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Abstract

The present thesis is focused on the numerical modeling and simulation

of polycrystalline structures with the macroscopic dimensions and realistic

boundary conditions. The microstructure of polycrystals is represented by

the randomized three-dimensional Voronoi diagram assuming the convexity

of grains and faces. In order to achieve the macroscopic dimensions of

structures, a large number of grains must be calculated and generated

within the geometrical model. On the other hand, several assumptions

such as the simple grain material model, grains interaction approach, etc.

should be introduced to reduce the computational costs. The developed

software framework generates the geometrical and finite element models of

a polycrystal considering arbitrary shape of sample, thickness of the grain

boundary layer, number of grains, and other geometrical properties.

The main idea is to investigate the influence of the heterogeneous

microstructure on the macroscopic behavior in different regions of the

polycrystals such as the bulk, notches, and surface area. For this

reason, specific numerical algorithms of averaging and interpolation are

developed and implemented in an efficient programming code to perform

a statistical analysis of the simulation results. One usually considers a scale

separation method with the representative volume element to introduce the

microstructural material behavior at the macroscale. However, the obtained

results of the simulation with entire polycrystals show an appearance of

the surface layer effect, which is not covered by the classical continuum

theory. After thorough investigation of the smooth and notched cylindrical

polycrystals under different loading conditions, the thickness of the surface

layer and the strength of the surface layer effect were determined.

The proposed method and developed framework can be further used for

the analysis of polycristalline heterogeneous materials with various material

models and under arbitrary loading conditions.



Zusammenfassung

Die vorliegende Dissertation beschäftigt sich mit der geometrischen Mod-

ellierung und Simulation von polykristallinen Strukturen unter Berücksich-

tigung der makroskopischen Abmessungen und realistischer Randbedin-

gungen. Die Mikrostruktur den Polykristalle wird durch stochastische,

regellos aufgebaute, dreidimensionale Voronoi-Diagramme repräsentiert

unter Annahme konvexer Körner und Korngrenzen. Um makroskopische

Abmessungen zu berücksichtigen, muss man ein Voronoi-Diagramm mit

einer großen Anzahl an Körnern generieren und die Ergebnisse im ge-

ometrischen Modell abbilden. Außerdem müssen einige Annahmen, zum

Beispiel bezüglich des Materialmodells und der Wechselwirkung der Körner,

getroffen werden, um die Rechenkosten zu reduzieren. Das entwickelte

Programmgerüst generiert die geometrischen und Finite-Elemente- Modelle

unter Berücksichtigung der beliebigen Formen des Polykristalls, Dicke der

Korngrenzen, Anzahl der Körner und anderer variierender geometrischer

Eigenschaften.

Der Grundgedanke besteht dabei in der Untersuchung des Einflusses

der heterogenen Gefügestruktur auf das makroskopische Materialverhalten

in unterschiedlichen Teilgebieten eines Polykristalls, wie zum Beispiel das

Innere des Polykristalls, Kerben und Oberflächen. Deshalb werden spezielle

numerische Algorithmen zur Mittelung und Interpolation entwickelt und in

einen leistungsfähigen Programmcode implementiert, um eine statistische

Analyse der Simulationsergebnisse durchzuführen. Üblicherweise wird

das Materialverhalten auf der Mikroebene ins makroskopische Modell

integriert, indem die verschiedenen Skalen mittels eines repräsentativen

Volumenelements getrennt werden. Die erzielten Simulationsergebnisse

der ganzen Polykristalle lassen jedoch auf das Auftreten von Oberflächen-

schichteffekten schließen, welche in der klassischen Kontinuumstheorie

nicht berücksichtigt werden. Die Dicke der Oberflächenschicht und die

Stärke des Oberflächenschichteffekts werden nach sorgfältiger Untersuchung

der glatten und gekerbten zylindrischen Polykristalle unter verschiedenen

Beanspruchungsbedingungen bestimmt.

Man kann die vorgeschlagene Methode und das entwickelte Program-

mgerüst zur Analyse von polykristallinen heterogenen Materialien mit

variierenden Materialmodellen und unterschiedlichen Beanspruchungsbe-

dingungen einsetzen.
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CHAPTER

1
Introduction and Motivation

1.1 Introduction

Prolongation of lifetime, weight reduction and compactness are basic goals

in the design of many structures. Seeking for the balance between durability

and costs, one should consider many engineering aspects such as operation

conditions, manufacturing quality, environmental influences, etc. Depending

on the used sort of material, these factors influence deformations occurring

in the structure in different ways. In order to figure out critical displacements

and forces, one performs a structural mechanics analysis, taking into account

the loading conditions and the material model. Usually, the elasto-plastic

behavior of a specified material is represented as the relationship between

macroscopic stresses and strains by means of a stress-strain diagram. It

often demonstrates the presence of nonlinear effects and dependencies such

as yielding, hardening and the loading rate dependence, which should be

described within a constitutive model. The nature of these effects lies

in the redistribution of stresses and strains caused by the heterogeneity

of microstructure. For this reason, a clear understanding of the material

behavior in both micro- and macroscale is needed as a key point in the

development of precise material model for structural analysis.

From another point of view, the investigation of the contribution of

different microstructural phenomena into a macroscopic response can be

useful in the development of new advanced materials, resisting to a defined

range of stresses and temperatures. Current progress in manufacturing

technologies provides the possibility to design new materials with desired
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properties. Thus, a high economic efficiency and reliability can be achieved

in special fields of medicine, aerospace, energy engineering, etc. However,

the development of new materials suggests a thorough iterative process of

modeling, simulation, optimization and testing for different variations of the

microstructure until an appropriate configuration is found.

Furthermore, the monitoring of the material’s microstructure is recom-

mended at different stages. For example, microstructural defects appear

in the material during the manufacturing process because of imperfect

technologies. They can propagate during the operation time, depending on

the intensity of loads. Therefore, the monitoring of changes at the microscale

can be used to prevent a loss of functionality due to unexpected failure.

Finally, a microscopic investigation of the damaged zones are useful for the

improving of the material.

Analysis of microstructure

Material production
Testing

Description

Structural analysis
Manufacturing

Operation time

Failure

Material improvement

Strain

St
re

ss

σ= f (ε)

In the present work, the polycrystalline microstructure is examined

using the example of pure copper. A similar microstructure with certain

differences can be observed among many other metals and alloys such

as silver, aluminium, brass, etc. [16, 112]. Regarding a face-centered

cubic crystallographic structure, grains possess anisotropic properties. In

polycrystals, grains exhibit different stiffness in the loading direction because

of random crystal lattice orientations. Therefore, the distribution of stresses

and strains is strongly heterogeneous. Due to the non-uniform accumulation

of plastic strains and the non-uniform relaxation, the intensive redistribution
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of stresses takes place during loading as well as unloading. In addition, local

defects are observed in the form of nucleation and coalescence of voids and

dislocations movement, which may eventually cause fracture or failure. These

effects together characterize macroscopic behavior which is experimentally

observed in stress-strain diagrams, creep curves, and low cycle hysteresis

loops of copper[1, 64].

There are two ways to investigate the material microstructure and its

macroscopic response: experimental testing and numerical simulation. The

precise data can be achieved in the experimental approach, while the

numerical study gives an approximated solution. Anyway, both methods

have their advantages as well as disadvantages. The analysis of real

specimens requires a complicated tool, which includes a testing machine

and micrography equipment. Usually, the capturing of a microstructure and

the conducting of mechanical tests are carried out separately because of

many difficulties in the setup, especially considering an elevated temperature.

The taking of micrographs often requires destructive methods, which

eliminates further mechanical testing. However, in order to distinguish

the influence of different microscopic effects onto a macroscopic response,

developments in the microstructure should be investigated during the

mechanical test. An accordance between microstructural phenomena and

macroscopic properties can be illustrated by examples of simple specimens.

For example, in [42] crack propagation in a titanium specimen under tension,

captured by in-situ X-ray tomography is analyzed. Unfortunately, high costs

and a low accessibility of the required equipment limits the number of

experimental tests, whereas a thorough study of different specimens under

various loading conditions is necessary. Moreover, the recognition of local

stresses, elastic and plastic strains in the microstructure during the test is a

complicated task, as discussed in publications [28, 75, 83].

In contrast to the experimental approach, the numerical study provides

full information about the material state at any point of the model. By using

different numerical methods, such as the finite element method, approximate

stresses and strains can be calculated, taking into account the material

behavior, loading and boundary conditions. A wide range of microstructural

effects can be introduced in the numerical model of polycrystal, including

the form of grains, the thickness of grain boundary layer, the orientation

of crystalline lattice. On a generated polycrystal with the required shape,

different numerical tests such as tension, shear, torsion, cyclic loading,

etc. can be performed similarly to real tests. Besides the standard tests,

non-realistic experiments are available as well. For example, the inelastic
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properties of polycrystal in different directions can be analyzed in several tests

with various loads but the identical initial microstructure, which is impossible

in real experiments.

The numerical approach is a sufficient groundwork for the analysis of

polycrystals, due to low costs and adjustable complexity of the generated

microstructure. However, the dimensions and the representability of the

polycrystalline model are significantly limited by computational power. For

this reason, in order to investigate the accordance of microstructural effects

with a macroscopic response, this work is focused on simulation of small

specimens.

1.2 Motivation

Many compact structures contain microcomponents such as pins, wires and

sheets, which are illustrated in Figs. 1.1 and 1.2. The grain size there is

comparable with the dimensions of structures, which allows to illustrate the

influence of the heterogeneous microstructure more evidently in comparison

to large parts. Moreover, notches, holes, and cuts possess a macroscopic stress

gradients around the concentration area in which the prediction of the life

time is especially demanded. In large structures, the grain size is much smaller

than their dimensions and the concentration factors are well investigated [73],

while in microparts, a special behavior can be expected. Nevertheless, the

microscopic behavior in those regions and its description within the material

model remain unclear.

The general aim of this thesis is the modeling and the simulation of

polycrystalline aggregates using the finite element method. Unlike the

experimental research, the accuracy of the numerical analysis depends on the

level of description of the microstructure and its behavior in the model. The

highest representability can be achieved through the implementation of all

known and observed microscopic mechanisms. However, the usage of such a

model, especially considering the large number of grains, is doubtful from the

computational point of view.

Therefore, one should either reduce the size of the polycrystal or simplify

the microscopic material behavior. The first approach underlies the well-

known scale-separation method which considers two domains of numerical

modeling: micro- and macroscopic. The specimen at the macroscale

is represented by the homogeneous structure, whereas the polycrystalline

microstructure is generated within the elementary representative volume
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(a) (b) (c)

Figure 1.1 Examples of copper microparts (a), the microstructure of pin (b)
and the microstructure thin plate (c). After [19]

(a) (b)

Figure 1.2 Example of fuel cell plate (a) and its microstructure (b), taken
from [19, 97]

element (RVE) introduced by Hill in 1963 [43]. The RVE is usually based

on the unit cell model with periodic boundary conditions and the periodic

microstructure on opposite sides of the cube.

Assuming that macro- deformations and stresses are uniform over the

whole volume of the RVE, one can estimate the macroscopic properties of

the polycrystal by performing a homogenization procedure in a series of basic

tension and shear tests on the unit cell. Thus, heterogeneous stresses and

strains under specified loading conditions can be averaged in order to identify

parameters of the macroscopic material model.

Due to the periodicity of the unit cell, such a material model smoothly

describes the behavior of an arbitrary point in the homogeneous target

structure. At the same time, it states the independence of the microstructural

behavior described in the RVE on the global boundary conditions. Therefore,

the simulation of microparts with a homogeneous structure, characterized by

the RVE-based material model, may contain a certain error if macroscopic

fields such as stresses or strains exhibit essential gradients. This error can be

reduced by decreasing RVE’s size until the gradient becomes negligible within

the unit cell. However, a low bound of the RVE’s size is defined by a minimal
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number of grains required to ensure representability. It means that the size of

RVE should be defined in a certain range, considering the size of grains and

the geometrical configuration of the target structures.

The illustrated examples of the microparts clearly show that the existence

of a RVE in such a length scale is questionable. Therefore, the polycrystalline

aggregate, including its microstructure, shape and realistic boundary condi-

tions, should be analyzed in its full representation. Such an approach implies

the generation of a large number of grains in order to achieve macroscopic

dimensions of the specimen. Taking into account the limited computational

power, the description of the microstructural behavior should be simplified.

Anyway, for a qualitative analysis, one can introduce basic properties such

as anisotropic elasticity and viscoplasticity, which together lead to a complex

non-linear response. It allows us to investigate the influence of a discrete

heterogeneous microstructure in the concentration area, bulk and surface

regions within the same analysis. If difference in the estimated material

behavior between those regions is negligible, the applicability of the RVE can

be confirmed. Otherwise, the scale separation method should be extended in

order to cover the observed effects.

The necessity to generate a large number of grains inside a specimen

with arbitrary shape raises different problems of efficiency and accuracy.

Moreover, the finite element method itself demands additional convergence

criteria which must be considered during the generation of the geometrical

model. Most of the analysis steps can be performed by using standard

algorithms within existing solutions, such as the CAD/CAE programs Abaqus,

Ansys, Comsol, Nastran/Patran, etc. However, the development of more

advanced algorithms allows us to improve the performance and stability,

which are especially important in the study of a random microstructure. For

example, generalized meshing algorithms are well suitable for arbitrary solids

and planes. Nevertheless, the time of mesh generation can be significantly

reduced for special problems like sweep mesh and nodes transition using

developed algorithms.

The statistical analysis requires the generation of geometrical and finite

element models of the polycrystal in the CAD/CAE Abaqus in fully automatic

mode including the assignment of material properties, loading and boundary

conditions. It allows us to simulate a large number of samples within a

reasonable computational time and effort. Such an automatization can be

implemented within a developing framework that consists of an own code,

open-source and commercial libraries.
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Figure 1.3 Strains in compressed alu-

minium specimen, after [75]

Besides the modeling of a

polycrystalline aggregate and its

simulation under certain loading

conditions, one has to analyze

the calculation results. Taking

into account the high hetero-

geneity of strains and stresses, as

shown on experimental example

in Fig. 1.3, statistical methods

must be involved. For exam-

ple, the macroscopic response of

a polycrystal can be computed

through the arithmetic averaging of the required field over the whole volume

of the structure. The averaged stresses and strains in normal directions are

represented by the stress-strain diagram, similar to the ones obtained in

real experiments with a testing machine. However, in order to investigate

the influence of the polycrystalline microstructure in different regions of the

specimen, more advanced averaging and interpolation techniques should be

developed. For instance, the distribution of stresses in the radial direction of

the specimen can be estimated through averaging over radial layers.

The simulation of the polycrystal with a complex shape remains impracti-

cable from a computational point of view. However, the statistical analysis of

the stress and deformation state in simple specimens with the large number

of grains admits a wide range of investigation directions, such as the analysis

of the stress redistribution in the surface layer, the concentration area and the

propagation of cracks. Finally, the information obtained in this research can

be used in the verification or improvement of the homogenization technique.
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CHAPTER

2
Models for polycrystals

Typical micrographs of pure copper are illustrated in Figs. 2.1a and 2.1b.

One can clearly see grains of different shape separated by boundaries. The

size and the form of grains depend on the nature of material processing.

Hence, the different distributions of grain properties can be observed in the

polycrystalline microstructure. Moreover, it is well known that coarsening and

refinement of grains often take place during cooling or plastic deformation

as an effect of recrystallization [94, 104]. However, in order to simplify the

construction and simulation of the microstructure, fixed grain boundaries

and a uniform grain size are assumed. Such properties are inherent for

isotropic copper at a constant temperature and small deformations.

(a) (b)

Figure 2.1 Polycrystalline microstructure of copper: (a) bulk region [10];
(b) surface [56]
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Figure 2.2 Elasticity modulus of

single crystal [35]

Besides the geometrical representa-

tion, the material model of the mi-

crostructure must be introduced. Accord-

ing to the face-centered cubic crystallo-

graphic system grains exhibit anisotropic

behavior during the deformation. The

elastic properties of common single crys-

tals are given in [71, 55, 85]. More evi-

dently, the anisotropy can be illustrated as

the dependence of the elasticity modulus

on the crystallographic orientation as it is

shown for nickel in Fig. 2.2 and for copper

in [69]. In the picture, the axes are defined through the Miller notation, which

was introduced by William Hallowes Miller [62] in 1839 and has often been

used since in the material science in order to describe crystallographic vectors

and planes. The distribution of crystalline lattice directions characterizes

the heterogeneity of the microstructure in a polycrystalline aggregate. For

example, Fig. 2.3a shows the experimentally observed crystallographic

orientations in a copper polycrystal, whereby colors represent the crystal

directions based on the orientation map in Fig. 2.3b. The capturing

and recognition of the microstructure, including material directions, are

discussed in the publications [58, 76]. In the present thesis the statistically

uniform distribution of material orientations is considered in the same

manner as was done in many other works [32, 48, 67]. The implementation

of microscopic constitutive material behavior was performed taking into

account the anisotropic properties and random local coordinate systems as

shown in Section 3 along with a description of the boundary layer.

(a) (b)

Figure 2.3 Distribution of crystallographic orientations: (a) micrograph;
(b) orientation map, after [96]
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For this reason, the simulation of polycrystals requires the analysis of

an interdependent multi-component system with various micromechanical

properties. First solutions were obtained using the simplest analytical and

semi-analytical models. For instance, in 1889 and 1929, respectively, Voigt

[101] and Reuss [79] have introduced bounds of the elasticity modulus for

polycrystals without any consideration of the grain shape. Later, regular

microstructures with a specified form of grains were proposed in [66, 99,

106], taking into account the interactions between grains. Due to the

quickness and stability of the analytical approach, these models are still

widely involved in different multi-iterative problems such as optimization

and parametrization. Nevertheless, the simulation of realistic microstructures

requires the implementation of more advanced models with an arbitrary

three-dimensional shape of grains and interaction behavior.

