
Advanced Techniques for IaC: Enhancing Automation and

Optimization in Cloud-Based Infrastructure Management

Liliia Bodnar1, Mykola Bodnar2, Kateryna Shulakova3,4, Oksana Vasylenko4, Eduard Siemens4,

Roman Tsarov3 and Olha Yavorska3 and Olena Tyurikova5

1South Ukrainian National Pedagogical University, Staroportofrankyvska Str. 26, Odesa, Ukraine
2 LLC B&B Solutions, Dukivska Str. 5 Odesa, Ukraine

3State University of Intelligent Technologies and Telecommunications, Kuznechna Str. 1, Odesa, Ukraine
4Anhalt University of Applied Sciences, Bernburger Str. 57, Köthen, Germany

5Department of Architectural Environment Design, Odessa State Academy of Civil Engineering and Architecture,

Didrikhsona Str. 4, 65029 Odesa, Ukraine

bodnarl79@pdpu.edu.ua, katejojo29@gmail.com, oksana.vasylenko@hs-anhalt.de, eduard.siemens@hs-anhalt.de,

rcarev@gmail.com, yavorskayao7@gmail.com, tulena@odaba.edu.ua

Keywords: Infrastructure as Code, Cloud Technologies, DevOps, Chef, Puppet, Ansible, Terraform, Kubernetes,

Microservices, Containerization, Orchestration, Automation.

Abstract: In the modern IT environment, Infrastructure as Code (IaC) has revolutionized the management of cloud-

based infrastructure by automating the deployment and configuration of resources. This paper provides a

comprehensive analysis of the existing challenges in IaC implementation and proposes advanced techniques

to address these issues. Through a detailed comparison of orchestration tools like Chef, Puppet, Ansible, and

Terraform, we explore their strengths and limitations. We introduce an innovative framework to enhance

resource management, leveraging Kubernetes for container orchestration and Terraform for cloud

infrastructure optimization. Mathematical models are used to quantify the impact of improved IaC practices

on cost efficiency, deployment speed, and resource utilization in large-scale enterprises. By integrating these

approaches, we present a holistic solution that enhances automation, minimizes manual interventions, and

reduces infrastructure management costs by up to 30%. This study will benefit IT managers, cloud architects,

and DevOps professionals looking to implement scalable and efficient cloud solutions.

1 INTRODUCTION

The concept of Infrastructure as Code (IaC) has

rapidly transformed the way IT infrastructure is

managed, automating the deployment and

configuration of resources through code rather than

manual processes. This approach enables

organizations to maintain consistent infrastructure

setups, eliminate errors, and speed up the

provisioning of resources. However, despite its

advantages, there are still several challenges and

limitations that need to be addressed for maximizing

its potential in complex environments.

IaC has been widely adopted by businesses

looking to streamline their operations and optimize

their use of cloud resources [1-3]. Nevertheless,

implementing IaC solutions presents several

challenges:

 Scalability issues. Managing large-scale

deployments with multiple instances can be

cumbersome.

 Configuration drift. Variability in system

configurations that may lead to inconsistent

infrastructure states.

 Complexity of orchestration. Integration and

orchestration of microservices in dynamic

environments require sophisticated tools [4].

 Resource optimization. Inefficient use of cloud

resources can lead to inflated costs and poor

performance.

This paper aims to address these challenges by

introducing new methodologies and best practices for

implementing IaC in cloud-based infrastructures.

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

19

mailto:bodnarl79@pdpu.edu.

Table 1: Adoption of configuration management tools in companies.

2 TRADITIONAL APPROACHES

TO IAC

Historically, the implementation of IaC has relied

heavily on configuration management tools such as

Chef, Puppet, and Ansible, each offering distinct

advantages and limitations:

1) Chef utilizes a push-based model, which is

particularly effective in smaller environments

where infrastructure is not extensive and remote

machines have limited resources. In this model,

passive agents on the nodes wait for instructions

from a centralized master machine. While this

approach prevents unnecessary resource

consumption on the nodes, it can lead to

scalability issues as the number of VMs grows.

As more nodes are added, the load on the master

machine increases, resulting in longer

configuration times across the infrastructure [5].

2) Puppet follows a pull-based model, in which

agents actively communicate with the master

server to check for configuration updates and

ensure that they match the desired state. This

approach is well-suited for larger-scale

deployments because it distributes the

processing load more evenly across the

infrastructure. The agents' proactive nature

enables continuous monitoring and state

synchronization, making it ideal for

environments with numerous nodes [6].

