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Abstract

Computer aided simulation is an important part of development of modern technical

products. Simulation enables optimization of system design and identification of pos-

sible operational problems without manufacturing the product. Many modern technical

systems operate at high speeds and include lightweight components. Such systems can un-

dergo deformation effects that considerably influence system dynamics and, consequently,

must be taken into account in a process of system modeling and simulation.

The subject of this research relates to simulation of elastic multibody systems. The

elastic multibody system is a system of rigid and elastic bodies interconnected by joints

or coupling elements, in which the bodies may undergo large rigid body motion and small

deformations. In this work the modeling of multibody dynamics is made with the help of a

floating frame approach. Dynamics of an elastic body is formulated using a finite element

method, which results in the transformation of partial differential equations of motion

into a set of ordinary differential equations. In order to describe the elastic behavior

accurately, it is necessary to use a fine discretization, which leads to finite element models

having a large number of elastic coordinates. For this reason, efficient simulation of finite

element models of industrial applications often becomes difficult or even infeasible. In

order to enable simulation of multibody systems containing large models of elastic bodies,

elastic coordinates are reduced by means of model order reduction methods. Reduced

order models preserve important dynamic information of original models and make the

simulation of elastic multibody system more efficient from a computational point of view.

Over the last decades a variety of reduction techniques have been developed. The set

of classical reduction methods includes condensation, modal truncation, and component

mode synthesis. The category of modern reduction approaches consists of techniques

based on the singular value decomposition using Gramian matrices and moment matching

via Krylov subspaces.

The main scientific contribution of this thesis is a new method of linear model order

reduction. The proposed method solves the problem of classical reduction approaches: a

lack of possibility to tune a reduced order model for certain transfer functions and certain

frequency ranges. In addition, the new approach satisfies the following requirements: high

accuracy, preservation of stability of reduced order models, small order and stiffness of

reduced order models, and the possibility of application in the context of elastic multibody

systems. The proposed method differs from the modern reduction approaches and has its
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own advantages.

The proposed reduction approach relies on the idea of line fitting of model transfer func-

tions. The method is evaluated using several application examples. The reduced order

models are validated in the time and frequency domains and the results are compared

with the results of the classical Craig-Bampton approach. It is shown that the proposed

method generates reduced order models with higher accuracy, smaller order, and smaller

stiffness. The computational cost of a coordinate transformation matrix is higher then in

the Craig-Bampton method, but it remains acceptable for moderately dimensional finite

element models.
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Kurzfassung

Die computergestützte Simulation ist ein wichtiger Bestandteil bei der Entwicklung von

modernen technischen Produkten. Simulationen ermöglichen eine Optimierung des Sys-

temdesigns sowie eine Identifizierung möglicher Betriebsprobleme vor der Herstellung

eines Produkts. Viele moderne technische Systeme arbeiten mit hohen Geschwindigkeiten

und bestehen aus diversen Leichtbauteilen. Solche Systeme können Deformationseffekten

unterliegen, die die Systemdynamik deutlich beeinflussen. Deswegen müssen sie bei der

Systemmodellierung und Simulation mit berücksichtigt werden.

Der Fokus dieser wissenschaftlichen Arbeit ist auf die Simulation von elastischen Mehr-

körpersystemen gerichtet. Ein solches System besteht aus starren und elastischen Körpern,

die über Gelenke bzw. Verbindungselemente miteinander verbunden sind. Weiterhin un-

terliegen diese Körper großen Starrkörperbewegungen sowie kleinen Deformationen. In

dieser Arbeit wird die Modellierung der Mehrkörperdynamik mit Hilfe der Methode des

bewegten Bezugssystems durchgeführt. Die Dynamik eines elastischen Körpers wird unter

Verwendung der Finite-Elemente-Methode beschrieben. Diese überführt die partiellen

Differentialgleichungen mit denen elastische Systeme beschrieben werden in einen Satz von

gewöhnlichen Differentialgleichungen. Um das elastische Verhalten genau zu beschreiben,

ist es notwendig eine feine Diskretisierung zu verwenden. Dies resultiert in einer großen

Anzahl von elastischen Koordinaten. Aus diesem Grund wird es oft schwierig oder teil-

weise sogar unmöglich, eine effiziente FEM Simulation durchzuführen. Um die Simulation

von elastischen Mehrkörpersystemen mit relativ großen Modellen zu ermöglichen, wird

die Anzahl elastischer Koordinaten mit Hilfe eines Ordnungsreduktionsverfahrens stark

verringert. Das reduzierte Modell enthält die wichtigen dynamischen Informationen des

Originalmodells und ermöglicht eine recheneffiziente Simulation von großen elastischen

Mehrkörpersystemen.

In den letzten Jahrzehnten wurde eine Vielzahl von Ordnungsreduktionsverfahren en-

twickelt. Klassische Reduktionsverfahren umfassen die Kondensation, die Modale Reduk-

tion und die Komponenten-Modus-Synthese. Die modernen Reduktionsansätze setzen

sich aus den Verfahren Gramscher Matrizen und den Krylov-Unterraummethoden zusam-

men.

Der wissenschaftliche Hauptbeitrag dieser Arbeit ist eine neue Methode der linearen Ord-

nungsreduktion. Das vorgeschlagene Verfahren löst das Problem der klassischen Reduk-

tionsansätze. Dazu zählt die fehlende Möglichkeit zur Abstimmung des reduzierten Mod-
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ells für bestimmte Übertragungsfunktionen und bestimmte Frequenzbereiche. Darüber

hinaus erfüllt der neue Ansatz die folgenden Anforderungen: hohe Genauigkeit, Erhaltung

der Stabilität, niedrige Ordnung, hohe Steifigkeit und die Möglichkeit der Anwendung im

Rahmen elastischer Mehrkörpersysteme. Das vorgeschlagene Verfahren unterscheidet sich

von den modernen Reduktionsansätzen und besitzt diverse Vorteile.

Das vorgeschlagene Reduktionsverfahren basiert auf der Idee der Kurvenanpassung von

Übertragungsfunktionen. Die Methode wird anhand mehrerer Anwendungsbeispiele bew-

ertet. Die reduzierten Modelle werden im Zeit- und Frequenzbereich geprüft. Die Ergeb-

nisse werden mit den Ergebnissen des klassischen Craig-Bampton Ansatzes verglichen.

Es wird gezeigt, dass die vorgeschlagene Methode reduzierte Modelle generiert, die eine

höhere Genauigkeit, eine niedrigere Ordnung und kleinere numerische Steifigkeit besitzen.

Der Rechenaufwand einer Koordinatentransformationsmatrix ist höher als bei der Craig-

Bampton Methode, aber annehmbar für FE-Modelle mit moderater Dimension.
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1 Introduction

1.1 Research area

Simulation is an essential part of development of modern technical products because it

enables evaluation of system behavior without its construction. Computer aided analysis

helps to optimize product design and performance, to identify possible operating problems.

In recent decades the interest to light-weight, high-speed and precise mechanical systems

has been greatly increased. Some parts of such products usually undergo deformation

effects, which must be taken into account during a process of system modeling and sim-

ulation.

In this thesis we focus on the simulation of elastic multibody systems (EMBS). The term

EMBS denotes a group of interconnected rigid and elastic bodies that may undergo large

rotational and translational motions. Elastic bodies are solid bodies that return to their

initial shapes after applied stresses are removed. EMBS appear in applications of many

engineering fields: robotics, biomechanics, vehicle and aircraft dynamics.

Modeling of EMBS is based on methods of multibody system dynamics and theory of

elasticity. The most efficient way to describe dynamics of elastic multibody systems

undergoing small deformations is a floating frame formulation. According to this method

the total motion of elastic body is divided into two parts: rigid body motion represented

by the motion of body reference frame and deformations with respect to this frame.

Dynamic formulation of elastic body leads to a set of time- and space-dependent partial

differential equations (PDEs). These equations can be solved analytically only for models

having simple geometries. In other cases, the set of PDEs is approximated by a set of

ordinary differential equations (ODEs) that are obtained by means of spatial discretization

techniques. The most used approach for this purpose is a finite element method (FEM). In

many applications a large number of elastic coordinates have to be employed to properly

describe body deformations. Complex finite element models are usually described by more

than half a million of ODEs. Simulation of such models on standard computers is not

feasible. In the case of small deformations, it is possible to solve the problem using model

order reduction techniques. These methods approximate the large set of ODEs by a small

number of equations that keep important dynamic properties of the original system. The

quality of approximation depends on a choice of model order reduction method.
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1 Introduction

The main scientific contribution of the thesis is a new linear model order reduction method

for elastic multibody simulation. In the next sections we review previous and current

studies relevant to this topic, formulate demands on model order reduction methods, and

identify a drawback of classical reduction approaches. The method proposed in the thesis

satisfies the stated demands and addresses the problem of classical reduction approaches.

1.2 State of the art

In the past three decades, the interest to elastic multibody applications caused extensive

research of approaches for modeling and simulation of elastic multibody systems. The past

studies can be separated into two large groups: modeling of elastic multibody dynamics

and model order reduction. The information about the modeling and simulation of EMBS

is presented in the textbooks [77, 79] and review articles [78, 89]. Description of basic

model reduction methods can be found in the books [70, 6, 74]. An overview of classical

reduction techniques is presented in [5]. Additional references on the studies relevant to

the thesis topic are given further in the text.

1.2.1 Modeling elastic multibody dynamics

The modeling techniques of EMBS can be divided into two groups: global reference frame

formulation and intermediate reference frames formulation. In the global reference frame

formulation the motion of multibody system is described with respect to an inertial ref-

erence frame. This approach simplifies representation of inertia forces, but calculation

of internal forces (stiffness and damping forces) becomes more complicated. The inertia

forces can be found as a product of mass matrix and a vector of accelerations. It is not

necessary to calculate Coriolis and centrifugal forces because they are already taken into

account in the vector of inertia forces. However, the representation of internal forces is

highly nonlinear in terms of global coordinates. This fact makes impossible using model

order reduction methods together with the global reference frame formulation. The most

suitable applications for this formulation are large deformation problems having a small

order.

In the intermediate reference frame formulation the motion of flexible bodies in a multi-

body system is described using additional reference frames. The intermediate reference

frame is attached to a flexible component and describe its rigid body motion. In this case,

the motion of component relative to the intermediate reference frame is mainly a com-

ponent’s deformation. The approach enables representation of inertial forces as a linear

function of intermediate frame coordinates. The most widely-used intermediate frame is

attached to an entire flexible body and is called a floating reference frame. One of the

important advantages of the floating frame formulation is a possibility to apply model

reduction methods.

2



1 Introduction

The motion of bodies using floating frames can be described by absolute or relative co-

ordinates. These formulations result in different equations of motion. In the absolute

coordinate formulation, the coordinates of body frames are written with respect to the

global reference frame. Joints constrain system degrees of freedom and introduce algebraic

equations to equations of motion. The unknown forces arising in joints are represented

in terms of Lagrangian multipliers. Using absolute coordinate formulation it is simple

to generate equations of motions, but the solution of differential algebraic equations re-

quires a larger computational cost. The formulation suits to modeling of both open and

closed-loop multibody systems [80, 4].

In the relative coordinate approach, the position and orientation of each body in a multi-

body system are defined with respect to a preceding body using degrees of freedom of

joint connecting the bodies [19, 61]. This leads to a minimal set of generalized coordinates

and automatically incorporates joint forces in the equations of motion. Numerical meth-

ods for solving this type of equations are more computationally efficient. However, the

generation of equations of motion is more complicated: the relative coordinate approach

requires additional step to define a tree structure of the system; for closed-loop EMBS it

is necessary to define a location of cut-joint constraint.

Reviews of solution methods for the absolute and relative coordinates formulations can

be found in [75, 27, 38].

Since there exits no unique manner of defining a floating frame it can be attached to a

body in a number of different ways. These approaches can be divided into two categories.

The methods of the first group attach the coordinate system to material points of the

body. The most common procedure to do this is to set six nodal deflections to zero.

These conditions attach a reference frame to the body and eliminate rigid body degrees

of freedom in this coordinate system. As the body frame is allowed to move with respect

to the inertial frame, attaching the moving frame to the body does not exclude any of

the rigid body degrees of freedom in the inertial coordinate system. This formulation is

referred to as fixed axes [80, 1, 68].

The second group of floating frames consists of coordinate systems that follow a body in

an optimal manner. This category includes a frame oriented along the principal axes of

inertia [62], mean-axes frame [60], and a Buckens frame [76, 77, 60]. In contrast to the

fixed axes frames, coordinate systems of this type impose reference conditions on all points

of the body. In the principle axes formulation the moving reference frame is enforced

to coincide with the instantaneous principal axes of the deformable body. This method

provides six conditions based on two basic concepts: the origin of the reference frame must

remain at a instantaneous mass center, and three products of inertia must remain zeros. In

this case, the coupling between flexible and rigid body motion is weaker and equations of

motions become more simple. The mean-axes conditions are six constraints that enforce

a frame to follow a body in such a way that the kinetic energy associated with the

deformation stays at a minimum. The mean axes frame conditions simplify equations of

3



1 Introduction

motion by transforming a generalized mass matrix to a block-diagonal form. The Buckens

coordinate system is a frame relative to which the sum of squares of displacements, with

respect to an observer stationed at the frame, is minimum. This type of moving frames

is identical to a mean-axes frame for the applications where deformations are small. The

choice of the Buckens frame leads to the smallest elastic deformation possible, which is

an important issue for the construction of equations of motion under the assumption of

small deformations. The moving frames eliminate the need to select material points for

attaching the frame, but it is more difficult to determine their location because of specific

frame conditions.

Elastic multibody systems include, in general, two types of bodies: bulky solids that can

be treated as rigid bodies and bodies that are subjected to elastic deformations. The rigid

bodies have a finite number of degrees of freedom, e.g. a rigid body in space has six DoFs

that describe a position and an orientation of the body with respect to a global inertial

frame. In contrast to rigid bodies, elastic components have an infinite number of DoFs

that describe displacements of each point on the body. The dynamic behavior of such

bodies is governed by a set of space and time dependent partial differential equations,

analytical solution of which is only in seldom cases possible. It is especially difficult

to find the analytical solution for bodies with complex body forms, special boundary

conditions, and complicated material properties [43]. In order to solve the problem,

various discretization methods were developed to approximate the solution of PDEs by a

finite number of coordinates, e.g. the Rayleigh–Ritz method, the finite element method

[11, 34, 20], the finite difference method [7], and the boundary element method [13]. All

these methods generate so called shape functions that describe deformation shapes of a

body in the multibody system. The difference between the methods lies in the way, in

which the shape functions are constructed.

The deformation shapes have to satisfy boundary conditions imposed on the body [77, 76].

For bodies with simple geometries and simple boundary conditions the deformation shapes

can be found using the Rayleigh–Ritz method. The analysis of more complex models is

usually carried out by discretization methods as the FEM.

The commonly used discretization approach in elastic multibody dynamics is the FEM.

It provides a systematic way for the construction of shape functions of geometrically

complex models with boundary conditions. The approach has some important advantages

for EMBS in comparison with the finite difference method and the boundary element

method. The general procedure of finite difference approach is to replace derivatives

by finite differences. It follows that the method can use only cubes as discretization

elements; therefore, the approximation of body geometry, especially for curved areas, is

worse. In addition, in the classical finite difference approach a local refinement of mesh is

not possible and it has to be made throughout the entire geometry. This leads to models

with larger number of nodes in comparison to the FEM models and makes difficulties

for the analysis of stresses. One more useful property of FEM is a sparse structure of
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matrices that require less memory space. The main advantage of finite difference method

is the simplicity of application.

The difference between the boundary element method and FEM concerns the discretiza-

tion. In the FEM the complete domain must be discretized, while the boundary element

method requires discretization of only surfaces. It follows that the discretization effort is

much smaller and changes in meshing are much easier to perform. Due to no further ap-

proximation is imposed on the solution at interior points, the boundary element method

usually possesses advantages when dealing with stress problems. However, the solution

matrix resulting from the boundary element formulation is non-symmetric and fully pop-

ulated, therefore it is more expensive to store the matrices in the computer memory.

Besides, treatment of thin structure and non-linear problems is difficult. Nowadays, the

boundary element method is under the focus of intensive approach, but the FEM is more

established and developed.

The mass matrix of FE model can be constructed using different formulations. In a lumped

mass formulation, see [46, 67], the total mass of a body is divided between nodes of the

model. This produces a diagonal mass matrix and reduces a numerical cost required to

solve equations of motion. The drawback of the approach is that the inertia properties of

the body are violated [79]. The consistent mass matrix is obtained using space dependent

shape functions of finite elements. This formulation provides better approximation of

body inertia and, as a result, better accuracy for higher frequencies and modes [42].

Equations of motion of elastic bodies require calculation of volume integrals that express

dynamic properties of bodies. Finite element programs provide only a part of integrals

required for the construction of equations motion using the floating frame approach. In

order to obtain a complete set of volume integrals, special preprocessor modules are usually

utilized [84, 69]. The calculation of volume integrals for the consistent mass approach can

be found in [43, 55, 77, 82]. This process for the lumped mass formulation is considered in

[3, 91]. The time-invariant data required for the construction of equations of motion can

be computed in advance and stored in a Standard Input Data format that is proposed in

[88].

The important aspect in modeling of deformations is connected with a choice of suitable

type of analysis. The fundamental principle of linear analysis is the assumption that the

change of stiffness is small enough, so it is possible to use the initial stiffness of the model

throughout the entire process of deformation. The linear analysis provides an acceptable

approximation for the most problems that engineers deal with. If the stiffness of de-

formable component changes significantly under operating conditions, nonlinear analysis

becomes necessary [25]. The cause of nonlinear behavior can be different. A number

of factors influence stiffness of deformable body: body shape, material properties, large

loads, and presence of constraints. If changes of stiffness originate only changes in shape,

nonlinear behavior is defined as geometric nonlinearity. This type includes large deforma-

tions problems, where deformations exceed approximately 10% of the smallest dimension

5



1 Introduction

of body [63]. If changes of stiffness occur due to only changes in material properties under

operating conditions, the problem type belongs to a category of material nonlinearities.

A linear material model assumes stress to be proportional to strain, and once the load

has been removed the model will always return to its original shape. If the loads are high

enough to cause permanent deformations, then a nonlinear material model must be used.

In certain cases, stiffness of a structure can also change due to large applied loads. The

influence of stiffening effect is accounted by a geometric stiffness matrix that is added to

the regular stiffness matrix. The stiffening effects (also called stress stiffening, geometric

stiffening, or incremental stiffening) normally need to be considered for thin structures

for which bending stiffness is very small compared to axial stiffness, such as cables, thin

beams, and shells [63]. A typical example in this field is a rotating beam under the influ-

ence of large centrifugal forces [41, 76]. The geometric stiffness matrix can be generated

using the methods from [71, 76, 10] and the data exported from commercial FE software.

1.2.2 Model order reduction

Finite element models of elastic bodies contain a large number of degrees of freedom,

varying from several thousand to several million depending on a model geometry and

accuracy demands. Due to the high computational cost dynamic analysis of such systems

is practically not feasible. In order to solve the problem, engineers resort to the help

of model order reduction methods, which can greatly reduce the computational cost of

simulation. The main idea of reduction approaches is to approximate the initial FE

model by a model with much smaller number of DoFs so that the reduced model retains

important dynamic characteristics of the initial model. The computational burdens are

also reduced because reduction techniques remove high-frequency components of elastic

body motion enabling the use of a larger integration time step. The possibility to apply

model order reduction methods to elastic bodies is one of the most important advantages

of the floating frame formulation in the context of EMBS [89].

The set of classical reduction approaches applied in elastic multibody dynamics consists

of the methods based on modal truncation, condensation, and component mode synthesis.

