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geb. am 02. Juni 1978 in Wriezen
genehmigt durch die

Fakultät für Elektrotechnik und Informationstechnik
der

Otto-von-Guericke-Universität Magdeburg

Gutachter: Prof. Dr.-Ing. Achim Kienle
Prof. Dr. Hartmut Grammel
Prof. Dr.-Ing. Andreas Kremling

Promotionskolloqium am: 24. April 2015



André Franz: Nonlinear Dynamics of Poly(hydroxyalkanoate) Production in Ral-
stonia eutropha and Rhodospirillum rubrum, Dipl.-Ing., © July 14th, 2015



Abstract

This thesis is concerned with the mathematical modeling of the synthesis and

metabolization of poly(3-hydroxybutyrate) in microorganisms. Focus is on the

bacterium Ralstonia eutropha and an outlook is given for the bacterium Rho-

dospirillum rubrum. Poly(3-hydroxybutyrate) is a biopolymer and is synthesized

by many organisms as cell-internal carbon and energy storage material.

Previous models in literature usually neglect metabolization of the storage material

and/or the cell internal regulation. In the present work, the cell internal regula-

tion was taken into account by choosing a cybernetic modeling approach. This

approach was also extended to cell internal metabolites with slow dynamics. For

the estimation of model parameters and validation of the model, suitable, experi-

ments were carried out that include both the synthesis and metabolization of the

biopolymer. With a nonlinear model analysis it was shown that the metabolization

of the storage material plays an important role for the system dynamics.

In a further step model reductions were discussed and evaluated. On the basis

of a reduced model, population balance models have been developed which ex-

plicitly take the differences in the polymer contents between the individual cells

into account. By integrating the cybernetic modeling approach in the population

dynamic modeling, the cell internal regulation could be considered.

By conducting own experiments it could also be shown that the wild-type strain

H16 of the organism R. eutropha is able to grow on glucose as a single substrate

without prior mutagenic treatment. This is in contradiction to previous literature.

Only a prolonged incubation with high glucose concentration is needed to induce

growth on glucose.



Kurzfassung

Die vorliegende Dissertation beschäftigt sich mit der mathematischen Modellierung

der Synthese und der Metabolisierung von Polyhydroxybuttersäure in Mikroor-

ganismen. Im Fokus steht hierbei das Bakterium Ralstonia eutropha. In einem

Ausblick wird die Anwendung der entwickelten Methoden auf das Bakterium Rho-

dospirillum rubrum diskutiert. Polyhydroxybuttersäure ist ein Biopolymer und

wird von vielen Organismen als zellinterner Kohlenstoff- und Energiespeicher an-

gelegt.

Bisherige Modelle in der Literatur vernachlässigen in der Regel die Metabolisierung

des Speicherstoffes und/oder die zellinterne Regulation. In der vorliegenden Ar-

beit wurde die zellinterne Regulation durch die Wahl eines kybernetischen Mod-

ellierungsansatzes berücksichtigt. Dieser Ansatz wurde zudem so erweitert, dass

zellinterne Metabolite berücksichtigt werden können. Für die Parametrisierung

und Validierung des Modells wurden geeignete Experimente durchgeführt, die

sowohl den Aufbau als auch die Metabolisierung des Biopolymers beinhalten. Mit

einer nichtlinearen Analyse wurde das Modell auf Mehrfachstationäritäten hin un-

tersucht und es konnte gezeigt werden, dass die Metabolisierung des Speicherstoffes

eine wichtige Rolle in der Systemdynamik spielt.

In einem weiteren Schritt wurden Modellreduktionen diskutiert und bewertet. Auf

Grundlage eines reduzierten Modells, wurden populationsdynamische Modelle for-

muliert, welche explizit die Unterschiede in den Polymergehalten zwischen den

einzelnen Zellen berücksichtigen. Diese Unterschiede in den Polymergehalten wur-

den experimentell mit Hilfe der Durchflusszytometrie bestimmt und mit dem pop-

ulationsdynamischen Modell verglichen. Durch die Integration des kybernetischen

Modellierungsansatz in die populationsdynamische Modellierung konnte auch hier

die zellinterne Regulation berücksichtigt werden.

Durch die Durchführung eigener Experimente konnte außerdem gezeigt werden,

dass der Wildtyp Stamm H 16 des Organismus R. eutropha in der Lage ist, auf

Glucose als Einzelsubstrat zu wachsen, auch ohne vorherige mutagene Behandlung.

Lediglich eine verlängerte Inkubation mit hohen Glucose Konzenrationen ist dazu

notwendig.
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1. Introduction

1.1. Motivation

Nowadays, one can hardly imagine a world without plastics. Plastics have changed

our everyday life. It brings many technological, medical and societal advantages,

since it is light weight, durable, strong, corrosion-resistant, has high thermal and

electrical insulation properties and its production is very cheap. Due to this ver-

satility a wide range of products (e. g. packaging, cases for electronical devices,

medical implants, furniture) are made from various types of plastics featuring dif-

ferent properties. The use and therefore the production of plastics has strongly

increased in the last decades (see Figure 1.1). In 2012 almost 300 million tonnes

of synthetic plastics were produced world wide [57].
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Figure 1.1.: Annual synthetic plastics production [57].

On the other hand, synthetic plastics hardly decompose and a large amount of

these plastics have accumulated in landfills and natural environment. Today, 90%
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of the rubbish in world’s ocean is plastic [8, 22, 53] and it represents more than 10

percent of the municipal waste [3]. Over a third of plastic is used for packaging

[81], which is usually only used once and then discarded. This is not sustainable at

all, especially since 4 percent of the worlds oil production is used as feedstock for

making plastic and yet another 4 percent is used as energy in the process [81, 82].

Plastics are not only harmful to natural environment, but also to human health.

The versatility in thermal and mechanical properties is achieved by use of a wide

range of chemicals, where some of them are known to be toxic or linked to re-

productive problems or cancer. For example, polyethylene terephtalate (PET) re-

leases endocrine disrupting chemicals like acetaldehyde, polyvinylchloride (PVC)

leaches phthalates, carcinogens and dioxins, and polystyrene (PS) leaches very

toxic brominated flame retardants over their entire life span.

In summary, plastics have a lot of advantages due to their versatility, but they

also have some drawbacks, which can be classified into: environmental pollution,

sustainability and human health issues.

To overcome these problems, different approaches are needed and some of them are

already applied. Recycling of plastics, for instance, can reduce environmental pol-

lution and safes oil and energy. Some countries (e.g. Bangladesh, Bhutan, France,

Papua New Guinea, Rwanda, Tanzania) have even banned non-decomposable plas-

tic bags to reduce pollution of the environment.

A different approach is the substitution of synthetic plastics with so called bioplas-

tics [27]. These are polymers made from biomass (e.g. plants or microorganisms

such as bacteria or fungi) and are usually biodegradable and even biocompatible.

This has several advantages: production of biopolymers is independent from fossil

resources, decomposition of bio-based plastics is usually much faster than decom-

position of oil-based plastics [71, 73] and bio-based plastics are less or even not

harmful to human health.

Several plants and microorganisms are able to synthesize these biopolymers as in-

ternal energy and carbon reserve material. For example, starch and cellulose are

well known polymers, which can be synthesized by maize, wheat and sugar beet.

Poly(lactic acid) is also a well known bioplastic, where only the monomer is syn-

thesized by microorganisms via fermentation and later synthetically polymerized.

Poly(hydroxyalkanoates) are also a major class of biopolymers, which are usually
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synthesized by microorganisms, but also by transgenic plants [33, 61, 80].

Although there are a wide range of biopolymers known today, they only represent

a very small fraction of the total amount of plastics. This has several reasons.

For instance, production of bioplastics by plants (e.g. starch-based) may occupy

fields for food production. Furthermore, industrial production of bio-based plastic

is usually much more expensive than production of oil-based plastics, e.g. due

to higher feedstock prices. Additionally, polymerization of biopolymers usually

happens within the cells of microorganisms or plants. But cell internal processes

are still not fully understood and are also very challenging to control in order

to achieve desired polymer properties. But this is of course subject to current

research activity, which aims at a better understanding of the underlying metabolic

processes. This understanding is necessary to improve and optimize industrial

production or to control and adjust certain polymer properties.

It is obvious, that the research field of biopolymers is huge and includes exper-

imental as well as theoretical research. Experiments are usually the basis for

theoretical studies, where experimental knowledge is translated into mathemati-

cal models. These models can help to analyze known behaviour and processes or

to predict unknown behavior and unknown processes. For validation, extension

or modification of these theoretical studies, new experiments are needed again.

Interaction of theory and experiment is therefore very important.

The present thesis is contributing to this suspenseful research area. The focus is on

poly(3-hydroxybutyrate), which belongs to the class of poly(hydroxyalkanoates)

mentioned above. This bioplastic can be produced by several microorganisms

and even plants. A well known poly(3-hydroxybutyrate) producing organism is

the bacterium R. eutropha and this thesis will mainly focus on this organisms.

Additionally, there are some new and very promising poly(3-hydroxybutyrate)

producing organisms, e.g. the facultative photosynthetic bacterium R. rubrum,

which is also subject of this thesis.

1.2. State of the Art and Objectives

As mentioned above, mathematical modeling is crucial to gain a better understand-

ing of the underlying biochemical processes and for a systematical optimization of
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industrial processes. Experiments build the basis of mathematical models and are

very important to identify model parameter and to validate mathematical models.

As the importance of biopolymers increased over the last decades, as outlined

above, extensive experimental and theoretical work already exists in literature.

Among this work several researchers have modeled the production of the biopoly-

mer poly(3-hydroxybutyrate) in R. eutropha, but no mathematical models, which

describe poly(3-hydroxybutyrate) synthesis in R. rubrum, are published so far.

Mathematical models for poly(3-hydroxybutyrate) synthesis in microorganisms are

derived from the knowledge, when and how poly(hydroxyalkanoates), in particular

poly(3-hydroxybutyrate), are synthesized or even metabolized. Accumulation of

poly(hydroxyalkanoates) is favored under excess of carbon source or unbalanced

growth conditions, e.g. lack of essential nutrients such as nitrogen, phosphorus,

etc., and can also be metabolized again if the limitation is removed. Therefore, the

following three main processes have to be included into mathematical modeling:

• growth

• synthesis of poly(hydroxyalkanoates)

• metabolization of poly(hydroxyalkanoates).

It is convenient to divide the cell into two main compartments, namely internal

storage material (e.g. poly(hydroxyalkanoates) (PHAs)) and residual biomass.

These two compartments and three main processes are shown in Figure 1.2. The

residual biomass contains all the proteins, lipids and DNA, and is therefore the

catalytically active compartment.

Besides these three main processes, it is also crucial to include the ability of mi-

croorganisms to switch between these processes. Adaption of the microorganism

to changing environmental condition and therefore switching between different cell

internal processes is subject of cell internal regulation.

With increasing knowledge of cell internal processes and regulation, several models

where already presented in literature. These models can be classified according to:

• unstructured models vs. structured models

• models which consider cell internal regulation vs. models which do not con-

sider cell internal regulation
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Figure 1.2.: Cell compartments and main processes.

• single cell models vs. models on population level

Early models were usually unstructured models, which do not explicitly address the

underlying metabolic processes ([30, 54, 62, 78]). Process optimization [34, 35, 36]

was often based on these unstructured and simple models. Since knowledge on

cell internal structures increased, models arose, which addressed these structures

[20, 60, 59]. Still, they are usually based on very simplified metabolic networks.

With increasing knowledge of metabolic structure, also cell internal regulation

moved more and more into focus. However, cell internal regulation is very com-

plex and still not fully understood, but can be included in a simplified way into

metabolic modeling via the cybernetic modeling framework, [43, 63, 65].

Including regulatory features into modeling of biopolymer production is crucial.

Depending on availability of cell external substrates and the state of cell internal

metabolites, the organism regulates whether biopolymer is produced, metabolized

or the organism grows without biopolymer synthesis. Cell internal regulation was

therefore not only addressed in unstructured models for biopolymer synthesis in
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R. eutropha [93], but also in structured models [20, 59, 60].

So far, all models usually neglect metabolization of biopolymer, which is obvious,

if the focus is only on the synthesis of biopolymer. However, metabolization of

biopolymer is an important metabolic process and can not be neglected if the model

shall explain a wide range of metabolic behaviour. Metabolization of biopolymer

in R. eutropha is included in the structure of some models [20, 59, 60], but param-

eters of these models were identified from experimental data which do not include

biopolymer metabolization in reasonable amount.

An overview of these dynamic single cell models for biopolymer production in

R. eutropha is given in Table 1.1. All of these models are non-segregated models,

which are only able to predict average properties of the cells, but neglect cell to

cell variance w.r.t. intracellular compounds. In contrast, heterogeneity can be de-

scribed within the framework of population balance modeling. First attempts to

describe poly(3-hydroxybutyrate) production in R. eutropha by a population bal-

ance model was recently published [66]. However, in this publication cell internal

regulation is neglected and no comparison with experimental data is shown.

Focus of this thesis is to formulate a structured single cell model for the synthe-

sis and metabolization of the biopolymer poly(3-hydroxybutyrate) in R. eutropha,

which includes cell internal regulatory features within the framework of cybernetic

modeling. To include metabolization of the biopolymer appropriate experiments

where performed, which include a wide range of metabolic behaviour, including

growth, synthesis and metabolization of poly(3-hydroxybutyrate). Multiple inde-

pendent experiments were performed for parameter identification and validation

of the model.

In a further step, based on the single cell model, different population balance mod-

els were formulated to describe the heterogeneity of the cells regarding their cell

internal amount of poly(3-hydroxybutyrate). First, a two-dimensional population

balance model is proposed, that considers the cell internal biopolymer and resid-

ual biomass as internal coordinates. However, concentration of internal biopolymer

and amount of residual biomass are difficult to determine and usually include com-

plex staining procedures, which are often very toxic for bacterial cells. Therefore

afterwards a one-dimensional population balance model is discussed by means of

correlating cell size with biopolymer concentration.

6



1.3. STRUCTURE OF THIS THESIS

Table 1.1.: Theoretical studies for poly(3-hydroxybutyrate) synthesis in different
strains of R. eutropha with different carbon sources. The column
exp. indicates, if in the particular study also experiments were per-
formed. Only a few of these studies use structured models (struct.)
and consider cell internal regulation (regul.). Metabolization of poly(3-
hydroxybutyrate) (P(3HB) met.) is also only considered in very few
studies.

strain carbon exp. struct. regul. P(3HB) met. Ref.
ATCC 17697 fructose X [34]
ATCC 17697 fructose X [35]
ATCC 17697 fructose X [36]
ATCC 17697 fructose X [54]
ATCC 17697 fructose X [62]
ATCC 17699 CO2 X [30]
ATCC 17699 CO2 X [78]
ATCC 17699 lactate [83]
NCIMB 11599 glucose X X [93]
NCIMB 11599 glucose X X X [20]
NCIMB 11599 glucose X X X [59]
NCIMB 11599 glucose X X X [60]
NCIMB 11599 glucose X [48]
NCIMB 11599 glucose X [72]

For R. rubrum no dynamic models for poly(3-hydroxybutyrate) production exist

so far in literature. However, R. rubrum is a new and promising candidate for

poly(3-hydroxybutyrate) production. The findings for R. eutropha are therefore

partially transferred to R. rubrum and discussed.

1.3. Structure of this Thesis

This thesis couples metabolic modeling of the poly(3-hydroxybutyrate) production

in R. eutropha and R. rubrum with goal-oriented experiments needed for param-

eter identification and model validation. In the first part of this thesis general

methods and basic principles are introduced, experimental methods in Chapter 2

and theoretical methods in Chapter 3.

The second part addresses the specific organism R. eutropha. Chapter 4 focuses

on experiments with different substrates such as glucose, fructose and acetate.
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Chapter 5 focuses on the modeling of the poly(3-hydroxybutyrate) synthesis and

metabolization in R. eutropha.

The third part addresses the organism R. rubrum. In Chapter 6 the application

of the developed methods for R. eutropha on R. rubrum are discussed.

The last part concludes and summarizes this thesis in Chapter 7.

1.4. Publications

A part of the work contained in this thesis has already been published in peer-

reviewed literature and presented at conferences. Here is a list of those publica-

tions:

Journal paper

• André Franz, Hyun-Seob Song, Doraiswami Ramkrishna, Achim Kienle. Ex-

perimental and theoretical analysis of poly(β-hydroxybutyrate) formation

and consumption in Ralstonia eutropha. Biochemical Engineering Journal,

55:49-58, 2011 (doi:10.1016/j.bej.2011.03.006)

• André Franz, Ruxandra Rehner, Achim Kienle, Hartmut Grammel. Rapid

selection of glucose-utilizing variants of the polyhydroxyalkanoate producer

Ralstonia eutropha H16 by incubation with high substrate levels. Letters in

Applied Microbiology, 54:45-51, 2012 (doi:10.1111/j.1472-765X.2011.03171.x)

Papers in conference proceedings

• André Franz, Hyun-Seob Song, Doraiswami Ramkrishna, Achim Kienle. Hy-

brid Cybernetic Modeling of Poly-Beta-Hydroxybutyrate Synthesis and Degra-

dation in Cupriavidus necator. AIChE Annual Meeting, Conference Proceed-

ings, Nashville, TN, USA, 2009

• André Franz, Hartmut Grammel, Ruxandra Rehner, Achim Kienle. Nonlin-

ear Dynamics of Poly(β-hydroxybutyrate) Production In Microorganisms.

AIChE Annual Meeting, Minneapolis, MN, USA, 2011
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• André Franz, Hartmut Grammel, Ruxandra Rehner, Philipp Paetzold, Achim

Kienle. Multiscale modeling of bioploymer production in multicellular Sys-

tems. Proceedings to the 7th Vienna International Conference on Mathe-

matical Modeling - MATHMOD 2012, 326-330, 2012 (doi:10.3182/20120215-

3-AT-3016.00057)

• André Franz, Robert Dürr, Achim Kienle. Population balance modeling of

biopolymer production in cellular systems. Proceedings of the 19th IFAC

World Congress, 1705-1710, 2014 (doi:10.3182/20140824-6-ZA-1003.01504)
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2. Experimental Methods

2.1. Organisms

2.1.1. R. eutropha

R. eutropha is a gram-negative bacterium, which was renamed several times in the

past (e.g. Hydrogenomonas eutropha, Alcaligenes eutrophus, Wautersia eutropha)

[7, 87, 92]. Recently, it has been classified as Cupriavidus necator [86]. However,

in this study the name R. eutropha is used, since this name is still commonly used,

even in recent literature. The genus was first described by N. S. Makkar and L.

E. Casipa [49]. R. eutropha is rod shaped and peritrichous flagellated [2] and can

have a diameter of 0.7 - 0.9 µm and a length of 0.9 - 1.3 µm.

Different strains of the genus R. eutropha are known. In this study, the wild-type

strain H16 (DSM 428, ATCC 17699, NCIB 10442) is used. This strain was first

isolated from soil by Wilde in 1962 [90].

The organism was obtained from DSMZ GmbH Braunschweig, Germany, as vac-

uum dried culture. In addition, NCCB, Utrecht, the Netherlands was chosen as a

supplier of the same strain, as discussed in Chapter 4.3.

In this study, R. eutropha was cultivated under aerobic conditions in LB medium

(see Table A.1) or mineral medium (see Table A.2). Fructose, glucose and ac-

etate were applied as carbon sources with varying concentration in each particular

experiment. The ammonia concentration was also varied in each particular exper-

iment.

Permanent cultures were prepared in a mixture of glycerol and mineral medium

(1:3) and stored at -80℃.
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2.1.2. R. rubrum

R. rubrum is a gram-negative bacterium, which is facultative photosynthetic. Un-

der anaerobic conditions R. rubrum satisfies its energy needs via photosynthesis,

which leads to a purple color due to the production of carotenoids. Under aerobic

conditions photosynthesis is suppressed and R. rubrum is colorless.

In this study, the strain R. rubrum S1 (DSM 467, ATCC 11170, NCIB 8255) is

used and was obtained from DSMZ GmbH Braunschweig, Germany, as vacuum

dried culture.

R. rubrum was cultivated under aerobic and dark conditions with LB medium (see

Table A.1) or mineral medium (see Table A.4).

Permanent cultures were prepared in a mixture of glycerol and mineral medium

(1:3) and stored at -80℃.

2.2. Poly(hydroxyalkanoates)

Poly(hydroxyalkanoates) are linear polyesters, which can be synthesized by many

bacteria, e.g. R. eutropha and R. rubrum. These poly(hydroxyalkanoates) serve as

cell internal carbon storage and energy reserve material [11]. Since these polyesters

are not only biogen, but also biodegradable they are a promising alternative for oil-

based plastics. Additionally, poly(hydroxyalkanoates) are biocompatible, which is

in particular interesting for medical applications.

