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1 

1. Introduction 

 

The functional relationship between the interest rates and the corresponding maturities is re-

ferred to as the term structure of interest rates. If observed for a significantly long period of 

time, this relationship possesses specific features. One of them is that, on average, long-term 

interest rates exceed the short-term interest rates and the shape of the term structure is up-

ward-sloping. Although such a type of the term structure prevails, sometimes the shape of the 

term structure becomes flat and even downward-sloping. Empirical observations associated 

with the term structure gave rise to several term structure theories. While the first papers ap-

peared in the 1940s of the 20th century, studies seeking to find evidence helping to explain the 

term structure can hardly be counted. As a result of this research, the expectations theory of 

the term structure emerged, containing three versions: the pure expectations theory, the liquid-

ity theory, and the preferred habitat theory. 

 

From the above three versions, the pure expectations hypothesis (EH) received by far the 

greatest attention in the academic literature. The pure expectations theory states that long-term 

interest rates are determined as an average of current and future expected short-term interest 

rates. Because it explains long-term interest rates relying exclusively on expectations, this 

version is often called an unbiased expectations theory. In contrast, the two other versions 

involve a risk-premium and are known as biased expectations theories. Due to its focus on 

expectations, the pure EH can explain every possible shape of the term structure, relating it to 

future expectations towards the future short-term interest rates. An important implication of 

the pure expectations theory is that forward rates are considered to be unbiased predictors of 

the future interest rates. During the past several decades, the pure expectations hypothesis has 

been subject to extensive research.  

 

There are many reasons for the great interest in the term structure of interest rates. One of the 

most important aspects is its importance for monetary policy issues. Central banks can make 

use of different policy instruments to affect the short-term interest rate. However, investment 

and long-term consumption decisions are made based on the long-term interest rates. Thus, 

knowledge about how long- and short-term interest rates are related to each other would help 

to analyze the effectiveness of monetary policy issues. In the framework of the pure expecta-

tions theory, monetary authorities can only affect the long-term rates if they influence the ex-
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pectations of market participants regarding the future short-term interest rates. Important im-

plications from the observations of the term structure can also be made with respect to infla-

tion expectations. An increase in the long-term interest rates is often interpreted as an indica-

tor of a rise in expected inflation rates.  

 

Factors that determine the term structure are also important for the government debt issuance. 

If long-term interest rates are an average of current and expected future short-term interest 

rates, it will be difficult to affect the term structure through buying and selling bonds of dif-

ferent maturities. In addition, the term structure is indispensible for pricing different financial 

instruments, such as bonds, swaps and interest rate options.  

 

Studies of the term structure are especially important for forecasting purposes. If long-term 

interest rates represent an average of current and future expected short-term interest rates in 

accordance with the pure expectations theory, this result can be employed to predict the future 

short-term interest rates. Numerous empirical papers have focused on the information content 

of the term structure.  

 

Despite a great number of empirical papers devoted to the pure expectations theory, an unam-

biguous conclusion still cannot be drawn. These studies use a variety of periods, interest rates, 

and apply different testing procedures. In general, the theory is rejected by the studies that 

used data for the US. For European data including Germany, the result is contradictory. Some 

authors strictly reject the theory whereas others find evidence in favor of the hypothesis. In 

general, evidence for Europe is more supportive than that for the US. The general failure of 

the theory gave rise to a discussion about the possible reasons for this rejection. They include 

measurement error, existence of a risk premium and an overreaction hypothesis.  

 

An additional aspect to be mentioned is that testing the expectations theory in many of its 

forms is complicated by the fact that special assumptions regarding the expectations for-

mation process are needed. In order to derive the testing equation, rational expectations are 

commonly assumed. Thus, the expectations theory may be only tested as a joint hypothesis, 

which results in ambiguity when interpreting test results. Either the expectations theory does 

not hold or the expectations are formed in a way different from the assumed one. 
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To overcome these difficulties, the empirical study presented in this dissertation thesis at-

tempts to avoid the necessity of assuming some particular form of economic agents’ expecta-

tions. Instead, the first research question of this study is whether forward rates of preceding 

periods contain any predictive power with respect to future spot rates. Within the numerous 

contributions on the term structure theories, tests applying UK or US data are clearly domi-

nating. In this thesis, the existing literature on the German term structure will be extended 

employing recent data ranging from 1995 to 2007. In addition, due to recent developments in 

econometrics, new testing techniques have become available. In order to test the forecasting 

ability of lagged forward rates, cointegration analysis and the error correction model are em-

ployed.  

 

The second research focus of this dissertation thesis is closely connected to and largely based 

on the results of the above analysis. If forward rates cannot serve as predictors of the future 

interest rates, some special implications can be drawn. For example, this could indicate that 

fixed income trading strategies that are based on the stable yield curve may be profitable. 

Among such strategies is the so called rolling down the yield curve (RDYC) strategy that in-

volves borrowing short-term funds and investing them in long-term assets. This strategy rep-

resents a core business activity of banks, which roll over short-term funds in order to grant 

long-term loans. An alternative to this business activity is an investment on the capital market. 

The primary goal of this part of the analysis is to study and compare the performance of both 

strategies in Germany over the period from 1972 to 2007.  

 

In Germany, RDYC is especially important to the savings bank group, representing a key 

business activity of this type of banks. In contrast, large commercial banks are especially ac-

tive on the capital market, which represents the main source of income of this banking group. 

This becomes clear when considering the share of non-interest income and interest income of 

these banking groups. As focus on the client business has been under severe criticism because 

of concentration risks in the portfolio of such banks, an investigation of this issue can help to 

shed light on the success of two different business models.  

 

In addition, the second strategy associated with a stable yield curve is the riding the yield 

curve (RYC) strategy. Although similar to the strategy above, it involves buying fixed income 

instruments and selling them prior to maturity. This strategy, although received some atten-

tion in the empirical literature, has been tested for Germany only once. In this thesis, this 
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strategy will be considered and its performance compared with that of the buy-and-hold strat-

egy. The purpose of this analysis is to draw further conclusions regarding the validity of the 

pure EH.  

 

This dissertation thesis is structured in the following way. Chapter 2 aims at introducing the 

reader into the topic and giving the necessary prerequisites for the further analysis. In particu-

lar, section 2.1 addresses various methods that are commonly used in order to estimate the 

yield curve, such as estimation from zero-coupon bonds and swap rates as well as some of the 

theoretical models. The following section 2.2 acquaints the reader with different variations of 

the expectations hypothesis of the term structure and consists of three parts: section 2.2.1 con-

tains the pure expectations hypothesis, section 2.2.2 deals with the liquidity preference hy-

pothesis whereas section 2.2.3 discusses the preferred habitat theory. A further theory of the 

term structure, namely, the market segmentations theory, is introduced in section 2.3. In order 

to proceed with the model covered in this dissertation thesis it is essential to reflect the empir-

ical literature in this area at first. Consequently, chapter 2 is completed with an extensive re-

view of the previous empirical findings corresponding to the expectations theory of the term 

structure. 

 

Chapter 3 covers the empirical results of the selected models. It starts with section 3.1, which 

introduces the selected econometric methods and is further divided into three sections. Firstly, 

section 3.1.1 provides insights into the selected models and formulates the main objectives of 

the following empirical analysis. However, before starting the estimation of the equations, it 

is indispensible to determine the time series properties of spot and forward rates. The next 

section 3.1.2 contains the results of the preliminary data analysis. Finally, based on the find-

ings presented in subsection 3.1.2, subsection 3.1.3 describes in details the selected methods 

of econometric analysis, namely, the cointegration and the error-correction model.  

 

After the necessary methodology has been described, section 3.2 is entirely devoted to the 

empirical findings on the explanatory power of forward rates with respect to the future spot 

rates. At first, section 3.2.1 contains the results of cointegration properties of spot and corre-

sponding forward rates and presents the parameter estimates. Section 3.2.1 gives insights into 

a short-term dynamic of the considered models with the help of the error-correction model. 

The estimated parameters are then used to build predictions of the spot rate and test an out-of-

sample performance of each model (subsection 3.2.3). Finally, subsection 3.2.4 summarizes 
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the findings and outlines the direction of the research issues considered in chapter 4. The main 

findings of the analysis performed in chapter 3 indicate that forward rates do not possess sig-

nificant predictive power with respect to the future spot interest rates. Thus, it could be possi-

ble to use this result and build strategies based on a stable yield curve.  

 

The entire chapter 4 is devoted to the yield curve trading strategies and is comprised of six 

subsections. It starts with a categorization of fixed income strategies in section 4.1. The key 

attention is given to the description of the two strategies based on the upward sloping, stable 

yield curve: RDYC and RYC strategies. The specifics of these strategies as well as return 

derivations are presented in subsection 4.1.3. The riding the yield curve strategy received sig-

nificant attention of the academic community. In order to give an overview on the empirical 

performance of this strategy, major findings of previous research are summarized in section 

4.2.  

 

The following sections 4.3 and 4.4 are devoted to the RDYC and RYC strategy, respectively. 

Both sections show how the respective strategy is implemented and aim at giving first impres-

sions about the returns obtained from the respective strategy. To achieve this goal, each sec-

tion contains the excess return-volatility profile of the corresponding strategy. The following 

subsection 4.5 covers the results of the performance evaluation of both strategies. It starts 

with subsection 4.5.1, which presents various performance indicators that will be applied in 

the later parts to assess the strategies and includes traditional, value at risk-based as well as 

lower partial moment-based performance measures. The following two sections contain the 

performance results of both strategies relatively to a benchmark strategy, which is the German 

Stock Index (DAX) for the RDYC strategy and buy-and-hold (BH) strategy for the RYC 

strategy. Both sections provide the results of unconditional strategies as well as those where a 

filter rule was applied.  

 

Independently of the business strategy, banks have to control their exposure to various risks. 

The last subsection of section 4 gives an overview over the main sources of risk as well as 

current and planned regulatory framework, which aims to maintain the stability of the finan-

cial system.  Subsection 4.6.1 is related to the Basel II regulations which are currently in use. 

In addition, new developments regarding the regulatory requirements are presented, which 

arose during the financial crisis of 2008. Subsection 4.6.2 addresses the specific risks attribut-

able to the yield curve strategies. It also emphasizes the new regulatory requirements of Basel 
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III related to specific risks of the strategies, such as liquidity risk. Finally, chapter 5 provides 

a summary of the obtained results. 
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2. Term Structure of Interest Rates 

 

This chapter is devoted to various theories that were elaborated to explain the term structure 

of interest rates. Section 2.1 introduces different estimation methods available for deriving the 

term structure. Sections 2.2 and 2.3 outline the main focus of the classical term structure theo-

ries including the pure expectations theory, liquidity preference theory, preferred habitat theo-

ry and the market segmentation theory and address their ability to explain various shapes of 

the yield curve. In this part, several procedures commonly applied to test various term struc-

ture theories will be presented. Subsequently, the theoretical foundation is followed by a 

summary of existing empirical evidence in section 2.4. 

 

2.1 Estimation Methods 

 

The term structure of interest rates represents the relationship between the spot rates, i.e. in-

terest rates for an investment beginning at the time of consideration, and the term to maturity 

of the investment. The yield curve plots the relationship between the bond yields and their 

remaining maturities. It should be distinguished from the forward curve, which plots the rela-

tionship between the forward rates and their maturities. Forward rates are interest rates on an 

investment that starts on some future date and lasts a particular number of periods. As the 

term structure is not directly observable, it has to be estimated. The term structure can be cal-

culated from: 1) zero bonds; 2) coupon-bearing bonds; 3) swap rates. One way to obtain the 

term structure is to calculate yields to maturity of the default-free zero-coupon bonds. Zero 

bonds are fixed income securities that do not provide interest payment during the bond’s life 

and whose single cash flow is the repayment of the face value at the end of their maturity. 

Due to that fact, they allow a straightforward calculation of the spot rates from the observed 

prices. In order to obtain the price P of a zero-bond with the maturity T, the single cash flow 

has to be discounted with an appropriate interest rate: 

 

                                                                
 

,
1

FV
T

Tr
P


                                                           (1) 

 

where FV represents the face value of the bond. A corresponding interest rate can thus be eas-

ily obtained by solving the above equation for rT. Theoretically, if prices of zero-coupon 
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bonds were available for every required maturity, the term structure could be easily derived. 

However, most of the traded bonds are coupon-bearing and there are not enough zero bonds 

available to estimate the whole maturity spectrum.  

 

Spot rates could also be determined as yields to maturity of coupon-bearing bonds of similar 

credit worthiness. These bonds pay an interest rate, called a coupon rate, every period during 

the bond’s life and are normally available for a brighter maturity spectrum than zero bonds. 

To derive the spot rates, government bonds are often selected, as they are considered to be 

free of default risk. The price of a coupon-bearing bond can be determined in the following 

way:1 

 

                                            ,
)1(
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...

)1()1( 2

2

2

1

1
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                                     (2) 

 

where C denotes the coupon payment. The term structure could be then estimated as yield to 

maturity (YTM) of coupon bonds. It represents the internal rate of return (IRR) on an invest-

ment in a bond, at which the present value of its cash flows equals the price of the bond. YTM 

is widely used as an indicator of an average rate of return of a bond throughout its life and can 

be calculated from the following equation:2 

 

                                             ,
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                                     (3) 

 

where y denotes the yield to maturity. However, this method has its disadvantages, as bonds 

of the same maturity but different coupon rates could have different yields. Moreover, calcu-

lating YTM assumes that the coupon payments are reinvested at the IRR. Consequently, YTM 

of a coupon bond will only coincide with the respective spot rate in the case that the interest 

rates are the same for all maturities.3 In all other cases yields to maturity of coupon bonds 

may only approximate the term structure of interest rates. Another method to derive the term 

structure is to use the swap rates. A swap represents a contract in which two parties, usually 

banks of high credit worthiness, agree to exchange series of cash flows. In an interest rate 

                                                 
1 See Jarrow/Turnbull (2000), pp. 386-393. 
2 See Bodie/Kane/Marcus (1999), p. 417. 
3 See Fabozzi (2004), pp. 99-100. 
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swap, the series of interest payments on some principal amount are exchanged. As a rule, 

fixed interest rate payments are exchanged for floating rate payments. Using the fixed interest 

rates quoted by the financial institutions known as swap rates, the spot interest rates can be 

determined. The value of the swap can be determined as the difference between the value of a 

coupon bond and a bond with floating payments, a floating rate note. At the point of initia-

tion, the value of the swap contract is set to be zero. Consequently, the fixed side of the swap 

can be viewed as a coupon bond selling at its par value, which is the case when the coupon 

rate is equal to the yield to maturity. The value of such a bond with the maturity of two years 

can be expressed as follows:4  

 

                                                         2 2

1 2

1 2

100
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                                                (4) 

 

where sr2 stands for a swap rate of a two-year swap. If the one-year spot rate r1 is known, the 

two-year spot rate r2 can be easily derived. Similarly, spot rates of longer maturities can be 

determined: 
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where srm stands for a swap rate of an m-year swap and ri stands for an i-year spot rate. After 

the spot rates have been obtained, the continuous term structure can be derived by using line-

ar interpolation. In addition to the above methods, the continuous term structure of interest 

rates can be estimated with the help of theoretical models. The motivation behind these mod-

els is to receive a more precise continuous term structure than by means of interpolation me-

thods. The essence of such models is to calculate the theoretical yields to maturity, assuming 

some particular functional relationship for the term structure of interest rates. The parameters 

of this function are then estimated in such a way, that the observed bond prices match the cash 

flows discounted by the theoretical spot rates as close as possible.5 Some commonly used ex-

                                                 
4 See Hull (2005), pp. 149-155. 
5 See Martellini/Priaulet/Priaulet (2010), pp. 117-122. 
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amples include the spline-based method,6 the Nelson-Siegel approach7 and the Svensson ap-

proach.8  In the Nelson-Siegel approach, the interest rate of maturity n, is a function of four 

parameters: 
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where rn is the continuously compounded spot rate with maturity n; 0 1 ,2 and are the 

parameters. In the framework of this approach, 0  can be interpreted as the long-term level of 

interest rates; 1  corresponds to the slope of the yield curve; 2  is a curvature parameter;   

can be identified as a speed of decay of the short- and medium-term rates to zero. The popu-

larity of this method is based on its ability to capture all typical shapes of the term structure 

and a reasonable number of parameters to be estimated. Moreover, these parameters allow a 

clear interpretation as level, slope and curvature of the yield curve. The extension of this ap-

proach was performed by L. Svensson, who extended the model to five parameters. This al-

lowed capturing nearly all possible shapes of the term structure.9 The Nelson-Siegel and the 

Svensson approach are being widely used by central banks.10 

 

Historically, several types of shape of the term structure have been observed. They can be 

generally divided into a normal, flat and inverse term structure, although more exotic forms 

such as humped or u-shaped are also possible. The normal term structure, as its name already 

says, is the one which is commonly being observed. The main feature of this type of shape is 

that the long-term interest rates lie above the short-term interest rates. The yield curve is then 

upward-sloping, as depicted in figure 1 for the German average spot rates ranging from 1972 

to 2007. The flat shape corresponds to the situation when the interest rates are equal, inde-

pendently of their maturity. Finally, the inverse term structure is characterized by a down-

                                                 
6 Polinomial splines were introduced by McCulloch (1971). Later, the exponential spline-based method was 

developed by Vasicek/Fong (1982). The difficulty of this method is in the determination of the optimal number 

of splines. 
7 See Nelson/Siegel (1987). 
8 See Svensson (1994). 
9 See Martellini/Priaulet/Priaulet (2010), pp. 117-122. 
10 For example, the German Federal Bank uses the Nelson-Siegel and Svensson approach to estimate the term 

structure, see German Federal Bank (1997). 
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ward-sloping yield curve, i.e. short-term interest rates exceed the long-term interest rates. Alt-

hough the inverse and flat term structures occur less frequently than the normal type, they 

could be observed in Germany over the past 30 years. For example, the inverse term structure, 

plotted in figure 2, has occurred in September 1981. In turn, figure 3 presents the case of a flat 

term structure, which could be observed in March 2007. 

 

Figure 1: Average Spot Rate in Germany, 1972 – 2007 
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Figure 2: Term Structure of the German Interest Rates, September 1981 
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Figure 3: Term Structure of the German Interest Rates, March 2007 
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Several further observations connected with the yield curve are worth mentioning and can be 

summarized as follows: 

 The yield curve is upward sloping most of the time. However, the yield curve can be 

upward-, downward-sloping as well as of nearly zero slope. 

 Interest rates of different maturities tend to move together. Short-term interest rates do 

not change independently of the long-term interest rates. This empirical fact is reflected in 

figure 4, which plots the one-year interest rate as well as the ten-year interest rate over the 

period 1972 – 2007. 

 Short-term interest rates are more volatile than the long-term interest rates. This fact 

can be easily seen from figure 5, which plots the volatility of average German interest rates 

against their maturity for the period 1972 – 2007. The short-term rates exhibit the highest vol-

atility of 2.5 percent, which decreases with the increasing maturity of interest rates. The vola-

tility of the ten-year spot rate constitutes only 1.91 percent. 

 Interest rates tend to lie in some range, i.e. they do not rise beyond a certain level. 

If interest rates are very high, they usually fall again after reaching some certain level. The 

same applies to the situation when interest rates are unusually low: they tend to return to some 

historical normal level. Thus, interest rates stay within some certain range. 
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Figure 4: German One-Year versus Ten-Year Spot Rate, 1972 – 2007 
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Figure 5: The Volatility of Spot Rates, 1972 – 2007 

1.75%

2.00%

2.25%

2.50%

2.75%

1 2 3 4 5 6 7 8 9 10 11

Maturity

V
o

la
ti

li
ty

 

 

 

 

 



2. Term Structure of Interest Rates  14 

 

  

The empirical facts described above gave rise to several term structure theories. Each of them 

attempts to explain the observed behavior of the term structure of interest rates. Especially the 

first three empirical facts found a strong reflection in the literature on term structure. In the 

following the classical term structure theories and different empirical facts related to them 

will be presented.  

 

2.2 The Expectations Hypothesis of the Term Structure 

 

The expectations theory together with the market segmentation theory belongs to the classical 

theories of the term structure of interest rates. The EH11 is a common term used to summarize 

the term structure theories that explain the long-term interest rates by means of expectations 

of economic agents. It is comprised of several forms: the pure expectations theory, the liquidi-

ty premium theory, and the preferred habitat theory. In its pure version which was originally 

proposed by Irving Fisher,12 the expectations theory assumes that the term structure is deter-

mined entirely by the expectations of the future short-term interest rates. In contrast to the 

pure expectations theory, two other forms of the EH state the existence of some additional 

factors explaining the term structure. Consequently, they are referred to as biased expectations 

theories. In contrast, the market segmentations theory does not incorporate the expectations of 

the future interest rates. Instead, it states that interest rates depend on the interaction between 

the demand and supply.13 Figure 6 gives an overview of the classical term structure theories. 

 

 

 

 

 

 

 

 

 

 

 

                                                 
11 The terms „expectations theory“ and „expectations hypothesis“ are used interchangeably in this thesis.  
12 See Fisher (1896).  
13 See Mishkin (1994), p. 113. 
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Figure 6: The Classical Term Structure Theories 

 

 

 

 

2.2.1 The Pure Expectations Hypothesis 

 

Advocates of the pure expectations hypothesis of the term structure state that investors do not 

have preferences towards bond’s maturity. The only selection criterion in their investment 

choice is the bond’s expected return, i.e. the investors are assumed to be risk-neutral. Accord-

ing to this argument, bonds of different maturities are perfect substitutes. Therefore, an inves-

tor with a five-year investment horizon will be indifferent between buying a bond with the 

maturity of five years or rolling over five one-year bonds. Thus, if a bond of some certain 

maturity has a lower expected rate of return compared to another bond, the former will not be 

purchased. For example, if the current term structure is flat and the future short-term interest 

rates are expected to rise, investors will decide to buy a short-term bond rather than a long- 

term one. After one year, they can reinvest the proceeds at a higher rate, according to their 

expectations. As a result, the price of a long-term bond will decrease, which will lead to a 

higher return on that bond. The term structure will be no longer flat, but upward-sloping. 

Thus, in the framework of the pure expectations hypothesis, the bond’s maturity does not play 

a role.14 

 

The pure expectations hypothesis asserts that long-term spot rates are equal to the geometric 

mean of current and expected future short-term rates. The slope of the term structure thus re-

flects the current expectations of market participants regarding future short-term rates. If 

short-term rates are expected to rise, the yield curve will have a positive slope. In case that 

                                                 
14 See Cuthbertsin/Nitzsche (2004); pp. 494-495. 
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market participants do not anticipate the short-term rates to change,15 a flat yield curve will be 

observed. Finally, a downward-sloping yield curve will indicate that the short-term interest 

rates are expected to fall. Thus, the pure EH can be indentified with every shape of the yield 

curve. This version of the expectations theory has been subject to intensive testing. In order to 

enlighten these testing procedures, it is convenient to state the pure expectations theory in 

mathematical terms. The pure EH can be stated as:16  

 

                                 
1/

0,1 1,2 2,3 1,

1 2 11 1 1 1 1,

   
        
 

n
n n n

t t t t t t t t nr r E r E r E r                          (7) 

 

where rt
n

 is the rate of return on a bond with maturity n and t refers to the time today. Expecta-

tion terms denote the expectations of future one-year short-term rates on an investment start-

ing in t+i , i=0,1,…,n periods from now. The pure expectations theory states that forward 

rates fully reflect the expected future interest rates: 

 

                                                              , ,  

t i t i m m

t t t if E r           (8) 

 

where ,  t i t i m

tf stands for the forward rate determined today for a contract starting in t+i and 

ending in t+i+m and m

t ir   is the future spot rate for a contract starting in t+i which lasts for m 

periods. Equation (8) implies forward rates to be unbiased predictors of future spot rates. In 

the context of monetary policy, equation (7) would mean that the only possibility to affect the 

long-term interest rates is to influence the expectations of market participants. Changing the 

short-term interest rate without influencing the expectations would lead to an insignificant 

influence on the long-term interest rate. For example, if policy makers increase the one-month 

interest rate by 100 basis points (bps) and this change is expected to be temporary, the interest 

rate on a 10-year bond will only increase by approximately 100 bps/120, i.e. by less than one 

basis point.17 Only if the change in the short-term rate is expected to be of a permanent nature, 

will the long-term rates rise by 100 basis points. From equation (7), the three-year spot rate is 

given as:   

 

                                                 
15 Such behavior of economic agents is sometimes called “static expectations”. 
16 See Walsh (2003), pp. 491-492. 
17 See Sorensen/Whitta-Jacobsen (2005), p. 511. 
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From the above equation, the implicit expectations of market participants about future ex-

pected short-term rates can be derived: 
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In the empirical literature, a linearized version18 of formula (7) is widely applied:  
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Equation (11) states that the n-period interest rate is explained by the simple average of the 

current and future expected one-period19 interest rates plus a constant risk or term premium. 

Equation (11) represents a weaker version of the EH, as in the pure expectations hypothesis 

the term 1,n  is equal to zero. The next step is to subtract the term rt
1 from both sides of the 

equation (11) and rearrange the terms to receive the following: 
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1                                       (12) 

 

According to equation (12), the spread between long-term and short-term interest rates can be 

explained by the difference in the expected future one-period interest rates plus a term premi-

um. As expectations of market participants are not known, a typical assumption is that expec-

tations are formed rationally:20 

                                                                1 1 .   t t i t i t iE r r                                                      (13) 

                                                 
18 Under the approximation ln(1+r) r. 
19 This expression can also be generalized to m-period short rates. 
20 The rational expectations hypothesis was originally proposed by J. Muth in 1961 in his paper “Rational Expec-

tations and the Theory of Price Movements”. In the 1970-s, the hypothesis was further developed by Robert 

Lucas (1972) and Thomas Sargent (1973). The rational expectations hypothesis states that individuals are able to 

make correct predictions of macroeconomic variables based on all available information in the period where the 

forecast is made. Although individuals do not possess deep knowledge of complex economic models, they can 

use forecasts produced by the professionals and thus make best possible predictions which can be made condi-

tional on the available information set. 



2. Term Structure of Interest Rates  18 

 

  

With equation (13) a testable version of the EH is obtained:21 

 

                                                    1 1 1 .    n

t t t i t tr r r r                                                 (14) 

 

In this framework, the pure EH is tested by estimating equation (14) and testing the null hy-

potheses  =0 and  =1. If the null is rejected but significance of   is confirmed, this result 

is usually interpreted as an evidence of forward rates having explanatory power. The above 

equation is an example of a regression that predicts changes in the short-term rate. Alterna-

tively, it can be tested, whether the term spread can forecast changes in the long-term interest 

rate. This is done with the help of the following equation: 

 

                                                 1 1

1 .n n n

t t t t tr r r r

                                                       (15) 

 

For testing purposes the forward-spot spread approach is also frequently adopted. This ap-

proach is similar to equation (14); the only difference constitutes the term in brackets on the 

right hand side. Instead of the difference between the future short-term rates, the forward-spot 

spread is applied: 

 

                                                     1 1 1 .    n

t t t t tr r f r                                                 (16) 

 

According to this formulation, the spread between the long- and short-term spot rates can be 

explained by the forward-spot spread. Using formula (8), it can also be directly tested if for-

ward rates can predict future spot rates. Then the null hypotheses are:  =0,  =1 for the pure 

EH and  =1 for the biased expectations theory: 
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                   (17) 

 

The pure expectations theory provides an explanation why interest rates on bonds with differ-

ent maturities move together over time. As long-term interest rates merely represent the aver-

age of expected future short-term rates, a rise in short-term interest rates will cause long-term 

                                                 
21 For discussion of different testing equations for the pure expectations hypothesis, see Culbertson (2004), pp. 

520-523. 
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interest rates to rise as well. The statement that long-term interest rates express the average of 

expected future short rates also implies that it is not profitable to borrow at the short-term rate 

and buy long-term bonds, even though the long-term interest rate may lie above the short-

term rate. 

 

The pure expectations hypothesis is appealing due to its simplicity and ability to fit every typ-

ical shape of the term structure. In addition, as long-term interest rates represent a weighted 

average of the current and expected short-term interest rates, the long-term rates should be 

less volatile than the short-term interest rates. Thus, the second empirical fact associated with 

the yield curve is explained by the pure expectations theory. The same line of reasoning leads 

to the explanation of the interest rates moving together over time. However, the pure EH fails 

to explain an important empirical observation related to the behavior of interest rates, namely, 

that typically an upward-sloping yield curve is observed. Such a behavior of interest rates is 

inconsistent with this theory, as it would imply that investors expect rising interest rates most 

of the time. However, rising as well as declining interest rates may occur.22 

 

The pure expectations theory ignores risks associated with an investment in bonds. If forward 

interest rates would perfectly predict future spot rates, there were no uncertainty with respect 

to future bond prices. However, in reality future bond prices are not known. Thus, an investor 

with a five-year investment horizon could buy a bond with a maturity of five years or, for 

example, a ten-year bond and sell it after five years. However, he is uncertain about the price 

of a ten-year bond that will prevail five years from now. Put differently, the bonds are subject 

to price risk and, in addition, reinvestment risk. Consequently, there was a need to elaborate a 

theory that could explain why the yield curve is upward-sloping most of the time. Such a the-

ory is known as the liquidity premium theory.  