The classical approaches are implemented in many simulation software and remain state of

the art techniques for model order reduction. More recently, a few alternative reduction

methods have come from the field of control theory, namely, techniques based on the

singular value decomposition using Gramian matrices and moment matching via Krylov

subspaces. These methods are aimed at the approximation of input-output behavior of

dynamical systems. Each of these reduction procedures has its specific advantages and

disadvantages. The review and comparison of the most popular methods can be found in

[16, 44, 43].

One of the oldest reduction methods is a static condensation. The approach was intro-

duced in [37] and it is called at present as Guyan method. According to this approach,
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all DoFs of elastic body are partitioned into the sets of master and slave DoFs. Assum-

ing that there are no forces applied to the slave DoFs, the method expresses the slave

DoFs using the master DoFs and generates a reduced order model depended only on the

master coordinates. The Guyan reduction leads to the exact representation of static de-

formations and to the relative good approximation of low eigenfrequencies and respective

eigenvectors. However, the Guyan approach utilizes only the stiffness matrix of the body

and ignores the influence of mass matrix on a spectrum of the model. Since the influence

of inertia becomes significant for high frequencies, the method results in reduced order

models with an erroneous high frequency spectrum.

The next method of the group of condensation approaches is a dynamic condensation

method [49]. The method is similar to the Guyan procedure, but it utilizes the inertia

information of the body. The dynamic condensation method was originally developed for

reducing the systems that undergo a harmonic or periodical excitation. The accuracy of

the reduced order model is limited to the spectrum defined around the frequency chosen

for the initialization of the method.

The most often used reduction approach is a modal truncation method, which was firstly

presented in the context of EMBS in [80]. The method relies on the eigenvalue decom-

position of the system and employs a limited number of vibration modes of the body

to represent deformation shapes. The high-frequency modes usually carry slight energy

and do not influence significantly the overall motion of the system. Using low-frequency

deformation modes of the body, the modal truncation method builds a low-dimensional

approximation of equations of motion. A linear combination of retained deformation

modes has to capture as accurately as possible the deformation shapes of the body under

operational conditions. The choice of dominant deformation modes is not a trivial task.

The issue is considered in [31, 32, 26], where a few approaches are proposed to determine

relevant deformation modes for input-output behavior of elastic body.

The deformation shapes can be accurately described by a large set of eigenmodes or by a

much smaller set of eigenmodes supplemented with several correction modes. The correc-

tion modes account for effects of truncated eigenmodes and depend on the distribution

of forces acting on the body. Since the spatial distribution of forces is not taken into

account in the modal truncation approach, a relative large number of modes is needed

to sufficiently approximate elastic body deformations [91]. The further studies of modal

reduction were aimed at taking into account the distribution of applied external forces

and computing of necessary correction modes.

The important traditional reduction technique is the component mode synthesis (CMS)

[40, 9, 23]. The method was developed in times of low computational power for practical

finite element analysis. The technique substructures a whole FE model into components,

reduces components accounting boundary conditions, and assembles the parts to form a

reduced model of the whole structure. Nowadays a single elastic body corresponds to a

substructure, therefore the coupling of body components is no longer necessary.
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The methods based on CMS approach can be divided into three categories: fixed-interface,

free-interface, and residual-flexible free interface methods. The proper choice of category

is task dependent. The group of fixed-interface methods is recommended for models where

the interest is focused on a low-frequency spectrum of the model. For applications where

it is compulsory to have better approximation of middle and high frequency spectrum,

the free-interface or residual-flexible free interface groups of methods should be exploited

[43, 22]. In this thesis we consider the fixed-interface category of methods in more detail

because the spectrum of interest for majority of EMBS lies in the low-frequency domain.

The most commonly used model reduction technique based on the CMS approach is the

Craig-Bampton method [22]. The method approximates deformation shapes using a com-

bination of fixed interface normal modes and constraint modes. The former set of modes

are dynamic modes that improve the accuracy of reduced model in a low-frequency do-

main, while the constraint modes account for static deformations of the model due to the

influence on the interface coordinates. Unlike the Guyan reduction procedure the Craig-

Bampton method utilizes both stiffness and mass characteristics of the model. Besides,

as opposed to the modal truncation it takes into account distribution of external forces

to compute correction modes for exact modeling of static deformations. The method pro-

vides an accurate approximation for low and medium eigenfrequencies and corresponding

eigenforms. The main drawback of the approach is that the accuracy of reduced model

highly depends on the number and position of interface coordinates. This fact complicates

generation of reduced order models that satisfy specified accuracy demands. In additon,

the number of fixed-interface normal modes required for the acceptable accuracy is diffi-

cult to estimate a priori. Another issue with the computed fixed-interface normal modes is

that they can be nearly orthogonal to the applied loads and, therefore, do not participate

significantly in the solution. It follows that the correct choice of interface coordinates and

fixed-interface modes requires much experience and insight into the specific problem. The

CMS methods can be hardly automated.

The next large group of reduction methods is composed of mathematical methods from

system and control theory. These methods take a frequency response as a characteristic

quantity to describe the original system. According to these approaches, the reduced order

model is defined based on matching certain parameters of reduced and original models

or eliminating less important states of the system. The methods provide more accurate

reduced order models than the modal reduction.

The basic idea of Krylov subspace method is to approximate a transfer function matrix by

matching its values and derivatives at some frequency points. The frequency points are

called expansion points or shifts. For each expansion point the transfer function matrix

is transformed into a power series, coefficients of which are called moments. In order to

match values and derivatives of transfer function matrix, it is necessary to match the mo-

ments of original and reduced models at the expansion points. Due to numerical instability

the explicit calculation of moments is not feasible, but the moment-matching conditions
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can be satisfied implicitly by the projection of equations of motion onto Krylov-subspaces.

Initially, the Krylov subspace method was developed for state-space systems [36, 30, 50],

i.e. first order systems. The reduction of second order system can be performed by con-

verting the model into the state-space model and then applying reduction approaches for

first order systems, but in this case, the reduced model will be also of first order type.

Integration of such reduced models into a second order multibody system becomes im-

possible. This makes necessary using reduction techniques that provide models of second

order type. At present, the Krylov subspace method has several adaptations that can be

applied directly to second order systems. The basis of second order Krylov subspace can

be generated with a second order Arnoldi algorithm [8, 73]. The algorithm constructs

iteratively a basis of Krylov subspace using inverse, addition, and multiplication matrix

operations. The total Krylov subspace is defined by concatenating of subspaces obtained

for each expansion point. Due to the iterative nature the approach enables reduction

of large scale models. Besides, the approximation quality of frequency response is high,

particularly around expansion points. Nevertheless, there are also some drawbacks of the

Krylov subspace method. Stability of the reduced model is not guaranteed even if the full

order model is stable [48]. Because of the local nature of the reduction procedure, it is

difficult to develop global error bounds. The method generates reduced systems of large

order when systems with many inputs are under consideration. According to [28, 66],

one of the directions of current research is the reduction of inputs and outputs before the

application of Krylov subspace method.

Another group of reduction methods includes approaches based on SVD or Gramian ma-

trices. The fundamental idea of the methods lies in using energy interpretation of input

output system behavior. The reduction is performed by eliminating those states of the sys-

tem, which require a large amount of energy to be reached and/or produce small amount

of energy to be observed. These states insignificantly contribute to system dynamics and

can be neglected. The basic approach for representing the input and output amount of

energy involves the controllability and observability Gramian matrices. Eigenvalues of

Gramian matrices indicate how strongly the states can be controlled or observed. The

measure of energy for each state of the system is determined by Hankel singular values,

which are calculated as the square roots of the eigenvalues for the product of the control-

lability and observability Gramian matrices. The unimportant states of the systems are

identified by small Hankel singular values.

One of the reduction approaches based on the idea of energy interpretation is a balanced

truncation method. The method was firstly proposed in [58]. The approach in its basic

form can be applied only to first order systems. The advantage of balanced truncation

reduction is an immediately available error bound that is expressed by proper norms of

the difference of transfer function matrices for reduced and original systems [5, 6, 47].

Besides, the method preserves system stability. Using the balanced truncation approach

only the load distribution, the frequency range of interest and a measure for the required
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accuracy have to be provided by the user, therefore the method is especially attractive

for optimization problems [65]. However, the calculation of Gramian matrices requires

solution of Lyapunov equations, which is possible only for bodies with a few thousands

degrees of freedom [29]. At present, there are some approaches that adapt the balanced

truncation method to second order systems, see [57, 83], and provide very accurate reduced

order models. However, for second order systems the global error bound is lost and

stability of reduced order system is not guaranteed [66]. A matter of current research

concerning the balanced truncation approach is handling of large scale systems [15, 14].

1.3 Problem statement and aim of the thesis

From the user’s point of view the following aspects of model order reduction are of special

interest:

� accuracy of reduced model,

� possibility to emphasize a certain frequency range of interest,

� computational efficiency of reduction method,

� estimation of error introduced by a reduction process,

� preservation of model stability,

� possibility to automate the reduction process,

� fast simulation of reduced model.

Fidelity of reduced model can be described by the following parameters: an error of

displacement for all nodes of the body, error of displacement for nodes of interest, error of

eigenfrequencies and eigenvectors, and error of transfer function matrices. None of these

parameters provides complete information about the quality of reduced model, therefore

combination of them is usually utilized to validate the reduced model. The fastest way

to assess the reduced model is using of eigenfrequency and eigenvector related tests. The

tests reveal whether these fundamental characteristics are well-approximated. However,

it is impossible to validate the motion of a single point on the body using these tests.

The problem can be solved by analyzing frequency response transfer functions. The

analysis gives comprehensive information about reduced system behavior, but calculation

of reference results is computationally expensive. After these tests showed acceptable

results, the reduced model can be also validated in the time domain.

Since technical products operate in certain frequency ranges, the possibility to tune the

reduced order model for the operating frequencies is of great importance for the user.

The computational efficiency of reduction method is defined by a number of operations

and memory consumption required for generation of coordinate transformation matrix.
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The error introduced by reduction can be identified using validation tests described above

or, for some reduction methods, using error estimators that define permissible error

bounds prior to the reduction process.

Preservation of stability is an important property of reduction approach because it ensures

that the reduced model does not cause any type of failure (e.g., instability, excessive

vibrations, large stresses) to the EMBS. Special criteria are used to ascertain whether

this property is preserved.

The fully or partially automated reduction process decreases the user’s involvement and

speeds up producing of reduced order models.

The demand of fast simulation imposes restrictions on the stiffness and number of degrees

of freedom of reduced structure.

The use of model order reduction methods in the context of EMBS imposes on them

additional restrictions:

� reduced models have to preserve a second order structure of equations of motion;

� reduction method has to generate a coordinate transformation matrix that excludes

rigid body motion from equations of motion. The rigid body motion in the floating

frame formulation is accounted by the motion of a coordinate system attached to

the body.

The classical reduction methods are implemented in many simulation software and remain

state of the art techniques for model order reduction. In this thesis we are focused on

the solution of one of the principal problems of classical reduction techniques: a lack

of possibility to tune a reduced model for certain transfer paths (functions) and certain

frequency ranges. Solution of the problem is important because it enables generation of

accurate reduced models having a small order. The goal of the thesis is to fill in this

gap by a new model order reduction approach that, in addition, satisfies the following

requirements: high accuracy of reduced models, preservation of stability, fast simulation of

reduced models, and the possibility of using the method in the context of EMBS. The new

method differs from more recent approaches, namely, the Krylov subspace method and

the balanced truncation, and has its own advantages. The stability of Krylov subspace

method is not guaranteed and reduction of systems with large number of inputs leads

to large reduced order models. The balanced truncation technique preserves stability of

second order systems only in special cases and its application is limited to FE models

with a relative small number of degrees of freedom.

The main idea of new approach is to reduce error of transfer functions in reference fre-

quency points. For this reason, hereinafter the method is referred to as a line-fitting

approach.
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Figure 1.1: Process of elastic multibody simulation.

1.4 Scopes of the thesis and outline

In this thesis we describe a new linear structure preserving model order reduction method

for elastic multibody simulation. The application of the method is limited to mechani-

cal systems that undergo linear elastic deformations. In this contribution we show the

benefits of the developed method in comparison with the classical and widely-used Craig-

Bampton approach. The thorough comparison of line-fitting method with other reduction

techniques falls outside the scope of the thesis.

The thesis has the following structure. We begin with fundamentals of theory for elas-

tic multibody simulation in Chapter 2. The information in this chapter is presented in

accordance with the procedure of simulation of elastic multibody systems, see Fig. 1.1.

The first section of the chapter is devoted to modeling of elastic body motion using a

floating frame formulation. Within this section the following aspects are covered: de-

scription of deformations using the Ritz approach and finite element method, kinematics

and kinetics of a free elastic body for the floating frame of reference formulation and the

Ritz approximation, derivation of equations of motion of a single unconstrained elastic

body by Jourdain’s principle, derivation of motion integrals and their evaluation using FE

preprocessors. In addition, different types of floating frames are considered and some of

possible ways to introduce damping into equations of motion are discussed. The second

section of the theoretical chapter explains the concept of model order reduction based

on projection. We describe the classical reduction techniques, namely, the static and

dynamic condensation, modal truncation, and the Craig-Bampton method. After that

validation tests of reduced models are presented and discussed. The set of tests includes

an eigenfrequency related criterion NRED, eigenvector related criterion MAC, and fre-

quency response analysis. Modeling of constraints, derivation of equations of motion of

whole EMBS, and solution methods are discussed in the final section of the chapter.
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The description of line-fitting model order reduction approach is given in the separate

Chapter 3.

Application examples are presented in Chapter 4. There are two models under considera-

tion: a bar and a bearing cage. The former model has a simple form and its finite element

model has a small number of degrees of freedom, while the latter one has a complex shape

and a large number of elastic coordinates. In this chapter we apply the line-fitting method

to the both models, evaluate properties of reduced order models in time and frequency

domains, and compare the results with results of traditional Craig-Bampton approach.

The goal of Chapter 5 is comprehensive evaluation of the line-fitting method. The analysis

is performed based on the theoretical description of the approach in Chapter 3 and the

numerical results presented in Chapter 4.

Finally, Chapter 6 highlights the most important results of this thesis and suggests further

work on the subject.
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2 Fundamentals of elastic multibody

systems

2.1 Modeling of elastic body motion

2.1.1 Floating frame approach

The floating frame formulation is the most widely used approach for modeling elastic

multibody systems. According to this formulation the motion of deformable body is a

superposition of large nonlinear motion of body frame and small elastic deformations with

respect to the body frame. There are a number of methods to fix a floating frame to a

body. The different types of body frames and associated with them reference conditions

are discussed in detail in Section 2.1.6.

undeformed body  

deformed body 

P

u

d

x

r0

r

P

Figure 2.1: Description of flexible body using the floating frame of reference formulation.

The motion of a deformable body is represented by the motion of its points. Fig. 2.1

describes motion of an arbitrary point P of the deformable body. The position d(t) of

point P in the global inertial frame is defined as

d (t) = x (t) + r (t) = x (t) + A (t) · r̄ (t) = x (t) + A (t) · (r̄0 + ū (t)), (2.1)

where x denotes a position of origin of body reference frame in the global coordinate

system, the vector r defines a local position of the point P in the global frame, A is a

14



2 Fundamentals of elastic multibody systems

body rotation matrix, the vectors r̄ and r̄0 correspond to deformed and undeformed local

positions of the point P in the body frame, and the vector ū represents a displacement

of P due to deformation. Displacement vectors of all points define a displacement field of

the body.

For the deformable body the vector ū is time- and space- dependent. As the body has an

infinite number of points modeling its dynamics requires an infinite set of coordinates. In

order to reduce the number of coordinates to a finite set, approximation approaches such

as Rayleigh-Ritz and the finite element method are used.

2.1.2 Approximation of displacement field

Rayleigh-Ritz method

Separation of variables of the displacement field ū in Eq. 2.1 leads to infinite series in the

following form:

ū(r̄0, t) =

 ū1

ū2

ū3

=


∞∑
k=1

f1k(r̄0) · q1k(t)
∞∑
k=1

f2k(r̄0) · q2k(t)
∞∑
k=1

f3k(r̄0) · q3k(t)

 (2.2)

The time dependent coefficients q1k, q2k, q3k are called coordinates, and the space de-

pendent functions f1k, f2k, f1k are called base functions. It is necessary that the base

functions satisfy body boundary conditions, the infinite series converge to limit functions

ū1, ū2, ū3, and the limit functions accurately represent the displacement field.

The Rayleigh-Ritz method approximates the displacement field by truncating the infinite

series of Eq. 2.2 and results in the following representation:

 ū1

ū2

ū3

≈


l∑
k=1

f1k(r̄0) · q1k(t)
m∑
k=1

f2k(r̄0) · q2k(t)
n∑
k=1

f3k(r̄0) · q3k(t)

= S · q (2.3)

with S being a shape matrix containing the base functions and q being a vector of time

dependent coordinates. The coordinates q lack a physical meaning. The base functions

in S define predicted deformation shapes for the body.

In order to the approximation of deformations ū from Eq. 2.3 converges towards the

solution of partial differential equations, the base functions must be admissible. It means

that they have to form a complete set of functions and satisfy the boundary conditions

15



2 Fundamentals of elastic multibody systems

[76]. Completeness is achieved if the exact displacements, and their derivatives, can be

matched arbitrarily closely if enough coordinates appear in the assumed displacement

field [79].

One of the main problems connected with the Rayleigh–Ritz method is the difficulty to

find the base functions, when deformable bodies have complex geometrical shapes. In

addition, for systems with constrains the set of base functions must be adjusted for the

boundary conditions. The base functions are defined in a body reference frame, therefore

the choice of functions is also affected by the choice of the body frame. These problems

can be eliminated using the finite element method.

Finite element method

The finite element method is a numerical approach for solving partial differential equa-

tions having a set of boundary conditions. Along with the Rayleigh-Ritz approach, the

finite element method reduces the number of coordinates required for the description of

deformations to a finite set.

The idea of the method is to discretize a deformable body into small regions called ele-

ments and to describe the deformation of the whole body by deformations of elements.

The elements are connected at the points called nodes, see Fig. 2.2.

finite elements  

nodes 
global system

element system  

Figure 2.2: Finite element discretization of deformable body.

In the finite element method the deformation of elements is defined by interpolation

polynomials and nodal coordinates. The displacement field of the element is described

with respect to an element coordinate system as

ūe(r̄e0, t) = Ne(r̄e0) · qe(t), (2.4)

where Ne is a space dependent interpolation matrix, qe is a time dependent vector of

nodal coordinates and the vector r̄e0 defines an undeformed position of a point within the

element in the element reference frame.
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The displacement field of the whole body can be represented via deformations of elements

as follows. The displacement ūe is expressed in the global frame by a rotation matrix Ae

as

ue(r̄e0, t) =Ae · ūe(r̄e0, t) = Ae ·Ne(r̄e0) · qe(t). (2.5)

The vector r̄e0 can be also written in another form as

r̄e0 = AT
e · (d0 − xe), (2.6)

where d0 and xe are an undeformed position of arbitrary point P within the element and

a position of origin of element system in the global coordinate system, respectively, see

Fig. 2.3.

xe

ue

re0P(t0) 

d0

d

P(t)

Figure 2.3: Deformation of finite element with respect to a global frame.

The set of nodal coordinates for the FE model can be represented by a vector

q (t) =


...

qk(t)
...

, k = 1, . . . , nnodes (2.7)

of dimension N with qk(t) being a vector of degrees of freedom of k-th node. The element

nodal coordinates qe(t) and the body nodal coordinates q(t) are connected by a matrix

Ce ∈ Rne
q×N :

qe(t) = Ce · q(t). (2.8)

Here neq is the number of nodal coordinates of element e. The matrix Ce is calculated as

Ce = Te ·Be. (2.9)
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The matrix Be ∈ Rne
q×N is a Boolean transformation matrix and it serves to express

connectivity of the element e. The matrix Te∈ Rne
q×ne

q is a transformation matrix that

consists of elements of matrix Ae
T and transforms the element nodal coordinates from

the global coordinate system to the local element system. Using Eq. 2.5, Eq. 2.8, Eq. 2.9

and summing over all elements leads the formulation of displacement field of the body in

the global frame:

u(d0,t) =

nE∑
e=1

Ae · N̄e(d0) ·Te ·Be·q(t) = S(d0) · q(t) (2.10)

In contrast to the Rayleigh-Ritz approach, the finite element method avoids specifying of

base functions for the whole body. The base functions of the body are assembled from

the base functions of elements. There are different types of finite elements that can be

used to represent bodies with complex forms.