In this study the focus is on poly(3-hydroxyalkanoate), in particular, on poly(3-

hydroxybutyrate).

In Figure 2.1 the chemical structure of the monomer 3-hydroxyalkanoate is shown

[11]. Depending on the functional group (R in Figure 2.1) 3-hydroxyalkanoates

can be classified. The classification is given in Table 2.1, e. g. for poly(3-

hydroxybutyrate) R=CH3 (methyl).

R. eutropha is able to synthesize 3-hydroxyalkanoates with a chain length of C3-

C5 [13, 14, 11] and even copolymers, e.g. P(3HB-co-4HB) [12]. R. rubrum is able

to synthesize 3-hydroxyalkanoates with a chain length of C4-C7 [6]. The chain

lengths are given in Table 2.1.
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Figure 2.1.: Chemical structure of poly(3-hydroxyalkanoate). For classification,
depending on the functional group R, see Table 2.1.

Table 2.1.: Classification of 3-hydroxyalkanoate units with different chain length.

R Name Chain length
hydrogen 3-hydroxypropionate (3HP) C3
methyl 3-hydroxybutyrate (3HB) C4
ethyl 3-hydroxyvalerate (3HV) C5
propyl 3-hydroxycaproate (3HC) C6
butyl 3-hydroxyheptanoate (3HH) C7
pentyl 3-hydroxyoctanoate (3HO) C8
hexyl 3-hydroxynonanoate (3HN) C9
heptyl 3-hydroxydecanoate (3HD) C10
octyl 3-hydroxyundecanoate (3HUD) C11
nonyl 3-hydroxydodecanoate (3HDD) C12

2.3. Cultivation

R. eutropha and R. rubrum were grown in a single biorector, a parallel bioreactor

system or in shake flasks. In the following, the processes for each cultivation system

are given. Potential modifications of these processes are given in the particular

experimental section.

2.3.1. Bioreactor

The used bioreactor was a 7 liter fermenter (Biostat C, Sartorius, BBI Systems,

Melsungen, Germany) with a 5 liter working volume (see Figure 2.2). The tem-

perature in this bioreactor was kept constant at 30℃ and pH was automatically

maintained at pH 6.8 by adding 2 mol/l NaOH as corrective agent. The culture

broth was stirred at 400 rpm and dissolved oxygen was maintained above 70%

air saturation with sterilized air at a constant flow rate of 1.5 ml/min. At higher

biomass levels, the oxygen supply was changed to oxygen and nitrogen mixed with

a gas mix station.
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Figure 2.2.: Single bioreactor (left) with a 7 liter vessel and parallel bioreactor
system (right) with up to 4 × 750 ml fermenters.

2.3.2. Parallel Bioreactor System

With the parallel bioreactor system (Dasgip, Jülich, Germany) (see Figure 2.2)

up to four fermenters can be operated in parallel, but controlled individually.

Fermenters with a volume of 750 ml or 400 ml were used. The temperature was

kept constant at 30℃. The parallel bioreactor system allows control of various

process parameters (e. g. pH value, oxygen saturation, ...). However, for this thesis

the parallel bioreactor system was mainly used for cultivations with very low cell

density, where control of these parameters are not crucial and consequently not

applied.

2.3.3. Shake-Flask

Shake-flask cultivations of R. eutropha were carried out at 27℃ in a rack-shaker

system at 150 rpm in baffled shake-flasks containing LB or mineral medium. Shake-

flask cultivations of R. rubrum were carried out at 30℃.
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2.4. Analytical Procedures

2.4.1. Optical Density and Biomass Concentration

For monitoring cell growth, the optical density of the cell suspension was measured

with an Ultrospec 500 spectrophotometer (GE Healthcare, Buckinghamshire, UK)

using a wavelength of 600 nm for R. eutropha and 660 nm for R. rubrum. Cell

suspension was diluted with NaCl (0.98 % (w/v)) when necessary to ensure a

measured optical density value within a linear range.

Total biomass concentration (g/l) was measured by determination of the cell dry

weight. For that purpose, 10 ml of cell suspension were centrifuged in pre-weighed

glass tubes at 3000 × g. The pellets were washed in NaCl (0.98% (w/v)) and sub-

sequently dried in a freeze-dryer (Christ, Osterode am Harz, Germany). From the

weight difference and the sample volume the biomass concentration was calculated.

For each sample this procedure was done three times.

2.4.2. Poly(3-hydroxybutyrate)

Poly(3-hydroxybutyrate) content was measured as crotonic acid, formed by acid

depolymerization of poly(3-hydroxybutyrate) [47]. Cell pellets, harvested by cen-

trifugation, were dissolved in methylene chloride by rapid mixing and afterwards

boiled for 10 min. After the samples were cooled down, they were centrifuged at

3000 × g for 15 min and the supernatants were carefully removed and collected

in glass tubes. This procedure was repeated three times. The supernatants were

then evaporated and the remaining poly(3-hydroxybutyrate)-containing samples

were digested in 2 ml H2SO4 (96 %) at 100℃ for 30 min and subsequently diluted

with concentrated H2SO4. UV absorbance spectra were measured with an UV-vis

spectrophotometer V-560 (Jasco, Gross-Umstadt, Germany). The concentration

of crotonic acid was calculated from a set of reference standards.
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2.4.3. Estimation of Poly(3-hydroxybutyrate) Concentration

from Optical Density

Based on the Beer-Lambert law

ODλ = − log
(

I

I0

)

= ελ c l , (2.1)

biomass concentration c can be proportionally correlated to optical density ODλ

c ∼ ODλ , (2.2)

if attenuation coefficient ελ and the path length l are constant. Most spectropho-

tometers use a standardized path length of l = 1 cm. The attenuation coefficient

ελ depends on wave length λ and specific properties of the cells, e. g. size, form,

composition.

This correlation offers a very fast and simple method to analyse biomass concen-

tration and is therefore commonly used in biology. However, this is only valid if

the attenuation coefficient ε is constant, which is only true, if cells (e.g. in form

or composition) do not change significantly.

In case of accumulation of poly(3-hydroxybutyrate), cells will change their com-

position and will additionally significantly grow in size. Therefore optical den-

sity cannot be used for direct estimation of the cell dry weight during poly(3-

hydroxybutyrate) accumulation, but only for monitoring the growth process.

However, in this case, the biomass can be viewed as a combination of two compart-

ments, namely the storage compound poly(3-hydroxybutyrate) and the residual

biomass (BIO), which is the non-poly(3-hydroxybutyrate) biomass compartment.

For these two compartments, it can be assumed, that their specific concentration

will change, but not their composition. The optical density will obviously not only

depend of the total biomass concentration but also on the particular concentration

of poly(3-hydroxybutyrate) cP(3HB) and residual biomass cBIO

ODλ = l ελ,P(3HB) cP(3HB) + l ελ,BIO cBIO , (2.3)

where

c = cP(3HB) + cBIO (2.4)
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holds.

Once l ελ,P(3HB) and l ελ,BIO are known, the correlation in equation (2.3) can be

used to calculate the poly(3-hydroxybutyrate) concentration of a sample, if optical

density and concentration of residual biomass are known. This is very convenient,

since direct measuring of poly(3-hydroxybutyrate) with the method described in

section 2.4.2 is very complex and involves a lot of steps, and a relative huge amount

of biomass is needed. In contrast, optical density is rather easy to determine even

from small volumes.

However, to calculate the concentration of poly(3-hydroxybutyrate) from optical

density, also knowledge about the concentration of the residual biomass (BIO) is

needed, which is only synthesized if a nitrogen source (e.g. ammonium chloride)

is available. It is therefore obvious to calculate the synthesized amount of the

residual biomass from the amount of uptaken nitrogen source.

For R. eutropha, the amount of needed ammonium chloride (AMC) to synthesize

1 g BIO can be calculated from the metabolic network in Chapter 5.1 and the

reaction equations in Appendix A.2 to

8.82 mmol AMC→ 1 g BIO . (2.5)

From the experimental data Ralst01FruSingle and Ralst02FruSingle in Chap-

ter 4 the following correlation between optical density at 600 nm (OD600) and

biomass concentrations (cBIO and cP(3HB)) is estimated to

OD600 = 2.80 cBIO + 4.76 cP(3HB) . (2.6)

The experimental data from Ralst03FruSingle and Ralst04FruSingle are used

to validate this correlation, which is shown in Figure 2.3. The figure shows the

measured optical density in comparison with the estimated optical density. If the

concentration of poly(3-hydroxybutyrate) is known (e.g. measured), then the con-

centration of residual biomass can be calculated from the concentration c of the cell

dry weight, which is cBIO = c−cP(3HB). If concentration of poly(3-hydroxybutyrate)

is not known, then the concentration of residual biomass can be calculated from

uptaken ammonium chloride according Equation (2.5). As seen in this figure, the

correlation is in good agreement with the experimental data. The correlation can
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therefore be used to estimate poly(3-hydroxybutyrate) concentration only from

optical density and uptaken amount of nitrogen source. This is very useful if there

are only small volumes available, e.g. from small fermenter or shake flasks. How-

ever, precise measurement of ammonium concentration is crucial, since only little

ammonium is needed to synthesize biomass. For R. eutropha it is only 8.82 mmol

NH4 for 1 g of residual biomass.

 

 

O
D

6
0
0

0
0

0
0

5 10

10

10

10

15

20

20

20

20

30

3030
Time [h]Time [h]

est., P(3HB) known

est., P(3HB) unknown

measured

Ralst03FruSingle Ralst04FruSingle

Figure 2.3.: Comparison of measured optical density (solid line) with estimated
optical density. If P(3HB) concentration is known (dashed line), the
amount of residual biomass can be calculated from cell dry weight. If
P(3HB) concentration is unknown (dotted line), the amount of resid-
ual biomass can be calculated from the amount of uptaken nitrogen.

2.4.4. Carbon Sources

2.4.4.1. D-Glucose and D-Fructose

Concentrations of fructose and glucose in supernatants were determined with a

D-Glucose/D-Fructose test kit from R-Biopharm (Darmstadt, Germany) accord-

ing to the principle described by Schmidt [69]. Extinction was measured with a

microplate spectrophotometer (Biotek PowerWave XS) at 340 nm after 3 seconds

of rapid shaking (included within procedure).

The manufacturers recommended procedure was adjusted to microtiter plates. The

test kit came with four bottles:

Bottle 1: 5g powder consisting of: triethanolamin buffer, NADP and ATP
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Bottle 2: suspension consisting of hexokinase and G6P-dehydrogenase

Bottle 3: suspension of phosphoglucose-isomerase

Bottle 4: D-Glucose assay control solution

The content of bottle 1 was dissolved in 27 ml distilled water. A mastermix for

(usually) 30 samples was prepared according to Table 2.2.

Table 2.2.: Mastermix for analysis of glucose and fructose.

per sample for 30 samples
H2O 150 µl 4500 µl
solution from bottle 1 75 µl 2250 µl
suspension from bottle 2 1 µl 30 µl

The following steps were conducted:

1. 226 µl of the mastermix were pipetted into each well of the microtiter plates.

2. 7.5 µl sample, standard or H2O (blank) were added into each particular well

and slightly stirred with the pipette tip.

3. Extinction (E1) was measured.

4. 1.0 µl from bottle 3 was added into each particular well and slightly stirred

with the pipette tip.

5. After 15 minutes extinction (E2) was measured.

From the extinction difference of the standards and blank a calibration curve was

calculated. This calibration curve was then used to determine the glucose or

fructose concentration from the extinction difference of the samples.

2.4.4.2. Acetate

Acetate concentration in supernatants was determined with reverse phase chro-

matography using a HP Agilent 1100 HPLC system (Agilent Technologies) with

an Inertsil ODS-3 column (GL Science). Eluent flow rate was 1 ml/min and sample

injection volume was 10 µl. As eluent 0.1 mol/l ammonium dihydrogen phosphate

at pH 2.6 was used. Spectra were obtained with a diode array detector. The

concentration of acetate was calculated from reference standards.
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2.4.5. Ammonia

Ammonia concentration in culture supernatants broth was either measured by

determining NH3 concentration with a VITROS DT60 II Chemistry System and

VITROS NH3 MicroSlide from Ortho-Clinical Diagnostics (Neckargemünd, Ger-

many) using the manufacturers instructions or with an ammonia test kit from

R-Biopharm (Darmstadt, Germany). Extinction was measured with a microplate

spectrophotometer (Biotek PowerWave XS) at 340 nm after 3 seconds of rapid

shaking (included within procedure).

For analysis of ammonia via the ammonia test kit from R-Biopharm the manufac-

turers recommended procedure was adjusted to microtiter plates as follows:

The ammonia test kit contains the following four bottles:

Bottle 1: 60 ml solution, consisting of: triethanolamine buffer (pH approx. 8.0),

2-oxoglutarate (150 mg)

Bottle 2: approx. 50 tablets, each tablet contains NADH (approx 0.4 mg)

Bottle 3: glutamate dehydrogenase solution

Bottle 4: ammonia assay control solution

Table 2.3.: Mastermix for analysis of ammonia.

per sample for 25 samples
H2O 151 µl 3775 µl
NADH solution 80 µl 2000 µl

The following steps were conducted:

1. Preparation of NADH solution: 1 NADH tablet per 1 ml of solution from

bottle 1

2. Preparation of mastermix (see Table 2.3)

3. 231 µl of the mastermix were pipetted into each well of the microtiter plate.

4. 8.0 µl sample, standard or H2O (blank) were added into each particular well

and slightly stirred with the pipette tip.

5. Incubation for 5 minutes in a thermomixer at 600 rpm and 25℃.
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6. Extinction (E1) at 340 nm was measured.

7. 1.6 µl from bottle 3 was added into each particular well and slightly stirred

with the pipette tip.

8. Incubation for 20 minutes in a thermomixer at 600 rpm and 25℃.

9. Extinction (E2) at 340 nm was measured.

From the extinction difference of the standards and blank a calibration curve

was calculated. This calibration curve was then used to determine the ammonia

concentration from the extinction difference of the samples.

2.4.6. Flow Cytometry

For flow cytometry a CyFlow Space (Partec GmbH, Münster, Germany) with

forward scatter (FSC), sideward scatter (SSC) and the following detectors for

fluorescence signals was used:

Detector FL1 FL2 FL3 FL4

Wavelength 527 nm 590 nm 630 nm 455 nm

Samples were prepared and measured according the following steps:

1. Optical density of cell suspension was measured.

2. Sample volume was calculated (normalized w.r.t. optical density): Vsample =

1 ml/OD.

3. Sample volume was centrifuged at 13000 rpm for 15 minutes.

4. Supernatant was removed carefully.

5. 39 µl PBS and 1 µl DAPI were added to the remaining cell pellet.

6. 5 µl of staining dye BODYPI (3 mg
1 ml

, dissolved in ethanol) or Nile red (0.1 g
1 ml

,

dissolved in ethanol) were added to the cell pellet.

7. Incubation at 30℃ and 450 rpm for 15 minutes in a thermomixer.

8. 3 µl of the sample were added to a glass tube with 2 ml PBS and rapidly

mixed.

9. Sample in glass tube was measured with flow cytometry.
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3. Theoretical Methods

3.1. Metabolic Network Analysis

Bacteria are single-celled organisms and their cells contain metabolites which are

transformed to other metabolites through a metabolic network of reactions cat-

alyzed by enzymes. Reactions which transport metabolites across the cell border

are called exchange reactions, while reactions which transform metabolites within

the cell are called internal reactions. Metabolic reactions are either irreversible

or reversible, depending on thermodynamic constraints. However, every reversible

reaction can be splitted into two irreversible reactions.

Figure 3.1 shows a simple metabolic network (N1) of R. eutropha from Gadkar et.

al [20]. This network aims to describe the synthesis and metabolization of poly(3-

hydroxybutyrate) (P(3HB)), where the carbon source is glucose (GLC) and the

nitrogen source is amonium sulfate (AMS). Non-P(3HB) biomass is denoted as

BIO. Including this, the network has five external metabolites, eleven internal

metabolites and fourteen metabolic reactions (see Table 3.1). Reaction r5 is a

reversible reaction and can be splitted into the two irreversible reactions r5a
and

r5b
.

Such a metabolic system can be described by the state y, which consist of the

vector of external metabolite concentrations x (mmol/l), the vector of specific

internal metabolite concentrations m (mmol/g) and the biomass concentration c

(g/l)

y =








x

m

c








. (3.1)

23



3.1. METABOLIC NETWORK ANALYSIS
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Figure 3.1.: Metabolic networkN1 of R. eutropha. This network from Gadkar et al.
[20] of R. eutropha has five external metabolites (boxed), eleven inter-
nal metabolites and fourteen metabolic reactions. Underlined metabo-
lites are biomass precursors.

The equations for describing mass conversion of metabolites are defined as

1

c

dx

dt
=Sx r (3.2)

dm

dt
=Sm r−m µ (3.3)

1

c

dc

dt
=µ , (3.4)

where r (mmol/g/h) is the vector of nr reaction rates, µ is the growth rate, Sx

and Sm represent the (nx×nr) and (nm×nr) stoichiometric matrices, and nx and

nm are the dimensions of the vectors x and m, respectively.

In biological systems such as bacterial cells, dilution of internal metabolites due to

growth is much slower than internal reaction rates and therefore usually considered

to be negligible

m µ ≈ 0 . (3.5)

Therefore, under quasi-steady state assumption of internal metabolites Equation
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3.1. METABOLIC NETWORK ANALYSIS

Table 3.1.: Metabolic reactions of the metabolic network N1 given in Figure 3.1.
Stoichiometry coefficents of the metabolites are given in mmol, except
the stoichiometry coefficents of the polymer P(3HB) and the stoichiom-
etry of the non-P(3HB) biomass (BIO) are given in g.

no. metabolic reaction type
1 1 GLC → 1 G6P exchange
2 1 G6P → 2 GLM internal
3 1 G6P → 1 PPM + 2 NADPH + 1 CO2 lumped
4 3 PPM → 5 GLM internal
5 2 GLM ↔ 1 AcAcCoA internal
6 1 AcAcCoA + 1 NADPH → 1 3HB internal
7 1 3HB → 0.086 P(3HB) exchange
8 0.086 P(3HB) → 1 AcAcCoA exchange
9 1 GLM + 1 OXA → 1 ISC internal

10 1 ISC → 1 αKG + 1 NADPH + 1 CO2 lumped
11 1 αKG + 1 AMN + 1 NADPH → 1 AAM internal
12 1 αKG → 1 OXA + 1 CO2 lumped
13 1 AMS → 2 AMN exchange
14 0.3 G6P + 1.2 PPM + 10 GLM + 9 AAM → 1 BIO exchange

(3.3) simplifies to

Sm r = 0 . (3.6)

Since every reversible reaction can be divided into two irreversible reactions, the

vector of reaction rates can be constraint to

r ≥ 0 (3.7)

without loss of generality.

The stoichiometry matrix Sm is definded by the metabolic network and the flux

distribution r needs to be computed. Equation (3.6) is typically an undetermined

system, since usually nr > nm. Depending on the structure of Sm, additional con-

straints and knowledge of (e.g. measured) rates, there are three main techniques to

compute the internal fluxes: metabolic flux analysis (MFA), flux balance analysis

(FBA) and metabolic pathway analysis (MPA) [84]. The term flux is usually used

equivalently to the term rate. In particular, in metabolic network analysis flux is

often used to indicate internal reaction rates under steady-state conditions.

25



3.2. ELEMENTARY MODE ANALYSIS

3.2. Elementary Mode Analysis

Solutions of Equations (3.6) and (3.7) are steady-state flux (or rate) distributions

and called flux modes. These solutions span an admissible flux space, which is a

convex polyhedral cone. Application of a non-decomposability constraint to the

flux space achieves a finite set of solutions, which are unique (up to a scaling factor)

and consist of a minimal set of reactions. These flux modes are called elementary

(flux) modes. An elementary mode can be viewed as a minimal functional sub unit

(or sub network).

S M

P1

P2

r1

r2

r3

EM1 EM2 EM3

r1 1 1 0
r2 1 0 -1
r3 0 1 1

S M

P1

P2

r1

r2a

r2b

r3

EM1 EM2 EM3

r1 1 1 0
r2a 1 0 0
r2b 0 0 1
r3 0 1 1

Figure 3.2.: Elementary modes (EM) in a network with reversible reaction vs. ele-
mentary modes in a network with only irreversible reactions (adapted
from [40]).

