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Abstract
For a coupled ferroelectric/ferromagnetic composite we demonstrate theoretically amechanism for
ferroelectric–ferromagnetic excitation conversion. The switching occurs upon sweeping an external
homogeneousmagnetic field thatmodifies the spectrum.We show analytically and by direct numer-
ical simulations that the excitation transfer proceeds via Landau–Zener tunneling: in the case of an
abrupt application of themagnetic field (a diabatic regime) there is no transition of excitation energy
between the electric andmagnetic systems, while increasing themagnetic field slowly (an adiabatic
process) an almost complete excitation transfer takes place.

Introduction

Originally Landau–Zener tunnelingwas theoretically predicted [1, 2] for purely quantumobjects. The
phenomenon is realizedwhen, upon a parametric change in theHamiltonian, a crossing of the unperturbed
atomic levels is expected to occur. The degeneracy is lifted by a perturbation and the transition probability
between the states depends not only on their coupling, but also on the speed of the parametric change of the
energy level spacing. Later, Landau–Zener tunnelingwas generalized frommicroscopic quantum systems (such
as electronmotion in semiconductor superlattices [3], level transitions in Rydberg [4] and hydrogen [5] atoms
and tunneling in double quantumdots [6]) tomacroscopic wave processes in different branches of physics; for
instance,matter wavemini-band transitions in Bose–Einstein condensates [7, 8], light tunneling in optical
waveguide arrays [9–12] and two-dimensional optical lattices [13],macroscopic tunneling in classical optical
systems [14], and even ultrasonic transitions inwater cavity superlattices [15] and vibrational transport in
harmonicmechanical oscillator systems [16]. Further important aspects are the influence of dissipation [17, 18]
or temperature induced fluctuations on the Landau–Zener transitions [19] as well as the nonlinear [20–22] and
multiple [23] versions of asymmetric Landau–Zener tunneling.

An essential ingredient of all the aforementioned cases is that a parametric changemodifies the energy level
spacing. In thepresent paper this parameter is an externalmagneticfield applied to a heterostructure consisting of
a ferromagnet (FM) coupled to adjacent ferroelectrics (FE), thus forming compositemultiferroics. Examples are
FeorCo layers deposited on theprototypical FEBaTiO3. Such systemswere recently fabricated andwere shown to
exhibit amagnetoelectric response [24, 25] (see also [26]), i.e. a FM(FE) response to an applied electric (magnetic)
perturbation.Herewedemonstrate, using a theoreticalmodel, that an externalfieldmay result inLandau–Zener
phenomena leading to electric–magnetic (dipolar-spin) polarization excitation transfer. Thereby, the presence of
interfacialweakmagnetoelectric coupling between the FEandFMparts is essential. Tunneling transitions occur
when,with increasingmagneticfield, the frequency ofmagnetic excitations (belonging to themagnetic branch of
themultiferroic)withfixedwavenumber shifts upward to cross the electric excitationdispersion branch at the
samewavenumber. Sweeping themagneticfield adiabatically, one observes a complete transition of the initial
electric (ormagnetic) excitations tomagnetic (or electric) ones, while in the diabatic case almost no tunneling of
electric ormagnetic excitations takes place. Thisfinding suggests an externally controlled and effectivemethod for
conversionof electric/magnetic pulses inFE/FMheterostructures.
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Theoreticalmodeling

For insight into the time dynamics of the correlated electric dipoles andmagneticmoments inmultiferroics [27–
29]we consider aminimal but relevant laddermodel consisting of twoweakly coupled chains: the first chain is
FE, built by one-dimensional interacting dipoles, and the second chain is FM, consisting of classical three-
dimensionalmagneticmoments. In the case of both single [30–32] and two-phase [33–36]multiferroics, both
the FE and FMchains are characterized by intrachain nearest neighbor coupling.