Boundary conditions can be imposed direct on the nodal coordinates q.

2.1.3 Kinematics

Position

Using the inertial coordinate system of finite element model as a body coordinate system

and combining Eq. 2.1 with Eq. 2.10 the position of arbitrary point of the elastic body

can be described as follows:

d(r̄0, t) = x(t) + A(t) · (r̄0 + ū(r̄0, t)) = (2.11)

x(t) + A(t) · (r̄0 + S(r̄0) · q(t)). (2.12)

In three-dimensional analysis, at least six coordinates are required to define configuration

of body frame. One of the methods is to define three coordinates for a position of origin

of the frame and three coordinates for an orientation of the frame with respect to the

inertial coordinate system. The orientation parameters θ can be identified using Euler

angles, Rodrigues parameters, or four dependent Euler parameters. The drawback of the

three-variable representation is singularity at certain orientations of the reference frame

in space. Formulation of rotation matrix A using orientation parameters can be found in

Chapter 6.

The global point position of Eq. 2.11 is written in terms of generalized reference and elastic

coordinates

z =

 x

θ

q

 . (2.13)
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2 Fundamentals of elastic multibody systems

The translational coordinates x of the frame origin are defined in the global inertial frame,

the rotational coordinates θ describe the orientation of body frame in space and are not

tied to any coordinate system, the elastic coordinates q are expressed with respect to the

body coordinate system.

Velocity

Differentiating Eq. 2.11 with respect to time yields

ḋ = ẋ + Ȧr̄ + ASq̇. (2.14)

Here ḋ is an absolute velocity of the point, r̄ is a point position vector with respect to

the body coordinate system, and q̇ defines a vector of generalized elastic velocities.

The derivative of matrix A can be found using its orthogonality property. Since AAT = I,

one obtains

ȦAT + AȦT = 0,

which can be rewritten as

ȦAT = −(ȦAT )T .

The matrix ȦAT is equal to the negative of its transpose, therefore it is a skew symmetric

matrix. It follows that

ȦAT = ω̃ (2.15)

with ω̃ being a skew symmetric matrix defined by a vector ω. The matrix ω̃ has the form

ω̃ =

 0 −ω3 ω2

ω3 0 −ω1

−ω2 ω1 0

 (2.16)

The vector ω =
[
ω1 ω2 ω3

]T
is the angular velocity vector defined in the global coordi-

nate system. Thus,

Ȧ = ω̃A (2.17)

It follows that the vector Ȧr̄ can be written as

ω̃Ar̄ = ω̃r = −r̃ω = r̃Tω (2.18)

Substituting Eq. 2.18 in Eq. 2.14 the velocity vector ḋ takes the form

ḋ = ẋ + r̃Tω + ASq̇ =
[
I r̃T AS

]
·

ẋ

ω

q̇

 . (2.19)
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2 Fundamentals of elastic multibody systems

This can be written in another form as

ḋ =LzI, (2.20)

where

L =
[
I r̃T AS

]
and zI =

ẋ

ω

q̇

 . (2.21)

The vector zI defines generalized velocity coordinates.

Acceleration

The absolute acceleration of the point can be found by the differentiation of Eq. 2.20 with

respect to time. This results in

d̈ =L̇zI + LżI. (2.22)

Differentiating of the matrix L yields

L̇ =
[
0 ˙̃rT ȦS

]
, (2.23)

where the second term can be identified using the relation r = Ar̄ and Eq. 2.17 as

˙̃rT = − ˙̃r = −˜̇r = − ˜(Ȧr̄ + A˙̄r) = − ˜(ω̃Ar̄ + ASq̇), (2.24)

and the third term can be written as ȦS = ω̃AS. As a result, the product L̇zI yields

L̇zI = ω̃ω̃Ar̄ + 2ω̃ASq̇. (2.25)

Thus, the acceleration vector takes the following form

d̈ = ẍ+r̃Tα+ ASq̈ + ω̃ω̃r + 2ω̃ASq̇, (2.26)

where α is an angular acceleration vector. In this equation the first term represents an

absolute acceleration of the origin of body coordinate system. The second term r̃Tα is

a tangential acceleration of the point. The tangential acceleration is perpendicular to

the vectors r and α. The third component ASq̈ represents an acceleration of the point

due to deformations. The fourth part describes a normal acceleration of the point. This

component is directed along the line connecting the point and the origin of the body

frame. Finally, the latter term represents the Coriolis acceleration. If the body is rigid,

the third and fifth components of Eq. 2.26 vanish.
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2 Fundamentals of elastic multibody systems

The generalized acceleration coordinates take the form

zII = żI =

ẍ

α

q̈

. (2.27)

2.1.4 Kinetics

There are a number of methods used to derive equations of motion of elastic body:

D’Alembert’s principle, Hamilton’s principle, Jourdain’s principle, Newton-Euler formal-

ism. All of them lead to the same system of equations. Direct application of Newton’s

second law becomes difficult for large multibody systems. In contrast to Newton’s second

law, the first three approaches are variational principles, which employ scalar quantities

such as kinetic energy, potential energy, virtual work, and virtual power. These methods

make possible finding equations of motion for complex multibody systems. In this work

we utilize Jourdain’s variational principle to derive equations of motion because it is a

straightforward approach for systems where generalized velocity coordinates are not equal

to a derivative of generalized position coordinates.

According to Jourdain’s principle the sum of virtual power of all forces acting on the body

must be zero. It follows that the sum of virtual power of inertial, internal, and external

forces equals zero:

δPinert + δPinter + δPext = 0. (2.28)

Virtual power of inertia forces

The virtual power of inertia forces takes the following form

δPinert =

ˆ
V

−ρδḋT d̈dV, (2.29)

where ḋ and d̈ are global velocity and acceleration vectors of an arbitrary point of the

body, δḋ indicates a virtual velocity of the point, ρ defines mass density, and V represents

a volume of the body.

The virtual velocity δḋ can be expressed in terms of virtual generalized velocity δzI as

δḋ = LδzI. (2.30)

with L being the matrix from Eq. 2.21. Using the definition of global acceleration vector

d̈ =L̇zI + LżI from Eq. 2.22, the virtual power of inertia forces can be obtained as follows

δPinert = −
(ˆ

V

ρ (δzI)
T LTLżIdV +

ˆ
V

ρ (δzI)
T LT L̇zIdV

)
. (2.31)
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Since the vector of generalized velocity coordinates zI depends only on time, one can write

the expression for δPinert as

δPinert = − (δzI)
T

([ˆ
V

ρLTLdV

]
żI +

[ˆ
V

ρLT L̇zIdV

])
= (2.32)

− (δzI)
T (MżI + hv) , (2.33)

where M is a generalized mass matrix of the elastic body in multibody system and hv

defines a quadratic velocity vector contained centrifugal and Coriolis forces.

Substituting L from Eq. 2.21 into the mass matrix expression we can write M in more

detailed form as

M =

ˆ
V

ρ

 I

r̃

(AS)T

[I r̃T AS
]
dV = (2.34)

ˆ
V

ρ

 I r̃T AS

r̃r̃T r̃AS

symmetric STS

 dV. (2.35)

Here the orthogonality property of rotation matrix ATA =I is used. The mass matrix

from Eq. 2.35 can be also represented as follows:

M =

 Mt Mtr Mte

Mr Mre

symmetric Me

. (2.36)

The indexes t, r and e indicate translational, rotational and elastic parts of generalized

mass matrix. The evaluation of submatrices from Eq. 2.36 requires using the relations

that connect values in the body and inertial coordinates systems:

r = Ar̄, (2.37)

r̃ = A˜̄rAT . (2.38)

In Eq. 2.36 the term

Mt =

ˆ
V

ρIdV = mI, Mt ∈ R3×3 (2.39)

is a diagonal matrix, where m is a mass of the body. The submatrix

Mr =

ˆ
V

ρr̃r̃TdV = A ·
ˆ
V

ρ˜̄r˜̄rTdV ·AT = A · J(q) ·AT , Mr ∈ R3×3 (2.40)

is an inertia tensor in the global coordinate system. It depends on the elastic coordinates
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q. The matrix J denotes an inertia tensor with respect to the body coordinate system.

Next, the term

Me =

ˆ
V

ρSTSdV, Me ∈ RN×N (2.41)

corresponds to a finite element mass matrix of the body. The component

Mtr =

ˆ
V

ρr̃TdV =

ˆ
V

ρA˜̄rTATdV = A ·
ˆ
V

ρ˜̄rTdV ·AT = mA · ˜̄cT ·AT (2.42)

is 3× 3 matrix with

c̄ = c̄(q) =
1

m

ˆ
V

ρr̄dV (2.43)

being a vector of mass center of the body with respect to the body frame. Analogous

to the inertia tensor of the body, the position of mass center also depends on the elastic

coordinates q. Finally, the matrices

Mte =

ˆ
V

ρASdV = A ·
ˆ
V

ρSdV = A·Ct, Ct ∈ R3×N , (2.44)

Mre =

ˆ
V

ρr̃ASdV =

ˆ
V

ρA˜̄rATASdV = A ·
ˆ
V

ρ˜̄rSdV = A ·Cr, Cr ∈ R3×N (2.45)

describe coupling terms of rigid body motion and elastic deformations. It is necessary to

note that only the matrices Mt and Me are constant, while other terms of the generalized

mass matrix depend on the generalized coordinates of the body and, as a result, they are

implicit functions of time.

In order to evaluate volume integrals of the quadratic velocity vector hv from Eq. 2.33, we

separate it into translational, rotational, and elastic components hv =
[
hTvt hTvr hTve

]T
and exploit the expressions for L and L̇zI from Eq. 2.21 and Eq. 2.25. The translational

part hvt can be obtained as

hvt =

ˆ
V

ρ (ω̃ω̃r + 2ω̃ASq̇) dV = mA˜̄ω
(
˜̄ωc̄ + 2˙̄c

)
. (2.46)

The simplification of hvt is accomplished by using the relations

ˆ
V

ρω̃ω̃r dV =

ˆ
V

ρA˜̄ω ˜̄ωr̄ dV = A˜̄ω ˜̄ωm · 1

m

ˆ
V

ρr̄ dV = mA˜̄ω ˜̄ωc̄ (2.47)

and

ˆ
V

2ρω̃ASq̇dV =
´
V

2ρA˜̄ωSq̇dV = 2A˜̄ωm ˙̄c (2.48)

where

˙̄c =
1

m

ˆ
V

ρ ˙̄rdV (2.49)
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is a local velocity of mass center in the body frame.

The rotational component of the quadratic velocity vector takes the form

hvr =

ˆ
V

ρr̃ (ω̃ω̃r + 2ω̃ASq̇) dV = A · ˜̄ωJω̄ + A ·Grω̄, (2.50)

where Gr is a component of Coriolis forces

Gr = 2

ˆ
V

ρ˜̄r˜̄̇r
T
dV (2.51)

and J is the tensor of inertia from Eq. 2.40. The extraction of J in the first term of

Eq. 2.50 is performed using the relation

ˆ
V

ρr̃ω̃ω̃rdV = A˜̄ω

(ˆ
V

ρ˜̄r˜̄rTdV

)
ω̄, (2.52)

where the following operations with skew-symmetric matrices are carried out

r̃ω̃ = ω̃r̃ + (̃r̃ω), (2.53)

r̃ω̃ω̃r = −r̃ω̃r̃ω = −
(
ω̃r̃ + (̃r̃ω)

)
r̃ω =

−ω̃r̃r̃ω − (̃r̃ω)r̃ω =− ω̃r̃r̃ω = ω̃r̃r̃Tω (2.54)

and the relations r̃ = A˜̄rAT , ω̃ = A ˜̄ωAT are used.

The derivation of Gr in Eq. 2.50 is accomplished as follows:

ˆ
V

2ρr̃ω̃ASq̇dV = 2

ˆ
V

ρA˜̄r˜̄ω ˙̄rdV = A · 2
ˆ
V

ρ˜̄r˜̄̇rTdV ω̄ (2.55)

The elastic part hve of the quadratic velocity vector takes the form:

hve =

ˆ
V

ρ (AS)T (ω̃ω̃r + 2ω̃ASq̇) dV =
ˆ
V

ρ (AS)T ω̃ω̃rdV +

ˆ
V

ρ (AS)T 2ω̃ASq̇dV (2.56)

The first summand of Eq. 2.56 is given by

ˆ
V

ρSTATA˜̄ωATA˜̄ωATAr̄dV =

ˆ
V

ρST ˜̄ω ˜̄ωr̄dV (2.57)

Ordinary matrix operations can not factor the rotational velocity ω̄ out of this integrand,

therefore the combination of matrix and index notation proposed in [77] is used:

ˆ
V

ρST ˜̄ω ˜̄ωr̄dV =
[
ω̄TOekω̄

]
, k = 1..N. (2.58)

Here the brackets mean that all components form a vector of length N . The matrix
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Oek∈ R3×3 is given as

Oek =

ˆ
V

ρS̃∗k˜̄rdV (2.59)

with S∗k being the k-th column of shape matrix S, see [77].

The second summand of Eq. 2.56 can be rewritten as

ˆ
V

ρ (AS)T 2ω̃ASq̇dV = 2

ˆ
V

ρST ˜̄ωSq̇dV =

2

ˆ
V

ρST (̃Sq̇)
T

ω̄dV = 2

ˆ
V

ρST ˙̄̃rTdV ω̄ = Geω̄, (2.60)

where Ge ∈ RN×3 takes the form

Ge = 2

ˆ
V

ρST ˙̄̃rTdV. (2.61)

Summarizing the evaluation of generalized quadratic forces yields

hv =

hvt

hvr

hve

 =

Am ˜̄ω ·
(
˜̄ωc̄ + 2˙̄c

)
A ·
(
˜̄ωJω̄ + Grω̄

)[
ω̄TOekω̄

]
+ Geω̄

 . (2.62)

The components c̄, ˙̄c, J, Gr, Oek, and Ge are defined in Eq. 2.43, Eq. 2.49, Eq. 2.40,

Eq. 2.51, Eq. 2.59, and Eq. 2.61, respectively.

Virtual power of internal forces

The virtual power due to elastic forces is defined as

δPinter = −
ˆ
V

δε̇T · σdV, (2.63)

where σ and ε̇ are stress and strain rate vectors, respectively. Further, the relation

between the strain vector ε and the displacement field ū is required.

According to the finite element method, the displacement field is approximated by a

shape matrix S and time-depended nodal coordinates q as ū(d0, t) = S(d0) · q(t), see

Section 2.1.2. Once the displacement field is given, the strain vector ε(d0, t) is obtained

by applying the differential displacement-strain operator ∇ [79, 51]:

ε(d0, t) = ∇ · ū = ∇ · S(d0) · q(t), (2.64)
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where

∇ =



∂
∂x1

0 0

0 ∂
∂x2

0

0 0 ∂
∂x3

∂
∂x2

∂
∂x1

0

0 ∂
∂x3

∂
∂x2

∂
∂x3

0 ∂
∂x1


. (2.65)

The differentiations in this relation are done with respect to the axes of the body coordi-

nate system that is initially parallel to the global reference frame.

Six elements of strain vector form a symmetric matrix in R3×3. Here the strain is presented

in a vector form

ε =
[
ε11 ε22 ε33 2ε12 2ε13 2ε23

]T
∈ R6. (2.66)

In the elastic multibody dynamics it is generally assumed the linear strain-displacement

relationship, which is described by Eq. 2.64. However, there are some applications that

require taking into account a nonlinear term. Additional non-linear strain is obtained by

a differential operator ∇̂:

∇̂(ū) =



∂u1
∂x1

∂
∂x1

∂u2
∂x1

∂
∂x1

∂u3
∂x1

∂
∂x1

∂u1
∂x2

∂
∂x2

∂u2
∂x2

∂
∂x2

∂u3
∂x2

∂
∂x2

∂u1
∂x3

∂
∂x3

∂u2
∂x3

∂
∂x3

∂u3
∂x3

∂
∂x3

∂u1
∂x1

∂
∂x2

+ ∂u1
∂x2

∂
∂x1

∂u1
∂x1

∂
∂x2

+ ∂u2
∂x2

∂
∂x1

∂u1
∂x1

∂
∂x2

+ ∂u3
∂x2

∂
∂x1

∂u1
∂x2

∂
∂x3

+ ∂u1
∂x3

∂
∂x2

∂u1
∂x2

∂
∂x3

+ ∂u2
∂x3

∂
∂x2

∂u1
∂x2

∂
∂x3

+ ∂u3
∂x3

∂
∂x2

∂u1
∂x3

∂
∂x1

+ ∂u1
∂x1

∂
∂x3

∂u1
∂x3

∂
∂x1

+ ∂u2
∂x1

∂
∂x3

∂u1
∂x3

∂
∂x1

+ ∂u3
∂x1

∂
∂x3


. (2.67)

The nonlinear strain takes the form

ε = ∇ · ū +
1

2
∇̂ · ū. (2.68)

The strain rate ε̇ can be obtained differentiating Eq. 2.68 as[47]:

ε̇ = ∇ ˙̄u +
1

2

(
˙̂∇ū + ∇̂ ˙̄u

)
= ∇ ˙̄u + ∇̂ ˙̄u. (2.69)

Using the relation ˙̄u = S · q̇ and Eq. 2.69 the virtual strain rate takes the form

δε̇ =
(
∇S + ∇̂S

)
δq̇. (2.70)

According to the generalization of Hooke’s law, the strain and stress vectors are connected

by an elasticity matrix E ∈ R6×6 as

σ = E · ε. (2.71)
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Substituting Eq. 2.70 and the stress expression of Eq. 2.71 into Eq. 2.63 yields

δPinter = − (δq̇)T (KeL · q + KeN(q) · q) , (2.72)

where KeL and KeN(q) are linear and nonlinear components of stiffness matrix related

to the elastic coordinates of finite element model and defined as

KeL =

ˆ
V

(∇S)TE∇SdV (2.73)

KeN =

ˆ
V

(∇S)TE∇̂SdV +
1

2

ˆ
V

(∇̂S)TE∇̂SdV. (2.74)

It follows that the virtual power of elastic forces is obtained by

δPinter = −δzI
TKz, (2.75)

where

K =

0 0 0

0 0 0

0 0 KeL + KeN(q)

 (2.76)

is a generalized stiffness matrix of the elastic body.

Virtual power of external forces

The virtual power of an external force acting at an arbitrary point of the body can be

defined as

δPext = δḋT · f , (2.77)

where f ∈ R3 is an external force expressed in the global coordinate system, the vector ḋ

defines a global velocity of the point where the force is applied. The virtual velocity δḋ

can be expressed in terms of generalized velocity coordinates zI as

δḋ = LδzI (2.78)

with L being the matrix from Eq. 2.21. It follows that the virtual power of external forces

is given by

δPext = δzI
TLT f = δzI

T

 I

r̃

(AS)T

 · f . (2.79)

The gravity force can be considered as a concentrated load at the center of gravity or a
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volume force. The virtual power of a volume force is defined as

δPext =

ˆ
V

δzI
T

 I

r̃

(AS)T

bdV = δzI
T

ˆ
V

 I

r̃

(AS)T

bdV

 , (2.80)

where b is a load per unit volume. For the gravity force the relation b = ρ · g can be

used, where g denotes the gravity acceleration.

Moments can be represented using pairs of concentrated forces with the property f1 = −f2.