The concept of elementary modes was first introduced in [70]. Calculation of ele-

mentary modes [21] can be done via available software tools such as Metatool [88]

or CellNetAnalyzer [39]. Elementary modes are unique and non-decomposable

steady-state flux distributions. They are genetically independent (e. g. each el-

ementary mode contains a different set of genes) and even systematically inde-

pendent, if there are only irreversible reaction in the metabolic network. System-

atically independent means, that there exists no elementary mode which can be

expressed by non-negative combination of other elementary modes. This is shown

in Figure 3.2. These are two identical networks, except reaction r2 is a reversible

reaction in the upper subfigure and splitted into two irreversible reactions in the

lower subfigure. Both networks have three elementary modes (EM). However, in

the network with the reversible reactions elementary mode EM2 can be obtained

by a non-negative combination of EM1 and EM3, while in the network with only
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3.2. ELEMENTARY MODE ANALYSIS

irreversible reactions no elementary mode can be obtained by non-negative com-

binations of other elementary modes.

Typically every elementary mode includes one or more substrates and products.

However, elementary modes exist, which are composed of only internal rates (e.g.

internal cycles), but those modes are usually not considered, as they are thermo-

dynamical infeasible.

Given the metabolic network N1 in Figure 3.1 six elementary modes can be calcu-

lated. As seen in Table 3.2, reactions r11, r13 and r14 never occur in a steady state

solution. These reactions are called blocked reactions. The metabolic network N1

is therefore not able to produce the metabolite BIO under steady state conditions.

Even under non-steady state conditions BIO can only be produced, if there are

already sufficient internal metabolites available at the beginning of the process

(initial conditions). Furthermore, only the three modes EM1, EM2 and EM4 have

a net production of P(3HB) and the three remaining modes EM3, EM5 and EM6

convert carbon source GLC and/or P(3HB) only into CO2.

Table 3.2.: Elementary modes (EM) in flux space of the metabolic network N1.

EM1 EM2 EM3 EM4 EM5 EM6

r1 1.1 2.1 1.5 3.0 0 1.2
r2 0.6 0 1.5 3.0 0 0
r3 0.5 2.1 0 0 0 1.2
r4 0.2 0.7 0 0 0 0.4

r5a
1.0 1.7 0 2.0 0 0

r5b
0 0 0 0 1.0 0

r6 1.0 4.1 3.0 2.0 2.0 4.4
r7 1.0 4.1 3.0 2.0 2.0 4.4
r8 0 2.4 3.0 0 3.0 4.4
r9 0 0 3.0 2.0 2.0 2.0

r10 0 0 3.0 2.0 2.0 2.0
r11 0 0 0 0 0 0
r12 0 0 3.0 2.0 2.0 2.0
r13 0 0 0 0 0 0
r14 0 0 0 0 0 0

It is therefore obvious that certain reactions and/or metabolites in network N1 are

missing, since there are three blocked reactions. Removing these blocked reactions

would not change the steady state solution, but is not meaningful, since production
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of biomass is obviously needed. Instead, missing reactions and metabolites have

to be added to this metabolic network.

The network N1 can be extended with the additional reactions given in Table 3.3

to unblock reactions r11, r13 and r14 and to allow production of biomass.

Table 3.3.: Additional reactions to extend the metabolic network N1 to unblock
reactions r11, r13 and r14 and to allow production of biomass.

no. metabolic reaction type
15 1 αKG → 1 SUC + 1 CO2 lumped
16 1 SUC → 1 MAL internal
17 1 MAL → 1 OXA internal
18 1 ISC → 1 SUC + 1 GOX internal
16 1 GLM + 1 GOX → 1 MAL internal

The extended network N2 has then fourteen elementary modes, including the six

modes from the network N1. The elementary modes of the extended network N2

are given in Table 3.4. In this network no reactions are blocked and biomass can

be produced via elementary modes EM7, EM9, EM10 and EM14, as can be seen in

Table 3.5.

3.3. Metabolic Yield Analysis

In the hybrid cybernetic modeling approach (see section 3.4.3) elementary mode

analysis is combined with the cybernetic modeling framework. Every elementary

mode is assumed to be catalyzed by a particular key enzyme, which in turn is typi-

cally described by an ordinary differential equation. Larger metabolic networks are

usually very complex and highly connected, which leads to exponential increase in

the number of elementary modes and therefore system equations and parameters.

However, usually a small subset of elementary modes is needed to describe the

metabolic phenotype. This subset of elementary modes can be extracted from the

whole set of elementary modes by metabolic yield analysis [75].

Elementary modes are usually viewed in flux space and are represented by a

(nr × nEMs) matrix Z (see Table 3.2 for an example), where nEMs is the num-

ber of elementary modes. In metabolic yield analysis these vectors in flux space
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Table 3.4.: Elementary modes (EM) in flux space of the extended network N2.
EM1 - EM6 also occur in the network N1 (see Table 3.2) and therefore
not included here.

EM7 EM8 EM9 EM10 EM11 EM12 EM13 EM14

r1 56.0 1.2 50 1.3 1.0 3.0 0 1.1
r2 52.3 0 46.3 0 1.0 3.0 0 0
r3 3.0 1.2 3.0 1.3 0 0 0 0.9
r4 0 0.4 0 0.4 0 0 0 0
r5a

6.0 0 0 0 0 2.0 0 0
r5b

0 0 0 0 0 0 1.0 13.3
r6 6.0 4.4 6.0 2.5 2.0 2.0 2.0 1.7
r7 6.0 4.4 6.0 2.5 2.0 2.0 2.0 1.7
r8 0 4.4 6.0 2.5 2.0 0 3.0 15.1
r9 45.0 2.0 45.0 1.0 2.0 2.0 2.0 13.0
r10 22.5 2.0 22.5 0.5 2.0 2.0 2.0 6.5
r11 22.5 0 22.5 0.5 0 0 0 6.5
r12 0 0 0 0 0 0 0 0
r13 11.3 0 11.3 0.2 0 0 0 3.2
r14 2.5 0 2.5 0.1 0 0 0 0.7
r15 0 2.0 0 0 2.0 2.0 2.0 0
r16 22.5 2.0 22.5 0.5 2.0 2.0 2.0 6.5
r17 45.0 2.0 45.0 1.0 2.0 2.0 2.0 13.0
r18 22.5 0 22.5 0.5 0 0 0 6.5
r19 22.5 0 22.5 0.5 0 0 0 6.5

are converted into vectors in yield space. Elementary modes in yield space are rep-

resented by the stoichiometry of the net reactions SxZ, where Sx is the (nx × nr)

stoichiometry matrix for nx external metabolites. Usually there are less external

metabolites than metabolic reactions (nx < nr), thus the dimension of elementary

mode matrix SxZ is smaller then the dimension of the elementary mode matrix

in flux space Z. Elementary modes in yield space are therefore typically not sys-

tematically independent and can even have identical stoichiometric coefficients.

Table 3.5 lists the net reactions of the elementary modes from network N2. It

can be seen, that some elementary modes have the same stoichiometry (e.g. EM3

and EM11) in yield space and are not distinguishable from each other anymore,

although the underlying full elementary modes in flux space are systematically

independent.

In metabolic yield analysis the elementary modes in yield space are usually nor-
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Table 3.5.: Net reactions of the elementary modes of the extended sample network
above. Stoichiometry coefficents of the metabolites are given in mmol,
except the stoichiometry coefficents of the polymer P(3HB) and the
stoichiometry of the non-P(3HB) biomass (BIO) are given in g.

EM net reaction
EM1 1.1 GLC → 0.5 CO2 + 0.086 P(3HB)
EM2 2.1 GLC → 2.1 CO2 + 0.146 P(3HB)
EM3 1.0 GLC → 4.0 CO2

EM4 3.0 GLC → 4.0 CO2 + 0.172 P(3HB)
EM5 0.086 P(3HB) → 4.0 CO2

EM6 1.2 GLC → 5.2 CO2

EM7 56.0 GLC + 11.3 AMS → 25.5 CO2 + 0.516 P(3HB) + 2.5 BIO
EM8 1.2 GLC → 5.2 CO2

EM9 50.0 GLC + 11.3 AMS → 25.5 CO2 + 2.5 BIO
EM10 1.3 GLC + 0.2 AMS → 1.8 CO2 + 0.1 BIO
EM11 1.0 GLC → 4.0 CO2

EM12 3.0 GLC → 4.0 CO2 + 0.172 P(3HB)
EM13 0.086 P(3HB) → 4.0 CO2

EM14 1.1 GLC + 3.2 AMS + 1.144 P(3HB) → 7.4 CO2 + 0.7 BIO

malized w.r.t. a reference substrate. If there is more than one substrate, the yield

space can be decomposed into disjoint sub spaces for each single substrate and

mixed substrate uptake. The network N2 has glucose as carbon substrate and

P(3HB) can act as carbon substrate as well as product. It is therefore convenient

to normalize the elementary modes in yield space of this network w.r.t. the num-

ber of net uptaken carbon units from glucose and P(3HB). Since glucose has six

carbon units and the monomer 3HB has four carbon units, the net uptake of car-

bon units of, for example EM1, is 6·1.1 - 4·86/M3HB, since glucose is metabolized

and P(3HB) is produced in this elementary modes. M3HB is the molecular weight

of the monomer 3HB.

The yields w.r.t. to carbon units of all elementary modes of the network N2

are given in Table 3.6. Additionally, the yield of BIO w.r.t. to the substrate

ammonium sulfate AMS is given and it can be seen, that production of BIO is

linear correlated to the uptake of AMS, which reduces the dimension of the yield

space.

For describing metabolic phenotype, it is sufficient to extract the systematically

independent elementary modes in yield space. These modes are called generating

30



3.3. METABOLIC YIELD ANALYSIS

Table 3.6.: Selected yields of the elementary modes of the extended sample
network.

EM YCO2/C YBIO/C YBIO/AMS

EM1 0.2000 0 –
EM2 0.6667 0 –
EM3 0.0817 0.0080 0.2222
EM4 0.7222 0 –
EM5 0.3750 0 –
EM6 0.0850 0.0083 0.2222
EM7 0.2278 0.0070 0.2222
EM8 0.4000 0 –
EM9 0.6667 0 –
EM11 0.4000 0 –
EM12 1.0000 0 –
EM13 1.0000 0 –
EM14 0.1229 0.0120 0.2222
EM15 0.7222 0 –

modes and are the vertices of the convex hull of the yield space. In Figure 3.3

the fourteen elementary modes of the extended sample network are displayed in a

two-dimensional yield space. The hull of this yield space has only four generating

modes. These four modes are sufficient to represent any point within the convex

hull by non-negative combinations.

Examination of elementary modes in yield space has also the advantage that the

elementary modes can be compared easily with experimental data. If experimental

data are outside the convex hull of the yield space, then it is not possible to find any

non-negative combination of elementary modes which can represent these data.

In this case crucial reactions might be missing in the metabolic network or the

experimentalists have done some mistakes and experiments have to be repeated.

However, one can always find a non-negative combination of elementary modes

which minimize the distance of the convex hull to the experimental data outside

the hull. This can be done by solving the following least-square problem

min
h

1

2
‖Zy h− ym‖

2
2 (3.8)

such that

h ≥ 0, ‖h‖ = 1 (3.9)
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Figure 3.3.: Yield space of the network N2. Any elementary mode EM within
the convex hull of the yield space can be represented by non-negative
combination of the generating modes GM, which are the vertices of
the convex hull.

where Zy is a nx×nGM matrix, which contains the yields of the generating modes

(Zy ⊂ SxZ), ym is the vector with experimental yield data and h is the vector

of non-zero weights among generating modes. This subset of generating modes is

called active modes, since these modes have to be at least active to minimize the

distance or even represent the experimental data exactly. As seen in Figure 3.4

a), two active modes can be found to minimize the distance to the experimental

data outside the convex hull.

In the case of experimental data within the convex hull, a set of a minimal number

of elementary modes can be found, whose non-negative combinations can exactly

represent these data. However, this set is usually not unique. In case of the two-

dimensional yield space in Figure 3.4 b) at least three generating modes (GM) are

necessary to represent the experimental data. This can be either the set GM1-

GM2-GM4 or GM1-GM3-GM4. In metabolic yield analysis it is suggested to select

such a particular set by minimizing the sum of squared weights:

min
h

1

2
‖h‖2

2 (3.10)
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Figure 3.4.: Generating modes (GM) and active modes (AM) for network N2 and
some artificial experimental data.

such that

Zy h− ym = 0, h ≥ 0, ‖h‖ = 1 (3.11)

However, this will distribute the non-zero weights among as many generating

modes as possible and this is obviously not a minimal set. In this case it is

therefore necessary to exclude a priori generating modes or to impose additional

constraints.

To circumvent this, the least-square problem used for data outside the convex hull

can also be solved for experimental data within the hull. This will result in a

minimal, but not unique set of active modes whose non-negative combination can

exactly represent the experimental data. This is seen in Figure 3.4 c).

3.4. Cybernetic Modeling

Microorganisms are usually highly regulated and can adapt to changes in environ-

mental conditions very quickly. However, in many applications these regulations

are often neglected. Nevertheless, there are cases where considering cell internal

regulation is crucial. This applies to the synthesis of poly(3-hydroxybutyrate) in

microorganisms, where the organisms can switch between cell growth, synthesis

of poly(3-hydroxybutyrate) and metabolization of poly(3-hydroxybutyrate), de-

pending on environmental and cell internal conditions.
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Unfortunately, cell internal microbial regulation can be very complex and is often

not fully understood. In cases where knowledge of the underlying metabolic reg-

ulation is limited, but has to be included into dynamic modeling, the cybernetic

modeling framework offers a convenient method with moderate complexity. The

cybernetic modeling framework was introduced three decades ago by Ramkrishna

and co-worker [9, 42, 43, 63, 65] and since then improved significantly and success-

fully applied to a multitude of microorganisms [15, 19, 20, 28, 31, 38, 41, 55, 74, 93].

The concept of the cybernetic modeling approach is based on the assumption,

that microorganisms are optimally regulated in view of available resources due to

evolutionary processes. From this optimality criteria, cybernetic control variables

are derived and included into the mass balance equations.

3.4.1. First Cybernetic Models

The first cybernetic models were formulated to describe diauxic growth [43]. This

is a consecutive growth on two different substrates S1 and S2 into biomass B, e.g.

S1 + B −→ (1 + Y1) B (3.12)

S2 + B −→ (1 + Y2) B . (3.13)

The substrates are not metabolized simultaneously, but in a sequential pattern,

which results in two separate growth phases. That means, a dynamic model has

to include a regulatory feature which can represent this behaviour.

In a purely kinetic model the reaction rates are only defined by a kinetic part rkin,

e.g. mass action, Monod [52], or other. In case of Monod, the reaction rates are

r1 :=rkin
1 = kr,1

xS1

K1 + xS1

(3.14)

r2 :=rkin
1 = kr,2

xS2

K2 + xS2

. (3.15)
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The balance equations for this simple example are then

dxS1

dt
=−

1

Y1

r1 c (3.16)

dxS2

dt
=−

1

Y2

r2 c (3.17)

dc

dt
=µ c , (3.18)

where Yi are the yield coefficients, xi are the substrate concentrations in mmol/l, c

is the biomass concentration in g/l, kr,i are the maximum specific growth rates, Ki

are the so called Monod-constants or half-velocity-constants and µ is the growth

rate with µ = r1 + r2 in this case.

Figure 3.5 (left subfigure) shows the simulation of this pure kinetic model with

Monod kinetics. With this approach both substrates are metabolized simultane-

ously, which is not a diauxic growth behavior observed experimentally. To achieve

such a behaviour, reaction rates could be modified and for example extended with

inhibition terms. Another approach is the cybernetic modeling approach, which is

discussed in the following.
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Figure 3.5.: Simulation and comparison of diauxic growth with different model-
ing approaches. Left subfigure: pure kinetic model (Monod), mid-
dle subfigure: Monod kinetic with additional enzyme dynamics, right
subfigure: cybernetic model. Initial conditions are: c0 = 0.01 g/l,
xS1,0 = 0.5 g/l, , xS2,0 = 1.0 g/l, erel

1,0 = 0.001, erel
2,0 = 0.001. Model

parameters are given in Table 3.7.

First, an intermediate step is discussed, where enzymes are integrated into the
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Table 3.7.: Model parameters for diauxic growth model.

parameter kr,1 kr,1 K1 K2 ke,1 ke,2 β1 β2 Y1 Y2

value 1.08 0.82 0.01 0.20 0.1 0.1 0.5 0.5 0.5 0.5

model, since metabolic reactions are usually catalyzed by enzymes (E)

S1 + B
E1−→ (1 + Y1) B (3.19)

S2 + B
E2−→ (1 + Y2) B . (3.20)

The specific enzyme concentrations ei are then included into the rate equations,

e.g. for Monod

r1 :=erel
1

rkin
1

︷ ︸︸ ︷

kr,1
xS1

K1 + xS1

(3.21)

r2 :=erel
2 kr,2

xS2

K2 + xS2
︸ ︷︷ ︸

rkin
2

, (3.22)

with the relative enzyme level

erel
i =

ei

emax
i

, i = 1, 2 . (3.23)

Furthermore, balance equations for the enzyme levels are needed, which are

dei

dt
= αi + rE,i − βi ei − ei µ, i = 1, 2 , (3.24)

where αi is a constitutive enzyme synthesis rate [85], βi is a enzyme degradation

constant and ei µ represents the ”dilution” of enzyme due to growth. The enzyme

synthesis rate rE,i is also often represented by a Monod type of kinetics, e.g.

rE,i = ke,i
xSi

Ke,i + xSi

. (3.25)

By setting the initial conditions for the enzyme levels appropriately (e.g. high

value for the prefered substrate and low value for the unfavored substrate), one

might achieve a slightly better diauxic behavior than without enzyme catalyzed
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reaction rates. In Figure 3.5 middle subfigure both initial enzyme levels are set

to very low values for comparison with the cybernetic model. Enzymes have to

be synthesized to catalyze the reactions. Since there is no regulation incorporated

into this model, both enzymes are synthesized simultaneously and therefore both

substrates are metabolized simultaneously.

To account for regulatory features, the cybernetic modeling approach introduces

two so called cybernetic control variables u and v, which regulate enzyme synthesis

and enzyme activity and are included into rE and r, respectively

ri :=vi erel
i rkin

i , i = 1, 2 (3.26)

rE,i :=ui rkin
E,i , i = 1, 2 . (3.27)

Based on the assumption that microorganisms are optimally regulated, they will

distribute available resources in an optimal manner such that a certain objective

is maximized (e.g. cell growth). From this assumption the cybernetic control laws

can be derived. This was first done by Dhurjati [9] and Kompala [43] and results

in the following heuristic control laws:

u =
diag(e) rkin

||diag(e) rkin||1
, v =

diag(e) rkin

||diag(e) rkin||∞
. (3.28)

As seen in Figure 3.5 (right subfigure) the cybernetic modeling approach success-

fully describes the diauxic growth behaviour. Although both initial enzyme levels

have the same low value, the enzyme for metabolizing the preferred substrate is

synthesized first. Only after depletion of the preferred substrate the enzyme for

metabolization of the unfavored substrate is synthesized. Furthermore, a main ad-

vantage of the cybernetic modeling approach is, that no additional parameters are

needed for the cybernetic control laws. However, for each metabolic reaction a so

called key enzyme is needed and therefore nr balance equations for the according

enzyme levels.

Optimality of the cybernetic control laws in (3.28) was later proven by Young [96]

using linear optimal control theory and generalized to the form

u =
pu

||pu||1
, v =

pv

||pv||∞
, (3.29)
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where pu and pv are the so called returns on investment. There are two main poli-

cies to compute these returns on investment from a metabolic objective function

φ (see Table 3.8): the temperate and the greedy policy. In the temperate policy

knowledge about the time span ∆t is necessary. This is the time span for which

the organism optimizes the allocation of available resources. Since these time span

is usually not known it is set to zero in the greedy policy (e.g. ∆t = 0).

Table 3.8.: Policies for computing the return on investment.

temperate greedy
unweighted weighted unweighted weighted

pu BT
ueAT∆tq R−1BT

ueAT∆tq BT
uq R−1BT

uq

pv BT
v eAT∆tq BT

v eAT∆tq BT
v q BT

v q

Both policies (temperate and greedy) can be formulated as weighted or unweighted

policies. The weighting matrix R in the weighted policies has the following form

R =












e◦

1

e1
0 . . . 0

0
. . .

...
...

