. As already mentioned in Sec. 5.3.2, CEI outperforms other methods
in various global optimization tasks. Pareto-optimal methods following the same
principle are therefore promising candidates for cost consideration when using mobile
robots for environmental sensing. After defining the problem under consideration
in Sec. 5.4.1, in this section we will use the Pareto-optimal sampling criterion intro-
duced in Sec. 5.3.2 to consider location-dependent sampling costs. For this purpose,
we define two specific variants: one for the generation of a cost-aware initial design
based on the mod. maximin criterion from Sec. 3.1.3 and one based on the WMV
criterion from Sec. 4.2.2 for adaptive sampling of environmental phenomena. Finally,
the methods are evaluated in Sec. 5.4.3.

5.4.1 Problem Formulation

We consider a Lipschitz-continuous, non-negative, and bounded black-box function
f : X → R which takes values in the interval [0, fmax], where fmax = maxx∈X f(x)
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is a positive and finite real number. The black-box function is to be approximated
within the bounded domain X ⊂ Rn (the design space), where n is the number of
dimensions. The approximation is based on noisy samples yl ∈ R, taken at sample
points xl ∈ X for l = 1, . . . , m, where m is the number of existing samples.

The samples yl = f(xl) + ϵl are given by the value of the black-box function f(x)
at sample points xl disturbed by additive, zero-mean noise modeled by a Gaussian
noise term ϵl ∼ N (0, σ2

l ). For reconstruction of the phenomenon f , a metamodel
f̂ : X → R is trained on the samples of the phenomenon.

Furthermore, the sampling costs depend on the location x in the design space X
and are given by the non-negative cost function cx

l : X → R+
0 . For a series of m

sequential samples, the accumulated costs

cx
cum =

m∑
l=1

cx
l (xl) (5.31)

can be calculated as the sum of costs per iteration.

The goal is to sequentially determine the sample points xl such that, for a given
budget cx

max, the global error between the metamodel f̂ and the black-box function
f becomes minimal w.r.t. a given metric. Accordingly, the budget represents the
upper bound for the accumulated costs cx

cum ≤ cx
max.

5.4.2 Pareto-optimal Cost-aware Adaptive Sampling

In this section, we use the results from Sec. 5.3.2 to define a sampling criterion for
the Pareto-optimal consideration of location-dependent sampling costs. Analogous
to (5.19), we set up the MOP

min
x

[
−φ(x)
cx(x)

]
︸ ︷︷ ︸

JLC(x)

s.t. x ∈ X , (5.32)

where φ(x) is a sequential or adaptive sampling criterion that is to be maximized and
cx(x) denotes the sampling costs at the point x. The abbreviation LC indicates the
consideration of location-dependent (local) costs. Using the Chebyshev scalarization
function scheby from (5.5), we transform the MOP in (5.32) into an SOP, where the
parameters of the scalarization function determine the trade-off between the two
objectives in JLC(x).

Analogous to the criterion φPoTC(x) in (5.22), we define the Pareto-optimal cost-aware
criterion

φPoLC(x) =

−scheby(JLC(x)) if φ(x) ≥ (1 − λ) maxx∈X φ(x)

−∞ otherwise,
(5.33)
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where λ ∈ [0, 1]. When inserting sequential or adaptive sampling criteria into
φPoLC(x), we use the notation φPoTC-(·)(x). Specifically, for use of the WMC criterion
and the sequential mod. maximin criterion, we define the notation φPoLC-WMV(x),
φPoLC-ModMM(x).

5.4.3 Evaluation

In this section, the effectiveness of PoLC is examined in simulation using the experi-
mental setup described in Sec. 5.2. The following three scenarios are considered:

• Scenario 1 – A space-filling sequential design is generated, assuming the cost
function to be known (Fig. 5.8)

• Scenario 2 – An adaptive design is generated, assuming the cost function to
be known (Fig. 5.9)

• Scenario 3 – An adaptive design is generated, assuming the cost function to
be unknown (Fig. 5.10).

In the adaptive sampling methods, we employed an initial design of 16 space-filling
sample points. For scenarios involving an unknown cost function, we used OLHS of
16 sample points, as detailed in Sec. 3.2.1. If different sampling methods were used
for the initial design and the adaptive design, we use the notation A | B, where A
denotes the initial design and B the adaptive design. The sequential mod. maximin
criterion is abbreviated to ModMM in this section (for reasons of space in the figure
legends). PoLC was applied with λ = 0.3 and the weight of the criterion in the
scalarization function was set to zero.

Scenario 1 Fig. 5.8 compares space-filling sampling methods. As known from
Sec. 3.2, ModMM delivers an NRMSE similar to that of LHS, with LHS slightly
outperforming ModMM. PoLC-ModMM achieves a comparable model accuracy in
terms of NRMSE but performs marginally worse than ModMM. Conversely, CeID
yields a significantly higher NRMSE than the other sampling methods for any number
of samples.