Similar to the consideration of volume forces, the virtual power of generalized surface

force associated with a surface load p per unit area dD is defined as

δPext = δzI
T

ˆ
D

 I

r̃

(AS)T

pdD. (2.81)

If the body is subjected to several external forces, then their effects must be added. The

generalized external force can be expressed as

hext =

ˆ
V

 I

r̃

(AS)T

bdV +

 I

r̃

(AS)T

 · f +

ˆ
D

 I

r̃

(AS)T

pdD. (2.82)

The virtual power of external forces takes the form

δPext = δzI
T · hext. (2.83)

2.1.5 Equations of motion of free elastic body

Substituting the expressions for the virtual power of inertia forces from Eq. 2.33, internal

forces from Eq. 2.75, and external forces from Eq. 2.83 into Jourdain’s principle of Eq. 2.28

yields

δzI
T (MżI + Kz + hv − hext) = 0. (2.84)

Incorporation of damping into the equations of motion is considered in Section 2.1.8.

If components of generalized velocity coordinates zI are independent, then Eq. 2.84 holds

true only upon condition that the term in the parentheses equals zero. It follows the

equations of motion of free elastic body are given as

MżI + Kz + hv − hext = 0. (2.85)

These equations are called generalized Newton-Euler equations of motion [79]. Here M
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and K are generalized mass and stiffness matrices of the body, hv and hext represent the

generalized quadratic velocity vector and the generalized vector of external forces. The

equation can be rewritten in a detailed form as m · I m ·A · ˜̄cT ·AT A·Ct

A · J(q) ·AT A ·Cr

symmetric Me


︸ ︷︷ ︸

M

· żI +

0 0 0

0 0 0

0 0 KeL + KeN(q)


︸ ︷︷ ︸

K

· z =

−

Am ˜̄ω ·
(
˜̄ωc̄ + 2˙̄c

)
A ·
(
˜̄ωJω̄ + Grω̄

)[
ω̄TOekω̄

]
+ Geω̄


︸ ︷︷ ︸

hv

+

ˆ
V

 I

r̃

(AS)T

bdV +

 I

r̃

(AS)T

 · f +

ˆ
D

 I

r̃

(AS)T

pdD


︸ ︷︷ ︸

hext

(2.86)

The components of generalized mass matrix are summarized in Table 2.1.

Table 2.1: Components of generalized mass matrix.

Notation Definition

m ∈ R mass of body
I ∈ R3×3 identity matrix
A ∈ R3×3 rotation matrix from the body frame to the inertial coordinate system

c̄ ∈ R3 position of center of mass defined w.r.t. the body frame, Eq. 2.43
Ct ∈ R3×N matrix coupled translational and elastic coordinates, Eq. 2.44
Cr ∈ R3×N matrix coupled rotational and elastic coordinates, Eq. 2.45
J(q) ∈ R3×3 tensor of inertia defined w.r.t. the body frame, Eq. 2.40
Me ∈ RN×N finite element mass matrix defined w.r.t. the body frame, Eq. 2.41

The submatrices KeL and KeN of generalized stiffness matrix K are given in Eq. 2.73 and

Eq. 2.74. The formulation of generalized quadratic velocity vector requires computing of

additional terms described in Table 2.2.

Table 2.2: Components of generalized quadratic velocity vector.

Notation Definition

˙̄c ∈ R3 local velocity of mass center in the body frame, Eq. 2.49
Gr ∈ R3×3 component of Coriolis forces, Eq. 2.51
Oek ∈ R3×3 elastic part of centrifugal forces, Eq. 2.59
Ge ∈ R3×N elastic component of Coriolis forces, Eq. 2.61

The external concentrated and volume generalized forces hext are given in Eq. 2.82.

If the body is assumed to be rigid, the components associated with the generalized elastic

coordinates in Eq. 2.86 vanish. This leads to the classical Newton-Euler equations of rigid
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body motion. In addition, if the motion of the reference frame is constrained to be zero,

Eq. 2.86 is reduced to the classical structural equations.

The generalized mass matrix form Eq. 2.86 has a rank deficiency of six, therefore it is not

solvable until reference conditions are defined.

2.1.6 Definition of body coordinate system

It is assumed in the floating frame formulation that the displacement field ū describes

deformation of the body with respect to the body reference frame. The global motion of

body is the superposition of motion of body reference frame and deformations with respect

to the body frame. If the assumed displacement field ū contains rigid body modes, they

have to be eliminated to define a displacement field describing only deformations. This

can be done by imposing a set of reference conditions, which are introduced by a set of

linear algebraic equations. As the number of rigid body modes equals six, it is necessary

to impose six reference conditions.

Since there are no unique manner of defining rigid and elastic motions, the floating frame

can be selected in a number of different ways. These methods can be divided into two

categories. The methods of the first group attach a coordinate system to material points

of the body. This formulation is referred to as nodal-fixed axes. The second group of

floating frames consists of coordinate systems that follow a body in an optimal manner.

This category includes a frame oriented along the principal axes of inertia, a mean-axes

(Tisserand) frame, and a Buckens frame. In contrast to nodal-fixed frames, coordinate

systems of this type impose reference conditions on all nodes of the body. The moving

frames eliminate the need to select material points for attaching the floating frame, but it

is more difficult to determine the frame location and orientation because of specific frame

conditions.

Nodal-fixed frames

If points of the body possess rotational degrees of freedom, the body coordinate system

can be attached to one point. In this case, the reference conditions are given asū
(
r̄P0 , t

)
= 0

ϑ̄
(
r̄P0 , t

)
= 0,

(2.87)

where ϑ̄ defines rotational coordinates of the point P and r̄P0 is an undeformed position

of the point P .

Alternatively, the body coordinate system can be defined by three points P1, P2 and P3.

It is assumed that the origin of the frame is always located at the point P1, the point P2

remains along the x axis, and the point P3 lies on the xy plane, see Fig. 2.4.
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P2P1

P3

xy

z
undeformed body  

Figure 2.4: Attachment of body coordinate system by three points.

This yields six reference conditions

ū
(
r̄P1
0 , t

)
= 0

ūy
(
r̄P2
0 , t

)
= 0

ūz
(
r̄P2
0 , t

)
= 0

ūz
(
r̄P3
0 , t

)
= 0,

(2.88)

where r̄P1
0 ,r̄P2

0 , and r̄P3
0 are undeformed positions of points P1,P2, and P3 respectively. If

the body coordinate system differs from the coordinate system of finite element model,

the undeformed locations of body points r̄0 and shape functions S have to be redefined

with respect to the new body frame.

The reference conditions of Eq. 2.88 can be simplified in the case of fixation of body frame

to nodes of the body. If nodes possess three DoFs, the displacement field ū for an arbitrary

node K takes the form

ū
(
r̄K0 , t

)
= qK(t) ∈ R3, (2.89)

where qK is a vector of degrees of freedom for the node K. Then Eq. 2.88 can be rewritten

as 

qK1 (t) = 0 ∈ R3

qK2
y (t) = 0 ∈ R

qK2
z (t) = 0 ∈ R

qK3
z (t) = 0 ∈ R

(2.90)

with K1, K2, and K3 being nodes of the body.

The reference conditions of Eq. 2.90 can be automatically taking into account in equa-

tions of motion and there is no need to include them to the system of equations. The

dependency of the vector of unconstrained elastic coordinates qu and the initial vector of

nodal deformations q can be written as

q = B · qu, (2.91)

where B is a linear transformation that arises from imposing the constrains of Eq. 2.90

31



2 Fundamentals of elastic multibody systems

and consists of zeros and ones. The displacement field ū can be represented as

ū = S ·B · qu = Su · qu , (2.92)

where Su is a shape matrix that satisfies the reference conditions. Substituting Eq. 2.92

into Eq. 2.11 leads to the equations of motion in terms of independent generalized coor-

dinates.

The conditions of Eq. 2.88 attach the reference frame to the body. The rigid-body motion

in this coordinate system is eliminated. Since the body frame is allowed to move with

respect to an inertial frame, attaching the moving frame to the points does not exclude

any of the rigid-body modes in the inertial coordinate system.

Principal axes frame

In this formulation the moving reference frame is enforced to coincide with the instan-

taneous principal axes of a deformable body. This method provides six conditions based

on two requirements: the origin of the reference frame must remain at the instantaneous

mass center, and three products of inertia must remain zeros:

c = 0

Jij = 0, i 6= j , i = 1..3, j = 1..3.
(2.93)

Here c is the vector of mass center from Eq. 2.43 and J is the inertia tensor defined in

Eq. 2.40.

In this case, the coupling between flexible and rigid body motion is weaker and equations

of motions become easier: the tensor of inertia J becomes a diagonal matrix, and the

sub-matrices Mtr and Mte of Eq. 2.42 and Eq. 2.44 vanish because the vector of mass

center is equal to zero. Deriving expressions for products of inertia in terms of nodal

coordinates can be found in [77, 62]. In contrast to the nodal fixed frame formulations,

the reference conditions of principal axes frames increase the number of equations to be

solved by six.

Mean-axes frame

The mean-axis conditions are six constraints that enforce the body frame to follow the

motion of nodes in such a way that the following conditions are satisfiedCt · q̇ = 0

Cr(q) · q̇ = 0
(2.94)
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with Ct and Cr being the matrices defined in Eq. 2.44 and Eq. 2.45, respectively. Accord-

ing to [76], if the origin of body frame is located in a mass center of undeformed body,

the first equation from Eq. 2.94 enforces the frame to follow an instantaneous mass center

Ct · q̇ = m · ˙̄c = 0⇒ c̄ = 0. (2.95)

Similar to the principle axes approach, the first condition of Eq. 2.94 eliminates the terms

Mtr and Mte from the generalized mass matrix of Eq. 2.35. The second equation from

Eq. 2.94 defines orientation of the floating frame and removes the term Mre. It follows

that the generalized mass matrix M takes a block-diagonal form. The inertia tensor

remains a non-diagonal matrix. Due to the conditions of Eq. 2.94 the mean-axes frame

has a property that the kinetic energy associated with the deformation stays at a minimum

[17].

Buckens frame

The Buckens frame is a special case of mean-axes frame. The mean-axes constrains

of Eq. 2.94 are valid even for large deformations of the body. If small deformations are

assumed, the products of elastic coordinates q can be neglected in the equations of motion.

The Taylor expansion of Cr up to the first order terms yields

Cr (q) = Cr0 + Cr1 (q) , (2.96)

where the indexes 0 and 1 define zero and the first order terms of the Taylor expansion,

respectively.

Assuming small deformations, the second condition of mean-axes frame can be simplified

as

Cr (q) · q̇ = Cr0 · q̇ = 0 (2.97)

that leads to Buckens frame conditionsCt · q̇ = 0

Cr0 · q̇ = 0.
(2.98)

The term Ct is defined in Eq. 2.44, while Cr0 is given by

Cr0 =

ˆ
V

ρ˜̄r0SdV. (2.99)

Similarly to the mean-axes frame constrains, the Buckens frame conditions transform

generalized mass matrix to a block-diagonal form. In addition, according to [87] the
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Buckens frame ensures that the sum of the squares of elastic displacements with respect

to the body frame is a minimum:

1

2

ˆ
V

ūT · ū dm = min. (2.100)

It means that the Buckens coordinate system leads to the smallest elastic displacements

possible. This may be important when the assumption of small deformation for modeling

elastic body motion is used. In the general case the Buckens frame constraints must

be added to equations of motion, but under certain conditions they are automatically

satisfied. One of the approaches to take into account the Buckens frame conditions during

the simulation is proposed in [2]. The other way to satisfy these reference conditions is

connected with using eigenmodes of unconstrained body. The requirements of Buckens

frame can be automatically satisfied, if columns of shape matrix S from Eq. 2.10 are mass

orthogonal to rigid body modes and the position of body frame in the undeformed state

of the body coincides with the mass center, see [77].

2.1.7 Approximation of motion integrals by finite element programs

The dynamic properties of elastic body are defined by the volume integrals introduced

in Section 2.1.4. Most of them depend on generalized elastic coordinates and, therefore,

must be updated at each step of integration. In order to reduce computational costs

during simulation, the volume integrals are expressed by generalized elastic coordinates

and precomputed time-invariant system matrices. These matrices can be found as follows.

Every volume integral Z is expressed as a sum of terms Z0 , Z1, and Z2 that are constant,

linearly, and quadratically depended on the elastic coordinates q, respectively:

Z (q) = Z0 + Z1 (q) + Z2(q). (2.101)

Assuming small deformations, the quadratic component Z2 is negligibly small, therefore

Z (q) = Z0 + Z1 (q) . (2.102)

Using this representation, it is possible to find constant components for all volume in-

tegrals. This process is described in detail in [56, 76]. Table 2.3 contains a set of time-

invariant system matrices required for the calculation of the volume integrals of elastic

body.

The principle of retrieving constant matrices from volume integrals can be illustrated by

processing the inertia tensor. Using the relation r̄ = r̄0 + S · q of Eq. 2.11, the inertia
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Table 2.3: Time-invariant components of volume integrals.

Notation Calculation

m · I
´
V
ρI dV

m · c̄0

´
V
ρr̄0 dV

J0

´
V
ρ˜̄r0 · ˜̄r

T
0 dV

C1
´
V
ρS dV

C2
´
V
ρ˜̄r0 · S dV

C3
´
V
ρS · ST dV

C4k
´
V
ρ˜̄r0 · S̃∗k dV

C5k
´
V
ρS̃∗k · S dV

C6kl
´
V
ρS̃∗k · S̃∗l dV

tensor J of Eq. 2.40 takes the form

J (q) =

ˆ
V

ρ˜̄r · ˜̄rTdV =

ˆ
V

ρ˜̄r0 · ˜̄rT0 dV +

ˆ
V

ρ

(
˜̄r0 · (̃S · q)

T

+ (̃S · q) · ˜̄rT0
)
dV

+

ˆ
V

ρ(̃S · q) · (̃S · q)
T

dV. (2.103)

The first summand of this equation corresponds to the matrix J0 from Table 2.3. The

third part depends quadratically on generalized coordinates q, therefore it vanishes by

small deformations. Using the relation

S · q = S∗1 · q1 + ...+ S∗N · qN (2.104)

the coordinates q can be taken out of the brackets of the second summand of Eq. 2.103

by the transformation

ˆ
V

ρ

(
˜̄r0 · (̃S · q)

T

+ (̃S · q) · ˜̄rT0
)
dV =

N∑
k=1

ˆ
V

ρ
(
˜̄r0 · S̃T

∗k + S̃∗k · ˜̄rT0
)
dV qk =

−
N∑
k=1

ˆ
V

ρ
(
˜̄r0 · S̃∗k + S̃∗k · ˜̄r0

)
dV qk. (2.105)

It follows that the inertia tensor J is constructed by the generalized coordinates q and

the time-invariant matrices as

J(q) = J0 −
N∑
k=1

ˆ
V

ρ
(
˜̄r0 · S̃∗k + S̃∗k · ˜̄r0

)
dV qk = J0−

N∑
k=1

(
C4k + C4Tk

)
qk︸ ︷︷ ︸

J1(q)

. (2.106)

Let us consider formulation of other terms of generalized mass matrix in terms of the time-

invariant components. According toTable 2.1, the following terms must be considered:

position of center of mass c̄, coupling terms Ct and Cr, and the finite element matrix Me.
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The vector of center of mass can be rewritten as

c̄ = c̄0 + c̄1(q) = c̄0 +
1

m
·C1 · q. (2.107)

The term of coupling of translational and elastic coordinates takes the form

Ct = C1. (2.108)

The matrix Cr in terms of the time-invariant components is given as

Cr = Cr0 + Cr1(q) = C2 +
N∑
k=1

C5k · qk. (2.109)

Finally, the finite element mass matrix Me coincides with the component C3.

The terms of generalized quadratic velocity vector from Table 2.2 must be also represented

using constant components of motion integrals. The set of terms to be considered includes

the velocity of mass center ˙̄c, components of Coriolis force Gr and Ge, and the component

of elastic part of centrifugal force Oek.

Using Eq. 2.49 and ˙̄r = Sq̇, the velocity of mass center takes the following form

˙̄c =
1

m
·C1 · q̇. (2.110)

The component Gr from Eq. 2.51 can also be written as

Gr = 2

ˆ
V

ρ˜̄rS̃q̇
T
dV. (2.111)

Using the relation ˜̄r = ˜̄r0 + S̃q and Eq. 2.104, the integrand of the equation takes the form

˜̄rS̃q̇
T

= ˜̄r0 · S̃q̇
T

+ S̃q · S̃q̇
T

= (2.112)

−
N∑
k=1

˜̄r0 · S̃∗k · q̇k −
N∑
k=1

N∑
l=1

S̃∗k · S̃∗l · qk · q̇l.

Thus, the component Gr can be expressed in terms of the time invariant matrices as

Gr = −2
N∑
k=1

C4k · q̇k − 2
N∑
k=1

N∑
l=1

C6kl · qk · q̇l. (2.113)

Similarly, the matrix Ge from Eq. 2.61 can be rewritten as

Ge = 2

ˆ
V

ρST S̃q̇
T
dV = 2

N∑
k=1

ˆ
V

ρST
(
S̃∗k

)T
dV · q̇k = 2

N∑
k=1

C5Tk · q̇k.
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Finally, the terms Oek from Eq. 2.59 are obtained as follows

Oek =

ˆ
V

ρS̃∗k˜̄rdV =

ˆ
V

ρS̃∗k˜̄r0dV +
N∑
l=1

ˆ
V

ρS̃∗kS̃∗ldV · ql = C4k +
N∑
l=1

C6kl · ql.

The FE programs can export the component C3. The remaining components must be

computed in special preprocessors. The data needed for the construction of equations

of motion of elastic body can be defined by the finite element stiffness matrix Ke, the

mass matrix Me, information about boundary conditions, and the undeformed positions

of nodes r̄0. The construction process for consistent mass matrix formulation is presented

in [55, 76, 82]. In this thesis we consider a principle of evaluation of motion integrals by

example of C1 and C4.

If the FE model undergoes only translational rigid body motion, the linear velocity of all

nodes of the model is the same

v(t) = u̇(r̄0, t) = S(r̄0) · q̇(t). (2.114)

The vector of generalized velocities is composed of velocities of each node

q̇(t) =


v(t)

...

v(t)

 =


I
...

I


︸ ︷︷ ︸

St

v(t). (2.115)

Here I is 3× 3 identity matrix. Substituting this equations in the previous one yields the

orthogonality relation

S · St = I. (2.116)

In the case the FE model undergoes rotational rigid body motion, the linear velocity of

each nodes are defined as

u̇(r̄0, t) = ω̃r̄0 = −˜̄r0ω = S(r̄0) · q̇(t). (2.117)

The vector of generalized velocities takes the form

q̇(t) =


ω̃r̄0

...

ω̃r̄0

 =


−˜̄r0

...

−˜̄r0


︸ ︷︷ ︸
Sr

ω. (2.118)

The last two equations result in

− ˜̄r0 = S · Sr. (2.119)
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For the construction of volume integrals it is necessary to introduce an auxiliary matrix

Se that is defined as

Se = B (2.120)

with B being a matrix that accounts for boundary conditions imposed on the elastic

coordinates q, see Eq. 2.91. If model reduction methods are applied, the matrix Se is

defined as

Se = B ·V, (2.121)

where V is a coordinate transformation matrix.

The component C1 can be written for the system with boundary conditions and reduced

coordinates as follows:

C1 =

ˆ
V

ρS · Se dV. (2.122)

Using the relation of Eq. 2.116 this equation can be written in another form

C1 =

ˆ
V

ρS · Se dV = STt ·
[ˆ

V

ρST · S dV
]
· Se = STt ·Me · Se. (2.123)

The calculation of the term C4k requires using the second relation defined in Eq. 2.119:

C4k =

ˆ
V

ρ˜̄r0 · S̃∗k dV = STr ·
ˆ
ρST · S̃∗k dV. (2.124)

Here the matrix S̃∗k has to be transformed as

S̃∗k = −
[
ẽ1 · S∗k ẽ2S∗k ẽ3S∗k

]
= −

[
ẽ1 · S · I∗k ẽ2 · S · I∗k ẽ3 · S · I∗k

]
, (2.125)

where ei ∈ R3×1 are unit vectors and I∗k is the k-th column of identity matrix I ∈ RN×N .