3) Ansible is unique among these tools due to its

agentless architecture, which relies on existing

system components such as Python libraries to

perform its tasks. This design simplifies the

deployment process, as it does not require pre-

installation of agents on the target nodes,

making it especially useful in pre-configuration

stages. However, the push-based model of

Ansible can limit its scalability, as it may

encounter similar performance challenges to

those experienced by Chef when dealing with a

large number of VMs [3], [5].

Chef exemplifies the push model, while Puppet is

a prime example of the pull model. Although both

models have been successful in many scenarios, they

share a significant drawback: the requirement to pre-

install agents on each VM. This requirement can

become a bottleneck, particularly when rapid and

fully automated deployment is needed, as any delay

in agent installation could slow down the entire setup

process.

In contrast, Ansible's agentless design overcomes

this issue by utilizing components that are usually

already present on Unix-like systems. This allows

Ansible to be used immediately in automation tasks

without additional setup. Despite this advantage,

Ansible’s reliance on the push model introduces its

own set of complexities, especially when scaling up

operations. This can lead to minor, but often

frustrating, complications if Ansible is not used in the

conventional manner [4], [7].

Table 1, shows the adoption of configuration

management tools such as Chef, Puppet and Ansible

in companies. The data is based on studies and reports

published in recent years:

 According to research from [8], over 80% of

companies have adopted at least one

configuration management tool, with Ansible

and Puppet being the most popular choices

among large enterprises.

 Studies by [9] indicate that Puppet is the

preferred tool for organizations managing more

than 500 servers due to its robust automation

Tool
Primary

approach

Adoption rate among

companies

Preferred by

companies with

Main industry use

cases

Challenges and

limitations

Chef
Push-based

model

22% of companies

prefer Chef

Infrastructure

up to 200

servers

IT infrastructure,

startups, small-scale

environments

Scalability issues,

increased load on the

master server

Puppet
Pull-based

model

32% of companies

use Puppet

Over 500

servers

Medium to large

enterprises,

telecommunications,

finance

Complex setup, need for

pre-installed agents,

limited flexibility

Ansible
Agentless

architecture

45% of companies

use Ansible

Flexible

deployments

without agents

Application

development,

microservices,

DevOps, automation

Scalability issues in large

environments, challenges

in managing large

clusters

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

20

capabilities and flexibility in handling complex

configurations.

 A recent report by [10] highlights Ansible as

the leading choice for microservices

architectures, thanks to its agentless approach

and seamless integration into Continuous

Integration and Continuous Deployment

(CI/CD) workflows.

While these tools have laid a solid foundation for

IaC, they are not without their limitations:

 Performance bottlenecks. As the

infrastructure scales, both Chef and Puppet

encounter performance issues due to their

centralized control models. Chef's reliance

on a master server to push configurations

and Puppet's periodic state-checking

mechanisms can both lead to delays in larger

deployments [5], [6].

 Complex setup. Puppet’s active-agent

model, which requires agents to be pre-

installed on every node, increases the setup

complexity and makes it less suitable for

scenarios where rapid and automated

deployment is necessary [6].

 Inflexibility in microservices. Traditional

configuration management tools like Chef,

Puppet, and Ansible are not well-suited for

handling modern microservices

architectures that demand rapid scaling and

real-time integration. These architectures

require a level of flexibility and agility that

these tools struggle to deliver, particularly

when managing large numbers of dynamic

components [5], [13].

3 METHODOLOGY AND

PROPOSED SOLUTIONS

To address the limitations of traditional IaC tools like

Chef, Puppet, and Ansible, our research builds upon

existing studies that advocate for an integrated

approach leveraging Kubernetes for microservice

orchestration [7], [11] and Terraform for robust state

management of cloud resources [2], [12]. This

combination allows us to create a unified system for

managing both containerized applications and cloud

infrastructure efficiently, ensuring scalability,

flexibility, and cost-effectiveness:

1) Kubernetes has become the de facto standard for

managing containerized applications in

dynamic environments. As an open-source

container orchestration platform, it provides a

comprehensive solution to manage

microservices with the following capabilities:

 Automatic scaling. Kubernetes dynamically

scales microservices based on workload

demands, ensuring that resources are

allocated efficiently without manual

intervention [6], [11].

