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Abstract

In view of depleting fossil-resources and climate change, bio-based feedstocks are envisioned

to serve as a renewable carbon source in a circular economy. Biorefineries play a vital role

in the circular economy, since they enable resource efficient utilisation of biomass, such as

lignocellulose or microalgae. Biorefinery processes fractionate the feedstocks into molecular

building blocks to produce pharmaceuticals, chemicals, food, feed, and fuels, thereby closing

material loops.

In a fractionation process, these building blocks are extracted from the biomass and fur-

ther separated, frequently utilising organic solvents. The use of organic solvents significantly

impacts the product yields, the energy demand, greenhouse gas emissions, operational safety,

and economic viability of a biorefinery process. Therefore, solvent selection is a molecular-

level decision with far-reaching consequences for the overall process. Computational methods

can significantly accelerate solvent selection and guide experiments toward the most promis-

ing candidates. However, there is a lack of efficient computational methods suitable for

rational solvent selection and design for biomass fractionation, limiting the development of

innovative biorefinery strategies.

The present thesis addresses this gap by introducing computational methods for solvent

screening and design, which were experimentally validated on lignocellulose and microalgae.

A high-throughput screening method was developed to evaluate a database containing more

than 8000 potential solvents. The method applies computational models to predict important

solvent properties. Based on these predictions, solvent candidates with undesired structural

features, thermophysical and thermodynamic properties, as well as environmental, health,

and safety properties can be eliminated. Thus, the search is narrowed, enabling targeted

experimental tests. However, for highly constrained solvent selection problems, identifying a

solvent within the database that meets the many selection criteria may become difficult. To

allow for rational solvent selection beyond a pre-defined database, a computational solvent

design method was developed. This method can be used to tailor the solvents’ molecular

structure toward the desired properties using a graph-based genetic algorithm. The close

combination of computational methods and experiments enabled the identification effective

solvents applicable for the fractionation of lignocellulosic and microalgal biomass.

For the fractionation of lignocellulosic biomass and further valorisation of the extracted
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lignin, high lignin solubility is an important solvent selection criterion. Common fraction-

ation approaches treat the biomass with acids, high temperatures and the selected sol-

vent, resulting in undesired lignin condensation reactions which limit further lignin valori-

sation. Aldehyde-assisted fractionation, an innovative biorefinery approach, inhibits such

condensation reactions by lignin stabilisation with aldehydes. In this way, not only the

cellulose-rich pulp and the hemicellulose sugars, but also the lignin fraction can be effec-

tively valorised. However, this approach employs the carcinogenic solvent 1,4-dioxane which

should be replaced by more benign alternatives. The developed computational methods

identified solvents with high, experimentally confirmed lignin solubilities ranging from 20

to 60 wt.% (T = 85 ◦C). Fractionation experiments showed, that lignin was effectively

stabilised by an aldehyde in many of the identified solvents. Some of the tested solvents

outperformed 1,4-dioxane in terms of hemicellulose sugar yield, and/or toxicity, with a slightly

lower lignin monomer yield as a trade-off.

Microalgal biorefining faces several challenges, involving the use of toxic solvents and

energy-intensive biomass drying. To circumvent the drying step, wet algal paste, still con-

taining about 85 wt.% moisture, was investigated as a feedstock. The moisture is commonly

considered as a barrier that further complicates biomass fractionation. The developed screen-

ing approach identified solvents applicable to the fractionation of wet biomass of the model

alga P. tricornutum. By combining the computational solvent screening approach with ex-

perimental methods, a lab-scale biomass fractionation process for wet P. tricorntum biomass

was developed. Breaking with the current view of treating water as a barrier, this approach

exploits the presence of water to fractionate the biomass into lipids, carotenoids, carbohy-

drates, and proteins. The developed biorefinery approach does not require biomass drying

and employs only two benign solvents to fractionate the biomass at ambient conditions.

Overall, the combination of computational solvent selection methods and experimental

work allowed to replace harmful solvents from current fractionation approaches and paved

the way for developing innovative biorefinery processes.
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Zusammenfassung

Angesichts des Klimawandels und der schwindenden fossilen Ressourcen wird angestrebt,

Biomasse als nachwachsende Kohlenstoffquelle in einer Kreislaufwirtschaft zu nutzen. Bio-

raffinerien spielen dabei eine zentrale Rolle, da sie eine ressourceneffiziente Valorisierung

von Biomasse, wie beispielsweise Lignocellulose oder Mikroalgen, ermöglichen. In Bioraffi-

nerieprozessen wird Biomasse in ihre molekularen Grundbausteine fraktioniert. Diese Grund-

bausteine dienen der Produktion von Arzneimittel, Chemikalien, Lebens- und Futtermittel,

sowie von Kraftstoffen und können Stoffkreisläufe innerhalb der Kreislaufwirtschaft schließen.

Die Fraktionierung umfasst die Extraktion dieser Grundbausteine aus der Biomasse

und weitere Separationsschritte, wobei häufig organische Lösungsmittel zum Einsatz kom-

men. Die Verwendung von Lösungsmitteln hat einen erheblichen Einfluss auf die Produkt-

ausbeute, den Energiebedarf, die Treibhausgasemissionen, die Betriebssicherheit, und die

Wirtschaftlichkeit eines Bioraffinerieprozesses. Daher stellt die Auswahl der Lösungsmit-

tel eine Entscheidung auf molekularer Ebene dar, die weitreichende Auswirkungen auf den

Gesamtprozess hat. Computergestützte Methoden können die Lösungsmittelauswahl erheb-

lich beschleunigen und Experimente auf die vielversprechendsten Kandidaten beschränken.

Obwohl die systematische Lösungsmittelauswahl von hoher Bedeutung für Bioraffineriepro-

zesse ist, wurde das Potential computergestützter Methoden zu diesem Zweck bisher kaum

ausgeschöpft.

In der vorliegenden Arbeit wurden computerbasierte Screening- und Designmethoden

entwickelt, die eine systematische Lösungsmittelauswahl für die Biomassefraktionierung

ermöglichen. Die entwickelte Methodik wurde experimentell für Lignocellulose und Mikroal-

genbiomasse validiert. Im Rahmen des Lösungsmittel-Screenings wird eine Datenbank mit

mehr als 8000 potenziellen Lösungsmitteln systematisch nach passenden Lösungsmitteln

durchsucht. Diese Methode verwendet computergestützte Modelle, um die wichtigsten

Lösungsmitteleigenschaften zu berechnen. Auf Grundlage dieser Berechnungen können

Lösungsmittelkandidaten mit erwünschten strukturellen Merkmalen, thermophysikalischen

und thermodynamischen Eigenschaften, sowie unkritischen Umwelt-, Gesundheits- und

Sicherheitseigenschaften identifiziert werden. Um eine rationale Lösungsmittelauswahl über

die vordefinierte Datenbank hinaus zu ermöglichen, wurde eine rechnergestützte Methode
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für das Design von Lösungsmitteln mit gewünschten Zieleigenschaften entwickelt. Diese Me-

thode abstrahiert die molekulare Struktur der Lösungsmittel als Graphen, der mithilfe eines

genetischen Algorithmus an die Zieleigenschaft angepasst wird. Die entwickelte Screening-

und Design-Methodik konnte in enger Kombination mit experimenteller Arbeit effektive

Lösungsmittel für die Fraktionierung von Lignocellulose und Mikroalgenbiomasse identi-

fizieren.

Bei der Fraktionierung von Lignocellulose und der Valorisierung des extrahierten Lignins

spielt die Ligninlöslichkeit des gewählten Lösungsmittels eine große Rolle. Lignin neigt

während der Fraktionierung, die häufig bei hohen Temperaturen und in saurer Umgebung

stattfindet, zu unerwünschter Kondensierung, welche die Nutzbarkeit des extrahierten Lignins

stark einschränkt. Ein innovativer Bioraffinerieansatz ist die aldehydgestützte Fraktionierung,

die eine Ligninkondensierung durch Stabilisierung mittels Aldehyden verhindert. Somit wird

neben der Cellulose-Fraktion und den Hemicellulose-Zuckern auch Lignin für ein breites

Produktspektrum nutzbar. In diesem Ansatz wird jedoch das karzinogene Lösungsmittel

1,4-Dioxan eingesetzt, welches mithilfe der in dieser Arbeit entwickelten, rechnergestützten

Methoden ersetzt werden soll. Diese Methoden identifizierten Lösungsmittel mit hohen

Ligninlöslichkeiten zwischen 20 und 60 Gew.% (T = 85 ◦C), welche experimentell bestätigt

wurden. Fraktionierungsexperimente zeigten, dass Lignin in einer Vielzahl der identifizierten

Lösungsmittel effektiv durch ein Aldehyd stabilisiert werden konnte. Einige der getesteten

Lösungsmittel übertrafen 1,4-Dioxan in Bezug auf die Ausbeute von Hemicellulose-Zuckern

bei geringerer Toxizität, wobei die Ausbeute der Ligninmonomere etwas niedriger ausfiel.

Besondere Herausforderungen bei der Fraktionierung von Mikroalgenbiomasse stellen die

Verwendung toxischer Lösungsmittel und die energieintensive Trocknung der Biomasse dar.

Um den Trocknungsschritt zu umgehen, soll feuchte Algenpaste, die noch etwa 85 Gew.%

Feuchtigkeit enthält, als Rohstoff eingesetzt werden. Die Feuchtigkeit wird im Allgemeinen

als Barriere betrachtet, die die Fraktionierung der Biomasse erschwert. Durch die Kombina-

tion des Lösungsmittel-Screenings mit experimentellen Methoden konnte für die Modellalge

P. tricornutum ein neuer Ansatz zur Biomassefraktionierung entwickelt werden. Im Gegen-

satz zur gängigen Auffassung nutzt dieser Ansatz das Vorhandensein von Wasser gezielt aus,

um die Biomasse in Lipide, Carotinoide, Kohlenhydrate und Proteine zu fraktionieren. Der

entwickelte Fraktionierungsprozess erfordert keine Trocknung der Biomasse und verwendet

lediglich zwei ungiftige Lösungsmittel zur Fraktionierung der Biomasse bei Umgebungsbe-

dingungen.

Insgesamt konnten durch die Kombination von computergestützten Lösungsmit-

telauswahlverfahren und experimentellen Arbeiten schädliche Lösungsmittel aus den der-

zeitigen Fraktionierungsansätzen ersetzt und neue Bioraffinerieprozesse entwickelt werden.
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w weight fraction -
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1 | Introduction and motivation

1.1 Planetary boundaries and the chemical industry

Currently, human activities massively exceed planet Earth’s resources. In 2009, Rockström

et al. identified nine planetary boundaries that are crucial for maintaining a stable and

resilient Earth system: climate change, ocean acidification, stratospheric ozone depletion,

biogeochemical flows (especially nitrogen and phosphorous cycles), freshwater use, land

system change, biosphere integrity, atmospheric aerosol loadings, and novel entities such as

pollutants.1 Especially crossing the core boundaries - climate change, biosphere integrity,

and spread of pollutants - poses a high risk of triggering irreversible tipping points and

pushing the Earth system into a new state with adverse effects on the remaining boundaries.2

Six out of nine boundaries are presently breached, and two further boundaries are either

regionally transgressed or close to being exceeded.2

Greenhouse gases (GHGs), such as CO2, CH4, and NO2, are drivers of climate

change.3–6 Already now, with a global surface temperature increase of 1.1 ◦C compared to

pre-industrial levels (1850-1900), climate change is causing weather and climate extremes

in every region across the planet, endangering food and water security, human health,

and damaging economies.7 Studies of the Intergovernmental Panel on Climate Change

(IPCC) revealed that if the temperature increase is held below 1.5 ◦C, adverse impacts of

climate change can be limited.7 Global policymakers signed the Paris Agreement in 2015,

admitting to restrict the global temperature surge from the industrial revolution to 2100

to 2 ◦C and pursuing efforts to limit the increase further to 1.5 ◦C.8 If GHG emissions,

frequently expressed in terms of CO2 equivalents (CO2-eqs), continue to follow current

trends, the annual emissions of CO2-eqs will rise to ca. 60 Gt by 2050.7 However, to limit

the temperature increase to 1.5 ◦C, the GHG emissions must be reduced below 31 GtCO2
a−1

until 2030 and to 10 GtCO2
a−1 until 2050 (which equals net zero emissions).7

Products of the chemical industry are fundamental for our current lifestyle and present

in 95% of all manufactured goods.9 At the same time, the chemical industry is the third

largest contributor to global GHG emissions (935 Mt direct CO2 emissions in 2022) and
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is the most energy-intensive industry sector.10,11 The main energy supply is based on fossil

resources and even 89% of the raw material streams comprise mineral oil and natural gas.12,13

In view of climate change and depleting fossil resources, the chemical industry requires a

fundamental transformation. Several strategies to develop a sustainable chemical industry

were recently elaborated.14–17 A pivotal approach is defossilisation in which both raw material

and energy supply transition towards renewable resources. In the envisaged defossilised

processes, biomass and renewable energy-based chemicals (
”
green“ hydrogen, methanol, or

ammonia) constitute the raw material base.

1.2 The need for a circular bioeconomy

Current patterns of production and consumption are predominantly linear: Primary material

is sourced from Earth, subsequently converted into products, and finally disposed as waste

(Fig. 1.1 a).18 A linear economy not only contributes to exceeding the planetary boundaries18

but also leads to a scarcity of critical raw materials.19 To stop the current overexploitation

of Earth’s resources, a transition from the linear
”
take-make-dispose“ approach towards a

circular economy is envisioned and promoted by policymakers. In a hypothetical fully circular

scenario, all materials within the circular economy are reused or recycled. Consequently, no

waste is generated, eliminating the demand for new primary materials. In practice, this fully

circular scenario is limited by a lack of efficient recycling routes, energy-intensive recycling

processes, and non-recyclable product design.20 The Circularity Gap Report revealed that

by increasing current circularity from 7 to 17%, 39% of the global GHG emissions could be

mitigated by 2032.18,21 Hence, even a slight increase in circularity is already an effective

contribution to GHG mitigation.



1.2. The need for a circular bioeconomy 3

Bioenergy and 
biofuels

Sustainably sourced 
biomass

Bioenergy and 
biofuels

Composting

Biorefinery processes

Circular 
bioeconomy

Linear economy

Re
cy

cli
ng

 a
nd

 c
as

ca
di

ng

Products
Prolonged use

a)

b)

Low recycling rates
Fossil-based
raw materials

Waste-to-energy,
landfills

Products Use Disposal

Fig. 1.1 Overview of a) a linear economy, and b) a circular bioeconomy. Adapted

from Stegmann et al.22

To achieve defossilisation, the chemical industry needs to switch to a sustainable raw

material base. Here, biomass as a renewable C-source offers conversion into a variety of

chemicals and value-added products.15,23,24 In this manner, fossil resources utilised as raw

materials can be (at least partially) replaced by the use of biomass. Policymakers actively

promote a sustainable transition by developing bioeconomy strategies.25 The bioeconomy

concept comprises the “production, exploitation, and use of biological resources, processes,

and systems to provide products, processes and services across all economic sectors”.26

However, a bioeconomy implemented as a linear economy would increase the demand

for biomass and consequently aggravate adverse environmental impacts (e.g. deforestation)

and intensify competition for land use (e.g. cultivation of biomass for food vs. construc-

tion of wind farms for renewable electricity).22,27 Additionally, resource conflicts between

different industry sectors might intensify.27 The projected biomass demand will significantly
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surpass the amount of biomass that can be sustainably sourced.28 Hence, although biomass

is renewable, it is a limited resource that should be utilised in a resource-efficient manner.

In contrast to a linear bioeconomy, a circular bioeconomy valorises biomass for a variety of

products which are ideally reused and recycled multiple times before being composted at the

end of their lifecycle (Fig. 1.1 b).22,29,30

1.3 Biorefineries as drivers of a circular bioeconomy

Biorefineries lie at the core of a circular bioeconomy aiming at sustainable conversion of

biomass into a broad spectrum of marketable products and energy.31,32 Beyond this primary

goal, there exist various definitions for the term
”
biorefinery“ within the scientific literature

and policy frameworks, each with slightly different nuances.22,33,34

First, the term
”
biomass“ should be further discussed within the context of biorefining.

Biomass encompasses all organic material that is produced from living organisms, such

as plants, animals, and microalgae. The most abundant source of terrestrial biomass

comprises lignocellulosic feedstocks, such as straw, grasses, wood, agricultrual residues.

Microalgae are the dominant source of aquatic biomass. However, by this definition also

coal and petroleum could be considered as potential feedstocks, since they were formed

from dead plants and animal biomass by geological processes over the course of millions

of years. Also, biomass originating from old-growth forests, peat bogs, nature conservation

areas, or edible biomass would be suitable feedstocks according to this definition. Hence,

an additional criterion needs to be fulfilled: the biomass must be sustainably sourced.22

Sustainable biomass sourcing takes the regeneration time of the biomass into account,

respects the planetary boundaries, and considers potential resource conflicts. Within this

thesis, lignocellulose and microalgae, as the dominant sources of terrestrial and aquatic

biomass, respectively, are investigated as promising feedstocks for biorefineries that can be

sustainably sourced. Considering the biorefinery within the broader context of a circular

economy, also undesired side and waste streams containing organic material could serve as

potential feedstocks.

On the process level, biorefineries consist of a primary and secondary refining system

including several extraction and other separation units.33 In the primary refining system, the

biomass is either fractionated into its main macromolecular constituents (e.g. lignocellulose

into lignin, cellulose, and hemicellulose sugars) or the biomass is converted into a product

mixture with high energy-density (e.g. lignocellulose gasification to synthesis gas). In

both cases, the resulting molecules represent platform molecules or intermediates. In the

secondary refining step, these intermediates are converted into the desired end-products.35
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Typical biorefinery products include pharmaceuticals, chemicals, materials, food, feed,

fuels, and energy. Biorefineries are classified according to the utilised feedstocks such as

lignocellulose (straw, grasses, wood, agricultrual residues) microalgae, or organic waste (e.g.

spent cooking oil), the generated platform molecules (e.g. C5 sugars, C6 sugars, lignin,

pyrolysis liquids, oils), the products (e.g. energy, fuels, ethanol, polymers) or the processing

methods (e.g. thermochemical, mechanical, biochemical, chemical, or mechanical).34

In contrast to traditional chemical processes that operate with fossil-derived, clearly

defined, and pure chemicals, biomass is a complex mixture of interacting biomolecules

which poses challenges for further processing. Each bio-based feedstock is characterised

by a distinct biochemical composition including carbohydrates, proteins, lipids, value-added

molecules (e.g. pigments), and other biopolymers (e.g. lignin). The biochemical compo-

sition strongly influences the (physico)chemical and mechanical properties of the biomass.

Furthermore, the chemical and thermal stability of the native biomolecules and the formed

intermediates represent additional constraints for the biorefinery design. The connection be-

tween the biochemical structure and commonly applied process conditions is exemplified by

lignocellulose and microalgae-based biorefineries. Both feedstocks are fundamentally differ-

ent on the cellular and the molecular level. Lignocellulose owes its mechanical strength and

recalcitrance to its high amounts of cellulose and, thus, requires harsh processing conditions,

commonly involving high temperatures, acidic or alkaline pH, and organic solvents.36 Due

to potential degradation reactions, the process conditions must be carefully optimised.37,38

Unicellular microalgae, on the other hand, contain considerably less amounts of cellulose

than wood. Several microalgal species are even free of cellulose.39 Therefore, the rigidity of

microalgal cells is comparably low, and milder pretreatment methods are applicable. Due to

the presence of light-, heat- and pH-sensitive pigments, ambient temperatures are commonly

preferred. As highlighted by these particular examples, the process design of biorefineries is

highly dependent on the specific feedstock and requires custom refining methods. In gen-

eral, a biorefinery process aims at breaking the bonds of the native biomass such that the

desired intermediates or end-products are directly released or become accessible for further

processing. At the same time, the functionality of these molecules with respect to the desired

end-product should be maintained.

1.4 Solvent selection for biorefinery processes: State of the art

and open questions

To obtain a broad spectrum of products from the biomass, efficient separation strategies

for intermediates and end-products are essential.40 Commonly applied techniques include

combinations of solid-liquid extraction, liquid-liquid extraction, precipitation, filtration,



6 Chapter 1. Introduction and motivation

distillation, and chromatographic methods.40,41 Many of these operations rely heavily on

the use of organic solvents.40 Although solvent selection is a molecular-level decision, it

is impacting the overall process system: The selected solvent determines the yield of the

target compounds, and affects the energy demand, the economic feasibility as well as GHG

emissions.42 Furthermore, solvents influence reaction rates, prevalent reaction mechanisms,

and the activity of catalysts.43 Many solvents have adverse environmental, health, and

safety (EHS) properties and their synthesis and disposal is commonly associated with a

high environmental burden.44 The solvent use contributes to more than half of the life

cycle GHG emissions in chemical and pharmaceutical processes.45,46 Therefore, the solvent

selection is highly important and should be considered in early stages of the biorefinery design.

Traditionally, solvent selection for biomass processing is mainly guided by experimental

work, relying on knowledge about solvent polarity and proticity, as well as empirics to

estimate the solubility of target molecules, such as the famous
”
like dissolves like“-principle,

Kamlet-Taft47 or Hansen solubility parameters48. However, experiments are time- and

resource-consuming, limiting the number of solvents that can be experimentally inves-

tigated. In contrast, computational methods allow for high-throughput exploration of

potential solvents, thus guiding the experimentalists towards the most promising solvent

candidates. Furthermore, thermodynamic models offer deeper insights into solution

mechanism compared to empirical rules. In recent years, computational solvent screening

and design methods were developed for several processes in chemical engineering.42,49–51

Computer-guided screening methods offer an automated, high-throughput screening of

a pre-defined solvent database, thus providing a broad overview of the performance of

commercially available solvents. In computational solvent design methods, molecular

structures are optimised towards the desired properties, thus exploring novel solvents beyond

a limited database.

Despite their immense potential, computer-guided methods are not commonly used for

solvent selection problems in biomass fractionation processes. To date, computational sol-

vent screening for biomass processing is limited to certain solvent classes, considering only

a limited number of candidates.52–55 In particular, computational solvent design methods

have yet to be developed for biorefinery processes. Filling this methodological gap could

unveil previously unexplored solvents that potentially improve existing biorefinery processes

(e.g. by replacing toxic solvents, increasing yields, lowering the energy demand and GHG

emissions) or foster the development of new, innovative biomass fractionation strategies.
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1.5 Aims and outline of this work

This thesis aims to promote resource-efficient biomass valorisation in biorefineries through

the development of computer-aided solvent selection and design methods. The developed

methods must be customisable to accommodate various solvent requirements (e.g. high

solubility of target biomolecules and benign EHS properties). Furthermore, these methods

must navigate the solvent space efficiently to identify the most promising candidates for

biomass fractionation. The developed computational methods are applied as a first-line

tool in lignocellulose and microalgae-based biorefineries to focus the experimental search

on the most promising solvent candidates. Subsequently, the applicability of these solvents

for biomass fractionation is experimentally validated. Through a close combination of

computational and experimental investigations, promising solvent candidates are explored to

gain deeper insights into how specific solvent properties influence the process performance.

This interdisciplinary endeavour offers a unique opportunity to improve existing biorefin-

ery processes and to facilitate the development of innovative biomass fractionation strategies.

The thesis is structured as follows: Chapter 2 and 3 provide fundamental knowledge

about lignocellulose and microalgae processing, respectively. These feedstocks were chosen

due to their abundance and their interesting product spectra. Furthermore, the choice of

the feedstocks was motivated by their fundamentally different macromolecular composition

which render these types of biomass ideal to thoroughly evaluate the applicability of the

developed solvent selection methods. Both chapters start with a detailed description of

the biochemical structure of the feedstocks. The biochemical structure of the biomass and

the desired biorefinery end-products are closely related to the process conditions applied

in the biorefinery. The link between feedstock biochemistry and the process level leads to

a review of industrially relevant processing methods and state-of-the-art research. Chap-

ter 4 reviews state-of-the-art methods for computer-guided solvent screening and design,

as well as models for predicting solubilities, phase equilibria, and EHS properties. To fill

the gap of computational solvent selection methods applicable to biomass fractionation pro-

cesses, Chapter 5 proceeds with the development and the derivation of the computational

screening and design methods, exceeding the state of the art. First, a solvent screening

method, allowing to search a database of more than 8000 potential solvents with respect

to thermodynamic and EHS properties, is presented. To enable the search for potential

solvents beyond the predefined database, a graph-based genetic algorithm for solvent design

is developed. In Chapter 6, the solvent screening method developed in this work is applied

for solvent selection in lignocellulose-based biorefineries to provide an overview of poten-

tial solvent candidates and to identify promising, but not yet established solvents. Since in
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aldehyde-assisted fractionation (AAF), an innovative lignin-first approach, additional stabil-

ising reagents considerably narrow the search space, the developed solvent design method is

applied to generate tailor-made solvents. Especially the effect of structural solvent features

on the lignin solubility, one of the main selection criteria in lignocellulose fractionation and

lignin valorisation, are investigated. In Chapter 7, the developed solvent screening approach

identified solvents applicable for the fractionation of undried microalgal biomass of the model

species Phaeodactylum tricornutum (P. tricornutum), thus eliminating the energy-intensive

biomass drying step. Based on the identified solvents, novel strategies for microalgal biore-

finering are explored. For both feedstocks, lignocellulose and microalgae, comprehensive

experimental tests validate the applicability of the identified solvents for biomass fraction-

ation. The thesis concludes with Chapter 8, which provides final remarks and highlights

opportunities for further research.
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2 | Lignocellulose processing

Lignocellulosic biomass (e.g. wood, straw, and grasses) represents the most abundant ter-

restrial source of renewable carbon.56 Being renewable, widely available and inedible, ligno-

cellulose is an attractive feedstock for biorefineries.36 Since the valorisation of waste streams

is particularly appealing in the context of a circular bioeconomy, lignocellulose biorefineries in

Germany mainly utilise agricultural residues (cereal and corn straw), and residual wood (for-

est wood, poplar short-rotation wood).33 The following chapter provides an overview over

state-of-the-art processing technologies for lignocelluosic biomass. Since the biochemical

structure of the biomass is directly related to the required process conditions, this chapter

starts with a description of the biomass composition of lignocellulose (Section 2.1). Subse-

quently, industrially relevant methods and recently developed technologies for lignocellulose

processing are reviewed (Section 2.2).

2.1 Biomass composition and molecular structure of lignocel-

lulose

Lignocellulose consists of the three major fractions cellulose (30-50 wt.%dry), hemicellu-

lose (20-30 wt.%dry), and lignin (15-30 wt.%dry).
38,56 These three biopolymers are tightly

interconnected and form the lignin-carbohydrate complex located in the plant cell walls

(Fig. 2.1).57 The chemical structure renders lignocellulosic biomass resistant to (bio)chemical

conversion.36,58 This phenomenon, also known as recalcitrance, provides structural integrity

and protects the plant against biotic and abiotic stressors.59 Due to the recalcitrance of the

feedstock, lignocellulose processing requires harsh process conditions including high tem-

peratures, extreme pH, organic solvents, and catalysts.36 The chemical structure and the

resulting properties of lignocellulose are described in the following sections. Furthermore,

potential intermediates and end products of each biomass fraction with significance for the

chemical industry are reviewed.
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Fig. 2.1 Lignocellulosic biomass with the chemical structures of its three main

components: cellulose, hemicellulose (here exemplified by xylan), and lignin. These

three biopolymers are located in the cell wall where cellulose fibrils are surrounded

by a matrix of hemicellulose and lignin. These three main components form the

lignin-carbohydrate complex. The structure of lignin is based on G-, S-, and H-units

linked by bonding motifs as proposed by Ralph et al.60

2.1.1 Cellulose

Cellulose, the main constituent of wood, is a linear polymer composed of β-1,4-glycosidically

linked glucose monomers with a degree of polymerisation of up to 10,000 units.61 Due to

its equatorially positioned hydroxyl groups, the cellulose chains are stabilised by inter- and

intraunit hydrogen bonds.62 Within the plant cell wall, multiple cellulose chains bundle

together to form microfibrils.63 The microfibrils are encapsulated by a protective matrix

of lignin and hemicellulose.58 In wood, the microfibrils are predominantly crystalline with

several amorphous domains.64 In the crystalline region, cellulose chains are arranged in

sheets, forming hydrophilic and hydrophobic domains.62 In the hydrophilic domains, the

hydroxyl-rich edge of each sheet is exposed, whereas in the hydrophobic domains, the faces

of the sheets are are exposed.65 As a result, cellulose does barely dissolve in commonly
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applied polar organic solvents, including water, despite the abundance of polar hydroxyl

groups.66 For a long time, the recalcitrance of cellulose was attributed to extensive inter-

and intramolecular hydrogen bonding. More recently, London dispersion and hydrophobic

interactions were reported to have a more dominant contribution to the recalcitrant

behaviour.62,65

The cellulose fraction is the main target of the pulp and paper industry to produce high-

quality paper products. Furthermore, cellulose is processed into bio-based materials, such

as thermoplastics (e.g. cellulose acetate),67 coatings, and films applicable as food packag-

ing68. To produce cellulose coatings and films, cellulose needs to be effectively dissolved.

However, only few solvent systems are known that are capable to dissolve this recalci-

trant polymer, such as N-methylmorpholine-N-oxide (NMMO), dimethylsulfoxide (DMSO)

in combination with ammonium salts, ionic liquids (ILs), and aqueous alkaline solutions.69

Alternatively, cellulose can be hydrolysed to glucose monomers under acidic conditions, or

by enzymes. Together with monomeric sugars originating from the hemicellulose fraction

(Section 2.1.2), the glucose monomers serve as a sugar platform to produce alcohols (e.g.

EtOH, 2,3-butanediol, 1-butanol), ketones (e.g. acetone), and organic acids (e.g. lactic

acid, malic acid, succinic acid).70 Furthermore, these sugars can be converted to furfural

and 5-hydroxymethyl furfural to produce chemicals (e.g. levulinic acid, γ-valerolactone) or

precursors for polymer production (e.g. ε-caprolactam, 2,5-furandicarboxylic acid).58,70–73

However, the carbohydrate-derived compounds form humins as undesired by-products in acid

environment. Humins are polymers with stable C-C bonds that reduce the selectivity towards

the desired chemicals, lead to catalyst deactivation, and cause separation problems.74

2.1.2 Hemicellulose

The hemicellulose fraction has a variable monosaccharide composition and linkage pattern.

This fraction is classified according to the dominant monomer sugar in the backbone as

xylan, glucuronoxylan, arabinoxylan, or glucomannan, with xylan being the most commonly

encountered type of hemicellulose.75,76 Commonly, their polymer backbone is composed of

β-1,4-linked monomeric sugars in an equatorial configuration with numerous branches.75

The degree of polymerisation ranges between 50 and 300 and is therefore substantially lower

than that of cellulose.75,77 Hemicellulose forms a complex network to tether the cellulose

microfibrils, thus, providing additional mechanical strength to the plant.75,78 In contrast to

the rigid cellulose, hemicelluloses are amorphous polymers that are susceptible to chemical

attack and can be dissolved under mild conditions.
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Under acidic conditions, hemicellulose depolymerises to its constituent monomer sugars

and serves as sugar-platform for the production of various chemicals (Section 2.1.1). Fur-

thermore, hemicellulose sugars can be converted into aprotic solvents,79 or biodegradable

polymers.80

2.1.3 Lignin

Due to its antimicrobial properties and its hydrophobicity, lignin acts as a barrier within

the plant to protect the carbohydrates from degradation.81,82 Lignin is a highly cross-linked

polymer composed of aromatic guaiacyl (G), p-hydroxyphenyl (H), and syrigyl (S) monomer

units. Its molecular weight ranges between 2,500 and 15,000 g=mol 57,83–85 depending

on the biomass source and the applied lignin isolation method. The abundance of the

monomeric G, H, and S units varies considerably between different biomass sources.86

While softwood lignin is predominantly composed of G-units, lignin from hardwood and

herbaceous species contains both and G- and S-units. Additionally, substantial amounts

of H-units are uniquely found in herbaceous lignin.86 The predominant bonding patterns

linking the subunits together are ether motifs (β-O-4, α-O-4, 4-O-5) and C–C bonds (5-5,

β-5, β-1, and β-β). The β-O-4 linkage represents the most abundant bond type across

different biomass sources (40-80% of all bonds).87–89

In the pulp and paper industry, lignin has long been considered as an undesired impurity

and was mainly used for heat production due to its high heating value.90 However, given

that lignin is one of the few renewable sources of aromatic hydrocarbon, there is immense

interest in lignin depolymerisation to substitute fossil feedstocks for the production of

aromatic chemicals and for the use as a drop-in fuel.58,91,92

To isolate high amounts of lignin from the biomass, high temperatures, and alkaline or

acidic conditions are commonly applied.36 However, such conditions induce a combination

of de- and repolymerisation reactions, resulting in highly degraded, condensed lignin (see

Fig. 2.3 b for detailed reaction mechanism under acidic conditions).36 These structurally

modified lignins are also termed technical lignins. Since lignin’s ether bonds are most easily

cleaved, they are susceptible to chemical attack.87,88,93 As a result, the β-O-4 content of

technical lignins is only 3–10% due to the formation of stable interunit C-C bonds caused

by the harsh processing conditions.94

Lignin depolymerisation is typically performed via hydrogenolysis.95 For hydrogenolysis,

lignin is dissolved in an organic solvent, a transition metal catalyst is added, and the mixture

is pressurised with H2 (T = 180 − 280 ◦C, pH2
= 1 − 40 bar)95 to cleave the ether bonds.

Since, the main targets for lignin depolymerisation are the β-O-4 bonds, the monomer yield
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obtained from technical lignins is low (ca. 8%).38 Recent advances in lignin research show,

that also the stable C-C bonds can be selectively cleaved by oxidation,96 autooxidation,97

or the use of advanced catalysts.98 However, current research efforts continue to explore

C-C cleavage in lignin.

Due to the low monomer yields, technical lignins are commonly used to produce bio-

based materials, such as lignin coatings, films, fibres, nanoparticles, or thermoplastics. Most

of these applications require homogeneous lignin solutions in the initial processing steps.

Hence, solvents with high lignin solubility are required. The fabrication of lignin coatings

and films requires solvents with high lignin solubilities, such as DMSO.99–101 For lignin

nanoparticle formation, anti-solvent precipitation is a commonly applied method that relies

on the relative difference in lignin solubility between the applied solvents.102,103 Furthermore,

the isolated lignin can be separated into fractions of homogeneous molecular weight using

stepwise solvent fractionation.104 Some of the resulting fractions have appealing thermo-

mechanical properties for application in lignin-based resins.105 To isolate lignin with high β-O-

4 content from biomass that is suitable for hydrogenolysis, advanced processing technologies

are required (Section 2.2.4).

2.2 State-of-the-art lignocellulose processing

In the following sections, the most relevant methods for lignocellulose processing in industry

and research are reviewed.

2.2.1 Pyrolysis

Pyrolysis is a thermochemical process that converts dried lignocellulose to a solid (char-

coal), liquid (bio-oil), and gaseous product stream (T = 500 − 700 ◦C) in the absence of

O2.
106 The gaseous products are typically combusted to provide heat for the process, or are

recycled back into the pyrolysis reactor to support fluidisation.107 The solid charcoal can

be used as a fertiliser or as low-grade fuel.107 The obtained bio-oil is a mixture of multiple

chemicals, including hydrocarbons, phenolic compounds, furans, ketones, sugars, aldehydes,

and acids.107 The direct use of the bio-oil as a drop-in fuel is challenging and requires fur-

ther upgrading due to its immiscibility with petroleum-based fuels. Furthermore, the bio-oil

is instable upon storage and has a low heating value.106,108–112 Other approaches envision

the separation of the bio-oil compounds to produce various chemicals,113 for which efficient

separation methods are currently being researched.114 Despite intensive research in this area,

large-scale lignocellulose pyrolysis has not yet reached economic viability.115
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2.2.2 Kraft pulping

Lignocellulose processing in pulp and paper mills aims to produce high quality pulps for the

paper and cardboard industry. Here, the main process objective is to obtain a high-purity

cellulose stream, while particularly lignin is treated as undesired impurity. Currently, more

than 90% of all chemical pulps are produced by the Kraft process.116 In the Kraft process,

wood is treated with an aqueous solution of NaOH and Na2S, also termed white liquor

(T = 160 ◦C, t = 120 − 180 min, pH = 11 − 14).91,117,118 Thus, HS– -ions are formed,

promoting delignification without simultaneously accelerating carbohydrate solubilisation.119

This treatment results in a high-quality pulp for the production of paper products with

high mechanical strength. Hence, the German word ’Kraft’ was chosen for the process,

which translates to power or strength.120 Lignin and parts of the hemicellulose fraction

are dissolved in the process liquor, also termed black liquor. However, under the described

alkaline conditions, lignin forms reactive quinone methides that undergo repolymerisation

reactions, leading to severe lignin degradation.36,91,121 The black liquor is mostly incin-

erated, thus serving as inexpensive energy supply to fuel the process.91,116 Alternatively,

the condensed lignin can be precipitated from the black liquor by acidification.122,123

The precipitated lignin, also termed Kraft lignin, has a low β-O-4 content and contains

thiol groups which constraint effective hydrogenolysis to aromatic monomers. Therefore,

Kraft lignin valorisation in materials, such as resins,124 is currently the more promising route.

Furthermore, pulping causes a high environmental burden due to the high energy demand

and pollutant emissions.125,126 Since traditional paper mills produce pulp as their only end

product, they are typically not considered as biorefineries per se.33 However, methods for

valorising the strongly degraded lignin are heavily researched. Connecting innovative strate-

gies for lignin upgrading with traditional pulping processes provides interesting options to

integrate the biorefinery concept into existing paper mills.

2.2.3 Organosolv processing

In organosolv processes, lignocellulosic biomass is treated with a mixture of an organic

solvent, acid, and water (T = 100 − 200 ◦C, t = 30 − 120 min, pH = 2 − 4) resulting

in three separate streams containing the cellulose-rich pulp, condensed organosolv lignin,

and hemicellulose sugars.123,127–130 Various process configurations have been developed,

involving different organic solvents, product separation and solvent recycling systems

(Fig. 2.2).130 The acid catalyst promotes the hydrolytic cleavage of glycosdic bonds

in hemicellulose. Thus, the hemicellulose depolymerises into its constituent monomer

sugars that are solubilised in the process liquor. The use of the organic solvent facilitates

lignin extraction. Ethanol (EtOH) and other low boiling alcohols are the most common
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choice in organosolv processing due to their ease of recovery, low cost, and benign EHS

properties.131–135 Also polyols,136–139 cyclic ethers,38,140 organic acids,128,141–143 and

ketones144–147 are applied. Ionosolv pulping is related to organosolv pulping but uses ILs

instead of organic solvents.148 After the pretreatment, the recalcitrant cellulose fraction

remains as a solid residue (pulp) which can be easily removed from the process liquor by

filtration or centrifugation.149 The lignin fraction is separated from the process liquor by

anti-solvent precipitation, commonly by water addition. The hemicellulose sugars remain

in the aqueous process liquor and can be recovered by evaporation. In this manner, the

biomass is fractionated into the three main components: Cellulose, hemicellulose sugars,

and lignin,129 thus reducing the complexity, heterogeneity, and recalcitrance of the biomass.

By organosolv pulping, each resulting stream becomes available for conversion into a

wide range of products in line with the biorefinery concept. Cellulose and hemicellulose

serve as a sugar platform to obtain various chemicals (Sections 2.1.1 and 2.1.2). However,

due to its low β-O-4 content, the condensed organosolv lignin leads to low yields of aromatic

lignin monomers after hydrogenolysis (Section 2.1.3). The acidic pretreatment conditions

contribute to the formation of benzylium ions which ultimately lead to lignin condensation

(see Fig. 2.3 b for details on the reaction mechanism). Since organosolv lignin has limited

applicability for the production of aromatic monomers, its application in the materials sector

is researched.150
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Fig. 2.2 Process flow diagram of organosolv pulping. As an alternative to filtration,

centrifugation can be applied.

