
Verification of System Properties
of Polynomial Systems

using Discrete-time Approximations
and Set-based Analysis

Dissertation
zur Erlangung des akademischen Grades

Doktoringenieur (Dr.-Ing.)

von
Philipp Rumschinski

geboren am 27. Oktober 1980 in Tübingen

genehmigt durch die Fakultät für Elektrotechnik und Informationstechnik der
Otto-von-Guericke-Universität Magdeburg

Gutachter:
Prof. Dr.-Ing. Rolf Findeisen

Prof. Dr. rer. nat. Nicole Radde
Dr. Dina Shona Laila

eingereicht am 24. November 2014
Promotionskolloquium am 18. August 2015



To my parents and grandparents.



Acknowledgment

Foremost I want to express my gratitude towards my supervisor Prof. Findeisen for
giving me the opportunity to pursue this work and for providing his guidance and
advice during my time at the Otto-von-Guericke University, Magdeburg.
My gratitude extends to Dina Shona Laila and Stefan Streif, for their mentorship,

the fruitful collaborations, numerous discussions, and in case of Stefan for the time we
spent together outside of work.
I would also like to recognize my other collaborators with whom I was able to work

on so many interesting problems and projects. In particular I want to mention, Steffen
Borchers and Sandro Bosio with whom I began the work on set-based methods.
Besides I want to thank my colleagues at the Institute for Automation to make

this time so much more enjoyable. I am especially grateful to Anton Savchenko, Ben-
jamin Kern, Lisa Carius, Paolo Varutti, Pablo Zometa, Petar Andonov, and Timm
Faulwasser. Other past and present group members that I have had the pleasure
to work with or alongside of are Daniel Hast, Eric Bullinger, Friedrich von Hae-
seler, Janine Matschek, Jürgen Ihlow, Khalid J. Kazim Al-Chaabawi, Markus Kögel,
Matthias Rausch, Michael Kopf, Michael Maiworm, Monica Schliemann-Bullinger, Na-
dine Rudolph, Patrick Pascheka, Reinhardt Klein, Saša V. Racković, Sergio Lucia,
Solvey Maldonado, and Tobias Bäthge.
On a personal level, my strength and dedication to pursue a PhD mainly derives

from my family and my wish to make them proud. I am extremely grateful for their
love, support, and patience over the whole time span. Thank you so much!

III





Contents

Abstract VIII

Zusammenfassung IX

Deutsche Kurzfassung XI

1 Introduction 1
1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Set-based Estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2.1 Motivation and Existing Approaches . . . . . . . . . . . . . . . 3
1.2.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Observability of Uncertain Polynomial Systems . . . . . . . . . . . . . 9
1.3.1 Motivation and Existing Approaches . . . . . . . . . . . . . . . 9
1.3.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2 Considered System Classes and Properties 12
2.1 System Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.1.1 Continuous-time Systems . . . . . . . . . . . . . . . . . . . . . . 12
2.1.2 Discrete-time Systems . . . . . . . . . . . . . . . . . . . . . . . 13

2.2 Considered System Properties . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.1 Model Consistency . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.2 Reachability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.2.3 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3 Uncertainties and Model Consistency 17
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3.2 Considered Uncertainties . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.3 Model Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.1 Model Consistency for Quantitative Data . . . . . . . . . . . . . 19
3.3.2 Model Consistency for Semi-Quantitative, Qualitative Data . . . 20

3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

4 Discrete-Time Systems 23

V



Contents

4.1 Introduction: Set-based Estimation . . . . . . . . . . . . . . . . . . . . 23
4.2 Feasibility Problem Formulation . . . . . . . . . . . . . . . . . . . . . . 24

4.2.1 Formulation of Semi-Quantitative Data . . . . . . . . . . . . . . 25
4.3 Reformulation and Relaxation . . . . . . . . . . . . . . . . . . . . . . . 27

4.3.1 Lasserre’s Moment Relaxation . . . . . . . . . . . . . . . . . . . 28
4.3.2 Shor’s Relaxation . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.3.3 Remarks on Linear Relaxations . . . . . . . . . . . . . . . . . . 33

4.4 Example: Model Consistency . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.1 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.4.2 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Example: Biological Adaptation Model . . . . . . . . . . . . . . . . . . 38
4.5.1 Background: Adaptation . . . . . . . . . . . . . . . . . . . . . . 38
4.5.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.5.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 40

4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

5 Continuous-Time Systems 42
5.1 Introduction: Set-based Estimation . . . . . . . . . . . . . . . . . . . . 42
5.2 Relationship of Continuous-time and Discrete-time Models . . . . . . . 45

5.2.1 Embedding Systems . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3 Exact Discretization . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
5.4 Guaranteed Parameter Estimation using Discrete-time Approximations 50

5.4.1 Picard-Lindelöf Theorem . . . . . . . . . . . . . . . . . . . . . . 50
5.4.2 Enclosure of the Continuous-Time Reachable Set . . . . . . . . 52
5.4.3 Reachability and Strong Consistency . . . . . . . . . . . . . . . 56

5.5 Model Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.5.1 Strong Inconsistency . . . . . . . . . . . . . . . . . . . . . . . . 61
5.5.2 Augmented Euler System . . . . . . . . . . . . . . . . . . . . . . 61
5.5.3 Weak Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . 63

5.6 Example: Bacterial Growth Model . . . . . . . . . . . . . . . . . . . . 65
5.6.1 Background: Rhodospirillum rubrum . . . . . . . . . . . . . . . 65
5.6.2 Model Description . . . . . . . . . . . . . . . . . . . . . . . . . 67
5.6.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . 68

5.7 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6 Observability of Polynomial Systems 73
6.1 Introduction: Observability . . . . . . . . . . . . . . . . . . . . . . . . 74
6.2 Observability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.2.1 Nominal Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.2.2 Uncertain Systems . . . . . . . . . . . . . . . . . . . . . . . . . 81

6.3 Output Energy Measure for Practical Observability Analysis . . . . . . 86

VI



Contents

6.3.1 Output Energy . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
6.3.2 Reformulation of the Output Norm . . . . . . . . . . . . . . . . 88
6.3.3 Infinite-Dimensional Linear Program and Relaxation . . . . . . 89
6.3.4 Application to Observability Analysis . . . . . . . . . . . . . . . 90

6.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

7 Summary and Conclusions 95
7.1 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

A Moment Relaxation 98
A.1 Mathematical Notation and Definitions . . . . . . . . . . . . . . . . . . 98

B Tables of the Examples 100
B.1 Adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

Bibliography 103

VII



Abstract

To satisfy the steadily increasing requirements on safety and quality of processes in
industry and natural sciences, model-based system and control theoretical methods
become increasingly important. To obtain a suitable model for control and analysis of
processes is, however, a nontrivial task in general.
In this thesis, we present methods for verifying and analyzing dynamical models

helpful in the derivation of suitable model candidates. In particular, the problems of
proving model invalidity, estimating initial conditions, parameters and states, deriv-
ing reachable sets, and analyzing observability of continuous-time and discrete-time
systems are considered.
The fundamental basis of the derived results is the reformulation of these model

analysis and verification tasks as polynomial feasibility and polynomial optimization
problems. This reformulation allows on the one hand that these problems can be solved
efficiently with the help of semi-definite and linear relaxations and on the other hand
that the considered system properties can be verified. Moreover, the reformulation al-
lows not only the consideration of set-valued uncertainties in the initial conditions, the
parameters, and inputs, but also the consideration of semi-quantitative and qualitative
observations and safety requirements.
The analysis of uncertain continuous-time systems is mainly based on discrete-time

approximations. For this reason, we study the necessary conditions such that results
obtained for the discrete-time system can be transferred to the continuous-time sys-
tem. For instance, under which conditions can we conclude from inconsistency of the
discrete-time model with the available measurement data and safety requirements to
inconsistency of the continuous-time model.
The proposed observability analysis of uncertain dynamical systems is based on

the investigation of algebraic observability notions and the bounded L2-norm of the
output. We show that both conditions can be addressed by a converging hierarchy of
semi-definite programs.
The derived results and methods are validated considering examples from systems

biology, biotechnology, and academic examples.
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Zusammenfassung

Um die ständig ansteigenden Anforderungen an die Sicherheit und Qualität von
Prozessen in der Industrie erfüllen zu können, werden modell-basierte system- und
regelungstheoretische Ansätze immer wichtiger. Die Konstruktion eines geeigneten
Modells stellt jedoch in der Regel eine schwierige Aufgabe dar.
In dieser Arbeit werden daher Verfahren vorgestellt, die die Modellierung erleichtern.

Insbesondere werden Fragestellungen zur Modellinvalidierung, der Schätzung von An-
fangsbedingungen, Parametern und Zuständen, der Berechnung von Erreichbarkeits-
mengen sowie der Beobachtbarkeitsanalyse für zeitdiskrete und zeitkontinuierliche Sys-
teme näher betrachtet.
Die Grundlage der erreichten Ergebnisse bilden Reformulierungen dieser Fragestel-

lungen in Form von polynomialen Optimierungs- und Machbarkeitsproblemen. Diese
Reformulierungen können zudem mit Hilfe von semi-definiten und linearen Relaxierun-
gen effizient gelöst und die untersuchten Systemeigenschaften garantiert nachgewiesen
werden. Des Weiteren lassen sich sowohl mengenbasierte Unsicherheiten in den An-
fangsbedingungen, den Parametern und Eingängen als auch semi-quantitative und
qualitative Beobachtungen und Sicherheitsanforderungen berücksichtigen.
Die Betrachtung von unsicheren, zeitkontinuierlichen Systemen basiert vor allem

auf der Analyse von zeitdiskreten Approximationen. Daher werden die notwendi-
gen Bedingungen untersucht, so dass Eigenschaften, die für das zeitdiskrete Modell
nachgewiesen werden können auch auf das zeitkontinuierliche übertragbar sind. So
lässt sich beispielsweise die Frage, unter welchen Bedingungen von der Modellinkon-
sistenz der Approximation bezüglich Messungen und Sicherheitsanforderungen auf die
Modellinkosistenz des zeitkontinuierlichen Systems geschlossen werden kann, beant-
worten.
Die Beobachtbarkeitsanalyse für unsichere zeitdiskrete und zeitkontinuierliche Sys-

teme kann direkt mit Hilfe von algebraischen Beobachtbarkeitsbedingungen und der
L2-Norm des Ausgangs untersucht werden. Besagte Bedingungen lassen sich wiederum
mit einer konvergierenden Hierarchie an semi-definiten Programmen prüfen.
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Einleitung
Die Grundlage für die Anwendung von modellbasierten regelungs- und systemtheore-
tischen Ansätzen ist immer die Erstellung eines mathematischen Modells, das den zu
untersuchenden Prozess in ausreichender Genauigkeit beschreibt. Hierbei bezieht sich
Genauigkeit zum einen auf die quantitative Beschreibung der Systemzustände, wie
z. B. Temperatur, Druck, Neigewinkel, und zum anderen auf die Möglichkeit Vorher-
sagen über das qualitative Systemverhalten, wie z. B. Stabilität, zu liefern. Die Forde-
rung nach Genauigkeit begründet sich durch die ständig ansteigenden Sicherheits- und
Qualitätsansprüche in der Industrie und durch die benötigte Flexibilität industrieller
Prozesse unter Wirtschaflichkeitsgesichtspunkten. Dies führt ebenfalls dazu, dass ein
Modell immer gößere Arbeitsbereiche und Aufgabenbereiche abdecken muss. Jedoch
nicht nur in der Industrie werden Modelle benötigt, sondern auch in der Forschung
stellen mathematische Modelle oftmals die Basis für die Untersuchung von Prozessen
dar. Insbesondere sei hier der Bereich der Systembiologie genannt, dessen Ziel es ist,
das einheitliche Verständnis von biologischen Organismen zu erreichen. Hier werden
z. B. modellbasierte Analysen dazu verwendet die Zusammenhänge von Enzymen, Bo-
tenstoffen, und Stimuli zu verstehen, die nach dem derzeitigen Stand der Wissenschaft
bisher noch nicht erklärt werden können.
Die Erstellung eines mathematischen Modells wird allerdings durch verschiedene

Faktoren erschwert. Reale Prozesse verhalten sich normalerweise nichtlinear, d. h. ein
realer Prozess kann Phänomene wie mehrere isolierte Ruhelagen, Limitzyklen oder
Chaos aufweisen. Solche Phänomene schränken die Anzahl verwendbarer Systemiden-
tifikationsmethoden erheblich ein, da die Mehrzahl dieser Methoden auf linearen Mo-
dellen beruhen [99, 120]. Des Weiteren kommen heutzutage immer häufiger digitale
Sensoren zum Einsatz, um Messungen an diskreten Zeitpunkten von einem Prozess
vorzunehmen. Daher ist es im Allgemeinen einfacher ein zeitdiskretes Modell zu be-
stimmen als ein zeitkontinuierliches [120]. Reale Prozesse verhalten sich jedoch norma-
lerweise zeitkontinuierlich. Dieser Gegensatz stellt einer der grundlegenden Motivatio-
nen der vorliegenden Arbeit dar, nämlich die kontinuierliche und die zeitdiskrete Welt
in Bezug auf die Entwicklung von Methoden zur Verifikation von Systemeigenschaften
zusammenzubringen, welche für die Erstellung genauer Modelle für die Industrie und
Forschung benötigt werden.
Eine Weitere Schwierigkeit, die für die Entwicklung von Methoden zur Verifikation

von Modellen betrachtet werden muss, ergibt sich aus den unausweichlichen Unsicher-
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heiten bei der Modellierung eines Prozesses. Diese Unsicherheiten können unterschied-
liche Ursprünge haben. Ein Prozess kann derart komplex sein, dass eine vollständige
physikalische-chemische Modellierung nicht zweckmässig ist, was direkt zu strukturel-
len Unsicherheiten führt [170]. Dies ist insbesondere in der Modellierung von biologi-
schen Systemen der Fall, da in den seltensten Fällen alle involvierten Enzyme und Gene
bekannt sind [202]. Ein weiterer Ursprung ergibt sich aus den Messungen. Verwendete
Messgeräte und Messverfahren sind normalerweise unvollkommen, und nicht alle in-
teressierenden physikalischen Grössen können direkt gemessen werden. Eine weitere
Quelle an Messunsicherheiten ist die möglicherweise eingeschränkte Wiederholbarkeit
einer Messung. Dies führt dazu, dass der mögliche Wertebereich mit der dazugehörigen
Wahrscheinlichkeitsverteilung nicht genau bestimmt werden kann [179].
In dieser Arbeit werden verschiedene Ansätze entwickelt, um die oben genannten

Schwierigkeiten in der Modellierung und in der Analyse von Modellen zu bewältigen.
Insbesondere wird hier mit Hilfe von mengenbasierten Verfahren die Parameterschät-
zung von zeitkontinuierlichen Modellen betrachtet. Diese auf Optimierungsverfahren
basierenden Methoden erlauben es bestimmte Systemeigenschaften, wie z. B. die Kon-
sistenz eines Modells bezüglich vorhandener Messungen, zu garantieren. Im Folgenden
werden kurz die betrachteten Probleme, die möglichen Anwendungsgebiete, sowie die
entwickelten Methoden skizziert.

Grundlagen und Illustration der behandelten Probleme

Es wird angenommen, dass sich die in dieser Arbeit betrachtenden Prozesse durch ein
gewöhnliches Differentialgleichungssystem der Form (t ∈ R)

ẋ(t) = f(x(t), u(t), p), x(0) = x0,

y(t) = h(x(t), u(t), p),

beziehungsweise als Differenzengleichungssystem der Form (k ∈ N ∪ {0})

x(k + 1) = fD(x(k), u(k), p), x(0) = x0,

y(k) = hD(x(k), u(k), p),

beschreiben lassen. Wobei x ∈ Rnx den Zustandsvektor, u ∈ Rnu den Eingang, y ∈ Rny

den Ausgang darstellen. Der Parametervektor wird mit p ∈ Rnp bezeichnet. Im Dif-
ferenzengleichungssystem beschreibt D > 0 die Zeitschrittweite. Die rechten Seiten
der obigen Systeme werden stets als polynomial angenommen. Des Weiteren wird
angenommen, dass die Werte von x, u, y und p durch geschlossene, kompakte, semi-
algebraische Mengen X ,U ,Y ,P beschränkt sind. Diese Mengen repräsentieren die
Modell-, Eingangs- und Messunsicherheiten, sowie mögliche Beschränkungen durch
verbotene Zustände oder Limitationen des Eingangsignals. In späteren Abschnitten
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werden zudem logische Verküpfungen eingeführt, die noch allgemeinere Unsicherhei-
ten und Beschränkungen, wie z. B. eine qualitative Beschreibung von Systemanforde-
rungen, erlauben. Ein Beispiel für eine solche Unsicherheit ist die Übertragung von
wenn-dann Beobachtungen in der Systembiologie: wenn das Substrat A in ausreichen-
der Menge vorliegt dann steigt die Konzentration von Produkt B kontinuierlich an.
Für die Illustration der im Folgenden vorgestellten Fragen und Ergebnisse, ist die
einfachere Beschreibung der Unsicherheit als Mengen jedoch ausreichend.
Messungen der Systemzustände und Ausgänge werden in dieser Arbeit ebenfalls als

semi-algebraische Mengen der Form

Xt := {x : gx(x) ≥ 0} ⊆ Rnx bzw. Yt := {y : gy(y) ≥ 0} ⊆ Rny

angenommen, wobei die Funktion gx(·), gy(·) Polynome darstellen.
Diese allgemeine Systembeschreibung lässt es zu verschiedenste Probleme zu berück-

sichtigen. So werden nachfolgend unter anderem die folgenden Fragen betrachtet und
entsprechende Lösungsverfahren entwickelt.

• (Modellkonsistenz) Wann kann garantiert werden, dass ein unsicheres Modell eine
Messreihe bestehend aus Mengen exakt wiedergeben kann?

• (Erreichbarkeit) Wann kann sichergestellt werden, dass ein zeitkontinuierliches Mo-
dell, sowie dessen zeitdiskrete Approximation, die selbe Erreichbarkeitsmenge be-
sitzen?

• (Beobachtbarkeit) Wann kann bei einem unsicheren System aus möglichen Werten
des Ausgangs der Zustandsvektor rekonstruiert werden?

Die erste Frage stellt den wichtigsten Schritt im Modellbildungskreislauf dar, nämlich
der Verifikation des Modells mit Hilfe von (experimentellen) Messdaten und Beobach-
tungen [58]. Nur wenn ein Modell in der Lage ist das vorhandene Wissen wiederzuge-
ben war die Modellierung erfolgreich. Anwendungsbeispiele für die hier entwickelten
Verfahren bei der Modellierung und Modellinvalidierung von biologischen Systemen
lassen sich in den folgenden Arbeiten finden [33, 164, 170]. Ein weiteres Gebiet in dem
Modellkonsistenz eine wichtige Rolle spielt, ist die modellbasierte Fehlerdiagnose in
technischen Systemen, siehe z. B. [169, 174]. Hier werden die Messdaten dazu verwen-
det Fehler zu erkennen, um gegebenenfalls Gegenmaßnahmen zur Sicherstellung des
korrekten Betriebs des Prozesses einleiten zu können.
Erreichbarkeit wird ähnlich wie die Modellkonsistenz in der Verifikation von Spezifi-

kationen an einen Prozess eingesetzt. Dies ist besonders im Bereich der hybriden Sys-
teme der Fall, also bei Systemen in denen zeitkontinuierliche und zeitdiskrete Vorgänge
betrachtet werden müssen. Hierzu gehört die Regelung eines physikalischen Prozesses
mit einem digitalen Regler [128, 174, 181]. Im Allgemeinen bezieht sich der Begriff
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Abbildung I: Illustration der Modellkonsistenz eines Systems. Messdaten sind als
schwarze Intervalle an diskreten Zeitpunkten dargestellt. Die grüne Menge korre-
spondiert zu Anfangsbedingungen x0 und Parametern p die zu einer konsistenten
Trajektorie φ(t) führen (ebenfalls grün dargestellt), während die rote Menge zu
inkonsistenten Trajektorien korrespondiert.

der Erreichbarkeit als die Möglichkeit ein System von einer gegebenen Anfangsbedin-
gung x0 zu einem gewissen Endzustand x(T ) zu überführen. Daher ist Erreichbarkeit
zusammen mit Stabilisierbarkeit auch in dem Begriff der Steuerbarkeit enthalten.
Die letzte der drei Fragen bildet häufig die Grundlage für die Anwendbarkeit einer

Regelung in der Praxis. Normalerweise lassen sich nicht alle interessierenden Zustände
eines Prozesses direkt messen. Der Wert dieser Grössen kann jedoch notwendig sein,
um den Prozess regeln zu können [11, 67, 94]. In der Praxis muss infolgedessen ein
sogenannter Zustandsschätzer eingesetzt werden, der aus den Messwerten die mögli-
chen Werte der Zustände bestimmt, siehe z. B. [85, 186]. Beobachtbarkeit lässt sich
in der Theorie als die Möglichkeit den Zustand eines Systems aus den Messwerten
rekonstruieren zu können definieren [78]. Eine äquivalente Definition ergibt sich aus
der Existenz eines geeigneten Zustandsschätzers [78].
Im Folgenden wird die in dieser Arbeit entwickelte Methodik an Hand der ersten

Frage illustriert, siehe auch Abbildung I. Es wird hierzu angenommen, dass Messungen
der Ausgänge Yti für bestimmte Zeitpunkte ti ∈ T := {t0, . . . , tk}, sowie ein bekann-
tes Eingangssignal u(t) = us verfügbar sind. Die theoretische Fragestellung lautet in
diesem Fall wie folgt:

Frage I (Modellkonsistenz). Existieren Anfangsbedingungen und Parameter, die zu
einer Systemtrajektorie φ(t) := φ(x(t)|us, p, x0) führen, so dass der Ausgang y(ti) =
h(φ(ti), us, p) zu allen Zeitpunkten ti ∈ T innerhalb der korrespondierenden Menge Yti
liegt, d. h. y(ti) ∈ Yti, ∀ti ∈ T ?

Diese Frage kann beantwortet werden in dem diese als ein polynomiales Machbar-
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keitsproblem der Form

finde x0, p

u.d.N. φ(t) ∈ X , y(t) ∈ Y , u(t) = us,

p ∈ P , y(ti) ∈ Yti, ti ∈ T ,
(I)

umformuliert wird, wie z. B. in den Arbeiten [27, 164] gezeigt wurde. Frage I ist in die-
sem Fall äquivalent zu der Lösungsmenge des Machbarkeitsproblems. Wenn nun die
Lösungsmenge leer ist, ist das betrachtete Modell nicht konsistent mit den Messun-
gen. Das heißt, dass keine Anfangsbedingungen und Parameter existieren, die zu einer
entsprechenden Systemtrajektorie führen, vergleiche hierzu auch die rote Menge und
die roten Trajektorien in Abbildung I. Ist sie nicht leer, kann die Lösungmenge dazu
genutzt werden die Bereiche in dem mögliche Werte der Variablen des Machbarkeits-
problems liegen, wie z. B. der Parameter, besser einzuschränken (vgl. mit der grünen
Menge und der grünen Trajektorie in Abbildung I). Die Einschränkung der Mengen
kann zudem wichtige Einblicke in das Systemverhalten liefern. So kann beispielsweise
die Größe eines Parameterbereiches als Kennzeichen für die Robustheit eines Prozesses
gegenüber Störungen herangezogen werden [202].
Jedoch ist zu beachten, dass die Lösungsmenge unter den vorgestellten Annahmen

typischerweise nicht konvex ist. Dadurch ist die Bestimmung der Lösungsmenge im
Allgemeinen nicht einfach möglich und daher auch nur wenige geeignete Methoden
bekannt. Eine weitere Schwierigkeit ergibt sich, falls sich das System zeitkontinuierlich
verhält. Im Regelfall kann die Lösungsmenge dann nur mit Hilfe von numerischer In-
tegration des Differentialgleichungssystems bestimmt werden. Allerdings kann hierbei
in der Regel keine Garantie gegeben werden, dass die so bestimmte Lösungsmenge die
Modellkonsistenz des zeitkontinuierlichen Systems exakt wiedergibt [97]. Aus diesem
Grund ist es möglich, dass beispielsweise ein inkonsistentes Modell fälschlicherweise
als konsistent angenommen wird.
Die Grundlage zur Bestimmung der Lösungsmengen, die in dieser Arbeit verwendet

wird, ist die Reformulation des Machbarkeitsproblems mit Hilfe der von Lasserre in
[108] vorgestellten Methodik. Diese beruht auf der Äquivalenz von polynomialen Op-
timierungsproblemen bzw. Machbarkeitsproblemen mit dem sogenannten problem of
moments, welches im Folgenden als Momentenproblem bezeichnet wird. Dieses Pro-
blem beschreibt die Existenz einer Wahrscheinlichkeitsverteilung auf dem von den Ne-
benbedingungen beschriebenen Gebiets, wobei der Support der Wahrscheinlichkeits-
verteilung gleichbedeutend ist zu der zu bestimmenden Lösungsmenge. Da das Mo-
mentenproblem über den Raum der Wahrscheinlichkeitsverteilungen formuliert wird,
ist dieses unendlichdimensional und daher oftmals nicht exakt lösbar. Daher ist es
notwendig dieses mit Hilfe einer konvergierenden Hierarchie von semi-definiten Pro-
grammen zu approximieren. Jedes dieser Programme kann jedoch in polynomialer Zeit
in Abhängigkeit von den Eingangsgrößen gelöst werden [23]. Der große Vorteil der ver-
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wendeten Methodik, neben der effizienten Lösbarkeit, ist die kohärente Betrachtung
der angesprochenen Probleme mit Hilfe eines einzigen Verfahrens, das es zudem erlaubt
die geforderten Garantien zu liefern. Zum Beispiel ist es möglich eine Garantie zu ge-
ben, dass die Lösungsmenge leer ist oder auch dass die Lösungsmenge exakt bestimmt
wurde.
Die Formulierung geeigneter Machbarkeitsprobleme zur Verifikation der oben ge-

nannten Systemeigenschaften, sowohl für zeitkontinuierliche als auch zeitdiskrete Sys-
teme, und die Bestimmung der korrespondierenden Lösungsmengen bilden die Schwer-
punkte dieser Arbeit. Nachfolgend werden die erreichten Ergebnisse näher vorgestellt.

Ergebnisse und Beiträge

Die im Rahmen dieser Arbeit entwickelten Beiträge lassen sich grob in zwei Bereiche
unterteilen. Zum einen wurde die mengenbasierte Schätzung durch Machbarkeitspro-
bleme für zeitdiskrete und zeitkontinuierliche Systeme entwickelt. Zum anderen wurden
mit Hilfe von Machbarkeitsproblemen neue Methoden entwickelt die Bebochbarkeit ei-
nes unsicheren Systems zu untersuchen. Die Beiträge zu beiden Bereichen werden im
Folgenden weiter erläutert.

Mengenbasierte Schätzung

Das Ziel der mengenbasierten Schätzung ist die Bestimmung des Wertebereichs der Pa-
rameter und Zustände aus den durch Mengen beschriebenen Messungen. Das Hauptau-
genmerk liegt hierbei auf der Garantie, dass der Wertebereich vollständig ist, d. h. keine
Wahl an Parametern und Anfangsbedingungen außerhalb des Wertebereiches darf da-
zu führen, dass das Modell die Messungen wiedergibt. Im Rahmen dieser Arbeit wurde
ein solches Schätzverfahren für zeitdiskrete Systeme entwickelt, welches in den Arbei-
ten [27, 164, 170] vorgestellt und in die Toolbox ADMIT [204] implementiert wurde.
Die Grundlage dieses Verfahrens ist die Formulierung eines Machbarkeitsproblems der
Form (I) und die Bestimmung der dazugehörigen Lösungsmenge. Diese Vorgehens-
weise ist jedoch nicht direkt auf zeitkontinuierliche Systeme anwendbar, da hier eine
dynamische Nebenbedingung mitberücksichtigt werden muss.
Eine Möglichkeit zeitkontinuierliche Systeme dennoch mit diesem Verfahren zu be-

trachten, ist es eine zeitdiskrete Approximation zu verwenden. Allerdings konnte in
[166] gezeigt werden, dass in diesem Fall die Aussagen bezüglich Modellkonsistenz im
Allgemeinen von der Approximation nicht auf das zeitkontinuierliche System übertrag-
bar sind. Dies liegt daran, dass bei der zeitdiskreten Approximation ein Diskretisie-
rungsfehler gemacht wird, der dazu führt dass konsistente Parameter der Approxima-
tion nicht mit den konsistenten Parametern des zeitkontinuierlichen Systems überein-
stimmen. Der Fokus wurde daher darauf gelegt eine Beziehung zwischen den konsisten-
ten Parametern der beiden Systeme herzustellen, so dass von der Modellkonsistenz der
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Approximation auf die Modellkonsistenz des zeitkontinuierlichen Systems geschlossen
werden kann.
Zu diesem Zweck wurden zwei Verfahren entwickelt. Das erste Verfahren basiert

auf der Abschätzung des gemachten Diskretisierungsfehlers. Hierzu wird zunächst eine
Trainingsmenge mit Hilfe des zeitkontinuierlichen Modells erstellt. Das zeitdiskrete
Modell wird dann um den Diskretisierungsfehler erweitert und anschließend wird der
Diskretisierungsfehler anhand der Trainingsmenge bestimmt. Dies führt dazu, dass die
gewünschte Beziehung für eine Teilmenge an Parametern erfüllt ist. Jedoch kann nicht
garantiert werden, dass der in der mengenbasierten Schätzung bestimmte Wertebereich
vollständig ist.
Um die Garantie der Vollständigkeit zu geben, wurde ein zweites Verfahren entwi-

ckelt, welches auf der Außenapproximation der Erreichbarkeitsmenge des kontinuierli-
chen Systems mit Hilfe einer zeitdiskreten Approximation basiert. Um sicherstellen zu
können, dass die Beziehung der konsistenten Parametermengen erfüllt ist, wurde das
Theorem von Picard-Lindelöf für die Existenz und Eindeutigkeit einer Lösung einer
Differentialgleichung zur Konstruktion des Machbarkeitsproblems verwendet. Es kann
dadurch garantiert werden, dass die geschätzten Paramter für die Approximation eine
Übermenge der Parameter des zeitkontinuierlichen Systems sind. Daher ist es eben-
falls möglich von der Inkonsistenz der Approximation auch auf die Inkonsistenz des
zeitkontinuierlichen Systems zu schließen.