 Self-healing capabilities. The platform

automatically restarts failed containers and

reschedules them, reducing downtime and

improving the reliability of services [4], [6].

 Resource optimization. Kubernetes

optimizes resource usage by efficiently

distributing workloads across available

nodes, minimizing waste and reducing

operational costs [1], [15].

2) Terraform by HashiCorp is one of the most

powerful tools for managing and provisioning

infrastructure in a consistent and repeatable

manner. Its key features include:

 State management. Terraform keeps track of

the state of resources across cloud

environments, ensuring that all deployments

remain consistent and up-to-date [2], [12].

 IaC approach. This allows changes to

infrastructure to be versioned, documented,

and shared among team members, resulting

in greater control and transparency [3], [8].

 Cross-platform compatibility. Terraform

supports multiple cloud platforms like AWS,

Azure, and Google Cloud, enabling seamless

infrastructure management across various

providers [2], [8].

This proposed approach synthesizes insights from

previous works and integrates Kubernetes and

Terraform into a cohesive system designed to

enhance cloud infrastructure management. This

unified framework includes the following

components:

 Configuration management. Terraform

defines and manages the infrastructure,

ensuring that it remains consistent with the

desired state across different environments.

 Container orchestration. Kubernetes handles

the deployment and management of

containerized microservices, allowing for

seamless scaling and resilience in response

to changes in demand.

 Automated monitoring and feedback loop.

Implementing monitoring tools provides

real-time data on resource usage, which

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

21

triggers automatic adjustments to optimize

performance and cost efficiency.

3.1 Cloud Infrastructure Automation
and Management

The challenge of automating and managing the

deployment of virtual resources in the cloud remains

central to infrastructure development. Cloud

providers such as AWS and Azure offer robust CLI

tools like AWS-CLI and Azure-CLI, which facilitate

seamless management of cloud resources through

programmatic means. These tools act as middleware

between the customer's infrastructure control systems

and cloud API endpoints [9], [14].

When selecting the appropriate tools for

infrastructure management, it's essential to consider

specific requirements such as integration capabilities,

real-time state control, and compatibility with

existing cloud environments. Terraform stands out in

this regard, thanks to its excellent state control

mechanisms and its integration with popular CLI

tools, despite its slightly steep learning curve [2].

3.2 Enhancing Microservice
Infrastructure

Microservice architectures have become the

cornerstone of modern software development,

demanding scalable and adaptable infrastructure

solutions. Kubernetes has fundamentally transformed

how microservices are deployed and managed,

offering a powerful platform for container

orchestration [11]. By automating the management of

containers, Kubernetes significantly reduces the

operational complexity of handling numerous

microservices across diverse environments,

providing a streamlined and simplified approach. Its

inherent scalability enables microservices to adjust

dynamically in response to real-time demand,

ensuring optimal performance and resource

utilization. Additionally, Kubernetes offers cross-

cloud compatibility, making it easier to migrate

containerized applications between different cloud

providers, thus creating a cloud-agnostic

infrastructure that facilitates smooth transitions [15].

Managing microservices at scale poses substantial

challenges, primarily due to the complexity of

coordinating a large number of containers, each

running distinct services with specific dependencies.

Kubernetes effectively addresses these issues by

ensuring efficient resource allocation, automatically

distributing computational resources across nodes to

prevent over-provisioning and maximize

efficiency [11]. This approach not only reduces the

total cost of ownership by optimizing resource usage

but also guarantees high availability, maintaining the

stability and accessibility of critical microservices

even during infrastructure failures or unexpected

surges in demand. As a result, Kubernetes stands out

as an essential tool for modern infrastructure

management, delivering both cost efficiency and

robust service continuity for scalable applications.

4 QUANTITATIVE ANALYSIS

AND PERFORMANCE

EVALUATION

To substantiate this approach and reinforce its

scientific foundation, we have developed a

quantitative analysis using mathematical models that

effectively demonstrate the integration of Kubernetes

and Terraform for IaC. To conduct a performance

evaluation, we propose using specific metrics to

assess the effectiveness of Kubernetes and Terraform

in cloud infrastructure management, validating the

efficiency of the integrated approach. Our analysis

focuses on four key metrics:

1) Deployment time reduction.

2) Resource utilization efficiency.

3) Cost savings.

4) Scalability improvement.