2.2.4 Lignin-first biorefineries

More recently, fractionation strategies with active lignin stabilisation, also termed lignin-first

approaches, were developed. Lignin-first approaches aim to minimise lignin condensation

during the treatment, thus enabling lignin upgrading to aromatic monomers.38,151–154 One

such approach is reductive catalytic fractionation, where lignocellulose is treated with an
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organic solvent and a transition metal catalyst.151 In the presence of a hydrogen donor,

the dissolved lignin is directly converted to aromatic monomers by catalytic cleavage of the

β-O-4 aryl ether motifs. Other approaches aim to stabilise the β-O-4 motifs by inserting

protecting groups, e.g. by reaction with aldehydes38 or ethylene glycol.152,154

2.2.4.1 Aldehyde-assisted fractionation

AAF represents a protection chemistry-based approach where lignocellulosic biomass is

treated with 1,4-dioxane, HCl, water, and an aldehyde (Fig. 2.3 a).38,155 During pretreat-

ment (T = 85 − 100 ◦C, t = 90 − 180 min), the aldehyde forms a stable acetal with the

hydroxyl groups attached to the α- , and γ- carbons (Fig. 2.3 b). The acetal formation

outcompetes the protonation of the α-carbon, thus minimising lignin condensation. More-

over, the aldehyde blocks reactive positions in the aromatic rings ortho and para to the

methoxy groups. These protective mechanisms hinder the formation of interunit C-C bonds

between the α-carbons and the adjacent aromatic rings, and protect the β-O-4 motifs.

Thus, the aldehyde-stabilised lignin can be effectively depolymerised via hydrogenolysis

with near-theoretical monomer yields.38 In addition to lignin, the aldehyde also stabilises

the hemicellulose sugars. Under acidic conditions, hemicellulose is hydrolysed to monomer

sugars, mainly xylose. The free hydroxyl groups of xylose react with the aldehyde to form

stable acetals (Fig. 2.3 c), thus preventing humin formation.37,38

After pretreatment, the remaining cellulose-rich pulp is separated from the process liquor

by filtration.155 The stabilised lignin is precipitated from the process liquor by antisolvent

addition (e.g. aqueous NaHCO3 solution, or n-hexane) and is separated by filtration.155 The

aldehyde-stabilised sugars are obtained either by liquid-liquid extraction, or by evaporation of

the process liquor. The protected sugars are applied as bio-based, polar aprotic solvents,79 or

can be further processed to biodegradable plastics.80 In this manner, three separate product

streams, containing cellulose, stabilised lignin, and stabilised xylose are obtained, enabling

wholistic valorisation of the biomass. However, the solvent choice needs to be critically

assessed since 1,4-dioxane is toxic, mutagenic, and prone to peroxide formation, posing a

risk for explosion.156
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a) Process flow diagram. b) Reaction mechanism of a lignin fragment with and

without aldehyde. For recovering the aldehyde-stabilised xylose, multiple process

units are applicable as indicated by the gray rectangle. c) Reaction mechanism of

the hemicellulose fraction (represented by xylan) during AAF.
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3 | Microalgal processing

Microalgae are unicellular organisms with a size of around 2-50 µm living in aqueous

environments.157 Similar to terrestrial plants, microalgae are able to grow by photosynthesis

and produce almost half of the globally available O2.
158 Microalgae do not require arable

land for cultivation and grow at higher rates than terrestrial plants.159 Some strains are

able to grow on waste streams (photoautotrophically or mixotrophically).160,161 In addition

to microalgae, photosynthetic cyanobacteria, such as Arthrospira platensis, are potential

feedstocks for biorefineries. In general, the processing of photosynthetic cyanobacteria is

included under the umbrella-term
”
microalgal processing“. Microalgal biomass is mainly

composed of proteins, carbohydrates, lipids, and pigments in varying ratios depending on

the strain and the cultivation conditions.162 These biomass fractions can be converted

to produce biofuels, chemicals, biopolymers, or used as food or feed ingredients. Fur-

thermore, several species produce high-value compounds, such as polyunsaturated fatty

acids (PUFAs), pigments, antibodies, and other bioactive molecules, with applications as

food supplements and in the pharmaceutical industry.163,164 The ease of cultivation and

the broad product spectrum render microalgae an interesting feedstock for biorefineries.

At present, however, microalgae processing mainly targets lucrative niche markets, such

as neutraceuticals, cosmetics, and specialised food.165,166 For instance, Schizochytrium

produces the PUFA docosahexaenoic acid (DHA) which is an important ingredient in

infant formula.167 Haematococcus pluvialis is a producer of the red pigment astaxanthin

which has antioxidant properties and is marketed as a nutritional supplement.167 The

industrially most relevant strains are Arthospira platensis, Chlorella vulgaris, and Dunaliella

salina.167,168 As these species are rich in protein, essential amino acids, essential fatty acids,

antioxidants, and vitamins, their biomass is frequently marketed as
”
super food“.167,168 The

biomass of Tetraselmis, Isochrysis, Pavlova, and Phaeodactylum is commonly sold as animal

feed.169–172 However, the separation of multiple target compounds from microalgae remains

challenging to date. Intensive research is necessary to spur the development of efficient

extraction and fractionation methods, and to ultimately establish large-scale microalgal

biorefineries.

The established model organism P. tricornutum173 was chosen as a biomass source for



20 Chapter 3. Microalgal processing

the aims of this work. P. tricornutum is an excellent feedstock for biorefinery processes

due to its balanced ratio of proteins, carbohydrates, lipids, and pigments, including several

high-value molecules. Section 3.1 describes the biomass composition of P. tricornutum and

the macromolecular structure of each biomass fraction. Subsequently, established meth-

ods for microalgal processing and recently developed biorefinery approaches are reviewed in

Section 3.2.

3.1 Biomass composition and molecular structure of the model

alga P. tricornutum

The diatom P. tricornutum is composed of 18-54 wt.% proteins, 16-31 wt.% carbohydrates,

10-20 wt.% lipids, and 2-7 wt.% pigments, depending on the cultivation conditions.174–176

P. tricornutum grows photoautotrophically, or mixotrophically on glucose, acetate, fructose,

or glycerol.177 Depending on the environmental conditions, P. tricornutum switches between

a fusiform, triradiate, and oval morphotype.178 The fusiform and oval morphotypes are

dominant under commonly applied cultivation conditions.

P. tricornutum produces several high-value compounds, such as fucoxanthin (Fx),

a red carotenoid, and eicosapentaenoic acid (EPA), a PUFA with application in the

neutraceutical industry. Fx contents between 0.5-5.92 wt.%179 and EPA contents between

of 1.64-5 wt.%180–182 on a dry matter basis were reported for P. tricornutum. Furthermore,

P. tricornutum produces chrysolaminarin, a water-soluble storage carbohydrate, which is

of high interest due to its bioactive and plant-protective properties.183–187 To control the

lipid:pigment ratio, the cultivation conditions can be adjusted, especially NO –
3 and PO 3–

4 ,

and the light intensity.188–191 In addition to the aforementioned value-added compounds,

the protein and carbohydrate fractions can be utilised as animal feed, and for the production

of biopolymers or biofuel.165 The sale of P. tricornutum biomass for human nutrition is not

yet approved by EU and USA authorities. However, EPA-rich oil from P. tricornutum is

already being sold in the USA.192

Understanding the cellular structure of P. tricornutum and the chemical composition of

the biomass fractions provides the basis for developing efficient fractionation approaches.

The following sections describe the biochemical composition of the biomass fractions.

3.1.1 Pigments

Photosynthetic organisms have evolved diverse light-harvesting complexes to capture solar

energy.193 In diatoms, fucoxanthin-chlorophyll a/c-binding proteins (FCPs) located in thyla-

coid membrane harvest the light that drives photosynthetic reactions (Fig. 3.1 a).193 While
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chlorophyll a (Chl a) mainly absorbs violet-blue and orange-red light, Fx (Fig. 3.1 b) and

chlorophyll c (Chl c) harvest blue-green light that reaches greater depths of water.194 Ab-

sorbing excess light leads to photodamage and inhibition of photosynthetic activity.195,196 In

P. tricornutum, the carotenoids Fx, diadinoxanthin (Ddx), diatoxanthin (Dx), and β-carotene

(β-Car) reduce photodamage by scavenging reactive oxygen species and supporting the dissi-

pation of the excess absorbed energy into heat by nonphotochemical quenching.194 The most

abundant carotenoid in P. tricornutum is Fx and the main chlorophyll is Chl a.197 Also the

lipid droplets are enriched with Fx and β-Car with yet unknown functionality.198 Pigments

are sensitive to light, and elevated temperatures. Studies have shown that Fx is stable at a

pH between 7-8 and temperatures below 40 ◦C.199 Chl a degrades under acidic conditions

or catalysed by chlorophyllases to several degradation products including pheophorbide a,

pheophytin a and chlorophyllide a.200,201

3.1.2 Carbohydrates

Microalgae produce sugars by photosynthesis. Part of the produced sugar is stored in the

vacuoles as chrysolaminarin.202,203 Chrysolaminarin is a polysaccharide composed of β-1,3-

glycosidically linked glucose units with β-1,6 branches and a molecular weight of about

10 kDa.202 The dominant cell wall polysaccharide of P. tricornutum is a sulphated α- glu-

curonomannan.204–206 Unlike other diatoms, the cell wall of P.tricorntum is not surrounded

by heavily silicified frustrules.207 Hence, P. tricornutum cells can be more easily disintegrated.



22 Chapter 3. Microalgal processing

3.1.3 Lipids

The lipids produced by P. tricornutum can be broadly divided into neutral lipids (NLs) and

polar lipids (PLs). Almost all NLs of P. tricornutum are triacylglycerols (TAGs).198 TAGs are

synthesised at the endoplasmic reticulum, where three free fatty acids are attached to a glyc-

erol backbone.177,208 TAGs serve as energy storage209 and are accumulated in lipid droplets

located in the distal arms of fusiform cells.198,210 When TAG accumulation is increased,

chrysolaminarin synthesis is downregulated.177 Palmitic acid (C16:0) and palmitoleic acid

(C16:1) were reported as the most abundant fatty acids of P. tricornutum-TAGs.211 PLs are

composed of multiple fatty acids combined with polar functional groups, such as phospatidyl-

choline (PC) and sulfoquinivosyl diacylglycerol (SQDG).198,211 PLs are part of lipid organelle

bilayers or precursor molecules in the lipid metabolism. Depending on the cultivation condi-

tions, the high value fatty acid EPA was reported to be predominantly part of the TAGs212

or predominantly incorporated in the PLs.211,213 Dynamic changes in the EPA distribution

during the cultivation stage were also reported.214

3.1.4 Proteins

Proteins are uniquely folded biomolecules composed of peptide-bonded amino acid units.

Proteins can be found at various locations in the cell as they play a central role in signal-

ing, molecular transport, structural support, and the catalysis of metabolic reactions. In

P. tricornutum, most of the proteins are water-soluble and have emulsifying properties with

potential applications in the food industry.215 Proteins denature under extreme pH, or el-

evated temperatures. In case that potential biorefinery products require the native protein

structure, mild process conditions are required to prevent denaturation.

3.2 State-of-the-art microalgal processing

In a typical microalgal process, the biomass is harvested after cultivation to obtain a concen-

trated biomass suspension. There are many process routes to valorise the harvested biomass,

e.g. for fuel production, or in a biorefinery process (Fig 3.2). In the following, the different

process routes are described in detail.

3.2.1 Cultivation

For microalgal cultivation, light, CO2, and nutrient sources are required. Microalgal culti-

vation systems can be divided into open systems, such as raceway ponds, or closed photo-

bioreactors (PBRs), such as bags, tubular reactors or flat panel reactors.216 Natural sunlight

can be used to illuminate the cultivation system but higher growth rates can be obtained by

using with artificial light.216 While open ponds have lower installation and operation costs
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compared to PBRs, there is a higher risk of contamination and the occurence predators.217

Closed systems are preferred over open systems when the production of high-value products

compensates for the higher installation and operating costs.218 The choice of the growth

medium is highly dependent on the species and its individual demand of nutrients and trace

elements. For P. tricornutum, high biomass, EPA, and Fx productivities were observed in

flat-panel PBRs (PBRs) due to the low shear-stress and effective illumination.219 Typical

growth media (e.g. f/2220 or the Mann and Myers medium221) contain carefully balanced

concentrations of phosphates, nitrates, iron salts, and vitamins, and trace elements.

3.2.2 Harvest

After cultivation, the cell suspension is highly dilute, containing ca. 99 wt.% moisture.222 To

reduce the moisture content, the biomass is harvested from the aqueous growth medium by

various techniques, including centrifugation, filtration or flocculation. After harvesting, the

moisture content of the concentrated biomass suspension is 75− 85 wt.%.222 The choice of

the harvesting method is highly dependent on the rigidity of the cell walls, the cell density,

and the targeted moisture content.223
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3.2.3 Drying

A drying step further reduces the moisture content to 5-10 wt.% and enhances the storability

of the biomass.224,225 Solar drying, convective drying, spray drying, and lyophilisation are

suitable drying methods.225 On the industrial scale, convective drying is most commonly

applied (air, T = 50 ◦C).225 Solar drying is the least expensive method and requires only

solar energy. However, solar drying suffers from long drying times and a high area demand,

and is therefore less relevant on an industrial scale.225 Temperature-sensitive molecules as

produced by microalgae, such as pigments or proteins, require mild drying methods, such as

spray drying or lyophylisation, to prevent degradation. However, these methods have a high

energy demand that can render the whole process economically infeasible.226

3.2.4 Cell disruption

After harvest (wet route) or drying (dry route, Fig. 3.2), a cell disruption step is commonly

applied to facilitate the extraction of the target compounds. Solid-shear forces (e.g., bead

mill, high speed homogenization) or liquid-shear forces (e.g. high pressure homogenization,

microfluidization), can be leveraged to disrupt the algal cell wall. Other approaches for cell

disruption are based on energy transfer through waves (e.g. ultrasonication, microwave),

currents (e.g. pulsed electric field), heat (e.g. thermolysis, autoclaving), chemicals or

enzymes.227 Milling and high-pressure homogenisation are preferred on an industrial scale

due to their high disruption efficiencies, high throughput, and simple temperature control.227

Both methods are suitable for P. tricornutum biomass.228–230 Furthermore, the cell disruption

step can be integrated into the biomass fraction procedure for the targeted release of specific

compounds.231

3.2.5 Biofuel production from microalgae

3.2.5.1 Fatty acid methyl ester production from microalgal lipids

In the early 2000s, research and industry made large investments in microalgae cultiva-

tion for biodiesel production. The production of microalgae-based biodiesel requires several

steps, including cultivation, harvest, drying, and cell disruption (Fig. 3.2). Subsequently,

the microalgal TAGs are extracted with organic solvents, followed by transesterification of

the lipids to fatty acid methyl esters (FAMEs), the main component of biodiesel.232,233

However, despite the strong interest from oil companies and extensive research, microalgae-

based biodiesel could not reach economic feasibility since the costs of microalgal cultivation,

low lipid productivities of wild-type microalgae, and the energy-intensive drying step led to

high production costs.226,232,234–236 A life-cycle assessment of Stephenson et al. revealed

that especially the drying step is extremely energy-intensive and requires nearly 70% of the
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overall energy input, leading to an overall negative energy balance.234 Especially when the

heat necessary for drying is generated from fossil fuels, the drying step leads to significant

GHG emissions.234 Thus, the production costs of the obtained biodiesel could not compete

with inexpensive fossil-based fuels. Consequently, ExxonMobil, one of the last big oil com-

panies that were still supporting microalgal fuel production, withdrew their investments.237

Another drawback of FAME production from microalgae lies in the inefficient biomass utilisa-

tion. Here, the biorefinery concept was not fully adopted since only the TAGs were valorised

to produce biodiesel as the main product. Further disadvantages were related to the organic

solvents employed for the lipid extraction. The fossil-based n-hexane was proposed as a

solvent due to its high lipid solubilities, low price, and ease of evaporation. However, n-

hexane is highly toxic and its use is not recommended according to several solvent selection

guides.238–240

3.2.5.2 Bio-oil production by hydrothermal liquefaction

Unlike the aforementioned biodiesel process, hydrothermal liquefaction (HTL) does not re-

quire biomass drying for fuel production. HTL is a thermochemical method converting wet

algal biomass into bio-oil under subcritical conditions (T = 250−375 ◦C, p = 10−22 MPa,

in the absence of O2)
241,242. Under these conditions, the entire biomass is converted into a

liquid bio-oil without the need for organic solvents. However, due to the high heat demand,

HTL has not yet reached industrial relevance241,242. Also in HTL, the biorefinery concept is

not implemented, since the obtained bio-oil is the only main product. However, HTL can be

integrated into an overall biorefinery process, e.g. for the valorisation of the residual biomass

after the extraction of valuable compounds243.

3.2.6 Separation methods in microalgal biorefineries

Due to the limitations of the processes described in Section 3.2.5, more recently, the val-

orisation of microalgal biomass in a biorefinery has been proposed to increase resource ef-

ficiency. In the envisioned
”
zero-waste“ biorefinery, microalgal biomass is separated into

its macromolecular fractions to produce high-value pigments and fatty acids, proteins, and

carbohydrates.163–165,244 Furthermore, wet algal biomass was proposed as a feedstock to

eliminate the energy-demanding drying step.226,244,245 Here, the wet algal paste obtained

after the harvesting step (moisture content: 75-85 wt.%) should be used directly as a feed-

stock for biomass fractionation. The efficient extraction and separation of multiple target

compounds is still challenging,163,165,246 which is further complicated by the high moisture

content of the biomass ranging between 75-85 wt.%.247,248 Currently, microalgae processing

in biorefineries is still at an early stage. Most commercial microalgal processing facilities

do not fully adopt the biorefinery approach as they focus on a single high-value product
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(e.g. pigments or PUFAs).165 Therefore, extraction and separation strategies applicable to

microalgal biorefineries are currently being researched. These methods are reviewed in the

following sections.

3.2.6.1 Maceration

Maceration is one of the oldest and simplest techniques for solid-liquid extraction.249 In

this technique, microalgal biomass (wet suspension or dried powder) is mixed with organic

solvents or a solvent mixture in a vessel to extract the target compounds. Shaking or

stirring facilitates the extraction and reduces the incubation time.249 Typically, maceration

is performed at room temperature and atmospheric pressure for several minutes up to

days.249 Increased temperatures promote the extraction of the target compounds, however,

the heat-sensitivity of pigments and proteins must be considered. The advantages of

maceration lie in the simplicity of the process and low equipment costs.249 However, high

solvent consumption and long incubation times may be required to achieve high yields.

For lipid extraction on the lab scale, mixtures of chloroform and methanol are

commonly chosen, as in the Bligh and Dyer250 or Folch method.251 However, these

solvents are not recommended for industrial use due to high toxicity and other critical

EHS properties.238–240 For the extraction of chlorophylls and carotenoids, alcohols (e.g.

methanol, EtOH) are applied,252–254 or polar aprotic solvents (e.g. acetone, DMSO,

dimethylformamide).253,254 Kim et al. reported that EtOH extracted Fx from dried

P. tricornutum biomass more efficiently than acetone and ethyl acetate255. EtOH and

acetone can be synthesised from renewable resources and have benign EHS properties.238–240

Several studies have shown that wet extraction results in remarkably lower lipid yields

than dry extraction.247,248 This observation spurred the search for solvents that i) are effective

on wet biomass, and ii) have benign EHS properties. It was frequently hypothesised that

nonpolar solvents, such as hexane, cannot efficiently penetrate the polar moisture contained

in the biomass, resulting in insufficient content between the solvent and the non-polar target

molecules.247,256,257 Increased lipid yields were reported for mixtures of nonpolar and polar

solvents, such as hexane/EtOH.248,256 Furthermore, novel solvent classes such as ILs,258–261

DESs,262,263 or polarity-switchable solvents264–267 were investigated for their applicability

in extractions from wet and dried microalgal biomass as potentially benign alternatives to

commonly applied, toxic solvents.

3.2.6.2 Supercritical fluid extraction and pressurised fluid extraction

Supercritical fluid extraction (SFE) is applied in the extraction of lipids and pigments from

microalgae. In SFE, gases or liquids are used as solvents at temperatures and pressures
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above their critical point.268,269 The most commonly applied solvent in SFE is CO2, which

is non-toxic, volatile, non-flammable, and has a low critical temperature.270 CO2 can be

easily recovered by decompression which is beneficial for heat-sensitive molecules, such as

pigments.271 In this manner, no solvent traces remain in the final product. The low polarity

of supercritical CO2 renders this solvent particularly suitable for the extraction of nonpolar

components, such as TAGs and carotenoids.272 However, SFE using CO2 was not efficient

for wet biomass, as the nonpolar CO2 could not sufficiently penetrate the wet biomass.180

To increase the polarity, more polar co-solvents such as EtOH can be applied, as in the

extraction of astaxanthin from Haematococcus pluvialis.273

Pressurised fluid extraction (PFE), also known as subcritical fluid extraction, involves the

extraction of wet or dry algal biomass using gases or liquids below their critical point.274,275

Derwenskus et al. showed that Fx and EPA can be efficiently extracted from wet P.

tricornutum biomass using pressurised EtOH. Both high-value products were efficiently

separated by precipitation of Fx and subsequent filtration.180,276

Both, PLE and SFE allow for rapid extraction of valuable compounds from microalgal

biomass and facile recovery of the target compounds. However, both extraction methods

require costly equipment and have a high energy demand caused by pressurisation.277–280

3.2.6.3 Methods for biomass fractionation

Several approaches for the fractionation of microalgal biomass are currently being investi-

gated. One such approach involves sequential solid-liquid extractions of the biomass using

solvents of different polarity. With this approach, lipids, carbohydrates, and proteins were

sequentially extracted from dried Scenedesmus obliquus biomass.281 However, the toxic

solvents chloroform and methanol were applied to extract the lipids and should be replaced

by more benign alternatives. In another study, pigments, lipids, carbohydrates and proteins

were sequentially extracted from Chlorella variabilis.282 Also here, toxic solvents were

applied. Moreover, a sequence of SCF and PFE extractions was applied to first extract the

lipid and pigment fractions, followed by carbohydrate extraction.283 Furthermore, pulsed

electric fields can be applied for the targeted release of the biomass fractions. Papachristou

et al.284 selectively released proteins and carbohydrates, before the lipid fraction was

extracted with a hexane/EtOH mixture from Scenedesmus almeriensis.

In other studies, multiple target components were extracted from the biomass, and

separated by sequential liquid-liquid extractions. Suarez Ruiz et al. demonstrated a mul-

tiproduct biorefinery approach for Neochloris oleoabundans by sequential separation steps

using IL-based aqueous biphasic systems (ABS) and ultrafiltration.285 ABSs consist of two
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distinct aqueous solutions capable of forming two liquid phases when mixed beyond a crit-

ical concentration, including water-soluble polymers, salts, alcohols, micelles, or ILs.286,287

In the context of microalgal biorefining, ABSs are especially useful when the functionality

of the protein fraction needs to be preserved. ABSs were used for the separation of algal

carbohydrates,288 proteins and pigments,289 and proteins and carbohydrates.290
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4 | Computer-aided solvent screening and

design: state of the art

When choosing the optimal molecule for a specific task, one of the first questions that can

be asked is: How many organic molecules exist in total? The chemical space, describing

the set of all potentially existing molecules, was estimated to comprise between 1018 and

10200 organic molecules (depending on the considered maximum molecule size and atom

types).291,292 To date, only a small fraction of the chemical space is synthetically available.

2.2·108 molecules are listed the ZINC15 database of which around half are commercially

available.293 Identifying molecules with desired properties for a specific application, such

as solvents, catalysts or drugs, has been an active field of research for decades, involving

laborious experimental procedures that are limited by temporal and human resources.294

So far, solvent selection for lignocellulose and microalgal biorefineries was mainly based on

experimental tests, not involving more than 10-15 solvents per study.100,101,247,248,295,296

Considering the gigantic size of the chemical space, the need for systematic, computer-

guided solvent selection becomes evident. Computer-aided molecular screening and design

(CAMSD) methods aim to steer the search towards molecular structures with desired prop-

erties by using computational techniques, such as molecular modelling, property predictions,

and mathematical optimisation.294 Unlike direct problems, where properties and the per-

formance are calculated based on a defined molecular structure, CAMSD algorithms aim

to solve the inverse problem where, given a desired performance or property, the optimal

molecular structure is sought after (Fig. 4.1). CAMSD algorithms consist of three funda-

mental elements : i) a measure for the performance of the screened or designed molecular

structures, ii) property prediction models with sufficient accuracy and computational speed,

and iii) algorithms for effective exploration of the chemical space. While screening methods

search a defined database of molecular structures, design methods have the potential to drive

the search towards completely undiscovered compounds. Both methods have the potential

to transform current processing by proposing highly promising, so-far unexplored molecules

for a given application.

In Section 4.1, the inverse problem is formulated as a mathematical optimisation problem.

Suitable solution methods are explained in Section 4.2. Furthermore, property prediction
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models especially important in the field of biomass processing are reviewed in Section 4.3.

These property models require varying molecular representations which are explained in

Section 4.4.

Property prediction

Molecular structure

Performance

Design
Inverse problem

Fig. 4.1 Scheme of molecular design as an inverse problem.

4.1 The inverse problem as an optimisation problem

The inverse problem can be expressed as follows: Given a process (e.g. biorefinery process)

that requires a molecule (e.g. solvent), find the optimal molecular structure minimising a

cost function that is related to the performance in the considered process. This statement

can be translated to the following optimisation problem297–299:

min
x∈X ; y∈Y

F (x ; y) objective function (4.1)

s.t. g(y) ≤ 0 structural constraints; (4.2)

h(x ; y) ≤ 0 property constraints (4.3)

where the objective function F measures the performance of the molecules with structures

y depending on continuous variables x (e.g. process conditions, such as temperature or

pressure). The objective function F may contain one or multiple performance objectives. In

screening methods, the vector y often comprises complete molecular structures, whereas in

molecular design methods, y are molecular building blocks (e.g. functional groups). The

continuous variables x lie within the set X . The set Y represents the attainable chemical

space. In screening methods, the attainable chemical space is given by a predefined database

which is searched for the optimal candidate. In molecular design methods, the attainable

space comprises all molecules that can be generated from the combination of the molecular
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building blocks contained in y . The choice of molecular building blocks are discrete decisions

frequently expressed by integer variables. Property predictions are not only necessary to

evaluate the performance of the molecules in F but are commonly applied to evaluate

whether the property constraints h are satisfied. In this manner, molecules with unsuitable

properties (e.g. solvents being solid at process conditions) are effectively excluded to narrow

the search space. The structural constraints g ensure structural feasibility of the molecules

and allow incorporating a priori knowledge regarding unsuitable functional groups.

4.2 Methods for chemical space exploration

The success of solving the inverse optimisation problem in Eqs. 4.1-4.3 highly depends on

the applied method for chemical space exploration. In the following sections, state-of-the-art

screening and design methods are reviewed.

4.2.1 Screening methods

In screening methods, the inverse problem is solved by systematically searching in a fixed set

of molecular structures Y to identify the molecule with optimal performance as measured

by the objective function F . Hence, to solve the overall inverse problem, screening methods

solve multiple direct problems. Here, Y is given as a database containing molecular

structures derived from expert knowledge. Molecules that do not satisfy the structural and

property constraints g and h are excluded from Y to narrow the search space. In this man-

ner, the search is focused on the most promising structures included in the confined subspace

Ỹ. For each y in Ỹ the performance is measured by evaluating F . Based on the predicted

performance, the molecular structures are ranked.50,51 Frequently, the best performing

molecules are selected for more detailed computational investigations or experimental valida-

tion. The choice of Y is critical step for the success of screening methods. Since Y does not

comprise all molecules of the vast chemical space, the globally optimal molecular structure

might be missing. To increase the probability of identifying molecular structures with

near-optimal properties, it is recommended to screen a comprehensive, structurally diverse Y.

Screening methods were recently applied for solvent selection in the field of chemical

engineering50,300–303 and for biomass processing. Motlagh et al. screened 352 ILs for the

extraction of fatty acids from microalgae.53–55 Several studies focused on the selection of ILs

for lignin, cellulose, or hemicellulose sugars.52,304–312 For both biomass sources, microalgae

and lignocellulose, these studies commonly focused on single target biomolecules rather

than incorporating the biorefinery approach into the solvent selection, or were limited to ILs.

Therefore, there is a significant research gap tackling the solvent selection for biorefinery

processes.



32 Chapter 4. Computer-aided solvent screening and design: state of the art

4.2.2 Molecular design methods

Unlike screening methods where the molecular structures remain unchanged, design methods

modify the molecular structures in y towards optimal performance evaluated by F .294 Hence,

in design methods, Y is defined by the combination of all molecular building blocks in y .

In design methods, structural and property constraints g and h ensure the generation of

molecules with desired structural features and properties. Hence, similar to screening meth-

ods, Y is narrowed to Ỹ. However, in screening methods, Y and Ỹ are considerably smaller

sets. State-of-the-art molecular design methods are reviewed in the following sections.

4.2.2.1 Generate-and-test methods

In generate-and-test methods, a large number of novel molecular structures y is created by

enumerative combination of molecular building blocks. For each generated molecule, the

objectivce function F is evaluated to predict the performance.313–315 Increasing the number

of different molecular building blocks leads to combinatorial explosion of the molecular design

space. To limit the size of Y and to lower the computational time, combination rules can

be introduced.313

4.2.2.2 Deterministic optimisation

The inverse problem frequently involves several continuous variables (e.g. desired melting

point Tm and boiling point Tb ranges), and integer variables (e.g. discrete decisions for given

molecular building blocks) in combination with linear and/or nonlinear objective functions

or constraints (e.g. thermodynamic models) (Eqs. 4.1-4.3). In such cases, the optimisa-

tion problem is formulated as a mixed-integer (non)linear program (MI(N)LP). Frequently,

deterministic algorithms break the optimisation problem into smaller subproblems that can

be more easily solved than the original problem,316 e.g. by fixing variables, relaxing con-

straints, and linearising nonlinear functions. Examples for such solution strategies are outer

approximation,317 branch-and-bound,318,319, generalised disjunctive programming, and in-

terval analysis.320 A comprehensive overview about deterministic optimisation methods in

molecular design is provided by Papadopoulos et al.321

4.2.2.3 Genetic algorithms

Genetic algorithms (GAs) are a commonly chosen method for molecular design.322–326 GAs

are a metaheuristic inspired by Darwin’s idea of biological evolution processes, such as selec-

tion, cross-over, and mutation. In GAs, the molecular structure is iteratively changed towards

the desired properties. In each iteration i , the fittest molecules have a higher probability

to selected to create offspring molecules in the so-called cross-over step.327 During cross-

over, the selected parent molecules exchange molecular fragments with each other. These
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fragments are recombined to generate children. The selection pressure drives the molecu-

lar population towards maximal fitness as measured by the objective function F (x ; y i ).
328

Additionally, random mutations on the molecular structure reduce the risk of premature con-

vergence. The generation of new molecular structures y i+1 is guided by their performance

as measured by F (x ; y i ). This iterative procedure continues until a specified termination

criterium is reached (e.g a finite number of iterations, or performance improvement close to

a pre-defined threshold).

4.2.2.4 Machine learning-based methods

In the recent years, machine learning (ML) approaches were developed for molecule genera-

tion and property prediction. This section focuses on the use of ML methods for molecule

generation (see Section 4.3 for a review of ML models for property predictions). Frequently

employed techniques for molecule generation include variational autoencoders,329,330 gener-

ative adversarial networks,331,332 and recurrent neural network.333 These methods generate

novel structures based on the training on extensive datasets. During the training phase, these

models capture essential molecular features for generating new structures. To evaluate the

molecules with respect to the desired properties, the ML models are usually combined with

property prediction models.330 The architecture of generative adversarial networks, varia-

tional autoencoders, and recurrent neural network is briefly explained in the following.

4.2.2.4.1 Generative adversarial networks Generative adversarial networks are built

from two neural networks that are simultaneously trained in a competitive manner: a gen-

erator and a discriminator. The generator aims to create realistic molecules, while the

discriminator aims to distinguish between real and generated data. The trained GANs pro-

duce novel structures that resemble the molecules of the training dataset.332,334 To identify

the most suitable molecule, the GAN can be combined with additional models for property

predictions.335

4.2.2.4.2 Variational autoencoders Variational autoencoders consist of an encoding

and a decoding network. The encoder maps a molecular representation into a lower-

dimensional space, the so-called latent space, according to a probability distribution (usually

the Gaussian distribution).336 The decoder subsequently maps the latent vector to the orig-

inal representation. In this way, essential molecular features are captured in the latent

space, where molecules are represented as continuous and differentiable vectors residing on

a probabilistic manifold.336 Therefore, the latent space is especially interesting for molecu-

lar design, as it allows to identify molecules with the target properties using mathematical

optimisation.330,337,338
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4.2.2.4.3 Recurrent neural network Recurrent neural network are typically applied in

molecular design for processing and generating sequential molecular representations, such

as simplified molecular-input line-entry system (SMILES) strings339 (see Section 4.4 for

information about molecular representations). In contrast to feedforward networks, where

the information flows in a linear manner from input to the ouput prediction, RNNs contain

cyclic connections allowing them to maintain information from previous input data.340 The

thus implemented memory allows RNNs to capture dependencies and patterns within the

input sequence and generate novel SMILES strings. In combination with methods such as

transfer learning or Monte Carlo tree search, RNNs can generate novel molecules with desired

properties.340

4.3 Property predictions

In biorefinery processes, solvents with defined solubilities of biomolecules, phase behaviour,

and benign EHS properties are sought after. Predicting these properties is a key step for

solving the inverse problem (Eqs. 4.1-4.3). Since the property predictions are performed

for each evaluation of the objective function F and the property constraints h, they largely

determine the computational time, and thus, the size of the chemical space that can be

explored. Therefore, property models with a suitable trade-off between accuracy and com-

putational time should be selected. In the following sections, models for the prediction of

thermodynamic properties and EHS properties that are important for the solvent selection

in biorefineries are reviewed.

4.3.1 Thermodynamic models

On the thermodynamic level, several important process units of a biorefinery are governed

by phase equilibria. In the initial stage of a biorefinery process, one or several target

compounds are extracted from the biomass. Here, solvents with high solubility of these

target compounds are commonly desired. In general, solubility is described by the amount

of a solid solute that dissolves in the liquid solvents when the solid and liquid phase are

in solid-liquid-equilibrium (SLE). Frequently, the obtained extract contains multiple target

compounds or undesired impurities. In a later stage of the biorefinery process, the extracted

compounds must be separated. Liquid-liquid extraction is a commonly applied method for

this purpose. Here, the formation of two (or seldomly more) liquid phases is triggered by

adding a solvent or a solvent mixture that is practically immiscible or only partially miscibile

with the solvent containing the target molecules. When the polarity difference between the

target molecules is large enough, they partition to opposite phases and sufficient separation

can be achieved. Typically, the liquid phases are in liquid-liquid-equilibrium (LLE). Another

method to separate several target compounds is crystallisation which is based on SLEs.
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Finally, the applied solvents should be recycled, e.g. by distillation, which exploits the

vapour-liquid-equilibrium (VLE).

When multiple phases j = 1; 2; ::; J irrespective of their state (solid, liquid, or gaseous)

are in thermodynamic equilibrium, the conditions for thermal

T 1 = T 2 = ::: = T j = :::T J ; (4.4)

mechanical

p1 = p2 = ::: = pj = :::pJ ; (4.5)

and chemical equilibrium

—1
c = —2

c = ::: = —j
c = :::—J

c : (4.6)

must be simultaneously fulfilled.341 Here, T denotes the temperature, p describes the pres-

sure, and —c is the chemical potential of chemical species c = 1; 2; :::; C. The chemical

potential is derived from the Gibbs free energy G (see Appendix A for a detailed derivation).

Mixtures encountered in biorefinery systems frequently involve one or multiple solvents and

multiple biomolecules. Such complex mixtures typically show non-ideal thermodynamic be-

haviour. For non-ideal mixtures, the chemical potential —j
c is defined as

—j
c(p; T; x) = —j;0

c (p; T; x) + RT lnajc : (4.7)

Here, —j;0
c is the chemical potential of a reference state and R refers to the universal gas

constant. The activity ajc is defined as

ajc = ‚jcx
j
c ; (4.8)

where the activity coefficient ‚jc acts as a scaling factor to account for deviations from

ideal thermodynamic behaviour.342 Hence, the activity ajc can be interpreted as
”
effec-

tive“ concentration of a component in non-ideal mixtures. In biorefinery processes, often

the molar composition x jc in phase equilibrium is sought after, e.g. the solubility of a

solid solute in a solvent (SLE), or the mututal solubility of two solvents (LLE). To solve

the system of equations arising from Eqs. 4.6 and 4.7 for x jc , the activity coefficients ‚jc

must be known. Activity coefficients can be obtained from experiments, which is however

inconvenient for high-throughput CAMSD. To enable high-throughput solvent selection,

predictive thermodynamic models are required to estimate activity coefficients.

Models of the excess Gibbs energy, such as the Wilson model,343 the Non-Random-Two-

Liquid (NRTL) model,344 universal functional activity coeffcient (UNIFAC),345 and Universal
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Quasichemical (UNIQUAC)346 are established models for activity coefficients predictions

on the basis of the excess Gibbs energy. Furthermore, results obtained from equation of

state (EoS) models, such as Soave-Redlich-Kwong,347 Peng-Robinson,348 perturbed-chain

statistical associating fluid theory (PC-SAFT),349,350 can be used to determine activity

coefficients. Although all of these models have been successfully applied to the prediction of

phase equilibria in chemical engineering, their applicability to biorefinery processes is rather

limited for several reasons. First, these models require component-specific parameters.

These parameters were determined for commonly used chemicals for which they are available

in large databases.351 However, component-specific parameters are generally not widely

available for complex biomolecules352 or novel solvent classes, such as ILs.353

For biological systems, the Hansen solubility model48,354 provides a simple and helpful

approach to roughly estimate whether a solvent will dissolve a solute. The Hansen model is

derived from EoS and assumes that the solubility of a component in a solvent is determined

by intermolecular dispersion ‹d, dipolar interactions ‹p, and hydrogen-bonding interactions

‹h.
48,354 These parameters span a three-dimensional space, the so-called Hansen space. The

smaller the distance of the solvent and the solute in the Hansen space, the more likely the

solute will dissolve. However, the model cannot sufficiently capture the complex dissolution

process for many polymers.355 For lignin, inaccuracies were reported even for standard solvent

systems.356,357 A major drawback of using the Hansen solubility model in high-throughput

CAMSD is the unavailability of the model parameters.355 While these parameters can be

found in the literature for standard solvents, they must be experimentally or computationally

derived for less frequently applied solvents or biopolymers.

4.3.1.1 Quantum chemical models

For systems including complex biopolymers, a viable alternative to the aforementioned mod-

els are quantum chemistry (QC)-based methods. Due to their high accuracy, QC-based

methods are considered the current gold standard for complex molecules, and have been fre-

quently applied for biological systems.52–55,306,310 Another advantage of QC-based methods

is their indepence from compound-specific model parameters. In QC-based methods, the

molecules are described at a sub-atomic level as an assembly of nuclei and electrons. The

basis for electronic structure calculations is given by the electronic Schrödinger equation

Ĥel(R; r)|Ψi (R; r)⟩ = Ei |Ψi (R; r)⟩; (4.9)

where Ĥel and E denote the electronic Hamilton operator and the energy, respectively.358 The

N-electron wavefunction Ψi (R; r) of electronic state i depends on the electronic coordinates

r and nuclear coordinates R. From the wavefunction, which is the eigenvector of this
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eigenvalue equation, any property of the system can be deduced. Provided that the nature

of nuclei and numbers of electrons in the system are known, the equation can be formulated

for molecular systems of any chemical composition. For solving the Schrödinger equation,

only fundamental physical constants (e.g. the Planck constant) and no empirical parameters

are required. However, solving the Schrödinger analytically, is only possible for very simple

systems, e.g. H2. Larger systems require approximations to reduce their complexity.

Hohenberg and Kohn derived the density functional theory (DFT)359 where the Schrödinger

equation is not directly solved. Instead, one-particle electron densities are determined, de-

noted as ”(r). These densities describe the probability distribution of electrons in space. A

crucial aspect is the one-to-one relationship between the electron density and an external po-

tential, represented by v(r) which acts on the electron density. The electron density uniquely

determines the external potential and, consequently, the ground state wavefunction. As a

result, the system’s energy is expressed using a universal functional of the electron density,

denoted as F [”(r)]. Importantly, this functional depends solely on the electron density and

is independent of the external potential. In this way, the energy of a systems’ ground state

is computed as

E[”(r)] =

Z
v(r)”(r) + F [”(r)]: (4.10)

Compared to wavefunction-based QC methods which give results within chemical accu-

racy (1 kcal mol−1), DFT methods are slightly less accurate (2-10 kcal mol−1) but up to 100

times faster.360 Therefore, DFT methods became the workhorse of computational quantum

chemistry.