 

 

 

 

 

 

                                                 
22 See Mishkin (1992), pp. 144-145. 
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2.2.2 The Liquidity Preference Hypothesis 

 

The liquidity preference theory developed by Hicks in 194623 emphasizes an uncertainty con-

nected with long-term securities, which are subject to inflation risk and interest rate risk. As a 

compensation for this uncertainty, market participants demand a positive liquidity premium 

for holding a longer-term security. The liquidity preference theory states that the shape of the 

yield curve is determined by two factors: the expectations of future interest rates and a premi-

um for holding a long-term bond, known as liquidity premium. Forward rates implied by the 

term structure are, therefore, no longer unbiased predictors of the future short-term rates as, in 

addition to the expectations of the future short-term rates, they contain a liquidity premium, 

which increases with the time to maturity. Under the liquidity preference hypothesis, forward 

rates can be expressed as: 

 

                                                        , ,t i t i m m m

t t t if E r L  

                                                      (18) 

 

where mL is a liquidity premium for holding a bond of maturity m. Tests of the liquidity pre-

mium theory are based on the following equation: 

 

                                                      1 1 1 .n

t t t i t tr r r r                                                   (19) 

 

Then the null hypothesis is  >0,  =1. The intercept term   is interpreted as the liquidity 

premium, i.e. the amount by which the long-term interest rate exceeds the expectation of the 

future short-term rates. If, instead, the forward-spot spread approach is taken, the test equation 

looks as follows: 

 

                                                          1 1 1 .    n

t t t t tr r f r                                            (20) 

 

Then the null hypothesis is, as before,  >0,  =1. Different variations of the liquidity prefer-

ence theory can be distinguished through the assumption of a constant or time-varying liquidi-

ty premium. The former states that, although the liquidity premium increases with the term to 

maturity, it stays constant over time. In contrast, advocates of the time-varying liquidity pre-

                                                 
23 See Hicks (1946), pp. 141-145. 
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mium argue that it should rise with the bond’s maturity and, in addition, vary over time. The 

forward rate will be then given as:  

 

                                                               ,t i t i m m m

t t t i tf E r L  

                                                 (21) 

 

where m

tL is the liquidity premium for holding a bond of maturity m determined at time t. Sim-

ilarly to the pure expectations theory, the liquidity preference hypothesis views long-term 

rates as average expected short-term rates and therefore provides an explanation of the short-

term and long-term interest rates moving together. Despite the fact that economic agents may 

have any kind of expectations towards the future short-term rates, an upward-sloping yield 

curve will be the most common because of a positive liquidity premium, increasing with time 

to maturity. Moreover, this version of the expectations theory fits to every shape of the yield 

curve. For example, even if expected short-term rates are falling, a presence of a liquidity 

premium that rises with the maturity may result in an upward-sloping yield curve. Likewise, a 

combination of a declining expected short-term rate and a constant liquidity premium may 

yield a downward-sloping term structure. The resulting yield curves are a combination of ex-

pectations about the future short-term rates and either constant or variable liquidity premium. 

 

2.2.3 The Preferred Habitat Theory 

 

Likewise, the preferred habitat theory, usually associated with the work of Modigliani and 

Sutch (1966), asserts that the yield curve is formed by the expectations of future short-term 

interest rates as well as a risk premium. The main difference from the liquidity preference 

theory is that this premium does not rise uniformly with the instrument’s maturity. As op-

posed to the liquidity preference theory, within this version of the expectations hypothesis, 

investors do not necessarily prefer shorter-term securities. Instead, investors have different 

preferred investment horizons or habitats. Thus, if supply and demand for a given maturity 

range do not match, a risk premium is required to induce market participants to buy bonds 

outside their maturity preference or habitat. The risk premium can be either positive or nega-

tive.24 

 

                                                 
24 See Mishkin (1992), pp. 154-155. 
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Due to its expectations component, the preferred habitat theory provides an explanation of 

yields on bonds of different maturities moving together. The fact that the yield curve is usual-

ly upward-sloping is also explained by this modification of the expectations theory. Most in-

vestors have a short habitat and, therefore, require a premium for holding longer-term securi-

ties. Thus, even if short-term interest rates are not expected to change in the future, long-term 

interest rates exceed the short-term interest rates. The preferred habitat theory captures all 

possible shapes of the term structure. Although a premium is positive, a downward-sloping 

yield curve can arise in case market participants expect a dramatic decline in short-term inter-

est rates. Then, even considering a positive premium, the average of the future expected short-

term rates, i.e. the long-term rates, will still lie below the short-term interest rate.25 

 

The preferred habitat theory also enables an easy interpretation of the investors’ expectations 

from observing the yield curve. A flat curve would arise as a combination of falling expected 

interest rates and a positive premium. An upward-sloping, but not very steep yield curve 

would imply static expectations regarding the future short-term interest rates. Finally, a very 

steep upward-sloping curve would indicate that market participants anticipate rising interest 

rates.26 

 

2.3 The Market Segmentation Theory 

 

The most well-known alternative to the expectations theory is the market segmentation theory 

developed by Culbertson (1957).27 It states that investors have particular holding periods that 

they strongly prefer and, therefore, only choose bonds that match their investment horizons. 

As an example of an investor with a short-term horizon commercial banks are usually men-

tioned whereas pension funds are said to have a long-term investment horizon. Consequently, 

the interest rate on bonds of different maturities results from the interaction of demand and 

supply for the respective bond. Markets for short-term and long-term bonds are considered to 

be completely separated from each other. Whereas the pure EH considers bonds of different 

maturities to be perfect substitutes, advocates of the market segmentation theory do not regard 

                                                 
25 See Mishkin (1992), pp. 144-145. 
26 See Mishkin (1992), p. 146.  
27 See Culbertson (1957), pp. 489-504. 
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them as being substitutes at all. The demand for bonds of a particular maturity is not affected 

by the expected return on bonds of another maturity.28  

 

Under the market segmentation theory, different shapes of the yield curve are the result of the 

demand for bonds of a particular maturity prevailing at that time. Thus, an upward-sloping 

yield curve is the most common because usually the demand for short-term bonds dominates. 

Consequently, such bonds have a higher price and lower interest rate than long-term bonds. 

However, as markets for bonds of different maturities are completely segmented, there should 

be no reason for yields on short-term and long-term bonds to move together. This contradicts 

the empirical observation that bonds of different maturities tend to move together and is the 

main shortcoming of the market segmentation theory.  

 

Thus, different term structure theories perform differently with respect to empirical facts that 

were observed in connection with the yield curve. Among them, the liquidity preference theo-

ry and, very similar to it, the preferred habitat theory seem to be consistent with all three em-

pirical observations. Table 1 summarizes the classical term structure theories and addresses 

their ability to explain the empirical facts associated with the yield curve. The question which 

of the theories is also consistent with the empirical data gave rise to numerous empirical pa-

pers. Thus, all three versions of the expectations theory as well as the market segmentation 

theory were subjects to extensive testing. Although it is barely impossible to cover the whole 

empirical research on the subject, the next section attempts to reflect the main results. 

 

2.4 Previous Empirical Findings 

 

First formulations of the expectations theory appeared already in the end of the 19th century. 

However, the theory was fully developed only in the 30s of the past century. First empirical 

tests of the expectations theory date back to the 1970s. They were conducted using US data 

and employed simple regression techniques. Since that, a great variety of tests has been per-

formed which examined different implications of the theory, using different methods and ma-

turities. A great majority of these studies, however, concentrates on the US data. The early 

literature on the term structure can be divided into two categories: studies that use the term 

spread and studies that apply the forward spot rate for testing the EH. Those preferring the 

term spread usually perform the test in both directions. In addition, these studies can be dis-

                                                 
28 See Martellini/Priaulet/Priaulet (2010), p. 85. 
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tinguished according to the applied technique. While early literature predominantly applied 

linear regression techniques, researchers switched to more sophisticated methods in the 

1990s. Table 2 at the end of this section provides a summary of the selected studies. 

 

Table 1: Term Structure Theories: Main Characteristics 

Empirical fact 

Pure  

Expectations 

Theory 

Liquidity 

Preference 

Theory 

Preferred 

Habitat  

Theory 

Market  

Segmentation 

Theory 

I Main characteristics 

1 

Relation between 

short-term and long-

term rates 

Long rates are 

average ex-

pected future 

short rates 

Long rates 

are average 

expected 

future short 

rates plus a 

premium 

Long rates 

are average 

expected 

future short 

rates plus a 

premium 

Long-term 

and short-

term interest 

rates are not 

related to 

each other 

2 Premium No premium 

Premium for 

holding 

long-term 

securities 

Premium for 

the deviation 

from pre-

ferred habi-

tat 

No premium 

3 

Degree of substitution 

between short-term and 

long-term bonds 

Perfect substi-

tutes 

Imperfect 

substitutes 

Imperfect 

substitutes 

No substitu-

tion possible 

II Ability to explain empirical facts 

 

1 

Interest rates of differ-

ent maturities move 

together 

Explains Explains Explains 
No adequate 

explanation 

2 

Short-term interest 

rates are more volatile 

than the long-term in-

terest rates 

Explains Explains Explains 
No adequate 

explanation 

3 
Yield curve is typically 

upward-sloping 

No adequate 

explanation 
Explains Explains Explains 

4 

Yield curve may be 

upward-, downward-

sloping or have a zero 

slope 

Explains 

Explains, if 

extremely 

low future 

interest rates 

are expected 

Explains Explains 
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Early studies for the US undoubtedly reject the pure EH and find poor explanatory power of 

forward rates as well as term spreads. Among them are Hamburger and Platt (1976), Fama 

(1976), Shiller, Campbell and Schoenholz (1983) and many others. Fama (1984), who inves-

tigated short-term interest rates for the period 1959 – 1982, although rejects the pure EH, sug-

gests some predictive power of the forward-spot spread towards the spot rate one month 

ahead. Later, Mishkin (1988) confirms these findings using a slightly longer period, 1959 – 

1986. According to his results, forward-spot spreads can predict changes in the short-term 

interest rate up to three month in advance.  

 

While previous studies focused on the maturities below one year, Fama and Bliss (1987) ana-

lyze the information content of a one-year forward rate from 1964 to 1985. According to their 

study, there is little predictive power of the forward-spot spread on the short-term forecasting 

horizon. However, long-term forward rates exhibit significant predictive power for longer 

forecasting horizons which, according to the authors, can be explained by a slow mean rever-

sion of spot rates. Jorion and Mishkin (1991) also use the forward-spot spread approach to 

forecast changes in one-year interest rates over the period 1973 – 1989. As opposed to the 

findings of Fama and Bliss (1987), they conclude that the information content of the spread is 

poor in the US data, as little predictive ability was found both on the short- and the long-term 

horizon. Only in the case of Germany and Switzerland, they were able to confirm the predic-

tive power on a five-year horizon. 

 

Regressions employing term spread also did not yield uniform results. Mankiw and Summers 

(1984) could not confirm the ability of the term spread to forecast changes in the US short-

term interest rates from 1963 to 1983. Mankiw and Miron (1986) use a long sample of three- 

and six-month interest rates ranging from 1890 to 1979 to test whether the slope of the yield 

curve may be useful for predicting changes in the spot rates. Whereas their study documents 

little predictive power of the spread for the period after 1915, the year in which the Federal 

Reserve was founded, the EH proves to be consistent with the data before 1915. The authors 

attribute poor performance of the expectations theory after 1915 to the increased role of the 

Federal Reserve System. The interest rate stabilization policy, conducted by the Federal Re-

serve, could cause a random walk behavior of the short-term interest rates and, therefore, be a 

reason for the earlier failures of the expectations hypothesis. Later, Hsu and Kugler (1997) 

find significant support for the predictive power of the term spread towards the changes in the 

short-term rate in the US over the period 1987 – 1995. However, prior to 1987, the predictive 
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power is poor. Similarly to the study of Mankiw and Miron (1986), the authors attribute this 

result to the actions of the Federal Reserve, who conducted monetary policy dependent on the 

term spread starting from the late 80s.  

 

A number of studies document a so called “sign puzzle” in regressions that use term spreads 

for forecasting changes in long-term interest rates. The essence of this puzzle is that the term 

spread predicts the wrong direction of the long rate dynamics, i.e. when the difference be-

tween the long-term and short-term rates is positive, a decline in long-term interest rates is 

predicted. The sign puzzle received significant attention in the term structure literature. 

Among the authors investigating the issue are Campbell and Shiller (1987), Fama (1984), 

Fama and Bliss (1987), Mishkin (1988). In a more recent study Campbell and Shiller (1991) 

adopt the vector autoregression (VAR) approach to test the EH with the yields on US treasury 

bills for a variety of maturities. They assert that the term spread only has significant forecast-

ing ability with respect to changes in short-term, but not in long-term spot rates.  

 

The poor support of the EH by the empirical data caused numerous attempts to further devel-

op the theory which would be able to address this failure. The development of new economet-

ric techniques such as cointegration29 gave rise to a new wave of research in the area. Howev-

er, the mixed character of the early results for the expectations theory in US data persisted. 

Whereas Engsted and Tanggaard (1994) document cointegration in the US term structure for 

the period 1952 – 1987, Mustafa and Rahman (1995), who examined almost the same period, 

found no relationship between the long-term and short-term interest rates in the quarterly data 

ranging from 1953 to 1992. In contrast, Nourzad and Grennier (1995) found forward rates and 

spot rates in the period from 1981 to 1994 to be cointegrated.  

 

Despite the fact that some of the above studies confirm some explanatory power in forward 

rates or short-long spreads, they, in general, statistically reject the pure EH. Tests of the ex-

pectations hypothesis considering European data are, basically, more supportive to the expec-

tations theory of the term structure. 

 

                                                 
29 A presence of cointegration would imply the existence of a long-run relationship among the interest rates and 

could be viewed as an evidence in favor of the EH. The details of this method will be enlightened later in section 

3.2.3. 
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For Germany, there have been only a few studies. Kugler (1988) analyzes the influence of 

monetary policy on the predictive ability of the term spread using the German, US, and Swiss 

three- and six-month interest rates over the period 1974 – 1986. For the US data, no predictive 

power of the term spread towards changes in short-term interest rates was found. In contrast, 

this study confirms substantial predictive power in case of Germany and Switzerland. In the 

period of investigation, the Federal Reserve used an interest rate stabilization policy whereas 

monetary authorities of Germany and Switzerland committed themselves to money supply 

targeting. The authors interpret this result as evidence in favor of the hypothesis found in 

Mankiw and Miron (1986) that the reasons of poor performance of the expectations hypothe-

sis lie in the interest rate targeting policy.  

 

Hardouvelis (1994) analyzed the ability of the term spread to predict changes in both long-

term and short-term rates for a variety of countries including Germany, Italy, France, USA, 

Canada, and Japan for the period 1953 – 1992. Although the pure EH is rejected, he reports 

significant coefficients for the short-term spot rate model for all countries with the exception 

of Germany and the US. However, when regressing the change in the long-term spot rate on 

the term spread, his study finds little forecasting ability and documents negative slope coeffi-

cients for all countries except of Italy and France. Thus, his results support the “sign puzzle” 

received in previous studies. The negative slope coefficient, however, disappears if instru-

mental variables30 are introduced for all countries with the exception of the US. 

 

Gischer (1996) examined the German term structure for the period 1986 – 1995. He uses for-

ward rates of six preceding periods in order to explain the corresponding spot rate. This study, 

although finds forward rates to be significant as an explanatory variable, does not confirm the 

predictive ability of the forward rates towards the one-year spot rate.  

 

Gerlach and Smets (1997) test the predictive power of the term spread with respect to changes 

in short-term rates for 17 countries including Germany. Their study, considering three-, six- 

and twelve-month interest rates, provides quite striking results which are considerably in fa-

vor of the pure EH. In almost 70 percent of all regressions the null hypothesis that the beta 

coefficient equals one cannot be rejected. Moreover, in 50 percent of all cases even the joint 

                                                 
30 Instrumental variables are helpful in removing the correlation between an explanatory variable and the error 

term in a regression equation. In such cases, the correlation problem can be solved by finding a proxy, called an 

instrumental variable, which is highly correlated with the explanatory variable, but uncorrelated with the error 

term. However, to find such a proxy may be a difficult task in practice (see Thomas (1997), pp. 220-221). 
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hypothesis  =0,  =1 cannot be rejected, which would imply the validity of the pure EH. 

For Germany over the period 1972 – 1993, the validity of the pure expectations hypothesis 

cannot be rejected for six- and twelve-month interest rates. This is by far the most supportive 

result for the pure EH. 

Remarkably, only in the case of the US the null  =0,  =1 is rejected for the whole maturity 

spectrum under consideration.  

 

In contrast, the study of Jondeau and Ricart (1999), who applied both the term spread and the 

forward-spot spread approach to German, French, UK and US data with maturities less than 

one year, could not provide such a strong support of the theory. In general, their study for 

1975 to 1997 rejected the pure EH for Germany and the US. Moreover, in the regression of 

forecasting changes in the long-term spot rate, negative slope coefficients were obtained for 

both countries. In contrast, the EH is generally supported by French and UK data, as  =1 

could not be rejected.  

 

Boero and Torricelli (2002) use the estimated German term structure data for 1983 to 1994. 

They report that the long-short spreads as well as the forward-spot spreads are good predictors 

for the future short-term spot rates. In contrast, term spreads show little forecasting power 

with respect to future changes in long-term spot rates. The latter result is consistent with pre-

vious findings for the US. However, although the information content is poor, in German data 

at least the direction of changes in long-term spot rates can be predicted.  

 

The study of Dominguez and Novales (2002) is of particular interest, as the authors examine 

the ability of forward rates to predict future spot rates for a variety of interest rates using data 

in levels and not the spreads. They analyze one-, three-, six- and twelve-month interest rates 

for a variety of countries ranging from Germany to US and Japan for the period 1978 – 1997. 

Not only they present evidence that forward rates can explain future spot rates to a significant 

extent, but also the unbiasedness of forward rates cannot be rejected. In addition, the authors 

investigated the forecasting performance of forward rates, using the estimated coefficients to 

build predictions for 1998. The study indicates that forward rates can predict spot rates better 

than can be achieved by using the past values of the spot rates themselves, at least at the 

short-term horizon.  
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The popularity of the EH gave rise to research outside the US, UK and European borders. As 

to this point of time more advanced techniques were available, these studies mostly employ 

cointegration methods. Guest and McLean (1998) received conflicting evidence about cointe-

gration between the Australian short-term and long-term interest rates and therefore cannot 

confirm the existence of the long-run relationship in their data. Gonzalez, Spencer and Walz 

(1999) investigate the relationship between the spot rates and forward rates with the maturi-

ties of one, three and six months in Mexico from 1991 to 1996. Their results report significant 

ability of the forward-spot spread to predict the future short-term interest rates. Cooray (2003) 

considers three- and six-month spot rates together with the respective forward rates for the 

case of Sri-Lanka. His results, although rejecting the hypothesis that forward rates are unbi-

ased predictors of the future short-term rates, suggest the existence of cointegration between 

spot and forward rates. Finally, Tabak (2009) uses Brazilian swap rates for one, three, six and 

12 months covering the period 1995 – 2006 to test the expectations hypothesis using term 

spreads. Although this study rejects the pure EH, the results of the cointegration analysis indi-

cate that the long-short spread is a biased predictor of changes in the short-term interest rates. 

A presence of a time-varying risk-premium is provided as an explanation for this result.  

 

As described above, in general, the pure EH and its biased versions were not confirmed by 

empirical papers. The pure version of the EH was rejected by the great majority of the studies. 

Some of them, however, report some predictive ability of the term spread or the forward-spot 

spread. This result is especially pronounced for the US and UK data. Evidence for Europe 

provides more support for the EH. The usage of different time periods for different countries 

and maturities has resulted in a variety of contradicting findings. Also the data characteristics 

selected for the test of a term structure theory differ greatly. Some studies apply real data 

whereas the others apply interest rates data estimated with the help of statistical techniques; 

this might be a reason for such divergent results regarding the EH. As strong evidence sup-

porting the pure EH could not be found, this gave rise to further research. Many authors ad-

dress one difficulty connected with the interpretation of test results, namely, the necessity to 

assume some particular expectation formation process. Thus, it is only possible to check the 

validity of the expectations theory as a joint hypothesis. Consequently, negative test results 

can be interpreted in two ways: either the EH does not hold or the expectations are formed in 

a different way.31  

                                                 
31 Several authors attempted to check the validity of the expectations hypothesis using adaptive expectations, 

which assume individuals make forecasts based on the past values of economics variables. In this case individu-
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Further hypotheses addressing the general failure of the EH include the overreaction hypothe-

sis, presence of measurement errors and time-varying risk-premia. The essence of the overre-

action hypothesis is that long-term spot rates over- or under-react regarding the expectations 

of future short-term spot rates. Mankiw and Miron (1986) attribute the inability of the expec-

tations theory to reliably predict future spot rates to the existence of a time-varying term pre-

mium. However, Taylor (1992) could not report any evidence in favor of the pure EH or time-

varying premium in the UK data. Instead, he finds support for the validity of the market seg-

mentation theory.  

 

The expectations theory as well as the market segmentation theory represent the oldest theo-

ries of the term structure of interest rates. Recently, there have been attempts to develop new 

methods to explain the term structure. These approaches can be roughly divided into those 

coming from the financial literature and those originating from the macroeconomic literature. 

The former model the term structure using pure statistical methods. They are referred to as 

affine or linear term structure models. In the affine term structure framework, the yield curve 

can be represented by means of three parameters: the level, the slope and the curvature, which 

are latent, unobservable factors and do not possess an economic interpretation.32 Among the 

study elaborating such a type of model are Longstaff and Swartz (1992), Chen and Scott 

(1993) and Dai and Singleton (2000). Generally, such models show much better performance 

in explaining the term structure than the classical theories, as they are able to explain all kinds 

of movements of the yield curve.  

 

Although the affine term structure models explain the term structure quite well, they do not 

provide any insight into the connection between the term structure and macroeconomic fac-

tors. Consequently, another stand of literature has attempted to connect the term structure 

with macroeconomic fundamental factors. More recent pure macroeconomic models attempt 

to explain long-term interest rates not only by means of short-term rates, but also with the 

help of non-interest variables, such as inflation, exchange rate, business cycle indicators, gov-

ernment borrowing. De Butter and Jansen (2004) find that the German long-term interest rates 

                                                                                                                                                         
als do not only take into account the values observed in the previous period, but possess a “memory”, i.e. also 

consider the values that occurred in several periods before. 
32 Littermann/Scheinkman (1991) indicate that around 99 percent of all movements of the yield curve can be 

explained by these factors. Changes in the level happen when interest rates of all maturities rise by approximate-

ly the same amount; changes un the slope appear in the case that short-term rates rise at a greater extend than the 

long-term interest rates; finally, changes in curvature happen in the case that medium-term interest rates rise 

greater than the short- and long-term interest rates, which leads to a more humped yield curve.  
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over 1982 – 2001 can be best explained by the German short-term interest rates, foreign long-

term interest rates as well as macroeconomic factors such as oil price and economic activity 

indicators. Wu (2001) employs a VAR model to examine the impact of monetary policy 

shocks on different parameters of the yield curve in the US in the period 1983 – 1998. His 

findings indicate that monetary policy shocks mostly affect the slope, but not the level of the 

yield curve.  

 

The most recent development in the term structure literature represents a mixture of the mac-

roeconomic and finance approach, as it combines latent factors with various macroeconomic 

factors in order to explain the term structure. The motivation for such a combined approach 

was a common opinion that, especially at the short-term end of the term structure, interest 

rates are largely driven by macroeconomic parameters. Ang and Piazessi (2003) find a con-

firmation of this view using latent factors as well as macroeconomic factors such as inflation 

rates and different indicators of economic activity in the US. Their findings show that at the 

short-term end of the yield curve, macroeconomic factors are able to explain around 85 per-

cent of the variation in the interest rates. In contrast, long-term interest rates could be better 

forecasted by unobserved rather than macroeconomic factors. Consequently, the macroeco-

nomic factors affect the slope and the curvature, but not the level parameter of the yield curve. 

Using the VAR approach on maturities from one month to one year, Evans and Marshall 

(2002), however, found that macroeconomic factors not only affect the short- and medium-

term interest rate, but also account for around 90 percent of variation in the US long-term rate. 

They indicate that changes in the level as well as slope and curvature of the yield curve are 

attributable to such factors.  

 

Hördahl, Tristani and Vestin (2006) suggest that macroeconomic factors had significant im-

pact on the German term structure in the period 1975 – 1998. Their findings indicate that 

monetary policy shocks mostly influence shorter maturities while inflation and output shocks 

affect the curvature of the term structure at the medium- and long-term end. In addition, they 

attest better out-of-sample forecasting performance to the combined models as compared to 

pure affine term structure models. Table 2 provides a brief summary of the major studies de-

voted to the pure EH. 
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Table 2: Summary of the studies devoted to the pure EH 

Method Study Country/Period Result 

Forward-

spot 

spread 

Fama (1976); 

Hamburger/Platt (1976); 

Shiller et al. (1983) 

US; prior to 1982 
Reject the pure EH; no predictive power of 

the spread 

Fama (1984) US; 1959 –1982 
Rejects the pure EH; some evidence of pre-

dictive power 

Fama/Bliss (1987) US; 1964–1985 
Pure EH rejected; some predictive ability of 

long-term forward rates 

Jorion/Mishkin (1991) US; 1974–1986 
Reject the pure EH; poor predictive power 

for the US; for Germany predictive power on 

a five-year horizon 

Term 

spread 

Mankiw/Summers 

(1984) 
US; 1963–1983 Pure EH rejected; no predictive power 

 

Mankiw/Miron (1986) US; 1890–1979 The data is consistent with the pure EH prior 

to 1915; no predictive power after 1915 (in-

creased role of the Fed) 

 

Campbell/Shiller (1987) US; 1970–1987 

The spread predicts only changes in the 

short- but not in the long-term rate; for the 

long-term rate, a wrong direction is predicted 

by the model (“sign puzzle”) 

Kugler (1988) 
US/Germany; 

1974–1986 

Pure EH rejected; the spread possess ex-

planatory power for Germany, but not for the 

US, explained through the interest rate stabi-

lization policy of the Fed 

 Hardouvelis (1994) US/Germany; 

1953–1992 

Rejects the pure EH and finds no explanatory 

power of the spread; for the prediction of the 

long-term rate, a “sign puzzle” is reported 

 

Gerlach/Smets (1997) 

17 countries in-

cluding Germany; 

1972–1993 

In 50 percent of all cases including Germany, 

the pure EH is supported by the data; in 70 

percent of all cases significant predictive 

power was reported 

Jondeau/Ricart (1999) 
US/Germany; 

1975–1997 

The pure EH is rejected for both counties; 

“sign puzzle” was found 

Forward 

rates in 

levels 

Gischer (1996) 
Germany; 1986–

2005 

Significant predictive power of forward rates; 

however poor performance in actual forecast-

ing 

Dominguez/Novales 

(2002) 

US/Germany; 

1978–1998 

Supportive evidence for the pure EH; con-

firm the ability to actually forecast the spot 

rate 
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The goal of this chapter is not to once more test the EH in any of its forms described in the 

previous section, but to examine whether information helping to predict future interest rates 

can be extracted from forward rates. Regarding the above mentioned difficulties, the expecta-

tions theory will be tested in an indirect way. In particular, it will be determined whether for-

ward rates from past periods, which reflect expectations of market participants in the respec-

tive periods, can be used to predict future short-term spot rates. Section 3.1 explains the se-

lected models and introduces the employed econometric techniques. Section 3.2 contains the 

results of the cointegration analysis and addresses the forecasting ability of forward rates. 

 

3.1 Econometric Methodology 

 

The choice of an appropriate econometric procedure strongly depends on data properties. As 

the empirical literature mainly applies spreads to test the EH, the problem of non-stationary 

data was not so pronounced. If spreads are employed, standard regression could be applied for 

estimating regression coefficients. For this chapter, which uses data in levels and not the 

spreads, it is important to examine time series properties of the data before deciding on the 

most appropriate econometric method.  

 

3.1.1 The Model 

 

The analysis in this section aims at examining how well forward rates can predict future 

short-term spot rates. Thus, as a first step we test equation (17). In addition, it will be checked 

if forward rates lying farther in the past contain any explanatory power with respect to future 

spot rates.34 In other words, if rt
1 is today’s one-year spot rate then not only the forward rate 

one period before ft-1
1,2 might have some predictive power, but also forward rates of the pre-

ceding periods such as ft-2
2,3, ft-3

3,4, etc. The number of lagged forward rates was chosen to be 

six. Although there is no profound theoretical ground to use exactly this number of lagged 

forward rates, considering six preceding years should be sufficient for the following analysis.   