When considering the NMCPS, it is evident that CeID generates the lowest costs per
sample by a significant margin. LHS and ModMM do not account for sampling costs,
thereby incurring the average costs per sample for each cost function (as they are
space-filling sampling methods). As discussed in Sec. 3.2, LHS, as a one-shot design,
exhibits superior space-filling properties compared to ModMM, and consequently
results in an NMCPS slightly closer to 1. PoLC-ModMM starts with comparable
NMCPS to CeID, but unlike CeID, shows a steady increase in NMCPS with the
number of samples. This can be explained by the fact that regions where ModMM
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Figure 5.8: The mean (lines) and standard deviation (shaded area) of the measures NRMSE and

NMCPS over N runs = 100 randomly generated black-box and cost function pairs vs
the number of sample points or NCC, respectively. The cost function is known to the
sampling algorithms.
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takes values close to its current maximum value (above the threshold defined by λ),
and within which cost can be minimized, become smaller with an increasing number
of samples (cost cooling).

PoLC-ModMM offers the lowest NRMSE per NCC (NCC can be considered nor-
malized invested budget). ModMM and LHS yield comparable NRMSEs, with LHS
causing a slightly smaller NRMSE. As the NCC increases, the difference between
PoLC-ModMM and the methods without cost consideration diminishes. For small
NCCs, CeID results in a slightly higher NRMSE than PoLC-ModMM. As the NCCs
increase, CeID performs progressively worse compared to the other sampling methods,
delivering poorer model accuracy than LHS and ModMM for NCC> 0.4. While CeID
ensures low costs per sample, it fails to maintain the space-filling properties of the
resulting design, leading to decreased model accuracy compared to other sampling
methods. PoLC-ModMM maintains space-filling properties for any number of sam-
ples or NCC, thereby reducing the ability of cost consideration with an increasing
number of samples (cost cooling), and thus the model accuracy regarding the NCC
approaches that of LHS and ModMM.

Scenario 2 In Fig. 5.9, the comparison of adaptive sampling methods is presented.
Since the cost function is assumed to be known, cost-aware strategies can be employed
to generate a space-filling initial design. To assess the impact of a cost-aware initial
design on the adaptive designs WMV and PoLC-WMV, simulations were conducted
using both LHS and PoLC-ModMM as the initial designs.

As illustrated in Fig. 5.9, all examined sampling methods achieve a comparable
NRMSE per number of samples, with the adaptive design of PoLC-ModMM | PoLC-
WMV slightly underperforming. When considering the NMCPS over the number of
samples, the progression of PoLC-WMV varies depending on the initial design used.
PoLC-ModMM | PoLC-WMV incurs the lowest costs per sample for any number of
samples. The NMCPS of LHS | PoLC-WMV start at those of LHS and approach
the NMCPS of PoLC-ModMM | PoLC-WMV as the number of samples increases.
Similarly, the adaptive design of PoLC-ModMM | WMV starts with the NMCPS of
PoLC-ModMM and approaches the NMCPS of LHS with an increasing number of
samples.

This is also reflected in the assessment of the NRMSE as a function of the NCC. PoLC-
ModMM | PoLC-WMV outperforms LHS | PoLC-WMV and PoLC-ModMM | WMV
for small budgets, while the curves of PoLC-ModMM | WMV and PoLC-ModMM | PoLC-
WMV overlap for small budgets, with PoLC-ModMM | WMV resulting in a larger
NRMSE than PoLC-ModMM | PoLC-WMV for larger budgets. The difference in
NRMSE among the studied sampling methods diminishes with increasing NCC, lead-
ing to comparable NRMSE for NCC> 0.8, with the NRMSE of PoLC-ModMM | PoLC-
WMV and LHS | PoLC-WMV slightly below that of PoLC-ModMM | WMV and

83



Chapter 5. Cost-aware Adaptive Sampling for Environmental Sensing

20 30 40 50 60 70 80 90 100
number of samples

0.05

0.10

0.15

N
R
M
S
E

PoLC-ModMM | WMV

PoLC-ModMM | PoLC-WMV

LHS | WMV

LHS | PoLC-WMV

20 30 40 50 60 70 80 90 100
number of samples

0.4

0.6

0.8

1.0

N
M
C
P
S

0.0 0.2 0.4 0.6 0.8 1.0
NCC (normalized cumulative sampling cost)

0.05

0.10

0.15

0.20

N
R
M
S
E

1
Figure 5.9: The mean (lines) and standard deviation (shaded area) of the measures NRMSE and

NMCPS over N runs = 100 randomly generated black-box and cost function pairs vs
the number of sample points or NCC, respectively. The cost function is known to the
sampling algorithm.
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LHS | WMV. Hence, the consideration of location-dependent sampling costs has a
more significant impact on the resulting model accuracy when only small budgets
are available. This is due to the fact that, beyond a certain number of samples, more
expensive samples must be selected to maintain the information gain per sample.

Scenario 3 In Scenario 3, the sampler lacks prior information about the cost
function. Consequently, in addition to the metamodel, it is necessary to train a cost
model based on the sampling costs incurred at the sample points, as described in
Sec. 5.2. This cost model is then used for consideration of sampling costs in the
selection of the next sample points. Since the cost function is unknown, a cost-aware
initial design cannot be implemented, leading to the adaptive algorithms being
warm-started with LHS, as outlined at the beginning of the section.