Classical quantum chemistry considers isolated systems, neglecting the influence of the

surrounding environment. However, many chemical processes of interest, particularly in bi-

ology, occur in solution. Continuum solvation models (CSMs) serve as a bridge between

classical quantum chemistry and the condensed phase, and incorporate solvent effects into

QC calculations.361 Instead of describing the solvent as individual molecules, CSMs repre-

sent the solvent as a continuous dielectric medium. The solute is treated on the quantum

mechanical (QM) level and is embedded in the dielectric continuum. A molecular surface,

also known as cavity, is constructed around the solute.361 The solute’s charge distribution

polarises the solvent, and vice-versa, the dieelectric continuum polarises the solute’s charge

distribution. This solute-solvent interaction gives rise to an iterative mathematical problem

that can be easily integrated into QC methods.361 CSMs are particularly valuable for study-

ing biomolecular systems, where the influence of the surrounding solvent is critical, e.g. for

proteins and other biomacromolecules.

4.3.1.1.1 Conductor-like screening model and conductor-like screening model for

real solvents CSMs enable QM-based property predictions that are useful in CAMSD e.g.
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for solvent selection,50,362–364 polymers,365 and complex biomolecules.52–55,304–312 COnduc-

tor like Screening MOdel (COSMO) is a CSM that considers solute molecules placed in a

virtual, perfect conductor (› = ∞).366 COSMO calculations are performed for all mean-

ingful conformers of the molecules using standard QC software, e.g. TURBOMOLE.367

The COSMO framework discretises the molecular surface into segments and provides each

segments’ screening charge density ff (Fig. 4.2 a).368 The ff-profile is inferred from all dis-

crete segments, representing the likelihood that a specific surface element of a molecule

possesses a particular surface charge density ff. The COSMO calculation is based on DFT

and requires computational times ranging from several minutes up to a week, depending

on the size of the molecular size and complexity. COnductor like Screening MOdel for Real

Solvents (COSMO-RS), converts the ff-profiles obtained from the COSMO calculation into

ff-potentials by means of statistical thermodynamics (Fig. 4.2 b and c).369 The ff-potentials

describe the chemical potential of a surface segment with screening charge density ff and,

thus, the affinity of the system to a surface of a certain polarity. The ff-potentials are the basis

to determine activity coefficients necessary for the prediction of solubilities and phase equi-

libria.368 COSMO-RS calculations are performed within seconds are therefore, remarkably

faster than the COSMO calculations. COSMO-RS is implemented in the software COS-

MOthermX19.368–370 For this software, additional databases containing finished COSMO

calculations for around 7000 molecules are available. These databases can be expanded with

additional molecules by the user. In case that the molecule of interest is already stored in

the database, the COSMO step is not necessary, saving computational time. COSMO-RS

was recently applied for the selection of ILs for the dissolution of complex biomolecules such

as fatty acids,53–55 lignin,52 cellulose,306,308,309 and hemicellulose.308,309

4.3.1.2 Machine learning-based models

ML models are extensively applied for the prediction of thermodynamic properties and were

recently applied for solubility predictions,371,372 the prediction of activity coefficients,373–376

and phase equilibria.377 Based on large-scale datasets, these models learn a mapping of the

molecular representation (see Section 4.4) to the target property.378 During the training

phase, these algorithms learn by adjusting their parameters through iterative performance

evaluations, thereby increasing their accuracy. Furthermore, the accuracy of the predictions

heavily relies on the quality of the training set. Commonly applied ML models are black-box

models which are difficult to interpret. To explain the predictions, additional algorithms are

required.379,380 Even though correlations between the molecular descriptors and the target

properties do not imply causality, these methods are useful guides to further investigate

interesting relationships.
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stored in a database. b) ff-profiles and c) ff-potentials of of water, DMSO, and

n-hexane. Adapted from Eckert and Klamt.368

4.3.2 EHS property models

In the past, the design of chemical processes was mainly focused on selecting the best techno-

logical alternative to meet a particular product specification, to minimise operational costs,

and to maximise the profit.381 Environmental impacts, and the safety and the health of the

workers played a rather subordinate role and influenced design decisions at a later design

stage at best. For sustainable process design, various EHS properties (e.g. mutagenicity, car-

cinogenicity, biodegradability, toxicity), should be considered in an early design phase. The

importance of EHS properties is also reflected on a political level. In 2006, the EU passed

the Registration, Evaluation, and Authorization of Chemicals (REACH) legislation that reg-

ulates the handling of chemicals with respect to their EHS properties to protect the human

health and the environment against harmful substances.382 Since the fundamental concept
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of biorefinery processes revolves around enhancing the overall sustainability of biomass pro-

cessing, it is imperative to consider the EHS properties of the applied chemicals. For the

predictions of EHS properties, different approaches can be applied, such as group contri-

bution methods,383 machine learning-based methods,384 or quantitative structure activity

relationship models.385

4.4 Molecular representation

The most accurate molecular representation is obtained from solving the Schrödinger equa-

tion (see Eq. 4.9) using QM-methods for the electronic Hamiltonian which relates to the

Cartesian coordinates of the atomic positions in three-dimensional space. QM methods are

computationally intensive and such detailed information of the molecular structure is not al-

ways required. Simpler molecular representations capture the inherent features and relation-

ships of atoms and bonds while saving computational time. Text-based molecular represen-

tations, such as the SMILES,386,387 SMILES arbitrary target specification (SMARTS),388,389

or Self-Referencing Embedded Strings (SELFIES).390,391 SMILES and SMARTS provide

human-readable molecular embedding to describe the arrangement of atoms and bonds

in a molecule while respecting a certain chemical grammar. The SMARTS language was

specifically developed for substructure searches within molecules. In CAMSD, ensuring the

chemical validity of generated molecules is a critical for efficient exploration of the chemical

space. However, SMILES and SMARTS are only machine-readable when a distinct chem-

ical grammar is followed. Due to this limitation, SELFIES were developed as a text-based

representation that always provides structural feasibility.

As an alternative to text-based representations, molecules can be described by a multitude

of chemical descriptors, of which the molecular fingerprint is the most prominent example.

Molecular fingerprints are numerical, vectorial representations of molecular structures that

encode information about structural features, such as the occurrence of particular functional

groups.

In graph-based representations, atoms are considered as nodes that are connected by

edges, the chemical bonds. Thus, molecules are treated as an undirected graph. Repre-

senting molecules as graphs follows the molecular structure very naturally. Text-based rep-

resentations, such as SMILES, SMARTS or SELFIES, can be seen as one-dimensional text

encodings of the molecular graph. More advanced graph representations, such as weighted

graphs, include a variety of atom and bond features such as bonding type, aromaticity,

charge, and distance.373,374,392,393 Furthermore, molecules can be represented by discrete

building blocks, e.g. functional groups.

The molecular representation of choice should capture the most important molecular

features that are related to the property of interest, should be compatable with the property
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model, and offer the desired level of interpretability.
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5 | Development of computer-aided sol-

vent screening and design methods for

biorefinery processes

In this chapter, solvent screening and solvent design methods are developed to fill the gap

in computational methods for biomass fractionation in biorefinery processes. In Section 5.1,

the solvent selection problem is formulated as a mathematical optimisation problem.

Based on this general formulation, a screening method (Section 5.2) and a solvent de-

sign method (Section 5.3) applicable to solvent selection problems in biorefineries are derived.

This chapter is based on the publications of König-Mattern et al.394–396 and includes direct

as well as modified excerpts used under Creative Commons license CC BY 4.0.

5.1 Solvent selection in biorefineries as a CAMSD optimisation

problem

The general CAMSD problem described in Eqs. 4.1-4.3 is the foundation to formulate the

optimisation problem tailored towards biorefinery processes. For a general biorefinery process

with thermodynamic properties t (e.g. solubilities of the biomolecules b in the solvent struc-

tures s, partition coefficients, molar compositions in phase equilibria), EHS properties e (e.g.

acute toxicity, mutagenicity, biodegradability), and process conditions p (e.g. temperature,

pressure), the CAMSD problem can be formulated as

min
s∈S

F (t(b; s); e(s); s) objective function (5.1)

s.t. g(s) ≤ 0 structural constraints; (5.2)

h (t(b; s); e(s);p(b)) ≤ 0 property constraints: (5.3)



44 Chapter 5. Development of CAMSD methods for biorefinery processes

Here, the objective function F takes into account the desired solvent properties, such as

thermodynamic properties t ∈ T , the EHS properties e ∈ E, and/or structural features of

the solvents s ∈ S. Depending on the solvent selection problem, either all of the mentioned

properties, or only selected properties can be included in the objective function F . To prevent

unnecessary evaluations of F , solvents with unsuitable structures should be excluded based

on the structural constraints g and property constraints h. In this manner, solvents with

unsuitable structures (e.g. functional groups that are prone to undesired reactions with parts

of the biomass) and undesired properties (e.g. low solubilities or harmful EHS properties)

are excluded. Furthermore, the Tm and Tblimits of the solvents might serve as exclusion

criterium in h. Excluding solvents with unsuitable melting and boiling point ensures the

solvents being liquid at the process conditions p ∈ P. The process conditions are mainly

determined by the structure of the biomolecules b ∈ B (e.g. heat-sensitive pigments require

mild temperatures close to room temperature, while for the processing of lignocellulose

extreme high temperatures are applied). In this manner, the search space S is narrowed to

a significantly smaller S̃. The set S̃ contains only molecules meeting the constraints g and

h. Properties that are required to evaluate F or h must be predicted by suitable models,

which must be applicable for complex biomolecules and a broad range of different solvents,

such as QC-or ML-based methods. To solve the solvent selection problem for biorefineries as

given in Eqs. 5.1-5.3, a screening method (Section 5.2) and a design method (Section 5.3)

were developed.

5.2 Solvent screening method for biorefinery processes

The solvent screening method screens a defined database Sdatabase and excludes all molecules

not satisfying structural constraints g and property constraints h. For all solvent candidates

s included in the pre-screened search space S̃database, the objective function F (Eq. 5.1) is

evaluated. Thermodynamic and EHS property models are necessary to evaluate the objective

function F and the constraints h. EHS properties of the solvents are predicted by available

QSAR models. The thermodynamic properties of the pure solvents, solvent mixtures, or

biomolecule/solvent mixtures are predicted using COSMO-RS which is seen as the current

gold-standard for complex molecules and mixtures. For COSMO-RS property predictions

of biomolecule/solvent mixtures, e.g. solubility predictions or partition coefficients, QC-

calculations of the biomolecules are required. Frequently, results of these calculations are not

available in publicly open or commercially available databases. Therefore, biomolecules that

are representative for a specific biomass fraction must be modeled on a quantum chemical

level. In some cases, the size of these representative biomolecules would lead to infeasibly

high computation times, e.g. for large polymers such as cellulose or lignin. In this case,
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simplified model molecules must be determined. Finally, the solvent candidates are ranked

according to their performance determined by F .

The developed solvent screening methodology was implemented as an automated solvent

screening framework in Python by the following steps (Fig. 5.1):

1. Database construction

2. Identification and QC modeling of representative biomolecules for each biomass frac-

tion

3. Screening: In this step, the number of solvent candidates is gradually reduced. Here,

unsuitable solvents are determined and removed based on the constraints g and h. It is

advisable to perform the property predictions with the lowest computational demand

first, to reduce the number of solvents that is admissable in subsequent property

predictions. After excluding solvent candidates not satisfying the constraints, the

objective function F is evaluated for each remaining solvent.

4. Solvent ranking: The identified solvent candidates are ranked according to their per-

formance given by F .

In the following sections, the database construction, the choice of the representative

molecules, the prediction of thermodynamic and EHS properties, the solvent ranking, and

computational methods of the solvent screening method are described.
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Fig. 5.1 Overview of the solvent screening procedure.

5.2.1 Database

The compiled database consists of the COSMOthermX19 integrated database,

COSMObase13-01, and COSMObaseIL19-01. Additionally, green solvents from Moity et

al.,397 and the green solvent Cyrene398 were modeled by Linke et al.50 and added to the

database. Duplicate solvents were deleted. Furthermore, 178 pairs of DESs399–409 and 143

commercially avialable IL pairs410,411 were modeled and added to the search space, leading

to a total of 8011 molecules defining the solvent search space Sdatabase. A complete list of

the database is provided in Appendix B.

5.2.2 Representative biomolecules

Each biomass fraction is a complex mixture of different biomacromolecules with various

interactions, which are far beyond to be modeled as a whole using QC methods. Therefore,
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several representative biomolecules from each fraction are chosen and modeled individually,

assuming that the influence between each molecule is negligible. For common DFT methods,

the computation time scales with the the size of the molecule Nmol in the order ofO(N3
mol),

360

leading to a high computational effort for large molecules. Therefore, for large biopolymers,

representative parts of the original structure can be modelled to reduce the computational

cost. The computation details of the modelling of the representative molecules is described

in Section 5.2.5. The choice of representative molecules for each biomass fraction is guided

by

� high importance for the overall process (e.g. high-value molecules),

� high abundance (e.g. on a weight-basis),

� high solvent accessibility (e.g. molecules stored in solvent-inaccessible locations are

not representative due to a lack of solvent contact),

� computing effort (e.g. a suitable simplification of the molecules must be made for

large molecules).

It is strongly recommended to verify the validity of representative molecules by comparing

experimental and computational results for the property of interest for selected solvents.

5.2.3 Thermodynamic property predictions

COSMO-RS is the gold standard method for thermodynamic property predictions involving

biomolecules (see Section 4.3.1), and was therefore applied in the solvent screening approach.

In the following, the thermodynamic properties t with high importance in biorefinery pro-

cesses are described and their calculcation using COSMO-RS is explained.

5.2.3.1 Solubility

In COSMOtherm, the solubility of the representative molecules in the solvent candidates

calculated as the logarithmic, molar solubility log10(xb). The molar solubility of the repre-

sentative biomolecule b in a solvent s is defined as

xb =
nb

nb + ns
: (5.4)

The solubility predictions in COSMOtherm are derived from the SLE. Here, COSMO-RS

utilises the pseudochemical potentials —∗ obtained from the SCDs of b and s to approximate

the molar fraction of the representative molecules in the liquid phase (see Appendix A for a

detailed derivation).

log10x
l
b =

—∗;0
b (T; p; x lb = 1)− —∗;∞;l

b (T; p; x lb)−∆Gfus(T )

RT ln(10)
(5.5)
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Here, —∗;∞;l
rep describes the pseudochemical potential of the representative biomolecule at

infinite dilution in solvent s. The obtained solubility can be considered as a zeroth-order-

approximation. However, the accuracy of the solubility predictions can be increased if the

solubility x lb is used to determine —∗;l
b (T; p; x lb), and inserted into Eq. 5.5 iteratively. The

free enthalpy of fusion ∆Gfus(T ) is zero for liquid compounds and is estimated for solid

compounds based on a quantitative structure-property relationship (QSPR) approach imple-

mented in COSMOtherm (see Appendix A.1).

Since often several biomolecules are used to represent a single biomass fraction, the

solubility for a the overall fraction was calculated as the average solubility of several rep-

resentative molecules denoted as log10(xfrac). In this case, the solubilities of the respective

single representative molecules were first predicted according to Eq. 5.5, and subsequently

averaged:

log10(xfrac) =
1

nb

nbX
i=1

log10(x
(i)
b ); (5.6)

where nb describes the number of representative molecules in the respective fraction.

5.2.3.2 LLEs

In biorefineries, liquid-liquid extraction is an important separation process. When two liquid

phases j = 1; 2 are in LLE, the molar fraction of the solvent s in each phase are calculated

based on Eqs. 4.6-4.8 as

x1s ‚
1
s = x2s ‚

2
s : (5.7)

Here, the activity coefficients ‚s are obtained from the screening charge densities ff of

the solvents calculated by COSMO-RS. Within COSMOthermX19, the molar fractions are

determined iteratively.

5.2.3.3 Partition coefficients

In liquid-liquid extraction, not only the phase solvent composition of the liquid phases is of

interest. Also, the partition coefficients of the biomolecules, describing the efficiency of the

separation, are important. In COSMOtherm, the solute is treated as infinitely diluted in the

phases j = 1; 2. The solvent composition at LLE is obtained from Eq. 5.7. The partition

coefficient is calculated as412

log10P
(2;1)
b =

—
(∗;∞;1)
b − —

(∗;∞;2)
b

RT ln(10)
= log10

 
x
(2)
b

x
(1)
b

!
: (5.8)
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5.2.4 Prediction of EHS properties

The prediction of EHS properties is necessary to select benign solvents. Here, the EHS

properties listed in Tab. 5.1 were predicted using the quantitative structure-activity

relationship (QSAR) models implemented in the VEGA software.385 In addition to the EHS

property predictions, VEGA calculates a reliability score, enabling further assessment of

the obtained predictions. Using the results and the reliability scores, the EHS score was

predicted as proposed by Linke et al.50 The EHS score describes how
”
benign“ a solvent

is, providing a value in the interval [0; 1]. Here, an EHS score closer to one indicates more

benign EHS properties. In brief, for each solvent candidate, the EHS properties summarised

in Tab. 5.1 are predicted by the VEGA models. In addition, the flammability of a solvent

was evaluated in terms of the flash temperature Tf , which is defined as the temperature at

which vapour over a liquid combusts completely upon ignition. COSMOtherm estimates

the Tf iteratively based on the vapour pressure p0c and the pressure pc(Tf).

The results for each predicted EHS property are represented by different data types, such

as numeric values for fish toxicity, or qualitative responses, such as
”
mutagenic“ or

”
toxic“.

These outputs were converted to a colour-code accompanied score. This score is element

of the set {0; 0:25; 0:5; 0:75; 1}, where
”
green - 1“ corresponds to desirable (

”
green“)

EHS properties,
”
green-yellow - 0.75“,

”
yellow - 0.5“,

”
yellow-red - 0.25“, and

”
red - 0“.

Some of the EHS properties can be predicted by multiple models (e.g. mutagenicity or

carcinogenicity, see Tab. 5.1). In this case, the individual model results were weighted

with the predicted reliability and unified as described by Linke et al.50 The VEGA software

additonally contains experimentally determined data points which were preferred over the

values predicted by the QSAR models. The score of each unified model result was averaged

by the number of models applied to generate the EHS score.

VEGA is not applicable to ILs since these salt-like molecules were not included in the

training-set of the VEGA models. To prevent false exclusion, their EHS score was set to 1. In

case that an IL is obtained as a suitable solvent candidate at the end of the screening, their

EHS properties were manually checked based on the safety data sheet (SDS). For DESs, the

EHS score for the hydrogen bond acceptor (HBA) and hydrogen bond donor (HBD) were

predicted separately. To obtain the EHS score for the whole DES, the score of the HBA and

HBD were averaged and weighted by their molar fractions in the DES. VEGA models were

recently applied for a screening of DESs by Song et al.301 and are a reasonable choice given

the number of solvent candidates. However, recent studies regarding the toxicity of DESs

suggest, that the toxicity of the DES might diverge from that of its single components.413
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Tab. 5.1 QSAR models from VEGA applied for the prediction of selected EHS

properties.

Property Model Version

Mutagenicity

CONSENSUS 1.0.3

CAESAR 2.1.13

SarPy/IRFMN 1.0.7

ISS 1.0.2

KNN/reas-across 1.0.0

Carcinogenicity

CAESAR 2.1.9

ISS 1.0.2

IRFMN/Antares 1.0.0

IRFMN/ISSCAN-CSX 1.0.0

Developmental toxicity
CAESAR 2.1.7

PG 1.1.0

Endocrine disruptor potential
IRFMN 1.0.1

IRFMN/CERAPP 1.0.0

Skin sensitization CAESAR 2.1.6

Hepatoxicity IRFMN 1.0.0

Fish acute toxicity

SarPy/IRFMN 1.0.2

KNN/read-across 1.0.0

NIC 1.0.0

EPA (96h) 1.0.7

Daphnia toxicity
EPA (48h) 1.0.7

DEMETRA 1.0.4

Bee acute toxicity KNN/IRFMN 1.0.0

Bioaccumulation factor

CAESAR 2.1.14

Meylan 1.0.3

KNN/read-across 1.1.0

Biodegradability
Arnot/Episuite 1.0.0

IRFMN 1.0.9

Persistence (sediment) IRFMN 1.0.0

Persistence (soil) IRFMN 1.0.0

Persistence (water) IRFMN 1.0.0

Log10 P(octanol/water)

Meylan/Kowwin 1.1.4

MlogP 1.0.0

AlogP 1.0.0
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5.2.4.1 Determination of melting and boiling points

The Tm and Tb ranges considered in h are usually defined based on the process conditions

p. For many substances, Tm and Tb (at atmospheric pressure) are already given in the

COSMOtherm database. However, for solvents that were added to the database later on,

Tm and Tb were lacking. In this case, an automated PubChem database query retrieved

missing experimental data.414 If there was no experimental data available in PubChem, the

missing Tb was predicted using COSMO-RS. Solvents with missing entries were kept in the

screening to prevent false exclusion.

5.2.4.2 Structural constraints

The structural constraints defined by g ensure that solvents containing unsuitable functional

groups, e.g. due to reactivity with the biomass or the process liquor, are eliminated from the

list of potential solvent candidates. Solvents containing the defined groups were identified

using RDKit.415

5.2.4.3 Solvent ranking

After predicting all properties that are required to evaluate the objective function F for the

solvent candidates identified in the screening procesdure, the identified solvent candidates

are ranked to determine deriable candidates. Often, the optimal values o of the properties

of interest are known, e.g. ideal EHS score = 1 and solubility xb = 1. Based on o the

solvents can be ranked according to the Euclidian distance d of the properties of interest i

from the optimal values o

d(o; i ) =

vuut KX
k

(ok − ik): (5.9)

Note that in this case the values for all considered properties must be normalised. For all

highly ranked solvents, the predicted thermodynamic properties and EHS properties were

manually checked based on literature data, publicly available databases, and SDSs.

5.2.5 Computational details

For molecules not contained in the COSMOtherm databases (COSMOtherm integrated

database, COSMObase13-01, COSMObaseIL19-01), QC calculations were performed.

Molecular conformers were generated using RDKit415 with a force field according to Eberjer

et al.416 Subsequently, the resulting structures were further optimised at a QM level using

TURBOMOLE 3.7 and its calculate interface (version 2.1, 2009). The BP-86 functional

with the def-TZVP bases set was applied using the COSMO boundary condition and the
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standard COSMO cavity construction. With the optimised geometries, a single point cal-

culation was performed, using the more accurate def2-TZVPD bases set. Cavities were

constructed at the FINE level. The automated screening procedure was implemented in

a python script (Python 3.7). In this procedure, the database described in Section 5.2.1,

was loaded as a pandas dataframe (pandas 0.25.1). Subsequently, a pre-screening step was

performed as given by the constraints g and h, and unsuitable molecules were deleted. Pub-

ChemPy 1.0.4 was used to read the Tm and Tb of the compounds from PubChem. Missing

Tb and Tf (used for predicting EHS properties) were predicted using CosmoPy 19.10. EHS

properties were predicted using VEGA QSAR 1.1.5. For solubility predictions, the python

script called COSMOthermX19368–370,417,418 via the command line. For these calculations,

input files were automatically generated and the BP TZVPD FINE 19.ctd parameterisation

was applied. The results of each solubility prediction was stored in SQLite3 databases (sqlite

3.30.0). All COSMO-RS predictions including ILs and DESs were handled using the so-called

electroneutral approach.419–421 In this approach, the single IL and DES constituents were

implemented as a stochiometric mixture. The electroneutral approach is commonly applied

for predictions concerning ILs and DESs. A Linux Ubuntu 16.04. system (Intel i5-8500

processer at 3.00 GHz and 16 GB RAM) was used to perform all calculations.

5.2.6 Advantages and limitations

The high-throughput screening framework is a tool specifically developed to facilitate

solvent selection for biorefinery processes. The tool enables systematic computational

solvent screening of a database containing more than 8000 potential solvents. During the

screening, unsuitable solvent candidates are eliminated as given by structural constraints

g (e.g. unsuitable functional groups) or property constraints h (e.g. solubilities, EHS

properties, Tm and Tb limits). For all solvents meeting the constraints, the objective

function F that measures the performance is evaluated. Based on the performance the

solvents are ranked, enabling to identify the optimal solvent candidate of the database.

The prediction of solubilities, LLEs, and partition coefficients is performed using

COSMO-RS, the gold-standard method for complex biomolecules. For each biomass

fraction, representative molecules are defined and modelled on a quantum chemical level to

obtain SCDs. COSMO-RS converts the SCDs into ff-profiles and ff-potentials, providing

additonal chemical information about hydrogen bonding behaviour and polarity which are

important features for the solvent selection. However, several simplifications are made.

The biomass is far too complex to be modelled as a whole on a quantum chemical level.

Therefore, the representative molecules for each biomass fraction are modelled individually.

For large biopolymers, simplified structures are used to reduce the computational time. The

quantumchemical calculations are performed at the reference state of an ideal conductor,
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providing enourmously efficient property predictions. However, the response of the solute

electron density to the solvent cannot be captured. During the prediction of solubilities and

partition coefficients, interactions between the biopolymers are neglected. These predictions

are based on the chemical potential at infinite dilution —∞
b , implying that the representative

biomolecule b is assumed to be only surrounded by solvent molecules. Furthermore, in

COSMO-RS, polymers are treated as
”
pseudo-liquids“. As a consequence, the applicability

of COSMO-RS for crystalline polymers is limited. Also, polymer swelling is not taken into

account.

Although the screened database is larger than the search space in previously published

solvent screening approaches,52–55,307 it represents only a small subset of the chemical space

with an estimated size of around 1018 - 10200 molecules. Considering the enormous size

of the chemical space, the globally optimal solvent candidate is likely not included in the

solvent database. However, the solvent database represents a large collection of chemically

diverse molecules of which many are commercially available. Therefore, the screening

framework has the potential to identify meaningful solvent candidates in a short time.

5.3 Solvent design method: The genetic algorithm PSEvolve

To explore the chemical space beyond an existing database and to expand the search for

so-far undiscovered solvents, a GA for molecular design was developed. The GA, called

PSEvolve, was implemented as a Python framework which is publicly available under:

https://github.com/koenigmattern/PSEvolve. In PSEvolve, a molecule is represented

as a graph G(V; E), where the vertices V , also called nodes, represent atoms and the

edges E represent bonds. The graph representation is preferred since commonly applied

text-based representations, such as SMILES or SMARTS, can lead to structural infeasibility

of the designed molecules (see Section 4.4).

In the following, each step of the PSEvolve algorithm is explained (Fig. 5.2). First, the

hyperparameters are set, including population size Npop, mutation rate m, number of parent

molecules Npar, number of generated children Nfili, and the ending criterion (e.g. maximum

number of generations Ngen). Furthermore, the objective function F , the constraints h and

g (Eq. 5.1-5.3) must be defined. Subsequently, a start population P0 is generated. The

start population can be freely chosen (e.g. randomly chosen molecules). Afterwards, the

iterative, stochastic optimisation procedure starts with the property predictions necessary to

evaluate h, g , and F . Here, models with a suitable trade-off between speed and accuracy are

necessary for an efficient, high-throughput exploration of the chemical space. In the screening

https://github.com/koenigmattern/PSEvolve
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method described in Section 5.2, COSMO-RS was used for this purpose. However, COSMO-

RS requires computationally intense QM-calculations for each newly designed solvent that

is not already contained in the database that is described in Section 5.2.1. Hence, for these

predictions, suitable surrogate models must be developed. Based on the property predictions,

the objective function F is evaluated and the performance of each molecule is measured.

In the context of GAs, the performance is also called fitness. In resemblance to Darwin’s

theory of natural selection, the fitness determines the reproductive success. Based on the

determined fitness, Npar parent molecules are selected. Here, roulette-wheel selection is

applied, where the probability for selecting an individual is proportional to its fitness. During

roulette wheel selection, the fitness values fc = F (ts ; es ; s) for each compound s in the

population must be normalised (Eq. 5.10). Subsequently, the selection probability psel is

determined

f̃c =
f −min(x)

max(x)−min(x)
(5.10)

psel =
f̃cPC
c=0 f̃c

(5.11)

After selecting molecules for reproduction, the cross-over step follows. Here, the

selected molecules are split into fragments as described in Section 5.3.1. The obtained

fragments are stored in the fragment pool, from which Nfili child molecules are generated.

To generate a child molecule, two parent fragments are randomly chosen from the mating

pool. The chosen fragments are randomly combined to form a child molecule as described

in Section 5.3.1. If the generated child molecule does not satisfy the constraints h and

g , it is not added to the population. The cross-over procedure continues until Nfili child

molecules are generated that meet the constraints h and g .

To reduce the risk of premature convergence of the GA, the mutation operation

maintains diversity within the population.The probability that a molecule in the population

mutates is given by the mutation rate m. PSEvolve provides eight mutation operations:

atom and bond addition, atom and bond deletion, atom and bond substitution, relocation

of functional groups, and addition of functional groups (see Section 5.3.1 for details). In

case that a molecule is selected for mutation, the mutation operation to be performed is

randomly chosen. When the respective mutation operation is performed, the validity of

the mutated molecules with resprect to the constraints g and h is checked. In the case

that a particular mutation operation cannot be performed on the molecule, e.g. because

no structrally feasible a valid structure arises, another mutation operation is randomly chosen.

After the mutation step, the fitness of each molecule in the population is evaluated and
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individuals with the lowest fitness are deleted to maintain a constant population size Npop.

The Npop fittest molecules comprise the new population P1. Subsequently, the iterative

loop of roulette-wheel selection, cross-over, and mutation and fitness evaluation continues

until the ending criterium is reached (e.g. maximum number of iterations, or a constant

average fitness of the population). The computational details of the solvent design method

are described in Section 5.3.2.

Mutation operations:

Solvent design algorithm:

Bond
substitution

Atom
addition

Atom
deletion

Bond
addition

Bond
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No
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Fig. 5.2 Overview of the PSEvolve algorithm.

5.3.1 Structure-altering operations

In the following, all structure altering operations are described. Note, that in PSEvolve,

H-atoms are treated implicitly.

5.3.1.1 Fragmentation algorithm

In the fragmentation algorithm, a molecule is split into two or more fragments. Since

splitting a molecule at a randomly chosen position does not always lead to the desired

fragmentation (e.g. due to the occurence of rings), first, feasible locations for the molecule

fragmentation are identified. For this purpose, graph theory is applied. In graph theory,

bridges are edges that split the graph into two or more fragments if deleted. Using the
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python package networkx422 and the implemented chain decomposition algorithm,423 the

set of all bridges is identified. From this set, one bridge is randomly chosen and deleted.

The concept of bridges is illustrated for two molecules, hexane and benzene (Fig 5.3 a and

b). All edges in the hexane graph are considered bridges. Here, any bond could be deleted

to split the graph. The benzene graph, on the other hand, is circular, and therefore does

not contain any bridges.

To enables the fragmentation ring-containing molecules, a ring splitting function was

implemented. If the molecular graph does not contain any bridges, the graph is checked

for the occurence of rings. Of the determined rings, one ring was chosen randomly to be

fragmented. For ring splitting, two conditions must be fulfilled i) at least two edges must be

deletable to split the graph into fragments, ii) the chosen bonds must not be neighbouring

bonds, iii) the selected bonds must not be intersecting with a neighbouring ring. Of the

edges fulfilling these criteria, two were chosen randomly and deleted to split the graph.

5.3.1.2 Combination algorithm

The combination algorithm combines two or more molecular fragments to obtain one single

molecule. First, the implicit valences of all atoms in each fragment are determined. The

implicit valence of an atom describes the number of implicit H-atoms attached to it. Since

H-atoms are treated implicitly, the implicit valence describes the number of bonds that can

be additionally formed. Subsequently, from each fragment, one atom with an implicit valence

≥ 1 is randomly chosen. For combination, a new bond is formed which can either be a single

or double bond (triple bonds are neglected), depending on the valence. If for both bonding

atoms the implicit valence is ≥ 2, it is randomly decided whether a single or double bond is

formed. Otherwise, a single bond is formed. If in one fragment no atoms with the ability to

form additional bonds exist, the combination algorithm fails.

5.3.1.3 Cross-over

In the cross-over operation, the graph of the selected parent molecules is split using the

fragmentation algorithm. The resulting fragments are stored in a fragment pool, from which

Nfili offspring molecules are generated. To form an offspring molecule, two fragments from

the fragment pool are randomly selected and combined using the combination algorithm.

The generated offspring molecules must fulfill the constraints g(s) and h. If some of the

offsprings do not meet the constraints, new offspring molecules are generated until Nfili

offspring molecules fulfill the constraints.
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5.3.1.4 Bond addition

For bond addition, the set of atoms with with the ability to form at least one additional bond

(implicit valence ≥ 1) are determined. From all possible combinations of two atoms within

this set, one combination is randomly chosen and a bond is formed. If both bonding atoms

have an implicit valence ≥ 2, then it is randomly decided whether a single or a double bond

is formed. In case that no additional bond can be formed, the bond addition operation fails

and a different mutation operation is randomly chosen.

5.3.1.5 Bond deletion

The deletion of bonds can only be performed, if the deletion does not lead to a fragmentation

of the graph. Therefore, all bridges are determined using networkx. From all non-bridge

edges, one edge is randomly chosen and deleted. If all bonds are bridges, the bond deletion

operation fails and another mutation operation is chosen.

5.3.1.6 Bond substitution

During bond substitution, the bond type is changed, e.g. a single bond becomes a double

bond, or vice-versa. A double bond can always be changed to a single bond. However,

a single bond can only be changed to a double bond, if both connected atoms haven an

implicit valence ≥ 2. In case no bond suitable for substitution can be determined, another

mutation operation is randomly selected.

5.3.1.7 Atom addition

For the addition of atoms, the considered molecule is fragmented using the fragmentation

algorithm. The atom to be added is randomly chosen and treated as an additional fragment.

Then, the combination algorithm randomly combines the all fragments. If the atom addition

operation fails, and another mutation operation is randomly chosen.

5.3.1.8 Atom deletion

During atom deletion, single vertices are deleted. However, not every vertex can be safely

deleted due to the risk of fragmenting the molecular graph. To prevent the graph from

splitting, the vertex connectivity algorithm424 as implemented in the networkx package422

was applied. The algorithm identifies the set of vertices that, if deleted, split the graph into

two or more fragments, also called vertex cut. Therefore, all vertices that are not element of

vertex cut can be safely deleted. The importance of identifying atoms suitable for deletion

is exemplified for acetic anhydride (Fig. 5.3 c). Here, only the oxygen atoms of the carbonyl
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groups can be deleted, since the deletion of all other atoms would lead to a fragmentation

of the molecule.

a) b) c)

Fig. 5.3 Deleting edges and nodes from the molecular graph. a) In the hexane

graph, all edges are bridges. Therefore, the fragmentation algorithm could delete

each bond to achieve the desired fragmentation of the graph (blue highlights). In

contrast, in the bond deletion operation, fragmentation is not desired. Therefore,

this operation is not applicable to the hexane graph. b) In the benzene graph,

there are no bridges. Therefore, a pair of non-neighbouring edges must be selected

to achieve a fragmentation, as exempflified by the blue highlights. In contrast, in

the bond deletion operation, each bond could be chosen, since no fragmentation

would occur. c) For atom deletion, a fragmentation of the graph is not desired.

Therefore, only the oxygen-atoms attached to the branches (blue highlights) can

be deleted.

5.3.1.9 Atom substitution

During atom substitution, one atom is randomly chosen and its atom type is changed (e.g.

a carbon atom is replaced by an oxygen atom). To ensure structural feasibility, the replacing

atom must have an equal or higher explicit valence than the replaced atom. The explicit

valence refers to the actual number of bonds that an atom forms in a specific molecule. If

the substitution operation cannot be performed because no suitable replacing atom can be

identified, the procedure starts over again. In case the substition operation is not successful

for ten tries, the operation fails to prevent the algorithm from getting stuck, and different

mutation operation is randomly chosen.

5.3.1.10 Relocation

For the relocation operation, the fragmentation and combination algorithm are successively

applied on a molecule. In this way, the molecule is split into fragments which are randomly

recombined. If one of the two algorithm fails, the whole relocation operation fails, and

another mutation operation is randomly selected.
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5.3.1.11 Addition of functional groups

Functional groups that can be added to a molecule are stored in a pre-defined fragment pool.

From the pool of fragments, one fragment is randomly chosen and randomly combined with

the original molecule using the combination algorithm. If the combination algorithm fails,

the addition of functional group fails, and another mutation operation is randomly chosen.

5.3.2 Computational details

The GA PSEvolve was implemented in Python 3.7 using the graph theory package net-

workx422 (version 2.3.6) and the cheminformatic package RDKit415 (2022.03.5). A Lenovo

IdeaPad 5 14ALC05 (AMD Ryzen 7 5700U with Radeon Graphics 1.80 GHz and 16 GB

RAM) with a Windows operating system was used to perform all calculations.

5.3.3 Advantages and limitations

The graph-based GA PSEvolve developed in this thesis is a stochastic molecular design

algorithm. By combining graph and valence theory, only structurally feasible molecules are

generated, which is highly advantageous for the efficient exploration of the chemical space.

In contrast to other graph-based GAs, as proposed by Jensen et al.,325 PSEvolve allows

for a higher number of structure altering operations and stochastic elements. Furthermore,

PSEvolve can be flexibly adjusted e.g. by selecting preferred atom types or functional

groups that should be explored. A further advantage of PSEvolve is the possibility for

integrating different types of property models, e.g QSPR models, neural networks, or group

contribution models. Especially neural networks gained popularity in recent years due to

their high speed and accuracy (when trained on a high-quality dataset). However, their

integration into deterministic optimisation methods requires translating the trained neural

network into optimisation formulations suitable for the solver software which is tedious and

not always possible. In PSEvolve, no reformulation is required and neural networks can

be seamlessly integrated. Besides solvents, PSEvolve can potentially be applied for other

substance classes, e.g. drugs, when suitable constraints are introduced and appropriate

property predictions models are available. However, genetic algorithms such as PSEvolve

are not global optimisation methods. Therefore, the overall best performing molecule might

not be always generated. Furthermore, the efficiency is highly determined by the selected

hyperparameters. In contrast to the proposed solvent screening method, PSEvolve does not

rely on a pre-defined solvent database and navigates the chemical space autonomously based

on principles similar to natural selection.
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5.4 Summary

In this chapter, two complementary methodologies for solvent selection for biomass fraction-

ation processes were developed: a solvent screening, and a solvent design approach. Using

the solvent screening approach, a database containing more than 8000 solvent molecules

is screened for the optimal solvent candidate. From the database, unsuitable molecules

are successively deleted. For thermodynamic property predictions (e.g. solubility of the

biomolecules, partition coefficients, or LLE phase compositions), COSMO-RS is applied.

For COSMO-RS predictions, representative model molecules for each biomass fractions are

defined and modeled using DFT methods. The performance of the solvent candidates as de-

fined by the objective function is evaluated. To identify the optimal solvent candidate within

database, candidates are ranked based on their performance. In this manner, readily avail-

able solvents with high potential application in biorefinery processes can be identified. The

developed GA for solvent design, called PSEvolve, allows for the generation of molecules with

desired target properties. Since the explored space is not limited to a predefined database,

also undiscovered molecular sturctures can be explored. Hence, the solvent design method

allows for a broader exploration of the chemical space than the screening method. PSEvolve

is a GA that is based on evolutionary strategies (selection, cross-over, and mutation) on the

graph of the molecules and optimises the molecular structures towards the target properties.

By combining graph and valence theory, structural feasibility of the designed structures is

ensured and the chemical space can be efficently explored. The generation of so-far undis-

covered structures offers opportunities for the targeted synthesis of highly promising solvent

candidates. Even if no suitable synthesis route is available or the designed solvent is not

commercially available, further analysis of generated structures enhance the understanding of

structural features and their relation to the desired properties. In the following chapters, the

developed methods are applied to solvent selection problems in lignocellulose and microalgal

biorefineries.
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6 | Solvent screening and design for ligno-

cellulose biorefineries

Solvent selection is highly important for environmentally friendly, safely operating, and

economically feasible lignocellulose biorefineries. Organosolv processing and lignin-first

approaches, including AAF, rely on the use of solvents to obtain separate cellulose,

hemicellulose sugars, and lignin streams (Section 2.2). In all of these processes, as a first

step, lignin is extracted from the biomass. Conventional organosolv pulping leads to lignin

condensation, mainly caused by the acidic conditions and high temperatures applied in

the process (Section 2.2.3). Subjecting such condensed lignins to lignin depolymerisation

via hydrogenolysis leads to low monomer yields due to the low residual β-O-4 content.

Condensed lignins, such as Kraft or organosolv lignins, are therefore not suitable for

conversion to aromatic chemicals. Therefore, these condensed lignins are rather applied

as materials, such as thermoplastics, films, or nanoparticles. In AAF, aldehydes are added

to minimise lignin condensation (Section 2.2.4.1). Here, lignin’s α- and γ-hydroxyl groups

react with the aldehyde to form a stable acetal, thus protecting the β-O-4 bonds.