For predictions that are experimentally relevant we consider a heterojunction consisting of awell-studied
conventional FM such as iron and a prototypical FE such as BaTiO3. The theoreticalmodel should reproduce the
knownbehavior of the FE and the FMorder parameters in the absence ofmagnetoelectric coupling. In our study
wemodel the FMpart using thewell-established classical Heisenbergmodel and choose iron as the FM. For FE
we utilize theGinzburg–Landau–Devonshire (GLD) potential [37–40]. The bi-harmonic potential employed
here corresponds to BaTiO3 in the tetragonal phase (see [41, 42] and references therein). This systemhas been
experimentally realized, as reported in [25, 38] where an iron film a few atomic layers thickwas deposited on a
single-crystal BaTiO3. The FE/FMcouplingmay have different origins, here we assume the driving source to be a
spin-dependent dynamic screening effect at the FE/FM interface [43, 44]. The strength of the coupling has been
evaluated usingfirst principles calculations.

In the frame of thismodel each one-dimensional electric dipole Pn is coupledwith the nearest spin ⃗Sn in the
ladder via an interchainweakmagnetoelectric coupling. Herewe assume the form given in [44] that is linear in
themagnetization and polarization. Experiments seem to confirm this type of coupling [24].We assume the
direction of the FE dipoles to be at some arbitrary angle with respect to FManisotropy axis ξ depicted in
figure 1(a).Magnetoelectric coupling causes rearrangement ofmagneticmoments in FM.The new ground state
ordering direction in FMwe identify by the axis z andϕ, which is the angle between z and the anisotropy axis ξ.
Furthermore, we assume that amagnetic field ⃗h t( ) is applied along this newordering direction z. At the same
time, θ is an angle between the z axis and the direction of the FE dipoles (seefigure 1(a)). S0 andP0 represent the
equilibrium values of the spins and the dipoles, respectively.Wewill consider perturbations around the
equilibrium. Particularly, let us define the dipolar deviations ≡ −p P P P( )n n 0 0 and the reduced spin variables

⃗ ≡ ⃗s S Sn n 0 andwrite themodelHamiltonian in the following form:

⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

∑

∑

∑

α α β α

= + + = −

= + + + −

= − ⃗ ⃗ + + −

=

=
+

=
+ ( )

( )

( ) ( )

H H H H H g p s

H
p

t
p p p p

H J s s D s D s h t s

, ˜ ,

˜

2

d

d

˜

2

˜

4

˜

2
,

˜ ˜ ˜ ˜ , (1)

n

N

n n
x

n

N
n

n n

J
n n

n

N

n n n
x

n
y

n
z

P S SP SP

1

P

1

0
2

2 4
1

2

S

1

1 1
2

2
2

whereHSP describes themagnetoelectric coupling (with coupling constant g̃ ). In general,HSP may include

higher order terms in pn and sn
j . For instance, in the case of a quadratic coupling− ⃗ ⃗g P S˜ ( )n n1

2 the coupling constant

Figure 1. (a) A schematic of themutual orientations of FE and FMground state vectors in the frames of theHamiltonian (1). ξ is an
anisotropy axis for the FMordering vector away from the interface. (b) The dispersion curves for FE (middle) and FMbefore (bottom)
and after (top) the application of themagneticfieldwithout taking into account themagnetoelectric coupling term. Arrows indicate
the transition process between FMand FE excitations due to Landau–Zener tunneling. The red arrow symbolizes the transition in the
case of an adiabatic application of the externalmagnetic fieldwhen the FE excitation is initially present in themultiferroic system,
while the blue arrow represents FM to FE transition. The initial excitation frequency is fixed in all cases to beω = 0.55.
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attains the form θg S P˜ sin (2 )1 0
2

0
2 (θ being the angle between P0 and ⃗S0, see figure 1(a)).HP is theHamiltonian of

the FE part of themultiferroic system, describingN-interacting FE dipoles [41, 45].We recall that in the spirit of
a coarse-grained treatment the functional structure of (1) is inherent to the symmetry and dimension of the FE
and FMorder parameters. Themicroscopicmaterial-specific properties, i.e., whether we are dealingwith
BaTiO3/Fe or another FE/FMcomposite, are determined by Landauʼs kinetic coefficients α̃0, α̃ J (the nearest

neighbor coupling constant), α̃ and β̃ (second and forth order expansion coefficients of theGLDpotential
[37, 41] near the equilibrium state P0). The numerical values of these parameters are specified below.HS

describes the FMchain [46] with J̃ being the nearest neighbor exchange coupling in the FMpart.
ϕ=D DS˜ ˜ cos1 0

2 and =D DS˜ ˜
2 0 are anisotropy constants, where D̃ is the uniaxial anisotropy constant along axis

ξ (seefigure 1(a)).h t˜( ) is a time-dependent homogeneousmagnetic field responsible for Landau–Zener
tunneling between dipolar and spin excitations.