Fig. 5.10 illustrates that LHS | PoLC-WMV incurs lower NMCPS than LHS | WMV
by considering the approximated sampling costs based on the cost model. Unlike
Fig. 5.9, where LHS | PoLC-WMV demonstrates a significantly lower NRMSE for
NCC > 0.2 compared to LHS | WMV, the NRMSE of the two methods in Fig. 5.10
are nearly identical. Although the NRMSE for LHS | PoLC-WMV is slightly higher
w.r.t. the number of samples and marginally lower w.r.t. NCC compared to that of
LHS | WMV, the differences are not significant. To effectively deploy the PoLC, it is
advisable to incorporate prior knowledge about the course of the cost function into
the cost model in order to be able to use it for the generation of a cost-aware initial
design and to achieve good model accuracy of the cost model even with a smaller
number of sample points.

5.5 Local and Travel Costs in Adaptive Sampling of
Expensive-to-evaluate Environmental Phenomena
Using Mobile Robots

In this section, we combine the insights and results from the previous sections Sec. 5.3
and Sec. 5.4 to address both problem statements in Sec. 5.3.1 and Sec. 5.4.1 equally.
In this way, we enable the simultaneous consideration of travel costs and location-
dependent sampling costs, which (as discussed at the beginning of this chapter) is
relevant for the application of adaptive sampling in environmental sensing using
mobile robots. To the best of our knowledge, there are no adaptive sampling methods
in the literature that integrate both parameter-dependent (location-dependent)
costs and the costs associated with modifying parameters (travel costs) within the
context of global metamodeling, related domains such as Bayesian Optimization, or
environmental sensing using mobile robots. Our novel method presented in Sec. 5.5.1
closes this gap and is extensively evaluated in Sec. 5.5.2.
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Figure 5.10: The mean (lines) and standard deviation (shaded area) of the measures NRMSE and

NMCPS over N runs = 100 randomly generated black-box and cost function pairs vs
the number of sample points or NCC, respectively. The cost function is unknown and
approximated by a cost model.
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5.5.1 Receding Horizon Pareto-optimal Cost-aware Adaptive Sam-
pling

In Sec. 5.3.4 it was demonstrated that RHCaAS in combination with φPoTC(x) results
in greater savings of travel costs without significant impact on model accuracy than
the mere consideration of φ(x), if the travel costs are weakly weighted against the
criterion. We make use of this principle in this section by defining a Pareto-optimal
sampling criterion that compromises between the travel costs and location-dependent
(local) costs which is then used as criterion for RHCaAS. First, we define the vector
of competing objectives for the according MOP

min
x

[
cx(x)

c∆x(xm, x)

]
︸ ︷︷ ︸

JLTC(x)

s.t. x ∈ X : φ(x) ≥ (1 − λ) max
x∈X

φ(x) (5.34)

to exclusively encompass the cost functions while the criterion is only reflected in the
constraint, where φ(x) is a sequential or adaptive sampling criterion and λ ∈ [0, 1].
This allows for a better trade-off between the cost functions in regions of high values
of the sampling criterion while avoiding an additional trade-off (or tuning) parameter.
Hence, the resulting Pareto-optimal sampling criterion

φPoLTC(x) =

−scheby(JLTC(x)) if φ(x) ≥ (1 − λ) maxx∈X φ(x)

−∞ otherwise
(5.35)

can be defined as in (5.22) and (5.33). The abbreviation LTC indicates that both
travel costs and local sampling costs are considered. Following the convention
from Sec. 5.3.2 and Sec. 5.4.2, we use the notation φPoLTC-(·)(x) when inserting
sequential or adaptive sampling criteria into (5.35) (e.g., φPoLTC-WMV(x) for the
WMV criterion or φPoLTC-ModMM(x) for the sequential mod. maximin criterion). We
define receding horizon Pareto-optimal cost-aware adaptive sampling (RHPoCaAS) to
be RHCaAS where any φPoLTC-(·)(x) is used as sampling criterion. Accordingly, we
denote RHPoCaAS with a particular Pareto-optimal criterion φPoLTC-(·)(x) RHCaAS-
PoLTC-(·) (e.g., RHCaAS-PoLTC-WMV).

5.5.2 Evaluation

In this section, the WMV criterion is used to compare the simultaneous consideration
of the location-dependent sampling costs and the robot’s travel costs with the
separate consideration of each of the two cost types. The WMV criterion without
cost consideration is also examined as a baseline. The experimental setup is described
in Sec. 5.2. We used PoLC-ModMM to generate a cost-aware space-filling initial
design of 16 sample points as a basis for the adaptive designs, assuming the cost
function to be known. The following parameters were used for the algorithms:
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PoLC-ModMM: λ = 0.3, no weight on the sampling criterion in the scalariza-
tion function

WMV: α = 0.025 (in all methods)

PoTC-WMV: λ = 0.1, no weight on the sampling criterion in the scalarization
function

PoLC-WMV: λ = 0.3, no weight on the sampling criterion in the scalarization
function

RHCaAS-PoLTC-WMV: H = 4, λ = 0.3, in the scalarization function the
weight for the location-dependent sampling cost is set to 0.9 and the weight for
the travel cost is set to 0.1.