Mainly alcohols (EtOH, 2-propanol, 1-butanol) are applied in organosolv pulping and

reductive catalytic fractionation due to their low price, and benign EHS properties. However,

the lignin solubility in alcohols is rather low. In AAF, solvent selection is particularly difficult

due to potential reactions between the solvent and the aldehyde. So far, mainly cyclic

ethers are known to offer stability under AAF conditions.38,155 Here, the solvent selection is

a trade-off between the toxic and carcinogenic 1,4-dioxane with high lignin solubility, and

the more benign 2-MeTHF with a remarkably lower lignin solubility. Moreover, halogenated

solvents such as chloroform are not recommended for application on the industrial scale

due to their health hazards and low lignin solubility. Solvents are not only applied for lignin

isolation from biomass, but also for lignin upgrading to materials. Here, solvents with high

lignin solubilities such as DMSO, are commonly applied.100,101 Lignin dissolution is a crucial

step in lignocellulose fractionation and subsequent lignin upgrading. Hence, in both fields,

solvents with high lignin solubilities are sought after.
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In this chapter, the developed solvent screening (Section 5.2) and design method

(Section 5.3) are applied to identify solvents for lignocellulose biorefineries. In Section 6.1, a

database containing more than 8000 structures is screened for solvents with high solubilities

of the biomass fractions and benign EHS properties. The solvent screening is evaluated

for different process configurations, including targeted lignin extraction (as performed in

organosolv, reductive catalytic fractionation, and AAF processing), and for the joint dissolu-

tion of multiple fractions (followed by subsequent precipitation of cellulose425–427 and lignin

from the process liquor.36) The solvent screening is useful to obtain an overview of already

synthesised, commercially available structures. However, the screening results showed

that for AFF where the solvent selection is additionally constrained by stability towards

aldehydes, the search space must be expanded. In Section 6.2, the developed design algo-

rithm is applied to design tailored solvents for lignin dissolution in lignin upgrading and AAF.

This chapter is based on the publications of König-Mattern et al.395,396 and includes direct

as well as modified excerpts used under Creative Commons license CC BY 4.0. I kindly

acknowledge the implementation, training, and testing of a graph neural network for the

prediction of lignin solubilities by Edgar I. Sanchez Medina. He also applied the attribution

method to the solvent structures. Furthermore, I would like to acknowledge the experi-

mental work of Anastasia O. Komarova, who provided several datapoints of experimentally

determined lignin solubilities, as well as the yields of aldehyde-protected sugars and lignin

monomers from AAF.

6.1 Solvent screening

In the following section, the solvent screening procedure is explained. As a first step, the

solvent screening was formulated as an optimisation problem which guides the solvent se-

lection (Section 6.1.1). Model molecules representing the original structures of cellulose,

hemicellulose, and lignin were identified (Section 6.1.2) and later used in COSMO-RS sol-

ubility predictions. Finally, the database was screened and the identified candidates were

ranked with respect to different process configurations, including targeted lignin dissolution,

and the joint dissolution of multiple biomass fractions. (Section 6.1.3).
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6.1.1 Optimisation problem and screening procedure

Based on the optimisation problem stated in Eqs. 5.1-5.3, the solvent screening for lignocel-

lulose biorefineries was formulated as follows

min
s∈Sdatabase

F (t(b; s); e(s)) (6.1)

s.t. Tm(s) ≤ 70 ◦C; (6.2)

70 ◦C ≤ Tb(s) ≤ 200 ◦C; (6.3)

Namines(s) = 0; (6.4)

Q(s) = 0: (6.5)

where the thermodynamic properties t are defined as the molar solubilities xC; xH and xL

of the representative biomolecules b (cellulose C, hemicellulose H, and lignin L) in the

solvents s contained in the database Sdatabase (see Section 5.2.1 for details regarding the

constructed database). The EHS properties e are defined by the EHS score (Section 5.2.4).

Since the process temperatures in lignocellulose fractionation usually range between 70 and

200 ◦C (Section 2.2), the melting temperature of the solvents Tm was limited to ≤ 70 ◦C

and the boiling temperature of the solvents Tb (at atmospheric pressure) was limited to

70 ◦C ≤ Tb ≤ 200 ◦C. Furthermore, structural constraints were introduced. Due to their

potential reactivity with the biomass, solvents containing primary and secondary amines

were excluded during the screening procedure (Namines = 0, see Eq. 6.4). Primary and

secondary amines are alkaline, nucleophilic functional groups that likely react with carbonyl

compounds. Additionally, aromatic amines are highly reactive in electrophilic aromatic

substitution. Furthermore, the solvent should have a charge Q of net zero (Eq. 6.5).

Therefore, electroneutral mixtures of ions (e.g. ILs) were eligible solvent candidates,

however, single ions were excluded.

The objective function F was defined as the Euclidian distance d(o; i ) of the properties

of interest i from the optimal point o (see Eq. 5.9). Here, different properties of interest

were studied depending on the desired process configurations (which are explained in more

detail in the Sections 6.1.3.1-6.1.3.3). The objective function F includes the solubilities of

the biomass fractions and the EHS score, and measures the performance of each solvent

necessary for the solvent ranking. The solubilities xC, xH, and xL were predicted using

COSMO-RS at T = 70 ◦C according to Eq. 5.5-5.6. This temperature reflects preferred,

rather mild processing conditions. For the solubility predictions, representative molecules

for each biomass fraction were identified (Section 6.1.2). The EHS score was predicted as

described in Section 5.2.4.
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To solve the optimisation problem, first, solvent candidates not fulfilling the constraints

given in Eqs. 6.2-6.5 were removed from the database Sdatabase. First, the number of primary

and secondary amines Namines and the net charge Q of the solvent were determined and

unsuitable compounds were eliminated. Subsequently, solvent candidates with unsuitable

Tm and Tb were removed. For each solvent candidate meeting the constraints, the objective

function F is evaluated for each scenario described in the Sections 6.1.3.1-6.1.3.3, and the

solvents are ranked according to the minimum distance d(o; i ). After the ranking, Tm, Tb,

and EHS properties of the identified candidates are compared to literature data to reassure

that the constraints imposed on the optimisation problem were indeed fulfilled.

6.1.2 Representative lignocellulose molecules

The COSMO-RS solubility predictions of xC, xH, and xL require QC calculations of the

biomass compounds as described in Section 5.2.5. Since cellulose, hemicellulose, and lignin

are large, complex molecules (Section 2.1) with high molecular weights (> 150 kDa for

cellulose, > 30 kDa for hemicelluloses, > 4 kDa for lignin)83,428 modeling their native

structures is computationally infeasible. To reduce the computational time and structural

complexity, fragments of the original biomass fractions were modeled individually (Fig. 6.1).

G
S
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SSGG GG 

phenolic

SGG GGG

Lignin

Glucuronoxylan

Glucuronoxylan
capped

Cellotriose

Cellobiose
Cello-

tetraose
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Fig. 6.1 Representative molecules investigated for the cellulose, hemicellulose, and

lignin fraction. The abundance of each fraction within the biomass is given as wt.%

on a dry matter basis. Adapted from König-Mattern et al.395 with permission from

Elsevier.

Several representative molecules for the cellulose fraction were proposed in the literature,
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including glucose,307,311 cellobiose,307–309 cellotriose,306,307 and cellotetraose.307 Further-

more, capped cellotriose306 and cellotetraose310 molecules were used as representative

structures. Here, QM-calculations were performed for the respective polymer fragment

and the end-groups were subsequently truncated, since their influence compared to the

original polymer chain is usually low. Chu et al. reported a higher correlation between the

COSMO-RS predicted excess enthalpies and experimentally determined cellulose solubilities

of cellobiose and cellotetraose in ILs than with glucose and cellotriose.307 Other studies

highlighted the importance of intramolecular hydrogen-bonding which differs between the

different cellulose-representing molecules.308,309 According to Yamin, the hydrogen-bonding

is better captured when not only one mid glucose-unit as in the truncated cellotriose

molecule is considered, but two mid glucose-units as in cellotetraose.310 A more complex

cellulose-representing structure was modelled by Casas et al.312 Here, not only a single

cellulose chain was considered, but several fragments of adjacent cellulose chains to capture

intracellular and intermolecular interactions of cellulose.312 However, conformers were

not taken into account, probably due to the time-consuming calculations. In this thesis,

cellobiose, cellotriose, cellotetraose, and a cellotetraose molecule with capped end-groups

were assessed for their ability to represent cellulose in COSMO-RS solubility predictions.

Conformational search was applied to all modeled biomolecules (Section 5.2.5). Glucose was

not considered as a representative molecule since its thermodynamic properties remarkably

differ from cellulose, e.g. the solubility of glucose in water is 47.8 wt.% (T = 20 ◦C),429

while cellulose is insoluble in water at the same conditions.66

For the lignin fraction, predominantly monolignols were selected as representative

structures in recent studies selected .52,304,308,309,311 Also, the dimeric structures pinoresinol

and guaiacylglycerol-2-coniferyl ether were considered as lignin representatives.312 A more

complex structure was modelled by Achinivu et al., consisting of ten aromatic units

connected via different linkage-motifs aiming to mimic herbaceous biomass.305 In this thesis,

several lignin-representing molecules were assessed, including monolignols, as well as dimers

and trimers composed of S- and G-units connected via β-O-4 bonds were modelled. G- and

S-units are present in several lignocellulosic feedstocks, including hardwood, softwood, and

herbaceous lignin. Only herbaceous lignin contains noteworthy amounts of H-units (up to

35% of all aromatic units). Additionally, one conformer of a 1,500 gmol−1 lignin fragment

(8 G- and S-units, connected via α-O-4, β-O-4, β-β, and β-5 bonds) was modelled to study

differences compared to the truncated representatives in COSMO-RS solubility predictions.

In the recent literature, hemicelluloses were represented by a mixture of glucose and

xylose monomers.304,308,309 However, the polymeric character of hemicelluloses was not

taken into account so far. Therefore, in this work, glucuronoxylan with and without capped
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end-groups were chosen as a representative structures. Glucuronoxylan is primarily present

in dicots.

The chemical structures of all representative molecules are summarised in the Appendix

(Tab. C.1). These structures were modeled on a quantumchemical level as described in

Section 5.2.5. From these 16 initial structures, the most suitable representative molecules

were identified by analysing their ff-profiles (Appendix C.1.1.1) and by correlating COSMO-

RS solubility predictions with experimental solubility data (Appendix C.1.1.2). Based on

these analyses, the capped cellotetraose molecules was selected as a cellulose-representative,

the capped glucuronoxylan molecules was chosen as a model molecule for the hemicellulose

fraction, and all monolignols, dimers and trimers were selected as lignin-representatives.

Overall, the COSMO-RS solubility predictions and the experimental data were in qualitative

agreement. Although COSMO-RS was not able to accurately predict absolute solubility

values, nevertheless, a qualitative solvent comparison was possible (Appendix C.1.1.2). Since

a relative solvent comparison is sufficient for the aims of a solvent screening, COSMO-RS is

a suitable method for solubility predictions.

6.1.3 Screening results and solvent ranking

84% of the initial 8011 solvent candidates met the structural constraints described in Sec-

tion 6.1.1. After screening for solvents with favourable Tm and Tb, 3525 solvent candidates

remained for COSMO-RS solubility predictions using the selected representative molecules

(Fig. 6.2). The solubility predictions revealed distinct solubility profiles (Fig. 6.3 a), opening

possibilities for various process configurations. Several solvent candidates were predicted to

simultaneously dissolve multiple biomass fractions. In such a biorefinery scenario, first, all

biomass fractions are dissolved and subsequently separated, e.g. by precipitation from the

process liquor. Other solvent classes are rather applicable for selective lignin dissolution.

Such solvents could be integrated into organosolv processing or AAF, provided that these

solvents are non-reactive towards other compounds (e.g. acids, or aldehydes) the process

liquor. In addition, solvents with high lignin solubilities have high potential for dissolution-

based lignin upgrading (e.g. nanoparticles, lignin films). Interestingly, no solvent candidate

within the search space was able to selectively dissolve cellulose. Based on these results,

three different objective functions are formulated to evaluate the solvent candidates for dif-

ferent process configurations: In Section 6.1.3.1, solvents with high solubilities of cellulose-,

hemicellulose-, and lignin representing molecules, and a high EHS score were ranked. Here,

only few solvent candidates with lignin solubilities comparable to the benchmark solvent 1,4-

dioxane were discovered. To explore more suitable candidates, the objective function F was

simplified by considering only cellulose and lignin solubilities (Section 6.1.3.2). The hemi-

cellulose solubility was neglected since hemicellulose is depolymerised, and its constituent
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Database Structural
constraints

Tm/Tb

Solubility and EHS
predictions

8011 6765

3532

1246 3233

Fig. 6.2 Numbers of eligible solvent candidates after each screening step. Reprinted

from König-Mattern et al.395 with permission from Elsevier.

sugars are solubilised under commonly applied process conditions. Furthermore, the EHS

score was not used as a ranking criterion. In Section 6.1.3.3, solvents with high lignin sol-

ubility and low solubilities of the carbohydrate fractions were sought after, as commonly

applied in organosolv processing, reductive catalytic fractionation, or AAF. In the following

sections, the best peforming solvent candidates for each objective are presented and poten-

tial process configurations are discussed. A solvent ranking for each objective is included in

Appendix C.1.2.

6.1.3.1 Objective 1: Solvents with high EHS score for the joint dissolution of all

lignocellulose fractions

To identify solvents with benign EHS properties and high solubilities for all biomass fractions,

the optimal point was defined as o(t; e) = [xC; xL; xH;EHS score]⊤ = [1; 1; 1; 1]⊤ and the

solvent candiates were ranked according to their minimal distance from that point (Eq. 5.9).

Fig. 6.3 a shows that few candidates exist in proximity of the optimal point. Most of these

candidates were ILs which are listed in Tab. 6.1. The two best performing ILs were [Chol][OH]

and [P666,14][BTMP]. [Chol][OH] is an alkaline IL which was already proposed for the val-

orisation of agricultural waste.430 No experimental solubility data for [P666,14][BTMP] was

found in the literature. However, phosphonium-based ILs are known to dissolve lignocellulosic

biomass well.431,432 Furthermore, the IL [EMIM][OAc] was predicted to solubilise all biomass

fractions. In agreement with literature reports, this IL is able to completely dissolve wood

chips,433 and also other classes of ILs are able to dissolve all biomass fractions.425 Further-

more, Zavrel et al. dissolved different wood species in [EMIM][OAc] and [MMIM][DMP].434

High cellulose solubilities for [EMIM][OAc] and [BMIM][OAc] were reported, dissolving 8
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and 14 wt.% cellulose, respectively.435 For the DES included in the database, generally low

cellulose solubilities were predicted, leading to a large d(o; i ). Nevertheless, choline chloride

in combination with imidazole was ranked the highest among the DESs and was reported

to dissolve 2.48 wt.% of cellulose.436 Also for the screened DES, the COSMO-RS solubility

predictions were qualitatively in line with literature data. Furthermore, the organic solvent

18-crown-6 ether was predict to dissolve all biomass fractions. According to its SDS, the

crown ether is only slightly toxic (acute toxicity category 4 according to the Environmental

Protection Agency) and was not listed as a carcinogen.437 Data regarding ecotoxicity and

flammability is still lacking. Other organic solvent candidates were predicted to have re-

markablky lower cellulose solubilities, leading to a lower rank. Overall, of the 8011 potential

solvent candidates, only 8 ILs and the 18-crown-6 ether were close to the defined optimal

point. The distance from the optimal point increased rapidly after the first four ranks, mainly

caused by low cellulose solubilities.
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0(
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)

log10(xL)
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(x H
)

Alcohols

Dioxane

n-Heptane

Dibutylether
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0(
x L
)
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b)

Fig. 6.3 Solubilities of the biomass fraction for all of the 3525 solvent candidates

that were identified using the screeing procedure. The datapoints are colour coded

corresponding to their EHS score. a) Logarithmic molar solubilities of cellulose

(log10(xC)), lignin (log10(xL)), and hemicellulose (log10(xH)). b) Logarithmic molar

solubilities of cellulose (log10(xC)), lignin (log10(xL)). The locations of distinct

solvent candidates are highlighted. Adapted and reprinted from König-Mattern et

al.395 with permission from Elsevier.

6.1.3.2 Objective 2: Solvents for the joint dissolution of lignin and cellulose

To promote the exploration of further solvent candidates, the search criteria were relaxed

and the optimal point was defined as o(t) = [xC; xL]
⊤ = [1; 1]⊤, neglecting the hemi-

cellulose solubility and the EHS score. Similar to the previous section, the ILs given in

Tab. 6.1, and additonally the solvent candidates 1-methylpiperidine-1-oxide, 18-crown-6

ether, and dimethylselenoxide were identified (see Tab. 6.2 for their chemical structures).
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Tab. 6.1 Ranking of ILs for the joint dissolution of cellulose, lignin

and hemicellulose. The distance from the optimal point o(t; e) =

[xC; xL; xH;EHS score]⊤ = [1; 1; 1; 1]⊤ is given as d (o; i ). Solubilities

for each biomass fraction are given in logarithmic scale. The Tm was

obtained from Iolitec,410 Tb was unknown. RT indicates room temper-

ature. EHS properties were taken from PubChem.414 a

IL d (o; i ) log10(xC) log10(xL) log10(xH) Tm [◦C]
EHS

properties

[Chol][OH] 0.00 0.00 0.00 0.00 n.a. n.a.

[P666,14] [BTMP] 0.00 0.00 0.00 0.00 < RT

irritant,
corrosive,

environmental
hazard

[BMIM] [OAc] 0.08 0.00 -0.04 0.00 < RT n.a.

[EMIM] [OAc] 0.49 0.00 -0.29 0.00 < RT irritant

[MMIM] [DMP] 0.70 -0.20 -0.37 -0.07 < RT
corrosive,
irritant

[EMIM][DMP] 0.75 -0.37 -0.18 -0.18 23
corrosive,
irritant

[EMIM][DEP] 0.77 -0.46 0.00 -0.23 < RT
corrosive,
irritant

[BMIM][DBP] 1.01 -0.72 0.00 -0.40 < RT irritant

[P666,14][Dec] 1.05 -0.96 0.00 -0.35 ∼ RT corrosive

a Choline ([Chol]), hydroxide ([OH]), trihexyltetradecylphosphonium ([P666 14]), bis(2 4 4-
trimethylpentyl)phosphinate ([BTMP]), 1-butyl-3-methylimidazolium ([BMIM]), acetate ([OAc]), 1-
ethyl-3-methylimidazolium ([EMIM]), 1 3-dimethylimidazolium ([MMIM]), dimethyl phosphate ([DMP]),
diethyl phosphate ([DEP]), dibutyl phosphate ([DBP]), decanoate ([Dec]).

1-methylpiperidine-1-oxide is an interesting solvent candidate due to its structural similari-

ties to the solvent NMMO which is applied for cellulose dissolution in the Lyocell process

for fibre spinning.438 However, 1-methylpiperidine-1-oxide suffers from low thermal stability

and a high price. To date, there is no experimental data available for lignocelluose process-

ing with 1-methylpiperidine-1-oxide available. The identified dimethylselenoxide has even

stronger HBA properties than its is the sulfur analog DMSO,439 potentially increasing the

solubility of lignin. However, this candidate is highly toxic and an environmental hazard,414,

and is for this reason not further considered. Similar to objective 1, no DES was able to

compete with the solvents listed in Tab. 6.1 and 6.2 for the given criteria.

6.1.3.3 Objective 3: Solvents for selective lignin extraction

Selective lignin extraction is a key step in several lignocellulose-based biorefinery processes,

such as organosolv processing, AAF, or reductive catalytic fractionation (see Section 2.2).

In these processes, lignin is extracted from the biomass and dissolved by the employed

solvent, while the cellulose fraction remains as an easily separable solid. Hence, for this

objective, the optimal point was defined as o(t) = [xC; xL]
⊤ = [0; 1]T. To explore many

solvents with matching solubility characteristics, the EHS score was neglected at this stage.

However, the EHS properties as given in the SDSs were considered during the solvent



70 Chapter 6. Solvent screening and design for lignocellulose biorefineries

Tab. 6.2 Solvent ranking for joint lignin and cellulose dissolution. EHS criteria

and hemicellulose solubilities were neglected in the ranking. The distance from the

optimal point o(t) = [xC; xL]
T = [1; 1]⊤ was zero for all solvents presented in the

table. Unless otherwise stated, all properties were obtained from the respective

safety data sheets.

Solvent Tm [◦C] Tb[
◦C]

EHS
properties

Structure

1-Methyl-
piperidine-
1-oxide

n.a. n.a. n.a.

O
–
NNNNNNNNNNNNNNNNNNNNNN
+

18-Crown-6
ether

42-45
118

(0.07 mbar)440
irritant

O

O

O

O

O

O

Dimethyl-
selenoxide

n.a. n.a.

acute toxicity,
health hazard,
environmental

hazard
Se

O

selection for experimental testing (see Section 6.3).

In total, 104 organic solvents, one IL, and four tetrabutyl ammonium-based DESs with

a distance of ≤ 0.5 from the optimal point were identified. Commercially available solvents

with a price ≤ 100 e per 10 g were identified for this objective (Tab. 6.3). Fig. 6.3 b shows

that several solvent candidates suitable for selective lignin dissolution also have benign EHS

properties. Furthermore, many structural similarities among the most promising solvent

candidates were identified. These candidates belong to four major classes: azines (pyridines,

pyrazines, pyrimidines, pyridazines, triazines), sulfoxides, oxazolines, and phosphonates.

Many of these candidates were predicted to have higher lignin solubilities and more benign

EHS properties than the toxic benchmark 1,4-dioxane (the EHS score for most of the

identified chemicals from Tab. 6.3 is > 0.8). Alcohols, such as EtOH, 2-propanol or

1-butanol, that are commonly applied in reductive catalytic fractionation and in industrial

organosolv processes, showed comparably low lignin solubilities.

The screening procedure was additionally applied to identify solvents with high lignin

solubilities, regardless of the solubilities of other fractions. This additional objective was

defined by the optimal point o(t) = xL = 1. However, the same solvents as in Tab. 6.3 were

discovered, only with slightly altered ranking due to the neglected cellulose solubilities (data

not shown). The identified solvents could also be applied in many areas of lignin upgrading,

including the formation of lignin films or nanoparticle fabrication, where solvents with high

lignin solubilities are essential.
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Tab. 6.3 Solvent ranking for selective lignin extraction. The distance from the

optimal point o(t) = [xC; xL]
⊤ = [1; 0]⊤ is given as d (o; i ). Only solvent candi-

dates with d (o; i ) ≤ 0:2 are shown. Unless otherwise indicated, Tm, Tb, and EHS

properties were obtained from the respective SDSs.

Solvent d (o; i) log10(xC) log10(xL) Tm [◦C] Tb [◦C]
EHS

properties
Structure

2-Methyl-

2-oxazoline
0.00 -2.89 0.00 n.a. 100 flammable

N

O

Pyrrolidine-

1-carbaldehyde
0.00 -3.21 0.00 n.a. 92 irritant414 N

O

Diethyl-

methyl-

phosphonate

0.00 -2.74 0.00 n.a. 194 irritant P

O

OO

Diethyl-

sulfoxide
0.00 -2.51 0.00

14
414 n.a. n.a. S

O

4-Piperidino-

pyridine
0.01 -2.33 0.00 78 n.a.

toxic,

corrosive NN

Dimethyl-

methyl-

phosphonate

0.01 -2.22 0.00
< 50
414

181
414

flammable,

irritant,

health hazard
414

P

O

O O

4-Pyrrolidino-

pyridine
0.01 -2.31 0.00 54 n.a.

corrosive,

acute toxicity N N

Dimethyl-

sulfoxide
0.02 -1.66 0.00 16 189 irritant

S

O

4-Methoxy-

pyridine
0.04 -2.84 -0.02 n.a. n.a. irritant

N

O

Dimethyl

ethyl-

phosphonate

0.04 -3.24 -0.02 n.a. n.a. toxic
P

O

OO

5-bromo-

1-methyl-

1h-imidazole

0.05 -2.46 -0.02 40 110 irritant
N

N
Br

n,n-Dimethyl-

acetamide
0.07 -3.41 -0.03 -20 164

irritant,

health hazard
N

O

Pyrimidine 0.08 -2.57 -0.04 19 123 flammable NN

5,5-Dimethyl-

1-pyrrolin

-n-oxide

0.10 -3.49 -0.04 25
78

(0.5 hPa)
n.a. O

–
N
+

Continued on next page
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Tab. 6.3 – Continued from previous page

Solvent d (o; i) log10(xC) log10(xL) Tm [◦C] Tb [◦C]
EHS

properties
Structure

1-Methyl-

imidazole
0.12 -0.94 0.00 -6 198

toxic,

corrosive
N

N

4-Methyl-

pyrimidine
0.12 -3.14 -0.06 n.a. 141 flammable N

N

Pyrazine 0.14 -2.82 -0.06 50 115 flammable

N

N

5-Methyl-

pyrimidine
0.15 -3.16 -0.07 33 n.a.

flammable,

irritant

N

N

Dimethyl-

formamide
0.15 -3.25 -0.07 -61 153

flammable,

health hazard,

irritant
N

O

Pyridine 0.20 -3.14 -0.10 -42 115
flammable,

irritant

N

6.2 Solvent design for lignin dissolution in lignin-first biore-

fineries and lignin upgrading

The solvent screening approach identified azines, sulfoxides, oxazolines, and phosphonates as

promising solvent candidates for selective lignin dissolution. Solvents from these classes are

suitable for application in the fabrication of lignin nanoparticles, films, or fibres. However,

oxazolines and azines are unstable in the presence of acids, limiting their use in organosolv

pulping and AAF. To explore potential solvents independent of a predefined database, the

GA PSEvolve (Section 5.3) was applied for solvent design tailored towards lignin dissolution

and AAF. Lignin dissolution is an essential step in lignin isolation from biomass but also for

dissolution-based lignin upgrading (e.g. nanoparticle, film, and fibre production). Designing

tailor-made solvents with high lignin solubility could not only improve the lignin yield in

lignocellulose fractionation but also open new perspectives in the field of lignin upgrading,

and hence, effectively promote the utilisation of lignocellulosic feedstocks within the circular

economy.
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For this purpose, the solvent design problem was stated as an optimisation problem and

the genetic algorithm PSEvolve was applied for generating tailored solvent structures (Sec-

tion 6.2.1) aiming at maximum lignin solubility. For lignin solubility predictions, COSMO-RS

was not suitable due to its need for time-intensive quantum chemical calculations for each

newly designed solvent candidate. Therefore, a GNN for lignin solubility predictions was

developed, serving as a surrogate model (Section 6.2.2). PSEvolve and the integrated GNN

were applied to generate potential solvents aiming at maximum lignin solubility with potential

application in dissolution-based lignin upgrading (Section 6.2.3). Subsequently, tailor-made

solvent candidates for AAF were designed (Section 6.2.4). Here, structural constraints were

introduced, preventing the design of solvent structures that are potentially reactive towards

the process liquor and biomass compounds.

6.2.1 Optimisation problem and solvent design algorithm

Based on Eqs. 5.1-5.3, the optimisation problem for the solvent design was formulated as

min
s∈S

−xL(s) (6.6)

s.t. Ms(s) ≤ 200 gmol−1; (6.7)

SAS(s) ≤ 3:5; (6.8)

atom type(s) ∈ C;H;N; S;O;P; (6.9)

Nreactive(s) = 0: (6.10)

The objective of the solvent design is to maximise the lignin solubility in the solvent struc-

tures s. The cellulose and hemicelullose solubilities were neglected. The high-thoroughput

solvent screening showed that the cellulose solubility is generally low in most of the organic

solvents (Section 6.1). Hemicelluloses readily depolymerise and solubilise under process

conditions applied in AAF and organosolv pulping. Furthermore, the EHS properties of

the solvents were not considered during the design stage but were manually assessed when

specific solvent candidates were selected for experimental evaluation. During the solvent

design for lignin dissolution and for AAF, the molecular weight of the solvents Ms, the

synthetic accessibility score (SAS), and the atom types were restricted. Since solvents are

generally rather small molecules, Ms ≤ 200 gmol−1 was required. The SAS is a useful

metric how easily a compound can be chemically synthesised, ranging between one (easy)

and ten (hard).441 To spur the generation of molecules that can be easily synthesised, the

SAS upper limit was 3:5. Furthermore, only C, H, N, S, O, and P-atoms were allowed

in the design. Halogen atoms were excluded due to their generally high toxicity and

reactivity. When applying the solvent design method to AAF, additionally the number of
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functional groups that are prone to reactions with the process liquor or the biomass, also

denoted as Nreactive, must be set to zero. In this manner, reactive functional groups were

excluded, including primary and secondary amines, aldehydes, aromatic N-heterocycles,

isocyanates, amides, esters, and hydrazides. Although ketones can undergo aldol con-

densation with aldehydes under acidic conditions, carbonyl groups were not excluded as

they easily mutate to other functional groups, such as ether or C=C groups during the design.

To solve the inverse problem (Eqs. 6.6-6.10), the graph-based GA PSEvolve was com-

bined with a GNN for lignin solubility predictions that was trained on COSMO-RS solubil-

ity data beforehand (Fig. 6.4). The algorithm was initiated with a population of hexane

molecules and a population size of 1000 molecules. The solubility of lignin in n-hexane is

generally low across different feedstocks.395,442 During the iterative optimisation procedure,

these suboptimal structures were designed to maximise the lignin solubility while meeting

the imposed constraints. In each generation, 50 parents were chosen for cross-over to gen-

erate 50 offspring molecules. The mutation rate was set to 0.1. Molecules not meeting

the constraints were directly eliminated during the cross-over and the mutation steps. The

respective operation was performed until an eligible structure was generated. To evaluate

the fitness of a solvent candidate, the lignin solubilty was predicted by a GNN that acted

as a surrogate model for COSMO-RS solubility predictions (Section 6.2.2). After 1000 gen-

erations, the GA was stopped and the resulting structures were analysed (Sections 6.2.3

and 6.2.4). Different sets of hyperparameters were tested. The hyperparameter test and the

chosen set of parameters are provided in Appendix C.2.1.

6.2.2 Lignin solubility predictions using a graph neural network

In GNNs, chemical structures can be represented as undirected graphs G(V; E) where

V is the set of vertices (also called nodes) representing the atoms, and E is the set

of edges representing the bonds (Fig 6.4). The nodes and edges are attributed by a

feature vector, describing selected properties. In this work, the graph was attributed

by several atom features (e.g. atom type, hybridisation, charge) and bond features

(e.g. bond type, conjugation) which are summarised in Tab. C.5. To obtain additional

information, the node features were subsequently updated by information about the

neighbouring nodes and the connecting edges, also known as message passing step.

By performing the message passing step multiple times, the node embeddings were

successively enriched with information of their neighbourhood. Subsequently, the updated

graph was passed through a pooling operation to yield the
”
molecular fingerprint“ of

the solvent candidate. The obtained fingerprint acted as a tailor-made vectorial repre-

sentation of the solvent candidate, and served as input to a multilayer perceptron which

finally predicted the lignin solubility. Detailed information about the GNN architecture,
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Fig. 6.4 Connecting the molecular design algorithm PSEvolve with a GNN for lignin

solubility predictions. The genetic algorithm PSEvolve optimises the structure of a

molecule tailored towards high lignin solubilities as predicted by the GNN. Adapted

from König-Mattern et al.396 with permission from Elsevier.
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hyperparameter tuning, and its applicability range are provided in Appendix C.2.1.1- C.2.1.3.

Since experimental lignin solubility data is scarce, the GNN was trained and tested on

COSMO-RS solubility predictions. The COSMO-RS solubility predictions were performed

using a representative lignin structure and around 3300 organic solvent candidates that

were prior determined by the screening procedure (T = 70 ◦C, see Section 6.1.3). ILs and

DESs were excluded as their structure was unsuitable for the GNN architecture. For these

3300 solvent candidates, iterative solubility COSMO-RS lignin solubility predictions were

performed to increase the accuracy (Section 5.2.3.1). To prevent time-consuming solubility

calculations for all representative molecules, one lignin-representing structure was selected.

A trimer of G units connected via β-O-4 bonds (GGG, MGGG = 530:57gmol−1, see Tab. C.1

for chemical structure) was used for the refined COSMO-RS solubility predictions. In

contrast to H- and S-units, only G-units are produced across various lignocellulose sources,

including hardwood, softwood, and herbaceous biomass.60 In grasses and hardwoods,

G-units are less abundant compared to S- and H-units. However, G-units only differ by a

methoxy group from H- and S-units and, therefore, represent intermediate structures. GGG

was modelled on the quantum chemical level in accordance with Section 5.2.5.

The results of the training and testing show, that the GNN and COSMO-RS predictions

are well in agreement (R2 = 0.896, mean absolute error (MAE) = 0.322 for the test set),

with slight deviations in the upper solubility ranges with log10(xL)> −1 (Fig. 6.5 a). To

obtain accurate lignin solubility predictions for structurally different chemicals as generated by

PSEvolve, the training set included structurally diverse chemicals (Fig. 6.5 b). The accuracy

of the COSMO-RS solubility predictions is reduced for solubilities of log10(xL)> −1,412 which

might explain the disparity between the COSMO-RS and the GNN predictions in this region

(Fig. 6.5 a). Since the objective function of the solvent design problem is to maximise the

lignin solubility (Eq. 6.6), inaccuracies in the region of log10(xL)> −1 presumably hinder the

identification of the optimal solvent structure. However, the main objective of this study

is to identify a broad range of so-far unexplored solvent classes, rather than identifying a

single optimal one. Therefore, the deviations are less impactful for the scope of this thesis

and do not outweigh the advantages of using the GNN as a surrogate model of COSMO-RS.

Indeed, the solvent design was only made possible by the low computational cost and suitable

accuracy of the GNN.
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Fig. 6.5 GNN-training with COSMO-RS solubility data for the GGG-trimer which

serves as a lignin-representing structure. a) Parity plot for GNN vs. COSMO-RS

predictions of the training and the test set. The coefficient of determination R2

and the MAE are given for the test set. b) Chemical classes of the training set as

computed by the Classyfire toolbox. Adapted from König-Mattern et al.396 with

permission from Elsevier.

6.2.3 Solvent design for lignin dissolution

For analysing the most promising designed molecules for dissolution-based lignin upgrading,

those with the highest solubilities were selected (log10(xL)> −1:5; around 21,000 molecules).

In this manner, the relationship between molecular structure and the GNN predicted lignin

solubilities was analysed by applying t-distributed stochastic neighbour embedding (t-SNE) to

the GNN-generated solvent fingerprints. T-SNE reduced the complexity of the GNN finger-

print to a 2-dimensional space in which molecules with similar GNN fingerprints were located

within proximity. Structurally similar molecules were predicted to have similar lignin solubil-

ities (Fig. 6.6 a) Therefore, the GNN can be considered as a QSPR model that was trained

”
end-to-end“ from the molecular graph to the lignin solubility prediction. Additionally, the

GNN was able to generate tailor-made molecular fingerprints optimised for lignin solubility

predictions. Regions with particularly high lignin solubility predictions (log10(xL)> -0.60)

corresponding to sulfoxides, compounds with P=O motif, sulfones, triazines, diazines, and

azoles were discovered (Fig. 6.6 a). Other solvent classes promising for lignin upgrading were

morpholines, cyclic ethers, and cyclic ketones. The overall fittest solvent was DMSO with

log10(xL)= −0:35, followed by 1,3,5-triazine (log10(xL)= −0:36), n,n-dimethylpyrimidin-5-

amine (log10(xL)= −0:37), and dimethyl methylphosphonate (DMMP) (log10(xL)= −0:38).

In addition to the already established lignin solvents DMSO and pyridine, commercially avail-

able azoles, such as thiazole or isoxazole, were discovered. Thiazole is only slightly toxic
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(LD50 oral rat: 938 mg kg−1, toxicity category III).156 Toxicity data for isoxazole is cur-

rently lacking. Further aromatic N-heterocycles were designed, including triazines, diazines,

pyridines, and bicyclic compounds. Common side chain motifs were methoxy-, alkyl-, and

NH2-groups. Pyridines and many diazines have benign EHS properties156 and are readily

commercially available. Most triazines, but also sulfones and phosphonates are solid at room

temperature, limiting their applicability in many areas of lignin upgrading. Cyclic ethers and

ketones were associated with lower GNN-predicted lignin solubilities compared to the afore-

mentioned solvents, however, they were predicted to have a higher lignin solubility compared

to the usually applied 1,4-dioxane. During solvent design, functional groups associated with

low lignin solubilities (e.g. alkanes) were gradually replaced by functional groups associated

with higher lignin solubilities (e.g. aromatic N-atoms, Fig. 6.6 b) leading to a gradually

increasing mean lignin solubility of the population (Fig. 6.6 c). All designed solvents with a

lignin solubility of log10(xL)> −1:5 are summarised in Appendix C.2.
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Fig. 6.6 Application of the solvent design framework for lignin upgrading. a) T-

SNE plot of the designed molecules with highlighted lignin solubility. b) Exploration

of chemical space during molecule optimisation. c) Evolution of the molar lignin

solubility during molecular optimisation. Adapted from König-Mattern et al.396

with permission from Elsevier.
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6.2.4 Solvent design for aldehyde-assisted fractionation

During the solvent design for AAF, the generated molecules were required to be non-reactive

towards the process liquor and the biomass (Eq. 6.10). The algorithm generated sulfoxides,

sulfones, ethers, ketones, phosphoryl compounds, and cyclic ethers and ketones as potential

solvent candidates (Fig. 6.7 a). In addition, the functional group restrictions spurred the

exploration of non-excluded nitrogen-containing patterns, such as nitro-groups or cyclic

non-aromatic imines, with high GNN-predicted lignin solubilities. However, nitro-groups are

explosive, and imines hydrolyse in aqueous, acidic environment, and ketones undergo aldol

condensation when combined with aldehydes, rendering these compounds unsuitable for

AAF.

Similar to the solvent design for lignin dissolution (Section 6.2.3), the number of alkane

groups decreased rapidly within the first generations which were replaced by functional groups

associated with higher lignin solubilities (Fig. 6.7 b). However, the search became more

targeted, concentrating on solvent classes that are effective at dissolving lignin while taking

into account the functional group restrictions. Among the 100 fittest solvent candidates,

nearly 90% were sulfoxides, with DMSO being the overall fittest designed solvent (log10(xL)=

−0:35). Due to the functional group constraints, the algorithm designed fewer solvents with

high lignin solubilities compared to the run for lignin upgrading. As a consequence, the mean

lignin solubility of the solvent population was lower (Fig. 6.7 c). A list of designed solvents

is attached to Appendix C.2.
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Fig. 6.7 Application of the solvent design framework for AAF. a) T-SNE plot of

the designed molecules with highlighted lignin solubility. b) Exploration of chemical

space during molecule optimisation. c) Evolution of the molar lignin solubility during

molecular optimisation. Adapted from König-Mattern et al.396 with permission from

Elsevier.
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6.3 Experimental validation and investigating underlying struc-

tural patterns for lignin solubility

In the following sections, solvents identified by the solvent screening method and generated

by the solvent design method are compared and selected for experimental investigations

(Section 6.3.1). The selected solvents are used for solubility measurements for different

types of lignin. The structural features of the selected solvents were analysed by apply-

ing attribution methods to the GNN, allowing to investigate structural patterns responsible

for high lignin solubilities (Section 6.3.2). Finally, the most promising solvents were ap-

plied in AAF, demonstrating their potential for holistic utilisation of lignocellulosic biomass

(Section 6.3.3).

6.3.1 Solvent selection

Both, the solvent screening and the solvent design method, identified sulfoxides, azines,

oxazolines, and phosphonates as solvent candidates for effective lignin dissolution. However,

the solvent design approach explored these solvent classes more in depth and explored a

higher number of potential solvents in each class. Moreover, the solvent design approach

identified highly promising solvent candidates that were not included in the database. These

candidates mainly belonged to sulfones, azoles, morpholines, cyclic ethers, cyclic ketones,

and further compounds containing phosphoryl groups. In the solvent design, linear ethers

were predominant side-motifs.

From each class, solvent candidates were chosen for solubility measurements. The choice

was guided by i) commercial availability ii) EHS properties as given in the SDS, and iii) price

(≤ 100 e per 10 g). Some of the structures designed by PSEvolve were not commercially

available. In this case, solvents with similar chemical structures were chosen. As a control,

the lignin solubility was measured in three control solvents: n-heptane, and dibutyl ether

which have low lignin solubilities, and 2-MeTHF with mediocre lignin solubility. In total,

30 solvents were selected for lignin solubility measurements. Solvents for AAF were chosen

based on the measured lignin solubility and reactivity towards the process liquor.