Inclusion of forward rates lying more than six years in the past, although possible, would 

                                                 
33 A part of this study can be found in Afanasenko/Gischer/Reichling (2011). 
34 This model was initially proposed by Gischer (1997) and Gischer (1998).  
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probably not be a significant contribution to the empirical results. Therefore, we consider six 

models each containing an additional lagged forward rate as a predictor of future spot rate: 

 

                                               
1 1,2 2,3 3,4 4,5 5,6 6,7

1 2 3 4 5 6( , , , , , ).t t t t t t tr f f f f f f f           (22) 

 

The model according to formula (22) can be represented in the following way: 

                          

                     1 1 2 2 3 3 4 4 5 5 6 6 7

0 1 1 2 2 3 3 4 4 5 5 6 6

, , , , . ,

t t t t t t t tr f f f f f f .                                   (23) 

 

Table 3 provides an overview of the models considered in our study where r1 and fi denote the 

one-year spot rate and a forward rate i periods before, respectively.  

 

Table 3: Forward Rate Models 

Model Variables included 

1 r1, f1 

2 r1, f1, f2  

3 r1, f1, f2, f3 

4 r1, f1, f2, f3, f4 

5 r1, f1, f2, f3, f4, f5 

6 r1, f1, f2, f3, f4, f5, f6 

 

 

3.1.2 Preliminary Data Analysis 

 

The data set employed in this study consists of monthly swap rates for maturities between one 

and six years over the period 1978 – 2007. The real data on swap rates for maturities from one 

to six years were available only starting from November 1994. Although the European swap 

market was fully established in the beginning of the 1980s, the appropriate liquidity for the 

whole spectrum of maturities was achieved only later. Starting from 1988, the real data on 

swap rates is available, however, not for all maturities. Thus, swap rates for missing maturi-

ties were obtained using linear interpolation. Prior to 1988, no real data on swap rates is avail-

able; the required data was estimated through a linear regression approach using yields to ma-

turity of German government bonds. The required spot rates were then computed for maturi-
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ties from one to six years using equation (5) and recursive computation. Implied forward rates 

in the six preceding periods were derived from the spot rates. 

 

The period of the financial crisis that occurred in 2008 was not a part of the following analy-

sis for several reasons. At first, including this period could possibly lead to a structural break 

in the data, which would affect the time series analysis and require a different examination 

technique. An additional motivation to choose the data set ending in 2007 were significant 

credit spreads observed in Germany during the financial crisis. Compared to only a few basis 

points in the pre-crisis period, credit spreads of more than 100 basis points could be observed 

during the crisis. Such significant credit spreads would bias the empirical results. Finally, as a 

result of severe liquidity problems, the German swap market experienced a dramatic break-

down, so that the German Federal Bank had to act as the interbank market in this time. Under 

such circumstances, the assumption of an efficient swap market is not valid for the crisis peri-

od. As this study aims at examining a well-functioning fixed-income market, the analysis will 

be restricted to the pre-crisis period. 

 

Table 4 gives an overview of the basic data characteristics. Already at the first glance it is 

apparent that forward rates systematically overestimate future spot rates and this effect in-

creases with the lag of forward rates.  

 

Table 4: Descriptive Statistics, Sample 1972 – 2006 

Variable Mean Median Max Min SD Skewness Kurtosis JB 

r1 

f1 

f2 

f3 

f4 

f5 

f6 

5.627 

6.116 

6.589 

6.878 

7.500 

7.835 

8.071 

4.950 

5.552 

6.352 

6.875 

7.507 

7.801 

8.034 

13.949 

12.499 

12.114 

11.810 

11.588 

12.047 

12.372 

2.008 

2.238 

2.646 

2.967 

4.061 

4.352 

4.635 

2.546 

2.308 

1.979 

1.793 

1.616 

1.526 

1.422 

0.790 

0.428 

0.168 

0.001 

0.026 

0.275 

0.288 

3.015 

2.248 

2.422 

2.567 

2.466 

2.833 

3.161 

36.316 

18.870 

6.500 

2.730 

4.184 

4.816 

5.199 

 

The difference between lagged forward rates and realized spot rates ranges from 0.5 percent 

for f1 to almost 2.5 percent for f6. Thus, it seems doubtful that forward rates can serve as relia-

ble predictors of future spot rates. Standard deviation of lagged forward rates, however, lies 

considerably below that of the spot rate and decreases with an increasing lag of forward rates. 
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Table 4 also presents the results of the Jarque-Berra test, which is a test for normal distribu-

tion. A test for normality, Jarque-Berra (JB) statistics, is computed in the following way:35 
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n                                                    (24) 

 

where S represents the third moment of the distribution, the skewness and K corresponds to 

the fourth moment of the distribution, the kurtosis. The skewness indicates, whether a proba-

bility distribution is symmetrical compared to the normal distribution, whose skewness is ze-

ro. It can be estimated in the following way:36 
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The kurtosis characterizes the “thickness” of the tails of a distribution, in comparison with a 

normal distribution, whose kurtosis is equal to 3. A positive excess kurtosis would mean that 

the probability of obtaining extreme events is higher than that of a normal distribution, i.e. the 

distribution would have “fat tails”. The kurtosis is given by:37  
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As kurtosis of a normal distribution equals 3, (K – 3) measures excess kurtosis in formula 24. 

It can be shown that under the null hypothesis of normal distribution the test statistic has a 

Chi-square distribution with two degrees of freedom. With the help of the p-value of the test 

statistic it is possible to make a judgment about the normality of the considered distribution. 

P-value shows the probability to obtain the value of the test statistic, which is the same or 

greater than the observed one. In other words, this value is defined as the lowest significance 

level at which the null hypothesis can be rejected. Thus, if the p-value is sufficiently low, we 

can reject the null hypothesis.38 

                                                 
35 See Jarque/Berra (1987), pp. 163-172. 
36 See Feibel (2003), p. 149. 
37 See Gujarati (1995), pp. 769-771. 
38 See Pindyck/Rubinfeld (1998), pp. 42-43. 
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As mentioned before, the data set includes real swap rates only starting from 1994. Prior to 

that year, missing swap rates were obtained with the help of linear interpolation or regression 

techniques. Because of such a long and mixed data set, we firstly conduct a breakpoint test to 

identify possible structural breaks. Structural breaks in the data occur because of some struc-

ture changes in the relationship among the considered variables. This could be some major 

regime changes, policy shifts and other events such as wars or natural catastrophes. As a re-

sult, the parameters in a regression equation could be different before and after the break. In-

tercept, slope or both could have changed.39  

 

Testing for structural breaks is essential for identifying the time series properties. Testing for 

unit roots in a data set contaminated by structural breaks can result in misleading conclusions. 

For example, a unit root test could indicate that the data is non-stationary although it is better 

characterized as stationary with structural breaks. Perron (1989) was the first to investigate 

the implications for unit roots in the presence of structural breaks. He states that previous 

findings that most macroeconomic time series have a unit root are attributable to structural 

breaks in the data. The unit root tests tend to over-reject the null hypothesis of no unit root. In 

his study, Perron (1989) could reject the null hypothesis of a unit root in a majority of cases if 

structural breaks are incorporated.40  

 

There is a number of tests to detect structural breaks. One popular test is the Chow breakpoint 

test;41 however, it requires a prior specification of the date when the break occurred. The sam-

ple is divided into two subsamples, T1 and T2 in order to determine, whether they resulted 

from the same data generating process (DGP). For this purpose, two regressions are run sepa-

rately and the residual sums of squares are compared with the help of the F-test: 
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                                                   (27) 

 

where uu   is the sum of squared residuals from the whole sample regression; uu  represents 

the sum of squared residuals from the regression using T1 observations; H is the number of 

regression coefficients. If the value of the F-statistics exceeds the critical value, the null hy-

                                                 
39 See Chatfield (2001), pp. 239-241. 
40 Later, methods were developed specifically for testing for unit roots in the presence of structural breaks. 

Among these tests are Zivot and Andrews (1992) and Lamsdane and Papell (1997). 
41 See Chow (1960), pp. 591-605. 
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pothesis that two samples were generated by the same DGP will be rejected. However, it is 

only possible to apply this test to time series data when the date of the break is known exactly.  

 

A technique that does not require specification of the breakpoint date is the Quandt-Andrews 

breakpoint test.42 It is similar to the Chow test; the only difference is that the F-statistic is 

computed between every two points of time throughout the sample period. The point in time 

where the value of the test is the highest is then selected as the breakpoint date. As reported in 

table 5, the Quandt-Andrews test indicates multiple breakpoints in the data in 1983, 1992, 

1993, and 1995. Although it would be natural to expect the test to identify a break in the peri-

od 1991 – 1992, i.e. when the German reunification took place, two more breaks were identi-

fied, namely, in 1983 and 1995 in which there were no regime changes or other reforms that 

could cause such a break. The last break occurred in April 1995 and for this year the value of 

the test statistics is also the largest. Consequently, a sample starting in May 1995 and ending 

in October 2006 was chosen to analyze the predictive ability of forward rates. This subset is 

of special interest for us, as it is free of structural breaks. An additional motivation for this 

choice is the fact that the sample 1995 – 2006 is composed of real data on swap rates. The 

data for the last 12 months will not be considered in our analysis in order to evaluate an out-

of-sample performance of the model. Series plots are shown in figure 7. 

 

Table 5: Quandt-Andrews Breakpoint Test, Sample 1978 – 2006 

(H0: No structural breaks within data) 

Model Critical Value Test Value Date 

r1, f1 

r1, f1, f2 

r1, f1, f2, f3 

r1, f1, f2, f3, f4 

r1, f1, f2, f3, f4, f5 

r1, f1, f2, f3, f4, f5, f6 

17.5 

28.6 

22.7 

22.1 

18.5 

15.2 

45.31* 

65.08* 

51.29* 

48.77* 

43.61* 

36.89* 

1983M03 

1995M04 

1993M02 

1983M07 

1992M10 

1992M10 

*Indicates rejection of the hypothesis at the one percent significance level 

 

 

                                                 
42 The test was introduced by Quandt (1960) and later further developed by Andrews (1993). 



3. Testing the Predictive Power of Forward Rates 39 

 

  

Figure 7: Series Plot – One-Year Spot Rate and Lagged Forward Rates 
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The issue of stationarity has received great attention in the past two decades. A stationary 

process is characterized by mean, variance, and autocovariance which are time-independent. 

Formally, time series Yt is (weakly) stationary if the following conditions hold:43 
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where Y , 2

Y  and k are constants. In general, ordinary least squares (OLS) estimation is 

only justified when the data exhibits constant mean and variance. Non-stationary time series 

or, put differently, time series having a unit root are characterized by means and variances that 

are time-dependent. Thus, false inferences from conventional statistics could be drawn when 

OLS techniques are employed.44 Estimating non-stationary time series with OLS could lead to 

meaningless results or “spurious” regression, in which relationships are confirmed among 

variables completely unrelated to each other.45 Conventional tests statistics cannot be applied 

as their asymptotic distributions are non-standard under non-stationarity. 

 

There is an ongoing discussion on the time series properties of interest rates. Using the Dick-

ey-Fuller46 (DF) test has been standard practice to test for the presence of a unit root in the 

empirical literature, which generally resulted in the inability to reject the null hypothesis that 

interest rates are non-stationary time series. Suppose that the time series is represented by a 

first-order autoregressive process, or AR(1): 

 

                                               ),0(N~ 2

                             ,1  ttt rzr                                   (28) 

 

The DF test, which aims at checking whether 1  , proceeds in the following way: 

 

                                           ,)1( 11 ttttt rzrzr                                (29) 

 

                                                 
43 See Thomas (1997), pp. 373-375. 
44 See Asteriou/Hall (2006), pp. 291-292. 
45 Granger and Newbold (1974) and Granger and Newbold (1977) run a number of regressions that involved 

non-stationary time series that were completely unrelated to each other. In 75 percent of all cases, they found 

evidence of statistically significant relationships.  
46 See Dickey and Fuller (1979). 



3. Testing the Predictive Power of Forward Rates 41 

 

  

where 1   . The null hypothesis of the DF test is 0  , i.e. the time series has a unit 

root. Equation (29) is estimated using OLS and the obtained t-values are compared with the 

critical values reported by Dickey and Fuller (1979). Of course, the autoregressive process 

can also be of a higher order. In this case, the DF test is augmented by additional lags and is 

referred to as the augmented Dickey-Fuller (ADF) test. It also has three different specifica-

tions, depending on inclusion or non-inclusion of a time trend and constant. Equation (30) 

gives an example of the ADF test including a constant term; equation (31) shows the ADF test 

with both constant and trend; finally, equation (32) represents the least restrictive version of 

the test, with neither a constant nor a trend term:47 
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The number of lags in the above equations has to be selected appropriately in order to capture 

the nature of the process, but at the same time also not to include too many lags as this would 

lead to the loss of degrees of freedom. Commonly, the Akaike or the Schwarz information 

criterion is used to select the number of lags. The ADF test faced criticism because of having 

too low power to reject the null hypothesis of a unit root.48 As a response, modifications of 

the ADF tests were elaborated, including the Philips-Perron (PP) test49 and the Dickey-Fuller 

generalized least squares (GLS) test.50 If, according to the above stationarity tests, a time se-

ries has to be differenced d times in order to become stationary, it is said to be integrated of 

order d, denoted I(d). If a series turns out to be stationary and does not require differencing, it 

is referred to as integrated of order zero I(0). 

 

It is common to consider interest rate data as well as many other macroeconomic data, to be 

an I(1) process, i.e. data become stationary after first-differencing. This view became espe-

cially popular after the study of Nelson and Plosser (1982), who conducted unit root tests on a 

                                                 
47 See Patterson (2010), pp. 218-223. 
48 See DeJong et al. (1992).  
49 See Philips and Perron (1988). 
50 See Elliot/Rothenberg/Stock (1996), pp. 813-836. 
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number of US economic time series and found almost all series to be non-stationary. Later, 

Zhang (1993) examined US interest rates for maturities from one month to 30 years and con-

firmed the presence of a unit root for all considered maturities. The study of Tabak (2009) 

found Brazilian interest rates of maturities below one year to be non-stationary time series.51  

 

However, some authors question non-stationarity of interest rates. For example, Wu and Chen 

(2000) mention that the low power of standard techniques, such as ADF or PP tests in small 

samples could be the reason for the inability to reject the stationarity hypothesis in interest 

rate data. The authors use the DF GLS test and report the rejection of the unit root hypothesis 

for two out of seven countries. Beechey (2009) criticizes the common acceptance of non-

stationarity of interest rates. He stresses the inability of standard testing methods to distin-

guish between a pure unit root and near unit root process when the root is close, but not equal 

to unity. 52 A shortcoming of the ADF and PP as well as DF GLS tests is that they are based 

on a unit root assumption and thus, unless there is very strong evidence against the null hy-

pothesis, it tends to be accepted. A new procedure for testing for stationarity was suggested 

by Kwiatkowski, Philips, Schmidt and Shean (1992). The unit root test, which is known as the 

KPSS test, is considered to be more powerful as its null hypothesis is a stationary process 

instead of a unit root process. This test is, therefore, less likely to reject stationarity. In order 

to obtain as accurate results as possible concerning the time series properties of our data, we 

employ several unit root tests including those whose null hypothesis is the absence of a unit 

root. The results on the ADF test with different specifications are displayed in table 6; table 7 

contains the outcomes of the PP, DF GLS and KPSS unit root tests.  

 

As table 6 and 7 show, unit root tests deliver quite uniform results in the considered sample. If 

variables are expressed in levels, the null hypothesis of a unit root process fails to be rejected 

by all tests for all time series. This is also true for all three specifications of the ADF test, 

whose results are not affected by the inclusion of a constant or a time trend. Most interesting 

is a comparison between the traditional unit root tests with the null hypothesis of a unit root 

from one side and the KPSS test with the null hypothesis of a stationary process from the oth-

er side. However, we observe that even this more powerful test rejects the null hypothesis of a 

stationary process at least at the five percent significance level. In case of f1, f2, f3, f4, and f5 

                                                 
51 For further findings in favor of interest rates containing a unit root see, among others, Campbell and Shiller 

(1987), Hall et al. (1992), Shea (1992). 
52 Lanne (2000) and Beechey et al. (2009) suggest an alternative technique to test for stationarity in case of near-

integrated processes. 
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the null hypothesis is rejected even at the one percent significance level. Therefore, we find 

evidence that interest rates are in fact the best described by a unit root process.  

 

Regarding the order of integration of the data, when interest rates are expressed in first differ-

ences, ADF and PP test both reject the null hypothesis of a unit root process at the one percent 

significance level. The DF GLS test supports this result at the one percent significance level 

for all cases excluding f2 and f6, where rejection is at the five percent significance level. The 

KPSS test reinforces the conclusion obtained from the previous tests. It fails to reject the null 

hypothesis of a stationary process.  

 

Table 6: ADF Unit Root Tests on Forward Rates, Sample 1995 – 2006 
 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively. The 

null hypothesis of the ADF test is a unit root process. 
 

Table 7: PP, DF GLS and KPSS Unit Root Tests, Sample 1995 – 2006 
 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively. The 

null hypothesis of the KPSS test is a stationary process. All other tests assume a unit root process. The infor-

mation criterion used in DF tests is that of Schwarz, as the usage of the Akaike criterion resulted in a higher 

number of lags. KPSS test with Bartel kernel was applied. 

 Level First difference 

 
ADF with 

constant and 

trend 

ADF with 

constant  

ADF without 

constant and 

trend 

ADF with 

constant and 

trend 

ADF with 

constant 

ADF without 

constant and 

trend 

r1 –1.98 –2.22 –0.85 –5.88* –5.79* –5.81* 

f1 –2.58 –2.05 –1.33 –9.82* –9.84* –9.82* 

f2 –2.15 –1.33 –1.19 –9.69* –9.72* –9.71* 

f3 –2.25 –1.12 –1.07 –10.74* –10.78* –10.76* 

f4 –2.04 –1.48 –1.48 –11.24* –11.28* –11.21* 

f5 –1.94 –1.56 –1.45 –12.32* –12.35* –12.26* 

f6 –2.40 –1.36 –0.46 –14.13* –14.12* –14.16* 

 Level First difference 

 PP DF GLS KPSS PP DF GLS KPSS 

r1 –2.09 –1.33 0.540** –9.42* –3.93* 0.142 

f1 –1.87 –0.77 0.884* –9.87* –3.54*       0.048 

f2 –1.77 –0.47 0.919* –9.82* –2.48** 0.037 

f3 –1.40 –0.57 1.015* –10.89* –4.05* 0.050 

f4 –1.60 –0.06 1.083* –5.88* –11.33* 0.060 

f5 –1.60 –0.10 1.050* –12.33* –11.49* 0.082 

f6 –1.39 –1.45 0.730** –13.86 –2.47** 0.131 
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It was also of interest to study the time-series properties of the whole sample, for the period 

1972 – 2007. Based on the ADF test, table 8 once more confirms that both spot and forward 

rates are non-stationary time series in levels and stationary in first differences. The only ex-

ception constitutes f1, for which the ADF test with constant and trend rejects the null hypothe-

sis of a unit root process. However, this result holds only at the ten percent significance level. 

This finding is reinforced in table 9, where the results of the PP, DF GLS and KPSS test stress 

the non-stationary character of the considered time series. Only DF GLS test rejects the hy-

pothesis of unit root process for r1 and f1 at the ten percent and five percent significance level, 

respectively. For f1, the DF GLS test rejects the null hypothesis of a unit root process for the 

data in levels. However, when first differences are taken, the test fails to reject the null, indi-

cating a process that is stationary in levels, but non-stationary in first differences. Thus, all 

time series will be treated as a first-difference stationary process. 

 

Table 8: ADF Unit Root Tests, Sample 1972 – 2006 
 

 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively. The 

null hypothesis of the ADF test is a unit root process. 

 Level First difference 

 
ADF with 

constant and 

trend 

ADF with 

constant  

ADF without 

constant and 

trend 

ADF with 

constant and 

trend 

ADF with 

constant 

ADF without 

constant and 

trend 

r1 –2.41 –2.21 –1.38 –18.17* –18.19* –18.20* 

f1      –3.32*** –1.99 –0.84 –24.75* –24.79* –24.81* 

f2 –3.03 –1.73 –1.09 –18.41* –18.43* –18.44* 

f3 –2.95 –1.42 –1.05 –19.29* –19.31* –19.31* 

f4 –2.88 –1.27 –1.06 –19.29* –19.31* –19.30* 

f5 –3.03 –1.25 –1.03 –20.49* –20.50* –20.50* 

f6 –3.13 –1.32 –1.01 –21.11* –21.13* –21.13* 
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Table 9: PP, DF GLS and KPSS Tests, Sample 1972 – 2006 
 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively. The 

null hypothesis of the KPSS test is a stationary process. All other tests assume a unit root process. The infor-

mation criterion used in DF tests is that of Schwarz, as the usage of the Akaike criterion resulted in a higher 

number of lags. KPSS test with Bartel kernel was applied. 

 

3.1.3 Cointegration and the Error-Correction Model 

 

The ordinary least squares technique is not appropriate in the case of integrated time series. 

One possible approach in the case of an I(1) process is to use first-differenced series. Suppose 

we want to estimate the following equation: 

 

                                                         0 1 1 .  t t tr f                                                          (33) 

 

If rt and ft are I(1) series, then one can estimate: 

 

                                                        0 1t t tr a a f          (34) 

 

to achieve stationarity. However, this procedure is not very popular; critics of this approach 

point out that the “long-run” information could be ignored in the case that the series are ex-

pressed in first differences, and not in levels.53 A possible solution to this problem would be 

to incorporate some kind of long-run information into the above formula and estimate the 

following expression: 

 

                                                 
53 For further details, see Davidson et al. (1978). 

 Level First Difference 

 PP DF GLS KPSS PP DF GLS KPSS 

r1 –2.05    –1.84*** 1.14* –18.46*   –1.79*** 0.046 

f1 –1.94    –2.00** 1.54* –24.44* –0.29 0.063 

f2 –1.66 –1.04 1.84* –18.44* –2.78* 0.037 

f3 –1.52 –0.72 1.93* –19.29* –18.51* 0.037 

f4 –1.40 –0.58 1.92* –19.31* –19.32* 0.041 

f5 –1.32 –0.64 1.92* –20.51* –19.08* 0.047 

f6 –1.36 –0.71 1.89* –21.12* –20.99* 0.047 
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                                              0 1 1 1 1 0 1
ˆ ˆ .        t t t t tr r f a f                 (35) 

 

Equation (35) incorporates long-term as well as short-term parameters and is referred to as an 

error correction model (ECM).54 The term in brackets, 0111
ˆˆ    tt fr , is an error correction 

term and the coefficient 
1  measures the speed of adjustment to correct this error. A short-

coming of this approach is that, although two differenced terms are stationary, the error cor-

rection term is a linear combination of non-stationary variables and is, therefore, also non-

stationary.55 

 

One way to address this problem is to apply the concept of cointegration which was intro-

duced by Granger (1987). If two time series are I(1) but a linear combination of them can be 

found that is stationary, i.e. I(0), then these series are said to be cointegrated. This result can 

also be extended for the case of more than two series and a higher order of integration. If Xt is 

a vector of I(d) variables and a vector 0~  exists so that linear combination  bdIX t  ~~ , 

0b  , then the components of the vector Xt are cointegrated of order d,b denoted CI(d,b).56 

Vector ~  is known as the cointegrating vector (CIV), tX ~  is a vector of error correction 

terms. 

 

Cointegration represents a useful tool for analyzing the data, as it allows for capturing possi-

ble long-run relationships between non-stationary time series. If cointegration is present, 

time-series, although non-stationary, are linked to each other through a common trend. Stock 

(1987) demonstrated that for cointegrated variables, the OLS estimator of the CIV, ̂~ , will be 

“super consistent”, i.e. it will converge to the true parameter value at a faster rate than the 

OLS estimator of a regression involving stationary variables. However, its distribution will be 

non-standard and therefore conventional statistical inference is not applicable. One crucial 

implication of cointegration, known as the Granger representation theorem,57 is that if the 

series are CI(1,1), an ECM will be a valid representation of the data. The error correction rep-

resentation is appealing because it only contains stationary variables, as the term in brackets 

                                                 
54 The concept of an ECM was first mentioned by Sargan (1964). Later, it was further developed by Hendry and 

Anderson (1977).  
55 See Holden/Perman (2007), pp. 64-66. 
56 Flores and Szafarz (1996) provide an enlarged definition of cointegration and show that cointegration may 

also arise among the series with different order of integration. 
57 See Granger (1983), Engle and Granger (1987). 
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in equation (35) will be stationary under cointegration. Currently there are several tests avail-

able to detect cointegration. In the case that only two time series are involved, the Engle-

Granger two-step estimation procedure58 can be applied. As a first step, equation (33) is esti-

mated using OLS and the error term is calculated: 

 

                                                          0 1 1
ˆ ˆ .  t t te r f         (36) 

 

Subsequently, the error term from the regression is tested for stationarity using one of the 

standard tests:59 

 

                                                               .1  t t te e                                                           (37) 

 

If the error term is stationary, the series are said to be cointegrated. Applied to a multivariate 

case, the Engle-Granger two-step procedure can no longer guarantee the uniqueness of the 

estimated CIV as there could exist p1 linear relationships in the case of p involved series.60  

 

Jonansen (1988, 1991) and Johansen and Juselius (1990) developed a technique that enables 

detection and estimation of multiple CIVs.61 Being a part of econometric software packages, 

this procedure is frequently applied to test for cointegration. At first, the system is represented 

as a vector autoregression (VAR) model of order k:62 

 

                                                  1 1 ... ,t t k t k tX X X         (38) 

 

where Xt is a p-dimensional vector of I(1) series, i , i=1….k is a pp matrix of coefficients 

and t  is a p1 vector of error terms that are independently identically distributed (i.i.d.). The 

VAR models are models without strong theoretical basis that do not distinguish between ex-

ogenous and endogenous variables. The above expression can also be represented in the error 

correction form:63 

                                                 
58 See Engle/Granger (1987). 
59 Such as DF, DF GLS, PP or KPSS test. 
60 See Harris/Sollis (2005), pp. 92-93.  
61 Another multivariate cointegration test was proposed by Stock and Watson (1988). 
62 See Lütkepohl/Krätzig (2004), pp. 88-89. 
63 See Asteriou/Hall (2006), pp. 319-320. 
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and I denotes the identity matrix. In equation (39),   is the only term that is expressed in 

levels.   equal to zero indicates the absence of cointegration;   having a full rank implies 

that the involved series are all stationary. Therefore, tests for cointegration focus on determin-

ing whether matrix   ~~
 has a reduced rank, which can be at most equal to p1.  ~  de-

notes the pr matrix of CIVs whereas 
~

 is the pr matrix of adjustment coefficients. The 

maximum likelihood estimator, which was developed by Johansen (1988), is applied to calcu-

late the eigenvalues of  .64  

 

Two types of tests are carried out to test for the number of cointegrating vectors or, put differ-

ently, for the number of the long-run relationship among the series. The maximum eigenvalue 

test, which is used to test the null hypothesis of r CIVs against the alternative of that their 

number is r+1, is based on the following test statistics: 

 

                                                           max 1ln 1 ,rT                                                       (41) 

 

where T is the number of observations and r  is an eigenvalue associated with the cointegrat-

ing vector r. The second cointegration test, the trace test, is based on the following: 

 

                                                          
1

ln 1 .
k

trace i

i r

T
 

                                                    (42) 

 

The null hypothesis of the trace test is that there are at most r CIVs with the alternative hy-

pothesis being the existence of more than r CIVs. Critical values obtained by Johansen and 

                                                 
64 See Asteriou/Hall (2006), pp. 321. 
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Juselius (1990) should be applied to assess the results of these tests. If in a system of p series r 

cointegrating vectors are found, the system is said to be driven by p–r common trends.65  

 

In the contest of the EH of the term structure, cointegrated interest rates of different maturities 

are usually interpreted as an evidence in favor of the EH. A large number of CIVs in the sys-

tem is also an indicator of the validity of the EH. However, for a pure EH to be valid, it has to 

be tested, whether the CIV is different from unity.  

 

Due to its theoretical appeal, the cointegration framework has been applied in the term struc-

ture literature. Some early studies in the beginning of the 1990s have focused on determining 

whether US term structure components are cointegrated. Hall, Anderson and Granger (1992) 

use T-bill data for the period 1970 – 1988 with one to eleven months maturity to test for coin-

tegration among all eleven yields as well as pairwise between different yields. According to 

the authors, for the EH to hold there should be p1 CIVs for a set of p series. They find that 

eleven interest rates have ten CIVs, i.e. the EH holds. In contrast, Zhang (1993) examines 19 

interest rate series dating from 1964 to 1986 and documents the existence of 16 cointegrating 

vectors, or three common trends, in the US term structure.  