This approach aims to provide a comprehensive

assessment of how Kubernetes and Terraform can

optimize infrastructure deployment, streamline

resource management, and enable seamless

scalability in dynamic cloud environments [2], [4],

[6], [12]:

1) Deployment time reduction. The average

deployment time depends on several factors,

such as the number of virtual machines (VMs),

configuration complexity, cloud provider

response time, and the efficiency of the

deployment tool. The proposed formula for

calculating average deployment time can be

expressed as follows:

𝑇𝑑 =
𝑁 × 𝐶𝑐

𝑆 × 𝐸
,

where: N - number of VMs to be deployed;

Cc - configuration complexity coefficient (e.g.,

network complexity and inter-service

dependencies); S - cloud provider response

speed; E - efficiency of the deployment tool.

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

22

The higher the E, the more efficient the tool,

leading to shorter deployment times [2], [8].

The Cc (configuration complexity

coefficient) reflects the difficulty level of setting

up and managing infrastructure configurations.

It can be influenced by factors like network

complexity, dependencies between services,

and the number of configurations required. To

calculate this, we can assign weights to different

complexity factors:

𝐶𝑐 = 𝑊𝑛 × 𝑁𝑛 + 𝑊𝑑 × 𝑁𝑑 + 𝑊𝑖 × 𝑁𝑖 ,

where Wn - weight for network complexity (how

complex the networking setup is); Nn - number

of network components (e.g., subnets, VPNs,

security groups); Wd - weight for inter-service

dependencies (how tightly services are

connected); Nd - number of interdependent

services or applications Wi - weight for

infrastructure scale (how large the deployment

is); Ni - number of infrastructure components

(VMs, containers, storage units).

You can set the weights (Wn, Wd, Wi) based

on the relative importance of each factor in your

deployment environment. A higher Cc value

indicates more complex configurations.

The S (cloud provider response speed)

indicates how quickly the cloud provider can

provision and allocate resources. It can be

calculated using the average response time from

the cloud provider's API to handle requests for

provisioning:

𝑆 =
1

𝑇𝑎

,

where 𝑇𝑎 - average response time is the time

taken by the cloud provider's API to process

resource allocation requests.

To gather this data, you can run several API

requests to provision resources and measure the

time it takes for the cloud provider to respond.

The quicker the response, the higher the S value.

The E (efficiency of the deployment tool)

measures how effectively the tool handles

resource allocation, configuration, and

deployment. This metric can be calculated using

a combination of factors like automation

capability, error rate, and deployment speed.

𝐸 =
𝐴

𝑅 + 𝑇𝑐

,

where A - automation level (the degree to which

the tool can automate deployment tasks);

R - error rate (number of errors encountered per

deployment); 𝑇𝑐 - deployment duration (time

taken to complete a deployment).

The automation level can be rated on a scale

from 1 to 10, where 10 represents full

automation. A lower error rate and shorter

deployment duration will result in a higher E,

indicating better efficiency.

So Td accounts for both external factors

(cloud provider response speed) and internal

factors (configuration complexity and tool

efficiency), allowing for an accurate prediction

of deployment time under different conditions.

2) Resource utilization efficiency. To evaluate

resource utilization, we monitored CPU,

memory, and storage usage when Kubernetes

was deployed for microservice orchestration.

Our results demonstrated that Kubernetes

optimizes resource consumption far more

effectively than traditional setups. By utilizing

auto-scaling features and efficient resource

allocation strategies, Kubernetes achieved a

resource utilization efficiency rate that

surpassed previous benchmarks established by

conventional methods.
We have introduced a mathematical model

to quantify the resource optimization achieved

through the integration of Kubernetes and

Terraform.

The primary goal is to minimize the

utilization cost Uc while maintaining optimal

resource usage:

𝑈𝑐 = ∑(𝑆𝑖 × 𝐶)

𝑁

𝑖=1

,

where Uc - utilization cost of cloud

infrastructure; C - available computational

resources; N - number of containers running;

Si - scaling factor for container i.

Si depends on the workload of each container.

The scaling factor is usually a value between 0

and 1, indicating the fraction of resources

allocated to a specific container relative to the

total available resources.

In this case automatic scaling limitations:

𝑆𝑖 ≥ 𝑖𝑓 𝑤𝑜𝑟𝑘𝑙𝑜𝑎𝑑 > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑.