. . . 0

0 . . . 0
e◦

nr

enr












, (3.30)

where e◦ is a reference enzyme level, which corresponds to the steady state level

of the fully induced enzyme under current conditions [96]. By using the weighted

forms, investment of resources into rates with high enzyme levels is favored.

Matrices Bu, Bv and A are calculated from the linearized systems equations f = dy

dt

Bu =
∂f

∂u
(y(t), u◦, v◦) (3.31)

Bv =
∂f

∂v
(y(t), u◦, v◦) (3.32)

A =
∂f

∂y
(y(t), u◦, v◦) , (3.33)

where u◦ and v◦ are reference control inputs.

The vector q is computed from the metabolic objective function φ

q =
∂φ(y)

∂y
. (3.34)
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For the given example of diauxic growth a reasonable metabolic objective function

would be to maximize biomass

φ(y) = c . (3.35)

It can then be shown [96] that the generalized control laws in Equation (3.29) will

have the same form as the classic control laws in equation (3.28) for the diauxic

growth.

However, one advantage of the generalized form of the cybernetic control laws is,

that now any metabolic objective function φ(y) can be specified and the cybernetic

approach is no longer limited to the cases where only biomass is maximized. An-

other reasonable metabolic objective is for instance maximizing substrate uptake.

3.4.2. Structured Cybernetic Modeling

Early cybernetic models were unstructured models. That means, that only metabolic

net conversions from substrate to biomass and/or products were considered, but

cell internal dynamics were neglected.

To account for cell internal dynamics, structured cybernetic models were intro-

duced [79]. In this formulation, every metabolic network, regardless of complexity,

consists of a multitude of four basic cybernetic units (see Figure 3.6):

• linear processes

• diverging processes

• converging processes

• cyclic processes

M1
M1

M1M1
M2M2

M2

M2

M3

M3

M3

M3

linear divergent convergent cyclic

Figure 3.6.: Basic cybernetic units of the structured cybernetic modeling approach.

39



3.4. CYBERNETIC MODELING

In contrast to that, elementary modes can also be viewed as subnetworks [95].

In a first step, local cybernetic control laws are defined for each basic unit or

elementary mode separately, since it is assumed, that for each basic unit a certain

pool of resources has to be allocated to the individual reactions of this unit.

In a second step, global cybernetic control laws are formulated which allocate

resources between the basic subunits or elementary modes, respectively.

Local and global control variables are then finally combined.

3.4.3. Hybrid Cybernetic Modeling

The hybrid cybernetic modeling approach combines the cybernetic modeling frame-

work with elementary mode analysis. It was first suggested by Kim et al. [38] and

more elaborated by Song and Ramkrishna [75] and Song et al. [74].

In this approach not every single reaction is catalyzed by a key enzyme, but every

relevant elementary mode. The vector of reactions rates r can then be expressed

by the elementary mode decomposition and the vector of reaction rates (or fluxes)

rM through the elementary modes

Z rM = r (3.36)

Balance equations can then be rewritten to

1

c

dx

dt
=SxZ rM (3.37)

de

dt
=α + rEM − diag(β) e− e µ (3.38)

1

c

dc

dt
=µ , (3.39)

where rM and rEM are regulated rates

rM =diag(v) diag(erel) rkin
M (3.40)

rEM =diag(u) rkin
EM . (3.41)

The vector e now represents the specific enzyme concentrations of the key enzymes
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for the elementary modes and rEM the synthesis rates of these key enzymes.

One of the main advantages of the hybrid cybernetic approach in comparison to

the cybernetic modeling approach by Young et al. [96] is, that the use of local

cybernetic variables is circumvented, since the quasi-steady state approximation

for intracellular components allows the calculation of internal fluxes relative to

uptake rates through exploitation of the stoichiometric coupling. Especially the

application to large networks is much less computationally demanding by using

HCM instead of the cybernetic model formulation by Young et al. [94]. However,

this advantage has to be paid for by the quasi-steady state assumption for all

internal metabolites.
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4. Experiments with R. eutropha

R. eutropha can utilize various carbohydrates and organic acids, e.g. fructose,

gluconic acid, lactate, acetate, etc. In this chapter all experiments, which were

performed with various carbon sources are described. Experiments are mainly

used for parameter estimation and model validation in Chapter 5.

In the following the experiments are named with a unique ID:

OrganismNumberCarbonsubstrateDevice. Organism can be Ralst for R. eu-

tropha or Rhod for R. rubrumĊarbonsubstrate can be Fru for fructose, Ace for

acetate or Glc for glucose as single carbon source. Device indicates in which de-

vice or system the experiment was performed. The single bioreactor is indicated

by Single, the parallel fermenting system is indicated by Parallel and shake

flasks are indicated by Flask.

4.1. R. eutropha Growing on Fructose

4.1.1. Ralst01FruSingle

As described above, most models in literature neglect poly(3-hydroxybutyrate)

metabolization and therefore there are usually no experimental data available

which show poly(3-hydroxybutyrate) metabolization. There are even no experi-

mental data available which show growth, poly(3-hydroxybutyrate) synthesis and

poly(3-hydroxybutyrate) metabolization in one single process. Therefore, this ex-

periment was performed to study the different processes: growth, P(3HB) synthesis

and P(3HB) metabolization as shown in Figure 1.2.

Initial substrate conditions are 20.0 g/l fructose and 1.5 g/l amonium chloride.

This experiment can be divided into four stages (see Figure 4.1):
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Figure 4.1.: Time course of experiment Ralst01FruSingle.

• Stage I: growth

• Stage II: P(3HB) synthesis

• Stage III: P(3HB) metabolization

• Stage IV: maintenance

In the beginning of the experiment sufficient carbon- and nitrogen source is avail-

able and total biomass is increasing exponentially (growth phase). After ap-

proximately 16 hours the nitrogen source is depleted, but there is still carbon

source available. The organism is now storing external carbon source into internal

P(3HB), stage II (P(3HB) synthesis). Since nitrogen source is depleted, which is

necessary for growth of non-P(3HB) biomass, and no cell internal nitrogen storages

are considered, the increase in cell dry weight (CDW) is only due to increase of

P(3HB). In this case, one would expect a parallel increase of CDW and P(3HB) in

Figure 4.1, which is not the case. Instead of that, CDW and P(3HB) are slightly

diverging for higher P(3HB) values. This might be due to cell internal nitrogen

storage materials, but which is not considered in this thesis. Furthermore, there
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might be a small systematical error in the measurement of P(3HB). The concen-

tration of P(3HB) is calculated from an UV absorbtion spectrum and a set of

reference standards (see Chapter 2.4.2). However, P(3HB) from reference stan-

dards was already available in a pure form, while P(3HB) from the samples has

to be first extracted from the cells. Although extraction was done three times

for each sample, the extracted amount of P(3HB) might be lower than the actual

amount of P(3HB).

Nevertheless, if no cell internal nitrogen storage is considered, the amount of non-

P(3HB) biomass remains constant during this phase. Since this is the catalytically

active compartment, the increase of P(3HB) and therefore total biomass and the

decrease of fructose is linear, which can be clearly observed during this phase. It

is also seen in the experiment that P(3HB) synthesis already starts shortly before

all nitrogen source is depleted when only little nitrogen is available (end of stage

I). After 26 hours new nitrogen (NH4Cl) was injected into the bioreactor. At this

time point stage III starts. Since there is nitrogen available the organism can

metabolize internal P(3HB) and also external carbon source. After approximately

30.5 hours all P(3HB) and external carbon source is depleted and the organism

stops growing (stage VI).

4.1.2. Ralst02FruSingle

This experiment is done to repeat the results from experiment Ralst01FruSingle

(Figure 4.1), with different initial substrate conditions: 21.0 g/l fructose and 0.6

g/l ammonium chloride. In this experiment five stages can be observed (see Figure

4.2):

• Stage I: growth

• Stage II: P(3HB) synthesis

• Stage III: P(3HB) metabolization

• Stage IV: P(3HB) synthesis

• Stage V: maintenance

In the beginning there are sufficient carbon and nitrogen source available and

growth is exponential (stage I). After approximately 11 hours nitrogen source is
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depleted and remaining carbon source is stored into cell internal storage material

P(3HB), stage II. Ammonium chloride is added at t=35 h and the organisms starts

to metabolize internal P(3HB), stage III. Growth is now again exponentially. The

added nitrogen is again depleted at t=40.5 h and external carbon source is again

accumulated into internal P(3HB) until external carbon is fully consumed (stage

IV). After approximately 45 hours all substrates are depleted and the organisms

stop growing. (stage V)
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Figure 4.2.: Time course of experiment Ralst02FruSingle.

4.1.3. Ralst03FruSingle

In the experiments Ralst01FruSingle and Ralst02FruSingle the nitrogen source

was limited to stimulate P(3HB) synthesis and afterwards added again to study

P(3HB) metabolization. The following experiment is therefore performed to study

the influence of a fructose pulse instead of an ammonium pulse. Initial substrate

conditions are 5.0 g/l fructose and 1.0 g/l amonium chloride. The experiment can

be divided into four stages (see Figure 4.3):
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• Stage I: growth

• Stage II: maintenance

• Stage III: P(3HB) synthesis

• Stage IV: maintenance

In the first 19 hours total biomass is increasing while fructose and ammonium

chloride are decreasing (stage I). After that, both substrates are depleted and the

organisms can not grow (stage II). At t = 22 h fructose is added. Since nitro-

gen source is not available the organisms store the external fructose into internal

P(3HB), stage III. Fructose is again depleted after 27 hours and the organisms

stop growing (stage IV):
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Figure 4.3.: Time course of experiment Ralst03FruSingle.

4.1.4. Ralst04FruSingle

In this experiment no substrate was added after depletion and initial substrate

conditions are 9.6 g/l fructose and 1.0 g/l amonium chloride. However, there can
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be still three stages observed (see Figure 4.4):

• Stage I: growth

• Stage II: P(3HB) synthesis

• Stage III: maintenance

Both substrates are available from the beginning and the organisms are growing.

Nitrogen is depleted after approximately 15 hours. Remaining external fructose is

stored into internal P(3HB). Growth is now linear since catalytical active biomass

remains constant. After approximately 24.5 hours fructose is also depleted and

growth stops.
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Figure 4.4.: Time course of experiment Ralst04FruSingle.

4.1.5. Ralst05FruParallel

This experiment was performed in the parallel fermenting system with four fer-

menter and an initial volume of 400 ml each. Two fermenter contain fructose as
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single carbon source (which are presented in this subsection) and two fermenter

contain acetate as single carbon source (which is described in section 4.2).

Due to the small volume only optical density, ammonium chloride concentration

and fructose concentration was measured. For measuring cell dry weight and

P(3HB) concentration large volumes are necessary. However, P(3HB) concen-

tration and concentration of non-P(3HB) biomass (BIO) can be estimated from

optical density and uptaken ammonium chloride as described in section 2.4.3.
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Figure 4.5.: Time course of experiment Ralst05FruParallel.

Figure 4.5 shows the time course of the experiments for both parallel fermenter (A)

and (B). The experiments starts with a very low ammonium chloride concentra-

tion to induce a very early synthesis of P(3HB). Ammonium chloride is depleted

after a few hours and external fructose is then stored into P(3HB). Fructose is

also depleted after 50 hours. Between 50 and 116 hours neither a carbon nor

a nitrogen source is available to the organisms. Usually one would expect that

cells die and optical density will decrease. However, OD600 remains constant and

even increases slightly. It is interesting, that after depletion of all substrates the

organisms seem to maintain themselves over such a long time period. This was
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also already observed in the experiments above. At time point t=116 h 5 ml of

an ammonium stock solution (40 g/l) were added to each of the fermenter. Due

to availebility of ammonium chloride, P(3HB) is metabolized and non-P(3HB)

biomass is synthesized.

Growth was monitored by measuring optical density and it is first surprising that

optical density decreases after adding of ammonium chloride. With available ni-

trogen source the organisms are able to grow and divide and one would there-

fore expect an increase in optical density. However, as described in section 2.4.3,

P(3HB) and non-P(3HB) biomass have different influence on the optical density,

which explains this decrease.

With the correlation given in section 2.4.3 the concentration of P(3HB) and non-

P(3HB) biomass and therefore cell dry weight can be estimated from optical den-

sity and uptaken ammonium chloride. As seen in Figure 4.6 the concentrations

of P(3HB) and CDW are increasing, since ammonium chloride and fructose are

available. After a few hours ammonium chloride is depleted and external fructose

is stored into cell internal P(3HB), which leads to an increase in CDW. At t =

116 h the organisms start to metabolize P(3HB) and to synthesize non-P(3HB)

biomass, because ammonium chloride is now available. Since P(3HB) has a higher

influence on the optical density than non-P(3HB) biomass, the optical density is

now decreasing, although cells are growing and dividing. Furthermore, there is no

external carbon source available and therefore the internal carbon source P(3HB)

is metabolized for cell growth. Since even bacterial cells do not have a degree of

efficiency of 100%, the cell dry weight will be obviously lower, after metabolization

of P(3HB).

The cell internal storage material P(3HB) is fully metabolized, since there is suf-

ficient nitrogen source in the medium. After depletion of P(3HB) the organisms

stop growing, and again optical density remains almost constant over a long time

period.

P(3HB) can be stained within the cells with different fluorescence dyes. Here,

boron-dipyrromethene (BODIPY) was used. Stained cells can be analyzed with

flow cytometry which measures the fluorescence intensity of each single cell. This

allows to analyze cell to cell heterogeneity. The fluorescence intensity of the dye

is correlated with the amount of P(3HB) within the cells. The higher the amount
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Figure 4.6.: Time course of experiment Ralst05FruParallel. P(3HB) and CDW
were estimated from optical density and uptaken ammonium chloride.

of P(3HB), the higher the intensity. This is shown in Figure 4.7. In the beginning

of the experiment P(3HB) concentration is low and therefore also fluorescence

intensity. Within the first 30 hours P(3HB) is increasing, as can be also seen in

Figure 4.6 and fluorescence intensity is therefore shifted to higher values and stays

there until t=116 h when ammonium chloride is added to the fermenter. P(3HB)

concentration is decreasing and fluorescence intensity is therefore shifted back to

lower values.

As argued in Chapter 2.4.3 P(3HB) concentration has a significant influence on

optical density. This is (also) because, P(3HB) accumulating cells will grow in

size, but do not divide under lack of nitrogen. Cells with accumulated P(3HB) are

therefore usually bigger than cells without internal P(3HB). With flow cytometry

the forward scatter can be measured which is correlated to cell size.

The forward scatter is shown in Figure 4.8. Again, it can be seen, that in the

beginning of the experiment cells are rather small, since they do not have accu-

mulated much P(3HB) so far. With increasing P(3HB) concentration the forward

scatter is shifted to higher values within the first 30 hours and stays there until

ammonium chloride is added. P(3HB) concentration is then decreasing and the

forward scatter is shifted backward to lower values.
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The advantage of the forward scatter is, that cells do not need to be stained, which

is usually a complex procedure. However, in this experiment the parameter for

the forward scatter were not well chosen and the resolution is therefore poor. But

still, the shifting of the forward scatter peak can be observed.

Fluorescence intensity and forward scatter show mono-modal distributions. Multi-

modal distributions would give a hint on potentially multi-stationarity. This seems

to be not the case, which is in agreement with the findings to be discussed in

Chapter 5.2.3.
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Figure 4.7.: Flow cytometry measurement of experiment Ralst05FruParallel,
fluorescence intensity. Parallel fermenting system with two fermenter,
A: black, B: red.
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Figure 4.8.: Flow cytometry measurement of experiment Ralst05FruParallel,
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black, B: red.
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4.2. R. eutropha Growing on Acetate

4.2.1. Ralst06AceParallel

This experiment is similar to experiment Ralst05FruParallel, except fructose

was substituted with sodium acetate as single carbon source. Both substrates

(carbon and nitrogen) are fully depleted after 50 hours (see Figure 4.9). In con-

trast to experiment Ralst05FruParallel the optical density is decreasing after

depletion of the substrates. This is quite interesting, since it means, that the organ-

isms grown on fructose can maintain themselves longer, than organisms grown an

acetate as single carbon source. Even after adding ammonium chloride at t=116 h

the optical density does not increase.
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Figure 4.9.: Time course of experiment Rals06AceParallel.

Cells were stained with BODYPI and fluorescence intensity measured by flow

cytometry is correlated to the amount of cell internal P(3HB). As seen in Figure

4.10 fluorescence intensity is increasing until t=31.5 h. From this time point until

t=116 h the peak does not shift significantly, but the shape gets broader and less
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high. Since there is no ammonium chloride in the medium cell will not divide at

this stage. However, optical density is decreasing (see Figure 4.9). An explanation

might be, that some cells die and lyse. R. eutropha is known to be able to utilize

other organisms. Released nitrogen of lysed cells can be uptaken by healthy cells,

which might then be able to divide. Even released carbon source might be uptaken

to synthesize further P(3HB) and even new non-P(3HB) biomass. New cells are

formed with lower P(3HB) concentration which could explain the broadening of

the fluorescence intensity distribution and the decrease in optical density. After

adding new ammonium chloride at t=116 h the fluorescence intensity is shifted

backwards again to lower values, which means, that P(3HB) is metabolized.

Additionally to the fluorescence intensity the forward scatter was measured with

flow cytometry (Figure 4.11). The forward scatter peak also shifts to higher values

due to increasing P(3HB) concentration and shifts back after adding ammonium

chloride.
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4.3. R. eutropha Growing on Glucose

According to literature R. eutropha wild-type H16 is not able to grow on glucose

as single carbon source [26, 44]. However, glucose-utilizing mutant strains of R. eu-

tropha are in principal not unusual. Besides mutagenic approaches, it was also

observed that spontaneous glucose mutants appeared in a chemostat with fructose

as carbon source after cultivation for several weeks [44]. Kim et al. [37] applied

UV mutagenesis to H16 and selected glucose mutants after incubation with very

high glucose concentration (60 g/l glucose) for 5-6 days.

In this section experiments are shown, which surprisingly show growth of R. eu-

tropha wild-type H16 on glucose as single carbon source.

4.3.1. Ralst07GlcSingle

Similar to experiment Ralst01FruSingle an experiment was performed, where

fructose was substituted with glucose as single carbon source. As seen in Fig-

ure 4.12 R. eutropha wild-type H16 is growing on glucose, which is in contra-

diction to literature. Even the growth behavior is very similar to experiment

Ralst01FruSingle: P(3HB) concentration is significantly increasing after am-

monium source is depleted and decreases again after adding ammonium to the

fermenter.

It was therefore a surprise that the wild-type R. eutropha H16 in a minimal

medium (see table A.2) containing 20 g/l glucose started to grow spontaneously

after passing a lag period of 70 h. This observation could be reproduced with

three independent R. eutropha H16 strains delivered by two different stock culture

collections (DSM and NCCB).

4.3.2. Ralst08GlcFlask

For a closer examination a shake flask experiment was performed, where the initial

glucose concentration was varied and R. eutropha H16 was incubated with 20,

15, 10, 5 and 2 g/l, respectively. The inoculum for all cultivations was derived

from H16 stock cultures grown with fructose- and glucose-free LB medium. As
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Figure 4.12.: Time course of experiment Ralst07GlcSingle.

illustrated in figure 4.13, all applied glucose concentrations resulted in cell growth

after prolonged incubation. The time period until the onset of growth was clearly

correlated with the initial glucose concentration. With 10-20 g/l glucose, the lag

phase lasted about 70 h. When 5 g/l was applied, growth was significantly delayed

for 120 h. Even with the lowest concentration of 2 g/l , cell growth occurred after

incubation for ca 170 h.

The identical final optical densities in the growth curves are a result of the ter-

mination of growth by a severe drop in pH values caused by the consumption of

ammonia from the growth medium, since pH value was not controlled in shake

flask experiments. With the higher initial concentrations (5-20 g/l), glucose was

still present in the culture supernatant in substantial amounts (between 14 and

17 g/l) at the end of the cultivation. Only with 2 g/l glucose, the growth phase

was limited by complete consumption of the carbon source. A plot of the observed

adaptation time against the initial glucose concentrations for the growth curves

of Figure 4.13 reveals an exponential decay function (see insert) thus illustrating

an inverse correlation of the initial glucose concentration and the time span upon
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which growth occurred. The higher the initial glucose concentration, the earlier

was the onset of growth with a saturation at 10-20 g/l. Accordingly, the minimal

incubation time for inducing glucose-utilizing mutants was about 70 h.
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Figure 4.13.: Time course of experiment Ralst08GlcFlask. Insert shows the expo-
nential decay of the lag period with increasing glucose concentration.