 

The findings of Engsted and Tanggaard (1994), who analyze the US term structure using a 

data set ranging 1952 – 1987, also indicate one common trend in the data. Dominguez and 

Novales (2002) apply cointegration analysis to estimate interest rates with one, three and six 

month maturity depending on one lagged forward rate. Their sample includes US, British, 

Japanese, Spanish, French, Italian, Swiss and German data for the period 1978 – 1998. With 

several exceptions, they found cointegration between the pairs of interest rates and conclude 

that forward rates can serve as unbiased predictors of future spot rates. In addition, they find 

that lagged forward rates can predict future spot rates better than the univariate autoregressive 

model.  

 

Ghazali and Low (2002) investigate the case of Malaysia and show that long-and short-term 

interest rates are cointegrated. The ECM elaborated by the authors has significant adjustment 

coefficients in most cases. They analyze both long-short and short-long models and find that, 

based on the absolute size of the adjustment coefficients, long-term rates have stronger power 

                                                 
65 See Burke/Hunter (2005), pp. 89-90. 
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in determining the short-term rates. Finally, Tabak (2009) uses Brazilian swap rates for one, 

three, six and 12 months ranging from 1995 to 2006 to test the expectations hypothesis using 

term spreads. Although cointegration is present, the study rejects the pure form of the EH. 

Evidence for European countries using cointegration analysis is quite scarce. We intend to 

close this gap providing the cointegration analysis for the German term structure. 

 

3.2 Empirical results 

 

This section contains the results of the cointegration and the error correction analysis for the 

considered models. This analysis is followed by forecasts produced by the models for the pe-

riod from November 2006 to October 2007. Finally, forecasting performance is evaluated 

with the help of mean absolute error (MAE), root mean square error (RMSE) and Theil’s ine-

quality coefficient. 

 

3.2.1 Cointegration analysis 

 

For the first model, which involves only the one-year spot rate and one lagged forward rate, 

we employ the Engle-Granger two-step procedure as well as the Johansen approach. Howev-

er, for the remaining models under consideration we employ Johansen cointegration tests, as 

this procedure allows identifying all relevant CIVs. An important issue when using Johansen 

cointegration tests is the choice of the number of lags in VAR. If this number is too low, the 

model is specified incorrectly. From the other side, if there are too many lags, this leads to the 

loss of degrees of freedom.66  

 

The optimal number of lags can be selected on the basis of various information criteria, such 

as Akaike Information Criterion (AIC)67, Schwarz Information Criterion (SIC)68, Final Pre-

diction Error (FPE), sequential modified likelihood ratio (LR) test statistic, and Hannan-

Quinn criterion (HQ).69 The number of lags indicated by each test is reported in table 10 for 

all considered models. It shows that AIC, SIC, FPE and HQ criterion produce uniform results 

regarding the number of lags in VAR, which is especially evident for model 2 and 4 to 6. In 

contrast, the LR test statistic indicates significantly larger number of lags. Thus, cointegration 

                                                 
66 See See Asteriou/Hall (2006), p. 322. 
67 See Akaike (1974). 
68 See Schwarz (1979). 
69 See Hannan/Quinn (1979). 
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tests are performed several times, each time changing the number of lags, in accordance with 

the respective lag order selection criterion.70 

 

  Table 10: Lag Order Selection Criteria71 

Model LR AIC SC HQ FPE 

1 7 2 1 1 2 

2 8 1 1 1 1 

3 7 2 1 1 2 

4 7 1 1 1 1 

5 7 1 1 1 1 

6 7 1 1 1 1 

 

Table 11 and 12 report the results of cointegration tests for the six models with the number of 

lags, L, selected by AIC and LR, respectively.72 For the models considered in table 11 both 

tests reject the null hypothesis of no cointegration in case of models 2, 4, and 5 at the five 

percent significance level. For model 1 the null hypothesis is rejected even at the one percent 

significance level. However, the results are not so straightforward for model 3 and 6. Whereas 

the maximum eigenvalue test rejects the null hypothesis of no cointegration at the five percent 

level, the trace statistics is not able to verify this result. The situation is reversed for model 6. 

The trace test indicates cointegration at the five percent level while the maximum eigenvalue 

test is (just) not able to reject the null. For all models the number of cointegrating vectors is 

found to be one. However, if the number of lags selected by the LR test were applied, as 

shown in table 12, a higher number of CIVs was detected by the tests. This number ranges 

from one for the first model and reaching four for model 6.  

 

 

 

 

 

 

 

 

 

 

                                                 
70 However, the results are insensitive to inclusion of more lags, i.e. cointegration is still found at the 5percent 

level. Thus, we consider Johansen’s tests to be an appropriate procedure in our case. 
71 The models indicated in the table correspond to those introduced on page 33. Model 1 includes one lagged 

forward rate; each of the subsequent models includes one additional lagged forward rate. 
72 All tests were conducted under no deterministic trend assumption. It is worth mentioning that the results of 

cointegration tests are not affected by introducing the trend assumption.  
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Table 11: Johansen Cointegration Tests, Sample 1995 – 2006 

Model Hypothesis 
 

trace  Critical value L max  Critical value 

1 

r=0    31.56* 25.08 2 24.48* 20.16 

r 1 7.08 12.76  7.08 12.76 

2 

r=0     48.61** 35.19 1   31.34** 22.30 

r 1 17.27 20.26  12.98 15.89 

3 

r=0 50.48 54.08 2   29.00** 28.58 

r 1 21.48 35.19  12.08 22.30 

4 

r=0    79.78** 76.97 1   38.66** 34.80 

r 1 41.12 54.08  19.15 28.59 

5 

r=0   106.94** 103.84 1    45.69** 40.96 

r 1    61.24 76.97  21.18 34.81 

6 

r=0   144.81** 134.68 1 47.07 47.08 

r 1 97.74 103.85  37.00 40.96 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively; L 

denotes the number of lags in VAR in levels. 

 

In case of model 2 to 4, the number of CIVs detected by both tests is two. It is also worth not-

ing that trace and maximum eigenvalue test indicate cointegration for all models and yield an 

equal number of CIVs in all but one case. The only exception is model 5, where trace test 

indicates that three CIVs are present while the maximum eigenvalue test detects only two of 

them. Thus, including a larger number of lags into the VAR model does not affect the main 

result: in all models variables remain cointegrated. The difference is that more cointegrating 

vectors are detected. A similar situation is observed when the full data set available for the 

period 1978 – 2006 is analyzed. Cointegration is also found in this sample; however, the 

number of CIVs is more than just one for several models, which is reflected in table 13. 
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Table 12: Johansen Cointegration Tests, Sample 1995 – 2006 

Model Hypothesis 
 

trace  Critical value L 
max  Critical value 

1 
r=0   35.81* 19.94 7 31.91* 18.52 

r 1 3.89 6.63  3.89 6.63 

2 

r=0 92.99* 35.46 8 55.43* 25.86 

r 1 37.56* 19.94  35.53* 18.5 

r 2 2.04 6.63  2.04 6.63 

3 

r=0 76.38* 54.68 7 39.97* 32.72 

r 1 36.41* 35.46  26.85* 25.86 

r 2 9.55 19.94  8.48 18.52 

4 

r=0 100.95* 69.81 7 44.12* 33.88 

r 1 56.83* 47.86  30.07* 27.58 

r 2 26.76 29.80  16.53 21.13 

5 

r=0 148.20* 104.96 7 52.36* 45.87 

r 1   95.85* 77.82  38.91 39.37 

r 2 56.94* 54.68    

r 3        29.01 35.46    

6 

r=0 211.31* 135.97 7 54.79* 52.31 

r 1 156.51* 104.96  54.41* 45.87 

r 2 102.10* 77.82  44.96* 39.37 

r 3 57.14* 54.68  28.69 32.72 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively; L 

denotes the number of lags in VAR in levels. 
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Table 13: Johansen Cointegration Tests, Sample 1978 – 2006 

Model Hypothesis 
 

trace  Critical value L max  Critical value 

1 
r=0    39.36* 19.94 1 35.22* 18.52 

r 1 4.14 6.63  4.14 6.63 

2 

r=0 75.09* 35.46 1 39.81* 25.86 

r 1 35.26* 19.94  32.91* 18.5 

r 2 2.35 6.63  2.35 6.63 

3 

r=0 98.70* 54.68 1 40.93* 32.72 

r 1 57.76* 35.46   35.68* 25.86 

r 2 22.08* 19.94  20.08 18.52 

r 3 1.99 6.63  1.99 6.63 

4 

r=0 197.03* 77.82 7 89.81* 39.37 

r 1 107.22* 54.68  75.19* 32.72 

r 2         32.04 35.46  21.78 25.86 

5 

r=0  269.12* 104.96 7 89.01* 45.87 

r 1  180.11* 77.82  79.38* 39.37 

r 2 100.74* 54.68  69.57* 32.72 

r 3 31.17 35.46  20.52 25.86 

6 

r=0 211.31* 135.97 7 54.79* 52.31 

r 1 156.51* 104.96  54.41* 45.87 

r 2 102.10* 77.82  44.96* 39.37 

r 3 57.14* 54.68  28.69 32.72 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively; L 

denotes the number of lags in VAR in levels. 

  

It was also of interest to test for cointegration in pairs, i.e. including the spot rate and each 

lagged forward rate. The corresponding results are shown in table 14. 
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Table 14: Johansen Cointegration Tests between Pairs of Spots and Forward Rates, Sample 

1995 – 2006 

Variables Hypothesis 

 

trace  Critical value L max  
Critical 

value 

r1, f1 r=0 31.79* 25.08a 2 27.64* 20.16 a 

r1, f2 r=0 9.07 17.98b 4 5.31  13.91 b 

r1, f3 r=0 8.11 17.98 b 4 5.32  13.91 b 

r1, f4 r=0 8.06 17.98 b 2 5.90 13.91 b 

r1, f5 r=0 8.40 17.98 b 2 5.52 13.91 b 

r1, f6 r=0 17.56 17.98 b 3 13.85 13.91 b 

Notes: * denotes the rejection of the null hypothesis at the 1% level; L denotes the number of lags in VAR in 

levels; a and b are 1% and 10% critical values, respectively. 
 

From table 14 one can observe that cointegration for the pairs of spot and lagged forward 

rates only holds in the first case, for r1 and f1.
73 For all other pairs both cointegration tests are 

not able to reject the hypothesis that variables are not cointegrated even at the ten percent lev-

el. There is some ambiguity for the last case, r1 and f6, where both tests are (just) not able to 

reject the null hypothesis.  

 

Thus, we have found that there is a long-run relationship among spot rates and lagged forward 

rates. In this case it could be possible to use this information for constructing forecasts. Table 

15 shows the normalized cointegrating coefficients for the sample 1995 – 2006. The results of 

the maximum likelihood estimation of parameters, as opposed to the conclusions drawn from 

the cointegration tests, are not so promising. One can infer from table 15 that only f1, i.e. the 

forward rate determined one period before, is highly significant in all six models and, there-

fore, exhibits explanatory power with respect to the future one-year spot rate. However, it has 

a positive sign only for models 1 through 4. In models 5 and 6 the wrong direction is predict-

ed by the lagged forward rate f1. Forward rates which prevailed two and three periods before, 

f2 and f3, are either insignificant or significant only at the ten percent level. In most of the con-

sidered models they cannot contribute to the prediction of the future spot rate. Up to model 5, 

                                                 
73 When the Engle-Granger two-step procedure is applied to check if r1 and f1 are cointegrated, the KPSS test is 

not able to reject the null hypothesis of a stationary process. The DF-GLS test confirms this result, rejecting the 

null of a unit root process at the five percent level. In contrast, the outcome of the ADF and the PP test is a non-

stationary error term. As the Johansen approach indicates cointegration at the one percent level, these results 

may be interpreted as an evidence of poor performance of the ADF and the PP test. 



3. Testing the Predictive Power of Forward Rates 56 

 

  

f2 also has a negative sign. Although f3 has a positive sign in models 3 and 4, it becomes nega-

tive starting from model 5.  

 

Table 15: Parameter Estimates, Sample 1995 – 2006 

Model Parameter estimates 

 
Constant   

1 

0.015 

(0.00979) 

[1.55] 

1.2316* 

(0.2241) 

[5.49] 

     

2 

0.0109 

(0.01393) 

[0.78] 

1.662* 

(0.261) 

[6.36] 

 0.476*** 

(0.265) 

[1.79] 

    

3 

0.007 

(0.014) 

[0.05 ] 

1.645* 

(0.268) 

[6.12] 

0.554 

(1.004) 

[0.53] 

0.0134 

(1.008) 

[0.013] 

   

4 

0.0009 

(0.0027) 

[0.034] 

3.050* 

(0.459) 

[6.64] 

3.353*** 

(1.829) 

[-1.83] 

2.95*** 

(1.817) 

[1.62] 

1.338** 

(0.486) 

[2.76] 

  

5 

0.0173 

(0.031) 

[0.55] 

3.99* 

(0.558) 

[7.16] 

2.25 

(1.978) 

[1.13] 

2.20 

(1.958) 

[-1.12] 

   1.204*** 

(0.607) 

[1.98] 

2.099* 

(0.65) 

[3.22] 

 

6 

0.0211 

(0.012) 

[1.79] 

1.441* 

(0.186) 

[7.76] 

0.024 

(0.633) 

[0.04 

0.189 

(0.618) 

[0.30] 

   0.393** 

(0.194 

[2.03] 

0.84* 

(0.217) 

[3.686] 

0.579* 

(0.203) 

[2.85] 

Notes: numbers in parentheses stand for the maximum likelihood standard errors; numbers in square brackets are 

t-statistics; *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively 

 

Whereas f2 and f3 seem to have no forecasting ability with respect to the future spot rate, for-

ward rates lying farther in the past might be more useful in explaining the spot rate. In models 

4, 5 and 6, f4 is significant at the five or ten percent level. In models 5 and 6, f5 is significant at 

the one percent level whereas f6 also seems to have some predictive power in model 6 at the 

one percent level. Both f5 and f6 have positive signs. To summarize, for models 4, 5 and 6 the 

first and the last forward rates are significantly different from zero at least at the five percent 

significance level. Thus, we found evidence that forward rates one period before as well as 

forward rates that are lying five and six periods before contain some explanatory power re-

garding the one-year spot rate, although the sign reversion starting from model 5 is puzzling. 

Although sign reversion starting from model 5 could be interpreted as mean reversion accord-
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ing to business cycles reflected in the level of interest rate, such interest rate cycles show no 

constant length. Forward rates lying in the “middle” f2, f3 and f4 do not seem to be a useful tool 

in forecasting spot rates. While cointegration analysis represents a more sophisticated tech-

nique to analyze time series data, it appears to be interesting to compare its results with a sim-

ple model which treats time series as first differences. This way, although not very popular, as 

cointegration analysis is strongly preferred in the recent literature, represents an easy way to 

deal with time series data. Table 16 demonstrates the results of the model 1 to 6 with forward 

rates expressed as first-differences: 
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             (43) 

 

Table 16: Parameter Estimates for the Models in First Differences, Sample 1995 – 2006 

Model Parameter estimates 

 
i  R2(adj.) 

1 

0.052 

(0.054) 

[0.96] 

     0.0058 

2 

0.052 

(0.056) 

[1.05] 

0.028 

(0.054) 

[0.52] 

    0.00039 

3 

0.065 

(0.056) 

[1.16] 

0.118 

(0.125) 

[0.94] 

0.101 

(0.126) 

[0.80] 

   0.0022 

4 

0.065 

(0.057) 

[1.15] 

0.118 

(0.126) 

[0.94] 

0.101 

(0.127) 

[0.796] 

0.0005 

(0.063) 

[0.009] 

  0.0098 

5 

0.065 

(0.057) 

[1.155] 

0.119 

(0.127) 

[0.94] 

0.102 

(0.128) 

[0.798] 

0.0009 

(0.063) 

[0.015] 

0.009 

(0.066) 

[0.132] 

 0.0173 

6 

0.062 

(0.057) 

[1.092] 

0.099 

(0.126) 

[0.789] 

0.071 

(0.128) 

[0.554] 

0.008 

(0.063) 

[0.132] 

0.025 

(0.066) 

[0.382] 

0.091* 

(0.055) 

[1.653] 
0.0041 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively; num-

bers in parentheses stand for the OLS standard errors; numbers in square brackets are t-statistics. 
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The results of the first differences models show that all but one coefficient are insignificant. 

The only exception is f6 in the last model, where the t-test (just) confirms the significance at 

the ten percent level. For the remaining cases, the largest value of the test statistic is observed 

for f1 and f2. The first differences models imply that changes in forward rates, neither one peri-

od before nor in the further lagged periods, have some predictive ability with respect to the 

changes in the spot rate. It is, thus, generally difficult to draw some meaningful conclusion 

from the first differences models. This result, combined with very low values of R2, can be 

attributed to the specification of the model: estimating variables in first differences does not 

allow making such a meaningful inference as it would be possible in the case of a model ex-

pressed in levels.  

 

3.2.2 The Error Correction Model 

 

While table 15 represents the parameter estimates for the long-run relationship among the 

series, it is also interesting to investigate the short-run dynamics which is captured by the 

ECM. As cointegration was found, according to the Granger representation theorem,74 an 

ECM is a valid representation of the data. An ECM is set up for each of the six models. The 

results are reflected in table 17, where both the estimates of CIVs and adjustment coefficients 

are presented. The latter are of great interest, as their significance indicates the validity of the 

error correction representation of the data. As table 17 suggests, with the exception of the first 

model where the significance is at the five percent level, the adjustment parameters are signif-

icant at the one percent level.  

 

Thus, the conclusion that the respective series are cointegrated is reinforced by the significant 

adjustment parameters. This means that for these models the spot rate responds to the devia-

tions from the long-run value, i.e. the ECM works. However, the adjustment coefficient 1  

has a “wrong” sign in models 1 through 4. It is expected to be negative. In the case where the 

value of r1 is above its long-run value, the change in r1 should be negative to compensate for 

the disequilibrium in the previous period. However, out of six models, negative signs were 

observed only in case of models 5 and 6. Thus, only for these two models the ECM would 

make sense. 

 

 

                                                 
74 See Engle/Granger (1987). 
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Table 17: The Error-Correction Model, Sample 1995 – 2006 

 

 

 

Model 1 2 3 4 5 6 

f1 

1.2316* 

(0.2241) 

[5.49] 

1.662* 

(0.261) 

[6.36] 

1.645* 

(0.268) 

[6.12] 

3.050* 

(0.459) 

[6.64] 

3.99* 

(0.558) 

[7.16] 

1.441* 

(0.186) 

[7.76] 

f2 

 

0.476*** 

(0.265) 

[1.79] 

0.554 

(1.004) 

[0.53] 

 3.353*** 

(1.829) 

[1.83] 

2.25 

(1.978) 

[1.13] 

0.024 

(0.633) 

[0.04] 

f3 

  

0.0134 

(1.008) 

[-0.013] 

2.95* 

(1.817) 

[1.62] 

2.20 

(1.958) 

[1.12] 

0.189 

(0.618) 

[0.30] 

f4 

   

1.338** 

(0.486) 

[2.76] 

   1.204*** 

(0.607) 

[1.98] 

    0.393** 

(0.194) 

[2.03] 

f5 

    

2.099* 

(0.65) 

[3.22] 

0.84* 

(0.217) 

[3.686] 

f6 

     

0.579* 

(0.203) 

[2.85] 

0  

0.015 

(0.0098) 

[1.55] 

0.01093 

(0.01393) 

[0.78] 

0.007 

(0.014) 

[0.05 ] 

0.0009 

(0.027) 

[0.034] 

0.0173 

(0.031) 

[0.55] 

0.021 

(0.0118) 

[1.79] 

1  

  0.0291** 

(0.0117) 

[2.49] 

0.034* 

(0.0089 

[3.874] 

0.026* 

(0.01) 

[2.62] 

0.0219* 

(0.0049) 

[4.51] 

0.023* 

(0.004) 

[-5.85] 

0.079* 

(0.01) 

[6.43] 

R2 (adj.) 0.111 0.098 0.118 0.129 0.20 0.23 

F-statistic 9.39 14.89 4.43 20.08 33.98 41.11 

Notes: *,** and *** denote the rejection of the null hypothesis at the 1%, 5% and 10% level, respectively; num-

bers in parentheses stand for the maximum likelihood standard errors; numbers in square brackets are t-statistics. 
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Finally, we consider the adjusted coefficients of determination in order to examine the good-

ness of fit of our models. The results are also not in favor of the forecast ability of forward 

rates. The adjusted R2 of the first model only slightly exceeds 11 percent, for the second mod-

el this value is even lower, 9.8 percent. Then, starting from model 3 the adjusted R2 increases 

gradually, achieving its highest level at 23 percent for model 6. The most significant increase 

by 7.1 percent in the coefficient of determination occurs when we move from model 4 to 

model 5, i.e. the inclusion of f5 considerably improves the goodness of fit of the model.  

 

3.2.3 Predictions  

 

 Although the results regarding the significance of coefficients and the goodness of fit are not 

very promising, the variables in all models are cointegrated and the error correction represen-

tation is valid for some of them. It is, therefore, of crucial interest, whether the fact that coin-

tegration is present can help to improve forecasts. The estimated parameters for the sample 

1995 to 2006 will be used to make forecasts for the period November 2006 to October 2007. 

To assess forecasting performance of our models, we compare the forecasts from the cointe-

gration equations with the naive model which uses past period value of r1 to make a forecast.  

The main purpose of this analysis is to measure the accuracy of the forecasts, which can be 

done with the help of various indicators. One of them is the mean absolute error (MAE), 

which can be computed in the following way:  
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MAE                                                    (44) 

 

where rt and t̂r  denote the true and the forecasted values, respectively. Often a root mean 

squared error (RMSE) is employed:75 
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Another statistics which is commonly applied to test how closely the obtained forecasts match 

the data is the Theil’s inequality coefficient, denoted as U:76 

                                                 
75 See Pindyck/Rubinfeld (1998), p. 210. 
76 See ibid.  
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The numerator of equation (46) is represented by the RMSE; Theil’s inequality coefficient 

lies between zero and one. A value of zero indicates a perfect match between the actual and 

forecasted values. For all other measures, a smaller value is desirable. The forecasting per-

formance of the considered models is specified in table 18.   

 

Table 18: Forecasting Performance 

Model MAE RMSE U 

Naive 0,0104 0,0105 0,0555 

r1, f1 0,0258 0,0263 0,1851 

r1, f1, f2  
0,0280 0,0286 0,2114 

r1, f1, f2, f3 0,0268 0,0275 0,1972 

r1, f1, f2, f3, f4 
0,0343 0,0356 0,2959 

r1, f1, f2, f3, f4, f5 
0,0113 0,0475 0,0584 

r1, f1, f2, f3, f4, f5, f6 0,0061 0,0073 0,0368 

 

Out of six estimated models, only model 6, which involves all six lagged forward rates, was 

able to beat the naive model according to all forecast accuracy measures. Model 5 is the sec-

ond-best model according to the MAE and Theil’s coefficient but not with respect to the 

RMSE which identifies model 1 as the second-best model. The model providing the worst 

forecast is model 4 according to the MAE and Theil’s coefficient and model 5 according to 

RMSE. Thus, past forward rates exhibit rather poor predictive power with respect to the fu-

ture one-year spot rate. Models including one to four lagged forward rates have no forecasting 

power at all, whereas for the model including six forward rates there seems to be some fore-

casting ability as it outperforms a naive model.  
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3.2.4 Summary 

 

The pure expectations hypothesis asserts that long-term interest rates represent the average of 

the current and future expected short-term interest rates. Forward rates, which are derived 

from the term structure, are considered to be unbiased predictors of the future spot rates. Ac-

cording to this theory, bonds of different maturities are regarded as perfect substitutes. The 

pure expectations theory implies that bonds of different maturities, if held for an identical 

period of time should have the same holding period return. There exist, however, trading 

strategies aiming at gaining profits from the differences in holding period returns known as 

yield curve trading strategies. For example, the Riding the Yield Curve strategy involves buy-

ing a fixed income instrument with a maturity longer than the investor’s holding period and 

selling it prior to maturity. The idea behind this fixed income strategy is to make use of the 

fact that the price of the bond increases, due to the fact that the interest rate on the remaining 

maturity is lower. However, if the pure EH holds, there should be no difference between the 

rate of return from riding and holding an instrument whose maturity matches the desired hold-

ing period. Another yield curve trading strategy is constructed through financing a long-term 

asset with a short-term liability. This strategy is widely applied by banks and is referred to as 

the Rolling Down the Yield Curve strategy.  

 

A prerequisite for the success of both strategies described above is that the term structure of 

interest rates is upward-sloping and retains its shape in the future. A parallel shift or flattening 

out of the yield curve would result in a decline of the profits from the strategies. Because of a 

sharp shift of the term structure, the short-term interest rates could increase leading to losses 

on the strategies. According to the pure expectations theory, an upward-sloping yield curve 

indicates that future short-term interest rates are expected to rise. If normal term structure pre-

vails, forward rates lie above the spot rates. Empirical results presented above, however, indi-

cate that forward rates exhibit very low ability to explain the spot rates. Looking at the six 

models presented above, one can infer that, although some particular forward rates are signifi-

cant, the general result does not confirm forward rates being unbiased predictors of the future 

spot rates. Regarding the empirical finding on their predictive ability, an upward-sloping yield 

curve does not indicate that spot rates will necessarily rise in the future. Consequently, strate-

gies based on a stable, upward-sloping yield curve could be profitable. This aspect will be 

considered in details in the next chapter. 
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4. Yield Curve Trading Strategies  
 

This chapter aims to present two commonly applied yield curve trading strategies and test 

their performance. In section 4.1 fixed income strategies are introduced and their classifica-

tion is provided. In section 4.2 the main empirical findings of previous research are presented. 

The next sections 4.3 and 4.4 are devoted to the main characteristics of the RDYC strategy 

and the RYC strategy, respectively. Section 4.5 contains a detailed description of different 

performance indicators as well as the results of the performance evaluation analysis. The 

chapter finishes with section 4.6, which covers the regulatory framework and addresses the 

specific risks of the considered strategies. 

 

4.1 Types of Strategies 

 

Strategies based on the yield curve belong to the class of active portfolio strategies. In gen-

eral, fixed income portfolio strategies can be roughly divided into active and passive strate-

gies. The latter do not involve forecasting of factors that influence the performance of assets. 

An example of such a strategy would be investing in a portfolio that closely follows a broadly 

diversified bond index or a BH strategy involving buying an asset and holding it till maturity. 

Passive strategies are based on the postulate of the efficient market hypothesis77 that markets 

are efficient and it is, therefore, not possible to outperform the market. In contrast, advocates 

of active portfolio strategies share the view that the markets are not completely efficient and, 

thus, seek to take advantage of a special forecasting ability of the portfolio manager. Passive 

strategies that do not require any analytical skills or forecasting abilities often serve as 

benchmarks for the performance of actively managed portfolios.78 

 

Among the great variety of active fixed income strategies, one can distinguish between strate-

gies based on market timing and strategies that attempt to identify mispriced securities. Yield 

curve trading strategies refer to strategies based on market timing, i.e. on the interest rate pre-

dictions. Two further subcategories of yield curve trading strategies can be distinguished: 

                                                 
77 The weak form of the efficient market hypothesis in our framework states that it is not possible to predict 

future interest rates based on the publicly available information.  
78 See Martellini/Priaulet/Priaulet (2010), pp. 211-212. 
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strategies based on the specific changes of the yield curve and strategies which assume the 

yield curve shape will not change at all.79  

 

4.1.1 Strategies Based on the Specific Changes of the Yield curve 

 

Strategies that are based on anticipated changes in the yield curve shape are characterized by 

three main parameters: level, slope, and curvature.80 Although each of these parameters or all 

of them together may change, the most common types of changes in the yield curve shape 

include upward and downward parallel shifts, twists and butterfly shifts.81 Parallel shifts occur 

when interest rates change by the same amount across all maturities. Twists include changes 

in the spread between interest rates of different maturities and lead to either flattering out or 

steepening of the yield curve. Finally, a change in the curvature of the yield curve is referred 

to as a butterfly shift.82 

 

Depending on the anticipated changes in the yield curve, bond portfolios are constructed in 

such a way, that the maturity of the included fixed income instruments perfectly matches 

these future changes. This class of strategies attempts to choose the duration of the bond port-

folio that would match future interest rate changes. The main types of these strategies include 

the barbell, the bullet and the ladder strategy, although various combinations of them are also 

possible. The bullet strategy is constructed in such a way, that maturities of bonds are concen-

trated on one particular point of the yield curve. According to the barbell strategy, the maturi-

ties of the bonds are concentrated in two opposite ends of the yield curve; i.e. investing 50 

percent of the portfolio value into a six-month maturity bond and another 50 percent into a 

30-month maturity bond. Finally, the ladder strategy invests equal amounts into bonds of a 

range of maturities. Each of these strategies will perform differently, depending on the future 

changes in the slope, level and curvature of the yield curve.83  

 

                                                 
79 See Martellini et al. (2003), p. 233. 
80 See Lettermann/Scheinkman (1991), pp. 54-61. 
81 See Fabozzi (2004), pp. 424-432. 
82 According to Jones (1991), these types of shifts do not occur independently. He analyzed the changes in the 

shape of the yield curve from 1979 to 1990 and came to a conclusion that downward shift with simultaneous 

steepening of the yield curve and an upward shift combined with a flattening of the yield curve were the most 

common to occur. The results obtained by Mann and Ramanlal (1997) support these findings. 
83 Although studies regarding the performance of these strategies are scarce, Man and Ramanlal (1997) test the 

performance of the barbell and the bullet portfolios. The also examined different maturities and reported that in 

the case of downward shifts of the yield curve short-maturity bullet portfolios performed better than short-term 

barbell portfolios. For upward shifts in the yield curve, the opposite was the case.  
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A very popular active fixed-income strategy is a combination of the barbell and the bullet 

strategy and is referred to as butterfly strategy. A standard butterfly is set up without having 

any initial costs of financing and zero duration, which makes the portfolio insensitive to small 

parallel shifts in the yield curve. A butterfly then involves a barbell consisting of a long term 

and a short-term bond and a bullet including a medium-term bond. Apart from the standard 

strategy, there exist several other butterfly trades that are not necessarily cash-neutral, namely 

fifty-fifty weighting, maturity weighting and duration weighting.84  

 

Strategies based on the changes in the interest rate level assume that the only parameter of the 

yield curve that will change is the level of the curve, i.e. only parallel shifts may occur. If 

such changes are anticipated, the duration of the portfolio is adjusted to account for these 

changes. In case that interest rates are expected to increase, either the duration of the portfolio 

will be shortened or short-term bonds will be held till maturity and then “rolled over” at high-

er rates. The latter is referred to as rollover strategy. In contrast, if the portfolio manager an-

ticipates a decline in interest rates, he or she will lengthen the duration of the portfolio.85 

 

An additional yield curve trading strategy worth mentioning is a trading technique based on 

the mean reversion of the level, slope and curvature of the yield curve. If one of the three 

components lies above (below) its historical average level, the expectation is that in the future 

the level, slope or the curvature of the yield curve would fall (rise) in the direction of their 

historical average level.  