Beobachtbarkeit von unsicheren Systemen

Während sich der erste Teil dieser Arbeit mit dem konkreten Schätzen von Parametern
und Zuständen aus Messungen beschäftigt, wird im zweiten Teil die Beobachtbarkeit
eines Systems untersucht. Der Begriff der Beobachtbarkeit bezieht sich hier auf die
prinzipielle Möglichkeit die anfangs angenommen Parameter- und Zustandsbereiche
mit Hilfe von Messungen zu verkleinern. Obwohl Beobachtbarkeit für die hier betrach-
teten polynomialen Systeme relativ gut verstanden ist, siehe z. B. [90, 91, 191], sind
für unsichere Systeme praktisch keine anwendbaren Methoden bekannt.
Zu diesem Zweck wurden hier neue Methoden entwickelt, die ebenfalls auf der Kon-

struktion von geeigneten Machbarkeitsproblemen basieren. Hierzu wurden die alge-
braischen Beobachtbarkeitsbedingungen von [91] auf Systeme mit mengenbasierten
Unsicherheiten erweitert. Zunächst wurde gezeigt, dass die algebraischen Bedingun-
gen direkt durch ein Machbarkeitsproblem nachweisbar sind. Darauf aufbauend wurde
eine Methodik entwickelt, um Unsicherheiten mitberücksichtigen zu können. Die Pa-
rameteridentifizierbarkeit kann ebenfalls direkt mit den hier vorgestellten Methoden
betrachtet werden; es muss hierfür lediglich der Zustandsvektor, um die Parameter
erweitert werden.
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1 Introduction

1.1 Overview
Control and systems theoretical methods are employed to analyze and influence dy-
namical systems in a desired way throughout science and practice. The basis of success-
fully employing model-based methods is the derivation of a quantitative and predictive
model. The modeling task is considerably simplified by the rapid development of dig-
ital computers and, hence, the possibility to use system identification and modeling
tools, see e. g. [120, 135, 142]. While digital computers facilitate many new methods,
this development also imposes certain challenges. In particular, practically all phe-
nomena observed in nature behave continuously in time, however, such phenomena
are typically analyzed with the help of digital computers by discrete-time (or numer-
ical) approximations. This contradiction motivates this work and the connection of
both “worlds” in the context of system identification and model analysis is studied.
The connection between continuous-time systems and discrete-time approximations

becomes especially important if results obtained for one have to be transferred to the
other. A notable research area concerned with this connection is sampled-data control
systems, i. e. a continuous-time process that is controlled by a digital device, see e. g.
[86, 106, 144]. Here, a controller is often devised for the discrete-time approximation,
and the goal is to prove that this controller also stabilizes the continuous-time process.
However, such transferable results are of importance in numerous other research areas
as well. In particular, if guarantees have to be given, e. g. one is interested to verify that
a continuous-time process operates within some safety margins, employing a discrete-
time approximation in the corresponding analysis might result in wrong conclusions
due to the discretization error, e. g. [166, 168]. To illustrate this problem consider
the problem of model (in-)validation, i. e. the problem of proving the existence of an
initial condition/parameterization of a model such that given measurement data are
reproduced, see also Figure 1.1. If it can be shown that the discrete-time model is not
able to reproduce the data, e. g. with the method presented in [27, 164], one cannot
necessarily transfer this result to the continuous-time system, cf. Figure 1.2.
In this work, we are interested in providing conditions which guarantee when results

are transferable from a discrete-time approximation to the continuous-time system,
in particular, if the continuous-time and the discrete-time system are influenced by
various types of uncertainties, e. g. in parameters and measurements. We do so for
the rich class of polynomial systems, for which typical examples include mass action
models in systems biology and mechatronic systems. Note that considering polynomial
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1 Introduction

Figure 1.1: Illustration of the model (in-)validation problem. Measurement data is
here depicted as black intervals. The green set corresponds to initial conditions
and parameterizations of a dynamical system that lead to a trajectory that visits
all measurements (green trajectory). The red set corresponds to initial conditions
and parameterizations that do not lead to trajectories that visit all measurements
(red trajectories). If the green set is empty the system is considered invalid (or
inconsistent with the measurement data), otherwise it is considered as valid.

systems is not overly restrictive since every continuous nonlinear equation can be
approximated to arbitrary precision by a polynomial, see e. g. [37].
For this purpose, a number of techniques are developed not only to analyze this

connection, but also to analyze additional system properties of continuous-time as
well as discrete-time systems. This is done by means of set-based considerations that
lead to efficiently solvable (resp. computable) formulations. The central contributions
are concerned with the following three problems.

• (Model Consistency) how to prove that an uncertain dynamical system is able to
reproduce the available data and process insight, cf. Figure 1.1.

• (Reachability) find a (uncertain) discrete-time system that envelopes all possible
trajectories of the (uncertain) continuous-time system, cf. Figure 1.3.

• (Observability) which conditions have to hold such that an uncertain (discrete-time
or continuous-time) system can be observable.

The first two problems address the aforementioned problem of model (in-)validation
as well as the reachability of dynamical systems. Model (in-)validation is a crucial
step in the modeling process, namely the verification that a derived model is able to
reproduce the available measurement data. Reachability is the corresponding generic
system property, as a model can only reproduce the measurement data exactly if the
data are contained in the reachable set. In general, reachability corresponds to the
ability of a system to be transferred from a given initial state to another end state.
The third problem is concerned with the observability of a system. In other words,

whether it is possible to derive the initial conditions of a system from made observations
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Figure 1.2: Illustration of the influence of the discretization error in model invalida-
tion. The green trajectory depicts the continuous-time system that goes through
all unknown-but-bounded measurements (black intervals) for a given initial con-
dition and parameterization. The red (dashed) trajectory depicts the trajectory
of the corresponding discrete-time approximation obtained by Euler discretiza-
tion with time-step size of 0.5. To conclude from the fact that the discrete-time
trajectory is not visiting all measurements, that the continuous-time is unable to
reproduce the data is clearly wrong.

of the output or not. This system property is of particular interest in the case that not
all states of a process can be measured directly. Therefore, it is the basis for employing
controller design techniques that employ full state information.
In the following two sections, we give a more detailed description of these problems

and a short review of related approaches in different application areas. Although, the
developed ideas are applicable in many areas we restrict our attention mainly to set-
based methods and examples from systems biology. It should also be noted that this
introduction is kept rather short and more detailed discussions of available methods
are given at the appropriate places throughout this work to minimize repetitions.

1.2 Set-based Estimation

1.2.1 Motivation and Existing Approaches

The increasing industrial requirements for product quality and safety, e. g. in phar-
maceutical, medical and automotive industry, are nowadays often met by employing
controls [30, 57]. Despite the availability of input-output based control strategies,
model-based approaches often provide better performance and typically more system
insight, e. g. through model analysis, can be gained [160]. A predictive model becomes
especially important if not every state can be measured (for technical or economical
reasons), but the information of a nonmeasured state is needed for the controller.
System identification or the extraction of a mathematical model from measurement

data has, therefore, attracted a lot of attention in literature, see e. g. [58, 83, 119, 120,

3



1 Introduction

Figure 1.3: Illustration of a discrete-time enclosure. A: The figure depicts simulation
data of a 2D continuous-time system and its discrete-time approximation. The
continuous-time system and its discrete-time approximation have the same (or
similar) reachable set, since at every sampling instance the possible values of the
discrete-time approximation enclose the possible values of the continuous-time
system. The trajectories depict the time evolution of x1 of the continuous-time
system for different initial conditions. Black intervals depict the possible values
of the discrete-time approximation at different sampling times. B: The blue dots
represent Monte Carlo samples of the continuous-time trajectories at t = 2. The
black boundary corresponds to the possible values of the discrete-time system.

135] for an overview. Strangely, most system identification methods are concerned
with the identification of discrete-time models, although, most practitioners prefer
continuous-time models [120]. To not rely only on measurement data for identifying an
accurate model the system structure is often inferred e. g. by first principles or system
insight. In particular, this approach of building up a model from known interactions
between species builds the basis of systems biology [99, 220].
If some prior knowledge on the structure is available, model identification is reduced

to parameter estimation, e. g. [97, 116]. Applicable methods for parameter estimation
depend significantly on the considered problem setup and the made assumptions. On
the one hand parameter estimation methods can be classified depending on the de-
scription of the measurement data. Either the data are given as point values (possibly
with additional statistical information) or as in this work they are given as sets. On the
other hand one has to distinguish between methods for continuous-time systems and
methods for discrete-time systems, in particular for set-based methods. The following
paragraphs are therefore structured as follows. First, the differences of set-based and
classical parameter estimation methods are discussed. Second, a general overview of
set-based methods is provided and we end this section with a discussion of set-based
methods for continuous-time systems.

Differences of Set-based and Classical Parameter Estimation
Classical parameter estimation is typically performed based on numerical optimiza-
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tion [210]. Here, data are described by point values (possibly with statistical infor-
mation) of the output and the goal is to minimize a chosen objective function that
depends on these point values, while the optimization variables are the initial condi-
tions and the parameters. A commonly chosen objective function is the distance of the
system trajectory to the measurements at the corresponding time points. Although
there are several reliable tools available for parameter estimation (see e. g. [130, 162]),
parameter estimation is still in general a difficult task for nonlinear systems due to
the involved nonconvexities in the optimization problem. Verifying additionally that
the obtained model guarantees a certain safety requirement is even more involved and
often depends on finding a global optimum [3] or some specific certificates [157].
In contrast to classical parameter estimation, measurement uncertainty is interpreted

in set-based estimation as variables that belong to some bounded set (unknown-but-
bounded variables) [219], instead of a variable that is subject to stochastic effects such
as noise. The goal of set-based methods differs, therefore, notably from the classi-
cal methods as optimality becomes less important, see Figure 1.4 for an illustration.
Instead of searching an optimal solution, one is interested in finding or bounding all
possible parameterizations and initial conditions for which the system trajectories are
consistent with the measurements, see e. g. [83, 164] and Figure 1.1. One major ad-
vantage of the set-based approach is, therefore, that a complete investigation of the
parameter/initial conditions space can be performed. This provides a valuable com-
plement to statistical information as it allows invalidating a model, in case no feasible
initial condition/parameterization is found. This guaranteed invalidation further al-
lows verifying if a system violates a safety requirement or, for example, to identify
knockout targets in biological systems.
Clearly, the set-based viewpoint is not restricted to model invalidation and parameter

estimation, but rather can be employed for all estimation and verification tasks as
soon as a suitable model was derived. Examples include model analysis, control, state
estimation, state prediction and related problems like fault diagnosis, outlier detection,
uncertainty and robustness analysis, see e. g. [33, 101, 169, 174, 201, 202] and references
therein.

Overview on Set-based Methods
Set-based considerations are often performed by interval analysis, see e. g. [83] for

an overview. For this reason, variables are substituted by intervals and standard
arithmetic operations are extended to intervals. By employing this one obtains a so
called interval extension of the system dynamics. By checking which (sub-)intervals
belong to the data an estimate of the variables can be derived, see e. g. [83, 139, 183].
In [27, 164, 170] a different set-based method to estimate the states and parameters

(or more general variables of interest) of uncertain discrete-time systems was proposed.
To do so, a nonlinear feasibility problem is constructed for which the projection of
the solution space onto the variable space is equivalent to the considered estimation
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Figure 1.4: Comparison of set-based measurements and measurements with statis-
tical information. Dots represent measurement data, large red dots correspond
to the mean values of the data. Black intervals correspond to the mean value
plus/minus the standard deviation. Trajectories correspond to optimal trajec-
tories w.r.t. a least-squares objective function that penalizes the distance of the
trajectory to the reference values at the measurement time points. The red dashed,
the red doted, and the red trajectories correspond to optimal trajectories for which
the references are chosen to be the mean values, the upper bounds of the intervals,
or the lower bounds, respectively. The green trajectory corresponds to the opti-
mal trajectory for which the reference values are chosen randomly to be either the
lower or the upper bound of the intervals. Only the green trajectory goes through
all black intervals.

problem. By testing where the solution space of the feasibility problem is empty the
variable space can be classified into regions that are consistent with the measurements
or safety requirements and regions that are not. This test is possible since the feasibility
problem can be relaxed into an easier to solve convex semi-definite program, see e. g.
[104, 108, 151, 182, 184] for general descriptions of relaxations of polynomial programs.
Depending on the employed relaxation technique and relaxation order (higher degrees
result in better approximations) one can derive different outer-approximations of the
feasible set as depicted in Figure 1.5.
However, interval methods as well as the feasibility approach typically cannot con-

sider continuous-time systems directly. This derives from the fact that the dynamical
component has to be treated with special care such that the benefits of the set-based
perspective are not lost.

Set-based Methods for Continuous-Time Systems
For continuous-time systems set-based approaches can be divided into the following

two categories: reformulation of the continuous-time dynamics and approximation of
the dynamics with a discrete-time system.
The possibly most straightforward reformulation that allows the consideration of

continuous-time systems is the steady-state assumption, as employed e. g. in [71, 104].
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Figure 1.5: Illustration of approximating the solution space of a feasibility problem
by a relaxation. The green set depicts the feasible set to be approximated. Red
sets depict partitions for which it was shown that they do not contain feasible
solutions [164]. Blue sets correspond to sets obtained by employing Lasserre’s
converging hierarchy of semi-definite programs [108], i. e. for every semi-definite
program one obtains a valid outer-approximation that converges (in the Lebesgue
measure) to the true feasible set for increasing relaxation order.

Clearly, this leads to a loss of information over the transient behavior of a system,
but still can provide valuable insight e. g. on steady-state multiplicity or saddle-node
bifurcations [71]. Another possibility to consider continuous-time systems, is to make
additional assumptions. In [52] it was assumed that the derivatives of the states are
also available as unknown-but-bounded measurements. The problem then reduces to
a multi-stage steady-state investigation as the dynamics can basically be neglected
and an approach similar to [27, 104] can be employed. A more elaborate approach is
reformulating the dynamics in terms of so-called occupation measures [74, 112, 165,
176, 203]. These measures allow replacing the dynamics with linear (in-)equalities
in an optimization problem over an infinite function space, which is then solved by a
hierarchy of semi-definite programs [108]. This allows treating continuous-time systems
directly, however, the relationship between continuous-time and discrete-time systems
cannot be directly investigated which is one of the focuses of this work.
We investigate here how a continuous-time system can be analyzed with the help

of a discrete-time approximation. The main difficulty that arises in this case is that
results derived for the approximation do not necessarily hold for the continuous-time
system. In particular, if a discrete-time approximation is inconsistent with the data
it cannot be concluded that the continuous-time model is inconsistent as well. The
main reason for this fact is the discretization error introduced by approximating the
continuous-time system.
Discretization errors as they appear in solving initial value problems are a well stud-

ied topic in numerical mathematics, see e. g. [46, 198], and in the context of systems
theory [68, 206, 207]. However, here only initial value problems with fixed parame-
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terizations are considered and a direct application to set-based methods is in general
difficult. Discretization errors also play an important role in the field of differential
inclusions [10, 12, 54], and in particular the discretization of differential inclusions
[48, 63, 171]. So for instance in [7] it was shown that the discrete-time approximation
of a differential inclusion based on the Euler discretization only approximates the dif-
ferential inclusion for vanishing time-steps. However, this area of research is typically
only concerned with theoretical properties and as the proofs are often nonconstructive
an application in system analysis and estimation is difficult.
One applicable approach dealing with this problem is based on interval arithmetics

for deriving validated solutions to ordinary differential equations [38, 97, 103, 116,
123, 139, 140, 161, 216, 217]. One common feature of these works is that they try to
minimize the discretization error by employing multi-step discretization schemes. In
the feasibility approach multi-step schemes, however, lead to an unwanted increase of
the employed relaxations.

1.2.2 Contributions

The main goal of this work is to construct and describe the relationship between
a continuous-time model and its discrete-time approximation. The desired relation-
ship is such that model consistency verified for the approximation also holds for the
continuous-time system employing the aforementioned feasibility approach.
This work extends our earlier works [27, 164, 170] to be able to consider continuous-

time systems. This extension is achieved by constructing a discrete-time system that
encloses all trajectories of the continuous-time system, cf. Figure 1.3. In contrast
to our previous works, the solution space of the involved feasibility problems is not
approximated by semi-definite programs of fixed size. Instead the converging hierarchy
proposed in [108] is employed, cf. Figure 1.5. This allows for the considered system
class the derivation of more rigorous results as described next.
This work proposes two different methods to deal with the problem of verifying

model consistency with the help of a discrete-time approximation. The first approach
employs the classical idea of constructing a discrete-time enclosure of the reachable
set of the continuous-time system. The main difference to classical approaches is here
the possibility to give guaranteed convergence results. In particular, this means that
it can be guaranteed that the derived envelope converges to the actual reachable set of
the continuous-time model at all considered time points. Furthermore, the maximal
time-step size that guarantees existence and uniqueness of solutions can be derived.
This is possible by formulating the conditions of the Picard-Lindelöf theorem in terms
of an infinite-dimensional linear program that is subsequently approximated by a con-
verging hierarchy of semi-definite programs. Moreover, this approach of deriving a
discrete-time enclosure guarantees that the model invalidation as well as the parame-
ter estimation problem can be solved for the continuous-time system.
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The second approach employs a nominal (possibly uncertain) continuous-time model
that is used to generate a training set. The training set is then employed to estimate
a set of errors needed such that the discrete-time model is not inconsistent with the
training set. For this purpose, it is shown that the techniques developed in our earlier
works can be directly employed. As a second step, an augmented Euler model is con-
structed that incorporates these error sets as time varying parameters. To conclude
model consistency, the augmented model is then tested with respect to the available
data. This allows the following statement. If the augmented model is found inconsis-
tent, it can be concluded that the nominal system is also inconsistent.

1.3 Observability of Uncertain Polynomial Systems

1.3.1 Motivation and Existing Approaches

In control engineering, clearly stability of a system is the most prominent system
property that one wants to verify. Many approaches are known to prove stability,
from a theoretical perspective as well as from a computational perspective, see e. g.
the standard textbooks [82, 96, 192]. In this work, we are not trying to contribute
to this vast literature of stability results. Instead we aim at deriving computationally
efficient methods for investigating the observability for uncertain polynomial systems.
Namely the ability to reconstruct from given observations the initial state of a system.
This type of question is not only important from a theoretical point of view, but

also from a practical one. In practice, it is typically not possible to employ a controller
based solemnly on the system states as the states typically cannot be measured di-
rectly. Instead the states are derived from measurements of the output by an observer.
The ability of deriving the states from measurements is then referred to as observabil-
ity. Observability is not only a requirement for state controller design, but also for
parameter estimation as parameters can only be estimated if the corresponding states
can be reconstructed [190].
Observability as a system property is well studied for deterministic linear systems

(systems with no uncertainties), see e. g. [29, 84, 138]. This is also true to some
extend for deterministic nonlinear systems [67, 78, 79, 195]. However, observability for
nonlinear systems is on the one hand more involved to define than in the linear case
and on the other hand only few general approaches to investigate observability exist,
e. g. [192]. For polynomial systems the situation is more favorable, see e. g. [15, 55,
72, 189, 190, 194] for general definitions and requirements, and [89–92, 94, 143, 212]
for constructive algebraic conditions and algorithms. Similar algebraic conditions are
derived for parameter identifiability in [14].
However, for uncertain polynomial systems this is not the case. Most results in

this field are connected to differential inclusions and are mostly concerned with the
existence than with the actual computation. So, for instance, a characterization of the
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needed local injectivity condition for observability is given in [11] and the connection
between this condition and the viability kernel of differential inclusions is proposed in
[88]. Both approaches allow in principle to investigate the observability, however, an
application is difficult as typically no constructive proofs are possible. This work aims
at a computational solution to verify observability of an uncertain polynomial system.
This is achieved by extending the algebraic conditions of Kawano and Othsuka [94]
such that they can be solved by the methods derived before.

1.3.2 Contributions

This work proposes several extensions to the algebraic observability analysis of Kawano
and Othsuka [90, 94]. These extensions are built on the theory of real algebraic
geometry as detailed next.
At first it is demonstrated that the algebraic conditions for local-at-a-point observ-

ability can be tested efficiently with the help of semi-definite programs. Furthermore,
we show that observability indeed induces a finite convergence property of the semi-
definite program such that the solution of the semi-definite program is necessary and
sufficient for observability for deterministic polynomial systems. It should be noted
that the conditions derived in this work can be directly applied to parameter identifi-
ability analysis by extending the states by the parameters appropriately.
It is also shown that determining whether an uncertain system is observable is consid-

erably harder and the sufficiency of the deterministic case is lost. However, this work
shows that the observability and unobservability can still be investigated. For this
reason, an infinite-dimensional linear program is constructed that encodes the semi-
algebraic extension of the algebraic conditions. This linear program is then solved via
a converging hierarchy of relaxations [108]. It is furthermore shown that if at a certain
relaxation order a rank condition holds the system is not observable. The obtained
results show that observability can also be investigated for uncertain systems and with
the methods developed (resp. employed) in other parts of this work. For continuous-
time systems a similar approach based on the energy visible at the output is derived,
which allows similar conclusions as the (semi-)algebraic approach.

1.4 Thesis Outline

• Chapter 2 briefly introduces the considered system classes and the used nota-
tions. Additionally, we define the system properties which are investigated in
later chapters.

• Chapter 3 presents the concepts of model consistency for uncertain discrete-time
and continuous-time systems with unknown-but-bounded measurements as well
as qualitative information.

10



1.4 Thesis Outline

• Chapter 4 presents the set-based parameter estimation framework that is central
for the following chapters. Here, it is shown that model invalidation and param-
eter estimation can be addressed by relaxing a polynomial feasibility problem.
We discuss two relaxation approaches and illustrate the methods with several
examples.

• Chapter 5 proposes a method for estimating the parameters of continuous-time
models via their discrete-time approximations. This is done by extending the
results of Chapter 4 such that a relationship between the discrete-time and the
continuous-time model exists. This relationship allows us to conclude from model
inconsistency of the approximation to the invalidity of the continuous-time model.

• Chapter 6 is concerned with the verification of observability of uncertain poly-
nomial discrete-time and continuous-time systems with a clear focus on compu-
tational methods based on Chapters 4 and 5.

• Finally, Chapter 7 summarizes and concludes this thesis. It includes an outlook
on possible research topics related to this contribution.
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2 Considered System Classes and Properties

The main goal of this work is the development of methods for the estimation and
analysis of uncertain polynomial systems. The main focus is put hereby on the unified
treatment of continuous-time and discrete-time systems with unknown-but-bounded
uncertainties. For the analysis we concentrate on three particular system properties,
namely model consistency, reachability and observability. In the following, we provide
a short overview over polynomial systems and define the considered system properties.
This chapter is structured as follows. First, the system class of polynomial systems

is introduced for the continuous-time and the discrete-time case and the employed
notation is fixed. Second, a short overview over the three system properties is given
and relevant notions are defined. We conclude with a summary and an outline of
following topics. Note that this chapter is kept rather concise to serve as a reference
for the employed notation and defined notions in later chapters.

2.1 System Classes

2.1.1 Continuous-time Systems

In this work, we consider systems of the form

ẋ(t) = f(x(t), u(t), p), x(t0) = x0,

y(t) = h(x(t), u(t), p),
(2.1)

where x(t) ∈ Rnx denotes the states, u(t) ∈ Rnu the input, y(t) ∈ Rny the output.
The system parameters are denoted with p ∈ Rnp. Throughout, this work we assume
that the initial condition x0 belongs to the set X0 ⊆ Rnx, p to the set P ⊆ Rnp

and the input belongs to the compact set U ⊂ Rnu also called admissible control set,
where X0,P ,U are semi-algebraic sets, i. e. the sets are defined by a finite number
of polynomial inequalities. The vector field f : Rnx × Rnu × Rnp → Rnx, the control
function u : R→ U and the output function h : Rnx × Rnu × Rnp → Rny are assumed
to be continuous polynomial functions that satisfy a Lipschitz condition on a time
interval [0, T ] ⊂ R, cf. [68, 106]). Furthermore, we assume the input is piecewise-
constant, i. e. it fulfills the zero-order hold condition [68]. For further reference the
ring of polynomials with real coefficients in the variables x, u, p is denoted as R[x, u, p].
In practice polynomial systems are often used to model biological or chemical reaction
systems, see e. g. [164, 170] and the example sections of later chapters. Note that
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2.1 System Classes

the considered sets can typically be derived from measurements, process insight and
conservation relations, also cf. Chapter 3.
We denote the trajectories (also flow) of (2.1) for an initial condition x0 ∈ X0,

a parameter p ∈ P and a control function u(·) ∈ U with φ(x(t)|x0, u(t), p). We
assume that φ(x(t)|x0, u(t), p) exists for all t > t0, x0 ∈ X0, p ∈ P and all u(·) ∈ U ,
i. e. φ is forward complete [4]. Note that this property results from the assumed
Lipschitz continuity. For a more detailed discussion on the existence and uniqueness
of solutions to initial value problems of form (2.1) see e. g. [54]. The corresponding
output trajectories are denoted by φy(x(t)|x0, u(t), p) := h

(
φ(x(t)|x0, u(t), p), u(t), p

)
.

Next we introduce the considered class of discrete-time systems.

2.1.2 Discrete-time Systems

We define a parameterized discrete-time system of the form

x(k + 1) = fD(x(k), u(k), p), x(0) = x0,

y(k) = hD(x(k), u(k), p).
(2.2)

In some cases, we employ an implicit formulation, e.g. due to an implicit numerical
integration of (2.1),

0 = fD(x(k + 1), x(k), u(k), p), x(0) = x0

0 = hD(y(k), x(k), u(k), p),
(2.3)

where in (2.2) and (2.3) the variables x(k), u(k), y(k), p denote the states, the input,
the output and the parameters equivalent to the continuous-time system. We denote
with D > 0 some positive time-step and k ∈ N denotes the discrete-time index. We
assume that fD, hD are polynomials, i. e. fD, hD ∈ R[x, u, p], and that the variables
x0, u(t), p are bounded by semi-algebraic sets. To distinguish variables of discrete-time
systems and those of continuous-time systems (if necessary), we add a bar to the sets,
i. e. x0 ∈ X̄0 ⊆ Rnx, u(k) ∈ Ū ⊂ Rnu, p ∈ P̄ ⊆ Rnp.

Remark 1. In most instances (2.2) and (2.3) will be considered as numerical approxi-
mations (or discretizations) of (2.1). However, the results presented in Chapter 4 and
large parts of Chapter 6 still hold for general discrete-time systems.

As for the continuous-time system (2.1), we assume that fD, hD fulfill a Lipschitz
condition depending on the time-step D, see [68]. We denote a state trajectory of
(2.2) and (2.3) at k ∈ N with φD(x(k)|x0, u(k), p) := fkD(x(k − 1), u(k − 1), p), where
fkD := f

(
x(k − 1), u(k − 1), p

)
= fD ◦ · · · ◦ fD(x0, u(0), p), and an output trajectory

by φD,y(x(k)|x0, u(k), p) := hD ◦ fkD(x(k − 1), u(k − 1), p). To be able to correlate φy
of (2.1) and φD,y on a set of discrete-time points T := {t1, . . . , tn}, ti ∈ R, we assume
throughout this work that for every D there exists a k such that k · D ≡ ti for all
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2 Considered System Classes and Properties

ti ∈ T and we simply write k ∈ T . Furthermore, we write in the following with slight
abuse of notation k ∈ [0, T ] instead of the formally correct k ∈ {0, . . . , T}, T ∈ N.
In the following, we introduce for continuous-time and discrete-time systems the

considered system properties.

2.2 Considered System Properties

In this work, mainly three system properties are investigated, namely model consis-
tency, reachability and observability, which are introduced in the subsequent sections.

2.2.1 Model Consistency

In this work, model consistency is the central system property for deriving a relation-
ship between continuous-time systems and their discrete-time approximation. There-
fore, we provide here only a basic definition and elaborate on this topic further in
Chapter 3. In general, with model consistency one refers to the ability of a model to
reproduce measurement data for certain initial conditions and parameterizations. If
we assume that measurements are given as semi-algebraic sets M(ti) ⊆ Rny , we can
define model consistency for (2.1) and (2.2) as follows.

Definition 1 (Model consistency). Given output measurementsM(ti) at time-points
ti ∈ T := {t1, . . . , tn}, ti ∈ R. Model (2.1) (resp. (2.2)) is said to be consis-
tent with the measurements, if there exists x0 ∈ X0, u ∈ U and p ∈ P such that
φh(φ(x(ti)|x0, u(t), p) ∈ M(ti) (resp. φD,h(x(k)|x0, u(k), p) ∈ M(ti)) for all ti ∈ T
(resp. k ∈ T ). �

In Chapter 3, we consider more general data types than the measurement descrip-
tion employed here. This allows us to consider not only quantitative, but also semi-
quantitative data like if-then observations. We further present methods to investigate
model consistency in Chapter 4 and Chapter 5. Moreover, these methods allow deriv-
ing outer-approximations of the initial conditions, inputs and parameters that lead to
the model being consistent. One important concept employed in the development of
such methods for continuous-time systems is reachability as introduced next.

2.2.2 Reachability

Reachability can be seen as the generic system property that corresponds to model
consistency. Indeed, a system can only be consistent with the available measurement
data if the data are contained in the reachable set of the system. To derive methods for
proving model consistency of a continuous-time system (2.1), we construct in Chapter 5
a discrete-time system that envelopes the reachable set of (2.1). Following [68, 69], we
define the reachable set of (2.1) for a single initial condition as the set-valued mapping
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2.2 Considered System Properties

R(x0) =
⋃

u(t)∈U , p∈P
{φ(x(t)|x0, u(t), p)}. (2.4)

If we are interested in the reachable set for all initial conditions x0 in the set X0, the
reachable set becomes

R =
⋃

x0∈X0

R(x0). (2.5)

Equivalently, we define the reachable set of a discrete-time system (2.2) (resp. (2.3))
as

R̄(x0) =
⋃

uk∈U , p∈P
{φD(x(k)|x0, u(k), p)}, (2.6)

and
R̄ =

⋃
x0∈X0

R̄(x0). (2.7)

In Chapter 4, we provide methods for determining the sets (2.6) and (2.7), and
methods for deriving the sets (2.4) and (2.5) are given in Chapter 5. The next consid-
ered system property corresponds to the ability to estimate the initial conditions from
measurement data.

