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Abstract

The classification of B cell lymphomas—mainly based on light microscopy evaluation by a

pathologist—requires many years of training. Since the B cell receptor (BCR) of the lym-

phoma clonotype and the microenvironmental immune architecture are important features

discriminating different lymphoma subsets, we asked whether BCR repertoire next-genera-

tion sequencing (NGS) of lymphoma-infiltrated tissues in conjunction with machine learning

algorithms could have diagnostic utility in the subclassification of these cancers. We trained

a random forest and a linear classifier via logistic regression based on patterns of clonal dis-

tribution, VDJ gene usage and physico-chemical properties of the top-n most frequently rep-

resented clonotypes in the BCR repertoires of 620 paradigmatic lymphoma samples—

nodular lymphocyte predominant B cell lymphoma (NLPBL), diffuse large B cell lymphoma

(DLBCL) and chronic lymphocytic leukemia (CLL)—alongside with 291 control samples.

With regard to DLBCL and CLL, the models demonstrated optimal performance when utiliz-

ing only the most prevalent clonotype for classification, while in NLPBL—that has a domi-

nant background of non-malignant bystander cells—a broader array of clonotypes

enhanced model accuracy. Surprisingly, the straightforward logistic regression model per-

formed best in this seemingly complex classification problem, suggesting linear separability

in our chosen dimensions. It achieved a weighted F1-score of 0.84 on a test cohort including

125 samples from all three lymphoma entities and 58 samples from healthy individuals.

Together, we provide proof-of-concept that at least the 3 studied lymphoma entities can be

differentiated from each other using BCR repertoire NGS on lymphoma-infiltrated tissues by

a trained machine learning model.

PLOS COMPUTATIONAL BIOLOGY

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011570 July 2, 2024 1 / 17

a1111111111

a1111111111

a1111111111

a1111111111

a1111111111

OPEN ACCESS

Citation: Schmidt-Barbo P, Kalweit G, Naouar M,

Paschold L, Willscher E, Schultheiß C, et al. (2024)

Detection of disease-specific signatures in B cell

repertoires of lymphomas using machine learning.

PLoS Comput Biol 20(7): e1011570. https://doi.

org/10.1371/journal.pcbi.1011570

Editor: Stacey D. Finley, University of Southern

California, UNITED STATES OF AMERICA

Received: October 5, 2023

Accepted: June 7, 2024

Published: July 2, 2024

Copyright: © 2024 Schmidt-Barbo et al. This is an

open access article distributed under the terms of

the Creative Commons Attribution License, which

permits unrestricted use, distribution, and

reproduction in any medium, provided the original

author and source are credited.

Data Availability Statement: The data of our

analysis can be accessed at the European

Nucleotide Archive (ENA) at EMBL-EBI under

accession number PRJEB66357 (https://www.ebi.

ac.uk/ena/browser/view/PRJEB66357).

Corresponding code is available under https://

github.com/paulovic96.

Funding: This project was funded by the

Mertelsmann Foundation (grant to MB). The

funders had no role in study design, data collection

https://orcid.org/0009-0008-0871-7555
https://orcid.org/0000-0001-9789-5776
https://orcid.org/0000-0003-0663-3004
https://doi.org/10.1371/journal.pcbi.1011570
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011570&domain=pdf&date_stamp=2024-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011570&domain=pdf&date_stamp=2024-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011570&domain=pdf&date_stamp=2024-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011570&domain=pdf&date_stamp=2024-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011570&domain=pdf&date_stamp=2024-07-15
http://crossmark.crossref.org/dialog/?doi=10.1371/journal.pcbi.1011570&domain=pdf&date_stamp=2024-07-15
https://doi.org/10.1371/journal.pcbi.1011570
https://doi.org/10.1371/journal.pcbi.1011570
http://creativecommons.org/licenses/by/4.0/
https://www.ebi.ac.uk/ena/browser/view/PRJEB66357
https://www.ebi.ac.uk/ena/browser/view/PRJEB66357
https://github.com/paulovic96
https://github.com/paulovic96


Author summary

Lymphoma, a complex group of malignant blood cancers, poses a significant diagnostic

challenge due to its diverse subtypes. Yet, precise classification is crucial for tailored treat-

ment. In our research, we developed a machine learning algorithm and conducted com-

prehensive validation to discern distinct B cell lymphoma subtypes. We therefore

leveraged B cell repertoires of lymphoma-infiltrated tissue, as ascertained through next-

generation sequencing. Our data offers three key insights: We detail the creation and

training of our machine learning algorithm, explaining how we selected features and

designed the model. We demonstrate the algorithm’s diagnostic precision using sequenc-

ing data from a test-set of patient samples. Moreover, through a deep dive into the most

distinguishing aspects of our algorithm, we unveil distinctive disease-related patterns

present within the malignant B cell and its surrounding environment. This analysis

showed that both the malignant lymphoma cell, but also healthy bystander immune cells

contribute to the distinctive architecture that characterizes a specific lymphoma subtype.

We hope our work will contribute towards creating tools to diagnose lymphoma more

easily and accurately ultimately leading to better outcomes for patients with this type of

cancer.