 

4.1.2 Strategies Based on a Stable Yield Curve 

 

Strategies based on the prediction that the yield curve remains stable are the Riding the Yield 

Curve strategy and the Rolling Down the Yield Curve strategy.86  

 

Riding the Yield Curve 

 

Riding the Yield Curve is a popular way for a fixed income portfolio manager to enhance 

returns, which involves buying fixed-income instruments whose maturity is longer than the 

                                                 
84 See Martinelli et al. (2002), pp. 9-13. 
85 See Martinelli et al. (2003), pp. 236-237. 
86 Although these two terms are sometimes used interchangeably, in this thesis it will be strictly distinguished 

between these two strategies.  
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investor’s preferred holding period and selling them in the secondary market before maturity. 

An investor who would like to place his funds for some particular period may purchase a 

fixed-income security with maturity identical to this period; i.e. he or she can pursue a BH 

strategy. Alternatively, he or she could purchase a fixed-income security with maturity ex-

ceeding the desired holding period. After the intended investment horizon has been reached, 

the bond will be sold before it matures. If the yield curve remains unchanged, gains based on 

the falling bond yields as the bond’s maturity decreases, can be made. For example, if the 

investor’s holding period is one year, he or she could buy a two-year maturity bond and sell it 

after one year. An example of such a strategy, depicted in figure 8, shows that at the point of 

initiation of the strategy, a one-year and a two-year bond yield two percent and three percent, 

respectively. After one year, the maturity of the two-year bond purchased one year ago de-

creases and comprises only one year. If the term structure has not changed, the yield on a one-

year bond would comprise only two percent now and, therefore, the bond can be sold at a 

higher price. In this situation, the rate of return on the RYC strategy is higher than the return 

the investor would have received from buying a security with maturity matching his holding 

period. The rate of return on the RYC strategy can be computed in several steps.87 First of all, 

the price of a zero coupon bond with m years to maturity and a face value of 1,000 can be 

computed in the following way:88 

 

Figure 8: RYC Strategy 
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87 See Alexander/Sharpe/Bailey (2001), pp. 557-558. 
88 See Bieri/Chincarini (2005), pp. 7-11. 
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After i years, the bond is sold at the following price: 
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where im

itr


  is the yield on the bond of maturity m – i available in period t+i. The rate of re-

turn on the strategy can be obtained by dividing equation (48) through equation (47): 
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Denoting i
tr as the yield on a zero-coupon bond with i years to maturity, the excess return on 

the RYC strategy over a BH strategy can be represented in the following way: 
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The forward rate for an investment starting in t+i and lasting m – i periods is given by: 
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The above expression for the forward rate can be inserted into equation (50) to replace the 

interest rate im

itr
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Rearranging the terms, the above equation can be simplified to:   
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Thus, in case that the forward rate is used instead of the future spot interest rate, the excess 

return of the RYC strategy equals zero. For the above example of the RYC strategy using a 

two-year bond and holding it for two periods, the excess return would be computed in the 

following way: 
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Thus, the steeper the yield curve, the higher the gain from the strategy. In addition, the lower 

the short-term rate at t+i, the more profitable is the strategy. The capital gains from the sale of 

the long-term security are based on the lower remaining maturity of the instrument and the 

higher interest rate of the longer-maturity instrument.   

 

A prerequisite for the success of the strategy is the normal term structure of interest rates. The 

main risk factor of the strategy is that the term structure will not remain stable and the short 

term rates could rise significantly. In this case, investors would have to sell bonds at a lower 

price and could possibly encounter losses on the strategy. Alternatively, the RYC strategy will 

yield an even higher rate of return, should the short-term interest rates fall by the time the 

long-term instrument is sold. The following table 19 provides an illustration of the returns on 

RYC strategy using different scenarios for the future short-term interest rate.  

 

Table 19: Returns of the RYC Strategy under Different Scenarios 

 Term structure 

at t 

Short-term rate at t+1 

r2=4% r1=3% 2% 3% 4% 5% 6% 

rRYC   6.04% 5.01% 4% 3.01% 2.04% 

BH   3% 3% 3% 3% 3% 

Difference   3.04% 2.01% 1% 0% – 0.96% 

 

Thus, if the interest rate on the short-term instrument stays the same or declines, the strategy 

yields five percent and six percent, respectively; this is more than the BH strategy returns. In 

the case that the interest rate rises and constitutes more than two percent, the investment starts 

to make losses and underperforms the BH strategy. In order to assess the riskiness of the 
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strategy, the breakeven interest rate can be calculated. It shows, by which extent the interest 

rate can rise before the RYC strategy becomes just as profitable as the BH strategy. The 

breakeven rate ,

m i
BE tr

 can be computed with the help of equation (50):  
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From equation (55), the breakeven rate can be computed in the following way: 
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In case of trading techniques with holding a two-year bond for one year, the breakeven rate 

will be represented by the following equation: 
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Thus, the breakeven rate on a riding strategy using a m-year bond with i holding period is 

equivalent to the forward rate for an investment starting in t+1 and lasting m – i periods. In-

vestors may choose to implement the RYC strategy all the time, or they may apply different 

rules regarding when to pursue the strategy. Such rules are referred to as filter rules. The sim-

plest filter rule is to ride when the yield curve is positively-sloped. The breakeven rate can 

also be applied in order to establish a filter rule. Such a filter rule could be, for instance, that 

the ride is executed only when there is a positive cushion, i.e. the difference between the 

breakeven rate and the short-term interest rate for m – i periods at time t: 
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In addition, the filter rule may be even more restrictive and specify that the cushion is not 

only positive, but comprises some particular percentage.  

 

Rolling Down the Yield Curve 

 

Similarly to the RYC strategy, the main idea of the Rolling Down the Yield Curve is also to 

exploit the upward-sloping yield curve, i.e. the fact that long-term interest rates usually lie 

above the short-term interest rates. The essence of this trading technique is to borrow funds at 

the short-term interest rate in order to invest them into a long-term asset. This strategy is 

widely applied in bond portfolio management and is a cash-neutral strategy, i.e. it does not 

require an initial investment. For example, an investor could purchase a two-year bond and 

finance his position through rolling over two one-year bonds. The rate of return on this strate-

gy which invests in one m-years maturity instrument and finances it through rolling over m 

instruments with the maturity of one year can, thus, be computed in the following way: 

 

                                              1 1 1

1(1 ) 1 1 ... 1 .m m m

RDYC t t t i t mr r r r r                                 (59) 

 

The RDYC strategy is equivalent to the RYC strategy, where the purchase of a long-term se-

curity is financed through the sale of a short-term instrument with the maturity m – i .  

 

In the case that the strategy is implemented through purchasing a two-year instrument and 

financing it with two one-year instruments, the rate of return on such a strategy would look in 

the following way:  

 

                                                      2 2 2 1 1

1(1 ) 1 1 .RDYC t t tr r r r                                           (60) 

 

If m is longer than two years, investors may also choose to use those instruments having a 

maturity longer than one year. For example, if the intended horizon constitutes three years, 

then the possibilities are:  

 

1) purchase of a three-year instrument and finance it by rolling over three one-year in-

struments;  
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2)  purchase of a three-year instrument and finance it through the sale of a two-year in-

strument in t and a one-year instrument in t+2; 

3)  purchase of a three-year instrument and finance it through the sale of a one-year in-

strument in t and a two-year instrument in t+1.  

 

The excess return on the strategy using the first, the second and the third option is represented 

by equation (61), (62) and (63), respectively:  
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As in the case of the RYC strategy, a prerequisite for the successful implementation of this 

strategy is that the upward-sloping yield curve does not change over time. In this case, the 

interest rate received from a long-term asset exceeds the interest rate paid on the short-term 

loan; i.e. a gain based on the long-short spread can be made. The risk of the strategy is that the 

shape of the yield curve will not remain constant and the short-term rates could rise. If the rise 

in the short-term rates is significant enough, the interest rate to pay on a short-term liability 

could exceed the interest rate received on a long-term asset and the strategy would suffer loss-

es. After one year, the investor would face a higher one-year interest rate to finance his posi-

tion. The breakeven rate for the strategy based on equation (60) may be computed as follows:  
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As in case of the RYC strategy, different filter rules regarding when to pursue the RDYC 

strategy may be applied in attempt to enhance the returns from the strategy or to reduce its 

risk. The RYC strategy can be implemented in a variety of ways, using instruments with dif-

ferent maturities and holding them during different holding periods. Both of the above de-

scribed techniques should not constantly persist. However, empirical evidence suggests some 
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support for the effectiveness of this strategy. The existing empirical evidence regarding the 

strategy is given in section 4.2.  

 

 

4.2 Previous Empirical Findings 

 

Despite the variety of yield curve trading strategies, there exists only limited empirical evi-

dence on their performance. Several studies which examined strategies based on a stable yield 

curve concentrated on the RYC and were predominantly based on US data. It was common 

for nearly all considered studies to compute the excess returns to the riding the yield curve 

strategy over the buy-and hold strategy.  

 

Although the possibility to gain profits exploiting the RYC strategy has drawn the attention of 

both theorists and practitioners already in the 1970s,89 the first attempt to empirically examine 

the riding the yield curve strategy was made by Osteryoung, Roberts and McCarty (1980). 

They investigated the US treasury bills market from January, 1976, to December, 1978, for 

maturities from seven to 182 days and a variety of holding periods. In this study the authors 

were the first to confirm that the RYC strategy provides higher rates of return than the simple 

buy-and-hold strategy. For almost all examined holding periods, the excess returns from the 

RYC strategy were statistically significant at the 95 percent level.   

 

In the following study of Dyl and Joehnk (1981) over a longer horizon covering the period 

1970 – 1975, the authors examined the returns from the RYC strategy in the US market for 

maturities up to 20 weeks and holding periods of four, eight, 12 and 16 weeks. Their overall 

result is that the returns from the RYC strategy are higher than those obtained from the BH 

strategy with the returns increasing with the length of the holding period. The strategy was 

pursued not all the time, but conditioned on different filter rules. The authors applied filter 

rules based on the breakeven rate, i.e. the rate at which the riding strategy just becomes un-

profitable. They created a so called “margin of safety”, which represents the difference be-

tween the break-even rate and the interest rate on a bond of the desired holding period. In 

general, the excess returns tend to increase with the longer holding period and higher margin 

                                                 
89 Some early textbooks describing riding the yield curve strategy include Freund (1970), pp. 66-67 and Darst 

(1975), pp. 290-295. In the practitioner’s literature, riding the yield curve was mentioned by De Leonardis 

(1966), pp.48-53 and later by Van Horne (1974), p. 361. 
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of safety. However, only in a few cases, namely for the highest margin of safety and longest 

holding period, statistically significant returns could be achieved.  

 

Grieves and Marcus (1992) proved that previously obtained results on riding the yield curve 

also hold true during a significantly longer period ranging from 1949 to 1988. They per-

formed three-month rides with three-, six- and 12-month treasury bonds. Compared to the BH 

strategy, RYC, conditioned on the same filter rules as those used in Dyl and Joehnk (1981), 

produced higher returns for almost all considered maturities and margins of safety. According 

to the authors, a three-month ride with six-month T-bills proved to be especially successful 

across the riding strategies. For this type of ride and over several subperiods and filter rules, 

they found that the RYC strategy dominates the BH strategy by the first degree stochastic 

dominance criterion. However, this result did not hold for the whole sample and for maturities 

exceeding six months.  

 

The following study of Chandy and Hsueh (1995) uses bonds with up to 13 weeks maturity 

for the period of 1981 – 1985 to test unconditional riding as well as riding based on a positive 

slope of the term structure. They report that all tested riding strategies, conditional as well as 

unconditional, provide positive excess returns compared to the BH strategy. The returns tend 

to rise with the maturity of the selected instrument, but not with the holding period. However, 

significance tests revealed that none of these excess returns is statistically significant. There-

fore, the strategy should not be pursued by the investors, who are better off just buying an 

instrument of the desired holding horizon and holding it till maturity. Although riding instru-

ments with longer maturities yield higher excess returns, these returns were accompanied by 

an increase in the standard deviation of the excess returns.  

 

Whereas previous research has concentrated on very short holding periods and maturities only 

up to 12 months, Pelaez (1997) considers riding the two-year US treasury securities for one 

year. He performs rides whenever the term structure was upward-sloping over the period 1959 

– 1993. He demonstrates that the strategy also works with longer maturity instruments, as the 

mean return from the riding strategy turns out to be 75 basis points higher as opposed to the 

BH strategy. However, he notes that the risk associated with the RYC strategy, measured by 

the variance of the returns, is twice as high as that of the BH strategy. Pelaez (1997) interprets 

his findings as evidence in favor of the liquidity premium theory of the term structure. 
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A more extensive study considering several countries and maturities was provided by Ang, 

Alles and Allen (1998). Their data set covers the period from 1985 to 1996 and includes in-

struments of maturities ranging from several weeks to two years for Australia, the US, Canada 

and the UK. Similarly to the findings of Dyl and Joehnk (1981), their results are maturity-

dependent, i.e. higher rates of return to the RYC strategy were documented for instruments of 

longer maturities. In particular, in case of one-year holding period, the RYC strategy provides 

significant positive excess returns compared to the BH strategy for all considered countries. In 

contrast, for holding periods not exceeding 13 weeks, the RYC strategy proves to be inferior 

to the BH strategy in most cases.  

 

However, the results of the previous research concerning the ability of the filter rule to en-

hance returns could not be confirmed. Filters based on the positively sloped yield curve as 

well as filters based on different margins of safety proved to be useless for all considered 

strategies. The authors also studied the influence of the transaction costs on the strategy’s re-

turn and found out that negative excess returns have resulted when the transaction costs were 

set out to be more than 0.125 percent. However, the transaction costs did not have such a 

strong influence on returns in case of longer holding periods. In addition, the authors checked 

the riding strategies for the presence of the stochastic dominance over the corresponding BH 

strategy using the first degree stochastic dominance criterion. As opposed to the finding of 

Grieves and Marcus (1992), who found the RYC strategy to dominate the BH strategy in 

terms of the first degree stochastic dominance over several subperiods, they could not confirm 

stochastic dominance for their data set. The only exception was riding the US six-month bills, 

where the first degree stochastic dominance could be confirmed.  

 

Grieves et al. (1999) consider the US market over the period 1987 – 1997 for maturities up to 

12 months and try several riding strategies, for holding periods of three and six months, con-

ditional as well as unconditional on a filter rule. They report positive excess returns over the 

BH strategy for all considered rides. The authors were able to confirm some previous findings 

regarding higher returns for longer maturities. This, however, comes at the cost of additional 

risk, which is measured by the standard deviation. For conditional rides, three filter rules are 

employed: to ride when the slope is positive; to ride when the yield spread exceeds 0.15 per-

cent and, finally, to ride when the yield spread is larger than 0.30 percent. Whereas the first 

filter rule did not yield higher excess returns compared to unconditional rides, the latter two 

restrictions resulted in a substantial increase in the strategy’s returns. This, however, has dra-
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matically reduced the number of rides, which constituted only four percent of all rides for 

some maturities.  

 

Bieri and Chincarini (2005) checked the effectiveness of the riding strategy for both bond and 

swap markets in the US, the UK and Germany. Employing a wide range of maturities and 

holding periods, their study for the period 1973 – 2003 suggests that the RYC strategy is su-

perior to the BH strategy in most cases. In addition, using longer maturity riding instruments 

resulted in greater returns for all countries. However, only for the UK market it was possible 

to enhance returns when riding with both longer maturities and holding periods. In the case of 

Germany and the US, the returns to the RYC strategy increased with longer maturity of the 

riding instrument, but not the holding period. In fact, the highest returns for these countries 

were obtained when combining long-maturity instruments with short holding periods. The 

performance of different riding strategies was evaluated using Sharpe ratios. On the risk-

adjusted basis, the most beneficial strategy for Germany was to ride two-year bonds, the long-

est considered maturity.  

 

In addition, Bieri and Chincarini (2005) tested, whether returns from the RYC strategy can be 

further increased when the riding is conditional on a filter rule. Among such filters the authors 

used a positive slope filter and a positive cushion filter. The latter indicates that the interest 

rates still can increase without that the riding strategy becomes unprofitable. For the US and 

Germany, the rides conditioned on positive slope of the yield curve did not perform better 

than when the strategy was pursued in any time. For the UK, a positive slope filter brought 

the improvement of the returns as opposed to the unconditioned ride, but this only occurred 

for holding periods below 12 months. In contrast, the RYC strategy based on a positive cush-

ion filter was more successful and yielded returns significantly higher than the unconditioned 

riding strategy for the majority of countries and maturities. It is worth noting that the positive 

cushion filter rule was the most successful over the short holding horizons.  

 

Finally, Mercer, Moore and Winters (2009), pointed out that, despite the obvious profitability 

of the riding strategy documented by the previous research, the returns from the strategy con-

tinue to persist. Based on the US T-bills market during the period 2001 – 2007, they have 

investigated whether these returns can be explained by the fact that the transactions necessary 

to implement the RYC strategy were not available. In this period, they found supporting evi-

dence for the profitability of the riding strategy involving selling 182-days T-bills after 91 
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days. However, pursuing the RYC strategy would require selling off-the-run T-bills90 after a 

91-days holding period was reached. As off-the run T-bills are by far not as frequently traded 

as on-the-run T-bills, selling them to execute a riding transaction could be problematic. The 

authors analyzed the trading volume on a secondary market and came to a conclusion that 

although the RYC strategy would generate significant profits, it would be necessary to capture 

almost all existing trading volume in order to generate a gain equal to one million dollar. Ac-

cording to the authors, market limitations prevent market participants from exploiting the 

RYC strategy. 

 

Thus, there exist only a limited number of studies concerning the riding strategies. Most of 

them concentrate on the US market and compare the return from the riding strategy with a 

benchmark, which is in all cases the BH strategy. These findings show that the RYC strategy 

provides positive excess returns over the BH strategy. Most of the studies document that ex-

cess returns tend to be higher when the strategy is implemented with longer maturities instru-

ments. In several cases, excess returns from riding increased with the length of the holding 

period. The returns could be sometimes enhanced when some further restrictions in form of a 

filter rule were imposed on the strategy. However, such an increase in excess returns only 

occurred if some sophisticated filter rule was applied; a simple filter rule based on a positive-

ly-sloped yield curve did not prove to be effective.  

 

Although these studies provide evidence that the RYC strategy yields excess returns com-

pared to the BH strategy, the emphasis was made on the excess returns and not on the riski-

ness of the strategy. Performance on a risk-adjusted basis was not considered in most of the 

studies. In the following sections we consider the RDYC strategy and the RYC strategy using 

data for Germany. The success of the strategy is evaluated with the help of several perfor-

mance measures. Then the risk-adjusted return of the strategy is compared with different 

benchmarks, including the stock market.  

 

 

 

 

                                                 
90 A T-bill becomes off-the-run when a new T-bill of any maturity is issued. 
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4.3 Rolling Down the Yield Curve 

 

Rolling down the yield curve involves borrowing funds at the short-term interest rate and in-

vesting them in long-term assets. From a bank’s position, such a strategy belongs to the tradi-

tional loan-granting and deposit-taking activities. Generally, one can distinguish between the 

lending business and fee-based, market-side activities.  

 

In Germany, most banks can be classified as universal banks, which are permitted to engage 

into a wide range of banking activities. However, there are some certain groups of banks 

where some specific source of income plays an important role. Depending on their legal form, 

universal banks can be further divided into three main categories: commercial, savings and 

mutual cooperative banks. This three-pillar structure is a characteristic feature of the German 

banking system. Savings banks are banks which are owned by the federal, state or local mu-

nicipalities mainly concentrate on lending to individuals as well as small- and middle-sized 

enterprises whereas mutual cooperative and commercial banks are privately owned. Mutual 

cooperative banks comprise 60 percent of all banks in Germany at the end of 2008 and repre-

sent the largest banking group.91 However, considering the amount of assets per banking sec-

tor, the savings banks sector shows the largest share of total assets, accounting for 35 percent 

of total assets in the German banking system. This significant amount is a remarkable feature 

of the German banking structure.92 Figure 9 demonstrates the share of non-interest income to 

interest income for all banking sectors in the past decade.93 This ratio reflects the relative im-

portance of alternative income sources. 

 

The savings banks sector exhibits the lowest ratio of non-interest income to interest income 

compared to the commercial and especially to the cooperative banks sector. In the past dec-

ade, the average share of non-interest income to interest income for savings banks was only 

22.6 percent. Commercial banks, whose ratio on average comprised 50 percent in the past 

decade, experienced a shift towards fee-based activities, such as asset management and in-

vestment banking. In contrast, for savings banks traditional loan-granting and deposit-taking 

activities remain the primary source of income, although the importance of the fee-based ac-

tivities slightly increased in the past decade.  

                                                 
91 See Reichling/Afanasenko (2010), pp. 2-3. 
92 See Reichling/Afanasenko (2010), pp. 5-6. 
93 The calculations for his figure are performed on the basis of the various monthly reports of the German Cen-

tral Bank; see German Central Bank (2000, 2004 and 2010). 
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Figure 9: Non-Interest Income to Interest Income for Different Banking Groups 
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Thus, the RDYC strategy reflects the lending business activities of banks and will be consid-

ered from the point of view of primary bank interest business. As opposed to it, the second 

main bank business, the banks’ activities on the capital market, will be represented by the 

investment into the German Stock Index (DAX).94 The main goal is then to compare these 

two types of bank activities based on the performance of the corresponding strategies. The 

following section provides the general description of the RDYC strategy and examines its 

excess returns in comparison to the DAX.  

 

4.3.1 The Main Characteristics  

 

In the following we pursue the RDYC strategy and the RYC strategy. The analysis is based 

on the data set consisting of the German swap rates for the period ranging from 1972 to 2007. 

From the swap curve, the interest rates for a wide spectrum of maturities were calculated ac-

cording to the equation (5). Figure 10 shows the average spot interest rates along with the 

corresponding average forward rates. On average, the term structure of interest rates in Ger-

many for the period 1972 – 2007 was upward-sloping. Thus, necessary prerequisites for im-

plementing yield curve trading strategies are met on the German market. One can observe that 

forward rates lie above the corresponding spot rates.  

 

                                                 
94 In German: Deutscher Aktienindex (DAX). 
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Several types of the RDYC strategy are considered including the following riding periods: 

two-year ride, three-year ride, four-year ride and five-year ride. The strategies are denoted as 

RDYCm, where m stands for the maturity of the long-term instrument being purchased. All 

long-term maturity instruments are financed through rolling over an appropriate number of 

one-year rates. For example, the two-year strategy involves purchase of a two-year instrument 

which is financed through the sale of a one-year instrument and, in one year, another one-year 

instrument. It would be, of course, possible to fund the purchase of a long-term asset through 

rolling over instruments with even lower maturity, for example, less than one year. However, 

we do not possess data for such short maturities and, therefore, do not consider such kind of 

strategies in this study. 

 

In addition, every type of strategy is pursued in two different ways: riding all the time, inde-

pendently of the prevailing term structure at the moment of initiation and riding using a filter 

rule. The latter is based on a simple principle: the strategy is implemented if the term structure 

is upward sloping, i.e. 1m m
t tr r  ; otherwise no investment strategy is implemented in the 

corresponding period. Using such a filter rule is motivated by the results of previous research, 

which could in some cases document higher returns using a filter rule. 

 

Figure 10: Average Spot and Forward Rates from 1972 to 2007 
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An important difference between the two strategies is that the RDYC is a cash-neutral strate-

gy whereas the RYC requires an initial investment to buy a respective fixed income instru-

ment. Consequently, in case of the RDYC strategy the return is an excess return rather than 
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rate of return, as it is a cash-neutral strategy where the invested amount equals zero. It is, 

therefore, more appropriate to speak about excess return, which is for the RDYC strategy 

measured as the difference between the interest rate on the instrument of maturity m and the 

interest rate on m one-year instruments, defined by equation (59). In order to compare the 

performance, the DAX is chosen as an equity investment benchmark. To insure the compara-

bility of the cash-neutral RDYC investment strategy with the benchmark, it is assumed that 

the investment in DAX was financed by borrowing funds for one month. 

  

4.3.2 Excess Returns 

 

The excess returns of the strategy where the two-year investment is financed through two re-

volving one-year liabilities (RDYC 2) and the strategy involving a three-year investment 

(RDYC 3) are reflected in Figure 11. The excess returns of the four-year (RDYC 4) and five-

year (RDYC 5) strategy as well as the DAX are plotted in Figure 12.  

 

Figure 11: Excess Returns of the two- and thee-year strategies and the DAX 
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Figure 12: Excess Returns of the four- and five-year Strategies and the DAX 
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All returns were calculated without considering the transaction costs. In the case that the 

strategy is pursued by institutional investors through buying and selling corresponding fixed 

income instruments, the transaction costs are negligibly low. For example, prices for a bond 

transaction quoted by the German Stock Exchange (XETRA Group) constitute from 6.5 to 

7.48 bps, depending of the volume of the order.95 From the other side, if the RDYC strategy is 

implemented by means of loan-granting and deposit-taking, the costs are counted as an extra 

charge. If, finally, the strategy is implemented by means of swap transactions, there are no 

transaction costs. Thus, transaction costs are either non-existent or negligible and, therefore, 

are not considered in the following analysis. At the first glance, it is evident that the excess 

returns of the DAX are more volatile than the excess returns of the RDYC 2 and RDYC 3. 

However, the excess returns of both strategies with the longest maturities exhibit higher vola-

tility than the DAX.  

 

Table 20 reports some summary statistics of the RDYC strategy, both unconditional and using 

a filter rule. The latter strategies are marked with “F”. The success rate refers to the percent-

age of cases in which the corresponding strategy yielded positive excess returns. In addition, 

riding frequency was calculated for the RDYC conditional strategies. As table 20 shows, the 

mean excess return for all strategies is positive. For unconditional strategies, the lowest mean 

excess return of 0.79 percent per month was achieved by investing in a two-year bond and 

financing it through rolling over two one-year bonds. The mean excess return increases sharp-

                                                 
95 See German Stock Exchange (2011), p. 10. 
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ly with the maturity of the applied instrument and constitutes more than eight percent for the 

five-year instrument. All strategies have higher mean excess return than the DAX, except of 

the two-year strategy, whose return is slightly lower. The difference in the return obtained 

from the two-year and the five-year instrument constitutes more than seven percent. However, 

not only the excess return, but also the volatility is higher for longer maturity instruments.  

 

Table 20: Summary Statistics of the RDYC Strategy 

Note: The number next to the name of the strategy denotes the number of years of the long-term investment; an 

“F” means that the strategy was based on a filter rule.  