Atomistic molecular dynamic simulations demonstrate high accuracy in

the modeling of nanoscale phenomena in grains and grain boundaries, as

discussed in works [57, 68, 95]. For example, the analysis of grain boundary

sliding can be performed considering the fact that the thickness of boundaries

is equal to few atomic layers. However, the number of grains and the timescale

are significantly limited due to the necessity to calculate the interactions

between an immense number of particles. It makes the simulation of a

polycrystalline aggregate with macroscopic dimensions too expensive from

a computational point of view.

A more common way to investigate the polycrystalline microstructure is

based on the representation of grains by deformable solids, characterized by

anisotropic material behavior and random material orientation. Depending

on the type of interaction mechanism, grains can be perfectly glued or bonded

regarding specified separation behavior. To estimate stresses and strains in a

polycrystal, the structural mechanical analysis should be performed.

A widely known numerical technique for solving complex mechanical

problems is the finite element method (FEM). For the structural analysis, it

was firstly applied by Alexander Hrennikoff [45] in 1941 and Richard Courant

[23] in 1943. The method calculates the solution of partial differential

equations through the decomposition of the domain by simpler subdomains

- finite elements. Within each finite element, an approximation function is

described. Introducing the stiffness matrix, boundary and loading conditions,

one can compute forces and displacements at nodes of elements by solving

a global system of equations composed from basis functions. Stresses and

strains at Gauss points [26, 109, 110] are evaluated using the described

material model, considering nodal displacements. A detailed overview on
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FEM and its applications can be found in the textbooks [22, 111].

In order to perform the finite element analysis (FEA), the model of

polycrystal should be meshed by finite elements such as tetrahedra, prisms,

hexahedrons, etc. There are two basic ways to generate a FE mesh for the

polycrystalline microstructure. One can either reconstruct the microstructure

of real specimen or generate a random one using space partitioning

algorithms.

The first method is based on the recognition of photomicrographs as

discussed in the works [14, 15, 40, 42, 59]. The algorithm consists of three

general steps. First of all, raster images of the micrographs are captured from

samples of the material. In order to recognize microstructural details, image

processing algorithms can be used as shown in Fig. 2.4 using the example of

an aluminium alloy. Thus, the binarization algorithm allows us to highlight

regions in which the amplitude of the color gradient exceeds a predefined

threshold value. Therefore, grain boundaries can be identified as the effect of

color discontinuity in micrographs. Afterwards, using different algorithms of

mesh generation [46, 53, 78], one cam reconstruct solids of recognized regions

by finite elements.

(a) (b)

Figure 2.4 Reconstruction of the microstructure: (a) source micrograph;
(b) result of segmantaion, after [59]

Of course, the detalization and accuracy of this method are limited by

the quality of micrographs. If the resolution of images is high enough, the

generated model closely represents the microstructure of the original sample,

including the shape of grains, crystal lattice orientations, inclusions, voids,
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etc. Otherwise, noise data and artifacts can be mistakenly identified as

features of the microstructure. Despite the accurate representability of a real

microstructure, this approach has a limited applicability. For example, the

analysis of polycrystals with specified distribution of grain volume can be

complicated since the material sample with the corresponding microstructure

should be produced at first.

In contrast to the reconstruction approach, the space partition method

allows us to generate a random microstructure with required properties such

as number of grains, grain volume distribution, shape of grains, thickness of

boundary layer, etc. Therefore, a parametrical and sensitivity analysis can

be performed in order to investigate the influence of these properties on the

macroscopic response. The representability of the microstructure depends

on the type of generation algorithm. For example, convex and concave

grains with a curved shape can be constructed using different techniques as

discussed in [39, 81]. However, the calculation of curved surfaces needs more

computational time in comparison to planar faces. Furthermore, a higher

number of finite elements must be generated in order to approximate non-

linear surfaces, that increases the simulation time.

Figure 2.5 2D Voronoi diagram

For this reason, planar faces

and the convexity of grains are

assumed in the present work in

order to reduce the generation and

simulation time of polycrystals with

a large number of grains. These

assumptions underlie the classical

model of Voronoi diagram, illustrated

by a two-dimensional example in

Fig. 2.5. Applications of this model

can be found in many publications

[7, 8, 32], due to the similarity with

the real microstructure. Regarding the

works of Susmit Kumar and Stewart

K. Kurtz [50, 51] the statistical distributions of angles between edges and

lengthes of edges in the Voronoi diagram correlate with the same properties

of real microstructures on the example of aluminium alloy. Moreover, the

planar polygonal form of faces facilitate the calculation of the finite-thickness

boundary layer and the generation of a corresponding finite element mesh.

Despite the fact that the Voronoi diagram does not represent a real

microstructure precisely, it can be used in the qualitative analysis of basic
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material properties. The present thesis is focused on the structural analysis

of models with a large number of grains. The results of the simulations

are given in Section 5, taking into account different loading conditions and

the shape of polycrystals. However, in order to illustrate the contribution

of microstructural components into a macroscopic response, the simplest

model of parallel rods is shown in the next section.

2.1 Masing model

...

ν1 ν2 νn

EEE

σ1
y σ2

y σn
y

F

Figure 2.6 Masing model

A complex non-linear material response can

be formulated by the system of simplest

components with different values of specified

material parameters. A convenient example

to demonstrate the general properties of

this method is the model of parallel rods

illustrated in Fig. 2.6. All rods are constrained

to the same displacements, ignoring the

interactions between themselves. Therefore,

the shape of rods can be neglected. This

model was originally proposed by Georg

Masing [60] in 1923 in order to explain the

Bauschinger effect. The model is also used in

recent works [20, 36, 61, 90].

The material behavior in rods is characterized by a uni-axial ideal elasto-

plastic model with the identical elasticity modulus E but different yield stress

σk
y . Considering the equality of applied total strains ε, the stress in each rod

σk can be described using the Hooke’s law:

σk
= E (ε−εk

pl), (2.1)

where εk
pl is the plastic strain in k-rod. If the stress in the rod is smaller than

the corresponding yield stress, the rod is deforming elastically. Otherwise, the

inelastic strain is accumulated in k-rod according to following equation:

εk
pl =





0, ε≤ εk

y

ε−εk
y otherwise,

(2.2)

where yield strain is εk
y =σk

y /E .

The described behavior can be represented by the rheological model of

consistently joined spring and dry friction elements, illustrated in Fig. 2.6
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and known as the Prandtl element. Since rods have different yield strengths

the accumulation of plastic strains starts irregularly, which induces the non-

uniform distribution of stresses. Taking into account the weight coefficients
∑
νk = 1, which introduce the specific cross cross-section of rods, the averaged

stress can be computed by equation (2.3). In the case where an equal

area of cross-sections is considered, the equation transforms into the simple

arithmetic mean.

σ=
∑

σkνk (2.3)

The number of rods and the distribution of yield strengths define the

nonlinearity of the homogenized response. In the case where the step

between yield stress values of rods is small, the smooth macroscopic yielding

can be achieved. However, in order to graphically illustrate the contribution

of each rod into the macroscopic response, the model with only three

components is discussed in the next section.

2.1.1 Example with three rods

Masing’s model of three rods, similar to illustrated in Fig. 2.6, is analyzed

considering the following values of yield stress and weight coefficients:

Table 2.1 Parameters of rods in the example of Masing’s model

k Yield stress σk
y Weight coefficient νk

1 0.2σy 0.6

2 0.5σy 0.3

3 σy 0.1

Assuming the identical Young’s modulus E , the corresponding yield strain

values can be evaluated as shown below for each rod:

ε1
y = 0.2σy/E , ε2

y = 0.5σy/E , ε3
y =σy/E

Fig. 2.7a represents stress-strain diagrams for each rod with the ideal

elasto-plastic model. After the homogenization with equation (2.1), the

average stress is constructed as shown in Fig. 2.7b.
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σ1
y = 0.2σy

σ2
y = 0.5σy

σ3
y =σy
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ε
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y/E

0.2σy

0.32σy

0.37σy

(b)

Figure 2.7 Construction of the stress-strain diagram for three rods:
(a) stresses in rods; (b) average stress

The four intervals (Fig. 2.7b) separated by yield strength points of three

rods can be explained in details:

1. In the first interval, all rods deform elastically until the applied strain

reaches the smallest yield strain ε1
y.

2. The increase of the strain amplitude leads to the accumulation of plastic

deformation in the first rod which maintains constant stress for ε≥ ε1
y:

σ1
= 0.2σy

Hence, the diagram of average stress in the second interval has a smaller

slope. The stress can be computed by the following equation:

σ= 0.6(0.2σy)+ (0.3+0.1)Eε (2.4)

The end point of the second interval can be calculated by substituting

the yield strain ε2
y = 0.5σy/E of the second rod into Eq. (2.4):

σ= 0.6(0.2σy)+ (0.3+0.1)(0.5σy) = 0.32σy

3. In the third interval, only the last rod deforms elastically, while the

total strain is smaller than its yield strain ε3
y. The average stress can be

computed in a similar way, considering constant stresses in the first and

the second rod:

σ= 0.6(0.2σy)+0.3(0.5σy)+0.1Eε= 0.27σy+0.1Eε
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4. Finally, the Masing model implies a special case in which all compo-

nents deform plastically which doesn’t change the stresses in the entire

model. In the given example, the average stress in the fourth interval is

constant:

σ= 0.6(0.2σy)+0.3(0.5σy)+0.1σy = 0.37σy

Although the rods are described by the simplest ideal elasto-plastic model,

the non-linear macroscopic behavior can be captured. Furthermore, one can

describe the experimentally obtained material response by the Masing-type

model through the decomposition of the stress-strain diagram. For example,

a piece-wise linear interpolation of stress-strain curve allows us to identify the

properties of components by the slope of linear pieces.

2.1.2 Statistical distribution of yield stress

εy

p(εy)

σmin
y /E

(a)

ε

σ

σmin
y

(b)

Figure 2.8 Continuous Masing-type model: (a) probability density function;
(b) stress-strain diagram

To introduce a smooth stress-strain diagram, one can represent the model

by an infinite number of rods with a continuous distribution of yield strength.

In this case a homogenized stress under the monotonic displacement-

controlled load can be calculated using the following equation [70]:

σ=Φ(ε) = E

[
ε−

∫ε

0
(ε−εy)p(εy)dεy

]
(2.5)

where p(εy) is a probability density function of yield strains. The function

may represent different heterogeneous properties such as the distribution of

crystalline lattice orientations. Anyway, it must be defined taking into account

the following property:

∫∞

0
p(εy)dεy = 1
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In the given example, the exponential law is used in order to formulate

the probability density function of yield strains as shown in Fig. 2.8a. The

function has non-zero values in range
[
σmin

y /E ,∞
]

, while zero values are

preset elsewhere. It allows us to formulate the purely elastic behavior for

stresses less than the minimal yield stress parameterσmin
y . The corresponding

integrated stress response is illustrated in Fig. 2.8b with respect to applied

strains.

The obtained stress-strain diagram illustrates the presence of similar

yielding and hardening effects as observed in experimental mechanical tests.

However, to illustrate the Bauschinger effect, the calculation of the entire

hysteresis loop must be accomplished. Besides the tensile loading step, the

unloading step should be evaluated as well. In the discussed model, this task

can be simplified taking into account the Masing principle.

2.1.3 Masing principle

The Masing principle follows from equation (2.5) after some transformations

explained in [36, 70]. It states that an unloading curve of the hysteresis loop

coincides with the loading curve plotted in double inverse axes:

σunload
=σ0 −2Φ

(
ε∗

2

)
(2.6)

where ε∗ = ε0 − ε and σ∗ = σ0 −σ are inverse axes of the unloading curve

with its origin at the end of the initial loading curve (ε0,σ0). The integration

function Φ is described by Eq. (2.5).

Thus, in Fig. 2.9, the red curve provides the solution of the Masing model

under a monotonic load as discussed early. The blue line is obtained by

double scaling and reversing. The obtained curve clearly demonstrates the

Bauschinger effect as the inequality of the yield strength points for loading

and unloading.

This principle is often applied in material science and engineering in order

to predict hysteresis loops, using data from experimental tensile tests. Often,

the conducting of a compression test after tensile one is complicated or not

feasible. In this case, it is possible to perform a cyclic analysis with the

estimated hysteresis loop.
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Figure 2.9 Illustration of the Masing principle

A thorough investigation of more advanced microstructure’s models can

reveal simple methods and techniques to estimate material behavior in

complex structures, avoiding computationally expensive simulations. For

this reason, the model of Voronoi tessellation is considered as a close

representation of the real polycrystalline microstructure.

2.2 Voronoi diagram

The Voronoi diagram is a method of the decomposition of space into a set of

convex cells based on the distribution of site points. In the three-dimensional

case, cells of the Voronoi tessellation are separated by convex planar polygonal

faces in which all points on the single face lie equidistantly from the two

nearest sites. Three neighboring cores determine an edge as an intersection of

three faces. Vertices of these edges are equidistant from at least four nearest

site points. Therefore, any point inside the cell of the Voronoi diagram lies

closer to the site of that cell than to any other site, as described in the following

definition [107]:

Rk =
{

x ∈ X | d(x,Pk ) ≤ d(x,P j )∀ j 6= k
}

(2.7)

where x is a point in space X involved in distance function d along with the

coordinates of site points P . Voronoi cell Rk is described by index k, while the

rest of site points are denoted using index j .

The two-dimensional Voronoi diagram is represented by convex polygonal

cells separated by linear edges in the same manner as in the 3D case. Thus,

the vertices of the tessellation are characterized by the same distance to at

least three neighboring sites, while all points on edges between the vertices

are equidistant from the nearest two sites.
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Figure 2.10 Gravitational

influence of stars

Likely, the first Voronoi diagram was

drawn by the French mathematician René

Descartes in 1644, based on his circular vor-

tex theory of planetary motion [91]. Thus, in

Fig. 2.10, Descartes’ understanding of the

gravitational influence of stars is illustrated.

However, the first mathematical declaration

was made in 1850 by the German mathe-

matician Gustav Lejeune Dirichlet for the

investigation of two- and three dimensional

quadratic forms [27]. For this reason, the

tessellation is often titled after him. Five

years later, in 1855, the first documented

practical application can be found in the

report of John Snow [92] regarding the 1854

cholera epidemic in London. Besides the

source of disease, he has observed the

statistical correlation between the people’s

proximity to a water pump and the number of deaths. On account of

simplicity and clarity, the diagram found application in many fields under

different names in the following years. Nevertheless, it is mostly named

after the Ukrainian mathematician Georgy Voronoi, due to his work on the

generalization of Dirichlet’s results for an arbitrary dimension [102] in 1907.

A significant contribution for the understanding of his work was made by

the Soviet mathematician Boris Delaunay in publication [25] dedicated to

Voronoi’s honor in 1934. The Voronoi diagram has gained high popularity

in science because of its frequent appearance in nature (Fig. 2.11) and

technology (Fig. 2.12). Moreover, since the development of microscopy allows

us to capture the microstructure of materials, the applicability of the Voronoi

tessellation in metallurgy is confirmed as well.

(a) (b) (c)

Figure 2.11 Voronoi diagrams in nature: (a) sea turtle; (b) dragonfly wing;
(c) soap bubbles (pictures are taken from [5, 49, 82])
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Figure 2.12 Samples of aluminum/silicon-carbide foam [34]

2.2.1 Algorithms overview

Despite the perfect theoretical description of the Voronoi diagram, the

calculation of cells over an arbitrary distribution of site points remained

complicated, due to the lack of algorithms and computational power. The

construction of geometrical model requires the computation of a large

number of intersections in order to provide the coordinates of vertices,

configuration of edges and faces.

Figure 2.13 Cubic crystallites[66]

Particularly, the algorithm of the

generation of the Voronoi tessella-

tion can be simplified by assuming

a regular distribution of site points

which introduce repeatable pattern

cells. For example, the first models

based on this approach can be found

in crystallography. Figure 2.13

illustrates the example of a cubic

crystal structure analyzed by Paul

Niggli [66] in 1927. The similar

Wigner–Seitz cells were described in

1933 by Eugene Wigner and Fred-

erick Seitz [106], and further often

applied in material science.

However, sufficient methods and techniques to calculate irregular struc-

tures have started developing with the beginning of the computer era. For

instance, an efficient realization of the sweep line algorithm for the generation
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of the Voronoi diagram was proposed by Dan Hoey and Michael Ian Shamos

[84] in 1975, considering two-dimensionality. Later, in 1986, another sweep

line algorithm was developed and implemented on programming language

C by Steven Fortune [30]. Due to high efficiency, the Fortune’s algorithm

is still widely used, being implemented in different programming languages

including C++, Java, Python, etc.

Besides the sweep line algorithms, the common approach to generate

a Voronoi diagram is based on its duality with the Delaunay tessellation as

shown in Fig. 2.14. The figure represents cells of the Voronoi diagram by red

lines, while triangles of the Delaunay tessellation are plotted by dotted black

lines. The duality property states that one tessellation can be obtained from

other. Thus, the edges of the Delaunay triangulation connect the nearest site

points of the Voronoi diagram as highlighted for example by green dotted lines

in Fig. 2.14. Therefore, connecting the couples of neighboring Voronoi sites,

one constructs the Delaunay triangulation. Likewise, the Voronoi diagram

can be obtained from the Delaunay tessellation. A circumcenter of a triangle

defines the Voronoi vertex as shown in example in Fig. 2.14 by a green

circumcircle and cross.

Figure 2.14 Duality of the Voronoi diagram and Delaunay tessellation

To generate the Delaunay tessellation, different technics can be involved.
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For example, the open-source library qhull computes a 3D Delaunay

tessellation by the modified convex hull algorithm called QuickHull algorithm

[9]. Furthermore, it can reconstruct the Voronoi diagram, taking into account

the duality with the Delaunay triangulation.

