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The diagnosis of Alzheimer’s disease (AD) relies on the 
clinical evaluation of patients, often complemented by 
the analysis of core cerebrospinal fluid (CSF) biomark-
ers (Aβ42/40, phosphorylated-Tau and total-tau) [1]. 
However, it is clear nowadays that alterations other than 
Aβ and tau deposition, e.g., blood–brain-barrier (BBB) 
impairment [2] and impaired protein clearance [3], may 
take place in early disease stages, before consistent neu-
rodegeneration occurs. Therefore, additional CSF bio-
markers are needed.

Aquaporin-4 (AQP4) is a water channel highly 
expressed in the central nervous system, prominently 
enriched in the perivascular endfeet of astrocytes wrap-
ping around blood vessels [4]. It plays a crucial role in 

the glymphatic system, enabling the exchange between 
CSF and interstitial fluid and supporting the clearance of 
brain solutes. The impact of AQP4-mediated glymphatic 
flow on the clearance of solutes may hold clinical rel-
evance, particularly in AD [5]. However, no well validated 
AQP4 immunoassay is available for the analysis of pro-
tein concentrations in CSF.

The study aimed to analyze CSF AQP4 levels, using a 
newly developed homemade enzyme-linked immuno-
sorbent assay (ELISA) in a discovery cohort of 157 CSF 
samples gathered at Ulm University Hospital. The cohort 
comprised 40 AD, 21 primary progressive aphasia (PPA), 
20 behavioral variant frontotemporal dementia, 17 amyo-
trophic lateral sclerosis (ALS), 21 Lewy body disease 
(LBD) and 38 controls (CON) (Table  S1). To reinforce 
the robustness of the results, a validation step using two 
independent cohorts from University of Perugia (valida-
tion cohort I) and University of Turin (validation cohort 
II) was conducted. Those cohorts comprised a total of 
176 additional CSF samples: 14 preclinical AD (preAD), 
51 mild cognitive impairment due to AD (AD-MCI), 39 
AD-dementia (ADD) patients, 17 non-AD MCI and 55 
CON (Table  S2). Diagnosis of the CON participants is 
described in Table S3.

The homemade ELISA assay successfully passed all 
the analytical validation tests for precision, parallelism, 
spike-recovery, dilutional linearity, and protein stability 
as well as a comparison to an antibody-based suspension 
bead array assay (Tables S4 and S5, Figs. S1 S2, S3). 

A multiple linear regression model was fitted to esti-
mate the relationship between the clinical diagnosis 
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(predictor) and CSF AQP4 concentration (outcome) 
while accounting for age and sex. Among the covari-
ates analyzed, only age (log-transformed βage = 0.013, 
P < 0.001) (Table  S6 and Fig.  S4) exhibited a significant 
association with CSF AQP4.

In the discovery cohort post-hoc analysis (Tukey’s Test) 
indicated higher AQP4 concentration in AD patients 
than in CON (P < 0.001), ALS (P = 0.015), and LBD 
(P = 0.012) patients (Fig. 1a). Moreover, ROC analysis was 

conducted to evaluate the diagnostic performance of CSF 
AQP4 in distinguishing AD patients from CON. The area 
under the curve (AUC) for the AD vs. CON discrimina-
tion was 0.81 (95% CI: 0.71–0.90, P < 0.001) (Fig. 1b).

To validate the findings within AD, the CSF levels of 
AQP4 were further measured in two independent valida-
tion cohorts (Table S2). 

Validation cohort I included patients with preAD, 
AD-MCI and ADD in addition to CON subjects. The 

Fig. 1 Aquaporin 4 (AQP4) CSF analysis in three different cohorts. CSF AQP4 in the discovery cohort (n = 157) including 38 CON, 40 AD, 21 PPA, 20 
bvFTD, 17 ALS and 21 LBD (a, b) and in the validation cohorts I and II: cohort I (n = 108) including 37 CON, 14 preAD, 28 AD‑MCI and 29 ADD (c, d) 
and cohort II (n = 68) including 18 CON, 23 AD‑MCI, 10 ADD and 17 non‑AD MCI (e, f). Boxplots represent median, Q1 and Q3 quartiles, and whiskers 
from minimum to maximum. *P < 0.05, **P < 0.01, and ***P < 0.001. b, d, f Receiver operating characteristics curve analysis of CSF AQP4. AD, 
Alzheimer’s disease; ALS; amyotrophic lateral sclerosis; AUC, area under the curve; bvFTD, behavioral variant frontotemporal dementia; CON, control; 
CSF, cerebrospinal fluid; IQR, interquartile range; LBD, Lewy body disease; PPA, primary progressive aphasia
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univariate analyses revealed higher AQP4 protein con-
centrations in CSF of AD-MCI (P = 0.011) and ADD 
(P = 0.002) patients than in CON (Fig.  1c). The ROC 
analysis revealed the best performance for the CON ver-
sus ADD comparison with an AUC of 0.74 (95% CI 0.61–
0.86, P < 0.001) (Fig. 1d).