Using the matrix Se, the i-th column of matrix C4k takes the form

[C4k]∗i = −STr ·Xi · [Se]∗k , (2.126)

where Xi =
´
V
ρST · ẽi · S dV .

In order to identify the mass matrix Me in this equation, the matrix ẽi must be pulled

out of the integral. This can be carried out only for isoparametric finite elements [47].

For the isoparametric elements the locations of material points on the elements, as well as

their displacements are interpolated by the same shape functions. These elements do not

use rotational parameters as nodal coordinates[79]. The pulling out the matrix ẽi yields

Xi = diag(ẽi) ·
ˆ
V

ρST · S dV = diag(ẽi) ·Me. (2.127)
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The calculation of matrix Xi for nonisoparametric elements is problematic, therefore the

approximation approach proposed in [55] is usually applied:

asym(Xi) :=
1

2
·
(
Xi −XT

i

)
. (2.128)

The final expression for the term C4k is given as

[C4k]∗i = −STr · asym(Xi) · [Se]∗k , i = 1..3. (2.129)

The calculation of volume integrals from Table 2.3 using the finite element data is shown

in Table 2.4.

Table 2.4: Calculation of volume integrals using data imported from finite element tools.

Notation Calculation

m · I STt ·Me · St
m · c̄0 STr ·Me · St

J0 STr ·Me · Sr
C1 STt ·Me · Se
C2 STr ·Me · Se
C3 STe ·Me · Se

[C4k]∗i −STr · asym(diag(ẽi) ·Me) · [Se]∗k
[C5k]i∗ − [Se]∗k

T · asym(diag(ẽi) ·Me) · Se
[C6kl]ij [Se]∗k

T · diag(ẽi) ·Me · diag(ẽj) · [Se]∗l

The external forces in Eq. 2.86 can be represented using concentrated nodal forces formu-

lation of which does not require the shape matrix S.

2.1.8 Damping definition

For some applications damping effects must be taken into account. The most simple and

widely used method to incorporate damping forces into equations of motion is to use a

proportional to velocities representation DzI with a constant matrix D. This leads to the

following equations of motion for linearly damped models

MzII + DzI + Kz + hv − hext = 0. (2.130)

Here the damping matrix D takes the form

D =

0 0 0

0 0 0

0 0 De

 , D ∈ R(6+N)×(6+N), (2.131)

where De ∈ RN×N defines a finite element damping matrix.
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In principle, the damping matrix De can be constructed by damping matrices of finite

elements analogous to the mass and stiffness matrices. However, material damping prop-

erties of certain elements are often not defined well enough to employ the same procedure.

The damping matrix can be constructed by Caughey’s series as

De = Me ·
r∑

k=0

ak
(
M−1

e ·KeL

)k
, (2.132)

where r defines a quantity of summands in the series, see [18]. In special case r = 1, the

damping matrix is called Rayleigh damping and is defined as

De = a0Me + a1KeL. (2.133)

The damping matrix formulated by Caughey’s series allows the definition of unknown

coefficients ai using a modal damping matrix. According to [21, 11] the coefficients of

modal damping matrix are defined as

φTi Deφj =

0, i 6= j

2ωiξi, i = j,
(2.134)

where the pair (φi, ωi) denote the i -th eingenvector and eigenfrequency of the system

and ξi defines a corresponded modal damping factor.

Using the Eq. 2.133 and Eq. 2.134 the modal damping factor ξi can be expressed as shown

in [21] as

ξi =
1

2

(
a0
ωi

+ a1ωi

)
. (2.135)

Thus, Rayleigh damping can be defined by choosing ξi for two modes and solving for

a0 and a1. The constants a0 and a1 produce specified modal damping factors for two

given modes. The advantage of Rayleigh damping lies in a simple calculation, while the

drawback is that it does not permit to define realistic damping for all modes of interest.

2.2 Model order reduction of elastic bodies

Modern finite element models may have millions degrees of freedom, which significantly

slow down a simulation process. The large number of elastic coordinates qe can be reduced

by model order reduction techniques. The main idea of these methods is to build a low-

dimensional model that preserves important properties of the original model. In this

section we consider model order reduction approaches based on projection, as well as

demands on the methods when using in the context of elastic multibody systems.
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2.2.1 Basics of model order reduction

Let us consider the elastic part of equations of motion of deformable body

Me · q̈ + De · q̇ + Ke · q = he. (2.136)

Here he denotes a vector of external forces. It is necessary for some reduction methods to

represent the vector he as a product of time dependent load vector u(t) ∈ Rp and a load

distribution matrix Be ∈ RN×p. In addition, the coordinates of interest y(t) ∈ Rr are cut

out from the vector q by a matrix Ce ∈ Rr×N . For these reduction methods the equation

of motion are formulated as

Me · q̈ + De · q̇ + Ke · q = Be · u (2.137)

y = Ce · q.

The reduction techniques based on projection rely on the assumption that a high-dimensional

solution vector q belongs to a subspace V of smaller dimension n� N . Let

V =
[

v1, v2, · · · ,vn

]
∈ RN×n

define a basis of subspace V , then the elastic coordinates q can be represented as

q ≈ V · q̂, (2.138)

where the vector q̂ is referred to as reduced coordinates. Substituting this relation into

equations of motion Eq. 2.137 results in an over-determined system and leave a residuum

because an exact solution q may not be an element of subspace V . The residuum can

be eliminated by an orthogonal subspace W represented by a matrix W ∈ RN×n . This

orthogonality condition is called Petrov-Galerkin condition, see [6, 72, 47]. The condition

is introduced in the equations of motion by a premultiplication of Eq. 2.137 by the matrix

WT . Thus, the low-dimensional approximation of original model takes the form

M̂e · ¨̂q + D̂e · ˙̂q + K̂e · q̂ = B̂e · u

ŷ = Ĉe · q̂
(2.139)

with the reduced matrices M̂e = WT ·Me ·V, D̂e = WT ·De ·V, K̂e = WT ·Ke ·V ∈ Rn×n,

B̂e = WT ·Be ∈ Rn×p, and Ĉe = Ce ·V ∈ Rr×n. If the subspaces V and W are identical,

the projection is called orthogonal, otherwise, it is called oblique. The difference of the

projection types is visualized by Fig. 2.5.

The reduced equations of motion of a single elastic body in the multibody system are
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Figure 2.5: Types of projection.

written as Mt Mtr(q̂) Mte ·V
Mrt(q̂) Mr(q̂) Mre ·V

WT ·Met WT ·Mer M̂e


 ẍ

α
¨̂q

+

 0

0

D̂e · ˙̂q + K̂e · q̂

 =

 ht(ẑ, ẑI)

hr(ẑ, ẑI)

WT · he(ẑ, ẑI)

 ,
(2.140)

where ẍ,α are the translational and rotational accelerations of the body frame with

respect to the global coordinate system. The vectors

ẑ =

x

θ

q̂

 and ẑI =

x

ω

q̂

 (2.141)

denote reduced generalized position and velocity coordinates, respectively. Other terms

of Eq. 2.140 are defined in Section 2.1.4.

The difference of model order reduction methods lies in the way of how they generate the

transformation matrices W and V.

2.2.2 Demands on reduction approaches when using for elastic

multibody systems

The general requirements on model order reduction techniques such as high accuracy,

computational efficiency, preservation of stability are already discussed in Section 1.3. The

use of reduction methods in the context of EMBS imposes on them additional demands.

The first requirement is that a reduced order model has to be described by differential

equations of second order type. This enables integration of reduced models into multibody

systems of second order form. This requirement can be satisfied by using reduction

approaches based on projection.

Another issue concerning the usage of reduction methods in the context of EMBS is that

it is necessary to ensure that the coordinate transformation matrix V fulfills boundary

conditions imposed by a reference frame. The use of modes that violate the boundary

conditions results in a poor representation of deformations [77]. In addition, the linear
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combination of columns of V has to be a subspace that does not contain rigid-body modes.

The exclusion of rigid body modes is required by the floating frame formulation. In this

formulation the motion of elastic body is decoupled into the rigid body motion approxi-

mated by the motion of floating frame and deformations with respect to the moving frame.

It follows that the reduction method has to able to produce a coordinate transformation

matrix that excludes rigid body motion from the description of deformations.

In order to satisfy the Buckens frame conditions the coordinate transformation matrix V

has to be modified according the formula

Vmod =
(
I− V̄0V̄

T
0 Me

)
V, (2.142)

where V̄0 is a matrix of rigid-body modes normalized by the mass matrix Me, and I is

an identity matrix of size N ×N , see [47, page 135]. This modification does not damage

dynamical properties of reduced model. It only rewrites the modes in V with respect to

the center of mass. In order to obtain rigid body modes, it is not necessary to solve an

eigenvalue problem. The translational and rotational rigid modes can be found as follows:

V0 =
[

V0t ,V0r

]
=




...

[I]k

...

 ,


...[
−˜̄r0

]k
...


 , k = 1, .., N. (2.143)

Here the matrix I is 3× 3 identity matrix, the term [̄r0]k denotes an undeformed position

of the k-th node of FE model and
[
˜̄r0
]k

corresponds to an associated with [̄r0]k skew

symmetric matrix. It is assumed that a finite element node exhibits only three transla-

tional degrees of freedom. The transformation matrix Vmod ensures that the Buckens

frame constraints are automatically satisfied and there is no need to add them to equa-

tions of motion. It is always possible to transform modes so that the conditions of the

Buckens-frame are fulfilled [81].

Linear dependency of columns of Vmod can be removed by the QR decomposition of Vmod

and the exclusion of columns that correspond to zero values on the diagonal of matrix R.

The remaining modes together with the rigid body modes spans the same solution space

as it is spanned by the original modes of V.

2.3 Model reduction techniques

2.3.1 Guyan method

This old reduction approach was proposed by Guyan in [37]. The approach separates

model DoFs into internal and boundary subsets. The b-set of boundary DoFs is defined
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as a set of coordinates that remain in the system, while an i -set of internal coordinates

includes all DoFs that must be eliminated from the system of equations:

i ∪ b = a, i ∩ b = ∅. (2.144)

Here a defines a set of all DoFs of the system. Let us consider the following undamped

system:

Me · q̈(t) + Ke · q(t) = he. (2.145)

The partition of the system into internal and boundary coordinates yields[
Mii Mib

Mbi Mbb

]
e

[
q̈i

q̈b

]
+

[
Kii Kib

Kbi Kbb

]
e

[
qi

qb

]
=

[
hi

hb

]
e

. (2.146)

Due to the static nature of the method the influence of inertia term is not taken into

account. Assuming that there is no force acting on the internal DoFs, i.e. hi = 0, and

solving Eq. 2.146 for qi the following relationship is obtained:

q =

[
qi

qb

]
=

[
−Kii ·Kib

Ib

]
· qb, (2.147)

where Ib ∈ RNb×Nb is an identity matrix. According to the Guyan method the low-

dimensional subspace is defined by a transformation matrix V ∈ RN×Nb

V =

[
−Kii ·Kib

Ib

]
. (2.148)

The Guyan reduction leads to the exact representation of static deformations and to

a relative good approximation of low frequencies and corresponded modes. For higher

frequency modes inertia forces terms become significant that results in inaccurate reduced

order models.

2.3.2 Dynamic condensation method

The dynamic condensation method utilizes the inertia information of FE model. The

method was developed for reducing systems that undergo a harmonic excitation.

The dynamic behavior of FE model in time domain is described by the system of equations

Me · q̈(t) + Ke · q(t) = he(t). (2.149)

In contrast to Guyan reduction method, the force vector he is time dependent. Assuming

zero initial conditions, the Laplace transformation of Eq. 2.149 leads to the following
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equations in the frequency domain:

(Me · s2 + Ke) · q(s) = he(s). (2.150)

The vectors q(s) and he(s) denote the Laplace transformation of time dependent dis-

placement and force vectors q(t) and he(t), respectively, i.e.

q(s) = L{qe}(s) =

ˆ ∞
0

e−st · q(t) dt (2.151)

he(s) = L{he}(s) =

ˆ ∞
0

e−st · he(t) dt. (2.152)

The variable s = i ·ω is a complex number with zero real part. The term ω represents an

angular frequency, which is connected with an excitation frequency f via the relationship

ω=2πf .

Analogously to the Guyan method, the system of Eq. 2.150 is partitioned into the internal

and boundary coordinates as

(−Me · ω2 + Ke)︸ ︷︷ ︸
T(ω)

· q(ω) = he(ω) (2.153)

[
Tii(ω) Tib(ω)

Tbi(ω) Tbb(ω)

]
e

[
qi(ω)

qb(ω)

]
=

[
hi(ω)

hb(ω)

]
e

(2.154)

Using the same condition as for the Guyan method, namely, there are no forces applied

to the internal DoFs, and solving the system of equations for qb(ω) the coordinate trans-

formation matrix is obtained as

V =

[
−Tii(ω) ·Tib(ω)

Ib

]
. (2.155)

The accuracy of models reduced by the dynamic condensation method is limited to the

spectrum defined around the frequency chosen for its initialization.

2.3.3 Craig-Bampton method

According to the Craig-Bampton method, all degrees of freedom are also divided into two

sets: boundary and internal (also called master and slave). The choice of the boundary

set is crucial for the quality of reduced order model. The choice is model dependent and

requires advanced engineering experience. However, there are several common criteria

that specify positions of boundary degrees of freedom [44]:

� points where large deformation is expected,

� such points that all relevant deformations can be described using only the set of
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boundary nodes,

� equally distributed in the structure,

� positions where forces and boundary constraints are to be defined,

� points with the characteristic of having large concentrated mass and at the same

time small local stiffness .

The boundary degrees of freedom are denoted with an index b and the internal degrees of

freedom with an index i. In this case, the number of all degrees of freedom of FE model

can be written as N = Nb +Ni.

The coordinate transformation matrix V of Craig-Bampton method consists of two parts:

a retained set of fixed interface normal modes Vn and a set of constraint modes Vc.

The following partitioned form of undamped Eq. 2.136 is needed in the derivation of

deformation modes:

[
Mii Mib

Mbi Mbb

]
e

[
q̈i

q̈b

]
+

[
Kii Kib

Kbi Kbb

]
e

[
qi

qb

]
=

[
hi

hb

]
e

(2.156)

The fixed-interface normal modes are obtained by fixing all boundary DoFs and solving

the following eigenproblem:

(Kii −ΛMii)Vii = 0.

Futher, a subset of low-frequency eigenvectors in Vii is chosen. If Nm is a number of

retained columns of Vii , then the complete set of fixed-interface normal modes Vn is

assembled according to the partitioning in Eq. 2.156 as columns of the modal matrix

Vn ≡

[
Vim

0

]
.

The dimensions of matrix Vim and the null-matrix 0 are Ni × Nm and Nb × Nm, re-

spectively. When normalized with respect to the mass matrix Mii, the modes from Vim

satisfy the conditions as

VT
imMiiVim = Imm,V

T
imKiiVim = Λmm ,

where Λmm is a diagonal matrix of square angular frequencies.

The quantity of retained modes Nm is usually chosen experimentally: if the quality of

reduced model is insufficient, it is necessary to increase the number of retained normal

modes.

Constraint modes are defined as static deformations of the model when a unit displace-

ment is applied at the boundary coordinates. The remaining coordinates of that set are
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restrained, and the remaining degrees of freedom of the structure are force-free. The

matrix of constrained modes Vc ∈ RN×Nb is calculated as follows:

Vc =

[
−K−1ii Kib

Ibb

]
.

Thereby, the Craig–Bampton transformation matrix V ∈ RN×(Nb+Nm) takes the following

form:

V =
[

Vc Vn

]
.

The vector of reduced coordinates q̂ from Eq. 2.138 can be written as q̂ =

[
qb

η

]
. The

vector of modal coordinates η represents the contributions of vibration modes towards

the nodal displacements.

The normal modes improve the accuracy of reduced model in the low-frequency domain,

while the constraint modes describe static deformations of the model due to the influence

on the interface coordinates. Unlike the Guyan reduction procedure the Craig-Bampton

method utilizes the both stiffness and mass characteristics of the model. Besides, as op-

posed to the modal truncation, it takes into account distribution of external forces to

compute correction modes for exact modeling of static deformations. The method pro-

vides an accurate approximation for low and medium eigenfrequencies and corresponded

eigenforms. The main drawback of the approach is that the accuracy of reduced model

highly depends on the number and position of interface coordinates. This fact complicates

generation of reduced order models that satisfy specified accuracy demands. In additon,

the number of fixed-interface normal modes required for the acceptable accuracy is diffi-

cult to estimate a priori. Another issue with the computed fixed-interface normal modes is

that they can be nearly orthogonal to the applied loads and, therefore, do not participate

significantly in the solution. It follows that the correct choice of interface coordinates and

fixed-interface modes requires much experience and insight into the specific problem.

2.4 Validation tests for reduced models

Although in certain cases the theory of the applied reduction approach indicates the qual-

ity of dynamic properties for the reduced model, the application of certain correlation cri-

teria assure that the reduced model’s dynamics sufficiently captures the properties of the

full model [43]. In order to validate the reduced order model we employ the eigenfrequency

related criterion - Normalized Relative Eigenfrequency Difference (NRED), eigenvector re-

lated criterion - Modal Assurance Criterion (MAC), and the frequency response analysis

to evaluate a relative error of transfer functions.
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2.4.1 Eigenfrequency related test

The NRED creation is defined as follows:

NREDi =

∣∣f ired − f ifull∣∣
|f ired|

,

where f ired and f ifull are i-th eigenfrequencies of reduced and full models, respectively. The

lower the value of this criterion is, the better the reduced model captures the dynamic

properties of the original model at the predefined frequency range.

2.4.2 Eigenvector related test

The MAC approach deals with the information regarding the angle of compared eigenvec-

tors, as well as their orthogonal coherence. In order to compare eigenvectors of original

and reduced models, it is necessary to expand the reduced eigenforms Ψred back to the

original dimension. It is can be done using the relationship:

Ψexp = V ·Ψred,

where V is the coordinate transformation matrix from Eq. 2.138 . Denoting Ψfull to be

a matrix of original model eigenvectors, the modal assurance criterion is defined as:

MACi,j =
(ΨT

fulli
·Ψexpj)

2

(ΨT
fulli

.Ψfulli)(Ψ
T
expj

.Ψexpj)
. (2.157)

The value MACi,i = 1 corresponds to the absolute correlation. The less this value

becomes, the worse the eigenvector correlation is. If diagonal elements of MAC matrix

have magnitudes larger or equal than 0.8, the correlation is considered satisfactory [43].

It is necessary to point out that if a model has repeated eigenfrequencies, then any linear

combination of the corresponding eigenvectors is also an eigenvector. As the eigenforms

are not uniquely defined, the correlation between the vectors using the MAC might be

low. This implies that the MAC test becomes an unsuitable tool to assess the quality of

reduced order model containing repeated eigenfrequencies.

2.4.3 Frequency response analysis

We perform the frequency response analysis to evaluate a reduction error in the frequency

domain. For a single-input single-output system the quality of reduced order model can

be checked using a Bode plot of transfer function. For multi-input multi-output systems

it is problematically to control all transfer functions separately, therefore the error of

reduction is usually evaluated using the Frobenius norm as
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ε(ω) =
‖H(iω)− Ĥ((iω))‖F

‖H(iω)‖F
, (2.158)

where H and Ĥ are the transfer matrices of original and reduced systems. The error of

transfer functions having small amplitudes has little influence on the value of Eq. 2.158,

therefore the function ε(ω) shows mainly an averaged relative error of transfer functions

with large amplitudes.

2.5 Modeling elastic multibody systems

In the previous sections the derivation of equations of motion was limited to a single

unconstrained elastic body. In this section the model of elastic body is integrated into

a multibody system where the motion of bodies is affected by other system components.

