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Abstract 

The process of ubiquitination and the subsequent degradation of proteins via the proteasome 

complex are of pivotal importance for intracellular homeostasis. Additionally, it has been 

established that different types of ubiquitination may influence activity states as well as 

intracellular distribution of proteins. With regard to the central nervous system, there is a 

growing body of evidence proposing an essential role of ubiquitination in development and 

plasticity. Praja1 is a ubiquitin ligase of the E3 type that is highly expressed in brain tissue, 

is up-regulated during embryonal development, and is increased in the basolateral amygdala 

during the memory consolidation phase following fear conditioning. To elucidate the role of 

Praja1 in the central nervous system, its influence on NGF-induced differentiation in rat 

phaeochromocytoma (PC12) cells, an established model system for investigating neuronal 

differentiation, has been studied. Following NGF stimulation of PC12 cells, an up-regulation 

of Praja1 could be observed. Furthermore, Praja1 co-localized with the neurotrophin receptor 

interacting MAGE homologue (NRAGE) and Smad3, both of which being known mediators 

of various signalling pathways relevant during neuronal development and differentiation. 

Importantly, the tetracycline-induced over-expression of Praja1 in stably transfected PC12 

cell lines has led to a drastic reduction in NGF-induced neurite outgrowth, which has been 

associated with a proteasome-dependent decrease in NRAGE levels. These data suggest 

that Praja1 inhibits neuronal-like differentiation in PC12 cells through poly-ubiquitination and 

subsequent degradation of NRAGE. 
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1. Zusammenfassende Darstellung 

Für lange Zeit ist der Prozeß der Ubiquitinierung, d. h. die Markierung von Proteinen mit 

sogenannten „Ubiquitin“-Peptiden, nahezu ausschließlich im Zusammenhang mit der Halb-

wertzeit von Proteinen betrachtet worden. In der Tat führt das Anfügen längerer Ubiquitin-

ketten (Polyubiquitinierung) zum Abbau des auf diese Weise markierten Proteins durch den 

Proteasomkomplex. Wie sich in den letzten Jahren jedoch zunehmend gezeigt hat, spielt 

insbesondere die post-translationale Modifikation durch kurze Ubiquitinketten oder einzelne 

Ubiquitinpeptide (Mono- und Multimonoubiquitinierung) im Rahmen intrazellulärer Transport-

vorgänge eine wichtige Rolle und hat sich als bedeutsam für die Aktivität einer Vielzahl von 

Signalwegen erwiesen. Die Erkenntnis, daß eine Störung der Ubiquitinierungsfunktion an 

der Pathogenese zahlreicher Erkrankungen und Syndrome beteiligt ist, hat zusätzlich dazu 

beigetragen, daß Ubiquitinierung mittlerweile als ein zentraler Vorgang für die Aufrechter-

haltung der zellulären Homöostase sowie die Anpassung der Zelle an neue Gegebenheiten 

angesehen wird. Obschon die wesentlichen Abläufe im Rahmen der Ubiquitinierung von 

Proteinen bekannt sind, ist das Wissen über einen Großteil der an der Ubiquitinierung 

beteiligten Enzyme und über deren genaue Wirkung innerhalb der Zelle in den meisten 

Fällen nach wie vor gering.  

Zu diesen Enzymen zählt auch die E3 Ubiquitinligase Praja1, die erstmals im Zusammen-

hang mit der Leberentwicklung von Mäusen beschrieben (Mishra et al. 1997) und in der 

Folge mit der Entstehung gastrointestinaler Tumoren in Verbindung gebracht worden ist 

(Mishra et al. 2005; Saha et al. 2006). Bereits frühzeitig ist zudem die mögliche Bedeutung 

von Praja1 für die neuronale Entwicklung diskutiert worden, da die Sequenz dieser Ubiquitin-

ligase der von Neurodap1 (Nakayama et al. 1995), einem bekannten Faktor in der Ent-

wicklung des zentralen Nervensystems, ähnelt. Die starke Expression von Praja1 im Gehirn 

(Yu et al. 2002) sowie ein Anstieg der Praja1-Expression in der Amygdala nach Furcht-

konditionierung (Stork et al. 2001) haben dazu beigetragen, diesen Verdacht zu erhärten.  

Um die postulierte Praja1-Funktion in neuronalen Zellen herauszuarbeiten, wurde in der 

vorliegenden Studie der Einfluß dieser Ubiquitinligase auf die durch den Wachstumsfaktor 

NGF induzierte Differenzierung von PC12-Zellen untersucht. Aufgrund ihrer Fähigkeit, unter 

Stimulation durch NGF einen Phänotyp ähnlich dem sympathischer Neurone zu entwickeln 

und in diesem Zusammenhang verstärkt neuritenartige Fortsätze auszubilden und neuronale 

Proteine zu exprimieren, ist diese Phäochromozytoma-Zellinie als Modellsystem für eine 

Differenzierung ähnlich der in Neuronen etabliert (Greene & Tischler 1976; vgl. McGuire & 

Greene 1980). 

Neben dem immunzytochemischen Nachweis der verstärkten Expression charakteristischer 

Neurofilamente wie β3-tubulin und MAP2 nach NGF-Gabe als Beleg für ein suffizientes 
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NGF-Stimulationsprotokolls konnte gezeigt werden, daß die endogene praja1-Expression 

durch die Stimulierung der Zellen mit NGF innerhalb von drei Tagen auf das Dreifache 

gesteigert wird. Um die sich daraus ergebende Rolle von Praja1 während der Differenzierung 

besser zu verstehen, ist daraufhin die Morphologie von stabil transfizierten PC12-Zellen 

nach tetracylin-induzierter Praja1-Überexpression untersucht worden. Dabei hat sich eine 

massive Reduktion des durch NGF ausgelösten Neuritenwachstums in den PC12-Zellen 

gezeigt. Diese Wirkung des Praja1 scheint im wesentlichen unabhängig von extrazellulären 

Substraten zu sein, wenngleich Signalwege der integrin-vermittelten zellulären Adhäsion 

einen gewissen modulatorischen Einfluß auszuüben scheinen.  

Frühere Studien haben nachweisen können, daß Praja1 das in mehreren Signalwegen 

eingebundene Protein NRAGE polyubiquitiniert und dessen proteasomalen Abbau induziert 

(Sasaki et al. 2002). NRAGE wiederum ist als Interaktionspartner der NGF-Rezeptoren 

p75NTR und TrkA in mehreren Untersuchungen mit Proliferationshemmung und Apoptose 

(z. B. Salehi et al. 2000) bzw. mit der neuronalen Differenzierung (Feng et al. 2010; Reddy 

et al. 2010) von PC12-Zellen in Zusammenhang gebracht worden. In Übereinstimmung mit 

diesen Befunden hat die Überexpression von Praja1 in dem hier verwendeten PC12-Modell 

zu einer Verringerung der NRAGE-Proteinlevel geführt, die durch Blockade des Proteasoms 

mittels Lactacystin verhindert werden konnte. Dies spricht dafür, daß der Praja1-vermittelte 

Abbau von NRAGE zu einer Störung der Signalwege führt, die die durch NGF hervor-

gerufene Differenzierung koordinieren. Hierzu zählen insbesondere von p75NTR und TrkA 

abhängige Kaskaden (vgl. Kaplan & Miller 2000; vgl. Arévalo & Wu 2006). 

Da NRAGE in verschiedenen Studien eine proapoptotische Wirkung entfaltet hat (z. B. 

Salehi et al. 2000) und weil die Überexpression von Praja1 in Fibroblasten-Zellinien für 

Apoptose charakteristische morphologische Veränderungen hervorgerufen hat (Teuber et 

al. 2013), ist mittels Lumineszenz-Assay kontrolliert worden, inwieweit die beschriebene 

Hemmung der neuronalen Differenzierung von PC12-Zellen durch Praja1 auf eine be-

ginnende Apoptose zurückzuführen sein könnte. Dabei hat sich jedoch keine Erhöhung 

der Aktivität der Caspasen 3 oder 7 in Praja1 überexprimierenden Kulturen gezeigt. 

Aufgrund der mittels quantitativer real-time PCR ermittelten Expressionsmuster ent-

sprechender Marker (Slc18a1, DnaJC5 und NPY) scheint es vielmehr, als würde Praja1 

PC12-Zellen in Richtung eines sekretorischen Phänotyps drängen und gleichzeitig die 

neuronenartige Differenzierung inhibieren.  

Die unterschiedlichen funktionalen Effekte der Praja1-Überexpression in PC12-Zellen und 

Fibroblasten-Linien sprechen dafür, daß die Wirkung von Praja1 wenigstens teilweise von 

der Zusammensetzung des jeweiligen, zelltypspezifischen Proteoms sowie den auf einer 

Zelle vorhandenen Rezeptoren abhängt. Dementsprechend könnten ähnliche oder gleiche 
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molekulare Interaktionen, wie beispielsweise der Abbau von NRAGE nach Ubiquitinierung 

durch Praja1, unterschiedliche Effekte in verschiedenen Gewebs- und Zelltypen hervorrufen. 

Im Vorfeld dieser Studie sind zwei unterschiedliche Praja1-Isoformen als Folge alternativer 

Spleißvorgänge beschrieben worden: Praja1.1 und Praja1.2 (Mishra et al. 1997; Stork et al. 

2001; Teuber et al. 2013). Die Transfektion mit einem praja1.1-Konstrukt führt aufgrund des 

alternativen Spleißens typischerweise zur Expression sowohl von Praja1.1 als auch von 

Praja1.2 in stöchiometrischen Verhältnissen, die denen in PC12-Zellen sowie im adulten 

Gehirn entsprechen. Dagegen führt die Transfektion mit praja1.2 lediglich zur Expression 

von Praja1.2. Aufgrund der Expressionsdynamik in vivo ist vermutet worden, daß Praja1.2 

insbesondere während der embryonalen Entwicklung von Bedeutung sein könnte. Die hier 

dargestellten Ergebnisse sprechen jedoch für eine insgesamt vergleichbare Funktion beider 

Isoformen, wenngleich einige subtile Unterschiede zu verzeichnen waren. So deutet sich 

an, daß Praja1.2 in geringerem Maße im Nucleus zu finden ist als Praja1.1, daß Praja1.2 

weniger stark zu einer Vergrößerung der Zellfläche führt, was auf eine geringere Beein-

flussung adhäsiver Signalwege hinweisen könnte, und daß Praja1.2 das Überleben der 

Zellen unter NGF-deprivierten Bedingungen fördern kann. 

Zusammenfassend ist festzuhalten, daß die hier vorgelegte Untersuchung anhand eines 

Modellsystems erste konkrete Hinweise dafür liefert, daß die E3 Ubiquitinligase Praja1 als 

Mediator der neuronalen Differenzierung zu agieren vermag. Durch Regulation der Protein-

level des Signalmoleküls NRAGE ist Praja1 imstande, u. a. BMP- und NGF-abhängige 

Signalwege zu beeinflussen. Diese wiederum sind mit anderen Signalkaskaden verknüpft, 

zum Beispiel denen der Wnt-Familie, so daß Grund zu der Annahme besteht, daß Praja1 

eine wichtige Rolle während der Formierung und Entwicklung des zentralen Nervensystems 

spielen und darüber hinaus Einfluß auf Lernprozesse und die Gedächtniskonsolidierung 

nehmen könnte.   
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2. Introduction 

While admiring nature makes most people value simplicity and regularly leads to feelings 

of awe, calmness, and tranquillity, insights into the processes lying beneath paradoxically 

reveal a most intricate interplay of seemingly uncountable factors, regardless of whether the 

dynamic change of mountain ranges, the patterns of sea wave potentiation and distribution, 

or the development and physiological function of biological species and individuals are 

investigated. To date, even the minutest observation in any scientific field uncovers new 

realms of complexity. This is no less true for the development not only of entire species or 

organisms, but also of their organs or even of single cells. It is, thus, hardly surprising that 

the development and differentiation of cells and tissues of neuronal, but also of non-neuronal 

background rely on closely intertwined cellular programmes in interplay with extracellular 

signals, such as diffusible factors, components of the extracellular matrix, and interactions 

with surrounding cells. 

2.1 Ubiquitination 

Among the intracellular processes, one that has gained growing attention within the past 

decades is that of ubiquitination. Its name refers to the observation that the targeted labelling 

of proteins with an 8.5 kDa peptide called “ubiquitin” has been found in all eukaryotic cells 

and is hence truly “ubiquitous”. Classically, attachment of ubiquitin peptide chains to proteins 

has only been considered as an important regulator of protein half-life, because ubiquitinated 

proteins have appeared to be solely prone for degradation by the proteolytic, multi-enzyme 

26 S proteasome complex. However, it has become increasingly clear that ubiquitination is 

also pivotal for regulating processes such as receptor internalization and endocytosis, 

intracellular trafficking as well as transcriptional regulation. While targeting of proteins for 

proteasomal degradation has been commonly linked to poly-ubiquitination, i. e. the addition 

of four or more ubiquitin peptides in a chain, other functions of ubiquitination, like induction 

of receptor endocytosis and marking proteins or endosomes for lysosomal degradation, 

seem to rely on mono- or multi-mono-ubiquitination (cf. Glickman & Ciechanover 2002; cf. 

Murphey & Godenschwege 2002; cf. Mukhopadhyay & Riezman 2007; cf. Shenoy 2007).  

Post-translational modification of a protein through ubiquitination requires several steps to 

occur. First of all, the ubiquitin peptide needs to be activated by an E1 ligase in an endo-

thermic manner relying on the presence of adenosine triphosphate (ATP). Subsequently, the 

activated ubiquitin binds to an E2 ligase, which serves as a recognition partner for the 

numerous substrate-specific E3 ligases. The latter may then transfer the ubiquitin to lysine 

residues or, less frequently, to the amino terminus or to cysteine residues of a specific 



  14 

protein, and by doing so regulate intracellular proteome homeostasis as well as signalling 

pathway activity (cf. Glickman & Ciechanover 2002).  

Two major types of E3 ligases have been found to date: Those containing a homologue to 

E6-AP C-terminus (HECT) domain and those with a really interesting new gene (RING) 

motif, both of which are essential for their respective function as an E3 ligase. While the 

former covalently bind the activated ubiquitin before transferring it to their substrate, E3 

ligases of the latter type appear to serve as scaffolding proteins with the cysteine- and 

histidine-rich, zinc-dependent RING motif creating spatial proximity between the substrate 

and the E2 ligase carrying an activated ubiquitin, which is then attached to the substrate 

by the E2 ligase itself (Lorick et al. 1999; cf. Glickman & Ciechanover 2002). The scaffolding 

function of RING E3 ligases may also depend on the formation of larger protein complexes, 

as has been shown on several occasions (cf. Glickman & Ciechanover 2002). Aside from 

these most prominent types of E3 ligases, other proteins containing several kinds of zinc 

finger domains, e. g. the plant homeodomain (PHD) motif, have been implicated to function 

as E3 ligases (cf. Coscoy & Ganem 2003). Furthermore, elongation of ubiquitin chains may 

be facilitated by another group of E3 ligases, often also referred to as E4 ligases, which 

contain a U-box, commonly recognized to be a modified RING domain (Koegl et al. 1999; 

Aravind & Koonin 2000; cf. Glickman & Ciechanover 2002). Degradation-inducing ubiquitin 

chains are usually linked via the lysine at position 48 in the ubiquitin sequence. In contrast, 

linkage via the lysine at position 63 has been found to trigger non-proteasomal pathways 

(cf. Glickman & Ciechanover 2002; Geetha et al. 2005; cf. Shenoy 2007). 

Over the years, evidence implying important functions of ubiquitination during cell cycle 

control, development, and differentiation has accumulated, as also indicated by the manifold 

involvements in pathogenesis known to date; most prominently, mutations or aberrations 

of components of the ubiquitin-proteasome system (UPS) that may either induce stabilization 

of proto-oncogenes, e. g. several immediate early genes, or increase degradation of tumour 

suppressors, such as p53, may promote cancer development. With regard to the nervous 

system, several genetically determined conditions have been associated with altered UPS 

components. Angelman Syndrome has been among the first genetic disorders to be linked 

to an E3 ligase. A deletion in the maternal chromosome region 15q11-13, which comprises 

the ubiquitin-protein ligase E3A (UBE3A) gene, or direct mutation of the UBE3A gene have 

been found to cause Angelman Syndrome due to the parallel silencing of the corresponding 

paternal chromosome region through imprinting (Kishino et al. 1997; Matsuura et al. 1997). 

Autosomal recessive forms of juvenile Parkinsonism have been associated with another 

mutated E3 ligase called “Parkin” (Kitada et al. 1998; Moore 2006). Moreover, a less 

specified imbalance of proper ubiquitination has been implicated in a wide range of neuro-

degenerative diseases like Alzheimer’s Disease, different kinds of ataxia, including Fragile 

X Associated Tremor / Ataxia Syndrome (Willemsen et al. 2003), Huntington’s Disease, or 
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other forms of Parkinson’s Disease, although most of the exact pathogenic mechanisms 

are still unknown (cf. Glickman & Ciechanover 2002; cf. Johnston & Madura 2004; Meray 

& Lansbury 2007). Yet, there is good reason to attribute an important role to ubiquitination 

and E3 ligases in differentiating and mature neurons (cf. Murphey & Godenschwege 2002; 

cf. Glickman & Ciechanover 2002; cf. Johnston & Madura 2004; cf. Hernández et al. 2004). 

Accordingly, cell culture experiments have revealed elevated levels of ubiquitinated proteins 

during neuronal-like differentiation of phaeochromocytoma (PC12) cells as induced by the 

application of nerve growth factor (NGF) (see section 2.4 for an introduction to the PC12 

model), while treatment of PC12 cells with the proteasome inhibitor lactacystin and 

subsequent accumulation of proteins could mimic NGF-induced neurite outgrowth in an 

apparently E3-ligase-dependent manner (Obin et al. 1999). Furthermore, NGF binding to 

its receptors and subsequent lysine-63 poly-ubiquitination of its high-affinity receptor have 

been shown to be pivotal for NGF-induced differentiation of PC12 cells (Geetha et al. 2005). 

Studies in primary neuronal cultures, on the other hand, have found adverse effects of 

proteasome inhibitor treatment on neuronal differentiation, resulting either in inhibition of 

neurite outgrowth or in neurite degeneration resembling a dying-back pattern in cultures that 

had already been allowed to differentiate (Laser et al. 2003). Nonetheless, ubiquitination 

and subsequent proteasomal degradation of synaptic proteins in primary neurons have 

been observed to play an important role during the activity-dependent reorganization of the 

postsynaptic density (Ehlers 2003) and with regard to general synaptogenesis as well as 

synaptic maintenance (cf. Johnston & Madura 2004). Furthermore, a profound role of the 

UPS during memory formation has been demonstrated in many different studies: Its induction 

in the rat hippocampus is needed for long-term memory formation, and inhibitory avoidance 

training leads to an increase in ubiquitination levels (Lopez-Salon et al. 2001). In accordance 

with the afore-mentioned findings by Ehlers, poly-ubiquitination-dependent degradation of 

postsynaptic proteins has been described in the hippocampus after retrieval of contextual 

fear memory, while proteasome blockade has been capable of preventing extinction of fear 

memory (Lee et al. 2008). Similarly, Jarome and collaborators have found evidence that 

protein degradation via the UPS is essential during synaptic reorganization and memory 

formation in the amygdala after fear conditioning (Jarome et al. 2011). 

The key role of ubiquitination processes in mediating cellular activity may also be indicated 

by their tight control. Many E3 ligases have been found to be capable of auto-ubiquitination, 

hence self-regulating their activity. Furthermore, abundance of de-ubiquitinating enzymes 

(DUB), which may rescue poly-ubiquitinated proteins from proteasomal degradation, or 

mechanisms like SUMOylation, which can block lysine residues and prevent ubiquitination, 

indicate that a fine balance between ubiquitination and other modifications is needed to 

maintain cellular stability or to allow for particular changes to occur (cf. Johnston & Madura 

2004; cf. Glickman & Ciechanover 2002). 
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2.2 The E3 ubiquitin ligase Praja1 

Praja1, which means “birth” or “development” in Sanskrit, is an E3 ubiquitin ligase containing 

a RING motif (Lorick et al. 1999). Initially, pja1 has been identified as a gene related to liver 

development (Mishra et al. 1997), but sequence similarity to Neurodap1 (Nakayama et al. 

1995), which is also referred to as Praja2, and prominent expression in the brain (Yu et al. 

2002) have also indicated an involvement in nervous system function, making Praja1 a 

candidate for the control of neuronal development and plasticity in the nervous system 

(Mishra et al. 1997; Stork et al. 2001; Loch et al. 2011). This notion is supported by the 

clinical observation that a deletion of the X-chromosomal region harbouring the pja1 gene 

is found in patients with craniofrontonasal syndrome and appears to be associated with 

mild learning disabilities (Yu et al. 2002; Wieland et al. 2007). Furthermore, Praja1 has been 

found to be up-regulated in the basolateral amygdala (BLA) following fear conditioning (Stork 

et al. 2001) and has been reported to target various anti-apoptotic and brain developmental 

factors (Loch et al. 2011). 

Alternative splicing of the murine pja1 gene generates two transcript variants termed 

praja1.1 (National Center for Biotechnology Reference Sequence: NM_001083110.1) and 

praja1.2 (NCBI Reference Sequence: NM_008853.3) that code for two isoforms, hereafter 

referred to as Praja1.1 and Praja1.2, with predicted molecular weights of 64 kDa and 44 kDa, 

respectively (Teuber et al. 2013). Accordingly, ESEfinder (Cartegni 2003) and RESCUE-ESE 

(Fairbrother et al. 2002) online services have identified relatively strong SC-35 exonic splicing 

enhancer (ESE) consensus sequences, which are known to be important regulators of exon 

inclusion (Liu et al. 2000), in proximity to splice sites within the pja1 gene. Analysis of pja1 

expression during development in mice by Anne Albrecht has revealed a 3.5-fold increase 

in Praja1 messenger ribonucleic acid (mRNA) levels between embryonic stages at day 7 (E7) 

and 11 (E11) post conception. Until E15, both pja1 transcript variants show equal expression 

levels, but then levels of Praja1.2 mRNA decline, leaving Praja1.1 to be the dominating 

variant in adult mice with a ratio of about 3:1 compared to Praja1.2 in most tissues (Teuber 

et al. 2013). In general, praja1 expression is found in a wide range of tissues in adult mice, 

most prominently in testes, but also in brain, spleen, lung, or liver; in contrast, kidney, heart, 

and skeletal muscle show only low levels of expression (Teuber et al. 2013).  

