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Abstract
In magnetization dynamics, the Gilbert damping α is often taken as a
parameter. We report on a theoretical investigation of α, taking into account
crystal symmetries, spin–orbit coupling and thermal reservoirs. The tensor
α is calculated within the Kamberský breathing Fermi-surface model. The
computations are performed within a tight-binding electronic structure approach
for the bulk and semi-infinite systems. Slater–Koster parameters are obtained
by fitting the electronic structure to first-principles results obtained within the
multiple-scattering theory. We address the damping tensor for the bulk and
surfaces of the transition metals Fe and Co. The role of various contributions are
investigated: intra- and interband transitions, electron and magnetic temperature
as well as surface orientation. Our results reveal a complicated non-local,
anisotropic damping that depends on all three thermal reservoirs.

1. Introduction

Magnetic devices and magnetic reversal effects are strongly affected by their rate of energy
transfer (dissipation): the larger this transfer, the faster the magnetic equilibration. Regarding
spintronics applications, there is an ongoing search for materials with preferably small
damping [1]. The magnetization dynamics on a nanometer length scale and on a femtosecond
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time scale can be described by the Landau–Lifshitz–Gilbert (LLG) equation [2]. Here, the
dissipation is introduced by Gilbert’s phenomenological parameter α [3] that includes all
possible damping mechanisms. The damping parameter is taken as local and isotropic, in
agreement with ferromagnetic resonance spectroscopy [4, 5].

The coupling of the magnetization to the electronic degrees of freedom is mediated
by spin–orbit coupling. Detailed measurements on the atomic scale as well as theoretical
models for nanostructures reveal a non-uniform spin–orbit coupling [6] which is responsible
for local magnetic anisotropies. Hence, the Gilbert damping should also be anisotropic and
site-dependent, in particular in low-dimensional systems.

To calculate the damping constant from first principles, Ebert et al [7] suggest a model
that shows a good agreement with experiments. Based on the linear response theory, their
torque–torque correlation model was applied to an Fe1−xCox alloy and to various 5d transition
metals. Thermal effects are included by phonon scattering in an alloy-analogy model.

Besides linear response theory, there exists also the breathing Fermi surface model of
Kamberský [8, 9]. This model considers the non-equilibrium population of electronic states
that is forced by the change of the magnetic moments. The coupling of the electronic spin
to the electronic eigenstates is of spin–orbit nature. The model predicts a significant damping
in metals with strong spin–orbit coupling, e.g. 4f metals. Also ultrathin films are predicted to
exhibit strong damping [10].

The energy change near the Fermi surface of the Stoner magnets Fe and Co has been
investigated by Gilmore et al [11], using the Kamberský model in a projector augmented wave
method. Although in good agreement with experimental findings, their results do not comply
with those by Fähnle and Steiauf [12] where a dependence of the damping α on the magnetic
moment’s direction [13] as well as on temperature is established. The latter has been observed
experimentally [14–16] and confirmed theoretically [7, 10]. The Gilbert damping for (oxidic)
nanoparticles [17], Ni–Fe and Ni–Co alloys [18], half metals [1], Co/Ni multilayers [19]
and magnetic thin films [20–22] were also studied recently. Such materials are recommended
for spintronic applications due to their high spin–orbit coupling and, thus, enhanced Gilbert
damping. Furthermore, the damping can become anisotropic and non-local [23–25], leading to
a damping tensor αi j . The anisotropic and non-local character of the magnetic damping is also
achievable within the Kamberský model.

In this paper we report on a theoretical investigation of the anisotropic and non-local
Gilbert damping in the framework of the Kamberský model. To calculate the damping
tensor, we use a tight-binding (TB) model. The TB parameters have been obtained by
fitting the electronic structures to those of a first-principles fully relativistic multiple scattering
Korringa–Kohn–Rostoker (KKR) method using a genetic algorithm. Semi-infinite systems
are treated by a renormalization scheme for the Green function. These together with the
generalized Kamberský equation allow calculation of the layer- as well as the temperature-
resolved damping tensor. We compare our results to published data for Fe and Co. The role of
various contributions are analyzed in detail: electronic intra- and interband transitions, electron
and magnetic temperature as well as surface orientation. Our results reveal a complicated non-
local, anisotropic damping that depends on all three thermal reservoirs.