 

Thus, the five-year strategy also exhibits the highest volatility, which constitutes 11.26 per-

cent. In contrast, the volatility of the shortest maturity instrument is only 1.85 percent. In ad-

dition, the success rate increases along with the instrument’s maturity. The five-year strategy 

yielded positive excess returns in 77 percent of all cases whereas the two-year strategy yield-

ed positive excess returns in 71 percent of all cases. Compared to unconditional strategies, 

investing in the DAX provides the lowest success rate of only 62 percent.  

 

The applied filter rule led to the different frequency of riding for the strategies, as the filter 

rule became more restrictive with longer maturity. For the two-year strategy, the rule is 

2 1

t tr r ; for the three-year strategy, it is 3 2 1

t t tr r r  . Whereas for the two-year rolling strat-

egy the filter gave a riding signal in more than 80 percent of all cases, the five-year strategy 

was implemented only in 70 percent of all cases. The filter rule reduces the frequency of rid-

ing by ten percent when we move from the two-year to the thee-year strategy, but makes al-

most no difference for the rest of the strategies.  

 

Strategy 
Mean ex-

cess return 
Std. Dev. Minimum Maximum 

Success 

Rate 
Frequency 

  Unconditional   

RDYC 2 0.76% 1.85% -6.30% 6.05% 71.36% 100% 

RDYC 3 2.45% 4.42% -8.66% 14.02% 74.35% 100% 

RDYC 4 4.93% 7.63% -15.56% 23.81% 76.47% 100% 

RDYC 5 8.18% 11.26% -20.46% 35.88% 77.35% 100% 

DAX 0.42% 5.86% -25.42% 21.38% 62.00% 100% 

  Conditional   

RDYC 2F 0.69% 1.47% -3.25% 6.06% 60.55% 81.5% 

RDYC 3F 1.91% 3.99% -9.68% 13.12% 55.18% 71.0% 

RDYC 4F 3.37% 6.83% -15.56% 23.81% 53.48% 70.6% 

RDYC 5F 4.93% 10.04% -20.46% 35.87% 51.10% 70.1% 

DAX 0.42% 5.86% -25.42% 21.38% 62.00% - 
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Conditional strategies show lower returns and standard deviations than the strategies where no 

filter was applied. The mean excess returns lie in the range of 0.69 to 4.93 percent. Similarly 

to the unconditional strategies, the returns and standard deviations tend to increase with the 

maturity of the instrument. The five-year conditional strategy is characterized by an excess 

return of 4.93 percent and a volatility of ten percent. As in case of the unconditional strate-

gies, the only strategy providing lower mean excess return than the DAX is the two-year 

strategy, whose return only comprises 0.69 percent. Also the success rates are lower for the 

conditional strategies and tend to decrease with the longer maturity. The two-year conditional 

strategy ended in positive excess returns in 60 percent of all cases, whereas for the five-year 

strategy it happened in only slightly more than the half of all cases. All considered strategies, 

both conditional and unconditional, exhibit higher excess returns than the DAX.  

 

In addition, it is tested whether the excess returns of various strategies are significantly differ-

ent from zero. For this purpose, two types of significance tests are performed. The first is a 

standard t-test; the second test was developed by Newey and West (1987) and is known as the 

Newey-West (NW) estimator. The NW test, although not as powerful as the t-test, stays con-

sistent also in the presence of autocorrelation and heteroscedasticity.96 The results of both 

tests that are reported in table 21.  

 

Table 21: Significance Tests of the Excess Returns on the RDYC Strategy 

Strategy RDYC 2 RDYC 3 RDYC 4 RDYC 5 

Unconditional 

t-statistic  8.208 10.885 12.489 13.988 

p-value 0.000 0.000 0.000 0.000 

NW test  3.594 4.623 5.235 5.837 

p-value 0.0004 0.000 0.000 0.000 

Conditional 

t-statistic 9.388 9.379 9.541 9.346 

p-value 0.000 0.000 0.000 0.000 

NW test  4.244 4.084 4.129 4.055 

p-value 0.000 0.0001 0.000 0.0001 
      Note: The number next to the name of the strategy denotes the number of years of the  

      long-term investment. 

 

The t-test indicates that the excess returns of both conditional and unconditional RDYC strat-

egies are significantly different from zero, as the p-values are extremely low. The NW test, 

                                                 
96 See Brooks (2008), p. 152. 
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although yielding lower values of the statistic, confirms the findings of the t-test. Thus, the 

excess returns of both conditional and unconditional rolling strategies are significantly differ-

ent from zero. 

 

4.3.3 Excess Return - Volatility Profile 

 

Figure 13 visualizes the excess return - volatility profiles of all considered strategies including 

the DAX. Already at the first glance, it is evident that the two-year and three-year strategies, 

RDYC 2 and RDYC 3, clearly dominate the DAX, as they simultaneously provide higher 

return and lower volatility. RDYC 4, although exhibits higher volatility than the DAX, is also 

characterized by a substantially higher excess return. Comparing conditional strategies with 

unconditional ones, the latter lie higher and to the right of the former ones, as they provide 

higher returns, but also exhibit higher standard deviations. However, the increase in return is 

generally higher than the increase in volatility. An additional insight is provided by figure 14, 

which compares the histograms of four riding strategies with that of the DAX. 

 

Figure 13: Excess Return-Volatility Profile of the RDYC Strategies 
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Figure 14: Histogram of the RDYC strategies and the DAX 
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4.4   Riding the Yield Curve 

 

4.4.1 The Main Characteristics  

 

The RYC strategy is constructed as a purchase of a two-year, three-year, four-year or five-

year instrument and a sale of this instrument before maturity. If an interest rate is for m years, 

different rides are applied, varying the length of the holding period up to m – 1. Different 

strategies are denoted as RYCm/i, denoting the RYC strategy with purchase of an m years ma-

turity instrument and selling it after holding it for i years. For example, we purchase a five-

year instrument and try four different strategies: selling after one, two, three and four years. In 

addition, it will be checked if a positive slope filter rule is able to enhance the returns from the 

RYC strategies. Similarly to the RDYC strategies, the strategy is implemented conditioned on 

the positive slope of the term structure in the considered period. If this condition is not ful-
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filled, the funds are just invested in the instrument of the desired holding period. Altogether, 

28 strategies are considered: eight RYC strategies and 20 RDYC strategies. For the RYC 

strategy, the rate of return is defined by equation (49) and the excess return is normally com-

puted as the difference between the rate of return and the interest rate that would prevail if an 

investor invested in accordance with his desired holding period.   

 

4.4.2 Excess Returns 

 

The excess returns of the RYC strategy are computed using a BH strategy as a benchmark, i.e. 

investing in a bond of the respective maturity. For example, if we ride a two-year bond for 

one year, the benchmark is an investment in a one-year bond. For a two-year ride of a three-

year bond, the benchmark is an investment into a two-year bond at the interest rate which was 

prevailing at the time where the strategy was initiated. Figure 15 depicts the rates of return on 

one-year riding strategies with two- (RYC 2/1) and three-year (RYC 3/1) maturity instru-

ments together with the BH strategy.  

 

The statistics regarding the RYC strategies, which are performed through buying an m years 

maturity instrument and selling it after i years are summarized in table 22. The excess returns 

of the RYC strategies are all positive, i.e. the investors are better off performing a riding strat-

egy rather than just buying an instrument and holding it till maturity. The returns lie in the 

range 0.70 percent for riding a two-year bond for one year to 4.07 percent in case of the riding 

strategy involving a five-year bond and holding it for three years. Standard deviations range 

from 1.72 percent to 6.54 percent for RYC 2/1 and RYC 5/2, respectively. Performing riding 

strategies with instruments of longer maturity generally yields higher excess returns. Howev-

er, it also results in higher standard deviations.  

 

One more observation concerns different holding periods within a particular maturity. Moving 

from a shorter holding horizon to a longer one leads to an increase in the excess return. This, 

though, does not happen in all cases. For example, riding a four-year bond for two years in-

stead of one year yields an increase in the excess return from 1.79 percent to 2.73 percent. 

However, if the holding horizon constitutes three years, the excess return drops to 2.21 per-

cent. Similarly, increasing the holding horizon of a five-year bond from one to first two, and 

then to three and four years leads to an increase in the excess return from 2.20 percent to 3.77 

percent and then to 4.07 percent. 
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Figure 15: Rate of Return-Volatility Profile of the RYC Strategies 
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Table 22: Summary Statistics of the RYC Strategy 

 

 

 

 

 

 

 

 

 

 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income  

investment whereas the second number stands for the holding period. 

 

However, for the last strategy it drops again and constitutes only 2.81 percent. As for the 

standard deviation within particular maturities, it is difficult to observe a clear pattern, alt-

hough it tends to at first rise and then drop when switching to the longest possible holding 

period. Whereas the standard deviation constitutes 4.45 percent in case of riding a four-year 

bond for one year, holding it for two years yields a standard deviation of 4.79 percent; for 

three years – 3.15 percent. The success rate tends to increase with longer maturities and hold-

ing periods. 

Strategy 

Mean 

excess 

return 

Std. Dev. Minimum Maximum 
Success 

Rate 

      

RYC 2/1 0.695% 1.72% -5.53% 5.72% 69.27% 

RYC 3/1 1.37% 3.24% -9.26% 10.78% 68.34% 

RYC 3/2 1.49% 2.63% -6.11% 7.28% 71.86% 

RYC 4/1 1.79% 4.45% -12.54% 13.26% 66.34% 

RYC 4/2 2.73% 4.79% -10.55% 11.98% 71.11% 

RYC 4/3 2.21% 3.15% -7.44% 8.82% 76.68% 

RYC 5/1 2.20% 5.50% -15.37% 15.31% 67.32% 

RYC 5/2 3.77% 6.54% -14.73% 15.75% 71.61% 

RYC 5/3 4.07% 5.79% -13.10% 17.19% 76.94% 

RYC 5/4 2.81% 3.46% -7.63% 10.68% 80.21% 
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It is evident from table 23, which contains the results of the t-test as well as the NW test, that 

the excess returns of all riding strategies are significantly different from zero at a very high 

significance level. This is implied by the p-values, which are very low for all strategies.  

 

Table 23: Significance Tests of the Excess Returns on the RDYC Strategy 

Strategy 
RYC 

2/1 

RYC 

3/1 

RYC 

4/1 

RYC 

5/1 

RYC 

3/2 

RYC 

4/2 

RYC 

5/2 

RYC 

4/3 

RYC 

5/3 

          

t-stat.  8.201 8.441 8.131 8.087 11.274 11.378 11.504 13.778 13.828 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NW test 3.582 3.678 3.540 3.525 4.573 4.802 4.865 5.752 5.784 

p-value 0.0004 0.0003 0.0004 0.0005 0.0000 0.0000 0.0000 0.0000 0.0000 

          

t-stat. 9.388 9.549 9.603 9.582 8.709 9.608 9.813 14.046 8.865 

p-value 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

NW test 4.087 4.237 4.251 4.242 3.788 4.174 4.248 5.992 3.818 

p-value 0.0001 0.0000 0.0000 0.0000 0.0002 0.0000 0.0000 0.0000 0.0002 
Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment 

whereas the second number stands for the holding period. 

 

4.4.3 Excess Return - Volatility Profile 

 

The relation between risk and return of unconditional riding strategies is visualized in figure 

16. As a risk measure, the standard deviation of the strategy’s returns is used. Figure 16 

serves as a graphical representation of a performance measure called Sharpe ratio, which is 

the most well-known performance indicator elaborated by Sharpe (1966). It is the ratio of the 

excess return of an asset to its standard deviation and is defined as: 
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                                                       (65) 

 

where Si is the Sharpe ratio and rf  is the risk-free rate of return. The best investment oppor-

tunity is that with the highest Sharpe ratio. As can be seen from figure 16, within particular 

maturities, strategies involving longer holding periods result in better risk-return tradeoff. For 

example, RYC 3/2 dominates RYC 3/1, as it is both less volatile and provides a higher excess 

return. The same holds for RYC 4/3, which is a dominant strategy compared to RYC 4/1 and 

RYC 5/3 which dominates 5/2. Thus, on a risk-adjusted basis, it is generally better to choose a 

longer holding period within a particular maturity.  
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Figure 16: Excess Return -Volatility Profile of the Unconditional RYC Strategies 
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The summary statistics of riding strategies with filter presented in table 24 indicate that the 

excess returns are more modest than those of the unconditional strategies. The greatest excess 

return arises from riding a five-year bond for two years and constitutes 2.86 percent compared 

to the highest return of the unconditional strategies of 4.07 percent. The standard deviations, 

however, are also lower. Similarly to the unconditional riding, the excess returns of filtered 

strategies rise along with the maturity of the respective instrument. Regarding the holding 

period, the returns and standard deviations tend to rise when moving from the shortest holding 

period to the next one, but then decrease again. For example, for the riding strategy using a 

four-year bond with a holding period of one, two and three years, the excess returns constitute 

1.67, 2.03 and 1.96 percent, respectively. The success rates, though, tend to fall with the long-

er holding horizon. Figure 17 depicts the excess return/standard deviation profile of condi-

tional riding strategies. 
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Table 24: Summary Statistics of the RYC Strategy with Filter 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment 

whereas the second number stands for the holding period; an “F” means that the strategy was based on a filter 

rule. 
 

Figure 17: Excess Return -Volatility Profile of the Conditional RYC Strategies 
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It is evident from figure 17 that riding a four-year bond for three years offers the best oppor-

tunities regarding the risk-adjusted return. For the rest of the conditional strategies, there is no 

such a clear pattern as in case of unconditional riding. However, whereas unconditional riding 

strategies with longer holding periods generally did better than those with longer ones, the 

situation seems to be the opposite for riding with filter. For example, RYC 5/1 F, although not 

Strategy Mean Std. Dev. Minimum Maximum 
Success 

Rate 
Frequency 

       

RYC 2/1F 0.63% 1.39% -2.94% 5.72% 58.78% 81.5% 

RYC 3/1F 1.23% 2.58% -5.40% 10.78% 53.77% 71.0% 

RYC 3/2F 1.03% 2.35% -6.11% 7.28% 51.51% 71.0% 

RYC 4/1F 1.67% 3.52% -7.68% 13.26% 51.95% 70.6% 

RYC 4/2F 2.03% 4.22% -9.34% 11.98% 68.46% 70.6% 

RYC 4/3F 1.96% 2.74% -6.52% 8.82% 58.81% 70.6% 

RYC 5/1F 2.06% 4.34% -9.84% 15.31% 52.44% 70.1% 

RYC 5/2F 2.86% 5.81% -12.74% 15.75% 51.26% 70.1% 

RYC 5/3F 2.45% 5.44% -13.10% 17.19% 50.26% 70.1% 

RYC 5/4F 1.38% 3.10% -7.63% 10.68% 49.73% 70.1% 
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dominating strategy RYC 5/3 F, provides a slightly lower excess return, but a much lower 

volatility. The same is true for RYC 4/1 F compared to RYC 4/2 F. Thus, conditional strate-

gies tend to perform better when short holding periods are applied. In addition, significance 

tests were conducted for all riding strategies. 

  

Figure 18 depicts the excess return/standard deviation profiles of the conditional as well as 

unconditional RYC strategies. Comparing to the unconditional strategies, conditional strate-

gies with long maturities and holding periods tend to provide lower standard deviations, but 

also much lower excess returns. This particularly applies to RYC 5/4 and RYC 5/3. In con-

trast, for the shortest holding horizon of one year, the conditional strategies generally provide 

a slightly lower excess return, but a substantially lower standard deviation, independently of 

the considered maturity. Looking at figure 18, this becomes especially obvious for RYC 5/1 

and RYC 4/1.  

 

Figure 18: Excess Return -Volatility Profile of the RYC Strategies 
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The next section evaluates the risk-return profile of the conditional and unconditional RDYC 

and RYC strategies with the help of several commonly applied performance measures. 
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4.5   Performance Evaluation 

 

4.5.1 Performance Measures 

 

In order to evaluate the success of the RDYC and RYC strategies, it is essential to consider 

not only their rate of return, but also risk associated with the implementation of the strategies. 

To achieve this, various risk-adjusted performance measures like the above mentioned Sharpe 

ratio can be applied. The following three sub-sections describe the traditional performance 

evaluation techniques as well as recently developed value-at-risk- and lower partial moment-

based measures. 

 

4.5.1.1 Traditional Performance Measures 

 

The Sharpe ratio is very easy to apply and is not benchmark-related, i.e. it is possible to com-

pare two investment alternatives without a benchmark specification. However, the Sharpe 

ratio has been criticized recently because of its reliance on variance as risk measure. Tradi-

tional performance measures such as the Sharpe ratio are based on the mean-variance portfo-

lio theory, according to which investors’ preferences can be described using mean and stand-

ard deviation of portfolio returns. In turn, according to the expected utility theory, investors 

make their decisions by maximizing their expected utility. The   analysis is then an ap-

propriate framework if it is consistent with the expected utility theory, which has a solid theo-

retical foundation and represents a standard approach in economics to making decisions under 

uncertainty. If this is the case, then variance represents an appropriate risk measure. However, 

the mean-variance framework is only consistent with the expected utility theory in the case 

that the investors’ utility function can be described as quadratic or asset returns are normally 

distributed.97 In the case that these conditions are not met, the Sharpe Ratio could make false 

indications with respect to the asset’s performance.98 

 

                                                 
97 Or follow a more general class of elliptical distributions (see Ingersoll (1987)). 
98 This point was indicated by many authors, especially in the hedge funds literature. See, for example, Brooks 

and Kat (2002), Kao (2002), Gregoriou and Gueyie (2003). However, not all researchers share this view. Eling 

and Schuhmacher (2007) evaluate hedge funds performance using traditional as well as modern performance 

measures and report that the choice of the measure did not matter for funds ranking. Eling (2008) confirmed 

these findings for the ranking of mutual funds. Several authors stress the problematic interpretation of negative 

Sharpe ratios: Israelsen (2003) shows that in case of negative excess returns Sharpe Ratio gives higher ranking to 

funds with both smaller (more negative) excess returns and higher standard deviation than other funds. Similar 

results regarding funds ranking with negative Sharpe ratios were obtained by Scholz (2007). 
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For this reason, several alternative approaches to measure risk have been proposed.99 Among 

them, the so called downside performance measures have drawn special attention of the re-

searchers. In these measures, variance as a risk measure has been replaced by downside risk 

measures such as the Value-at-Risk (VaR), Conditional Value-at-Risk (CVaR) as well as the 

Lower Partial Moment (LPM). 

 

4.5.1.2 Value at Risk-Based Performance Measures 

 

Value at Risk (VaR) represents the maximum loss of an investment that will not be exceeded 

with the probability 1 – g during a certain period.100 The maximum loss can be stated either as 

some particular amount or as a rate of return. Being a convenient way to summarize the risk 

of a financial institution in one single figure, VaR has become a standard risk measurement 

tool for financial institutions.  

 

Crucial for its popularity was the introduction of the amendment to the original Basel Capital 

Accord of 1988 by the Basel Committee for Banking Supervision. While the original Basel 

Accord contained capital requirements to cover credit risk, the 1996 amendment adopted the 

VaR approach for evaluating market risks. Regulatory requirements defined the VaR as the 

maximum loss encountered over the period of ten days at the 99 percent confidence level. If F 

is a continuous distribution function of the portfolio value, the value at risk is computed as the 

g-th quantile of the inverse of the distribution function F: 

 

                                                            ).(1 gFVaR g

                                                        (66) 

 

There are three main approaches to the VaR calculation: the parametric approach, the histori-

cal simulation approach and the Monte Carlo Simulation approach. The framework of the 

parametric approach assumes the normal distribution of returns and requires the estimation of 

the mean and the standard deviation parameter from the empirical returns distribution. In this 

case, the VaR is computed using the formula  igig zRVaR  , where gz is the g-th quan-

                                                 
99 Some modifications of the Sharpe Ratio include Risk-adjusted Performance (RAP) proposed by Modigliani 

and Modigliani (1997), Market Risk-Adjusted Performance (MRAP) found in Wilkens and Scholz (1999) and 

Correlation-Adjusted Performance (CAP) suggested by Muralidhar (2000). 
100 See Jorion (1997), pp. 85-91. 
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tile of the standard normal distribution.101 However, if the returns distribution deviates from 

normality and exhibits negative skewness and fat tails, such an estimation may yield mislead-

ing results.102 Addressing this issue, the Cornell-Fisher approximation was proposed to adjust 

the VaR estimate and take into consideration the third and the fourth moment of a distribu-

tion, i.e. skewness and kurtosis. The latter is then referred to as modified value at risk 

(MVaR) and is computed as: 

 

              















 2332 52

36

1
3

24

1
1

6

1
MVaR iggggiggii SzzKzzSzzR       (67) 

 

where Si denotes skewness and Ki stands for excess kurtosis of the asset i. It is worth noting 

that the above equation is just an approximation around the normal distribution and is there-

fore suitable only in case of moderate skewness and excess kurtosis.103 If deviations from 

normality are large, the Cornell-Fisher approximation should not be applied.  

 

The historical simulation approach uses the actual empirical returns distribution over a suffi-

ciently long time horizon to estimate possible losses. Finally, the Monte Carlo simulation uses 

the empirical distribution in order to run a large number of simulations and estimate VaR and, 

therefore, represents the most computationally intensive method.104 The main point of criti-

cism concerning the VaR is that it does not satisfy all necessary criteria to be considered an 

acceptable risk measure. According to Artzner et al. (1999), a risk measure p that belongs to 

the class of coherent risk measures must satisfy four conditions for all random variables x and 

y:  

1) Subadditivity:      p x y p x p y   ; 

2) Homogeneity:    p x p x      for all positive real numbers  ; 

3) Monotonicity:    p x p y  if  xy ; 

4) Transitional invariance:    fp x n r p x n    . 

  

                                                 
101 See Crouhy/Galai/Mark (2009), pp. 154-155.  
102 Favre and Galeano (2002) demonstrate that using VaR to evaluate the performance of hedge funds leads to 

serious underestimation of risk.  
103 See Lhabitant (2004), p. 299. 
104 See Fabozzi/Mann (2010), pp. 380-381. 
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Whereas VaR fulfills the last three conditions, it does not possess the subadditivity property105 

and therefore cannot be considered a coherent risk measure. The lack of subadditivity means 

that the risk of a combination of two portfolios can be greater than the sum of risks of indi-

vidual portfolios, i.e. 1 2 1 2( ) ( ) ( )VaR P P VaR P VaR P   . Only in case of normal distribution 

VaR can be called a coherent risk measure.106 This is an important point of criticism, stressed 

by many authors, especially in the contest of adopting VaR as a measure to calculate the regu-

latory capital requirements. The fact that VaR is not subadditive means it would punish port-

folio diversification, and lead to the choice of a less diversified portfolio, as more assets in-

cluded into the portfolio would also mean higher risk.107 Another argument is that VaR would 

motivate splitting up a company into several parts, in order to diminish risks.108 An additional 

point of criticism regarding VaR is that it is not able to capture the expected loss beyond the 

specified confidence level.  

 

As a response to the above mentioned drawbacks, another measure initially introduced as Ex-

pected Shortfall in Acerbi (2001) and later mentioned in Rockafellar and Uryasev (2002) as 

Conditional Value at Risk (CVaR) has been proposed as an alternative. It represents the ex-

pected loss exceeding the VaR and is defined as follows: 

 

                                                      gg RR VaRECVaR                                                  (68) 

 

As opposed to VaR, the CVaR109 fulfills all requirements of a coherent risk measure including 

the sub-additivity.110 In addition, it allows taking into consideration extreme events measured 

by the lower tail of the distribution, which are not captured by VaR.111 In case of normally 

distributed returns, both measures lead to the same result. Based on VaR, MVaR and CVaR, 

different performance indicators have been created. They include the excess return on value at 

risk (ERVaR) introduced by Dowd (2000), the modified Sharpe ratio (MSR) derived in Gre-

                                                 
105Artzner et al. (1999), pp. 216-218, were the first to demonstrate that this property is not fulfilled by VaR. 

Later, some numerical examples of VaR lacking subadditivity were given in the literature; see, among others 

Tasche (2002), p. 1522, Frey and McNeil (2002), pp. 1321-1322. 
106 Embrechts et al. (2002) show that this result is also valid for a general class of elliptical distributions. 
107 Danielsson (2002), p. 1289, provides an example illustrating that using VaR to choose between a diversified 

and non-diversified portfolio would lead to the choice in favour of the latter. 
108 See Szegö (2002), p. 1260. 
109 CVaR corresponds to the Lower Partial moment of second degree, which will be introduced in the next sec-

tion. 
110 See Artzner et al. (1997), pp. 68-69. 
111 See Hull (2007), pp. 198-199. 
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goriou and Gueyie (2003) and the conditional Sharpe ratio (CSR) of Agrawal and Naik 

(2004): 

                                                          
g

fii

g

rR

VaR
ERVaR


                                                       (69) 

                                                          
g

fii

g

rR

MVaR
MSR


                                                         (70) 

                                                          
g

fii

g

rR

CVaR
CSR


                                                           (71) 

 

4.5.1.3  Lower Partial Moment-Based Performance Measures 

 

Lower partial moments belong to the so called downside risk measures and were presented in 

their general form in Bawa (1975) and Fishburn (1977). Recent popularity of lower partial 

moments as a risk measure is connected with their favorable theoretical properties: the main 

advantage of this measure is that it is consistent with the expected utility theory and is appli-

cable to a broad class of return distributions. Moreover, LPMs are compatible with the princi-

ple of the stochastic dominance,112 which will be introduced in section 4.3.2.4. Lower partial 

moments focus only on the left tail of the return distribution and do not treat positive devia-

tions as risky, which is the case if volatility is used. Instead, it gives a possibility to take into 

account only negative deviations from some target rate of return,  . The lower partial mo-

ment is generally defined as:  

 

                                                     ,)()(LPM
1

q
i

q

iq RRE                                           (72) 

 

where )(LPM q denotes the lower partial moment of order q with the minimum acceptable 

return  .Typically, some minimum acceptable return, such as the risk-free rate of return, zero 

rate of return or the mean return serve as the target rate. Thus, LPM is a risk measure that is 

especially appealing to investors whose main goal is to achieve some target rate of return, 

such as pension funds. For discrete random variables, the lower partial moment for T observa-

tions is computed in the following way: 

                                                 
112 This was shown in Bawa (1975, 1978), Fischburn (1977), Nawrocki (1991, 1999). 
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The order of the lower partial moment measures the extent to which returns below the target 

rate of return are penalized and, thus, reflects the investor’s perception of risk. Higher orders 

of the LPM put higher weight on the negative deviations from the target rate of return and, 

thus, reflect the investor’s higher sensitivity to such deviations. Whereas 0<q<1 stands for a 

risk-seeking behavior, q>1 describes a risk-averse investor with respect to returns below the 

target rate.113 The most well-known are the lower partial moments of order zero, one and two. 

Based on the LPM of different orders, several performance measures have been developed. 

The Omega measure was introduced by Shadwick and Keating (2002). It is based on the LPM 

of order one and computes the excess return as the difference between the mean return and a 

prespecified threshold . The Omega is defined in the following way:  
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Sortino and Price (1994) developed a performance measure based on the LPM of the second 

order. Later, the measure became known as the Sortino ratio and represents a downside 

equivalent to the Sharpe ratio. It measures excess return per unit of downside risk and is given 

by:  

 

                                                    .
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Despite the fact that the Sortino ratio has been a subject of criticism by its author himself,114 it 

has become a popular way to measure risks, especially in the hedge funds literature. Kappa of 

order q was introduced by Kaplan and Knowles (2004) as a general risk measure based on the 

LPM, which is defined as follows: 

 

                                                 
113 This was shown by Fishburn (1977). 
114 See Sortino/Kordonsky/Forsey (2006), p. 5. 
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The Omega and the Sortino ratio can be easily derived from equation (76). The Kappa of the 

third order corresponds to the LPM of the third order and is given by:  
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Kaplan and Knowles (2004) analyze the performance of hedge funds employing the Kappa 

measure of order one, two and three. They demonstrate that the choice of the order had signif-

icant influence on the hedge funds’ ranking. An additional performance measure derived by 

Sortino, van der Meer and Plantiga (1999) is referred to as the upside potential ratio (UPR). 

Its origins go back to the study of Fishburn (1977) who stated that individuals strongly dislike 

returns lying below the target return and show risk-averse behavior in this case. However, the 

more the returns exceed the threshold, the more they like them and therefore are risk-neutral 

in this case. The ratio measures upside potential relative to downside risk and uses an upper 

partial moment (UPM) in the numerator, which measures positive deviations from the target 

rate of return: 
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where UPM1 represents an upper partial moment of the first degree. The UPM of order q rela-

tive to a target rate of return   is given as: 
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The UPM maximizes the expected returns above the threshold and represents potential for 

success.115 In the denominator of the UPR is the LPM of the second order, which represents 

                                                 
115 See Sortino/van der Meer/Plantiga (1999), p. 54. 
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the downside risk. It must be noted that UPM, as opposed to the LPM, does not have any de-

cision theory-based foundation. 