Introduction

B cells are one of the essential pillars of the adaptive immune system that generates highly spe-

cific and also long-lasting immunity [1,2]. They originate from hematopoietic precursor cells in

the bone marrow and acquire their characterizing feature–the B cell receptor (BCR)–in a multi-

step recombination and selection process [3,4]. Each BCR consists of a unique configuration of

paired immunoglobulin heavy (IGH) and light (IGL) chains that mediate antigen binding spec-

ificities and upon engagement trigger, in concert with coactivator molecules, a cascade of sig-

naling events that result in activation and proliferation [5,6]. Activated B cells can then

differentiate into plasma cells, which produce and secrete immunoglobulins or antibodies to

neutralize cognate antigen, or long-lived memory B cells that are capable to quickly mount

high-affinity recall responses [7]. To guarantee an adequate arsenal of binders for the enormous

breadth of foreign antigens, the immune system uses the process of immunoglobulin VDJ

recombination to generate maximal sequence diversity [3,8]. During VDJ-recombination in

developing immature B cells, randomly chosen variable (V), diversity (D) and joining (J) gene

segments within the immunoglobulin loci are recombined to chromosomal sequences encod-

ing a functional BCR [8]. This recombination process is facilitated via induced double-strand

breaks and DNA repair/ligation mechanisms that may result in additional deletions or inser-

tions that further increase sequence variance of single BCRs [8]. On the repertoire level, most

of the immunoglobulin diversity is generated in the complementarity-determining region 3

(CDR3) sequence which spans the joined VDJ regions [9,10]. In addition, BCR diversity is

boosted by somatic hypermutation (SHM), an iterative affinity maturation process that is initi-

ated in response to antigen in the germinal centers (GCs) of secondary lymphoid tissues [7,11].

These transient but highly specialized microanatomical structures provide a dynamic environ-

ment that enables the proper coordination of repeated SHM and selection cycles to evolve poly-

reactive low-affinity BCRs into antibodies with maximum epitope selectivity [6,7,11].

Lymphomas represent hematological neoplasms of differentiated lymphocytes which typi-

cally originate in lymphatic tissue [12]. Interestingly, 95% of all lymphomas are found in B

lineage cells [13]. Lymphomas are classified based on histopathological and clinical features
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that mostly depend on the putative cell of origin that has undergone malignant transformation

[14]. The BCR takes a prominent role as oncogenic driver and mediator of sustained growth in

these malignancies [14]. This is not only exemplified by the fact that a specific VDJ-rearrange-

ment characterizes the malignant clonotype in a given patient but also by the acquisition of

mutations that mimic chronic active BCR signaling [15]. Moreover, comparative analyses of a

large number of prior sequencing studies have revealed prominent repertoire restrictions up

to the extent of very similar or even identical CDR3 sequences across different patients with

the same disease that are now recognized as subtype-specific sequence features for classifica-

tion [16–18]. Furthermore, non-malignant bystander cells occupy varying space within the

heterogenous tumor microenvironments of different lymphomas [19,20]. Some lymphomas

bear very dominant malignant clonotypes, while in other lymphomas the malignant clonotype

is less frequently found in a background of non-malignant bystander cells. These bystander

immune cells such as T cells and B cells show a diverse range of other T-cell receptor-gene- or

VDJ-rearrangements.

It is generally accepted that the correct diagnostic evaluation of lymphomas by the patholo-

gist is complex in light of the numerous WHO-defined–sometimes rare–entities. Since recog-

nition of the patterns of malignant and bystander cells needs a lot of expertise, evaluation by a

consultation pathologist represents a standard in most centers. Here, we hypothesized that

high-throughput analysis of the B cell architecture of different types of lymphomas may pro-

vide an additional basis for diagnosing disease subtypes. In this context, we set out to employ

machine learning algorithms, which have demonstrated their capability to enhance the classifi-

cation of immune states in antigen receptor-repertoire sequencing data, as valuable tools [21–

25]. Since BCR next-generation sequencing (NGS) technology relies on unbiased amplification

of all VDJ-rearrangements in the tissue of interest, also benign bystander lymphocytes are

detected. Here, we present proof-of-concept that a logistic regression model is capable of dif-

ferentiating between three paradigmatic lymphomas—nodular lymphocyte predominant B

cell lymphomas (NLPBL), diffuse large B cell lymphoma (DLBCL), and chronic lymphocytic

leukemia (CLL). This data shows the great potential of finding signatures in such large reper-

toire datasets consisting of the malignant clonotype and benign bystander cells that–clinically–

until now remain largely unexploited.

Results

Characteristics of the lymphoma and control cohorts

In our study, we analyzed a total of 620 lymphoma BCR repertoire samples, comprising 90

from NLPBL (formerly nodular lymphocyte predominant Hodgkin lymphoma; NLPBL [26]),

182 from DLBCL, and 348 from CLL cases. We enriched the data with 291 control BCR reper-

toires derived from the blood of healthy donors (HD). Basic characteristics of the cohort are

outlined in Table 1. Detailed information on individual BCR repertoire samples, including

corresponding subjects, is provided in S1 Table.

Broad repertoire metrics in the lymphoma cohorts

In a first step, we compared general repertoire metrics between the four different groups.

Blood BCR repertoires of HD were the most diverse and less clonal (Fig 1A–1C). Of the lym-

phoma cases, NLPBL patients showed lowest clonality, followed by patients with DLBCL and

CLL (Fig 1A–1C). Of note, some DLBCL and CLL samples contained only the malignant

clone and therefore exhibited a clonality of 1. While the term “repertoire” may not be entirely

suitable in these cases, for consistency, we maintained this annotation throughout the paper.