Ensure that resources scale dynamically

based on load.

And resource limitations:

∑(𝑆𝑖 ≤ 𝐶)

𝑁

𝑖=1

.

Prevent over-provisioning by restricting

maximum resources.

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

23

Table 2: Efficiency of the integrated approach.

Tool/Method
Average deployment time

(seconds)
Resource utilization

efficiency
Cost savings

(%)
Scalability

improvement

Chef 1200 medium 10% medium

Puppet 1100 high 15% high

Ansible 1050 medium-high 12% medium-high

Terraform / Kubernetes 450 very high 30% very high

3) Cost savings. Cost savings are directly related to

resource utilization efficiency, deployment time

reduction, and cloud resource optimization. The

formula for calculating cost savings can be

written as:

С𝑠 = (1 −
𝑇𝑑

𝑛𝑒𝑤

𝑇𝑑
𝑜𝑙𝑑

) × 𝑈𝑐 × 100%,

where 𝑇𝑑
𝑛𝑒𝑤- average deployment time using

new tools (e.g., Terraform and Kubernetes);

𝑇𝑑
𝑜𝑙𝑑- average deployment time using traditional

tools (e.g., Chef, Puppet, Ansible), Uc - resource

utilization factor (higher resource utilization

leads to greater cost savings).

So Cs focuses on the financial benefits

achieved through the use of more efficient tools

and improved resource management, leading to

reduced downtime and lower operational costs.

4) Scalability improvement. To substantiate the

scalability of Kubernetes, we employed the

following growth model.

Let Sn represent the scalability rate of

infrastructure as the number of services

increases. The formula for optimal resource

scaling with Kubernetes is given by:

𝑆𝑛 =
𝑅𝑛

𝑅𝑛+1

×
𝐶𝑛+1

𝐶𝑛

,

where Rn and Rn+1 are the resource requirements

at different stages, and Cn and Cn+1 are the

corresponding costs.

The aim is to show that the scalability rate Sn

approaches a linear relationship as Kubernetes

dynamically allocates resources based on actual

demand, thus minimizing waste and optimizing

costs.

Table 2 evaluates the performance of various IaC

and configuration management tools, including Chef,

Puppet, Ansible, and the combined approach of

Terraform with Kubernetes. The data presented in

Table 2 were derived from a comprehensive analysis

of industry reports [4], [8], [10], case studies [2], [9],

and empirical research focused on the performance

metrics of various IaC [7] and configuration

management tools [11], [15]. The analysis

demonstrates that the integrated solution delivers a

substantial 60% increase in deployment speed,

offering a marked improvement over traditional tools.

It also highlights exceptional resource utilization

efficiency, with Kubernetes dynamically adjusting

resource allocation based on workload demands. This

approach leads to significant cost savings of 30%,

positioning it as a highly economical choice for cloud

infrastructure management. Moreover, the integrated

solution excels in scalability, making it ideally suited

for modern microservices architectures that require

rapid scaling and seamless real-time integration.

Overall, this integrated approach stands out as a

highly effective solution for optimizing infrastructure

management in large-scale enterprises. By

synergizing Kubernetes' container orchestration

capabilities with Terraform's robust infrastructure

state management, this solution significantly reduces

operational costs and enhances infrastructure

efficiency.

5 CONCLUSIONS

Our study provided a thorough examination of the use

of Kubernetes and Terraform in optimizing

infrastructure deployment and resource management

within cloud environments. We identified the

limitations of traditional IaC tools like Chef, Puppet,

and Ansible, and demonstrated the advantages of an

integrated approach using Kubernetes for

microservice orchestration and Terraform for cloud

infrastructure management. Through quantitative

analysis and mathematical modeling, we established

that this approach not only reduces deployment time

significantly but also enhances resource utilization

and scalability, leading to considerable cost savings.

The results of our research indicate that

combining Kubernetes and Terraform can provide a

highly efficient solution for modern cloud

infrastructure needs. We found that this integrated

approach can reduce deployment times by up to 60%

compared to traditional tools and improve resource

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

24

utilization efficiency, resulting in cost savings of up

to 30%. These improvements are critical in helping

organizations manage complex cloud environments

more effectively and support scalable growth.

Our findings are valuable to several key

stakeholders:

 IT-сompanies. Can use these insights to

streamline their infrastructure management

processes, reducing costs and improving

overall efficiency.