Figure 2.15 Raster Voronoi diagram

The discussed sweep line and the

qhull’s algorithm provide the exact

solution of the Voronoi diagram,

which may require high computa-

tional costs. Another approach with

a flexible efficiency can be found

in the works [7, 100], in which the

Voronoi diagram is represented by

a discrete raster map as shown in

Fig. 2.15. The Voronoi sites, which

are represented by red voxels in the

figure, are added into the initially

empty map. Then, empty voxels

around the Voronoi sites get the cell

number they belong to according

to the incremental isotropic propagation algorithm [37]. As one of the

advantages of this approach, the resulting map represents a ready to use 3D

hexahedral or 2D quadrilateral finite element mesh, while other algorithms

require the generation of a geometrical model at first. The resolution of

the map characterizes the relationship between performance and accuracy.

For example, a high density of voxels supposes a longer computational time,

but the shape of the obtained cells is near to smooth. Contrariwise, the

low resolution of the Voronoi diagram ensures a shorter generation time,

assuming sharp grain borders. Anyway, the applicability of this method for the

modeling of polycrystalline microstructure is questionable because of unclear

formulation of grain boundary thickness.

An additional overview on the history, modifications and construction

algorithms concerning the Voronoi diagram can be found in papers [6, 31].

2.2.2 Cell-based generation algorithm

The modeling of a polycrystalline microstructure with the Voronoi diagram

has special requirements which are not covered by the mentioned algorithms.

For instance, a sweep line approach computes 2D tessellations, while three-

dimensionality is needed. The qhull library supports up to four dimensions,
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but provides an inconvenient output data structure. Moreover, the necessity

to introduce a criteria of the geometry’s validity requires a synchronous

verification and construction of Voronoi cells, as will be discussed further. For

these reasons, the cell-based computation of the Voronoi diagram is preferred.

Figure 2.16 Formation of the cell by cutting with half-space planes

The convenient algorithm to calculate the Voronoi diagram is imple-

mented in open-source library Voro++ by Chris H. Rycroft in programming

language C++ [80]. Unlike the mentioned solutions, this library computes

each Voronoi cell separately from other cells. The algorithm can be explained

in Fig. 2.16, where the construction of one cell is illustrated on the example

of a red site point. The rest of the Voronoi diagram is calculated cell-by-

cell in a similar way. At the beginning, each cell fills the entire volume of a

container. Sequentially, the excess parts of the cell are cut off by half-space

planes represented by black lines. These planes are equidistant to the cell’s site

point and neighboring sites. Therefore, the faces of the cell can be constructed

as shown by red lines in the example. Finally, the following information is

printed out for each cell separately in order to generate geometrical and finite

element models of solid grains:

• Coordinates of the site point

• Absolute or relative coordinates of vertices

• Faces described by vertex sequences
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In comparison with common solutions like the qhull library and the

Fortune’s algorithm, this library demonstrates lower efficiency because of a

large number of repeatable operations. Particularly, the time of generation

was reduced, due to the ignoring of remote site points and an advanced

memory management. Moreover, a cell-based construction algorithm can

be parallelized. Since cells are calculated independently, the generation of a

Voronoi diagram can be performed in the multithread mode. It may decrease

the computational time in few times depending on the number of threads.

An especially promising improvement can be expected using the graphical

processing unit (GPU) in which a large number of threads is available.

Anyway, the generation of random Voronoi diagrams with few a thousands

grains can be performed in a reasonable time. The modeling of larger

structures is senseless by the reason of the inability to simulate them with the

FEM. Thus, the generation of a finite element mesh and the conducting of the

analysis require more computational power than the construction of Voronoi

cells.

In the present work, the programming code of the library Voro++ was

significantly modified in order to introduce a special functionality such as the

modeling of finite-thickness grain boundaries, excluding of the geometrical

singularities, etc. For example, the verification of the cell’s geometry is

implemented within the cell’s calculation kernel as a part of the randomized

incremental Voronoi Diagram (RIVD) algorithm. Unlike the library’s original

construction algorithm, the RIVD allows to generate a Voronoi diagram,

taking into account specified criteria like the minimal edge length, proximity

to surface and the angle between edges. However, short edges and other

unacceptable geometrical singularities may appear in the offset faces of the

grain boundary layer, as discussed in next section. For this reason, the

calculation of grain boundaries was implemented within the Voro++ library

as well.

2.2.3 Grain boundary layer

Besides the shape of grains, the modeling of a polycrystalline microstructure

implies the description of the grain boundary region. Being defects of

the microstructure, grain boundaries engender a wide range of microscopic

effects which influence on the macroscopic response. For example, the Hall-

Petch effect states the dependence of the yield strength on the grain size, due

to the fact that boundaries inhibit a dislocation movement between grains,

as was independently discovered by Hall [41] in 1951, and Petch [72] in 1953.
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Figure 2.17 Cavities in grain boundaries: (a) magnesium-aluminium
alloy [89]; (b) copper polycrystal [108]

Furthermore, as shown in [52, 77], the grain boundary sliding is a mechanism

of creep which was explained by diffusion of vacancies along boundaries.

Taking into account the suggestion that grain boundaries have the

thickness of a few atomic layers made in the works[17, 18], one can

assume zero physical thickness. This assumption is widely used in the

numerical modeling, due to a simple implementation within the finite

element analysis. For instance, this approach can be found in several

publications on simulations of intergranular fracture [86, 87] and diffusion

creep [11, 93]. However, nucleation and growth of cavities often occur in

grain boundaries under creep [21, 98] and fatigue [89] conditions, especially

at elevated temperatures. As shown in Fig. 2.17, cavities occupy a certain

volume which makes the assumption of zero-thickness questionable. The

common solution to introduce a boundary layer with finite thickness is

based on an interface model, as shown on the example of the cohesive zone

approach in [88], among many others.

On the other hand, the modeling of a solid boundary layer with finite-

thickness allows us to clearly represent the area of the interface’s influence.

To perform FEA, different standard and special-purpose volumetric finite

elements are available. For example, cohesive or XFEM elements can be used

to simulate a crack propagation. Anyway, a geometrical model of grains and

grain boundaries must be generated at first. Therefore, different meshing

techniques can be involved afterwards.

The construction of finite-thickness grain boundaries in a randomized

Voronoi diagram is a challenging task, taking into account the arbitrary shape

of grains. The probably easiest way to obtain a solid boundary layer is based

on the moving of Voronoi vertices. Two approaches can be considered, as
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shown in Fig. 2.18. The first one is based on the shrinking of vertices with

respect to the site or mass center of a cell, as demonstrated in Fig. 2.18a.

This method confers an advantage on the ability to introduce the dependence

on the grain size using different scaling coefficients. Fig. 2.18b illustrates

the second approach, where grains are moved apart by the isotropic expanse

of the Voronoi sites. Since the relative coordinates of vertices are given for

each cell separately, the rigid transition of cells can be performed without

any additional recalculations. Therefore, higher efficiency is attained by using

the second approach, while the method of shrinking requires the scaling of

all vertices in the model. Anyway, both methods generate similar structures

with empty space between the grains. The solid of grain boundaries can be

obtained by the substraction of solid grains from a homogeneous container.

(a) (b)

Figure 2.18 Transformation of grains: (a) shrink vertices; (b) move grains

For the reason that the boundary layer is represented by a single solid,

the generation of a regular mesh is complicated, due to the large number

of faces connected under different angles. Such a structure is not meshable

with extrusion, sweep or revolution techniques, which can create prisms and

hexahedrals. Therefore, one has to generate tetrahedral elements by the

free meshing algorithm. Despite the inapplicability of special-purpose finite

elements, the free meshing technique is commonly used in the modeling of

a polycrystalline microstructure. For example, the cavity growth model based

on the stiffness matrix degradation approach is implemented with standard

tetrahedral continuum elements [69], where normal and shear directions were

introduced by a discrete local coordinate system.

In addition to meshing difficulties, both methods provide an unclear

definition of the boundary layer’s thickness. It makes the analysis of a
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polycrystalline microstructure inaccurate because of different thicknesses in

the model.

n1

n2

n3

P P∗

Figure 2.19 Offset of faces

In this work, another approach based

on the offsetting of the faces by a spec-

ified distance is proposed. Taking into

account the convexity of cells and the planar

convex polygonal shape of faces, one can

reconstruct the Voronoi cell with shifted

faces. Unlike the mentioned algorithms,

the proposed one calculates a position of

the offset vertex through the intersection of

three planes, as shown in Fig. 2.19, where

three Voronoi faces with a common vertex P are illustrated. Considering

normals ni (ni
x ,ni

y ,ni
z) and coordinates of vertex P(xP, yP, zP), the point-

normal form of the plane equation can be described for each face:

ni
x x +ni

y y +ni
z z −di = 0 (2.8)

with di = ni
x xP +ni

y yP +ni
z zP.

Introducing the offset distance ui , a position of the required vertex

P∗(xP∗ , yP∗ , zP∗) is characterized as the intersection of three planes by the

following equation:





n1
x n1

y n1
z

n2
x n2

y n2
z

n3
x n3

y n3
z









xP∗

yP∗

zP∗



=





d1 +u1

d2 +u2

d3 +u3



 (2.9)

By repeating this procedure for each vertex of the cell, one can construct

new faces, as shown by yellow line in the example. Therefore, the original

Voronoi faces represent a middle-surface of grain boundaries. For instance,

Fig. 2.20a demonstrates three grains with an identical thickness of the grain

boundaries. In the 2D case, boundaries are represented by trapezoids, while

in the 3D case polygonal prisms are given between grains. The sweep mesh

technique well suits for the generation of prism or hexahedra finite elements

in boundaries solids with clearly defined top and bottom facets. Hence, the

debonding behavior can be implemented with a cohesive zone model or

other surface separation techniques which allow us to simulate intergranular

fracture. In the case where an interface model is not compatible with multi-

layer boundaries, one can consider a model with the single layer, as shown

in Fig. 2.20b. Therefore, junctions should be represented in another way
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or assumed to be negligible. For example, volume fraction of unmeshed

junctions in a polycrystal with 500 grains and the thickness of 3% of the grains

size is approximately equal to 0.1%.

(a) (b)

Figure 2.20 Grain boundaries: (a) double-layer; (a) single-layer

The main advantage of this approach is the clear definition of the

boundary layer thickness for each face of the grains. Besides the parametrical

analysis of polycrystalline aggregates, it facilitates the simulation of different

microstructural phenomena. For instance, the dependence on grain size or

crystalline lattice mis-orientation can be introduced in grain boundaries.

Figure 2.21 Short edge

However, the implementation of the

offsetting algorithm withstands several diffi-

culties in the geometrical and finite element

modeling. For example, unlike the scaling

approach, the offset operation may create a

self-intersecting circuit of edges. It is caused

by the presence of short edges which can be

transformed into a point, or even reversed

during the transformation, as illustrated in

Fig. 2.21. Since the same topology of top and

bottom faces of prism boundaries is required, one should either remove short

edges from the Voronoi diagram or decrease the offset distance. The second

option limits the applicability of the method. For instance, the polycrystalline

model with an identical specified thickness of the boundary layer may not

be constructed if the offsetting distance is too large for certain boundaries.

Nevertheless, short edges can be removed from the model as well as other

geometrical singularities, as explained in the further sections.
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2.2.4 Geometrical singularities

Short edges often appear in structures like the Voronoi diagram, taking

into account a random distribution of site points, as it is shown in Fig.

2.22a. An example of the short edge in a 3D cell is illustrated in Fig.

2.22b as the common edge of four faces. These geometrical singularities

complicate the preprocessing steps such as the offsetting of faces explained

above, or the finite element meshing. For these reasons, a reduction of the

geometrical singularities is an important step in the modeling of an arbitrary

polycrystalline microstructure.

(a) (b)

Figure 2.22 Examples of short edges: (a) 2D plate; (b) 3D grain

The regularization technique for removing short edges in the Voronoi

diagram is implemented in the open-source library Neper [74]. It can be

briefly explained in the example in Fig. 2.23a. The algorithm is based on

replacement of the edge’s couple of vertices by a single vertex at the middle.

Hence, the adjacent faces should be reconstructed as shown in Fig. 2.23b,

where two special cases can be considered. If a face shares both replacing

vertices (top faces in the example), it remains planar, except for triangular

faces which transform into lines. However, if the short edge is connected to

face only by a single vertex (bottom face in example), one should take into

account the fact that the middle point lies out of the plane. Therefore, the face

should be replaced by two planar faces, as demonstrated in Fig. 2.23b.

However, the regularization technique is not suitable for the description of

criteria such as the minimal angle between edges or the proximity of vertices

to the surface of a specimen. The first criteria is required for the embedded

Abaqus sweep mesh algorithm, where a minimal angle 30 degrees should
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(a) (b)

Figure 2.23 Regularization of the Voronoi diagram: (a) example of short
edge;
(b) faces after reconstruction

be complied between the sides and the base of prisms. The second criteria

allows us to improve the meshing of boundaries on a surface of the cylindrical

polycrystalline model, as explained in the Section 2.3.1.

Anyway, the solution of the Voronoi diagram uniquely follows from the

source distribution of site points. For instance, any vertex in the diagram

is equidistant to at least four site points in 3D, and three site points in the

2D case. Therefore, in order to obtain Voronoi cells without geometrical

singularities, the appropriate distribution of site points must be generated.

A similar problem was resolved in the work [105] which is focused on

the generation of a meshable planar Voronoi diagrams. The two introduced

criteria are the angle between edges and the aspect ratio, involved in the

so called "trial-and-error" algorithm. It calculates a series of randomized

realizations of the diagram until a suitable distribution is obtained. For

the reason that a complete distribution of site points should be regenerated

on every attempt, the low efficiency and convergence of this approach are

observed. For instance, the generation of 1000 grains in 2D takes about 106

trials.

In the present work, a similar approach based on the "trial-and-error"

idea, but implemented within a randomized incremental algorithm, is

proposed and explained below. This approach allows us to generate an

arbitrary Voronoi diagram that corresponds to the prescribed geometrical

criteria. Despite the longer generation time, the algorithm is well suitable for

the modeling of polycrystals, due to the absence of undesirable geometrical

singularities in the model, and other advantages.
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2.2.5 Randomized incremental algorithm

To represent a polycrystalline microstructure by the Voronoi diagram, one

generates the randomized distribution of site points. Each site refers to the

convex cell with planar faces according to the description of the Voronoi

tessellation explained in beginning of the chapter. Taking into account

the arbitrary shape of cells, different geometrical singularities such as short

edges and small angles are observed. For this reason, a set of geometrical

criteria is introduced in order to verify constructed faces and edges. In

the case of an insufficient form of the cells, the distribution of Voronoi

cores should be modified. However, singularities can appear in either the

reconstructed model because of the interconnectivity and complexity of

the Voronoi tessellation. Therefore, the generation of random site points,

along with the recalculation of a tessellation, should be performed in several

attempts until an appropriate diagram is obtained.

The mentioned example of the "trial-and-error" method [105] recalculates

an entire Voronoi diagram a considering new distribution of random site

points on each attempt. The efficiency of this approach is low since passed

cells are regenerated as well as failed. Instead of the full reconstruction, one

may adjust particular sites in the distribution in order to regenerate only the

required failed cells.

In this work, the randomized incremental Voronoi diagram [38] (RIVD) is

involved as the groundwork of the cell-based "trial-and-error" method. Un-

like the standard generation algorithm, the RIVD is constructed incrementally

site-by-site. The iteration consists of three main steps: the insertion of a new

site point, the calculation of the new cell, and the updating of neighboring

cells. To compute the faces of a Voronoi diagram, one can use different

libraries such as the Fortune’s code, based on the sweep line technique,

or qhull library, which uses the duality to the Delaunay tessellation. Both

approaches compute an entire Voronoi diagram even to calculate certain

cells, which disregards the advantages of the proposed algorithm. In contrast,

the open-source library Voro++ constructs each cell separately, as explained

in Section 2.2.2. Due to the cell-based structure and open-source code,

the Voro++ library suits well for the implementation of the randomized

incremental Voronoi diagram.

More evidently, the construction of RIVD can be demonstrated by the

example in Fig. 2.24, where six random sites are inserted incrementally.

According to the cell-based construction algorithm implemented by Chris

Rycroft in the library Voro++, every cell of the Voronoi diagram is obtained
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through the cutting of a container volume by half-space planes, which are

equidistant to a couple of the cell’s site and neighboring sites. In the example,

the first cell occupies the entire container, taking into account the single

site point in the distribution. In the next step, another cell is calculated

considering the same initial state, but cropped using the half-space plane

between two sites. Furthermore, the first cell should be reconstructed in the

second step as well because of a non-actual geometry. Finally, the obtained

face separates two cells, as illustrated by a red line in the figure. In the same

way, the remaining sites are added into the Voronoi diagram incrementally.

Besides the updated cells with reconstructed faces, one can observe several

unmodified cells, represented by black site points in the figures. Ignoring

these remote Voronoi cores allows us to reduce the amount of unnecessary

calculations which decreases the computational time of a iteration, especially

considering a large number of cells.

Step 1 Step 2 Step 3

Step 4 Step 5 Step 6

New site Neighboring sites New face

Figure 2.24 Construction of 6 cells with randomized incremental approach

For the reason that only certain cells are involved in the iteration, it is

beneficial to implement the verification procedure as a part of the cell-based

construction algorithm. If the criteria are not satisfied in the inserted or

updated cell, the increment should be repeated considering another random

position of the site point, but the same initial state of the diagram. Eventually,

the suitable coordinates of a site point will be found which allows to continue

with the construction of the Voronoi diagram by inserting the next site point.

Hence, the algorithm is based on a combination of RIVD and the "trial-and-
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error" method, as demonstrated by Fig. 2.25.

Despite the convenient cell-based architecture, the open-source library

Voro++ was significantly redesigned to implement the developed algorithm.