The percentage of somatically hypermutated clonotypes provides a rough estimate of how
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many clonotypes in the repertoire have undergone antigenic selection. The average somatic

hypermutation across all BCR repertoires within each cohort was as follows: 19.2% in HD,

18.4% in NLPBL, 44.9% in DLBCL and 22.4% in CLL (Fig 1D). In addition to assessing the

overall somatic hypermutation in BCR repertoires, we compared the somatic hypermutation

levels of the top 10 clonotypes within each sample (S1 Fig).

Training of machine learning models on BCR repertoires of lymphoma

tissue

In our pursuit of accurately classifying lymphoma subtypes based on BCR repertoire charac-

teristics and as an initial benchmarking effort, we developed and trained two machine-learning

models. In consideration of interpretability, we opted for two well-established and straightfor-

ward models: Logistic regression and random forest. These models were trained using a com-

prehensive feature set encompassing various aspects of clonotypes, including clonotype

fractions, CDR3 sequence lengths, VDJ genes, and Kidera factors [27]. Additionally, we incor-

porated repertoire metrics such as clonality, Shannon diversity index, richness and the fraction

of somatic hypermutation within each repertoire into the feature set. Although some of the

metrics were correlated, as shown in the correlation matrix (S2 Fig), we included all relevant

metrics to ensure a comprehensive and full understanding of the data, as each metric provides

distinct non-overlapping information.

We applied different scenarios in which we challenged the models to discriminate between

HD, NLPBL, DLBCL and CLL as well as different combinations thereof. For each scenario we

started an individual training phase. For each training phase, the entire dataset comprising the

individual classes was partitioned into a training subset (80%) and a test subset (20%). The

splitting was performed in a stratified manner, ensuring the proportions of classes were main-

tained in both subsets, thus guaranteeing an unbiased evaluation of the developed models

(Table 2). To account for the imbalance of the classes we used random oversampling, resam-

pling all classes but the majority class.

Within the training phase, we implemented a robust model optimization strategy to avoid

model overfitting. This incorporated a stratified k-fold cross-validation approach with k set to

3 folds. The stratification within the cross-validation approach ensured that the ratio of classes

Table 1. Sample characteristics.

Disease entity

HD Number of samples

Type of samples

Median age

Sex distribution

291

100% PB

40 y

49% female, 51% male

NLPBL Number of samples

Type of samples

Median age

Sex distribution

90

2% BM, 85% LN, 1% SPL, 12% TM

37.5 y

30% female, 70% male

DLBCL Number of samples

Type of samples

Median age

Sex distribution

182

1.6% LV, 94.6% TM, 3.8% LN

71 y

46% female, 54% male

CLL Number of samples

Type of samples

Median age

Sex distribution

348

100% PB

66 y

30% female, 70% male

• PB = peripheral blood, TM = tumor, LN = lymph node, SPL = spleen, LV = liver, BM = bone marrow

https://doi.org/10.1371/journal.pcbi.1011570.t001
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remained consistent across each fold and throughout the entire model training process. A grid

search strategy was employed for hyperparameter tuning, traversing a predefined hyperpara-

meter space. A list of resulting hyperparameters and the corresponding search spaces can be

found in S2 Table. To assess the impact of bystander cells, we varied the number of top clono-

types considered in the calculation, ranging from 1 to 10, and subsequently extending to 20, 50

or 100 clonotypes.

Fig 1. Broad BCR repertoire metrics in lymphoma and control cohorts. In the four panels, the essential repertoire metrics (A) clonality, (B) richness, (C)

diversity, and (D) somatic hypermutation rate are shown with corresponding quantiles (Q0.25, Median, Q0.75). We pairwise performed a two-sided Mann-

Whitney-U-Test with α = 0.05 (*** p< 0.001).

https://doi.org/10.1371/journal.pcbi.1011570.g001

Table 2. Numbers of BCR repertoires used for training.

HD NLPBL DLBCL CLL

Training 233 72 145 278

Test 58 18 37 70

https://doi.org/10.1371/journal.pcbi.1011570.t002
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Validation of machine learning algorithm

During the training phase, the models were trained on ⅔ and validated on ⅓ of the training

data. This form of validation is crucial in affirming the reliability, predictive capacity, and effec-

tiveness of the models in differentiating the subsets based on the featured BCR repertoire [28].

The validation assessment was undertaken through the analysis of key metrics including accu-

racy, recall, precision and the F1 score. The evaluation of these performance metrics provided a

comprehensive understanding of each model’s ability to correctly classify the different cases.

Fig 2A illustrates the averaged validation results achieved by the best performing models for

different numbers of clonotypes included in the calculation. While both models, the random

forest and the logistic regression, appeared to achieve accurate classification of CLL, DLBCL,

Fig 2. F1 scores of logistic regression models in training and test sets. (A) shows F1 scores averaged over validation

folds during training in all three scenarios and (B) those of best validated logistic regression model on the test set in all

three scenarios. As a comparison, the performance of the best random forest is displayed in green.

https://doi.org/10.1371/journal.pcbi.1011570.g002
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and HD on the validation sets using information from the top two to three clonotypes alone,

logistic regression exhibited improved performance with an increasing number of top reper-

toire clonotypes for all other cases. However, its performance began to decline when utilizing

50 or 100 clonotypes. In all comparisons including NLPBL, logistic regression demonstrated

superior performance to random forest when considering information from the top 4–20 clo-

notypes. The observation that especially discriminating NLPBL benefits from the inclusion of

a larger number of top repertoire clonotypes aligns well with the recognized significance of the

bystander lymphocyte repertoire in this entity.