In Fig. 5.11 it can be seen that WMV results in a lower NRMSE than the cost-
aware methods. The cost-aware methods have a comparable NRMSE, with PoLC-
WMV having the highest NRMSE. RHCaAS-PoLTC-WMV and PoLC-WMV incur
comparable NMCPS and Rel. MCTCS (relative mean cumulative travel cost savings),
with the Rel. MCTCS computed relative to WMV. The same applies to RHCaAS-
PoTC-WMV and WMV. Accordingly, RHCaAS-PoLTC-WMV provides comparable
results to taking one of the cost types into account separately without additional
loss of model accuracy. This underscores its potential as an effective method for
simultaneously addressing both location-dependent sampling costs and travel costs
of the mobile robot with minimal impact on model accuracy.

5.6 Summary

In this chapter we introduced novel methods that account for location-dependent
costs and travel costs, advancing the methods from Chap. 3 and Chap. 4 for their
application in environmental sensing using mobile robots. For this purpose, we first
investigated the consideration of travel costs and location-dependent costs separately
in Sec. 5.3 and Sec. 5.4. In both cases, we set up an MOP that included the sampling
criterion and the considered cost function. By applying a scalarization function, we
transformed each of the MOPs into an SOP, which enables a trade-off between the
two objective functions and guarantees the position on the Pareto front. Furthermore,
motivated by the CEI criterion [97], we formulated additional constraints for the
optimization of the scalarization function, which only allow solutions in regions of
the design space where the sampling criterion takes values above a threshold, where
the threshold is a tuning parameter. The corresponding family of Pareto-optimal
cost-aware criteria is denoted φPoTC or φPoLC in case of consideration of travel costs
and location-dependent costs, respectively.
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Figure 5.11: The mean (lines) and standard deviation (shaded area) of the measures NRMSE,

NMCPS, and Rel. MCTCS over N runs = 100 randomly generated black-box and cost
function pairs vs the number of sample points. The cost function is known to the
sampling algorithms.
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In Sec. 5.4.3, our simulations demonstrated that consideration of location-dependent
sampling costs in the Pareto-optimal criterion φPoLC drastically reduces the cumu-
lative costs without having a significant impact on metamodel accuracy. We have
also considered the scenario where the location-dependent sampling costs are not
known in advance and must be approximated by a cost model. The simulations
demonstrated that reliance on the error-prone cost model in the optimization process
reduces cost savings, thereby diminishing the achieved model accuracy per cost
incurred. Therefore, it is advisable to incorporate any prior knowledge of the cost
function into the cost model.

The Pareto-optimal criterion φPoTC for consideration of the robot’s travel cost did
not perform well in simulation in Sec. 5.3.4, as cost reduction is achieved by selecting
the next sample point close to the robot’s current position. Hence, significant
consideration of travel costs results in the robot barely moving from its current
position.

In addition to balancing the criterion and the cost function, in Sec. 5.3 we presented
a novel cost-aware adaptive sampling (RHCaAS) algorithm that predicts the robot’s
cumulative travel costs over a horizon. The next sample point is in each iteration
obtained by minimization of the predicted cumulative travel costs. Unlike the Pareto-
optimal approach, the sample points in each iteration are selected in the (predicted)
optimum of the sampling criterion and thus no trade-off has to be made, resulting in
drastic cost savings without significant impact on model accuracy. Large horizon
lengths result in initial losses in global model accuracy, as the robot engages in local
exploitation along its route, leading to uneven exploitation across the design space.

RHCaAS is independent of the sampling criterion used, allowing the use of Pareto-
optimal cost-aware sampling criteria. This enabled us to use RHCaAS in combination
with PoLC in Sec. 5.5, which led to greater cost savings for small horizon lengths
without negatively impacting model accuracy. Moreover, we exploited this property
to use RHCaAS in combination with the Pareto-optimal criterion φPoLTC, which
trades-off between the location-dependent sampling costs and the travel costs. In
simulation, this resulted in a drastic reduction of the cumulative location-dependent
sampling costs and the cumulative travel costs of the mobile robot without significant
impact on model accuracy.
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CHAPTER6
Conclusions

Rapidly advancing climate change and increasing environmental pollution require
solutions for sensing and monitoring the environment, enabling the implementation
of targeted and effective interventions. Besides satellite data (e.g., high resolution
imagery and radar data) and stationary sensors such as weather stations, there is
an increasing deployment of mobile robots for this purpose. A prime example is
the ROBDEKON project [14], in which an autonomous construction machine is
used to perform expensive dynamic probing on a contaminated site, on the basis
of which the distribution of pollutants in the soil is then to be reconstructed. This
example underscores that in certain applications, each individual measurement incurs
significant costs (e.g., time and/or energy demands), necessitating the employment of
data-efficient machine learning (ML) methods for modeling environmental phenomena,
coupled with intelligent strategies for the selection of informative sample points.

As described in Chap. 1, this thesis initially develops space-filling and adaptive
sampling methods, specifically designed for environmental sensing of expensive-to-
evaluate environmental phenomena. Subsequently, cost-aware sampling strategies
are developed, taking into account the location-dependency of sampling costs and
the travel costs of the mobile robot. These strategies build on the methods previ-
ously introduced to achieve the most accurate reconstruction of the environmental
phenomenon within a given budget.