4.3.3. Ralst09GlcFlask

In contrast to the cultivations in the experiments above, in this experiment cells

were taken from adapted 20 g/l glucose cultures and then inoculated into the low-

glucose (2 g/l) medium, the long lag phase of Figure 4.13 was gone, and instant

growth now occurred without the long delay of non-adapted cultures in the same

glucose concentration. Figure 4.14 shows cell growth and substrate consumption of

two comparative cultivations, using 2 g/l fructose and 2 g/l glucose as growth sub-

strates, respectively. Fructose cultures grew rapidly and within 12 h reached their

maximal cell density. In comparison, high-glucose-adapted cells, now cultivated

with low-glucose medium, grew slightly slower.

Since all these experimental observations are in contradiction with literature and

rather surprising, further studies were performed in a joint work with Hartmut
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Grammel and Ruxandra Rehner and recently published [18].

4.4. Conclusion and Summary

In this chapter different experiments with different carbon sources were performed.

Fructose is a very common carbon source for R. eutropha. These experiments are

therefore used in the next chapter to estimate model parameters and to validate

the model. Flow cytometry reveals that P(3HB) is unimodal distributed among

all cells.

External acetate is directly uptaken into internal acetyl-CoA, which is a direct

precursor of P(3HB). Acetate is therefore an interesting carbon source to study

synthesis of P(3HB). Cells which were grown on acetate as single carbon source

seem to die and lyse faster than cells grown on fructose as single carbon source.

Fructose grown cells are able to maintain even a few days.

According to literature, the used strain R. eutropha H16 can not grow on glucose,

although several glucose-utilizing mutants of R. eutropha exist. It was shown that

H16 is able to grow on glucose after a prolonged lag phase.

62



5. Modeling the Production of

Poly(3-hydroxybutyrate) in

R. eutropha

Focus in this chapter is on mathematical modeling of poly(3-hydroxybutyrate) pro-

duction in R. eutropha. For estimation of model parameters and model validation

the experiments in Chapter 4 are used. Fructose is used as carbon substrate. As

pointed out above, cellular regulation is an essential feature of this process. Since a

detailed description of the regulatory processes is complex, a cybernetic approach

is applied. In particular, the hybrid cybernetic modeling approach as described in

Chapter 3.4.3 is used and extended to internal metabolites with slow dynamics.

The hybrid cybernetic model is based on a detailed description of the metabolic

processes to be discussed in Chapter 5.1. Although the formulated model is of

moderate complexity, it is still computationally challenging when translated into

a population balance model. Therefore reductions of this model are discussed.

To account for heterogeneity and cell to cell variability, which is a characteristic

feature of large scale bioprocesses, finally in Chapter 5.4 a population balance ap-

proach is applied and combined here for the first time with the cybernetic approach

to describe the kinetics of the metabolic process.

5.1. Metabolic Network

A metabolic network for the production of poly(3-hydroxybutyrate) should at least

include metabolic reactions which describe poly(3-hydroxybutyrate) synthesis and

metabolization, certain essential building blocks such as TCA-cycle and glycolysis

and of course uptake and excretion reactions.
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The network N1 in Figure 3.1 of Chapter 3.1 has these features, although very

simplified. TCA cycle is lumped into three reactions r9, r10 and r12; glycolysis is

lumped into reaction r2; penthose-phosphate pathway is lumped into reactions r3

and r4; poly(3-hydroxybutyrate) cycle is lumped into reactions r6, r7 and r8; and

amino acid synthesis is lumped into reaction r11. Amino acid synthesis is crucial for

modeling poly(3-hydroxybutyrate) synthesis, since if essential nutrients for amino

acid synthesis are missing, the organism can not grow and stores external carbon

source into internal poly(3-hydroxybutyrate).

However, as described in Chapter 3.2 this metabolic network has some drawbacks,

since it can not produce biomass under steady state conditions. This can be revised

by introducing missing reactions as also described in Chapter 3.2.

The revised metabolic network N2 has a moderate complexity, but includes all

necessary features, as mentioned above. However, this network uses glucose as

main carbon source instead of fructose. 1 mol external glucose is transferred to 1

mol internal glucose-6-phosphate (G6P), which then enters the glycolysis. Since

this network is rather simplified and many reactions are lumped together, the

glucose uptake can be substituted with a fructose uptake, where 1 mol external

fructose will also be converted into 1 mol G6P. This is usually done via F16P and

F6P, but can also be lumped together.

The network N2 is a possible candidate for further dynamic modeling. However,

the last step is to evaluate if this metabolic network can predict experimental data.

This is done via metabolic yield analysis as described in Chapter 3.3. Figure 5.1

shows a section of the two dimensional yield space YP(3HB)/FRU vs. YBIO/FRU and

the yield date from experiment Ralst01FruSingle. Unfortunately experimental

data are outside the yield space and can not be represented by the metabolic

network. Any dynamic model based on this network will therefore fail to predict

these data.

If experimental data are outside the yield space, this can have different reasons:

either the experimental data are wrong or the network is oversimplified and essen-

tial reactions are missing. Since several experimental data were outside the yield

space, it is concluded that the given metabolic network is too simple and a more

detailed network is needed.

There are several metabolic networks for R. eutropha available in literature, which
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Figure 5.1.: Two dimensional yield space of the extended network from Chapter
3.2. All experimental data are outside the convex hull. This network
is therefore not suitable to represent experimental data.

are usually constructed for certain needs. From these, the metabolic network for

R. eutropha from Katoh [32] is chosen, since it is not that simple than the previ-

ous network from Gadkar [20] and it contains most of the essential parts needed

for dynamic modeling of poly(3-hydroxybutyrate) synthesis, this are: poly(3-

hydroxybutyrate) synthesis rate and essential cell internal building blocks, such

as glycolysis, penthose phosphate pathway and TCA cycle.

However, the network by Katoh lacks an uptake rate for fructose. Therefore

this was added to the network. Additionally, the network by Katoh only pro-

duces poly(3-hydroxybutyrate), but is not able to metabolize it. The poly(3-

hydroxybutyrate) cycle is therefore extended. Furthermore the penthose-phosphate

pathway is formulated in a more detailed way. The resulting network is shown in

Figure 5.2 and all reaction equations are given in Appendix A.2.

5.1.1. Metabolic yield analysis

The metabolic network in Figure 5.2 has 36 reactions, some of them are reversible.

From this network 122 elementary modes are calculated by using Metatool [84].

However, it is not necessary to use all elementary modes for dynamic model-
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ing, but a smaller subset which is essential for describing and predicting observed

metabolic behavior. For reducing the full set of elementary modes to a smaller

subset metabolic yield analysis is used as described in Chapter 3.3.
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for the hybrid cybernetic model.

This is done by dividing all elementary modes into subgroups. GroupM− contains

the elementary modes where the internal metabolite poly(3-hydroxybutyrate) does

not act as product and group M+ contains the elementary modes where poly(3-

hydroxybutyrate) does not act as substrate. These subgroups are convex in yield

space and both groups include the elementary modes which do not produce or me-

tabolize poly(3-hydroxybutyrate). Since internal metabolites with slow dynamics

can act as source and sinks (e.g. substrates and products), it is not guaranteed

that the full yield space is convex. It is therefore necessary to group the elementary

modes into convex subgroups.

It is convenient to normalize all elementary modes to a certain metabolite, since

this will reduce the dimension of the yield space. Usually elementary modes are
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normalized with respect to a preferred substrate. In the following fructose is chosen

as preferred substrate and all elementary modes are normalized with respect to

fructose. Hence, the yield space becomes three dimensional (YP(3HB)/FRU, YBIO/FRU,

YAMC/FRU).

However, due to the stoichiometry of the network, the concentration of the non-

P(3HB) biomass compartment BIO is linearly correlated with the uptaken nitrogen

source ammonium chloride (AMC). Therefore the yield space reduces to only two

dimensions (YP(3HB)/FRU, YBIO/FRU).

For each convex group (M− and M+) the metabolic yield analysis is performed

separately (see Figure 5.3). At first so called generating modes are chosen from

both groups. These are the vertices of the convex hull of the yield space. Group

M+ has five generating modes and groupM− has eight generating modes. Since

experimental data are available the number of generating modes is further reduced

to so called active modes.

In Table 5.1 the stoichiometry of the generating and active modes are presented.

Additionally Table 5.2 lists the active modes with their corresponding reactions.

These active modes span a subspace of the yield space which is necessary to repre-

sent the experimental yield data from experiment Ralst01FruSingle. These five

active modes are later used for the hybrid cybernetic model in Chapter 5.2.

Table 5.1.: Stoichiometry of generating modes (GMs) and computed subgroup of
active modes (AMs), which are necessary to reproduce experimental
data and hence are used for the hybrid cybernetic model.

Stoichiometry of GMs
GM YAMC YBIO YFRU YP(3HB) Group AM
1 0.00 0.00 -1.00 0.24 M+ –
2 0.00 0.00 -1.00 0.44 M+ 1
3 -0.25 0.54 -1.00 0.06 M+ 2
4 -2.62 5.55 -1.00 -8.91 M− –
5 -0.14 0.30 -1.00 -0.41 M− –
6 -0.30 0.64 -1.00 -0.01 M− –
7 -0.38 0.80 -1.00 -0.19 M− –
8 -0.42 0.89 -1.00 -0.30 M− –
9 -0.72 1.53 -1.00 -1.08 M− 5
10 -0.29 0.62 -1.00 0.00 M+, M− 4
11 -0.11 0.24 -1.00 0.00 M+, M− 3
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Table 5.2.: Chosen active modes with their corresponding metabolic reactions and
the synthesized/consumed biomass compartments.

AM Corresponding reactions BIO P(3HB)
1 1-3, 5-15, 17, 24, 29, 30, 34 – synthesized
2 1-14, 16, 18, 19, 24, 27-30, 34, 36 synthesized synthesized
3 1-4, 6-15, 17-21, 24, 27-28, 33, 34, 36 synthesized –
4 1-15, 17-19, 24, 27-28, 34, 36 synthesized –
5 1, 2, 4-13, 15, 18-29, 31-32, 34-36 synthesized consumed

5.2. Hybrid Cybernetic Model

In the original formulation of the hybrid cybernetic modeling (HCM) approach

(see Chapter 3.4.3) it is assumed that all internal metabolites are quasi-static,

which allows the calculation of internal fluxes relative to uptake rates through

exploitation of the stoichiometric coupling. This is based on the assumption, that

internal rates are very fast in comparison to exchange rates. However, for some

internal metabolites this assumption may not hold, e.g. membranes or internal

storage materials like poly(3-hydroxybutyrate).

For these cases, the hybrid cybernetic modeling approach is extended to include in-

ternal metabolites with slow dynamics. To do so, the vector of internal metabolite

concentrations m is splitted into the vector of internal metabolite concentrations

with fast dynamics mf and the vector of internal metabolite concentrations with

slow dynamics ms. Similarly, the matrix Sm is splitted into Sm,f and Sm,s. Equa-

tion (3.3) is rewritten to

d

dt




ms

mf



 =




Sm,s

Sm,f



 r−




ms

mf



µ (5.1)

where only for metabolites with fast dynamics the quasi-steady state assumption

holds:
dmf

dt
= 0 (5.2)

Elementary modes are then calculated from Equation (5.2).

However, these metabolites still contribute to biomass concentration c. Conver-

sion from substrates into biomass is usually an auto-catalytic process, where the

biomass is the catalytical component and growth rate and uptake rates are there-

69



5.2. HYBRID CYBERNETIC MODEL

fore proportional to biomass concentration. It is obvious that not all biomass

compartments are catalytical active, but as long as biomass composition does

not change significantly, the fraction of the catalytical biomass compartments will

stay constant and is then included into the rate constants. By doing so, it can be

assumed that growth and uptake rates are proportional to total biomass concen-

tration instead of a certain catalytical active compartment.

However, this can not be applied, if biomass composition changes significantly,

because fraction of catalytical active compartment may also change significantly.

In the case of internal metabolites with slow dynamics, biomass composition will

change. And it is obvious that for instance membranes and internal storage com-

pounds are usually no catalytical active components. Therefore, the fraction of

catalytical active components has to be considered in this case.

In the cybernetic modeling approach reaction rates are catalyzed by key enzymes.

The fraction b of catalytical active biomass is therefore included into enzyme syn-

thesis:
de

dt
= α + rEM b− diag(β) e− µ e (5.3)

with

0 ≤ b ≤ 1 (5.4)

In the standard approach, where biomass composition does not change (e.g. total

biomass is the catalytical active component) b = 1. In all other cases b has to

be calculated from knowledge about metabolites with slow dynamics. In the case,

where all metabolites with slow dynamics are not catalytical active, b is simply

calculated by:

b = 1− ||ms||1 (5.5)

Even if this fraction still contains non catalytical active components, the same

assumption as for total biomass as catalytical active component holds.

The formulated approach allows to include internal metabolites for which the

quasi-steady state assumption does not hold, but still gets along with only global

control. It is obvious that this approach lies between the formulation of Young

et al. [96] and the original HCM [38], but combines the advantages from both

formulations.
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In the present case, P(3HB) is considered as the only internal metabolite with slow

dynamics.

The balance equations for the hybrid cybernetic model in R. eutropha are therefore

given as follows

d

dt




xFRU

xAMC



 =SsZ rM c (5.6)

d

dt
mP(3HB) =Sm,sZ rM − µ mP(3HB) (5.7)

de

dt
=α + rEM b− diag(β) e− µ e (5.8)

dc

dt
=µ c (5.9)

where b = 1−mP(3HB) and µ = SµZ rM.

The stoichiometric matrices SsZ, Sm,sZ and SµZ are given due to the metabolic

yield analysis:

SsZ =




−1.00 −1.00 −1.00 −1.00 −1.00

0.00 −0.25 −0.11 −0.29 −0.72



 (5.10)

Sm,sZ =
[

0.44 0.06 0.00 0.00 −1.08
]

(5.11)

SµZ =
[

0.44 0.60 0.24 0.62 0.45
]

(5.12)

The reaction rates rM are controlled by the cybernetic control variable v and

catalyzed by key enzymes e:

rM = diag(v) diag(erel) rkin
M (5.13)

The kinetic parts rkin
M of the reaction rates are modeled with Monod type kinetics:

rkin
M,1 =kr,1

xFRU

KFRU + xFRU

(5.14)

rkin
M,i =kr,i

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

, i = 2, 3, 4 (5.15)

rkin
M,5 =kr,5

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

mP(3HB)

KP(3HB) + xP(3HB)

(5.16)
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The enzyme synthesis rates rEM are controlled by the cybernetic control variable

u:

rEM = diag(u) rkin
EM (5.17)

where the kinetic part rkin
EM is also modelled with Monod type kinetics:

rkin
EM,1 =ke,1

xFRU

KFRU + xFRU

(5.18)

rkin
EM,i =ke,i

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

, i = 2, 3, 4 (5.19)

rkin
EM,5 =ke,5

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

mP(3HB)

KP(3HB) + xP(3HB)

(5.20)

5.2.1. Cybernetic Control Laws and Metabolic Objective

Function

For computing the cybernetic control laws, one has to chose a policy for computing

the return on investment (see Table 3.8) and a metabolic objective function φ(y).

Since the time span ∆t for which organisms optimize the allocation of their limited

resources is usually unknown, the Greedy policy is chosen. An often used objective

function is maximizing biomass, e.g. φ(y) = c. P(3HB) is an integral part of the

biomass, and maximizing biomass as metabolic objective function will obviously

try to increase P(3HB) as well as non-P(3HB) biomass. This is in fact a favourable

behaviour. On the other hand, if there is sufficient internal carbon source in terms

of P(3HB) available, but no external carbon source, then, this metabolic objective

function will lead to a behaviour were no P(3HB) is metabolized to synthesize

more non-P(3HB) biomass. That means, that no cell division will occur. This is

in fact in contradiction to what is observed. Maximizing biomass is therefore not

the best choice.

An other often used alternative as metabolic objective function is maximizing

substrate uptake. It is reasonable to maximize a carbon source substrate, e.g.

fructose. The metabolic objective function can then be formulated as:

φ(y) = −xFRU (5.21)

This would lead to minimize external fructose and therefore to maximize the fruc-
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tose uptake. However, fructose is not the only carbon source in this system. PHB

also acts as carbon source in EM5, where P(3HB) is metabolized. If only fructose

update is maximized, this would lead to the same problems as described for max-

imizing biomass. The metabolic objective function should therefore maximize any

carbon uptake, e.g.

φ(y) = −xFRU − xP(3HB) (5.22)

where xP(3HB) = mP(3HB) c. It it reasonable to use xP(3HB) instead of mP(3HB), since

it has the same dimension as xFRU.

However, fructose and the monomer 3HB have different number of carbon units

and obviously different molar masses. It is therefore reasonable to include this into

the metabolic objective function, e.g.:

φ(y) = −
(

6

MFRU

xFRU +
4

M3HB

xP(3HB)

)
MFRU

6
(5.23)

where MFRU=180 g/mol is the molar mass of fructose and M3HB=86 g/mol is the

molar mass of monomer 3HB. Fructose has 6 carbon units and 3HB has 4. The

metabolic objective function is additionally scaled with MFRU

6
. This has no effect,

but emphasizes that fructose is the preferred carbon substrate.

From the metabolic objective function the vector q is calculated:

q =
∂φ(y)

∂y
=
[

−1 0 −1.4 0 0 0 0 0 0
]T

(5.24)

where

y =
[

xFRU xAMC xP(3HB) e1 e2 e3 e4 e5 c
]T

(5.25)

Since most of the entries in q are zero, it is only necessary to compute the first
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and the third row of the matrices Bv and Bu:

BT
v =














−1 erel
1 rkin

1 c ∗ 0.44 erel
1 rkin

1 c ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
2 rkin

2 c ∗ 0.06 erel
2 rkin

2 c ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
3 rkin

3 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
4 rkin

4 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
5 rkin

5 c ∗ −1.08 erel
5 rkin

5 c ∗ ∗ ∗ ∗ ∗ ∗














(5.26)

BT
u =














0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

0 ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗














(5.27)

Unfortunately all necessary entries in Bu in Equation (5.27) are zero, which would

lead to pu = 0. This is a drawback of the Greedy policy, due to ∆t = 0. This was

already described in [96] and suggested to evaluate Bu at quasi steady state for

enzyme levels. To do so, the enzyme levels in the reaction rate rM are set to:

ei := eqss
i =

αi

βi + µ
+

(

rE,i b

βi + µ

)

︸ ︷︷ ︸

e◦

i

ui (5.28)

and Bu now computes to:

BT
u =














−1 v◦

1 e◦

1/emax
1 rkin

1 c ∗ 0.44 v◦

1 e◦

1/emax
1 rkin

1 c ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

2 e◦

2/emax
2 rkin

2 c ∗ 0.06 v◦

2 e◦

2/emax
2 rkin

2 c ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

3 e◦

3/emax
3 rkin

3 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

4 e◦

4/emax
4 rkin

4 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

5 e◦

5/emax
5 rkin

5 c ∗ −1.08 v◦

5 e◦

5/emax
5 rkin

5 c ∗ ∗ ∗ ∗ ∗ ∗














(5.29)

As mentioned above, the metabolic objective function is maximizing carbon up-

take. This corresponds to negative values in the Bv and Bu matrices. Fructose is

an external carbon source and only uptaken, e.g. all values in the first row in Bv

and Bu are negative. However, PHB is an internal carbon storage material and

sometimes synthesized and sometimes metabolized (= uptaken). It is therefore

necessary to consider only the entries which corresponds to carbon source uptake,
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e.g. only the negative values in Bv and Bu. This is done by defining new matrices

(Bv)− and (Bu)− where the positive values of Bv and Bu are set to zero, e.g.

(BT
v )− =














−1 erel
1 rkin

1 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
2 rkin

2 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
3 rkin

3 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
4 rkin

4 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 erel
5 rkin

5 c ∗ −1.08 erel
5 rkin

5 c ∗ ∗ ∗ ∗ ∗ ∗














(5.30)

(BT
u)− =














−1 v◦

1 e◦

1/emax
1 rkin

1 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

2 e◦

2/emax
2 rkin

2 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

3 e◦

3/emax
3 rkin

3 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

4 e◦

4/emax
4 rkin

4 c ∗ 0 ∗ ∗ ∗ ∗ ∗ ∗

−1 v◦

5 e◦

5/emax
5 rkin

5 c ∗ −1.08 v◦

5 e◦

5/emax
5 rkin

5 c ∗ ∗ ∗ ∗ ∗ ∗














(5.31)

In [96] it is assumed that the reference control inputs v◦

i correspond to the unreg-

ulated network state, e.g. v◦

i = 1 ∀i.