Final testing of the machine learning models

Upon completing the training phase, the model that exhibited the highest performance based

on validation results was further trained on the entire training dataset and evaluated on a pre-

viously unseen test dataset. Table 3 showcases crucial metrics, encompassing accuracy, recall,

precision, and the F1 score.

Fig 2B shows the results of the best validated models on the test data not available during the

training phase. Similar to the validation results, we saw superior performance of the logistic

regression models. While the first scenario of CLL, DLBCL and HD could be accurately classified

by a logistic model only using information of the top three clonotypes, in the other scenarios, the

logistic regression heavily benefits from the information of the top 4–20 clonotypes. Although

the best performing models with respect to the validation results used 20 clonotypes, models

using the information of only 10 clonotypes performed equally or even better on the test set.

Data separation for n = 1 to n = 100 clonotypes

To gain a more comprehensive insight into the model’s performance, we conducted Principal

Component Analysis (PCA) on our feature list while varying the number of top repertoire

Table 3. Validation of best models on the independent test set.

HD vs. DLBCL vs. CLL

Logistic Regression n-clonotypes = 3

Precision Recall F1 N

CLL 0.82 0.94 0.88 70

DLBCL 0.85 0.59 0.70 37

HD 0.95 0.97 0.96 58

Accuracy 0.87

Weighted Avg. F1 0.87

HD vs. NLPBL vs. DLBCL

Logistic Regression n-clonotypes = 20

Precision Recall F1 N

NLPBL 0.80 0.67 0.73 18

DLBCL 0.94 0.86 0.90 37

HD 0.91 1.00 0.95 58

Accuracy 0.90

Weighted Avg. F1 0.90

HD vs. NLPBL vs. DLBCL vs. CLL

Logistic Regression n-clonotypes = 20

Precision Recall F1 N

NLPBL 0.80 0.67 0.73 18

DLBCL 0.84 0.57 0.68 37

HD 0.88 1.00 0.94 58

CLL 0.84 0.93 0.88 35

Accuracy 0.85

Weighted Avg. F1 0.84

https://doi.org/10.1371/journal.pcbi.1011570.t003
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clonotypes included in the analysis. Given the clinical relevance of distinguishing between

multiple lymphoma subtypes, our primary focus was on the scenario that encompassed all

four groups. When visualizing the data in the first two dimensions, we observed

overlapping clusters of lymphoma subtypes across different numbers of top repertoire clono-

types (Fig 3A–3D). Notably, NLPBL BCR repertoires samples exhibited significant overlap

with those from HD, whereas DLBCL repertoire samples appeared to overlap more with those

from CLL. Examining the various embeddings, it became evident that the problem was not

perfectly linearly separable along the dimensions of the first and second principal components.

However, we did observe the formation of distinct clusters within these two dimensions. Cor-

roborating our performance findings, the most significant separations were achieved when

considering the top 4–20 repertoire clonotypes.

Exploration of the factors contributing most to correct lymphoma

classification

Next, we wished to explore, which of the features contributed most to correct lymphoma clas-

sification. We show the 20 predictors with greatest coefficient magnitude averaged over all

classes in the best performing model for the comparison of NLPBL, DLBCL with CLL and HD

(Fig 4A). This overview helps to understand the overall importance and strength of each pre-

dictor variable for the model across all classes. We further analyze the contribution of each pre-

dictor between pairs of cohorts (Fig 4B).

Fig 3. Data separation using n = 1 to n = 100 top repertoire clonotypes. Principal Component Analysis (PCA) was performed on the feature list while

varying the number of top repertoire clonotypes included in the analysis. (A) n = 1 clonotype, (B) n = 4 clonotypes, (C) n = 20 clonotypes, (D) n = 100

clonotypes. We compared sample means using a multivariate analysis of variance (MANOVA).

https://doi.org/10.1371/journal.pcbi.1011570.g003
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The three most important predictors of the logistic regression were the frequency of the

most abundant clonotype in the repertoire and crude repertoire metrics (clonality, Shannon

diversity). While the fraction of somatic hypermutation within a repertoire belonged to the 20

most dominant predictors, repertoire richness seemed to play a minor role in the discrimina-

tion between NLPBL, DLBCL, CLL and HD.

Fig 4. 20 lymphoma subset predictors with greatest coefficient magnitude. (A) Predictors were averaged over all classes in

the best performing model for discrimination of HD vs. NLPBL vs. DLBCL vs. CLL. (B) Contribution of each predictor to the

discrimination between pairs of cohorts.

https://doi.org/10.1371/journal.pcbi.1011570.g004
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Moreover, the model predictions relied on features such as biochemical properties (Kidera

factors) and length of the CDR3 sequence of the most dominant clonotypes. Interestingly, we

found that Kidera Factor 7, which is associated with flat and extended conformations, and

Kidera Factor 9, which represents the partial positive charge of the side chain, served as predic-

tors for DLBCL. In contrast, Kidera factor 8, which reflects the alpha-helical secondary struc-

ture, was associated with CLL. The length of the CDR3 of the most dominant clonotype was

associated with NLPBL.