A Praja1 association with microtubules, as indicated by a comparable cytosolic distribution, 

overlapping with filamentous structures, has been observed by Ryoji Fukabori in immuno-

cytochemical experiments in neuronal-like differentiated PC12 cells after NGF stimulation. 

Disruption of this association by treatment with colchicine has pointed to a dependence on 

microtubule integrity (Teuber et al. 2013). Less frequently, association of Praja1 with micro-

filaments has been found, in particular at sites of neurite outgrowth and in filopodia (Teuber 

et al. 2013). 
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Functionally, evidence from fibroblast-like COS7 cells has indicated a pro-apoptotic role of 

Praja1 by inducing micro-spike formation, cell rounding, and the development of pyknotic 

nuclei (Teuber et al. 2013). 

2.2.1 Substrates of Praja1 

Among the most promising substrates of Praja1 that could be identified to date is the rat 

neurotrophin receptor-interacting MAGE homologue (NRAGE), named melanoma antigen D1 

(MAGE-D1) in human and distal-less homeobox (Dlx) interacting protein 1 (Dlxin-1) in mouse. 

For the sake of clarity, it will only be referred to as “NRAGE” in the following. NRAGE is a 

member of the class II MAGE family and serves as a multi-functional signalling molecule. 

It has generally been recognized for its involvement in NGF and bone morphogenic protein 

(BMP) signalling, but has recently also been implicated in receptor-tyrosine-kinase-like 

orphan receptor (Ror) 2 signalling as well as in cell adhesion mediated by axonal guidance 

receptors such as uncoordinated-5 homologue H1 (UNC5H1) or by cadherins; all of which 

are involved and appear to interact in regulating neuronal development (Iwasaki et al. 1999; 

Salehi et al. 2000; Bui et al. 2002; Ito et al. 2002; Althini et al. 2003; Matsuda et al. 2003; 

Williams et al. 2003; Lönn et al. 2005; cf. Nykjaer et al. 2005; Xue et al. 2005; Lai et al. 2012; 

cf. Mouri et al. 2013). Underpinning the versatile role of NRAGE in neuronal survival and 

differentiation, NRAGE-deficient mice present a peculiar phenotype combining elements of 

depression, autism, and Prader-Willi-Syndrome: Hyperphagia paired with reduced motor 

activity lead to progressive obesity and with regard to behaviour, these mice show a reduction 

in social interactions and memory performance, increased levels of anxiety and self-grooming 

as well as deficient sexual behaviour, which could be alleviated by administration of oxytocin, 

selective serotonin re-uptake inhibitors (SSRI), or tricyclic anti-depressants (Dombret et al. 

2012; Mouri et al. 2012).  

Following over-expression in human embryonic kidney (HEK) 293 cells, Sasaki et alii have 

found an increased ubiquitination of NRAGE by Praja1, paired with a reduction in NRAGE 

protein levels and NRAGE-dependent transcriptional activity (Sasaki et al. 2002; Masuda 

et al. 2001). In vitro experiments have additionally demonstrated direct binding of Praja1 

to the MAGE homology domain (MHD) within the NRAGE sequence via a region close to the 

Praja1 RING domain (Sasaki et al. 2002). Interestingly, the expression pattern of murine 

NRAGE is very similar to that of Praja1. Just like the latter, NRAGE is up-regulated between 

E7 and E11 and is highly expressed in brain, liver, and testes, whereas skeletal muscle, 

kidney, spleen, and lung show low or undetectable expression levels (Masuda et al. 2001). 

In comparison, adult animals as well as differentiated PC12 cells present drastically reduced 

levels of NRAGE (Salehi et al. 2000; Masuda et al. 2001; Williams et al. 2003). So far, 

NRAGE has mainly been recognized for its pro-apoptotic role in various cell types (Salehi 
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et al. 2000; Jordan et al. 2001; Salehi et al. 2002; Kendall et al. 2005), but also for its 

alteration of neuronal differentiation of PC12 cells (Feng et al. 2010; Reddy et al. 2010).  

Aside from NRAGE, Sasaki and collaborators have observed a ubiquitination-dependent 

degradation of muscle segment homeodomain (msh) homeobox (Msx) 2 – a pivotal factor 

in the differentiation of osteoblasts – caused by Praja1. However, because they had not 

found any evidence for direct binding of Praja1 to Msx2, they have speculated that a complex 

formed by Praja1, NRAGE, and Msx2 may serve to make Msx2 accessible for ubiquitination 

by Praja1 (Sasaki et al. 2002). From a clinical perspective, substitution of one single amino 

acid within the Msx2 protein sequence is known to cause autosomal dominant Boston-type 

craniosynostosis, which is characterized by skull defects and insufficient brain development. 

The mutated Msx2P138H also appears to enhance degradation of Msx2 by Praja1, potentially 

explaining the dominant-negative loss-of-function of this mutation (Yoon et al. 2008; Jabs 

et al. 1993). 

Transforming growth factor β (TGF-β) signalling, which is known to be of importance for cell 

polarity, cell differentiation, and tumour suppression, is mediated by the family of so-called 

“Smad” proteins within the cell; an allusion to their Caenorhabditis elegans and Drosophila 

melanogaster homologues small body size (SMA) and mothers against decapentaplegic 

(MAD). The downstream transcriptional activity of Smad proteins is regulated by adaptor 

proteins such as embryonic liver fodrin (ELF) (Tang et al. 2003). Mishra’s group has also 

revealed an inverse relationship between Praja1 and ELF protein levels in hepatocytes 

and two gastrointestinal cancer cell lines, which could be linked to ubiquitination of ELF by 

Praja1 (Mishra et al. 2005; Saha et al. 2006). This interaction and subsequent degradation 

of ELF is accelerated by TGF-β stimulation, upon which Praja1 also moves from a diffuse 

distribution in the cytoplasm to specific cell-to-cell contact points at the plasma membrane 

(Saha et al. 2006). In addition, a weak ubiquitination of Smad3 has been observed by Saha 

and collaborators; yet, the physiological relevance of this has not been addressed in their 

study (Saha et al. 2006). However, Praja1 over-expression has been demonstrated to be 

capable of disrupting TGF-β signalling and of increasing cell proliferation. This has led to 

the assumption that basal Praja1 expression might be of importance in a self-regulating, 

negative feedback loop in TGF-β signalling, but that increased Praja1 expression could be 

tumourigenic (Saha et al. 2006). Accordingly, Praja1 levels are known to be elevated in 

several gastrointestinal cancers, while up to 37.5 % of gastric cancers present decreased 

Smad3 levels (Han et al. 2004; Mishra et al. 2005; Saha et al. 2006). 

In a comprehensive study of human proteomic profiles, Loch and colleagues have screened 

for other potential interaction partners of Praja1. They have identified several human E2 

ubiquitin ligases that interact with Praja1, among those ubiquitin-conjugating enzyme E2D2 

(UBE2D2), UBE2D3, UBE2E3, and UBE2K, with the first two showing the highest activity 

levels (Loch et al. 2011). Focussing on UBE2D3 as the partnering E2 ligase, they have 
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tested those human proteomic profiles for substrates, clustered their results for substrate 

function, and found that Praja1 appears to target factors playing a role in brain development, 

anti-apoptotic factors, proteins linked to kinase activity as well as proteins involved in RNA 

processing and transcription (Loch et al. 2011). The factors involved in brain development 

comprise phosphoglycerate dehydrogenase (PHGDH), needed during amino acid synthesis, 

and brain creatine kinase (CKB), which is important for energy homeostasis (Loch et al. 

2011). 

While NRAGE has not been on their arrays, Loch et alii have identified another member of 

the MAGE family, MAGE-B4, to be poly-ubiquitinated by Praja1 (Loch et al. 2011). Whereas 

MAGE-D1 is widely expressed throughout the body, MAGE-B4 expression has been strictly 

localized to foetal gonads and adult testes and appears be relevant during gametogenesis 

(Osterlund et al. 2000; Mäkelä et al. 2014). 

Interestingly, Praja1 may also decrease levels of the polycomb repressive complex (PRC) 2 

that methylates histone H3, hence modulating gene expression and influencing epigenetic 

modification (Zoabi et al. 2011). PRC2 consists of three components: the histone H3 methyl 

transferase enhancer of zeste homologue (EZH) 2, suppressor of zeste (SUZ) 12, and 

embryonic ectoderm development (EED). Praja1 may individually target any of the PRC2 

components for poly-ubiquitination and subsequent degradation. However, whether the 

entire complex may also be a target of Praja1 has not been resolved, yet (Zoabi et al. 2011). 

2.2.2 Regulation of Praja1 expression and its activity 

So far, little is known about the regulators of Praja1 expression and activity. As could be 

demonstrated for a number of RING E3 ligases, Praja1 is capable of auto-ubiquitination in 

absence of substrates, indicating a tightly controlled self-regulation of its activity (Saha et 

al. 2006; Teuber et al. 2013). 

Within recent years, however, two inductors of pja1 gene expression have been identified. On 

the pharmacological side, the unselective histone methylation inhibitor 3-deazaneplanocin A 

(DZNep), known for decreasing PRC2 levels via induction of proteasomal degradation, has 

been found to do so by elevating levels of Praja1 (Miranda et al. 2009; Zoabi et al. 2011). 

Among the common transcription factors, forkhead box P3 (FOXP3), an important tumour 

suppressor, e. g. in mammarian cancer, has been observed to induce pja1 expression in 

order to subsequently reduce EZH2 levels as well, thus regulating proliferation and cell 

survival (Shen et al. 2013).  

Interestingly, Praja1 activity might also be modulated by interaction with MAGE proteins. 

Several MAGE family members have been found to bind to RING E3 ligases via their shared 

MHD and serve as modulators by increasing E3 ligase activity rather than being targeted 

for degradation by the UPS (Doyle et al. 2010). In that regard, MAGE-G1, best known for its 



  20 

involvement in the chromatin re-organizing structural maintenance of chromosomes proteins 

(SMC) 5-6 complex (Taylor et al. 2008), has been proposed to be another interaction partner 

of Praja1 (Doyle et al. 2010). Notably, the murine homologue of MAGE-G1, expressed in 

brain, testes, ovaries, and kidney, might be involved in neurodevelopmental disorders such 

as Prader-Willi-Syndrome, has been demonstrated to inhibit proliferation in an osteosarcoma 

cell line, appears to suppress activity of the eukaryotic transcription factor E2F1, and interacts 

with the death domain of the p75 pan-neurotrophin receptor (p75NTR) (Kuwako et al. 2004). 

Weaker interactions between Praja1 and the potentially cancerogenic factors MAGE-A2, 

MAGE-B18, and MAGE-C2 (the latter is only expressed in testes) have also been implicated 

(Doyle et al. 2010), although their physiological function and relevance are unknown to date. 

2.3 The potential involvement of Praja1 in different signalling pathways 

Based on the fact that Praja1 has been found to reduce levels of NRAGE, Msx2, and Smad3, 

it may be assumed that this E3 ubiquitin ligase might mediate the signalling cascades in 

which these proteins are involved, the most prominent of which shall be briefly introduced 

hereafter.  

2.3.1 The basics of BMP signalling 

Originally, NRAGE has been identified as an activator of Dlx5 transcriptional activity and 

hence as a mediating factor in BMP signalling (Masuda et al. 2001). BMP are members of 

the TGF-β family, originally recognized for their ability to induce bone or cartilage formation 

via Smad-dependent as well as Smad-independent signalling (Urist 1965; Reddi & Huggins 

1972; Chen et al. 2012; Nishimura et al. 2012). More recently, BMP signalling has been 

linked to dendritic growth and synapse stabilization in neuronal cells (cf. Liu & Niswander 

2005; Lee-Hoeflich et al. 2004; Eaton & Davis 2005; Meng et al. 2002; Endo et al. 2003). 

In addition, BMP has been shown to control key steps during the development of the central 

nervous system (CNS) by regulating cell fate, proliferation, and differentiation at distinct 

developmental stages (cf. Liu & Niswander 2005). Certain members of the BMP family have 

been demonstrated to induce neuronal-like differentiation in PC12 cells (cf. section 2.4) as 

well as differentiation of neurons producing γ-aminobutyric acid (GABA). At least in the latter, 

it seems as if development of a GABAergic phenotype relies on p38 and is independent of 

other signalling pathways that have been shown to play a role in neuronal differentiation, 

especially activation of extracellular-regulated kinase (Erk) 1/2, also named mitogen-activated 

protein kinase (MAPK) p42/p44 (Iwasaki et al. 1996; Iwasaki et al. 1999; Hattori et al. 1999). 

In contrast, other BMP family members only enhance NGF-induced neuritogenesis instead 

of inducing neuritogenesis themselves (Althini et al. 2003; Lönn et al. 2005). 

BMP-binding to one of its receptors typically leads to the subsequent activation of receptor-

specific Smad proteins (Smad2 and Smad3), which may then form a complex with Smad4, 
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translocate to the nucleus, and act as transcription factors (Piek et al. 2001; Lutz et al. 2004). 

This process is tightly regulated by intracellular inhibitory Smad proteins (Smad6 or Smad7), 

which lead to proteasomal degradation of the activated Smad complex, by phosphorylation 

through the rat sarcoma (Ras) and Erk1/2 pathway, or by negative feedback loops following 

BMP-induced gene expression (Kretzschmar et al. 1997; cf. Liu & Niswander 2005). 

Among the genes induced by the BMP cascade are several homeobox genes of the highly 

conserved Msx family, which are known for contributing to neurogenesis and dorsoventral 

patterning during CNS development (Isshiki et al. 1997; Liu et al. 2004) and in turn regulate 

BMP signalling upon their expression (Alvarez Martinez et al. 2002; Binato et al. 2006; cf. 

Liu & Niswander 2005). One of them is msx2 (Hussein et al. 2003; Nishimura et al. 2012), 

which has been identified as a target of Praja1, as previously stated. Remarkably, there is 

some indication that wingless-type (Wnt) signalling – another important signalling cascade 

in development and differentiation of the CNS – might also be able to induce expression 

of the msx2 gene, indicating that pivotal signalling cascades in development such as BMP 

and Wnt signalling may be intertwined to some degree (Willert et al. 2002; Hussein et al. 

2003; Riccomagno et al. 2005; Zhai et al. 2011; Chen et al. 2012). 

Depending on an increase in Msx activity (Liu et al. 2004), BMP also induces expression of 

dlx5, a member of the Dlx family, which has first been identified in relation to development 

and fracture healing of the skeletal system, but has meanwhile been recognized for its 

promoting effects in neurogenesis, especially with regard to GABAergic interneurons, in 

which Dlx5 activity induces expression of the key enzyme glutamic acid decarboxylase 

(GAD) (cf. Masuda et al. 2001; Stühmer et al. 2002; Perera et al. 2004; Yu et al. 2011). 

Moreover, up-regulation of Dlx5 and Dlx6 in knock-out mice lacking the methyl-CpG binding 

protein (Mecp) 2 has linked Dlx5 to the X-chromosomal neurodevelopmental disorder called 

Rett Syndrome, which is caused by mutations in the Mecp2 gene (cf. Wenk 1997; Horike 

et al. 2005). 

Importantly, NRAGE binds to and stimulates transcriptional activity of Dlx5 via its N-terminal 

transcriptional activation domain (Masuda et al. 2001) – hence its naming as Dlx-interacting 

protein (Dlxin-1) in mice – and has therefore been proposed to influence the development of 

GABAergic neurons (Kuwajima et al. 2004). Furthermore, NRAGE could potentially contribute 

to the phenotype in Mecp2-null mice by activating the up-regulated Dlx5, although this has 

not been further studied, yet. However, while elevating expression levels of Msx2 and Dlx5, 

BMP stimulation has been insufficient to increase NRAGE expression (Masuda et al. 2001). 

2.3.2 A brief introduction to neurotrophin signalling 

Although BMP signalling has been identified to play a role in neuronal differentiation as well, 

first implications for a role of NRAGE during neuronal development have resulted from its 

involvement in NGF neurotrophin signalling. 
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The term “neurotrophin” refers to a family of five proteins, namely NGF, brain-derived 

neurotrophic factor (BDNF), and the neurotrophins 3 to 5 (NT-3, NT-4, NT-5), all of which 

seem to have derived from one common neurotrophin ancestor (cf. Murer et al. 2001). As 

the name implies, neurotrophins are important for the survival and differentiation of neurons, 

although it is important to note that effects of neurotrophins are not restricted to the nervous 

system (cf. Aloe et al. 1994; cf. Cirulli & Alleva 2009; cf. Gioiosa et al. 2009). Neurotrophins 

bind to two types of receptors: the high-affinity tropomyosin-related kinase (Trk) receptors 

with an intracellular tyrosine kinase activity and the low-affinity pan-neurotrophin receptor 

p75NTR, a member of the tumour necrosis factor (TNF) super-family with a cytoplasmatic 

death domain. There are different subclasses of Trk receptors with varying specificity for 

the different neurotrophins and with NGF preferentially binding to TrkA (Meakin et al. 1992; 

cf. Meakin & Shooter 1992; cf. Kaplan & Miller 2000; cf. Murer et al. 2001; Tyler et al. 2002). 

Signalling solely via p75NTR requires binding of a neurotrophin homo-dimer, predominantly 

NGF, to the receptor. Typically, however, NGF binds to a homo-dimer of the TrkA receptor 

or, in presence of p75NTR, to a hetero-dimer of TrkA and p75NTR, in which the latter seems 

to enhance the affinity of NGF to TrkA (cf. Murer et al. 2001). Despite the well-established 

functional interaction of p75NTR and TrkA, early studies have not provided any evidence for 

direct binding of p75NTR to TrkA (cf. Meakin & Shooter 1992; Wehrman et al. 2007), mainly 

explaining the joint functional effects by ligand passing from p75NTR to TrkA, during which 

a short-lived hetero-complex linked by NGF would be formed (Mehta et al. 2012). In contrast, 

more recent findings have suggested an interaction of both receptors via their intracellular 

domains (Iacaruso et al. 2011; Matusica et al. 2013).  

Pro-apoptotic effects of p75NTR upon neurotrophin stimulation and in absence of Trk receptors, 

for instance following seizure or withdrawal of trophic factors, have been reported to be 

primarily mediated by activation of cJun N-terminal kinase (JNK) and p53, whereas interaction 

of NGF with a hetero-dimer of p75NTR and TrkA promotes cell survival by activating nuclear 

factor “κ-light-chain-enhancer” of activated B cells (NF-κB) in addition to signalling via 

phosphatidylinositol-3 kinase (PI3K) and protein kinase B (PKB or Akt), a serine/threonine 

kinase (Yao & Cooper 1995; cf. Toker & Cantley 1997; Friedman 2000; cf. Kaplan & Miller 

2000; Culmsee et al. 2002; Yeiser et al. 2004; cf. Arévalo & Wu 2006; cf. Cirulli & Alleva 

2009; cf. Diarra et al. 2009; Geetha et al. 2012). While NF-κB has been implicated to be of 

importance during differentiation and synaptogenesis (Boersma et al. 2011), NGF-dependent 

neuronal differentiation appears to rely predominantly on activation of the Erk1/2 cascade 

upon TrkA stimulation (cf. Kaplan & Miller 2000; Piiper et al. 2002; cf. Arévalo & Wu 2006; 

cf. Cirulli & Alleva 2009), which may be enhanced by co-activation of p75NTR (Diolaiti et al. 

2007; Matusica et al. 2013). With regard to synaptic plasticity, neurotrophin effects have 

been demonstrated to depend on protein synthesis following signalling pathway activation 

(Tyler et al. 2002; Yamada & Nabeshima 2003; Kang & Schuman 1996; Takei et al. 2001). 
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In accordance with these findings, NGF is capable of inducing neuronal-like differentiation 

and an elevation in neurofilament protein levels as well as of neural adhesion molecules in 

PC12 cells (also refer to section 2.4), which express both, p75NTR and TrkA (Greene & 

Tischler 1976; Doherty et al. 1987; Doherty et al. 1988; Mann et al. 1989; Grant et al. 1996). 

Importantly, blocking TrkA is known to completely abolish NGF-dependent neurite outgrowth 

in PC12 cells (Itoh et al. 1995), whereas continuous NGF exposure leads to a decrease in 

TrkA activity, probably due to receptor internalization (cf. Kaplan & Stephens 1994; Geetha 

et al. 2005). 

Hippocampal neurons have been demonstrated to express NGF with expression levels 

depending on the general activity pattern and the developmental stage, peaking during early 

postnatal development (Korsching et al. 1985; Large et al. 1986; Zafra et al. 1990; Zafra et 

al. 1991; Lindholm et al. 1994; Berninger et al. 1995). On the receptor side, expression of 

p75NTR in the hippocampus is typically observed during late embryonic and in some studies 

also early postnatal development (Buck et al. 1988; Lu et al. 1989), but not in adults, in 

which p75NTR appears to be primarily expressed in cholinergic neurons (Kiss et al. 1988). 

Fittingly, survival of cholinergic neurons in the basal forebrain and the hippocampus as 

well as their capacity to increase synthesis and release of acetylcholine depends on NGF 

(Rylett et al. 1993; Moises et al. 1995; Dixon et al. 1997; Hellweg et al. 2002; Shimode et al. 

2003; Berry et al. 2010; Mercerón-Martínez et al. 2013). Regarding TrkA levels, published 

data are contradictory: Although there have been reports of TrkA expression in primary 

hippocampal cultures for at least seven days in vitro (DIV7), with a maximum around DIV4, 

other studies could not replicate this expression dynamic (Culmsee et al. 2002). 