The paper is organized as follows. Computational details and theoretical basics are given
in section 2. The damping properties of bulk magnets are discussed in section 3.1, for surfaces
in section 3.2.
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2. Theoretical and computational aspects

We consider a ferromagnetic system whose Bloch states, characterized by the band index n
at wavevector k, have energies εk,n. Due to the spin–orbit coupling, the magnetization m with
direction e affects the eigenstates: tilting m by a small change δe generates a non-equilibrium
population state which can be viewed as a deviation—or breathing—of the Fermi surface.
The non-equilibrium distribution relaxes toward the equilibrium distribution within a time τk,n

(relaxation time approximation). This relaxation is driven by the coupling 3 of the electron
reservoir to the lattice reservoir, that is via the electron–phonon coupling. Following Gilmore
et al [11], this breathing Fermi surface model of Kamberský [8, 9] in a generalized form and
within the isotropic relaxation time approximation (τk,n → τ ) results in the damping tensor α

with elements

ανµ
=

gπ

m

∑
n,m

∫
η(εk,n)

(
∂εk,n

∂δe

)
ν

(
∂εk,m

∂δe

)
µ

τ

h̄

dk
(2π)3

ν, µ = x, y, z, (1)

η(εk,n) = ∂ f (ε)/∂ε|εk,n
is the derivative of the Fermi–Dirac distribution f (ε) with respect to the

energy; n and m are band indices.
The spin–orbit coupling Ĥ so correlates the magnetization with the electronic ground state,

giving rise to the magnetocrystalline anisotropy. Hence, the torque matrix elements (
∂εk,n

∂δe )ν

can be obtained from ε(δe) = 〈n, k|eiσ ·δe Ĥ so(e)e−iσ ·δe
|m, k〉, where |n, k〉 are the eigenstates

of the Hamiltonian Ĥ and σ is the vector of Pauli matrices. With 0nm ≡ 〈n, k|[σ , Ĥ so]|m, k〉,
which accounts for the transitions between the states in bands n and m, the damping tensor
ανµ reads

ανµ
=

gπ

m

∑
n,m

∫
0ν

nm 0µ
nm Wnm(k)

dk
(2π)3

. (2)

The scattering events depend on the overlap Wnm(k) ≡
∫

dε η(ε)Ak,n
3 (ε)Ak,m

3 (ε) of the spectral
function Ak,n

3 , which is a Lorentzian centered at εk,n. Its width is determined by the coupling
strength 3 to the lattice. Replacing the Bloch states by the Green function, the spectral function
can be written as Im Ĝ (k, ε ± i3) = ∓

∑
n |n〉〈n|A3(ε − εk,n). Hence, we end up with a result

similar to the torque–torque-correlation model [7],

ανµ
=

g

mπ

∫ ∫
η(ε) Tr

(
T̂ ν Im Ĝ T̂ µ Im Ĝ

) dk
(2π)3

dε, (3)

where T̂ ≡ [σ , Ĥ so].
To obtain the Green function, we use a TB model [26] based on the Slater–Koster

parameterization [27, 28]. The TB parameters, including the spin–orbit coupling strength,
are obtained by fitting the TB band structures to ab initio band structures, using a genetic
algorithm [29] (table 1). The fitness function is taken from [30], with an accuracy better than
10−4 eV. The parameters are in good agreement with those reported in [31–33]. The first-
principles band structures were calculated within a fully relativistic multiple-scattering Green
function approach (KKR method) [34].

Having a reliable TB description of the bulk electronic structure at hand, we proceed
by computing the electronic structure of a semi-infinite system, using a renormalization
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Table 1. TB parameters for bulk bcc Fe and fcc Co, obtained from a genetic algorithm.
The notation follows that of Slater and Koster [27] for the on-site energies ε (left) and
hopping parameters (right). λ and B stand for orbital dependent spin–orbit coupling
strength and exchange splitting, respectively. All values in eV.

Fe Co
εs 6.006 5.322
εp 12.658 14.000
εt2g −0.853 −1.389
εeg −0.955 −1.402
λp 0.200 0.100
λd 0.080 0.070
Bs 0.436 −0.329
Bp 0.793 −1.237
Bt2g 2.069 1.572
Beg 2.034 1.526

Fe Co
(ssσ) −1.494 −1.144
(spσ) −2.035 −1.708
(sdσ) 0.769 0.435
(ppσ) 2.901 3.113
(ppπ) −0.112 −0.204
(pdσ) −0.903 −0.233
(pdπ) 0.303 0.510
(ddσ) −0.623 −0.515
(ddπ) 0.412 0.387
(ddδ) −0.066 0.093

scheme [35, 36]. The result is the layer- and site-resolved Green function, with site i in layer n
indexed as I ≡ (n, i). This allows the layer- and site-resolved damping tensor to be defined by