For instance, the original power management technique implies the compu-

tation of every cell consequently within the same block of memory. Standard

generation approach has its advantages in the low memory usage, since

Begin

End

Generate random
site point

Calculate new grain

Calculate neighbors
Recover

neighbors

Adjust site point

Criteria are
satisfied

Criteria are
satisfied

All cells are
added

True

False

True

False

True

False

Figure 2.25 Algorithm of modified randomized incremental algorithm
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each cell is constructed and printed out only once, whereas the incremental

algorithm suggests the calculation and storing of cells in separate memory

blocks, which reduces the amount of unnecessary operations. However, the

modified code allows us to generate the randomized Voronoi diagram with

required number of cells within a cubic container. As a criteria of verification,

one can involve different geometrical properties such as:

• Length of edge

• Angle between faces

• Angle between edges

• Size or volume of grain

• Area of face

The strength of these criteria, along with number of cells, influences on

convergence of the algorithm. For example, different threshold values of

the edge length can be used to determine short edges. In Table 2.2, the

computational time of the models with a different number of cells and a

minimum length of edges is presented considering an average cell size of

40µm. For the comparison with the standard algorithm, three models are

generated considering the same number of cells, but the disabled criteria. As

shown in Table 2.3, the model with 1000 cells consists of 12430 edges, where

40 edges have a length less than 0.1µm. Using the proposed algorithm, the

similar Voronoi diagram without edges shorter than 0.1µm was obtained in

2.62 seconds.

Table 2.2 Time of calculation of Voronoi diagram, s

Number of grains Original
Minimum length of edges, µm

0.1 0.5 1 2
500 0.49 1.136 1.2 1.33 1.84

1000 1.0 2.62 2.95 3.6 6.677
2000 2.02 7.61 9.62 14.12 41.19

Despite the larger computation time of the Voronoi diagram, the efficiency

of the entire framework is improved, due to a higher stability of the

preprocessing and meshing steps. For example, the present work is focused

on the modeling of a polycrystalline microstructure, assuming zero- or

finite-thickness of the grain boundary layer. As discussed in Section 2.2.3,
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Table 2.3 Number of edges of in Voronoi diagram

Number of grains
Shorter than threshold

Total
0.1µm 0.5µm 1µm 2 µm

500 23 110 213 423 6081
1000 40 214 438 878 12430
2000 86 454 930 1824 25255

boundaries with finite-thickness are constructed by offsetting the faces inside.

The method suggests the same topology of original and offset faces to generate

prism finite elements using the sweep mesh technique. Due to the absence of

short edges, the generation of valid geometrical and finite element models

can be performed with a higher probability. However, the construction of

boundaries with a required thickness may fault in several cases. Therefore, the

offsetting of faces should be implemented within the cell-based construction

algorithm of the Voro++ library too. This approach allows us to regenerate

cells with invalid boundaries in the same manner, using the "trial-and-error"

method. In this case, the convergence of the generation depends on the

offsetting distance, along with other mentioned criteria. Table 2.4 shows the

averaged construction time of the models with a different number of cells and

different thickness of boundary layer, where the average size of cells equals

40µm.

Table 2.4 Generation time of Voronoi diagrams with grain boundaries, s

Number of grains
Thickness of boundary layer, µm
0.0 0.1 0.5 1.0 2.0

500 1.2 9.2 10.2 11 23
1000 2.95 25 28 55 87
2000 9.62 113 127 181 472

However, the performance of the library can be notably increased by

using more advanced computational techniques. For instance, the cell-based

programming code suits well for a multithreaded execution. Since cells are

constructed independently, the generation of the Voronoi diagram can be

parallelized. It allows to decrease the computational time by using several

cores of the central processing unit (CPU). A particularly huge performance

boost can be achieved with the graphical processing unit (GPU), where plenty

of cores are available. Anyway, the amount of grains in the simulation of

a polycrystalline microstructure within FEA is limited by a few thousands,
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even though the simplest material model and coarse finite element mesh are

considered.

In the case of a successful calculation, the library prints out the

information about faces, edges, and vertices of the Voronoi diagram to

generate geometrical and finite element models in CAD/CAE Abaqus.

2.3 Construction in CAD/CAE Abaqus

The simulation of structures within the Finite Element Analysis consists of

three general steps: preprocessing, solving, and postprocessing. In the

preprocessing step, the finite element model should be described along

with the material behavior, time integration settings, loading and boundary

conditions. The finite element solver calculates approximated displacements,

stresses and strains in the model incrementally. Afterwards, the results of the

converged solution are studied by numerical postprocessing techniques such

as averaging, interpolation, etc. The full cycle of simulation can be performed

using the well-known commercial CAD/CAE programs Abaqus, Ansys,

Comsol, SolidWorks, and Nastran/Partan, or the open-source Calculix, which

include the preprocessing module, solver and Visualization tools. Usually,

embedded modeling functions in these programs demonstrate sufficient

efficiency and usability for solving general problems, while the simulation

of complex a material microstructure behavior requires more sophisticated

approaches. On the other hand, the mentioned CAD/CAE programs provide

access to certain features of modeling and simulation through the Application

Programming Interface (API). Therefore, the functionality and performance

can be improved for specific problems by using more advanced algorithms

and programming codes. Hence, the software framework is developed

and implemented to generate a polycrystalline microstructure in CAD/CAE

program Abaqus version 6.12. Preprocessing functions, including geometrical

modeling, are accessed by the Python Application Scripting Interface[3]

(ASI), while the programming languages C++ and Fortran are involved in the

postprocessing and material description respectively.

In the present work, the polycrystalline microstructure is represented by

the 3D randomized Voronoi diagram with convex grains and planar polygonal

faces. As discussed in the previous section, the diagram is computed by

the modified open-source library Voro++ which constructs faces of finite

thickness grain boundaries as well. The number of grains, offset distance,

dimensions of the container, and geometrical criteria are input parameters
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for the library. Every cell of the calculated Voronoi diagram can be described

by the following data structure:

• Coordinates of site point

• Coordinates of Voronoi vertices

• Coordinates of offset vertices

• Sequences of vertices to describe convex polygonal faces

To generate a finite element mesh of the diagram, the corresponding

geometrical model should be constructed at first. Considering the CAD/CAE

program Abaqus, one can either import the model from a neutral geometrical

file or create faces and solids with ASI. The first approach supposes that

the model is generated by an external geometrical kernel and exported in a

compatible file format, while in the second case the embedded geometrical

modeling kernel is involved. Hence, the construction of the Voronoi diagram

with the Abaqus Application Scripting Interface is more convenient and

stable, due to its native modeling interface.

Solids of grains can be generated step-by-step, as shown as an example in

Fig. 2.26. First of all, Voronoi vertices should be introduced with coordinates

taken from Voro++ library’s output. Afterwards, the closed circuit of edges is

described by connecting vertices in the described order using the Python ASI

command "WirePolyLine". By applying the command "CoverEdges" on these

edges, planar faces can be defined as illustrated in Fig. 2.26c. Finally, the

Python ASI function "AddCells" performs a shell-to-solid transformation of

the surrounding faces.

(a) (b) (c) (d)

Figure 2.26 Construction of a grain step-by-step from vertices (a) to
edges (b), faces (c), and solid (d)

Depending on the type of grain interaction model, one can construct

solid Voronoi cells within a single part or in separate parts. In the second

case, the contact behavior and mesh interface should be described between
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grain solids, which influences on the convergence of the FEA. Instead, the

consideration of single part implies the generation of a compatible finite

element mesh which reduces computational time and costs. Moreover, the

advanced grain interaction model can be introduced even in the single part,

using a special material behavior within finite elements of grain boundary

layer.

In the present work, two approaches of grain boundary modeling are

considered. The first one is based on the generation of a polycrystalline

microstructure assuming a zero-thickness boundary layer and perfectly

bonded grains. In this case, the statistical analysis of the deformation state

in randomized samples with a large number of grains can be performed in

a reasonable time. Despite the simplest anisotropic grain material model,

a complex macroscopic material response is achieved, as shown in the

Chapter 5. Nevertheless, the intergranular fracture of a polycrystal is

analyzed, considering the cohesive separation behavior in finite-thickness

grain boundaries.

2.3.1 Shape of polycrystal

As discussed in the introduction chapter, the analysis of a heterogeneous

deformation state in micro-parts under tension is the main goal of this thesis.

The application of the scale separation method in the mentioned length

scale is questionable because of the unclear existence of a representative

volume element. Therefore, the entire polycrystalline model should be

generated, taking into account a large number of grains, the shape of the

sample, and realistic boundary conditions. Therefore, an influence of the

discrete anisotropic microstructure can be investigated in the bulk and

surface regions.

However, the most libraries including Voro++ calculate the Voronoi

diagram within a basic container such as prism, cylinder, etc., while the

modeling of holes, notches, and cuts can be useful in the analysis of a

microstructure under a non-uniform deformation gradient. For this reason,

the geometrical cutting operation is used to obtain the required shape of the

polycrystal, as shown in Fig. 2.27 on the example of a cylindrical bar. Thus,

this operation allows us to subtract the template solid model from the unit cell

geometrical model of the Voronoi diagram.

However, the finite element meshing of polycrystals with a complex shape

stands several difficulties in the case of finite-thickness grain boundaries.

Since the sweep mesh technique is considered within the boundary layer,
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Viewport: 1     Model: voro_sat−Copy2     Step: Initial

(a) (b) (c)

Figure 2.27 Formation of the cylindrical polycrystal (c) through cutting of
the source unit cell model (a) by the solid template model (b)

the prism topology should be maintained in either updated polycrystal. As

shown on the example of fig. 2.28, certain grain boundaries may become

unmeshable after cutting, which makes the sweep algorithm unapplicable.

Basically, such boundaries may appear in the case where a vertex of the

Voronoi diagram lies closely to the suggested surface of the polycrystal.

Therefore, the stability of the meshing can be improved by introducing the

minimal distance of the Voronoi vertices to the surface as an additional

criteria for the randomized incremental Voronoi algorithm, as it was explained

in the Section 2.2.5.

Grain

Meshable boundaries

Close vertex

(a)

Grain

Surface of sample

Meshable boundaries

Unmeshable boundaries

(b)

Figure 2.28 Unmeshable boundaries on the surface of polycrystal: (a) source
model; (b) model after cutting

Despite the fact that geometrical criteria worsen convergence of the

generation of a Voronoi diagram an obtained model is well meshable as
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described further.

2.4 Finite element model

To generate the finite element model of polycrystalline aggregates, the type

of elements should be considered depending on the material modeling

approach and involved meshing algorithms. For the reason that elastic and

inelastic material behavior is described in grain interior within the classical

continuum theory, the standard volumetric elements can be used to represent

solids of grains. Due to the complex arbitrary structure of Voronoi cells and

polygonal faces, one can generate a tetrahedra inside the grains rather than

prisms or hexahedrons. It can be done by using the free meshing algorithm

implemented in many generation tools, including the Abaqus Mesh module.

Assuming zero-thickness boundaries, the embedded Abaqus mesh gen-

erator is more convenient. However, the modeling of a finite-thickness

grain boundary layer shows the lack of performance and usability in the

Abaqus Application Scripting Interface. For this reason, the open-source

mesh generator Gmsh [33] was involved in the generation of the tetrahedra

inside the grains within the finite-thickness approach, while the embedded

Abaqus meshing tool is used otherwise. Moreover, an efficient sweep meshing

algorithm is developed and implemented to insert prism elements between

grains in the case of the finite-thickness boundary layer.

2.4.1 Finite-thickness boundary layer

The simulation of intergranular fracture implies the modeling of damage

and debonding mechanisms in the grain boundary layer. It can be done

by using standard or special-purpose finite elements. Anyway, the sweep

meshing technique should be applied in boundaries to generate a layered

mesh. It allows us to clearly assign top and bottom facets of elements

onto debonding surfaces, which is especially important in the cohesive

zone modeling approach. Since a tetrahedral mesh is considered in the

grain bulk, one should generate triangular prisms between grains instead of

hexahedrons.

The proposed offsetting algorithm (Section 2.2.3) results in two layers of

solid boundaries between grains. The faces of the Voronoi diagram in this case

become a mid-surface of the boundary layer. Due to an identical topology of

the source mid-face and opposite target faces, one can generate prism finite
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elements as demonstrated in Fig. 2.29, where the source triangular mesh is

extruded along the sides of the boundaries.

Figure 2.29 Example of meshing two grains and boundaries between them

By repeating this procedure for each face of the Voronoi diagram, the finite

element model of grain boundary layer can be generated as shown in Fig. 2.30

on the example of a cylindrical bar with 500 grains.

(a) (b)

Figure 2.30 Geometrical (a) and finite element (b) models of finite-thickness
grain boundaries in cylindrical polycrystal with 500 grains

The sweep meshing algorithm is implemented in the CAD/CAE program

Abaqus as well as the free meshing algorithm and can be accessed by the

Application Scripting Interface too. However, the embedded algorithm shows

an inappropriate generation time in the case of a large number of grains. For

instance, prism elements in the given example (Fig. 2.30) were generated

in approximately 30 minutes using the Abaqus embedded function. For

this reason, another sweep algorithm was developed and implemented in

programming language Python.
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Figure 2.31 Calculation of point’s barycentric coordinates

The proposed meshing technique is based on the interpolation of

the nodal coordinates on the target face with respect to the coordinates

of nodes on a master triangular mesh of the source face considering a

barycentric coordinate system. The barycentric method allows us to represent

coordinates of an arbitrary point within a polygon by a set of weight

coefficients according to the position of the vertices, as shown in Fig. 2.31. It

was firstly introduced for triangles in 1827 by Möbius [63] and, later, in 1975,

for convex polygons by Wachspress [103]. The broad overview on the history,

applications, and algorithms can be found in report [44]. The so-called mean

value coordinates are given in [29] and formulated for every vertex of the

polygon by the following equation:

ωi(v) =
1

ri(v)

(
tan

αi−1(v)

2
+ tan

αi(v)

2

)
(2.10)

λi(v)=
ωi(v)

∑
j ω j (v)

(2.11)

By normalizing the barycentric coordinates with equation (2.11), one can

perform affine transformations of the point together with a polygon such as

translation, scaling, rotation, shear mapping, etc. The cartesian coordinates

x, y, z of point v can then be interpolated among any other scalar field using

the following equation:

F (v) =
∑

j

λ j (v) f j (2.12)

where f j is a value of the interpolating field at vertex v j .

For example, Fig. 2.32 illustrates the scheme of interpolation nodes

during the transformation of the rectangle. In the same way nodes from the

original Voronoi face can be translated onto the grain boundary’s target face.
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Figure 2.32 Scheme of interpolation and transformation of nodes

Taking into account the identical topology of triangles, the target mesh can

be reconstructed as shown in Fig. 2.29. After the top and bottom facets of

the elements are calculated, the layer of prisms can be described within an

Abaqus input file.

By using the sweep algorithm based on a barycentric coordinate system,

the time of meshing was significantly reduced. Nevertheless, the proposed

approach is not applicable on boundaries with curved edges, which are

observed in cylindrical polycrystals, models with holes, etc. For this reason,

the finite element model of polycrystals with a complex shape is generated in

a mixed mode using both the proposed one and embedded Abaqus meshing

algorithms. The efficiency of algorithms can be compared in Table 2.5,

where the time of mesh generation is demonstrated for grain boundaries

in a cylindrical model and unit cell with 500 grains. A unit cell polycrystal

consists of 5854 boundaries without curved edges, while in a cylindrical bar

776 boundaries with curved edges are identified among a total number of

5164.

Table 2.5 Generation time of finite element meshes in grain boundaries

Cylinder Unit cell
Only standard Mixed Only standard Mixed

Standard 1866 31 2641 -
Barycentric - 22 - 35

Total 1866 53 2641 35

To accomplish the generation of a finite element model, the grain

interior is meshed as well. A compatible tetrahedral mesh can be obtained
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considering the triangular facets on swept boundaries as a source for the

propagation algorithm, as demonstrated in Fig. 2.29. For this purpose, the

open-source mesh generator Gmsh was chosen because of its convenient

importing and exporting features. Describing a triangular mesh, which

was interpolated on the faces of grain boundaries, within a STL file (3D-

Systems, Inc.), one can introduce the meshed faces of grains in the open-

source program Gmsh. After the successful generation of tetrahedra, the

corresponding nodal and elemental information can be printed out in a

readable output file. Combining both grain and boundaries meshes in the

Abaqus input file, the complete finite element model can be created.

However, besides the description of a finite element model, the material

behavior of microstructure should be introduced in the Abaqus input file

along with time integration settings, loading and boundary conditions.

2.4.2 Mesh dependence

In order to investigate an influence of the element size on the finite element

solution of a polycrystalline model, the analysis of mesh dependence was

performed assuming zero-thickness grain boundaries, perfectly bonded

grains, and a purely elastic deformation. The example of finite element unit

cell model with 1000 grains is represented in Fig. 2.33 along with boundary

and loading conditions. Hence, by applying an identical displacement-

controlled load ux on the single side of unit cells and symmetric boundary

conditions on three sides, the equal average strains εxx are obtained in

polycrystals. On the other hand, a certain scatter of average stresses is

observably because of the anisotropic elasticity inside grains and randomized

material orientations. For this reason, a set of 50 randomized realizations of

the polycrystalline microstructure was generated for unit cell models with 100,

500, and 1000 grains. Therefore, the statistical analysis of averaged stresses

over polycrystal can be performed considering a different element size and

number of grains.