Another brain region involved in learning and memory as well as behavioural control and 

known to be rich in NGF is the amygdala (Yan & Johnson 1988; Altar et al. 1991; Nishio et 

al. 1992; Yee et al. 2007). However, the exact roles of neurotrophin and in particular of 

NGF signalling in the amygdala have not been studied in comparable detail to date. 

Nonetheless, the expression of NGF in hippocampus and amygdala supports the assumption 

that – aside from mediating neuronal development and differentiation – there might be a 

distinct role for neurotrophin signalling in anxiety behaviour and fear memory consolidation. 

Furthermore, a neuroprotective role of NGF is indicated by an increased expression of NGF 

in several brain regions following seizures and an up-regulation of NGF during inflammatory 

processes, for instance during acute attacks of multiple sclerosis patients (Gall & Isackson 

1989; cf. Aloe et al. 1994). 

Although NRAGE has been found to interact with the intracellular death domain of p75NTR 

(Salehi et al. 2000; cf. Nykjaer et al. 2005), there are controversial findings regarding its 

exact effects. Feng and co-workers, for instance, have found a decrease in NRAGE levels 

during NGF-induced neuronal differentiation of PC12 cells, paralleled by an up-regulation of 
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p75NTR (Feng et al. 2010). In this context, they have seen a negative influence of NRAGE on 

Erk1/2 activation and TrkA expression, both of which are important for NGF-dependent 

neuronal-like differentiation in PC12 cells (Feng et al. 2010). In contrast, Reddy et alii have 

observed increased survival rates and accelerated neuronal-like differentiation of PC12 cells 

when over-expressing NRAGE and culturing cells in presence of NGF (Reddy et al. 2010). 

While enhanced neuritogenesis in their studies has relied on NRAGE interaction with TrkA 

(but not with p75NTR alone) and subsequent Erk1/2 activation, early activation of the PKB 

pathway through TrkA signalling has mediated cell survival effects (Reddy et al. 2010). 

These findings are thus implying a role of neurotrophins, their receptors, and the subsequent 

intracellular cascades as mediators of plasticity and neuroprotection. Clearly, the complex 

interaction of Trk receptors with p75NTR as well as of subsequent signalling cascades are 

far from being understood, and it appears as if signalling via both receptor types can be 

somewhat synergistic as well as antagonistic, at least partially depending on extracellular 

neurotrophin levels, ratio of mature and precursor neurotrophins as well as on activity states 

of intracellular signalling cascades and on the respective cell type (cf. Kaplan & Miller 2000; 

cf. Arévalo & Wu 2006; cf. Cirulli & Alleva 2009). Moreover, the potential relevance of these 

NGF signalling pathways for and their varying balance in different cell types, brain regions, 

developmental stages, or with regard to behavioural phenomena have yet to be elucidated. 

Due to its involvement in NGF-induced intracellular signalling pathways and its influence on 

neuritogenesis in PC12 cells, NRAGE might serve as a key factor in mediating some of these 

effects.  

2.3.3 Praja1 as a mediating factor in different signalling cascades 

This brief summary of two different signalling pathways, which have their share in cell 

survival, differentiation, and development – partially on their own behalf, partially by close 

interaction – and that both make use of NRAGE at some point, unveils NRAGE to be at the 

focus of processes deciding a cell’s fate.  

NRAGE is highly expressed in the developing and adult nervous system, especially in 

neuronal progenitors and in early post-mitotic neurons, and is often – but not exclusively – 

co-expressed with p75NTR (Barrett et al. 2005; Salehi et al. 2000; Kuwajima et al. 2004). 

Despite having been shown to be pro-apoptotic by mediating JNK and subsequent p53 

activation as well as inducing cleavage of inhibitor of apoptosis (IAP) proteins (Salehi et al. 

2000; Jordan et al. 2001; Kendall et al. 2005; Salehi et al. 2002), NRAGE has also been 

found to mediate neuronal differentiation of PC12 cells (Feng et al. 2010; Reddy et al. 2010), 

which endogenously express the NRAGE activators p75NTR (Salehi et al. 2000) as well as 

TrkA (cf. Kaplan & Stephens 1994), which are both known to mediate NGF-induced effects 

such as cell survival, differentiation, or cell death (Nykjaer et al. 2005; Salehi et al. 2000). 

NRAGE binds to p75NTR as well as to TrkA, and has been proposed to inhibit p75NTR–TrkA 
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dimerization (Barrett et al. 2005). BMP signalling, on the other hand, has been described 

as an important pro-apoptotic pathway in neuronal progenitor cells. In such cells, NRAGE 

has been observed to facilitate pro-apoptotic p38 activation independent of Smad activity 

(Kendall et al. 2005), but has also been linked to the development of GABAergic neurons 

(Kuwajima et al. 2004). 

As stated before, Praja1 is capable of decreasing the levels of NRAGE in a UPS-dependent 

manner. Control of NRAGE activity through Praja1 may thus contribute to achieving the 

delicate balance between different signalling pathways and provide an important mechanism 

for regulating neuronal differentiation in varying neuronal populations and at different stages 

of development. This effect might be further enhanced by Praja1-dependent degradation 

of other important signalling molecules, in particular Smad3. 

2.4 PC12 – A model system for neuronal differentiation 

In 1976, Greene and Tischler published their findings on a newly obtained single cell clonal 

line from a rat phaeochromocytoma, a mostly benign tumour of the adrenal medulla (Greene 

& Tischler 1976). As a reference to its origin, they named this cell line “PC12” and showed 

that these PC12 cells resemble the morphology of sympathetic neurons and are capable of 

producing varicose processes of up to 1,000 µm in length upon application of NGF. This 

was accompanied by a drastic reduction in proliferation (Greene & Tischler 1976). However, 

while sympathetic neurons depend on the presence of NGF for their survival, PC12 cells 

only do so in serum-free media, whereas serum-enriched medium sustains PC12 viability 

even in absence of NGF (Greene & Tischler 1976; Greene 1978).  

Naïve PC12 cells have been found to produce the catecholamines norepinephrine and 

dopamine, whereas epinephrine has not been detected, indicating that they resemble a 

noradrenergic adrenal chromaffin phenotype (Greene & Tischler 1976). Following NGF 

treatment, relative catecholamine protein levels decline, although total protein levels of these 

catecholamines per cell appear to remain more or less stable, indicating a NGF-induced 

up-regulation of protein expression rather than a down-regulation of catecholamines (Greene 

& Tischler 1976). In general, NGF treatment of PC12 cells appears to primarily affect the 

quantitative proteome composition, although qualitative alterations have been observed as 

well, especially with regard to glycoproteins at the plasma membrane (McGuire et al. 1978; 

McGuire & Greene 1980; Obin et al. 1999). Notably, a qualitative overlap of neuron-specific 

glycoproteins in sympathetic neurons and naïve PC12 cells has become apparent, and 

up-regulation of protein expression as induced by NGF has been proven to diminish the 

quantitative gap in membrane glycoproteins between both cell populations (Lee et al. 1977; 

Lee et al. 1981). Aside from changing protein levels, protein activity is also modified by the 

application of NGF, which alters the overall phosphorylation status of PC12 cells and induces 
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expression as well as increased phosphorylation of certain high molecular weight proteins 

like mitogen-associated proteins (MAP), especially MAP1.2 (Greene et al. 1983; Aletta et 

al. 1988). This NGF-induced increase in levels of neurofilament proteins as well as of neural 

adhesion molecules has been confirmed in several subsequent studies (Doherty et al. 1987; 

Doherty et al. 1988; Mann et al. 1989; Grant et al. 1996).  

As previously stated, the responsiveness of PC12 cells to NGF is based on their expression 

of the neurotrophin receptors p75NTR and TrkA (cf. Meakin & Shooter 1992) and blockade 

of signalling via TrkA has been shown to abolish NGF-dependent neurite outgrowth in PC12 

cells, but not all of the NGF-induced proteome alterations (Itoh et al. 1995). 

Like adrenal chromaffin cells, naïve PC12 cells present a secretory phenotype. As part of this, 

they produce large dense core vesicles (LDCV) that may contain mono-amines, especially 

catecholamines, but also neuropeptides, most prominently neuropeptide Y (NPY) (Greene 

& Tischler 1976; Walch-Solimena et al. 1993). While NPY expression is low or undetectable 

in naïve PC12 cells, NPY levels are drastically increased following NGF stimulation (Allen 

et al. 1984; Allen et al. 1987; Sabol & Higuchi 1990; Higuchi et al. 1992; Balbi & Allen 1994; 

Rajakumar et al. 1998). Depending on the expressed set of NPY receptors, this may then 

decrease or enhance catecholamine synthesis (DiMaggio et al. 1994; McCullough et al. 

1998). Typical markers of LDCV are vesicular mono-amine transporters (VMAT), nowadays 

more commonly referred to as solute carrier family 18 vesicular mono-amine transporters 

(Slc18a) (Liu et al. 1994; Liu & Edwards 1997). Slc18a proteins are known to mediate quantal 

size of vesicles as well as mono-amine transmitter and neuropeptide storage (Pothos et 

al. 2000; Hoard et al. 2008). Slc18a member 1 (Slc18a1, formerly VMAT1) is confined to 

endocrine and paracrine cells, e. g. of the sympathetic nervous system, whereas Slc18a2 

(formerly VMAT2) is predominantly found in sympathetic and aminergic neurons, but also in 

a subset of adrenal chromaffin cells (Weihe et al. 1994; Peter et al. 1995; Tillinger et al. 

2010). Accordingly, naïve PC12 cells express Slc18a1 (Cordeiro et al. 2000b). So far, 

however, there is no evidence of Slc18a2 expression in naïve or NGF-treated PC12 cells, 

despite the development of a neuron-like phenotype in the latter (Weihe et al. 1996). DnaJ 

(Hsp40) homologue subfamily C member 5 (DnaJC5), which corresponds to cysteine string 

protein (CSP) in Drosophila melanogaster, is another mediator of vesicular transmission in 

PC12 cells (Burgoyne 1996; Bai et al. 2007; Evans et al. 2001; Cordeiro et al. 2000a) and 

has been shown to be capable of elevating mono-amine release (Chamberlain & Burgoyne 

1998). Slc18a1 and DnaJC5 may hence serve as markers for a secretory PC12 phenotype, 

whereas an induction of NPY expression may indicate successful NGF stimulation. 

An essential feature of neurons is their excitability by various mechanisms, which provides 

the basis for the formation of functional neuronal networks. Supporting the proposition of 

PC12 cells being a model system for studying primary neurons, NGF treatment has been 

found to increase the number of functional, voltage-dependent sodium channels at the 
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plasma membrane without altering its passive permeability, hence allowing for the generation 

of action potentials (Rudy et al. 1987; Bouron et al. 1999). Unstimulated PC12 cells, on the 

other hand, have been demonstrated to be electrically unexcitable (Rudy et al. 1987). In 

addition, NGF stimulation has been observed to elevate calcium influx as well as calcium 

release from intracellular stores in response to bradykinin, a peptide of the kininogen family 

that plays a role in diverse processes, e. g. neural pain transmission (Bush et al. 1991; 

Bouron et al. 1999). Moreover, membrane depolarization caused by elevated potassium 

levels in the medium is capable of preserving NGF-induced neurites as well as protein level 

and phosphorylation changes in a calcium-dependent manner even after NGF withdrawal 

(Teng & Greene 1993). However, elevated potassium levels do not promote further neurite 

elongation; nor do they induce differentiation in the first place or increase vitality of PC12 

cells, as they do in sympathetic neurons (Teng & Greene 1993). 

Based on these observations and the incapability of adrenal chromaffin cells to respond to 

NGF in a comparable manner, it has been assumed that PC12 cells have gained some 

degree of pluripotency, enabling them to develop either a secretory or a neuronal phenotype 

depending on the stimulation they receive (Greene & Tischler 1976). Although PC12 cells do 

not develop a phenotype identical to sympathetic or other neuronal populations, the findings 

gathered since establishing this cell line have repeatedly demonstrated the occurrence of 

neuronal key features in morphology and functionality upon NGF application. Hence, PC12 

cells are recognized as a model system for NGF-induced neuronal-like development and 

differentiation. Considering the fact that primary neuronal cultures have been pre-exposed 

to NGF in vivo and are more difficult to obtain and maintain, the PC12 model is furthermore 

perceived as being especially valuable with regard to initial effects of NGF exposure (cf. 

McGuire & Greene 1980). 

2.4.1 The influence of extracellular matrix components on PC12 cells 

As is widely appreciated, extracellular matrix structure and composition do strongly influence 

activation of cellular pathways. The use of specific extracellular substrates may thus allow 

for assessing, in how far the observed effects depend on or are influenced by cell-to-cell 

or cell-to-matrix interactions. 

PC12 cells have been demonstrated to interact with the collagens type I and IV as well as 

with laminin in a manner similar to that of sympathetic neurons (Tomaselli et al. 1987). All 

of these substrates have been extracted from neural tissues and are known to promote 

neurite outgrowth, cell survival, and cell attachment in various neuronal populations and in 

an integrin-dependent manner (Lander et al. 1985b; Tomaselli et al. 1986; cf. Tomaselli et 

al. 1987; cf. Powell & Kleinman 1997; Beaujean et al. 2003). Accordingly, the influence of 

laminin, collagen I, and collagen IV on PC12 cells is mediated by a functional hetero-dimer 

of β1-integrin and α-integrin subunits (Tomaselli et al. 1987; Tomaselli et al. 1988; Tomaselli 
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et al. 1990). However, while laminin interacts with α1β1- as well as with α3β1-integrin, 

collagens type I and IV appear to only activate α1β1-integrins (Tomaselli et al. 1990). In 

addition, several integrin-independent laminin receptors and signalling cascades have been 

described (cf. Powell & Kleinman 1997). In that regard it should be mentioned that PC12 

cells have been found to secret low amounts of laminin (Lander et al. 1985a; Tomaselli et 

al. 1986), thus autonomously shaping their extracellular environment to an extent that has 

not been further specified to date. 

Another important component of neural extracellular matrices is fibronectin. However, PC12 

cells adhere poorly to fibronectin-coated surfaces, which appears to be due to low expression 

levels of the fibronectin receptor subunit α in this cell line (Tomaselli et al. 1987; Tomaselli 

et al. 1988). 

Among the membrane glycoproteins that are up-regulated following NGF stimulation of 

PC12 cells is the so-called “NGF-inducible large external glycoprotein” (NILE), which has 

been shown to be identical to L1 (Bock et al. 1985), a member of the neural cell adhesion 

molecule (NCAM) family. This group of cell adhesion mediators has been proven to promote 

neurite outgrowth and to modulate cell-to-cell adhesion independent of calcium (Rathjen & 

Schachner 1984; Rathjen & Rutishauser 1984; Mann et al. 1989; cf. Baldwin et al. 1996; 

Webb et al. 2001). In consistence with these findings, induction of L1 in NGF-treated PC12 

cells has been observed to depend on cell-to-cell interaction rather than on extracellular 

substrates or TrkA activation (Itoh et al. 1995). Seeding cells on L1-coated surfaces may 

thus serve as a control for the influence of cell-to-cell interactions on observed alterations 

by mimicking high cell densities. 

To control for the specificity of potential substrate effects, poly-D-lysine (PDL) has been 

found to increase cellular adherence in an unspecific manner and independent of integrins 

(Brighton & Albelda 1992). Nonetheless, some experiments have indicated that neurite 

outgrowth – in contrast to general adherence – on PDL-coated surfaces might depend on 

some degree of integrin activation after all (Tomaselli et al. 1987). 

2.5 Aim of this study 

Against this backdrop, the study at hand has aimed at testing the hypothesis that the E3 

ubiquitin ligase Praja1 is generally capable of influencing neuronal differentiation. To this 

end, the influence of Praja1 on NGF-induced differentiation of PC12 cells has been studied 

in the following manner. 

First, endogenous expression and intracellular localization of Praja1 have been examined 

in NGF-treated PC12 cells. Upon this, the effect of Praja1 on neurite outgrowth and cellular 

morphology during NGF stimulation has been determined on various extracellular substrates 

using the two validated transcript variants of mouse praja1, which are coding for the two 
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isoforms referred to as Praja1.1 and Praja1.2, in tetracycline-inducible stably transfected 

PC12 cell lines.  

To control for changes in the expression of phenotype markers in Praja1 over-expressing 

cells during NGF stimulation, immunocytochemistry as well as quantitative real-time PCR 

(qRT-PCR) have been applied. 

Finally, a Praja1-dependent increase in poly-ubiquitination levels and specific degradation 

of NRAGE have been confirmed in the PC12 model system via Western blotting, linking the 

observed morphological effects of Praja1 on NGF-induced differentiation of PC12 cells to a 

reduction of NRAGE following over-expression of Praja1. 

PC12 cells are insensitive to signalling via TGF-β, due to a lack of the required receptor. 

Nonetheless, the BMP signalling factor Smad3 may be activated and translocate to the 

nucleus independent of TGF-β signalling, instead induced by NGF-binding to TrkA (Lutz 

et al. 2004). To evaluate the possibility that the observed alterations in morphology might 

be at least partially caused by a Praja1-dependent reduction of Smad3, levels of this protein 

have also been assessed.  
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3. Materials and Methods 

Complementing the following description of all methods applied in the course of experiments 

for this dissertational thesis, the suppliers of all devices and materials mentioned in this 

chapter are listed in detail in the appendix (see A.II). 

3.1 Cell culture 

PC12 cells have been cultured in 85 % Dulbecco’s modified Eagle medium (DMEM), 10 % 

horse serum, and 5 % foetal bovine serum (FBS) (high serum condition). African green 

monkey kidney fibroblast-like (COS7) cells have been grown in 90 % DMEM and 10 % FBS. 

3.1.1 Praja1 over-expression constructs 

Isolation of praja1 transcripts has been performed by Oliver Stork as previously described 

(Stork et al. 2001): Primer 5’-CTCGAGCCATGAGCCACCAGG-3’ has been used to introduce 

an XhoI restriction site to the 5’-end of the open reading frame, allowing for in-frame cloning 

into the expression vector pEGFP-C1, which produces enhanced green fluorescence protein 

(EGFP), into the pCMV::HA vector, expressing hemagglutinin (HA) under a cytomegalovirus 

(CMV) promoter, or into pTRE2-hyg, a vector allowing for selection of transfected cells using 

hygromycin B as well as for conditional expression following tetracycline application due to 

its tetracycline-responsive element (TRE).  

Transfections with pCMV::HA-Praja1.1, pCMV::HA-Praja1.2, or pCMV::HA as well as with 

pEGFP-Praja1.1, pEGFP-Praja1.2, or pEGFP-C1 for acute transfection experiments, and 

with pTRE::EGFP-Praja1.1, pTRE::EGFP-Praja1.2, or pTRE::EGFP for stable transfections 

have been performed using the GeneJammer reagent according to the manufacturer’s 

instructions. Functionality of these constructs with regard to their capability of increasing 

ubiquitination and reducing NRAGE levels has been confirmed in COS7 cells by Sandra 

Vorwerk and Ryoji Fukabori (Teuber et al. 2013).   

Ryoji Fukabori has selected stably transfected PC12 cells by applying 500 µg/ml of G418 

for two months and 200 µg/ml of hygromycin B for another two months according to the 

manufacturer’s protocol. They have then been maintained using 200 µg/ml of G418 and 

100 µg/ml of hygromycin B.  

Due to alternative splicing, transfection with praja1.1 fusion constructs has generated both 

isoforms, Praja1.1 and Praja1.2 (henceforth referred to as Praja1.1/2), whereas praja1.2 

constructs produced only Praja1.2 in all cell types tested (PC12, COS7, HEK293) (Figure 1, 

Figure 2). 
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Figure 1: Alternative splicing following over-expression of Praja1. Western blotting has demonstrated the 
expression of Praja1 isoforms in COS7 cells. Immunostaining against the HA-tag has been used for visualization. 
While expression of praja1.1 vectors produces HA-Praja1.1 and HA-Praja1.2 (lane 2), transfection with praja1.2 
constructs leads to the exclusive expression of HA-Praja1.2 (lane 3). Control transfection with pCMV::HA does not 
provide a signal due to the low molecular weight of HA (ca. 1 kDa) (lane 1). Β-actin has served as loading control. 

3.1.2 Differentiation of PC12 cells 

For assessing proliferation, neuronal differentiation, apoptosis, and intracellular localization 

of Praja1 isoforms, acutely and stably transfected PC12 cells have been allowed to adhere 

to cover-slips (ca. 1.13 cm2) coated with collagen I (13.3 µg/cm2), collagen IV (13.3 µg/cm2), 

or PDL (13.3 µg/cm2), either further cultured under high serum conditions as stated above 

or in 99.6 % DMEM, 0.2 % horse serum, 0.2 % FBS (low serum condition). To evaluate 

substrate-dependence of Praja1 effects on neuronal differentiation, cover-slips coated with 

either laminin (5.3 µg/cm2) or L1-Fc have also been tested. For L1-Fc coating, PDL-coated 

cover-slips have been treated with anti-human Fc-antibody solution (0.9 µg/cm2), upon which 

human neurite growth protein L1 (0.9 µg/cm2) has been added. 

Neuronal-like differentiation of acutely and stably transfected PC12 cells has been induced 

by administering NGF (25 ng/ml) for up to four days.  

Expression of the tetracycline-responsive tet-on system in stably transfected cells has been 

achieved by parallel application of doxycycline (1 µg/ml).  

3.1.3 Determining the intracellular localization of Praja1 

To evaluate the intracellular distribution of Praja1 constructs, localization indices have been 

calculated for each splice variant based on the distribution of constructs tagged with EGFP 

in each condition. If the nucleus has presented the predominant EGFP signal, the cell has 

been counted as +1, whereas –1 indicates a mostly cytosolic staining, and 0 represents an 

equal staining of nucleus and cytosol.  
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3.1.4 Determining apoptosis 

The rate of apoptosis in stably transfected PC12 lines has been evaluated by applying a 

Caspase-Glo® 3/7 luminescence assay to cell lines after two days of treatment with NGF 

and doxycycline in the afore-mentioned manner and subsequent triplicate measurement in 

a micro-plate reader with the coefficient of variation (CV) commonly ranging from 0.1 to 7.4 

for each triplicate. 