The return on investment (ROI) are now calculated with the weighted Greedy

policy

pv =R−1 (BT
u)− q = diag(fc) diag(erel) rM c (5.32)

pu =(BT
v )− q = diag(fc) diag(erel) rM c (5.33)

with

fc =
[

1 1 1 1 2.51
]T

(5.34)

Since c will appear in the nominator and denominator in Equation (3.29) and

therefore canceled out, the ROIs can be simplified to:

pv =diag(fc) diag(erel) rM (5.35)

pu =diag(fc) diag(erel) rM (5.36)

This corresponds to the cybernetic control laws in Equation (3.28), except that
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the ROIs are weighted with a vector fc, which contains a normalized number of

uptaken carbon units.

5.2.2. Parameter Estimation and Model Validation

The formulated model has 31 unknown parameters. These are: kr,i, ke,i, αi, βi and

emax
i with i ∈ {1, 2, 3, 4, 5} and Kj and Ke,j with j ∈ {FRU, AMC, P(3HB)}.

The maximal enzyme level emax
i is usually not known, especially since the key

enzymes in HCM are pools of lumped enzymes which are needed to catalyze all

reactions, which belong to the ith elementary mode. However emax
i can be esti-

mated from the systems equations. It is obvious that for ei = emax
i the following

condition holds:

dei

dt

∣
∣
∣
∣
∣
ei=emax

i

= αi + ui rkin
ME,i b− βi emax

i − emax
i µ

!
= 0 (5.37)

which leads to

emax
i =

αi + ui rME,i b

βi + µ
. (5.38)

It is obvious that the maximal enzyme level is only achieved, if all resources are

allocated to the synthesis of this enzyme, e.g. ui = 1 and rME,i = ke,i and non-

catalytic active biomass is minimal, e.g. b = 1. Under this conditions growth of

biomass only occurs via the ith elementary mode, e.g. µ = µi = (SµZ)i kr,i.

The ith maximum enzyme level emax
i is therefore not an independent parameter,

but depends on other parameters:

emax
i =

αi + ke,i

βi + (SµZ)i kr,i

(5.39)

The constitutive enzyme synthesis αi is very small compared to the inducible

enzyme synthesis rEM,i, e.g. αi << ke,i [85]. Very often, constitutive enzyme

synthesis is even neglected, e.g. αi = 0. For the hybrid cybernetic model of

R. eutropha αi is set to 1 percent of ke,i, e.g. αi := 0.01 ke,i. For simplicity, it is

assumed that all rate constants ke,i and all degradation constants βi are identical,

e.g.: ke := ke,1 = ke,2 = ke,3 = ke,4 = ke,5 and β := β1 = β2 = β3 = β4 = β5.
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Since the inducible synthesis of the key enzyme for a certain elementary mode de-

pends on the availability of the metabolizable substrates of this elementary mode,

it is reasonable to use the same Monod constants in the kinetic part of the enzyme

synthesis rate as in the kinetic part of the corresponding reaction rate: Ke,j := Kj

with j ∈ {FRU, AMC, P(3HB)}.

The parameter space is therefore reduced to 10 parameters, where kr appeared

to be the most sensitive parameters [5] and were estimated by fitting the model

to the experimental data of experiment Ralst01FruSingle. All other parameter

values were fixed. Saturation constant for fructose KFRU was taken from literature

[45]. The used parameter values are listed in Table 5.3.

Table 5.3.: Model parameters for the hybrid cybernetic model of R. eutropha.

Parameter Value
kr [0.21 0.82 0.84 0.73 0.52]T [1/h]
ke [0.10 0.10 0.10 0.10 0.10]T [1/h]
α 0.01 ke [1/h]
β [5.0 5.0 5.0 5.0 5.0]T [1/h]
KAMC 0.01 [g/l]
KFRU 0.06 [g/l] [45]
KP(3HB) 0.05 [gP(3HB)/gDW]

For model validation the experiments Ralst02FruSingle, Ralst03FruSingle and

Ralst04FruSingle with different initial conditions and different substrate pulses

were performed. These are shown in Figures 5.4.

All experiments show very good agreement with the hybrid cybernetic model. In

addition, the prediction of the washout point in the simulation of the continuous

process in Figure 5.5 is very accurate. At washout point the dilution rate D

equals the maximal growth rate µmax, which is µmax = 0.31 h−1[45] for R. eutropha

growing on fructose.
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Figure 5.4.: Comparison of the hybrid cybernetic model (solid line) with ex-
perimental data. Experiment Ralst01FruSingle (1st row) was
used for parameter estimation. Experiments Ralst02FruSingle,
Ralst03FruSingle and Ralst04FruSingle (2nd, 3rd and 4th row)
were used for model validation.
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5.2.3. Nonlinear Analysis

Continuous processes have the advantage of longer periods of operating time, which

can reduce production costs. Because the production of P(3HB) is still much more

expensive then of conventional plastics, it is not surprising that there are already

experimental studies available in literature which deal with continuous P(3HB)

production [97, 91, 36]. However, in continuous cultures nonlinear phenomena such

as oscillation [89, 31] and multiple steady states [10, 46, 55] can occur. Therefore,

following the idea of Pinto and Immanuel [60] the model is used to investigate the

possibility of multiple steady states in a continuous bio reactor.

The hybrid cybernetic model is therefore extended to continuous processes:

d

dt




xFRU

xAMC



 =D








xin

FRU

xin
AMC



−




xFRU

xAMC







+ SsZ rM c (5.40)

d

dt
mP(3HB) =Sm,sZ rM − µ mP(3HB) (5.41)

de

dt
=α + rEM b− diag(β) e− µ e (5.42)

dc

dt
=(µ−D) c (5.43)

where D is the dilution rate and xin
FRU and xin

AMC are the inlet concentrations of

fructose and ammonium chloride.

The parameter dependent steady state behavior is studied by numerical contin-

uation methods provided in Diva [50]. Principal bifurcation parameters are the

dilution rate D and the feed ratio γ =
xin

AMC

xin
FRU

. The fructose feed concentration xin
FRU

was fixed at 20g/l. It is worth noting, that the cybernetic model is not differ-

entiable at points where the return on investment of different elementary modes

coincide due to the non differentiability of the control variables v according to

Equation (3.29). Such points are called catch up points and will show up as sharp

corners in the solution diagram. For a proper resolution of these corners the step

size of the continuation is adjusted accordingly.

Two bifurcation points (A) and (B) and one catch up point (C) were detected,

see Figure 5.5. Although batch data were used for parameter identification, the

washout point (A) equals the maximal growth rate as reported in literature [45].
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Figure 5.5.: Bifurcation diagram of cell dry weight (CDW) and P(3HB) con-
centration w.r.t. dilution rate D for xin

FRU=20.0 g/l, xin
AMC=1.5 g/l

(γ = 0.075). Two bifurcation points were detected: washout point
(A) and turning point (B), and a catch up point (C).

A small hysteresis is detected over 0.060 ≤ D ≤ 0.063. The hysteresis is bordered

by the points (B) and (C). A two parameter continuation of these points with

respect to the substrate composition at the inlet of the reactor γ =
xin

AMC

xin
FRU

and

dilution rate D shows that the hysteresis unfolds from γ = 0 and vanishes for

γ > 0.17, see Figure 5.6.

Such kind of hysteresis is usually observed if there are two or more substitutable

substrates available as shown by Namjoshi and Ramkrishna [56] and by Kumar

et al. [46]. However in this study there are only two complementary substrates

(FRU and AMC), but no substitutable. But as mentioned before, due to the intro-

duction of internal metabolites and their dynamics into the model, new products

and substrates are added. The internal metabolite P(3HB) can be viewed as an

additional carbon source besides fructose. But still fructose and P(3HB) are not

substitutable in the strict sense, since P(3HB) is formed from fructose. However,
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Figure 5.6.: Two parameter continuation with respect to dilution rate D and feed
composition γ.

once P(3HB) is synthesized the organism can choose between fructose or P(3HB)

as growth substrate.

Fig. (5.7) illustrates the effect of P(3HB) consumption on biomass in a continuous

bio reactor. If P(3HB) consumption is neglected, then the concentrations of total

biomass and P(3HB) (not shown) are significantly higher at low dilution rates

(D ≤ 0.1 h−1) and the hysteresis disappears. As mentioned before, this kind of

hysteresis is observed if there are two or more substitutable substrate. If P(3HB)

consumption is neglected, then there is only one carbon substrate, namely fructose,

and therefore the hysteresis disappears. Furthermore, at low dilution rates and

γ < 0.17 AMC is growth limiting and therefore there is excess of fructose. Due to

the chosen metabolic objective function of maximizing substrate uptake, P(3HB)

concentration and therefore concentration of total biomass are higher if P(3HB)

consumption is not considered in the model. At high dilution rates (D > 0.1 h−1)

the consumption of P(3HB) has no significant effect.
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5.3. Reduction of the Hybrid Cybernetic Model

The developed hybrid cybernetic model consists of nine ODEs: five ODEs for the

key enzymes of the five (active) elementary modes, two ODEs for the cell external

substrate concentrations of fructose and ammonium chloride, one ODE for the

internal metabolite concentration of poly(3-hydroxybutyrate) and one ODE for

the biomass concentration.

Although this is a model with moderate complexity, for some applications a model

reduction is necessary. For example, in the later formulated population balance

model, the seven states of this model would translate into seven internal coordi-

nates of the population balance equations (PBE), which is computationally chal-

lenging.

There are two reasonable options to reduce this model. The first option is to

lump some of the used active elementary modes (AMs). Lumping of active modes

would reduce the number of parameters, but more important also the number of

key enzymes. Since each enzyme level in the hybrid cybernetic model will translate

into an internal coordinate in the population balance equation, this would be a

favourable reduction.

A second option is a general reduction of the enzyme levels. Since key enzymes

play an important role in the cybernetic modeling framework, the enzyme levels

can not be fully omitted. Nevertheless, key enzymes are also internal metabolites

and their dynamics are usually much faster than dynamics of exchange rates.

Therefore, quasi stationarity for enzyme levels can be assumed. This can be done

in two ways: a) formulation of a DAE system, where the former ODEs for the

enzyme levels are then algebraic constraints, or b) omitting ODEs for enzyme

levels, but finding a suitable representation of the enzyme levels, which are still

needed in the rate equations.

5.3.1. Lumping of Active Modes

In Chapter 5.1.1 five active modes were chosen from the 122 elementary modes of

the metabolic network. These five modes are necessary to represent the yields of

experimental data and span a reasonable large yield space to allow for metabolic
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flexibility. Any further reduction or lumping of modes will decrease this yield

space.
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Figure 5.8.: Yield spaces of the full hybrid cybernetic model (left) and the lumped
hybrid cybernetic model (right). The three active modes of the full
hybrid cybernetic model within the dashed ellipse are lumped to one
single mode. The new yield space is much smaller, but experimental
yield data are still within or very close to the convex hull.

Figure 5.8 (left) shows the yield space of the full hybrid cybernetic model. It is

reasonable to lump the three active modes which are annotated with a red dashed

ellipse in 5.8 (left) into one single active mode. This will reduce the yield space

significantly (5.8 (right)), but experimental yield data are still within or at least

very close to the convex hull.

A systematic way of lumping elementary modes is described in [76, 77], especially if

there are some internal fluxes known. Since this is not the case here, it is sufficient

to find a non negative combination of the three modes annotated with the red

dashed ellipse in Figure 5.8 (left), which represent the experimental yield data

best.

These three modes are lumped by multiplying with a weighting vector w:











−1.00 −1.00 −1.00

−0.25 −0.11 −0.29

0.06 0.00 0.00

0.60 0.24 0.62


















0.34

0.51

0.15








︸ ︷︷ ︸

w

=











−1.00

−0.19

0.02

0.42











(5.44)
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where ||w||1 = 1, resulting in the new lumped active modes given in Table 5.4.

Table 5.4.: Stoichiometry of lumped active modes (lAMs).

lAM YFRU YAMC YP(3HB) YTBM

lAM1 -1.00 0.00 0.44 0.44
lAM2 -1.00 -0.19 0.02 0.42
lAM3 -1.00 -0.72 -1.08 0.45

The full hybrid cybernetic model is reduced to the lumped hybrid cybernetic model

with:

d

dt




xFRU

xAMC



 =SsZ rM c (5.45)

d

dt
mPHB =Sm,sZ rM − µ mPHB (5.46)

de

dt
=α + rEM b− diag(β) e− µ e (5.47)

dc

dt
=µ c (5.48)

where the matrices SsZ and Sm,sZ include the lumped active modes and the rates

rM are given by:

rkin
M,1 =kr,1

xFRU

KFRU + xFRU

(5.49)

rkin
M,2 =kr,2

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

(5.50)

rkin
M,3 =kr,3

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

mPHB

KPHB + xPHB

(5.51)

Model parameters for the lumped hybrid cybernetic model are given in Table 5.5

and are obviously the same as in the full hybrid cybernetic model, except for the

new lumped mode a new kr,2 was estimated from experimental data of experiment

Ralst01FruSingle.

Figure 5.9 show the simulation of the lumped hybrid cybernetic model in com-

parison with the full hybrid cybernetic model and the four experimental data sets

Ralst01FruSingle - Ralst04FruSingle.

Although the model, especially the yield space is reduced significantly, the lumped

hybrid cybernetic model is still in good agreement with the experimental data.
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Table 5.5.: Model parameters for the lumped hybrid cybernetic model of
R. eutropha.

Parameter Value
kr [0.21 0.63 0.52]T [1/h]
ke [0.10 0.10 0.10]T [1/h]
α 0.01 ke [1/h]
β [5.0 5.0 5.0]T [1/h]
KAMC 0.01 [g/l]
KFRU 0.06 [g/l] [45]
KPHB 0.05 [gPHB/gDW]
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Figure 5.9.: Simulation of the lumped hybrid cybernetic model (solid black line)
in comparison with the full hybrid cybernetic model (dashed red
line) and experimental data sets Ralst01FruSingle (top row) -
Ralst04FruSingle (bottom row).
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5.3.2. Enzyme Levels as Algebraic Constraints

The systems equation in the system (5.6) - (5.9) has the form

y′ = f(y, t) , (5.52)

which we could generalize to the form

M(y, t) y′ = f(y, t) , (5.53)

where the mass matrix M is defined as the identity matrix

M =


























1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 1 0 0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


























. (5.54)

If quasi stationarity for the enzyme levels is assumed, the mass matrix M will have

the form

M =


























1 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0


























(5.55)

and the system of differential equations will change to a system of differential and
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algebraic equations (DAE), where the former differential equations for the enzyme

levels are now algebraic constraints.
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Figure 5.10.: Simulation of the hybrid cybernetic model with enzyme levels as
algebraic constraints (solid black line) in comparison with the full
hybrid cybernetic model (dashed red line) and experimental data set
Ralst01FruSingle.

Figure 5.10 shows the simulation of the HCM-DAE system in comparison with the

experimental data. It can be seen that the simulation is qualitatively in agreement

with the data. However, the simulation is slightly too fast.

The biggest disadvantage of DAE systems is to find a good initial guess for con-

sistent initial conditions. This is often very challenging.

5.3.3. Approximation of Enzyme Levels

Under the assumption that dynamics of enzyme levels are very fast compared to

reaction kinetics, they can be assumed as quasi stationary (qss), e.g.:

dei

dt

∣
∣
∣
∣
∣
qss

= αi + ui rE,i b− βi eqss
i − eqss

i µ
!

= 0 (5.56)

This leads to:

eqss
i =

αi + rE,i b ui

βi + µ
(5.57)
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Since in the rate equations rM the relative enzyme level is used, it is convenient

to rewrite equation (5.57) as relative enzyme level:

(erel
i )qss =

eqss
i

emax
i

=
αi + rE,i b ui

βi + µ

βi + µi

αi + ke,i

(5.58)

Since αi << ke,i the constitutive enzyme synthesis rate αi can be neglected:

(erel
i )qss =

rE,i

βi + µ

βi + µi

ke,i

b ui (5.59)

The growth rate due to the ith active mode µi is obviously less or equal the overall

growth rate µ, e.g. µi ≤ µ. However the maximal growth rate of this system was

estimated to µmax = 0.31 h−1, which is in agreement with [45]. Since βi is more

than ten times larger than µmax, we can argue that:

βi + µi ≈ βi + µ (5.60)

The ith enzyme is synthesized if there is sufficient substrate for the ith active mode

available. In this case the ith enzyme synthesis rate rE,i corresponds to ke,i

rE,i → ke,i . (5.61)

For this case we can therefore argue, that

rE,i

βi + µ

βi + µi

ke,i

≈ 1 . (5.62)

For low substrate concentration the enzyme synthesis rate is close to zero and

therefore rE,i << ke,i. However, in this case no resources are allocated to this

reaction and ui = 0. This means, in this case the value of
rE,i

ke,i
plays no role.

We can therefore conclude, that the concentration of relative enzyme levels erel
i

can be approximated with the cybernetic control variable ui:

(erel
i )qss = b ui . (5.63)
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To check this conclusion the relative enzyme levels erel
i of the full (un-reduced)

model can be compared with the corresponding cybernetic control variables ui.

This is done for the simulation in Figure 5.4 (top row) and presented in Figure

5.11.
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Figure 5.11.: Comparison of dynamic relative enzyme levels erel
i (blue line) with

their quasi steady state approximation (erel
i )qss = b ui (red line).

As seen in Figure 5.11 the relative enzyme levels erel
i follow their quasi steady

state approximations b ui very closely, which confirms the arguments above. The

relative enzyme levels can be therefore substituted, which will reduce the given

system of nine ODEs to a reduced system with only four ODEs

d

dt




xFRU

xAMC



 =SsZ diag(v) diag(u) rkin
M b c (5.64)

d

dt
mPHB =Sm,sZ diag(v) diag(u) rkin

M b− µ mPHB (5.65)

dc

dt
=µ c (5.66)

For the reduced system new returns on investment have to be calculated. Although

the metabolic objective function φ(y) remains the same, the vector q is reduced
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to

q =
∂φ(y)

∂y
=
[

−1 0 −1.4 0
]T

(5.67)

The matrices (Bv)− and (Bu)− compute to

(BT
v )− =














−1 u◦

1 b rkin
1 c ∗ 0 ∗

−1 u◦

2 b rkin
2 c ∗ 0 ∗

−1 u◦

3 b rkin
3 c ∗ 0 ∗

−1 u◦

4 b rkin
4 c ∗ 0 ∗

−1 u◦

5 b rkin
5 c ∗ −1.08 u◦

5 b rkin
5 c ∗














(5.68)

(BT
u)− =














−1 v◦

1 rkin
1 c ∗ 0 ∗

−1 v◦

2 rkin
2 c ∗ 0 ∗

−1 v◦

3 rkin
3 c ∗ 0 ∗

−1 v◦

4 rkin
4 c ∗ 0 ∗

−1 v◦

5 rkin
5 c ∗ −1.08 v◦

5 rkin
5 c ∗














(5.69)

As argued in [96] the reference control inputs v◦

i in (BT
u)− correspond to the un-

regulated network state, e.g. v◦

i = 1 ∀i. Since in this reduced system the synthesis

of enzymes is omitted it is not required to penalize (or reward) enzyme synthesis

with the weighting matrix R. The return on investment pu is therefore calculated

according the unweighted greedy policy

pu = (BT
u)− q = diag(fc) rkin

M c , (5.70)

which can be simplified to

pu = diag(fc) rkin
M , (5.71)

since c will cancel out in equation (3.29).

The reference control inputs u◦

i in (BT
v )− also correspond to the unregulated net-

work state. However, u◦

i = 1 ∀i is in contradiction with the postulation that
∑

u = 1 [43]. Instead of that, all resources are allocated equally, e.g u◦

1 = u◦

2 =

... = u◦

nr
= 1

nr
.
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The return on investment pv according to the greedy policy equals to

pv = (BT
v )− q = diag(fc) rkin

M

b

nr

c , (5.72)

which can be simplified to

pv = diag(fc) rkin
M , (5.73)

since c, nr and b will cancel out in equation (3.29).

Model parameters are the same as in the full hybrid cybernetic model, except the

parameters for enzyme dynamics, which are not needed in this reduced approach.

However, as seen in Figure 5.12 the model is still in good agreement with the

experimental data.
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Figure 5.12.: Simulation of the reduced system with approximated enzyme levels
(solid black line) in comparison with the full hybrid cybernetic model
(dashed red line) and experimental data sets Ralst01FruSingle (top
row) - Ralst04FruSingle (bottom row).
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5.3.4. Combination of Lumped Modes with Approximation of

Enzyme Levels

As seen in the sections above lumping of active modes and approximation of en-

zyme levels are reasonable reductions and are still in good agreement with the

experimental data. It is therefore reasonable to combine the lumping of active

modes with the approximation of enzyme levels.