2.2.3 Observability

Observability corresponds to the possibility to derive the states of a system from
given measurements of the output. This system property is of particular interest
in the case that not all states can be measured directly in a process, but the state
information is needed to derive a suitable controller. In this section, we define the
notion of observability following the works [94, 95, 212]. For a more general treatment
of observability of polynomial systems see [190].
Note that throughout this section, it is assumed that the parameter vector p is

fixed. The extension to the uncertain case is given in Chapter 6. To be able to define
observability, consider the notion of (finite-time) distinguishability.

Definition 2 (Distinguishability). A pair of initial conditions α, β ∈ X0 ⊆
Rnx are said to be distinguishable for (2.1) (resp. (2.2)) on the time in-
terval [0, T ] if there exists a piecewise constant input u(t) (resp. u(k))
such that φh(x(t)|α, u(t), p) 6= φh(x(t)|β, u(t), p) for some t ∈ [0, T ] (resp.
φD,y(x(k)|α, u(k), p) 6= φD,y(x(k)|β, u(k), p)). An initial condition α is said to be in-
distinguishable from β ∈ X0 if φy(x(t)|α, u(t), p) = φh(x(t)|β, u(t), p) holds for all
t ∈ [0, T ] (analogously for φD,y for all k ∈ [0, T ]). The set of all points β ∈ X0 that
are indistinguishable from α ∈ X0 is denoted by O(α,X0). �

For practical purposes, it is often sufficient that not all α can be distinguished
from every other point in X0, but only from a neighborhood N ⊂ X0 around α, i. e.
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2 Considered System Classes and Properties

O(α,X0)∩N (α) = {α}. Note also that we consider here distinguishability on the semi-
algebraic set X0 instead of the classical definition over Rnx. This derives from the fact
that we consider uncertain systems and we, therefore, have to derive a semi-algebraic
conditions for observability. Using the above definition we can define local-at-a-point
observability as follows.
Definition 3 (Local-at-a-point Observability). A system is said to be locally-at-a-point
observable for a finite-time interval [0, T ], if there exists a neighborhood N ⊆ X0 of the
initial condition α ∈ X0 such that for all β ∈ N \ {α} the pair α, β is distinguishable,
i. e. O(α,N ) = {α}. �

Local observability of a system is defined accordingly, i. e. there exists a neighbor-
hood for every α ∈ X0 such that α can be uniquely determined from the input and
output or for short:
Definition 4 (Local Observability). A system is said to be locally observable if for
every initial condition α ∈ X0 the system is locally-at-a-point observable. �

Remark 2. These observability notions are in some sense stronger than the classical
observability notion [78] as it implies that local information is sufficient to determine
the initial condition and, therefore, a limit on the time interval length is guaranteed.
The final observability notion employed in this work is defined as follows.

Definition 5 (Global Observability). A system is said to be globally observable if all
initial conditions α, β ∈ X0 are distinguishable for the system. �

The main idea of investigating observability for polynomial systems is to reformulate
the introduced observability notions as algebraic sets, i. e. a set of finitely many poly-
nomial equalities. This is done by means of polynomial ideals and their localizations
as shown e. g. in [94]. However, the algebraic investigation of observability is only
applicable for fixed parameterizations. For this reason, the method of Kawano and
Ohtsuka [94] is extended in Chapter 6 to uncertain polynomial systems.

2.3 Summary
In this chapter, we have defined the considered system classes as well as the properties
we investigate in the following chapters. In particular, we defined model consistency,
reachability and observability for polynomial systems.
Model consistency, i. e. the ability of a model to reproduce some measurement data,

is hereby of particular importance. On the one hand the concept of consistency is
the basis for deriving the set-based estimation approach for discrete-time systems in
Chapter 4. On the other hand, model consistency is employed in Chapter 5 to extend
the set-based estimation approach to continuous-time systems. As this important
concept was introduced here in its simplest form, we provide next a more detailed
discussion and generalize the considered uncertainties to semi-quantitative data.
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3 Uncertainties and Model Consistency

In this chapter, we define and briefly discuss the set-based uncertainties considered in
this work. Furthermore, we extend the notion of model consistency introduced in the
previous chapter from quantitative to semi-quantitative data. Semi-quantitative data
can be employed to describe observations and requirements on a system in a more
general setting [170]. For example, if a controller is supposed to lead to a limited
amount of overshoot, it is often easier to formulate such a requirement in terms of
semi-quantitative constraints instead of a fully quantitative description [22].
This chapter is structured as follows. We describe at first the main advantages of

set-based uncertainties. Afterwards, we define set-based (or unknown-but-bounded)
uncertainties and introduce the notion of model consistency for quantitative and semi-
quantitative data. For this purpose, we introduce temporal logic constraints that
allow for instance to transfer if-then conditions into a mathematical description, cf.
Chapter 4.

3.1 Introduction
In the development of a mathematical model an inherent difficulty is the consideration
of uncertainties [202]. Such uncertainties can range from external perturbations to lim-
ited structural knowledge and can have several sources. A major source of uncertainty
derives directly from the available measurement data. For instance, the experimental
data might be sparse, incomplete or the employed measurement techniques are indirect
or have low accuracy and resolution [164, 202]. This results in large uncertainties of the
absolute quantities of the measured output. Another source of uncertainty can be the
formulation of requirements the model has to fulfill. In many cases such requirements
are formulated as conditional or temporal statements and if-then conditions, instead
of a quantitative description of the requirements [22, 170].
These uncertainties therefore pose the following challenges: first, how can uncertain-

ties be described; second, how can uncertainties be incorporated in a model; third, how
can uncertain models be analyzed. All three challenges are addressed in this chapter.
In this work, we focus on a set-based uncertainty description [179, 219] instead of a

probabilistic description [152, 202]. This description is particularly useful in the case
that measurements are of limited precision with low sampling frequencies, and only
a low number of experimental replicates are available. In this case it is typically not
possible to determine the actual probabilistic uncertainty distribution. Therefore, sets
derived from standard deviations or worst-case approximations, can be helpful [202].
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3 Uncertainties and Model Consistency

Furthermore, as the set-based uncertainty description describes all possible values a
variable can take, it is particularly well suited for the formulation of safety and quality
requirements as seen later in this chapter.
The analysis methods that we propose in this work are based on the notion of model

consistency as introduced in this chapter. In the following, we define how data and
safety requirements can be formulated and incorporated into a model. Afterwards, in
Chapter 4 and Chapter 5 we propose a method to test a model for model consistency.
Note that this chapter is based on [170].

3.2 Considered Uncertainties

In reality measurements are always subject to uncertainties. On the one hand such
uncertainties might arise due to the accuracy or precision of the employed measurement
device or on the other hand due to limitations such as e. g. limited repeatability
[34, 158]. Uncertainties, however, do not only arise from measurement uncertainties,
but also from unknown parameter values and initial condition. Especially this is true
for biological systems [99, 220]. In this work, we employ the concept of unknown-but-
bounded variables (or bounded-error description), that has been used e. g. [135, 136,
179, 219], which we define as follows.

Definition 6 (Unknown-but-bounded variable (ubb)). A variable m(t1) is said to be
unknown-but-bounded at time t1 ∈ R, if it lies in the semi-algebraic setM(t1) = {u ∈
Rnu, p ∈ P , y ∈ Rny : g(u(t1), p, y(t1)) ≥ 0}, where g : Rnu × Rnp × Rny → Rng is a
polynomial (vector) function for some ng ∈ N, and u, p and y are as in (2.1) (resp.
(2.2) and (2.3)). �

Function g in Definition 6 describes in the simplest case an interval given by a lower
and an upper bound on a variable, for instance,M(t1) = {y ∈ Rny : y ≤ y ≤ y}, where
y, y ∈ Rny denote the lower and upper bound, respectively. Such bounds might be
derived from the accuracy specifications of the measurement device, the noise level or
from physical insight (concentrations have to be positive). However, the determination
of bounds depends in general from the considered system.
One particular example, where such data is considered is constraint control problems.

Either this data describe a limitation of a variable, e. g. input constraint, or a safety
requirement like x(t1) is not allowed to take values outside of the setM(t1)
In this work, we consider the initial conditions, parameters as well as the output as

unknown-but-bounded variables. This allows us to consider model uncertainties and
quantitative measurement uncertainties. However, it does not allow for the consider-
ation of data and requirements given in a semi-quantitative description. Therefore,
we extend in the following section the considered uncertainty description. For simpler
presentation, we do so in terms of the notion of model consistency.
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3.3 Model Consistency

3.3 Model Consistency

Model consistency refers to the ability of a model to reproduce measurements or the ful-
fillment of safety requirements. In the following, we denote with data either measure-
ments or such requirements. The notion of model consistency depends on the descrip-
tion of the data, and we distinguish here between quantitative and semi-quantitative
data as seen next.

3.3.1 Model Consistency for Quantitative Data

We denote the collection of ubb variables m(ti) at time points ti ∈ R, i ∈ Im as

M = {M(ti), ti ∈ T }, (3.1)

where T denotes the collection of time points ti, i. e. T = {ti, i ∈ Im}.
Consequently, if we have data of the output variable given by a collection of ubb

variables, we can state the question of model consistency as:

Definition 7 (Model consistency). Given a collection of ubb measurements M.
Model (2.1) (resp. (2.2) and (2.3)) is said to be consistent with M, if and only if
there exists x0 ∈ X0, u ∈ Ω and p ∈ P such that y(ti) ∈ M(ti) for all ti ∈ T (resp.
k ∈ T ). �

For shorthand of notation, we use in the following y ∈ M instead of the formally
correct y(ti) ∈M(ti) for all ti ∈ T (resp. k ∈ T ) a measurement was taken. Figure 3.1
illustrates the consistency property for some trajectories of a continuous-time model.

Figure 3.1: Quantitative measurement data: black vertical lines represent measure-
ments given as ubb variables. The green line represents an example for a trajectory
that is consistent with the data, while the red lines are examples for inconsistent
trajectories.
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3 Uncertainties and Model Consistency

We will denote model consistency with the binary variable φ ∈ {0, 1}, whereas
φ = 1 if and only if a model is consistent with the available data, i.e. (φ = 1) ⇐⇒
y ∈M. This notation will allow in the following section to state not only quantitative
measurement data, but also semi-quantitative and qualitative information.

3.3.2 Model Consistency for Semi-Quantitative, Qualitative Data

In practice, one frequently encounters data that are given with respect to some other
data. In systems biology this kind of data often appears if e. g. the initial condition
can not be defined accurately and all measurement data are only given relative to
this initial condition. Furthermore, data might be taken from experiments in which
different or even no scaling factors for quantitative/absolute data were available, e. g.
when experiments of different cell lines or organisms are considered. However, also in
technical systems such data can occur when e. g. in a bottom-up approach different
experimental setups are compared.
To compare and integrate such data in a model, the data are typically normalized

with respect to an initial or maximal value. In terms of ubb variables, we can handle
this kind of data by applying an order operator, i.e. two ubb variables m1(t1),m2(t2)
are said to be relational if there exists a relationship of the form

m1(t1) � m2(t2), (3.2)

where � ∈ {<,≤,=,≥, >} denotes a comparative operator. To avoid redefining the
order operator for a collection of relational data, we state next model consistency only
with respect to two ubb variables.

Definition 8 (Model Consistency (Relational Data)). Given relational data
m1(t1),m2(t2) of form (3.2). Model (2.1) is said to be consistent with m1(t1),m2(t2),
if and only if there exists x0 ∈ X0, u ∈ Ω and p ∈ P such that y(t1) = m1(t1) ∈M1(t1)
implies y(t1) �m2(t2), � ∈ {<,≤,=,≥, >}, i. e. (φ = 1)⇐⇒ y(t1) �m2(t2). �

An example for relational data can be found in control specifications, such as an
overshoot bound of the step response of a system. For instance, if the set-point is
equal to A the overshoot is not allowed to be over 1.2 times of the absolute value of
A.
A second type of semi-quantitative/qualitative data frequently encountered in prac-

tice is temporally uncertain data. For instance, if the measurement sampling rate is
uncertain due to measurement restrictions such as human interaction, the precise time-
point a measurement was taken might be unknown. Other examples are e. g. different
response-times of individual cells in cell populations due to cell-to-cell variability [197]
or delay and distortion effects of measurement devices due to an imprecisely known
half-life of a fluorescent marker or protein (see e.g. [17]). To capture this kind of
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3.3 Model Consistency

data, we simply allow any value t in the set {t1, . . . , tn} for the ubb variable m(t).
Accordingly, we say m(t) is temporally uncertain.

Definition 9 (Model Consistency (Temporally uncertain data)). Given a temporally
uncertain ubb variable m(t), {t1, . . . , tn}. Model (2.1) is said to be consistent with
m(t), if and only if there exists x0 ∈ X0, u ∈ Ω and p ∈ P such that y(ti) ∈ M(ti) for
at least one ti ∈ {t1, . . . , tn}, i. e. (φ = 1)⇐⇒ y(t1) ∈M(t1) ∨ . . . ∨ y(tn) ∈M(tn) �

Figure 3.2 illustrates temporally uncertain data. Note that we choose a set of dis-
tinct time-points {t1, . . . , tn} to avoid redefining the ∨ operator for infinitesimal time
increments, however, in principle Definition 9 holds also for a time-interval [t1, tn].

Figure 3.2: Temporally uncertain data: Shaded area represents temporally uncertain
data. The green lines represent trajectories that are consistent with the data, while
the red line is an example for an inconsistent trajectory.

In many cases, data are available as qualitative, temporal if-then information. A
classical example for such an if-then observation in biology would be the regulation
of the lac-operon (diauxie, e. g. [137] and Figure 3.3): “if fructose is present in the
medium then the intake of lactose is inhibited”. Other examples can be found in the
control of mixed-logical systems and system verification, see e. g. [22]. For instance,
“if the set-point is changed then the controller has to limit the overshoot”.
A variable m(t1) is said to be conditional, if it is described by logical combinations

of ubb variables mi(ti), i ∈ {1, . . . , n}, i.e. m(t) = m1(t1) � . . . � mn(tn), where � is
either a conjunction (∧) or a disjunction (∨).

Definition 10 (Model Consistency (Conditional data)). Given conditional data ubb
variable m(ti), i ∈ {1, . . . , n}. Model (2.1) is said to be consistent with conditional
data M, if and only if there exists x0 ∈ X0, u ∈ Ω and p ∈ P such that (φ = 1) ⇐⇒
y(t1) ∈M(t1) � . . . � y(tn) ∈M(tn), � ∈ {∧,∨}. �
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3 Uncertainties and Model Consistency

Figure 3.3: Conditional data: if the input u (shaded area) is equal to 1 then the
value of the output increases. Note that the red, overshooting trajectory would
be considered as inconsistent with the data.

In the next chapters, we show that the concept of model consistency for the con-
sidered system class can be verified using semi-definite programming for discrete-time
systems of form (2.2). We furthermore show that the same procedure can be used to
derive guaranteed outer-bounds on the initial conditions and parameters. Note that
the necessary extensions for checking model consistency of continuous-time models are
presented in Section 5.5.

3.4 Summary
In this chapter, the considered set-based uncertainty was introduced. Furthermore,
we extended the notion of model consistency from quantitative to semi-quantitative
data, where data are referred to as measurements on the one hand and as safety
requirements on the other hand. Semi-quantitative data is in particular useful to
describe requirements of a model that cannot easily be formulated in qualitative terms.
Examples include if-then conditions in controller verification like: if the set-point is
changed then the controller has to stabilize the new set-point in a specific amount of
time.
Although, the set-based data description has the advantage to be rather general,

it also poses certain challenges. Only few methods are applicable in this case and
they are typically computationally rather expensive. For this reason, we propose
next computationally efficient methods that can consider set-based (semi-)quantitative
data for discrete-time (Chapter 4) and continuous-time systems (Chapter 5). These
methods are based on relaxation techniques for polynomial optimization problems as
described in the next chapter.
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4 Discrete-Time Systems

In this chapter, we provide an overview over set-based estimation for discrete-time
systems. The proposed approach is based on reformulating the desired estimation
task, e. g. state or parameter estimation, as a nonlinear feasibility problem. As the
nonlinear feasibility problem is in general nonconvex and, hence, difficult to solve, it is
addressed by relaxation to a semi-definite or linear program employing two approaches
known from polynomial optimization. Although, the relaxation strategy might intro-
duce spurious solutions (for a finite relaxation order), it can be certified if the model
is inconsistent with the available data or design specifications. For this purpose, two
algorithms are derived that further result in a guaranteed outer-approximation of the
solution set of the nonlinear feasibility problem, thus solving the estimation task of
interest. The presented relaxation strategies and algorithms build the foundation for
the results derived in later chapters. One particular focus in the choice of relaxation
strategies and in the development of the algorithms is the flexibility to balance theo-
retical accuracy and computational load.
This chapter is structured as follows. First, we describe the nonlinear feasibility for-

mulation and its relationship to estimation and model validation. Second, we introduce
the two employed relaxation approaches that allow addressing the feasibility problem
efficiently. Before, concluding this chapter, we present several simulation examples.

4.1 Introduction: Set-based Estimation

In general estimation/identification can be considered as the process of finding an
estimate, or approximation, of a result or solution that reflects the available data. In
particular, in the context of mathematical models of a dynamical system, the goal
is to extrapolate from the available data certain characteristics and variables of the
system. So, for instance, in state estimation the system states are determined based
on the made observations of the output. There exist several different approaches to
derive such an estimate for every particular instance of the estimation problem, see
e. g. [119, 142] for an overview on system identification, [186] for state estimation, or
[210, 213] for parameter estimation.
In many cases, such estimation problems are stated as optimization problems, in

which some objective (or cost) function is minimized over appropriate optimization
variables, e.g. the model parameters. A commonly employed objective is the mini-
mization of the difference between measurement data and model prediction, evaluated
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by least squares or maximum likelihood functions [210]. However, often the con-
struction of the objective is purely based on the experience of the user or deduced
from assumptions on the noise, respectively the prior distributions of the interesting
variables. Due to the nonlinearities typically arising in models of real systems, the
resulting optimization problems are frequently non-convex and hard to solve. As a
consequence, common approaches aim at finding locally optimal solutions, instead of
globally optimal ones [210]. As the local optimum found strongly depends on some
initial guess, such approaches are often combined with stochastic strategies to achieve
some desired global property [126, 127].
In a set-based setting the goal is, however, slightly different. Instead of searching

one particular optimum one tries to derive the set of all possible solutions. This is
particularly useful if guaranteed statements are required. For instance, set-theoretic
methods can be used to check whether a process operates within a previously defined
safe operating condition or fulfills some design specification. Furthermore, the set-
based setting allows a natural consideration of two crucial aspects in the analysis and
design of dynamical systems namely uncertainties and constraints. Checking whether
the constraints and measurements are represented by the model is typically based on
the notion of consistency. Here the interesting variable space is classified into consistent
and inconsistent subsets. A classical tool to check consistency is interval arithmetics,
see e. g. [83] and references therein.
In this work, we propose a different set-based method for estimation and in particu-

lar for model invalidation of discrete-time models based on our previous works (mainly
[27, 164, 170]). For this purpose a nonlinear feasibility problem (Section 4.2) is for-
mulated which is relaxed into a semi-definite or linear program (Sections 4.3.1-4.3.3)
that can be solved efficiently. On the one hand the presented approaches are able to
provide a tight lower bound on a polynomial cost function. On the other hand they
allow a guaranteed discrimination of models that are not consistent with the available
data and desired specifications. One particular advantage of this approach is the flexi-
bility to incorporate not only quantitative data but also semi-quantitative/qualitative
knowledge as introduced in the previous chapter. One further advantage is that the
presented approaches can be interchanged to limit the computational requirements,
while retaining the obtained guarantees.

4.2 Feasibility Problem Formulation

To verify if a model is consistent with the available qualitative data and semi-
quantitative/qualitative information, we have to prove the existence of an initial con-
dition and a parameterization of (2.3) (resp. (2.2)) that leads to a consistent behavior.
Note that we formulate this in terms of (2.3), however, an equivalent formulation is
possible for (2.2). This can be done by formulating a feasibility (or constraint satisfac-
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tion) problem. For this purpose, assume a model (2.3), an initial parameter region P ,
an admissible input region U , and the available dataM (as defined in Chapter 3) to
be given. To ensure that the following problem is well-posed, we further assume that
the state space is restricted to the a priori known set X ⊆ Rnx.
Consider the following set of (semi-)algebraic equations:

find x0, p

subject to fD(x(k + 1), x(k), u(k), p) = 0,
hD(y(k), x(k), u(k), p) = 0,
p ∈ P , x0 ∈ X0, x(k) ∈ X , u(k) ∈ U , y(k) ∈M, k ∈ T .

(4.1)

We denote checking whether (4.1) admits a solution or not as a feasibility problem
(FP). The solution space of FP corresponds to the ability of the model to satisfy the
given constraints. If the solution space is empty the model is not consistent with the
data as stated in the following theorem.
Theorem 1 (Model Consistency [27]). Model (2.3) is consistent with the data M if
and only if there exists a feasible point satisfying (4.1). �

Proof. The proof follows directly from construction. �

To clarify the notion of solution space (or feasible region), it consists of the set of
all initial conditions X ∗0 , all input signals U∗ and all parameterizations P∗ that lead to
trajectories of the state and output such that x(k) ∈ X and y(k) ∈ M for all k ∈ T .
Furthermore, as the state and output trajectories do not necessarily occupy X andM
fully, the solution space also consists of the reachable set R ⊆ X and the output reach-
able set Y∗. The projection of the solution space onto a variables in (4.1) estimates
its range. In general, we refer to the task of approximating and projecting the solu-
tion space of (4.1) onto variables as set-based estimation. However, approximating and
projecting the solution space is far from trivial, as it is typically nonconvex. Therefore,
we provide in 4.3.1 an approach that solves the set-based estimation problem.
Remark 3 (Variable Selection). Note that not only projections into the space of x0, p,
but the projection into the space of any variable in (4.1) can be considered. Such
projections can be used e. g. to determine reachable sets [174] or to estimate the states
[28] at all time instances k ∈ T . �

To state FP, if semi-quantitative information are to be included, special attention
has to be paid to the formulation ofM. In the following, we give a short overview over
the necessary steps and refer the interested reader to [170] (and references therein) for
more details.

4.2.1 Formulation of Semi-Quantitative Data

The main difficulty to include semi-quantitative data in (4.1) is to replace the conjunc-
tion and disjunction operators needed to describe temporal uncertain and conditional
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data as introduced in Chapter 3. Note that the (in-)equalities corresponding to rela-
tional data can be directly added to FP.
First, we introduce additional binary variables φ ∈ {0, 1} indicating whether the

model is consistent with the data. To then check if data represented as an ubb
variable m(tk) is fulfilled we have to formulate a constraint such that φ equals 1 if and
only if yk ∈M(tk), i. e.

(φ = 1)⇐⇒ yk ∈M(tk). (4.2)

Note that we can state the opposite to (4.2) with help of the not operator (¬), i. e.
(¬φ = 1)⇐⇒ yk 6∈ M(tk), where ¬φ = (1− φ) and φ is as in (4.2).
The set-membership, i.e. yk ∈ M(tk), depends on how the setM(tk) is defined. If
M(tk) is a halfspace, i. e. for c ∈ Rny we have M(tk) = {α, yk ∈ Rny : αTyk ≥ c}.
Then the implication can be formulated as:

φ ≥ αTyk − c
M

,

φ ≤ αTyk − c
M

+ 1,
(4.3)

with M >
∣∣∣maxyk∈M(tk) α

Tyk − c
∣∣∣. Note that on the boundary φ can be either 0 or 1.

This imprecision can be avoided by introducing further perturbation factors, e. g. [87].
The inequality constraints (4.3) and the equality constraint φ = 1 can then be added to
FP to enforce αTyk ≥ c. For more complicated sets it might be necessary to introduce
additional binary variables bi (atomic propositions) to formulate the implication. For
instance, if for c ∈ Rnc, A ∈ Rnc×ny we have M(tk) = {yk ∈ Rny : Ayk ≥ c}, which
corresponds to a polytope defined by the intersection of halfspaces, every halfspace
has to be considered separately. This leads to nc additional atomic propositions which
have to be linked by the conjunction operator, i. e. (φ = 1)⇐⇒ b1∧ . . .∧bnc, e. g.[182].
Sets of the formM(tk) = {yk ∈ Rny : a(yk) ≥ 0}, where a : Rny → R is a polynomial or
rational function, can simply be included by substituting αTyk− c with a(yk) in (4.3).
To treat the conjunction and disjunction operators, we have to replace them with

constraints similar to (4.3). The constraints corresponding to a conjunction of atomic
propositions bi, i ∈ Ib = {1, . . . , nb}, i. e. (φ = 1)⇐⇒ b1 ∧ . . . ∧ bn, are given by

φ ≤ bi, ∀i ∈ Ib
φ ≥

∑
i

bi − nb + 1. (4.4)

From (4.4) it follows that φ = 1 can only be true, if all bi = 1. The same consideration
is possible for the disjunction of propositions, i. e. (φ = 1)⇐⇒ b1 ∨ . . . ∨ bn,

φ ≤
∑
i

bi, ∀i ∈ Ib,

φ ≥ bi.
(4.5)
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Note that Boolean algebra enables us to formulate more complex Boolean functions,
include temporal information or to represent truth tables by combinations of not,
conjunction and disjunction operators, see e. g. [22, 170]. Furthermore, we can treat
other operators frequently used in temporal logic, such as the eventually operator by
introducing additional propositions and an appropriate combination of (4.4) and (4.5).
The integrality constraint imposed by the binary variables bi, i. e. bi ∈ {0, 1}, can

be formulated in terms of a polynomial equality constraint of form

(bi − 1)bi = 0, ∀i ∈ Ib. (4.6)

The constraints described above can be used to add semi-quantitative/qualitative
information (cf. Chapter 3) to FP. Due to the integrality constraints imposed by the
binary variables, we denote FP in the remainder with mixed-integer feasibility problem
(MIFP). A direct derivation of the solution space of MIFP is not possible as it is non-
convex. For this reason, we employ a relaxation technique which results in a convex
approximation of MIFP as seen next.

4.3 Reformulation and Relaxation

For the considered system class, we can relax MIFP into a semi-definite program
(MISDP) or even further into a linear program MILP. In literature several approaches
for reformulating MIFP are known, see e.g. [108, 124, 147, 151, 182]. Note that a
detailed comparison of the relaxation and reformulation methods can be found in [113].
In [113], it was also shown that Lasserre’s moment relaxation [108] is a refinement of the
methods proposed for 0/1 polynomial optimization problems presented in [124, 182].
For more background information we refer to [111, 114] and references therein.
In contrast to previous works [27, 170, 204], we consider mainly Lasserre’s moment

relaxation [108]. There are mainly two separate reasons. On the one hand this relax-
ation procedure has advantageous limit properties that allow the derivation of rigorous
results regarding the estimation of discrete-time and continuous-time systems. On the
other hand, it is the most suited approach if the considered problem is directly for-
mulated in terms of moment conditions to derive closed form approximations of the
solution set (see Chapters 5-6). However, depending on the specific problem (resp.
example), we also employ Shor’s relaxation [185] that is employed in the toolbox AD-
MIT [204]. This derives from the fact that Shor’s relaxation allows the easy derivation
of a MILP formulation when semi-quantitative data is considered. Furthermore, hav-
ing the choice between different relaxations improves the practical applicability in the
sense that one can balance between accuracy and computational load (Section 4.3.3).
In the following, we introduce both relaxation techniques and briefly discuss their

properties. For convenience, we provide a notation section in Appendix A.1. There,
some basic definitions and results on monomial bases, measures, and sequences of
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moment matrices are recalled.

4.3.1 Lasserre’s Moment Relaxation

The main goal of the relaxation approaches introduced in this and the following subsec-
tion, is the reformulation of the nonlinear feasibility problem into an easier manageable
problem. Those relaxations further allow an approximation of the solution space of
FP. As one of the developed algorithms relies on an objective function, we extend FP
to a polynomial optimization problem (POP) of form

inf p(x)
subject to x ∈ K,

(4.7)

where p(x) is the objective function.
HereK denotes a not necessarily convex compact set defined by polynomial equalities

hj(x) and inequalities gi(x) , i. e.

K = {x ∈ Rnx : gi(x) ≥ 0, hj(x) = 0, i ∈ Ig, j ∈ Ih}. (4.8)

Note that with respect to MIFP the set K corresponds to the (semi-)algebraic set
defined in (4.1), i. e. the constraints regarding the ubb variables and the dynamics of
(2.2). To get to the standard representation of a semi-definite program, we assume that
gi(x) ≥ 0 contains non-negativity constraints on all x. Furthermore, for simplicity of
notation we consider here only the variable x, but clearly x can be defined such that it
covers x(k), y(k), u(k) and p. Concerning the integrality constraints corresponding to
the binary variables φi and bi introduced for semi-quantitative/qualitative information
see Section 4.2. If only feasibility of (4.7) is of interest, then the cost function p(x)
is set to zero. However, for some applications of POP it is advantageous to have a
nonzero cost function, e. g. for the outer-bounding of the feasibility region as described
in [27].
In [108], it was shown that for a given real valued polynomial p(x) ∈ R[x] a global

minimizer x∗POP of POP can be found. The main idea presented in [108] is that POP
can be seen as an instance of the following infinite dimensional linear problem LP∞

inf
∫
K
p(x)µ(dx)

subject to x ∈ K.
(4.9)

Here, the infimum is determined over the positive cone of finite signed Borel measures
µ on the constraint set K denoted by B. It should be noted that by definition of B the
measure of every point outside of K is equal to zero. It can be shown that POP and
LP∞ are equivalent in the sense that their optimal values are equal, i. e. x∗POP = x∗LP∞
(see Proof of Proposition 2.1 in [111]). A simplified interpretation of (4.9) is that one
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calculates the measure of the subset of K on which p(x) is positive.
The main advantage of LP∞ is however that it is linear and thus convex. Further-

more, it can be addressed in form of a sequence of finite dimensional semi-definite
programs as seen next.
To do so, we first rewrite ∫K p(x)µ(dx) = ∑

α pα
∫
xαµ(dx) in terms of a sequence

(yα)α∈Nnx corresponding to the moments of µ. This leads to the equivalent represen-
tation ∑

α pαyα, with yα = ∫
xαµ(dx), see also Appendix A.1. Therefore, LP∞ can be

reformulated as

inf
∑
α
pαyα

subject to y0 = 1,
supp(µ) ⊆ K.