In the further course of the chapter, Sec. 6.1 first summarizes the contents of this
thesis. An outlook on future research opportunities is then given in Sec. 6.2.

6.1 Summary

In Chap. 3, we investigated the metamodeling of an unknown function (black-box
function) using space-filling designs. Existing methods in the domain of metamodel-
ing address mixed-domain (continuous, discrete, categorical, various scales, etc.) and
often high-dimensional design spaces, as well as black-box functions that may exhibit
complex behaviors, including discontinuities. We exploited the fact that environmen-
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tal sensing typically involves a low-dimensional design space with uniformly scaled
dimensions. Furthermore, motivated by characteristics of environmental phenomena
(e.g., it is subject to diffusion processes), we assumed that the black-box function is
Lipschitz continuous, implying a bounded rate of change. Building on these premises,
we derived three novel sampling criteria: mean distance (MD), root mean squared
distance (RMSD), and modified maximin (mod. maximin). For each criterion, we
defined both a one-shot and a sequential variant. Additionally, we introduced modi-
fied regular grid sampling (mod. RGS), which constructs an inward-shifted regular
grid. Unlike factorial designs, the proposed methods enable the generation of designs
with any number of samples. Our simulation results demonstrated three key findings:
First, mod. RGS performed best in terms of global metamodel error. Second, our
proposed methods produced comparable results to mod. RGS but have the advantage
of being usable for any number of samples. Third, our methods outperformed other
space-filling designs from the literature.

In Chap. 4, we applied adaptive sampling methods. These methods iteratively
select the next sample point(s) based on the available information about the black-
box function, leading to improved model accuracy. Initially, we defined the class
of explorative sampling criteria (ESC) and showed that most distance-based or
variance-based sampling criteria can be easily transformed into an ESC. Building
on ESC, we introduced the novel class of weighted explorative sampling criteria
(WESC), specifically developed for sensing positive-valued environmental phenomena
such as concentration distributions. Using two concrete WESCs, we showed that
these outperform existing methods in simulation when used for metamodeling of
positive-valued environmental phenomena.

Chap. 3 and Chap. 4 focused on the optimal placement of sample points w.r.t. global
model accuracy. However, in practical scenarios, sampling costs can be location-
dependent. Additionally, the use of mobile robots introduces travel costs, which
are significantly influenced by the sequence of sample points. Hence, in Chap. 5,
we investigated cost-aware sampling methods that take these costs into account,
thereby achieving an increase in model accuracy for a given budget. For this purpose,
we developed a Pareto-optimal sampling criterion for each scenario: considering
location-dependent costs, travel costs, and both costs combined. Moreover, we
introduced a receding horizon cost-aware adaptive sampling (RHCaAS) algorithm,
which drastically reduces travel costs without significantly impacting metamodel
accuracy. Finally, we combined the Pareto-optimal criterion with the RHCaAS
algorithm in such a way that a significant reduction in both types of costs could
be achieved with minimal impact on model accuracy. The proposed algorithms
were evaluated through extensive simulations, demonstrating their superiority over
existing methods.
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The criteria presented in this work enable a superior selection of sample points for the
reconstruction of environmental phenomena concerning information yield compared
to existing methods. In conjunction with the methods developed in Chap. 5 for
considering location-dependent sampling costs and the robot’s travel costs, the results
of this work have the potential for significant cost savings in the deployment of mobile
robots for sensing of expensive-to-evaluate environmental phenomena.

6.2 Future Research

As detailed in Sec. 6.1, this thesis was concerned with metamodeling of expensive-to-
evaluate black-box functions, with specific application to environmental sensing. A
significant emphasis was placed on the incorporation of location-dependent sampling
costs and the travel costs associated with the deployment of mobile robots for sample
collection. In this section, we provide an outlook on promising avenues for future
research. We propose connections to state-of-the-art ML techniques, which hold the
potential to overcome several limitations of existing methods.

Reinforcement Learning Reinforcement learning (RL) presents a promising
alternative for determining the next sample point in sequential or adaptive sampling
methods. Instead of optimizing a sampling criterion, RL enables the learning of a
policy (the RL agent) that suggests the next sample point based on the existing
design [98]. Current research in this emerging and active field primarily focuses on
Bayesian approaches to maximize the expected information gain associated with
the next sample point [98–100]. To avoid the necessity of retraining the metamodel
in each iteration of the algorithm, some approaches consider the metamodel as a
black-box, which is solely used for training the policy. Thereby the characteristics of
the black-box function are learned implicitly. When applied, the next sample point
is then generated based on the existing design.

RL requires that the transitions between successive states can be modeled as a
Markov decision process (MDP) [101]. This can be achieved by transforming the
pairs of sample and sample point into an embedding space of fixed size, where the
current design (the state) in the embedding space is recursively defined as the sum
of the embedding of the previous design and the embedding of the new data point
(sample point, sample) [98].