For clarity, we introduce a dimensionless, scaled time as ω→t t0 (ω α α= ∼˜ ˜ 10J0 0
12 Hz) andmeasure all

the coefficients g̃ , α̃, β̃ , J̃ , D̃1, D̃2 and the externalmagnetic fieldh t˜( ) in units ofω0 and omit the tilde superscript
(for instancewe introduce rescaled constants ω=g g̃ 0, etc). The equations governing themultiferroic time
evolution read

⎡⎣ ⎤⎦

⎡⎣ ⎤⎦

α β

∂
∂

= − + − +

− −
∂
∂

= + − +

+ + −

= − − + − + +

− + − +

− + − +

− +

( ) ( )

( ) ( )

( )

( )

s

t
J s s s s s s

h t s D s s

s

t
J s s s s s s

h t s D s s gp s

p

t
p p p p p gs

( ) 2 ,

2 ,

d

d
2 . (2)

n
x

n
y

n
z

n
z

n
z

n
y

n
y

n
y

n
y

n
z

n
y

n
x

n
z

n
z

n
z

n
x

n
x

n
x

n
x

n
z

n n
z

n
n n n n n n

x

1 1 1 1

2

1 1 1 1

1

2

2
3

1 1

Weare concernedwith small perturbations around the equilibrium, i.e., the variables sn
x, sn

y and pn aremuch
smaller than unity. Therefore, sn

z could be computed using the approximate equality
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.

Analytical considerations

For an analytical consideration of the processes taking place upon the application of a time-dependentmagnetic
field, we neglect in (2) all nonlinear terms (setting =s 1n

z and omitting the termproportional to pn
3). The

resulting equations read
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Wewill solve these coupled equations perturbatively by seeking a solution as an expansion is the relative
time-smoothness, i.e.
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where the functionsψ t( ) andφ t( ) are slowly varying in time (i.e.ψ ψ ωψ≡ ≪t˙ d d ) and the small parameter ε
quantifies the relative time-smoothness ofψ t( ) andφ t( ), i.e.ε ψ ωψ∼ ˙ ( );R is a two component column vector
with complex components. Let us assume that the terms proportional to h(t) and g are of the order of the small
parameter ε and could be neglected in afirst approximation. Then the equations in leading order are decoupled
intomagnetic and FE parts. Inserting (4) into (3), the first two equations are reduced to thematrix equality
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Then the solvability condition =( )Det Ŵ 0 yields the dispersion relation
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formagnetic spins without taking into accountmagnetoelectric coupling and applied externalmagnetic field.
On the other hand, we canwrite the expression for the column vector = rR (1, i ), where
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2 1 , and introduce a row vectorL satisfying thematrix relation ∗ =L Ŵ 0 and thus
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With all these results, derived from the leading perturbative limit, being inserted in (3) and summing the
product of thefirst two equations on the respective components of row vectorL and noting that ℓ =r 1, wefind
the next approximation
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represents the frequency of the electric dipoles while neglecting themagnetoelectric coupling. Introducing a new
variableΦ φ ωℓ= , shifting the phases ofΦ andΨ and rescaling the time, we retrieve a Landau–Zener problem
from (6) in the standard form, i.e.,
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wherewe have assumed a linear time dependence of the externalmagnetic field =h t h t( ) 0 . The slope ν and the
coupling μ coefficients are defined by the following relations

ν ℓ μ ℓ ω= + =h r g( ), , (9)0

andwe infer thewell knownLandau–Zener formula [1, 2] for the tunneling probability ofmagnetic excitations
to FE excitations and vice versa
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The Landau–Zenermechanismoperates as follows: according to the equations (8), if at → −∞t one has
Ψ Ψ= 0 andΦ = 0 then at → ∞t the functionΨ takes the value Ψ κ Ψ=| | | |f
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numerical simulationswe always initially have amixed state of electric andmagnetic excitations and, knowing
the initial and final averaged values of the electric andmagnetic excitations, after simple algebra one can calculate
the tunneling probability coefficient κ according to the following formula:
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Numerical results and analysis