In section 5.3.1 three active modes were lumped into a new single active mode.

Two of these modes (AM3 and AM4) only metabolize fructose to non-PHB biomass,

whereas the third mode (AM2) metabolizes also fructose, but synthesizes a small

additional amount of PHB besides the non-PHB biomass. The lumped mode will

therefore utilize fructose into non-PHB biomass and a very small amount of PHB.

With regard to a simplified reduced model, it is reasonable to neglect active mode

(AM2) and only lumped the active modes AM3 and AM4. PHB will then still

synthesized via the active mode AM1 and metabolized via active mode AM5. The

modes of this model will then correspond to the three main processes: PHB synthe-

sis (AM1), PHB metabolization (AM5) and synthesis of non-PHB biomass (AM3,

AM4 lumped). Parameter of the lumped HCM with approximated enzyme levels

are the same as in the full HCM, except the kr value of the new lumped mode had

to be estimated from experimental data to kr = 0.84 1/h. The active modes AM2,

AM3 and AM4 are lumped according the weighting vector w:











−1.00 −1.00 −1.00

−0.25 −0.11 −0.29

0.06 0.00 0.00

0.60 0.24 0.62


















0.00

0.64

0.46








︸ ︷︷ ︸

w

=











−1.00

−0.20

0.00

0.42











(5.74)

The stoichiometry of the resulting active mode is very close to the lumped HCM

in section 5.3.1.

Parameters for enzyme dynamics are not needed.

As seen in Figure 5.13 the model is in good agreement with the experimental data.
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Figure 5.13.: Simulation of lumped hybrid cybernetic model with approximated
enzyme levels (solid black line) in comparison with the full hy-
brid cybernetic model (dashed red line) and experimental data sets
Ralst01FruSingle (top row) - Ralst04FruSingle (bottom row).
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5.3.5. Comparison of the Reduced Models

In the sections above different types of reduced models are discussed. All of these

models are more or less in good agreement with experimental data. However,

these models have a different number of adjustable parameters. To compare these

models in an objective way, a parameter is needed which not only includes the

quality of the fit with experimental data, but also the number of parameters. If

two different models can represent experimental data in the same quality, the

model with less parameters is preferable.

An often used parameter for model comparison is the Fisher parameter F [1],

which is related to the Fisher’s test and allows for a proper statistical evaluation

of rival models with different number of parameters:

F =
(n− l)

(n− 1)

∑n
i=1(qexp,i − q̄exp)2

∑n
i=1(qexp,i − qmod,i)2

(5.75)

where n is the number of data points and l the number of adjustable parameters

in. The index mod is for the model data and the index exp is for the experimental

data. The bar represents the average value. A higher value of F suggests a better

model. F increases with decreasing number of model parameters, with reduced

model error (qexp,i − qmod,i)
2 and with a wider range of data (qexp,i − q̄exp)2.

Since, the reduced models above are compared to the same experimental data, the

Fisher parameter can be reduced to

F =
(n− l)

∑n
i=1(qexp,i − qmod,i)2

(5.76)

Figure 5.14 shows the comparison of the Fisher parameter F for the full HCM and

all reduced models (except DAE). The Fisher parameters of all models are very

close to each other for each experiment.The values for experiment 4 are rather small

since in this experiment there are less data points than in the other experiments.

97



5.4. POPULATION BALANCE MODELS

 

 

replacemen

F

0

5

10

15

20
Full HCM
L-HCM
HCM w. approx. enz. levels
L-HCM w. approx. enz. levels

Ralst01 Ralst02 Ralst03 Ralst04

Figure 5.14.: Fisher parameter of the full hybrid cybernetic model and the re-
duced models for the experimental data sets Ralst01FruSingle -
Ralst04FruSingle.

5.4. Population Balance Models

To describe cell to cell variance on a macroscopic scale, population balance mod-

els [64] are used. In the following, population balance models are formulated,

which characterize the cells heterogeneity with respect to the intracellular amount

of P(3HB) and which are based on the hybrid cybernetic model as described in

Chapter 5.2. Since states of the single cell model of the hybrid cybernetic model

will translate into internal coordinates of the population balance model, a reduced

cybernetic model, as described in Chapter 5.3 is used, to reduce complexity.

In the hybrid cybernetic model, biomass is described as cell dry weight (c), where

P(3HB) is a compartment of the cell dry weight. For formulation of the popu-

lation balance model it is convenient to reformulate the model, such that both

compartments P(3HB) and non-P(3HB) biomass are considered separately.

Concentration of P(3HB) is then defined as:

xP(3HB) = mP(3HB) c (5.77)

and the concentration of the remaining compartment of non-P(3HB) biomass BIO

as

xBIO = c− xP(3HB) . (5.78)
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Concentration of P(3HB) xP(3HB) and non-P(3HB) biomass BIO xBIO will then

translate into the internal coordinates of a two-dimensional population balance

model.

5.4.1. Two-dimensional Population Balance Model

Based on the lumped hybrid cybernetic model with approximated enzyme levels

the following population balance model can be formulated:

∂n(t, xc)

∂t
+∇xc

{Π rL n(t, xc)} = a(xc, xs) n(t, xc) . (5.79)

Here n is the number density distribution with respect to the intracellular concen-

trations of P(3HB) and BIO (xc =
[

xBIO xP(3HB)

]T
). The rate a(xc, xs) describes

sources and sinks as a result of cell division and cell death. It is assumed that this

rate depends on xc and the substrates in the reactor xs = [xFRU xAMC]T.

The three reaction rates of the lumped active modes from Chapter 5.3.4 translate

into the fluxes

rL =
[

rBIO
L r

P(3HB)+

L r
P(3HB)

−

L

]T

(5.80)

with

• rBIO
L : flux in the direction of BIO synthesis

• r
P(3HB)+

L : flux in the direction of P(3HB) synthesis

• r
P(3HB)

−

L : flux in the direction of P(3HB) metabolization

The fluxes are regulated via cybernetic control variables:

rL = diag(v) diag(u) b rL
kin . (5.81)

For low ammonium chloride concentration and high fructose concentration synthe-

sis of P(3HB) is favored, while non-P(3HB) biomass BIO is increasing and P(3HB)

is decreasing when there is sufficient ammonium chloride available.

P(3HB) distribution among the cells can be measured via flow cytometry of stained

cells. To the best of the authors knowledge it is not possible so far to determine
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the distribution of the non-P(3HB) biomass BIO among the cells. The model has

therefore no practical relevance, since it is not possible to compare this model with

experimental data. However, the model was studied theoretically in the Diploma

thesis of Philipp Paetzold [58], which was advised by the present author. Results

were also published in [17].

Furthermore the direct flow cytometric measurement of the intracellular P(3HB)

content in R. eutropha has crucial disadvantages, e.g. a complex staining pro-

cedure and the cells may not be usable afterwards for additional analysis steps.

In contrast, measurements of the forward scatter which is correlated to cell size

are relatively simple and have little effect on the cells viability. For this reason

a reduced population balance model by correlating size and intracellular P(3HB)

content is presented in the following section.

5.4.2. One-dimensional Population Balance Model

In the experiment Ralst05FruParallel in Chapter 4 the intracellular amount of

P(3HB) is measured using flow cytometric analysis of BODIPY stained cells. It

was already argued that cell internal P(3HB) is correlated to cell size, which is

correlated to forward scatter.

In Figure 5.15 (top row) the mean values of the fluorescence intensity distribution

and the forward scatter distribution are plotted and a linear correlation can be

observed. Furthermore, the mean values of the forward scatter distribution show

the same course as experimental P(3HB) data in Figure 5.15 (bottom row).

Motivated by these observations a linear relationship is assumed, which makes

direct computation of the P(3HB) distribution from measurement of the size dis-

tribution possible. A corresponding one-dimensional population balance equation

can be constructed [16]

∂n(l, t)

∂t
+

∂

∂l

{

r
P(3HB)+

l n(l, t)
}

=

−(rBIO
l + r

P(3HB)
−

l ) S(l) n(l, t)

+

lmax∫

lmin

(rBIO
l + r

P(3HB)
−

l )S(l∗) p(l, l∗) n(t, l∗) dl∗ .

(5.82)
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Figure 5.15.: Mean values of forward scatter and fluorescence intensity distribu-
tions show linear correlation (top row) and mean values of the for-
ward scatter distribution show same course as experimental P(3HB)
data (bottom row).

Here it is assumed that each cell grows due to P(3HB) production in the absence of

ammonium chloride with the rate r
P(3HB)+

l . In addition, the cells divide in presence

of ammonium chloride by consuming either fructose or P(3HB) as carbon source

with the rates rBIO
l or r

P(3HB)
−

l , respectivly. The partition mechanism is described

by the beta distribution p and division probability distribution S according to

Mantzaris et al. [51].

The reaction rates rl are again regulated by cybernetic control variables:

rl = diag(v) diag(u) b rkin
l , (5.83)

with rates characterizing the following subprocesses:
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• Cell division by utilizing fructose and ammonium chloride

rkin
l,BIO = kl,BIO

xFRU

KFRU + xFRU

xAMC

KAMC + xAMC

. (5.84)

• Growth by P(3HB) synthesis

rkin
l,P(3HB)+

= kl,P(3HB)+

l xFRU

KFRU + xFRU + KI l2
. (5.85)

• Cell division by metabolizing P(3HB) and ammonium chloride

rkin
l,P(3HB)

−

= kl,P(3HB)
−

xAMC

KAMC + xAMC

(l − lmin)1.5 . (5.86)

It is assumed, that the rate of cell division depends on cell size. The characteristic

length l is correlated to the forward scatter, which also depends on the cell volume.

However, in fact, the forward scatter depends on the area which is hit by the light

beam. To correlate this area with the cell volume it is therefore neccessary to

include the exponent 3/2 = 1.5 in equation (5.86).

The population balance equation describing the size distribution of the cell culture

is coupled to the concentrated dynamics of the external substrates.

Utilization of external substrates are described by

dxFRU

dt
= −

lmax∫

lmin

ΠFRU rl n(l, t) dl (5.87)

for fructose and

dxAMC

dt
= −

lmax∫

lmin

ΠAMC rl n(l, t) dl (5.88)

for ammonium chloride, with Π = [ΠFRU ΠAMC]T being the stoichiometric matrix.

The overall system is numerically solved using a finite volume scheme the for dis-

cretization of the population balance equation [51]. In Figure 5.16 the comparison

of simulation results with experimental data is shown. Initial conditions for the

simulation are the experimental data at t = 19.8 h. In the first 116 hours fructose

concentration was high and ammonium chloride concentration was low (see Figure
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5.17). During this phase P(3HB) content increases and forward scatter distribu-

tion shifts to higher values as seen in Figure 5.16. At t = 116 h ammonium chloride

was added and the organisms switches to P(3HB) metabolization, which results in

a shift of forward scatter distribution to lower values as can be observed in Figure

5.16.
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Figure 5.16.: Simulation results (red line) of one-dimensional population balance
model in comparison with experimental forward scatter distribution
(black ∗).

The model can represent the available experimental data until ammonium chloride

is added and P(3HB) is metabolized. From that time point the model slightly

differs from the experimental data. However, the shifting of the peak is in good

agreement, only the number of cells can not be represented by the model for later

time points. This might be due to neglected cell death in the population balance

model.

Furthermore, the model is still not validated with additional independent exper-

imental data and the presented experimental data have a poor resolution in the

forward scatter distribution. Any conclusions are therefore still speculative.

Therefore, further experiments are needed to improve and validate the model. So

far, it could only be shown, that correlation of cell size with P(3HB) content is a

promising option for a fast method to model and determine cell to cell variance of
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P(3HB) content, since no complex staining procedure is needed.
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Figure 5.17.: Simulation results (black solid line) of one-dimensional population
balance model and experimental data (Fructose: �, NH4Cl: #).
Substrate concentration in medium at t = 0 h: Fructose: 3 g/l,
NH4Cl: 0.1 g/l. NH4Cl pulse at t = 116 h: ≈ 1.3 g/l.
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5.5. Conclusion and Summary

Based on a metabolic network a hybrid cybernetic model was developed, which

describes the synthesis and metabolization of P(3HB) in R. eutropha. The con-

cept of the hybrid cybernetic modeling approach was extended to include internal

metabolites, which have slow dynamics. Parameters were estimated from experi-

ments, which include all three main processes (growth, synthesis of P(3HB) and

metabolization of P(3HB)) in one single experiment. The model was validated

with different and independent additional experiments.

Nonlinear analysis of the model reveals a region of multi-stationarity, which is

rather small and is therefore not relevant from a practical point of view. This is

in agreement with experimental observations.

It was then shown, that the model can be reduced without loosing much accuracy.

The reduced model could therefore be used to formulate a population balance

model. To the authors knowledge, this is the first time the cybernetic modeling

approach was coupled with population balance modeling.

Starting point was a two-dimensional population balance model with two internal

coordinates, which are P(3HB) and non-P(3HB) biomass, respectively. Although

cell internal P(3HB) amount can be measured by flow cytometry, to the best of

the authors knowledge, there is no way to estimate the distribution of non-P(3HB)

biomass among single cells. The two-dimensional population balance model could

in fact be used for simulation, but has therefore little practical relevance.

In contrast to that, a one-dimensional population model was formulated, which

relates the cell size by means of forward scatter to cell internal P(3HB) concentra-

tion. An additional advantage is, that cells do not have to be stained in a complex

procedure, which might harm the cells or can at least alter them.
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6. Rhodospirillum rubrum

R. rubrum is a much more complex organism than R. eutropha. To examine

whether similar modeling approaches as they were formulated for R. eutropha

can be applied to R. rubrum it is neccessary in a first step to perform similar

experiments with R. rubrum. Allthough R. rubrum is a facultative photosynthetic

bacterium, experiments were performed under aerobic and dark conditions.

Fortunately there are already a few experiments with R. rubrum growing on fruc-

tose available in literature [67, 68], which will presented here for convenience in a

consistent way with the experiments in Chapter 4.

In contrast to R. eutropha it was observed that cells of R. rubrum stained with

Nile red show a bimodal distribution under the microscope (data not shown) when

growing on acetate as sole carbon source. Some cells were full with P(3HB), but

others were almost empty. To verify this, own experiments with R. rubrum growing

on acetate as carbon source were performed.

Based on these experimental findings it is discussed whether the modeling ap-

proaches for R. eutropha can be adapted to R. rubrum.

6.1. R. rubrum Growing on Fructose

Experiments with R. rubrum growing on fructose were done by C. Rudolf during

her PhD. For convenience, the results are presented here according to [67, 68] in

a consistent way with the experiments in Chapter 4. Cultivation conditions for

these experiments may vary from the conditions described in Chapter 2.3.
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Figure 6.1.: Time course of experiment Rhod01FruSingle.

6.1.1. Rhod01FruSingle

In the beginning of this experiment (see Figure 6.1) both substrates fructose (car-

bon) and ammonium (nitrogen) are available. Cell growth is monitored via optical

density at 660 nm. During the first 20 hours both substrates are consumed and

biomass is increasing. After 20 hours the nitrogen source is depleted and exter-

nal carbon source fructose is now stored into internal carbon resevere material

P(3HB). After approximately 30 hours more fructose is added to the fermenter to

maintain a longer P(3HB) synthesis.

After 37 hours P(3HB) concentration drops in Figure 6.1. P(3HB) can be metab-

olized, when cells are able to grow and devide, which is usually only the case if a

nitrogen source is available. However, this is not the case at this time point. It

can be therefore concluded, that the P(3HB) concentration at t=37 hours might

be an outlyer.
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6.1.2. Rhod02FruSingle

 

 

 

 

NH4Cl

Fructose

Time [h]

F
ru

ct
os

e
[g

/l
]

N
H

4
C

l
[g

/l
]

OD660

O
D

6
6
0

P(3HB)

P
(3

H
B

)
[g

/l
]

00
0

00

20 40 60 80 100

0.3

0.4

0.6

0.8

0.9

1.2

4

4

8

8

12

12

Figure 6.2.: Time course of experiment Rhod02FruSingle.

In the beginning, again both substrates are available (see Figure 6.2) and optical

density increases due to cell growth. Ammonium is depleted after 20 hours. From

this time point external carbon source fructose is stored into internal carbon reserve

material P(3HB). Optical density is increasing linear between 20 and 60 hours.

At time point t=60 h new ammonium is added and P(3HB) is now decreasing, since

it can be metabolized when ammonium is available. Although new non-P(3HB)

biomass is now synthesized (e. g. new cells are formed), the optical density is

decreasing. This gives the hint, that optical density is not linear correlated to cell

dry weight, but depends also on the fraction of P(3HB) to non-P(3HB) biomass,

as it is the case for R. eutropha and described in Chapter 2.4.3. Assuming a linear

correlation between optical density and cell dry weight might lead to inaccurate

results.
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6.2. R. rubrum Growing on Acetate

As mentioned above, in contrast to R. eutropha it was observed that cells of

R. rubrum stained with Nile red show a bimodal distribution under the microscope

when growing on acetate as sole carbon source. To validate and quantify this, the

following experiment was performed.

6.2.1. Rhod03AceFlask

R. rubrum was grown in a shaking flask with sodium acetate as single carbon

source. Cell growth was monitored with optical density (Figure 6.3) and is in-

creasing until 50 hours. At approximately t=52 h new sodium actetate was added

and optical density increases again until 70 hours.
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Figure 6.3.: Time course of experiment Rhod03AceFlask, optical density.

Samples were analyzed via flow cytometry. P(3HB) within the cells were stained

with Nile red and fluorescence intensity was measured. Figure 6.4 shows the tem-

poral evolution of the fluorescence distribution, which is correlated to P(3HB). In

general the distribution is shifting to higher values of the fluorescence distribu-

tion, which means, that P(3HB) concentration is increasing. After 70 hours the

distribution shifts back, which implies a decreasing P(3HB) concentration.

However, it is remarkable, that the distribution is bi-modal. The initial distribu-

tion already looks like two overlapping distributions. From 6 hours the peak on
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Figure 6.4.: Flow cytometry measurement of experiment Rhod03AceFlask, fluo-
rescence intensity.

the right side of the distributions increases, while the left peak seems to be shifting

towards the right peak, where both nearly merge after 70 hours. Only one merged

peak is then shifting back.

This can also be observed in the forward scatter in Figure 6.5. The forward

scatter is correlated to cell size. Cells with accumulated P(3HB) are bigger than

cells without P(3HB). Although, the initial distribution in forward scatter looks

uni-modal, a second peak is appearing after 6 hours and increasing. After 50 hours

the distribution looks uni-modal again. However, resolution of the forward scatter

is pretty poor and a bi-modal distribution might be longer observable at higher
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Figure 6.5.: Flow cytometry measurement of experiment Rhod03AceFlask, for-
ward scatter.

resolution.

Figure 6.6 additionally shows a two-dimensional histogram of the fluorescence

intensity versus forward scatter at the four time points between 6 and 47 hours.

Two groups of cells can be clearly identified. And it can also clearly be seen that

cells with higher fluorescence intensity (e.g. higher P(3HB) concentration) have

higher forward scatter values (e.g. have higher cell size or volume).
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6.3. Modeling the Production of

Poly(3-hydroxybutyrate) in R. rubrum

Although R. rubrum is a much more complex organism than R. eutropha, the

experimental results are very similar to those in Chapter 4. Both organisms syn-

thesize P(3HB) under excess carbon source or lack of a nitrogen source, and me-

tabolize P(3HB) when nitrogen limitation is removed. It is therefore feasible to

discuss similar modeling approaches for R. rubrum as they are formulated for

R. eutropha in Chapter 5. For that, the following steps have to be conducted:

1. Construction of a metabolic network and metabolic yield analysis

2. Formulation of a hybrid cybernetic model

3. Nonlinear analysis of the model

4. Model reduction

5. Population balance modeling based on the reduced model
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For R. rubrum growing on fructose, this is straight forward. However, R. rubrum

growing on actetate shows a bimodal P(3HB) distribution in contrast to R. eu-

tropha where no bimodal distributions are observed so far. A population balance

model for R. rubrum growing on acetate, which can describe this bimodal dis-

tribution, is therefore an interesting task. This bimodal distribution suggests a

bistable region, which is larger than the bistable region observed for R. eutropha

as described in Chapter 5.2.3.

6.3.1. Metabolic Network

For R. rubrum a metabolic network was recently published [29]. This network

contains of 144 reactions, 119 internal metabolites and 14 external metabolites.

This network has still a moderate complexity. However, calculation of elementary

modes is already challenging.