The modeling of constrains, derivation of equations of motion of elastic multibody system,

and solution methods are discussed in the subsequent sections.

2.5.1 Modeling of constraints

The main types of constraints in EMBS are prescribed trajectories, joints, and contacts.

They are introduced to the dynamic formulation of EMBS by algebraic equations

g(z, t) = 0, (2.159)

g(z) = 0, (2.160)

g(z, t) ≥ 0. (2.161)

Here z denotes the vector of system generalized coordinates, t defines time, and g is a

vector of constraints. In this work we consider modeling of prescribed trajectories and

joints. The user interested in modeling of contacts is referred to the review article [92].

The Lagrange multiplier method is currently the most widely used technique for incor-

porating constraints in the floating frame formulation. The method is used with the

absolute coordinate formulation, as well as with the relative coordinate formulation to

describe loop-closure constraints.

For the absolute coordinate formulation the number of Lagrange multipliers is equal to

the number of constraints. The number of system unknown coordinates composed of the

vector of system generalized coordinates and the vector of Lagrange multipliers becomes

maximal. The dynamic formulation of EMBS leads to a system of DAEs. However, the

Lagrange multipliers and associated dependent coordinates can be eliminated prior the

solution, in order to obtain a minimal set of coordinates. The set of dependent coordinates

can be identified using a constraint Jacobian matrix. This coordinate reduction results
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in a system of ODEs. The solution of the independent differential equations defines the

independent coordinates. The dependent variables are determined by using constraint

equations. The advantage of the Lagrange multiplier method is that the equations of

constraints are satisfied with high accuracy and the equations of motion of various EMBS

can be constructed in a straightforward way. The drawback of the method is that it results

in a system of DAEs with a maximal number of unknown coordinates. The elimination of

dependent DoFs and associated Lagrange multipliers requires additional computational

efforts and usually generates a stiffer system of equations of motion.

The formulation of constraint equations of joints in a three dimensional analysis requires

introducing a joint coordinate system. The joint coordinate systems are attached to so

called pilot nodes with six DoFs. The pilot nodes are defined at the center of interface

surface of the joint. The nodes on the interface surface are connected with the pilot

node by multipoint constraints. The joint contact surface can be modeled as rigid by

rigid multipoint constraints, or as flexible by flexible multipoint constraints. The joint

constraint equations are formulated using two joint coordinate systems in the same way

as it is done in rigid multibody dynamics.

The efficiency of many reduction approaches is limited by the number of interface nodes

in which the elastic body is or can be loaded. The forces in joints may be applied on the

entire joint surface, which leads to an enormous number of interface DoFs. In this case,

interface reduction is required. One of the solutions of the problem is to condense the

nodes of a given interface surface into a single node, which represents the motion of the

interface surface. The interface reduction is considered in [39, 64].

2.5.2 Equations of motion of elastic multibody systems

Using the Lagrange multiplier method and the augmented formulation of equations of

motion, the dynamic behavior of elastic multibody system is defined by the following

system of equations M(z) · żI+D · zI+K · z+GT · λ=w(t, z, zI)

g(t, z) = 0.
(2.162)

Here M,D, and K are system mass, damping, and stiffness matrices; z is a vector of

generalized coordinates that is composed of generalized coordinates of each body in the

system; the vector w defines the sum of quadratic velocity and external forces; g denotes

a vector of constraint equations. The constraint forces are introduced to the system of

equations by the Lagrange multipliers λ, and the Jacobian matrix Gz of the vector of

constraints:

G =
∂g

∂z
·T(z) = Gz ·T(z) (2.163)
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where the matrix T is from the relation of generalized velocity coordinates and a derivative

of generalized position coordinates:

ż = T · zI. (2.164)

Eq. 2.162 is a system of differential equations of motion that can be solved for the vector of

system generalized coordinates z and the vector of Lagrange multipliers λ. This equation

is used as a basis for the development of solution algorithms of multibody dynamics.

2.5.3 Solution of equations of motion for elastic multibody systems

Many techniques are available in the literature for the numerical solution of a mixed set

of differential and algebraic equations. Dynamic equations of multibody systems with

flexible bodies are usually large-dimensional and stiff. This introduces restrictions on the

choice of numerical solution methods. In this section, we outline the most often used

approaches in the context of EMBS simulation.

Eq. 2.162 forms a set of index-3 differential algebraic equations. Solution of equations

written in this form is possible only in rare cases. Solution approaches for DAEs consist of

two groups: transformation of DAEs to ODEs by the elimination of redundant generalized

coordinates and Lagrange multipliers [90, 45, 86]; and index reduction methods that

reduce the system of equations to index-1 DAEs [33, 12].

There is a large number of integration algorithms for the numerical integration of ODE

systems. One-step methods use values of the function and its derivative in a current

interval to determine the next value, while multi-step methods attempt to increase the

accuracy by using values of previous intervals as well. Explicit methods calculate the

next value of the function from the value of the function and its derivative at the current

step, while implicit methods find the next value by solving an equation involving both the

current value and the next one. Due to the high stiffness of dynamic equations of EMBS,

the use of implicit integrators is preferable as they are more stable. Another advantage

of implicit solution procedures over the explicit methods is that the time step can be

larger than the smallest natural period of the system. However, in this case, the modes

with a natural period of the same order or smaller than the chosen time step are not

accurately modeled. For this reason, some experience is needed in choosing a time step

that provides a response within a required accuracy [89]. There exists a critical number

of DoFs above which the explicit procedures are computationally more efficient than the

implicit procedures, because the implicit methods require solution of a system of algebraic

equations at each time step.

The second type of solution methods is index reduction techniques. The index defines

the minimum number of differentiations needed to transform given DAEs into an explicit

system of ODEs for all unknown variables. The index of Eq. 2.162 is determined by two
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differentiations of constraint equations and one differentiation of Lagrange multipliers.

The DAE system of index-2 takes the form

M(z) · żI + GT · λ=f

G · zI + Gt = 0,
(2.165)

where f includes a vector of quadratic velocity force, stiffness and damping forces, and

external forces; Gt defines a derivative of constraint vector g with respect to time.

The second derivative of constraint equations g is given by

g̈ =
∂ġ

∂ż
z̈ +

∂ġ

∂z
ż +

∂ġ

∂t
. (2.166)

Here the first summand takes the form

∂ġ

∂ż
z̈ =

∂ (Gz · ż + Gt)

∂ż
z̈ = Gz · z̈. (2.167)

The term z̈ can be found as

z̈ = T · żI + Ṫ · zI. (2.168)

The second summand is obtained as follows:

∂ġ

∂z
ż =

∂ (Gz · ż + Gt)

∂z
ż = (Gz · ż)z · ż + Gtz · ż (2.169)

Finally, the last term of Eq. 2.166 yields

∂ġ

∂t
=
∂ (Gz · ż + Gt)

∂t
= Gzt · ż + Gtt. (2.170)

Using Eq. 2.164 and Eq. 2.168, the second derivative of constraint vector g is defined as

g̈ = Gz ·
(
T · żI + Ṫ · zI

)
+ (Gz · ż)z ·T · zI.+ Gtz ·T · zI + Gzt ·T · zI + Gtt. (2.171)

The system of index-1 DAEs can be written as

[
M GT

G 0

]
·

[
żI

λ

]
=

[
f

γ

]
(2.172)

with γ = −Gz · Ṫ · zI − (Gz · ż)z ·T · zI − 2 ·Gzt ·T · zI −Gtt.

If the matrix of left hand side of Eq. 2.172 is invertible in a neighborhood of solution, then

the system has a unique solution for the variables żI and λ. This holds if the Jacobian

matrix G has a full rank, i.e. the constraint equations are linear independent, and the

mass matrix M is symmetric and positive definite.

52



2 Fundamentals of elastic multibody systems

The solution of Eq. 2.172 can be found by the Gaussian elimination and it yieldsżI=M−1 ·
(
f −GT · λ

)
λ =

(
G ·M−1 ·GT

)−1
(G ·M−1 · f − γ) .

(2.173)

Substituting the latter equation into the former leads to an ODE for the variable zI.

The system of equations to be solved is given as
ż = T · zI

żI=M−1 ·
(
f −GT

z · λ
)

λ =
(
Gz ·M−1 ·GT

z

)−1
(Gz ·M−1 · f − γ) .

(2.174)

Assuming Lipschitz continuity of right hand side of differential equations, the unique

solution for z and zI is guarantied. It follows that the Lagrange multipliers are also

uniquely determined.

It is necessary to point out that the solution of Eq. 2.174 may dissatisfy the position

and velocity constraints. This phenomenon is called a drift effect. Many of the methods

proposed for the solution of index-1 DAEs allow small constraint violations. In order to

alleviate the drift effect stabilization techniques must be used.

In contrast to solution approaches that use minimal set of coordinates, the index reduction

techniques keep sparse structure of equations of motion. The sparsity of system equations

is computationally advantageous because it is usually more efficient to solve a large system

of sparse equations rather than a smaller system of dense equations.

The widely used methods for the solution of Eq. 2.172 are the Newmark, Runge-Kutta,

Gear’s, and generalized alpha methods. Gear’s algorithm is particularly suited to DAEs

because it can be tuned to be stable for stiff equations [89].
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reduction

The primary goal of model order reduction methods based on projection is to construct

a coordinate transformation matrix V, see Section 2.2.1. For this purpose, the line fit-

ting method exploits transfer functions, which provide complete description of dynamic

behavior of a system. The transfer functions can be found by applying the Laplace trans-

formation to equations of motion of deformable body. In this thesis the equations of

motion are formulated based on the floating frame of reference approach described in

Section 2.1.1. According to this approach the motion of body is separated into the large

rigid body motion approximated by the motion of body coordinate system and small

deformations with respect to the body frame. According to Section 2.2.1, the following

equations describe deformation effects of the body and have to be reduced:

Me · q̈(t)+De · q̇(t) + Ke · q(t) = Be · u(t)

y(t) = Ce · q(t).
(3.1)

The matrices Me, De, Ke ∈ RN×N denote constant mass, damping, and stiffness matrices,

where N is a total number of DoFs of FE model. The terms u(t) ∈ Rp and y(t) ∈ Rr

define input and output vectors, respectively, with p and r being numbers of input and

output coordinates. The matrices Be ∈ RN×p and Ce ∈ Rr×N are input and output

matrices that distribute loads on respective degrees of freedom of the model and select

coordinates of interests from the vector q, respectively.

The Laplace transformation of a function f(t), t > 0 is defined as

L{f(t)}(s) =

ˆ ∞
0

e−st · f(t) dt. (3.2)

The transformation of first and second time derivatives of f(t) yields

L{ḟ(t)}(s) = s · L{f(t)} − f(0) (3.3)

L{f̈(t)}(s) = s2 · L{f(t)} − s · f(0)− ḟ(0). (3.4)
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Assuming zero initial conditions, the Laplace transformation of the system of Eq. 3.1 gives

y(s) = H(s) · u(s). (3.5)

The variable s is a complex number, and it takes a physically meaningful value by

s = i · 2πf with f being an excitation frequency. The terms y(s) := L{y(t)}(s) and

u(s) := L{u(t)}(s) define the Laplace transforms of output and input vectors. The

matrix H(s) is a matrix of transfer functions and it is defined as

H(s) = Ce · (s2·Me + s ·De + Ke)
−1 ·Be. (3.6)

According to the demands to model order reduction techniques used for EMBS simulation,

see Section 2.2.2, the coordinate transformation matrix V has to capture only deformation

effects. In order to obtain the matrix V without rigid body modes, it is necessary to

exclude the component of rigid body motion from elastic coordinates.

3.1 Elimination of rigid body motion from elastic

coordinates

Slight damping insignificantly influences model eigenvectors and eigenfrequencies. For

this reason, the modal analysis of slightly damped systems can be performed using modal

characteristics of undamped systems. The modal representation of displacement vector

for undamped system takes the form

q = Ψ · η, (3.7)

where the matrix Ψ ∈ RN×Nconsists of modes of the system and η defines modal coor-

dinates. Substituting Eq. 3.7 into Eq. 3.1 and premultiplying by ΨT yield the system of

equations of motion and the transfer function matrix in terms of modal coordinates as

ΨT ·Me ·Ψ · η̈+ΨT ·De ·Ψ · η̇ + ΨT ·Ke ·Ψ · η = ΨT ·Be · u(t)

y(t) = Ce ·Ψ · η
(3.8)

and

H(s) = Ce ·Ψ · (s2 ·ΨT ·Me ·Ψ + s ·ΨT ·De ·Ψ + ΨT ·Ke ·Ψ)−1 ·ΨT ·Be. (3.9)

Partition of modal matrix into rigid and deformation modes yields
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Ψ =
[
Ψ0, Ψ1

]
. (3.10)

Due to the orthogonality property of eigenvectors, see e.g. [21], the non-diagonal terms

of modal mass and stiffness matrices vanish:

ΨT
i ·Me ·Ψj = 0 and ΨT

i ·Ke ·Ψj = 0 for i, j = 0, 1, i 6= j. (3.11)

When using the proportional representation of damping matrix De = α ·Me + β ·Ke ,

the same conditions are satisfied for non-diagonal blocks of modal damping matrix, i.e.:

ΨT
i ·De ·Ψj = 0 for i, j = 0, 1, i 6= j. (3.12)

Thus, the transfer function matrix

H(s) = Ce ·
[
Ψ0, Ψ1

]
·

[
ΨT

0 ·P ·Ψ0 0

0 ΨT
1 ·P ·Ψ1

]−1 [
ΨT

0

ΨT
1

]
·Be

with P = s2 ·Me + s ·De + Ke can be decomposed into two parts

H = H0 + H1, (3.13)

where

Hj = Ce ·Ψj · (ΨT
j ·P ·Ψj)

−1 ·ΨT
j ·Be, j = 0, 1 (3.14)

The component of transfer function matrix for pure deformations H1 can be calculated

without computing deformation modes as

H1 = H−H0 (3.15)

where the component of rigid body motion H0 can be computed by the matrix of rigid

body modes defined in Eq. 2.143. It follows that the solution of eigenvalue problem is

not necessary for the construction of matrix H1. Graphically the process of eliminating

of the component of rigid body motion from a transfer function can be illustrated by a

magnitude plot shown in Fig. 3.1.

According to [47] the elimination of component of rigid body motion from transfer func-

tions can be also performed by the following transformation of input matrix

Bmod =
(
I−MeV̄0V̄

T
0

)
Be , (3.16)

where V̄0 is a matrix of rigid-body modes normalized through the mass matrix Me, and
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Figure 3.1: Elimination of component of rigid body motion from a transfer function.

I is an identity matrix of size N ×N . The reader interested in the physical interpretation

of this transformation is referred to [21, 35].

The goal of the line fitting method is to approximate transfer functions that describe

pure deformations. The eliminated rigid body motion will be taken into account in the

equations of motion by the motion of floating frame.

3.2 Approximation of transfer functions

3.2.1 Method description

Multiplication of the both parts of Eq. 3.13 with the input load vector u yields

H · u = H0 · u + H1 · u (3.17)

that can be written in a more compact form

y = y0 + y1, (3.18)

where y0 and y1 correspond to a rigid body motion component and a deformation compo-

nent of output coordinates y, respectively. Let non-output coordinates be denoted as y⊥.

Similarly to the decomposition of output coordinates y the vector y⊥ can be represented

as

y⊥ = y⊥0 + y⊥1 . (3.19)

Using this notation the vector of nodal displacement coordinates is given as
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3 Line-fitting method of model reduction

q =

[
y

y⊥

]
=

[
y0

y⊥0

]
+

[
y1

y⊥1

]
= q0 + q1. (3.20)

As it is discussed in Section 2.2.1, the nodal elastic coordinates are approximated using

reduced coordinates q̂ and the coordinate transformation matrix V as

q = V · q̂. (3.21)

Since we require the matrix V without rigid-body modes, we calculate it using the relation

q1 = V · q̂. (3.22)

The matrix V obtained from this equation will be used for the reduction of q.

Similarly to the condensation reduction approaches, the degrees of freedom of reduced

order model are chosen to be output coordinates:

q̂ = y1. (3.23)

This choice of q̂ requires a proper initialization of the method, which is discussed in

Section 3.2.2.

Substituting q1 from Eq. 3.20 and Eq. 3.23 into Eq. 3.22 yields

[
y1

y⊥1

]
= V · y1. (3.24)

The transformation matrix V can be partitioned in the same way as the left hand side of

Eq. 3.24, that is

V =

[
I

W

]
(3.25)

with I ∈ Rr×r and W ∈ R(N−r)×r being an identity matrix and an approximation matrix

for non-output coordinates, respectively. It follows that the non-output coordinates are

approximated using the input coordinates as

y⊥1 = W · y1. (3.26)

The vectors y⊥1 and y1 are connected with the transfer function matrices as

y1(s) = H1(s) · u(s) (3.27)

y⊥1 (s) = H⊥1 (s) · u(s). (3.28)

Analogous to H1 and H⊥1 for the full order model, let Ĥ1 and Ĥ⊥1 denote transfer function
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matrices of reduced order model.

The idea is to fit the transfer functions Ĥ1 by fitting adjacent to them transfer functions

contained in H⊥1 . The error of adjacent transfer functions is reduced by minimizing an

error of transfer functions from H⊥1 :

∆H⊥1 (s) = H⊥1 (s)−W ·H1(s). (3.29)

This results in the relation

H⊥1 (s) = W ·H1(s). (3.30)

Next, the matrix W is constructed as a compromise between different points sk = i ·2πfk,
k = 1..z of the frequency range of interest, where z defines a number of frequency points.

Eq. 3.30 is turned into

[
H⊥1 (s1), · · · , H⊥1 (sz)

]
= W ·

[
H1(s1), · · · , H1(sz)

]
. (3.31)

In order to avoid working with complex numbers, Eq. 3.31 is decomposed into real and

imaginary parts as

[
<(H⊥1 (s1), · · · , H⊥1 (sz) ), =(H⊥1 (s1), · · · , H⊥1 (sz))

]
= (3.32)

W·
[
<(H1(s1), · · · , H1(sz) ), =(H1(s1), · · · , H1(sz))

]
that can be written in more simple form as

Tn = W ·To.

Transposing the last equation we get

TT
o ·WT = TT

n . (3.33)

The matrices TT
o ∈ R2pz×r and TT

n ∈ R2pz×(N−r), where p, r, and z are the numbers of

input coordinates, output coordinates, and reference frequency points, respectively; N is

the total number of finite element model. The matrix W can be found as a least-squares

solution of Eq. 3.33. After that, the coordinate transformation matrix V is obtained using

Eq. 3.25. The number of reduced coordinates n is equal to the number of outputs r.

The obtained matrix V can be used for the reduction of coordinates in the time domain
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because V is constant and the inverse Laplace transformation is a linear operator, i.e.

q1(t) = L−1{q1(s)}(t) = L−1{V · q̂(s)}(t) = (3.34)

V · L−1{q̂(s)}(t) = V · q̂(t). (3.35)

Further we discuss under which conditions the described method leads to an accurate

approximation of transfer functions of interest H1.

3.2.2 Method initialization

The accuracy of reduced order model is limited among other factors by a number of

reduced coordinates. There is a certain number of reduced coordinates by which an

accurate approximation of limited frequency range can be gained. In case of the line-fitting

method, the order of reduced model is defined by a number of output DoFs. In order

to improve accuracy of transfer functions of interest, the set of input-output coordinates

for the construction of matrix V can differ from the set of coordinates defined by a user.

The optimal number of reduced coordinates for a certain model is difficult to estimate a

priori. We found that a number of DoFs equal to a double number of eigenfrequencies

contained in the frequency range of interest is usually enough to achieve high accuracy

of important transfer functions. These DoFs have to be distributed thought the model

including the user defined inputs and outputs. Let this set of DoFs be referred to as

interface coordinates. The interface coordinates serve as input and output coordinates

for the method initialization. The important for the user transfer functions are contained

in the set of transfer functions originated by the interface coordinates, therefore tuning

of interface transfer functions leads to the reduction of error of user defined transfer

functions.