Taking into account the average grain size of 40µm, the most coarse mesh

was generated with element size 30µm, which corresponds to about 5600

elements in models with 100 grains, 35000 in the models with 500 grains, and

74000 elements in the models with 1000 grains. By decreasing the element

size with step 1 µm, the finer finite element meshes were generated for every

polycrystalline sample. Since the maximal number of elements is limited by

computational abilities, the different minimum element size was reached in

these models. Thus, the finest mesh for unit cell models with 100 grains was
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Figure 2.33 Example of the unit cell model with 1000 grains

achieved with the minimum element size 3µm, which corresponds to about

1807000 finite elements. In the same way, the smallest size of 5µm along

217400 elements and 8µm along 1132500 elements are used in models with

500 grains and 1000 grains, respectively. However, the obtained simulation

results for different number of grains can be compared within the single plot

through a normalization of the total number of elements by number of grains,

as represented in Fig. 2.34.
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Figure 2.34 Dependence of averaged stresses and their deviation on the
average number of elements per grain in the models with 100,
500, and 1000 grains

In the figure, horizontal axis shows the average number of elements per

grains, while the vertical axis illustrates averaged stresses over polycrystal

along the loading direction. By using the volumetric averaging, the homo-

geneous stress is obtained from a solution of every polycrystal. Afterwards,

the mean value and deviation can be calculated for each finite element size

by averaging of scalar homogeneous stresses over the 50 polycrystals. Thus,

the mean value of stresses is represented by solid line, while the brushed area

besides demonstrate the deviation of stresses. Blue, green, and red colors

are introduced to distinguish results of analysis in models with 100, 500, and

1000 grains, respectively. The mean stress values in the polycrystals with

100 grains and 500 grains clearly show convergence to a certain value, due

to decreasing of the element size and increasing of the number of elements
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per grain. The simulation of models with 1000 grains has the same tendency,

but requires finer mesh to achieve similar accuracy. Moreover, the solutions

of models with 500 grains and 1000 grains are almost exact in the common

range. Furthermore, one can observe dependence of the deviation on number

of grains, which can explain a low representability of polycrystals with 100

grains.

Taking into account the obtained results of analysis for mesh dependence,

the element size 8.4µm, is used to generate finite element models in this

work. The chosen elements size corresponds to approximately 1000 elements

per grains. Despite the solution may have lower accuracy, the elastic and

inelastic simulation of polycrystals with a large number of grains become

possible. However, the influence of mesh dependence in analysis of multiple

of polycrystals can be certainly reduced by maintaining the similar average

number of elements per grains. Eventually, one can calculate an exact solution

by decreasing a number of grains, adding of the computation power, etc.
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CHAPTER

3
Constitutive equations

The simulation of polycrystals implies the modeling of elastic and inelastic

material behavior in grains and grain boundaries. To achieve the highest

accuracy, one may describe all known micro-mechanical effects. For example,

different theories such as the crystal-plasticity which can be used to formulate

a microscopic behavior of crystalline lattice. However, it makes the finite

element analysis unacceptably expensive from the computational point of

view, especially considering a large number of grains. Therefore, the balance

between representability and efficiency is the major question in the numerical

simulation of a material microstructure. The present work is focused on

the statistical analysis of polycrystals with macroscopic dimensions but a

microscopic grain size. For this reason, the material behavior inside grains

is formulated by a simplest viscoplastic anisotropic constitutive model, as

shown further. The grain boundaries region is modeled in two different

approaches: with a zero-thickness layer assuming perfectly bonded grains,

and finite-thickness boundaries with a cohesive-type separation behavior.

3.1 Grain interior

The relationship between stresses and strains in grain interior is formulated

by a generalized Hooke’s law, which is represented in the following

tensor form [65]:

σσσ=
(4) CCC · ·εεεel

=
(4) CCC · ·(εεε−εεεi n), (3.1)

whereσσσ is the stress tensor, εεε, εεεel , and εεεi n are total, elastic and inelastic strain

tensors respectively.
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Assuming cubic type symmetry, it is convenient to decompose the fourth-

rank elasticity tensor (4)CCC using the three projection tensors (4)PPP i [13]:

(4)CCC =λ1
(4)PPP 1 +λ2

(4)PPP 2 +λ3
(4)PPP 3 (3.2)

The projectors are given as follows:

(4)PPP 1 =
1

3
III ⊗ III ,

(4)PPP 2 =

3∑

i=1

(gi ⊗gi ⊗gi ⊗gi )−(4) PPP 1,

(4)PPP 3 =
(4) III −(4) PPP 1 −

(4) PPP 2,

(3.3)

where III and (4)III are second- and fourth-rank identity tensors, gi , i = 1,2,3 is

the orthonormal basis connected with the cubic lattice.

The material parameters λi were taken for a copper single crystal [32] and

given in the Table 3.1.

Table 3.1 Elastic material properties of grains

λ1 410 GPa
λ2 47 GPa
λ3 150 GPa

The components of the stiffness tensor can be recalculated as C1111 = (λ1+

2λ2)/3 = 168 GPa, C1122 = (λ1 −λ2)/3 = 121 GPa, C1212 =λ3/2 = 75 GPa.

Substituting the formulation of stiffness tensor (3.2) into the Hooke’s law

equation (3.4) the stress tensor can be evaluated in the following form:

σσσ=
1

3
λ1trεεεel III

+λ2

[
εel

11

(
g1 g1 −

1

3
III

)
+εel

22

(
g2 g2 −

1

3
III

)
+εel

33

(
g3 g3 −

1

3
III

)]

+
λ3

2

[
εel

12

(
g1 g2 +g2 g1

)
+εel

13

(
g1 g3 +g3 g1

)
+εel

23

(
g2 g3 +g3 g2

)]
(3.4)

The power law type equation for the inelastic strain rate tensor can be

given as follows:

ε̇̇ε̇εi n
=

3

2
aσn−1

eq

{
σ11

(
g1 g1 −

1

3
III

)
+σ22

(
g2 g2 −

1

3
III

)
+σ33

(
g3 g3 −

1

3
III

)

+ ξ

[
τ12

(
g1 g2 +g2 g1

)
+τ13

(
g1 g3 +g3 g1

)
+τ23

(
g2 g3 +g3 g2

)]}
,

(3.5)

where a, n, and ξ are constants.
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The equivalent stress can be formulated as follows:

σ2
eq =

1

2

[
(σ11 −σ22)2

+ (σ11 −σ33)2
+ (σ22 −σ33)2

+6ξ
(
τ2

12 +τ2
13 +τ2

23

)]
(3.6)

For ξ = 1 the von Mises equivalent stress for isotropic materials follows from

(3.6).

The inelastic constants a, n, and ξ are given in the Table 3.2.

Table 3.2 Inelastic material properties of grains

a 8.928 ·10−12 MPa−n

h
n 5.69
ξ 0.01

The described material behavior is implemented within Abaqus user

subroutine UMAT in the programming language Fortran. An implicit time

integration scheme was used to compute inelastic strains on each time

increment using the backward difference Euler method [24, 65]:

εεεi n
t+∆t =εεεi n

t +∆t ε̇̇ε̇εi n
t+∆t , (3.7)

where the inelastic strain rate tensor at time t+∆t is characterized by equation

(3.5) with the updated stress tensorσσσt+∆t =σσσt +∆σσσ.

Taking into account the Hooke’s law (3.4) and the implicit time integration

scheme, the increment of the stress tensor can be computed in the following

way:

∆σσσ=
(4) TTT · ·(∆εεεt −∆εεεi n

t ), (3.8)

where the fourth-rank tensor (4)TTT is:

(4)TTT =λ1III ⊗ III +(4) KKK −
g∆t

1+ g∆σσσ · ·(4)MMM · ·σσσ
σσσ · ·

(4)LLL⊗
(4) LLL · ·σσσ (3.9)

In the case of the power law type equation, the function g can be given as

follows:

g =
9

4

aσn−1
eq

σ2
eq

(n −1) (3.10)

The fourth-rank tensors (4)III , (4)KKK , (4)MMM and (4)LLL are given in Appendix A

along with a generalized description of the function g .

The implicit time integration scheme significantly improves the conver-

gence of the solution, due to high accuracy of the calculation derivatives.

Therefore, higher time increments are allowed, which reduces the analysis

time even though each iteration is computed longer.
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3.2 Grain boundaries

As mentioned above, two different approaches of modeling grain boundaries

are considered in this work. Assuming zero-thickness boundaries, grains

are perfectly bonded, which does not require the description of a special

behavior in the layer. Therefore, a polycrystal with a large number of grains

can be simulated in an appropriate computational time. However, the

second approach was proposed to investigate observed effects during damage

propagation based on the example of intergranular fracture. For the reason

that the present work is focused on the qualitative analysis, the cohesive

zone technique with approximate properties is introduced because of the

high efficiency and convergence of the standard Abaqus model. However,

another material behavior can be applied in the future, due to the finite-

thickness boundary layer and regular prism mesh. For example, the model of

cavity growth within UMAT subroutine[69] introduces the behavior of grain

boundaries under creep condition at an elevated temperature, considering

the volumetric finite elements.

In this thesis, the boundary region is represented by a single layer of prism

cohesive finite elements COH3D6, demonstrated on the example of Fig. 3.1a.

The average grain size in the generated models is 40µm, while the thickness

of boundary layer T0 equals to 1 µm.

Top facet

Bottom facet

n
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3
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5
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(a)

T
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io
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εi ni t ε f ai l ur e

(b)

Figure 3.1 Cohesive finite element COH3D6: (a) configuration; (a) traction-
separation law

According to the Abaqus Manual [2], cohesive behavior can be described

with three traction-separation laws: one in normal direction and two in

shear directions. The bilinear law consists of an elastic and inelastic range,

separated by a damage initialization criteria, as shown in Fig. 3.1b. In the
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elastic range, the cohesive behavior is described by the following equation:






tn

ts

tt





=




Knn 0 0

0 Kss 0

0 0 Kt t










εn

εs

εt





, (3.11)

where tn , ts , and tt are nominal traction stresses in three directions.

Matrix K represents a stiffness matrix with zero values for uncoupled

directions and stiffnesses Knn in normal and Kss , Kt t in shear directions. In

this work, the constants of cohesive model Knn = 128 GPa, Kss = Kt t = 48

GPa are assumed. These values correlate with homogenized elastic properties

of the unit-cell polycrystals with zero-thickness boundaries and perfectly

bonded grains.

Normalized displacements εn , εs and εt follow from the separation

displacements δn , δs , and δt , and the initial thickness T0:

εn =
δn

T0
, εs =

δs

T0
, εt =

δt

T0
(3.12)

The inelastic separation of the cohesive layer starts when the damage

initiation criteria MAXE (3.13) is reached.

max

{
〈εn〉

εinit
n

,
εs

εinit
s

,
εt

εinit
t

}

= 1 (3.13)

The critical strains, which correspond to the damage initiation, are shown

below for each direction:

εinit
n = 0.0005, εinit

s = εinit
t = 0.0025

Hence, the damage variable D evolves according to the linear evolution

equation:

D =
δ

f
m(δmax

m −δ0
m)

δmax
m (δ

f
m −δ0

m)
, (3.14)

where an effective displacement in cohesive element can be calculated as

follows:

δm =

√
δ2

n +δ2
s +δ2

t (3.15)

In the equation (4.1), the values δ0
m and δ

f
m correspond to effective

displacements at the damage initiation and failure, respectively. The term

δmax
m means a highest attained effective displacement.
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The damage failure criteria is defined according to the mixed-mode

energy-based approach δ
f
m = 2GC /T 0

e f f
, where the critical fracture energy is

formulated by the Benzeggagh-Kenane (BK) form [12]:

GC
=GC

n +
(
GC

s −GC
n

){ GS

GT

}η

GS =Gs +Gt

GT =Gn +GS

(3.16)

GC
n =0.032 Nmm and GC

s = GC
t =0.3 Nmm are the assumed critical fracture

energies in the normal and two shear directions, respectively. The power η= 1

is considered.

In the case of inelastic separation, nominal stresses in three directions can

be determined by using the following equations:

tn =





(1−D)t̄n , t̄n ≥ 0

t̄n , otherwise

ts =(1−D)t̄s

tt =(1−D)t̄t

,

where t̄n , t̄s , and t̄t are extrapolated from elasticity equation (3.11),

considering zero damage.

For the reason that the stiffness of boundaries is characterized by

homogenized elastic properties of the polycrystal, the separation of a cohesive

layer depends on the effective stiffness of adjacent grains. As shown in

the previous section, the single crystal possesses an anisotropic elastic and

inelastic material behavior. Taking into account a random crystal lattice

orientation, an effective stiffness of grains in the loading direction can be

smaller, equal or larger. Therefore, different relations between deformations

of grains and the grain boundary layer can be observed in the polycrystal. For

instance, Fig. 3.2 illustrates two opposite cases of deformations in a bicrystal

under tension and shear load. In the case where grains are stiffer than the

boundary in between (Fig. 3.2a and 3.2b) the boundary deforms the most.

Otherwise (Fig. 3.2c and 3.2d), higher deformation occurs inside the grains.
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E > Knn E > Knn

(a)

G > Kss

G > Kss

(b)

E < KnnE < Knn

(c)

G < Kss

G < Kss

(d)

Figure 3.2 Examples of deformation of bicrystal in the tension and shear
tests considering different relationship between the stiffness of
grains (E and G) and stiffness of boundary (Knn and Kss = Kt t )

However, taking into account the viscoplastic material behavior inside

grains, the significant redistribution of stresses can be observed, due to a local

relaxation and damage accumulation, as will be shown in the Section 5.2.
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CHAPTER

4
Postprocessing

The postprocessing of the results is the final step in the analysis of structures

with the finite element method. Usually, it means the retrieving of stresses

and strains at interesting nodes or finite elements. Considering randomized

z

y
x

Figure 4.1 Normal stresses σzz in the cross-section of cylindrical polycrystal
under tension
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heterogeneous structures like polycrystal, the important information about

the stress state is included in the whole domain, as shown on the example of

a cylindrical bar under tension in Fig. 4.1, where distribution of the normal

stresses σxx in a cross-section is presented. Due to randomized crystalline

lattice orientations and the anisotropic material constitutive model inside

grains, one can observe regions with high and low stresses and strains. In

average, it characterizes a macroscopic response of the polycrystal.

However, the sophisticated macroscopic behavior, caused by the hetero-

geneity of polycrystalline microstructure, can be expected in certain regions

of a polycrystal such as the free surface, holes, notches, etc. In order to

investigate a macroscopic response in such regions and its difference with

the bulk area, special numerical techniques of averaging and interpolation are

developed and implemented, as discussed in this chapter.

As a common approach, the CAD/CAE program Abaqus possesses a

Visualization module to extract field values at specified locations and time

frames. However, the full automatization of the postprocessing step is

required for statistical analysis. It can be done with the help of the Abaqus

scripting interface in the same way as during the construction of geometrical

and finite element models. Moreover, the accessing to solution’s database can

be performed with programming language C++ instead of the less efficient

Python language.

A certain part of the postprocessing code uses embedded Abaqus

functions, such as the transformation of coordinate system, the reading

of field values, etc. Besides, sophisticated numerical techniques were

introduced.

4.1 Volumetric averaging

First of all, the averaged values of required fields should be computed to

illustrate the relationship between applied loads and the achieved response.

The widely-known volumetric averaging procedure allows us to calculate

averaged components of the field over the entire polycrystal or in certain

regions, like the surface and bulk. However, since a random local coordinate

system is involved to introduce a crystal lattice orientation inside grains, the

tensorial elemental values such as stresses and strains are stored within that

coordinate system. Therefore, the rotation of tensors into the global CS should

be performed at first. For this purpose, one may access the Abaqus ASI

function "getTransformedField", which provides rotation of a data field into
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required CS. Elemental values at the global CS can then be averaged by using

following equation:

F̄ (t ) =

∑
fi (t )vi

V
(4.1)

where fi and vi are the field value and the volume taken from an i-element, V

is the total volume, and sum is taken over all elements.

This approach can be extended by specifying the averaging domain. For

example, the redistribution of high- and low-stress phases can be averaged

separately, assuming mean stress as a threshold between phases. Likewise,

the distribution of stresses in the radial direction of a cylindrical polycrystal

can be analyzed by volumetric averaging within the radial layers.

However, the application of volumetric averaging is suggested for

the analysis of regions with a statistically uniform deformation gradient.

Otherwise, important local effects may be lost during averaging. For

instance, the influence of discrete polycrystalline microstructure in models

with notches or holes can not be clearly analyzed by using the volumetric

averaging because of the non-uniform deformation gradient, especially in the

concentration area. For this reason, the algorithm of point-wise averaging was

developed, as presented in next section.

4.2 Point-wise averaging

Unlike volumetric averaging, the proposed algorithm averages the

solutions over several samples point-wisely, as shown on Fig. 4.2. Each

sample is generated, considering the identical shape and simulated under

the same loading and boundary conditions. Due to a random polycrystalline

microstructure, the unique distribution of stresses and strains is observed in

each sample, as demonstrated in the cross-section in the figure. By collecting

field values from those N fields at the same location, one can calculate the

arithmetic mean with equation (4.2). To calculate the averaged distribution

F̂ within an entire cross-section the procedure should be repeated at each

point of the averaging grid. The proposed technique allows us to identify

specific tendencies and features which are invisible in the single specimen.

Thus, the averaged distributions of stresses in cylindrical polycrystals clearly

demonstrate the appearance of the surface layer effect, which is discussed

later in Chapter 5.
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F̂ (x, y, z) =
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(F1(x, y, z)+F2(x, y, z)+ ...+FN (x, y, z)) =

1

N

N∑

i=1

Fi (x, y, z) (4.2)

Averaged field F̂

Figure 4.2 Scheme of point-wise averaging over N samples of polycrystal

Nevertheless, the point-wise averaging algorithm requires a single grid

of points for gathering and averaging values from different specimens. Due

to the randomness of a polycrystalline microstructure, the cross-section of

finite element meshes in these models is incompatible. For the reason that

the simulation results are stored at nodes and Gauss points, the proposed

techniques can not be applied directly on the mesh. Therefore, the field values

in each specimens should be projected onto a generated regular grid of points

at first. It can be done by using the developed three-dimensional interpolation

algorithm presented further.