3.2 Immunocytochemistry 

3.2.1 Staining protocol 

Cells have been fixated in 4 % para-formaldeyhde (PFA), before being permeabilized in 

0.3 % Triton™ X-100 and washed in phosphate-buffered saline (PBS) (Table 1). Following 

immunocytochemical staining, cover-slips have been mounted on slides using Shandon 

Immu-Mount™.  

PBS (pH 7.4) 

Sodium chloride (NaCl) 137 mM 

Potassium chloride (KCl) 2.7 mM 

Disodium hydrogen phosphate (Na2HPO4) 12 mM 

Potassium dihydrogen phosphate (KH2PO4) 1.8 mM 

Aqua destillata solvent 

Table 1: Formulation of phosphate-buffered saline. PBS has been prepared according to the formulation 
provided in this table. The molarities refer to final concentrations. Aqua destillata has been used as solvent and 
the pH has been adjusted to 7.4. 

Fluorescence staining has been performed by blocking unspecific binding through application 

of 5 % donkey serum for 45 minutes at room temperature, followed by overnight incubation 

at 4°C with the primary antibody diluted in 2.5 % donkey serum. After washing, appropriate 

secondary antibodies in a 2 % bovine serum albumin (BSA) solution have been added for 

one hour at room temperature. Staining of the actin cytoskeleton has been achieved by 

adding rhodamine phalloidin (5 U/ml) 30 minutes before the end of incubation. Afterwards, 

incubation with 4’,6-Diamidin-2-phenylindol (DAPI) (300 nM) for up to five minutes has been 

performed to stain all nuclei, thus allowing for an estimation of cell numbers, intracellular 

localization, and to visualize pyknotic nuclei as indicators of apoptotic cell death. PBS has 

been used as solvent for all dilutions mentioned above. 

Immunocytochemical staining has been using the following primary antibodies: polyclonal 

anti-NRAGE (1:100), polyclonal anti-Smad3 (1:200), and monoclonal anti-α-tubulin (1:200). 

In some experiments, EGFP signals have been enhanced by additional antibody staining 

(1:500). Neuronal differentiation of PC12 cells has been confirmed by staining with anti-MAP2 

(1:200) and anti-β3-tubulin (also named TuJ1; 1:200), each in combination with anti-α-tubulin.  
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Samples have been examined with epi-fluorescence microscopy and digital image capturing 

equipment. Subsequent analysis of digital images has relied on the Leica Application Suite 

Advanced Fluorescence (LAS AF) software and on ImageJ in the Fiji installation package 

(Schindelin et al. 2012).  

3.2.2 Analysis of neurite outgrowth in PC12 cells  

For analysis of neurite outgrowth, the proportion of stably transfected cells producing neurites 

of 25 µm or more in length has been determined after two and four days of NGF stimulation 

and the number of those neurites has been compared between groups. In absence of NGF, 

spontaneous neurite formation has been observed only rarely and has not exceeded 1 % in 

any of the stably transfected PC12 lines (percentage of cells with neurites for Praja1.1/2: 

0.61 % ± 0.41 %, for Praja1.2: 0.66 % ± 0.88 %, for EGFP control: 0.35 % ± 0.06 %; data 

provided by Ryoji Fukabori and Oliver Stork). Cells have been counted as being differentiating 

if they had developed filopodia-like protrusions of at least 5 µm or neurites of at least 25 µm 

in length. To estimate matrix adhesion, the proportion of transfected cells showing a flattened 

appearance and spreading on the substrate (Stork et al. 2004) has been determined and 

put in relation to the number of rounded cells in each line.  

3.3 Gene expression analysis 

Gene expression has been evaluated in stably transfected PC12 cells after four days of 

incubation with NGF and doxycycline as described above. 

3.3.1 Sample preparation and reverse transcription PCR 

Sample RNA has been collected by detaching adherent cells through applying 0.25 % 

Trypsin/ethylenediaminetetraacetate (EDTA) for five minutes and while incubating at 37°C, 

subsequent gentle centrifugation to collect cells, and final re-suspension of cell pellets in 

ice-cold lysis buffer from the Cells-to-cDNA™ II kit. Following the manufacturer’s instructions, 

the lysate has then been incubated at 75°C for ten minutes to inactivate RNases before being 

treated with 0.04 U/µl DNase I at 37°C for 15 minutes to degrade genomic deoxyribonucleic 

acid (DNA). Inactivation of DNase I has been achieved by incubating samples at 75°C for 

another five minutes. If further processing has not been performed directly after cell lysis, 

samples have been stored at –80°C. 

Generation of complimentary DNA (cDNA) from template RNA has been performed following 

the protocol of the Sensiscript® kit. First, a reaction master mix has been prepared as listed 

in Table 2. The Sensiscript reverse transcriptase is a recombinant hetero-dimeric reverse 

transcriptase obtained from Escherichia coli.  
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Sensiscript® reaction master mix for cDNA synthesis 

10x Buffer RT 2.0 µl 

Deoxyribose-containing nucleosid triphosphate (dNTP) mix (5 mM per dNTP) 2.0 µl 

Oligo-(dT)18 first strand primer (10 µM) 2.0 µl 

RNase Inhibitor (20 U/µl) 0.5 µl 

Sensiscript® reverse transcriptase 1.0 µl 

RNase-free water 7.5 µl 

Final volume of Sensiscript® reaction master mix: 15.0 µl 

Table 2: Formulation of Sensiscript® reaction master mix. The reaction master mix for cDNA synthesis with the 
Sensicript® kit has been prepared according to this formulation and is sufficient for one 20 µl reaction (total 
volume after adding 5 µl of template RNA). 

To denature any secondary structures, template RNA has been heated to 70°C for three 

minutes, followed by short incubation on ice and brief centrifugation. Then, 5 µl of template 

RNA have been added to 15 µl of master mix, upon which the entire reaction mix has been 

incubated at 37°C for 60 minutes to allow for reverse transcriptase polymerase chain reaction 

(PCR) to take place, resulting in double-strand cDNA. Obtained cDNA samples have then 

been diluted at a ratio of 1:5 in dimethyldicarbonate (DMDC) water and have been stored 

at –20 °C. 

3.3.2 Quantitative real-time PCR protocol 

In a second step, multiplex qRT-PCR using TaqMan® reagents and primer probes labelled 

with the fluorescence dyes 6-carboxyfluoresceine (FAM™) or VIC® has been performed to 

assess gene expression.  

5 µl of TaqMan® Gene Expression Master Mix, which contains all necessary reagents for 

subsequent qRT-PCR (Table 3), have been mixed with 0.5 µl of TaqMan® gene expression 

assay for the respective target, 0.5 µl of the TaqMan® gene expression assay serving as 

internal control (see below), and 1 µl of DMDC water. Finally, 3 µl of cDNA have been added. 

Sample distribution on 96-well plates for qRT-PCR has been performed using a pipet robot. 

In order to reduce carry-over contamination, samples have been uracil-N-glycosylated for 

two minutes at 50°C at the beginning of qRT-PCR to prevent re-amplification of previous 

PCR products. After this, double-strand cDNA has been denatured for ten minutes at 95°C, 

upon which amplification and real-time quantification have been performed over 50 cycles, 

each of which consisting of 15 seconds at 95°C for denaturation and one minute at 60°C 

for subsequent annealing and elongation. 

Typically, fluorescence thresholds have been reached within 20 to 35 cycles. However, 

detection has occasionally required up to 40 cycles. 
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TaqMan® Gene Expression Master Mix 

AmpliTaq Gold® DNA Polymerase 

Ultra Pure (UP) 

dNTP mix (including dTTP/dUTP) 

Uracil-DNA glycosylase 

Passive internal reference (Rox™ dye) 

Table 3: Components of the TaqMan® Gene Expression Master Mix. According to the information provided by 
the manufacturer, the TaqMan® Gene Expression Master Mix contains all components necessary for qRT-PCR, 
except for template RNA and target primers. Ultra Pure (UP) allows for hot start activation and improves detection 
of bacterial targets, if applicable. 

3.3.3 Data analysis 

From each sample subjected to qRT-PCR, cycle thresholds (CT) have been extracted using 

the StepOne™ software and analysing the resulting fluorescence signal curves. The CT 

corresponds to the amplification cycle at which the fluorescence threshold is reached and 

the signal becomes distinguishable from baseline levels. If samples remain undetected, a 

CT of 50, corresponding to the maximum number of cycles, has been assumed to allow for 

subsequent comparison of groups using the ΔΔCT method (see below).  

All samples have been measured as triplicates and mean values have been determined for 

each triplicate assay. In case of intra-assay standard deviations of 0.165 or more and two 

measurements with readings in closer proximity, single outliers have been excluded from 

triplicates to reduce intra-assay variation. 

Sample comparison by relative quantification has relied on the ΔΔCT method (Schmittgen & 

Livak 2008). At first, target gene expression is normalized to the total cDNA content of each 

sample by using the expression levels of housekeeping genes, which have been checked to 

be unaffected by the experimental protocol. Glyceraldehyde 3-phosphate dehydrogenase 

(GAPDH) and phospho-glycerate kinase (PGK) have been the two genes used as internal 

controls in this study. 

Because VIC®-labelled GAPDH has been used, FAM™-labelled gene expression assays 

could be measured in parallel. The ΔCTGAPDH per well has then been computed as follows: 

 ΔCT  !"#$%
!"#$%!/!"# = CT!"#$%!/!"#  –   CT!"#$% 

Mean values for ΔCTGAPDH have been calculated for each triplicate assay. In addition, PGK 

expression has been considered to further minimize methodical variation: 

ΔCT!"#$%!   =    mean  ΔCT  !"#$%
!"#$%!      – mean  ΔCT  !"#$%!"#      

The ΔCTtarget represents the normalization of target gene expression levels in relation to 

the expression of GAPDH and PGK. 

Statistical analysis has been conducted comparing these ΔCTtarget values. 
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For better illustration, the relative quantification (RQ) value has been calculated based on 

mean ΔΔCT values, which result from normalizing ΔCTtarget values in the over-expressing 

conditions to the according ΔCTtarget in EGFP controls: 

 ΔΔCT!"#$%!   = ΔCT  !"#$%!
!"#$#%  !"#$!!"#$!%%&'(  –   ΔCT  !"#$%!!"#$  !"#$%"& 

Relative quantities are then obtained by taking into account the exponential amplification 

during qRT-PCR: 

 RQ!"#$%!   =   2!!!!"!"#$%!    

Thus, RQ represents relative target mRNA amounts in Praja1 over-expressing conditions 

as compared to the control condition, for which RQ values equal 1. 

3.3.4 Gene expression assay for Praja1 

Expression of praja1 has been determined using a custom-made TaqMan® gene expression 

assay labelled “MPraja1_-RT6”. Praja1 mRNA primers have had the following sequences: 

5’-GTTGCTGTCAGGGTTACCTATCTG-3’ for the forward primer and for the reverse primer 

5’-GAACATTAACCCATGACATGCAACA-3’. For fluorescence detection, primers have been 

tagged with the FAM™-reporter (sequence: 5’-TCGGAAAGACAAAATTACT-3’). 

Specificity of MPraja1_-RT6 to praja1.1 and praja1.2 mRNA has been evaluated by testing 

against plasmid DNA of both praja1 variants. As expected, both praja1 plasmids have 

been recognized by MPraja1_-RT6 early during amplification and at comparable levels 

(CT = 8.69 for praja1.1 and CT = 6.96 for praja1.2), whereas pEGFP-C1 control plasmids 

have remained undetected during 50 cycles of qRT-PCR. 

3.4 Immunoblotting 

3.4.1 Experimental designs 

For the analysis of endogenous Praja1 expression, 1 * 106 PC12 cells have been collected 

after NGF stimulation either for 30 minutes, two hours, or three days. 

Poly-ubiquitination activity has been tested collecting 2 * 106 cells from stably transfected 

PC12 cultures treated with NGF and doxycycline for two days. 

In an additional set of experiments, poly-ubiquitinated proteins have accumulated in PC12 

cells during eight hours of pre-treatment with lactacystin (1 µM). Beforehand, it had been 

ascertained through staining with propidium iodide that lactacystin treatment for 8 as well 

as for 24 hours would not lead to a significant increase of cell death (less than 1.5 % of cells 

with or without lactacystin). 
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3.4.2 Immunoblotting protocol 

Cells have been suspended in lysis buffer (Table 4), incubated for 30 minutes at 4°C, and 

then centrifuged at 16,000 rcf and 4°C for another 30 minutes, after which the supernatant 

has been retained. Determination of protein concentrations has relied on the colorimetric 

DC™ Protein Assay, which is similar to the Lowry assay (Lowry et al. 1951), but provides 

improved compatibility with a wide range of detergents.  

Protein lysis buffer 

Tris-(hydroxymethyl)-aminomethanhydrochlorid (Tris-HCl) (pH 7.4) 500.0 mM 

EDTA 1.0 mM 

NaCl 150.0 mM 

Nonylphenyl Polyethylene Glycol (NP-40 Alternative) 1.0 % 

Deoxycholic acid (DOC) 0.5 % 

Sodium orthovanadate (Na3VO4) 2.0 mM 

Sodium fluoride (NaF) 1.0 mM 

4-(2-Aminoethyl) benzenesulfonyl fluoride hydrochloride (AEBSF) 1.0 mM 

Aqua destillata solvent 

Protease inhibitor cocktail 1 tablet / 10 ml 

Table 4: Formulation of the protein lysis buffer. The protein lysis buffer has been prepared according to the 
formulation provided in this table and comprised components improving the yield of phosphorylated proteins as 
well as of membrane-associated proteins. Final concentrations have been provided for each chemical. 

For carrying out sodium dodecyl sulphate (SDS) poly-acrylamide gel electrophoresis (PAGE), 

lysed sample solutions have been diluted in loading buffer (Table 5) at a ratio of 3:1 and 

have been incubated for five minutes at 98°C for protein denaturation.  

4x SDS-PAGE loading buffer 

Tris-HCl (pH 6.8) 250.00 mM 

SDS 8.00 % 

Glycerin 40.00 % 

β-mercaptoethanol 20.00 % 

Bromphenol blue 0.04 % 

Aqua destillata solvent 

Table 5: Formulation of 4x SDS-PAGE loading buffer. Samples have been diluted in loading buffer before 
SDS-PAGE. Final concentrations have been provided for each chemical. 

Proteins have been separated using SDS-PAGE (Table 6, Table 7), before they have been 

transferred to polyvinylidene difluoride (PVDF) membranes by Western blotting in a wet 

blotting chamber (Table 7) with 100 V applied for one hour.  
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Running gel  Stacking gel 

Acrylamide solution (37.5:1) 3.00 ml Acrylamide solution (37.5:1) 0.42 ml 

1.5 M Tris (pH 8.8) 2.25 ml 1.0 M Tris-HCl (pH 6.8) 0.32 ml 

10 % SDS 90.00 µl 10 % SDS 25.00 µl 

10 % ammonium persulfate (APS) 90.00 µl 10 % APS 25.00 µl 

Aqua destillata 3.56 ml Aqua destillata 1.70 ml 

Tetramethylethylenediamine 
(TEMED) 

9.00 µl TEMED 2.50 µl 

Table 6: Preparation of SDS gels. 1.5 mm thick 10 % SDS gels have been casted using the formulation provided 
in this table. After polymerization of the running gel, the solution for the stacking gel has been poured on top and 
the gel comb has been inserted. Pre-solutions (Tris, SDS, APS) have been using aqua destillata as solvent. 
Provided volumes are sufficient for one gel. 

SDS-PAGE running buffer  Western blotting transfer buffer 

Tris (pH 8.3) 25 mM Tris (pH 8-10) 25 mM 

Glycine 250 mM Glycine 192 mM 

SDS 0.1 % SDS 0.1 % 

  Methanol 20 % 

Aqua destillata solvent Aqua destillata solvent 

Table 7: Formulation of SDS-PAGE and Western blotting buffers. SDS-PAGE running buffer and Western 
blotting transfer buffer have been prepared according to the formulation provided in this table. Methanol is added 
to the Western blotting transfer buffer to decrease gel swelling and improve transfer of smaller and medium-sized 
proteins during wet blotting. SDS addition to the transfer buffer improves transfer of proteins with a molecular 
weight of 75 kDa or more in Western blotting. 

Subsequently, membranes have been allowed to dry for 30 minutes and have then been 

re-activated by brief incubation in 100 % methanol (ca. ten seconds), followed by washing 

steps in distilled water and tris-buffered saline (TBS) (Table 8) for equilibration. 

TBS 

Tris-HCl (pH 7.4) 50 mM 

NaCl 150 mM 

Aqua destillata solvent 

Table 8: Formulation of tris-buffered saline. TBS has been prepared according to the formulation provided in 
this table. Aqua destillata has been used as solvent. 

After blocking of unspecific binding using 5 % milk-powder dissolved in TBS, blots have 

been incubated with different combinations of the following primary antibodies, diluted in a 

TBS solution containing 2.5 % milk powder and 0.1 % Tween® 20: polyclonal anti-ubiquitin 

(1:100), anti-NRAGE (1:2,000), anti-Smad3 (1:1,000), anti-β-actin (1:5,000), anti-α-tubulin 

(1:1,000), anti-GFP (1:5,000), or anti-HA (1:1,000). Anti-Praja1 serum has been generated 

against the peptide CRSPFASTRRRWDDSE and used at a dilution of 1:75 in the same 

manner as just described (Figure 2). 
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Signals have been detected with secondary antibodies coupled to horseradish peroxidase 

(HRP) (1:2,000–1:5,000) and ECL-plus chemiluminescence substrate, or with fluorescence 

antibodies IRDye® 680LT and IRDye® 800CW (1:15,000) for use in an Odyssey® scanner. 

Secondary antibodies have been diluted in a TBS solution containing 2.5 % milk powder, 

0.1 % Tween® 20, and 0.02 % SDS. 

Biochemical experiments have been performed at least in triplicate. Subsequent quantification 

has relied on the Odyssey® Application Software.  

Figure 2: Specificity of anti-Praja1 serum. The expression of HA-Praja1.1 and HA-Praja1.2 from HA-tagged 
praja1.1 (lane 3) has been detected in HEK293 cells using Praja1-specific anti-serum. The apparent molecular 
weight of ca. 95 kDa and 65 kDa, respectively, differs clearly from the predicted molecular weight of the two 
isoforms, but is in agreement with the previously reported reduced migration of Praja1 in SDS-PAGE (Mishra et 
al. 1997). The expression level ratio of isoforms is 3:1, resembling the ratio in most tissues (Teuber et al. 2013). 
Detection with anti-HA has confirmed the specificity of the Praja1 antiserum (lane 6). An unspecific signal has 
been detected at around 130 kDa in all lanes, including the mock control (lanes 1&4) and pCMV::HA transfected 
control cells (lanes 2&5). Due to its small molecular weight of ca. 1 kDa, the HA-tag itself could not be detected in 
lane 5. Detection of tubulin has served as loading control. 

3.5 Statistical analysis 

Quantitative data are presented as mean ± standard error of the mean (S.E.M.). An α-error 

at or below 0.05 has been considered to constitute statistically significant results. Statistical 

analyses have been carried out using SPSS (named PASW from 2009 to 2010).  

For comparison of two groups, a two-tailed Student’s t-test has been applied, taking into 

account the homogeneity of variance according to Levene testing.  

Three or more groups have been compared by one-way ANOVA. If significant differences 

between groups have been rendered by the ANOVA, post-hoc testing has been performed 

using the Tukey-HSD test for homogeneous and the Dunnett-T3 test for inhomogeneous 

variances. Homogeneity of variance has been assessed using the Brown-Forsythe test for 

skewed data sets and the Levene test for symmetric, normal distributions.  
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4. Results 

As discussed above, a range of findings has implied a role of Praja1 during development 

and differentiation of neurons: the abundant expression of Praja1 in brain tissue (Yu et al. 

2002), an up-regulation of Praja1 mRNA levels in neuronal cells of the BLA following fear 

conditioning (Stork et al. 2001), and the interaction of Praja1 with NRAGE (Sasaki et al. 

2002), which is known to mediate various pathways involved in neuronal differentiation, as 

well as with other factors involved in the development of the nervous system. This hypothesis 

has been tested with the experimental approach described in the following.  

4.1 The role of Praja1 in a model of neuronal development 

4.1.1 Assessment of Praja1 expression following NGF stimulation in PC12 cells 

The potential relevance of Praja1 in neuronal differentiation has been addressed by using 

naïve PC12 cells following NGF stimulation. Analysis of endogenous Praja1 protein levels 

throughout NGF-induced differentiation in PC12 cells has been conducted in collaboration 

with Daniel Lang and Bettina Müller. While only low levels of Praja1.1 and Praja1.2 have 

been observed during the initial phase of NGF stimulation, there was a three-fold increase 

in Praja1 protein levels after three days of NGF treatment (F = 22.048, p = 0.002 for Praja1.1; 

F = 110.561, p = 0.000 for Praja1.2; Table 11 in A.I.1, Figure 3). 

Figure 3: Up-regulation of Praja1 during neuronal differentiation of PC12 cells. (A) Immunoblot analysis 
has revealed an increased expression of endogenous Praja1.1 and Praja1.2 after three days of NGF treatment. 
(B) Expression levels (normalized to tubulin levels) after three days are increased more than three-fold compared 
to the initial phase of NGF stimulation. Values are presented as mean ± S.E.M. (N = 3). Statistical analysis has 
relied on one-way ANOVA with significant differences assumed for p ≤ 0.05. Significance levels of post-hoc tests 
are shown for measurements after three days of NGF exposure compared to either 30 minutes (asterisks) or two 
hours (hashes) of NGF treatment. ** p ≤ 0.01, *** p ≤ 0.001; ## p ≤ 0.01, ### p ≤ 0.001. 