(4.10)

We can require instead of the support of µ contained in K that the corresponding
moment matrices are positive semi-definite, cf. Lemma 3 in the Appendix. Due to the
semi-definite constraints, we get an infinite-dimensional semi-definite program (SDP∞)
of form

inf
∑
α
pαyα

subject to y0 = 1
M(y) � 0,
M(hjy) = 0, j ∈ Ih,
M(giy) � 0, i ∈ Ig,

(4.11)

where the index set Ih corresponds to the equality constraints in FP and Ig to the
inequalities. For a general introduction to semi-definite programs, see e. g. [23, 214].
From the necessary conditions on moment sequences (see Lemma 3), it follows that

SDP∞ provides a lower bound to the original problem, i. e. x∗SDP∞ ≤ x∗LP∞ = x∗POP. In
many cases even x∗SDP∞ = x∗POP holds.
It is yet not possible to solve SDP∞ as it involves infinite-dimensional matrices. To

obtain a finite semi-definite program we consider instead truncated moment matrices.
This leads to Lasserre’s hierarchy SDPd of lower bounds for x∗POP given as

inf
∑
α
pαyα

subject toy0 = 1,
Md(y) � 0,
Md−dh(hjy) = 0, j ∈ Ih,
Md−dg(giy) � 0, i ∈ Ig.

(4.12)

The optimal values follow in this hierarchy obviously the inequality x∗SDPd ≤ x∗SDP∞ ≤

29



4 Discrete-Time Systems

x∗LP∞ = x∗POP.
Theorem 2 (Semi-definite Relaxation [108]). Let K be as in (4.8) and for at least
one polynomial f(x) defining K it holds that there exist polynomials qj(x) such that
f(x) ∈

{
q0(x) + ∑m

j=1 qj(x)f(x)
}
and the level set {x ∈ Rnx : f(x) ≥ 0} is compact,

then
lim
d→∞

x∗SDPd ↑ x
∗
POP ,

i. e. the optimal value of SDP∞ is equal to the optimum of POP. �

Proof. See e. g. Theorem [108]. �

Under further conditions on the set K it can be shown that there is even finite
convergence of x∗SDPd to x

∗
POP, see e.g. [108] for more details.

We can state the Lagrangean dual (dualSDPd) associated with SDPd for the case
that p(x) is set to zero as

sup λ0

subject to 〈Λ0, Bα〉+
ng∑
j=1
〈Λj, Cj,α〉+ . . .

+ λ0e1e
T
1 +

nh∑
j=1

λjhj,α = 0,

λj ≥ 0, i ∈ Ih ∪ {0},
Λj � 0, i ∈ Ig ∪ {0}.

(4.13)

where Bα and Cj,α are appropriate real symmetric matrices such that Md(y) =∑
αBαyα and Md−dg(giy) = ∑

αCj,αyα. The Lagrangean dual variable λ0 corresponds
to y0 = 1, Λ0 (resp. Λj) to the semi-definite constraints Md(y) � 0 (resp. Md−dg � 0)
and λj to the equality constraints.
Considering dualSDPd we can state the following Lemma providing a conclusive

proof with respect to model consistency (see also Definition 7-10).
Lemma 1 (Model Invalidation (Sufficient Condition)). Given a (semi-)algebraic set of
form (4.1). If dualSDPd is unbounded for some d ≥ 1 then model (2.2) is inconsistent
with the semi-quantitative/qualitative measurement data M, i. e. the solution space
S∗ of MIFP is empty. �

Proof. The proof follows from the weak duality property of the Lagrangean dual, see
e. g. [20, Corollary 4] �

Lemma 1 provides also a possibility to outer-approximate the solution space of MIFP.
Namely, if we partition the constraint set K we can derive a (possibly non-convex)
outer-approximation Ŝ of the solution space of MIFP by excluding those partitions Q
for which the dualSDPd is unbounded, i. e.

Ŝ = K \
⋃

Q⊂K:dualSDPd→∞
Q. (4.14)
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To derive Ŝ a simple bisectioning procedure can be used as sketched in the following
algorithm.

Algorithm 1(Bisectioning Algorithm [164])

Outer-approximate(Q, ε)
1 if dualSDPd →∞ return Q = ∅

2 if µ(Q) ≤ ε return Q

3 Choose Q1,Q2 such that Q1 ∪Q2 = Q.

◦ Q′1 = Outer-approximate(Q1, ε)

◦ Q′2 = Outer-approximate(Q2, ε)

4 return Q′1 ∪Q′2

A computationally less expensive alternative is to approximate every variable in K
independently as proposed in [25], which results then in an outer-bounding box of
the solution space. This is done by defining a nominal direction of every variable of
interest (in the simplest case the maximum and minimum of every variable in FP) and
minimizing a linear objective function, cf. Algorithm 2 and [204] for a more detailed
description. Both algorithms are illustrated in Section 4.4 and in Section 4.5. Note
that independently a similar method was proposed in [35, 36].

Algorithm 2(Outer-bounding Algorithm [25])

Outer-bound(Q, ε)
1 while i ∈ IS

2 set p(x) = xi

3 solve SDPd

4 update bounds on xi

5 set p(x) = −xi

6 solve SDPd

7 update bounds on xi

8 set i = i+1
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9 return Q′1 ∪Q′2

In the following, we introduce the second relaxation procedure employed in this work.
In contrast to the moment relaxation approach, the nonlinear feasibility problem is
first reformulated into a quadratic problem with a rank constraint. By relaxing this
constraint one obtains again a semi-definite program that retains the guarantees of
Lemma 1 and can be employed in Algorithm 1 and Algorithm 2. The main reason
for presenting this second relaxation approach is to introduce the flexibility of trading
some theoretical accuracy with computional efficiency.

4.3.2 Shor’s Relaxation

In our previous works, we derived a result similar to Lemma 1 based on a different
relaxation strategy, see [25, 27, 104, 151, 184] for details. It should be noted that in
the general case this different strategy is complementary to the moment relaxation
method, however, without the strict convergence results seen in the previous section,
see e.g. [114] for a detailed discussion of the properties of both relaxations.

As at several points of this work the Matlab toolbox ADMIT [204] is employed,
the main ideas of this relaxation is sketched in the following. The basic idea here is
to express every equation of the vector functions fD(x(k + 1), x(k), u(k), p) = 0 and
hD(y(k), x(k), u(k), p) = 0 first in a quadratic form ξTminQ

j
kξmin = 0, j ∈ {1, . . . , nx+ny}

using a minimal monomial basis ξmin and symmetric matrices Qj
k ∈ Rnξ×nξ . Note that

these monomials correspond to the set of monomials Ξmin appearing in the system
equations and constraints in MIFP. For Ξmin it has to hold that 1 ∈ Ξmin, and for all
q ∈ Ξmin of degree higher or equal to 2, there exist q1, q2 ∈ Ξmin with lower degree such
that q = q1q2. For these nD higher degree monomials present in ξmin, nD additional
equality constraints in quadratic form have to be introduced.

The sets P , X and the uncertain measurement data contained inM are equivalently
rewritten as Bξminξ

T
mine1 ≥ 0. To get to the standard representation of a semi-definite

program, it is assumed that the non-negativity constraint of all elements in ξmin is
included in the matrix B.

Thus, we can relax MIFP into the semi-definite program SDPShor by introducing
X = ξminξ

T
min and replacing the conditions rank(X) = 1 and tr(X) ≥ 1 with the
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weaker constraint X � 0 (cf. [151]), resulting in the relaxed formulation SDPShor

min tr(CX)
subject to tr(Qj

kX) = 0, k ∈ Z, j ∈ I,
tr(e1e

T
1X) = 1,

BXe1 ≥ 0,
X � 0, X ∈ X.

(4.15)

with X ⊂ Rnξ×nξ denoting the space of the matrix variable X, where entries corre-
sponding to products of discrete variables of ξmin are treated as discrete variables.
For a more detailed discussion of the involved relaxation and reformulation steps, we
refer to [151]. As shown in [114], SDPShor provides a lower bound on SDPd, i. e.
x∗SDPShor ≤ x∗SDPd.
It should be noted, although, SDPShor does not have the same convergence guar-

antees as SDPd. However, if the Lagrangean dual of SDPShor is unbounded, similar
to Lemma 1, it can be proven that a model is inconsistent. Therefore, this relaxation
approach can be directly employed in Algorithm 1 and Algorithm 2. To demonstrate
this, we provide in Section 4.4 an example.
In general, both introduced relaxation approaches can be employed to address the

set-based estimation problem, i. e. the approximation of the solution space of FP.
However, both approach can be computationally expansive. A natural conclusion is to
relax the semi-definite programs even further into linear programs as discussed next.

4.3.3 Remarks on Linear Relaxations

Recent reports suggest that there will be methods for deriving valid cuts for mixed-
integer semi-definite programs (e. g. [100]), the maximal number of variables is at the
moment restricted to approximately 60. This number has to be reduced further with
increasing number of binary variables due to the increasing combinatorial complex-
ity. One possible approach to reduce the computational burden is the use of linear
relaxations [109]. An advantage is clearly the availability of efficient solvers for linear
programs that are able to handle large problem sizes up to several thousand variables.
As stated in [109] there are some difficulties involved when linear relaxations are used.

For instance, the Hausdorff moment conditions are known to be numerically unstable
due to the involved binomial coefficients. Furthermore, [109] showed that it is not
guaranteed that the optimum of the linear relaxation coincides with x∗POP (even in the
limit). Note that combining linear relaxations with a branch-and-bound procedure can
overcome some of the aforementioned problems, see e. g. [13] and references therein.
Still we believe that linear relaxations complement the semi-definite method from

an algorithmic point of view. When we are interested in proving inconsistency of a
model it is done by a sufficient certificate, namely the infeasibility of our semi-definite
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program. Therefore, the limitation that the true optimal solution might not be found
loses its importance as every feasible solution already suffices. Furthermore, the case
when numerical problems occur can be treated as the case that no definite certificate
for model invalidity was found. In the following, we discuss a simple linear relaxation
for the feasibility problem as used in [204] and refer the interested reader to [109] for
a strategy better suited for finding an optimal solution.
A possibility is to substitute the constraintMd(y) � 0 withMd(y) ≥ 0 (resp. X � 0

with X ≥ 0). This still leads to a valid constraint, as the constraints gi(x) ≥ 0 (resp.
BXe1 ≥ 0) already guarantee that the variables are positive.
As we are not concerned with finding an optimal solution here, we will discuss

the linear program formulation only in terms of SDPShor. We provide thereafter one
simple, but highly nonconvex, example that illustrates the usefulness of this relaxation.
Note that this substitution will lead to an increase of additional solutions, which can

be reduced again e. g. by considering further strengthening constraints [5, 182], or by
adding constraints for diagonal dominance [215]. Indeed in practice it showed that the
constraints mainly responsible for the estimation precision are redundant constraints
in the linear program.
Further additional constraints to reduce the relaxation error due to multiplication

of integer variables are presented in [173]. A less conservative linear relaxation based
on [182] can be found in [109].

Example 1. The example we are considering is the so-called Folium surface, see e. g.
[77]. This surface is the area inside the curve r = sin(2φ) and can be described as
K = {x ∈ R2 : g(x) = −((2x1 − 1)2 + (2x2 − 1)2)3 + 4(2x1 − 1)2(2x2 − 1)2 ≥ 0}.
We compare here the results of Lasserre’s hierarchy (SDPd), Shor’s relaxation and
the proposed linear relaxation. For this reason, we compute the area of the Folium
surface employing the proposed algorithms for the different relaxations. Furthermore,
we compare these results with the results obtained for a close form approximation
reported in [77]. The exact area of the Folium surface is π/6 ≈ 0.523 (computed
employing polar coordinates and Mathematica). The initial bounds on the variables x1
and x2 are chosen to be the interval [0, 1]. For the bisectioning procedure ε is chosen
to be 1/6.
The result of the bisectioning procedure (Algorithm 1), the outer-bounding procedure

(Algorithm 2) for d = 10, the closed form solution of [77] as well as the true feasible re-
gion are shown in Figure 4.1. Table 4.1 reports the derived areas. The implementation
of the example was done with the Matlab toolbox ADMIT [204] and the Matlab toolbox
YALMIP [121, 122]. The solution was obtained with the semi-definite programming
solver SEDUMI [208] and the mixed integer linear solver CPLEX. Computation times
are stated for a desktop computer (with a Intel R©Core i5 and 8GB RAM).
The linear relaxation in combination with Algorithm 1 as well as the closed form

solutions approximate the area quite well. Note that by choosing a smaller ε for Algo-
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Figure 4.1: Approximation of the two dimensional Folium surface. Blue area depicts
the true feasible solution, solid green line depicts the delimiter r = sin(2φ). Blue
regions correspond to closed form solutions approximating the Folium surface (for
d = 4 und d = 8) employing [77]. Red boxes are the excluded regions by means
of LPd (Algorithm 1). Black box corresponds to the result of the outer-bounding
procedure (Algoirthm 2) with SDP10.

Table 4.1: Approximate area of the Folium surface

Procedure Area Computation Time
Algorithm 1 0.540 ∼ 12s
Algorithm 2 0.608 ∼ 1s
Closed Form [77] (d = 4) 0.538 ∼ 5s
Closed Form [77] (d = 8) 0.525 ∼ 25s

rithm 1 a better approximation can be obtained. Note also that numerical errors for
the closed form solution do not allow a better approximation, although in theory for
d → ∞ the exact area is derived. To improve the result of the closed form solutions
one would have to choose a circular initial area enclosing the Folium surface [77]. �

The example illustrates the quality of the linear relaxation, when combined with
the bisectioning procedure Algorithm 1. However, as explained in the beginning of
this section, without adding additional constraints, as they are introduced by the
bisectioning, the linear relaxation does in general lead to a weak relaxation. This is
in particular true if Algorithm 2 is considered as no guarantee can be given that the
bounds on the variables can be derived exactly.
In the following, we present two examples to illustrate the developed set-based es-

timation approach. Both examples have their origin in systems biology and were
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4 Discrete-Time Systems

implemented with help of the toolbox ADMIT [204]. The first example only considers
quantitative constraints, while the second example also employs constraints based on
semi-quantitative data.

4.4 Example: Model Consistency

In this example, we demonstrate how well set-based estimation is situated to handle
uncertainties for testing model consistency. This is done with help of Algorithm 1
implemented in the toolbox ADMIT [204]. This section is based on [164].

4.4.1 Model Description

We consider an enzyme-catalyzed reaction, in which an enzyme (E) and a substrate
(S) join into an enzyme-substrate complex (C) to form a final product (P). Let the
hypotheses proposed for this process be the two models formulated by Henri in 1902,
respectively known as the Michaelis-Menten (MM) and the Henri (H) mechanism of
enzyme-catalyzed reactions:

(MM) : E + S
p1


p2

C
p3→ E + P (4.16)

(H) : C
p̃1


p̃2

E + S
p̃3→ E + P, (4.17)

where pi, i ∈ {1, 2, 3} and p̃i, i ∈ {1, 2, 3} are the rate constants. The relevance of these
two models is discussed in [177], in which it is also proved that both models are analyt-
ically indistinguishable under steady state conditions, and can only be distinguished
in the transient phase.
Both reaction mechanisms are modeled according to the law of mass action. Ex-

ploiting two conservation relations fulfilled by both mechanisms, the models can be
simplified into second order systems depending only on the concentration of S and C.
Considering a simple first order Euler discretization scheme, and fixing the total en-
zyme concentration E+C to a constant value 1, the difference equations corresponding
to the MM mechanism are given by

sk+1 = sk + h[(ck − 1)p1sk + p2ck]
ck+1 = ck + h[(1− ck)p1sk − (p2 + p3)ck],

where h is the time-step of the discretization, while for the Henri mechanism we obtain

sk+1 = sk + h[(ck − 1)(p̃1 + p̃3)sk + p̃2ck]
ck+1 = ck + h[(1− ck)p̃1sk − p̃2ck].

To show that our approach allows to prove model invalidity, we assume the Henri
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Table 4.2: Model invalidation results for the Michaelis-Menten mechanism

Initial Conditions Maximum Error
substrate (s0) complex (c0) σ [%]

0.999 0.001 ±14.0%
0.990 0.010 ±13.0%
0.900 0.100 ± 8.5%
0.800 0.100 ± 8.0%
0.800 0.200 ± 5.0%
0.700 0.300 ± 2.5%
0.600 0.400 ± 0.5%

mechanism as reference, generate measurements by sampling a simulation during the
transient phase, and use the resulting data for model invalidation against the Michaelis-
Menten model.
The discrete-time model for the Henri mechanism has been simulated with time-

step h = 0.1 seconds and parameters p̃1 = p̃2 = p̃3 = 1 for several initial conditions
x0 = (s0, c0), deriving for each a corresponding sequence of states xk = (sk, ck), for
k = 0, . . . , 20. Given a state sequence (xk) and a measurement error σ, we denote
by Yσ = {Yσk : k = 0, . . . , 20} the corresponding uncertain measurement sequence,
with measurement sets Yσk = {x ∈ R2 : |x− xk| ≤ (1 + σ)xk}. To test if the sequence
Yσ allows to invalidate the Michaelis-Menten mechanism, we apply Algorithm 1 with
precision threshold ε = 5%, using as bounds for the unknown parameters the interval
set P = {p ∈ R3 : pi ∈ [0.3̄, 3]}. If the resulting parameter set is empty, the Michaelis-
Menten mechanism is invalidated.

4.4.2 Results and Discussion

In Table 4.2 we report, for seven different initial conditions, the highest measurement
error σ for which our approach allows to invalidate the Michaelis-Menten mechanism.
The measurement error decreases as the initial conditions approach the steady state
(recall that in the steady state the two systems are indistinguishable [177]). Com-
paring these results with the practical measurement errors that can be obtained in
enzymological assays (see e.g. [115, 131, 163]), invalidation can be achieved when the
system is sufficiently excited.
This example illustrates the ability to conclude model consistency under the presence

of measurement uncertainty. However, here only quantitative data is considered, to
elucidate the proposed set-based approach for semi-quantitative data consider the
following example.
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4.5 Example: Biological Adaptation Model
In this section, we give a short example how the methods developed in this chapter can
be used to invalidate a model based on qualitative information. We demonstrate this
with a core adaptation model and a qualitative description of the adaptation process.
The results we present in the following are based on [170].

4.5.1 Background: Adaptation

Adaptation is an attribute of a system that allows it to react to changes in its environ-
ment. In evolutionary biology this attribute typically corresponds to a natural selection
process, while in our work we understand adaptation as a reaction with respect to a
change in the input. Perfect adaptation denotes hereby the property of a biological
system to return exactly to the pre-stimulus level of the observed variable y(t) for
large times after an initial dynamic response, i. e. ∆y(t∗) = |y(tstimulus − y(t∗))| >
0 for some t∗ > tstimulus, and ∆y(t)→ 0 as t→∞. We say an adaptation is partial or
near-perfect if the output does not converge towards the prestimulus level. The struc-
ture and parameterizations of network models that allow adaptation are well studied
in literature, see e. g. [16, 21, 50, 129, 193, 222].
For instance in [193] it was shown that a nonlinear system that adapts to a class

of inputs, necessarily contains a subsystem that is able to generate inputs of the
same class based on the internal model principle. For linear systems adaptation to
a constant step function can be achieved with an integral feedback [222]. In models
of biochemical networks, an integrator is often obtained by a reaction operating with
zero-order kinetics [16, 50]
In [129] two core structures to model adaptation were presented, namely a nega-

tive feedback loop with a buffering node and an incoherent feedforward loop with a
proportioner node. Using the former, we illustrate in this section that the proposed
framework can be used, first, to express adaptation as a mixture of quantitative, semi-
quantitative and qualitative data by linear constraints and binary variables following
[170]; second, that the data can be used to estimate the parameters of a model. We
analyze here only one valid core model, for a more detailed discussion and additional
model hypotheses see [170]. The analysis was done using ADMIT [204]. This toolbox
can be used to construct the considered feasibility problem, to carry out the neces-
sary mathematical reformulations and relaxations of the constraints, and to perform
parameter estimation, state estimation, and model invalidation as described in Sec-
tion 4.2.

4.5.2 Model Description

The considered reaction scheme comprises of three species that can be either active
or inactive and the connection of the species. The species interact with each other
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4.5 Example: Biological Adaptation Model

reversibly and enzymatically regulated. By introducing conservation relations that
hold for the total amount of three species in both activation states, we obtain the
following simplified Euler model.

x1(k + 1)

x2(k + 1)

x3(k + 1)


=



x1(k) +D(kf x2(k) (1− x1(k))
Kf + (1− x1(k)) −

kiuA ux1(k)
KiuA + x1(k))

x2(k) +D(kaEB EB (1− x2(k))
KaEB + (1− x2(k)) −

kiAB x1(k)x2(k)
KiAB + x2(k) )

x3(k) +D(kaAC x1(k) (1− x3(k))
KaAC + (1− x3(k)) −

kiEC EC x3(k)
KiEC + x3(k) )


(4.18a)

y(k) = (x1(k), x2(k), x3(k)). (4.18b)

Note that here the rather general form of Michaelis-Menten kinetics was chosen
for the reactions as for appropriate choices of the parameters, the Michaelis-Menten
kinetics approximate either zero- or first-order kinetics. Note further as the kinetics
involve rational terms, all equations were multiplied by their respective denominators
and the resulting implicit formulation is used for the subsequent analysis.
We assume that the states x1(k) and x2(k) are measured and are given as ubb

variables. Furthermore, we employ a similar qualitative description of adaptation in
terms of x3(k) as in [170] as summarized next.

- The states are in steady-state before the stimulus is removed and x3(k) is in the
initial interval [0.4, 0.5].

- After the stimulus is removed the maximum value of x3(k) is larger than 115%
and is reached within 3 time-steps.

- After the maximum has been reached, x3(k) returns almost to the initial interval
in 5 time-steps, i. e. x3(k) ∈ [0.4, 5.2].

- To avoid that x3(k) shows a strong inverse response behavior additionally x3(k)
is always larger than 0.4.

Employing the formalism introduced in Chapter 3, the qualitative information is
first formulated in terms of conjunctions and disjunctions. The resulting formulation is
given in Table B.1. The considered intervals of the parameters are given in Table B.2.
For generating the quantitative data on x1(k) and x2(k), we computed a nominal
trajectory for a fixed parameterization and added an absolute error of ±0.01 to the
states, the nominal parameterization is included in Table B.2. Note that the setting
described above is based on an example implemented in ADMIT.
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4.5.3 Results and Discussion

The obtained simulation results using ADMIT are depicted in Figure 4.2. As can
clearly be seen from the calculated bounds on x3(k) the model is able to reproduce
the desired qualitative behavior.

Figure 4.2: Result as produced by ADMIT for the given setup. Intervals depict
the estimated ranges of the state x3(k). Blue shaded area corresponds to the
stimulus (not to scale). Colored lines correspond to discrete-time trajectories of
(4.18) obtained by sampling the determined intervals of initial conditions and
parameters.

The example, therefore, shows that a combination of quantitative and qualitative
data can be used to estimate the variables of interest in a set-based setting. What
should be kept in mind here is, however, that if measurements instead from a nominal
discrete-time model but a continuous-time model are taken the analysis becomes a
much harder problem. The main reason is that discrete-time approximations as used
here have a tendency to smooth some transient behaviors as seen in the next chapter.
For the considered setting the computation time was only around 10min to compute

the results shown in Figure 4.2, but increases rapidly by allowing more uncertainties
in the variables. This is, however, to some extend intrinsic to all available set-based
methods. Still, employing techniques to reduce the computational load are very impor-
tant if the proposed methods are applied to real world examples. Suitable extensions
were proposed e. g. in [153, 167, 175].

4.6 Summary

In this chapter, the proposed set-based estimation approach for discrete-time systems
was introduced. This approach is based on formulating model consistency in terms of a
nonlinear feasibility problem incorporating quantitative and semi-quantitative data. In
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general, this feasibility problem is nonconvex and, hence, cannot be addressed directly.
To overcome this difficulty, we considered two relaxation approaches that transfer the
feasibility problem into a semi-definite or linear program. These approaches are based
on techniques developed for the solution of polynomial optimization problems. One
important property of these relaxation approaches is that they provide a guaranteed
model invalidation result. This means if a model is inconsistent with the available
data and safety requirements, then a certificate of inconsistency can be derived.
Based on these certificates, we proposed several algorithms to estimate bounds on

the variables of interest, thus solving the set-based estimation problem. A major
concern hereby was the computational burden. For this reason, both the developed
algorithms and the choice of employed relaxation strategies allow a trade-off between
computational load and accuracy. Although, this trade-off is possible, the guaranteed
invalidation is always retained.
So far only discrete-time models were considered. In practice, determining whether a

continuous-time model is able to reproduce the data from a process or not is typically
more involved. For this reason, we extend in the following the presented set-based
method to continuous-time systems with a focus on the aforementioned flexibility to
provide a trade-off between accuracy and applicability.
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In this chapter, we extend the discrete-time estimation procedure of the previous
chapter to continuous-time systems. To do so, we identify system properties of discrete-
time systems (resp. approximations) that have to be fulfilled such that continuous-time
systems can be addressed. In particular, these properties allow to conclude from model
invalidity of the discrete-time system to the model invalidity of the continuous-time
system. We propose two possibilities to derive suitable discrete-time approximations.
The first method is based on the Picard-Lindelöf theorem and the second method is
based on augmenting the discrete-time system by an error term. While the first is in
general theoretically more rigorous the second one offers a trade-off between accuracy
of the model invalidation result with the computational burden.
This chapter is structured as follows. We briefly introduce the difficulties that arise

when continuous-time systems are considered in a set-based setting. Then we present
several properties that a discrete-time system has to fulfill such that it can be employed
to estimate the continuous-time system. Afterwards we present two methods to derive
a suitable discrete-time approximation and illustrate with a real world example before
concluding this chapter.

5.1 Introduction: Set-based Estimation
As shown in Chapter 4 it is possible to derive an outer-approximation of the feasible
set of a discrete-time system. Here, feasible set corresponds to all values of the involved
variables, e. g. states and parameters, that lead to a model behavior consistent with
the available data and safety requirements. However, for continuous-time systems
deriving the feasible set is more involved and only few suitable approaches are available
in literature. One possibility is to directly encode the continuous-time dynamics in
LP∞ with the help of occupation measures, see e. g. [76, 111] and in particular [203]
for parameter estimation. If the main concern is to prove model invalidity one can also
employ the concept of barrier certificates, see e. g. [3, 156, 157]. These certificates allow
to derive a function that separates possible system trajectories with the measurements
and, therefore, proving invalidity of the model and can also be applied for parameter
estimation [221]. Other approaches rely on additional assumptions. For instance, in
[71, 104] the continuous-time system is only considered in steady state. In [52], it is
assumed that the derivatives of the states are also available as unknown-but-bounded
measurements. The problem then reduces to a (multi-stage) steady-state investigation
similar to [104].
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The main difficulty in applying the results of Chapter 4 to continuous-time systems
derives from the fact that by discretizing typically an approximation error is intro-
duced. Discretization errors as they appear in solving initial value problems are a well
studied topic in numerical mathematics, see e. g. [46, 198] for an overview. In the
context of systems theory several results have been proposed in e. g. [68, 206, 207].
However, typically only initial value problems with fixed parameterizations are con-
sidered and a direct application to set-based methods is in general difficult.
One approach dealing with this problem is based on interval arithmetics for deriv-

ing validated solutions to ordinary differential equations [38, 97, 116, 123, 139, 140,
161, 216, 217]. One common feature of these works is that they try to minimize the
discretization error by employing multi-step discretization schemes or similar ideas.
Another approach is related to the classical works of differential inclusions [10, 12, 54],
and in particular the discretization of differential inclusions [48, 63, 171]. For instance,
in [7] it was shown that the discrete-time approximation of a differential inclusion
based on Euler discretization only approximates the differential inclusion for vanish-
ing time-steps.
Before describing the proposed methods, we illustrate the problem of guaranteed

model invalidation of a continuous-time system with a simple example.

Example 2. Consider the linear scalar system ẋ(t) = −px(t) and the corresponding
Euler discretization x(k + 1) = (1 − pdD)x(k) with D > 0 denoting the step-size
and p, pd ∈ R the system parameter of the continuous-time and discrete-time system,
respectively. We compare both systems on the time interval T = [0, 1]. We assume
further that we have measurements of the continuous-time system at particular time-
instances with a constant sampling rate D∗. This setup is illustrated in Figure 5.1A.

Figure 5.1: A: Euler approximation of an exponential decay function ẋ = −1.5x
with initial condition x0 = 5 and a fixed step-size D = 0.5 on the time interval
[0, 5]. Measurements of the continuous-time system are depicted as the full blue
line, while the Euler approximation is depicted as the dotted line. B: Shaded area
depicts the reachable set of an embedding Euler approximation.
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For the Euler discretization to be consistent with the measurements, one of two
conditions has to be fulfilled. Namely, the step-size D has to be chosen sufficiently
small or the parameterization is chosen w.r.t. an exact discretization. In this simple
example, we can derive the exact discretization as x∗(k + 1) = e−pD

∗
x∗(k). For an

exactly known initial condition x0 ∈ R the parameter pd of the discrete-time system
has to have the value pd = (1− e−pD∗)/D, otherwise the discrete-time system is going
to be inconsistent with the data due to the made discretization error.
We, therefore, propose here methods which allow the derivation of a discrete-time

system that embeds the trajectories of an uncertain continuous-time system such that
model consistency of the continuous-time system can be checked by the embedding sys-
tem, as illustrated by Figure 5.1B. �

As seen in the previous example the consistent parameters of continuous-time mod-
els and discrete-time approximations are not necessarily equal. This derives from the
fact that by discretizing the continuous-time dynamics an error is introduced. To
provide a method for which consistency of a continuous-time model can be checked
by an approximation, the discretization error has to be considered. For this purpose,
we categorize the relationship between continuous-time and discrete-time systems as
follows. We denote the continuous-time consistent parameters with P∗CT and the con-
sistent parameters of the discrete-time system as P∗DT . We have to distinguish three
different situations as illustrated by the Venn diagrams in Figure 5.2.

Figure 5.2: Possible relationships of the consistent parameters of continuous-time
models and discrete-time approximations of this model. Blue areas represent con-
sistent parameters of the continuous-time model P∗CT , orange areas consistent
parameters of the discrete-time model P∗DT . Ideally, P∗CT ⊆ P∗DT holds to be able
to relate results from the discrete-time model to the continuous-time model. In
case, P∗DT ∩ P∗CT = ∅ in general results are not related.