The error ∆H⊥1 from Eq. 3.29 can be decreased not only by solving Eq. 3.30 for the matrix

W, but also by including in H1 additional transfer functions that enable more accurate

approximation of H⊥1 . The correction transfer functions can be inserted in H1 by proper

distribution of interface coordinates.

Another issue of the initialization process is related to the choice of reference frequency

points. These points can be defined by analyzing the transfer functions H1. The set of

frequency points is common for all transfer functions in H1, therefore it is sufficient to

assign frequency points only for several of them. The question concerning the proper

choice of reference frequencies is considered in the next section.
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3.3 Reference frequency points

Resonance and antiresonance frequencies determine important dynamic characteristics

of deformable bodies. For this reason, the reference frequency points that are used for

the initialization of line-fitting method have to include the resonance and antiresonance

points. Besides, the set of reference frequency points can contain additional frequencies

to enhance the quality of reduced models in special ranges of spectrum.

The resonance and antiresonance frequencies can be identified by frequency response

functions or by finite element mass and stiffness matrices.

3.3.1 Identification of resonance frequencies

Resonances correspond to poles of transfer function. They are associated with peaks in

the magnitude of transfer function and with the simultaneous change of phase on −180◦ .

The weak damping has a negligible influence on the resonance frequencies, therefore the

resonances can be determined using an undamped system. The transfer function matrix

of undamped system is obtained as

H =
(
Ke − ω2 ·Me

)−1
=

adj(Ke − ω2 ·Me)

det(Ke − ω2 ·Me)
. (3.36)

The element clk of adjugate matrix C = adj(A) takes the form

clk = (−1)k+ldet(A[kl]), (3.37)

where A[kl] is obtained from the matrix A by the elimination of k-th row and l-th column.

The poles of transfer functions in the system are defined by the solution of the following

equation

det(Ke − ω2 ·Me) = 0. (3.38)

The resonance frequencies fk are connected with the values ω2
k by the relation

fk =

√
ω2
k

2 · π
, k = 1..N. (3.39)

3.3.2 Identification of antiresonance frequencies

Antiresonances correspond to zeros of transfer functions. These frequencies are deter-

mined by dips in the magnitude of transfer function and simultaneous change of phase on

+180◦. The slight damping affects antiresonance frequencies to a small extent [24]. The

antiresonance frequencies are characteristics of transfer functions. The transfer function

with a given input k and output l is defined as an element Hlk of transfer function matrix.

61



3 Line-fitting method of model reduction

The zeros of Hlk are those ω for which the numerator of Hlk vanishes. Using Eq. 3.37 the

zeros of transfer function Hlk are specified by the solution of the eigenvalue problem

det(K[kl] − ω2 ·M[kl]) = 0. (3.40)

The antiresonance frequencies are obtained from the values ω2
j as

fj =

√
ω2
j

2 · π
, j = 1..N − 1. (3.41)

3.4 Preservation of stability

The preservation of stability is an important property of reduction approaches because

it ensures that the reduced model does not cause any type of failure (e.g., instability,

excessive vibrations, large stresses) to the EMBS.

In this thesis, the stability concept is considered for a system of linear second order

equations of motion of Eq. 2.139. The stability means that for any limited initial values

q̂0, ˙̂q0 there is a limited solution of the system of equations q̂(t), t > 0, see [6]. The stability

is determined by eigenvalues of the generalized eigenvalue problem. The asymptotic

stability presents if all eigenvalues possess only negative real parts. In [59] a special

criterion is proposed to ascertain whether this property is preserved. The system is

asymptotic stable if and only if the system matrices have the following properties:

M̂e = M̂T
e > 0, D̂e = D̂T

e > 0, K̂e = K̂T
e > 0. (3.42)

The coordinate transformation matrix of line fitting method possesses no rigid body modes

because the matrix is constructed for the system with suppressed rigid body motion. In

addition, the columns of the coordinate transformation matrix are linear independent

because of identity matrix in V, see Eq. 3.25.

It follows that the reduced system matrices M̂e, K̂e are positive definite. In case of using a

proportional damping matrix, the reduced damping matrix has the same property D̂e > 0.

Besides, considering the symmetric property of original finite element matrices the reduced

system matrices are also symmetric:

M̂T
e =

(
VT ·Me ·V

)T
= VT ·MT

e · (VT )T = VT ·Me ·V = M̂e. (3.43)

It follows that the line fitting method preserves model stability.
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This chapter is devoted to the comparison of the line fitting reduction approach proposed

in Chapter 3 and the classical Craig-Bampton method described in Section 2.3.3. The

comparison is carried out based on two models: an elastic bar and a bearing cage. The

model of bar was developed for academic purposes to test different order reduction ap-

proaches. It has a simple form and a relative small number of degrees of freedom, which

significantly simplifies its analysis and interpretation of results. The second model is a

part of needle roller bearing (Fig. 4.1) used in rear swinging forks. Due to the complex

geometry and large number of DoFs the model is referred to as a complex model.

Figure 4.1: Bearing design.
Source: [85]

The comparison of reduction techniques is performed using the validation methods pre-

sented in Section 2.4: eigenfrequency and eigenvector related tests, frequency response

analysis, as well as validation in the time domain using different simulation setups. The

dynamic properties of finite element non-reduced models developed in Ansys serve as ref-

erence characteristics for the assessment of reduction approaches. Ensuring of compliance

of FE models with real items is a task of FE-engineers, therefore this point is not con-

sidered in the thesis. Section 4.1 covers the comparison of reduction methods based on

the model of elastic bar, while Section 4.2 is devoted to the analysis of more challenging

model - the elastic cage.
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4.1 Simple model

4.1.1 Model description

The finite element model of elastic rod is illustrated in Fig. 4.2.

Figure 4.2: Flexible bar.

The bar has the following characteristics:

� Size: 6× 8× 300 mm,

� Mass: 0,1 kg,

� Young’s modulus: 2e+10 Pa,

� Damping factor beta: 10e-5,

� Number of degrees of freedom: 1656.

The modal analysis of free bar yields the eigenfrequencies shown in Table 4.1.

Table 4.1: Nonzero eigenfrequencies of free bar.

Mode 7 8 9 10 11 12 13 ...

Frequency, Hz 133,06 171,78 364,45 469,75 714,94 917,99 1173,7 ...

The bar is subjected to the influence of three external forces applied at the middle point,

left and right ends of the model. The operating conditions of the bar are illustrated in

Fig. 4.3.

We define the interval [0, 1000] Hz as a frequency range of interest. It is necessary to

point out that this interval contains six deformation eigenfrequencies.
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Figure 4.3: Operating conditions of the bar.

The set of input coordinates includes 9 DoFs of 3 nodes where external forces are applied,

see Fig. 4.4. The set of output coordinates coincides with the set of input parameters.

Figure 4.4: Input and output coordinates of the bar.

4.1.2 Initialization of reduction methods

Craig-Bampton method

The initialization of Craig-Bampton method is carried out in a standard way. The set

of interface (boundary) nodes consists of the nodes where external forces are applied.

The interface nodes for the Craig-Bampton method are shown in Fig. 4.5. The initial

estimation of sufficient number of dynamic modes is usually made using a rule of thumb

for this method: double number of eigenfrequencies contained in a frequency range of

interest. In order to enhance accuracy of model reduced by the Craig-Bampton method,

we increase the number of retained normal modes to 19, which is more than three times

larger than the number of eigenfrequencies in the frequency rage of interest. It follows

that the number of constrained and dynamic modes is equal to 9 and 19, respectively. In

order to use the obtained modes in the context of elastic multibody simulation, they must

be adapted to demands discussed in Section 2.2.2. Since none of the used modes are mass

orthogonal to a subspace spanned by the rigid body modes, the generated modes have to

be projected onto a subspace of deformation modes. This can be performed using Eq. 2.142

and subsequent elimination of depended modes. As it is discussed in Section 2.2.2 these

operations do not damage dynamic properties of a reduced model. The column dimension
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of coordinate transformation matrix V after the execution of described procedure becomes

9 + 19− 6 = 22. It follows that the dimension of reduced order model is 22.

Figure 4.5: Interface nodes of the bar for the Craig-Bampton method.

Line-fitting method

The frequency range of interest and input and output coordinates are considered as a

given information for the initialization of line-fitting method. The task of engineer is to

choose an appropriate order of reduced model, to define interface degrees of freedom, and

to allocate reference frequency points. The order of reduced model depends on a number

of transfer functions that need to be tuned and a number of eigenfrequencies contained

in a frequency range of interest. As it is discussed in Section 3.2.2, the order equal to a

double number of eigenfrequencies in the frequency range of interest is usually enough

to achieve high accuracy of reduced model. In the case of the bar model, we define the

order of reduced model to be 14. After that the same number of interface DoFs must

be determined. Nine interface degrees of freedom are assigned to nine user defined input

and output coordinates, while the remaining five coordinates are distributed thought the

model. The interface coordinates are located as it is shown in Fig. 4.6. The choice of an

optimal order of reduced model and efficient allocation of interface coordinates are the

topics of further research.

Figure 4.6: Interface degrees of freedom for the line-fitting reduction method.

In order to chose reference frequency points, we compute transfer functions specified by the

interface DoFs. As it is considered in Section 3.2.2, the set of reference frequency points

is common for all interface transfer functions, therefore it is possible to obtain a complete

set of frequency points analyzing only several transfer functions. The reference points

are defined at resonance, antiresonance and some intermediate frequencies of the interval

[0,1000] Hz, see Fig. 4.7. For this model 20 frequency points of interest are assigned.

After the coordinate transformation matrices for the Craig-Bampton and line-fitting meth-

ods are generated, we perform the tests aimed at the evaluation of quality of reduced order

models.
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Figure 4.7: Choice of reference frequency points for the line-fitting reduction method.

4.1.3 Validation of reduced order models

For the comparison of the reduced order models we employ three criteria from Section 2.4:

relative eigenfrequencies difference, modal assurance criterion, and relative error of trans-

fer functions.

Normalized Relative Eigenfrequency Difference

Fig. 4.8 represents the result of NRED test for the eigenfrequencies in the predefined range

of interest [0, 1000] Hz, as well as for all eigenfrequencies of the reduced models.

Figure 4.8: Relative error of non-zero eigenfrequencies for reduced models.

The diagrams show that the eigenfrequencies in the predefined frequency range are accu-

rately approximated by the both methods, but the precision is considerably better for the
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line-fitting model. The error of eigenfrequencies outside the interval of interest is more

significant. In the case of line-fitting method, it is explained by the fact that the reference

frequency points are allocated only in the frequency rage of interest. Besides, the dia-

grams show that the number of incorrect values for the line-fitting model is small, which

keeps the order of reduced model close to minimum and eliminates the problems with

an erroneous high-frequency spectrum: ill-conditioned matrices and the need of using a

small integration step.

Modal Assurance Criterion

Fig. 4.9 illustrates the results of MAC test. The diagrams show that MAC values for all

modes in the predefined frequency range are higher than 0.8. This implies a high corre-

lation of deformation forms of the reduced and full models and, as a result, a qualitative

successful approximation.

Figure 4.9: Validation of deformation modes using MAC test.

The quality of reduction can be evaluated more precisely if modes that are active under

operating conditions are known.

Frequency response analysis

The preservation of important dynamic properties in a reduced order model can be exam-

ined using transfer functions of original and reduced models. For multi-input multi-output

systems the error of transfer functions is usually evaluated using Eq. 2.158. The function

ε(ω) can be treated as a total error introduced by a model reduction approach to certain

transfer functions in a certain frequency range.
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The transfer functions of interest for the model of bar are specified by the coordinates

shown in Fig. 4.10.

Figure 4.10: Input and output coordinates of transfer functions of interest.

The relative error ε(ω) for the Craig-Bampton and line-fitting reduced order models is

compared in Fig. 4.11.

Figure 4.11: Relative error of frequency response for different reduced models of the bar.

The plot of Fig. 4.11 shows that the line-fitting method approximated the relevant transfer

functions more accurately than the Craig-Bampton approach, especially at the resonance

points. The error of line-fitting model does not exceed 3%. The Craig-Bampton method

provides acceptable results only until 400 Hz. After that the error increases up to 70%.

4.1.4 Simulation

The use of reduced order models in the context of elastic multibody systems implies that

reduction techniques provide a meaningful approximation not only for the elastic part of

69



4 Application examples

equations of motion of Eq. 2.136, but also for the complete set of equations from Eq. 2.140.

In order to verify the complete set of equations of motion, as well as to gain information

about a proper time step of integration and the total time of simulation of reduced order

models, we perform the following simulation test.

The body is subjected to three constant forces as it is shown in Fig. 4.12.

Figure 4.12: External forces applied to the bar.

The value of end-forces is

FC
y = FB

y = 5 N,

while the middle-force acts in the opposite direction with a magnitude

FA
y = −2FC

y = −10 N.

The resultant force is equal to FA
y + FB

y + FC
y = 0. The interest is focused on the

displacement of the middle point along the vertical axis Y. The interval of simulation

equals 3 · 10−2 s and covers several periods of bar oscillation. As the body floating frame

is chosen the Buckens coordinate system described in Section 2.1.6. In order to solve the

system of equations, we exploit the implicit Backward-Euler method. The simulation is

performed in Maple.

Fig. 4.13 compares the response of original FE model with the response of models reduced

by the Craig-Bampton and line-fitting methods. The simulation of reduced order models

yields nearly the same results. The accuracy of simulation is high for the both methods,

but the erroneous high-frequency spectrum of Craig-Bampton model significantly de-

creases a suitable step of integration and, consequently, slows down the simulation. The

simulation time of Craig-Bampton model is 3,5 hours, while the simulation of line-fitting

model takes 15 minutes, which is 14 times faster.
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Figure 4.13: Simulation results of reduced models.

4.1.5 Comparison of reduced order models

Table 4.2 summarizes the results of analysis of the line-fitting method and compares them

with the corresponding results of the classical Craig-Bampton method based on CMS

approach.

The data show that the method proposed in this thesis constructed the reduced order

model with the lower order, higher accuracy and better condition properties of system

matrices. The cost of coordinate transformation matrix generation is higher as compared

to the Craig-Bampton approach, but it remains acceptable for moderately dimensional

FE models. In addition, the coordinate transformation matrix has to be calculated only

once before the beginning of simulation process.
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Table 4.2: Comparison of reduced order models of the bar.

Parameters Craig-Bampton Line-fitting

Order 22 14
Highest eigenfrequency, (Hz) 2 · 105 4.5 · 103

Suitable step of integration, (s) 2.5 · 10−7 10−5

Time of simulation, (h) 3.5 0.25
Relative error of eigenfrequencies in [0,1000] Hz < 1.4 · 10−3 < 10−4

Correlation of eigenvectors in [0,1000] Hz high very high
Relative error of transfer functions in [0,1000] Hz 0.1− 70% 0, 01− 3%

Time of projection matrix generation, (min) 5 10

4.2 Complex model

In this section we reduce a model of bearing cage by the Craig-Bampton method and the

line-fitting method, perform validation tests, and compare the results.

4.2.1 Model description

The model under consideration is shown in Fig. 4.14 and has the following characteristics:

� size: 1.8 Ö 1.8 Ö 2.4 cm,

� mass: 3.3 g,

� Young’s modulus: 2.1·105 MPa,

� number of degrees of freedom: 54000.

Figure 4.14: Flexible cage.

The modal analysis of free system yields the eigenfrequencies illustrated in Table 4.3.
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Table 4.3: Nonzero eigenfrequencies of free cage.

Mode 7 8 9 10 11 12 13 14 15 16

Frequency, Hz 3985 4430 4966 4969 5087 5088 5738 5738 5858 5861

... 17 18 19 20 21 22 23 24 25 26 27

... 7077 7079 8511 8516 9076 9079 9819 9819 10860 10863 11635

... 28 29 30 31 32 33 34 35 36 ...

... 11639 12208 12214 12501 12510 12646 12651 12694 12695 ...

Damping initialization

The damping matrix of real system is rarely known in advance. The damping results

from looseness of joints and material damping, therefore the damping matrix is usually

defined by experimental results. For this model the damping matrix is assumed to be

proportional to the FE mass and stiffness matrices, see Section 2.1.8. In order to specify

values of damping coefficients, we examine a transfer function defined by an input-output

coordinate shown in Fig. 4.15.

Figure 4.15: Input-output coordinate of transfer function used for initialization of beta
coefficient of damping.

Fig. 4.16 illustrates Bode plots built in Ansys with beta damping 10−7 and 10−6 respec-

tively. Based on the recommendations of Schaeffler company we have chosen the value

10−6 for further model analysis.

Definition of frequency range of interest

The reduced order model can be generated with the emphasis of different frequency ranges.

The choice of frequency interval depends on the system operating conditions. The analysis

of transfer functions provides better insight into a certain problem, therefore the frequency

response analysis can be employed for the estimation of frequency range of interest.
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Figure 4.16: Bode plots for beta coefficients of damping 10−7 and 10−6.

According to the recommendations of Schaeffler’s engineers, we limited the frequency

range of interest by 13000 Hz. There is a gap between the model eigenfrequencies and the

amplitudes of resonance peaks are small. In order to have information about the reduced

model behavior near the boundary of the defined interval, we generate transfer functions

until 15000 Hz.
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Figure 4.17: Set of input coordinates of the cage.

Initialization of input and output coordinates

The choice of input and output degrees of freedom is task-dependent. In the case of cage

model, the exact positions of contact forces acting on the body are unknown. However,

the set of possible input coordinates can be defined as it is shown in Fig. 4.17.

In this model we are interested in the response of the same nodes, therefore the set of

output coordinates coincides with the set of input parameters. The goal of model order

reduction is to accurately approximate the dynamic behavior of the defined nodes in the

frequency range of interest.

4.2.2 Initialization of reduction methods

Craig-Bampton method

In order to construct a coordinate transformation matrix of Craig-Bamton method, one

has to define a set of interface nodes and a number of fixed interface dynamic modes.

The choice of interface coordinates is crucial for the quality of the reduced order model.

The choice is model-dependent and requires advanced engineering experience. The com-

mon criteria that specify positions of interface degrees of freedom are discussed in Sec-

tion 2.3.3.

Positions of interface coordinates for the cage model are shown in Fig. 4.18. The number

of interface nodes is 29, which results in 87 interface degrees of freedom.
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Figure 4.18: Interface nodes for the Craig-Bampton method.

The quantity of dynamic modes is usually chosen experimentally. We tuned the model

for the given frequency range and determined that 59 dynamic modes result in a very

accurate reduced order model. The size of reduced order model equals 146.

Line-fitting method

The principle of initialization of line-fitting method for the cage model is the same as it is

described in Section 4.1.2 for the elastic bar. We consider the frequency range of interest

and input-output coordinates as a given information for the initialization process. The

next initialization steps include the choice of an appropriate order of reduced model,

definition of interface degrees of freedom, allocation of reference frequency points.

The order of reduced model depends on a number of transfer functions that need to be

tuned and a number of eigenfrequencies contained in a frequency range of interest. As

it is discussed in Section 3.2.2, the order equal to a double number of eigenfrequencies

in the frequency range of interest is usually enough to achieve high accuracy of reduced

model. In case of the cage model, the number of eigenfrequencies in the frequency range

of interest is 30. In order to make the generation of accurate results more difficult for the

line-fitting method, we define the order of reduced model to be 55.

Further, 55 DoFs must be spread throughout the body. The model is stiff in Z direc-

tion (see Fig. 4.14), therefore the interface coordinates are mainly assigned to X and Y

coordinates of the nodes shown in Fig. 4.18.

The main positions of reference frequency points are points of resonances and antireso-

nances of transfer functions specified by the interface DoFs. The total set of frequency

points is the union of sets for the different transfer functions. Usually it is necessary to

allocate reference points for a few transfer functions with highest amplitudes to obtain

accurate approximation of the remaining functions. The frequency rage of the cage is
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wide and it includes 30 nonzero eigenfrequencies. For this model we defined 70 reference

frequency points.