We consider the use of RL for adaptive sampling to be promising and propose the
following research questions that we consider interesting for further exploration:

Utilization of Novel AI Technologies for Handling Dynamic State
Sizes: RL on graph neural networks (GNNs), as well as its integration with
transformer models, represent novel and active fields of research (e.g., for
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collaboration of multiple agents [102] (e.g., swarm of robots), solving routing
problems in graphs [103], or efficiently encode multi-modal high-dimensional
data into low-dimensional embeddings [104]). We suggest exploring whether
technologies such as GNNs or transformer models are suitable for RL-based
sequential or adaptive sampling involving dynamic state sizes, as they can
process inputs of varying lengths. For instance, each sample point could be
represented as a node of a GNN, with the corresponding sample as its attribute,
and the distances between the sample points encoded in the edges of the graph.

Use of Application-specific Metamodels: Rather than implicitly train-
ing the characteristics of the metamodel into the models used (e.g., encoder,
policy), we propose investigating whether an application-specific metamodel,
optimized through careful selection of parameters (e.g., hyperparameters and
prior of a Gaussian process) to achieve high model accuracy with little data,
can enhance the data efficiency of the RL algorithm. Furthermore, it should
be examined whether the policy generalizes better across different applications
when application-specific knowledge is explicitly included in the metamodel
instead of the policy and encoder models. This leads to another interesting
question: How can the state of the metamodel be represented and integrated
with the existing design as a state input to the policy?

Distance-based Space-filling Sequential Designs: These represent a special
case as they do not use a metamodel for selecting the next sample point. This
category includes designs such as the minimax design, which is particularly
challenging to optimize. We consider investigating an RL policy capable of
generating optimal minimax samples to be highly beneficial.

Optimal Initial Sample Point in Sequential Sampling As illustrated in
Fig. 2.14, sequential designs are strongly dependent on the choice of the first sample
point. Although this fact is regularly mentioned in the literature, no solution is
proposed. Therefore, we consider the investigation of strategies for the optimal
selection of initial sample points for various sequential sampling criteria to be an
important next step.

Optimal Initial Design for Adaptive Sampling The same observation noted
in the selection of the initial sample point for sequential designs is evident in the
choice of initial designs for adaptive sampling methods. The size of the initial design
and the need for its space-filling characteristics are discussed a lot in the literature.
However, it is unclear how the type of initial design effects the resulting adaptive
design including its implications on model accuracy. Therefore, we propose a closer
examination of how the characteristics of adaptive designs depend on their initial
setups, including the implications for model accuracy.
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Avoidence of Initial Design through Multi-criteria Sampling Adaptive
sampling methods use existing information about the black-box function in each
iteration to determine the next sample point. Since no information about the black-
box function is available initially, a space-filling initial design is often employed
to gather data from various regions of the design space. This data forms the
basis for performing adaptive sampling. The choice and size of the initial design
are parameters that must be specified by the user. Some approaches integrate
exploration and exploitation to avoid this distinction. Essentially, these approaches
can be divided into three categories [15]:

1. Decreasing strategy: A weighted sum is formed between an explorative and
an exploitative criterion. As the algorithm iterates, the weight assigned to
exploration decreases while the weight assigned to exploitation increases.

2. Greedy strategy: Beginning with pure exploration, a switching condition
is employed across the iterations of the algorithm to transition between pure
exploration and pure exploitation.

3. Switching strategy: A weighted sum is formed between an explorative and
an exploitative criterion. The weights are dynamically and inversely adjusted
(e.g., in a sinusoidal pattern), ensuring that either exploration or exploitation
predominates over the iterations.

Note that the weighted sum serves as a scalarization function, and the weights
influence the positioning of the solution on the Pareto front. We believe that
exploring more sophisticated multi-criteria adaptive sampling criteria, which combine
multiple sampling criteria with varying characteristics (e.g., through multi-criteria
optimization or machine learning techniques), holds significant potential. This is
especially true for the deployment of mobile robots, as their travel distance could be
substantially reduced if, starting from an initial point, it could be decided during the
exploration of the design space that a location requires closer examination, rather
than first exploring the entire design space and subsequently investigating specific
locations in detail.

Parallelization of Sampling Approaches By employing methods such as delayed
feedback sampling (or its analog for Voronoi-based techniques [71]) or Thompson
sampling, adaptive sampling methods can propose multiple next sample points
simultaneously [67]. This allows for the parallel (or batch) evaluation of the black-box
function at these points, thereby enhancing efficiency. To facilitate parallel sampling
in environmental sensing, multiple mobile robots are required. Considerable research
is directed towards collaboration between multiple robots (robot swarms) [105–
107], including their application in environmental sensing and monitoring [108–110].
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However, as described in Chap. 5, existing methods are only partially suitable for
sensing expensive-to-evaluate phenomena. Therefore, we believe it is worthwhile
to develop methods that are suited for cost-aware sensing of expensive-to-evaluate
environmental phenomena using robot swarms.

Cost-aware Space-filling One-shot Design In Sec. 5.4, we have investigated
cost-aware sequential space-filling designs. Furthermore, in Chap. 3, it was noted
that one-shot designs demonstrate superior space-filling properties compared to
space-filling designs. Accordingly, we propose the exploration of multi-objective
optimization for generating cost-aware space-filling designs. Note that this approach
requires prior knowledge of the cost function.