α
νµ

I J =
g

mπ

∫
η(ε) Tr

(
T̂ ν

n Im Ĝ IJ T̂ µ
m Im Ĝ J I

)
dε, I 6= J. (4)

We perform a fifth-order Keast quadrature method in the first Brillouin zone k integration
with up to 105 mesh points for bulk and 106 mesh points for surface calculations. For small 3

(less than about 5 × 10−3 eV), these dense meshes are necessary to suppress spurious non-
zero off-diagonal elements of the damping tensor which in principle should vanish to the
cubic symmetry in bulk systems. The energy integration is approximated by a Gauss–Legendre
quadrature with 32 supporting points in a small energy range around the Fermi level.

Various components of the entire system contribute to α due to different relaxation
processes. This is qualitatively described by three separate but coupled reservoirs: the magnetic
moments, the lattice and the electrons [37, 38], assuming the adiabatic limit. The electron
temperature Te is modeled by the width of the Fermi distribution, whereas the temperature of
the magnetic system, the spin temperature Ts, is mimicked within the disordered local moment
(DLM) theory which is based on the coherent potential approximation (CPA) [39, 40]. For the
time being, the electron–phonon coupling is set constant. The above tensorial representation
yields furthermore the dependence of the Gilbert damping on the magnetization direction,
α I J = α I J (e), which is mediated by the spin–orbit coupling.

The calculated Gilbert damping is used in an atomistic formulation of the LLG equation
[2, 3, 41]. The temporal evolution of the magnetic moment mi at site i reads [23, 24]

∂mi

∂t
= mi ×

−γ Bi +
∑

j

1∣∣m j

∣∣αi, j
∂mj

∂t

 . (5)

The effective field Bi = ∂ Ĥmag/∂mi is fixed by the Hamiltonian Ĥ mag which comprises the
Heisenberg exchange interaction, the dipole–dipole energy, the magnetocrystalline anisotropy
and a Zeemann term. Explicitly,

Ĥmag = −

∑
i j

mi Ii j mj +
∑

i

Bext · mi . (6)
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Ii j = Ji jE + Qi j for i 6= j contains the Heisenberg exchange parameter Ji j and the dipolar

interaction matrix Qνµ

i j =
1
2

µ0

4π

3rν
i j r

µ
i j −r2

i j δ
νµ

r5
i j

between two sites i and j with distance r i j = r i − rj .

E is the unit matrix. Ii i determines the magnetocrystalline anisotropy. The Heisenberg exchange
interactions Ji j as well as the anisotropies Ii i have been calculated from first principles within
the KKR framework, using the Lichtenstein formula [42] and the magnetic force theorem [34];
for details see [43].

3. Results and discussion

3.1. Damping constant of bulk materials

In this section, we first address the two approaches to α, (1) and (3), and compare our TB
data to the ab initio results reported in [11]. We assume a ferromagnetically ordered system
with magnetic moments in ez direction. Tilting a magnetic moment toward ex or ey yields an
effective torque matrix element T −

≡ 〈n, k|[σ−, Ĥ so]|m, k〉, where σ−
≡ σ x

− i σ y . The cubic
symmetry in bulk bcc Fe and fcc Co dictates that the damping tensor is diagonal, in agreement
with our calculations. The damping constant α is then given by the trace of the damping tensor
α for the reference magnetization direction ez (α = αxx + αyy) [11].

The reliability of our TB parameterization is proven by the agreement of the damping
constant α with those reported in [11] (figure 1). For comparison, the TB damping constants
have to be scaled by a factor of 1/4π2, which we attribute to a different definition of the
Lorentzian in [11].

For large electron–phonon coupling 3, α decreases, which is interpreted as follows.
α comprises both intraband transitions (n = m in (2); blue line in figure 1) and interband
transitions (n 6= m; green line in figure 1) [11]. Energy levels n and m located close to each other
accelerate the relaxation of the electron–hole pairs and, thus, decrease the Gilbert damping. The
phonon reservoir ‘smears out’ the electron bands: the broadening of the electron spectral density
is larger, the stronger electrons and phonons are coupled. Thus, the probability of transitions
between states n and m is increased. For small 3, the intraband transitions play a major role,
where αintra(3) can be approximated linearly. For large 3, the broad Lorentzians overlap (cf
figure 3(a)) and lead to an increase of the interband contribution which eventually dominates
the intraband contribution. This allows hopping of the electrons between states n and m. For
even larger 3, the Gilbert damping drops again, resulting in the maximum at 3 ≈ 1. However,
this is an artifact of the finite orbital basis in the TB approach which does not describe well
electronic states far off the Fermi level (at ≈ 10 eV). Nevertheless, the approach reproduces the
ab initio results of [11] in the range 3 ∈ [0.001, 1] well.