4.1.2 The intracellular localization of Praja1 

In order to identify the intracellular compartments in which Praja1 might exert its activity, the 

intracellular localization of this E3 ligase has been studied more closely. A prediction based 

on the amino acid sequence of both Praja1 isoforms using WoLF PSORT (Nakai & Horton 

1999; Horton et al. 2007) has suggested a primarily nuclear localization based on structural 
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similarity to other proteins and identification of the nuclear localization sequence PRRRRTM 

at position 292 of Praja1.1 and position 108 of Praja1.2.  

Indeed, Praja1.1/2 fusion proteins have displayed a nuclear staining, but relative expression 

levels have been higher in the cytosol than in the nucleus, whereas Praja1.2 and control 

constructs provided an almost exclusive cytosolic staining (Table 9). A dependence of the 

intracellular localization of Praja1 on PDL or collagen (type I or IV) coating as well as on 

differentiation states or NGF treatment of PC12 cells could not be observed. 

 Praja1.1/2 Praja1.2 Control 

Nuclear index −0.49 −0.95 −1.00 

CV 10.4 5.1 0.0 

Number of evaluated cells  361 305 611 

Table 9: Intracellular localization of Praja1 in PC12 cells. The intracellular localization of Praja1 has been 
assessed by calculating the nuclear index for cells maintained under one of the following conditions: grown on 
either PDL or collagen (type I or IV), and for each coating either with or without NGF treatment. Nuclear indices 
represent the pooled mean values of all conditions, because no differences could be observed based on coating 
or NGF treatment as indicated by the low CV between conditions. 

4.1.3 Confirming the PC12 cellular differentiation model 

As has been summarized in section 2.4, PC12 cells have been described as a model for 

neuronal-like differentiation on many occasions. To confirm applicability of this model with 

the experimental conditions planned for this study, neuronal-like differentiation of acutely 

and stably transfected PC12 cells has been determined after supplementation of NGF for 

up to four days. Development of a neuronal-like phenotype has been verified by controlling 

the levels of neuron-specific cellular markers such as β3-tubulin (also named “TuJ1”) and 

MAP2, which have both been drastically increased in PC12 cells following NGF treatment 

(Figure 4). 

Interestingly, this experiment has conveyed the qualitative impression that over-expression 

of Praja1 isoforms might lead to a reduction in neuritogenesis, which has then been followed 

up on with subsequent trials allowing for proper quantitative assessment. 

4.1.4 Inhibition of neuronal-like differentiation in PC12 cells by Praja1 

Based on the up-regulation of endogenous Praja1 during NGF-induced differentiation and 

following confirmation of neuronal-like differentiation, cell soma morphology and neurite 

outgrowth have been determined after four days of NGF stimulation in stably transfected 

PC12 cell lines grown on PDL and expressing Praja1 isoforms in a doxycycline-inducible 

manner.  
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Figure 4: Confirming a neuronal-like differentiation of PC12 cells. PC12 cells of each stably transfected line 
have been stained with antibodies against the neuron-specific markers β3-tubulin (red) or MAP2 (red), each in 
combination with DAPI (cyan) and α-tubulin (blue) staining. (A) to (C) show separate and merged staining for 
cells over-expressing Praja1.1/2 (A) or Praja1.2 (B) as well as for control cells (C), each after NGF treatment. 
Arrows indicate the expression of β3-tubulin in neurites, which is particularly found at growth tips. (D) and (E) 
exemplify the lack of spontaneous differentiation in absence of NGF: No neurites are present and levels of 
β3-tubulin (D) or MAP2 (E) are almost undetectable. Cells over-expressing Praja1 isoforms have shown equal 
results. (F) and (G) present the MAP2 labelling of Praja1.1/2-expressing and of control cells after NGF treatment, 
which, in essence, are equivalent to staining of β3-tubulin. Bars: 25 µm. 

This has revealed a significant impairment of NGF-induced neuronal-like differentiation in 

comparison to control cells when over-expressing either Praja1 transcript variant. There has 

been an almost three-fold reduction in the number of neurites per differentiating cell upon 

Praja1.1/2 over-expression and a more than eight-fold decrease following over-expression 

of Praja1.2 (F = 27.735, p = 0.000; Table 12 in A.I.2, Figure 5). This has been paralleled by 

a significant increase in the proportion of flattened cells when over-expressing Praja1.1/2, 

while over-expression of Praja1.2 has led to a similar, yet non-significant trend (F = 4.546, 

p = 0.029; Table 12 in A.I.2, Figure 5). After two days of NGF stimulation, the effect of Praja1 

on neuronal-like differentiation in PC12 cells has been comparable, but not quite as distinct 

(data not shown). 
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Figure 5: Inhibition of neuronal-like differentiation of PC12 cells by Praja1. (A) shows representative examples 
of PC12 cells stably expressing either Praja1.1/2, Praja1.2 alone, or control vectors upon doxycycline induction. 
For complete visualization, cells have been stained with an anti-α-tubulin antibody. (B) A reduced proportion of 
Praja1 over-expressing PC12 cells compared to control cells have developed neurites of 25 µm or more. At the 
same time, the attachment of cells to the substrate has been altered as indicated by a reduced ratio of rounded 
to flattened cells following over-expression of Praja1.1/2. Cells over-expressing Praja1.2 have shown a similar 
trend, but failed to reach significance. A generally comparable proportion of cells in all cell lines has been judged 
as being differentiating, i. e. showing a neuron-like morphology. All values are presented as mean ± S.E.M. 
* p ≤ 0.05, ** p ≤ 0.01 in post-hoc tests of an ANOVA (N = 6), when compared to controls. Bar: 10 µm. 

To evaluate substrate specificity of this inhibitory effect of Praja1.1/2 on the development of 

a neuronal PC12 phenotype, other extracellular substrates like collagen IV, laminin, or the 

cell adhesion Fc-fusion fragment L1-Fc have been tested in a separate set of experiments, 

using the same paradigm as before. However, none of these substrates could abolish the 

inhibition of neurite outgrowth by Praja1.1/2 (p = 0.001 for collagen IV, p = 0.007 for laminin, 

p = 0.002 for laminin/PDL and L1-Fc, and p = 0.000 for PDL; Table 13 in A.I.2, Figure 6), 

indicating that it is largely independent of extracellular matrix components. Moreover, cell 

rounding has also been decreased on most substrates with the exception of collagen IV 

(p = 0.017 for laminin, p = 0.032 for laminin/PDL, p = 0.011 for L1-Fc, p = 0.003 for PDL, 
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and p = 0.837 for collagen IV; Table 13 in A.I.2, Figure 6). However, while the rounding 

ratio for Praja1.1/2-expressing cells has been fairly comparable to that of the other groups, 

control cells on collagen IV (and less pronounced on laminin/PDL) have shown a profound 

reduction in the number of rounded cells compared to other substrates (F = 6.341, p = 0.000; 

Table 14 in A.I.2, Figure 6). Notably, Praja1 over-expression in PC12 cells has not caused 

a reduction in the number of filopodia-like protrusions (5–25 µm) per differentiating cells on 

any substrate tested (data not shown). 

Figure 6: Substrate independence of Praja1 effects. (A) Reduced growth of neurites ≥ 25 µm has been 
observed in cells over-expressing Praja1.1/2, regardless of the substrate used. (B) Cell rounding has been reduced 
on all tested substrates except for collagen IV. Laminin/PDL and collagen IV have shown decreased ratios in 
comparison to laminin, which is mainly caused by a reduced ratio in control cells. (C) The overall proportion of 
differentiating cells has generally not been affected by Praja1 over-expression, except on laminin (but not on 
laminin/PDL). Presented values are mean ± S.E.M. For comparison of Praja1.1/2 and control cells, levels of 
significance (asterisks) have been assessed using a two-tailed Student’s t-test, taking into account homogeneity 
of variance by applying Levene testing and performing t-testing accordingly; *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05. 
Differences between coatings have been assessed by one-way ANOVA and appropriate post-hoc testing with each 
significance level (hashes) presented in comparison to laminin; ### p ≤ 0.001, # p ≤ 0.05. 
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On the other hand, an equal percentage of PC12 cells expressing either Praja1.1/2 or control 

vectors have been judged as differentiating when grown on collagen IV, PDL, or L1-Fc. Yet, 

when grown on laminin, cells have generally shown lower levels of differentiation (F = 9.048, 

p = 0.000; Table 14 in A.I.2), with Praja1.1/2 even amplifying this decline in differentiation 

induction (p = 0.001 compared to control; Table 13 in A.I.2). It should be pointed out that this 

suppressive laminin effect could be abolished by co-coating of laminin with PDL (Figure 6, 

cf. Table 14 in A.I.2). 

4.1.5 Praja1 effects on apoptosis in differentiating PC12 cells 

Being part of several pro-apoptotic signalling pathways, NRAGE has commonly been implied 

to play a role in mediating apoptotic effects and influencing cell survival during development 

and differentiation of neuronal cells (cf. e. g. Mouri et al. 2013). In addition, cell rounding and 

loss of cell area are morphological features of apoptosis, and Praja1 has been observed to 

induce apoptosis in fibroblast-like COS7 cells (Teuber et al. 2013). Hence, to ascertain that 

the observed effects following Praja1 expression in PC12 cells have not been associated 

with an increased apoptosis rate, activation of caspases 3 and 7 – key components of the 

intracellular apoptosis cascade – has been measured in stably transfected PC12 cells after 

doxycycline induction of Praja1.1/2, Praja1.2, or EGFP expression, either maintained with 

or without NGF.  

Generally, PC12 cells without NGF stimulation have provided higher caspase 3/7 activation 

levels. As might be expected from other data presented in the literature (Bui et al. 2002; 

Culmsee et al. 2002), application of NGF has reduced pro-apoptotic caspase 3/7 activation 

to some extent (for Praja1.1/2 by 38 %, for Praja1.2 by 25 %, and for EGFP control by 47 %), 

although this difference has failed to reach significance (Table 10). 

 Praja1.1/2 Praja1.2 EGFP control Brown-
Forsythe 

One-way ANOVA 

Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M. p-value F0.95(2,9) = 
4.26 

p-value 

+ NGF 69,869.71 ± 
16,816.56 

43,128.50 ± 
7,480.46 

72,677.00 ± 
18,722.84 

0.368 ≥ 1.158 0.357 

– NGF 112,511.08 ± 
13,819.17 

57,841.13 ± 
7,579.94 

136,817.21 ± 
25,739.04 

0.054  ≤ 5.388 0.029 

Post-hoc test p-value p-value Procedure  

– NGF 0.603 0.026 Tukey-HSD 

Table 10: Praja1 effects on caspase 3/7 activation in PC12 cells. Activation of caspases 3 and 7 has been 
assessed using a luminescence assay after two days with or without NGF stimulation. Measured values from four 
independent experiments per group (N = 4) are noted as mean ± S.E.M. of arbitrary relative luminescence units. 
Significant differences have been assumed for p ≤ 0.05 in a one-way ANOVA. Presented post-hoc p-values are 
each in comparison to EGFP control cells. Post-hoc comparison procedures have been chosen depending on the 
result of the Brown-Forsythe test. 
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Importantly, no significant differences in caspase 3/7 activation have been found between 

NGF-stimulated PC12 cells over-expressing either Praja1 or the control construct (F = 1.158, 

p = 0.357; Table 10). It should be pointed out, however, that Praja1.2, but not Praja1.1/2, 

could mimic the NGF-induced decrease in caspase 3/7 activation in a significant manner 

in the absence of NGF (F = 5.388, p = 0.029; Table 10). 

4.1.6 Changes of gene expression in PC12 cells over-expressing Praja1 

Having observed the Praja1-dependent blockade of neurite outgrowth in NGF-stimulated 

PC12 cells, NPY, Slc18a1, and DnaJC5 mRNA levels (cf. section 2.4) have been measured 

in stably transfected PC12 cell lines via qRT-PCR to assess, whether over-expression of 

Praja1 would induce a general de-differentiation or whether a secretory phenotype would 

be maintained instead of promoting a neuronal one. Gene expression has been evaluated 

after four days of NGF stimulation as described above.  

Praja1 over-expression in either stably transfected PC12 cell line has been accompanied 

by an almost 10-fold increase of Slc18a1 expression compared to control cells (F = 42.494, 

p = 0.000; Table 15 in A.I.3, Figure 7). DnaJC5 mRNA levels, on the other hand, have shown 

a weak increase following over-expression of Praja1, but have failed to provide significant 

differences compared to controls cells (F = 3.513, p = 0.098; Table 15 in A.I.3, Figure 7). 

Strikingly, over-expression of either Praja1 construct has also led to a strong induction of 

NPY expression (F = 20.664, p = 0.002; Table 15 in A.I.3, Figure 7).  

Figure 7: Influence of Praja1 on mRNA levels of secretory phenotype markers. (A) While over-expression 
of Praja1 isoforms does induce expression of DnaJC5 only weakly, levels of Slc18a1 mRNA are significantly 
elevated following Praja1 over-expression. The same has been observed for the expression of NPY, which has 
not been detectable in control cells upon NGF treatment. In this case, a CT of 50 has been assumed to allow for 
further quantitative comparison based on the ΔΔCT method (see section 3.3.3). (B) To confirm successful Praja1 
over-expression in stably transfected tetracycline-inducible PC12 cells, Praja1 mRNA levels have also been 
measured and have been increased significantly in the appropriate cell lines following doxycycline treatment. Values 
are presented as mean multiples of control mRNA levels (RQ) ± S.E.M. for either stably transfected Praja1 cell line. 
Due to the RQ method, control mRNA levels equal 1 (no S.E.M. provided). Significance levels have been 
calculated for ΔCT values in a one-way ANOVA followed by appropriate post-hoc testing. ** p ≤ 0.01 and 
*** p ≤ 0.001 compared to controls. 
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Sufficient functionality of the tetracycline-induced Praja1 over-expression system in stably 

transfected PC12 cell lines has been confirmed by measuring Praja1 mRNA levels, which 

have been 600-fold higher in Praja1 over-expressing than in control cell lines (F = 50.412, 

p = 0.000; Table 15 in A.I.3, Figure 7). 

4.2 Praja1 effects on NRAGE 

Because NRAGE has been found to be an important mediator of neurotrophin signalling 

via p75NTR and TrkA, which are known for regulating cell survival and neuronal differentiation 

(see section 2.3.2), and has been shown to be an interaction partner and substrate of Praja1 

(Sasaki et al. 2002), it is the most promising candidate for explaining the inhibitory effect 

of Praja1 on NGF-dependent differentiation in PC12 cells. Due to the fact that Smad3 has 

also been implicated to be ubiquitinated by Praja1 (Saha et al. 2006) and is known to be 

involved in some of the same signalling pathways as NRAGE (cf. section 2.3.1), Smad3 has 

been evaluated in addition. 

4.2.1 Co-localization of Praja1 and NRAGE in PC12 cells 

In accordance with the proposed interaction of Praja1 with the signalling molecules NRAGE 

and Smad3, a co-localization of Praja1.1/2 with NRAGE as well as with Smad3 has been 

observed in the nucleus, along filamentous structures in the cytosol, and at distinct points at 

the plasma membrane (Figure 8). 

Figure 8: Co-localization of Praja1 with its putative substrates NRAGE and Smad3. (A) EGFP-Praja1.1/2 
(green) has co-localized with NRAGE (red) in the nucleus (asterisk), at distinct positions at the plasma membrane, 
and along filamentous structures in the cytosol (arrows). (B) Co-localization of Smad3 (red) and EGFP-Praja1.1/2 
(green) has also been observed in the nucleus (asterisk) and at few points at the plasma membrane (arrow). 
In contrast to the subtle differences in intracellular distribution between both praja1 constructs (see section 4.1.2), 
no distinction in co-localization has been found between the transcript variants praja1.1 and praja1.2. Bars: 10 µm. 
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4.2.2 Praja1-dependent ubiquitination and degradation of NRAGE in PC12 cells 

As demonstrated in HEK293 cells by Sasaki and colleagues (Sasaki et al. 2002), Praja1 is 

capable of directly binding to NRAGE, leading to its ubiquitination in a RING-H2-dependent 

manner and reducing NRAGE-mediated transcriptional effects.  

To evaluate, whether Praja1 exerts comparable effects in the NGF-induced neuronal-like 

PC12 model system, general ubiquitination activity and endogenous NRAGE protein levels 

have been studied in collaboration with Bettina Müller. For unveiling potential high turnover 

effects, experiments have been performed in presence and absence of the proteasome 

inhibitor lactacystin in the stably transfected PC12 cell model.  

Increased poly-ubiquitination compared to controls has been detected in PC12 cells stably 

expressing either EGFP-Praja1.1/2 or EGFP-Praja1.2 in a tetracycline-dependent manner 

(Figure 9). However, these effects have primarily been observed following treatment with 

lactacystin, which has led to a more pronounced accumulation of poly-ubiquitinated proteins 

in these cells.  

Substantiating previous findings, protein levels of NRAGE have been significantly reduced 

in both Praja1 over-expressing cell lines (F = 7.250, p = 0.013; Table 16 in A.I.4, Figure 9), 

which has been abolished by treatment with lactacystin (F = 0.420, p = 0.669; Table 16 in 

A.I.4, Figure 9).  

Confirming earlier hypotheses on an auto-regulation of Praja1 through the UPS (Saha et al. 

2006), EGFP-Praja1.1/2 as well as EGFP-Praja1.2, but not EGFP controls, have also been 

accumulating during lactacystin treatment (Figure 9). 

Importantly, Smad3 levels, which have been tested to control for the specificity of the 

observed effects, have not been affected by Praja1 over-expression in an analogous manner 

(Figure 9).  
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Figure 9: Poly-ubiquitination and NRAGE expression levels in PC12 cells. (A) Immunoblot analysis has 
revealed enhanced total protein ubiquitination in cells expressing EGFP-Praja1.1/2 (lanes 3&4) or EGFP-Praja1.2 
(lanes 5&6) compared to EGFP-transfected controls (lanes 1&2). However, this effect has only become clearly 
apparent after blockade of proteasomal degradation with lactacystin and subsequent accumulation of ubiquitinated 
proteins (lanes 4&6). Endogenous NRAGE has been reduced by Praja1 over-expression (lanes 3&5) in a manner 
sensitive to application of lactacystin, whereas no comparable change in Smad3 protein levels has been observed. 
In agreement with its self-regulating ability of auto-ubiquitination, levels of EGFP-Praja1.1/2 and EGFP-Praja1.2 
have been strongly increased following lactacystin treatment. (B) Quantitative analysis of Western blots (N = 6) 
has revealed a significant reduction of NRAGE upon Praja1 over-expression that could be prevented by application 
of the proteasome inhibitor lactacystin. Β-actin has served as loading control. Mean values ± S.E.M. presented 
in (B) have been calculated after normalization to control-transfected cells of the respective lactacystin treatment. 
Significance levels are in comparison to normalized controls (100 %) and have been obtained by one-way ANOVA 
and subsequent post-hoc testing, if applicable. * p ≤ 0.05.  
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5. Discussion 

Initially, the E3 ubiquitin ligase Praja1 has mainly been implicated in liver development 

(Mishra et al. 1997). Later findings have also implied a role in the aetiology of gastric cancer 

(Mishra et al. 2005; Saha et al. 2006). However, its structural similarity to Neurodap1, which 

is strikingly also named Praja2, has suggested a role in the nervous system from early on 

(Mishra et al. 1997; Sasaki et al. 2002). This impression has been further encouraged by the 

observation of an up-regulation of Praja1 in the BLA following fear conditioning (Stork et al. 

2001) and by the dynamic expression of praja1 mRNA in brain and other mouse tissues at 

different developmental stages (Teuber et al. 2013). Yet, the precise cellular functions as 

well as the physiological role of Praja1 have still remained to be elucidated.  

In previous experiments, two splice variants of murine praja1 had been identified, which 

appear to be generated through a differential intron retention mechanism using canonical 

U2 splice donor and splice acceptor sites located within the second exon (Stork et al. 2001; 

Teuber et al. 2013). It has been found that the in vivo ratio of praja1.1 to praja1.2 changes 

from roughly 1:1 in early development to 3:1 in most adult tissues, including the brain. This 

may suggest an enhanced developmental expression and function of praja1.2 (Teuber et al. 

2013). To study the role of Praja1 in NGF-dependent differentiation, stably transfected PC12 

lines have been generated that express either transcript variant in a tetracycline-inducible 

manner with praja1.1 constructs expressing Praja1.1 and Praja1.2 due to alternative splicing 

and praja1.2 constructs expressing Praja1.2 only. 

5.1 Praja1 co-localizes with cytoskeleton elements and with NRAGE 

For both transcript variants, Praja1 has been localized predominantly in the cytosol, where 

it partially associated with microtubules and filopodial actin filaments (Teuber et al. 2013). 

Notably, Praja1.1/2 has also been located in the nucleus, whereas Praja1.2 alone as well 

as control cells have presented an almost exclusive cytosolic distribution. One might thus 

speculate, whether Praja1.1 might be more likely to translocate into the nucleus, whereas 

Praja1.2 would do that on rare occasions only, therefore largely contributing to the overall 

more cytosolic staining of praja1.1 constructs, which are generating Praja1.1/2.  

Unfortunately, none of the currently available constructs and antibodies allow for verifying 

this hypothesis. So far, antibodies have only been generated to assess total Praja1 levels. 

This has been sufficient for evaluating differential influences of the two splice variants in 

Western blotting, during which their respective molecular weights lead to two distinct bands. 

In addition, isoform-specific gene expression assays have been designed to measure mRNA 

levels of either isoform. However, to address the question of differences in the intracellular 

distribution of each isoform, antibodies should be created that specifically target sequences 
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that are part of Praja1.1, but not of Praja1.2 after alternative splicing. In addition, targeted 

mutations within the SC-35 ESE consensus sequence or at other splice sites in the praja1 

sequence could be considered to modulate alternative splicing, thus potentially generating a 

construct that will exclusively express Praja1.1 and will hence enable to address the exact 

influence of either isoform more precisely in future studies. 

From a functional perspective, the intracellular distribution of Praja1 in conjunction with its 

partial co-localization with NRAGE and Smad3 at cytoskeletal structures, at few, but distinct 

positions at the plasma membrane as well as in the nucleus may suggest a role of Praja1 in 

cytoskeletal re-arrangement and in signalling cascades of cytoskeleton-associated factors 

to the nucleus, most prominently neurotrophin and BMP signalling, which rely on NRAGE 

and Smad3 for intracellular signal transduction, as has been discussed (see section 2.3). 