Finally, we found specific gene usages of the most dominant clonotypes to add to the dis-

criminative power of the model. For instance, the expression of IGHV4/OR15-8 and IGH4-34

by the most dominant clonotype was predictive of DLBCL and NLPBL, while IGHJ3 was asso-

ciated with NLPBL and CLL.

Discussion

We set out to develop a machine-learning tool capable of distinguishing between different

types of lymphomas by analyzing the B-cell architecture within lymphoma-infiltrated tissue

using BCR-repertoire NGS data. Interestingly, our data revealed that a simple logistic regres-

sion with the right set of predictors performed exceptionally well in achieving this goal. It dem-

onstrated a high degree of accuracy when discriminating between the three lymphoma types

in our test dataset.

The factors contributing to this successful discrimination were, to some extent, as we antici-

pated. For example, we found that broad repertoire metrics carried significant discriminatory

value. This result aligns with our expectations, especially in diseases characterized by varying

levels of immune bystander cells, where such metrics naturally play a role. For this proof-of-

concept study, we intentionally selected lymphoma entities characterized by distinct microen-

vironments. It is conceivable that fitting the algorithm on lymphoma entities with greater simi-

larities could potentially diminish the discriminatory capacity of the basic repertoire metrics,

while highlighting the significance of more specific features.

What made our findings particularly intriguing was the discovery that while we saw some

discriminative features, which might have been selected based on prior knowledge of the

malignant clonotype, some were not as much prioritized by this regression model. For

instance, the classical VDJ-rearrangement known to be present in the malignant NLPBL clo-

notype (V3D3J6) [29, 30] coupled with an unusually long CDR3 sequence length was not pri-

oritized by the algorithm to the extent we would have expected. While one might have

anticipated a clear separation based on these features, the discrimination between NLPBL and

other lymphomas, such as DLBCL, relied instead quite strongly on other immune repertoire

metrics. Overall, most of the discriminatory power came from features of the most dominant

clonotypes in the repertoire, yet there was quite some weight on global repertoire metrics

underscoring the complexity of lymphoid malignancies. The analysis of patterns of non-malig-

nant bystander cells—unrecognized by traditional bioinformatic analysis—may perspectively

shed more light on the immunobiology of lymphoma and may therefore even have broader

implications beyond diagnostics.

From a technical perspective, it needs to be noted that several key predictors in our model

exhibited correlation with each other, notably observed in the broad repertoire metrics of

diversity and clonality. Generally, higher diversity tends to correlate with lower clonality, and

vice versa, within biological systems. This relationship arises from the fact that higher diversity

suggests a wider range of distinct clones within a population, naturally resulting in a decreased

dominance of any single clone (lower clonality). Conversely, lower diversity implies a greater

proportion of cells originating from a limited number of ancestral clones (higher clonality).

PLOS COMPUTATIONAL BIOLOGY Lymphoma diagnostic by machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011570 July 2, 2024 10 / 17

https://doi.org/10.1371/journal.pcbi.1011570


However, it’s crucial to recognize that the association between diversity and clonality can vary

depending on the specific context and biological system under investigation. For instance, in

certain disease states or immune responses, an increase in diversity might coincide with an

increase in clonality if certain clones are selectively expanded in response to specific stimuli.

Thus, although correlated, these metrics provide distinct and non-overlapping information.

To ensure a comprehensive understanding of the data, we included all relevant metrics in our

analysis. While focusing on the comparison between logistic Regression and Random Forest

models for fixed numbers of clonotypes, we performed hyperparameter tuning using a grid

search approach. We opted for a predefined comprehensive feature set over other feature

selection methods to manage computational resource effectively. While acknowledging the

potential risk of overfitting, we mitigated this concern by employing a cross-validation regime.

In terms of model complexity, the robust performance of logistic regression and random

forest models suggests that the problem at hand may initially appear linearly separable. How-

ever, it is noteworthy that logistic regression starts to show limitations when the number of

clonotypes exceeds 20, rendering the problem non-linearly separable. This trend prompts the

exploration of deep learning models, which are well-suited for handling complex, non-linear

relationships within the data. Deep models, such as neural networks, have the capacity to cap-

ture intricate patterns and relationships within the data, making them a promising avenue for

further exploration. Yet, larger sequencing datasets would be needed to be able to apply deep

learning models. In this context, the role of data quantity in optimizing predictive power can-

not be overstated. Accumulating more data, particularly diverse and representative samples, is

instrumental in bolstering the performance of machine learning models. Additionally, careful

consideration of sampling strategies is crucial. Properly balanced and stratified sampling can

mitigate issues related to class imbalances and ensure that the model is trained on a compre-

hensive spectrum of cases. By addressing these aspects, we could refine our machine-learning

approach to achieve higher diagnostic accuracy in lymphoma subtyping and potentially even

uncover biologically valuable insights into lymphoma clonotypes and their

microenvironment.

Our dataset should be considered within the broader framework of evolving research on

the application of machine-learning algorithms for lymphoma diagnosis and subtyping.