In the ‘Lorentz’ approach (2), the coupling 3 defines the width of the energy window in
which transitions 0nm are accounted for; the electronic structure itself is unaffected. In the Green
function approach, 3 is taken as the imaginary part of the energy at which the Green functions
is evaluated. This offset from the real energy axis provides a more accurate description with
respect to the ab initio results [11] than the Lorentzian approach, in particular for Fe. This may
be understood from the fact that a finite 3 broadens and shifts maxima in the spectral function;
hence, electronic states at energies around the Fermi level that are weakly weighted by η(ε)

contribute to the damping. Furthermore, their contribution depends on their orbital composition
and on the strength of the spin–orbit coupling.
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Figure 1. Calculated bulk Gilbert damping constant α versus phonon coupling strength
3 for Co (a, top) and Fe (b, bottom), in logarithmic scale. The results obtained by our
TB method base on Lorentz broadening (black circles) or on Green functions (black
squares). The curvature close to the minima is a superposition of inter- (green line) and
intraband (blue line) transitions; the latter vanish for large 3. Data reproduced from [11]
(‘Gilmore et al’) are presented as red triangles. The dotted lines are guides to the eye.

We now discuss the dependence of α on the reservoir temperatures and focus first on
the spin temperature Ts. The dependence of α on the magnetic moment direction e, on the
electron–phonon coupling 3 as well as on transitions involving energetically lower states
suggests a correlation between the spin, lattice and electron temperature [44]. The spin
temperature Ts is modeled within the DLM theory [45, 46]. This approach is based on a
substitutional binary alloy that is described within the CPA [39, 40, 47]; the host material
comprises sites with magnetization along the reference direction e, with concentration c⇑, and
sites with magnetization along −e, with concentration c⇓ = 1 − c⇑ [48] (figure 2). Zero spin
temperature is obtained for c⇑ = 1.0 (ferromagnetic case), whereas the critical temperature
is given for c⇑ = 0.5 (paramagnetic case). The mapping of the impurity concentration on the
spin temperature can be obtained by comparing magnetizations derived from DLM electronic-
structure calculations and from temperature-dependent Monte Carlo calculations [48, 49].
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Figure 2. Damping constant α versus spin temperature Ts for bulk Co (triangles)
and Fe (circles), as modeled by the concentration c⇑ in the DLM theory (see the
text). The concentration is inversely proportional to the temperature [48]. Data for
electron–phonon coupling 3 = 0.1 eV(0.01 eV) are displayed in blue (red). The electron
temperature Te is zero. Lines serve as guides to the eye.

The dependence of α on the spin temperature (figure 2) is in agreement with the dissipation-
fluctuation theorem which states, roughly speaking, that the dissipative reaction of the system is
proportional to the fluctuation. Here, the electron system tries to stabilize the magnetic order
with increasing Ts (that is increasing magnetic fluctuations or decreasing concentration) by
increasing the Gilbert damping which models the dissipation. The sizable change of α with
concentration suggests that a constant α may be inappropriate for modeling magnetic systems
at elevated temperatures, for example using the LLG equation.

We now turn to the dependence of α on the electron temperature Te. The electron
temperature is included via η in (1) and accounts for transitions between states in a narrow
energy window above the Fermi level. An electron–hole pair relaxes faster from the non-
equilibrium population (which is induced by the spin–orbit coupling) toward the equilibrium
than in the zero temperature case; thus, α decreases with decreasing relaxation time τ . This
mechanism is contrasted by the fact that more electronic states around the Fermi level are
involved in the relaxation process, leading to an increase of α. Hence, the Kamberský model
postulates a competition between these two mechanisms (figure 3).