A systematic way to calculate elementary modes in larger networks, is to divide the

network in disjoint subnetworks. The most simple way is to chose, for example,

two reactions, e. g. substrate uptakes, and divide the network in four disjoint

subnetworks, which are

no. reaction 1 reaction 2

1 0 0

2 0 1

3 1 0

4 1 1

where 0 means reaction does not take place, and 1 means reaction does take

place.

By choosing n reactions (preferable uptake reactions) every network can be divided

into 2n disjoint subnetworks. Choosing uptake reactions is reasonable since most of

the disjoint subnetworks have then a reduced number of substrate uptakes, which

is useful if not all substrates are available to the organism.

Since R. rubrum is a facultative photosynthetic bacterium, it is reasonable to

chose the reaction Photo from the metabolic network in [29] to devide the network

into subnetworks which function under dark conditions and subnetworks which do

not.
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Furthermore the substrate uptake reactions for fructose (Fru up) and acetate

(Ac up) are reasonable choices, since these are the substrates already used in Chap-

ter 6. Additionally succinate is an important and often used carbon substrate for

R. rubrum and oxygen has also an important influence on bacterial growth.

Therefore, for dividing the metabolic network of R. rubrum the following five

uptake reactions were chosen:

• O2 up: oxygen uptake reaction

• Photo: uptake reaction necessary for photo synthesis

• Fru up: fructose uptake reaction

• Suc up: succinate uptake reaction

• Ac up: acetate uptake reaction

From these five reactions follow 25 = 32 disjoint subnetworks, which were analysed

from M. Berger during her pre-diploma thesis [4]. The total network has more then

7 million elementary modes. However, the experiments in Chapter 6 are performed

under aerob and dark conditions, which reduces the number of needed elementary

modes to less than 4 million. Under these conditions there are less than 2 million

elementary modes, where R. rubrum grows on fructose as single carbon source and

less than 46.000 elementary modes, where R. rubrum grows on acetate as single

carbon source.

Although the number of needed elementary modes could be reduced significantly,

it is still to large for reasonable dynamic modeling. This subset of elementary

modes need to be be further reduced with knowledge of experimental yield data

by metabolic yield analysis. Unfortunately, the experiments in Chapter 6 only

provide optical density as biomass equivalent. This is not sufficient to calculate

cell dry weight (see Chapter 2.4.3), which is necessary for a reasonable metabolic

yield analysis. Hence, further experiments are needed for dynamic modelling of

P(3HB) formation in R. rubrum with fructose and/or acetate, which therefore was

clearly beyond the scope of this work.
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7. Conclusions

This thesis focuses on the dynamic mathematical modeling of poly(3-hydroxybutyrate)

synthesis and metabolization in microorganisms, in particular R. eutropha and

R. rubrum. Existing models in literature usually neglect metabolization of poly(3-

hydroxybutyrate) or have fitted the model to experimental data without significant

metabolization of poly(3-hydroxybutyrate).

By neglecting metabolization of poly(3-hydroxybutyrate) cell internal regulation

might be of no importance, but becomes crucial if metabolization of poly(3-

hydroxybutyrate) is included into dynamic modeling. The organism needs to

switch between growth, synthesis of poly(3-hydroxybutyrate) and metabolization

of poly(3-hydroxybutyrate). A mathematical model therefore needs to include cell

internal regulation, which is able to switch between theses processes.

Since cell internal regulation is usually very complex and often not fully under-

stood, in this thesis a hybrid cybernetic modeling approach is used. This approach

is extended to include cell internal metabolites with slow dynamics.

Available experimental data from literature usually neglect metabolization of poly(3-

hydroxybutyrate) or only focus on certain subprocesses. Therefore own experi-

ments with different carbon substrates were performed, which include all three

subprocesses in a single experiment: growth, synthesis and metabolization of

poly(3-hydroxybutyrate).

The hybrid cybernetic model was formulated for R. eutropha growing on fruc-

tose as single carbon source. However, other substrates e.g. acetate and glucose

were studied experimentally and show similar behaviour as fructose. The dynamic

model can therefore be easily adapted to these carbon substrates.

A non-linear analysis of the model reveals that metabolization of poly(3-hydroxybutyrate)

is in fact crucial and has to be included into dynamic modeling. Additionally, a
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small region of multiplicity was detected.

The formulated model still neglects cell to cell variance w.r.t. intracellular com-

pounds, in particular the amount of poly(3-hydroxybutyrate). In contrast, hetero-

geneity can be described within the framework of population balance modeling.

Therefore, based on the cybernetic model a population balance model is formu-

lated. Although the formulated cybernetic model has a moderate complexity, the

translation of the states c, mP(3HB) and e into internal coordinates of the pop-

ulation balance equations, makes the population balance model computationally

challenging. Therefore different reductions of the cybernetic model are discussed

and compared. The population balance model is then based on a reduced cyber-

netic model.

First, a population balance model is formulated, which consideres the two main

compartments P(3HB) and non-P(3HB) biomass as internal coordinates. It com-

bines the cybernetic modeling approach with population balance modeling.

However, measurement of the non-P(3HB) biomass distribution is so far hardly

possible. This limits the practical use of such a two-dimensional population bal-

ance model. On the other hand, it turned out, that the amount of P(3HB) is

nicely correlated to the forward scatter of flow cytometry, which in turn is corre-

lated to cell size. Based on this correlation a one-dimensional population balance

model is formulated with cell size as internal coordinate of the population bal-

ance equation. Change of cell size depends on synthesis and metabolization of

poly(3-hydroxybutyrate). Cell size can easily be measured even without complex

cell staining.

It is shown that the one-dimensional population balance model can in principle

represent the experimental observations. However, the resolution of the measured

forward scatter is unfortunately rather poor. For validation and even improvement

of the one-dimensional population balance model better data from flow cytometry

is needed.

For R. rubrum a few experimental data exist in literature, which include synthesis

as well as metabolization of poly(3-hydroxybutyrate). Since these data show the

same behaviour than the experimental data for R. eutropha, the modeling approach

can in principle be easily adapted to R. rubrum. However, R. rubrum has a much

higher metabolic complexity. Therefore, additional experiments are needed for a
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proper model formulation. This was beyond the scope of the present thesis and is

an interesting topic for future work.

Additionally, data from flow cytometry for R. rubrum show existence of bi-modal

distribution in cell internal amount of poly(3-hydroxybutyrate). This gives hint of

a potential bi-stability.

As an interesting and surprising side result of this thesis, it is shown that R. eu-

tropha is able to grow on glucose as single carbon source without previous muta-

genic treatment, which is in contradiction to literature.

Furthermore it is made clear, that only monitoring optical density is not sufficient

to estimate cell dry weight. Although this is a very common procedure in biology,

this might lead to incorrect data under certain conditions, e.g. during accumu-

lation of storage compounds. Instead, knowledge of all cell compartments, which

influences optical density is crucial. Once a proper correlation is known, it allows

the estimation of certain experimental data which might be difficult to measure,

e.g. concentration of poly(3-hydroxybutyrate).

The main focus of this thesis was the mathematical modeling of the yield of

P(3HB). By optimizing yield in industrial processes, biopolymers will become

cheaper in future and thereby possibly a substitute for convectional synthetic poly-

mers.

However, a big advantage of synthetic polymers is their wide variety in properties.

Although there are already several biopolymers with different properties know,

mathematical models which combine metabolism with polymer properties are still

rare or even missing. Therefore the next step is to extend the formulated model

to more advanced polymers and to include polymer properties, which depend on

chain length and structure. R. eutropha for instance is able to synthesize not only

P(3HB), but also P(3HB-3HV) and other polymers, depending on environmental

conditions and availability of certain carbon substrates. By combining the cyber-

netic metabolic model with polymerization kinetics one might be able in future to

adjust the desired polymer properties already during the fermentation process.
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[29] O. Hädicke, H. Grammel, and S. Klamt. Metabolic network modeling of

redox balancing and biohydrogen production in purple nonsulfur bacteria.

BMC Systems Biology, 5, 2011.

[30] E. Heinzle and R. M. Lafferty. A kinetic model for growth and synthesis of

poly-β-hydroxybutyric acid (PHB) in Alcaligenes eutrophus H 16. European

Journal of Applied Microbiology and Biotechnology, 11(1):8–16, 1980.

[31] K. D. Jones and D. S. Kompala. Cybernetic model of the growth dynamics

of Saccharomyces cerevisiae in batch and continuous cultures. Journal of

Biotechnology, 71(1-3):105–131, 1999.

[32] T. Katoh, D. Yuguchi, H. Yoshii, H. D. Shi, and K. Shimizu. Dynamics and

modeling on fermentative production of poly(β-hydroxybutyric acid) from

sugars via lactate by a mixed culture of Lactobacillus delbrueckii and Alcali-

genes eutrophus. Journal of Biotechnology, 67(2-3):113–134, 1999.

[33] S. Khanna and A. K. Srivastava. Recent advances in microbial polyhydrox-

yalkanoates. Process Biochemistry, 40(2):607–619, 2005.

[34] S. Khanna and A. K. Srivastava. A simple structured mathematical model for

biopolymer (PHB) production. Biotechnology Progress, 21(3):830–838, 2005.

[35] S. Khanna and A. K. Srivastava. Computer simulated fed-batch cultivation for

over production of PHB: A comparison of simultaneous and alternate feeding

of carbon and nitrogen. Biochemical Engineering Journal, 27(3):197–203,

2006.

[36] S. Khanna and A. K. Srivastava. Optimization of nutrient feed concentration

and addition time for production of poly(β-hydroxybutyrate). Enzyme and

Microbial Technology, 39(5):1145–1151, 2006.

[37] H. Y. Kim, J. S. Park, H. D. Shin, and Y. H. Lee. Isolation of glucose utilizing

mutant of Alcaligenes eutrophus, its substrate selectivity, and accumulation

of poly-β-hydroxybutyrate. Journal of Microbiology, 33(1):51–58, 1995.

[38] J. I. Kim, J. D. Varner, and D. Ramkrishna. A hybrid model of anaerobic E.

coli GJT001: combination of elementary flux modes and cybernetic variables.

Biotechnology Progress, 24(5):993–1006, 2008.

[39] S. Klamt, J. Saez-Rodriguez, and E. D. Gilles. Structural and functional

124



Bibliography

analysis of cellular networks with CellNetAnalyzer. BMC Systems Biology, 1,

2007.

[40] Steffen Klamt. Strukturelle Analyse von Stoffwechselnetzen illustriert am bak-

teriellen Redox- und Zentralstoffwechsel. PhD thesis, Universtät Stuttgart,

2005.

[41] D. S. Kompala. Cybernetic modeling of spontaneous oscillations in continuous

cultures of Saccharomyces cerevisiae. Journal of Biotechnology, 71(1-3):267–

74, 1999.

[42] D. S. Kompala, D. Ramkrishna, N. B. Jansen, and G. T. Tsao. Investigation of

bacterial-growth on mixed substrates: Experimental evaluation of cybernetic

models. Biotechnology and Bioengineering, 28(7):1044–1055, 1986.

[43] D. S. Kompala, D. Ramkrishna, and G. T. Tsao. Cybernetic modeling of

microbial growth on multiple substrates. Biotechnology and Bioengineering,

26(11):1272–1281, 1984.

[44] C. König, I. Sammler, E. Wilde, and H. G. Schlegel. Konstitutive Glucose-

6-phosphat-Dehydrogenase bei Glucose verwertenden Mutanten von einem

kryptischen Wildstamm. Archives of Microbiology, 67:51–57, 1969.

[45] C. König and H. G. Schlegel. Langfristiges organotrophes Wachstum von

Hydrogenomonas H16 im Chemostaten. Archives of Microbiology, 62:41–55,

1968.

[46] M. V. Kumar, K. P. Zeyer, A. Kienle, and S. Pushpavanam. Conceptual

analysis of the effect of kinetics on the stability and multiplicity of a coupled

bioreactor-separator system using a cybernetic modeling approach. Industrial

& Engineering Chemistry Research, 48(24):10962–10975, 2009.

[47] J. H. Law and R. A. Slepecky. Assay of poly-β-hydroxybutyric acid. Journal

of Bacteriology, 82(1):33–36, 1961.

[48] J. H. Lee, H. C. Lim, and J. Hong. Application of nonsingular transformation

to on-line optimal control of poly-β-hydroxybutyrate fermentation. Journal

of Biotechnology, 55(3):135–150, 1997.

[49] N. S. Makkar and L. E. Casida. Cupriavidus necator gen. nov., sp. nov.: a

125



Bibliography

nonobligate bacterial predator of bacteria in soil. International Journal of

Systematic Bacteriology, 37(4):323–326, 1987.

[50] M. Mangold, A. Kienle, E. D. Gilles, and K. D. Mohl. Nonlinear compu-

tation in DIVA - Methods and applications. Chemical Engineering Science,

55(2):441–454, 2000.

[51] N. V. Mantzaris, P. Daoutidis, and F. Srienc. Numerical solution of multi-

variable cell population balance models: I. Finite difference methods. Com-

puters and Chemical Engineering, 25(11-12):1411–1440, 2001.

[52] J. Monod. The growth of bacterial cultures. Annual Review of Microbiology,

3:371–394, 1949.

[53] C. J. Moore. Synthetic polymers in the marine environment: A rapidly in-

creasing, long-term threat. Environmental Research, 108(2):131–139, 2008.

[54] A. Mulchandani, J. H. T. Luong, and C. Groom. Substrate-inhibition kinet-

ics for microbial-growth and synthesis of poly-beta-hydroxybutyric acid by

Alcaligenes eutrophus ATCC-17697. Applied Microbiology and Biotechnology,

30(1):11–17, 1989.

[55] A. A. Namjoshi, W. S. Hu, and D. Ramkrishna. Unveiling steady-state mul-

tiplicity in hybridoma cultures: The cybernetic approach. Biotechnology and

Bioengineering, 81(1):80–91, 2003.

[56] A. A. Namjoshi and D. Ramkrishna. Multiplicity and stability of steady

states in continuous bioreactors: dissection of cybernetic models. Chemical

Engineering Science, 56(19):5593–5607, 2001.

[57] PlasticsEurope Association of Plastics Manufactors. Plastics - the Facts 2013:

An analysis of European latest plastics production, demand and waste data.

http://www.plasticseurope.org/cust/documentrequest.aspx?DocID=59108,

October 2013.

[58] P. Paetzold. Populationsdynamische Modellierung der Polyhydroxybut-
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A. Appendix

A.1. Media for Cultivation

Table A.1.: Composition of LB medium.

Name Molecular formula Concentration
Tryptone 10 g/l
Yeast extract 5 g/l
Sodium chloride NaCl 5 g/l

Table A.2.: Composition of mineral medium for R. eutropha [25].

Name Molecular formula Concentration
Carbon source varied
Ammonium chloride NH4Cl varied
Potassium dihydrogen phosphate KH2PO4 2.30 g/l
Sodium hydrogenphosphate dihydrate Na2HPO4 × 2 H2O 2.90 g/l
Magnesium sulfate heptahydrate MgSO4 × 7 H2O 0.50 g/l
Calcium chloride dihydrate CaCl2 × 2 H2O 0.01 g/l
Ammonium iron(III) citrate C6H8O7 × xFe × xH3N 0.05 g/l
Trace element solution SL-6 (see Table A.3) 5.00 ml/l

Table A.3.: Composition of trace element solution SL-6 [24].

Name Molecular formula Concentration
Zinc sulfate heptahydrate ZnSO4 × 7 H2O 0.10 g/l
Manganese chloride tetrahydrate MnCl2 × 4 H2O 0.03 g/l
Boric acid H3BO3 0.30 g/l
Cobalt chloride hexahydrate CoCl2 × 6 H2O 0.20 g/l
Copper(II) chloride dihydrate CuCl2 × 2 H2O 0.01 g/l
Nickel(II) chloride hexahydrate NiCl2 × 6 H2O 0.02 g/l
Sodium molybdate dihydrate Na2MoO4 × 2 H2O 0.03 g/l
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A.1. MEDIA FOR CULTIVATION

Table A.4.: Composition of mineral medium for R. rubrum [23].

Name Molecular formula Concentration
Potassium dihydrogen phosphate KH2PO4 2.96 g/l
Dipotassium hydrogenphosphate K2HPO4 4.44 g/l
p-aminobenzoic acid C7H7NO2 2.85 mg/l
Sodium chloride NaCl 120 mg/l
Vitamin solution (see Table A.5) 10 ml/l
Ammonium chloride NH4Cl varied
Carbon source varied

Table A.5.: Composition of vitamin solution for mineral medium for R. rubrum.

Name Molecular formula Concentration
Nitrilotriacetic acid C6H9NO6 20 g/l
Aspartic acid C4H7NO4 4 g/l
Glutamic acid C5H9NO4 10 g/l
Potassium hydroxide KOH 22 g/l
Magnesium sulfate heptahydrate MgSO4 × 7 H2O 58.9 g/l
Ferrous sulfate heptahydrate FeSO4 × 7 H2O 0.2 g/l
Nicotinic acid C6H5NO2 0.1 g/l
Thiamine C12H18Cl2N4OS 50 mg/l
Biotin C10H16N2O3S 2 mg/l
Calcium chloride dihydrate CaCl2 × 2 H2O 6.6 g/l
Trace element solution (see Table A.6) 20 ml/l

Table A.6.: Composition of trace element solution for mineral medium for
R. rubrum.

Name Molecular formula Concentration
Ethylenediaminetetraacetic acid C10H16N2O8 50 g/l
Zinc sulfate heptahydrate ZnSO4 × 7 H2O 22 g/l
Manganese chloride tetrahydrate MnCl2 × 4 H2O 5.1 g/l
Boric acid H3BO3 11.4 g/l
Ferrous sulfate heptahydrate FeSO4 × 7 H2O 5 g/l
Cobalt chloride hexahydrate CoCl2 × 6 H2O 1.6 g/l
Copper sulfate pentahydrate CuSO4 × 5 H2O 1.1 g/l
Ammonium molybdate tetrahydrate 2(NH4)6Mo7O24 × 4 H2O 1.1 g/l
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A.2. METABOLIC REACTIONS OF R. EUTROPHA

A.2. Metabolic Reactions of R. eutropha

No. Reaction

1 FRU + PEP + ATP −→ F16P + PYR + ADP

2 F16P −→ F6P

3 F16P −→ 2 G3P

4 AMC −→ NH3

5 G6P + 2 NADP −→ Rl5P + CO2 + 2 NADPH

6 Rl5P ←→ R5P

7 Rl5P ←→ X5P

8 X5P + R5P ←→ S7P + G3P

9 S7P + G3P ←→ E4P + F6P

10 X5P + E4P ←→ G3P + F6P

11 F6P −→ G6P

12 G3P + NAD + ADP ←→ 3PG + NADH + ATP

13 3PG ←→ PEP

14 PEP + ADP −→ PYR + ATP

15 OXA + ATP −→ PEP + ADP + CO2

16 PYR −→ AcCoA + Form

17 PYR + NAD −→ AcCoA + NADH + CO2

18 AcCoA + OXA −→ ISC

19 ISC + NADP −→ αKG + NADPH + CO2

20 αKG + NAD −→ SucCoA + NADH + CO2

21 SucCoA + ADP ←→ SUC + ATP

22 SUC + FAD ←→ MAL + FADH

23 MAL + NAD −→ OXA + NADH

24 PYR + ATP −→ OXA + ADP

25 ISC −→ SUC + GOX

26 AcCoA + GOX −→ MAL

27 NH3 + αKG + NADPH −→ GLUT + NADP

28 GLUT + NH3 + ATP −→ GLUM + ADP

29 2 AcCoA ←→ AcAcCoA

133



A.2. METABOLIC REACTIONS OF R. EUTROPHA

30 AcAcCoA + NADPH −→ P(3HB) + NADP

31 P(3HB) + NAD −→ ACE + NADH

32 ACE + SucCoA −→ AcAcCoA + SUC

33 SUC −→ SUCx

34 2 NADH + O2 + 4 ADP −→ 2 NAD + 4 ATP

35 2 FADH + O2 + 2 ADP −→ 2 FAD + 2 ATP

36 0.21 G6P + 0.07 F6P + 0.9 R5P + 0.36 E4P + 0.13 G3P + 1.5 3PG

+ 0.52 PEP + 2.83 PYR + 3.74 AcCoA + 1.79 OXA + 8.32 GLUT

+ 0.25 GLUM + 41.1 ATP + 8.26 NADPH + 3.12 NAD −→ BIO +

7.51 αKG + 2.61 CO2 + 41.1 ADP + 8.26 NADP + 3.12 NADH
All stoichiometric coefficients are given in mmol, except BIO is given in g.
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