6.3.2 Lignin solubility measurements

Three different types of lignin were applied in the solubility measurements: Kraft lignin

isolated from softwood species, FABIOLATM organosolv lignin443 isolated from hardwood,

and mild acidolysis lignin (MAL) isolated from corn cob (see Appendix C.3.1 for 2D HSQC

NMR of the lignocellulose samples and additional data points with lignin isolated from

birchwood). The solubilty measurements were performed according to Section 6.4.2 at



6.3. Experimental validation 83

T = 85 ◦C (process temperature of AAF).

The measured lignin solubilities ranged between 20 - 60 wt.% in most of the computa-

tionally identified solvents (Fig. 6.8 a). The highest solubilities were measured for DMSO

(≥ 60 wt.%), and isoxazole (≥ 50 wt.%), 2-picoline-n-oxide (≥ 49 wt.%), 2,5-dimethyl-

pyrazine (≥ 49 wt.%), and thiazole (≥ 49 wt.%). Note that for most solvents, the lignin

saturation was not completely reached as the solutions became increasingly viscous with

higher amounts of dissolved lignin. The high viscosity was challenging during the filtration

step even with specialised filters designed for viscous samples. Deviations between predic-

tions and experiments were observed for some of the selected ethers. Lignin solubilities of

up to 51 wt.% were measured for diethylene glycol dimethyl ether (DEGDME) whereas the

structurally similar diethylene glycol diethyl ether (DEGDEE) dissolved maximally 8.9 wt.%

of lignin. The GNN was not able to discriminate the differences between the ether structures

and predicted for both solvents nearly no lignin dissolution. Also COSMO-RS predictions

could not resolve the difference (data not shown), suggesting that these deviations were

not caused by the GNN training, but were more likely caused by the training data obtained

from the COSMO-RS solubility predictions. In general, the experiments confirmed high sol-

ubilities for the computationally identified solvents. There were no remarkable differences

in solubility between the lignin types, implying that the influence of the lignin source and

extraction method was not decisive for the measured lignin solubilities. Furthermore, these

results show that the selected GGG-trimer was representing all types of lignin quite well.

The numerical solubility data is provided in Appendix C.3.2.

6.3.2.1 Analysing structural patterns using attribution methods on the GNN

To analyse the underlying structural patterns in the solvents with respect to the GNN

predicted solubility values, the GNN was coupled with attribution techniques. Attribution

techniques, such as the integrated gradient (IG) approach380,444 were specifically developed

to comply with the sensitivity and implementation invariance axioms. In the IG method,

the integral of the gradients of the model’s output with respect to its input is computed,

while gradually changing the input values from a baseline to the actual input of interest (see

Appendix C.2.1.4 for more details). This process effectively assigns importance scores to

each input feature by attributing their contribution to the final prediction. The IG method

identifies nodes and edges with the highest impact on a given prediction. Therefore, the

contribution of each atom and bond within the solvent to the predicted lignin solubility

can be visualised and potentially used as a guide in the explainability procedure. The IG

method was employed to attribute the predicted lignin solubility to structural features of

the solvent. To enable reliable interpretations of the results beyond theoretical predictions,

the experimentally measured lignin solubilities served as a ground truth when analysing the
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attributions.

First, the normalised attributions indicating the importance of nodes and bonds for

the solubility predictions (Fig. 6.8 b) were computed. Higher attribution scores indicate a

higher importance on the predictions. Note that the attribution scores were normalised, and

therefore only allowed for a relative comparison within the same molecule. The high lignin

solubility in sulfoxides and sulfones was mainly attributed to the presence of S-atoms and the

adjacent double bonds in solvent structures. Similarly, the P=O motif in phosphine oxides

was the most influential in promoting lignin solubility. Additionally, in phosphonates, P-

and O-atoms received the highest attribution scores. The high lignin solubility in aromatic

heterocycles could in general be attributed to the N-atoms and the neighbouring aromatic

bonds. However, for specific classes like oxazoles and thiazoles, the S- and O-atoms within

the aromatic rings were predicted to be more influential than the aromatic N. In contrast,

N-atoms within side chains as well as alkyl chains and saturated rings found in compounds

such as butyl sulfone, 4-pyrrolidinopyridine, and 1,3-aminopropyl imidazole, were predicted

to have less impact on the solubility predictions. In the case of ethers, the O-atoms predicted

to be more influential than the C-C bonds. In general, solvents containing S, N, P, O or

aromatic bonds were associated with high solubility predictions and the attribution results

were in line with the experiments. Indeed, lignin with numerous benzene rings and oxygen

atoms potentially engages in π-interactions with solvent molecules and forms hydrogen bonds

with these heteroatoms. However, as solubility predictions and experiments diverge for linear

ethers, there likely exist additional structural features affecting solubility that could not be

captured by the GNN. In line with the presented results, the computational Kamlet-Taft-

parameter analysis of Sumer and van Lehn revealed that a solvent requires good hydrogen

bond-accepting ability and intermediate to high polarity to effectively dissolve lignin.445
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Fig. 6.8 Experimental validation of the GNN predictions and attribution of struc-

tural features to the predicted lignin solubilities. a) Experimental lignin solubilities

in the designed solvents for Kraft lignin, FABIOLATM lignin, and MAL isolated

from corn cob. Arrows indicate that lignin saturation was not yet reached, how-

ever, the high viscosity of the solution hindered measurements with higher lignin

loadings. b) Normalised attributions for each discovered solvent class. A higher at-

tribution score of the highlighted structural feature indicates higher importance

for the lignin solubility prediction. Abbreviations: Dimethylsulfoxide (DMSO),

diethylsulfoxide (DMSO), n,n-dimethylmethanesulfonamide (DMM-sulfonamide),

dimethyl methylphosphonate (DMMP), diethyl methylphosphonate (DEMP), di-

ethyl ethylphosphonate (DEMP), 5-bromo-1-methyl-1H-imidazole (5-Br-1-Me-1H-

imidazole), 4-(2-hydroxyethyl)morpholine (4-(2-HE)morpholine), diethylene gly-

col dimethyl ether (DEGDME), diethylene glycol diethyl ether (DEGDEE), 2-

methyltetrahydrofuran (2-MeTHF). Adapted from König-Mattern et al.396 with

permission from Elsevier.
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6.3.3 Propionaldehyde-assisted pretreatment

Based on the solubility measurements, the most promising solvent candidates were selected

for analysing their performance in AAF. Due to their high solubilities and their potential

stability under AAF conditions, sulfones, sulfoxides, phosphonates, cyclic ethers, and linear

ethers were selected as solvent candidates. For AAF experiments, the selected solvent

candidates, propionaldehyde, and an aqueous HCl-solution were added to birch wood chips

(see Appendix C.3.3 for compositional analysis, and Appendix C.3.1 for 2D-HSQC NMR

analysis). The performance of the selected solvents was assessed by i) observing potential

reactivity between the solvent and other compounds in the reaction liquor (warming, fuming),

ii) the yield of the pulp, iii) the yield of propionaldehyde-protected xylose dipropylxylose

(DPX), iv) measuring the yield of lignin monomers after hydrogenolysis of the pretreatment

liquor, and v) observing the appearance of the biomass after the pretreatment. These metrics

can serve as indicators of the effectiveness of biomass depolymerisation and stability of the

solvents.

The tested sulfoxides, sulfones (except the DMM-sulfonamide), phosphonates, and

ethers were resistant to acidic conditions (0.4 M HCl) and elevated temperature (T = 85 ◦C),

showing no visible signs of degradation. Upon completion of the pretreatment reaction, the

biomass was disrupted to a powder-like residue with light colour in samples treated with

butyl sulfone, DEGDEE, and DMM-sulfonamide (Fig. 6.9 a), constituting around 40 wt.%

of the biomass. In contrast, in the samples containing DEGDME, 18-crown-6 ether, DMSO,

and phosphonates, the biomass retained the form of wood chips. For these solvents, the

filtrated pulp constituted up to 90 wt.% of the biomass, suggesting that the extraction of

hemicellulose and lignin was not effective and that these components remained within the

cellulose fibers. This observation is supported by the low DPX and lignin monomer yields

for these solvents (Fig. 6.9 b and c). To disintegrate the cellulose sheets, the reaction

liquor must be able to disrupt the hydrogen bonding between the cellulose chains, and

furthermore, interfere with the hydrophobic stacking interactions between the nonpolar

regions of cellulose sheets.446 Presumably, these solvents were too polar to attack the

hydrophobic domains. Surprisingly, despite having a higher lignin solubility, the DEGDME

pretreatment resulted in a lower lignin monomer yield than DEGDEE, presumably due to

more effective interactions between DEGDEE and the carbohydrates. This observation

highlights that lignin isolation from biomass is not only influenced by the lignin solubility but

also depends on the interactions between the carbohydrates and the pretreatment liquor. A

lower monomer yield for DEGDME due to ineffective lignin stabilisation can be ruled out,

since its 2D HSQC NMR spectrum (Appendix C.3.1) is not indicative of lignin condensation.

After separating the pulp by filtration, the resulting filtrate contained the extracted

lignin with propionaldehyde-protected β-O-4 linkages as confirmed by the HSQC NMR
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(Appendix C.3.1). Hydrogenolysis of such uncondensed lignin over a Ru/C catalyst at

T = 250 ◦C produces valuable aromatic lignin monomers. The quantification of the lignin

monomers provides a measure for the effectiveness of lignin extraction and stabilisation. The

benchmark solvent 1,4-dioxane allowed to produce near-theoretical 7.8 wt.% of monomers

on a raw biomass basis, followed by DEGDEE and butyl sulfone, each providing ca. 5 wt.%

of monomers, and DEGDME and 18-crown-6 ether, yielding less than 4 wt.% (numerical

values of DPX and lignin monomer yields are given in Appendix C.3.4).

The yield of DPX exceeded 20 wt.% on raw biomass basis in the benchmark solvent

1,4-dioxane, and the designed solvents DEGDEE and butyl sulfone. The DPX yield for

the 18-crown-6 ether, DEGDME and DMM-sulfonamide was lower than 15 wt.%. DMM-

sulfonamide demonstrated signs of degradation during the pretreatment, while the the other

two solvents did not provide sufficient biomass disruption as mentioned above. Low amounts

of DPX (< 1 wt.%) were produced during the pretreatment in phosphonates and sulfoxides.

Interestingly, in control experiments with dibutyl ether and heptane, DPX yields comparable

to 1,4-dioxane were obtained, suggesting that the interactions of non-polar solvents and the

biomass enable sufficient contact between the reaction components (e.g. aldehyde) and xy-

lan that closely interacts with cellulose in a plant cell. However, the lignin solubility in these

solvents is low. Lignin forms a globule with reduced surface area in such highly nonpolar

solvents442, potentially preventing aldehyde-protection, thus resulting in lignin condensation.

The pretreatment experiments showed that the designed glycol ethers, and sulfones are

promising solvent candidates for the AAF procedure. Notably, DEGDEE and butyl sulfone

provided effective fractionation of cellulose pulp, and successful extraction of PA-protected

lignin and xylose in the pretreatment liquor with yields comparable to the carcinogenic

benchmark solvent 1,4-dioxane. The solvent butyl sulfone is high boiling and solid at

room temprature, and therefore requires adaptions of current procedures for the isolation

of fractions from the liquor and for solvent recovery. Additionally, this solvent is currently

produced in limited quantities and its toxicological profile is not well studied, opening

opportunities for future research.

The solvents tested in AAF were specifically designed to target the lignin fraction of the

biomass. Therefore, most candidates are rather polar since this characteristic is necessary

to ensure lignin solubilisation in the liquor, thereby increasing its surface area exposed for

a reaction with aldehyde in the mixture.442 However, the overall quality and quantity of

the extracted lignin were additionally influenced by other solvent properties. In addition to

polar groups, the solvent requires sufficient non-polar domains that can disrupt the cellulose
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microfibrils and facilitate the extraction of lignin and xylan which is in line with the experi-

mental observations. Pretreatments with butyl sulfone which consists of both, a highly polar

SO2 group and two aliphatic chains, resulted in high DPX and lignin monomer yield. Fur-

thermore, the performance of DEGDEE in AAF experiments was remarkably better than that

of the structurally similar solvent DEGDME which only differs from DEGDEE by the absense

of the CH3-end groups. Additionally, the stability of the solvent under acidic conditions at

high temperatures provides a consistent and effective chemical environment throughout the

process which is required for efficient extraction of hemicellulose sugars and lignin from the

biomass, and for the protection reactions with the aldehyde.
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Fig. 6.9 Results of propionaldehyde-assisted pretreatment of birch wood (T =

85 ◦C, t = 3 h). a) Cellulose-rich pulp after pretreatment with DEGDEE (above)

and DMSO (below), b) DPX yield on raw biomass basis, c) lignin monomer yield.

The yields are provided on a raw biomass basis. Adapted from König-Mattern et

al.396 with permission from Elsevier.



90 Chapter 6. Solvent screening and design for lignocellulose biorefineries

6.4 Experimental methods

6.4.1 Materials

6.4.1.1 Solvents

The following solvents were purchased to measure the lignin solubilities: dimethyl sulfox-

ide (Sigma-Aldrich, > 99.5%), diethyl sulfoxide (Fluorochem, 98%), dimethyl methylphos-

phonate (STREM Chemicals, 97%), diethyl methylphosphonate (ACROS Organics, 96%),

diethyl ethylphosphonate (Sigma-Aldrich, > 98%), 4-methylpyrimidine (ABCR, 98%), 4-

pyrrolidinopyridine (ABCR, 95%), pyrazine (ACROS Organics, 99%), 4-methoxypyridine

(ABCR, 97%), 4-piperidinopyridine (ABCR, 97%), 2-methyl-2-oxazoline (ABCR, 99%), 1-

methylimidazole (Sigma-Aldrich, > 99%), 5-Bromo-1-methyl-1H-imidazole (ABCR, 95%),

pyrazole (ThermoScientific, > 98%), n,n-dimethylmethanesulfonamide (ThermoScien-

tific, > 98%), 18-crown-6 ether (Sigma-Aldrich, for synthesis), 1,4-dioxane (Carl Roth,

> 99.5%), 2-methyltetrahydrofuran (Carl Roth, > 99%), dibutyl ether (ACROS Organ-

ics, > 99%), n-heptane (ABCR, > 96%), pyridine-n-oxide (Thermo Scientific Acros, 95%),

2-methylpyridine-n-oxide (Fluorochem, 98%), 2,5-dimethylpyrazine (Fluorochem, 98%), thi-

azole (Fluorochem, 99%), 1,3-aminopropyl imidazole (Acros Organics, 98%), isoxazole (Flu-

orochem, 98%), 4-(2-hydroxyethyl)morpholine (Acros Organics, 99%), butyl sulfone (Sigma-

Aldrich, 99%), diethylene glycol dimethyl ether (Alfa Aesar, 99% stab. with 100 ppm BHT),

diethylene glycol diethyl ether (Alfa Aesar, 99%).

6.4.1.2 Preparation of lignin samples

The lignin samples were chosen to represent a broad diversity of feedstocks (hardwood,

softwood, herbaceous biomass) and isolation methods (Kraft, FABIOLATM, mild acidolysis).

Lignin from Rettenmaier beechwood (hardwood) was obtained from TNO (Netherlands) and

was originally gained from the FABIOLATM acetone organosolv process.443 Kraft lignin was

provided by Berner Fachhochschule and was originally isolated from softwood species by the

Kraft process. Lignin from corn cobs and from birch wood were isolated by mild acidolysis.447

Birch wood (Betula pendula, hardwood) was procured from M. Studer of the Bern University

of Applied Sciences. The birch wood chips were sorted to remove residual bark and leaves.

Corn cobs (herbaceous biomass) were procured from IP-Suisse in Lausanne, Switzerland.

The corn cobs were sorted to remove residual leaves, stems, and corn. The sorted birch

wood chips and the corn cobs were milled using a 6-mm screen and sieved with a 0.45-

mm mesh. The fraction with a size of < 0.45 mm was used for lignin extraction by mild

acidolysis.
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6.4.1.3 Lignin extraction by mild acidolysis

Lignin from birch wood and corn cobs was isolated by mild acidolysis. The procedure for

mild acidolysis was taken from Das et al.447 with slight modifications. The mild acidolysis

lignin extraction method allows to preserve the native structure of lignin to a large extend

while extraction yields are small.447 In brief, 10 g of ground biomass was dissolved in 120 ml

of a dioxane/water mixture (9/1, v/v) containing 0.2 mol l−1 HCl. The suspension was

heated to 90-100 ◦C to reach refluxing and was stirred for 30 min for herbaceous biomass

and for 45 min for hardwood. The cooled mixture was vacuum-filtered through a Whatman

filter (paper grade 3). The residue was washed three times with 50 ml of the dioxane/water

mixture (9/1, v/v). The pH of the resulting solution was adjusted to 3-4 using a saturated

aqueous NaOH solution. Subsequently, the solution was concentrated to 50 ml by rotary-

evaporation (45 ◦C) before any solid lignin residues appeared. The concentrated solution was

added into a large volume of cold water (500 ml) to precipitate lignin. The precipitated lignin

was washed with 100 ml of deionized water and dried in a desiccator. The 2D HSQC NMR

spectra of the isolated lignins were measured to confirm lack of significant condensation (see

Appendix C.3.1).

6.4.2 Lignin solubility measurements by gas chromatography

Commonly applied methods for lignin solubility measurements are based on solvent evapo-

ration and gravimentric determination of the dissolved lignin. Due to the high Tb of several

selected solvents, the lignin solubility was measured by gas chromatography (GC). First,

lignin solvent suspensions were prepared. Here, dried lignin (0.1 g) was added to the sol-

vent (0.4 g) in a glass vial with a magnetic stirring bar. The vials were sealed and placed

in a pre-heated aluminum block holder (T = 85 ◦C) under constant stirring at 400 rpm.

The samples were kept under agitation until reaching equilibrium (2 h). Subsequently, the

sampled were filtered using a 1 ml syringe with an attached polytetrafluoroethylene filter

(0.22 µm pore size) to remove undissolved solid lignin. The saturated liquid phase (ca.

0.1 g) was diluted with dimethyl sulfoxide or acetone (ca. 1.5 g), and 1,3-dioxolane was

added to the sample (ca. 0.1 g) as an internal standard. The samples were quantified by

GC with flame-ionisation detection (FID). Calibration curves for each solvent with the inter-

nal standard were obtained using known amounts of solvent and 1,3-dioxalane dissolved in

DMSO or acetone (if the peaks of DMSO and solvent were overlapping). All solubility tests

were performed at least in duplicate. The lignin solubility was calculated using the following

equation

lignin solubility [wt.%] =
mL

mL +ms
· 100: (6.11)
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By measuring the mass of solvent ms and the mass of the filtrate mfiltrate, the mass of lignin

ml was obtained using the following equations

ms =
RF · areas ·mIS

areaIS
; (6.12)

mL = mfiltrate −ms; (6.13)

where RF denotes the response factor and the subscript IS refers to the internal standard.

A GC-FID system by Agilent Technologies (model no. 7890B) equipped with an HP-5

column was used for quantification. The injection temperature was 300 ◦C. The column

temperature program was: 40 ◦C (3 min), 30 ◦Cmin−1 to 100 ◦C, 40 ◦Cmin−1 to 300 ◦C

and 300 ◦C (5 min). The detection temperature was 300 ◦C. Response factors RF are given

in Appendix C.3.2.

6.4.3 Lignin solubility measurements by evaporation

To validate the results of the GC-method, solubility measurements using the traditional

gravimetric evaporation method for solvents with low Tb. For this purpose, the procedure

from Dick et al.448 was used. Here, after preparing a suspension of lignin and the solvent

as described above, the filtered solution was dried to remove the solvent, and the mass of

dissolved lignin was quantified. The vials containing the filtered solution were placed in a

vacuum oven at T = 45 ◦C and p = 20 mbar, and dried overnight. Subsequently, the

vials were re-tared to determine the mass of lignin. The solubility was determined using the

following equation and final results were based on the average of two samples

lignin solubility [wt.%] =
mvial with dry lignin −mvial

mvial with lignin solution −mvial −mdry lignin
: (6.14)

This procedure has been applied to six solvents with Tb< 150 ◦C allowing for evaporation

under the described conditions (data attached in Appendix C.3.2).

6.4.4 Propionaldehyde-assisted pretreatment

The propionaldehyde-assisted pretreatment of birch wood in the selected solvents was

performed as described in detail in Talebi Amiri et al.155 Birch wood (Betula pendula) was

prepared as described in Section 6.4.1.2. Briefly, 4.5 g of milled birch wood, 4.8 ml of

propionaldehyde, 0.85 ml of an aqueous HCl solution (37%, w/w), and 25 ml of solvent

were added in a thick-walled glass reactor equipped with a stirring bar. The reactor was

placed in an oil bath heated to 85 ◦C and the reaction proceeded for 3 h while stirring at

600 rpm. The reaction was cooled to room temperature and 20 ml of 1,4-dioxane was
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added to the mixture to dilute any solidified solvent.

0.5 ml aliquot of the reaction liquor was taken, diluted in DMSO and analysed by

GC-FID (Agilent Technologies 7890B) equipped with a HP-5 Column (Agilent) to determine

DPX yield using a calibration curve obtained from authentic standards. The yield is provided

on a raw biomass basis (non-dried, non-extracted birch wood) accounting for the weight

of DPX derived from propionaldehyde. The reaction liquor obtained by AAF was filtered

through a Nylon filter of 0.8 µm to separate cellulose-rich pulp. The pulp was subsequently

dried in a vacuum desiccator for 48 h and then weighed.

To quantify the yield of lignin monomers, first, the filtrate was neutralised by gradually

adding 0.86 g of sodium bicarbonate until pH 6-7. The solution was diluted to 100 ml with

1,4-dioxane in a volumetric flask and centrifuged to remove precipitated salt. 20 ml of the

1,4-dioxane/lignin solution was taken for hydrogenolysis in a 50-ml Parr reactor (stainless

steel) equipped with a magnetic stirrer and a K-type thermocouple. 100 mg of a 5%

Ru/C catalyst was added to the solution and the reactor was pressurised to 40 bar of H2.

The reactor was heated to 250 ◦C for 3 h. Subsequently, the reactor was cooled to room

temperature, depressurised, and the solution was filtered with 0.2 µm PTFE syringe filter

to remove the catalyst. 200 µl of an internal standard solution of decane (0.05 gml−1)

was added to the filtered solution and 1 ml sample was analysed by GC-FID to determine

monomer yield. The quantification of monomers was performed using the Effective Carbon

Number method described by Talebi Amiri et al.155

6.5 Summary and conclusions

In current approaches for lignocellulose fractionation, commonly used solvents either have a

low to mediocre lignin solubility (e.g. EtOH or acetone) or have harmful EHS properties (e.g.

1,4-dioxane). To facilitate solvent selection, the developed computational solvent screening

and design frameworks were applied to lignocellulose processing. Finally, the identified

solvents were experimentally validated.

In the computational solvent screening, a database containing more than 8000

compounds was screened to identify solvent candidates for the dissolution of multiple lig-

nocellulose fractions, and for selective lignin dissolution. After excluding unsuitable solvent

candidates based on structural features and Tm/Tb limits, the solubilities of cellulose-,

hemicellulose-, and lignin-representing structures were predicted using COSMO-RS. The

EHS properties of the solvent candidates were predicted using VEGA models and were

combined into the EHS score, expressing the benignity of a solvent’s EHS properties on a

scale from 0 (harmful) to 1 (benign). Based on the predicted soubilities and the EHS score,
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the solvents were ranked according to three objectives: 1) joint dissolution of all biomass

fractions and EHS score, 2) joint lignin and cellulose solubility, and 3) selective lignin

solubility. For objectives 1 and 2, mainly ILs and 18-crown-6 ether were identified potential

solvents. Literature data has shown that some of the identified ILs are able to completely

dissolve wood chips, highlighting the applicability of the solvent screening approach. The

identified ILs are interesting for applications involving cellulose dissolution. For objective

3, azines, sulfoxides, oxazolines, and phosphonates were predicted as promising solvent

candidates for selective lignin dissolution. These solvents have high potential for application

in dissolution-based lignin upgrading, such as in the fabrication of lignin nanoparticles,

films, or fibres. However, some of the solvent classes are unstable in acidic environments

or are reactive towards aldehydes (e.g. oxazolines and azines), limiting their application in

organosolv pulping or AAF.

To explore a broader chemical space beyond the predefined database, the solvent design

algorithm PSEvolve was applied. PSEvolve allowed for seamless integration of a GNN for

lignin solubility predictions. Since COSMO-RS solubility predictions were not applicable

due to their need for time-consuming quantum chemical calculations, the GNN was applied

as a surrogate model for COSMO-RS. The GNN was trained and tested on a COSMO-RS

solubility predictions of more than 3300 compounds. The use of a GNN enabled fast

and reliable lignin solubility predictions enabling the design of tailored solvent structures.

However, deviations between experimentally measured and GNN-predicted solubilities were

observed for linear ethers. Beyond sulfoxides, azines, oxazolines, and phosphantes which

were already identified in the solvent screening, promising sulfones, azoles, morpholines,

cyclic ethers and ketones, and compounds containing phosphoryl groups were designed.

Beyond the solvent screening method, PSEvolve explored promising solvent classes with

more molecular detail.

From each solvent class, commercially available solvent candidates were evaluated

with respect to their EHS properties and their price. 30 solvents were selected for lignin

solubility measurements. Both, the solvent screening and the design approach, were able

to identify non-intuitive solvent candidates with lignin solubilities between 20 − 60 wt.%.

Particularly high solubilities were measured in DMSO, pyrazines, azoles, and DEGDME.

These solvents have high potential for application in the fabrication of lignin-based films,

nanoparticles, or resins. A common method to demonstrate the applicability of molecular

design algorithm is the rediscovery target molecules with defined properties.449 DMSO and

pyridine were recently reported as the most effective solvents for lignin dissolution.100,101

Both compounds were rediscovered by the presented solvent screening and design methods.
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By applying an attribution method to the GNN, the importance of structural features of

the experimentally evaluated solvent candidates with respect to the GNN predicted lignin

solubilities was analysed. In line with experimental results, solvents containing sulfinyl,

sulfonyl or phosphoryl groups were connected to high lignin solubilities. Furthermore,

aromatic nitrogen and neighboring aromatic bonds, and the presence of O-atoms were

linked to high lignin solubilities. Therefore, the presented solvent design framework not only

facilitated the exploration of promising solvents but also provided valuable insights into the

specific molecular characteristics essential for achieving high lignin solubility. Furthermore,

the presented solvent design approach could serve as a blueprint for other types of solutes,

e.g. for cellulose for which only few effective solvents were reported.

Solvent selection for AAF is a complex task. In addition effectively dissolving lignin, a

suitable solvent for AAF must remain unreactive towards the process liquor. Additionally,

benign EHS properties are imperative for sustainable biorefinery processes, however,

immensely narrow down the feasible molecular search space. The solvent screening showed,

that out of 8000 potential solvents contained in the database only few seemed applicable in

AAF. The solvent design framework generated structures tailored towards AAF, including

sulfones, sulfoxides, phosphonates, and cyclic and linear ethers. Solvents from these groups

showed acid stability under AAF conditions and provided performance nearly on par with

1,4-dioxane in terms of DPX yield. Slighty lower lignin monomer yield were obtained

compared to 1,4-dioxane. However, a major advantage of the tested solvents are their

preferable EHS properties. Especially DEGDEE, DEGDME, and butyl sulfone are interesting

solvent candidates for AAF. Furthermore, the experiments revealed that solvents with a

higher lignin solubility do not necessarily lead to more effective lignin isolation from biomass.

In the native biomass, lignin is embedded in the lignin-carbohydrate-complex where the

biomass fractions are connected via various chemical bonds. Especially solvents with

low or mediocre DPX yields (e.g. 18-crown-6-ether or DEGDME), suggesting insufficient

interaction with the carbohydrates, led to lower lignin monomer yields, despite their high

lignin solubilities. Furthermore, the AAF experiments suggest that stable aprotic solvents

possessing heteroatoms (e.g. O, N, S), and nonpolar domains (e.g. hydrocarbon motifs)

could could be suitable for application in AAF and in lignocellulose processing in general.

The challenge for finding the right balance of these characteristics remains open for future

research.

The newly identified solvents present alternatives to state-of-the-art solvents applied in

organosolv and AAF processing, as well as for dissolution-based lignin upgrading. However,

most of the identified chemicals are not frequently employed or have very specific practical

application in industry or laboratory, and are not commonly used as solvents. Before
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these solvents can be applied in such processes, further research is required to establish

procedures for solvent recovery, recycling, cost, and product separation. Furthermore, a life

cycle assessment is necessary to assess the sustainabiity and the resulting global warming

potential depending on the selected solvent. However, solvent-specific data relevant for life

cycle assessments is currently lacking.

In general, computational modelling provided a more systematic, high-throuput approach

to solvent selection compared to currently established methods, e.g. experimental solvent

selection guided by Hansen solubility parameters. Both methods, the solvent screening and

the solvent design approach, represent a major leap in solvent selection for dissolution-based

lignin upgrading and lignocellulose processing.
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7 | Solvent screening for the fractionation

of wet microalgal biomass

Microalgae are an attractive feedstock for producing food, feed, chemicals, fuels, pig-

ments, and other high-value products in biorefineries.163,164,450–452 However, with current

technologies, obtaining clean streams of proteins, carbohydrates, lipids, and pigments

remains challenging (see Section 3.2.6.3 for further details) and are not yet adopted for

application on the industrial scale. Lab-scale fractionation methods rely heavily on the

use of toxic281,284 or expensive solvents,288–290 or require costly equipment.180,276,283

Moreover, the energy-intensive biomass drying step was identified as the bottleneck of

the downstream process that limits the economic feasibility of the overall process.226 To

eliminate the energy demand of the drying step, recent research efforts investigated wet

algal paste as obtained after harvest - still having a moisture content of about 85 wt.% - as

a feedstock for biorefineries.226,247,248,261 However, solvents that were commonly applied to

extract lipophilic compounds from dried microalgae (e.g. alkanes), resulted in remarkably

lower yields when applied to wet, untreated biomass,247,248 aggravating the difficulties for

biorefining. Various cell disruption methods were explored as a way to facilitate the contact

between the solvent and the target compounds, thus increasing the yield.247,261,453,454

In addition to cell disruption methods, systematic solvent selection has the potential to

not only increase the yield of target compounds but also to develop innovative separation

strategies required in biorefineries. Solvents can separate the biomass fractions by i)

either selectively extracting the target compounds in a sequence of extractions, or ii)

by extracting multiple target compounds simultaneously and subsequently separating the

mixture by further separation steps, such as by LLE- or SLE-based methods. To accurately

consider these thermodynamic aspects, the high moisture content of the biomass must

taken into account. Additionally, EHS properties represent important selection criteria. In

the following sections, the developed solvent screening approach (Section 5.2) is leveraged

to identify benign solvents enabling the fractionation of wet microalgal biomass. P.

tricornutum (Section 3.1) was selected as a model feedstock. In contrast to lignocellulose,

no industrially established biorefinery process for P. tricornutum exists to date. Therefore,

potential biorefinery products of a P. tricornutum-based biorefinery and the most important
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separation steps are determined (Section 7.1). Subsequently, the solvent screening approach

is applied to identify solvent candidates for biomass fractionation (Section 7.2). The

selected solvents are subsequently assessed in extraction experiments (Section 7.3). Based

on the computational and experimental results, a lab-scale biomass fractionation process

is developed for wet P. tricornutum biomass (Section 7.4). All experimental methods

describing the cultivation, harvest, and extraction procedure, and further analysis of the

extracts are provided in Section 7.5.

This chapter is based on and includes direct as well as modified excerpts from the publications

of König-Mattern et al.394 and König-Mattern et al.455 used under Creative Commons license

CC BY 4.0.

7.1 Biomass composition and potential biorefinery products of

P. tricornutum

P. tricornutum was cultivated in a flat-panel photobioreactor (Section 7.5.1) under arti-

ficial light irradiation and was harvested at a cell density of 4.81 g l−1. Experimental

analysis of the biomass composition (Sections 7.5.2-7.5.10) quantified 39.9 wt.%dry pro-

teins, 19.9 wt.%dry carbohydrates, 9.7 wt.%dry lipids, 5.5 wt.%dry chlorophylls, and

2.1 wt.%dry carotenoids (7.1). A detailed composition of fatty acids, chlorophylls, and

carotenoids is summarised in Appendix D.3.1. For each biomass fraction, potential end-

products and their economic value were reviewed. To analyse the economic potential of

each biomass fraction, the corresponding products were allocated to the most profitable

application (see Appendix D.5). In line with other studies, the red pigment Fx was identi-

fied as the most abundant carotenoid (1.5 wt.%dry). Carotenoids can be marketed in the

health industry or as nutritional supplements due to their antioxidant properties at prices of

900 e kgprod
−1.165 Despite their low abundance on a weight basis (Fig. 7.1 a), the carotenoids

comprise about 70% of the overall economic biomass value, highlighting their importance for

the economic viability of the overall biorefinery (Fig. 7.1 b). Furthermore, the chlorophylls

can be applied as natural colourants (e.g. as E140 or E141).456 However, their economic

importance for the biorefinery is low compared to that of the carotenoids. The lipid fraction

contributes to around 20% of the overall economic biomass value and spans a diverse range

of potential applications. EPA (2.6 wt.%dry) is a PUFA has the highest economic importance

among the lipids with a value of 200 e kgprod
−1. EPA is frequently applied as food additive

or a nutritional supplement.457 For the lipids of lower value, the largest economic potential

lies in the conversion to biolubricants, with an estimated sales price that is twice as high

as that of biodiesel. The water-soluble storage carbohydrate chrysolaminarin (2.78 wt.%dry)
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is considered as a natural plant-protection agent,183 and is known for its antioxidant prop-

erties.458 The selling price of chrysolaminarin is 20 e kgprod
−1 which is considerably lower

than that of EPA and the carotenoids. Chrysolaminarin is the carbohydrate with the highest

economic value. However, for the economic profitability of the overall biorefinery process,

chrysolaminarin valorisation plays a rather subordinate role. Other water-soluble carbohy-

drates (11.78 wt.%dry) could be marketed as food or feed. The water-insoluble proteins

(21.72 wt.%dry) and carbohydrates (5.34 wt.%dry) could serve as a feedstock for biopoly-

mer production which play an important role in the defossilisation of the polymer industry.

Water-soluble proteins (18.13 wt.%dry) have emulsifying properties with potential applica-

tion in the health and food industry.228 The protein fraction could also be converted to

biofuels. However, the economic value of biofuels obtained from proteins is nearly ten-fold

lower than that of protein-based biopolymers or functional proteins. Compared with other

species, the ash content of P. tricornutum is high (23.3 wt.%dry). The ash fraction has not

been commercially used to date. Depending on the cultivation conditions, P. tricornutum ash

contains biosilica which could be applied in biosensing or energy applications.459 However,

silica isolation from biomass requires high temperatures, oxidising agents, or strong acids,

compromising the integrity of other biomass compounds.459,460 Alternatively, ash could be

applied as an additive for biochar production.461 In an ideal biorefinery scenario, assuming

loss-free separation of the highest value products analysed above, P. tricornutum biomass

has an overall value of 26.11 e kgdry
−1 matter which is comparable to other species.165 Fx

and EPA were identified as most valuable compounds, comprising about 90 % of the overall

economic value of the biomass. Therefore, a profitable P. tricornutum biorefinery requires

efficient Fx and EPA extraction and separation. However, both high-value compounds ac-

count for only 4.1 wt.%dry of the overall biomass. Therefore, these compounds must be

extracted at high yields and the remaining biomass fractions should be isolated using inex-

pensive extraction and separation techniques to increase resource-efficiency while respecting

economic feasibility.

7.2 Solvent screening

Systematic solvent selection requires a mechanistic understanding of the wet extraction pro-

cess to deduce meaningful criteria guiding the solvent selection. Therefore, Section 7.2.1

reviews the current knowledge of microalgal wet extraction. Based on this review and

the derived solvent selection criteria, the mathematical optimisation problem is formulated

(Section 7.2.2), and representative molecules are defined for each biomass fraction (Sec-

tion 7.2.3). Subsequently, solvent candidates were identified using the developed computa-

tional screening approach (Section 7.2.4).
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a) Weight-based composition b) Economic value

main contribution: EPA

main contribution: fucoxanthin

main contribution: EPA
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Carbohydrates
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Fig. 7.1 Biomass composition of moisture-free P. tricornutum on a) weight basis

and b) based on economic value. The high-value components, EPA and fucoxan-

thin, render the lipid and pigment fraction the most valuable biomass components.

Reprinted from König-Mattern et al.455 with permission from Elsevier.

7.2.1 Mechanism of extracting wet microalgal biomass and solvent selection

criteria

To select solvents for a biorefinery process that uses wet microalgal biomass, the mechanisms

underlying the wet extraction process must be considered to allow for a systematic decision on

selection criteria. Solvent-based extraction of wet microalgal paste is a solid-liquid extraction

process influenced by interactions between the solvent and the moisture, the cell wall, and

the target compounds.247,257,462 First, the solvent is brought in contact with the algal paste

by mixing. Subsequently, the solvent passes the cell wall and the surrounding moisture by

diffusion. The P. tricornutum cell wall is composed of sulfated α-mannan with glucuronic acid

residues, proteins, and long-chain polyamines.204 Upon solvent contact, the cell wall polymers

may swell and change their conformation depending on the applied solvent.463 Therefore,

the selected solvent likely influences the ease of transport through the cell wall depending

on its interactions with cell wall compounds and the moisture. After passing the cell wall,

the solvent diffuses to the organelles containing the target compounds and moisture. Some

compounds are chemically bound to the target organelles, e.g. the pigments are bound to Fx-

chlorophyll-protein complexes via hydrogen bonds, located within the thylakoid membranes

of the chloroplast.464 Hence, for efficient extraction of such chemically bound molecules,

the solvent i) requires access to the target compounds, ii) must be able to disintegrate

the compounds from its storage location, and iii) a high solubility of the target compound

is desirable. These points are particularly important when considering wet biomass, since

the cells contain moisture and are enveloped by it. Due to the high polarity of water,

the moisture likely influences all steps of the extraction process. A detailed mechanistic
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explanation of interactions between solvent, biomass, and moisture is still an open field of

research. In general, the obtained extract is a mixture of the solvent, multiple extracted

target compounds, and water originating from the moisture of the biomass. Therefore, the

moisture should be taken into account when designing subsequent separation steps as well.

Common extraction techniques for wet microalgal biomass focus on a maximum degree of

cell wall disruption, e.g. by sonication or milling, to release the target compounds and to

facilitate the transport of the solvent through the cell wall.247,261,453,454 These approaches

consider the cell wall and the moisture as a barrier that must be overcome to maximize the

yield, usually aiming at the lipids as the only target biomass fraction. In contrast, this thesis

views the moisture and the cell wall as additional degrees of freedom that might be leveraged

for extracting and separating all biomass fractions in a biorefinery process. Therefore, the

computational solvent screening incorporates the effect of water on the solubility of multiple

target compounds. Additionally, the water originating from the moisture can potentially be

exploited for inducing the formation of a second liquid phase to separate the extracted target

compounds. The use of water for phase formation eliminates the need for additional organic

solvents which, in contrast to water, do frequently not align with the principles of green

chemistry. Considering the effect of water on the solubilities and the separation of the target

compounds, the screening focuses on solvents with three types of miscibility behaviours to

be defined at extraction conditions:

� Partially water-miscible (PWM) solvents are miscible with water until the maximum

water solubility is reached. After exceeding this solubility limit, two liquid phases are

formed. Below the water-solubility limit, PWM solvents allow for extraction under

monophasic conditions, decreasing the risk of emulsion formation. For separating the

extracted compounds, phase formation can be triggered by adding excess water. The

solvent composition of the aqueous and the organic phase commonly represents a

mixture, where the aqueous phase is characterised by a higher fraction of water and

the organic phase by a higher fraction of organic solvent. Since the phases can usually

not be considered as highly pure streams of water and solvent, additional steps for

solvent recycling might be required.

� Water-miscible (WM) solvents are miscible with water in all ratios without forming

two liquid phases. For efficient separation of the biomass fractions, WM solvents that

selectively extract single target compounds can be applied in sequential extraction

steps. After extraction, the solvent must be effectively separated from water.