Notably, the occasional association of Praja1 with microfilaments at sites of neurite outgrowth 

(Teuber et al. 2013) should be examined more closely in light of this study. 

5.2 Praja1 inhibits NGF-induced neurite outgrowth in PC12 cells by targeting 
NRAGE for proteasomal degradation  

Up-regulation of endogenous Praja1 expression after three days of NGF stimulation has 

suggested a role of Praja1 during the progression of NGF-induced PC12 cell differentiation, 

rather than during its initiation. Accordingly, over-expression of either Praja1.1/2 or Praja1.2 

alone has resulted in a profound reduction of neurite outgrowth independent of extracellular 

substrates, while the number of filopodia per differentiating cell has not changed following 

over-expression of Praja1, further portending that initial differentiation might be unaltered. 

Moreover, Praja1 over-expression has affected cell attachment, as indicated by enhanced 

cell spreading and thus a greater proportion of flattened cells on most extracellular substrates 

tested. This is in line with a potential role of Praja1 in cytoskeletal re-arrangement as well as 

in modulation of transcriptional activity, as mentioned above. 

In support of previous studies on the special importance of extracellular matrix components, 

in particular laminin, for the NGF-dependent initiation of neurite outgrowth in PC12 cells 

(Fujii et al. 1982; Attiah et al. 2003), cells cultured on laminin in this study have presented a 

reduced number of differentiating cells compared to all other substrates investigated. The 

observation that over-expression of Praja1.1/2 diminishes the proportion of differentiating 

cells on laminin even further might point to a specific influence of Praja1.1/2 on signalling 

cascades following laminin-induced co-activation of α1β1- and α3β1-integrin; with α3β1-integrin 

potentially being the crucial factor, because collagen IV is known to activate α1β1-integrin 

only (Tomaselli et al. 1990) and has not shown similar results following over-expression of 

Praja1.1/2. Alternatively, integrin-independent laminin receptors could also play a certain 

role in this context (cf. Powell & Kleinman 1997). 
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Previously, Praja1 has been shown to precipitate NRAGE in a glutathione S-transferase 

(GST) pull-down and to occur in a complex with NRAGE and Msx2 in HEK293 cells (Sasaki 

et al. 2002; Kuwajima et al. 2004). In addition, NRAGE has been reported to stimulate 

neuronal differentiation and neurite outgrowth in PC12 cells (Reddy et al. 2010). It has thus 

been hypothesized that Praja1-mediated ubiquitination and proteasomal degradation of 

NRAGE may explain the Praja1 effect on neuritogenesis.  

Indeed, the over-expression of either one of the Praja1 variants has induced a reduction 

of endogenous NRAGE in PC12 cells in a lactacystin-sensitive manner, hence confirming 

results from previous studies in non-neuronal cell lines in a neuronal-like cell culture model. 

Furthermore, these findings support those by Reddy and colleagues, who have observed 

an increase in NGF-induced neuronal differentiation upon stable over-expression of NRAGE 

in PC12 cells (Reddy et al. 2010). In accordance, over-expression of other p75NTR-associated 

MAGE family members such as necdin (Salehi et al. 2000; Bronfman et al. 2003) has been 

shown to increase NGF-induced and TrkA-dependent neurite growth in PC12 cells induced 

by or in co-operation with endogenous NRAGE (Tcherpakov et al. 2002; Bronfman et al. 

2003; Reddy et al. 2010). On the other hand, Feng and co-workers have reported opposite 

effects, namely a reduction of neuronal differentiation following NRAGE over-expression 

(Feng et al. 2010). Interestingly, however, they have found a gradually increasing reduction 

in endogenous NRAGE protein levels, which has been starting about two days after on-set 

of NGF treatment and has eventually led to a complete depletion of NRAGE after NGF 

stimulation for two weeks (Feng et al. 2010). Notably, NRAGE mRNA levels have been 

unaltered within the first two days (Feng et al. 2010), implying a post-transcriptional cause 

for this reduction rather than a down-regulation of gene expression. In light of the repeatedly 

demonstrated interaction of NRAGE and Praja1 as well as the up-regulation of endogenous 

Praja1 in a comparable time line following treatment with NGF – as has been shown in this 

study –, Praja1 might well be the factor causing the post-transcriptional decrease in NRAGE 

protein levels observed by Feng and collaborators. 

Importantly, previous studies have demonstrated that p75NTR-induced and JNK-mediated 

apoptosis – rather than differentiation – would be facilitated by NRAGE in various cell types, 

including PC12 cells (Salehi et al. 2000; Salehi et al. 2002). In contrast, Praja1 has been 

reported to also target several anti-apoptotic factors according to a micro-array screening 

(Loch et al. 2011). Therefore, it is important to note that over-expression of Praja1 in the 

presented PC12 cell model has not been associated with an induction of apoptosis as 

indicated by an unaltered activity of the caspases 3 and 7. To the contrary, Praja1.2 appears 

to even promote cell survival in PC12 cells grown in absence of NGF. However, an earlier 

study in fibroblastic COS7 cells after acute transfection with Praja1 constructs had revealed 

the emergence of distinct morphological changes comprising common features of apoptosis: 

cell rounding and decrease of cell area in combination with increased micro-spike formation 
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and the development of pyknotic nuclei (Teuber et al. 2013). This difference between both 

cell lines could be due to different receptor repertoires. While Praja1 might contribute to 

regulating p75NTR and TrkA receptor function upon binding of NGF in differentiating PC12 

cells (Masoudi et al. 2009), lack of these receptors in most non-neuronal cell lines, such as 

COS7, would shift pathway activity patterns in these cells, thus promoting differing biological 

effects like apoptosis. 

It should be noted that based on the present data, modulation of other known or putative 

Praja1 substrates cannot be entirely excluded from contributing to the observed changes 

in PC12 morphology upon Praja1 over-expression. However, with regard to the two most 

prominent alternative substrates, Msx2 has previously been demonstrated to depend on 

presence of NRAGE for ubiquitination by Praja1 (Sasaki et al. 2002), whereas no evidence 

for an influence of Praja1 on Smad3 levels – as proposed in a previous study (Saha et al. 

2006) – could be identified in the examined cellular model. Thus, although other putative 

Praja1 targets should certainly be considered in future studies, it is reasonable to assume 

that modulation of NRAGE levels and activity by Praja1 is pivotal in explaining the current 

findings. 

Because the focus of this study has been on earlier stages of neuronal-like differentiation 

of NGF-treated PC12 cells, Praja1 levels and function have yet to be checked in mature 

cultures, e. g. after two weeks in vitro. At later stages of differentiation, Praja1 might well 

exert differing functions or endogenous Praja1 may be down-regulated again. However, 

knowing about this general influence of Praja1 on neuronal-like differentiation in the PC12 

model system, it appears preferable to conduct such continuing studies in primary neuronal 

cultures to investigate influences of Praja1 on early growth (DIV7) as well as synaptogenesis 

(DIV14) and synapse modification (DIV21). 

5.3 Praja1 promotes a secretory phenotype in PC12 cells 

Application of NGF is known to promote a shift of PC12 morphology from a secretory to a 

neuronal-like phenotype. The development of a neuronal-like morphology and the increased 

expression of typical neuronal markers, namely β3-tubulin and MAP2, upon NGF stimulation 

have been confirmed in the presented cellular PC12 model. 

Gene expression levels of three markers for a secretory phenotype have been measured 

to assess, whether the Praja1-induced inhibition of neurite outgrowth might be associated 

with a general de-differentiation. While levels of DnaJC5, a mediator of vesicular transmission 

(Burgoyne 1996; Chamberlain & Burgoyne 1998; Cordeiro et al. 2000a; Evans et al. 2001; 

Bai et al. 2007), have only shown a weak, yet non-significant increase following Praja1 

over-expression, mRNA levels of the LDCV-associated Slc18a1 (Liu et al. 1994; Liu & 

Edwards 1997), important for mono-amine transmitter and neuropeptide storage (Pothos 
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et al. 2000; Hoard et al. 2008), have clearly been elevated upon Praja1 induction. Moreover, 

expression of NPY, which has been reported to be up-regulated upon NGF treatment of 

PC12 cells (Allen et al. 1984; Allen et al. 1987; Sabol & Higuchi 1990; Higuchi et al. 1992; 

Balbi & Allen 1994; Rajakumar et al. 1998), but which may nonetheless promote a 

secretory phenotype depending on the expressed NPY receptor repertoire (McCullough et al. 

1998; DiMaggio et al. 1994), has been strongly induced following over-expression of Praja1. 

At variance with findings presented in the literature, however, NPY mRNA has not been 

detected in control cells after NGF stimulation. Although the exact reason for this could not 

be addressed in the context of this work, it should be investigated further in the future.  

Taken together, the observed alterations in gene expression and the morphologic changes 

upon over-expression of Praja1 suggest that rather than causing a general de-differentiation, 

Praja1 is shifting PC12 cells to a secretory phenotype while largely blocking development 

of a neuronal-like morphology.  

This is further complemented by the qualitative impression that levels of β3-tubulin, but not 

of MAP2 have been reduced in Praja1 over-expressing PC12 cells undergoing stimulation 

with NGF (cf. Figure 4 in section 4.1.3). Prospective experiments should therefore aim at 

quantifying a range of typical neuronal markers during neuronal differentiation and following 

modulation of Praja1 expression to allow for precise evaluation of this suspicion. 

5.4 Proposing a role for Praja1 in neuronal signalling pathways 

5.4.1 Praja1 and NRAGE in the nervous system 

NRAGE has been shown to modulate the function of cell adhesion molecules, their interaction 

with the cytoskeleton, as well as signalling to the nucleus (Williams et al. 2003; Kuwajima 

et al. 2004; Kuwajima et al. 2006; Xue et al. 2005). NRAGE is furthermore known to be 

critically involved in the differentiation of GABAergic neurons in the forebrain (Kuwajima et 

al. 2006) and appears to be generally involved in neuronal differentiation processes (Reddy 

et al. 2010; Feng et al. 2010).  

Strikingly, Praja1 and NRAGE show similar patterns of expression during early development, 

but also in a large number of adult tissues, including the brain (Stork et al. 2001; Masuda 

et al. 2001; Teuber et al. 2013). NRAGE and Praja1 also exist at high levels in the adult 

hippocampus and amygdala (Stork et al. 2001; Barrett et al. 2005).  

In conjunction with the capability of Praja1 to regulate NRAGE protein levels and hence 

modulate NRAGE-mediated activation of the Dlx5 transcription factor complex (Sasaki et 

al. 2002; Saha et al. 2006), these findings imply that changes in the expression or interaction 

of these signalling molecules due to activity of Praja1 may contribute to neuronal plasticity 
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and information storage in various brain regions during development, but also during learning 

and memory formation at later stages; a notion that is further supported by the study at hand.  

5.4.2 Praja1 in BMP and NGF signalling 

As previously stated, NRAGE is one of the key factors in BMP and NGF signalling. With 

regard to BMP signalling, the putative Praja1 target Smad3 (Saha et al. 2006) also plays 

an important role. Albeit it should be kept in mind that Smad3 activation in PC12 cells is 

induced by TrkA due to a lack of proper BMP receptors (Lutz et al. 2004), the fact that 

Praja1 failed to alter Smad3 levels in the experiments presented here indicates that at 

least in PC12 cells, Praja1 modulation of downstream BMP signalling pathways could be 

independent of Smad3, rather relying on non-canonical BMP cascades, such as that via 

NRAGE and Dlx5 (cf. Kendall et al. 2005). To evaluate, whether Praja1 might generally be 

less likely to directly affect canonical, Smad-dependent BMP signalling during development 

and differentiation of the CNS, other time points as well as potential changes in activity 

states of Smad3 need to be checked in different model systems in the future. Interestingly, 

the capability of Praja1 to reduce levels of Msx2 and modulate Dlx5 activation – both of 

which are increasingly expressed upon BMP signalling – might point to a role of Praja1 in 

controlling or counteracting activation of BMP cascades during the precisely timed processes 

of development, differentiation, and synaptic re-organization. 

Induction of neuronal-like differentiation in PC12 cells relies on the activation of a p75NTR 

and TrkA hetero-dimer or a TrkA homo-dimer upon NGF binding. Subsequently, a range 

of intracellular cascades is activated with differentiation mainly depending on TrkA-induced 

Erk1/2 activation, further enhanced by NF-κB signalling following p75NTR stimulation (e. g. 

cf. Kaplan & Miller 2000; cf. Arévalo & Chao 2005). In contrast, activation of p75NTR alone, 

for example through neurotrophin homo-dimers or precursors, has been found to cause 

growth arrest and to promote apoptosis via activation of JNK and p53 in several neuronal 

cell types (e. g. cf. Kaplan & Miller 2000; cf. Arévalo & Chao 2005).  

Although initially thought to only bind to p75NTR, NRAGE has meanwhile been shown to 

also interact with TrkA (Barrett et al. 2005; Reddy et al. 2010; Feng et al. 2010). Yet, while 

Reddy and colleagues have observed cell cycle arrest and a TrkA-dependent induction of 

neurite outgrowth with subsequent Erk1/2 activation, which has appeared to partially rely on 

NRAGE levels (Reddy et al. 2010), Barrett and collaborators have proposed a blockade of 

p75NTR/TrkA hetero-dimer formation due to NRAGE binding to both receptors, thus 

blocking promoting effects on differentiation through hetero-dimer formation (Barrett et al. 

2005) and subjecting TrkA to increased degradation (Feng et al. 2010). Accordingly, the 

reduction of neuronal differentiation following NRAGE over-expression, as reported by 

Feng et alii, has been associated with decreased Erk1/2 signalling and TrkA protein levels, 

whereas NRAGE knock-down has led to an enhancement in NGF-induced Erk1/2 activation 
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(Feng et al. 2010). These contradictory findings have been discussed as being due to 

different experimental approaches, as Feng and co-workers have used transient transfection 

or transduction under low serum conditions during their experiments (Feng et al. 2010), while 

Reddy et alii have established cell lines stably over-expressing NRAGE, which have been 

maintained under high serum conditions and supplemented with Ham’s nutrient mixture 

F-12 (Reddy et al. 2010). From early on, serum and nutrient content in the growth medium 

has been known to influence activity of various intracellular signalling cascades in PC12 

cells (e. g. Greene & Tischler 1976; Greene 1978). Furthermore, it is commonly accepted 

that constitutive stable over-expression may cause subsequent compensatory adaptations 

in transfected cells. Hence, initial conditions and pathway activation patterns in PC12 cells 

could have been different in both referenced studies, potentially explaining their differing 

effects. However, although the experiments summarized in this study have been conducted 

using a conditionally inducible instead of a constitutive over-expression system under low 

serum conditions, they do seem to emphasize a positive contribution of NRAGE to neurite 

outgrowth. Instead, actual p75NTR expression levels in relation to TrkA levels could help to 

understand the opposing findings as Feng and collaborators have observed a substantial 

up-regulation of p75NTR within 48 hours of NGF treatment (Feng et al. 2010). Although 

p75NTR protein dynamics have not been measured in a comparable manner neither by 

Reddy and colleagues (Reddy et al. 2010) nor in this study, Brann et alii have previously 

demonstrated that increasing p75NTR levels in primary hippocampal neurons may lead to a 

shift from neurite-promoting to JNK-mediated pro-apoptotic effects of NGF after two days 

of stimulation (Brann et al. 2002). The observed down-regulation of endogenous NRAGE 

in parallel to the up-regulation of p75NTR in the PC12 model used by Feng and co-workers 

(Feng et al. 2010) might then primarily prevent apoptosis, therefore allowing for sufficient 

stimulation of proper neurite outgrowth through TrkA-dependent Erk1/2 and possibly 

p75NTR-induced NF-κB signalling. Considering varying reports on the dynamics of p75NTR 

and TrkA expression in PC12 cells, differences in the relative amounts of either NGF receptor 

as well as in accompanying NRAGE levels might account for the contradictory findings on 

the NRAGE influence on neurite outgrowth. In conjunction with the study at hand, it may 

hence be hypothesized that NRAGE indeed promotes cell cycle arrest or even apoptosis 

upon p75NTR activation, while also modifying TrkA-induced differentiation via Erk1/2. The 

exact nature of this modulation appears to depend on relative NGF receptor levels and on 

activity states of various intracellular signalling cascades. By controlling the levels of NRAGE 

and other intracellular signalling factors (cf. Loch et al. 2011), Praja1 may thus contribute to 

regulating the fine balance between p75NTR and TrkA receptor function upon binding of NGF 

in differentiating PC12 cells (Masoudi et al. 2009). 

Specifying the precise mechanisms and the balance of intracellular signalling pathway 

activity that enable Praja1 to cause such effects will be a matter of future studies. This 
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should also include addressing the physiological regulation of Praja1 activity. In that regard, 

confirming the previously indicated (Saha et al. 2006) auto-ubiquitination capability of Praja1 

in the course of this study might point to an important negative feedback loop for regulating 

activity of this ubiquitin ligase. Aside from auto-ubiquitination as a measure of self-limitation, 

inductors of praja1 expression like FoxP3 as well as potential enhancers of Praja1 activity, 

such as MAGE-G1, should be evaluated more closely and with regard to their contribution 

in neuronal cells. 

5.4.3 Β-catenin – Thinking one step further 

Trying to understand the alluded multitude of complex signalling pathway interactions, 

especially the proposed influence of NRAGE on one of the key factors in so-called canonical 

Wnt signalling, β-catenin (cf. Niehrs 2012), appears to be of special importance, since the 

latter has been implicated in neuronal development and differentiation as well as in fear 

behaviour and memory consolidation on several occasions (Maguschak & Ressler 2008; 

Maguschak & Ressler 2011). 

Normally, β-catenin is found predominantly at the plasma membrane, where it is forming a 

complex with E-cadherin and α-catenin; the former being an important factor in cell-to-cell 

adhesion (Nagafuchi & Takeichi 1988; cf. Adams & Nelson 1998; Cailliez & Lavery 2006), thus 

influencing differentiation, proliferation, and migration of cells. Moreover, studies in Drosophila 

melanogaster have implied a role of the E-cadherin/β-catenin complex (named Shotgun and 

Armadillo, respectively, in Drosophila) in controlling axonal tract branching and trajectory 

in the larval brain (Fung et al. 2009). It has been widely proposed that α- and β-catenin link 

E-cadherin to the actin cytoskeleton (cf. Adams & Nelson 1998; Pokutta & Weis 2000) and 

that the strength of intercellular adhesion via E-cadherin as well as of E-cadherin binding 

to the cytoskeleton appear to be modulated by its cytoplasmic domain (Nagafuchi & Takeichi 

1988) and by β-catenin binding to E-cadherin (Rimm et al. 1995; Yamada et al. 2005; Drees 

et al. 2005; Catimel et al. 2006), although the exact interaction between these three factors 

and their joint effects on the stability of cell-to-cell adhesions still need to be clarified. 

NRAGE has been demonstrated to disrupt this complex formed by E-cadherin and β-catenin, 

hence influencing cell-to-cell adhesion and leading to alterations of the cytoskeleton (Xue 

et al. 2005). In addition, β-catenin translocation to the nucleus and subsequent induction 

of β-catenin-dependent transcription have been found to be promoted by NRAGE through 

protecting cytoplasmic β-catenin from immediate degradation (Xue et al. 2005). In turn, 

this could mean that by controlling the levels of NRAGE, Praja1 might also be capable of 

modulating cell-to-cell adhesion and β-catenin-dependent transcriptional activity, which would 

also affect expression of key factors in BMP signalling, such as msx2 (Willert et al. 2002; 

Hussein et al. 2003; Zhai et al. 2011). 
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As a matter of fact, there already is a preliminary body of evidence substantiating this 

hypothesis. First, the punctual co-localization of Praja1 and NRAGE at the plasma membrane 

and at peripheral cytoskeleton structures might also be, at least partially, a co-localization 

with E-cadherin/β-catenin complexes and would fit well with previous observations of a 

co-localization of Praja1 with specific cell-to-cell contact points at the plasma membrane 

(Saha et al. 2006); something that is the subject of current studies in continuation of the 

work presented here. Second, the promotion of a flattened appearance of PC12 cells might 

indicate an influence of Praja1 on cellular adhesion; although based on the results of this 

study, it would not necessarily be specific to either cell-to-matrix or cell-to-cell adhesion. 

Third, in a first set of experiments investigating β-catenin-dependent transcriptional activity 

upon over-expression of Praja1, a sound inhibition of β-catenin-induced transcription has 

been noticed. 

5.4.4 Ror signalling – A new receptor to consider 

A direct influence of Wnt signalling on NRAGE as well as β-catenin activity, on the other 

hand, appears to be mediated through Ror, mammalian receptors with tyrosine kinase 

activity and thus similar to the family of Trk receptors. A variety of developmental processes, 

especially of the genital, skeletal, and cardiovascular systems, has been demonstrated to 

be impaired in Ror2-deficient mice (Liu, Ross, et al. 2007; Liu, Bhat, et al. 2007; Lai et al. 

2012). Accordingly, Ror2 is widely expressed in the early embryonic phase, whereas its 

expression becomes more restricted during late embryonic and postnatal development 

(Al-Shawi et al. 2001; Matsuda et al. 2001). Interestingly, this down-regulation has occurred 

around E12, and would therefore take place right after the up-regulation of Praja1 (Teuber 

et al. 2013) and NRAGE (Masuda et al. 2001) between E7 and E11.  