4.3 Interpolation using shape functions

Since the finite element method is used to decompose a complex geometrical

model into a mesh of basic elements, it is convenient to implement

interpolation algorithm using the shape functions of FE. Basically, they

are involved in FEM to interpolate values at integration points from nodal

field data, as explained in textbooks [47, 111], among many others. The

interpolation function (4.3) consists of Lagrangian polynomials Ni , where

each polynomial refers to i-node of the element. Also known as shape

functions, they are described for each type of the finite element considering

non-dimensional natural coordinates g ,h, and r , which are defined in the
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range of [−1..1] or [0..1]. The boundary values of local coordinates correspond

to the nodes of an element.

f (g ,h,r )=
n∑

i=1

Ni (g ,h,r ) fi (4.3)

where n is a total number of nodes in element, fi is a value of interpolating

field at i-node.

Using interpolation function (4.3), the global coordinates of an arbitrary

point described in the natural coordinates can be calculated as follows:

x(g ,h,r ) =
n∑

i=1

Ni (g ,h,r )xi

y(g ,h,r ) =
n∑

i=1

Ni (g ,h,r )yi

z(g ,h,r ) =
n∑

i=1

Ni (g ,h,r )zi

(4.4)

where xi , yi , and zi are the global coordinates of the i th node.

In the same way, components of stresses, strains, displacements, etc. can

be interpolated as well:

σ(g ,h,r )=
n∑

i=1

Ni (g ,h,r )σi ,

ε(g ,h,r )=
n∑

i=1

Ni (g ,h,r )εi ,

u(g ,h,r )=
n∑

i=1

Ni (g ,h,r )ui ,

(4.5)

where σ and ε are stress and strain tensors, respectively, while u is vector of

displacements.

As mentioned above, the general idea of the proposed algorithm is

based on the interpolation of a required scalar field at each point of the

projecting grid, which is illustrated exemplarily in Fig. 4.3. In this case,

the global coordinates of these points should be recalculated within the

local coordinate system of the corresponding finite element. The so-called

mapping procedure can be performed once for the required cross-section of a

specimen. Afterwards, the calculated local coordinates of the grid’s points are

used to interpolate the field values at an arbitrary time frame.
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Points of interpolating grid

Nodes

1
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g

h

Figure 4.3 Illustration of the mapping procedure as projection of an
interpolating grid of points onto arbitrary finite element mesh

Although the identification of the belonging finite element is a trivial

task, the calculation of the local coordinates for an arbitrary point requires

additional computational effort. Considering volumetric finite elements,

the solution was found and implemented only for linear finite elements.

Moreover, whereas the generalized solution is given for a tetrahedron, the

mapping within a hexahedron and prism was described for a special case.

4.3.1 Linear tetrahedral finite element

The widely-known linear tetrahedral finite element consists of four nodes

and four triangular facets, as presented in Fig. 4.4. It is commonly applied

in structural analysis with FEM, due to the simplest geometry and the free

meshing algorithm. The local coordinates g , h, and r are defined in a range of

[0..1] with the origin at node 1.

z

y

x

g

hr

P
1

2

3

4

Figure 4.4 Arbitrary point P within linear tetrahedral finite element C3D4
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The interpolation function is described in equation (4.6) with introduced

shape functions.

f (g ,h,r ) = (1− g −h − r ) f1 + g f2 +h f3 + r f4 (4.6)

The global coordinates of an arbitrary point P (xP , yP , zP ) inside tetrahedra

can be found by substituting the global nodal coordinates into the equation

above in the same way as shown in the general case (4.4). Through the

inverse transformation of these equations, the local coordinates (g ,h,r ) of

point P (xP , yP , zP ) follow from the system of equations:




x2 −x1 x3 −x1 x4 −x1

y2 − y1 y3 − y1 y4 − y1

z2 − z1 z3 − z1 z4 − z1










g

h

r





=






xp −x1

yp − y1

zp − z1





(4.7)

where xi ,yi ,zi for i = 1..4 are nodal cartesian coordinates.

The obtained local coordinates can be used to interpolates stress, strain,

and displacement components by equation (4.6). For the reason that solids

of grains are represented by tetrahedra, the general results after the point-wise

averaging are obtained with the given generalized solution of the mapping

procedure. However, prism and hexahedral finite elements are considered as

well.

4.3.2 Linear hexahedral finite element

A hexahedral finite element demonstrates higher accuracy and stability within

FEA in comparison with a tetrahedron, but requires an advanced meshing

technique. For example, such elements can be generated by using extrusion,

sweep or revolution algorithms, and a source quadrilateral mesh. Neither of

these techniques is applicable for meshing the Voronoi cells because of an
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Figure 4.5 Arbitrary point P within linear hexahedral finite element C3D8
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undefined elongation direction and the complicated meshing of polygonal

faces. However, the boundary layer and the extruded Voronoi diagram

are well suitable for the sweep or extrusion algorithm, due to the prism

topology. Furthermore, both techniques facilitate the mapping of local

coordinates for an arbitrary point within FE. Unlike the generalized case,

two parallel facets in the element are assumed. Therefore, one of three

local coordinates r can be identified explicitly, since it coincides with the

extrusion direction. To calculate the remaining natural coordinates g and h,

the inverse transformation of the interpolation function (4.8) is performed by

substituting nodal cartesian coordinates, as shown in Appendix B.

u(g ,h,r )=
1

8
(1− g )(1−h)(1− r )u1 +

1

8
(1+ g )(1−h)(1− r )u2

+
1

8
(1+ g )(1+h)(1− r )u3 +

1

8
(1− g )(1+h)(1− r )u4

+
1

8
(1− g )(1−h)(1+ r )u5 +

1

8
(1+ g )(1−h)(1+ r )u6

+
1

8
(1+ g )(1+h)(1+ r )u7 +

1

8
(1− g )(1+h)(1+ r )u8

(4.8)

4.3.3 Linear prism finite element

The prism finite element is generated in the same way as the hexahedron, but

taking into account the triangle base facets, as shown in Fig. 4.6. Hence,

the planar triangular mesh can be used as a source of the extrusion or sweep

algorithm. Since solids of grains are represented by tetrahedra, the grain

boundary layer is generated with prism finite elements, as was discussed

in Section 2.4.1. Moreover, the same assumption on parallel facets can
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Figure 4.6 Arbitrary point P within linear prism finite element C3D6
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be considered in order to simplify the calculation of natural coordinates,

which was introduced for the hexahedron. Therefore, the third natural

coordinate r coincides with the normals of the top and bottom facets. The

remaining coordinates g and h can be obtained from the transformation of

the generalized interpolation function (4.9), as explained more detailed in

Appendix C.

u(g ,h,r )=
1

2
(1− g −h)(1− r )u1 +

1

2
g (1− r )u2 +

1

2
h(1− r )u3

+
1

2
(1− g −h)(1+ r )u4 +

1

2
g (1+ r )u5 +

1

2
h(1+ r )u6

(4.9)
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CHAPTER

5
Simulation

Using the developed framework, polycrystalline samples with different shape

were generated and analyzed under various loads. For the reason that a

representative volume element is not applicable for the simulation of the

discussed micro-parts, geometrical and finite element models are generated,

considering the large number of grains and free boundary conditions on

surfaces. Hence, the analysis of the deformation and stress states in the entire

polycrystalline specimens is performed and presented in this chapter.

Since the anisotropic constitutive material model and a random crystal

lattice orientation are described in each grain, the distributions of stresses and

strains show high heterogeneity. However, the tendency of these fields can be

investigated in a large number of samples by using the developed point-wise

averaging technique which was explained in previous chapter. In the case

where the obtained averaged distribution demonstrates a correlation with the

solution of the RVE, one can consider the applicability of the scale-separation

method. Besides, these effects can be assumed to be negligible if their

contribution is small enough. The most important observation made in this

work was the detection of the so-called surface layer effect in polycrystalline

samples with free surfaces under tensile/compression loading conditions.

This effect is thoroughly analyzed assuming zero-thickness grain boundaries

and perfectly bonded grains, which allows to consider plenty of samples with

a large number of grains. After the identification of the general properties,

the simulation of the intergranular fracture in a single cylindrical specimen

was performed as well, in order to investigate the behavior of the surface layer

effect under damage propagation.
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5.1 Surface layer effect

The averaged distributions of normal and equivalent stresses clearly show

lower stresses in the surface layer in comparison with the bulk region. This

effect can be explained by the fact that there are less constrained grains on

the surface of the specimen. At least one side of those grains is free of

constraints. It is widely-known that a clear understanding of the material

behavior in the surface and bulk regions is a key point in the precise

prediction of the life time and critical working conditions. An experimental

confirmation of the layer’s existence can be found in several papers and

reports [8, 54]. The general observations there show that the thickness of

the layer is approximately equal to the size of 1-3 grains. Therefore, an

experimental investigation requires complex precise equipment, including a

testing machine and micrography devices. Besides, the general properties of

the layer can be analyzed numerically, assuming the simplest material model

and the shape of the sample.

In the present work, three different shapes of samples are considered:

a thin rectangular plate, a cylindrical bar and a notched cylindrical bar.

The first two models are investigated with the viscoplastic grain material

model, while the notched cylinder is analyzed under purely elastic tension.

Unlike the smooth cylinder and rectangular plate, the notched cylinder

demonstrates non-uniform deformation gradient under tension. In this case,

the comparison with an inelastic homogeneous model is not accurate because

of unknown macroscopic inelastic material model. Even though such a

model can be described through the homogenization of an RVE, one may

mistakenly recognize the parameter’s identification error as a useful feature

of the polycrystalline microstructure. Instead, the comparison of the elastic

solution between the polycrystal and the homogeneous model allows us to

perform a clear qualitative analysis. Considering a smooth homogeneous

cylinder, stresses and strains are uniformly distributed. Therefore, the area of

the RVE’s applicability can be identified in the averaged distribution of stresses

and strains taken from polycrystalline model with a large number of grains

and the realistic boundary conditions.

5.1.1 Rectangular plate under cyclic load

Polycrystalline samples of a rectangular plate with 1000 grains are generated

by the extrusion of a planar Voronoi diagram for a single layer of finite

elements. Although such a polycrystal can not be investigated in real
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experiments, the numerical simulation is more efficient. Thus, the larger

number of grains is generated within the cross-section of a rectangular plate

rather than in a cylindrical bar, considering the similar number of elements.
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Figure 5.1 Rectangular plate under cyclic load: (a) example of polycrystal;
(b) loading amplitude; (c) averaged distribution of stresses
at 50 h; (d) stresses vs. vertical coordinate at 50 h; (e) averaged
stresses in bulk and surface regions; (f) hysteresis loops
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The geometrical model of one sample from a total of 400 grains is shown

in Fig. 5.1a, where symmetric and free boundary conditions were applied on

the bottom/back and top/front sides, respectively. Each sample is deformed

by cyclic displacement-controlled load u(t ) (amplitude in Fig. 5.1b), applied

to the left- and right-hand sides of the model.

After a successful simulation of the samples with anisotropic viscoplastic

material model, the averaged distribution of stresses in the loading direction

was computed using the point-wise averaging technique at each time

increment. Fig. 5.1c illustrates such a distribution at the time point of 50

h, when maximum strains are applied. In the figure almost uniform stresses

are observed in the bulk region, whereas they are decreased in the surface

layer. Therefore, the applicability of the RVE method can be confirmed

only in the bulk region, while the modeling of the surface layer requires its

description in the macroscopic material model. More evidently, the effect can

be represented in Fig. 5.1d, where stresses along the vertical coordinate y of

the model are shown. Taking into account an average grain size of 40µm, the

thickness of the surface layer effect is approximately equals 2-3 grains, which

correlates with the experimental observation [54]. Moreover, the difference

between stresses in the surface layer and the bulk region is significant and may

change during the loading cycle. For this reason, three domains of volumetric

averaging are introduced: the bulk, the surface layer, and the surface, as

shown in Fig. 5.1e by green, blue, and red color, respectively. The macroscopic

behavior in these regions is illustrated as the relation between stresses and

time in Fig 5.1e, and stresses and strains in Fig. 5.1f.

Beside the amplitude of stresses, the thickness of the layer is changed as

well. It can be shown by 3D plot 5.2a, where the horizontal axis represents

time, the vertical axis represents the vertical coordinate of the model, and

color connotes the amplitude of the averaged stresses at corresponding

position and time point. Therefore, a slice of the 3D plot at time point of 50 h

is the same as the one given in the Fig. 5.1d, considering another projection.

By normalizing the stress values by following equation, the comparison with

bulk region can be displayed more clearly.

∆σ̂norm
xx (y) =

∣∣σ̂xx (y)− σ̄bulk
xx

∣∣

max
y

(∣∣σ̂xx (y)− σ̄bulk
xx

∣∣) (5.1)

where

σ̄bulk
xx =

1

0.6

0.7∫

0.1

σ̂xx (y)d y (5.2)
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Thus, Fig. 5.2b demonstrates that the thickness of the surface layer may

change on the reversing of load, but remains steady-state in the case of a

constant loading rate.
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Figure 5.2 Average stresses σ̂xx with respect to vertical coordinate y and
time: (a) non-normalized, (b) normalized

The proposed model of the rectangular plate was used as a simple

simulation framework. However, general results are given for the more

realistic model of a cylindrical bar.

5.1.2 Cylindrical bar in cyclic viscoplasticity

A polycrystalline cylindrical bar is a more representative model than a thin

rectangular plate, due to its similarity with real micro-parts such as pins,

wires, etc. Moreover, artificial boundary conditions, such as symmetry, are not

involved in the simulation, since the entire specimen is considered. Hence,

free boundary conditions are described on the surface of the cylinder. The

construction of finite element models for polycrystals with a complex shape

and large number of grains is discussed in Chapter 2. Fig. 5.3a shows a single

example out of 400 realizations of a smooth cylindrical bar with approximately

1000 grains. All samples have identical dimensions with a diameter and

length of 0.4 mm, but a randomized microstructure. Considering a similar

displacement-controlled loading amplitude on the sides of the cylindrical

bar (Fig. 5.3b), as it was done in the previous model, 400 polycrystals were

investigated in cyclic loading conditions.
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Figure 5.3 Cylindrical bar: (a) example of polycrystal; (b) loading amplitude

Taking into account the random material orientations and anisotropic

viscoplastic behavior inside the grains, heterogeneous stress and deformation

states are obtained by using the finite element method. Due to the

implemented implicit time integration scheme of the user defined material

subroutine UMAT, the stable time increment was achieved. It allows us to

simplify the calculation of averaged distributions of a required field with the

developed point-wise averaging algorithm because of an identical discrete

time scale in all solutions. The averaged normal stresses σ̂zz at time point

of 40 h are shown in figures 5.4 within three different cross-sections of the

cylindrical bar. The obtained averaged distributions clearly demonstrate the

presence of the surface layer effect in the cylindrical model, too. Besides,

the thickness of the layer is approximately equal to the size of 1.5 grain, or

60µm, which is less than in the previous example of a thin rectangular plate.

It can be explained by the more realistic boundary conditions and shape of

grains in the cylindrical bar, whereas in the rectangular plate symmetry was

considered on the back side of the extruded grains and a free surface on the

front. Anyway, the well-known solution of a homogeneous cylinder within the

classical continuum theory states uniform normal stresses and strains under

tension. Hence, the applicability of the scale-separation method with a RVE

should be reconsidered.

Since the thickness of the layer is identified, one can compare the

macroscopic response in bulk and surface regions over a cycle by introducing

two corresponding volumetric averaging domains. Fig. 5.4d displays

averaged bulk stresses by a green line, whereas the blue line represents normal

stresses in the surface layer.
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Figure 5.4 Averaged distributions of stresses in cylindrical model:
(a) cross-section XY; (b) Cross-section YZ; (c) cross-section XZ; (d)
averaged stresses in bulk and surface layer with respect to time

Despite the simplest anisotropic viscoplastic material behavior and

perfectly bonded grains, the a nonlinear macroscopic response is achieved.

For example, the Bauschinger effect and hardening are clearly observable

on both curves. The smaller amplitude of stresses in the surface layer can
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be noticed on loading steps as well as on unloading. Moreover, the plots

demonstrate the slight decrease of the difference between stresses in the

bulk region and in the surface layer at steady-state regimes. Therefore, a

sophisticated behavior of the effect can be expected under various loading

conditions. For this reason, displacement-controlled tensile tests are

performed with the same set of cylindrical polycrystals, but a different loading

rate, as discussed further.

5.1.3 Cylindrical bar under tension. Loading rate dependence

In this test, the dependence of the surface layer effect on the loading rate was

investigated in 400 polycrystalline cylindrical bars with approximately 1000

grains. An example of the geometrical model is illustrated on the surface of

the model in Fig. 5.5, where free boundary conditions are considered on the

surface of the polycrystals, and displacement-controlled load is applied on the

sides. The polycrystals were deformed by two different ramp amplitudes with

loading rates of 0.1 %/h and 0.05 %/h, which is illustrated in Fig. 5.6a.

Taking into account the viscoplastic material behavior and random
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Figure 5.5 Averaged distribution of normal stresses σ̂zz in three cross-
sections for loading rate 0.1 %/h at the end of simulation.
Example of microstructure on the surface
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material orientations inside the grains, the simulation shows heterogeneous

distributions of stresses, elastic and inelastic strains. Moreover, the loading

rate dependent accumulation of inelastic strains causes the redistributions

of stresses and total strains. Averaged stresses in normal directions are

calculated using the mentioned point-wise averaging algorithm for two

loading rates separately. For example, Fig. 5.5 demonstrates the averaged

distribution of stresses within cross-sections of the cylinder for the analysis

with a loading rate of 0.1 %/h at time point of 20 hours. The surface layer can

be clearly observed in the figure.