To check the reliability of the analytical predictions and the validity of the assumptions, we conducted full
numerical simulations for the evolution equations (2)with the following parameters in reduced dimensionless
units:

α β= = = = = =J D D g0.2; 0.1; 1; 0.1; 0.2; 0.1. (12)1 2

While themodel does not incorporate all facets that are of importance in a real experimental set up, these
parameter domimic realisticmaterials, namely BaTiO3/Fe, as follows from ab initio calculations [47, 48] and
experimental findings [24]. The essential parameters to be entered in (1) are (formore details see [42]): the FE
second and fourth order potential coefficientsα =a˜ ( ) 2.77 · 101 FE

3 7 (VmC−1),α =a˜ ( ) 1.7 · 102 FE
3 8 (Vm5

C−3), the FE coupling coefficientα =a˜ ( ) 1.3 · 10J FE
3 8 (VmC−1), the equilibriumpolarization =P 0.2650 (C

m−2) and the coarse-grained FE cell size =a 1FE (nm). The FMexchange interaction strength is

= −J̃ 3.15 · 10s
20 (J), the FManisotropy constant is = −D̃ 6.75 · 10 21 (J), and theME coupling strength is

≈ −g̃ 101
21 (Vm2).

In the numerical simulations, for initially excited electric (ormagnetic) degrees of freedom in the
multiferroics we apply a time-varyingmagnetic field andmonitor the time evolution of those excitations. First
we preferably excite electric dipoles (their dispersion relation is indicated by the red solid line infigure 1(b)) with
an oscillation frequencyω = 0.55 fixing thewavenumber k from the dispersion relationω ω= k( )E where
ω k( )E is defined from (7). Then, themagnetic field is gradually appliedwith the following time dependence:

τ= − −h t t t( ) 0.25[1 tanh (( ) )]0 where t0 is half of the computation time (see figure 2(a)). By changing τwe
vary the slope of themagnetic field τ=h 0.250 (Landau–Zener tunneling takes place in the vicinity of =t t0 and
thus this definition of slope is a good approximation). This tunneling happens because themagnon frequency
(infigure 1(b) the blue solid line describes themagnon dispersion relation in the absence of the external
magnetic field) during the application of themagnetic field shifts upward (the blue dashed line in the same
graph) and traverses the electric frequency curve. If the variation of themagnetic field is adiabatic (small slope
values h0) then the energy of the electric excitations completely transfers tomagnons (this case is considered in
figures 2(c) and (d), and is indicated by the red line infigure 1(b)). Otherwise, in the diabatic case (large values of

Figure 2.The Landau–Zener adiabatic tunneling process in the case of FE initial excitations. (a) The time dependence of the external
magnetic field responsible for Landau–Zener tunneling. (b) The dependence ofmagnon and dipole excitation frequencies on the
externalmagnetic field: the dashed blue and red lines aremagnon frequencies without taking into account themagnetoelectric
coupling term and thus correspond toω +k h t( ) ( )M andω k( )E which are computed from (5) and (7), respectively, for the initial
electric excitation frequencyω = 0.55 (thewavenumber isfixed from the relationω ω= k( )E ). The solid lines are dispersion branches
of themultiferroic systemwhich follows the diagonalizing set of equations (6). In the adiabatic process the system follows the solid
lines and FE to FMexcitation transition occurs, while in the diabatic case the system evolves along the dashed lines and no transition
takes place. (d) and (c) show the results of numerical simulations on themodel equations (2) displaying the space–time distribution of
FE (c) and FM (d) energy densitiesHP andHS. As can be seen, slow application of themagneticfield (the adiabatic process) causes a
complete energy transfer of FE excitation into FMmagnon energy.
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h0), the energy remainswithin the electric excitations. Both the adiabatic and diabatic processes could be
schematically explained by inspecting the graph infigure 2(b), where the solid lines display the dispersion
branches of themultiferroic derived by the diagonalization of (6). In the case of an adiabatic increase of the
magnetic field, the system follows the upper solid curve transferring the energy from electric tomagnetic
excitations. In the diabatic case ofmagnetic field applications the system follows the red dashed curve and the
energy persists within the electric excitations.