We limit the dependence of α on the electron temperature by the energy window around the
Fermi level εF to εcut = 0.01, 0.1 and 1.0 eV (figure 3). For a large energy window of εcut = 1 eV,
α (Te) increases nonlinearly with electron temperature; a similar trend is found for the magnetic
temperature Ts. This finding is explained by the large spectral overlap Wnm (figure 3(a)): Wnm

is constrained by the derivative η of the Fermi–Dirac distribution. The higher the temperature,
the larger the spectral overlap (color shaded areas in figure 3(a)) and therefore, α increases. If
εcut is smaller than the underlying range of the Fermi–Dirac distribution, α decreases with the
temperature.
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Figure 3. (a) Illustration of the spectral overlap contribution between electronic state i
and j for temperatures T1 < T2 < T3. With increasing temperature the relevant energy
window around the Fermi energy EF becomes larger, leading to an increased Gilbert
damping α. (b) α versus electron temperature Te for a fixed electron–phonon coupling
3 = 0.1 for Co (triangles) and Fe (circles). Energy cut-offs are distinguished by colors:
εcut = 0.01 eV green, 0.1 eV blue and 1.0 eV red. The spin temperature Ts is zero. Lines
serve as guides to the eye.

The electron–phonon coupling is, at present, roughly modeled by a constant 3. Phonons
can be included via the spatial dependence of the TB parameters, for example using Harrison’s
law [28] or by a polynomial representation [50]. In particular the latter reproduces well
phonon dispersions. The atomic displacements change the electronic structure around the
Fermi level and remove degeneracies in the band structure; thus, the accompanying decrease
of contributions from intraband transitions will reduce α [7]. In addition, electron–magnon
scattering or the Eliott–Yafet-type spin scattering mechanism could be included [51].

The damping tensor (1) motivated in [12, 13] accounts for transitions between states with
different reference spin direction and, thus, also for spin–flip transitions. For cubic symmetry,
the damping tensor is diagonal. In contrast to bulk systems, off-diagonal elements could be
non-zero in systems with reduced symmetry, for example at surfaces.
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Figure 4. (a) Schematic view of the summation method in a cubic lattice to obtain α(r).
For a given r all atoms are accounted for that are located on the circle. (b)–(d) Layer-
resolved non-local damping constant for different Co surfaces: (b) (001), (c) (110) and
(d) (111). The electron–phonon coupling 3 is 0.01 eV. The non-local character of the
damping within the layers disappears within few nanometer distance; in contrast, a non-
monotonic decrease of the damping constant with respect to the layer index is observed
(layers are distinguished by colors). The damping does not depend significantly on the
surface orientation.

3.2. Damping tensor at surfaces

In the following, we address the electronic contribution to the damping tensor α at surfaces.
As examples, we focus on (001), (110) and (111) surfaces of fcc-Co with Cu lattice constant
3.54 Å, addressing thick Co films on Cu surfaces.

The Rayleigh dissipation functional predicts energy transfer between neighboring sites
I 6= J [52, 53]. Hence, the energy transfer rate has to be considered as a non-local, rather than
as a local (on-site) quantity [3]. In contrast, on-site contributions account for a local coupling to
the lattice reservoir (phonons). To simplify the discussion, we define a shell-averaged damping
tensor α(r) by considering a reference site i0 in layer n0 (I0 = (n0, i0)) and summing up
contributions from all sites j in layer m (m 6= n0 and j 6= i0) that are located on a sphere with
radius r (figure 4).

For all three surfaces, the energy transfer is short-ranged, as is evident from the decrease
of α with distance r (figure 4). The damping depends also on the surface orientation: the
nearest-neighbor α’s differ slightly (α(001)

N N ,I0
= 0.023, α

(110)

N N ,I0
= 0.025 and α

(111)

N N ,I0)
= 0.022), as

can be explained qualitatively by the coordination numbers of site I0 (8, 7 and 9 for (001),
(110) and (111), respectively). If only nearest-neighbor hopping would be considered, a reduced
coordination yields a small electron hopping probability (small band width), resulting in both a
minute energy transfer and damping constant.
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Figure 5. Layer-resolved DOS of d states in fcc Co(001). Layers are marked by different
colors; the topmost layer is 0. The Fermi level is depicted as a dotted line. The inset
shows the DOS at the Fermi level versus layer index (top surface layer n = 0).

α decreases with layer index (inset in figure 4). The topmost layer shows the largest
dissipation for all three surfaces, which is in accordance with the fluctuation-dissipation
theorem. NB: in the LLG equation, the fluctuation amplitude (that is the width of the Gaussian
distribution of the random magnetic field [2]) reads α · kBT/γ m; hence, the response at a
temperature T is stronger at the surface than in the bulk. The dependence of α on the layer index
is non-monotonous and exhibits oscillations; this finding is at variance with results reported
in [54] but agrees with those in [23, 24]. The oscillations can be explained by the density of
states of the d states which ‘carry’ the magnetic moment of Co.