If no relationship between the consistent parameters exists, i. e. P∗CT ∩ P∗DT = ∅, in
general consistency cannot be checked by an approximation, unless a functional depen-
dency between the parameters can be derived. This is the case for exact discretizations
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as seen in Section 5.3. The other two cases have to be considered separately. The ideal
relationship P∗CT ⊆ P∗DT , where the parameters of the continuous-time system are
bounded by the parameters of the discrete-time system, is considered in Section 5.4.
This property is achieved by choosing a time-step size for the approximation such
that the reachable set of the continuous-time system are embedded in the reachable
set of the discrete-time system. To do so, we employ the Picard-Lindelöf theorem for
the existence and uniqueness of differential equations. This leads, however, in most
cases to a high computational burden as the step-size will typically be small for un-
certain systems. To mitigate this problem, we propose further a method for which
P∗CT ∩ P∗DT 6= ∅ can be guaranteed (Section 5.5.3). This is done, by constructing a
discrete-time system that is augmented with a time dependent error term. This error
is then estimated with help of simulation data from the continuous-time model. This
leads to a computational advantageous method, that allows us to balance the compu-
tational burden with the achievable accuracy depending on the specific process under
consideration. That this weaker relationship still provides a useful tool in the analysis
of a model is illustrated in Section 5.6 for a real world example. The next section
formalizes the considered relationships between consistent parameters and introduces
the concept of embedding systems.

5.2 Relationship of Continuous-time and Discrete-time
Models

To be able to employ Lemma 1 for continuous-time systems we have to create a rela-
tionship between consistent parameters of discrete-time and continuous-time model.
We define such a relationship in terms of consistent parameters as:

Definition 11 (Weak CT/DT-Relationship). A discrete-time model (2.2) is said to
be weakly related to a continuous-time model (2.1), if there exists D∗ > 0 and a set of
consistent parameters P∗DT of the discrete-time model such that

P∗DT ∩ P∗CT 6= 0 (5.1)

holds for all step-sizes D ∈ [0, D∗), where P∗CT denotes the consistent parameters of
the continuous-time model. �

As soon as at least one consistent parameterization of the discrete-time model co-
incides with a consistent parameter of the continuous-time model an application of
Lemma 1 provides a necessary condition for model validity. However, this definition is
insufficient for guaranteed parameter estimation since an outer-approximation of the
consistent parameters of the continuous-time model is not possible. Here a stronger
relationship is needed as defined next.
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Definition 12 (Strong CT/DT-Relationship). A discrete-time model (2.2) is said to
be strongly related to a continuous-time model (2.1), if there exists T ∗ > 0 and a set
of consistent parameters P∗DT of the discrete-time model such that

P∗CT ⊆ P∗DT (5.2)

holds for all T ∈ [0, T ∗), where P∗CT denotes the consistent parameters of the
continuous-time model. �

Remark 4 (Variables of Interest). In this chapter, we are mainly interested in model
consistency and we restrict, therefore, the variables of interest, i. e. the variables to be
estimated, to the parameters of the discrete-time (resp. continuous-time) model.

The main question that arises from these definitions is: how can we ensure the desired
relationship of discrete-time approximations and model (2.1) exists. We provide in the
following some preliminary results that guarantee this relationship and are then used to
derive appropriate methods for parameter estimation/model invalidation in Section 5.4
and Section 5.5.

5.2.1 Embedding Systems

We define the term embedding system for discrete-time systems as follows.

Definition 13 (Embedding System). A discrete-time model (2.2) with trajecto-
ries Φ2

D(x(k)|x0, u(k), p1) is said to embed a discrete-time model with trajectories
Φ1
D(x(k)|x0, u(k), p2), if there exist two sets of parameters P∗1 ,P∗2 such that⋃
x0∈X0,u(k)∈U ,p1∈P∗1 ,

Φ1
D(x(k)|x0, u(k), p1) ⊆

⋃
x0∈X0,u(k)∈U ,p2∈P∗2 ,x(k)∈X

Φ2
D(x(k)|x0, u(k), p2)

(5.3)

holds for all time-indices k = {1, . . . , nk}. �

We further need to extend the same term towards a continuous-time system embed-
ded by a discrete-time system.

Definition 14 (Embedding DT/CT System). A discrete-time model (2.2) is said to
embed a continuous-time model (2.1), if⋃
x0∈X0,u(t)∈U ,p1∈P∗1

Φ1(x(tk)|x0, u(t), p1) ⊆
⋃

x0∈X0,u(k)∈U ,p2∈P∗2 ,
Φ2
D(x(k)|x0, u(k), p2) (5.4)

holds for all time-points tk ∈ T := {t1, . . . , tk}. �

Note that the previous definitions can be extended by an uncertain input sequence, as
we assume a zero-order hold for the input of the continuous-time system, cf. Chapter 2.
Furthermore, from these definitions, we have the following implication.
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Proposition 1 (Consistency of Embedding Systems). Given a continuous-time model
(2.1) and an discrete-time system (2.2) for which (5.4) holds. If the continuous-time
model is consistent with a collection of measurementsM, i. e. y(tk) ∈M(tk),∀tk ∈ T ,
then the discrete-time system is consistent with the measurements. �

It follows that (5.4) is a necessary condition for proving model consistency of a
continuous-time system (2.1) with help of a discrete-time system. This necessary
condition can also be formulated as a sufficient criterion for model inconsistency of the
continuous-time system.

Proposition 2 (CT Model Invalidation). Under the same assumptions as Proposi-
tion 1. If the embedding discrete-time system is inconsistent with the data (verified by
Lemma 1), then the continuous-time model is inconsistent. �

In the next section, we provide a class of discrete-time systems that fulfill the em-
bedding property, namely exact discretizations.

5.3 Exact Discretization

Ideally, a functional relationship of the continuous-time system and its discretization
is known, to guarantee the embedding property (5.4), in the sense that trajectories of
both systems coincide at the sampling points. This allows in principle the exchange of
information from one system to the other, e. g. the parameters. However, obtaining
such a functional relationship is in general not possible, unless an exact discretization is
known. Examples for which such a discretization exist are linear and bilinear systems,
see e. g. [47, 168]. For this work, only exact discretizations that preserve the structure
of the continuous-time system are of interest. With structure preserving we refer
to discretization schemes that starting from a polynomial system lead to polynomial
discrete-time systems of the same degree.
To fix terminology consider the following definition.

Definition 15 (Structure-Preserving Exact Discretization). A (structure-preserving)
discretization is called exact, if the discretization is a morphism w.r.t. the continuous-
time system and there exists an isomorphism Γ : Rnp → Rnp such that

Φ(x(t)|x0, u(t), p) = ΦD(x(t), u(t),Γ(p)),(
resp. Φ(x(t), u(t),Γ−1(p)) = ΦD(x(t)|x0, u(t), p)

)
,

(5.5)

holds for all t = kD. �

As an example, consider the discrete-to-continuous (D2C) reconstructability of sep-
arable bilinear systems. A discrete-time bilinear system has the form

47



5 Continuous-Time Systems

x(k + 1) = Fx(k) +Gu(k) +
r∑
l=1

ul(k)Nlx(k), (5.6)

where F ∈ Rnx×nx is the state matrix, G ∈ Rnx×nu is the input matrix and Nl ∈ Rnu×nx

is the bilinear weighting matrix for the l-th input, l = 1, . . . , nu, where the matrices
depend on the discretization step size D.

Definition 16 (Separable Bilinear Systems). A bilinear system (5.6) is called pairwise
separable (or separable) under a constant input ul,k 6= 0, ui,k = 0, i ∈ {1, . . . , r} \ {l},
if there exists a coordinate transformation with non singular transformation matrices
Φl that transforms F + ul,kNl into a diagonal form and F is of full rank. �

For such systems, there exists the relationship according to Definition 15 as summa-
rized in the following result. To simplify presentation, we assume that l = 1 as well
as the state matrix F , the input matrix G and the weighting matrix N1 in (5.6) are
scalars and we refer to [168] for more general cases.

Proposition 3 (D2C Reconstruction (Bilinear) [168]). Consider a discrete-time scalar
bilinear system of form (5.6). A continuous-time system ẋ = αx + βu + uρx can be
reconstructed from (5.6) by choosing the elements of the system matrices as

α = 1
D

ln(F ), β = G ln [F + uN1]
D(F + uN1 − 1) ,

ρ =
ln
[
F+uN1
F

]
Du

.

(5.7)

�

Proof. The proof is based on [168]. We rewrite the discrete-time bilinear system as
follows.

x(k + 1) = fx(k) + gu(k) + ηu(k)x(k) = (f + ηu(k))x(k) + gu(k). (5.8)

Given a pair of scalar linear systems

ẋ = αx+ βu and x(k + 1) = fx(k) + gu(k). (5.9)

If f , g and D are known, we have the relationships α = ln(f)
D and β = g ln(f)

D(f−1) for the
linear system. Applying these relationships to a separable bilinear system, given f , g,
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η and D, we obtain

α + ρu = 1
D

ln(f + ηu)

= 1
D

[ln(f) + ln(f + ηu)− ln(f)]

= 1
D

ln(f) + 1
T

[ln(f + ηu)− ln(f)]

= 1
D

ln(f) + [ln(f + ηu)− ln(f)]
Du

u.

(5.10)

Moreover, substituting f with f + ηu we obtain β. Hence,

α= ln(f)
D

, ρ= [ln(f + ηu)− ln(f)]
Du

, β= g ln(f + ηu)
D(f + ηu− 1) ,

gives us the continuous-time system ẋ = αx+ βu+ ρux, which concludes the proof. �

Therefore, separable bilinear systems meet the first requirement of Definition 15 as
the continuous-time and the discrete-time system are both bilinear. Furthermore, (5.7)
corresponds to the isomorphism, or more precisely the inverse of the isomorphism in
Definition 15.
From Definition (5.5) and the previous example it follows that an exact discretization

will in general not fulfill the strong CT/DT-relationship as specified before. However,
for an exact discretization the following result is immediate.

Theorem 3 (Exact Discretization). Under the same assumptions as Proposition 1. If
the exact discretization is inconsistent with the data, then the continuous-time system
is inconsistent. Furthermore, for the consistent parameter regions (as determined by
Algorithm 1)

PCT ⊆
⋃

p∈PDT
Γ−1(p) (5.11)

holds. �

Proof. The proof follows by construction w.r.t. the definition of the isomorphism. �

From the previous result follows that for exact discretizations, we can employ the
methods from Chapter 4 to estimate the parameters of the continuous-time system.
This is done by first estimating the parameters of the discrete-time system and then
employing the back transformation (or reconstruction) to obtain the parameters of the
continuous-time system.
As (structure-preserving) exact discretizations are in general not available or do not

exist for polynomial systems, we consider in the remainder of this work only discrete-
time approximations. We propose next a method to derive an embedding discrete-time
system based on the Picard-Lindelöf theorem.
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5.4 Guaranteed Parameter Estimation using Discrete-time
Approximations

In this section, we show that the estimation methods developed in Chapter 4 can
be employed to choose a time-step size for the discretization such that the strong
consistency property holds. In other words, the discrete-time system embeds the
reachable set of the continuous-time system at some distinct time points. The proposed
method is based on the Picard-Lindelöf theorem for the existence and uniqueness of
solutions to ordinary differential equation systems [140]. To do so, we develop an
algorithm based on the Picard iteration and the constant enclosure method [51] as
explained in the following. The main difference to the previous mentioned works
is, that we present a method to derive the enclosure based on the continuous-time
dynamics. We begin by stating the Picard-Lindelöf theorem and showing that it
indeed can be used to derive an embedding discrete-time approximation.

5.4.1 Picard-Lindelöf Theorem

The goal of this section is to compute an enclosure of all trajectories φ(x(t)|x0, u(t), p)
of (2.1) with an initial condition x0 in the semi-algebraic set X0 on a time interval
[0, D]. For simplicity of presentation we assume that X0 is convex and u(t) is constant
on the time interval [0, D] as well as bounded by the semi-algebraic set U .

Remark 5. Note that in case X0 is nonconvex, for instance, Algorithm 2 can be em-
ployed to find a convex outer-bounding box or the methods in [73, 110] can be employed
to derive a (approximative) semi-definite representation of the convex hull of X0. Note
further that the assumption on u(t) can be relaxed when e. g. u(t) is a polynomial in
t, i. e. u(t) ∈ R[t], or the input is treated similarly to [68].

Before stating the main tool for deriving the enclosure, namely the Picard-Lindelöf
theorem, recall the so-called Picard iteration for a fixed initial condition

x(t) = x(0) +
t∫

0
f(x(t), u(t), p). (5.12)

The Picard iteration can be used to derive a time-step size D such that the Euler
system

x(k + 1) = x(k) +Df(x(k), u(k), p) (5.13)

encloses the trajectories of (2.1) as summarized by the following theorem.

Theorem 4 (Picard-Lindelöf). Given a convex set X0 of initial conditions of the
continuous-time system (2.1) and the semi-algebraic sets P and U . Furthermore,
given a convex enclosure X̂ such that ∪x0∈X0,u(t)∈U ,p∈Pφ(x(t)|x0, u(t), p) ⊆ X̂ and
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X0 ⊂ X̂ holds. For the Euler system (5.13) there exists D > 0 such that it embeds the
continuous-model (2.1) on the time interval [0, D], i. e.⋃

x0∈X0,u(t)∈U ,p∈P
φ(x(t)|x0, u(t), p) ⊆

⋃
x0∈X0,u(k)∈U ,p∈P

(x0 +Df(x0, u(0), p)) (5.14)

holds for all t ∈ [0, D]. �

Proof. This proof is by construction and based on [141]. Let C denote the set of
continuous functions with range X̂ , i. e. C := {x̄ ∈ C 0([0, D], X̂ )}, equipped with the
exponential norm ||x̄||α = max(e−α(t)||x̄(t)||), α > 0. Applying the Picard iteration to
the continuous function x̄ ∈ C with fixed initial condition x̄(0) ∈ X0, fixed parameter
p ∈ P , and fixed input u ∈ U , we obtain

x̄(t) = x̄(0) +
D∫

0
f(x̄(s), u, p)ds

∈
⋃
x∈X̂

(x̄(0) +
D∫

0
f(x, u, p)ds)

⊆
⋃
x∈X̂

(x̄(0) +Df(x, u, p)) ⊆ X̂

(5.15)

As C is a bounded subset of C 0 the Picard iteration in (5.15) is a contraction ac-
cording to the Banach Fixed-Point theorem where the fixed-point is denoted by
φ(x(t)|x0, u(t), p) that satisfies (2.1) and φ(x(t)|x0, u(t), p) ∈ X̂ for all t ∈ [0, D].
In other words, φ(x(t)|x0, u(t), p) exists and is unique. To extend this result to all
initial conditions, parameters and piecewise constant inputs, consider the set-valued
function

fD(X0, X̂ ,U ,P) :=
⋃

x0∈X0,x∈X̂ ,u∈U ,p∈P
x0 +Df(x, u, p). (5.16)

If D is chosen such that fD(X0, X̂ ,U ,P) ⊆ X̂ , then it follows again from the Banach
Fixed-Point theorem that (2.1) has a unique solution φ(x(t)|x0, u(t), p) for all x0 ∈
X0, u(t) ∈ U , p ∈ P . Furthermore, it follows that φ(x(t)|x0, u(t), p) ∈ X̂ for all x0 ∈
X0, u(t) ∈ U , p ∈ P . Since fD(X0, X̂ ,U ,P) ⊆ X̂ , also (5.14) holds. This concludes the
proof. Note since X0 ⊂ X̂ , D can always be chosen such that this condition holds.
Note further that f is a polynomial and, therefore, continuously differentiable such
that the conditions of the Banach Fixed-Point theorem can be verified. �

The previous theorem is stated only for the time interval [0, D], however, it can be
easily extended to cover a time interval [0, T ], T > D by successfully choosing (5.16) as
the new initial condition set and again deriving enclosures X̂ and step sizes that fulfill
the Picard iteration, cf. also Section 5.4.3. Obviously, this strategy requires that the
enclosure X̂ is as tight as possible or otherwise the approximation obtained by (5.16)
grows rapidly over time. To counteract this growth, typically, not a Euler system,
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but higher order discretization schemes are considered, e. g. [117, 140]. For this work,
however, higher order schemes are impracticable as the semi-definite programs in the
relaxation approach presented in Section 4.3.1 grow with the order of the polynomi-
als. Therefore, we restrict our attention here to Euler systems. However, as we can
employ the guarantees of the relaxation approach, we can derive an algorithm that
converges to the maximal allowed time-step that fulfills the Picard-Lindelöf theorem,
cf. Section 5.4.3. Furthermore, we can derive an optimal a priori enclosure X̂ based
on the continuous-time dynamics as seen next.

5.4.2 Enclosure of the Continuous-Time Reachable Set

In this section, we derive the enclosure X̂ needed for ensuring the embedding property
of the Euler system as introduced in the previous section. To do so, we derive directly
the reachable set of (2.1) for a distinct time-point D. The method is based on [74,
203], where a method is given to derive the initial conditions that lead to a behavior
consistent with a target set, e. g. the measurements. We reverse this problem to
derive an approximation of the reachable set of (2.1) starting from a given set of
initial conditions.
Remark 6. In [74] a different terminology is used then in this work. What we refer to
as consistent initial conditions and parameters is called in [74] the region of attraction.
Furthermore, note that the method presented here was remarked in [74], however, no
actual derivation was presented.
The crucial idea we employ in computing the reachable set of (2.1) is to formulate

the dynamics in terms of occupation measures. This has two main advantages. First,
it allows us to consider the whole set of initial conditions X0, inputs U , and parame-
ters P . Second, the formulation allows us despite the nonlinear dynamics to derive an
infinite-dimensional linear program that we can address with the relaxation procedure
presented in Section 4.3.1. Note that although the employed measures suggest a prob-
abilistic setup the obtained results in this section are deterministic. Note further that
since we derive directly a measure problem similar to (4.9) the exposition is different
to Section 4.3.1 and all necessary derivation steps are given in the following.
We denote the set of finite Borel measures supported on the set A by B(A). These

measures can be interpreted as elements of the dual space C (A)′, i. e. as bounded linear
functionals acting on the set of continuous functions C (A). The set P(A) denotes
the probability measures supported on A, i. e. those measures µ of B(A) which are
nonnegative and normalized to µ(A) = 1.
To derive the connection of the dynamics (2.1) and the occupation measures, we

interpret at first the initial condition x0 as a random variable whose distribution is
described by an unknown probability measure µ0 ∈P(X ). We define this measure as

µ(A× B) :=
∫
T

∫
X
IA×B(t, φ(x(t)|x0, u, p))µ0(dx0) dt (5.17)
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for all subsetsA×B in the Borel σ-algebra of subsets of T ×X , where T ⊂ R is the time
interval [0, D]. IA(x) denotes the indicator function of the set A, i. e. the indicator
function is equal to one if x ∈ A, and zero otherwise. For simplicity of notation,
we assume that the time invariant parameters p are introduced in the dynamics as
additional states, i. e. ẋi = 0 if xi corresponds to a parameter.
We refer to µ ∈P(T ×X ) as an occupation measure, whereas this term is motivated

by the observation that the value ∫T µ(dt,B) = µ(T × B) is equal to the total time
the trajectory spends in the set B ⊂ X . In addition, note that µ encodes the system
trajectories, in the sense that if v ∈ C∞(T × X ;R) is a smooth test function, and
µ0 = δx0 is the Dirac measure at x0, integration of v w.r.t. µ amounts to time
integration along the system trajectory starting at x0:∫

T

∫
X
v(t, x)µ(dt, dx) =

∫
T
v
(
t, x(t|x0)

)
dt. (5.18)

With these notations, for all sufficiently regular test functions v ∈ C 1(T ×X ;R), it
holds that ∫

X
v(T, x)µT (dx)−

∫
X
v(0, x)µ0(dx) =∫

T

∫
X

d

dt
v
(
t, x(t|x0)

)
µ0(dx0),

(5.19)

which corresponds to the evolution of all trajectories along v starting from an initial
condition x0 as specified by the distribution µ0. The right-hand-side of the above
equation can be rewritten as

∫
T

∫
X

(
∂

∂t
v
(
t, x(t|x0)

)
+

grad v
(
t, x(t|x0)

)
·f
(
t, x(t|x0)

))
µ0(dx0) dt

=
∫
T

∫
X

(
∂

∂t
v(t, x) + grad v(t, x) · f(t, x)

)
µ(dt, dx).

(5.20)

To simplify notation, we introduce the Liouville operator L : C 1(T ×X )→ C (T ×X )
as Lv := ∂v

∂t + grad v · f and its adjoint L′ : C (T ×X )′ → C 1(T ×X )′ such that for the
bilinear form 〈Lv, µ〉 = 〈v,L′µ〉 holds for all v ∈ C 1(T ×X ), i. e. L′µ := −∂µ

∂t −div(µf).
With these notations, we write (5.19) concisely as

〈Lv, µ〉 = 〈v, δDµD〉 − 〈v, δ0µ0〉 (5.21)

for all v ∈ C 1(D × X ), where δ0 and δT refers to t = 0 and t = D, respectively.
Equivalently, we can write

L′µ = δDµD − δ0µ0. (5.22)

Note that as the initial conditions are not known, the measures are unknown as well.
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In the next sections we derive an optimization problem that allows us to determine
the unknown measures.
In [74] it was proved that the the set of initial conditions x0 consistent with the

dynamics (2.1) and the constraints x(t) ∈ X , t ∈ T and a constraint X̂ at t = D,
is the support of the measure µ0 solving the infinite-dimensional linear programming
(LP) problem

sup 〈1, µ0〉
subject to µ̂0 + µ0 = λ,

L′µ+ δ0µ0 − δDµD = 0,
µ̂0 ≥ 0, µ0 ≥ 0, µD ≥ 0, µ ≥ 0,

(5.23)

where λ is the Lebesgue measure restricted to X , i. e. the standard nx-dimensional
volume. The supremum is here w.r.t. the measures µ̂0 ∈ P(X ), µ0 ∈ P(X ), µD ∈
P(X ) and µ ∈P(T ×X ). Note that the slack measure µ̂0 results from the inequality
µ0 ≤ λ as further explained in [74].
However, we are not interested in the set of consistent initial conditions, but in an

approximation of the reachable set X̂ . Therefore, we reverse the role of µ0 and µD and
derive the following infinite-dimensional linear program describing the measure µD at
time D.

sup 〈1, µD〉
subject to µ̂D + µD = λ,

L′µ+ δ0µ0 − δDµD = 0,
µ̂0 ≥ 0, µ0 ≥ 0, µD ≥ 0, µ ≥ 0.

(5.24)

The following result describes the relationship between the reachable set R at time
D of (2.1) (cf. Chapter 2) and the linear program (5.24).

Theorem 5 (Hypervolume). The optimal value l∗ of (5.24) is equal to the hypervolume
of R at time D, denoted by RD, i. e.

l∗ =
∫
RD

λ(dx). (5.25)

Furthermore, the supremum is attained by the restriction of the Lebesgue measure to
the reachable set X̂ . �

Proof. The proof is based on the proof of [74, Thm.1]. Note that by definition of the
reachable set there is an initial condition x0 ∈ X0 such that φ(x(D)|x0, u(t), p) ∈ X̂ .
Accordingly, for any measure µD with support in X there exists a measure µ̂D, µ0 and
µ that fulfills the constraints in (5.24). Thus, l∗ ≥ ∫

RD λ(dx). From the constraint
µD + µ̂D = λ it follows that l∗ ≤ ∫

RD λ(dx) and consequently l∗ = ∫
RD λ(dx). �

By applying the same ideas as presented in Section 4.3.1 we can derive a converging
hierarchy of semi-definite programs to solve (5.24). However, as we are interested in
deriving a closed form approximation of the reachable set X̂ , we first derive the dual
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of (5.24) over the space of continuous functions. To do so, we state the algebraic dual
pair

〈A(x), y〉 = 〈x,A∗(y)〉, (5.26)

where x = (µD, µ̂D, µ, µ0), A(x) = (L′µ − µT + µ0, µD + µ̂D), y = (v, w), A∗(y) =
(w − v, w,Lv, v), w ∈ C (X ), v ∈ C 1(T × X ).
The dual pair allows us to state the dual LP as

inf 〈w, λ〉
subject to w(x) ≥ 0, ∀x ∈ X ,

w(x) ≥ 1 + v(D, x), ∀x ∈ X ,
v(0, x) ≥ 0, ∀x ∈ X0,

Lv(t, x) ≥ 0, ∀(t, x) ∈ T × X ,

(5.27)

where the infimum is w.r.t. continuous functions w ∈ C (X ) and v ∈ C 1(T × X ).
Further information on dual formulations of infinite dimensional linear programs can
be found in [2, 18].
The above LPs (5.24) and (5.27) are infinite-dimensional, because the equations are

required to hold for all test functions v. One can solve these LPs by a converging hier-
archy of finite dimensional linear matrix inequality (LMI) problems using semidefinite
programming. At a given relaxation order d, the primal LMI is a moment relaxation
of primal LP (5.24), whereas the dual LMI is a polynomial sum-of-squares (SOS) re-
striction of dual LP (5.27). As said before we are interested in deriving a closed form
approximation X̂ , therefore, we provide only the SOS restriction formulated according
to Putinar’s positivstellensatz.

inf wc
′l

subject to Lv(t, x)= q0(t, x) + qmx+1(t, x)t(D − t) +
mx∑
i=1

qi(t, x)gx,i(x),
w(x)= v(D, x) + 1 + r0(x)

+
mx∑
i=1

ri(x)gx,i(x),

v(0, x)= s0(x) +
mx0∑
i=1

si(x)gx0,i(x),

w(x)= z0(x) +
mx∑
i=1

zi(x)gx,i(x),

(5.28)

where l is the vector of Lebesgue moments over X indexed in the same basis in which
the polynomial w(x) with coefficients wc is expressed. The minimum is over polynomi-
als v(t, x) and w(x). The polynomials gx,i and gx0,i correspond to the mx (resp. mx0)
inequalities defining X and X0, respectively The polynomials qi(t, x), ri(x), si(x), and
zi are sum-of-square polynomials and of appropriate degrees. The constraints that
polynomials are sum-of-squares can be written explicitly as LMI constraints, and the
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objective is linear in the coefficients of the polynomial w(x). Therefore, problem (5.28)
can be formulated as a SDP [151].
By defining the set X̂ := {w′cl ≥ 1}, we can state the following result. Note that X̂

does implicitly depend on the degree r of the sum-of-square polynomials.

Theorem 6. The function w := w′cl that minimizes (5.28) has the property that for
the degree of the sum-of-squares polynomials r → ∞ the set X̂ converges (almost
uniformly) to the reachable set R of (2.1) at time D and R ⊆ X̂ holds for all r. �

Proof. The proof is equivalent to the proof of [74, Thm.6]. �

The outer-approximation X̂ encloses, therefore, the reachable set of the continuous-
time system. In the following, we give a brief example.

Example 3. Consider the continuous-time model

ṡ(t) = (c(t)− 1)s(t) + c(t)
ċ(t) = (1− c(t))s(t)− 2c(t).

(5.29)

The considered setup is equivalent to the discrete-time model considered in Section 4.4
and as summarized by the following constraint set

K := {s(t), c(t) : 0 ≤ s(t) ≤ 1, 0 ≤ c(t) ≤ 1,∀t ∈ [0, 1],
0.85 ≤ s(0) ≤ 0.95, 0.5 ≤ c(0) ≤ 0.55}.

(5.30)

Given these constraints we implemented (5.28) with the help of YALMIP [121, 122].
The involved semi-definite programs were solved using MOSEK 7.0. Figure 5.3 depicts
the enclosure of the reachable set of (5.29) at time t = 1 as an example. �

In the next section, we use the outer-approximation to provide a procedure to guar-
antee that the Euler system (5.13) fulfills the strong CT/DT relationship property and,
therefore, can be used to approximate the consistent parameters of the continuous-time
system. Note further that the approximation X̂ is used in Section 5.5.3 for directly
analyzing model consistency of a continuous-time system, in case that the consistent
parameters do not have to be derived by a discrete-time approximation.

5.4.3 Reachability and Strong Consistency

As seen in the previous section, we can derive an enclosure X̂ as employed in the
Picard-Lindelöf theorem. However, we still need to determine an approximation of the
set-valued function (5.16) to determine a suitable step-size D. This can be achieved
by stating the set-valued function as the following feasibility problem

find x+

subject to x+ = x0 +Df(x, u, p),
p ∈ P , x0 ∈ X0, x ∈ X̂ , u ∈ U , x+ ∈ X

(5.31)
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Figure 5.3: Enclosure of the reachable set for the Michaelis-Menten model (5.29) ob-
tained by the sum-of-squares restriction (5.28) for relaxation degrees r = 4, 6, 8, 10
at t = 1 (blue, green, red, orange area). Blue dots represent 1000 Monte Carlo
samples by numerically simulating (5.29) with initial conditions taken as uniformly
distributed samples from K.

where X̂ is an initially assumed approximation and D is fixed. Note that in case X̂ is
nonconvex, first a convex approximation has to be derived following Remark 5.
In Section 4.3.1 it was shown that the feasibility problem (5.31) can be addressed

with Algorithm 1 and Algorithm 2. Therefore, an appropriate D can be computed by
checking whether the solution set of (5.31) projected on the space of variable x+ is
contained in the initially assumed enclosure X̂ . For simplicity of presentation, assume
that Algorithm 2 is used to derive an approximation of (5.31). We denote the obtained
result, i. e. the outer-bounding box of x+, by X̄+ corresponding to some relaxation
degree r. If X̄+ ⊆ X̂ does not hold the step-size D has to be reduced as summarized
by the following algorithm.

Algorithm 4 (Maximal Time-step Size)

1 Given constraints on initial conditions X0

2 Set ε, Tl, Tu, where Tl < Tu

determineStepSize(Tl, Tu, ε)

1 T = (Tu + Tl)/2

2 Compute enclosure X̂ with (5.28) for t = T
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3 Determine X̂+ with (5.31)
◦ if X̄+ ⊆ X̂
◦ if (Tu − Tl)/2 ≤ ε return T ∗ = T

◦ else Tl = T

◦ else Tu = T

4 determineStepSize(Tl, Tu, ε)

We can state the following property of Algorithm 4, when Algorithm 2 is employed
for the approximation of the set-valued function.