 

4.5.1.4 Stochastic Dominance Criterion 

 

Another measure that can be used to rank two alternative investment opportunities is the sto-

chastic dominance criterion. It is based on the comparison of the cumulative distribution func-

tions (cdf) associated with two strategies. The cdf, denoted as F(x), is defined by:116  

 

                                                     ( ) ( ) ( ) ,

x

F x P X x f x dx


                                              (80) 

 

where f(x) is the density function. The investors’ utility function is represented by u1 whose 

first derivative is non-negative ( 0u ). This implied that investors prefer more to less. If two 

investments F and G are to be ranked whose cumulative probability functions are F(x) and 

G(x), then F dominates G by the first order stochastic dominance if the following condition is 

fulfilled:117  

 

                                                                   ( ) ( )F x G x                                                         (81) 

 

for all x and there is at least one x for which inequality (81) holds strictly. Graphically, if the 

first order stochastic dominance exists, the cumulative probability distributions of two in-

vestment opportunities should not cross, but may have a tangency point. Then F dominates G, 

and its cdf lies below that of investment opportunity G. In this case, compared to G, F assigns 

a lower probability to obtain a value lower than x.118 If there exists a crossover point and the 

first order stochastic dominance does not apply, the second order stochastic dominance may 

be considered. Here, an assumption is made that investors prefer more to less and are risk-

averse. Their utility function is represented by u2 ( 0 ;0  uu ). According to this criterion, 

F dominates G by the second order stochastic dominance if the following holds:119 

 

                                                 
116 See Levy (2006), p. 53.  
117 See Ingersoll (1987), p. 71.    
118 See Levy (2006), pp. 59-61; p. 64.  
119 See Ingersoll (1987), p. 137. 
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for all x and there is at least one x for which the inequality (82) holds strictly. If F dominates 

G by the second order stochastic dominance, the area under the cumulative probability func-

tion of F should be smaller than the area under the cumulative distribution function of G. The 

second order stochastic dominance is less restrictive than the first order stochastic dominance. 

The existence of the first order stochastic dominance implies that there is also a stochastic 

dominance of a higher order. Moreover, if the second order stochastic dominance is not appli-

cable, it is possible to derive the conditions for stochastic dominance of higher orders taking 

the integral of inequality (82). For example, the condition for the third order stochastic domi-

nance would be given by: 

 

                                                  
 



yy xx

dydxxGdydyxF )()(                                        (83) 

 

for all x and there is at least one x for which the inequality (83) holds strictly. Here, an as-

sumption is made that investors prefer more to less, are risk-averse and exhibit decreasing 

absolute risk aversion, i.e. as wealth increases, they will hold more money in risky assets. 

Their utility function is represented by u3 ( 0 ;0 ;0  uuu ). The concept of the stochastic 

dominance is especially appealing because it does not require any assumption about the dis-

tribution function of returns and only some general assumptions regarding the investors’ utili-

ty function.  

 

4.5.2 Rolling Down the Yield Curve Strategy 

 

In order to examine the distributional characteristics of the returns to the RDYC strategies, the 

Jarque-Berra test will be applied. The actual performance of the rolling strategies will be then 

measured with the help of the Sharpe ratio, excess return on VaR, CSR, Omega, Sortino ratio, 

UPR and the stochastic dominance criterion. Table 25 provides the distributional characteris-

tics of unconditional and conditional strategies including the mean, the standard deviation, the 

third and the fourth moments of the distribution, skeweness and kurtosis.  
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Table 25: Descriptive Statistics of the RDYC Strategy 

The number next to the name of the strategy denotes the number of years of the long-term investment; an “F”        

means that the strategy was based on a filter rule.  

 

As table 25 shows, the excess returns of all unconditional strategies are characterized by nega-

tive skewness; one strategy, RDYC 2, also exhibits excess kurtosis. Two of the conditional 

strategies, RDYC 3 and RDYC 4, are slightly negatively skewed whereas RDYC 2 and 

RDYC 3 have excess kurtosis. As for the excess returns of the DAX, they are negatively 

skewed and have excess kurtosis. This can be also conveniently observed from figure 19 that 

provides a histogram of the excess returns of unconditional RDYC strategies as well as the 

DAX in comparison with the normal distribution. For example, in case of the DAX, figure 19 

shows that the probability of the extreme events to occur is higher than for the normal distri-

bution, i.e. there is a “fat tails” problem. The results of the Jarque-Berra test indicate that the 

returns of all unconditional strategies and the DAX do not follow a normal distribution. The 

p-values of the JB statistics are sufficiently low, so that one can reject the null hypothesis of a 

normal distribution at the one percent level. In case of conditional strategies, the null hypothe-

sis of a normal distribution cannot be rejected for RDYC 3, RDYC 4 and RDYC 5, as the p-

value is too high. For RDYC 2, it can only be rejected at the ten percent significance level. 

Thus, the returns of the conditional strategies follow a normal distribution in most of the cases 

whereas all unconditional strategies deviate from normality. 

 

Having investigated the distributional characteristics of the returns, we turn to the actual per-

formance of the rolling strategies. It will be measured with the help of the Sharpe ratio, excess 

return on VaR, CSR, Omega, Sortino ratio and the UPR. Although each of these measures has  

 Mean Ex-

cess Return 

Std. 

Dev. 
Skewness Kurtosis 

Jarque-

Berra 
p-value 

Unconditional 

RDYC 2 0.76% 1.84% -0.466 3.869 26.945 0.0000 

RDYC 3 2.451% 4.42% -0.394 2.670 11.739 0.0028 

RDYC 4 4.926% 7.63% -0.493 2.742 16.120 0.0030 

RDYC 5 8.179% 11.13% -0.420 2.705 11.943 0.0026 

DAX 0.420% 5.68% -0.481 5.483 117.600 0.0000 

Conditional 

RDYC 2F 0.69% 1.47% 0.2029 3.34 4.6 0.0990 

RDYC 3F 1.91% 3.99% -0.0822 3.11 0.64 0.7259 

RDYC 4F 3.37% 6.83% -0.0377 2.00 0.088 0.9566 

RDYC 5F 4.93% 10.04% 0.1370 2.90 1.31 0.5220 

DAX 0.420% 5.68% -0.4810 5.483 117.600 0.0000 
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Figure 19: Histogram of the RDYC Strategies with Normal Distribution 
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its own specifics, we use all above mentioned performance indicators. This will allow making 

a judgment on the basis of several different measures of risk, such as standard deviation, VaR, 

CVaR and the LPMs. For performance indicators based on lower partial moments, the value 

of   equal to zero is taken. In case of VaR-based measures, the value at risk is calculated 

with the parametric approach at the five percent significance level. In addition, it is interesting 

to compare the rankings resulting from different performance measures. The performance 

results of the conditional as well as unconditional strategies are presented in table 26. 

 

Table 26: Performance of the RDYC Strategy 

The number next to the name of the strategy denotes the number of years of the long-term investment; an “F”        

means that the strategy was based on a filter rule.  

 

For unconditional strategies, all considered performance measures indicate better performance 

when moving to a longer-maturity instrument. For example, the Sharpe ratio rises from 

0.4114 to 0.5541 from the two-year strategy to a three-year strategy and constitutes 0.7350 for 

a five-year strategy. That means, the highest performance among the unconditional strategies 

is achieved when rolling down with the five-year bond. The two-year strategy performs the 

worst in accordance with all performance indicators. It is worth noting, that all considered 

unconditional strategies outperformed the DAX, whose Sharpe ratio only constitutes 0.07. 

 

This outperformance of the rolling strategies is also indicated by all other measures. For strat-

egies where the filter rule was applied, most of the measures rise with the maturity of the ap-

plied instrument. The only exception is the three-year strategy, which, according to the 

Sortino ratio and the UPR, has done worse than the two-year strategy. Although the ratios rise 

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Conditio-

nal Sharpe 

ratio 

Omega Sortino 

ratio 

Upside 

potential 

ratio 

                                                             Unconditional 

RDYC 2 0.4114 0.2144 0.1508 1.79 0.793 1.15 

RDYC 3 0.5541 0.3120 0.2910 2.62 1.126 1.55 

RDYC 4 0.6458 0.3834 0.3483 3.33 1.382 1.80 

RDYC 5 0.7350 0.4610 0.4276 4.23 1.753 2.17 

DAX 0.0700 0.0339 0.0249 0.24 0.111 0.66 

                       Conditional  

RDYC 2F 0.4052 0.0878 0.0754 2.64 1.031 1.42 

RDYC 3F 0.4774 0.1976 0.1651 2.90 1.000 1.34 

RDYC 4F 0.4933 0.2331 0.2113 3.12 1.069 1.41 

RDYC 5F 0.4912 0.2430 0.2313 3.11 1.128 1.49 

DAX 0.0700 0.0339 0.0249 0.24 0.111 0.66 
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with a longer maturity, this rise is not as substantial as in the case of unconditional strategies. 

Namely, the Sharpe ratio increases from 0.4052 for a two-year strategy to only 0.4912 for the 

five-year strategy, compared to the increase from 0.4114 to 0.7350 for the unconditional strat-

egies. Similar results can be reported for all other performance indicators, which do not rise 

that sharply as for strategies without filter. It is also of interest to compare the unconditional 

strategies with the conditional ones in terms of the achieved performance. Table 27 provides 

the ranking of all RDYC strategies in accordance with the considered performance indicators.  

 

Table 27: Ranking of the RDYC Strategies 

Note: The number next to the name of the strategy denotes the number of years of the long-term investment; an 

“F” means that the strategy was based on a filter rule.  

 

The best performing strategy is the five-year strategy without a filter rule, which is indicated 

by all performance measures in table 27. The five-year strategy is followed by the four and 

three-year unconditional strategies, although the latter is on the third place according to all 

measures except of the Sortino ratio and the Omega, which assign the fourth and the seventh 

place, respectively. In contrast, the DAX possesses the worst performance characteristics ac-

cording to all measures.  

 

Table 27 confirms the previous finding that unconditional strategies perform better than the 

conditional ones in most cases. According to the Sharpe ratio, strategies without the filter out-

perform the conditional strategies for all considered maturities. The four- and the five-year 

unconditional strategies outperform the conditional ones according to all measures. The three-

year unconditional strategy exhibits superior performance over the five-year conditional strat-

egy according to all but one measure. Finally, in case of the two-year conditional strategy, it 

outperforms the unconditional two-year strategy according to the Omega, the Sortino ratio 

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Conditio-

nal Sharpe 

ratio 

Omega Sortino 

ratio 

Upside 

potential 

ratio 

RDYC 5 1 1 1 1 1 1 

RDYC 4 2 2 2 2 2 2 

RDYC 3 3 3 3 7 4 3 

RDYC 5F 4 4 4 4 3 4 

RDYC 4F 5 5 5 3 5 6 

RDYC 3F 6 6 6 5 7 7 

RDYC 2 7 8 8 8 8 8 

RDYC 2F 8 7 7 6 6 5 
DAX 9 9 9 9 9 9 
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and the UPR, but not the ERVaR or CVaR. Thus, the filter rule proved to be ineffective for all 

maturities except of, in some cases, the shortest maturity of two years. Thus, one is better off 

performing the rides all the time, independent of the term structure at the moment of the strat-

egy’s initiation. Relying on a positive term structure does not enhance performance, as the 

fact that the term structure is positive at time t does not seem to be capable of predicting the 

future term structure of interest rates.  

 

As table 27 shows, there exist certain differences among various performance indicators. 

Whereas the Sharpe ratio, the ERVaR and the CSR almost provide identical rankings, there 

are some stronger differences between other measures. In this case, the rank correlation coef-

ficient can be calculated to measure divergence between alternative performance measures. 

The Spearman’s rank correlation coefficient can be used for this purpose. It is computed in 

the following way:120  
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where di is the distance between two rankings of the strategy i and n is the number of the 

strategies. Table 28 contains the values of the rank correlation coefficients, which are estimat-

ed pair-wise for all measures. There exists a high rank correlation between the Shape ratio and 

other performance measures, as rankings based on the Sharpe ratio are at least 78.3 percent 

correlated with the rankings according to other measures, the smallest correlation being be-

tween the Sharpe ratio and the Omega. With the rest of all measures, the correlation is at least 

90 percent. The correlation between other measures is also high, as the correlation coefficients 

lie in the range between 75 percent and 100 percent, the lowest being between the Omega and 

the UPR. Rankings according to the ERVaR and the CSR are identical. Thus, the choice of 

the performance measure does not influence the assigned ranking significantly.  

 

 

 

                                                 
120 See Spearman (1904), pp. 72-101. 
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Table 28: Rank Correlation of Performance Measures (RDYC) 

 

Figure 20 plots the cumulative probability distribution of returns from four RDYC uncondi-

tional strategies and the DAX returns. As can be seen from this figure, there exists a crossover 

point of two distributions in every case. Consequently, the concept of the first order stochastic 

dominance cannot be applied. However, for RDYC 3, 4 and 5 the area below the cumulative 

distribution function is smaller than that of the DAX. Thus, in most cases rolling strategies 

dominate the DAX by the second order stochastic dominance.  

 

The RDYC strategy outperforms the capital market investment strategy. Moreover, most roll-

ing strategies dominate the DAX by the second order stochastic dominance. Yet, the RDYC 

strategy is not risk-free. The main source of risk is that, contrary to the expectations, the term 

structure does not stay stable and interest rates rise. If this happens, the strategy could suffer 

losses, as refinancing could become more expensive. One implication of that would be trying 

to hedge this risk using appropriate financial instruments. From a theoretical point of view, 

however, investors only get a return above the risk-free return if the investment is risky. Ap-

plying some hedging instruments would, thus, lead to only a risk-free rate of return on the 

RDYC strategy. Consequently, it is not correct to call the RDYC a pure arbitrage strategy. It 

is rather a “risk arbitrage” strategy, as it provides a significantly higher risk-return tradeoff 

than the market level. 

 

 

 

 

 

 

 

 

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Condi 

tional SR 

Omega Sortino 

ratio 

UPR 0.900 0.950 0.950 0.750 0.967 

Sortino Ratio 0.933 0.967 0.967 0.850  

Omega 0.783 0.817 0.817   

Conditional SR 0.983 1.000    

Excess return on VaR 0.983     
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Figure 20: Cumulative Probability Distribution of RDYC strategies 
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4.5.3 Riding the Yield Curve Strategy 

 

In case of RYC strategies, the distributional characteristics of the excess return are consid-

ered. They are reported in table 29 for unconditional strategies and in table 30 for conditional 

rides.  
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Table 29: Descriptive Statistics of the RYC Strategy (Uncondtional) 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment, 

whereas the second number stands for the holding period. 
 

All unconditional riding strategies are skewed to the left; three of them, RYC 2/1, RYC 4/3 

and RYC 5/4, also exhibit excess kurtosis. The JB test indicates that the hypothesis about 

normally distributed returns can be rejected: for the most of the considered strategies at the 

one percent level; for three strategies the significance levels vary from 2.5 percent to six per-

cent. As for conditional strategies, three of them are negatively skewed and most have excess 

kurtosis. However, for this type of strategies the normality could sometimes not be rejected. 

The JB test is not able to reject the null hypothesis of normally distributed return in half of the 

cases, as the p-value of the test statistic is too large. For the rest of the conditional strategies 

the null could be rejected at least at the five percent level of significance. 

 

Table 30: Descriptive Statistics of the RYC Strategy (Conditional) 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment, 

whereas the second number stands for the holding period. 

Strategy 

Mean Ex-

cess Re-

turn 

Std. Dev. Skewness Kurtosis 
Jarque-

Berra 
p-value 

       

RYC 2/1 0.695% 1.72% -0.322 3.541 12.081 0.0024 

RYC 3/1 1.37% 3.24% -0.300 2.980 5.986 0.0501 

RYC 3/2 1.49% 2.63% -0.475 2.574 16.870 0.0002 

RYC 4/1 1.79% 4.45% -0.276 2.820 5.740 0.0567 

RYC 4/2 2.73% 4.79% -0.488 2.444 20.93 0.0000 

RYC 4/3 2.21% 3.15% -0.627 3.016 25.315 0.0000 

RYC 5/1 2.20% 5.50% -0.312 2.795 7.352 0.0253 

RYC 5/2 3.77% 6.54% -0.483 2.480 19.94 0.0000 

RYC 5/3 4.07% 5.79% -0.552 2.914 19.745 0.0001 

RYC 5/4 2.81% 3.46% -0.426 3.051 11.363 0.0034 

Strategy 
Mean Ex-

cess Return 
Std. Dev. Skewness Kurtosis 

Jarque-

Berra 
p-value 

RYC 2/1 0.63% 1.39% 0.280 3.249 6.789 0.0336 

RYC 3/1 1.23% 2.58% 0.324 3.251 8.024 0.0181 

RYC 3/2 1.03% 2.35% -0.126 2.792 1.773 0.4121 

RYC 4/1 1.67% 3.52% 0.380 3.137 10.116 0.0064 

RYC 4/2 2.03% 4.22% -0.012 2.568 3.105 0.2117 

RYC 4/3 1.96% 2.74% -0.144 2.668 3.139 0.2081 

RYC 5/1 2.06% 4.34% 0.362 3.109 9.176 0.0102 

RYC 5/2 2.86% 5.81% 0.035 2.602 2.714 0.2574 

RYC 5/3 2.45% 5.44% 0.121 3.031 0.9597 0.6189 

RYC 5/4 1.38% 3.10% 0.274 3.408 7.286 0.0262 
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The performance results of various RYC unconditional strategies are reported in table 31. The 

performance results for the strategies that were based on the positive slope filter rule are 

shown in table 32. The excess returns are computed as the difference between the rate of re-

turn of the RYC strategy and the rate of return on the corresponding BH strategy. For perfor-

mance indicators based on LPMs, the value of   equal to zero is applied. In case of value at 

risk-based measures, the VaR is calculated with the parametric approach at the five percent 

significance level. Looking at the Sharpe ratios, it is evident that the performance improves 

with the holding horizon of the respective instrument. Riding the yield curve with a five-year 

instrument results in the Sharpe ratio of 0.3995. However, riding the same instrument for four 

years doubles the Sharpe ratio, which constitutes 0.8113. Although an increase in the Sharpe 

ratio is especially pronounced in case of the five-year bonds, the substantial improvement 

occurs also with all other maturities, as one is better off using a longer holding period. 

 

Table 31: Performance of the RYC Strategy (Unconditional) 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment 

whereas the second number stands for the holding period. 

 

 

 

 

 

 

 

 

 

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Conditional 

Sharpe 

ratio 

Omega Sortino 

ratio 

UPR 

RYC 2/1 0.4052 0.2105 0.1554 1.74 0.750 1.18 

RYC 3/1 0.4231 0.2219 0.1632 1.79 0.803 1.25 

RYC 3/2 0.5651 0.3202 0.2813 2.63 1.168 1.61 

RYC 4/1 0.4016 0.2082 0.1573 1.63 0.758 1.22 

RYC 4/2 0.5704 0.3241 0.2923 2.63 1.181 1.63 

RYC 4/3 0.7013 0.4306 0.3370 3.97 1.546 1.93 

RYC 5/1 0.3995 0.2069 0.1665 1.60 0.745 1.21 

RYC 5/2 0.5766 0.3289 0.2851 2.71 1.202 1.65 

RYC 5/3 0.7038 0.4328 0.3523 3.99 1.582 1.98 

RYC 5/4 0.8113 0.5342 0.4381 5.61 2.047 2.41 
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Table 32: Performance of the RYC Strategy (Conditional) 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment, 

whereas the second number stands for the holding period. 

 

Performance measures other than the Sharpe ratio confirm this result showing the same ten-

dency to rise with the longer holding horizon. This finding contradicts the earlier results ob-

tained for Germany in the study of Bieri and Chincarini (2005), who found the excess returns 

to increase with maturity of the riding instrument, but not with the holding period. Regarding 

the performance of the instruments of different maturities, the performance indicators tend to 

increase with higher maturities, keeping the holding period constant. An exception is the ride 

for one year: if a desired holding period constitutes one year, the best performance is achieved 

with a three-year instrument while the five-year instrument does the worst. 

 

For conditional RYC strategies, the pattern concerning the holding periods is not so clear like 

for the unconditional strategies. For example, holding a three-year bond for one year yields a 

Sharpe ratio of 0.4787, whereas holding the same bond for two years results in a Sharpe ratio 

of only 0.4365. In contrast, for riding with a four-year bond, one improves the Sharpe ratio 

when riding during two years instead of one year and further improves it moving from the 

two-year to a three-year holding horizon. As for the choice of the best maturity for riding the 

yield curve, it is beneficial to choose a longer maturity instrument if the holding horizon com-

prises one or two years. If one intends to ride for three years, a better option is to choose a 

four-year rather than a five-year bond. Table 33 reflects the ranking of conditional as well as 

unconditional RYC strategies. 

 

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Conditional 

Sharpe 

ratio 

Omega Sortino 

ratio 

Upside 

potential 

ratio 

RYC 2/1 0.4489 0.2387 0.2167 2.44 0.410 0.58 

RYC 3/1 0.4787 0.2586 0.2284 3.10 1.122 1.48 

RYC 3/2 0.4365 0.2306 0.2016 2.33 0.893 1.28 

RYC 4/1 0.4742 0.2555 0.2173 3.04 1.145 1.52 

RYC 4/2 0.4816 0.2606 0.2268 2.83 1.072 1.45 

RYC 4/3 0.7149 0.4427 0.3106 8.42 2.262 2.53 

RYC 5/1 0.4733 0.2549 0.2271 3.04 1.138 1.51 

RYC 5/2 0.4919 0.2676 0.2350 3.00 1.122 1.50 

RYC 5/3 0.4512 0.2401 0.2121 2.78 1.004 1.37 

RYC 5/4 0.4466 0.2371 0.2003 2.81 1.012 1.37 
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Table 33: Ranking of the RYC Strategies 

Note: The first number next to the name of the strategy denotes the maturity of a fixed income investment 

whereas the second number stands for the holding period; an “F” means that the strategy was based on a filter 

rule. 

 

Whereas the ranking according to the Sharpe ratio completely equals the ranking assigned by 

the ERVaR measure, the ranking across other performance measures slightly differs. Accord-

ing to the Sharpe ratio, the ERVaR and the conditional Sharpe ratio, the best performing RYC 

strategy is the unconditional strategy of buying a five-year bond and selling it after four years. 

This is the strategy with the longest maturity and holding horizon. The worst performance 

was shown by the unconditional riding with a five-year bond for one year. On the top of the 

list are unconditional strategies, especially those with long maturities and holding horizons. 

The best among the conditional strategies is riding the yield curve for three years using a four-

year instrument. According to the Omega, the Sortino ratio and the UPR, it is even on the first 

place; the rest of the measures assign it second to fourth place. This is the only long maturity 

and long holding period strategy that outperforms an analogical unconditional strategy. The 

filter is thus effective only on the shortest holding horizon: the conditional strategies that ride 

for one year with maturities of two, three, four and five years outperform the identical non-

filtered strategies according to most of the considered performance indicators.  

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Conditio-

nal Sharpe 

ratio 

Omega Sortino 

ratio 

Upside 

potential 

ratio 

 

RYC 5/4 1 1 1 2 2 2 

RYC 4/3F 2 2 4 1 1 1 

RYC 5/3 3 3 2 3 3 3 

RYC 4/3 4 4 3 4 4 4 

RYC 5/2 5 5 6 12 5 5 

RYC 4/2 6 6 5 13 7 6 

RYC 3/2 7 7 7 14 6 7 

RYC 5/2 F 8 8 8 8 10 10 

RYC 4/2 F 9 9 11 9 12 12 

RYC 3/1 F 10 10 9 5 11 11 

RYC 4/1 F 11 11 12 6 8 8 

RYC 5/1 F 12 12 10 7 9 9 

RYC 5/3 F 13 13 14 11 14 13 

RYC 2/1 F 14 14 13 15 20 20 

RYC 5/4 F 15 15 16 10 13 14 

RYC 3/2 F 16 16 15 16 15 15 

RYC 3/1 17 17 18 17 16 16 

RYC 2/1 18 18 20 18 18 19 

RYC 4/1 19 19 19 19 17 17 

RYC 5/1 20 20 17 20 19 18 
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Thus, for a one-year holding horizon, one is better off when relying on a positive slope filter 

rule rather than riding all the time. However, for longer holding periods, it is generally not 

beneficial to use such a filter rule. Similar results regarding the usefulness of the positive 

slope filter rule were obtained in section 4.3.2 where RDYC strategies were considered. 

Moreover, this result is also in line with the findings obtained for the US market as well as the 

study of Bieri and Chincarini (2005), who could not confirm the ability of a positive slope 

filter rule to enhance returns on the German data. Table 34 contains the rank correlation coef-

ficients for all RYC strategies.  

 

Table 34: Rank Correlation of Performance Measures (RYC) 

 

The rank correlation across performance measures is at least 78 percent, the lowest value in 

case of the CSR and the Omega. The rank correlation of the Sharpe ratio with other perfor-

mance measures is in the range of 80.9 percent (with Omega) to 100 percent (with excess re-

turn on VaR). The Sharpe ratio and the ERVaR exhibit the highest average rank correlation 

with the other measures of 94.3 percent while the Omega displaces the lowest average rank 

correlation of 83.6 percent. Thus, various performance measures display high rank correlation 

with each other, also in case of the RYC strategies. Consequently, the choice of a particular 

measure is not crucial for ranking the RDYC and RYC strategies in the considered data set. 

Figure 21 depicts the cumulative returns from RYC strategies with a holding horizon of one 

year and the corresponding BH strategy. Figure 22 plots the cumulative distribution function 

of returns from RYC strategies with holding horizons beyond one year and the corresponding 

BH strategy. 

 

 

 

 

 

Strategy Sharpe 

ratio 

Excess 

return on 

VaR 

Condi-

tional 

Sharpe 

ratio 

Omega Sortino 

ratio 

UPR 0.938 0.938 0.922 0.805 0.995 

Sortino Ratio 0.937 0.937 0.911 0.808  

Omega 0.809 0.809 0.782 1.000  

Conditional SR 0.973 0.973 1.000   

Excess return on VaR 1.000     
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Figure 21: Cumulative Probability Distribution of RYC with One Year Holding Horizon 

 

0.0

0.2

0.4

0.6

0.8

1.0

.02 .04 .06 .08 .10 .12 .14 .16

RYC 2/1 CDF BH CDF

P
ro

b
a
b
il
it
y

Rate of Return

0.0

0.2

0.4

0.6

0.8

1.0

.00 .04 .08 .12 .16 .20

RYC 3/1 CDF BH CDF

P
ro

b
a
b
il
it
y

Rate of Return

 
 

0.0

0.2

0.4

0.6

0.8

1.0

-.04 .00 .04 .08 .12 .16 .20

RYC 4/1 CDF BH CDF

P
ro

b
a
b
il
it
y

Rate of Return

0.0

0.2

0.4

0.6

0.8

1.0

-.04 .00 .04 .08 .12 .16 .20 .24

RYC 5/1 CDF BH CDF

P
ro

b
a
b
il
it
y

Rate of Return

 
 

 

 

 

 

 

 

 

 

 

 



4. Yield Curve Trading Strategies  114 

 

  

Figure 22: Cumulative Probability Distribution of RYC with Holding Horizon beyond One 

Year 
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As it is evident from figures 21 and 22, there is no first order stochastic dominance for all but 

one RYC strategies, as the respective cumulative distribution functions intersect. The inter-

section occurs at a low level of rate of return, and then the cdf of the RYC strategies lies be-

low that of the benchmark strategy. The only exception is the strategy RYC 5/4 with the long-

est maturity instrument as well as holding period, whose cdf either lies below or is tangent to 

the cdf of BH strategy. Thus, RYC 5/4 dominates the corresponding BH strategy by the first 

order stochastic dominance. For the rest of the riding strategies, the area below the cdf is 

smaller than that of the BH strategy. Thus, RYC strategies dominate the corresponding BH 

strategy by the second order stochastic dominance criterion. These findings are in line with 

the study of Ang, Alles and Allen (1998), who could not confirm the first order stochastic 

dominance of the riding strategies, but found that the RYC strategies dominate the BH strate-

gy in terms of the second order stochastic dominance.  

 

4.6 Banking Regulation 

 

Both the Rolling Down the Yield Curve and Riding the Yield Curve strategy described in the 

previous subsections possess an attractive risk-return profile, if compared to the DAX and the 

buy-and hold strategy, respectively. However, the risks attributable to these strategies can 

become significant. This section describes the main sources of risks and aims to give an over-

view over recent changes in the regulatory requirements, which could affect the possibility of 

implementation of the yield curve strategies. Section 4.6.1 provides an excursus into the regu-

latory framework and covers recent developments in regulatory requirements undertaken to 

promote financial stability. Readers familiar with these issues can proceed directly to section 

4.6.2 that covers main sources of risk of the strategies developed in previous sections and ad-

dresses the main efforts to mitigate these types of risks.  