Numerous studies are emerging in the field of digital hematopathology [31–35], and an

increasing body of data underscores the pivotal role of machine-learning in harmonizing

sequencing data related to lymphoma driver-genes [21–25]. Our approach introduces a novel

dimension by incorporating immune architecture as an additional layer of analysis. In this

respect, the potential of AI may be particularly significant when dealing with challenging sce-

narios such as suboptimal samples characterized by their small or squeezed nature. In such

cases, the BCR repertoire analysis may prove to be less susceptible to interpretation errors

compared to traditional morphological assessments. Moreover, specific situations may stand

to gain significant benefits, e.g. Richter’s transformation that can sometimes be quite complex

to diagnose, while in other instances discerning CLL from DLBCL poses fewer challenges. As

an added diagnostic tool in complex cases, it also holds the potential to address the widely rec-

ognized shortage of personnel in the field of pathology, which has garnered significant atten-

tion within the medical community [36].

Together, our study represents a significant advancement in the field as we demonstrate a

compelling proof-of-concept: the ability to differentiate between distinct lymphoma entities by

leveraging BCR repertoire NGS on lymphoma-infiltrated tissues through the application of a

trained machine learning model. This paves the way for further research and potential clinical

applications. In the future, our approach may become a component of digital lymphoma diag-

nostics as an efficient resource to complement conventional techniques.
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Methods

Ethics statement

New CLL BCR repertoire data has been acquired in a study reviewed by the Ethics Committee

of the Martin-Luther-University Halle-Wittenberg after informed written consent (project

number 2014–75). The BCR repertoire data of DLBCL samples derives from anonymized par-

affin-embedded tissue sections. All studies were conducted in accordance with the ethical

principles stated by the Declaration of Helsinki.

Study design

Most of the BCR repertoires have already been deposited in the context of different projects

[29,37–49] listed in S1 Table. The so far unpublished BCR repertoires are deposited together

with the previously published ones along with this manuscript to ensure replicability of our

results for the comprehensive cohort in the European Nucleotide Archive (ENA) at EMBL-EBI

under accession number PRJEB66357 (https://www.ebi.ac.uk/ena/browser/view/

PRJEB66357).

Sample collection, DNA preparation and NGS of BCR repertoires

Peripheral mononuclear cells (PBMC) were isolated from blood of CLL patients or HD by

standard density-gradient centrifugation using Ficoll. Genomic DNA was extracted from

PBMCs using the GenElute Mammalian Genomic DNA Miniprep Kit (Sigma-Aldrich,

St. Louis, USA). In DLBCL and NLPBL patients, DNA was extracted from paraffin-embedded

lymphoma-infiltrated tissue as previously described [29].

We used a multiplex PCR based on BIOMED-FR1 primer pool to amplify VDJ rearranged

immunoglobulin heavy chain (IGH) loci from 250 ng of genomic DNA. Purified amplicons

were pooled at 4 nM, quality-assessed on a 2100 Bioanalyzer (Agilent Technologies) and

sequenced on an Illumina MiSeq (paired-end, 2 x 301-cycles, v3 chemistry). Sequence reads

were mapped to genomic V, D, J reference sequences using the MiXCR framework [50]. As

reference for sequence alignment, the IMGT library v3 was used. For analysis, we defined each

unique complementarity-determining region 3 (CDR3) nucleotide sequence as a clonotype.

Non-productive reads and sequences with less than 2 read counts were discarded. IGHV genes

that showed� 98% identity to the germline sequence were considered somatically

hypermutated.

Immune repertoire metrics

We determined the clonality of the sequenced IGH repertoires using the formula “1- Pielou’s

evenness” [51,52]. In our context, evenness quantifies the relative prevalence of distinct B cell

types within each repertoire. It is calculated according to the formula J = H’/log2(S) with H’

being the Shannon diversity index [53] and S the total clonotype number (richness) [54] in a

distinct sample. A clonality index of 1 indicates that the analyzed sample comprises a single

clonotype, while 0 indicates complete clonal diversity. Since richness, clonality, and Shannon

diversity showed negligible to no correlation with total read count, we decided to utilize raw

sequencing data without applying any read normalization techniques (rrichness = 0.18,

p< 0.001; rclonality = 0.04, p = 0.22; rShannon = 0.08, p = 0.01).

Machine learning

Data preprocessing. For each clonotype in all repertoires, we extracted the clonotype

fraction, lengths of CDR3 sequences and the VDJ arrangement. Since VDJ genes are
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categorical features, we applied one-hot-encoding. Representing the theoretical physico-chem-

ical properties, we calculated the ten Kidera Factors from the individual amino acid sequence

of each CDR3 region and augmented the dataset with the clonality, Shannon diversity index

and richness for each repertoire as described. In order to deal with the variable number of clo-

notypes we set a fixed number of clonotypes per repertoire ranging from n = 1 to 10 and subse-

quently extending to 20, 50 or 100 clonotypes. Based on their clonotype fractions, we extracted

the n most dominant clonotypes within each repertoire while discarding the remaining clono-

types. For repertoires with fewer than n clonotypes we applied zero-padding to ensure consis-

tent input dimensions across all samples. We concatenated the features of the n clonotypes to

a single vector representing a single repertoire within 111 (n = 1) up to 10151 (n = 100 dimen-

sions. Depending on a freely varying hyperparameter we scaled the numerical feature across

all vectors to have zero mean and unit variance. We partitioned the data into a training (80%)

and test set (20%) ensuring the proportions of classes were maintained in both subsets.