The development of stresses in bulk and surface regions can be illustrated

by introducing two corresponding domains for volumetric averaging. Thus,

Fig. 5.6b demonstrates the relationship between normal stresses σ̂zz and

applied strains εzz , whereby bulk stresses are represented by solid lines and

stresses in surface layer by dashed lines. Blue and red colors are used to

distinguish the results of the analysis with a 0.1 %/h and a 0.05 %/h loading

rate, respectively. Plots demonstrate that stresses in the surface layer are

almost 20 % smaller than in the bulk region.
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Figure 5.6 Averaged stresses in cylindrical polycrystals under different strain
rates: (a) total strains; (b) averaged stresses
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Figure 5.7 Average normal stresses σ̂zz along the axis y : (a) non-normalized;
(b) normalized

Besides, the general properties of the surface layer effect can be analyzed

through the representation of normal stresses σ̂zz with respect to the radial

coordinate of the cylindrical bar. These plots are illustrated in Fig. 5.7a at the

end time point of the simulations which corresponds to maximum applied

strains of 2%. The bulk stresses in the given results are approximately equal

232 MPa and 209 MPa for 0.1 %/h and 0.05 %/h loading rates, respectively.

An amplitude of the surface layer effect can be estimated as the difference

between stresses in the bulk region and on the surface. Thus, for a higher

strain rate it equals 45 MPa, while for a lower one it equals 40 MPa. However,

the relative amplitude is approximately 19% in both cases. It can be more

evidently demonstrated in Fig. 5.7b, where the difference of stresses

normalized by bulk values is calculated with the similar equation (5.1).

Furthermore, the equal thickness of the layer of ∼60µm can be concluded for

different loading rates.

Summarizing the obtained results, the independence of the surface layer

effect’s thickness and the normalized amplitude is stated for the described

viscoplastic material model of grains. This conclusion can be used to facilitate

further analysis of cylindrical bar under various loading conditions. For

example, the single sample, rather than 400 samples, of cylindrical polycrystal

is considered in the following sections. Taking into account the observed

thickness of the layer, the sub-domain-based volumetric averaging algorithm

can be used rather than point-wise averaging technique.
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5.1.4 Cylindrical bar under tension. Relaxation test

It is widely-known that the microscopic redistribution of stresses and strains

in polycrystals characterizes a non-linear material response. The mentioned

results of tensile tests on 400 polycrystalline cylindrical samples clearly

demonstrate the presence of the surface layer effect with a thickness of about

1-2 grains. Under ramp and cyclic loading conditions, the thickness of the

layer is not changed significantly. Nevertheless, the behavior of the discovered

effect should be investigated under relaxation loading conditions too.
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Figure 5.8 Stress response of a cylindrical polycrystalline specimen under
tension and relaxation: (a) total strains; (b) averaged stresses;
(c) stress-strain diagram; (c) difference between stresses in
surface and bulk regions
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Since the independence of the layer’s thickness in a smooth cylinder is

assumed, one can simulate a single sample of a polycrystal introducing bulk

and surface regions of volumetric averaging. Therefore, computational and

postprocessing times are reduced even though larger number of grains or a

longer simulation time can be considered.

In the presented analysis, the cylindrical polycrystal (Fig. 5.3a) with 1000

grains was deformed in axial displacement-controlled tests with two different

loading amplitudes, which are shown in the Fig. 5.8a. In the relaxation test,

the sample is deformed by up to 2% in 40 hours with a constant strain rate.

Afterwards, within 160 hours, the applied displacements on the sides of the

cylinder are maintained, which implies the relaxation procedure. Eventually,

the tension of the sample is continued to up to 8% of strains with same the

initial strain rate in order to investigate the influence of the stress relaxation

on the mechanical properties of a microstructure. Moreover, the identical

sample was deformed with the same loading rate from 0 to 8% of strains. The

corresponding plots of the loading amplitudes and the averaged macroscopic

response are demonstrated by red and blue lines in the figures.

Fig. 5.8b illustrates averaged normal stresses σ̂zz over time in the bulk

region by solid lines and in the surface layer by dashed lines. Noticeably,

the evolution of stresses in these regions is similar in both tests. It is clearly

noticeable in Fig. 5.8c, where stresses are shown in respect to applied strains.

5.1.5 Cylindrical bar under multicyclic deformation

The final results of the investigation of the surface layer effect in a smooth

cylinder are obtained in a multicyclic test of a single polycrystalline specimen,

similar to Fig. 5.3a. Besides free boundary conditions on the surface of the

sample, the displacement-controlled load was applied on the sides, regarding

the amplitude in Fig. 5.9a.

Thus, four cycles with a period of 160 hours and a mean zero value were

simulated considering maximum applied strains of 2%. Fig. 5.9b and 5.9c

represent averaged stresses in the bulk region by a green line and in the

surface layer by a blue line with respect to time and total strains, respectively.

On hysteresis loops, an almost exact match between cycles can be observed

in these regions. Furthermore, the difference between stresses in the bulk

region and surface layer does not change significantly between the cycles,

as it is shown in Fig. 5.9d. The similar amplitude over all cycles allows us

to conclude the independence of the surface layer effect under multicyclic

loading conditions, despite a complex non-linear material behavior.
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Figure 5.9 Averaged stresses in cylindrical polycrystal during four cycles of
deformation: (a) total strains; (b) averaged stresses; (c) stress-
strain diagram; (d) difference between stresses in surface and
bulk regions

5.1.6 Influence of grain material’s anisotropy

Besides the shape of polycrystal, loading and boundary conditions, the

influence of the grain material properties on the surface layer effect is

investigated as well. As mentioned earlier, the appearance of the surface

layer effect can be explained by the fact that the grains on a surface are less

constrained. Therefore, a rate of the grain material’s anisotropy may affect

the basic properties of the layer such as thickness and amplitude. The grain

material model is formulated by the anisotropic elasticity and anisotropic

viscoplasticity, considering the randomized crystal lattice orientation, as

explained in Section 3.1. For this reason, the two different tensile tests were
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performed in this analysis: the viscoplastic test and purely elastic test. In both

cases the set of 400 randomized realizations of the cylindrical polycrystal with

approximately 1000 grains are generated and simulated under tension. The

example of a polycrystal is shown above in Fig. 5.3a.
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Figure 5.10 Averaged stresses vs. radial coordinate in a cylindrical specimen
with the viscoplastic grain material model: (a) non-normalized;
(b) normalized

The influence of the grain anisotropy on the surface layer effect can be

investigated through a comparison of the average stresses in models with

different material properties. Thus, in the viscoplastic test, three values of

the coefficient of inelastic anisotropy ξ = {0.005,0.01,0.05} are used. Other

elastic and inelastic parameters are remained the same. Despite the identical

displacement-controlled loading and the boundary conditions, the different

response can be observed in 400 polycrystals. The results of simulations were

averaged using a developed point-wise averaging algorithm within cross-

sections of the finite element models. Since, the configuration of the layer

in a cylindrical specimen was already investigated in previous tests, the

average distributions of stresses can be furthermore averaged along the radial

direction. By this way, the relationship between the average normal stresses

σ̂zz and the radial coordinate r is obtained and illustrated in Fig. 5.10a

for three different values of the coefficient of anisotropy ξ. In the figure,

a red color corresponds to the default value of ξ = 0.01, while blue and

green colors refer to larger and smaller anisotropy, respectively. In order to

compare these curves qualitatively, Fig. 5.10b shows normalized stresses
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by corresponding bulk values. The thickness of the layer seems similar in

all three cases, while the dependence of the surface layer’s amplitude on the

coefficient of anisotropy can be stated. In the second test, the polycrystals

were investigated under elastic tension with deactivated inelastic material

parameters. The elastic behavior of crystallites is characterized by three

constants λ1 = 410 GPa, λ2 = 47 GPa, and λ3 = 150 GPa, as described in

Section 3.1. In the similar way, two constants λ1 and λ3 were fixed, while

the three values for the third constant λ2 = {20,47,100} GPa are used in this

analysis in order to introduce different level of anisotropy. The larger the

difference between shear parameters λ2 and λ3 is, the stronger the anisotropy

is. The obtained averaged distribution of normal stresses σ̂zz with respect

to the radial coordinate of the cylinder clearly shows a dependence of the

bulk stresses and surface layer’s properties on the rate of anisotropy, as

demonstrated in Fig. 5.11a. Thus, Fig. 5.11b represents similarly normalized

curves using bulk values, where the different thickness and amplitude of the

surface layer effect are observable.
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Figure 5.11 Average stresses vs. radial coordinate in a cylindrical specimen
with the elastic grain material model: (a) non-normalized; (b)
normalized

5.1.7 Elastic tension of notched cylindrical bar

The surface layer effect was initially discovered in smooth models of a

cylindrical bar and a rectangular plate. It is clearly observed in the

averaged distribution of stresses and investigated by the comparison of
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values in the surface layer and bulk region. However, microparts with a

complex shape are widely used in devices and mechanisms and should be

thoroughly investigated too. The analysis of a heterogeneous polycrystalline

microstructure in models with notches, cuts, and holes is more complicated,

due to the macroscopic stress and strain gradients. In the present work,

the cylindrical bar with a circumferential notch is simulated considering

both a homogeneous and a polycrystalline microstructure, as represented

in Fig. 5.12. Since stresses and strains in the polycrystalline model are

highly heterogeneous, the statistical analysis with the point-wise averaging

technique is performed in this test. Thus, 500 randomized polycrystals with

2000 grains are generated and simulated under tension.

(a) (b)

Figure 5.12 Cylindrical bar with circumferential notch: (a) example of
polycrystal; (b) analogue homogeneous model

Considering a homogeneous structure, the isotropic constitutive ma-

terial model can be formulated through a homogenization procedure of

polycrystals in a series of tensile and shear tests. The procedure implies

a fitting of the material model’s parameters according to the homogenized

response. The comparison of the simulation results between homogeneous

and polycrystalline models allows us to recognize the surface layer effect

or other unclear features. Nevertheless, the observed difference between

the solutions can mistakenly be stated as an important effect, while it may

actually be caused by an imperfect description of the homogeneous material

model. The purely elastic behavior in both a polycrystalline and an analogue

isotropic homogeneous structure is considered to reduce the homogenization

error.
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Figure 5.13 Averaged distributions of equivalent von Mises stresses (a)
and strains (b) in elastic tensile test of notched cylindrical
polycrystalline model. Difference of stresses (c) and strains (d)
between polycrystalline and analogue homogeneous model
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Furthermore, the elastic solution can be calculated in a single time

increment of FEA, while plenty iterations are needed for inelastic simulation.

For this reason, the number of realizations and the number of grains were

increased to achieve smother averaged distributions of stresses and strains.

The homogenized Young’s modulus Ē = 129.6 GPa and the poisson ratio

ν = 0.341 were calculated in elastic tensile tests of unit cell polycrystalline

models. Thus, the isotopic elastic classical continuum model is formulated

in a notched cylinder with a homogeneous structure, taking into account the

estimated macroscopic elastic constants.

The finite element analysis of 500 polycrystals and single homogeneous

sample is performed, applying identical tensile displacement-controlled load

on the sides and free boundary conditions on the surfaces. Fig. 5.13a shows

an averaged distribution of equivalent von Mises stresses in three orthogonal

cross-sections of 500 polycrystals. These distributions are calculated by point-

wise averaging and interpolation algorithms, which were explained in Chapter

4. For the comparison with the polycrystalline model, the distribution of

equivalent von Mises stresses is obtained from the homogeneous sample

considering the same cross-sections. The difference between averaged

polycrystalline and homogeneous stress distributions is demonstrated in Fig.

5.13c. In the similar way the distributions of equivalent von Mises strains are

calculated according to following equation taken from [4] and illustrated in

Fig. 5.13b:

εvM =
2

3

√
3(e2

xx +e2
y y +e2

zz )

2
+3(ε2

x y +ε2
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The Figure 5.13d represents the difference of equivalent von Mises strains

between polycrystalline and analogue homogeneous models.

The difference of equivalent stresses between the polycrystalline and the

homogeneous model clearly shows the presence of the surface layer effect.

Moreover, despite the identical dimensions of the specimens and loading

conditions, one can observe higher bulk stresses in the polycrystalline model

in comparison with homogeneous one. At the same time, the equivalent

strain distributions are nearly uniform except for the concentration area. It
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can probably be explained by an inaccurate identification of the macroscopic

elastic constants or the artifacts in deformation gradient at the loading sides

of the model. Hence, the difference between the models consists of two

components: the surface layer effect and the static error. In addition,

the different behavior of the surface layer effect can be noticed in the

concentration area and around it. Hence, a thorough simulation of the

polycrystalline microstructure in models with a macroscopic deformation

gradient is necessary to analyze the observed features. Anyway, the presence

of the surface layer effect is confirmed considering both a purely elastic and a

viscoplastic material behavior.

5.2 Intergranular fracture

In order to investigate the damage evolution in a polycrystalline microstruc-

ture and the propagation of the surface layer effect, the simulation of

integranular fracture is performed in this work. Unlike transgranular fracture

based on damage of the crystalline lattice inside grains, the intergranular one

takes place along the grain boundaries. This behavior is inherent for copper

polycrystals under creep conditions at elevated temperatures.

The general goal of this simulation is a qualitative analysis of stress

and strain redistribution in a single cylindrical polycrystalline sample with

approximately 1000 grains, which is demonstrated in Fig. 5.14. For this

purpose, a cohesive zone model was introduced in the finite-thickness grain

boundaries, as explained in the sections 2.4.1 and 3.2. Elastic and damage

behavior of the boundary layer can be formulated by three traction-separation

laws (TSL): one in normal and two in shear directions. The damage initiation

and failure criteria are defined in such a way as to make the boundaries weaker

in normal directions in respect to shear direction.

The finite element model of the polycrystal is composed of grain

tetrahedra and special-purpose prism finite elements in the grain boundary

layer. Due to a compatible finite element mesh, the convergence of the

simulation can be achieved by using the cohesive zone approach, even though

a large number of grains is generated. Furthermore, the artificial parameter

viscosity allows us to significantly improve the convergence of the simulation.

On the other hand, it influences the material behavior, which should be

investigated at first.
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Figure 5.14 Cylindrical polycrystal with finite-thickness grain boundaries

5.2.1 Sensitivity analysis of viscosity parameter

According to Abaqus Analysis User’s Manual [2], the viscosity regularization

can improve the convergence of the cohesive zone approach by "permitting

stresses to be outside the limits set by the traction-separation law". The

viscosity parameter in constitutive equations represents a relaxation time of

a viscous system at the softening regimes. If it is relatively small in respect

to the integration time, the convergence of the solution can be improved

without compromising results. For this reason, the sensitivity analysis of a

polycrystal with 1000 grains is performed with three different values of the

viscosity parameter. In the first test, the displacement-controlled tension is

applied on the sides of the cylinder, considering the same loading strain rate

of 0.025%/h. Fig. 5.15a represents averaged normal stresses σzz within grains
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in models with the viscosity parameter µ= [0.1,0.5,0.9]. Thus, the higher the

viscosity is defined, the higher stress response is achieved. On the other hand,

the accumulation of averaged damage at grain boundaries proceeds slower

for a higher viscosity, as illustrated in Fig. 5.15b.

µ= 0.1 µ= 0.5 µ= 0.9

t , h

σzz , MPa

0 50 100 150
0.

20

40

60

80

100

(a)

t , h

d , -

0 10 20 30 40
0.0

0.1

0.2

0.3

0.4

0.5

0.6

(b)

Figure 5.15 Influence of the viscosity parameter in displacement-controlled
tension test: (a) average stresses in grains; (b) average damage
in grain boundaries

The dependence of the macroscopic polycrystalline response on the

viscosity parameter was investigated under creep conditions as well. The

same free boundary conditions are used on the surface of the cylinder, while

constant tension with an amplitude of 80 MPa is applied on the sides. In

addition, the specimen is constrained to equal nodal axial displacements on

the ends of the cylinder. Figures 5.16a and 5.16b display average value of the

damage parameter in grain boundaries and average normal total strains εzz

in grains, respectively, in models with a viscosity µ= [0.025,0.05,0.1]. Despite

the same loading conditions, the different evolution behavior of damage

and total strains can be observed. According to the mentioned theoretical

formulations, the smallest viscosity value 0.025 corresponds to a more precise

solution. However, the rate of convergence in that case is not appropriate for

the simulation of polycrystals with a large number of grains. For this reason,

a viscosity value of 0.1 is considered in the following analysis. Although the

solution of a finite element model is certainly compromised, the investigation

of integranular fracture of polycrystals can be performed qualitatively.
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Figure 5.16 Influence of the viscosity parameter in creep test: (a) total
strains; (b) average damage in grain boundaries

5.2.2 Displacement-controlled test

The comparison of the macroscopic behavior in the surface and bulk regions

is the main goal in the analysis of intergranular fracture. In the presented

test, the displacement-controlled uniaxial tension is applied on the one end of

the cylindrical polycrystal, while symmetric boundary conditions are applied

on the other one. The surface of the cylinder is free of constraints. Thus,

a single specimen with approximately 1000 grains was tensed up to 2.5% of

deformations in 100 h with a constant total strain rate.

Using the sub-domain volumetric averaging technique, one can calculate

macroscopic stresses, strains, and damage in surface layer and bulk region.

The radius of the specimen is 200µm with an approximate grain size of 40µm.

However, to distinguish macroscopic response in these regions, the averaging

domain of the surface layer has a thickness of 10µm, while the radius of the

bulk domain is 120µm. Thus, in the diagrams below, the green and blue lines

represent the averaged values over the surface and bulk domains, respectively.

Fig. 5.17b illustrates the applied deformation amplitude by a black line

along with the averaged total strains over grains in the two mentioned regions.

The results of averaging show that grains in the surface layer are deformed to

a higher extent in comparison with the bulk grains. It is also noticeable in Fig.