Proposition 4. Given the enclosure X̂ obtained by (5.28). The time-step size derived
by Algorithm 4 employing Algorithm 1, converges to the maximal (up to precision
ε) time-step size for which the existence and uniqueness of solutions to (2.1) can be
guaranteed according to the Picard-Lindelöf theorem w.r.t. the outer-bounding box X̄+

approximating the set-valued function. �

Proof. Follows by construction, as convergence to the minimal outer-bounding box of
fD(X0, X̂ ,U ,P) is guaranteed by Lasserre’s relaxation hierarchy. The convergence of
D is guaranteed by the convergence of the bisectioning. �

To summarize, Algorithm 4 computes a step size D for which the Picard-Lindelöf
theorem guarantees that all trajectories of the continuous-time system are contained
in the set X̄+ at time D. In other words, the Euler system embeds the reachable set
of (2.1) at time D (5.13).
By repeating Algorithm 4 to compute all needed time-steps to cover the time inter-

val of interest we can determine an outer-approximation of the reachable set of the
continuous-time system using the Euler system (5.13). We denote the sequence of time
steps as TD := {tD,1, . . . , tD,nTD} needed to cover a time-interval [0, T ], such that on
every interval [tD,i, tD,i+1] the Picard-Lindelöf theorem holds. We denote the enclosure
provided by the Euler system (5.13) at a time point tDi ∈ TD by X̄ (tDi).
By construction we have the following property.

Theorem 7. Given an initial set X0, a piecewise constant input sequence bounded
by U , and a time interval time [0, T ]. If the sequence of step sizes TD is derived by
successively employing Algorithm 4, then the Euler system embeds the trajectories of
the continuous-time system (2.1), i. e.

R ⊂ X̂ (tD) (5.32)

holds for all distinct time points tD ∈ TD. �
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Proof. Follows by construction and the properties of the employed algorithms. �

From [117] and the previous result it follows that the consistent parameters and
initial conditions of the continuous-time system can be studied by a discrete-time
approximation. To derive an approximation of the consistent initial conditions and
parameters of the continuous-time model (2.1) given some measurement data, we can
employ the procedure presented in [117]. This procedure is as follows. At first the time
step sizes for the discrete-time system are determined by Algorithm 4. Afterwards, a
feasibility problem of form (4.1) is constructed including the data and the discrete-time
system employing the derived time-step sizes. Then, Algorithm 1 or Algorithm 2 are
employed for estimating the parameters based on the constructed feasibility problem
as presented in Chapter 4. Additionally, the estimated parameters for the Euler sys-
tem outer-approximate the parameters of the continuous-time system and the strong
CT/DT relationship holds, see [117] for details.
To demonstrate the problem inherent to this procedure of deriving a discrete-time

enclosure fulfilling the strong CT/DT relationship, we show next how Algorithm 4
performs for the Michaelis-Menten example as described in Example 3, cf. also Sec-
tion 4.4.

Example 4. Consider the continuous-time Michaelis-Menten model from Example 3
By successively reducing the time step size and recomputing the enclosure according
to Algorithm 4, initialized with ε = 10−8, Tl = 0 and Tu = 5 · 10−6, we determined a
time step size of 7.5 · 10−7 for which the Picard-Lindelöf theorem is fulfilled and the
continuous-time system is embedded by the Euler system, as depicted in Figure 5.4.
From an exhaustive Monte Carlo analysis a practical bound on the step size was deter-
mined to be 10−6, which shows that Algorithm 4 can be employed to derive the desired
step-size. Furthermore, this example also illustrates that small step sizes are needed to
ensure that the Euler system embeds the continuous-time model. �

Example 3 demonstrates the problem of only using an Euler model to derive an
outer-approximation of the reachable set for a continuous-time system (2.1). Namely
one is limited to so-called Euler steps to derive the approximation of the reachable set.
These Euler steps become rather small due to the allowed uncertainties in the initial
conditions, inputs, and parameters. Therefore, to cover a time interval [0, T ] many
Euler steps might be needed. Although, this can be difficult for practical implemen-
tation of the proposed procedure, it is necessary to be able to estimate the consistent
parameters of a continuous-time system with help of a discrete-time approximation.
In case only model invalidation is of interest a simplified method can be employed

that does not require the consideration of Euler steps. The proposed method, is based
on the approximation X̂ of the reachable set of a continuous-time system as derived in
Section 5.4.2. However, as this method is only based on the continuous-time system,
the connection between discrete-time and continuous-time system is lost. To regain

59



5 Continuous-Time Systems

Figure 5.4: Enclosure of the reachable set for the Michaelis-Menten model (5.29)
obtained by the sum-of-squares restriction (5.28) for a relaxation degree r = 8
at t = 7.5 · 10−7 (blue area). Blue dots represent 1000 Monte Carlo samples by
numerically simulating the discrete-time model with initial conditions taken as
uniformly distributed samples from K. Black box corresponds to the embedding
X̄ obtained with Algorithm 2.

the relationship, we furthermore sketch how this method can in principle be employed
to study the error made by discretizing a continuous-time system.

5.5 Model Inconsistency

We have shown in the previous section that we can employ a discrete-time system to
approximate the reachable set of a continuous-time system. In this case, the discrete-
time system fulfills the strong CT/DT relationship property, i. e. from model consis-
tency of the discrete-time system follows consistency of the continuous-time system.
However, the derived discrete-time system is restricted to time steps that guarantee
existence and uniqueness of trajectories of the continuous-time system according to
the Picard-Lindelöf theorem. These time steps are in general relatively small for un-
certain systems in comparison to the time interval at which a process is operated. This
means checking model consistency becomes a computationally difficult problem since
the size of the corresponding semi-definite programs as introduced in Section 4.3.1
depend on the amount of considered time steps. Therefore, it is necessary to consider
a computationally more efficient solution. This solution is based on the approximation
of the reachable sets presented in Section 5.4.2. Afterwards, we discuss a less rigor-
ous method in case the computation of the reachable sets are not directly possible.
Hereby, we focus on the principle possibility to study the error made by discretizing a
continuous-time system.
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5.5.1 Strong Inconsistency

Recall that the sum-of-squares restriction (5.28) provides an outer-approximation of
the reachable set of the continuous-time system at a time t ∈ R. Assume that we
have measurements of the output Y(ti) at time points ti ∈ T := {t1, . . . , tnT }. If
we compute with help of (5.28) outer-approximations X̂ (ti) for all ti ∈ T , we can
immediately test for model consistency employing the following feasibility problem.

find x(k)
subject to y(x(k), u(k), p)− y(k) = 0

x(k) ∈ X̂ (ti), u(k) ∈ U , p ∈ P , y(k) ∈ Y(ti), kD ∈ T , ti ∈ T .
(5.33)

The solution space of (5.33) corresponds to the mapping of X̂ (ti) to the output
space, therefore, we can state model inconsistency of the continuous-time system as
follows.

Theorem 8 (Strong Inconsistency). Given the measurement data Y(ti) from the real
process at ti ∈ T := {t1, . . . , tnT } and the approximations X̂ (ti) of the reachable set of
(2.1) determined by (5.28). If (5.33) does not admit a solution verified by Lemma 1,
then the continuous-time system (2.1) is inconsistent with the data. �

Proof. Follows directly from Lemma 1 and the construction of (5.33). �

The previous result shows that the model invalidation task for continuous-time sys-
tems can be solved by employing the algorithms presented in Chapter 4. Furthermore,
as the computation of the reachable sets of (2.1) is independent of a time step size one
is no longer restricted to time steps fulfilling the Picard-Lindelöf theorem.
However, as this method is independent of a discrete-time system, the connection

between discrete-time and continuous-time system cannot be studied any longer. To
regain the ability to study this connection consider the augmented Euler system as
introduced in the next section.

5.5.2 Augmented Euler System

For studying the connection of a continuous-time system and its discrete-time approx-
imation, we derive an augmented discrete-time system. This augmented discrete-time
system is based on the following consistency property following [166].

Definition 17 (One-step consistency[106]). Given a discrete-time approximation faD
of continuous-time system (2.1), i. e. a discrete-time system obtained by numerical
integration of form (2.2). The system faD is said to be one-step (strongly) consistent if
given any pair of strictly positive real numbers (∆x,∆u), there exists a class function
ρ ∈ K∞ and D∗ > 0 such that

|φ(x(ti)|x0, u(ti), p)− faD(x(k), u(k), p)| ≤ Dρ(D) (5.34)
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holds for all times ti = kD, for all D ∈ (0, D∗) and |xk| ≤ ∆x, |uk| ≤ ∆u, p ∈ P. �

To derive the augmented discrete-time system, we choose for faD the Euler discretiza-
tion

x(k + 1) = x(k) +Df(x(k), u(k), p) := fEuler
D (x(k), u(k), p). (5.35)

On the one hand the Euler discretization is one-step consistent, see e. g. [207] and
on the other hand the Euler system neither changes the system class nor the degree
of the polynomials of the continuous-time system. The latter is beneficial for limiting
the size of the semi-definite programs employed for proving model consistency.
By rewriting (5.34) as an equality of form

φ(x(ti)|x0, u(ti), p)− x(k + 1) + fEuler
D (x(k), u(k), p) + ε(k) = 0, (5.36)

with ||ε(k)|| ≤ δ := maxp∈P,D∈(0,D∗) ||Dρ(D)|| ≤ ∆x+∆u, we see that the Euler system
and the continuous-time trajectory differ by the discretization error ε(k).
By introducing the discretization error ε(k) as a time-varying parameter, we can

state the augmented system as

x(k + 1) = fEuler
D (x(k), u(k), p) + ε(k). (5.37)

We denote this system in the following as an augmented Euler system. Note that a
similar augmented system was introduced in [183] to study discretization errors with
the help of interval arithmetics.
In principle, if ε(k) is known the augmented Euler system embeds a continuous-time

trajectory (follows from (5.36)). However, computing this error for a fixed parameter p
and a known input sequence u(k) can already be challenging for nonlinear systems as
considered in this work [46, 207]. Instead of computing ε(k) explicitly we can treat ε(k)
as another unknown-but-bounded variable in the considered set-based framework, as
ε(k) is bounded on the state constraint set X for a finite time interval. This, however,
leads to another problem. Namely, that the reachable set of (5.37) becomes quite large,
as the additive structure leads to an increase in the uncertainties of states, parameters
and inputs. In this work, to limit the uncertainties introduced by the discretization
error, we employ the following simplified system description.

x̃(k + 1) = fEulerD (x̃(k), ũ(k), p̃),
X̂ (k + 1) = x̃⊕ E(k),

(5.38)

where ⊕ denotes the Minkowski sum, and the tilde sign ∼ corresponds to a nominal
value of the initial condition, the input, and the parameters. The set E(k) has to be
determined such that X̂ (k) ⊇ ∪x0∈X0,u(t)∈U ,p∈Pφ(x(kD)|x0, u(t), p) holds as seen in the
following section. The main advantage of the simplified augmented Euler formulation
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comes into play when a model has to be (in-)validated w.r.t. available data from
multiple experiments (resp. semi-quantitative observations). This derives from the
fact that after determining the sets X̂ (k), these sets can be tested against the data
without recomputing the error sets.

5.5.3 Weak Consistency

In this section, we study how the error set E(k) in the simplified augmented Euler
formulation introduced in the previous section can be approximated. This approach is
based on simulation data taken from the continuous-time model. Here, only a weaker
relationship can be guaranteed, however, it allows to consider not only polynomial but
also rational systems as demonstrated with a real world example in Section 5.6.
We present first how the error set can be derived for given training sets X̄ (ti)

representing the trajectories of the continuous-time system at distinct time points
ti ∈ T := {t1, . . . , tnT }. Afterwards, we discuss possible methods to determine these
training sets. In accordance to Section 4.2, we can formulate a sequence of feasibility
problems to estimate the error set w.r.t. the training data as

find ε(k)
subject to x(k + 1) = fEuler

D (x̃(k), ũ(k), p̃) + ε(k),
x(k + 1) ∈ X̄ (ti), ε(k) ∈ E(k), (k + 1)D = ti,

(5.39)

where E(k) := {ε(k) ∈ Rnx | ||ε(k)|| ≤ ∆x + ∆u} denotes the initial error set, and
x̃(k), ũ(k), p̃ are nominal values taken from the training set of the previous step X̄ (kD),
the piecewise constant input set U(k), and the parameter set P , respectively. Note that
the training set at time t1 is only used to initialize the sequence. The projection of the
solution space of (5.39) on the variable ε(k) determines the error set. We summarize
this by the following statement for Algorithm 1.

Proposition 5 (Error Set [166]). Given the feasibility problem (5.39). The error
introduced by the discretization can be outer-approximated by

Ê(k) = E(k) \
⋃

Q⊆E(k):dualSDPd→∞
Q, (5.40)

with Algorithm 1. �

Proposition 5 shows that the error set can be outer-approximated, if the training
sets X̄ (ti) are available. By replacing E(k) in (5.38) with the estimation Ê(k), we
can guarantee that (5.38) embeds the training sets and, therefore, the continuous-time
system. Note that the embedding depends on the choice of the nominal values and
the time step size, cf. also to Remark 7 for a more detailed discussion.
To test if a continuous-time model is consistent with measurement data Y(ti) at the

time points ti ∈ T := {t1, . . . , tnT }, we can investigate the following feasibility problem
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similar to (5.33).

find x(k)
subject to y(x(k), ũ, p̃)− y(k) = 0

x(k) ∈ X̂ (k), y(k) ∈ Y(ti), kD ∈ T , ti ∈ T ,
(5.41)

where X̂ (k) represents the embedding derived from (5.38). Note that in principle
the training sets can be derived by the sum-of-squares restriction (5.28), however,
as this approach is not applicable for the real world example in Section 5.6 due to
the rational dynamics of the continuous-time model, we discuss in the following other
suitable approaches.
To derive appropriate training sets X̂ (k) several methods are known in literature.

For instance, in [180, 187] representative trajectories are employed to derive convex
lower and upper bounds on the trajectories of a continuous-time system. Representa-
tive trajectories were also used, for instance, in [129] to investigate network topologies
that support adaptation in cells. This was done by a simulation study by partitioning
the parameter space into boxes and then simulating one representative parameteri-
zation for each box. Other suitable approaches can be found e. g. in [53, 118]. The
aforementioned approaches can easily adapted to generate a training set for the aug-
mented Euler system. However, it should be noted that the aforementioned approaches
in general assume certain characteristics of the model under investigation, e. g. that
the continuous-time trajectories have to stay close in terms of a chosen norm or small
disturbances in the parameters do not change the qualitative behavior of the model.
Another commonly employed assumption is that the trajectories are derived analyti-
cally or the precision of the numerical integration is high enough. These assumptions
can be rather restrictive and choosing the correct method depends strongly on the
system under investigation. Still from a practical perspective these methods provide
another degree of freedom to balance accuracy and computational effort. However, the
made assumptions in the derivation of the training set lead in the set-based setting
only to a weak relationship of continuous-time and discrete-time system. To illus-
trate this behavior, assume the nominal trajectory φnom(x(t)|x0, u(t), p) is a solution
of (2.1), Theorem 8 can then be formulated as:

Proposition 6 (Weak Inconsistency (Nominal Model)). Given the measurement data
Y(ti), ti ∈ T from the real process. Assume that the error set Ê(k) has been de-
termined according to Lemma 5 for training sets based on φnom(x(t)|x0, u(t), p). If
(5.41) does not admit a solution verified by Lemma 1, then the nominal trajectory
φnom(x(t)|x0, u(t), p) of (2.1) is inconsistent with the data. �

Clearly, the previous proposition can be extended to more then one trajectory or
more precisely to training sets. However, in general the guarantees of Theorem 8
can only be recovered for an infinite amount of considered trajectories. However, one
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advantage of this simplified treatment is the possibility to investigate the influence
of the discretization error made. This can in principle be done by comparing the
Lebesgue measure of the error sets Ê(k) for different step sizes, cf. also to Remark 7.
Before demonstrating that this derivation of training sets by simulation data can still

be of practical use, we provide in the following remark a discussion of the limitations
of the presented approach and possible improvements are sketched.

Remark 7. The main limitation of the simplified Euler system derives from the fact
that the error set depends not only on the time step size, but also from the chosen
nominal parameterization and the nominal input sequence. This increase in uncer-
tainty might lead to the wrong conclusion that a continuous-time model is consistent
with the data. To limit this increase either one has to determine a in some sense
optimal nominal parameterization/input sequence or one has to estimate the dynamics
of the discretization error. The former can be achieved by means of optimal parame-
ter estimation [152, 210] with an objective appropriately chosen for the process under
consideration. The latter can be done by employing system identification methods.
Applicable approaches are the method presented in [26] for the identification of growth
phases and the set-membership system identification approach presented in [135]. The
advantage of employing system identification methods is that in principle one can de-
rive a connection of the parameters of the continuous-time system and parameters of
the discrete-time system similar to the exact discretization considered in Section 5.3.

5.6 Example: Bacterial Growth Model

We illustrate in the following how the methods developed in the previous sections can
be employed in the identification of an appropriate model for the control of a biotech-
nological process. Namely, the steady-state cultivation of Rhodospirillum rubrum as
introduced in [33]. We first provide a short overview over the model organism and
describe the applied process control scheme. Thereafter, we introduce the considered
model hypotheses and then present how a suitable model was identified.

5.6.1 Background: Rhodospirillum rubrum

The anoxygenic, photosynthetic bacteria Rhodospirillum rubrum have a high potential
for biotechnological applications. Especially, the products related to the formation of
intracytoplasmatic, photosynthetic membranes (PM) are of industrial interest. Exam-
ples are the heterologous expression of membrane proteins [31], coenzyme Q10 [211],
biohydrogen [223], biopolymers [188], bacteriochlorophyll and its precursors [44]. The
industrial application, however, is still impeded by very low productivities, high energy
efforts and complex setups. This is mainly due to the difficulties involved in defining
and maintaining microaerobic conditions in continuously operated fed-batches.

65



5 Continuous-Time Systems

Investigating microaerobic conditions is, however, not only interesting for indus-
trial applications but also for several other research fields including experimental
medicine and pharmacology. Microaerobic environments are often breeding grounds for
pathogenic organisms and in medical research such environments have to be mimicked
ex situ [150]. Also the expression of virulence factors would benefit from controlled low
oxygen conditions, see e. g. [132, 155]. Phototrophic bacteria, as R. rubrum, present
interesting model organisms for studying such conditions [65] as the growth mode can
be easily monitored by e. g. fluorescence spectroscopy [33].
To be able to use R. rubrum as a case study several challenges have to be overcome.

For instance, R. rubrum allows a maximal production of PM only when grown on a
culture medium with the two carbon sources succinate and fructose [61]. This renders
the application of established process control strategies like [1] inapplicable. Note that
the need for a multi-carbon source medium is unique to R. rubrum and has not been
observed in related photosynthetic purple bacteria. A possible explanation might be
connected to the cellular redox signaling at the level of the cytosolic glutathione and
the membrane localized ubiquinone pool [32, 64].
Furthermore, due to the lack of an exact stoichiometrical knowledge of PM produc-

tion in relation to oxygen consumption does not allow for a respiratory control scheme,
see [225]. Even though the regulation of PM production in response to oxygen for other
anoxygenic photosynthetic bacteria [19, 62, 148] are rather well investigated, the reg-
ulatory mechanisms in R. rubrum harbor a lot of questions.
In [33], we proposed an experimental setup based on the culture redox potential

that overcomes most of these challenges. In contrast to previously used setups like
[61, 65] this approach provides stationary microaerobic conditions. Attaining the de-
sired oxygen-limited steady-state condition in continuous cultivations requires, how-
ever, a feedback-control strategy. We proposed, therefore, in [33] a feedforward variant
of the classical model-based two-degree-of-freedom (2DOF) controller [6]. The main
advantage of this strategy is clearly that the tradeoff between set-point tracking and
disturbance rejection can be avoided. In other words, this approach allows to reach the
steady-state without undesired oscillations which reduces the time needed to ensure
the culture is in a steady-state with respect to the retention time. The 2DOF con-
troller relies on spectroscopic real-time measurements of the biomass concentration.
This is done by measuring the optical density of the cultivation medium by a trans-
flexion probe and then calculating the biomass concentration. Nevertheless, it should
be noted that the good performance achieved with 2DOF control schemes typically
depends on the availability of an adequate model describing the process dynamics
[45]. However, if a good model is available this strategy can be easily adapted to other
processes and other organisms [43].
In the following, we describe the model hypotheses identified in [33] and demonstrate

how we were able to determine which model is the most suitable for the control strategy.
Note that we consider here only two out of three model hypotheses as we were able
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to show that one of the hypotheses is not identifiable [33]. Note further that the
algorithms developed in this work were used to decide which of the remaining two
hypotheses was best suited for the control strategy and that the identified model
was successfully employed in steady-state cultivations. We focus here mainly on the
technical aspects in the development and validation process of the models and refer to
[33] for a more detailed discussion.

5.6.2 Model Description

The following equations represent the time evolution of the concentrations of biomass
(x), succinate (xs) and fructose (xf ). We developed in [33] three alternative model
hypotheses by choosing specific growth, biomass-substrate-yield coefficients and with
this uptake rate correlations. The resulting model has the form

ẋ = µ(xs, xf )x−Dx,
ẋs = −qs(xs)x+D(Fs − xs),
ẋf = −qf (xf )x+D(Ff − xf ).

(5.42)

Here, µ denotes the specific growth rate of biomass, D denotes the dilution rate, qs, qf
denote the consumption rate of succinate and fructose, Fs, Ff denote the substrate
concentrations of the feed solution respectively.
We consider, in this work, only model hypotheses II and III, since hypothesis I is

not identifiable, cf. [33] for details. In hypothesis II the specific growth rate µ and the
consumption rates qs, qf are defined as follows.

µ(xs, xf ) = vb,CRPmax

(
xs

xs + ks
+ xf
xf + kf

)
,

qs(xs) = 1
Yb/s + Yb/f

xs
xs + ks

,

qf (xf ) = 1
Yb/s + Yb/f

xf
xf + kf

.

(5.43)

In hypotheses III the growth and consumption rates become:

µ(xs, xf ) = vb,CRPmax

(
xs

xs + ks + 0.2x2
2

+ xf
xf + kf

)
,

qs(xs) = 1
Yb/s + Yb/f

xs
xs + ks + 0.2x2

2
,

qf (xf ) = 1
Yb/s + Yb/f

xf
xf + kf

.

(5.44)

The goal is to discriminate between hypotheses II and III employing the measure-
ment data obtained from batch cultivation at a CRP set point of -50mV for all three
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states [224]. To represent batch cultivation, the dilution rate D is set to zero in (5.42).
We show in the following the derivation of the simplified augmented Euler system only
for hypothesis III, as the derivation is analogue for hypothesis II.
From the available measurement data, we derived the following constraint set on

which the error term in the augmented Euler system has to be determined.

K := {x(t), xf (t), xs(t) : 0 ≤ x(t) ≤ 2, 0 ≤ xf (t) ≤ 3, 0 ≤ xs(t) ≤ 4,∀t ∈ [0, 3]h,
0.8 ≤ x(0) ≤ 0.9, 3.8 ≤ xs(0) ≤ 4, 2.5 ≤ xf (0) ≤ 2.8,
0.9 ≤ ks ≤ 1.1, 1.9 ≤ kf ≤ 2.1}.

(5.45)

Note that the parameters in K are set to ranges corresponding to a reference param-
eterization of the system as obtained in [224]. This derives from the fact that for larger
uncertainties in the parameters hypotheses II and III were not distinguishable w.r.t.
the available measurements from the real process. Note that the initial conditions for
the states are chosen in accordance to the relative errors of the measurement data
reported in [224].
For generating the training data, we employed numerical simulations as an appli-

cation of Theorem 8 is not possible due to the rational dynamics. Therefore, we
consider only the weak inconsistency property of Proposition 6. For the numerical
simulations, we took 10000 uniformly distributed Monte Carlo samples for the initial
conditions and parameters as defined by K. The samples were then simulated, i. e. the
corresponding trajectories φ(x(t)|x0, p) were determined, with Mathematica and the
absolute accuracy goal was set to machine precision. As training data X̄ (k) in (5.39),
we then used the minimal and maximal value of all trajectories at the time points
ti = {0, 0.25, 0.5, . . . , 3}. The time points, were chosen such that the measurement
data from the real process available for xf and xs are covered. From the sensitivity
analysis conducted in [33], we further know that the behavior of hypothesis III does
not change qualitatively for small perturbations of the nominal parameterization and
initial conditions. This justifies the choice of the employed training sets in the model
consistency analysis. The obtained intervals corresponding to the training data are
depicted in Figure 5.5.

5.6.3 Results and Discussion

For estimating the error set according to Lemma 5, we employed the toolbox ADMIT
[204] for the training set defined above. The estimated error sets for the states x, xs
and xf are given in Table 5.1.
From Table 5.1 it is apparent that the standard Euler discretization of (5.42) for

the chosen step size D = 0.25 approximates the continuous-time system already well
as the corresponding error sets are relatively small. Additionally, one notices that the
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Figure 5.5: An example trainingset for the determination of the discretization errors
as employed in the augmented Euler model. Intervals depict the artificial mea-
surements, while continuous lines represent trajectories resulting from sampling
initial conditions and parameters uniformly in K. Blue corresponds to x, green to
xs, and red to xf .

needed error sets for the substrates xs and xf are larger as for the biomass x, which
is intuitively clear if one compares the slopes of the trajectories of the three states in
Figure 5.5. This suggests that the step size should be reduced if the error sets for
xs and xf are too large for the model invalidation task. Note that for hypothesis II
similar ranges for the error sets can be reported.
In Table 5.2, we report the interval enclosure as well as the measurement data for the

biomass x. The measurement data corresponds to measurements taken by fluorescence
spectroscopy, where a relative error was added according to the tolerances specified for
the employed measurement device. The measurement device was a two-component-
system composed of a fiber optic transflexion probe and a UV-Vis spectrometer as
reported in [33]. For testing whether hypothesis II and hypothesis III are consistent
with the measurements, we solved (5.41) with help of the toolbox ADMIT and were
able to provide a conclusive proof of model inconsistency of hypothesis II w.r.t. the
training data. This example illustrates nicely that the simplified augmented Euler
method can be used for model invalidation. For reference, we included in Figure 5.6 an
example steady-state cultivation, whereas hypothesis III is employed in the controller
strategy. Figure 5.6 shows that hypothesis III does represent the measurement data
well, and that the derived optimal dilution rate is only slightly adapted by the PID
controller. Both factors suggest that hypothesis III is well suited for the control of
steady-state cultivations of R. rubrum.
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Table 5.1: Estimated error sets Ê(k) for hypothesis III.

Time [h]: Error in x: Error in xs: Error in xf :
0.25 [-0.009,0.014] [-0.083,0.0714] [-0.175,0.083]
0.5 [-0.010,0.014] [-0.091,0.0664] [-0.172,0.079]
0.75 [-0.114,0.014] [-0.099,0.0652] [-0.170,0.076]
1 [-0.013,0.013] [-0.108,0.0645] [-0.175,0.073]

1.25 [-0.014,0.013] [-0.117,0.0641] [-0.180,0.070]
1.5 [-0.015,0.012] [-0.126,0.0642] [-0.183,0.067]
1.75 [-0.017,0.012] [-0.135,0.0648] [-0.184,0.065]
2 [-0.018,0.012] [-0.144,0.0660] [-0.184,0.064]

2.25 [-0.019,0.011] [-0.154,0.0677] [-0.182,0.062]
2.5 [-0.021,0.011] [-0.163,0.0702] [-0.177,0.061]
2.75 [-0.022,0.010] [-0.173,0.0733] [-0.170,0.061]
3 [-0.023,0.009] [-0.181,0.0772] [-0.161,0.061]

Table 5.2: Estimated enclosure of the biomass concentration x for hypothesis III,
and the employed measurement data from the real process.

Time [h]: Enclosure of x: Measurements of x
(fluorescence spectroscopy):

0.25 [0.323,0.357] [0.351,0.360]
0.5 [0.362,0.395] [0.360,0.373]
0.75 [0.401,0.432] [0.400,0.415]
1 [0.439,0.470] [0.450,0.465]

1.25 [0.476,0.507] [0.460,0.476]
1.5 [0.514,0.543] [0.501,0.516]
1.75 [0.551,0.579] [0.542,0.556]
2 [0.587,0.615] [0.594,0.611]

2.25 [0.622,0.651] [0.648,0.661]
2.5 [0.656,0.685] [0.660,0.670]
2.75 [0.690,0.719] [0.709,0.727]
3 [0.722,0.752] [0.709,0.727]
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Figure 5.6: Example of a microaerobic steady-state cultivation with a CRP stepsize
switch from -50mV to -100mV (red dashed line). Time course of the offline mea-
sured concentrations xs(�),xs(�), xf (•). D̂ represents the dilution rate. The grey
line corresponds to the CRP. The blue dashed line illustrates the quality of the
derived model. This figure was taken from an earlier version of [33].
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5.7 Summary
In this chapter, several extensions to the set-based estimation approach were proposed
that allow the consideration of continuous-time systems. We focused hereby on the
derivation of conditions that are needed such that estimation problems for continuous-
time systems can be addressed by discrete-time systems.
The most important properties to do so are the CT/DT relationship, i. e. the condi-

tion that consistent parameters of the continuous-time system are also consistent pa-
rameters of the discrete-time system, and the embedding property, i. e. the trajectories
of the continuous-time system are enclosed by the trajectories of the discrete-time sys-
tem. We showed that for exact discretizations both relationships are fulfilled, however,
such discretizations are in general not available for polynomial systems. Therefore, we
presented two approaches to achieve these conditions for discrete-time approxima-
tions. The first approach is based on the Picard-Lindelöf theorem for the existence
and uniqueness of solutions to initial value problems. For this reason, we developed a
method that results in an guaranteed enclosure of the reachable set of the continuous-
time system. Based on this enclosure we presented an algorithm to derive a time
step size such that the Picard-Lindelöf theorem is fulfilled. The resulting discrete-time
system then fulfills the strong CT/DT relationship and can be directly employed for
the estimation of the continuous-time system. However, the time step size is typ-
ically relatively small such that the estimation procedures from Chapter 4 become
computationally demanding.
To tackle this problem, we proposed first a procedure that is independent of a

time-step size by approximating the reachable set of the continuous-time directly.
However, as this approach does not allow to study the connection of discrete-time and
continuous-time systems, we proposed a simplified Euler formulation that encloses the
trajectories of a continuous-time system with respect to a training set. We discussed
several approaches to generate appropriate training sets, and we provided a strategy
to test consistency of a continuous-time system. Furthermore, we exemplified with
a real world example, namely the steady-state cultivation of Rhodospirillum rubrum,
that the simplified Euler system can be applied to derive a quantitative and predictive
model.
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In this chapter, we investigate observability of polynomial systems. In general, ob-
servability refers to the possibility to reconstruct from given measurement data the
initial conditions of a system. To investigate observability we consider at first the al-
gebraic conditions for local-at-a-point observability presented by Kawano and Ohtsuka
in [94]. We show that these conditions can be addressed by polynomial optimization
for nominal systems and that the optimization problem is finite-dimensional in case
the system is local-at-a-point observable. Moreover, we show that the local conditions
are not sufficient to address observability in the uncertain case. This derives from the
fact that observability for uncertain systems corresponds to the ability to reduce the
initial bounds on the involved variables, in particular, the states and parameters. To
consider uncertain systems, we have to rely on a stronger condition, namely global ob-
servability as presented in [94]. However, as we are working with states and parameters
that are unknown-but-bounded the algebraic conditions of [94] become semi-algebraic.
To handle these semi-algebraic conditions, we provide a sufficient condition that can
again be checked with polynomial optimization. Another difficulty in considering un-
certain systems derives from the fact that the algebraic conditions are not necessary.
For instance, we cannot conclude from a system not being globally observable to a
loss in the ability to reduce the initial bounds. To study this problem, we provide a
systematic procedure to investigate the state and parameter space for partitions that
lead to the loss of observability.