� Non water-miscible (NWM) solvents, also called practically water-immiscible solvents,

have negligible water-solubility and immediately form two liquid phases upon contact

with water, comparable to mixing water and oil. While wet extraction using NWM

solvents, such as alkanes, resulted in low yields of lipophilic compounds, NWM solvents
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are generally preferred for separating the mixture of target compounds by liquid-liquid

extraction. In contrast to PWM solvents, the solvent composition of the aqueous and

the organic phase is generally highly pure, facilitating solvent recycle.

In the following sections, the developed solvent screening approach is applied to wet biomass

of the model alga P. tricornutum to identify solvents with desired EHS properties, target

solubilities and LLE of the solvent/water mixture for application in a biorefinery process.

7.2.2 Optimisation problem and screening procedure

Based on the formulation of the general optimisation problem stated in Eqs. 5.1-7.8, the

solvent screening problem to identify WM, PWM and NWM solvents is formulated as

min
s∈Sdatabase

F (t(b; s); e(s); s)) (7.1)

s.t. Tm(s) ≤ 25 ◦C (7.2)

40 ◦C ≤Tb(s) ≤ 120 ◦C (7.3)

Q(s) = 0 (7.4)

EHS score(s) > EHS scorehexane (7.5)

xb;1 ∨ xb;i ∨ xb;I ≥ xb;ref (7.6)

xi ≤xorgH2O
≤ xj (7.7)

xaqs < 0:1 (7.8)

Since P. tricornutum contains heat-labile compounds, such as carotenoids, extractions

are commonly applied at room temperature. Therefore, the solvent should be liquid at

these conditions as given by its Tm and Tb limits (Eq. 7.2-7.3, (atmospheric pressure). The

fragility of the carotenoids additionally requires a mild solvent recovery. Therefore, a Tb of

120 ◦C is chosen as an upper limit. All solvent candidates were required to have a charge

Q of net zero. Only charge-neutral mixtures of ions as found in ILs were eligible solvent

candidates. The EHS score serves as an exclusion criterium to focus the search on benign

solvent candidates. For this purpose, the toxic solvent n-hexane, which is commonly applied

in microalgal processing, provides a reference EHS score of 0.79 (Eq. 7.5). Furthermore,

solubility limits are defined. For each biomass fraction, a reference solvent with a high

solubility for the respective fraction is assigned (Tab. 7.1) and the COSMO-RS solubilities of

representative molecules b in the corresponding reference solvents is predicted (T = 25 ◦C).

The reference solvents and representative molecules for proteins, carbohydrates, NLs, PLs,

and carotenoid are summarised in Tab. 7.1. The predicted solubilities in the reference solvents

serve as a lower solubility boundary. All solvent candidates exhibiting a higher or equal

solubility of at least one of the biomass fractions passed the solubility screening step (Eq. 7.6).
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Subsequently, the water-miscibility of the candidates is determined. Here, COSMO-RS LLE

predictions of a mixture containing the solvent candidate and water, mimicking the moisture

of the biomass, are performed (T = 25 ◦C, atmospheric pressure). Based on the LLE

predictions, the solvents are assigned to being WM, PWM, or NWM (Eq. 7.7). For solvents

considered fully water-miscible, no LLE is predicted. In the context of this thesis, the molar

fraction of water in the organic phase is defined as 0:1 <xorgH2O
< 0:9 for PWM solvents, and

xorgH2O
≤ 0:1 for NWM solvents. For both, PWM and NWM solvents, the solvent concentration

in the aqueous phase should be low to reduce the efforts for additional solvent recovery.

Therefore, the molar fraction of solvent in the aqueous phase is limited to xaqsolv< 0:1. All

solvents within these boundaries pass this screening step. Since the LLE defines the maximum

water-solubility of the solvent, additional predictions of the solubility of the representative

molecules in the corresponding solvent/water mixture are subsequently performed for selected

mixtures. Based on the defined optimisation problem, the database Sdatabase (Section 5.2.1)

is screened to identify PWM solvents (Section 7.2.4.1), NWM solvents (Section 7.2.4.2),

and WM solvents (Section 7.2.4.3). In the described solvent screening problem, the objective

function F (·) is not defined since the extraction mechanisms influencing the yields of the

target compounds b when extracting wet microalgal biomass are not yet fully understood.

Therefore, the solvent screening aims to eliminate unsuitable solvents from the database by

evaluating the constraints of the optimisation problem (Eq. 7.2-7.8), to yield a list of PWM,

WM, and NWM solvent candidates for further evaluation in experiments. The identified

solvent candidates are manually evaluated for commercial availability, suitable price (≤ 100 e

per 10 g), EHS properties (according to the solvents’ SDSs), and water miscibility.

7.2.3 Representative microalgal molecules and reference solvent system

C16:0, C16:1 and EPA were the most abundant fatty acids in the cultivated P. tricornutum

biomass (Appendix D.3.1). Therefore, these three fatty acids were chosen as representa-

tive molecules for SFAs, MUFAs, and PUFAs. Often, these fatty acids are incorporated in

TAGs.198 The TAG tripalmitin consists of three C16:0 fatty acids chains and was selected as a

representative molecule for the NLs. PLs were represented by a PC and a SQDG. The PC was

composed of C18:0 and C16:0 connected via a glycerol group to the phosphatidylcholine func-

tionality ((3-hexadecanoyloxy-2-octadecanoyloxypropyl) 2-(trimethylazaniumyl)ethyl phos-

phate). The SQDG is composed of glycoside of sulfoquinovose and a diacylglyc-

erol with C16:0 and EPA ([(2S,3S,4S,5R,6S)-6-[2-hexadecanoyloxy-3-[(5E,8E,11E,14E,17E)-

icosa-5,8,11,14,17-pentaenoyl]oxypropoxy]-3,4,5-trihydroxyoxan-2-yl]methanesulfonic acid).

Fx, the most abundant carotenoid of P. tricornutum (see Appendix D.3.1), was used to repre-

sent the pigment fraction. Although chlorophylls are even more abundant in P. tricornutum,

Fx was selected because it is located in both, the chloroplast and the lipid droplets. Fur-

thermore, Fx is of higher economic interest compared to the chlorophylls (Section 7.1). The
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carbohydrate fraction consists of mono- and polysaccharides. The main monosaccharides

are D-mannose and D-glucose were selected as monosaccharide-representatives .174,465 To

reduce the computational time required for the quantum chemical calculations, the polysac-

charides were represented by simplified structures. Chrysolaminarin was represented by a

β-1,3-glycosidically linked polysaccharide made of three glucose units. β-1,6-glycosidically

linked branches were neglected. Additionally P. tricornutum produces an immunostimula-

tory, water-soluble polysaccharide that is rich in glucose and mannose.205,206,466 A simplified

model carbohydrate composed of in total four glucose and mannose units connected via

β-1,4- glycosidic bonds was selected as a representative molecule. Proteins are the largest

polymers in the algal cells and, due to their size and various intramolecular interactions, the

most complex fraction of the cell to model. Andersson et al. modelled an entire protein using

Turbomole.467 However, such computations are extremely time-consuming. In this thesis,

the most abundant amino acids L-glutamine, L-asparagine, L-alanine, and L-leucine of P.

tricornutum were used as representative molecules174,215. The selected amino acids exhibit

different thermodynamic behaviour: L-glutamine and L-asparagine are more hydrophilic than

L-alanine and L-leucine.468 At neutral pH, as given for most of the solvents in the database,

the zwitterionic form of amino acids is present469 which was used for the QC calculations.

Water-insoluble proteins and carbohydrates were not considered in the screening as they

can be recovered as insoluble cell debris at the end of the extraction process for further

valorisation. Therefore, unless otherwise specified, ”proteins” and ”carbohydrates” refer to

the water-soluble part of these fractions. The representative molecules from each biomass

fraction were selected (Fig. 7.2) and modelled individually on a quantum chemical level to

reduce the complexity (see Section 5.2.5 for computational details).
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Tab. 7.1 Representative molecules according to their fraction in the algal biomass

of P. tricornutum and their reference solvents. Later in the screening, the solubilities

of representative molecules in the solvent candidates is compared to the reference

solvents. A solvent candidate will be eliminated in case of lower solubility than the

reference.

Fraction Representative molecules Reference solvent

Carbohydrates

D-glucose

Water
D-mannose

Laminarin

Glucomannan

Proteins

L-leucine

Water
L-alanine

L-asparagine

L-glutamine

Carotenoids Fucoxanthin (Fx) Ethanol

Neutral lipids Glycerol tripalmitate N-hexane

Polar lipids

Phosphatidyl choline (PC)

Ethanol

Sulfoquinovosyl diacyl glycerol (SQDG)

Palmitic acid (C16:0)

Palmitoleic acid (C16:1)

Eicosapentaenoic acid (EPA)

To identify solvents with high COSMO-RS solubilities of the representative molecules, a



106 Chapter 7. Solvent screening for the fractionation of wet microalgal biomass

Fuco-
xanthin

Alanine

Asparagine

Leucine

Glutamine

Gluco-
mannan

Laminarin

Glucose

Mannose

C16:1

SQDG
Tripalmitin

PC
C16:0

EPA

Carbohydrates

Proteins

Ppigments

Lipids

Lipid droplets:
Neutral lipids 

(TAGs incl. EPA)

Membranes:
Polar lipids 

(PC, SQDG, incl. EPA)

Vacuole:
Chrysolaminarin

Thylacoid:
Carotenoids (Fx)

Chlorophylls (Chl a)C

Cell wall:
Glucuronomannan

Fig. 7.2 Representative algae molecules of the diatom P. tricornutum with their

ff-surfaces. Adapted from König-Mattern et al.394 with permission from the Royal

Society of Chemistry.

reference solvent system was chosen for each biomass fraction to define threshold COSMO-

RS solubilities (Eq. 7.6). Commonly, the NL fraction is extracted with n-hexane. For Fx

and PL extraction, typically EtOH is applied.255,276. A high fraction of the P. tricornu-

tum carbohydrates and proteins are water-soluble (see Appendix D.3.1), therefore, water

was selected as a reference solvent. All considered biomass fractions, their representative

molecules and the assigned reference solvent are summarised in Tab. 7.1. Furthermore, the

ff-profiles of the representative molecules, and a comparison of COSMO-RS predicted solu-

bilities and experimental data to validate the chosen representative molecules are provided

in Appendix D.1.1.

7.2.4 Screening results

In the first screening steps, 28% of the solvent candidates met the structural constraints

and were in the desired Tm/Tb ranges, as illustrated in Fig. 7.3. In particular, a high

number of DESs was excluded during this step due to their high BPs as predicted by

COSMO-RS. BPs for all ILs were uncertain as stated in a warning of COSMOtherm, hence,

these candidates were kept in the screening to prevent false exclusion. Half of the identified
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solvent candidates passed the EHS property constraint (Eq. 7.5) since they were predicted

to have a higher EHS score than the reference solvent n-hexane. Mostly, VEGA models

were well in line with the corresponding information obtained from safety datasheets of

the solvents. Only rare cases, the EHS score was predicted too low. To prevent false

exclusion, these solvents were manually re-added to the screening (see list of added in

Appendix D.1.2). After this step, around 28% of the solvent candidates were eligible. The

thus identified 1112 solvent candidates were subsequently subject to COSMO-RS solubility

predictions (T = 25 ◦C) using the representative molecules defined in Tab. 7.1. If a solvent

was predicted to have a higher solubility for one of the considered biomass fractions than

the assigned reference solvent (Eq. 7.6, Tab. 7.1), it passed the screening step. After

this step, the screening was divided into a screening to identify solvents for the rather

hydrophilic fractions (carbohydrates and proteins) and a screening step to find suitable

solvents for the lipophilic fractions (NLs, PLs, and pigments). The screening approach

identified 16 solvent candidates for the carbohydrate fraction and 18 for the protein fraction

(see Appendix D.1.3 for a list of the identified candidates). For these potential solvents,

the SDSs and the prices were manually evaluated. The solvent candidate with the most

benign EHS properties and the lowest price was water. Other solvent candidates were either

expensive (in particular ILs) or no information about the EHS properties was available.

Furthermore, several organic acids were among the candidates, leading to degradation of

the biomass. Although no other promising solvent could be identified, this result high-

lights that the screening method was able to re-discover water as the most promising solvent.

For the lipophilic fractions, 699 solvent candidates passed the solubility screening step

(Fig. 7.3) which are summarised in Appendix D.1.3. To identify water-miscible, partially

water-miscible and practically water-immiscible solvents, the 699 identified candidates were

subject to solvent/water COSMO-RS LLE predictions (T = 25 ◦C). 79 water miscible sol-

vents, 328 partially water-miscible solvents, and 292 water immiscible solvents (as defined in

Section 7.2.2) were identified. After evaluating their price and the EHS properties manually,

the most promising WM, PWM and NWM solvents were determined. Each solvent class

shows a distinct solubility profile (Fig 7.4). All selected solvents were predicted to have

low protein carbohydrate solubilities. High NL solubilities were only predicted for the NWM

solvents. While WM and PWM solvents tend to have particularly high PL and pigment solu-

bilities, the solubility of these fractions is comparably low in NWM solvents. However, these

solubilities were mainly used to discriminate between solvents for lipophilic and hydrophilic

representative molecules and do not yet take into account the presence of moisture of the

biomass. In the following section, the selected solvent candidates are discussed in detail.
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Database Structural
constraints

Tm/Tb EHS Solubilities
Water-miscible

Partially 
water-miscible

Water-immiscible8011 7951

2205 1112 699

79

328

292

60 5746 1093 413

Fig. 7.3 Screening progress. As a first step, solvents meeting the structural con-

straints, Tm and Tb limits, and EHS criteria were identified. Subsequently, the

solubilities of the biomass fractions in the identified solvents were predicted. Sol-

vents with high solubilities for the lipophilic fractions (NLs, PLs, and carotenoids)

were selected for predictions of their LLE with water (T = 25 ◦C). In this way, the

identified solvents were classified as being WM, PWM, or NWM.

7.2.4.1 Partially water-miscible solvents

Before PWM solvent candidates for further experimental evaluation were selected, the

influence of the water content in the solvent on the COSMO-RS-predicted solubilities and

the partition coefficients of the representative molecules was investigated. For this purpose,

the solubilities of the representative molecules in the water-saturated solvents with the phase

composition xorgH2O
were predicted using COSMO-RS (Eq. 5.6). The presence of water in the

organic solvent strongly affects the solubilities of the representative molecules (Fig. 7.5 a).

Solvent/water mixtures with a higher water content have in general a higher solubility of the

lipophilic compounds than solvent/water mixtures with a lower water content. Compared

to the pure solvent, the solubilities of all lipophilic compounds decreased up to several log

units with increasing water content while the solubility of the hydrophilic fractions increased.

E.g. for 2-butanol (2-BuOH), one of the solvents with the highest predicted water content

in the organic phase (COSMO-RS predicted xorgH2O
= 0.74), the solubility of NLs decreased

from log10(xNL) = −2:25 in the pure solvent to log10(xNL) = −14:87. In contrast, the

solubility of the carbohydrates increased from log10(xcarb) = −7:51 in the pure solvent to

log10(xcarb) = −2:24.

After extracting the target molecules, a convenient method for their separation would

be liquid-liquid extraction. Since water is already in the system due to the moisture of the

microalgal paste, phase formation can be triggered by further addition of water beyond

the miscibility limit. In this way, more hydrophilic molecules tend to move to the aqueous

phase, while more less hydrophilic compounds move to the organic phase. Furthermore, the

moisture within the biomass can potentially be utilised for the phase separation instead of
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Fig. 7.4 COSMO-RS predicted solubilities of NLs, PLs, and carotenoids in the

selected solvents.

being evaporated in the energy demanding biomass drying step. To evaluate the partitioning

behaviour of the representative molecules between organic and the aqueous phase, the

partition coefficients were predicted using COSMO-RS (Eq. 5.8). The dependence of the

partition coefficients logP on xorgH2O
is exemplarily presented for carbohydrates and pigments

in in Fig. 7.5 b. A high water content in the organic phase is disadvantageous for the

separation of hydrophilic and lipophilic molecules as the partition coefficients approach zero.

The remaining 328 partially water-miscible solvent candidates were manually analysed

with respect to commercial availability, price, and EHS properties. Among these candidates

were mainly C4-alcohols, and esters derived from carboxylic acids (Tab. 7.2). One DES

(decanoic acid/dodecanoic acid, xdecanoicacid = 0:67) was identified as a potential candidate.

This DES is completely synthesised from fatty acids. Furthermore, the screening procedure

identified two trihexyltetradecylphosphonium-based ILs. Both ILs were predicted to have

a high solubility of lipophilic compounds, as well as proteins and carbohydrates. The two

identified ILs are known as Cyphos IL 103 and 104. However, the recovery of fragile molecules

(e.g. pigments) from ILs and DESs is difficult. Advanced separation strategies are necessary

for mild product recovery and are currently being researched.470,471 2-BuOH, ethyl acetate,

and ethyl formate were selected for experiments due to their varying degrees of water-

solubility which increases in the order of ethyl formate ≤ ethyl acetate ≤ 2-BuOH.
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Fig. 7.5 Effect of the water content in the organic phases (xorgH2O
) of the identified

solvent on COSMO-RS predicted a) solubilities and b) partition coefficients. The

solubility in water saturated solvents decreases for all lipophilic fraction with increas-

ing water content, especially for neutral lipids. Partition coefficients are approaching

zero with increasing water content. Adapted and reprinted from König-Mattern et

al.394 with permission from the Royal Society of Chemistry.

Tab. 7.2 Overview of the PWM solvents identified using the computational screen-

ing approach. The Tb was taken from the NIST Chemistry WebBook.440 The sol-

ubilities log10(xfrac) of the NL, PL, and carotenoid (Car.) fraction were predicted

using COSMO-RS. The EHS properties were obtained from PubChem.414

Solvent Tb[
◦C] xorgH2O

log10(xfrac) EHS

properties
Structure

NL PL Car.

2-Butanol 99.5 0.71472 -2.25 0.00 -1.80
flammable,

irritant OH

1-Butanol 117.7 0.49473 -2.15 0.00 -1.66

flammable,

irritant,

corrosive
OH

Isobutanol 108
0.16

(40 ◦C)
474 -2.10 -0.01 -1.70

flammable,

irritant,

corrosive

OH

Continued on next page
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Tab. 7.2 – Continued from previous page

Solvent Tb[
◦C] xorgH2O

log10(xfrac) EHS

properties
Structure

NL PL Car.

Methyl

acetate
57 0.26475 -4.13 -0.31 -0.99

flammable,

irritant O

O

Ethyl

formate
54.4 0.17476 -3.13 -0.15 -1.10

flammable,

irritant H O

O

2-MeTHF 78
0.16

(19.2 ◦C)
477 0.00 -0.68 -0.13

flammable,

irritant,

corrosive

O

Ethyl

acetate
77.1 0.13475 -2.03 -0.17 -0.53

flammable,

irritant O

O

Methyl

propionate
79.8

0.12

(50 ◦C)
478 -1.90 -0.23 -0.87

flammable,

irritant O

O

7.2.4.2 Non-water miscible solvents

In the screening procedure, 292 NWM solvent candidates were identified, among which were

dialklyethers and vinyl ethers (Tab. 7.3). Cyclopentyl methyl ether (CPME) was selected

for experiments as a dialkyl ether which has a suitable price, as well as desirable LLE,

and EHS properties. Di-n-propylether was not selected due to its suitable price. Other

Alkylether with longer alkyl chains, such as di-n-butylether, have a more suitable price,

however, exceed the desired Tb limits. Furthermore, propyl vinyl ether (PVE), butyl vinyl

ether (BVE), and isobutyl vinyl ether (IBVE) were selected for experiments as these vinyl

ethers were not explored for wet extraction for microalgae to date. However, the vinyl ethers

must be handeled carefully as they pose a risk for explosion and are prone to spontaneous

polymerisation reactions.479 Nevertheless, they are interesting solvent candidates for the

substiution of n-hexane due to their otherwise benign EHS properties.
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Tab. 7.3 Overview of the NWM solvents identified using the computational screen-

ing approach. The Tb was taken from the NIST Chemistry WebBook.440 The sol-

ubilities log10(xfrac) of the NL, PL, and carotenoid (Car.) fraction were predicted

using COSMO-RS. The EHS properties were obtained from PubChem.414

Solvent Tb[
◦C] xorgH2O

log10(xfrac) EHS

properties
Structure

NL PL Car.

CPME 107 0.01480 0.00 -1.23 -1.24
flammable,

irritant
O

Di-n-propyl-

ether
89 0.04481 0.00 -1.72 -1.94

flammable,

irritant O

2-Ethoxy-

2-methyl-

propane

54 n.a. 0.00 -1.14 -0.53
flammable,

irritant O

IBVE 83 n.a. 0.00 -1.37 -2.46
flammable,

irritant O

BVE 94 n.a. 0.00 -1.21 -2.22
flammable,

irritant
O

PVE 65 0.01482 n.a. n.a. n.a.
flammable,

irritant
O

7.2.4.3 Water-miscible solvents

79 WM solvent candidates were identified using the screening approach. Among the identi-

fied solvent candidates were C2- and C3-alcohols, as well as acetone. The reference solvent

EtOH was re-discovered by the screening approach, highlighting the applicability of the ap-

proach. To ensure structural diversity in the extraction experiments, acetone was chosen

as a ketone, and EtOH was chosen as an alcohol. Both solvents are inexpensive, and have

benign EHS properties.

7.3 Experimental validation

The following sections provide experimental investigations for the selected WM, PWM, and

NWM solvents from identified in the Sections 7.2.4.1-7.2.4.3. In the Sections 7.3.1-7.3.3,
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Tab. 7.4 Overview of the WM solvents identified using the computational screening

approach. The Tb was taken from the NIST Chemistry WebBook.440 The solubilities

log10(xfrac) of the NL, PL, and carotenoid (Car.) fraction were predicted using

COSMO-RS. The EHS properties were obtained from PubChem.414

Solvent Tb[
◦C]

log10(xfrac)
EHS

properties
Structure

NL PL Car.

Ethanol 78 -4.25 -0.22 -1.98 flammable
OH

1-Propanol 97 -2.86 -0.06 -1.67
flammable,
irritant,
corrosive

OH

2-Propanol 82 -3.35 -0.06 -2.04
flammable,
irritant

OH

Acetone 56 -4.83 -0.39 -1.39
flammable,
irritant

O

the computationally identified solvents are applied in lipid and pigment extractions of wet

and freeze-dried P. tricornutum biomass to investigate their potential for application in a

biomass fractionation process. Based on the computational and experimental results, a

novel biorefinery approach for P. tricornutum is developed (Section 7.4). The experimental

procedures, describing the cultivation, harvest, and extraction procedure, as well as further

analysis of the extract composition, are provided in Section 7.5.

7.3.1 Lipid extraction from wet P. tricornutum biomass

The solvents identified using the computational screening approach (Section 7.2.4) were

tested in lipid extraction experiments on wet P. tricornutum biomass (moisture content

MC = 81− 85 wt.%). Additionally, the influence of a cell disruption step on the lipid yield

was investigated. For this purpose, the samples were sonicated for 2 min using a sonication

probe. The resulting lipid extract was separated into its NL and PL fractions using silica

columns. The fatty acid composition of the NLs and PLs was determined using GC-FID

after conversion to FAMEs (see Section 7.5.5). The experimental methods are described in

detail in the Sections 7.5.1-7.5.5.

Although the solubility of NLs is typically higher in the nonpolar, NWM solvents

(Fig. 7.4), the lipid yield was higher in the WM and PWM solvents (Fig 7.6). Even without

sonication, 96 vol.% ethanol (EtOH96 vol:%) extracted 96.0 wt.% of the lipids, followed by

75 vol.% 2-butanol (2-BuOH75 vol:%) and acetone, which led to lipid yield of 92.6 wt% and
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86.2 wt.%, respectively. With sonication, extraction with 2-BuOH75 vol:% resulted in a lipid

yield of 99.4 wt.%. These results suggests that the target compound solubility is not en-

tirely the governing factor for the efficient extraction of lipids from wet microalgal biomass.

Furthermore, the lipid yields of the untreated and sonicated samples after EtOH96 vol:%,

2-BuOH75 vol:%, and acetone extraction were comparably high. Presumably, these solvents

could efficiently diffuse through the untreated cell walls leading to yields comparable to the

sonicated samples. High lipid yields for WM solvents were also reported in the literature.

Liu et al.483 applied the WM solvent 1,2-dimethoxyethane for the extraction of lipids from

wet Botryococcus braunii resulting in a close to total lipid yield (determined using n-hexane

on dry biomass). However, the present regulations limit the use of 1,2-dimethoxyethane on

industrial scale due to its health hazard and safety risks.240 Among the PWM solvents, the

highest lipid yield was obtained by 2-BuOH75 vol:%. Notably, the obtained lipid yields using

the PWM solvents decreased in line with decreasing water-miscibility (water miscibility of

2-BuOH > ethyl acetate > ethyl formate). Extractions employing the NWM solvents re-

sulted in a maximum lipid yield of 33.1 wt.% for CPME and could be barely increased by

sonication. All investigated NWM solvents as well as the solvents with low water misci-

bility (ethyl acetate, ethyl formate) selectively extracted NLs, however, also the overall NL

yield was low. Other studies reported comparably low lipid yields for the wet extraction of

Nannochloropsis sp. and Chlorella pyrenoidosa biomass when ethyl acetate, n-hexane, and

CPME were used as solvents.247,248 In these studies, the lipid yields ranged between 20 and

40 wt.% and could be improved to around 60 wt.% by adding a more polar co-solvent such

as methanol. Derwenskus et al. performed PLE on wet Chlorella vulgaris and P. tricornutum

biomass.180 For P. tricornutum, increasing yields were obtained for n-hexane < ethyl acetate

< EtOH. Similarly, wet C. vulgaris was least efficiently extracted by hexane, however, the

use of ethyl acetate led to higher lipid yields than EtOH.

7.3.2 Carotenoid and chlorophyll extraction from wet microalgal biomass

Subsequently, the chlorophyll and carotenoid yields after extracting wet P. tricornutum

biomass were determined using the the most promising solvents from Section 7.3.1. The

PWM solvent 2-BuOH75 vol:%, and the WM solvents EtOH96 vol:% and acetone were selected,

since these solvents obtained the highest lipid yields and are promising for further investiga-

tions. These solvents were compared against the NWM solvents CPME and n-hexane. The

vinyl ethers were excluded as they were ineffective for the extraction of lipids. Furthermore,

white particles with a yellow hue were observed in the solvent containers of the vinyl ethers,

presumably caused by spontaneous polymerisation reactions. The experimental procedures

are described in the Sections 7.5.4 and 7.5.6.

Similar to the lipid extraction experiments, EtOH96 vol:%, acetone, and 2-BuOH75 vol:%

most effectively extracted chlorophylls and carotenoids. Without sonication, a maximum
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Fig. 7.6 Lipid extraction (t = 90 min) from wet P. tricornutum paste, with

and without sonication treatment. Even without sonication, 2-BuOH75 vol:%,

EtOH96 vol:% and acetone extracted more than 86 wt.% of the lipids. n-Hexane

and all other practically water-immiscible solvents in contrast, attained yields be-

low 33 wt.% with sonication treatment. Adapted from König-Mattern et al.455 with

permission from Elsevier.

carotenoid yield of 77.8 wt.% was obtained by extraction with EtOH96 vol:%. 2-BuOH75 vol:%

extractions resulted in the maximum chlorophyll yield with 82.3 wt.% (Fig. 7.7 a). Surpris-

ingly, among the WM and the PWM solvents, the carotenoid yields were lower than that

of the lipids (Fig. 7.6), although, conversely, the carotenoid solubility was predicted to be

higher than the NL solubility (see Appendix, Fig. D.5). A potential cause for the reverse

solubility-yield relationship could be the accessibility of the solvent to the target organelles.

The pigments are connected to the FCP complexes located in the thylakoid membranes via

hydrogen bonds. In contrast, most of the NLs are stored in lipid globules that float inside

the cells. Since the lipid globules are presumably easier accessible to the solvent than the

FCP complexes, the lipid yield might be higher despite the lower lipid solubility.

A sonication step increased both, the carotenoid and chlorophyll yield, for all tested

solvents (Fig. 7.7 b). EtOH96 vol:% combined with sonication led to the highest carotenoid

yield of 95.0 wt.%, followed by acetone. Extraction with 2-BuOH75 vol:% combined with

sonication resulted in complete chlorophyll extraction and a carotenoid yield of 82.6 wt.%,
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indicating that the solvent was efficiently transported to the FCPs, however, chlorophylls

were more effectively extracted. The NWM solvents hexane and CPME led to the lowest

pigment yields. For the NWM solvents, a stronger effect of sonication treatment on the

carotenoid yields compared to the lipid yield was observed. For n-hexane, the sonication

step increased the carotenoid yield from 7.9 to 40.8 wt.%, whereas the increase in lipid yield

was less prominent. While hexane extractions were more selective to the carotenoids than

to the chlorophylls, CPME extracted both pigments with comparable efficiency. According

to the ff-profiles (Appendix D.1.3.1), CPME exhibits slight HBA behaviour whereas hexane

is completely nonpolar. These characteristics might explain the differences in chlorophyll

yield between CPME and hexane. Derwenskus et al. reported increasing carotenoid yields

for PLE of wet P. tricornutum biomass, increasing from hexane < ethyl acetate < EtOH180

which is in line with the obtained experimental results in this work.
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Fig. 7.7 Chlorophyll and carotenoid extraction (t = 90 min) from wet P. tricornu-

tum paste (MC = 81 - 85 wt.%), a) with sonication (t = 2 min) and b) without

sonication. Adapted from König-Mattern et al.455 with permission from Elsevier.

7.3.3 Lipid and pigment extraction from dried microalgal biomass

To compare the yields obtained from wet and dry biomass, extractions were performed on

lyophilised biomass (MC = 8:5 wt.%) and compared to the yields of the wet extractions.

For the dry extractions, 2-BuOH75 vol:% and EtOH96 vol:% were chosen since they were the

best-performing PWM and WM solvents, respectively. The NWM solvent n-hexane is com-

monly used as a solvent for lipid and pigment extraction on dry biomass and was used as a

benchmark. The experimental details are explained in detail in the Sections 7.5.4- 7.5.6. The

highest carotenoid yield was obtained for dry extractions using EtOH96 vol:% (corresponding

to reference method for pigment extraction, therefore, 100 wt.% carotenoid yield) (Fig. 7.8

a). Additionally, absolute EtOH was tested for carotenoid extraction on dry biomass, how-

ever, resulting in a lower yield than that obtained with EtOH96 vol:% (data not shown). Wet



7.4. Lab-scale fractionation process for wet P. tricornutum biomass 117

extraction with EtOH96 vol:% and sonication was slightly less efficient (within standard de-

viation), resulting in a carotenoid yield of 95.0 wt.%. 2-BuOH75 vol:% (wet + sonication

and dry route) and EtOH96 vol:% (dry route) led to complete chlorophyll extraction (Fig. 7.8

b). The most effective solvent for the dry extraction of lipids was 2-BuOH75 vol:%, result-

ing in a slightly higher lipid yield than the reference method (chloroform/methanol, 1/1,

v/v) (Fig. 7.8 c). The experiments showed that the extraction of wet, undisrupted biomass

was the least effective method for all analysed biomass fractions. When combined with a

sonication step, lipid and pigment yields comparable to the dry route could be obtained for

EtOH96 vol:% and 2-BuOH75 vol:%. In particular, for 2-BuOH75 vol:% and n-hexane, the soni-

cation step boosted the carotenoid yields beyond dry route levels. An increase of carotenoid

yields was also reported for wet extraction of disrupted Chlorella thermophila by Sarkar et

al.484 Since the cell disruption step is less energy-intense than a drying step, these findings

are highly important for the design of mircroalgal biorefineries.
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Fig. 7.8 Dry extractions (t = 90 min) of freeze-dried P. tricornutum biomass

(moisture content = 8.5 wt.%) compared to wet P. tricornutum paste (moisture

content = 81 - 85 wt.%). The ratio of algal dry matter to solvent was held

constant. The yields of carotenoids, chlorophylls and lipids are shown in a), b),

and c), respectively. Adapted from König-Mattern et al.455 with permission from

Elsevier.

7.4 Lab-scale fractionation process for wet P. tricornutum

biomass

The economic analysis of potential P. tricornutum biorefinery products revealed that the

carotenoids and the lipids have the highest economic values (see Section 7.1). Therefore,
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separating lipids and carotenoids is crucial for the economic viability a P. tricornutum biore-

finery process. In the literature, two strategies for this separation were reported: anti-solvent

or temperature-induced precipitation of Fx with subsequent filtration,276 or liquid-liquid ex-

traction followed by chromatography.485 The experiments performed in Section 7.3.1 showed

cell disruption affects pigment and carotenoid extraction differently. Cell disruption is not

necessary for efficient lipid extraction from wet P. tricornutum when solvents with high wa-

ter miscibility are employed. In contrast, pigment extraction without cell disruption was less

effective (Section 7.3.2). For an incubation time of t = 90 min, 2-BuOH75 vol:% extracted

92.6 wt.% of the lipids but only 68.8 wt.% of the pigments from wet, undisrupted biomass.

Tailoring the operational parameters towards high lipid and low carotenoid yields potentially

leads to a more selective extraction of lipids, whereas the carotenoids preferably would re-

main in the biomass. A second extraction stage could extract the residual pigments. In

this manner, the carotenoid-lipid separation would be integrated in the extraction stage. In

the following section, experiments investigating the potential for integrated extraction and

separation of lipids and carotenoids are performed. Based on these experiments, a lab-scale

biorefinery process is developed.

7.4.1 Integrated extraction and separation of lipids and carotenoids from

wet P. tricornutum biomass

To study the effect of incubation time and water content wwater;extr, 2-BuOH was selected

as a solvent. 2-BuOH has a large window of water-miscibility in which the polarity of the

solvent/water mixture can be conveniently tuned. After extraction, adding water beyond the

miscibility window triggers phase formation for separating co-extracted carbohydrates and

proteins, which is particularly interesting for designing a biorefinery process. In the experi-

ments with the incubation time and the water content wwater;extr were independently varied

to systematically study their effect on carotenoid and pigment yields. Lipid and pigment

extraction experiments on wet P. tricornutum biomass were performed as described in Sec-

tion 7.5.4 with varying water amount at constant incubation time t = 90 min. Furthermore,

experiments were performed at varying incubation time at constant wwater;extr = 32 wt.%

(corresponding to 2-BuOH75 vol:%).

For the polarity modification of the 2-BuOH/water mixture, first, the miscibility range

was assessed. The LLE of 2-BuOH and water (T = 20 ◦C was experimentally determined

by Lladosa et al.472 The mass fraction of water in the organic phase at LLE was worg
H2O

=

36 wt.%. Thus, to prevent phase separation during extraction, the water content in the 2-

BuOH/water-mixture must be held below wwater;extr < 36 wt.%. The water content during

extraction wwater;extr was varied between varied 5 wt.% < wwater;extr < 32 wt.% to stay

closely within the miscibility window. A water content of wwater;extr = 32 wt.% corresponds

to a 2-BuoH content of 75 vol.% (2-BuOH75 vol:%, neglecting the excess volume of the real
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mixture). Please, note the difference between weight- and volume-based expressions. The

water content in the system wwater;extr also accounts for the mass of water originating from

the moisture of the biomass mmoisture biomass and is defined as

wwater;extr =
mmoisture biomass

mmoisture biomass +mH2O;s +ms
; (7.9)

where the mass of solvent is given as ms and the mass of water additionally to the solvent

is denoted as mH2O;s.

Experiments with varying wwater;extr were performed on wet P. tricornutum paste for

t = 90 min (no sonication). A parabolic relationship between yields and wwater;extr was ob-

served. A minimum pigment and lipid yield was observed between 17 ≤ wwater;extr ≤ 21 wt.%

(Fig. 7.9 a). The highest experimentally tested water content led to the highest lipid

(95.9 wt.%), carotenoid (68.7 wt.%) and chlorophyll yield (82.3 wt.%). This parabolic yield-

wwater;extr relationship is surprising, since, according to the “like dissolves like” principle, a

higher polarity of the solvent is associated with lower solubility of nonpolar biomass com-

pounds, which was confirmed by COSMO-RS solubility predictions (Appendix, Fig. D.5).

Therefore, the experimental results cannot explained by the solubility of the target com-

pounds. Interestingly, also Ren et al. reported increased lipid yields when a water treatment

was performed between to extraction stages with organic solvents.486 The water treatment

caused cell wall alterations that were attributed to the increase in lipid yield. Presumably, the

combined effects of solvent-cell wall interactions, solvent-target organelle interactions, and

target compound solubility contribute to the observed parabolic yield profile. However, more

research is required to quantify the extent to which each of the phenomena influence the

yield. For efficient carotenoid-lipid separation, maximum selectivity towards lipids is desir-

able. The carotenoid-lipid selectivity can be described by the difference between carotenoid

and lipid yield which reached a maximum between 20 wt.% ≤ wwater;extr ≤ 30 wt.% where

about 80 wt.% of the lipids were extracted and 80 wt.% of the carotenoids remained in

the residual biomass. Additionally, the depenence of the yields on the incubation time,

at wwater;extr = 32 wt.% was experimentally investigated to study the extraction rates of

carotenoids and lipids as potential means for their separation. The lipids were more rapidly

extracted than the pigments (Fig. 7.9 b). After an incubation time of t = 20 min, already

75.8 wt.% of the lipids were extracted while 66.5 wt.% of the carotenoids remained in the

biomass. The observed differences in extraction rates offer an additional option to separate

lipids and carotenoids.
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a) Varying wH2O,extr, t = 90 min b) Varying t, wH2O,extr = 31.5 wt.%

Lipids

Chlorophylls

Carotenoids

Fig. 7.9 Influence of the water content wwater;extr and the incubation time t on lipid,

carotenoid, and chlorophyll yields during extraction of wet P. tricornutum biomass

(MC = 81 − 85 wt.%, no sonication). a) Varying wwater;extr at constant incuba-

tion time (t = 90 min), b) varying incubation time t at constant water content

(wwater;extr = 32 wt.%). Adapted from König-Mattern et al.455 with permission

from Elsevier.

7.4.2 Lab-scale 2-butanol/water-based biomass fractionation process for

wet P. tricornutum biomass

Based on the observed differences in carotenoid and lipid yields for varying wwater;extr and

incubation time, a lab-scale biomass fractionation process was developed. The novel biore-

finery process consists of two extraction units (Fig. 7.10 a) that selectively extract lipids

and carotenoids, respectively. The extract streams are subject to separation units in which

water addition triggers phase separation of the 2-BuOH/water mixture, allowing to further

fractionate the extracted compounds. The yields of extracted lipids, pigments, proteins,

and carbohydrates were experimentally determined. Furthermore, the amount of these frac-

tions contained in the aqueous and organic phases was measured. The applied experimental

procedures are described in the Sections 7.5.4-7.5.8, and 7.5.11. Based on the yields and

the partition coefficients, the mass balance for the developed process was modelled (Ap-

pendix D.6) to calculate the overall yields for each fraction and to provide an overview of

the mass flows to assess potentials for process optimisation.

In the biorefinery process (Fig 7.10 a), wet P. tricornutum biomass (MC = 81−85 wt.%)

was first extracted with 79 vol.% 2-butanol (2-BuOH79 vol:%) (t = 90 min) which corresponds

to wwater;extr = 26 wt.% where a maximum difference in carotenoid and lipid yields was

observed (Fig. 7.9 a). In this step, 89.6 wt.% of the lipids were extracted and 80.0 wt.% of

the pigments remained in the residual biomass. The lipid-rich extract was further purified

by phase separation which was triggered by adding water. In this way, the lipids partitioned
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to the organic phase while the co-extracted carbohydrates and proteins partitioned to the

aqueous phase. The residual biomass showed an orange hue due to the remaining pigments

(Fig. 7.10 a). After a cell disruption step, the second extraction step using 2-BuOH75 vol:%

(t = 90 min) aimed to extract the residual pigments at maximum yield. To separate the

pigments from the co-extracted carbohydrates and proteins, water was added to induce phase

formation. The carotenoids were accumulated in the organic phase, while the carbohydrates

and proteins partitioned to the aqueous phase. Based on the determined mass flows, the

final carotenoid-rich stream (Fig. 7.10 b) contained 65 wt.% of the carotenoids that were

initially present in the biomass. The final lipid yield was 79 wt.%. Carbohydrates were

the predominant component in the aqueous phases of both phase separation steps. Proteins

were the main compound of the residual biomass remaining after the second extraction stage.