The density of states of d orbitals at the Fermi level is largest for the surface layer (figure 5).
It oscillates similarly to α; this coincidence has been already noticed in [7, 55]. The oscillations
are explained by the behavior of t2g and eg states: the density of states (DOS) nt2g(εF) decreases
monotonically with layer index but neg(εF) shows an oscillatory behavior.

Eventually, we address how the non-locality of the Gilbert damping αi j affects the
magnetization dynamics in different layers, using (5) on a fs-time scale. The non-locality is
relevant in an incoherent magnetic configuration, e.g. in demagnetization processes [55] or in
nutation [56], both relevant on femtosecond or picosecond time scales; in case of a coherent
precession of the magnetic moments, the sum in (5) can be replaced by an effective constant
αeff

i =
∑

j αi j [10]. We discuss its effect for the nutation in a two-layer thick Co film on
Cu(111) [56]. Here, we include α(r) from Co(111) up to third-nearest neighbors (r = 4.4 Å)
(figure 6). Here, the electron and spin temperature are zero; the electron–phonon coupling enters
with 3 = 0.01 eV.

Assuming a linear temperature dependence of the electron–phonon coupling 3 = BTph

(e. g. B = 0.011 eV K−1 for nickel)—as in the Drude model [57]—a finite 3 requires a finite
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Figure 6. Nutation of a surface magnetic moment in a two layer thick Co film on
Cu(111) of (a) a coherent and (b) a non-coherent spin state. mz is shown versus time for
different damping scenarios: considering the non-local αi j (red); effective α integrated
over the distance r (green, 0.083 for the surface and 0.021 for the subsurface layer), and
effective α integrated over r and weighted by the coordination number (blue, 0.12 for
the surface and 0.028 for the subsurface layer).

phonon temperature Tph. Here, we choose a value of 1 K. In accordance with Ebert et al [7],
this implies that the Kamberský model fails for zero phonon temperature because it results in
an infinite Gilbert damping. Nevertheless, the chosen small Tph allows the LLG equation to be
applied for zero electron and spin temperatures.

An initial incoherent state is prepared by perturbing randomly the coherent precession
around the anisotropy field at time t = 0. Then, an external magnetic field with a strength of
B = 5 T is abruptly switched on. We study three cases: accounting for (i) the non-local αi j ;
(ii) an effective α by summing over the distances r ; and (iii) an effective α by summing over
distance r but weighted with the respective coordination numbers.

Both the nutation lifetime and the amplitude are reduced with higher damping, which
supports the proportionality of the moment of inertia and the damping [58]. Case (ii) exhibits
the smallest damping and, thus, a larger duration of the nutation. For case (i) the energy transfer
to the neighboring sites accelerates the relaxation process compared to the other two cases.
In contrast to the extended LLG equation used in [56], the present LLG equation (5) does
not contain the magnetic moment of inertia and, thus, does not comprise a nutation term.
Bhattacharjee et al [59] showed the existence of nutation without extension of the LLG equation.
This finding is fully confirmed in our study by the increased nutation lifetime on a ps-time scale
which differs from that in [56].

A coherent precession of all magnetic moments (figure 6(a)) gives a small phase shift (up
to 10 fs), which is due to the direct coupling to the inert motion of site j . In an incoherent state,
the evolution of j appears as a superimposed ‘noisy signal’ (red in figure 6(b)). According to
the angular-momentum transfer present in the Heisenberg model, the energy transfer depends
to the coordination: the higher the coordination number, the faster the relaxation. We conclude
that anisotropic dissipation is advantageous in relaxation and switching processes in magnetic
nanostructures.
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4. Conclusion

We present a calculational method to obtain the Gilbert damping tensor based on the breathing
Fermi-surface model. Within a TB approach the layer-dependence of the damping has been
obtained. The non-local dissipation rate depends mildly on the surface orientation but strongly
on the layer and on the distance to neighboring sites. In the tensor representation, the correlation
to the reference magnetization results in a non-homogeneous dissipation, which suggests to
consider the dependence of the Gilbert damping on the direction of the magnetic moments in
future magnetization dynamics simulations.

We also studied the dependence of the Gilbert damping constant on the electron and
spin temperatures. The damping increases with temperature, in contrast to experimental
observations; this finding supports the fact that the phonon temperature is the major thermal
contribution. The present comparably simple approximation of the electron–phonon coupling
has to be improved in a future implementation. Nevertheless, the spin as well as the electron
temperature should be considered in incoherent magnetization effects.
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