 DevOps engineers. Will benefit from adopting

these tools to enhance their skills and align

their practices with industry standards.

 Universities and educational institutions. Can

leverage this research to develop more

effective training programs, focusing on

Kubernetes, Terraform, and advanced cloud

management techniques.

Future research should focus on exploring other

components of DevOps, such as the integration of

AI-driven algorithms for predictive scaling and

automation in cloud infrastructure management.

Further studies should also include developing

comprehensive case studies on the deployment of

DevOps practices across various industries to

highlight the flexibility and adaptability of

Kubernetes and Terraform in different business

contexts.

We believe that this research contributes

significantly to the growing body of knowledge in the

field of cloud infrastructure management. By

advancing the understanding of how Kubernetes and

Terraform can be effectively utilized together,

leading to more efficient and scalable solutions in

dynamic cloud environments.

ACKNOWLEDGMENTS

We acknowledge support by the German Research
Foundation (Deutsche Forschungsgemeinschaft,
DFG) and the Open Access Publishing Fund of
Anhalt University of Applied Sciences.

REFERENCES

[1] L. Bodnar, M. Bodnar, K. Shulakova, O. Vasylenko,
R. Tsarov, and E. Siemens, "Practical Experience in
DevOps Implementation," Proceedings of
International Conference on Applied Innovation in IT,
vol. 12, no. 1, pp. 33-39, 2024, doi: 10.25673/115639.

[2] HashiCorp, "Terraform Infrastructure as Code: Best
Practices for Infrastructure Automation," 2022.
[Online]. Available: https://www.hashicorp.com
[Accessed: 02 August 2024].

[3] M. Fowler, "Infrastructure as Code: Managing Servers
in the Cloud," 2021. [Online]. Available:
https://martinfowler.com [Accessed: 02 August 2024].

[4] R. Thakkar, " The voice of Kubernetes experts report
2024: the data trends driving the future of the
enterprise," 2024. [Online]. Available:
https://www.cncf.io/blog/2024/06/06/the-voice-of-
kubernetes-experts-report-2024-the-data-trends-
driving-the-future-of-the-enterprise [Accessed: 02
August 2024].

[5] J. Geerling, "Ansible for DevOps: Server and
Configuration Management for Humans," 305 p.,
2015. [Online]. Available: https://www.redhat.com
[Accessed: 02 August 2024].

[6] B. Burns, B. Grant, D. Oppenheimer, E. Brewer, and
J. Wilkes, "Borg, Omega, and Kubernetes,"
Communications of the ACM, vol. 59, no. 5, pp. 50-
57, 2016.

[7] B. Morris and A. Humphries, "Infrastructure as Code:
Dynamic Systems for the Cloud Age," O'Reilly Media,
2020.

[8] RightScale, "State of the Cloud Report," 2022.
[Online]. Available: https://www.flexera.com
[Accessed: 03 August 2024].

[9] Gartner Research, "Forecast: Public Cloud Services
Worldwide," 2023. [Online]. Available:
https://www.gartner.com [Accessed: 04 August 2024].

[10] S.-J. Wiggers, D. Bryant, M. Campbell, H. Beal, and
A. Bangser, "InfoQ DevOps and Cloud Trends Report
– July 2023," InfoQ, Jul. 17, 2023. [Online].
Available: https://www.infoq.com/articles/cloud-
devops-trends-2023 [Accessed: 05 August 2024].

[11] B. Burns, J. Beda, and K. Hightower, "Kubernetes: Up
and Running," O'Reilly Media, 2019.

[12] Y. Brikman, "Terraform: Up & Running," O'Reilly
Media, 2019.

[13] C. Pahl, A. Brogi, J. Soldani, and P. Jamshidi, "Cloud
Container Technologies: A State-of-the-Art Review,"
IEEE Transactions on Cloud Computing, 2019.

[14] G. Kim, P. Debois, J. Willis, and J. Humble, "The
DevOps Handbook," IT Revolution Press, 2016.

[15] The Cloud Native Computing Foundation (CNCF),
"Kubernetes and Cloud Native Trends," 2023.
[Online]. Available: https://www.cncf.io [Accessed:
03 August 2024].

ProceedingsProceedings of of the the 1122th Internationalth International Conference Conference on Appliedon Applied Innovations Innovations in IT in IT (ICAIIT), (ICAIIT), November 20202244

25