Therefore, the developed biorefinery process effectively fractionated the biomass into lipids,

carotenoids, carbohydrates and proteins by employing only 2-BuOH and water as benign

solvents at ambient conditions. In contrast to PLE, the developed process does not require

costly equipment, high temperatures, and high pressures. Furthermore, the novel biorefinery

process eliminates the energy-intensive biomass drying step that is commonly applied in

microalgal biomass processing. This process is still in the early-stage development and several

options remain for further improvements. The carotenoid/lipid-separation, representing the

compounds with the highest economic value, should be further optimised. Their separation

could be improved by applying design of experiments-approaches, taking into account the

extraction rates in addition to the water content wwater;extr. Mixing rates and biomass loading

should be investigated as additional degrees of freedom for incresing the lipid selectivity of

the first extraction since extraction rates are highly dependent on solvent contact with

the target compounds. Considering their high economic value, losses stemming from co-

extracted carotenoids in the first extraction stage and unextracted carotenoids in the second

extraction stage should be minimised. In further studies, the approach should be tested

and adopted for other microalgal species. Envisioning an industrial scale biorefinery process,

process units for energy-efficient solvent recycling should be designed and optimised. The

organic and aqueous phases originating from the separation units represent azeotropic 2-

BuOH/water-mixtures that can be separated by pervaporation.487 Since the process employs

2-BuOH/water mixtures for both extraction steps, there is no need to recover highly pure

solvents, reducing the energy demand for solvent recycling. Overall, the novel biorefinery

approach represents a simple and inexpensive method based on only two benign solvents

to fractionate P. tricornutum biomass at high moisture contents and operates at ambient

conditions. For a potential scale-up, carotenoid losses should be minimised and effective

solvent recycling strategies should be implemented.
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Fig. 7.10 Overview of the developed biorefinery process for wet P. tricornutum

biomass. a) Process flow diagram. b) Corresponding mass flows modelled on the

basis of experimental measurements. The final yields are based on the weight of

the fractions in the initial biomass. Reprinted from König-Mattern et al.455 with

permission from Elsevier.
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7.5 Experimental methods

7.5.1 Cultivation of P. tricornutum

P. tricornutum (strain 1090-1b, Culture Collection of Algae, University Göttingen, SAG) was

cultivated in modified Mann and Myers medium276,488 in a 28 l flat panel airlift photobioreac-

tor (Subitec, Germany). To prepare the medium, 10.0 g l−1 NaCl, 2.8 g l−1 MgSO4 · 7H2O,

2.8 g l−1 MgCl2 · 6H2O, 1.2 g l−1 CaCl2·2H2O. After sterile-filtrating the medium, 2 ml

of a sterile trace element solution consisting of 3 g l−1 H3BO3, 0.7 g l−1 MnCl2 · 4H2O,

0.17 g l−1 ZnSO4· 7H2O, 2.86 mg l−1 CoCl2 · 6H2O and 0.13 g l−1 Na2MoO4 · 2H2O was

added. Iron, ammonium, nitrate, and phosphate were added separately as stock solutions

to reach ion concentrations of 1 mg l−1 Fe +
3 , 50 mg l−1 PO 3–

4 , 75 mg l−1 NH +
4 , and

500 mg l−1 NO –
3 in the medium. Fe-(III)-citrate · H2O, K2HPO4, KH2PO4, NH4HCO3,

and KNO3 were used to prepare the respective stock solutions. The ratio of K2HPO4 to

KH2PO4 in the PO 3–
4 stock solution was 1.27/1 (w/w). NO –

3 and PO 3–
4 concentrations

in the medium were daily measured by ion exchange chromatography (Methrohm, Compact

IC Flex oven/SeS/PP/Deg) equipped with an anion column (Metrosepp A Supp 5/150/4.0).

The medium was supplemented by nitrate and phosphate stock solutions to the desired con-

centrations. The reactor was equipped with warm-white LEDs (Sanlight e.U., P4W). The

light intensity was measured using a PAR-sensor (LI-COR, LI19OR-DWC) and adjusted with

increasing culture density. The pH was adjusted to 7.4 by automatic addition of NaOH and

CO2. The temperature was maintained at 20 ◦C as measured with a temperature sensor.

Dissolved oxygen was measured by an optical pO2
electrode (Hamilton, Visiferm DD ARC 12

H0). At the end of the exponential growth phase, cells were harvested by centrifugation and

washed with MilliQ water. The resulting algal paste (MC = 81 − 85 wt.%) was aliquoted

in 50 ml Falcon tubes wrapped with aluminium foil, and stored at -20 ◦C until further use.

7.5.2 Determination of the moisture content

1 g of wet biomass was placed to a dried and pre-weighed porcelain crucible and oven-dried

overnight until a constant weight was reached. The weight of the biomass-filled crucibles

was recorded before and after drying. The amount of water in the biomass was determined

(Eq. 7.10). The moisture content MC was determined for each aliquot of algal paste

(Section 7.5.1).

MC [wt.%] =
mwet biomass −mdry biomass

mdry biomass
· 100% (7.10)
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7.5.3 Lyophyilisation

For experiments on freeze-dried biomass, the algal paste as obtained in Section 7.5.1,

was subjected to lyophilisation (Vaco2, Zirbus Technology) overnight. The resulting dried

biomass pellets were ground with mortar and pestle to obtain a fine powder (MC =

8:5 wt.%).

7.5.4 Extraction procedure for wet and dry biomass

500 mg of wet algal paste (see Section 7.5.1) was weighed into 50 ml Pyrex tubes for wet

extraction. For cell disruption, 2 ml of the solvent or solvent mixture was added and the

samples were sonicated for 2 min (amplitude = 80%, cycle = 0.6, UIS250V combined with

a LS24d7-L2 probe, Hielscher). After sonication, further 8 ml of solvent or solvent mixture

was added. In experiments without sonication, a stirring bar and 10 ml of the solvent

system were directly added to the algal paste. For the extraction of dry biomass, 100 mg of

lyophylised biomass (MC = 8:5 wt.%, corresponding to the same mass of dry matter as in

the wet extraction experiments), were used and 10 ml solvent or solvent mixture were added.

The samples were incubated for 90 min on a magnetic stirrer (250 rpm). Subsequently, the

samples were filtered through 0.2 µm PTFE syringe filters and 10 mg butylhydroxytoluol

(BHT) was added. The extracts were stored at -20 ◦C until further analysis. The samples

were protected from light during all steps using aluminium foil. Microscopic images of the

wet P. tricornutum biomass are provided in Appendix D.4.

7.5.5 Lipid analysis

The extracts were thawed and the solvent was evaporated under a gentle stream of N2. The

lipid extract was separated into neutral and polar lipids using silica columns as described

by Breuer et al.489 with minor modifications. Glyceryl trinonadecanoate (C19-TAG, Sigma

Aldrich) served as the internal standard for NLs, and 1,2-dipentadecanoyl-sn-glycero-3-

phosphocholine (C15-PL, Avanti Polar Lipids) as the as internal standard for PLs. Solid

phase extraction columns (Sep Pak Vac, 6 cc, 1 g silica, Waters) were equilibrated using

10 ml n-hexane. The lipid extract was dissolved in chloroform/methanol and was applied

to the equilibrated columns. Neutral lipids were eluted using 10 ml n-hexane/diethyl ether

solution (7/1, v/v). PLs were eluted with 10 ml acetone/methanol/n-hexane (2/2/1,

v/v/v) followed by 10 ml methanol. The eluents were evaporated under N2. In case no

separation of NLs and PLs was performed, only C15-PL was added as the internal standard

to the lipid extract.

The lipid extracts containing the internal standard were methylated and analysed by

GC-FID as described by Breuer et al.490 with minor modifications. For methylation, 3 ml
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of methanol containing 5 vol.% concentrated H2SO4 was added to the lipid extracts and

heated to 70 ◦C for 3 h in a shaker (Thermo Mixer C, Eppendorf). After methylation,

the samples were cooled to room temperature. Subsequently, 8 ml of 5% NaCl/water

solution (w/v) and 3 ml of heptane were added for phase separation. During methylation,

the lipids were converted to fatty acid methyl esters (FAMEs), which were collected in the

heptane phase. 1 µl of the heptane phase was injected into the GC system (6890 N Agilent)

which was equipped with a HP88 column (60 m, 0.25 mm diameter). The flow rate was

0.9 mlmin−1. The FAMEs were detected using a FID. The amount of lipid was calculated

based on calibrations for each FAME (C12:0, C14:0, C16:0, C16:1, C18:0, C18:1, C18:2,

C18:3, C20:5 (EPA)) with respect to the internal standards as described by Breuer et al.490

The total lipid content was determined by extracting 100 mg of lyophilised biomass with

10 ml chloroform/methanol (1/1, v/v). The samples were methylated and FAMEs were

quantified using GC as described above. The lipid content was given as wt.% of algal dry

matter.

7.5.6 Pigment analysis

The pigments were quantified according to Zapata et al.252 with minor modifications.

The extraction solvent was evaporated under N2 in amber Eppendorf tubes in the

dark. The dried pigment extract was redissolved in 1 ml 95% aq. methanol solution

(v/v) containing 0.1 wt.% BHT. 833 µl methanol solution containing the sample were

mixed with 167 µl MilliQ water for injection into a high-pressure liquid chromatography

(HPLC)system (1290 Infinity, Agilent). The injection volume was 40 µl. The HPLC

system was equipped with an Eclipse XDB-C8 Zorbax column (4.6 mm x 150 mm x

3.5 µl). Chlorophylls and carotenoids were eluted using methanol/acetonitrile/aqueous

pyridine solution (2/1/1, v/v/v, eluent A) and methanol/acetonitrile/acetone (1/3/1,

v/v/v, eluent B). The aqueous pyridine solution was adjusted to pH = 5 with acetic acid

and the pyridine concentration was 0.25 M. The eluents dosage was adjusted according

to the following ramp: 0 min: 100% eluent A, 22 min: 60% eluent A, 28 min: 5%

eluent A, 38 min: 5% eluent A, 40 min: 100% eluent A. The flow rate was 1 mlmin−1.

The pigments were detected by diode-array spectroscopy (350 to 750 nm wavelength)

and the chlorophylls were additionally identified by a fluorescence detector (excitation:

440 nm, emission: 650 nm). The amount of chlorophylls (chlorophyllide a, chlorophyll

c, pheophorbide a, chlorophyll a) and carotenoids (Fx, Ddx, Dx, β-Car) was calculated

using calibration with authentic standards. All standards were obtained from DHI Labora-

tory Products Denmark, except the fucoxanthin standard was purchased from Sigma Aldrich.
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The amount of carotenoid was calculated as the sum of all carotenoids used in the

calibration. Chlorophylls are very fragile and prone to degradation. Chl a is degraded to

chlorophyllide a Chld a which is further degraded to pheophorbide a Phbd a.491,492 To account

for the change of the total chlorophyll amount resulting from the degradation reactions, the

detected amount of Chld a and Phbd a is converted into Chl a-equivalents using their molar

weights:

Chl a eq. =

„
mPhbd a

MChld a

MPhbd a

«
MChl a

MChld a
(7.11)

Total chlorophylls were calculated as the sum of Chl c, Chl a, and Chl a equivalents.

Total carotenoids are calculated as the sum of Fx, Ddx, Dx, and β-Car amounts. The total

amount of chlorophylls and carotenoids was determined by extracting 100 mg of lyophilised

biomass with 10 ml of EtOH96 vol:%. The amount of chlorophylls and carotenoids was given

as wt.% of algal dry matter.

7.5.7 Protein analysis

After extraction (Section 7.5.4), the solvent was evaporated under N2, the extracts were

redissolved in MilliQ water, and subjected to an ultrasound bath (Sonorex RK102H S,

Bandelin) for 15 min. The suspension was filtered through 0.2 µm PTFE filters, to separate

the undissolved lipids from the liquid filtrate containing the dissolved protein. The amount

of protein was determined using the method of Lowry et al.493 Absorption of the resulting

blue solution was read at 750 nm using UVvis (Specord S600, Analytik Jena). Calibration

was performed using bovine serum albumin as a reference protein. The total protein content

of the biomass was determined by treating a suspension containing 0.3 mgml−1 algal dry

matter with the Lowry reagents. The protein content was given as wt.% of algal dry matter.

Water-soluble protein was determined by extracting 1000 mg of wet algal paste with

MilliQ water. First, 5 ml of water was added to the biomass and treated with a sonica-

tion probe (amplitude = 80%, cycle = 0.6, UIS250V combined with a LS24d7-L2 probe,

Hielscher) for 5 min. The samples were extracted for further 85 min on a magnetic stirrer

at room temperature. The samples were filtered through 0.2 µm PTFE filters and directly

analysed according to the Lowry method.

7.5.8 Carbohydrate analysis

To determine the amount of carbohydrates, after extraction (Section 7.5.4), the solvent

was evaporated under a stream of N2. The dried extract was redissolved in MilliQ water

and subjected to an ultrasound bath for 15 min, followed by filtration through 0.2 µm

PTFE syringe filters. The amount of carbohydrates was determined by the phenol-sulfuric
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acid method.494 The absorption of the resulting golden-brown liquid was measured at a

wavelength of 488 nm using an UVvis photo spectrometer (Specord S600, Analytik Jena).

Calibration was performed using D-glucose. The total carbohydrate content of the biomass

was determined on a suspension of 0.3 mgml−1 algal dry matter. The suspension was

directly treated with H2SO4 and phenol. The carbohydrate content was given as wt.% of

algal dry matter.

Water-soluble carbohydrates were determined by extracting 1000 mg of wet algal paste

with MilliQ water. First, 5 ml of water was added to the biomass and treated with a

sonication probe (amplitude = 80%, cycle = 0.6, UIS250V combined with a LS24d7-L2

probe, Hielscher) for 5 min. The samples were extracted for further 85 min on a magnetic

stirrer at room temperature. The samples were filtered through 0.2 µm PTFE syringe filters

and directly analysed according to the phenol-sulfuric acid method.

The laminarin content was determined using an enzymatic assay (yeast β-glucan assay

kit, K-EBHLG, Megazyme).

7.5.9 Yield calculation

The yield Yfraction of the extracted biomass fractions is defined as

Yfraction [%] =
mfraction;extracted

mfraction;total
· 100; (7.12)

where mfraction;extracted denotes the mass of the fraction determined by the extraction exper-

iments and mfraction;total represents the total mass of the fraction in the biomass.

7.5.10 Ash content

The ash content was determined by weighing 50 mg of dried algal biomass into dried and

pre-weighed porcelain crucibles. The crucibles were subjected to a muffle furnace for 12 h

at 450 ◦C and the weight was noted. The ash content is given in wt.% of algal dry matter.

7.5.11 Quantification of microalgal compounds after phase separation

After 2-BuOH extraction, the extract was filtered through a 0.22 µm PTFE filter. The extract

was transferred to a graduated glass measuring cylinder and the volume was noted. MilliQ

water was added to trigger phase separation. The cylinder was wrapped into aluminium foil

to protect the sample from light. After 2 h, the volume of the organic and aqueous phase was

noted. Samples from both phases were carefully taken with a syringe and were transferred to

amber tubes. 0.1 wt.% BHT was added to the organic phase samples to prevent degradation
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of pigments and lipids during storage. The samples were stored at -20 ◦C until further

analysis. The lipids, pigments, proteins, and carbohydrates were quantified as described in

the Sections 7.5.5-7.5.8.

7.5.12 Error analysis of experiments

At least two independent biological replicates were performed. The error is given as the

standard deviation. The error for quantifying the total amount of lipids and pigments equals

the sum of the standard deviations of the single pigments and fatty acids, respectively.

7.5.13 Solvents

The following solvents were used for extractions: n-hexane (Merck, ≥ 98.0%), ethanol

(Merck, ≥ 99.9%), ethyl acetate (Merck, ≥ 99.8%), 2-butanol (Merck, ≥ 99.5%), chloro-

form (Merck, ≥ 99.8%), methanol (Merck, ≥ 99.8%), and ethyl formate (Sigma Aldrich, ≥
97.0%), acetone (Sigma Aldrich, ≥ 99.5%), propyl vinyl ether (Sigma Aldrich, ≥ 99.0%),

butyl vinyl ether (Sigma Aldrich, ≥ 98.0%), isobutyl vinyl ether (Sigma Aldrich, ≥ 99.0%),

cyclopentyl methyl ether (Sigma Aldrich, ≥ 99.9%), acetonitrile (Roth, ≥ 99.9%), pyridine

(Sigma Aldrich, ≥ 99.9%), n-heptane (Merck, ≥ 99.0%).

7.6 Summary and conclusions

Wet microalgal biomass is a promising, yet challenging feedstock for biorefineries due to the

high moisture content and difficulties in extracting the target compounds from the biomass

and separatingin the extracted biomass fractions. Despite these challenges, wet extraction of

microalgae has enormous potential to bypass the energy-intensive biomass drying step which

was identified as an economic bottleneck in microalgal processing. This Chapter leveraged

the computational screening approach that was developed in this thesis to systematically

select solvents with benign EHS properties for fractionating wet microalgal biomass. The

identified solvent candidates were experimentally validated. Based on the computational and

experimental results, a novel biomass fractionation process process that operates at ambient

conditions using benign solvents was developed.

First, the computational solvent screening framework was applied to identify WM, PWM,

and NWM solvents, exemplified for a P. tricornutum biorefinery. A solvent database con-

taining more than 8000 potential solvents was screened for suitable structural features,

desirable Tmand Tb ranges, and benign EHS properties. Subsequently, the solubilities of

model molecules representing the biomass fractions were predicted using COSMO-RS. The

COSMO-RS solubility predictions were in qualitative agreement with solubility data obtained

from the literature. Therefore, COSMO-RS is a suitable model for solubility predicitions in

microalgal biorefineries.
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The identified solvent candidates were employed in extraction experiments on wet and

dried P. tricornutum biomass. In general, the PWM and WM solvents achieved higher lipid

and pigment yields than the NWM solvents, despite having a lower lipid solubility. The

results suggest, that not only solubility, but also other factors, such as solvent-cell wall

and solvent-target organelle interactions significantly influence the yield. PWM and WM

solvents outperformed NWM solvents in terms of lipid and pigment yields also on the dry

route. Furthermore, the experiments showed that carotenoid and lipid extraction from wet

microalgal biomass can result in yields comparable to the dry route if the solvent is carefully

selected.

Subsequently, the PWM solvent 2-BuOH was investigated as a candidate for designing

a lab-scale biorefinery process. 2-BuOH was of particular interest for biorefinery design

as it allows for monophasic conditions during extraction and it is able to form two liquid

phases when water beyond the solubility limit is added to separate the extracted compounds.

Experiments revealed that the water content wwater;extr during extraction and differences

in extraction rates can be exploted to separate the two most valuable fractions - lipids

and carotenoids - during the extraction stage. Based on these findings, a novel biorefinery

process that fractionates lipids, carotenoids, carbohydrates and proteins was developed. This

fractionation approach employs two sequential extraction stages at different 2-BuOH/water-

ratios that extract lipids and pigments highly selectively. Co-extracted compounds, mainly

carbohydrates, are subsequently separate from the lipid- and carotenoid-rich streams by

inducing phase formation triggered by water addition. Proteins are the main component in

the residual biomass. In this manner, the whole biomass is fractionated by applying only

two benign solvents at ambient conditions. Further studies are required to optimise the

carotenoid and lipid yields and to establish efficient solvent recycling strategies.

In summary, the screening approach successfully identified promising, non-intuitive sol-

vent candidates applicable for wet P. tricornutum biomass. A close combination of compu-

tational and experimental investigations unveiled promising separation strategies applicable

in a biorefinery concept. Moreover, the results break with the common notion that water

originating from the moisture represents a barrier that must be overcome. In contrast, the

presence of water was taken into account early on in the solvent selection processes. Instead

of fighting the
”
water barrier“, water was exploited as an additional degree of freedom, finally

enabling the biomass fractionation.
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8 | Conclusions and outlook

Biorefineries are drivers of a circular economy within planetary boundaries by converting

bio-based, renewable feedstocks into a broad product spectrum, including pharmaceuticals,

chemicals, food ingredients, feed, and fuels. In a biorefinery process, the biomass is

split up into its macromolecular fractions by a sequence of separation steps, commonly

employing organic solvents. Although the solvent choice is a molecular-level decision, it

has a process-level impact on the biorefinery, influencing the efficiency of the biomass

fractionation and its sustainability. Thus, solvent selection is a key decision that must

be made in early stages of the biorefinery design. Experimental solvent selection is time-

and resource-consuming. In contrast, computational methods represent a faster, and more

systematic approach, thus serving as a high-throughput guide for targeted experimental

tests. However, due to the lack of computer-guided solvent selection methods applicable to

biorefinery processes, the potential of solvent selection to improve and develop biorefinery

processes cannot be fully harnessed.

To fill this gap, in the present thesis a computational solvent screening approach and

a solvent design method were specifically developed for solvent selection in biorefineries.

The methods were experimentally validated for the two most abundant sources of biomass

- lignocellulose and microalgae. The high-throughput screening approach allows to

search a database containing more than 8000 potential solvents, including also ILs and

DESs. The database is screened for potential solvents with desired structural features,

Tm and Tb ranges, EHS properties, solubilities, and LLEs. COSMO-RS is applied as the

gold-standard method for solubility predictions of representative biomolecules, allowing

for a qualitative comparison of the solvent candidates. Although a search space of 8000

molecules appears to be already large, the size of the chemical space is estimated between

1018 and 10200 organic molecules. The graph-based GA PSEvolve developed in this thesis

enables the exploration of the solvent space beyond the pre-defined database, tailoring

solvent structures towards desired properties. Since, unlike other GAs, PSEvolve performs

the structral alterations on the molecular graph, PSEvolve generates only structurally

feasible molecules, efficiently exploring the chemical space. In addition to the design of

solvents, PSEvolve can potentially be applied in other areas of molecular design (e.g. drug



132 Chapter 8. Conclusions and outlook

design), provided that suitable models are available to predict the target properties.

Lignocellulose biorefineries aim at holistic valorisation of the cellulose, hemicellulose and

lignin fractions. Lignin represents one of the few abundant natural sources of renewable

aromatic hydrocarbon. However, harsh conditions commonly applied in lignocellulose

processing lead to lignin condensation, impeding efficient lignin depolymerisation. Com-

monly, condensed lignins as obtained from Kraft or organosolv pulping, are processed to

thermoplastic, nanoparticles, lignin-based films, or fibres. To harness lignins’ potential as

a source of aromatic carbon for the chemical industry, lignin-first biorefinery approaches,

such as AAF, have been developed. In AAF, lignocellulosic biomass is treated with a

solvent, acid, and an aldehyde, providing active stabilisation of lignins’ β-O-4 bonds through

acetal formation on the diol side-chains. The β-O-4 bonds are effectively cleaved via

hydrogenolysis, thus resulting in near theoretical yields of aromatic monomers. In AAF and

many areas of lignin upgrading, lignin dissolution is a crucial step. The solvent screening

approach developed in this thesis provided an overview of the solvent landscape considering

the cellulose, hemicellulose, and lignin solubilities, as well as EHS properties. For the

joint dissolution of the carbohydrate fraction and lignin, the screening proposed several

so-far unexplored ILs. Furthermore, azines, sulfoxides, oxazolines, and phosphonates were

identified as promising solvent candidates for selective lignin dissolution. The solvents have

benign EHS properties and have potential application in dissolution-based lignin upgrading.

However, the use of oxazolines and azines is limited for AAF as they are instable towards

the process liquor. To expand the solvent search beyond the fixed database, PSEvolve

was applied for tailored solvent design. PSEvolve was combined with a GNN trained on

COSMO-RS lignin solubility predictions. Thus, the GNN served as a surrogate model

for COSMO-RS, allowing PSEvolve to generate optimised solvent structures with high

lignin solubility. In addition to the solvent classes identified in the solvent screening,

PSEvolve designed sulfones, azoles, morpholines, cyclic ethers and ketones, and compounds

containing phosphoryl groups as highly promising structures for lignin dissolution. To

generate tailor-made solvents for AAF, acid- and aldehyde-reactive groups were excluded

from the design space. For AAF, sulfones, sulfoxides, phosphoryl compounds, cyclic and

linear ethers were designed. The computationally identified solvents were subsequently

tested in solubility experiments. The experimentally measured lignin solubilities ranged

between 20 and 60 wt.% (T = 85 ◦C). While the solubility of NaCl in water is already

considered high with 27 wt.% under similar conditions,495 the designed solvents surpass

this value by far, in particular DMSO, pyrazines, azoles, and DEGDME. To examine

the relation of the solvent structure and the lignin solubility, an attribution method was

applied to the GNN, allowing to quantify the importance of structural features to the

obtained predictions. Sulfinyl, sulfonyl, and phosphoryl groups, the presence of O-atoms,
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as well as aromatic nitrogen and its neighbouring aromatic bonds are linked to high lignin

solubilities, providing a general guideline for solvent selection. Therefore, PSEvolve and

the GNN do not only facilitate the exploration of the chemical space but also provide

insightful details into the structure-solubility relationship. Furthermore, the designed

solvents were applied in AAF experiments with birch wood. The generated ethers and butyl

sulfone are able to separate the biomass into three separate streams containing cellulose,

aldehyde-protected hemicelluose sugars, and aldehyde-stabilised lignin. The stabilised lignin

has a high β-O-4 content allowing for efficient conversion to aromatic monomers. Especially

DEGDEE, a glycol ether, was identified as a promising solvent and outperformed the toxic

and carcinogenic benchmark 1,4-dioxane in terms of DPX yield and EHS properties, with

slightly lower lignin monomer yield as a trade-off, while being available at a comparable price.

Microalgae are producers of high-value carotenoids and lipids, as well as proteins and

carbohydrates. The development of efficient fractionation strategies for microalgae is still in

early development stages since energy-intensive biomass drying and the use of toxic solvents

pose considerable challenges. To circumvent the drying step, wet microalgal biomass

as obtained after harvest, still having a moisture content of around 85 wt.%, has been

frequently proposed as a feedstock. The screening approach was applied to identify solvents

applicable for the fractionation of wet microalgal biomass. P. tricornutum was selected as a

model species due to its balanced biomass composition. Furthermore, the diatom produces

Fx, and EPA as value-added products. The economic analysis of potential P. tricornutum

biorefinery products showed, that EPA and Fx comprise around 90% of the overall economic

value of the biomass, highlighting the need for efficient extraction and separation techniques

particularly for these fractions. The solvent screening method identified several solvents that

outperformed the commonly applied, toxic benchmark solvent n-hexane in terms of lipid and

carotenoid yields, as well as EHS properties in experiments. Furthermore, the PWM solvent

2-BuOH was selected for detailed experiments to establish a novel biorefinery approach for

wet P. tricornutum biomass. 2-BuOH has a large miscibility window with water which was

exploited to investigate the effect of different 2-BuOH/water ratios on the yields. Two

extraction steps with different 2-BuOH/water ratios enables sequential extraction lipids

and carotenoids, effectively separating both high-value fractions. In a later process stage,

water addition beyond 2-butanol’s miscibility window triggered the formation of two liquid

phases, which further separated carbohydrates from the carotenoid and lipid streams. The

major component of the residual biomass were proteins. In this manner, the 2-BuOH/water

biorefinery process effectively fractionated the biomass at ambient conditions without the

need for prior biomass drying.

For both feedstocks, lignocellulose and microalgae, the extraction experiments showed,
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that the solubility of the target compounds is not the only factor influencing the yield.

The interplay of the target compounds with other surrounding biomass structures (e.g.

cell walls or other biomass fractions), should be taken into account as well. In the case of

lignocellulose, the experiments showed that solvents with higher lignin solubilities may result

in lower lignin monomer yields compared to solvents with lower solubilities. Since lignin

is embedded in a lignin-carbohydrate complex, the solvent must not only have sufficient

lignin solubility, but should also be able to disrupt the bonds to the carbohydrate fraction

to increase its accessibility to lignin. Extraction experiments on P. tricornutum biomass

showed, that a high target solubility is not the dominating factor to obtain high yields.

Solvent interactions with the cell wall, the target organelles, and moisture likely play a

significant role for the extraction kinetics.

A paradigm in process optimisation states that optimising only one process unit alone

does not lead to the best performance of the overall process. To optimise a biorefinery as

a whole system, computational methods that not only optimise the solvent selection as a

standalone problem, but rather consider the overall biorefinery process should be developed

in the future. To link solvent selection with the process-level, models predicting the yield of

the biomass compounds are required. However, a model-based understanding between the

effects of solvents on the yields is still lacking and fundamental research investigating the

diverse interactions between solvent and feedstock is required. Moreover, the sustainability

of the biorefinery processes can only be assessed on the process level. Although evaluating

the EHS properties of a solvent is crucial for safe process operation, they do not predict

the effect on the planetary boundaries (e.g. GHG emissions or deforestation). In particular,

the use of organic solvents contributes to GHG emissions and environmental pollution.

These aspects are commonly investigated in a life cycle assessment. However, for the rather

unconventional solvents that were identified by the developed computational methods,

compound specific data for a life cycle assessment is still lacking. A step towards integrating

solvent selection with economic and environmental aspects into the biorefinery design

was made by Kopton et al., who developed a multiobjective superstructure optimisation

approach based on the results of this thesis.496 However, more research in this area is

required to allow for the development of
”
benign-by-design“ biorefineries.

Overall, in this thesis, computational methods applicable to diverse types of biomass

were developed. These computational approaches were guiding the solvent selection to

perform targeted experiments, and were able to identify highly efficient, so-far unexplored

solvents for lignocellulose-based and microalgal biorefineries. These methods allowed to find

replacements for toxic solvents and to develop novel biomass fractionation approaches.
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Phase equilibria are determined by the Gibbs free energy G(T; p; n). The total differential of

G is defined as341

dG(nc ; :::; nC) =

„
@G

@T

«
p;nc

dT +

„
@G

@p

«
T;nc

dp +
CX
i=0

„
@G

@nc

«
T;p;n« ̸=c

dnc : (A.1)

At thermodynamic equilibrium, p and temperature T are constant, and the total differential

of G simplifies to

dG(nc ; :::; nC) =
CX

c=0

„
@G

@nc

«
T;p;n« ̸=c

dnc :=
CX

c=0

—cdnc ; (A.2)

where nc denotes the amount of substance for the chemical species c ∈ N. The term —c

describes the chemical potential. Considering multiple phases j , the following relationship

holds

dG(nc ; :::; nC) =
JX

j=0

dGj(njc ; :::; n
j
C) =

JX
j=0

CX
c=0

—j
cdn

j
c : (A.3)

Furthermore, at thermodynamic equilibrium, dG = 0,

0 =
JX

j=0

CX
c=0

—j
cdn

j
c : (A.4)

Considering two phases j = 0 and j = 1, it becomes clear that dnj=0
c = −dnj=1

c , since

nc = nj=0
c + nj=1

c = constant. Therefore,

0 =
CX

c=0

(—j=0
c − —j=1

c )dnc : (A.5)

Eq. A.5 is only true, when

—j=1
c = —j=2

c : (A.6)
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Hence, at phase equilibrium, the chemical potentials in each phase must be equal for the

chemical species c.

A.1 Solubility of solids in liquids

According to Eq. 4.6, the chemical potentials of the components c are equal in the liquid

phase l and the solid phase s. Choosing the pure component in the solid state as a reference

leads to

—0;s
c + RT ln(‚scx

s
c ) = —0;l

c + RT ln(‚ lcx
l
c): (A.7)

Assuming that the solute c is a pure component leads to ‚scx
s
c = 1. Under that assumption,

Eq. A.7 simplifies to

x lc = exp

„
—0;s
c − —0;l

c

RT

«
1

‚lc
: (A.8)

At system temperature T , the pure component c exists as a solid with a chemical potential

—0;s
c , while the chemical potential of the liquid phase —0;l

c can be regarded as that of a

subcooled liquid. By heating the solid to its Tm;c , melting it at constant temperature Tm;c ,

and by subsequently cooling it back to system temperature T without solidification occuring,

the pure component c transitions to a subcooled liquid. The difference of chemical potentials

between the final subcooled state and the initial solid state corresponds to a change in the

free enthalpy ∆Gs→l
trans = —0;l

c − —0;s
c = ∆Gfus

342, leading to

x lc = exp

„
−∆Gfus

RT

«
1

‚lc
: (A.9)

To solve Eq. A.9, ∆Gfus and ‚
l
c must be determined. For this purpose, COSMO-RS (COS-

MOthermX19, Biovia 3DS) was applied in this thesis. In COSMO-RS, the chemical potential

is obtained as a so-called pseudochemical potential which is derived from the ff-profiles, the

chemical potential of a surface segment with screening charge density ff, and a combinatorial

contribution (see Ben-Naim for a detailed derivation497). The pseudo-chemical potential is

defined as

—∗
c = —∗;0

c + RT ln(xc‚c)− RT lnxc = —∗;0
c + RT ln‚c : (A.10)

where —∗;0
c is the reference state for the calculation of —∗

c . The activity coefficient ‚lc can be

obtained from Eq. A.10 and inserted into Eq. A.9 such that the solubility of c in the solvent

can be calculated as

lnx lc =
—∗;0
c (T; p; x lc = 1)− —∗;l

c (T; p; x lc)−∆Gfus(T )

RT
: (A.11)



A.1. Solubility of solids in liquids 139

In COSMO-RS, the solubility x lc is expressed on a logarithmic scale

log10x
l
c =

—∗;0
c (T; p; x lc = 1)− —∗;l

c (T; p; x lc)−∆Gfus(T )

RT ln(10)
: (A.12)

The free enthalpy of fusion ∆Gfus can be calculated from the Schröder-van Laar equation if

the enthalpy of fusion ∆Hfus, the entropy of fusion ∆Sfus, and the heat capacity of fusion

∆Cp;fus are known

∆Gfus(T ) = ∆Hfus(T )− T∆Sfus; (A.13)

= ∆Hfus

„
1− T

Tm

«
−∆Cp;fus(Tm − T ) + ∆Cp;fusT ln

Tm
T
: (A.14)

Here, the heat capacity of fusion ∆Cp;fus is considered temperature-independent. For the

transition of a solid solute to the subcooled liquid state, ∆Gfus < 0. If the solute is liquid, no

additional transition to the liquid state has to be considered, hence, ∆Gfus = 0. However,

in general, ∆Hfus, ∆Sfus, and ∆Cp;fus are unknown. Therefore, ∆Gfus was estimated using

a QSPR approach implemented in COSMOthermX19412

−∆Gfus(T = 298 K) = c1—c(H2O) + c2Nc;ring + c3Vi + c4 + [c5Nc;amino]: (A.15)

where c1 to c5 are the parameters of the QSPR model412, —c(H2O) is the chemical potential

of solute c in H2O, Nc;ring is the number of ring atoms, and Vi corresponds to the molecular

volume of c . The Walden’s rule, applicable to nonsymmetric organic molecules, was applied

to estimate ∆Gfus also for other temperatures

∆Sfus = 0:0135 kcalmol−1 K−1: (A.16)

Applying the ∆Gfus-estimate and and an initial guess for —∗;l
c (T; p; x lc) to Eq. A.12, a rough

approximation for the solubility x lc can be obtained. This approximation was considered

sufficient in the computational solvent screening approach (Section 5.2). However, for train-

ing the GNN for lignin solubility predictions for the solvent design (Section 6.2), iterative

calculations were applied, until the difference of x lc between two consecutive iterations was

below 10−5 log(x lc) units.

For large chemical potential differences, the accuracy of COSMO-RS is around

1.5 kJmol−1 for solubilities in water which corresponds to around 0.27 log units498.
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B | Database

The database comprises 8011 potential solvent candidates including organic solvent candi-

dates, ILs, and DESs. A list of all solvent candidates is included in the electronic supplements

(database.xlsx).
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C | Lignocellulose

C.1 Solvent screening

C.1.1 Representative biomolecules

The chemical structures of the representative molecules for lignocellulose are summarised in

Tab. C.1

Tab. C.1 Chemical structures of the representative molecules evaluated for the

computational screening.

Fraction Representative molecule Structure

Cellulose Cellobiose

Cellotriose

Cellotetraose

Cellotetraose

(capped)

Continued on next page
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Tab. C.1 – Continued from previous page

Fraction Representative molecule Structure

Lignin
p-Coumaryl

alcohol

Coniferyl alcohol

Sinapyl alcohol

GG

GG phenolic

SG

SS

Continued on next page
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Tab. C.1 – Continued from previous page

Fraction Representative molecule Structure

SGG

GGG

Lignin

(1,500 gmol−1)

Hemicellulose Glucuronoxylan

Continued on next page
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Tab. C.1 – Continued from previous page

Fraction Representative molecule Structure

Glucuronoxylan

(capped)

C.1.1.1 ff-profile analysis

The ff-profiles of the representative biomolecules give first insights about interactions with

potential solvents. In the following, the ff-profiles for all representative molecules are anal-

ysed. The ff-profiles of all cellulose representatives show strong HBA- and HBD-behavior,

as visible by the peaks at 0.017 and -0.018 e Å
−2

, respectively (Fig. C.1 a). These peaks

suggest the possibility for hydrogen bonding within the cellulose-representing structures and

with potential solvent candidates. Furthermore, the carbon atoms of the sugar rings cause

a peak in the nonpolar region at -0.007 e Å
−2

. With increasing polymer chain length, the

height of all peaks increases, especially in the nonpolar region. As a comparison, glucose

which exhibits a higher water-solubility than all considered cellulose-representing molecules

was included in the ff-profile analysis. Glucose showed the lowest peak height in the

nonpolar region among the cellulose represantatives. Hence, a higher peak in the nonpolar

region indicates decreasing water-solubility for the cellulose oligomers. The ff-profile of the

capped cellotetraose molecule, which only considers cellobiose as repeating unit, resembles

that of glucose in the HBA/HBD region, and cellobiose in the neutral region. Overall, a

solvent capable of cellulose dissolution is likely to engage in hydrogen bonding but also to

have domains with neutral screening charges.

All lignin representatives (Fig. C.1 b) show two distinct peaks in the nonpolar region

at -0.005 and -0.0025 e Å
−2

caused by the slightly electropositive hydrogen atoms of the

aromatic rings and its carbon atoms, respectively. The ı-face of the aromatic ring causes a

peak at 0.008 e Å
−2

, which is consequently the highest for the trimeric lignin representatives.

The oxygen atoms of the β-O-4 bonds and the free hydroxyl groups cause a peak in the

HBA region. Additionally, a small peak in the HBD region is visible, originating from the
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hydrogen atoms of the free hydroxyl groups. Therefore, inter- and intramolecular hydrogen

bonding is possible, but with less intensity compared to the cellulose and hemicellulose

representatives. Compared to the ff-profiles of the cellulose representatives, the peaks in

the nonpolar region of the lignin-representing molecules are broader. This peak behaviour

indicates different dissolution mechanisms and the possibility for solvent-based separation of

lignin from cellulose and hemicellulose. The ff-profiles of the hemicellulose representatives

(Fig. C.1 c) have high similarities to that of cellulose leading potential hydrogen bond

formation.

a) b) c)

Fig. C.1 ff-profiles for representative molecules of a) cellulose, b) lignin, and c)

hemicellulose. Reprinted from395 with permission from Elsevier.

C.1.1.2 Correlation with experimental data

To evaluate the performance of COSMO-RS solubility predictions using the described

representative structures, experimental data collected from literature and the predicted sol-

ubilities were compared. The accuracy of the predictions was analysed by linear regression.

In the analysis, the hemicellulose fraction was not considered as this fraction depolymerises

and readily dissolves under commonly applied process conditions (see Section 2.2).

Sameni et al. reported the solubilities of four different types of lignin: alkaline lignin

isolated from an industrial mix of hardwood and non-wood species, Kraft lignin from

eucalyptus, Indulin AT (commercial softwood Kraft lignin), and protobind (commercial

non-wood soda lignin) in different solvents (T = 25 ◦C)101. The chemical structure of

lignin the mentioned is highly dependent the biological source and the applied extraction

conditions. The studied lignins showed distinct structural features, potentially leading

to a different solubility characteristics101. The data points for the lignin solubilities in

DMSO and pyridine were removed from the dataset, as lignin saturation was not reached
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in the experiments. For the remaing nine data points, the COSMO-RS predicted and

the experimental solubilities were converted to wt.% [gsolute (gsolute + gsolvent)
−1] and

linear regression was performed. Three compilations of COSMO-RS predictions were

used: averaged COSMO-RS solubilities for monolignols, dimers, trimers; an average of all

monolignols, dimers and trimers altogether; and a single conformer of the 1,500 gmol−1

lignin fragment.

The most robust and overall highest correlations were observed for the averaged

solubilities of monolignols, dimers and trimers denoted as averagem;d;t (see correlation

coefficients R2 in Tab.C.2). Correlation coefficients varied strongly among the wood species

and the representative molecules. For alkaline lignin from hardwood/non-wood species,

correlation coeffcients of R2 of about 0.7 were obtained for trimers, the 1,500 gmol−1

lignin fragment, and averagem;d;t. Interestingly, the correlation coefficients for monolignols

was higher than for the dimers, which could be explained by the polydispersity of the

alkaline lignin499. It must also be noted, that impurities in form of cellulosic materials

were observed in this type of lignin, potentially impacting the solubility of the samples499.