Ror2 is known to modulate JNK activation in several different pathways (Kraus et al. 2003; 

Crossthwaite et al. 2004) and has been implicated to play a role in tumour progression 

and metastasis (Lai et al. 2012; O’Connell et al. 2010; Ren et al. 2011). Ror2 has been 

shown to be a mediating factor in Wnt5a-induced signalling and cell migration (Yamamoto 

et al. 2007; O’Connell et al. 2010; Liu et al. 2008) through modulating actin re-organization 

and thereby mediating filopodia formation (Nishita et al. 2006). Although Ror2 activation 

by Wnt5a has been found to induce so-called non-canonical, while suppressing β-catenin-

dependent canonical Wnt signalling (Yamamoto et al. 2007), Ror2 has also been observed 

to enhance canonical Wnt1 signalling (Lai et al. 2012). These seemingly contradicting 

findings might, however, be also due to different proteome and receptor repertoires in 

different cell types. It seems noteworthy that although Wnt3a is capable of binding to Ror2, 

it fails to induce tyrosine kinase phosphorylation (Liu et al. 2008), making it a potential 

inhibitor of Ror2-mediated signalling. 
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NRAGE has been shown to associate with Ror2 at its cytoplasmic C-terminal region, which 

enables Ror2 to affect Msx2 and Dlx5 transcriptional activity, most likely by regulating the 

intracellular NRAGE distribution (Lai et al. 2012; Matsuda et al. 2003). Moreover, in view 

of the NRAGE capability to disrupt E-cadherin/β-catenin complexes and promote nuclear 

translocation of β-catenin (Xue et al. 2005), Ror2 induction of β-catenin-independent non-

canonical and parallel suppression of β-catenin-dependent canonical Wnt signalling in 

several cell types might be explained by the reduction of cytoplasmic NRAGE. In addition, 

a Ror2-induced, pro-oncogenic increase in cell migration could be abolished by binding of 

NRAGE to Ror2 (Lai et al. 2012), which appears to be due to a stabilization of intercellular 

adhesion. Furthermore, dominant brachydactylia type B – a known heritable skeletal disorder 

in humans that has been linked to Ror2 – is characterized by a shortened Ror2 missing the 

cytoplasmic C-terminal region important for NRAGE binding (Lai et al. 2012; Afzal & Jeffery 

2003; Matsuda et al. 2003), providing further evidence for the important role of NRAGE in 

Ror2 signalling cascades. 

5.5 Potential clinical implications  

In summary, current findings on the influence of Praja1 on intracellular homeostasis and 

signalling cascades make Praja1 a potential candidate in a variety of pathological instances, 

among those in particular developmental disorders, cancerogenesis, as well as cognitive 

impairments and psychopathologies. Hence, the following chapter is dedicated to outlining 

the body of evidence supporting this postulate in more detail. 

5.5.1 A potential role for Praja1 in genetic syndromes and developmental disorders 

So far, Praja1 has only been directly linked to one genetic syndrome: craniofrontonasal 

syndrome. This condition is usually caused by deletion or mutation of the X-chromosomal 

ephrin B1 (EFNB1) gene and is characterized by craniofrontonasal dysplasia, asymmetric 

body development, and abnormalities of fingers and toes. In a subset of patients, larger 

deletions also affect neighbouring regions of the EFNB1 gene, which include the PJA1 

gene. It is noteworthy that patients suffering craniofrontonasal syndrome usually show an 

unaltered mental performance. Additional deletion of PJA1, however, has been implicated 

to account for some cases of mild learning disabilities (Wieland et al. 2007). Adding to the 

understanding of Praja1 as being a potential factor in proper mental development, Yu and 

colleagues have found the PJA1 genetic location to be in a region that has been linked to 

several disorders of the X-linked mental retardation spectrum, although the exact causative 

genes within that region have not been identified to date (Yu et al. 2002). 

NRAGE itself has not been shown to cause any developmental disorders or syndromes. 

Yet, it is known to bind to necdin, which has been linked to the development of Prader-Willi-

Syndrome (Kuwajima et al. 2006). Accordingly, NRAGE-deficient mice present a phenotype 
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that comprises hallmarks of Prader-Willi-Syndrome: hyperphagia, reduced motor activity, 

and progressive obesity (Dombret et al. 2012).  

In this regard, it is worth mentioning that MAGE-G1, a MAGE family member that has been 

implicated to enhance activity of Praja1 (Doyle et al. 2010), has also been proposed to be 

involved in the aetiology of Prader-Willi-Syndrome (Kuwako et al. 2004). 

Substitution of one amino acid in another potential target of Praja1, Msx2, is known to cause 

autosomal dominant Boston-type craniosynostosis. Aside from skull defects, this condition 

is accompanied by insufficient brain development. Initially, this mutated Msx2, Msx2P138H, 

has been assumed to be a gain-of-function mutation due to its dominant inheritance pattern 

and an increased DNA binding capability. More recent evidence, however, has suggested a 

dominant negative role for this mutation, essentially resulting in a loss of function, because 

it drastically increases degradation of Msx2P138H, but also of wild-type Msx2, seemingly 

mediated by Praja1 (Yoon et al. 2008). 

Moreover, Rett Syndrome, another neurodevelopmental pathology which is characterized 

by mutations in the Mecp2 gene, has been found to be associated with an increase in Dlx5 

levels (Horike et al. 2005). Although current data provide little reason to assume that Praja1 

would cause this up-regulation of Dlx5 in Rett Syndrome models, induction of an increased 

Praja1 activity and subsequent NRAGE degradation might, in consequence, decrease Dlx5 

activation and subsequent Dlx5-induced transcriptional activity, hence potentially alleviating 

some of the impairments in Rett Syndrome, especially with regard to the development of the 

GABAergic system. 

In conclusion, the potential importance of Praja1 in developmental disorders and genetic 

syndromes relies primarily on circumstantial evidence at this point. Yet, there appears to 

be a sound foundation for further investigating its involvement in the aetiology of mental 

impairments associated with the X-chromosome, of Prader-Willi-Syndrome as well as of 

Boston-type craniosynostosis, but also its potential capacity to alleviate at least some of the 

symptoms of Rett Syndrome. 

5.5.2 Praja1 in tumourigenesis 

From early on, an involvement of Praja1 in the pathogenesis of cancerous tumours has been 

suggested and there is a diverse variety of evidence in support of this hypothesis. As stated 

above, Praja1 levels are known to be elevated in a range of gastrointestinal cancers. At the 

same time, more than a third of gastric cancers present decreased Smad3 levels (Han et al. 

2004; Mishra et al. 2005; Saha et al. 2006). Although over-expression of Praja1 in PC12 cells 

has not changed Smad3 levels in contrast to previous findings by Saha et alii (Saha et al. 

2006), varying intracellular programmes might modulate Praja1-dependent ubiquitination of 

Smad3 depending on the respective cell type. Moreover, Praja1 has been demonstrated to 
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disrupt ELF-mediated TGF-β signalling independent of its influence on Smad3 (Mishra et 

al. 2005; Saha et al. 2006). 

Importantly, Praja1 has also been found to induce cell proliferation (Saha et al. 2006), an 

essential feature of tumourigenesis. Increased proliferation in the course of oncogenic 

transformation is often accompanied by improper desmosome formation and hence impaired 

cell-to-cell adhesions. In agreement with this, sporadic forms of colon cancer as well as 

poorly differentiated forms of gastric cancer, which are typically associated with a higher 

risk of carcinoma infiltration and metastases, characteristically show, among others, a loss 

of E-cadherin and catenin in up to 50 % of cases (cf. Ming 1998). This might be partially 

due to TGF-β signalling via Smad3, which may induce E-cadherin suppressors and promote 

translocation of β-catenin into the nucleus (Cano et al. 2000; Carver et al. 2001; Peinado 

et al. 2003). Furthermore, characteristic mutations leading to hyper-activity of β-catenin, 

for instance of the adenomatous polyposis coli (APC) gene, are found in a wide range of 

gastrointestinal tumour entities (White et al. 2012; Krausova & Korinek 2014). The disruption 

of E-cadherin/β-catenin complexes at the plasma membrane by NRAGE followed by an 

increase in β-catenin-induced transcriptional activity (Xue et al. 2005) might then further 

contribute to a loss of proper intercellular connections and an increase in β-catenin activity. 

In this context, however, Praja1 would appear to counteract cancerogenic TGF-β as well as 

NRAGE effects rather than exerting a pro-oncogenic influence. Interestingly, activation of 

Smad4 – also by TGF-β – has been observed to increase E-cadherin levels and induce 

subsequent α- and β-catenin recruitment to the cell membrane, thus strengthening cell-to-cell 

adhesions (Müller et al. 2002). 

When taking into account the general capability of Praja1 to disrupt ELF-mediated TGF-β 

signalling and promote cell proliferation (Mishra et al. 2005; Saha et al. 2006), there is good 

reason to postulate a tumourigenic role of Praja1 through impairing TGF-β signalling. At 

the same time, disruption of TGF-β signalling together with degradation of NRAGE by Praja1 

might exert tumour-suppressing effects by indirectly stabilizing cell-to-cell adhesions and 

decreasing β-catenin-induced transcriptional activity. Praja1 might hence play a Janus-faced 

role in the course of tumour development, possibly depending on the conjuncture of critical 

pro- and proto-oncogenic mutations as well as their ability to shift intracellular signalling 

cascade interplay for acting as either a tumour promoter or tumour suppressor.  

Although current findings on the involvement of Praja1 in tumour development are almost 

exclusively linked to gastrointestinal tumours, it appears valid to assume that at least some 

of the interactions and modulations of signalling cascades might also be involved in the 

pathogenesis of neural and neuronal tumours. 
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5.5.3 Potential influences of Praja1 on behaviour and cognition 

To date, not much is known about the influence of Praja1 on behaviour and cognition. Yet, 

fair assumptions may be drawn from what has been established on Praja1 and its putative 

targets. 

First, the afore-mentioned up-regulation of Praja1 in the BLA following fear conditioning 

(Stork et al. 2001) in conjunction with the presented inhibition of neurite outgrowth by Praja1 

and its potential effects in mediating cytoskeletal re-arrangement, which is necessary during 

synaptic re-organization, strongly imply a role of Praja1 during memory consolidation. This 

hypothesis is currently investigated by according behavioural experiments following virally 

induced knock-down of Praja1 in vivo as well as by adequate Praja1 manipulation in primary 

neuronal cultures. 

Furthermore, there is strong evidence for assuming a distinct role of neurotrophin signalling 

in anxiety behaviour and consolidation of fear memory. Stress or fear, for instance, have 

been found to increase NGF levels in the amygdala, thus modulating behavioural responses 

in various ways (Rattiner, Davis & Ressler 2004; Rattiner, Davis, French, et al. 2004; Yee 

et al. 2007; cf. Cirulli & Alleva 2009; cf. Gioiosa et al. 2009; cf. Alleva & Francia 2009; 

Lakshminarasimhan & Chattarji 2012). Based on the observation that NGF blood serum 

levels are increased during the experience of psycho-social stress as well as in the course 

of positive social bonding, it has been proposed that NGF might serve to compensate for 

at least some of the negative effects in stressful situations (cf. Cirulli & Alleva 2009; cf. 

Alleva & Francia 2009; cf. Gioiosa et al. 2009), which might also account for the fact that 

increasing NGF levels may indicate a positive response during cognitive behavioural therapy 

in patients with generalized anxiety disorder (Jockers-Scherübl et al. 2007). This is further 

supported by findings of decreased NGF levels in different brain regions during long-term 

depression, associated with neuronal loss and decreased neurogenesis in animal models 

of depression (cf. Gioiosa et al. 2009) and normalized through pharmacotherapy with 

antidepressants (Hellweg et al. 2002; cf. Gioiosa et al. 2009). In addition, NGF has been 

found to directly exert anti-depressant effects through shifting the general network activity 

by down-regulating the expression of certain receptors pivotal for neurotransmission, for 

instance receptors for GABA, dopamine, serotonin, somatostatin, or glycine (McGeary et al. 

2011).  

An influence of Praja1 on these neurotrophin-dependent behavioural effects would most 

likely be mediated through its regulation of NRAGE. Indeed, NRAGE-deficient mice have 

not only been reported to show symptoms resembling key elements of Prader-Willi-Syndrome 

(see above), but they also exhibit behavioural features typical of depression and autism: 

reduced social interaction and memory performance, increased levels of self-grooming and 

anxiety as well as deficient sexual behaviour. Concurrently, alleviation of these alterations 
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in behaviour could be achieved by administration of tricyclic antidepressants, oxytocin, or 

SSRI (Dombret et al. 2012; Mouri et al. 2012). 

Moreover, β-catenin has been implicated in fear behaviour and memory consolidation 

(Maguschak & Ressler 2008; Maguschak & Ressler 2011), as mentioned before. The 

influence of NRAGE on the stability of intercellular adhesions and its capability of inducing 

downstream canonical Wnt signalling by stabilizing β-catenin may thus provide an additional 

mechanism of NRAGE-mediated alterations in cellular re-organization processes, such as 

during learning processes and memory formation. 

Based on this brief over-view on potential influences of Praja1 on some of the pathways 

contributing to fear and anxiety behaviour as well as to memory formation, one could even 

speculate, whether Praja1 might contribute to the aetiology of post-traumatic stress disorder 

(PTSD). This severe anxiety disorder may develop after exposure to extreme traumatic 

stressors and is often associated with a feeling of helplessness or lack of control. Apart 

from anxiety and exaggerated startle, PTSD is characterized by dissociative symptoms, 

flashbacks, sleep disturbances, deficits in concentration as well as vegetative symptoms 

like increased heart rates (cf. Foa et al. 2006; cf. Javidi & Yadollahie 2012; cf. Pitman et al. 

2012). Although more than 50 % of the population experience at least one traumatic event, 

life-time prevalence of PTSD is ranging between 0.3 % and 7.8 % only (Kessler et al. 1995; 

cf. Javidi & Yadollahie 2012). Certain risk factors have been discussed, among those female 

gender and younger age (cf. Javidi & Yadollahie 2012; cf. Pitman et al. 2012), experience 

of childhood abuse, leading to difficulties in emotional regulation (Stevens et al. 2013), or 

maternal inexperience, as seen in experiments with certain murine strains (Dahlhoff et al. 

2010). Furthermore, epigenetic influences and polygenic inheritance patterns have been 

investigated, but current findings are rather indecisive and often unspecific for PTSD (cf. 

Pitman et al. 2012). Hence, the mechanisms, which contribute to the consolidation of 

acute post-traumatic symptoms and the development of PTSD in some people, but not in 

others remain largely unknown.  

Yet, the conception that PTSD appears to be a consequence of inefficient extinction of 

traumatic mnemic contents has led to identifying anatomical and functional changes in 

PTSD patients and animal models that affect several brain regions commonly associated 

with memory consolidation and fear behaviour: hippocampus, amygdala, and ventromedial 

prefrontal cortex (cf. Pitman et al. 2012).  

Moreover, the pathognomonic hyper-reactivity of the sympathetic nervous system appears 

to rely on an imbalance of the hypothalamus–pituitary–adrenal (HPA) axis via increased 

levels of the anxiogenic corticotropin-releasing hormone (CRH) as well as a stress-induced 

reduction of NPY, which may inhibit the release of noradrenalin from the adrenal medulla 

(Maes et al. 1999; Rasmusson et al. 2000; Cohen et al. 2012; cf. Pitman et al. 2012). In 
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recent years, evidence suggesting that systemic changes of NGF levels are related to an 

interaction with the HPA axis has been accumulating. NGF expression has been described 

to depend on glucocorticoid hormone levels (cf. Cirulli & Alleva 2009). In return, NGF has 

been found to increase glucocorticoid secretion (cf. Cirulli & Alleva 2009; cf. Gioiosa et al. 

2009). In agreement with this, traumatic events early in life have been shown to be capable 

of causing a lasting dysbalance in the HPA axis (cf. Alleva & Francia 2009), while alterations 

of brain development as caused by juvenile stress appear to raise susceptibility to mood or 

anxiety disorders (Agid et al. 1999; cf. Cirulli & Alleva 2009). 

Furthermore, increased β-catenin degradation in the hippocampus as well as stabilization 

of β-catenin in the BLA have been linked to vulnerability to PTSD in certain murine strains, 

which have also shown altered activity levels of other Wnt signalling pathway components 

(Dahlhoff et al. 2010). 

Although a coherent picture of a potential Praja1 involvement in PTSD pathogenesis is 

still to be drawn, Praja1 does appear to contribute to all signalling cascades, which have 

been implicated to contribute to the development of PTSD. Praja1 has been shown to 

mediate NRAGE-dependent neurotrophin signalling, which seems to be key in the aetiology 

of PTSD. Praja1 has also been found to induce NPY expression in adrenal medulla PC12 

cells, while a reduction of NPY levels in the adrenal medulla has been observed in PTSD 

patients. Finally, by altering NRAGE levels Praja1 might even be capable of counteracting 

some of the aberrant β-catenin activity that has been associated with vulnerability to 

PTSD. Most likely, there will not be a general up- or down-regulation of Praja1 in PTSD, 

but there might be alterations of Praja1 activity specific to certain cell types, tissues, or 

brain regions that could contribute to PTSD-associated changes one way or another.  
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6. Conclusion 

Over the past decade, ubiquitination has been increasingly appreciated as a process that 

does not only regulate protein half-life, but also intracellular trafficking and signalling pathway 

activity by controlling intracellular homeostasis on many levels. This growing awareness of 

ubiquitination was paralleled and further promoted by discoveries, which have put enzymes 

mediating ubiquitination processes in key positions with regard to the aetiology of a wide 

range of pathologies. 

Despite an increased interest, however, most enzymes playing a role during ubiquitination 

are not well investigated to date. Among those is the E3 ubiquitin ligase Praja1, which has 

first been described in the context of liver development and has later been implicated to 

be involved in the development of gastrointestinal tumours. Due to its sequence similarity 

to Neurodap1, which had already been known to play a role during the development of the 

CNS, its abundant expression in brain tissue, and its up-regulation in the BLA after fear 

conditioning, Praja1 has also been proposed to be of relevance to neuronal development.  

For addressing this potential function of Praja1 in neuronal tissue, the work at hand has 

investigated the effects of Praja1 on NGF-induced neuronal-like differentiation in PC12 cells. 

As could be demonstrated, the expression of endogenous praja1 is indeed induced during 

stimulation of PC12 cells with NGF. Moreover, Praja1 over-expression has been observed 

to drastically suppress NGF-induced neurite outgrowth in PC12 cells, most likely through 

poly-ubiquitination and subsequent degradation of the signalling molecule NRAGE, which 

is involved in BMP signalling as well as in NGF signalling via p75NTR and TrkA. Although 

integrin-dependent cell adhesion may have some modulatory influence, these Praja1 effects 

have been found to be largely independent of extracellular substrates. Furthermore, in 

contrast to previous findings in non-neuronal cell lines, Praja1 has not induced apoptosis 

in PC12 cells. It rather appears as if Praja1 would shift PC12 cells to a secretory phenotype, 

as indicated by an elevated expression of according markers. Taken together, the findings 

of this study strongly suggest that at least some of the functional effects of Praja1 depend 

on a cell’s proteome composition as well as receptor repertoire. In this case, similar or 

identical molecular interactions such as the degradation of NRAGE following ubiquitination 

by Praja1 could induce diverging physiologic effects in different tissues and cell populations. 

Previous work has identified two different Praja1 isoforms, Praja1.1 and Praja1.2, resulting 

from alternative splicing events. Cells transfected with praja1.1 constructs over-express 

both, Praja1.1 and Praja1.2, in a stoichiometry similar to the endogenous expression in 

the adult brain as well as in naïve PC12 cells, whereas cells transfected with praja1.2 

generated only Praja1.2. The latter might play a distinct role during development due to the 

dynamics of its expression. However, the evidence presented here suggests a generally 
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comparable function of both Praja1 isoforms. Nonetheless, few subtle distinctions could be 

observed. It seems as if Praja1.2 would be less capable of translocating into the nucleus 

than Praja1.1, induced slightly less cell spreading, but could promote cell survival under 

NGF-deprived conditions.  

In conclusion, this work provides first evidence for the concept of Praja1 being a mediator 

in neuronal differentiation. Taking into account the pathways that Praja1 seems to modulate 

through its activity, there is good reason to assume that this ubiquitin ligase might be of 

importance for proper formation and later re-organization of the CNS, especially with regard 

to the GABAergic system, and that it could influence learning processes as well as memory 

consolidation. In consequence, Praja1 might be a relevant factor for the aetiology of various 

pathologies, in particular genetic syndromes (e. g. X-linked mental retardation syndromes, 

Prader-Willi-Syndrome, or Rett Syndrome) as well as anxiety disorders and PTSD, but also 

neoplastic transformation. 
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Appendix 

A.I Supplemental Data 

A.I.1 Up-regulation of endogenous Praja1 in PC12 cells following application of NGF 

 

 

 

30 min 2 h 3 d Levene One-way ANOVA 

Mean ± 
S.E.M. 

Mean ± 
S.E.M. 

Mean ± 
S.E.M. 

p-value F0.95(2,6) = 
5.14 

p-value 

Praja1.1 0.09 ± 0.03 0.05 ± 0.03 0.30 ± 0.03 0.990 ≤ 22.048 0.002 

Praja1.2 −0.05 ± 0.01 0.05 ± 0.02 0.25 ± 0.01 0.493 ≤ 110.561 0.000 

Post-hoc test p-value p-value Procedure  

Praja1.1 0.004 0.002 Tukey-HSD 

Praja1.2 0.000 0.000 Tukey-HSD 

Table 11: Up-regulation of endogenous Praja1 following NGF stimulation of PC12 cells. Immunoblots of 
PC12 cell lysates obtained after 30 minutes, two hours, or three days of NGF stimulation (N = 3) have been 
quantified with the LI-COR Odyssey® system. Intensities of respective Praja1 signals have then been normalized 
to according tubulin intensities to control for total protein content. Stated means ± S.E.M. have been computed 
from the resulting values. Statistical analysis has relied on one-way ANOVA with significant differences assumed 
for p ≤ 0.05. Presented post-hoc p-values are each in comparison to measurements after three days of NGF 
exposure. Post-hoc comparison procedures have been chosen depending on the results of the Levene test. 
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A.I.2 Influence of Praja1 on neurite outgrowth in PC12 cells 

 

 

 

Praja1.1/2 Praja1.2 Control Brown-
Forsythe 

One-way ANOVA 

Mean ± 
S.E.M. 

Mean ± 
S.E.M. 