Training

Within the training process we fitted two different model types in a supervised manner. The

first model was a random forest consisting of an ensemble of single decision trees. The second

model consists of a logistic regression minimizing a multinomial loss. While focusing on the

comparison between both models we performed hyperparameter tuning using a grid search

approach. We opted for a predefined comprehensive feature set over feature selection methods

to manage computational resource effectively. While acknowledging the potential risk of over-

fitting due to feature correlation (S2 Fig), we incorporated all relevant features available to

ensure the most comprehensive information about the data. We tried to mitigated potential

pitfalls by using a stratified k-fold cross-validation approach with k set to 3 folds fitting each

model with a different set of hyperparameters (S2 Table) to a subset of the training data. We

calculated the performance in form of the F1 score on the remaining part of the training set

and averaged the obtained scores over all folds. The best performing settings of hyperpara-

meters were chosen and used to train the model on the entire training set.

Testing

The best performing models with respect to the training phase were used to predict unseen

data from the separate test set. We compared the predictions of each model to the known

labels and calculated a final F1 score.

All analyses and data plotting were conducted using RStudio (version 1.1.456) or Python

(version 3.11.5) within a Conda environment. Model fitting and evaluation were executed

using scikit-learn 1.3.0. All computations were carried out on a MacBook Pro featuring an M1

processor, with Kernel Version Darwin 22.6.0 and macOS 13.5.2.

All code is available on github.com/paulovic96.

Supporting information

S1 Fig. Somatic hypermutation rate of top 10 clonotypes. Somatic hypermutation rate calcu-

lated based on the 10 most frequent clonotypes per repertoire.

(TIFF)

S2 Fig. Feature correlation Matrix. Correlation of major immune repertoire metrics along

with strongest predictors from the best performing model for discrimination of HD vs.

NLPBL vs. DLBCL vs. CLL.

(TIFF)
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S2 Table. Hyperparameter settings.

(DOCX)

Acknowledgments

We thank the lymphoma patients and healthy donors for their great support. Moreover, we

thank Adeline Stiefvater, Christoph Wosiek, Aline Patzschke, Jenny Wehde, Yiqing Du and

Katrin Nerger for excellent technical assistance. We also thank Roland Mertelsmann for his

valuable advice and the CRIION for core AI support.

Author Contributions

Conceptualization: Mascha Binder, Maria Kalweit.

Data curation: Paul Schmidt-Barbo, Edith Willscher.

Formal analysis: Paul Schmidt-Barbo, Gabriel Kalweit, Stefan Dirnhofer, Alexandar Tzankov,

Mascha Binder, Maria Kalweit.

Investigation: Paul Schmidt-Barbo, Maria Kalweit.

Methodology: Paul Schmidt-Barbo, Gabriel Kalweit, Mehdi Naouar, Maria Kalweit.

Project administration: Mascha Binder, Maria Kalweit.

Resources: Lisa Paschold, Edith Willscher, Christoph Schultheiß, Bruno Märkl, Stefan Dirn-

hofer, Alexandar Tzankov, Mascha Binder.

Software: Paul Schmidt-Barbo, Gabriel Kalweit, Mehdi Naouar, Maria Kalweit.

Supervision: Mascha Binder, Maria Kalweit.

Validation: Paul Schmidt-Barbo, Gabriel Kalweit, Christoph Schultheiß, Mascha Binder,

Maria Kalweit.

Visualization: Paul Schmidt-Barbo.

Writing – original draft: Paul Schmidt-Barbo, Mascha Binder, Maria Kalweit.

Writing – review & editing: Paul Schmidt-Barbo, Gabriel Kalweit, Mehdi Naouar, Lisa Pasc-

hold, Edith Willscher, Christoph Schultheiß, Bruno Märkl, Stefan Dirnhofer, Alexandar

Tzankov, Mascha Binder, Maria Kalweit.

References
1. Bonilla FA, Oettgen HC. Adaptive immunity. J Allergy Clin Immunol. 2010; 125(2 Suppl 2):S33–40.

https://doi.org/10.1016/j.jaci.2009.09.017 PMID: 20061006

2. Cooper MD. The early history of B cells. Nat Rev Immunol. 2015; 15(3):191–7. https://doi.org/10.1038/

nri3801 PMID: 25656707

3. Wang Y, Liu J, Burrows PD, Wang JY. B Cell Development and Maturation. Adv Exp Med Biol. 2020;

1254:1–22. https://doi.org/10.1007/978-981-15-3532-1_1 PMID: 32323265

4. Pieper K, Grimbacher B, Eibel H. B-cell biology and development. J Allergy Clin Immunol. 2013; 131

(4):959–71. https://doi.org/10.1016/j.jaci.2013.01.046 PMID: 23465663

5. Tanaka S, Baba Y. B Cell Receptor Signaling. Adv Exp Med Biol. 2020; 1254:23–36. https://doi.org/10.

1007/978-981-15-3532-1_2 PMID: 32323266

6. Cyster JG, Allen CDC. B Cell Responses: Cell Interaction Dynamics and Decisions. Cell. 2019; 177

(3):524–40. https://doi.org/10.1016/j.cell.2019.03.016 PMID: 31002794

PLOS COMPUTATIONAL BIOLOGY Lymphoma diagnostic by machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1011570 July 2, 2024 14 / 17