To complement the extended algebraic conditions, we present a second method that
links the energy visible at the output to the initial conditions. This idea is based
on the idea of observability Gramians, i. e. a high output energy corresponds to an
easier observable system. The link between energy and initial conditions is then used
to derive a set-based observability notion and an algorithmic procedure to study this
notion is presented.

This chapter is structured as follows. First, the considered algebraic framework
of Kawano and Ohtsuka is introduced and it is shown that this framework can be
addressed by polynomial optimization. Second, the algebraic conditions are extended
to uncertain systems and the involved difficulties are illustrated. Third, based on
output norms an alternative approach to investigate observability of uncertain systems
is introduced. Both approaches for uncertain systems are exemplified by a two-tank
system, before concluding this chapter.
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6.1 Introduction: Observability

To ensure the requirements of modern industry, such as high product quality or safety,
modelling, monitoring and control becomes increasingly important. Typically, as the
considered process becomes more complex, more information on the process character-
istics is needed to complete these three tasks. However, not all of these characteristics
are equally easy accessible. For instance, while for pressure and pH cheap and accu-
rate sensors are available, for other key variables like the biomass concentration more
sophisticated measurement devices are needed that might have limitations as long
sampling times, maintenance costs, long processing times and similar difficulties.
A possibility to circumvent some of these problems is to employ state observers to

reconstruct the desired information from the available measurement setup with help
of a dynamical model instead of directly measuring all process characteristics. Several
observers or soft sensors have been proposed in literature and design approaches can be
found in many articles and standard text books, see e. g. [24, 56, 60, 85, 102, 125, 134,
159, 186]. The crucial point is, however, that the employed model has to be observable,
i. e. the states of the model have to be reconstructable from ideal measurements.
When speaking of observability, one typically speaks about a nominal system, i. e.

a system for which the parameters are known. In this case observability is quite
well understood for linear systems, see e. g. [29, 84, 138]. For nonlinear systems, it
is typically more involved to define suitable observability notions [78, 192] and only
few computational techniques are known, e. g. [192]. For polynomial systems the
situation is more favorable, see e. g. [15, 55, 72, 189, 190, 194] for general definitions
and requirements, and [89–92, 94, 143, 212] for constructive algebraic conditions.
For uncertain systems, however, only few results exist and are mainly restricted

to the field of differential inclusions [11, 88]. Here, the main focus is to investigate
what properties an uncertain system has to exhibit such that observability can be
deduced if the uncertainty is removed. This is mainly due to the difficulty of defining
observability and distinguishability notions for uncertain systems due to the lack of a
sharp uniqueness notion in this case. One possibility to avoid this lack is to relate the
norm of the output to the norm of the states. This builds the foundation for controller
design methods based on the output-to-state stability concept, see e. g. [8, 79, 196] and
references therein. Other applications of output norms are observability Gramians in
observability analysis. Such Gramians can be used to quantify observability of linear
systems e. g. as needed in model reduction. Several extensions of Gramians have
been proposed in the literature, i. a. [70, 81, 107, 199] for nonlinear systems and
[154, 172, 189, 218] for uncertain linear systems.
In this work, two approaches are considered for observability analysis. The first one

is based on the algebraic conditions for the analysis of nominal systems derived in
[89–94]. There are mainly two reasons why to base a consideration on these works.
First of all their methods can be verified by polynomial optimization as employed in
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this work. Second, the general description of observability in terms of ideals allows a
uniform treatment of continuous-time and discrete-time systems. However, we show
that by extending these results to uncertain systems only a sufficient condition for
observability can be derived. The second presented approach is based on the energy of
the output [66]. For this reason, we derive a relationship between the output energy
and the initial conditions similar to the norm-observability concept in [79]. This allows
us to partition the state space into subsets that lead to high output energy and into
subsets that lead to low output energy. Here, low output energy corresponds to a
system that is difficult to observe in general.

6.2 Observability

In this section several conditions to determine observability for uncertain systems are
derived. In the nominal case observability of a polynomial system corresponds to
properties of the variety corresponding to an ideal generated by the output map. We
present in the following a short summary of these properties following [92]. One of the
main advantages to derive such observability conditions is that after the derivation
of the ideal continuous-time and discrete-time systems can be handled in a unified
way. The methods presented here are, therefore, kept general to avoid unnecessary
repetitions. For the obtained results, we have to distinguish between the nominal case
and the uncertain case. To demonstrate that observability of a uncertain system can
be addressed with the methods presented in this work, we first show that the nominal
case can be tackled by polynomial optimization as seen next.

6.2.1 Nominal Model

To clarify, a nominal system refers to a system of form (2.1) or (2.2) for which the
initial condition and the parameters are fixed, i. e. x0 ∈ Rnx, p ∈ Rnp. Furthermore, for
simplicity of notation, the input is assumed to be zero, however, considering a nonzero
input is straightforward, see e. g. [94]. Another simplification is that the parameters
p in the above equations are added to the state vector . In other words, we consider
continuous-time systems of form

ẋ(t) = f(x(t)), x(t0) = x0,

y(t) = h(x(t)),
(6.1)

and discrete-time systems of form

x(k + 1) = fD(x(k)), x(0) = x0,

y(k) = hD(x(k)),
(6.2)
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where ẋi(t) = 0 (resp. xi(k + 1) = xi(k)) holds for every state xi corresponding to a
time invariant parameter.
We begin with local-at-a-point observability. Recall that local-at-a-point observabil-

ity corresponds to the following (cf. also to Definition 3 in Section 2.2.3): if for an initial
condition α there exists an open neighborhood N such that for every initial condition
β ∈ N \{a} the output trajectories of the considered system fulfill φh(x(t)|α, u(t), p) 6=
φh(x(t)|β, p) for some t ∈ [0, T ] (resp. φD,y(x(k)|α, p) 6= φD,y(x(k)|β, u(k), p) for some
k ∈ {1, . . . , n}, n ∈ N). In other words, the initial conditions α and β are distinguish-
able according to Definition 2 and for the set of indistinguishable initial conditions
O(α,A) ∩ N = {α} holds. We follow here the most common approach to test this
property. For continuous-time systems this test employs Lie derivatives, see e. g. [78],
and the so-called observability mapping

O(x) =



h(x)
Lfh(x)
L2
fh(x)
...

LnOf h(x)


. (6.3)

Here, the Lie derivative Lfh(x) is defined as Lfh(x) :=
(
∂
∂xh(x)

)
f(x) and the notation

Lnfh(x) corresponds to Lf (Ln−1
f h(x)).

For discrete-time systems the equivalent mapping is defined by

ODT (x) =



hT (x)
hT (fD(x))
hT (f2

D(x))
...

hT (fnOD (x))


, (6.4)

where the notation fnD(x) corresponds to fD(fn−1
D (x)).

Note that for simplicity and to avoid redundancies we sometimes drop the index
DT , whenever it is clear from the context to which observability mapping we refer.
Furthermore, we drop the time argument and time index, respectively.
If the observability mapping is locally invertible, then a system has the local distin-

guishability property. Consider the following sufficient condition based on the inverse
function theorem, which holds for continuous-time and discrete-time systems.

Theorem 9 (Observability Rank Condition [78],[146]). The system (2.1) (resp. (2.2))
has the local distinguishability property at an initial condition a ∈ K if rank(O(a)) =
nx (resp. rank(ODT (a)) = nx). �

Based on the introduced observability mappings, it was shown in [94] that necessary
algebraic conditions can be derived that extend Theorem 9 and can be easily verified
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with symbolic software, e. g. Macaulay2, Singular. The main idea to do so is to form
an ideal from the observability mappings based on the notion of indistinguishability.
This leads to the following two ideals for two initial conditions α and β

I := 〈O1(α)−O1(β)〉+ . . .+ 〈OnO(α)−OnO(β)〉 ⊆ R[α, β] (6.5)

and

IDT := 〈ODT,1(α)−ODT,1(β)〉+ . . .+ 〈ODT,nO(α)−ODT,nO(β)〉 ⊆ R[α, β], (6.6)

where the index i refers to the i-th row of O or ODT , respectively. The associated
varieties are denoted by V(I ) ⊆ Rny and V(IDT ) ⊆ Rny , i. e. the algebraic sets where
every polynomial p ∈ I (resp. p ∈ IDT ) vanishes. For a detailed discussion of ideals
and varieties the interested reader is referred to [9, 40].
For both ideals, we have the following fact from Hilbert’s basis theorem.

Lemma 2. The ideals I and IDT are finitely generated. �

This means for some large enough nO, the observability of system (2.1) (resp. (2.2))
can be investigated via a finite set of polynomials. This derives from the fact that the
ideals are formed by an ascending chain of ideals, e. g. for IDT we have:

IDT,1 := 〈h(α)− h(β)〉,
IDT,2 := IDT,1 + 〈h(fD(α))− h(fD(β))〉,

...
IDT,nO := IDT,nO−1 + 〈h(fnD(α))− h(fnD(β))〉,

(6.7)

where IDT,1 ⊂ IDT,2 ⊂ · · · ⊂ IDT,nO = IDT,nO+1 = IDT holds.
Kawano and Othsuka showed in [89, 90, 92] that these ideals and the correspond-

ing varieties allow to consider all introduced observability notions (cf. also to Sec-
tion 2.2.3). To do so, consider the prime ideal

p = 〈x1 − α1, . . . , xn − αn〉, (6.8)

which allows the study of local properties w.r.t. the point α = (α1, . . . , αnx)T ∈ Rnx.
The first result of interest is local-at-a-point observability. For this reason, consider a

ring homomorphism γβ : R[a, b]→ R[a] which substitutes the variable b in a polynomial
of R[a, b] with a fixed initial condition β ∈ Rnx. Assume that the ideal I constructed
from the observability mapping is as in (6.5) or (6.6), respectively. The localization of
I at p is defined as

Ip := {a/b : a ∈ I , b ∈ R[x], b 6∈ p}. (6.9)

For an introduction to local rings, see e. g. [9]. In [94] it is shown that using a ring
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homomorphism and the localization of an ideal local-at-a-point observability can be
analyzed as follows.

Theorem 10 (Local-at-a-point Observability [94]). A system (2.1) (resp. (2.2)) is
locally observable at initial condition β ∈ K ⊆ Rnx if and only if

V(γβ(I )γβ(p)) = V(γβ(p)) = {β}, (6.10)

where I is defined as in (6.5) (resp. (6.6)). �

Theorem 10 basically describes that if only a single point β is investigated then a
system is observable if a ≡ β is the only zero of the localization γβ(I )γβ(p). Therefore,
local-at-a-point observability is equivalent to the determination of the solution set of
polynomial equalities describing the variety of the localization.
This theorem can be illustrated by considering the actual computation of a local-

ization at a prime ideal as seen in the following example. Note that the computation
is done in two-steps: first, a primary decomposition is computed and second, the
ideal-membership of the decomposition w.r.t. to p is tested.

Example 5 (Local-at-a-point Observability [92]). Consider the discrete-time system

x(t+ 1) =


2x2

3(t)− x3
3(t)

x1(t) + x2
2(t)

x2
1(t)

 ,
y = x2(t).

(6.11)

Then I = 〈a1− b1, a1 +a2
2− (b1 + b2

2), 2a2
3−a3

3 +(a1 +a2
2)2− (2b2

3− b3
3 +(b1 + b2

2)2)〉 and
p is as in (6.8) for n = 3. As a first step a primary decomposition of I is derived,
e. g. with Macaulay2. For this example, we get

I = 〈a1 − b1, a2 − b2, a3 − b3〉 ∩ 〈−2a3 + a2
3 − 2b3 + a3b3 + b2

3〉. (6.12)

Note that the first ideal in the primary decomposition (6.12) is p. Now the second
ideal of the primary decomposition is tested for ideal-membership in p to derive the
localization [9]. We denote the second ideal in the following by p(a3, b3). It is easily
verified that the polynomial p(a3, b3) is not in p with help of a Gröbner basis, therefore,
it follows that Ip = p and the condition of Theorem 10 trivially holds for every every
replacement of b with β. This example illustrates nicely that the localization at a prime
ideal allows to study the behavior of an ideal close to a point as the dependency p(a3, b3)
is filtered out. �

The previous theorem shows that observability for polynomial systems can be derived
from the zeros of finitely many polynomials. Determining this set of polynomials,
deriving the localization and quotients can in this setting be done by Gröbner bases
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and related algorithms, see e. g. [40]. To determine the varieties (the zeros (or roots)
of the polynomial equalities) of a polynomial equation system several possibilities are
known. For an overview and relevant notions we refer to the text books [39, 40]. For an
interesting interpretation in terms of eigenvalue computations and realization theory
we refer to [49]. However, as soon as the algebraic setting is left and polynomial
inequalities are introduced in the formulation the problems become semi-algebraic
and, therefore, computationally more involved as seen in the next section. We follow,
therefore, the general idea of this work and formulate the conditions on the varieties
in terms of a feasibility problem of form

find a

subject to f(a, β) = 0,∀f ∈ γβ(I )γβ(p),

a ∈ K,
(6.13)

where the constraint set K ⊆ Rnx is again a semi-algebraic set as defined in previous
chapters.
From construction it follows that the solution set of (6.13) describes the zeros of

all polynomials in γβ(I )γβ(p), i. e. it is equal to the variety V(γβ(I )γβ(p)) := {a ∈
K : f(a, β) = 0, ∀f ∈ γβ(I )γβ(p)}. From Lemma 2 we can rewrite (6.13) to obtain a
system with finitely many constraints

find a

subject to gi(a, β) = 0, i ∈ {1, . . . , nI },
a ∈ K,

(6.14)

where gi are the generators of the localization of I at p, e. g. a Gröbner basis.
Following the relaxation procedure in Section 4.3.1, we derive next an approximation

of the solution set. To be able to state the results, we shortly recall the idea of outer-
bounding, see also Algorithm 2. In (6.14) the variable of interest is a. Determining
an outer-bounding box of the admissible values of a constitutes in minimizing (resp.
maximizing) every entry in the vector a as follows.

min cTa

subject to gi(a) = 0, i ∈ {1, . . . , nI },
a ∈ K,

(6.15)

where cT is a vector with one non-zero entry in the i-th column, whereas the non-zero
entry is either 1 or −1. This then corresponds to finding a lower respective upper
bound for ai. Doing so for all ai yields the outer-bounding box. As (6.15) is in the
same form as the polynomial optimization problem (4.7) in Section 4.3.1 a detailed
derivation is omitted. We refer to the optimal solution of (6.15) as a∗POP and of the d-th
semi-definite relaxation as a∗SDPd. The lower and upper bounds obtained by solving the
semi-definite relaxation are denoted by a∗SDPd and a∗SDPd. We can state the following
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strong convergence result.

Theorem 11 (Finite Convergence of Relaxation). If V(I ) is a finite-dimensional
variety, i. e. the generators gi, i ∈ {1, . . . , nI } have finitely many common zeros,
there exists d ∈ R such that a∗POP = a∗SDPd. �

Proof. The proof is based on Theorem 6.15 of [114]. Let y be a feasible solution
(4.9). We show that pTy ≥ p∗ for a sufficiently large relaxation degree. Note that
from the localizing matrix we know that the relaxation degree has to fulfill t ≥ 2dFj .
Furthermore, for a sufficiently large t, the kernel of Mt(y) contains any given finite set
of polynomials in the ideal of all functions vanishing on the observability mapping (see
also Claim 6.16 in [114]). Let {f1, . . . , fL} be a Gröbner basis of the ideal of the variety
(denoted with I (V(I ))) with a degree monomial ordering and B a basis of the radical
of the quotient algebra R[x] \I (V(I )) with maximal degree dB := max

b∈B
deg(b). Note

that the variety is finite, therefore, dB is well defined. Given ε > 0 and considering
Putinar’s Positivstellensatz, we can write

p− p∗ + ε = s0 +
m∑
j=1

sjFj + q, (6.16)

where s0, sj are sum of squares and q ∈ I . Let sj = ∑
i s

2
i,j, where si,j = ri,j + qi,j,

ri,j = ∑
k akbk with deg(ri,j) ≤ dB for ak ∈ R and bk some member of B, and qi,j ∈ I .

We can determine in this way a second decomposition of form (6.16) with s′0, s′j being
sum of squares of degree at most 2dB and q′ ∈ I (V (I )). If we now define T0 :=
max(2dp, 2dB, 2dB + F1, . . . , 2dB + Fj), then we have deg(s′0), deg(s′j), deg(q′) ≤ T0.
If we write q′ = ∑

l=1 Lulfl with deg(ulfl) ≤ T0, then we can find a t such that
ulfl is in the kernel of Mt(y) (see also Claim 6.16 in [114]) and thus q′ is also in
the kernel of Mt(y). From Putinar’s Positivstellensatz we have 1TMt(y)vec(sjFj) =
1TMt(y)vec(p − p∗ + ε) ≥ 0. Therefore, 1TMt(y)p ≥ p∗ − ε, thus pt ≥ p∗ − ε for
vanishing ε and noting that pt is lower bound of p∗, i. e. pt ≤ p∗, we have the desired
result pt = p∗. �

There are some limitations to the previous theorem. Namely, the assumption that
the variety corresponding to the observability mapping, i. e. V(γβ(I ))γβ(p) is finite, can
be restrictive as seen next for the uncertain case. However, if β is indeed an locally
observable initial condition for (2.1) (resp. (2.2)) we have the following verifiable
necessary and sufficient condition.

Corollary 1 (Local-at-a-point Observability (Nominal System)). A system (2.1)
(resp. (2.2)) is locally observable at initial condition a, if and only if the lower and
upper bounds of each entry ai are equal, i. e. a∗SDPd = a∗SDPd. Furthermore, this can be
determined by 2nx finite-dimensional semi-definite programs of form (4.12). �

Corollary 1 simply states that for an observable initial condition β the condition
of Theorem 11 holds and observability can, therefore, be verified. It should be noted
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that Corollary 1 is formulated for Algorithm 2, however, in practice the condition
a∗POP = β can also be checked by extracting the global minimizer of (6.15) employing
the methods described in [75]. Unfortunately, to prove that a system is not observable
is in general harder as finite convergence can in general not be assumed. However,
based on the Curto-Fialkow flat extension criterion [41], we can state a sufficient
criterion for a system not being observable as follows, see also [75] and Appendix A.1
for more details.

Proposition 7 (Sufficient Condition for local-at-a-point Unobservability (Nominal
System)). A system (2.1) (resp. (2.2)) is not observable if for some s the conditions
rank Ms−v(y∗) = rank Ms(y∗) and a∗SDPd 6= a∗SDPd hold. �

Proof. The rank condition ensures that the global optimum has been obtained [75],
therefore, if a∗SDPd 6= a∗SDPd the condition V(γβ(I )γβ(p)) = V(γβ(p)) of Theorem 10
does not hold. �

Note that the rank condition in Proposition 7 is a condition that is verified for the
moment formulation (4.12) in Section 4.3.1.
The previous results show that the observability of a nominal system can be checked

by solving polynomial optimization problems. Furthermore, the local-at-a-point ob-
servability property guarantees finite convergence of the relaxation approach presented
in Section 4.3.1. The next section deals with the problem, when the variety correspond-
ing to the prime ideal p is no longer a point, i. e. if an uncertain system is considered.
To do so, we incorporate in the observability analysis methods used for approximating
the volume of sets following [77]. Furthermore, we show that based on the global ob-
servability condition presented in [94], observability can be studied on semi-algebraic
sets.

6.2.2 Uncertain Systems

If we proceed to the uncertain case, we basically leave the algebraic conditions consid-
ered before and several adaptations have to be made. In the uncertain case, observabil-
ity corresponds to the principle possibility to reduce the initial bounds on the consid-
ered unknown-but-bounded variables, i. e. states and parameters, when measurements
are available. We denote this possibility in the following as set-observability.
The first intuition to consider uncertainties, would be to change the variety in The-

orem 10 to
V(γB(I )) :=

⋃
β∈B
V(γβ(I )γβp)), (6.17)

where B is a semi-algebraic set. However, in this case we would come to a wrong
conclusion regarding set-observability. To exemplify this circumstance consider again
Example 5. There it is shown that the nonlinear connection of the initial conditions
in the primary decomposition is filtered out by the localization at the prime ideal p.
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This nonlinear connection is exactly what limits the ability to reduce the bounds on
a variable in the end. Before providing an illustration, we summarize the stronger
condition needed for uncertain systems.

Theorem 12 (Global Observability [92]). A continuous-time system (2.1) (resp.
discrete-time system (2.2)) is globally observable, then the following holds

V(
√

I : p) = V(p), (6.18)

where
√

I : p is the colon ideal of the radical of I and the prime ideal p, i. e.
√

I :=
{f ∈ R[x] : fm ∈ I ,m ≥ 1} and

√
I : p := {f ∈ R[x] : fg ∈

√
I , ∀g ∈ p}. �

The following example illustrates why global observability is needed for uncertain
systems and local observability notions are not sufficient.

Example 6 (Global Observability [92]). Consider again the system

x(t+ 1) =


2x2

3(t)− x3
3(t)

x1(t) + x2
2(t)

x2
1(t)

 ,
y = x2(t).

(6.19)

As seen in Example 5 the system is local-at-a-point observable as the nonlinear de-
pendency p(a3, b3) = −2a3 +a2

3−2b3 +a3b3 + b2
3 between the initial conditions for state

x3 vanishes from the observability ideal when localized at the prime ideal. Note that
the system is local-at-a-point observable as soon as an initial condition is fixed, in fact
for any chosen point the system is local-at-a-point observable, i. e. the system is locally
observable according to Definition 4.
We study now global observability according to Theorem 12. The colon ideal for this

example is given by √
I : p = 〈a1 − b1, a2 − b2, p(a3, b3)〉. (6.20)

Clearly, the condition for the varieties does not hold as the third generator p(a3, b3)
allows more zeros than the third generator of p. Indeed, p(a3, b3) = 0 describes an
ellipse in the space spanned by a3, b3 and every initial condition chosen on this ellipse
leads to the same output trajectory. This dependency is depicted in Figure 6.1.
We illustrate next that local observability is not sufficient to be able to reduce the

initial bounds on the variables by measurements. For this reason, consider the sets

A0 := {a3 : −2 ≤ a3 ≤ 2},
B0 := {b3 : −0.5 ≤ b3 ≤ 0},

(6.21)

depicted in Figure 6.1 as the blue dashed box. We assume that the set B0 describes the
influence of a measurement on x3. As the system is locally observable by estimating
the admissible values of x3 one expects the same bounds as B0. However, from p(a3, b3)
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Figure 6.1: Illustration of the nonlinear dependency p(a3, b3). Dashed lines indicate
the bounding box given by A0 and B0. Shaded area depicts a practical loss of
global observability, due to uncertainties.

follows that x3 cannot be reduced further then the interval [0, 2] as seen in Figure 6.1.
Therefore, local observability is not sufficient to deduce the ability to reduce the initial
bounds on x3. �

As seen in the previous example, we need to consider the varieties of Theorem 12.
Furthermore, we can state the following trivial consequence.

Corollary 2 (Set-Observability). If a continuous-time system (6.1) (resp. discrete-
time system (6.2)) is globally observable, it is set-observable.

The previous result follows from the fact that by reducing the uncertainty of the
output to zero, basically a nominal system is considered. However, if a system is not
globally observable it does not follow that the system is not set-observable. To study
this circumstance, we provide in the following two suitable procedures based on the
determination of V(

√
I : p).

Determining the variety V(
√

I : p) in the uncertain case is considerably harder
as determining the varieties in the nominal case. In particular, if convergence of the
approximation to the variety is required. The first procedure is based on the integration
of polynomial functions over semi-algebraic sets as presented in [77]. This method
deviates considerably from the methods presented in Section 4.3.1. We, therefore, give
a short overview of the involved steps. The employed methods to do so are similar
to the determination of the one-step reachable sets in Section 5.4.2, whereas the main
difference derives from the lack of a dynamic component.
We consider here the constraint set K which contains the inequality constraints as

before and in addition the constraints corresponding to the variety V(
√

I : p), i. e.

K := {x ∈ Rnx : gi(x) = 0, gj(x) ≥ 0, i ∈ {1, . . . , nI }, j = {1, . . . , nK}}. (6.22)
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As the procedure requires the Lebesgue moments of a second set, we assume without
loss of generality that K ⊂ K̄ ⊆ [−1, 1]nx, where K̄ is a set for which the Lebesgue
measure can be easily determined, e. g. the unit box or the unit ball. Note that the
polynomials defining K can always be scaled such that the assumed condition holds.
As before let B denote the Borel σ-algebra of Borel subsets of K̄. We denote the

set of finite Borel measures on K with M (K). The normalized Lebesgue measure
of K̄ is denoted by µ2, where normalized means that 2nµ2(K̄) = λ(K̄) and λ(K̄) is
the Lebesgue measure. The second measure µ1 ∈ M (K) corresponds to the variety
we want to determine. Note that by the Radon-Nykodym theorem, there exists a
nonnegative measurable function f(x) that fulfills µ1(B) = ∫

B f(x)µ2(dx) for some
subset B ∈ B. Consider the infinite-dimensional linear program:

sup ∫
K 1µ1(dx)

subject to µ1 ≤ µ2,

µ1 ∈M (K),
(6.23)

where µ1 ≤ µ2 ensures that µ1 is absolutely continuous.
Similar to Theorem 5 we can state the correspondence between (6.23) and the hy-

pervolume of K.

Theorem 13 (Hypervolume of Observability Variety). The optimal value l∗ of (6.23)
is equal to the hypervolume of K. Moreover, the supremum is attained by the restriction
µ∗1(B) = µ2(B ∩ K), ∀B ∈ B to K. In particular, the optimal value is equal to the
Lebesgue measure divided by the normalization, i. e. l∗ = λ(K)/2n. �

Proof. For a proof see [77, Thm 3.1] and setting p = 1. �

As the hypervolume is not a criterion that can be uniquely related to observability
we next derive the dual to find an approximation of the indicator function of K.

inf ∫
v(x) µ2(dx)

subject to v(x) ≥ 1 on suppµ2,
(6.24)

where v(x) ∈ C is a continuous test function.
For completeness, we also state the dual of the moment relaxation as its sum-of-

squares restriction, which is used for the computation of the example in the next
section. For details on the primal moment problem we refer to Section 4.3.1 and the
references therein.

min lvc

subject to v(x)− 1 = s0(x) +
nX∑
i=1

si(x)gi(x),
v(x), σi ∈ Σ2

d[x].
(6.25)

Here l are the Lebesgue moments and vc the coefficients of a polynomial of degree
corresponding to the relaxation degree r.
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We define V̂ := {v(x) ≥ 1} and we have the following result.
Theorem 14 (Convergence). The function v = lvc that minimizes (6.25) has the
property that for r → ∞ the set V̂ it defines converges (almost uniformly) to the
variety V(

√
I : p) and V(

√
I : p) ⊆ V̂ holds for all r. �

Proof. The proof is equivalent to the proof of Theorem 6. �

We can relate this result to set-observability with help of the primal moment relax-
ation as follows.
Proposition 8 (Sufficient Conditions for Set-Observability). A system (6.1) (resp.
(6.2)) is set-observable on B ⊂ K if for some s the conditions rank Ms−v(y∗) =
rank Ms(y∗) and V̂ = B hold.
Equivalently, a system (6.1) (resp. (6.2)) is not set-observable observable if for some
s the conditions rank Ms−v(y∗) = rank Ms(y∗) and V̂ ⊃ B hold. �

Proposition 8, therefore, allows to systematically check a partition of the constraint
set K if it leads to a loss of observability. To check several partitions consecutively
a different formulation of the varieties is computationally more efficient. However,
we can then only determine that a system is not set-observable and set-observability
cannot be concluded.
Consider, for this reason, the following feasibility problem similar to the previous

section.
find a

subject to gi(a, β) = 0, i ∈ {1, . . . , nI },
a ∈ K, β ∈ B ⊂ K,

(6.26)

where gi are the generators of the colon ideal in Theorem 12. Formulating local
observability in this way has the advantage that we can employ Algorithm 1 and
Algorithm 2 from Section 4.3.1. For Algorithm 1 we have the following result equivalent
to Proposition 8 based on Lemma 2.
Proposition 9 (Sufficient Unobservability Condition). Given a semi-definite program
of order d obtained by relaxing (6.26) according to Section 4.3.1 and denoted by SDPd.
If a system (2.1) (resp. (2.2)) is not set-observable on K, then there exists a subset
Q ⊂ K \ B for which the Langrangean dual of SDPd is not unbounded.
Proposition 9 is equivalent to Theorem 12 in the sense that if there exists a partition
Q as defined in Proposition 9 then (6.18) cannot hold. We illustrate Proposition 6.18
with the following example.
Example 7 (Set-Observability [92]). Consider again the discrete-time system from
Example 5 and Example 6. We consider the following constraints on the initial condi-
tions for analyzing set-observability.

A0 := {a : −1 ≤ ai ≤ 2.2, i ∈ {1, 2, 3}},
B0 := {b : −1 ≤ bi ≤ 2.2, i ∈ {1, 2, 3}}.