To check howwell the Landau–Zener formula (10), (11) describes the energy exchange between the electric
and themagnetic degrees of freedom,we have undertaken detailed studies of the tunneling process for various
slopes of the externalmagnetic field, while initially exciting themagneticmoments. Infigure 3we show the
numerical outcome of the case when preferablymagnetic excitations (againwith the sameω = 0.55 frequency
and thusfixedwavenumber k from themagnon dispersion relationω ω= k( )M ) are present in the system.
Applying amagnetic fieldwith different slopes h0 onemonitors either an absence of switching ofmagnetic
excitations into electric ones ((a) and (b) offigure 3, which correspond to a large slope value h0 = 0.12), or an
almost complete transfer of energy to the electric dipole excitations ((c) and (d) offigure 3 for the small slope
value h0 = 0.012). This transition process is schematically indicated by the blue vertical arrow infigure 1(b).
Moreover, the process can be identified as an evolution along the lower solid line offigure 2(b) in the case of an
adiabatic change of the externalmagnetic field. In the diabatic case, in contrast, the system follows the blue
dashed line of the same graph. Awide range of the slope parameter h0 has been considered and the tunneling
rates have been computed according to (11), the numerical results indicated by the crosses in figure 3(e). These
numerical points are in a good agreement with the Landau–Zener analytical formula (10) given by the solid line
in the same graph. A discrepancy appears for large slope values when their values are comparable with the
excitation frequency. This violates the condition that themagnetic field should varymuch slower than the dipole
or the spin precession frequency (recall that (8)were derived in just this approximation ω≪h0 ).

In this paperwe do not address dissipation and thermal effects. In principle these could be taken into
account by introducing the conventional Landau–Lifshitz–Gilbert damping term in themagnetic part of the

Figure 3.The results of the numerical simulations for themodel equations (2)with the parameters (12). (a) displays the (scaled) time
evolution ofmagnetic excitations bymonitoring ⊥s( )n

2 and (b) represents the space–time distribution for electric excitations by tracing
p( )n

2 in the case of an abrupt application of an externalmagnetic fieldwith a slope h0 = 0.12. The right-hand graphs (c) and (d) display
the evolution of the same variables for small values of a slope parameter h0 = 0.012 (the adiabatic process). (e) shows a comparison of
the tunneling rate κ calculated from the Landau–Zener analytical formula (10)with that of (11) using numerically computed values of
averaged variables〈 〉⊥s( )n

2 and〈 〉p( )n
2 before and after the application of themagneticfieldwith the slope parameter h0. The solid line

represents the analytical outcome of (10), while the crosses are the numerical results.
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evolution equations (2) as well as the damping terms in the electric part; while stochastic thermal processes
could be described by randomfluctuatingmagnetic and electric fields. Then the Landau–Zener transition
processes would bemodified according to themechanisms described in [17–19].Here, we assume that
dissipation is negligible on time scales comparable tomagnetic/electric signal transition (that is∼ −10 9 s) and do
not consider respective terms in the evolution equations. For the case ofmultiferroic composites for which the
electromagnetic coupling coefficient ismuchweaker than that considered here, themagnetic field variation
should bemuch slower in order to achieve the transition from electric tomagnonic excitations or vice versa.
Dissipation andfluctuation processesmay become relevant.

Summary

In conclusion, an effectivemechanism for an externally controlled energy exchange between electric dipole and
magnetic excitations in compositemultiferroics has been suggested. Themethod relies on time varying an
appliedmagnetic field that affects the excitation spectra andmay lead to Landau–Zener tunneling phenomena.
We considered thismechanism analytically and numerically and find excellent quantitative agreement between
the analytical formula for the tunneling rate and the results fromdirect numerical simulations. The effect could
be directly applied for a complete conversion of electric intomagnetic signals or vice versa. On the other hand,
via the Landau–Zenermechanismone could study electric andmagnetic excitation branches of given
multiferroic composites and estimate the electromagnetic coupling coefficients. Indeed, the transition
probabilities depend strongly on that coefficient. One canmeasure the coupling coefficient by investigating the
transition probabilities while varying diabatically the application of themagnetic field. As a further perspective,
this controlmechanism could be extended in a straightforwardmanner to nonlinear excitations, where the
asymmetric character [20–22] of the Landau–Zener tunneling process could be realized.
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