http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011570.s003
http://journals.plos.org/ploscompbiol/article/asset?unique&id=info:doi/10.1371/journal.pcbi.1011570.s004
https://doi.org/10.1016/j.jaci.2009.09.017
http://www.ncbi.nlm.nih.gov/pubmed/20061006
https://doi.org/10.1038/nri3801
https://doi.org/10.1038/nri3801
http://www.ncbi.nlm.nih.gov/pubmed/25656707
https://doi.org/10.1007/978-981-15-3532-1%5F1
http://www.ncbi.nlm.nih.gov/pubmed/32323265
https://doi.org/10.1016/j.jaci.2013.01.046
http://www.ncbi.nlm.nih.gov/pubmed/23465663
https://doi.org/10.1007/978-981-15-3532-1%5F2
https://doi.org/10.1007/978-981-15-3532-1%5F2
http://www.ncbi.nlm.nih.gov/pubmed/32323266
https://doi.org/10.1016/j.cell.2019.03.016
http://www.ncbi.nlm.nih.gov/pubmed/31002794
https://doi.org/10.1371/journal.pcbi.1011570


7. De Silva NS, Klein U. Dynamics of B cells in germinal centres. Nat Rev Immunol. 2015; 15(3):137–48.

https://doi.org/10.1038/nri3804 PMID: 25656706

8. Chi X, Li Y, Qiu X. V(D)J recombination, somatic hypermutation and class switch recombination of

immunoglobulins: mechanism and regulation. Immunology. 2020; 160(3):233–47. https://doi.org/10.

1111/imm.13176 PMID: 32031242

9. Zheng B, Yang Y, Chen L, Wu M, Zhou S. B-cell receptor repertoire sequencing: Deeper digging into

the mechanisms and clinical aspects of immune-mediated diseases. iScience. 2022; 25(10):105002.

https://doi.org/10.1016/j.isci.2022.105002 PMID: 36157582

10. Kovaltsuk A, Krawczyk K, Galson JD, Kelly DF, Deane CM, Truck J. How B-Cell Receptor Repertoire

Sequencing Can Be Enriched with Structural Antibody Data. Front Immunol. 2017; 8:1753. https://doi.

org/10.3389/fimmu.2017.01753 PMID: 29276518

11. Young C, Brink R. The unique biology of germinal center B cells. Immunity. 2021; 54(8):1652–64.

https://doi.org/10.1016/j.immuni.2021.07.015 PMID: 34380063

12. Bispo JAB, Pinheiro PS, Kobetz EK. Epidemiology and Etiology of Leukemia and Lymphoma. Cold

Spring Harb Perspect Med. 2020; 10(6). https://doi.org/10.1101/cshperspect.a034819 PMID:

31727680

13. Meng X, Min Q, Wang JY. B Cell Lymphoma. Adv Exp Med Biol. 2020; 1254:161–81.

14. Seifert M, Scholtysik R, Kuppers R. Origin and Pathogenesis of B Cell Lymphomas. Methods Mol Biol.

2019; 1956:1–33. https://doi.org/10.1007/978-1-4939-9151-8_1 PMID: 30779028

15. Kuppers R. Mechanisms of B-cell lymphoma pathogenesis. Nat Rev Cancer. 2005; 5(4):251–62.

https://doi.org/10.1038/nrc1589 PMID: 15803153

16. Agathangelidis A, Psomopoulos F, Stamatopoulos K. Stereotyped B Cell Receptor Immunoglobulins in

B Cell Lymphomas. Methods Mol Biol. 2019; 1956:139–55. https://doi.org/10.1007/978-1-4939-9151-

8_7 PMID: 30779034

17. Agathangelidis A, Vardi A, Baliakas P, Stamatopoulos K. Stereotyped B-cell receptors in chronic lym-

phocytic leukemia. Leuk Lymphoma. 2014; 55(10):2252–61. https://doi.org/10.3109/10428194.2013.

879715 PMID: 24397617

18. Schroers-Martin JG, Alig S, Garofalo A, Tessoulin B, Sugio T, Alizadeh AA. Molecular Monitoring of

Lymphomas. Annu Rev Pathol. 2023; 18:149–80. https://doi.org/10.1146/annurev-pathol-050520-

044652 PMID: 36130071

19. Hopken UE, Rehm A. Targeting the Tumor Microenvironment of Leukemia and Lymphoma. Trends

Cancer. 2019; 5(6):351–64. https://doi.org/10.1016/j.trecan.2019.05.001 PMID: 31208697

20. Menter T, Tzankov A. Lymphomas and Their Microenvironment: A Multifaceted Relationship. Pathobiol-

ogy. 2019; 86(5–6):225–36. https://doi.org/10.1159/000502912 PMID: 31574515

21. Albitar M, Xu-Monette ZY, Shahbaba B, De Dios I, Wang Y, Manman D, et al. Cell of Origin Classifica-

tion of DLBCL Using Targeted NGS Expression Profiling and Deep Learning. Blood. 2019; 134

(Supplement_1):2891–.

22. Kanduri C, PavlovićM, Scheffer L, Motwani K, Chernigovskaya M, Greiff V, et al. Profiling the baseline

performance and limits of machine learning models for adaptive immune receptor repertoire classifica-

tion. bioRxiv. 2021:2021.05.23.445346.
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