Mean ± 
S.E.M. 

p-value F0.95(2,15) 
= 3.68 

p-value 

Neurites per 
differentiating cell 

0.28 ± 0.03 0.10 ± 0.04 0.88 ± 0.12 0.000 ≤ 27.735 0.000 

Rounding ratio 0.21 ± 0.06 0.39 ± 0.11 0.88 ± 0.25 0.051 ≤ 4.546 0.029 

Percentage of 
differentiating cells 

0.38 ± 0.06 0.20 ± 0.03 0.29 ± 0.07 0.096 ≥ 2.909 0.086 

Post-hoc test p-value p-value Procedure  

Neurites per 
differentiating cell 

0.010 0.002 Dunnett-T3 

Rounding ratio 0.027 0.119 Tukey-HSD 

Table 12: Praja1 effects on neuronal-like differentiation of PC12 cells. Different parameters of cell morphology 
have been assessed after four days of NGF stimulation. Measured values from six independent experiments per 
group (N = 6) are noted as mean ± S.E.M. Significant differences have been assumed for p ≤ 0.05 in a one-way 
ANOVA. Presented post-hoc p-values are each in comparison to control cells. Post-hoc comparison procedures 
have been chosen depending on the result of the Brown-Forsythe test. 
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 Praja1.1/2 Control Levene Student’s t-test 

Mean ± S.E.M. Mean ± S.E.M. p-value T df p-value 

Collagen IV 

Neurites per 
differentiating cell 

0.28 ± 0.05 0.70 ± 0.08 0.195 −4.409 10 0.001 

Rounding ratio 0.31 ± 0.09 0.34 ± 0.05 0.469 −0.212 10 0.837 

Percentage of 
differentiating cells 

0.26 ± 0.02 0.21 ± 0.07 0.029 0.696 6.158 0.512 

Laminin/PDL 

Neurites per 
differentiating cell 

0.34 ± 0.07 0.75 ± 0.08 0.974 −3.799 14 0.002 

Rounding ratio 0.22 ± 0.03 0.50 ± 0.11 0.051 −2.380 14 0.032 

Percentage of 
differentiating cells 

0.31 ± 0.03 0.30 ± 0.04 0.790 0.374 14 0.733 

Laminin 

Neurites per 
differentiating cell 

0.19 ± 0.06 0.58 ± 0.10 0.117 −3.349 10 0.007 

Rounding ratio 0.67 ± 0.10 1.57 ± 0.30 0.261 −2.865 10 0.017 

Percentage of 
differentiating cells 

0.10 ± 0.01 0.16 ± 0.01 0.330 −4.533 10 0.001 

PDL 

Neurites per 
differentiating cell 

0.21 + 0.05 0.94 + 0.12 0.257 −5.675 10 0.000 

Rounding ratio 0.27 ± 0.04 1.20 ± 0.18 0.023 −4.939 5.557 0.003 

Percentage of 
differentiating cells 

0.27 ± 0.02 0.26 ± 0.02 0.591 0.411 10 0.690 

L1-Fc 

Neurites per 
differentiating cell 

0.17 ± 0.07 1.02 ± 0.17 0.107 −4.318 9 0.002 

Rounding ratio 0.45 ± 0.15 1.19 ± 0.17 0.679 −3.285 8 0.011 

Percentage of 
differentiating cells 

0.25 ± 0.04 0.29 ± 0.02 0.383 −0.991 9 0.348 

Table 13: Substrate-specificity of Praja1-dependent inhibition of neurite outgrowth. The listed morphological 
parameters have been evaluated following NGF stimulation. Since there are no overall differences between two 
and four days of NGF treatment, both groups have been pooled. Measured values from at least five independent 
experiments per substrate (N = 8 for Laminin/PDL, N = 5 for Praja1.1/2-expressing cells on L1-Fc, N = 6 for all 
others) are noted as mean ± S.E.M. Significant differences have been assumed for p ≤ 0.05. Comparison of 
groups has relied on a two-tailed Student’s t-test after checking the homogeneity of variances by applying the 
Levene test and calculating t-test p-values accordingly. 
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Table 14: Influence of different substrates on PC12 morphology. The listed morphological parameters 
have been evaluated following NGF stimulation. Since there are no overall differences between two days 
and four days of NGF treatment, both groups have been pooled. Additionally, Praja1.1/2 over-expressing 
and control cells have been pooled for assessing substrate-dependent differences. Measured values 
from at least five independent experiments per substrate (N = 8 for Laminin/PDL, N = 5 for Praja1.1/2-
expressing cells on L1-Fc, N = 6 for all others) are noted as mean ± S.E.M. Significant differences were 
assumed for p ≤ 0.05 in a one-way ANOVA followed by appropriate post-hoc testing. 
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A.I.3 Influence of Praja1 on gene expression of selected phenotype markers 

 

 

Praja1.1/2 Praja1.2 Control Levene One-way ANOVA 

Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M. p-value F0.95(2,6) = 
5.14 

p-value 

Praja1 −6.59 ± 0.78 −6.79 ± 0.74 1.80 ± 0.51 0.591 ≤ 50.412 0.000 

Slc18a1 1.76 ± 0.23 1.67 ± 0.24 4.66 ± 0.31 0.684 ≤ 42.494 0.000 

DnaJC5 7.08 ± 0.13 7.23 ± 0.34 8.33 ± 0.52 0.186 ≥ 3.513 0.098 

NPY 8.25 ± 0.28 8.73 ± 0.36 13.13 ± 0.92 0.152 ≤ 20.664 0.002 

Post-hoc test p-value p-value Procedure  

Praja1 0.000 0.000 Tukey-HSD 

Slc18a1 0.001 0.000 Tukey-HSD 

NPY 0.003 0.005 Tukey-HSD 

Table 15: Influence of Praja1 over-expression on expression of selected genes. Gene expression in stably 
transfected PC12 cells has been measured after four days of NGF stimulation using quantitative real-time PCR 
and relative quantification methods. Measured CT values of target genes have been normalized using GAPDH 
and PGK as internal controls before performing statistical analysis. Presented values are mean ΔCT values (after 
normalization) from three independent experiments per group (N = 3) ± S.E.M. Due to the normalization method, 
higher mean values indicate lower mRNA amounts. Significant differences have been assumed for p ≤ 0.05 in a 
one-way ANOVA. Presented post-hoc p-values are each in comparison to control cells. Post-hoc comparison 
procedures have been chosen depending on the results of the Levene test. 

A.I.4 Reduction of NRAGE expression following over-expression of Praja1 

 

 

Praja1.1/2 Praja1.2 Control Levene One-way ANOVA 

Mean ± S.E.M. Mean ± S.E.M. Mean ± S.E.M. p-value F0.95(2,9) = 
4.26 

p-value 

– Lactacystin 0.94 ± 0.07 0.87 ± 0.12 1.36 ± 0.10 0.137 ≤ 7.250 0.013 

+ Lactacystin 0.90 ± 0.11 0.96 ± 0.18 1.08 ± 0.11 0.167 ≥ 0.420 0.669 

Post-hoc test p-value p-value Procedure  

– Lactacystin 0.034 0.017 Tukey-HSD 

Table 16: Reduction of NRAGE expression following over-expression of Praja1. Immunoblots of PC12 cell 
lysates obtained after two days of NGF stimulation (N = 4) have been quantified with the Odyssey® system by 
LI-COR. Intensities of respective NRAGE signals have then been normalized using the according β-actin signal 
to control for total protein content. From the resulting values, mean ± S.E.M. have been computed as stated. 
Statistical analysis has relied on one-way ANOVA with significant differences assumed for p ≤ 0.05. Presented 
post-hoc p-values are each in comparison to control cells. Post-hoc comparison procedures have been chosen 
depending on the results of the Levene test. 
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A.II Materials and suppliers 

A.II.1 Water 

Aqua destillata (double-distilled) has been produced using the on-site purification system 
Astacus by membraPure (Bodenheim / Germany). 

To obtain RNase-free water, double-distilled water has been treated with 0.1 % DMDC, 
stirred for three hours, and subsequently autoclaved. 

A.II.2 Molecular weight markers 

Molecular weight markers used in SDS-PAGE and Western blotting: 

PageRuler Prestained Protein Ladder Thermo Fisher Scientific, Waltham MA / USA 

PageRuler Precision Plus  
Prestained Protein Ladder   Thermo Fisher Scientific, Waltham MA / USA 

A.II.3 Kits and assays 

Amersham ECL Plus Detection Reagents GE Healthcare, Little Chalfont / UK 

Caspase-Glo® 3/7 Assay   Promega, Madison WI / USA 

Cells-to-cDNA™ II Kit    Ambion®, Huntington / UK 
      Only the following kit component has been used:  

Cell Lysis II Buffer 

DC™ Protein Assay     Bio-Rad, Hercules CA / USA 

PureLink™ HiPure Plasmid Midiprep Kit Invitrogen™, Carlsbad CA / USA 

Sensiscript® Reverse Transcription Kit QIAGEN, Hilden / Germany  
      Contained reagents: 
      Sensiscript reverse transcriptase 

Buffer RT (10x) 
dNTP mix (5 mM each) 
RNase-free water 

RETROscript® Reverse Transcription Kit Ambion®, Huntington / UK 
Only the following kit component has been used:  
Oligo(dT)18 primers 

SUPERase-In™ RNase Inhibitor   Ambion®, Huntington / UK 

TaqMan® Gene Expression Reagents  Applied Biosystems®, Foster City CA / USA 
TaqMan® Gene Expression Master Mix 

Inventoried Assays: 
Slc18a1 (VMAT1): Rn00461866_m1 
DnaJC5 (CSP): Rn00577363_m1 
NPY: Rn00561681_m1 
PGK: Rn00821429_g1 
GADPH: 4352338E 

Assay-by-Design: 
MPraja1_-RT6 
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A.II.4 Chemicals and reagents (except kits, assays, and cell culture) 

Acrylamide solution (37.5:1)   Carl Roth®, Karlsruhe / Germany 

APS      Serva, Heidelberg / Germany 

Β-mercaptoethanol    Serva, Heidelberg / Germany 

Bromophenol blue    Serva, Heidelberg / Germany 

BSA      Carl Roth®, Karlsruhe / Germany 

DAPI      Merck, Darmstadt / Germany 

DMDC      Sigma-Aldrich, Saint Louis MO / USA 

DNase I     Roche, Mannheim / Germany 

DOC      Fluka® (Sigma-Aldrich), Buchs / Switzerland 

Donkey serum    Linaris, Dossenheim / Germany 

EDTA      Carl Roth®, Karlsruhe / Germany 

Ethanol (96 %)    Carl Roth®, Karlsruhe / Germany 

Glycerol     Carl Roth®, Karlsruhe / Germany 

Glycin      Serva, Heidelberg / Germany 

Immersol™ 518 F    Zeiss, Oberkochen / Germany 

Isopropanol     Carl Roth®, Karlsruhe / Germany 

KCl      Fluka®, Buchs / Switzerland 

KH2PO4     Sigma-Aldrich, Seelze / Germany 

Methanol      Carl Roth®, Karlsruhe / Germany 

Milk powder     Carl Roth®, Karlsruhe / Germany  

NaCl      Carl Roth®, Karlsruhe / Germany 

NaF      Carl Roth®, Karlsruhe / Germany 

Na3VO4     Sigma-Aldrich, Saint Louis MO / USA 

Na2HPO4     Carl Roth®, Karlsruhe / Germany 

NP-40 Alternative    Calbiochem®, San Diego CA / USA 

PFA      Carl Roth®, Karlsruhe / Germany 

Potassium chloride    Carl Roth®, Karlsruhe / Germany 

Propidium iodide    Invitrogen™, Carlsbad CA / USA 

Proteinase Inhibitor Tablets   Pierce Biotechnology, Rockford IL / USA  

Rhodamine phalloidin    Life Technologies, Eugene OR / USA 

SDS      Serva, Heidelberg / Germany 

Shandon Immu-Mount™   Richard-Allan Scientific™, Kalamazoo MI / USA 

TEMED     Carl Roth®, Karlsruhe / Germany 

Tris-HCl PUFFERAN®   Carl Roth®, Karlsruhe / Germany 
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Tris PUFFERAN®    Carl Roth®, Karlsruhe / Germany 

Triton™ X-100    Sigma-Aldrich, Saint Louis MO / USA 

Tween® 20     Carl Roth®, Karlsruhe / Germany 

A.II.5 Cell culture 

Bacillol® plus     Bode Chemie, Hamburg / Germany 

COS7 cells (DSMZ No. ACC 60)  DSMZ, Braunschweig / Germany 

Collagen I     Sigma-Aldrich, Saint Louis MO / USA 

Collagen IV     Sigma-Aldrich, Saint Louis MO / USA 

DMEM      Gibco®, Carlsbad CA / USA 

Doxycycline     Sigma-Aldrich, Saint Louis MO / USA  

Foetal bovine serum     Gibco®, Carlsbad CA / USA 

G418 (Geneticin)    Invitrogen™, Carlsbad CA / USA 

GeneJammer     Stratagene, La Jolla CA / USA 

HEK293 cells (DSMZ No. ACC 305) DSMZ, Braunschweig / Germany 

Horse serum     Gibco®, Carlsbad CA / USA 

Hygromycin B     Gibco®, Carlsbad CA / USA 

L1, human recombinant protein (GF220) Chemicon® (Millipore), Billerica MA / USA 

Lactacystin      Sigma-Aldrich, Saint Louis MO / USA 

Laminin     BD Bioscience, Paolo Alto CA / USA 

NGF (2.5 S)     Invitrogen™, Carlsbad CA / USA  

PC12 cells (DSMZ No. ACC 159)  DSMZ, Braunschweig / Germany 

PBS      Gibco®, Carlsbad CA / USA 

PDL      Sigma-Aldrich, Saint Louis MO / USA 

Penicillin–Streptomycin–Glutamine  Gibco®, Carlsbad CA / USA  

Trypsin/EDTA     Gibco®, Carlsbad CA / USA 

A.II.6 Vectors 

pEGFP-C1     BD Bioscience, Paolo Alto CA / USA 

pCMV::HA      BD Bioscience, Paolo Alto CA / USA 

pTRE2-hyg      BD Bioscience, Paolo Alto CA / USA 

A.II.7 Antibodies 

Alexa Fluor 488 (A11055)   Invitrogen™, Carlsbad CA / USA 

Alexa Fluor 555 (A31570 & A31572)  Invitrogen™, Carlsbad CA / USA 

Alexa Fluor 647 (A31571)   Invitrogen™, Carlsbad CA / USA 

Α-tubulin (T6199)    Sigma-Aldrich, Saint Louis MO / USA 
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Β-actin (ab6276)    Abcam®, Cambridge / UK 

Β-tubulin (926-42211)   LI-COR®, Lincoln NE / USA 

Β3-tubulin (TuJ1) (5568S)   Cell Signaling Technology®, Danvers MA / USA 

Fc IgG (MAB1302)    Chemicon® (Millipore), Billerica MA / USA 

GFP (Ab6556)     Abcam®, Cambridge / UK 

HA-tag, clone 114-C2-7 (05-902R)  Millipore, Billerica MA / USA 

HRP-coupled immunoglobulins  DAKO, Copenhagen / Denmark 
(P0160 & P0447) 

IRDye® 680LT (926-68020)   LI-COR®, Lincoln NE / USA 

IRDye® 800CW (926-32211)   LI-COR®, Lincoln NE / USA 

MAP2 (Ab32454)    Abcam®, Cambridge / UK 

NRAGE (07-394)    Upstate® (Millipore), Lake Placid NY / USA 

Praja1 anti-serum (custom-made)   PINEDA Antibody Service, Berlin / Germany 

Smad3 (ab28379)    Abcam®, Cambridge / UK 

Ubiquitin (U0508)    Sigma-Aldrich, Saint Louis MO / USA 

A.II.8 Instruments and consumables 

Autoclaves & oven: 

DB-23      Systec, Wettenberg / Germany 

FP 53      Binder, Tuttlingen / Germany   

VX-120     Systec, Wettenberg / Germany 

Cell culture incubators: 

C60      Labotect, Göttingen / Germany 

C200      Labotect, Göttingen / Germany 

Centrifuges: 

5415D      Eppendorf, Hamburg / Germany 

5415R      Eppendorf, Hamburg / Germany 

5424      Eppendorf, Hamburg / Germany 

5430      Eppendorf, Hamburg / Germany 

5810R      Eppendorf, Hamburg / Germany 

Galaxy Mini     VWR™ International, Radnor PA / USA 

Freezers & fridges: 

Apollo® & BIOSAFE® nitrogen storage Cryotherm, Kirchen (Sieg) / Germany 

KU 2407     Liebherr, Ochsenhausen / Germany 

GN 2756     Liebherr, Ochsenhausen / Germany 

GU 4506     Liebherr, Ochsenhausen / Germany 
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TS 606-G/4-i     WTW, Weilheim / Germany 

Ultra-Low (V.I.P.® Series)   Sanyo, Moriguchi / Japan 

Glassware: 

Beaker s     DURAN Group, Wertheim (Main) / Germany 

Cover-slips     Carl Roth®, Karlsruhe / Germany 

Erlenmeyer flasks    DURAN Group, Wertheim (Main) / Germany 

Glass bottles     DURAN Group, Wertheim (Main) / Germany 

Graduated cylinders    DURAN Group, Wertheim (Main) / Germany 

Microscope slides    Carl Roth®, Karlsruhe / Germany 

Instruments: 

Eclipse TS100 & TS100-F   Nikon, Chiyoda (Tokyo) / Japan 

EpMotion® 5070 pipetting robot  Eppendorf, Hamburg / Germany 

Infinite® M200 microplate reader  Tecan, Männedorf / Switzerland 

Leica DMI6000CS microscope  Leica, Wetzlar / Germany 

Mini-PROTEAN® Electrophoresis System Bio-Rad, Hercules CA / USA 

Odyssey® Infrared Imaging System  LI-COR®, Lincoln NE / USA 

StepOnePlus™    Applied Biosystems®, Foster City CA / USA 

Veriti® Thermal Cycler   Applied Biosystems®, Foster City CA / USA 

Pipettes: 

Accu-jet® pro     Brand, Wertheim (Main) / Germany 

Costar® Stripette® (10 ml, 25 ml, 50 ml) Corning, Corning NY / USA  

Pasteur capillary pipettes   WU, Mainz / Germany 

Pasteur pipettes (disposable)  Carl Roth®, Karlsruhe / Germany 

Pipettes     Brand, Wertheim (Main) / Germany 

Pipette tips     Brand, Wertheim (Main) / Germany   

Pipette tips with filter    Brand, Wertheim (Main) / Germany 

Plastic ware: 

Adhesive qPCR folie    Sarstedt, Nümbrecht / Germany 

Cell culture flasks (ventilated caps)  Corning, Corning NY / USA  

Cell culture dishes    Corning, Corning NY / USA  

CentriStar™ tubes (15 ml, 50 ml)  Corning, Corning NY / USA  

Costar® cell culture cluster (well plates) Corning, Corning NY / USA  

MicroAmp® Fast Reaction Tubes  Applied Biosystems®, Foster City CA / USA 

MicroAmp® 8-cap strip   Applied Biosystems®, Foster City CA / USA 
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MicroAmp® Fast Optical 96-well plate Applied Biosystems®, Foster City CA / USA 

Object slide box    Carl Roth®, Karlsruhe / Germany 

Safe lock tubes (0.5 ml, 1.5 ml, 2 ml) Sarstedt, Nümbrecht / Germany 

Safety hoods: 

Biowizard Silver Class II Safety Cabinet Kojair Tech Oy, Vilpulla / Finland 

Captair® bio     erlab, Düsseldorf / Germany 

Scales: 

TE 153S     Sartorius, Göttingen / Germany 

TE 2101     Sartorius, Göttingen / Germany 

TE 212     Sartorius, Göttingen / Germany 

Shakers, stirrers & rotators: 

Dual-Action Shaker KL2   Edmund Bühler, Hechingen / Germany 

HS 260 basic shaker    IKA®, Staufen / Germany 

Innova™ 4200 incubator shaker  New Brunswick Scientific, Edison NJ / USA 

Lab dancer S40    VWR™ International, Radnor PA / USA 

RCT basic magnetic stirrer   IKA®, Staufen / Germany 

Tube rotator SB3    stuart equipment (Bibby Scientific), Stone / UK 

Thermo mixers & water baths: 

A100 & A103 water bath   Lauda-Brinkmann, Delran NJ / USA 

Mixing Block MB-102    BIOER, Hangzhou / China 

Thermomixer comfort    Eppendorf, Hamburg / Germany 

WB 10 water bath    P-D Industriegesellschaft, Dresden / Germany 

Others: 

AF200 ice machine    Scotsman®, Vernon Hills IL / USA 

Aluminium foil     neoLab®, Heidelberg / Germany 

Immobilon®-FL PVDF membrane  Millipore, Billerica MA / USA 

inoLab® pH 720 ph meter   WTW, Weilheim / Germany 

Lab timers     Carl Roth®, Karlsruhe / Germany 

Parafilm “M”     BEMIS, Neenah WI / USA 

Power-Pac 300    Bio-Rad, Hercules CA / USA 

Power Source 300V    VWR™ International, Radnor PA / USA 

VaccuSafe comfort vacuum pump  IBS Integra Biosciences, Fernwald / Germany 
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A.II.9 Software (excluding instrument-specific software) 

Data analysis: 

Excel® 2008 & 2011 (MacOffice)  Microsoft®, Redmond WA / USA 

Fiji (ImageJ distribution package)  http://fiji.sc/Fiji  

SPSS (versions 16 through 21)  IBM, Armonk NY / USA 

Data management & presentation: 

FileMaker® Pro 10 Advanced   FileMaker, Santa Clara CA / USA   

Mendeley PDF and reference manager Elsevier, Amsterdam / Netherlands 

Photoshop CS6 Extended   Adobe Systems, San Jose CA / USA 

PowerPoint® 2008 & 2011 (MacOffice) Microsoft®, Redmond WA / USA 

Word® 2008 & 2011 (MacOffice)  Microsoft®, Redmond WA / USA  
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