Time-variant Black-box Funcitons Mobile robots are also employed for spa-
tiotemporal sampling of time-varying environmental phenomena [111, 112] and
methods for regression of spatiotemporal data have been proposed [113–115]. Similar
to the methods discussed in Chap. 5, data is collected during the robots motion. We
consider the extension of the methods from this thesis for suitability in spatiotempo-
ral sampling of time-varying environmental phenomena to be an exciting research
direction.

Generative AI for Sample Generation Generally speaking, generative AI
comprises methods that can learn distributions from data and then generate new
data instances (not contained in the training data) following the same distribution
[116–119]. Moreover, generative AI methods can be conditioned to influence the
output [120, 121]. We consider the exploration of the suitability of generative AI for
generating one-shot or adaptive designs to be a fascinating research direction. For
example, it could be examined to what extent existing samples and the sampling
method used can be accounted for through conditioning.

Transfer to Other Applications Community sensing explores how a group of
people, such as the residents of a city, can be used to monitor specific metrics. The
methods developed in this thesis for cost-aware space-filling and adaptive sampling,
combined with batch sampling techniques, hold the potential to maximize the
amount of information obtained per measurement for a given budget, particularly
when samples are expensive in terms of effort, duration, or payment to the individual.

Another potential application is quality monitoring in production lines. In some
cases, quality assessment can be time-consuming, such as when a large component
must be removed with a crane to evaluate its quality characteristics on a test bench.
The methods developed in this thesis could be used to create a metamodel of the
quality characteristics based on features of the process data and use a cost-aware
adaptive sampling criterion to decide whether a component should be removed for
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quality assessment. This approach could prevent unnecessary removals when the
model confidently predicts the component’s quality as satisfactory.

The cost-aware adaptive sampling methods presented in this thesis should, from our
perspective, be evaluated for their suitability for use in robot-based extraterrestrial
observation, such as with Mars rovers. Such robots operate under constrained
resources (time, energy), and individual samples can be expensive depending on the
metric being assessed (wear and tear, measurement capacity, energy consumption,
duration).
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APPENDIXA
Contextualization of Our Research
within Current Developments in
Artificial Intelligence

Machine learning (ML) methods have become indispensable in the modern era.
Recent years have been marked by significant breakthroughs in a variety of ML
methods across numerous application domains. The trend is evident: more data
and larger models yield better results [122–124]. To date, no limits have been
identified beyond which additional data and larger models do not continue to enhance
performance. However, the resources freely available on the internet are limited [123,
125], prompting artificial intelligence (AI) providers to actively seek partnerships and
licensing agreements with content holders [126, 127]. The challenges are not limited
to the quantity and quality of the training data, but also extend to the associated
computational resources [128]. These are coupled with high energy demands and
considerable time expenditure [129–131]. Consequently, there is currently significant
research effort being directed towards various means to enhance the efficiency of
computing units [131–134], optimize technical implementations [123, 135, 136], and
develop innovative methods [131, 137] that allow for more efficient solutions to achieve
comparable results.

According to current estimates, the deployment of AI will determine the competitive-
ness of enterprises in the future and will be utilized across all societal sectors and
industries [135, 138, 139]. In this context, enhancing the efficiency of AI methods is
of strategic importance for humanity. This is essential to prevent or at least mitigate
the negative environmental impacts of AI [128, 129, 131].

In practice, particularly within the industrial context, the application of AI for specific
purposes is often constrained by the availability of data. A solution to this issue is
transfer learning, in which models are pre-trained (e.g., through a multi-stage process
involving self-supervised, then semi-supervised, then supervised learning) on large
datasets with comparable characteristics (such as their probabilistic distribution) and
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Figure A.1: Metamodeling of an unknown function f(x) (black-box function) involving a space-filling

initial design (crosses) and an adaptive design (dots) on a two-dimensional parameter
space (design space). The adaptive design iteratively exploits the existing knowledge
about the black-box function to intensify sampling in regions of interest.

subsequently fine-tuned on small, application-specific datasets. Examples include
the analysis of MRI or CT scans [140, 141], the segmentation and classification of
camera data in autonomous driving [142], land use classification based on satellite
data [2, 3], and the assessment of environmental damage using image data [1, 4].

The size of the model, especially in the context of embedded AI [135], poses limitations
when AI is implemented on microcontrollers for integration into products that have
restricted space, energy, or memory capacities [143–146]. This often requires the use
of specialized techniques for model compression and optimization, which may include
application-specific logics based on expert knowledge [147].

Reinforcement learning (RL) is a machine learning technique wherein an agent learns
to maximize a reward function over the long term through interaction with its
environment [101]. The agent performs actions based on the state of its environment,
which requires learning through trial and error. This makes the generation of
sufficient training data more challenging, expensive, and thus unfeasible for many
practical applications compared to other ML methods [148, 149]. Such difficulty
arises particularly because an RL agent requires numerous trials to learn an effective
strategy. Consequently, a variety of methods are being explored and ingeniously
combined to enhance the data efficiency of RL [148, 150]. Examples include collecting
past experiences of an agent in a memory and randomly replaying them to stabilize
the learning process and maximize the use of available data (experience replay)
[151], transferring knowledge from a previously trained model to a new problem
(transfer learning) [152], progressively increasing the difficulty of the agent’s tasks for
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Figure A.2: Simplified adaptive sampling procedure for environmental sensing.

more effective and faster convergence (curriculum learning) [153], encoding desired
behaviors into the reward function (reward shaping) [154], or reinterpreting an agent’s
failures as successes of an alternative reward function (hindsight experience replay)
[155]. In some cases, off-policy learning can also be employed to learn from the
experiences of existing solutions, other agents, or past experiences [101, 156, 157].