(6.27)
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Figure 6.2: Red partitions correspond to set-observable partitions, i. e. sets for
which the restriction of b ∈ Q ⊂ B0 leads to Â = Q. The white area could not be
classified according to Proposition 9 is, therefore, considered as not set-observable.
The blue ellipse, corresponds to the nonlinear connection of initial conditions a3
and b3.

Recall that the colon ideal for the considered example for global observability analysis
is as follows.

√
I : p = 〈a1 − b1, a2 − b2,−2a3 + a2

3 − 2b3 + a3b3 + b2
3〉. (6.28)

The goal is to test whether the system is set-observable. To do so, we have to estimate
the variety V(

√
I : p) when the initial conditions bi are restricted to a subset of

B0. We implemented the feasibility problem 6.26 and a bisectioning algorithm similar
to Algorithm 1 with help of the ADMIT toolbox [204]. Then, the for each partition
Q ∈ B0, we tested whether the estimate Â as the projection of 6.26 on the variable a
is equal to Q. The result is depicted in Figure 6.2 as a projection on the variables a3
and b3. By determining the partitions that are set-observable it is possible to decide a
priori if measurement data is helpful to estimate the states and parameters or not. �

To complement the notion of set-observability we derive next a similar notion based
on the energy visible at the output quantified in terms of the L2-norm for continuous-
time systems.

6.3 Output Energy Measure for Practical Observability
Analysis

In this section, we present a set-based output energy measure for constrained poly-
nomial systems with parameter uncertainties following [165]. The output energy is
measured in terms of the L2-norm on a finite-time interval while the initial conditions
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and parameters are allowed to take values from a set. By specifying a bound on the
output norm, the measure allows further to determine the set of initial conditions and
parameters which lead to satisfaction of this bound.
Furthermore, this set characterizes whether an uncertain system can be estimated by

a norm-observer and, therefore, can be applied for observability analysis complement-
ing the approach presented in the previous section. The derivation of the set is based
on recasting a nonlinear program with embedded differential equations into an infinite-
dimensional linear program similar to the procedure for estimating the reachable set
of a continuous-time system as presented in Section 5.4.2.

6.3.1 Output Energy

We quantify the energy visible at the output φh(x(t)|x0) starting from a specific initial
condition using the L2-norm. The goal is to link an initial condition to the output
energy, in the sense that the norm of the output is used to derive bounds on the
initial condition similar to the concept of norm-observability, see e. g. [79]. This work
considers the output energy over a finite-time interval as defined next.

Definition 18 (Finite-Time Output Energy Measure). The output energy measure
MMMT (x0) of an initial condition x0 ∈ Rnx depends on the resulting output trajectory
φh(t|x0) ∈ Rny of (6.1) on the finite-time interval [0, T ], T > 0 by

MMMT (x0) :=
∫ T

0
‖y(t|x0)‖2 dt. �

In [66] an equivalent infinite-time measure is used for observability analysis for linear
systems and systems for which the so-called zero-state assumption holds. Note that
Definition 18 only allows to quantify the output energy of a single initial condition.
If there are no uncertainties, the quantification of the energy could be determined

by deriving the initial condition x0 that maximizes the L2-norm with the following
polynomial optimization problem for a continuous-time system.

MMMmin
T := min

x0

∫ T
0 ‖y(t|x0)‖2 dt

s.t. ẋ(t) = f(x(t), us(t)),
y(t) = h(x(t), us(t)),
x0 ∈ X0,

x(t) ∈ X , ∀t ∈ (0, T ] ,

(6.29)

where us(t) ∈ R[t] is a known input signal. Note that this problem can be solved by
the methods presented in [76].
In case of uncertainties, however, MMMmin

T and MMMmax
T do not provide much insight, as

typically uniqueness of the optima is lost resulting in entire sets of initial conditions
that lead to the same output energy. In addition, a system that is unobservable in the
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classical sense might still have high output energy.
For this reason, the subsequent definition is more suitable for uncertain systems.

Definition 19. (Initial Conditions with Bounded Output Energy Measure). For a
given mmm ∈ R. Determine the set of initial conditions X ∗0 for which every initial condi-
tion x0 ∈ X ∗0 satisfies MMMT (x0) ≤mmm. �

In the following, a computational approach is proposed to determine the set X ∗0 for
a given bound mmm. To do so, we modify (6.29) as follows.

X ∗0 := find x0
s.t. ẋ(t) = f(t, x(t), us(t)),

y(t) = h(t, x(t), us(t)),∫ T
0 ‖y(t|x0)‖2 dt ≤mmm,
x0 ∈ X0,

x(t) ∈ X , ∀t ∈ (0, T ] .

(6.30)

With the feasibility problem (6.30), we aim to find initial conditions/parameter val-
ues x0 which lead to a L2-norm of the output that is bounded by m. Clearly, address-
ing (6.30) is difficult due to the present nonconvexity and the embedded differential
equations. The purpose of the subsequent sections is to derive a convex optimization
problem that directly takes the dynamics into account and considers entire sets of
parameters and initial conditions.
Following Section 5.4.2, we reformulate the nonlinear optimization problem with

embedded differential equation in terms of occupation measures. The occupation mea-
sures contain the needed information about the initial condition and parameter values
of the system, as well as the nonlinear dynamics of the system, i. e. they encode the
system trajectories. The main advantage of this reformulation is the resulting linear
relationship between the occupation measures as seen in Section 5.4.2. The only major
difference in the derivation of the infinite-dimensional problem derived in Section 5.4.2
is the constraint corresponding to the output energy. To be able to state (6.30) in
terms of occupation measures, the constraint on the output energy has to be treated
as shown next.

6.3.2 Reformulation of the Output Norm

To link the L2-norm of the output to the occupation measure, consider the mapping
H that maps the output space to [0,∞] and

H(µ(A)) = µ(h−1(A)) (6.31)

holds, where h−1(A) := {(t, x) ∈ T × X : h(t, x) ∈ A} and µ denotes the occupation
measure as defined in (5.17) of Section 5.4.2. Note that H is commonly called a
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pushforward operator in measure theory as it transports a measure from a measurable
space to another according to function h.
To be able to represent the previous statement also in terms of continuous functions

as needed in the following, consider the canonical basis of monomials up to degree r:

mr(x) := (1, x1, . . . , xnx, x
2
1, x1x2, . . . , x

r−1
1 x2, . . . , x

r
nx)

T (6.32)

and the Riesz functionals

z0 := ∫
X mr(x)µ0(dx), zT := ∫

X mr(x)µT (dx),
z := ∫

T ×Xmr(x)µ(dt, dx), z̄ := ∫
T ×Xmr(x) ◦mr(x)µ(dt, dx), (6.33)

where ◦ is the Hadamard product. Then we can simply define a vector c ∈ Rnmr such
that h(t, x, us) = cTmr(x) and ∫T h(t, x, us) = ∫

T ×X c
Tz̄µ(dt, dx).

6.3.3 Infinite-Dimensional Linear Program and Relaxation

By applying the same steps as presented in Section 5.4.2 to the optimization problem
(6.30), we obtain the infinite-dimensional linear program in the positive cone of the
space of finite signed Borel measures:

sup
µ0
〈1, µ0〉

subject to δTµT − L′µ = δ0µ0,

mmm−H(µ) ≥ 0,
µ0 + µ̂0 = λ,

µ0, µT , µ, µ̂0 ≥ 0,

(6.34)

where L′ is the Liouville operator as introduced in (5.22) and the constraint µ0+µ̂0 = λ,
where µ̂0 is a slack variable (or complementary measure) ensures that the derived
measure µ0 is dominated by the Lebesgue measure λ.
The optimization (6.34) describes basically the hyper-volume of X ∗0 . To derive an

exact, explicit description of X ∗0 we represent (6.34) as its infinite dimensional dual
problem over the space of continuous functions in terms of nonnegative polynomials
for an appropriate algebraic dual pair as

inf
w
〈w(x), λ〉

subject to w(x)− v(0, x, us) ≥ 1,∀x ∈ X ,
−Lv(t, x, us)− h2(t, x, us) +mmm ≥ 0,
∀x ∈ [0, T ]×X ,

v(T, x, us), w(x) ≥ 0,∀x ∈ X ,

(6.35)

where w(x) ∈ C (X ), v ∈ C 1([0, T ] × X ) are continuous (resp. continuously differen-
tiable) functions. As both LPs are infinite-dimensional they cannot be solved directly.
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We employ here Lasserre’s hierarchy, e. g. [111], to derive a solution similar to Sec-
tion 5.4.2 and we obtain the following sum-of-squares strengthening:

inf
wc,r

wT
c,rl

subject to wr(x) = v(0, x) + 1 + r0(x)+
+∑mx

i=1 r0,i(x)gx,i(x),
−Lv(t, x)− h2(t, x, us) +mmm = p(t, x)

+q0(t, x)t(T − t) + ∑mx
i=1 qi(t, x)gx,i(x),

wr(x) = p0(x) + ∑mx
i=1 q0,i(x)gx,i(x),

v(1, x) = p1(x) + ∑mxk
i=1 q1,i(x)gx,i(x),

(6.36)

where l is the vector of Lebesgue moments over X indexed in the same basis in
which the polynomial wr(x) with coefficients wc,r is expressed. The minimum is
over polynomials v(t, x) and wr(x), and polynomial sum-of-squares p(t, x), q0(t, x),
qi(t, x), p0(x) ∈ Σr[t, x], q0,i(x), p1(x), r0(x), r0,i(x) ∈ Σr[x],∀i = 1, . . . ,mx and
q1,i(x),∀i = 1, . . . ,mxk of appropriate degrees. The constraints that polynomials are
sum-of-squares can be written explicitly as LMI constraints, and the objective is lin-
ear in the coefficients of the polynomial wr(x). Therefore, (6.36) can be formulated
as a semi-definite program. Furthermore, the set Wr := {x : wr(x) ≥ 1} is an outer-
approximation of X ∗0 , i. e. X ∗0 ⊆ Wr, and the Lebesgue measure of Wr converges to
the Lebesgue measure of X ∗0 for r →∞, see also Theorem 6.
In the next section, it is illustrated how X ∗0 can be applied in observability analysis.

6.3.4 Application to Observability Analysis

This section illustrates that the set X ∗0 can contain more information on the initial
conditions than the original assumed set of initial conditions X0. In particular, if the
set X ∗0 is not contained in the interior of X0 then X ∗0 does not provide any additional
information on the location of possible initial conditions. Therefore, to strengthen the
expressiveness of X ∗0 the following additional requirement is defined.

Definition 20 (Set-Observability (Output Energy)). A state xi of system (6.1) with
initial conditions in the set X0 is said to be set-observable w.r.t. a bound m on the
output energy MMMT if the projection of X ∗0 onto xi has a smaller Lebesgue measure λ
than the projection of X0 onto xi, i. e. λ(⊥xi X ∗0 ) < λ(⊥xi X0). System (6.1) is said
to be set-observable if this condition holds for all i = 1, . . . , nx. �

The idea behind this set-observability notion is to compare the length of the projec-
tions of X0 and X ∗0 onto different state directions. If the former length is larger than
the latter then this means that the bound on the output energy can be used to reduce
the initially present uncertainties. According to Definition 20 the observability of a
system corresponds, therefore, not only to the output energy but also to the shape and
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size of X ∗0 . With the help of (6.36) we can analyze the set-observability of system (6.1)
according to Definition 20. We can state the following result:

Theorem 15 (Sufficient Condition for Set-Observability [165]).
Given an outer-approximation Wr. Assuming X ∗0 6= ∅, then the following statements
are equivalent.

1. The system is set-observable according to Definition 20.

2. ∃r ∈ R∪ {∞} and ∃mmm ∈ R such that λ(⊥xj X ∗0 ) ≤ λ(⊥xj Wr) < λ(⊥xj X0), ∀xj.
�

Proof: Follows the same lines as the proof of [74, Thm. 6]. In the case of finite
convergence the same argumentation as provided in the following can be employed by
replacing ∞ with a sufficiently large constant R ∈ R. From the convergence of the
relaxation it follows that wr converges to the indicator function IX ∗0 of the set X ∗0 .
Furthermore, at every relaxation order r we have X ∗0 ⊂ Wr, i. e. wr ≥ IWr ≥ IX ∗0 .
Therefore, we have

λ(⊥xj X ∗0 ) =
∫
X
⊥xj IX ∗0 dλ

= lim
r→∞

∫
X
⊥xj wrdλ ≥ lim

r→∞

∫
X
⊥xjWrdλ = λ(⊥xj Wr).

As X ∗0 ⊂ Wr, it follows that λ(⊥xj X ∗0 ) ≤ λ(⊥xj Wr). Therefore, λ(⊥xj X ∗0 ) = λ(⊥xj
Wr) must hold, which concludes the proof. �

Note that there are certain similarities of the proposed concept of set-observability
and norm-observability introduced in [79, 80]. A system is small-time initial-state
norm-observable (SINO), if ∀τ there exists γ ∈ K∞ such that the Euclidean norm of
the initial state is upper bounded by the infinity norm of the output, i. e. |x(0)| ≤
γ(||y||∞,[0,τ ]), see [79]. It is obvious that set-observability and SINO are related in the
case that parameters are not unknown-but-bounded. The main difference derives from
the fact that this work considers only bounded state space regions, therefore, a strict
relationship exists only for mmm = 0. In this case, if a system is not set-observable (∀r)
it follows that no γ exists on X .
The application of Theorem 15 to observability analysis is exemplified next.

Example 8 (Two-Tank System [165]). We consider the polynomial model of a two-tank
as derived in [105]. The process consists of two water tanks and one pump modeled
by:

ẋ1 = 0.073x2
1 − 1.6x1 − 0.047x2

2 + 0.2x2,

ẋ2 = 0.33x2
2 − 1.4x2,

y = h(x1, x2),
(6.37)
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where the states x1, x2 correspond to the water levels in the two tanks. The output
h(x1, x2) is assumed to be either x1 or x2. As state constraints we consider X =X0 =
[0, 1]× [0, 1] and the end-time T is set to one for the L2-norm of the output.
For given bounds m ∈ {0, 0.01, . . . , 0.1, 0.2, 0.3} on the output energy measure, the

set of initial conditions is derived with (6.36), cf. Figure 6.3. Furthermore, the results
show that the system is set-observable for h(x1, x2) = x1. However, this is not the case
for h(x1, x2) = x2 according to Theorem 15 as the corresponding outer-approximation
Wr is up to numerical optimality equal to X0.

Figure 6.3: Illustration of the observability analysis for the two-tank example. A:
The system is set-observable for y = x1 w.r.t. the output energy. B: The system is
not set-observable for y = x2 w.r.t. the output energy. Computation time ∼1min
with MOSEK 7.0/YALMIP [122] (for each case). Relaxation order r = 5 to derive
the outer-approximation Wr, which is considered by MOSEK 7.0 as numerically
optimal.

Example 9 (Mass-Spring System [165]). We consider a mass-spring system with a
softening spring (for details see [96]) scaled to the unit box:

ẋ1 = (x2 − 0.5),
ẋ2 = −(p+ 1)(x1 − 0.5)− 0.5(x2 − 0.5)

+ 4(p+ 1)(x1 − 0.5)3,

y = x2.

(6.38)

The state constraints are X = X0 = [0, 1]× [0, 1], p ∈ [0, 1] and the end-time T is set
to one.
Instead of varying m as in the previous example we modified (6.36) such that we

can consider a lower and an upper bound on the L2-norm of the output, namely m1 =
0.6 ≤ ∫

T ||y(t|x0)||2dt ≤ m2 = 1.2. In this case, the output energy measure shows that
the states are set-observable and the parameter is not set-observable w.r.t. mmm as only
the projections of X ∗0 onto the axes of x1, x2 have a smaller Lebesgue measure than the
projections of X0 (see also Thm. 15) as illustrated by Fig. 6.4.
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Figure 6.4: Mass-spring example: Projections of the computed initial conditions (in-
dicated by dotted lines) show the system is partially set-unobservable. Full red
lines correspond to the projections onto the x1 and x2 axis, respectively. Com-
putation time ∼30s with MOSEK 7.0/YALMIP. Relaxation order r = 5. Dots
represent consistent initial conditions obtained by Monte-Carlo sampling.

6.4 Summary

In this chapter, we proposed several methods to study observability of uncertain poly-
nomial systems. For this reason, we extended the algebraic observability analysis of
Kawano and Othsuka. At first we demonstrated that the algebraic conditions for local-
at-a-point observability of nominal discrete-time and continuous-time systems can be
tested efficiently with semi-definite programs. We, furthermore, showed that observ-
ability of a system ensures finite convergence of Lasserre’s hierarchy and, therefore,
only finite dimensional semi-definite programs have to be considered.
For uncertain systems, we demonstrated that local observability properties of a

system in general do not allow a reduction of the initially assumed bounds on the
uncertainties when measurements are considered. The possibility of reducing the un-
certainties we denote by set-observability. To study set-observability a stronger global
observability property is needed. However, for uncertain systems, if global observabil-
ity does not hold, it cannot be directly concluded that a system is not set-observable.
To study this circumstance, we provided two methods. The first method, is based on
finding a normed Lebesgue measure of a semi-algebraic set, while the second method
is based on relaxed feasibility problems.
To complement the notion of set-observability, we, furthermore, studied the connec-

tion of output energy and possible initial conditions of an uncertain continuous-time
system. The output energy in this case is measured in terms of the L2-norm on a
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finite-time interval. By specifying a bound on the output norm, we were able to
derive a converging hierarchy of semi-definite programs that outer-approximate the
corresponding initial conditions.
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To satisfy the steadily increasing requirements for safe operation and quality in indus-
try [30, 57], model-based control and system theoretical methods become increasingly
important. The basis of successfully employing such methods is the derivation of a
quantitative and predictive mathematical model of the process under consideration.
For this reason, system identification is an important research area, i. e. the automatic
construction of a mathematical model from measurement data [120, 135, 142]. How-
ever, most approaches applied in practice consider only the identification and analysis
of linear systems, while in reality every system behaves nonlinearly [58, 96]. Therefore,
a strong interest in the development of versatile and rigorous analysis methods that
can handle nonlinear systems exists. One particular problem in the derivation of such
methods is the fact that nowadays digital sensors are used to gather data on a process
at distinct time points. Hence, it is typically easier to identify a discrete-time model
[120], although, real processes evolve in general continuously in time.
Another important aspect in the development of system identification methods is

the consideration of uncertainties [133, 149, 170, 202]. For instance, if the available
measurement data is uncertain, e. g. due to limited accuracy of the employed measure-
ment device or noise, it becomes difficult to decide whether a model reproduces the
data or not. This task, also called model (in-)validation, is a crucial step in verifying
that a model is indeed suitable for analyzing the process under consideration. One
promising direction in system identification of uncertain systems is, therefore, the de-
velopment of set-based methods, as uncertainties on different levels can be considered
and guaranteed results on model validity can be derived [83, 164, 170, 203].
Motivated by the aforementioned difficulties in the derivation of system identification

methods, this work presented set-based methods for the analysis and verification of
uncertain continuous-time and discrete-time polynomial systems. Such systems arise,
for instance, in the fields of systems biology, chemical engineering and mechatronics
[98, 164, 173]. The fundamental basis of the derived results is the reformulation of
model analysis and verification tasks as polynomial feasibility and polynomial opti-
mization problems. This allows on the one hand the consideration of uncertainties
in a quantitative or semi-quantitative description and on the other hand the unified
treatment of the considered problems. In particular, the problems of proving model
(in-)validity, estimating parameters and states of dynamical systems, deriving reach-
able sets of continuous-time and discrete-time systems, and analyzing the observability
of uncertain systems were considered.
With respect to model (in-)validity, we show that by relaxing the polynomial feasi-
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bility problem into a converging hierarchy of semi-definite programs a conclusive proof
for model inconsistency of discrete-time systems can be derived. This is possible since
the solution space of the semi-definite program provides an outer-approximation of
the solution space of the original feasibility problem. Therefore, it is sufficient to show
that the solution space of the relaxation is empty to conclude model inconsistency of
the model. Based on this principle we, furthermore, provide an approach to approx-
imate the solution set of the feasibility problem. Hence, we are able to estimate the
possible values of initial conditions and parameters leading to a consistent behavior
of a model. Moreover, as the feasibility problem in its general form not only contains
information on initial conditions and parameters the approximation can as well be
used to estimate the states and their reachable sets. However, the performed deriva-
tions also point to a series of open questions: How can continuous-time systems be
considered in this framework? Furthermore, under which conditions are discrete-time
approximations sufficient to relate model (in-)consistency from the discrete-time to
the continuous-time system?
To provide answers to these question, we study the properties a discrete-time ap-

proximation has to possess such that this relationship is possible. Based on these
properties, two approaches are studied that allow the desired relationship. The first
approach is based on the existence and uniqueness of initial value problems according
to the Picard-Lindelöf theorem. To be able to employ the theorem, we provide a proce-
dure to compute the reachable set of a continuous-time system at distinct time points.
This allows the derivation of a time step size for the discrete-time approximation such
that the approximation embeds the trajectories of the continuous-time system. Thus,
solving the problem of proving consistency of the continuous-time system. The second
approach is motivated by the one-step consistency property of Euler discretizations
and can be employed to reduce the computational demands of the first approach as
demonstrated for a real world example.
With respect to observability analysis, we outline how the algebraic observability

conditions presented in [94] can be extended to uncertain polynomial systems. To do
so, we establish at first that the algebraic conditions can be addressed by polynomial
feasibility problems in the nominal case. In a second step, based on the previous results,
we provide an extension to uncertain systems. The, hereby, necessary notion of set-
observability corresponds to the ability to reduce the bounds on the initial conditions
and parameters by measurements. Furthermore, to complement this notion, we link
the energy visible at the output of a system to the initial conditions and parameters
similar to a Gramian. This again allows a statement regarding the ability to estimate
the initial conditions and parameters of a continuous-time system.
In summary, the results of this thesis provide solutions to a series of practically and

theoretically important problems in system identification and analysis for a rather
general class of systems. In particular, the results on reachability and observability of
uncertain systems provide a well-based foundation for further research.
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7.1 Outlook

7.1 Outlook
Several topics and results addressed in this work offer the opportunity for further
research. The focus so far was on the development of a rigorous theoretical founda-
tion which lead inevitably to a limited consideration of practical examples. The main
problem to overcome here is the computational demand of the employed semi-definite
and linear programs. First results in this direction are, for instance, the decomposi-
tion of semi-definite programs into smaller subproblems by symmetry [59, 167], the
reduction of the monomial basis [153], or the abstraction of dynamical subsystem via
outer-approximation in [175]. These methods depend, however, on the specific process
under consideration. To study, whether a generalization of these approaches is possible
appears still to be promising.
Another promising research direction is the study of the convergence rate of the

employed relaxation. First theoretical results indicate a slower convergence rate [145,
178] than actually is observed in practical applications, i. a. [169, 170, 204, 205]. The
main question hereby from a system theoretical perspective is the question whether
and how the system structure can be employed to improve the convergence rate. A
second interesting question is, how the convergence rate is influenced by additional
constraints as e. g. imposed by the bisectioning procedure employed for the estimation
tasks in this work.
From a control theoretical point of view there are also other interesting possibilities

for extensions. Quite recently, several groups started to work on the combination of set-
based and probabilistic methods. Those works allow, for instance, the consideration
of probabilistic data [200] or to make a tradeoff between guaranteed and probabilistic
results [42]. Another important area that is missing so far is controller and input
design. In particular, [101] would fit directly in the presented problem formulation
and could, for instance, be applied for optimal parameter estimation or active fault
diagnosis based on the observability results obtained in this work.
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A Moment Relaxation

A.1 Mathematical Notation and Definitions

To be able to relate a general polynomial optimization problem to a generalized mo-
ment problem and the involved relaxations steps, we define the notion of monomials
and polynomials. Then we give some classical results on measures and the relationship
between polynomials and measures.
We denote a monomial in the variables x = (x1, . . . , xnx) with xα, i. e. xα =

xα1
1 x

α2
2 · · ·xαnxnx for n ∈ Nnx. The degree of xα is |α| = ∑nx

i=1 αi. The set of all mono-
mials is Ξ = {xα ∈ Rnx : α ∈ Nnx}. The set of all monomials up to a degree d is
Ξd = {xα ∈ Rnx, α ∈ Nnx : |α| ≤ d}. We define a complete monomial basis ξd ∈ Ξ to
be the vector containing all monomials up to degree d, i. e.

ξd = (1, x1, x2, . . . , xnx, x
2
1, x1x2, . . . , x1xnx, x

2
2, x2x3, . . . , x

2
nx, . . . , x

d
1, . . . x

d
nx)

T .

A polynomial p(x) : Rnx → R is a sum of monomials, i.e.

p(x) =
∑

α∈Nnx
pα x

α, (A.1)

where there are only finitely many nonzero coefficients pα ∈ R. We denote with p

the coefficient vector consisting of the nonzero elements pα, i. e. p = {pα}. Note that
we choose this notation to make the relationship between polynomials and the needed
notions from measure theory clear.
It is out of the scope of this work to provide the reader with a complete introduction

to measure theory, see e. g. [209], however, we will give some definitions and results
that play a central role in the moment relaxation method in the next section. Note
that in the following we consider only nonnegative Borel measures µ on Rnx, whereas
µ(Rnx) = 1, i. e. µ is a propability measure.
Given such a measure µ on Rnx, its support supp(µ) is the smallest closed subset
Z ⊂ Rnx for which µ(Rnx \Z) = 0. We say µ is a measure supported by the constraint
set K if supp(µ) ⊆ K. The quantity yα = ∫

xαµ(dx) is called the moment of µ with
order α. We denote the sequence of moments of the measure µ with (yα)α∈Nnx and the
truncated sequence (yα)d where d is the maximal degree of xα.
The moment matrix M(y) to a corresponding sequence (yα)α∈Nnx is indexed by Nnx

and the (α, β)th entry is yα,β, α, β ∈ Nnx. Analogously, Md(y) denotes the moment
matrix for a truncated sequence and |α|, |β| ≤ d. To clarify this notation consider the
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A.1 Mathematical Notation and Definitions

case that nx = d = 2, in this case we have

M2(ξ) = ξ2ξ
T
2 =



1 x1 x2 x2
1 x1x2 x2

2
x1 x2

1 x1x2 x3
1 x2

1x2 x1x
2
2

x2 x1x2 x2
2 x2

1x2 x1x
2
2 x3

2
x2

1 x3
1 x2

1x2 x4
1 x3

1x2 x2
1x

2
2

x1x2 x2
1x2 x1x

2
2 x3

1x2 x2
1x

2
2 x1x

3
2

x2
2 x1x

2
2 x3

2 x2
1x

2
2 x1x

3
2 x4

2


. (A.2)

Given a sequence (yα)d, a polynomial p(x) and a moment matrix Md we can define
the so-called localizing matrix Md(p(x)y) as

Md(p(x)y) = Md(y)p, (A.3)

where p = {pα} denotes the coefficient vector of p(x). For instance, if nx = d = 1 and
p(x) = x2, then

M1(u(x)y) =
 p(x) p(x)x
p(x)x p(x)x2

 =
 x2 x3

x3 x4

 . (A.4)

Let us further define the linear functional Ly as

Ly(p(x)) =
∑

α∈Nnx
pαyα, (A.5)

where p(x) as in (A.1). Then we can express the multiplication of two polynomials
p(x), q(x) with coefficient vectors p = {pα}, q = {qα} with respect to the moment
matrix as

Ly(p(x)q(x)) = pTMd(y)q,
Ly(p(x)2) = pTMd(y)p,

(A.6)

with the clear implication that

Ly(p(x)2) ≥ 0⇐⇒Md(y) � 0 (A.7)

i. e. Ly(p(x)2) is positive definite if and only if Md(y) � 0, cf. also Lemma 4.1 in [114].
Lemma 3 (Necessary Conditions for Moment Sequences [114]). Let g(x) be a polyno-
mial as in (A.1) with degree 2dg.
(i) If (yα)2d is the sequence of moments of a measure µ, then Md(y) � 0 and

rankMd(y) ≤ |supp(µ)|.

(ii) If (yα)2d is the sequence of moments of a measure µ supported by the set {x ∈
Rn : g(x) ≥ 0}, then Md−dg(g(x)y) � 0. �
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B Tables of the Examples

B.1 Adaptation

Table B.1: Qualitative data used in the adaptation example. Notation see Section 5.5.
Verbal description of the qualitative data Logical constraints

representing the data

E1 : The system is in steady-state.
Initially, the output is at least 10% of
the maximum value possible.

b1,k ⇐⇒ (x1,k ≥ x1,l − εx1,l)
b2,k ⇐⇒ (x1,k ≤ x1,l + εx1,l)
b3,k ⇐⇒ (x2,k ≥ x2,l − εx2,l)
b4,k ⇐⇒ (x3,k ≥ 0.1Ctot)
φ1 ⇐⇒ ∧

Iφ1
k

(b1,k ∧ b2,k∧
∧b3,k ∧ b4,k)

k ∈ {1, 2, 3}, l = 1

E2 : After the stimulus is removed the max-
imum value of x3,k is larger than 115%
and is reached within 3 time-steps.

b8,k ⇐⇒ (u ≤ 1)
b9,k ⇐⇒ (x3,k ≥ 1.15x3,0)
φ2 ⇐⇒ ∧

Iφ3
k
b8,k

φ3 ⇐⇒ ∨
Iφ2
k
b9,k

φ4 ⇐⇒ (φ1 ∧ φ2 ∧ φ3)
k ∈ {4, 5, 6, 7}

E3 : After the maximum has been reached,
x3,k returns almost to the initial interval
in 5 time-steps, i. e. x3,k ∈ [0.4, 5.2].

φ5 ⇐⇒
∧
Iφ5
k

(b3,k) k ∈ {8, 9, 10}

R : To avoid that x3,k shows a strong inverse
response behavior additionally x3,k is
always larger than 0.4.

b10,k ⇐⇒ (x3,k ≥ 0.4)
φ6 ⇐⇒ ∧

Iφ6
k
b10,k

k ∈ {4, . . . , 10}
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B.1 Adaptation

Table B.2: Nominal parameters

Parameter: Nominal Value: Interval:
Kf 100 [90,110]
KiuA 100 [90,110]
KaAC 100 [90,110]
EB 0.5 -
EC 0.5 -
kiuA 100 -
kaAC 100 -
kiAB 1 -
kaEB 1 -
kiEC .5 -
kf 200 -

KiAB 0.0001 -
KiEC 0.0001 -
KaEB 0.0001 -
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