5.17a, where the distribution of axial total strains at the moment of failure is

presented. Nevertheless, higher averaged axial stresses can be observed in the

bulk grains, as demonstrated in Fig. 5.17a. A similar behavior of the surface
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layer effect was discovered during the analysis of polycrystals with perfectly

bonded grains and can be explained by the fact that grains on the surface are

less constrained. In addition, Fig. 5.17c shows the different rate of the average

damage evolution in the cohesive zone. Thus, the damage evolves faster in the

bulk boundaries than in the surface layer.
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Figure 5.17 Cylindrical polycrystal under displacement-controlled tensile
load: (a) average stresses in grains; (b) average total strains in
grains; (c) average damage in grain boundaries; (d) total strains
εzz at time of fracture

5.2.3 Uniaxial creep test of cylindrical polycrystal

Unlike displacement-controlled tests, the uniaxial creep loading conditions

imply constant tensile force. It is inherent to static working devices and parts

such as fuel cells under internal pressure, tensed wires, etc. The growth of
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cavities and further intergranular fracture are usual damage mechanisms in

polycrystals under creep loading conditions and an elevated temperature. In

order to investigate the redistribution of stresses, strains, and the damage

parameter in the polycrystalline microstructure, a similar cylindrical bar with

approximately 1000 grains was generated. The free boundary conditions are

assigned on the surface of the sample, while symmetry is assumed on the

one side. In addition, the nodes on the other side are constrained to the

same displacements, which improves the distribution of the load during the

deformation and crack propagation. In this test, the analysis of the stress and

the deformation state in the models under three tensile loads of 75, 80, and 90

MPa is performed and visualized in the figures below by green, red, and blue

colors, respectively.

Thus, Fig. 5.18a demonstrates averaged total strains, calculated through

the elongation of the polycrystal. Three stages of primary, secondary and

tertiary creep are observable on these curves. Furthermore, the dependence

of the total strain rate on the applied load is displayed in Fig. 5.18b with

respect to total strains. Thus, the secondary creep stage for higher tensile force

can be barely identified.

Taking into account the same grain size and dimensions of the sample, the

averaging domains for the bulk and surface regions can be defined in the same

way as it was done in the displacement-controlled test. In the figures below,

the solid line represents averaged bulk values, while the dashed line means

averaging within the surface layer.
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Figure 5.18 Cylindrical polycrystal in creep test under different loads:
(a) averaged total strain; (b) averaged total strain rate
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Figure 5.19 Cylindrical polycrystal in creep test: (a) averaged stresses in
grains; (a) averaged stresses in grains; (b) averaged total strains
in grains; (c) average damage in grain boundaries; (d) normal
stresses σzz

The distribution of normal stresses σzz over the model is demonstrated

in Fig. 5.19d, where the opened crack is observable. Similarly to the

displacement-controlled test, the averaged grain stresses are lower in the

surface layer than in the bulk region, as illustrated in Fig. 5.19a for different

loading values. Apparently, the crack propagation starts on the surface of

the cylinder. It can be supposed to be caused by an intensive relaxation of

the surface layer along with the increase of bulk stresses. The comparison of

the damage evolution within grain boundaries in Fig. 5.19c shows a certain

difference between these domains, especially considering the secondary
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creep stage. On the other hand, the slightly higher total strains can be

observed in grains of the surface layer, as demonstrated in Fig. 5.19b.

However, a larger number of samples should be investigated in order to

verify the observed behavior. Anyway, the presence of the surface layer

effect considering intergranular fracture of polycrystalline specimen can be

confirmed.
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CHAPTER

6
Conclusions

In order to investigate the influence of a heterogeneous polycrystalline

microstructure in microparts, the software framework was developed. The

implemented scripts and libraries allow us to perform a full cycle of the

numerical simulation within the CAD/CAE program Abaqus, including the

generation of a geometrical and finite element model, the conducting of the

finite element analysis, and the postprocessing of results.

The microstructure of copper is represented by a 3D randomized Voronoi

diagram. The basic algorithms of the construction and applications of the

diagram are explained in the first Chapter 2. The developed construction

algorithm is based on the randomized incremental generation of a Voronoi

diagram using the so-called "trial-and-error" method. The algorithm implies

a particular reconstruction of the diagram during the insertion of every cell.

According to the "trial-and-error" method, the insertion of a new cell is

repeated if geometric criteria are not satisfied during the updating of Voronoi

cells. The open-source library Voro++ was chosen as sufficient groundwork

for the implementation of the randomized incremental Voronoi diagram,

due to its convenient cell-based code structure. Introducing several criteria

such as the minimum edge length, the angle between edges or faces, etc.,

the appropriate Voronoi diagram without geometrical singularities can be

generated.

The absence of short edges in the Voronoi diagram is especially important

considering a finite-thickness grain boundary layer in order to simulate

intergranular fracture. The developed algorithm computes prism grain

boundaries through offsetting of the faces for a specified distance. Besides
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the description of the technique, Section 2.2.3 shows a special case

where the construction of a boundary may fail because of the short edge.

Nevertheless, the stability and convergence can be significantly improved by

ensuring the minimum edge length and other properties. The generation

of the corresponding finite element model is described in Section 2.4.1.

Nevertheless, most of the simulation results were obtained considering a

zero-thickness boundary layer and perfectly bonded grains. This approach

allows us to reduce the computational costs required for the simulation of

polycrystals with large number of grains. Both approaches of the grain

boundary modeling are discussed in Sections 2.3 and 2.4. These sections

describe the generation of a geometrical model and a finite element mesh,

respectively, along with the construction of arbitrarily shaped polycrystals

such as a rectangular plate, a smooth cylindrical bar, and a circumferentially

notched cylindrical bar.

Taking into account the anisotropic elasto-viscoplastic material behavior

and random crystal lattice orientations inside grains, the heterogeneous

distributions of stresses and strains can be observed under loading condi-

tions. In order to investigate these distributions, two different averaging

techniques are involved. The first one is based on volumetric averaging of

field values over the entire domain of the specimen or over sub-domains

such as the bulk region and the surface layer. However, the analysis of

heterogeneous distributions considering a macroscopic gradients of stresses

and strains is questionable as discussed in Chapter 4. For this reason,

the point-wise averaging algorithm was developed and implemented in this

work. It allows to compute an averaged distribution of the required field

over plenty of randomized realizations of the polycrystalline specimen. Since

the finite element meshes of polycrystals are incompatible due to their

randomized structure, the sophisticated interpolation algorithm is proposed.

This algorithm can calculate a value of the field at an arbitrary point within

the finite element model using shape functions of the finite element. Section

4.3 describes the general idea and implementations of this algorithm for

tetrahedral, prism, and hexahedral finite elements.

Using described pre- and postprocessing techniques, the polycrystalline

microstructure, represented by a Voronoi diagram, was investigated under

various loading conditions as shown in Chapter 5. Thus, the models

of the rectangular plate, smooth, and notched cylindrical specimens with

approximately 1000 grains are generated with zero-thickness grain bound-

aries. Applying free boundary conditions on the surface and displacement-

controlled tension on the sides, a realistic numerical testing of the specimens
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can be performed. The statistical analysis of stresses in these models

clearly shows the presence of the surface layer effect with a thickness of 1-

2 grains. For example, the averaged normal stresses in the surface layer

of cylindrical specimens are approximately 20% smaller than stresses in the

bulk region. Lower stresses in that region can probably be explained by

the fact that grains in the surface layer are less constrained in comparison

with the bulk region. However, the classical continuum theory implies

the uniform distribution of stresses and strains in similar models with a

homogeneous structure. Therefore, the scale separation method using a

Representative Volume Element may produce a certain error in the simulation

of polycrystals with a similar relationship between the grain size and the

dimensions of specimens. Furthermore, the appearance of the surface layer

effect in the model with a macroscopic deformation gradient is confirmed

on the example of a cylindrical bar with a circumferential notch, which

was investigated within elastic tension. On the other hand, the analysis of

stress redistribution in the cylindrical model under various loading conditions

showed the independence of the surface layer effect’s properties on relaxation,

loading rate, and the multicyclic load. Hence, the effect can be neglected in

certain cases. Nevertheless, in order to analyze a damage propagation and

the influence of the surface layer effect in polycrystals with a large number

of grains, the model of intergranular fracture is considered in this work. For

this reason, a single cylindrical polycrystal with approximately 1000 grains is

generated considering finite-thickness grain boundaries. The grain material

behavior is formulated by the same anisotropic elasto-viscoplastic material

model with random orientation, while the cohesive zone model is introduced

for the boundary layer. The displacement-controlled and creep tests show

different distributions of stresses, total strains, and damage in the bulk region

and the surface layer.

However, the further investigation of the polycrystalline microstructure

is required considering a more representative geometrical model and the

more precise description of material behavior in grains and boundaries. The

statistical analysis can certainly be facilitated, since general properties of the

surface layer effect, such as thickness, are determined. For example, the

number of randomized realizations within a point-wise averaging algorithm

can be reduced. Anyway, the extension of the scale-separation method with a

RVE should be reconsidered in order to introduce the discovered features.
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Following algorithms and methods were developed and implemented in the

programming code, which was thoroughly optimized for the generation of a

large number of grains:

• The randomized incremental algorithm for generation of the Voronoi

diagram

• Construction of the meshable finite-thickness grain boundaries

• The 3D interpolation technique based on a finite element mesh

• The point-wise averaging algorithm for the statistical analysis of several

polycrystalline samples

• Advanced meshing procedure for the sweeping of finite element mesh

in grain boundaries

The essential results of this work can be summarized as follows:

• The Voronoi diagrams without short edges are generated accordingly to

introduced geometrical criteria

• Due to possibility to construct a model with arbitrary shape and a large

number of grains, the polycrystals with macroscopic dimensions were

analyzed under various loading and boundary conditions

• The averaged distributions of stresses and strains over the solutions of a

large number of samples are obtained

• These distributions show appearance of the surface layer effect as

decreasing of stresses on the surface of specimens

• The observed effect can be explained by the fact that grains on the

surface are less constrained than in the bulk region

• Regarding performed simulations the thickness of the surface layer is

about one-two grains

Taking into account obtained results of the geometrical modeling and simu-

lation the following recommendations for future studies can be proposed:

• The performance of the implemented programming code can be

increased by using the multithreaded execution on multicore CPU or

GPU
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• Simulation of polycrystals with complex shape can be used for the

further analysis of the surface layer effect

• A macroscopic material model must include the surface layer effect to

improve accuracy of the scale-separation method

• More representable model of microstructure can be achieved by

construction of the non-planar faces between grains

• The crystal plasticity theory and available user material subroutines can

be used for modeling of material behavior inside grains

• More accurate interface model should be developed for the grain

boundaries

• Experimental investigation of the surface layer effect
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APPENDIX

A
Implicit time integration

scheme

The increment of stress tensor ∆σσσ is calculated by the following equation

considering an implicit time integration scheme:

∆σσσ=
(4) TTT · ·(∆εεεt −∆εεεi n

t ), (A.1)

where ∆εεεt and ∆εεεi n
t are the total strain increment tensor and the inelastic

strain increment tensor at time t , respectively. The fourth rank tensor (4)TTT

is formulated as:

(4)TTT =λ1III ⊗ III +(4) KKK −
g∆t

1+ g∆σσσ · ·(4)MMM · ·σσσ
σσσ · ·

(4)LLL⊗
(4) LLL · ·σσσ (A.2)

To simplify the description of the tensor (4)TTT in Eq. (A.1), three fourth rank

tensors K , L, and M are introduced and displayed below.

(4)KKK =α(4)
2 PPP 2 +α(4)

3 PPP 3,
(4)LLL =α(4)

2 PPP 2 +ξα(4)
3 PPP 3,

(4)MMM =α(4)
2 PPP 2 +ξ2α(4)

3 PPP 3,

(A.3)

where variables α2 and α3 should be calculated at every iteration taking into

account the time increment ∆t , the inelastic anisotropic parameter ξ, and

elastic properties λi .

α2 =
λ2

1+∆tλ2h
, α3 =

λ3

1+∆tλ3ξh
(A.4)
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The projectors (4)PPP i can be useful in order to decompose a fourth rank

tensor according to cubic symmetry [13].

(4)PPP 1 =
1

3
III ⊗ III ,

(4)PPP 2 =

3∑

i=1

(gi ⊗gi ⊗gi ⊗gi )−(4) PPP 1,

(4)PPP 3 =
(4) III −(4) PPP 1 −

(4) PPP 2,

(A.5)

where the second rank and fourth rank unity tensors are:

III = gk ⊗gk ,

(4)III =
1

2

(
gk ⊗ III ⊗gk +gi ⊗g j ⊗gi ⊗g j

)
,

(A.6)

where gi , i = 1,2,3 is the orthonormal basis of the cubic crystal.

The generalized descriptions of the involved functions g and h are shown

in the following equations:

g =
9

4

1

σ2
eq

(
d f (σeq)

dσeq
−

f (σeq)

σeq

)
, h =

3

2

f (σeq)

σeq
, (A.7)

where f (σeq) is a response function in constitutive equation for inelastic

strains. In the case of the power law type equation f (σeq) = aσn
eq, these

functions are:

g =
9

4

aσn−1
eq

σ2
eq

(n −1), h =
3

2
aσn−1

eq (A.8)
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APPENDIX

B
Mapping of arbitrary point in

extruded hexahedral finite

element
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x
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h
r

P

1 2

3

4

5 6

78

Figure B.1 Arbitrary point P within linear hexahedral finite element C3D8

In this section, the mapping procedure as the calculation of the local

natural coordinates of an arbitrary point P in extruded hexahedral finite

element is explained. The interpolation function of the 8-node linear

hexahedral finite element is:

u(g ,h,r )=
1

8
(1− g )(1−h)(1− r )u1 +

1

8
(1+ g )(1−h)(1− r )u2

+
1

8
(1+ g )(1+h)(1− r )u3 +

1

8
(1− g )(1+h)(1− r )u4

+
1

8
(1− g )(1−h)(1+ r )u5 +

1

8
(1+ g )(1−h)(1+ r )u6

+
1

8
(1+ g )(1+h)(1+ r )u7 +

1

8
(1− g )(1+h)(1+ r )u8,

(B.1)



102

where g , h, and r are the local coordinates of the finite element, which is

illustrated in Fig. B.1. Nodal values of interpolating field are defined as ui ,

i = 1..8. Assuming (1−r ) and (1+r ) are known items, due to coincidence with

an extrusion axis, it can be rewritten as:

u(g ,h,r )=(1− g )(1−h)u I
r + (1+ g )(1−h)u I I

r

+(1+ g )(1+h)u I I I
r + (1− g )(1+h)u I V

r ,
(B.2)

where:

u I
r =

1

8
[(1− r )u1 + (1+ r )u5] ,

u I I
r =

1

8
[(1− r )u2 + (1+ r )u6] ,

u I I I
r =

1

8
[(1− r )u3 + (1+ r )u7] ,

u I V
r =

1

8
[(1− r )u4 + (1+ r )u8]

(B.3)

The interpolation function can also be represented as:

u(g ,h,r )= uC1
r + g uC2

r +huC3
r + g huC4

r , (B.4)

where:

uC1
r = u I

r +u I I
r +u I I I

r +u I V
r ,

uC2
r = u I I I

r +u I V
r +u I

r +u I I
r ,

uC3
r = u I I

r +u I I I
r −u I

r +u I V
r ,

uC4
r = u I I I

r −u I
r +u I I

r +u I V
r

(B.5)

Substituting the global coordinates xP , yP , and zP of the arbitrary point P into

interpolation function (B.4), the local coordinates g and h can be found as

well: 




xC1
r + g xC2

r +hxC3
r + g hxC4

r = xP

yC1
r + g yC2

r +h yC3
r + g h yC4

r = yP

zC1
r + g zC2

r +hzC3
r + g hzC4

r = zP

, (B.6)

where xC1
r , xC2

r , xC3
r , and xC4

r are constants calculated by equations (B.3) and

(B.5) with nodal x-coordinates ui = xi , i = 1..8 and the pre-computed third

local coordinate r . In the same way corresponding constants related to y- and

z-axes are computed.
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APPENDIX

C
Mapping of arbitrary point in

extruded prism finite element

z

y

x
g

h

r

P

1

2

3

4

5

6

Figure C.1 Arbitrary point P within linear prism finite element C3D6

The local natural coordinates of an arbitrary point P in extruded prism

finite element can be found using following mapping procedure, which is

explained in this section. The interpolation function of the 6-node linear

prism finite element is:

u(g ,h,r )=
1

2
(1− g −h)(1− r )u1 +

1

2
g (1− r )u2 +

1

2
h(1− r )u3

+
1

2
(1− g −h)(1+ r )u4 +

1

2
g (1+ r )u5 +

1

2
h(1+ r )u6,

(C.1)
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where g , h, and r are local coordinates of the finite element, which is

illustrated in Fig. C.1. Nodal values of interpolating field are defined as ui ,

i = 1..6. Assuming (1−r ) and (1+r ) are known items, due to coincidence with

an extrusion axis, it can be rewritten as:

u(g ,h,r )= (1− g −h)(1− r )u I
r + g u I I

r +hu I I I
r , (C.2)

where

u I
r =

1

2
[(1− r )u1 + (1+ r )u4] ,

u I I
r =

1

2
[(1− r )u2 + (1+ r )u5] ,

u I I I
r =

1

2
[(1− r )u3 + (1+ r )u6]

(C.3)

The interpolation function can also be represented as:

u(g ,h,r )= u I
r + g (u I I

r −u I
r +h(u I I I

r −u I
r ) (C.4)

Substituting the global coordinates xP , yP , and zP of the arbitrary point P into

interpolation function (C.4), the local coordinates g and h can be calculated

using following system of equations:






x I
r + g (x I I

r −x I
r )+h(x I I I

r −x I
r ) = xP

y I
r + g (y I I

r − y I
r )+h(y I I I

r − y I
r ) = yP

z I
r + g (z I I

r − z I
r )+h(z I I I

r − z I
r ) = zP

, (C.5)

where x I
r , x I I

r , and x I I I
r are constants described by Eq. (C.3) with nodal x-

coordinates ui = xi , i = 1..8 and the pre-computed third local coordinate r .

In the same way constants y I
r , y I I

r , y I I I
r , z I

r , z I I
r , and z I I I

r are calculated taking

into account corresponding nodal y- and z-coordinates are computed.
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