Another approach is model-based RL, which, similar to model predictive control,
explicitly incorporates a model of the environment (which can be learned from
data, predefined, or a combination of both) [158–160]. Model-based RL illustrates a
fundamental issue common to all data-driven learning methods: the inefficient repre-
sentation of the physical relationships in the environment by ML models [161, 162].

Physics-informed ML addresses this issue by trying to learn low-dimensional physical
representations from high-dimensional data [161, 163]. This approach focuses on
the design of the model architecture and the loss function to accurately represent
the low-dimensional (and often sparse) physical relationships [164, 165]. The term
"physics" in this context is abstracted to encompass all laws inherent in the data.
However, physics-informed ML is still in its infancy and, to date, has been practically
applied only in specialized cases [166].

Instead of physically modeling the environment in full detail, metamodels – often
referred to as digital twins [19] – are commonly used to represent the relationships
between target variables (outputs) and parameters (inputs) in physical experiments
(e.g., wind tunnel tests [17]) and computer experiments (e.g., numerical simulations
[18]) [15, 16]. The rapidly evaluable metamodel mimics the physical relationships
across the entire parameter space and serves as a surrogate for the experiments [21].
In this process, active learning (also known as adaptive sampling [21]) techniques
are utilized to select the parameter combinations for training the metamodel in
such a way that it achieves maximum model accuracy or identifies the optimum of
the underlying causal relationships [15, 25], as shown in Fig. A.1. In some cases,
cost-aware methods are applied, aiming to achieve the best possible results within a
given budget by considering the parameter-dependent experimental costs [17, 26].
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Thanks to advances in mobile robotics, battery technology, and sensor technology,
adaptive sampling methods are becoming increasingly important in environmental
sensing. As illustrated in Fig. A.2, the adaptive sampling procedure iterates by
selecting the next sample point, sampling the environmental phenomenon at the
selected point, and then training the new data points into the metamodel. This
sequential approach allows for the selection of subsequent sample points to be adapted
based on the most recent knowledge about the phenomenon, thereby gaining more
information per sample than would be obtained using non-adaptive sampling methods
(e.g., distance-based space-filling designs [21, 27]) [15].

Adaptive sampling was employed in environmental sensing and monitoring for the
exploration and reconstruction of scalar fields (such as depth maps or concentration
distributions) using unmanned surface vehicles (USV) [28–30]. For this, real-time
capable sensors were employed, which recorded measurements at regular intervals
along the robot’s route and while it was in motion. However, there are also applica-
tions where the robot has to interrupt its motion to perform expensive sampling (in
terms of energy and/or time) and the number of samples is limited by constrained
resources (e.g., battery capacity, time limit).

A prominent example is the ROBDEKON project [14], which investigates the use of
autonomous construction machines for the decontamination of contaminated sites.
The autonomous construction machine performs expensive and time-consuming
dynamic probing to collect samples, which are then used to reconstruct the unknown
distribution of pollutants in the soil. This reconstruction allows for the precise
identification and removal of regions exceeding legal contamination limits, ensuring
effective site decontamination.

The project illustrates that there may only be a limited number of expensive samples
available for modeling the phenomenon, necessitating the preference for data-efficient
methods over large artificial intelligence (AI) models, such as those e.g., used in
satellite data processing. Additionally, there may be location-dependent differences
in sampling costs due to variations in soil composition, slopes, vegetation, or even
obstacles. Furthermore, travel costs incurred by the mobile robot between sample
points can vary significantly depending on the sequence of the points.

In contrast, in the context of global metamodeling, (adaptive) sample points are
chosen to maximize the information gained about the black-box function per sam-
ple. Furthermore, global metamodeling typically addresses high-dimensional mixed-
domain (continuous, discrete, categorical, various scalings) parameter spaces and
highly nonlinear or even discontinuous black-box functions (e.g., with jumps) [27].

However, in this thesis we consider the scenario of environmental sensing motivated by
the ROBDEKON project, where a continuous black-box function (e.g., a concentration
distribution) is to be reconstructed on the (low-dimensional and equally scaled)

102



location space based on expensive samples. In addition, incurred costs are to be
taken into account which include the robot’s travel costs as well as the potentially
location-dependent sampling costs.

Analogous to the concept of the digital twin, this thesis focuses on the digital
representation of unknown environmental phenomena based on costly samples. In
contrast to existing methods, we examine the problem of global metamodeling
under the constraints of environmental sensing with mobile robots. By considering
the characteristics of the spatial domain, environmental phenomena, and the costs
associated with deploying a mobile robot, we have succeeded in developing methods
at the conjunction of global metamodeling and mobile robotics for environmental
sensing that significantly outperform existing approaches from both fields in this
scenario.
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