Validation cohort II included individuals with AD-
MCI, ADD, CON, in addition to a group of non-AD 
MCI participants. Significantly increased levels of CSF 
AQP4 were observed in the AD-MCI (P < 0.001) and 
ADD (P = 0.028) patients compared to CON (Fig. 1e). In 
addition, the individuals with AD-MCI had significantly 
higher levels than those with non-AD MCI (P = 0.004) 
(Fig.  1e). Furthermore, the ROC analyses revealed the 
following AUCs: 0.82 (CON vs. AD continuum) (95% CI 
0.71–0.94, P < 0.001), 0.82 (CON vs AD-MCI) (95% CI 
0.69–0.95, P < 0.001), 0.84 (CON vs. ADD) (95% CI 0.69–
0.99, P = 0.003) and 0.79 (AD-MCI vs. non-AD MCI) 
(95% CI 0.65–0.93, P = 0.002) (Fig. 1f ).

Subsequently, the association between AQP4 and the 
core biomarkers t-tau and p-tau was investigated among 
individuals with AD, regardless of their disease stage 
(preAD, AD-MCI or ADD), across the three cohorts 
under analysis (Fig. S5). Notably, in the discovery cohort, 
a moderate-to-strong correlation between AQP4 and 
both p-tau (r = 0.7, 95% CI 0.35–0.87, P < 0.001) and t-tau 
(r = 0.75, 95% CI 0.44–0.90, P < 0.001) was observed in 
AD patients (Fig.  S5a). This correlation persisted across 
the entire cohort (Fig. S5b). Similar trends, although with 
comparatively weaker correlations, were delineated in 
both validation Cohort I and Cohort II (Fig. S5c–f). Only 
a larger sample size can disclose the true strength of this 
association.

Furthermore, we assessed the association between CSF 
AQP4 levels and cognitive decline (mini-mental state 
examination). We found negative spearman r values in 
all three cohorts, but the correlation was significant only 
in validation cohort II with an r value of − 0.48 (− 0.65 
to − 0.27) (P < 0.0001) (Table S7).

The successfully developed and analytically validated 
ELISA revealed higher concentrations of AQP4 in AD 
than in control patients, a pattern replicated in two vali-
dation cohorts. These findings supported the previously 
published data using a semi-quantitative antibody-based 
suspension bead array assay [6]. To our knowledge, this 
is the first immunoassay able to perform absolute AQP4 
quantification in CSF samples. A recent publication using 
a commercial AQP4 ELISA reported increased AQP4 
levels in the CSF of AD patients [7]. However, we were 
unable to identify any signal in CSF using this commer-
cial assay.

Elevated AQP4 levels in individuals with MCI were 
found, specific to AD as previously described by Berg-
ström et al. in MCI patients with abnormal tau levels [6].

Altered AQP4 polarization is noted in the frontal and 
temporal cortex of AD patients. Elevated CSF AQP4 
thereby may compensate for  the loss in astrocytic end-
feet, aiming to restore glymphatic flow [8]. Additionally, 
elevated CSF AQP4 levels in AD patients might be linked 
to changes in astrocytic reactivity, a characteristic of neu-
rodegenerative diseases.

The potential of AQP4 as an early biomarker may arise 
from the failure of the glymphatic clearance proceeding 
Aβ pathology [8]. However, further studies are needed to 
determine if AQP4 changes precede protein aggregation 
and neurodegeneration.

Furthermore, AQP4 emerges as an additional marker to 
the traditional glial fibrillary acidic protein (GFAP) which 
shows promise as a  blood astrocytic injury marker. The 
limitations of GFAP as a differential diagnostic marker 
and its poor protein stability in CSF [9] emphasize the 
need for additional biomarkers to assess astrocytic status. 
Additionally, there is no fluid biomarker to address the 
status of the blood–brain barrier (BBB). AQP4 could be a 
potential biomarker for BBB impairment due to the high 
astrocyte expression surrounding the blood vessels and 
the required astrocytic polarity for the right BBB perme-
ability. However, further analyses are needed to test this 
hypothesis.

The cross-sectional design of the study poses cer-
tain constraints, emphasizing the need for longitudinal 
assessments to evaluate the temporal dynamics of AQP4 
as a progression marker.

In conclusion, our study highlights AQP4 as a prom-
ising candidate for AD diagnosis and underscores its 
potential as a biomarker in AD. These findings advocate 
for further research to ascertain the diagnostic potential 
and the temporal occurrence of increased CSF AQP4 lev-
els in the AD-continuum. In addition, future studies are 
needed to determine the possible use of CSF AQP4 as an 
objective readout of therapeutic effects in clinical trials 
and the use of AQP4 as a fluid biomarker for BBB dam-
age. Furthermore, AQP4 protein levels could help deter-
mine the role of astrocytes and the glymphatic system in 
AD.
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