4.2.3 Validation of reduced order models

Normalized Relative Eigenfrequency Difference

The frequency interval of interest [0,13000] Hz contains 30 nonzero eigenfrequencies. In

Fig. 4.19 we compare a relative error of eigenfrequencies for the models reduced by the

Craig-Bampton and line-fitting methods.
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Figure 4.19: Relative error of non-zero eigenfrequencies of reduced models.

The data show that the line-fitting method approximates the model spectrum about ten

times better than the Craig-Bampton procedure. However, the Craig-Bampton model is

still accurate enough, as the relative error of eigenfrequencies does not exceed 0.6 %.

Modal Assurance Criterion

The cage model is symmetric relative to the X and Y axis. This leads to the repetition

of certain eigenfrequencies of the model. In Section 2.4.2 we have pointed out that eigen-

vectors corresponded to repeated eigenfrequencies are not uniquely defined. This makes

the result of MAC test ambiguous and complicated for interpretation, therefore we omit

this test for the model of cage.

Frequency response analysis

In this section we analyze errors of transfer functions specified by different inputs and

outputs. Without loss of generality, we chose three interface nodes shown in Fig. 4.20 in
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yellow and a non-interface node marked in green for the analysis of transfer functions. In

scopes of this section the interface and non-interface nodes are referred to as master and

slave nodes, respectively.

Figure 4.20: Positions of interface nodes and a non-interface node.

Further, we consider transfer functions that correspond to master-master, master-slave,

and slave-slave inputs and outputs. Fig. 4.21 presents comparison of Bode plots for the

master-master transfer function. In this case, the input and output are the Y-coordinate

of the node at the middle of the model.

Both methods provide the accurate approximation of transfer function in the given interval

[0,13000] Hz. The increasing error of line-fitting transfer function in the range [13000-

15000] Hz is explained by the absence of reference frequency points in this region. The

Craig-Bampton method captures intervals of antiresonances and the high frequency range

slightly better, but small amplitudes of magnitude in these ranges make the error less

critical. The diagrams demonstrate that the Craig-Bampton method generated the results

comparable with the line-fitting results by the model of three times larger size.

Fig. 4.22 shows the comparison of Bode plots for master input slave output coordinates.

The input coordinate is X degree of freedom at the middle node, while the output is

X coordinate of the slave node. In this case, the responses of reduced models are still

accurate.
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Figure 4.21: Comparison of transfer functions for master input master output coordi-
nates.
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Figure 4.22: Comparison of transfer functions for master input slave output coordinates.
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Finally, Fig. 4.23 provides the comparison of results for the slave-slave case, where the

input and output are Y degree of freedom for the slave node. The diagrams show that

the error of slave-slave transfer function is larger as compared with previous tests, but

it remains acceptable because slave DoFs represent unimportant for user coordinates.

Although the line-fitting method tunes only the master-master transfer functions and

reduces the error of master-slave transfer paths, the error of slave-slave transfer function

is turned out to be comparable with the result of Craig-Bampton model.
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Figure 4.23: Comparison of transfer functions for slave input slave output coordinates.

Next, we deal with a relative error of transfer functions for all interface nodes shown in

Fig. 4.18. The error is calculated using the formula from Eq. 2.158. Fig. 4.24 compares

the relative error of transfer functions for the both reduced models.

The plot of Fig. 4.24 shows that the low frequency range is accurately approximated by

the both methods. In the interval [3500-6500] Hz the line-fitting model demonstrates

significantly better results than the Craig-Bampton model. In the range [6500-13000]

Hz the errors are comparable and they possess the following peculiarity: the resonance

frequencies are better approximated by the line-fitting method, while the Craig-Bampton

approach captures better amplitudes of antiresonances. Within the frequency range [0-

12000] Hz the error of line-fitting model does not exceed 3%, while the error of Craig-
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Figure 4.24: Relative error of transfer functions specified by the interface nodes.

Bampton model reaches 8%.

4.2.4 Simulation

The goal of simulation test described in this section is to validate the equations of motion

of reduced order models in the time domain, as well as to obtain information about the

total time of simulation.

At the initial moment the body is undeformed and it starts to rotate with the angular

velocity ω =
[

0, 0, 10
]T

. Two longitudinal rods of the cage are connected by a

stretched spring, whose influence can be treated as contact forces. The spring is attached

to the points shown in Fig. 4.25. These points are contained in the sets of interface nodes

for the both reduction techniques. The simulation of original FE model is carried out in

Ansys, while the reduced models are simulated in Maple.

Figure 4.25: Stretched spring attached to the cage.
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The interest is focused on the spring elongation. In Ansys the elongation is measured by

a spring probe feature, while in Maple it is calculated using absolute coordinates of the

nodes where the spring is attached. The spring is defined as follows:

� undeformed length: 3.65 mm,

� initial elongation: 0.2 mm,

� stiffness:104 N/m.

The period of simulation is defined to be 10−3s. The system of equations of motion are

solved by the implicit Backward-Euler method. The step of integration is initialized using

a rule of thumb as h = 1
20·fmax

, where fmax defines the maximal eigenfrequency of reduced

model. This results in the time steps 10−7s and 6 · 10−7s for the Craig-Bampton and

line-fitting models, respectively.

Fig. 4.26 represents the comparison of spring elongation for the both reduced order models.

0 0.2 0.4 0.6 0.8 1

x 10
−3

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

−4

time [s]

sp
ri

ng
 e

lo
ng

at
io

n 
[m

]

Original
Craig−Bampton

0 0.2 0.4 0.6 0.8 1

x 10
−3

1.75

1.8

1.85

1.9

1.95

2

2.05
x 10

−4

time [s]

sp
ri

ng
 e

lo
ng

at
io

n 
[m

]

Original
Line−fitting

Figure 4.26: Comparison of spring elongation for the reduced models.

As can be seen, the spring elongation for each reduced order model is in the perfect

agreement with the reference result. This gives reason to assert that equations of motion

are correctly implemented. In addition, the test reveals a significant drawback of the

Craig-Bampton model, namely, the large time of simulation. The problem is caused by

the relative large number of DoFs of the reduced order model and the small time step

of integration. The step is affected by the erroneous high-frequency spectrum of Craig-

Bampton model. These factors considerably slow down the simulation process. The

simulation of Craig-Bampton model takes 8 hours, while for the line-fitting model it is 0.8

hours, which is 10 times faster. The simulation time of the both models can be reduced

by using Matlab, C++ programs, and in some cases by explicit integration schemes.
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4.2.5 Comparison of reduced order models

Table 4.4 summarizes the results of analysis of the line-fitting reduction method and com-

pares them with the corresponding results of the classical Craig-Bampton approach.

Table 4.4: Comparison of reduced order models of the cage.

Criteria\Methods Craig-Bampton Line-fitting

Order 140 55
Highest eigenfrequency, (Hz) 4·105 8 · 104

Suitable step of integration, (s) 1 · 10−7 6 · 10−7

Time of simulation, (h) 8 0.8
Relative error of eigenfrequencies < 6 · 10−3 < 8 · 10−4

Relative error of transfer functions < 8% < 4%
Time of projection matrix generation, (h) direct import from FE software 1

The data show that the line-fitting method generated the reduced order model having

the lower order, higher accuracy of eigenfrequencies and important transfer functions,

and better condition properties of system matrices. The advantage of Craig-Bampton

approach lies in the smaller time of coordinate transformation matrix generation. In

addition, there is a possibility to import the Craig-Bampton transformation matrix from

existing FE software, while the generation of line-fitting matrix requires using of additional

preprocessor module.
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The goal of this chapter is comprehensive evaluation of the line-fitting method. The anal-

ysis is performed based on the theoretical description of the approach in Chapter 3 and

the numerical results presented in Chapter 4. At the beginning we examine whether the

proposed method solves the problem of traditional order reduction approaches: the lack

of possibility to tune a reduced order model for certain transfer functions and certain

frequency ranges. After that the method is evaluated based on the demands from Sec-

tion 1.3 to model order reduction techniques. Further, the proposed method is compared

to the existing reduction approaches described in Section 1.2. Finally, advantages and

limitations of the line-fitting method are considered.

Transfer functions comprise complete information about the behavior of points of the

model. Among traditional reduction approaches the component mode synthesis method

is the most suitable for the accurate approximation of transfer functions. The method

is based on the modal representation in which a set of normal modes and a set of cor-

rection modes are used. The correction modes allow tuning of transfer functions for a

certain frequency. However, tuning of reduced order model for certain transfer paths and

frequency ranges using CMS methods is not feasible. First, important modes for the pre-

defined transfer functions are unknown. Second, the quality of approximation depends on

the choice of interface coordinates used for the method initialization. Third, the reduced

model can be tuned only for a one frequency (static case for the Craig-Bampton method).
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Figure 5.1: Decomposition of transfer function into modes contributions.
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The contributions of several modes to a transfer function are shown in Fig. 5.1. The

combination of modes leads to the results illustrated in Fig. 5.2.
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Figure 5.2: Combined contribution of several modes to a transfer function.

The modal reduction requires using of all modes to obtain exact values of transfer functions

in a limited frequency range. However, the exact values of transfer functions in the limited

frequency range can be obtained using much smaller number of coordinates. This idea

is used in the line-fitting method. In the proposed approach all DoFs of reduced order

model contribute to the improvement of predefined transfer functions in the frequency

interval of interest.

The next idea that stands behind the line-fitting method is connected with the approxima-

tion of predefined transfer functions by minimizing an error of adjacent transfer functions.

In Fig. 5.3 positions of important transfer functions are shown in red, while outputs of

adjacent transfer functions are contained in a blue hemisphere with a small radius. The

curves of adjacent and important functions are almost identical. Since the line fitting

method expresses transfer functions with non-interface outputs through the important

transfer functions, the adjacent transfer functions are accurately approximated. This

forces important transfer functions to be precise as well. The assertion is confirmed by

the results of several numeric examples in Chapter 4. It follows that the line-fitting

method solves the problem of classical reduction approaches.

Figure 5.3: Approximation of important transfer functions using adjacent transfer func-
tions.

Further we dwell on the compliance of the line-fitting method with the requirements to
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model order reduction techniques. The requirements are formulated in Section 1.3 and

repeated in this section for the discussion:

� accuracy of reduced model,

� computational efficiency of reduction method,

� preservation of model stability,

� estimation of error introduced by the reduction process,

� possibility to automate the reduction process,

� fast simulation of reduced model.

In addition, using of model order reduction methods in the context of EMBS imposes on

them additional restrictions:

� preservation of second order structure of equations of motion,

� coordinate transformation matrix excludes rigid body modes.

The accuracy of line-fitting method is ensured by its ability of tuning important for the

user transfer functions. Local accuracy of transfer functions can be improved by additional

reference frequency points, whereas the quality over a whole frequency range of interest

is enhanced by increasing an order of reduced model.

The main computational burdens of the proposed reduction approach consist in the calcu-

lation of transfer function matrices for several frequency points and the solution of large

least-squares problem. The most of reduction approaches require performing of frequency

response analysis to evaluate accuracy of reduced order model in the frequency domain.

This analysis needs calculating of transfer function matrices for all points in a discrete

frequency range of interest, therefore the calculation of transfer matrices at several points

for the line-fitting method is considered as an uncritical issue. The total computational

cost of the line-fitting method is larger in comparison with the Craig-Bampton approach,

but it remains acceptable for moderately dimensional FE models.

The preservation of stability is an important property of reduction approaches because

it ensures that a reduced model does not cause any type of failure to elastic multibody

systems. It was proven in Section 3.4 that the line-fitting technique meets this essential

requirement.

Along with the classical reduction approaches and the methods based on Krylov subspaces,

the line-fitting reduction method lacks of possibility to specify in advance a permissible

error introduced by the reduction process. In this case, generation of admissible reduced

order model becomes an iterative process where each iteration corrects the quality of

reduced order model.

The current version of the line-fitting reduction method requires user’s involvement in

some steps of the method initialization: the choice of reference frequency points and
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distribution of redundant interface coordinates. These steps of the method can be auto-

mated. The complete automation of line-fitting reduction approach is possible, but it is

easier to realize, if a reduction error estimator is available.

Simulation speed in addition to other factors depends on a number of coordinates of

reduced order model and system stiffness. According to the results presented in Chapter

4, the time of simulation of line-fitting models is 10-14 times smaller in comparison with

the Craig-Bampton models under the same conditions. This is achieved due to much

smaller number of DoFs and smaller stiffness of line-fitting models. All coordinates of

line-fitting models are involved in improving the accuracy of reduction, which allows

using of smaller number of DoFs as against the number of coordinates of Craig-Brampton

models. The stiffness is determined by the highest eigenfrequency of the system. The

line-fitting method can influence accuracy of eigenfrequencies contained in the predefined

frequency range, but the spectrum of model beyond this range is uncontrolled. For this

reason, no statements about the limits of the spectrum can be made. However, the both

numeric examples show that the stiffness of line-fitting models remains considerably lower

than the stiffness of Craig-Bampton models.

The systems reduced by the line-fitting method preserve the second order structure of

equations of motion. This enables integration of reduced order models into a multibody

system of second order type.

Since a projection matrix of line-fitting method is calculated based on transfer functions

without a component of rigid body motion, the rigid body modes can not be captured by

this matrix. This property allows the line-fitting method to satisfy the last requirement

in the list above.

The advantages of line-fitting approach in comparison with the classical methods are high

accuracy, low order, and small stiffness of reduced systems. In addition, the proposed

method makes it possible to emphasize certain transfer functions and certain frequency

ranges. The new approach produced significantly more accurate results for systems with

slight damping than the Craig-Bampton method.

The modern reduction methods based on Krylov subspaces are to some extent comparable

to what this thesis proposes and might even outperform it. However, for the Krylov

subspace method stability of reduced model is not guaranteed even if the full order model is

stable. In addition, transfer functions for non-interface DoFs are uncontrolled, which can

lead to artificial and undesired effects in the motion of non-interface nodes of the model.

In contrast, the line-fitting methods ensures that the error of transfer functions having

non-interface outputs is limited. As concerns the modern Balanced truncation method,

high computational burdens make the reduction feasible only for small dimensional FE

models.

Along with a number of advantages, the line-fitting method has several limitations as com-

pared to classical and modern reduction techniques. The main drawback of the method
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is computational cost of projection matrix generation. Besides, the modern methods can

excel the line-fitting method in tuning of reduced order models for antiresonance frequen-

cies. Formulation of weighted least squares problem can help to address this issue for the

proposed reduction approach.

The common problem of reduction techniques is processing of a large number of interface

coordinates. Since the set of DoFs of line-fitting model includes interface DoFs, the size

of reduced order model can be redundant. This can result in producing stiff reduced order

systems. One of the solutions of the problem is the interface reduction where the motion

of interface surface is approximated by the motion of several nodes. Another approach is

to omit unnecessary interface DoFs, but this requires much experience and insight into a

specific problem.
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The main scientific contribution of the thesis is a new linear model order reduction method

for elastic multibody simulation. The set of classical reduction approaches consists of

modal truncation, condensation, and component mode synthesis techniques. The cate-

gory of modern reduction methods includes the techniques based on the singular value

decomposition using Gramian matrices and moment matching via Krylov subspaces. The

proposed method allows solving of problem of classical reduction approaches: the lack

of possibility to tune a reduced order model for certain transfer functions and frequency

ranges. In addition, the new method satisfies the following requirements: high accuracy

of reduced order models, preservation of stability, fast simulation of reduced order models,

and the possibility of using the method in the context of elastic multibody systems. The

new method differs from the modern reduction approaches and it has its own advantages.

The research topic belongs to the area of computational dynamics and relates to such

disciplines as multibody dynamics, finite element analysis, and model order reduction.

Chapter 2 of this work covers fundamentals of elastic multibody system simulation. The

fundamentals include the modeling of multibody dynamics using a floating frame ap-

proach, finite element discretization, model order reduction approaches, validation of

reduced order models, and schemes of numerical solution of equations of motion. Chap-

ter 3 is devoted to the novel reduction technique proposed by the author of the thesis:

line-fitting reduction technique. In Chapter 4 we apply the new method to the bar and

the bearing cage models, perform validation tests of the reduced order models in the time

and frequency domains, and compare the results with results of classical Craig-Bampton

approach. Chapter 5 includes comprehensive evaluation of the line-fitting method and its

comparison with the classical and modern reduction procedures.

The advantages of line-fitting approach in comparison with the classical methods are

higher accuracy, lower order, and usually smaller stiffness of reduced systems. Low or-

der and small stiffness lead to considerable gains in computational speed for practical

EMBS. In addition, the proposed method makes it possible to emphasize certain transfer

functions and certain frequency ranges. It is also necessary to point out that line-fitting

approach produces significantly more accurate results for systems with slight damping

than the Craig-Bampton method. The main drawback of the method is computational

cost of projection matrix generation. However, the computational burdens remain small

for moderately dimensional systems.
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The line-fitting method can be used as an alternative to modern Krylov subspace based

methods, if the preservation of stability of reduced model is important or it is necessary to

limit an error of non-interface nodes. In addition, the proposed approach is an appropriate

choice for the systems where the application of modern Balanced truncation method is

not feasible due to high computational costs.

The reduction method proposed in this work is developed in scopes of a project “Elastic

bodies in Caba3D” of the Otto von Guericke University and the Schaeffler Technologies

AG & Co. KG. The primary goal of the project was to develop software that can take

into account deformation effects arisen in mechanical systems under operating conditions.

The line-fitting reduction technique is implemented in the commercial simulation software

Caba3D as an alternative to other reduction approaches. Within the project the author

of the thesis et al. published several international articles devoted to the topic of model

order reduction:[53, 54, 52].

Looking ahead, there are a number of points that can improve the current version of

line-fitting reduction. The first issue is the enhancement of computational efficiency. The

solution of this task needs additional investigation. The second aspect relates to the

improvement of accuracy. The unanswered questions remain how to chose an optimal

number of coordinates for a reduced order model and where to allocate interface coordi-

nates to obtain the most accurate approximation. Another issue concerning the accuracy

is better approximation of transfer function in regions with small magnitudes. Next,

the user’s involvement in the initialization of method can be decreased by automating

the choice of reference frequency points and the allocation of interface coordinates. The

range of application of the method can be extended by adopting the line-fitting approach

for models with six degrees of freedom per node. Besides, the correct work of the method

for different types of constraints imposed on the model needs to be confirmed.
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Appendix

Rotation matrix using Euler parameters

Let’s denote a unit vector of axis of rotation as v and an angle of finite rotation as α, see

Fig. A.1.

α

x
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z
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x1

y1
z1

Figure A.1: Finite rotation.

A set of Euler parameters is defined asθ0 = cosα
2
, θ1 = v1 · sinα2 ,

θ2 = v2 · sinα2 , θ3 = v3 · sinα2
. (A.1)

From the definition follows that
3∑

k=0

(θk)
2 = 1.

According to [79], the body rotation matrix A can be expressed in terms of Euler param-

eters as

A(θ) =

1− 2(θ2)
2 − 2(θ3)

2 2(θ1θ2 − θ0θ3) 2(θ1θ3 + θ0θ2)

2(θ1θ2 + θ0θ3) 1− 2(θ1)
2 − 2(θ3)

2 2(θ2θ3 − θ0θ1)
2(θ1θ3 − θ0θ2) 2(θ2θ3 + θ0θ1) 1− 2(θ1)

2 − 2(θ2)
2

 . (A.2)

The angular velocity vector ω in the global frame and the vector of time derivatives of

Euler parameters are related as

ω = 2 ·Θ(θ) · θ̇ (A.3)
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where Θ ∈ R3×4 is given by

Θ(θ) =

 −θ1 θ0 −θ3 θ2

−θ2 θ3 θ0 −θ1
−θ3 −θ2 θ1 θ0

 , (A.4)

see, e.g. [79].
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