For The Eucalyptus Kraft lignin and protobind lignin, higher corellations were observed

for monomers than for trimers and the 1,500 gmol−1 lignin fragment. This behaviour

might be attributed to the low molecular weight of these technical lignins compared to the

other samples. Especially for the Eucalyptus Kraft lignin, lignin-like impurities with low

molecular weight were observed499, which might explain the high correlation coefficient

with the monomers. In general, the correlation coefficients for trimers was similar to or

higher than for the 1,500 gmol−1 lignin fragment, indicating that such large representative

structures do not necessarily lead to more reliable results. Also from a thermodynamic

perspective, COSMO-RS predictions with larger structures are not automatically more

accurate. Lignin is an amorphous polymer which changes its conformation based on the

solvent environment. Especially in unfavourable solvents, lignin forms globules in order to

minimize solvent exposure442. As a result, only certain parts of the surface area of such

a fragment, and, consequently, respective parts of the ff-surface would be accessible to

the solvent. Additionally, the ff-surface itself would be influenced by the described folding

behaviour. The polymer folding is not captured during the QC calulcations performed for

the screening, since the geometry optimisation is performed in a perfect conductor and not

in the solvent environment. Based on this analysis, the average solubilities of monomers,

dimers, and trimers were used in this study. However, it should be noted that the analysis

only focused on technical lignins extracted under alkaline conditions. Under such condition,

the native lignin structure undergoes a series of depolymerisation and repolymerisation

reactions, causing lignin condensation (see Section 2.1.3). Furthermore, only 9 datapoints

were considered. Hence, this preliminary analysis is not sufficient to validate the accuracy
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of COSMO-RS solubility predictions using the described lignin-representating structures for

native lignin, or lignins isolated under acidic conditions. A detailed experimental validation

follows in Section 6.3.

Tab. C.2 Correlation coefficients R2 from linear regressions between solubilities

for lignin from different sources and COSMO-RS predictions for lignin monomers,

dimers, trimers, the 1,500 gmol−1 lignin fragment and the average of all monomers,

dimers, and trimers. Experimental data was taken from101.

Lignin type
Mono-
lignols

Dimers Trimers
Lignin

fragment
Averagem;d;t

Alkaline lignin
(hardwood/non-wood)

0.25 0.07 0.67 0.68 0.71

Kraft lignin
(Eucalyptus)

0.69 0.09 0.38 0.24 0.69

Indulin AT 0.06 0.56 0.77 0.55 0.47

Protobind 0.66 0.78 0.50 0.33 0.78

To date, only few solvents with the ability to dissolve cellulose are known, e.g. several

ILs435,500 and NMMO which is applied in the lyocell process438. To investigate the suitablity

of the different cellulose representatives, COSMO-RS solubility predictions and experimental

solubility data of cellulose in ILs taken from literature435,500 were compared. Similar to

the analysis of the lignin representatives, also here the experimental solubility data and the

COSMO-RS solubility predictions were converted to wt.% and performed linear regression.

All ILs containing Cl– -ions were excluded from the analysis, as there are known to be

systematic deviations in COSMO-RS predictions for this class of anions306,307. As a result,

the capped cellotetraose molecule led to the highest correlation coefficient (R2 = 0.71) which

was remarably higher than that of the other cellulose representing structures (R2 ≤ 0.37).

Therefore, in this work, the capped cellotetraose molecules was used as a representative

molecule for the cellulose fraction. In analogy with the cellulose fraction, hemicellulose is

represented by the capped glucuronoxylan molecule.

C.1.2 Solvent ranking

Lists of the most promising solvents for each process objective is provided in the electronic

supplements (lignocellulose screening.zip).
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Tab. C.3 Hyperparameter test for PSEvolve. Selected values are marked as bold

numbers.

Parameter Value
Fittest candidate

(log10(xL))
Mean log10(xL)

Population size

10 1-methyl imidazole (-0.45) -2.5

100
Dimethyl

methyl phosphonate (-0.38)
-0.5

1000 DMSO (-0.35) -1.6

5000 DMSO (-0.35) -3

Mutation rate

0.05
5-methylpyrimidine

(-0.39)
-2.6

0.1 DMSO (-0.35) -1.6

0.5 DMSO (-0.35) -1.7

0.9 DMSO (-0.35) -1.7

Number of parents/
children

10/20
1-methyl imidazole

(-0.45)
-2.5

20/40
5-methyl-

pyrimidine (-0.39)
-1.8

50/100 DMSO (-0.35) -1.6

100/200
5-methyl-

pyrimidine (-0.39)
-1.5

C.2 Solvent design

Lists of designed solvents for lignin dissolution and AAF is provided in the electronic supple-

ments (lignin solvent design.zip).

C.2.1 Hyperparameters of PSEvolve

PSEvolve was tested for several hyperparameter setups. The test runs were stopped after 100

generations. For the parameter test, the standard parameters were kept constant and each

parameter listed in Tab. C.3 were independently varied. Standard parameters were mutation

rate = 0.1, number of parents = 50, number of children = 100, population size = 1000. In

this manner, the influence of the parameters on the mean lignin solubility in the population

and the fittest designed molecules was systematically studied. The standard parameters

which were used throughout the study (bold numbers) provided the best performance in

terms of identifying the fittest molecules and mean lignin solubility of the population.
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All parameters applied in PSEvolve are summarised in Tab. C.4. In the mutation step,

random functional groups were added to the molecule. The pool of functional groups used for

the design stage is provided in the electronic supplements (lignin solvent design.zip).

Tab. C.4 Hyperparameters and constraints applied in the solvent design for high

lignin solubilities and AAF using PSEvolve.

Parameter Description Value Unit

Population size
Constant value describing
the size of the population

1000
Number of
molecules

Molecule types
in the start
population

n-Hexane - -

Fitness xL
Predicted
by GNN

-

Number of
parent molecules

Number of parent molecules
selected for cross-over

50
Number of
molecules

Number of
offspring molecules

Number of offspring molecules
generated by cross-over

100
Number of
molecules

Mutation rate
Constant value describing the

probability of occurring mutations
0.1 -

Maximum Msolv
Upper bound for
molar weight

200 gmol−1

SAS

Synthetic accessibility score441

ranging from
1 (easily synthesisable) to
10 (difficult to synthesise)

3.5 -

Atom type
constraints

Only C-, H-, O-,
N-, S-atoms used

- -

Functional group
constraints

For AAF only:
acid- and aldehyde-
instable groups
were eliminated

(primary and secondary amines,
aldehydes, aromatic N-heterocycles,

isocyanates, amides,
esters, hydrazides)

- -

End criterium
Stop after a certain

number of generations
1000

Number of
generations

C.2.1.1 GNN architecture

The solvent graph G = (V; E) consists of a set of nodes V connected by a set of edges

E, representing the corresponding atoms and bonds, respectively. The atoms and bonds
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were attributed with several features (Tab. C.5). The features constitute the vectorial

representation of the corresponding nodes and edges within the graph. For each molecule,

a matrix of atom features ANatomsxNatom features ∈ [0; 1] amd a matrix of bond features

BNbondsxNbond features ∈ [0; 1] was defined. The connectivity matrix C 2x2Nbonds ∈ [0; 1] captures

the indices of the source and receiver nodes and describes the connectivity between atoms

and bonds. The features summarised in Tab. C.5 were selected to distinguish fundamental

differences between atoms and bonds within a given molecule. One-hot-encoding was

used to encode the atomic and bond information into fixed-size vectors for all molecules

according to the dimensions shown in Tab. C.5. The connectivity matrix and all features

were calculated using rdkit.

PyTorch geometric (version 2.3.1) and PyTorch (version 1.10.2) were used for the GNN

setup. The model consists of 3 message passing layers operating with a hidden-dimension

of 50. The NNConv architecture as proposed by Gilmer et al.501 was used. A single hidden-

layer neural network with dimension 64 and the ReLU activation function was used as the

edge-transforming function. The batch normalisation proposed by Ioffe et al.502 was applied

after each message passing layer to enhance the training of the model. To update the node

embeddings, the Leaky ReLU activation was used after the first and second message passing

layers. The molecular fingerprint was obtained by using the max global pooling function

on the final updated graph. A multi-layer perceptron was subsequently applied to regress

the final solubility prediction from the molecular fingerprint. The multi-layer perceptron

contains 2-hidden layers with dimensions 50 and 25. A dropout ratio of 0.1 was used in

the message-passing layers and the final multi-layer perceptron to prevent overfitting. The

model was trained
”
end-to-end“from the molecular graph to the COSMO-RS lignin solubility

using the AdamW optimizer with a learning rate of 0.001 and batches of 32 graphs. The

mean squared error was used as the loss function. The training was performed for 100

epochs. A learning rate scheduler was used to decrease the learning rate by a factor of 0.8

using a patience of three epochs. The training was performed independently on 5 different

train/validation splits resulting in 5 independent models. The final predictions were made by

the ensemble of these 5 models by averaging their individual predictions. All hyperparameters

were determined based on ablation studies assessed on the validation set.

C.2.1.2 GNN hyperparameters

The GNN hyperparameters (number of message-passing layers, dropout probability, hidden-

size of the message-passing layers, learning rate) were determined by comparing the model

accuracy for different parameter sets. Tab. C.6 shows the values for several combinations of

hyperparameters. The selected parameters (bold numbers) provide the lowest MAE.
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Tab. C.5 Atom and bond features considered in the GNN.

Feature type Feature Description Dimension

Atom features

Atom type
(C, O, N, Cl, F, S, Si, Br,
P, Se, I, B, As, Ge, Al)

15

Ring Is it in ring? 1

Aromatic Is it aromatic? 1

Hybridisation (sp, sp2, sp3 , sp3d) 4

Bonds
Number of bonds

attached (0,1,2,3,4)
5

Charge
Formal charge
(0,1,-1,3)

4

H’s attached
Number of bonded

H’s (0,1,2,3)
4

Bond features

Bond type
(Single, double,
triple, aromatic)

4

Conjugated Is it conjugated? 1

Ring Is it in ring? 1

Tab. C.6 Parameter test for GNN solubility predictions. The selected parameters

are marked with bold numbers.

Layers Dropout Hidden size Learning rate Validation MAE

2 0.1 50 0.001 0.294

3 0.1 25 0.001 0.307

3 0.1 50 0.0001 0.304

3 0.1 50 0.01 0.284

3 0.1 100 0.001 0.294

3 0.5 50 0.001 0.416

3 0.25 50 0.001 0.298

4 0.1 50 0.001 0.311

3 0.1 50 0.001 0.281
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C.2.1.3 Applicability range of the GNN

The trained GNN is capable to estimate lignin solubilities for solvents with structural similar-

ity to the chemical classes contained in the training set at a temperature of T = 70 celsius.

The solubility predictions should not be treated as accurate absolute solubility values, but

should rather be compared relative to each other. In this way, the GNN allows to qualita-

tively compare different solvents in their ability to dissolve lignin. For solubility predictions

at different temperatures or using different solutes, a new model could be trained in a sim-

ilar manner as presented within this thesis. To validate the applicability of the GNN for

lignin solubility predictions for solvents outside the training and test set for the present

study, several solvents that were designed by PSEvolve under the objective to maximise

lignin solubility were selected. These solvents were chosen in a way that they reflect a broad

solubility range (e.g. solvents with long aliphatic chains in the lower solubility range vs. the

sulfoxide/phosphonate/pyridine-related structures in the higher solubility range) and a broad

structural diversity. For these solvents, additional QM and COSMO-RS solubility predictions

using the GGG-trimer as a model molecule for lignin were performed T = 70 celsius ac-

cording to the computational methodology described in the Sections 5.2.3.1 and 5.2.5. The

GNN and COSMO-RS predicted solubilities for the newly designed molecules is very well in

agreement (R2 = 0.88) which is comparable to that of the original test set (R2 = 0.89, see

Fig. 6.5). Therefore, the GNN is capable to predict lignin solubilities of solvent candidates

designed in this study with an accuracy comparable to that of the original test set.

Fig. C.2 Comparison of COSMO-RS and GNN lignin solubility predictions for sol-

vent structures not included in the training set (T = 70 ◦C). Reprinted from

König-Mattern et al.395 with permission from Elsevier.
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Tab. C.7 COSMO-RS lignin solubility predictions for selected solvents at T = 25 ◦C

and 70 ◦C

Solvent
log10(xL)

T = 25 ◦C T = 70 ◦C

DMSO 0.0 0

Pyridine -1.09 -1.02

Thiazole -1.27 -1.12

1,4-Dioxane -1.71 -1.35

Water -6.5 -6.16

Di-n-butylether -7.79 -6.32

n-Heptane -9.12 -6.71

Additionally, the effect of the temperature on COSMO-RS lignin solubility predictions

was studied. Since the COSMO-RS predictions are the foundation for the GNN solubility

predictions, studying the temperature effects allows to assess possibilities of the solvent

design framework for extrapolation to lower temperatures. COSMO-RS solubility predictions

for the solvents summarised in Tab. C.7 at a temperature of T = 25 ◦C were compared to

COSMO-RS solubility predictions at T = 70 ◦C. As expected, the solubilities decreased with

decreasing temperatures. The ranking of solvents according to the highest lignin solubility

remains the same, indicating that the GNN trained on lignin solubilities at T = 70 ◦C can

be applied to design solvents for lignin dissolution at lower temperatures as well.

C.2.1.4 GNN explainability

To identify structural patterns in the solvent graph with the highest contribution the

predicted lignin solubilities, the IGs attribution method380,444 was applied. The IG method

is only applicable to a binary classification GNN. Therefore, a second GNN (referred to as

”
classification“) was trained to perform the classification of the molecules into

”
promising

solvent“and
”
non-promising solvent“. The binary classification threshold was set to

log10(xL) = -1.5 according to the COSMO-RS predicted lignin solubilities. The same train

and test splits as for the regression task were used. For developing the classification GNN,

the chosen message-passing scheme corresponds PyTorch geometric implementation503.

Two message-passing layers were used with a hidden dimension of 32. Then, a global

sum pooling layer was used to obtain the molecular fingerprint. Finally, a multi-layer
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perceptron of 2-hidden layers with a hidden size of 32 and the ReLU activation function

was used to map the fingerprints to the binary solubility classes. The final two neurons

of the multi-layer perceptron used the log-softmax activation function. Drop-out with a

probability of 0.5 was used after the first hidden layer of the multi-layer perceptron to

prevent overfitting. The class with the predicted probability of belonging was selected

as the predicted solvent class. The classification GNN was trained using the negative

log-likelihood as the loss function and the Adam optimizer. The training ran for 100 epochs

with a learning rate of 0.001 and a batch size of 128 graphs. The overall accuracy was

96.9% and 82.17% of the solvents classified as “promising” (high lignin solubility) were

correctly classified as such (true positive values), see Fig. C.3. These results highlight

the relative agreement between the predictions of the regression GNN and the classifi-

cation GNN. Discrepancies are mostly accumulated around the threshold of log10(xL) = -1.5.

The classification GNN was coupled with the IG method to highlight the structural

features of each input graph that were the most relevant for classifying the solvent as

“promising” or “not-promising”. For this, the IG implementation from Captum52 (version

0.6.0) was used. The corresponding solvent graph with all node features equal to zero

was used as a baseline for IG. The attribution scores were normalised for each graph to

values between 0 and 1. These scores reflect the least and most important substructures of

the graph for predicting the corresponding class, respectively. The default Gauss-Legendre

quadrature rule as implemented in Captum was used for computing the integral of the

gradients. It is important to highlight that the intention of gathering explainability scores

by using IG and the classification GNN is to support or guide the scientist in the overall

explainability and interpretation tasks. The attribution techniques should not be used as

the solely ground truth for scientific discovery. Therefore, the explainability scores should

be taken as an extra tool to support experimental discovery rather than as the scientific

discovery per se.
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Fig. C.3 Parity plot of the classification GNN. Classes were
”
promising“and

”
non-

promising“solvent, based on a threshold lignin solubility of log(xL) = −1:5.

C.3 Experimental

C.3.1 2D HSQC NMR

50 mg of the lignin samples was added to NMR tubes and 0.7 ml of DMSO-d was added to

dissolve the lignin. Lignin dissolution was promoted by a sonication and vortex mixing. The

NMR spectra were acquired on a Bruker Avance III 500 MHz spectrometer. The following

parameters were applied in the HSQC-NMR analyses:

� NS (number of scans): 32

� D1 (delays): 1.5 s

� O1P (transmitter frequency offset): 4.700 p.p.m.

� SW (spectral width): 13.1536 p.p.m.

� DS (dummy scans): 32

The resulting scans of the lignin samples used for the solubility measurements in Sec-

tion 6.3.2 are presented in Fig C.4. The aldehyde-stabilised lignin obtained from AAF using

various solvents (Section 6.3.3) are presented in Fig. C.5.
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a)

c)

Birch wood
mild acidolysis lignin

FABIOLATM lignin Kraft lignin

Corn cob
mild acidolysis lignin

b)

d)

Fig. C.4 2D-HSQC-NMR spectra of different lignin types used in this work. a)

Birch MAL, b) corn cob MAL, c) FABIOLA�lignin from beechwood, and d) Kraft

lignin from softwood species obtained from Berner Fachhochschule.
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Fig. C.5 2D-HSQC-NMR spectra of aldehyde-stabilised lignin obtained from AAF

using the benchmark solvent a) 1,4-dioxane, and the designed solvents b) diglyme

(DEGDME), c) DEGDEE, and d) butyl sulfone.

C.3.2 Lignin solubility measurements

Numerical values for the lignin solubility experiments and the GC FID response factors for

each tested solvent are presented in Tab. C.8.

C.3.3 Biomass composition of Birch wood

The composition of the birch wood applied in AAF experiments (Section 6.3.3) was deter-

mined according to Talebi Amiri et al.155 and is provided in Tab. C.9.

C.3.4 DPX and lignin monomer yields after AAF treatment

Numerical values for lignin monomer and DPX yields are provided in Tab. C.10.
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Tab. C.8 Experimental solubility data for Kraft, FABIOLA, as well as birch and corn

cob MAL obtained by the GC method. Values in brackets correspond to additional

datapoints obtained by the evaporation method. The asterisk indicates that the

solubility limit in the corresponding solvent was reached. N/M corresponds to
”
not

measured“. Solvents for which saturated lignin solutions were obtained are marked

by an asterisk (∗).

Category Solvent name

Lignin solubility [wt%]
GC response

factorKraft
lignin

FABIOLA
lignin

Corn cob
MAL

Birch wood
MAL

Sulfoxides

DMSO 60 48 29 34 0.831

DESO 19 21 33 23 0.689

Phosphonates

DMMP 23 20 20 27 1.372

DEMP 20 20 33 25 0.708

DEEP 20 20 21 26 0.691

Azines

4-Methyl-pyrimidine 36 34 28 22 0.565

4-Pyrrolidinopyridine 22 19 19 26 0.404

Pyrazine 21 18 19 24 0.584

4-Methoxy-pyridine 24 19 20 26 0.547

4-Piperidinopyridine 21 20 19 26 0.39

Pyridine-n-oxide 30 25 29 N/M 0.466

2-Picoline-n-oxide 49 32 29 N/M 0.529

2,5-Dimethyl-pyrazine 48 49 29 N/M 0.441

Azoles

2-Methyl-2-oxazoline 43 34 29 21 0.735

1-Methyl-imidazole 22 19 18 26 0.608

5-Bromo-1-methyl-1H-imidazole 22 19 21 20 1.253

Pyrazole 20 21 20 25 0.743

Thiazole 49 49 28 N/M 0.773

1,3-Aminopropyl-imidazole 31 34 19 N/M 0.623

Isoxazole 49 50 28 N/M 0.59

Morpholine 4-(2-Hydroxyethyl)-morpholine 33 33 18 N/M 0.707

Sulfones

Butyl sulfone 31 30 30 N/M 0.451

DMM-sulfonamide 21 22 17 25 1.036

Ethers

18-Crown-6-ether 22 22 32 27 0.703

1,4-Dioxane 20 21 19 19 0.871

DEGDME 51 50 25 29 0.759

DEGDEE∗ 9 6 8 7 0.834

2-MeTHF∗ 16 (20) 14 (17) 9 (9) 11 (14) 0.473

Di-n-butyl ether∗ 2 (5) 2 (1) 4 (3) 6 (7) 0.405

Hydrocarbons n-Heptane∗ 0 (1) 0 (0) 1 (2) 2 (6) 1.738
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Tab. C.9 Biomass composition of the birch wood used for AAF experiments.
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Birch wood 0.15% 6.09% 3.27% 17.94% 2.81% 32.16% 17.81 2.01% 0.56% 0.26% 5.89% 88.95%

Tab. C.10 Experimental data of DPX and lignin monomer yiels obtained from AAF

experiments. N/M corresponds to
”
not measured“.

Solvent
Yield [wt.%raw biomass]

Pulp Lignin monomers DPX

1,4-Dioxane 38.9 7.8 21.3

DEGDME 53.6 3.9 14.9

DEGDEE 37.4 4.7 22.3

18-Crown-6 ether 90.3 1.8 6.3

Butyl sulfone 42.2 4.9 21.5

DMM-sulfonamide 39.4 N/M 13.6

DEEP 69.4 N/M < 0.5

DEMP 59.3 N/M < 0.5

DMMP 65.3 N/M < 0.5

DMSO 81.4 N/M 0.8
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D | Microalgae

D.1 Solvent screening

D.1.1 Selection of representative molecules for P. tricornutum

Representative molecules for P. tricornutum used for COSMO-RS solubility and partition

coefficient predictions are provided in Tab. D.1.

Tab. D.1 Representative molecules for P. tricornutum and their molecular struc-

tures.

Fraction
Representative

molecules
Structure

Carbohydrates D-glucose

OHO

HO

OH

OH

OH

D-mannose

OHO

HO

OH

OH

OH

Laminarin O

OH

OH

O

O

OH

OH

O

O

OH

OH

O

OHOHOH

O

Glucomannan O

O
O

OH

OH

O
O

OH

HO

O
O

OH

OH

HO

OH

HO

OH
HO

OH

OH

HO

Proteins L-leucine

NH3
+

O

O-

L-alanine

NH3
+

O-

O

Continued on next page
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Tab. D.1 – Continued from previous page

L-asparagine H2N

O NH3
+

O-

O

L-glutamine
H2N

O

NH3
+

O-

O

Carotenoids Fucoxanthin (Fx) O O

OHC

O

O

OH

Neutral lipids Glycerol tripalmitate

O

OO

O

O

O

Polar lipids
Phosphatidyl

choline (PC)
O

O
O

O

O

P
O

O-

O

N+

Sulfoquinovosyl

diacyl glycerol

(SQDG)
O

O

O

O

S

O

O

OH

OH

HO

HO

O

O

Palmitic acid

(C16:0)

O

OH

Palmitoleic acid

(C16:1)
O

OH

Eicosapentaenoic

acid (EPA)
O

OH

For 2-BuoH solubility predictions (Section 7.4), Fx was used as carotenoid representative,

tripalmitin as a NL-representing molecule, lecithin was used to represent the PLs, and

pheophytin a for chlorophylls. The chemical structure of pheophytin a is shown in Fig. D.1.
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Fig. D.1 Molecular structure of pheophythin a, the chlorophyll-representing

molecule used in the COSMO-RS solubility predictions for 2-BuOH/water.

From each biomass fraction, one biomolecule was selected for a comparison between

COSMO-RS solubility predictions and experimentally determined solubilities taken from

literature504–506 (Fig. D.2). Thus, five datapoints for D-glucose, eight datapoints for

palmitic acid, 11 datapoints for L-alanine, and 11 datapoints for β-carotene were obtained.

In general, COSMO-RS predictions and experimental data is qualitatively in agreement. For

β-carotene, deviations between experiment and COSMO-RS predictions occur for higher

solubility ranges. However, a broader range of solvents for a more detailed comparison.

Especially for D-glucose and L-alanine, additional datapoints would be useful to analyse

mid-range solubilities.
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Fig. D.2 Linear regression of experimental solubility measurements and COSMO-

RS solubilities for a) D-glucose, b) palmitic acid, c) L-alanine, and d) β-carotene.

Experimental values were taken from literature504–506.

The ff-profiles of all representative molecules are shown in Fig. D.3. The ff-profiles of

the carbohydrates show peaks in the HBD, and HBA region, indicating the possibility for

inter- and intramolecular hydrogen bonding. The peak in the nonpolar region is caused by

the C-atoms of the sugar rings and increases with increasing length of the polymer chain.

Therefore, a higher water-solubility is expected for the monomeric sugars D-glucose and

D-mannose than for the polymers. The ff-profiles of the amino acids reflect their relatively

high water-solubility as shown by the peaks in the HBD and HBA region. L-Leucine has

an aliphatic side chain causing the slight peak in the nonpolar region. Both, the lipids and

the carotenoid Fx show predominantly peaks in the nonpolar region. The NL tripalmitin has

the strongest nonpolar character which is reflected by its extremely low water solubility. Fx

and the PLs have slight peaks in the HBA region, and lower peaks in the nonpolar region,

underlining their more polar characteristics compared to the NL tripalmitin.
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a) Carbohydrates b) Amino acids

c) Carotenoids d) Lipids

Fig. D.3 ff-profiles of the representative microalgal molecules: a) carbohydrates,

b) amino acids representing the protein fraction, c) fucoxanthin representing the

carotenoids, and d) lipids.
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D.1.2 Manually added solvents after EHS screening step

Solvents that were falsely excluded in the EHS screening step due to model uncertainties

were manually re-added to the list of eligable solvents (Tab. D.2).

Tab. D.2 Solvent candidates that were falsely excluded in the EHS property screen-

ing step and were manually re-added to the solvent list.

Name CAS-Number

Methyl-trans-2-butenoate 000623-43-8

2-Methyl-pentanal 000123-15-9

Methyltrimethylacetate 000598-98-1

Isobutanol 000078-83-1

3,3-Dimethyl-2-butanone 000075-97-8

Butanal 000123-72-8

Butanethiol 000109-79-5

1,1-Diethoxyethane 000105-57-7

Diisopropylether 108-20-3

Methylmethacrylate 000080-62-6

2-Methyltetrahydrofuran 000096-47-9

Nitromethane 75-52-5

Tetrahydropyran 000142-68-7

Butylformate 000592-84-7

Pyridine 110-86-1

Acetylchloride 000075-36-5

5-Methylfurfural 000620-02-0

4-Methyl-2-pentanone 108-10-1

Ethylpropionate 105-37-3

Methyl-t-butylether 001634-04-4

Acetonitrile 75-05-8
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D.1.3 Solvent candidates identified for each biomass fraction

A list of solvent candidates identified after the solubility screening step for each biomass

fraction is provided in the electronic supplements (microalgae solvent screening.zip).

D.1.3.1 ff-profiles of the identified solvents

The ff-profiles of the solvents identified in the solvent screening is are shown in Fig. D.4.

All identified solvents exhibit peaks in the nonpolar region. N-hexane is the only solvent

without any peaks in the HBA or HBD region, highlighting its strongly hydrophobic charac-

teristics. Solvents exhibiting a moderate peak in the nonpolar region that are, in addition,

able to donate or accept hydrogen bonds, extracted more lipids and pigments from wet P.

tricornutum biomass compared to completely nonpolar solvents, such as n-hexane and vinyl

ethers.

Acetone
Ethyl acetate 
n-Hexane

Ethyl formate

Fig. D.4 ff-profiles of the solvents identified by the screening approach.

D.2 COSMO-RS solubility prediction of representative

molecules in 2-butanol/water-mixtures

The solubilities of selected representative molecules (Fx, tripalmitin, lecithin, and pheophytin

a as a model molecule for the chlorophyll fraction) were predicted in 2-BuOH/water mixtures

at T = 25 ◦C (Fig. D.5). In line with the ”like dissolves like”-principle, the solubilities of

these lipophilic compounds decreases with increasing water content.
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Fig. D.5 COSMO-RS predicted solubilities for PLs, NLs, chlorophylls and

carotenoids for 2-BuOH/water mixtures. Reprinted from König-Mattern et al.455

D.3 Experimental details

D.3.1 Biomass composition of P.tricornutum

The biomass composition of the P.tricornutum biomass used for the experiments is provided

in Tab. D.3. The fatty acid composition of the lipids as measured by GC-FID after con-

nversion to FAMEs and the corresponding chromatogram are shown in Fig. D.6 and D.7,

respectively. The pigment composition as determined by HPLC and the corresponding chro-

matogram are provided in Fig. D.8 and D.9, respectively.
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Fig. D.6 Fatty acid composition of the P. tricornutum biomass used in this work

(dried biomass, extracted with chloroform/methanol, 1/1, v/v). Reprinted from

König-Mattern et al.455
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Tab. D.3 Biomass composition of the P. tricornutum applied in the extraction

experiments. All values are given on a dry matter basis.

Fraction Subfraction Components
Mass [wt.%dry]

Component Subfraction Fraction

Proteins
Water-soluble 18.13

39.85
Water-insoluble 21.72

Carbohydrates
Water-soluble

Laminarin 2.78
14.55

19.90Other 11.78

Water-insoluble 5.34

Lipids

EPA 2.56

9.72

PUFAs (non-EPA) 0.32

MUFAs 3.62

SFAs 3.23

Pigments

Carotenoids
Fucoxanthin 1.49

2.05

7.61Other 0.56

Chlorphylls 5.56

Ash 23.26
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Fig. D.7 GC-FID chromatogram of a lipid extract obtained from dried P. tricornu-

tum using chloroform/methanol (1/1, v/v). The lipids were converted to FAMEs

prior to GC analysis.
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Fig. D.8 Chlorophyll and carotenoid composition of the P. tricornutum biomass

used in this work (dried biomass, extracted with EtOH96 vol:%). Reprinted from

König-Mattern et al.455
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Fig. D.9 HPLC chromatogram of a pigment extract obtained from dried P. tricor-

nutum biomass using EtOH96 vol:%.

D.4 Microscopic imaging of P. tricornutum cells

The biomass was inspected using a light microscope (Axio Imager A1, Carl Zeiss, Germany)

during cultivation (Fig. D.10 a), after sonication treatment as described in the method

section of the main manuscript (Fig. D.10 b), after thawing as used in the extraction ex-

periments (Fig. D.10 c and d) and after incubation with H2O under conditions similar to

the extraction experiments (Fig. D.10 e and f). Cell disruption using the ultrasound probe

leads to cell breakage as clearly visible in (Fig. D.10 b. Cells after thawing appear swollen,

presumably due to expansion caused by prior freezing at -20 ◦C (Fig. D.10 c and d). Incu-

bation under magnetic stirring for 90 min as shown in Fig. D.10 e and f did not cause visual

significant changes compared to Fig. D.10 c and d.
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a) Control: Phaeo in M+M 
(1000x)

b) 2 min treatment with 
ultrasound probe in water (1000x)

c) Thawed biomass
(500x)

d) Thawed biomass
(1000x)

f) Thawed biomass after 
90 min stirring in water (1000x)

e) Thawed biomass after 
90 min stirring in water (500x)

Fig. D.10 Microscopy images of P. tricornutum. a) P. tricornutum in M+M

medium in the final days of cultivation. b) P. tricornutum treated with ultrasound

probe (2 min) in water. c) Thawed P. tricornutum biomass 500x magnified, and

d) 1000x magnified. e) Thawed biomass after extraction with water after 90 min

incubation similar to extraction experiments 500 x magnified and f) 1000x magni-

fied. Reprinted from König-Mattern et al.455

D.5 Economic value of P. tricornutum biomass

The economic value of the P. tricornutum biomass compounds is provided in Tab. D.4. In

the scenario
”
complete biorefinery“, each biomass fractio was allocated to the product with

the maximum economic value.

D.6 Mass balances of the 2-butanol-based biorefinery process

The mass balance for the developed biorefinery process is given as the product of the inci-

dence matrix A ∈ Rp×f and the vector of mass flows F ∈ Rf×1 :

0 = A · F : (D.1)

The size of the incidence matrix A is determined by the number of process units p and the

number of mass flows connecting the process units p. The connection between the process
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Tab. D.4 Economic value of potential biorefinery products of P. tricornutum. The

values were taken from Ruiz et al165 unless otherwise stated.

Selling category Product Selling price [e t−1] Biomass fractions

Biofuels

Biodiesel 710 Lipids

Bioethanol 370
Carbohydrates

Proteins

Chemicals

Biopolymers

2000 Lipids

1400 Proteins

2000 Carbohydrates (polysaccharides)

Biolubricants

1500 Saturated FAMEs

3500 Unsaturated FAMEs

Biopolymer additives
3700 Carbohydrates (polysaccharides)

15000 Pigments

Food, feed

Proteins 1100 Proteins

Lipids 950 lipids

Carbohydrates 750 Carbohydrates

Laminarin 20000507 Laminarin

Food additives

PUFAs (non-EPA) 5000 PUFAs (non-EPA)

EPA 200000508 EPA

Functional protein 3300 Water-soluble protein

Pigments 900000 Pigments

Sterols 45000 Sterols

Cosmetics/health care

Lipid antioxidants 30000 PUFAs

Carotenoid antioxidants 900000 Carotenoids

Glyco- and phospholipids 6000 Polar lipids

Bioactive sulfated polysaccharides 2500 Polysaccharides

Chlorophyll colourant (E141) 12000509 Chlorophylls

Complete biorefinery
(max. profit)

EPA-food additive 200000508 EPA

Biolubricant (SFA) 1500 SFAs

Biolubricant (MUFA) 3500 MUFAs

Carbohydrate biopolymer 2000 Water-insoluble carbs

Chlorophyll colorant (E141) 12000509 Chlorophylls

Cosmetics/health care protein 3500 Water-soluble protein

Protein biopolymers 1400 Water-insoluble protein

Laminarin powder 20000 Laminarin

Lipid antioxidants 30000 PUFAs (non-EPA)

Carotenoid antioxidants 900000 Carotenoids

Food/feed: carbohydrates 750 Water-soluble carbohydrates (not laminarin)
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units are given by A. For flows leaving a given process unit, the corresponding value in A

equals -1, whereas 1 denotes flows entering the process unit. Each mass flow Fp in F equals

the sum of the component-specific mass flows Fp;c :

Fp =
CX

c=1

Fp;c ; (D.2)

where c denotes the total number of biomass components. The component-specific mass

flows were determined for proteins, carbohydrates, lipids, carotenoids and chlorophylls were

determined as

Fp+1;c = Fp;c · Φp;c ; (D.3)

where the factor Φp;c ∈ [0; 1] indicates the relative mass of component c that is transported

from Fp;c to Fp+1;c . For the extraction unit, Φp;c was described by the component yield.

For phase separation, Φp;c was given as the amount of component c that was transproted to

the organic or aqueous phase, respectively. The experimentally determined values for Φp;c

are summarised in Tab. D.5.
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Tab. D.5 Experimentally measured Φp;c -factors to calculate the mass flows of the

developed 2-BuOH-based biorefinery process.

Unit p Component c Φp;c [wt.%] Note

2-BuOH79 vol:% extraction
(t = 90 min)

Proteins 22.95 1, 3

Carbohydrates 40.64 1, 3

Lipids 89.57 1

Carotenoids 19.94 1

Chlorophylls 63.8 1

2-BuOH75 vol:% extraction
(t = 90 min)

Proteins 25.37 2, 3

Carbohydrates 58.35 2, 3

Lipids 99.36 1

Carotenoids 82.55 1

Chlorophylls 100.00 1

Phase separation
(organic phase)

Proteins 43.29 4

Carbohydrates 17.57 4

Lipids 88.45 4

Carotenoids 97.92 4

Chlorophylls 82.57 4

Phase separation
(aqueous phase)

Proteins 56.71 4

Carbohydrates 82.43 4

Lipids 11.55 4

Carotenoids 2.08 4

Chlorophylls 17.43 4

1 - Based on extraction with 500 mg wet P. tricornutum biomass and 20 ml solvent/water-mix.
2 - Based on extraction with 1000 mg wet P. tricornutum biomass and 40 ml solvent solvent/water-mix.
3 - The yield is based on the amount of water-soluble carbohydrates/proteins.
4 - Measured according to Section 7.5.11
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[227] E. Günerken, E. D’Hondt, M. Eppink, L. Garcia-Gonzalez, K. Elst, and R. Wijffels,

“Cell disruption for microalgae biorefineries,” Biotechnology Advances, vol. 33, no. 2,

pp. 243–260, 2015.

[228] S. Ebert, L. Grossmann, J. Hinrichs, and J. Weiss, “Emulsifying properties of water-

soluble proteins extracted from the microalgae Chlorella sorokiniana and Phaeodacty-

lum tricornutum,” Food & Function, vol. 10, no. 2, pp. 754–764, 2019.

[229] M. Sørensen, K. Kousoulaki, R. Hammerø, M. Kokkali, D. Kleinegris, F. J. Marti-

Quijal, F. J. Barba, A. M. Palihawadana, E. S. Egeland, C. A. Johnsen, O. H. Ro-

marheim, S. Bisa, and V. Kiron, “Mechanical processing of Phaeodactylum tricor-

nutum and Tetraselmis chui biomass affects phenolic and antioxidant compound

availability, nutrient digestibility and deposition of carotenoids in Atlantic salmon,”

Aquaculture, vol. 569, p. 739 395, 2023.

[230] T. O. Butler, G. Padmaperuma, A. M. Lizzul, J. McDonald, and S. Vaidyanathan,

“Towards a Phaeodactylum tricornutum biorefinery in an outdoor UK environment,”

Bioresource Technology, vol. 344, p. 126 320, 2022.

[231] G. P. ‘T Lam, J. A. Van Der Kolk, A. Chordia, M. H. Vermuë, G. Olivieri, M. H. M.
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company.

[418] A. Klamt and F. Eckert, “COSMO-RS: A novel and efficient method for the a priori

prediction of thermophysical data of liquids,” Fluid Phase Equilibria, vol. 172, no. 1,

pp. 43–72, 2000.

[419] F. Bezold, M. E. Weinberger, and M. Minceva, “Computational solvent system

screening for the separation of tocopherols with centrifugal partition chromatography

using deep eutectic solvent-based biphasic systems,” Journal of Chromatography A,

vol. 1491, pp. 153–158, 2017.

[420] H. F. Hizaddin, A. Ramalingam, M. A. Hashim, and M. K. Hadj-Kali, “Evaluating

the performance of deep eutectic solvents for use in extractive denitrification of liquid

fuels by the conductor-like screening model for real solvents,” Journal of Chemical &

Engineering Data, vol. 59, no. 11, pp. 3470–3487, 2014.

[421] M. Diedenhofen and A. Klamt, “COSMO-RS as a tool for property prediction of IL

mixtures—A review,” Fluid Phase Equilibria, vol. 294, no. 1-2, pp. 31–38, 2010.

[422] A. Hagberg, P. J. Swart, and D. A. Schult, “Exploring network structure, dynamics,

and function using NetworkX,” United States, 2008.



Bibliography 217

[423] J. M. Schmidt, “A simple test on 2-vertex- and 2-edge-connectivity,” Information

Processing Letters, vol. 113, no. 7, pp. 241–244, 2013.

[424] A. Kanevsky, “Finding all minimum-size separating vertex sets in a graph,” Networks,

vol. 23, no. 6, pp. 533–541, 1993.
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[461] J. Grafmüller, A. Böhm, Y. Zhuang, S. Spahr, P. Müller, T. N. Otto, T. D. Bucheli, J.

Leifeld, R. Giger, M. Tobler, H.-P. Schmidt, N. Dahmen, and N. Hagemann, “Wood

ash as an additive in biomass pyrolysis: Effects on biochar yield, properties, and

agricultural performance,” ACS Sustainable Chemistry & Engineering, vol. 10, no. 8,

pp. 2720–2729, 2022.

[462] R. Halim, M. K. Danquah, and P. A. Webley, “Extraction of oil from microalgae for

biodiesel production: A review,” Biotechnol Adv, vol. 30, no. 3, pp. 709–32, 2012.

PMID: 22266377.

[463] A. Gugliuzza, “Solvent swollen polymer,” in Encyclopedia of Membranes, E. Drioli

and L. Giorno, Eds., Berlin, Heidelberg: Springer Berlin Heidelberg, 2016, pp. 1801–

1802.

[464] X. Pi, S. Zhao, W. Wang, D. Liu, C. Xu, G. Han, T. Kuang, S.-F. Sui, and J.-R. Shen,

“The pigment-protein network of a diatom photosystem II–light-harvesting antenna

supercomplex,” Science, vol. 365, no. 6452, eaax4406, 2019.
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