 

4.6.1 Regulatory Framework: An Overview 

 

Banking regulation and supervision in Germany was firstly established in 1931, with the pub-

lication of the Emergency Decree.121 While there was no general regulation of the German 

                                                 
121 “Decree relating to Stock Corporation Law, Banking Supervision and Tax Amnesty”. 
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banking sector prior to 1931,122 the Emergency Decree was primarily targeted at overcoming 

the banking crisis of 1929–1930 and preventing future crises. Savings banks were not incor-

porated into this decree and were under the old regulatory rules.123 Only in 1935, with the 

enforcement of the German Banking Act all banks were included. From 1949 and until the 

enactment of the Banking Act124 and the foundation of the new supervisory authority in 1962, 

banking supervision had a decentralized character and was exercised by the respective state 

governments. With the extension of banking business activities, the necessity of regulatory 

adjustments became apparent, which led to several amendments to the Banking Act. Several 

revisions to the Banking Act were made in order to bring it in accordance with the new regu-

latory requirements of the Basel Community on Banking Supervision. The first version of 

these requirements, the Basel Capital Accord (known as Basel I), introduced the minimum 

capital requirements for financial institutions and was published in 1988. However, the limita-

tions of this framework125 led to several amendments126 and, finally, to the new version of the 

Basel Capital Accord (known as Basel II)127, which was published in 2004. 

 

Pillar I of Basel II covers standard as well as advanced techniques for measuring credit, op-

erational and market risks. Two further pillars include the supervisory review process (pillar 

II) and market discipline (pillar III). The former encourages banks to establish an efficient risk 

management system to assess their capital adequacy, whereas the latter contains public dis-

closure requirements, which enable market participants to assess the risk profile of a bank. 

The Basel II regulations constituted a foundation for the respective European Union (EU) 

directives, the Banking Directive and the Capital Adequacy Directive,128 which were pub-

lished in 2006. In order to create a legal basis for the implementation of Basel II in Germany, 

the new regulations were transferred into German law through amendments to the Banking 

Act, the Solvency Regulation, and the “Minimum Requirements for Risk Management” 

(MaRisk). Whereas pillars I and III of Basel II are reflected in the Solvency Regulation, pillar 

II is represented by the MaRisk. As a result, all banks in Germany are obliged to follow the 

                                                 
122 Only savings banks and mortgage banks were regulated by the state governments and the federal government, 

respectively. 
123 See Hackethal/Schmidt (2005). 
124 The Banking Act is a legal basis for the supervision of the banking business and financial services in Germa-

ny. 
125 Basel I had been criticized because its method to calculate the regulatory capital for credit risk did not take 

into account the actual default risk of individual loans and, therefore, did not sufficiently reflect the actual credit 

risk. 
126 In 1996 the capital requirement to cover market risks was incorporated into the Basel Capital Accord.  
127 See BIS (2004). 
128 Directive 2006/48/EC and 2006/49/EC of June 14, 2006. 
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Basel II requirements since January 1, 2007.129 Two regulatory authorities exercise banking 

supervision in Germany: the Federal Financial Supervisory Authority (FFSA) and the German 

Federal Bank.130 

 

In the Basel II framework banks are required to hold capital, which is larger or equal to the 

eight percent of the risk-weighted assets for credit, market and operational risk. The regula-

tion embodies two techniques to determine the credit risk regulatory capital, in particular the 

Standard Approach and the Internal Ratings-Based Approach (IRBA). In the framework of 

the Standard Approach, banks are allowed to determine risk weights on the basis of external 

credit ratings issued by a rating agency approved by the supervisor. At the same time, it is still 

possible to apply uniform fixed risk weights, which is especially relevant for unrated loans. 

The IRBA provides an opportunity to apply internal rating procedures and completely or par-

tially estimate the input parameters for measuring credit risk.131 

 

The Basel II regulations recognize operational risks and permit banks to choose among three 

different techniques to determine the capital charge for operational risk: the Basic Indicator 

Approach (BIA), the Standardized Approach (SA), and the Advanced Measurement Approach 

(AMA). Under the BIA, the capital charge is determined as the weighted average gross income 

of a bank over the past three years, which serves as an operational risk indicator. The SA re-

quires this indicator to be broken down into eight business lines determined in the Solvency 

Regulation and multiplied by the weights of the business lines, which range from 12 to 18 

percent. In contrast, in the AMA, which requires a prior approval of the FFSA, banks can cal-

culate the capital requirements for operational risk using an internal model.132  

 

Market risks include interest rate, equity position, exchange rate fluctuation and commodities 

risk. Basel II specifies two methods of measurement of such risks: the Standardized Meas-

urement Approach and the Internal Models Approach. The latter is subject to supervisory ap-

proval. The market risk measure is VaR,133 which has to be computed over the period of ten 

days using the 99 percent “confidence” interval. The observation period constitutes one year. 

                                                 
129 See Reichling/Afanasenko (2010), pp. 13-14. 
130 The German expression of the German Federal Bank and the FFSA is Deutsche Bundesbank and Bundesan-

stalt für Finanzdienstleistungsaufsicht (BaFin), respectively. 
131 See Reichling/Afanasenko (2010), pp. 14-15. 
132 See Reichling/Afanasenko (2010), p. 15. 
133 The choice of a particular method to compute VaR is not specified by Basel II and can be made by financial 

institutions. Variance-covariance approach, historical or Monte Carlo simulation could be applied.  
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In order to determine a capital requirement for market risk, the VaR figure is multiplied by a 

factor which is set up by the regulatory authorities. It has a minimum value of three and can 

be raised, dependent on the past performance of the corresponding model.134 

 

As a response to the financial crisis in 2008, the Basel Committee on Banking Supervision 

was forced to revise its regulatory framework. In December 2010 a new document, Basel 

III135 was issued, which was revised in June 2011. The main feature of the new framework is 

the new qualitative and quantitative requirements towards the capital base. Although the 

amount of total capital136 stays at the level of eight percent, the structure of total capital will 

undergo significant changes. First of all, total capital is now comprised of only two catego-

ries: Tier I and Tier II, i.e. the earlier division of total capital into three categories will be 

abolished. Tier I capital is further divided into two sub-categories: common equity Tier I and 

additional Tier I capital. The amount of a high-quality common-equity Tier I capital will be 

raised from two percent to 4.5 percent whereas additional Tier I capital will be reduced from 

two percent to 1.5 percent. Thus, the total amount of Tier I capital will increase from four 

percent to six percent. As for the Tier II capital, it will be reduced from four percent to only 

two percent. The above transitions will be implemented gradually and completed by January 

2019.137  

 

Another feature of the Basel III regulations is the incorporation of two buffers: the capital 

conservation buffer and the countercyclical buffer, which are to be held above the minimum 

capital requirements. The former is to be used in crisis times and serves as an additional capi-

tal that can be drawn down without consequences for the minimum capital requirements or 

restrictions of business activities of the financial institutions. However, if this buffer is com-

pletely depleted, the bank will encounter restrictions regarding share buy-backs, dividends 

and staff bonus payments.138 The amount of this capital, which must be held as common equi-

ty Tier I capital, will constitute 0.625 percent in 2016 and will gradually increase to reach its 

maximum of 2.5 percent in 2019.139  

 

                                                 
134 See Bank for International Settlements (2004), pp. 195-197. 
135 See Bank for International Settlements (2010) and (2011).  
136 Total capital refers to the regulatory capital and not the balance sheet total. 
137 See Bank for International Settlements (2011), pp. 12-20 and pp. 27-29. 
138 This regulation was introduced to avoid practices of some banks that, despite losses, continued distributions 

of earnings to demonstrate their positive performance. 
139 See Bank for International Settlements (2011), pp. 54-57. 
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The second type of buffer – the countercyclical buffer – aims to reduce the pro-cyclicality of 

previous regulations. The essence of this problem is that excess credit growth in boom times 

can result in substantial losses for the banking sector if economic conditions change rapidly. 

In a recession, banks are forced to reduce the amount of granted loans and, thus, contribute to 

further deterioration of economic conditions. The new buffer is intended to be used in times 

of economic downturn and contribute to a faster recovery of the economy. The supervisory 

authorities may demand the amount of the countercyclical buffer to be raised if there is a need 

to do so in order to address the current economic conditions. Similarly to the capital conserva-

tion buffer, the countercyclical buffer will be implemented in the period 2016 – 2018 and will 

gradually increase from 0.625 percent to 2.5 percent.140  

 

An additional characteristic feature of the new regulations is the leverage ratio. Despite strong 

capital ratios, many banks built up excessive leverage in the times of the financial crisis. As a 

result, banks were forced to reduce the amount of assets in a relatively short time, which put 

some additional pressure on asset prices. The aim of the new non-risk based leverage ratio is 

to supplement the existing risk-based capital requirements and restrict the level of leverage. 

During a testing period from 2013 to 2017, this ratio will constitute three percent of total as-

sets. After that, the Basel Committee will decide, whether this ratio will become a part of the 

regulatory capital requirements.141 In addition to the above mentioned developments in the 

regulatory framework, the Financial Stability Board (FSB) issued a new framework regarding 

the systemically important financial institutions (SIFIs).142 The main focus of this document is 

the moral hazard problem that occurs in the institutions, whose bankruptcy would endanger 

the stability of financial systems. Such institutions will have to develop individual financial 

restructuring procedures and can be subject to additional capital requirements. The next sec-

tion addresses the specific risks of the yield curve strategies and the corresponding regula-

tions.  

 

4.6.2 Specific Risks of the Yield Curve Trading Strategies 

 

Rolling down the yield curve is an especially attractive strategy in a low interest rates envi-

ronment. If banks are able to borrow short-term funds at a very low interest rate and grant 

long-term credits, potential profits are quite large. However, the strategy should be imple-

                                                 
140 See Bank for International Settlements (2011), pp. 57-60. 
141 See Bank for International Settlements (2011), pp. 61-63. 
142 See FSB (2010). 
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mented with care, as risks arising from the strategy could become significant. At first, the 

strategy is connected with interest rate risk. The short-term interest rate that will prevail in the 

future is not known and could increase so significantly, that short-term borrowing would be-

come more expensive than the interest rate obtained on the long-term funds. Because of the 

high refinancing costs, the excess return on the strategy could then become negative. Various 

risk measures presented in table 35 indicate that risks can become significant, especially when 

using the strategy over several years. Looking at the VaR measure computed for pursuing the 

strategy for the period 1978 – 2007, the maximum negative excess return to occur with 99 

percent probability is as high as 17.74 percent for a five-year strategy. In contrast, implement-

ing the strategy for two years yields a VaR of 3.55 percent. If CVaR is employed as an inter-

est rate risk measure, the average loss exceeding the VaR varies from 5.04 percent for a two-

year strategy and 19.13 percent for a five-year strategy. For RDYC strategies with filter rule, 

the two-year strategy has a VaR of only 2.74 percent, which is lower than that of a corre-

sponding non-filtered strategy. However, the five-year strategy implemented using a filter 

happens to be the riskiest of all, with VaR comprising 18.46 percent. CVaR lies in the range 

3.19 percent to 19.39 percent.  

 

Table 35: VaR and CVaR of the RDYC Strategy (in percent) 

 

Similarly to the RDYC strategy, the RYC strategy is subject to interest rate risk. The strategy 

is constructed so that a fixed income instrument is bought with a maturity m, which is longer 

than the desired holding period i. Thus, it involves selling the instrument prior to its maturity, 

after m – i periods.  The price of the bond and, therefore, the profit from the strategy is highly 

dependent on the interest rate on the bond of maturity m – i prevailing in the time of a bond 

sale. If this interest rate rises sharply, banks can experience a negative excess return on the 

strategy, compared to an initial purchase of a bond with the maturity i. Table 36 contains the 

VaR as well as CVaR of various RYC strategies implemented over the period of 30 years. 

The VaR and CVaR constitute 3.3 percent and 4.48 percent for riding a two-year bond for one 

year. The RYC strategy that was especially prone to interest rate risk was riding a five-year 
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bond for two years, whose VaR and CVaR comprised 11.46 percent and 13.19 percent, re-

spectively. 

 

Table 36: VaR and CVaR of the RYC Strategy (in percent) 

 

The second type of risk that has to be accounted for when implementing the RDYC strategy is 

the liquidity risk. Liquidity risk refers to the risk that the liabilities cannot be met. Consider-

ing the RDYC strategy, this type of risk arises because the maturity of assets does not match 

the maturity of the liabilities. A bank that pursues the RDYC strategy faces liquidity risks that 

occur when it has to refinance itself when the initial short-term funding has to be paid pack. 

The fact that this risk can become significant was especially obvious in fall 2008. In this time, 

many financial institutions encountered liquidity shortage. These difficulties were so severe 

and occurred in such a large number of financial institutions that the interbank market col-

lapsed. As a result, central banks were forced to replace the interbank market.  

 

The regulators became aware of the fact that liquidity risks can play a significant role for the 

stability of financial systems and introduced new regulatory requirements. They aim at stress-

ing the liquidity base of financial institutions and reducing their dependence on the short-term 

financing from the interbank market. At first, the Basel Committee introduced new standards 

regarding qualitative requirements for liquidity risk management.143 Later, in December 2010, 

the Basel Committee issued new guidance that introduced not only qualitative, but also quan-

titative global liquidity standards.144 The new framework introduced two measures of liquidity 

risk exposure, the Liquidity Coverage Ratio (LCR) and the Net Stable Funding Ratio (NSFR). 

Under various stress scenarios, the former should enable banks to survive within 30 days rely-

ing only on their own sources of funding. The LCR, which is set to be implemented by 1 Jan-

uary, 2015, is given by:145  

 

                                                 
143 See Bank for International Settlements (2008). 
144 See Bank for International Settlements (2010). 
145 See Bank for International Settlements (2010), p. 3. 
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                   %100
dayscalendar  30next  over the outflowscash net  Total

assets liquidquality -high ofStock 
LCR             (85) 

 

Only a limited number of assets is eligible to be counted as high-quality liquid assets. Such 

assets include cash, reserves by central banks as well as government securities and constitute 

so called level 1 assets. Corporate bonds of high credit quality belong to the level II assets, 

which are allowed to comprise no more than 40 percent of total stock of high-quality liquid 

assets.146 The NSFR represents a long-term liquidity standard, which will become obligatory 

on 1 January, 2018. Over a one-year horizon, banking institutions must maintain the follow-

ing ratio:147 

 

                                %100
funding stable ofamount  Required

funding stable ofamount  Available
NSFR                            (86) 

 

The available amount of stable funding is defined as the sum of all sources of funding, 

weighted by the Available Stable Funding (ASF) factor. The weights vary between zero per-

cent and 100 percent; for example, Tier I and II capital receives the weight of 100 percent 

whereas stable demand deposits of retail and small business customers are accounted for us-

ing a 90 percent weight. It is worth noting that the possibility of refinancing through central 

banks is not accounted for in the numerator of equation (86). Otherwise, banks could rely too 

strongly on this source of funding. The required amount of stable funding is determined as a 

weighted sum of all assets. The weights ranging from zero to 100 percent reflect the liquidity 

of various asset types, i.e. a possibility to liquidate the assets within one year. Assets with a 

low necessity to be covered by stable funding, such as cash and securities with a maturity of 

less than one year have a weight of zero percent whereas loans to retail customers that mature 

in less than one year receive a weight of 85 percent.148  

 

The NSFR is set to limit the incentives of financial institutions to establish a strong mismatch 

between the maturity of the assets and liabilities and is, therefore, especially important in the 

context of the RDYC strategy. The implementation of the RDYC strategy where long-term 

assets are funded through liabilities that mature in less than one year will be restricted by the 

                                                 
146 See Bank for International Settlements (2010), pp. 8-10. 
147 See Bank for International Settlements (2010), pp. 25-26. 
148 See Bank for International Settlements (2010), pp. 26-29. 
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NSFR. The intention of this part of liquidity regulation is to reduce the over-reliance on short-

term funding at the interbank market. However, the fact that the ratio is applied only during a 

one-year horizon indicates that the implementation of the RDYC strategy, which is an espe-

cially important source of income for some banking groups in Germany, will be further possi-

ble. 



 

 

124 

 

5. Summary 
 

The focus of this dissertation thesis was on analyzing the predictive power of forward rates as 

well as examining the performance of various yield curve trading strategies. The pure expec-

tations hypothesis of the term structure of interest rates provided the basis for the first part of 

the analysis. Among the classical term structure theories that include the pure expectations 

theory, the liquidity preference, the preferred habitat theory and the market segmentation the-

ory, the pure expectations theory received the most attention in the academic literature. The 

reason is that this version states that long-term interest rates represent the geometric average 

of the current and expected future short-term interest rates and is, therefore, appealing due to 

its simplicity. An additional benefit offered by the theory is that it can explain every possible 

shape of the term structure. An upward-sloping term structure results from the situation where 

investors anticipate future interest rates to rise. Similarly, a downward-sloping as well as a flat 

term structure can be explained.  

 

The theory also addresses two further empirical facts usually associated with the term struc-

ture: the first one is that interest rates of different maturities tend to move together; the second 

fact is that short-term interest rates are more volatile than the long-term interest rates. Both 

observations are in line with the pure expectations hypothesis, as long-term rates are an aver-

age of the short-term rates and thus, they should not develop independently from each other. 

The main drawback of the pure expectations hypothesis lies in its inability to explain the fact 

that, on average, the yield curve is upward-sloping. 

 

The implications of the pure expectations hypothesis were empirically tested in a variety of 

ways. However, the general result is that the theory is not supported by the empirical data. In 

Germany, there have been several studies on that topic; yet leading to contradictory results. 

The research presented in this dissertation thesis aims to investigate the predictive power of 

forward rates towards the one-year spot interest rates using recent data and new estimation 

techniques. At the first glance, forward rates seem to systematically overestimate the future 

spot rates; this overestimation rises with the lag of the respective forward rate. However, a 

formal analysis was needed, in order to achieve reliable results.  
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In this dissertation thesis, six models were constructed. Whereas the first model explains the 

one-year spot rate by the corresponding forward interest rate that was observed one year ago, 

the last model contains six lagged forward rates. The spot rates employed in this study were 

computed using the swap rates for the period 1995 – 2007. For the choice of the estimation 

method, it was indispensable to test the time series properties of forward as well as of spot 

rates. It was especially important to examine, whether considered series possess the necessary 

statistical properties that make standard regression analysis possible. This property is referred 

to as the stationarity of the time series. The stationarity tests employed in this study include 

the augmented Dickey-Fuller, Philips-Perron, Dickey-Fuller generalized least squares and 

Kwiatkowski-Philips-Schmidt-Shean test. Their results were quite uniform, indicating that 

spot rates as well as forward rates are non-stationary time series that become stationary after 

taking first differences. In other words, spot and forward rates are non-stationary, integrated 

of order one series.  

 

Because of the special time series properties, standard regression techniques are not applica-

ble, as the results could possibly indicate a spurious relation. However, a meaningful relation-

ship between two time series exists if they are cointegrated. The concept of cointegration is 

useful, as it refers to the series which are individually non-stationary, but a linear combination 

can be found between them that is stationary. The Johansen cointegration test performed for 

the one-year spot rate and lagged forward rates confirmed that the series are cointegrated and 

the number of cointegrating vectors is equal to one for all six models. This can be viewed as 

evidence that the long-term relationship among spot rate and forward rates exists. This result 

is in line with several previous studies which documented the presence of cointegration in the 

term structure of interest rates. 

 

Despite the fact that the one-year spot interest rate and lagged forward rates form a cointegra-

tion relationship, reliable evidence that forward rates can be used as predictors of the future 

spot rates was not found. In the majority of the considered models only the forward rate ob-

served one year ago had significant impact on the future spot rate. The six-year model seems 

to explain the data the best in this respect containing the largest number of significant forward 

rates. Commonly for all considered models, only the one-year, the five-year and the six-year 

forward rates are statistically significant and, therefore, affect the future spot rates. This could 

be interpreted as an evidence of a mean-reverting behavior; however, this hypothesis would 
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contradict the results of earlier stationarity tests about non-stationarity, and, therefore, an ab-

sence of constant mean and variance in the considered data.  

 

In addition to the cointegration analysis, an error correction representation was constructed to 

capture the short-run dynamics. The adjustment coefficient plays an important role, as its sig-

nificance and sign provides some insights about how well the Error Correction Model fits the 

data. The estimated error correction representation has a significant adjustment coefficient in 

all considered models, which gives an evidence of the validity of the Error Correction Model 

in the data. However, the sign of this coefficient is negative only for the five-year and six-year 

models. As a negative sign is essential for the Error Correction Model to work (i.e. to correct 

the error which has occurred in the previous period), the Error Correction Model is valid only 

in case five or six lagged forward rates are included into the model. In addition, the Error Cor-

rection Model has a poor fit, with the coefficient of determination ranging from ten percent 

for the two-year model to the maximum of 23 percent for the six-year model.  

 

As a concluding part of this analysis, it was of interest to check the out-of-sample perfor-

mance of the models. For this reason, the data for the last available year were not used to es-

timate the required coefficients. The estimates of the cointegration equation obtained with the 

sample May 1995 to October 2006 were employed to construct a forecast for the next 12 

months. The resulting forecasts of each of the six models were compared to a simple model, 

which just uses the spot rate of the previous period to predict the future spot rate. The fore-

casting performance of these models was then evaluated with the help of commonly applied 

forecast accuracy measures, such as root mean squared error and Theil’s inequality coeffi-

cient. These measures indicate that the one-year to five-year models are not really worth the 

effort of estimating them, as using the last period’s value of one-year spot rates yields a lower 

forecast error. Only the six-year model performs better than the naive model. This reinforces 

the conclusion derived from the cointegration and error correction analysis. The general result 

of the analysis is that forward rates contain very poor predictive ability and generally cannot 

serve as predictors of future spot rates. 

 

Thus, the results of the first part of the analysis provide additional evidence against the validi-

ty of the Expectations Hypothesis in the German term structure. Although several studies 

have found some supportive evidence supporting the validity of the Expectations Hypothesis 

in German data, the findings in this thesis are in line with those studies that were not able to 
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find the information content in forward rates. An important implication can be derived from 

this result: forward rates are not reliable predictors of the future spot rates and, thus, the fact 

that forward rates exceed the spot rates most of the time does not necessarily indicate rising 

spot rates in the future. In other words, if the pure Expectations Hypothesis does not hold, 

holding period returns of assets with different maturities may not be the same.  

 

The second part of this thesis deals with two yield curve strategies: Rolling Down the Yield 

Curve and Riding the Yield Curve. A common feature of these strategies is that they are both 

based on an upward-sloping yield curve which remains stable over time. The Rolling Down 

the Yield Curve strategy is a strategy commonly used by financial institutions and can be de-

scribed as funding a long-term asset using a short-term liability. Such a strategy can be im-

plemented, for instance, as a typical banking business of granting long-term loans and taking 

short-term deposits. In addition, the strategy can be constructed through buying and selling 

fixed income securities or through activities on the swap market. This part of the analysis 

aims to determine the risk-return profile of the Rolling Down the Yield Curve strategy and 

compare it with that of the DAX. The latter represents the benchmark for investments on the 

capital market.  

 

Four types of the Rolling Down the Yield Curve strategy were examined: as a short-term 

funding a one-year horizon is selected, whereas the long-term investment varies from two to 

five years. In addition, every of the above strategies was tested with and without a statistical 

filter rule. Strategies where the filter rule was not applied were just implemented all the time, 

independently of the shape of the term structure. Those strategies conditioned on a filter were 

only pursued in case the term structure of interest rates was upward-sloping. The period under 

consideration covers 1972 – 2007.  

 

Already the visual representation of the excess return-standard deviation profile makes obvi-

ous that the two-year strategy dominates the DAX, as it has both higher excess return and 

lower standard deviation. For the rest of the strategies the risk-return profile does not deliver 

such clear results; thus, various performance indicators have been applied and the strategies 

were ranked dependent on their performance. Among the employed performance measures 

are traditional measures such as the Sharpe ratio as well as modern measures based on value 

at risk or lower partial moment. The issue, whether a particular performance measure is ap-

propriate to be used for ranking, received significant attention in the recent literature. In this 
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dissertation thesis, all most commonly applied measures were included into the analysis. Alt-

hough the ranking slightly differs among performance measures, a common feature is that all 

Rolling Down the Yield Curve strategies clearly outperform the DAX. This is an important 

result, as it actually indicates the success of client business activities over the fee-based activi-

ties of banks on the capital market.  

 

Regarding the performance of particular strategies, the Rolling Down the Yield Curve strate-

gy implemented through an investment in a five-year instrument showed the best perfor-

mance. In general, the strategy becomes more attractive with the length of the implementation 

period. Although both excess returns and risk rise, strategies implemented for a longer period 

possess a more attractive risk-return tradeoff. The applied filter rule, however, was useless, as 

it did not yield superior performance of the filtered strategies. In fact, all Rolling Down the 

Yield Curve strategies where such a filter was applied performed worse than the strategies 

that were implemented all the time. Thus, only relying on an upward-sloping yield curve 

when the strategy is initiated does not guarantee a success of the strategy and even worsens 

the performance.  

 

An interesting insight also provides a comparison of rankings assigned by different perfor-

mance measures. The results in this thesis indicate that, although the ranking of strategies 

slightly varies among performance measures, the rank correlation coefficients are quite high 

for each pair of measures. Thus, the choice of a particular performance indicator did not mat-

ter in this study.  

 

It is worth noting that Rolling Down the Yield Curve is not an arbitrage strategy. In fact, the 

strategy is subject to interest rate risk. If, contrary to the anticipations, the term structure shifts 

upwards or flattens out, short-term interest rates could rise so significantly that banks suffer 

losses from the strategy. Although it would be possible to apply some hedging techniques to 

eliminate risks, this would eliminate profits from the strategy. From a theoretical point of 

view, it is only possible to gain profits above the risk-free rate of return if an investment con-

tains risks. Otherwise, the rate of return would equal the risk-free rate of return. Thus, the 

Rolling Down the Yield Curve strategy could be referred to as “risk arbitrage”, as it provides 

significantly more attractive risk-return tradeoff than the capital market investment. 
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Despite the risks associated with the strategy, it proved to be successful over the considered 

period of more than 30 years. In comparison with the investment on the stock market, the 

Rolling Down the Yield Curve strategy represents a more attractive business activity. This 

result is of a special importance for banking groups whose main sources of income constitutes 

the interest rate income.  

 

The second strategy examined in this thesis was the Riding the Yield Curve strategy. Similar-

ly to the Riding the Yield Curve strategy, it is based on an upward-sloping term structure that 

remains constant over time. The Riding the Yield Curve strategy involves buying an instru-

ment with a maturity longer than the anticipated holding horizon and selling it prior to maturi-

ty. It is regarded as a contradiction to the postulates of the pure expectations theory. As the 

results of the first part of the analysis did not support the hypothesis, analyzing the perfor-

mance of the Riding the Yield Curve strategy could provide further confirmation of the previ-

ously obtained results. The strategy was implemented in using maturities from two to five 

years and holding periods from one to four years. In addition, every strategy was implemented 

with a filter conditioned on a positive slope of the yield curve. Every Riding the Yield Curve 

strategy under consideration was compared with buying and holding an instrument till maturi-

ty.  

 

It follows from the analysis that all Riding the Yield Curve strategies outperform the simple 

buy-and-hold strategy, as they yield positive average excess returns. The results of the per-

formance evaluation indicate that riding the longest maturity instrument during the longest 

possible period proved to be the most beneficial. In contrast, investing long-term and selling 

after one year was the strategy with the worst performance. As in case of the Rolling Down 

the Yield Curve strategy, the application of the filter rule generally did not lead to a superior 

performance of the Riding the Yield Curve strategies. The latter result is in line with some 

previous studies devoted to the Riding the Yield Curve strategy. The superior performance of 

the Riding the Yield Curve strategy once more confirms previous results on the validity of the 

pure expectations hypothesis. Not only are forward rates poor predictors of the future spot 

rates, but there is also a possibility to gain excess returns from riding the yield curve. Thus, 

predictions relying on forward rates should be treated with caution.  

 

Finally, the risks connected with the yield curve strategies should not be underestimated. Ex-

cept of the interest rate risk, the Rolling Down the Yield Curve strategy is subject to liquidity 
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risk. The key problem is that it involves refinancing its long-term assets through short-term 

liabilities. The situation in which a bank experiences severe difficulties in attracting short-

term funds could even endanger the existence of this financial institution. This was especially 

obvious during the liquidity crisis in 2008. New regulatory requirements proposed in Basel III 

aim to reduce these risks by introducing new quantitative standards that will become obligato-

ry on 1 January, 2018. Whereas the Liquidity Coverage Ratio is introduced to ensure the sur-

vival of a financial institution during a 30-day period on its own, the Net Stable Funding Ra-

tio is targeted at reducing the maturity mismatch between assets and liabilities over a one-year 

horizon. The latter, although reducing the possibilities of reliance on the short-term funding, 

still leaves some space to banks for pursuing the strategy.  
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