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Abstract: Carbon plate running shoes (CPRSs) have gained widespread popularity among elite and
amateur runners, representing one of the most substantial changes in running gear over the past
decade. Compared to elite runners, however, amateurs run at lower speeds and show more diverse
running styles. This is a meaningful difference as many previous studies on CPRSs focus either on
highly trained male runners and higher speeds or only on a single CPRSs manufacturer. The present
study aims at bridging this gap by investigating how CPRSs from four different manufacturers affect
running economy in amateurs of both sexes at their individual running speeds. For this purpose,
21 trained amateur triathletes (12 men; 9 women) completed an incremental treadmill test until
volitional exhaustion, yielding running speeds at ventilatory thresholds 1 (vVT1) and 2 (vVT2). In a
second session, subjects ran five trials of 3 × 3 min (speeds of 90% vVT1, ½ (vVT1 + vVT2), and 100%
vVT2), wearing one out of four different pairs of CPRSs or their own preferred non-CPRS shoes in
each trial. Our results show that tested CPRS models resulted in a significant reduction in the mean
energy cost of transport, compared to the non-CPRS control condition, with Cohen’s d amounting
to −1.52 (p = 0.016), 2.31 (p < 0.001), 2.57 (p < 0.001), and 2.80 (p < 0.001), respectively, although effect
sizes varied substantially between subjects and running speeds. In conclusion, this study provides
evidence that amateur athletes may benefit from various manufacturers’ CPRS models at their typical
running speeds to a similar degree as highly trained runners. It is recommended that amateur athletes
evaluate a range of CPRSs and select the shoe that elicits the least subjective sensation of fatigue over
a testing distance of at least 400–1000 m.

Keywords: energy cost of running; carbon-fiber racing shoes; advanced footwear technology;
spirometry; biomechanics

1. Introduction

Being an easily accessible physical activity, running has reached a notable degree of
popularity in recent times [1,2]. It serves not only as a means of maintaining good health
and fitness but also as a platform for competition organized in major and minor road,
cross-country, and trail races, comprising both amateur and elite levels. In order to achieve
better performances and thus faster running times, many amateur runners have adopted
structured training plans, which are widely available in the present era. The advancement
of research in areas such as gait analysis, running technology, and diagnostics has led to
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the development of a plethora of tools designed to enhance running performance [3–5]. In
addition to the self-evident approach of enhancing performance by (specific individualized)
physical training, improving running economy represents a key method to faster racing, as
better RE leads to faster race times at the same physical fitness level.

Running economy (RE) is defined as the energy demand of human running lo-
comotion and can be approximated in terms of the steady-state oxygen consumption

(
·

VO2; mL·kg−1·min−1) at a given submaximal running speed [6]. Energy cost of transport
(ECT; kcal·kg−1·km−1) and metabolic power (W·kg−1) are also used as more accurate
measures of RE, capturing differences in energy yield per volume of oxygen due to varying
substrate (i.e., carbohydrates and fat) utilization [7]. Along with maximal oxygen uptake

(
·

VO2max) and fractional utilization of
·

VO2max at ventilatory thresholds, RE is one of the
primary determinants of endurance running performance [8–10] and has been shown to
be a strong predictor of 10 km race performance [11]. As such, effective strategies for
improving RE are of high interest to all runners aiming to improve their race times and
to further stakeholders of competitive sport, including coaches, sport scientists, and sport
equipment manufacturers. Several interventions targeting physiological changes have been
demonstrated to be effective in improving RE, such as different types of cardiovascular and
resistance training, stretching, and nutritional interventions [12].

Following the release of Nike’s first carbon-fiber-enhanced running shoe Vaporfly 4%
in 2017, an increased focus has been placed on RE improvements elicited through optimized
material properties of running footwear, giving rise to a novel category of running shoes
commonly referred to as carbon-plate running shoes (CPRSs) and recently recoined by
some authors to ‘advanced footwear technology’ (AFT) [13]. While the longitudinal bend-
ing stiffness (LBS) of CPRSs is increased through carbon-fiber-based stiffening elements
(“plates”) embedded in their midsoles, many of those running shoes nowadays also provide
an increased cushioning because of their lightweight and resilient novel foams. The more
general term AFT aims to explicitly account for the combination of both biomechanical
concepts of increased stiffness and cushioning. The exact mechanisms of AFT leading to RE
and performance benefits are still a topic of current debate [14–16], with suggested mech-
anisms comprising an altered gear ratio at the ankle joint through increased LBS [17,18],
a higher degree of energy storage and return in the midsole foam [19], a reduction in
negative work through stiffening of the metatarsophalangeal joint [20], a “teeter-totter”
effect, i.e., supporting leverage between toe and heel parts of the shoe, resulting in a higher
force acting on the heel during push-off [14], and better suited gastrocnemius muscle fiber
contraction speeds for optimal power production and increased energy return via the
Achilles tendon [21].

The first laboratory experiments examining this emerging technology repeatedly
demonstrated that AFT running shoes significantly improve the RE of elite and highly
trained runners at speeds of 14–18 km/h by 2.8–4.4% compared to traditional racing
flats [22–24]. Several laboratory experiments examining AFT models from either Nike,
Adidas, or Saucony in recreational runners at slower running speeds of 9–15 km/h re-
ported similar RE benefits of 1.6–5.0%, indicating that runners can benefit from AFT
independent of running speed [25–29]. Notably, when comparing the same AFT model at
different running speeds, RE benefits appear to increase with greater running speed [28–30].
As kinetic energy is partially stored in and returned from the midsole foam, and because the
optimal midsole LBS has been shown to depend on running speed [20,30], an association
between running speed and RE benefit may be expected. Interestingly, this relationship
appears to be present in both elite-level and amateur runners, with amateurs benefitting to
a greater extent from AFT models [28]. This indicates that it is presumably not absolute
running speed itself but rather relative physiological intensity that leads to greater RE
benefits with increasing running speed. It is important to note that most studies evaluating
running speed effects on the AFT response used a version of the Nike Vaporfly or Nike
Alphafly. Different material properties of models from manufacturers other than Nike
might imply that RE responses could be affected differently across a range of speeds.
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To date, only one study has compared RE benefits across commercially available AFT
models from different manufacturers for the same cohort of athletes [31]. The researchers
report that there are significant differences between RE benefits provided by different AFT
models, ranging from no benefit in the Hoka Rocket X to a 3% benefit in the Nike Air
Zoom Alphafly Next% when compared to a racing flat. They concluded that Nike’s AFT
racing shoes clearly confer the greatest degree of improvement in economy and that this
might lead to a competitive advantage. However, the researchers utilized a specific, strictly
homogenous group of highly trained male runners and tested RE at only one running speed
(16 km/h). As both the type of runners and running speeds are known to influence RE
benefits of AFT [28], these results may possibly not be generalized to other populations or
running speeds. It is conceivable that some AFT shoes, for example, might simply be better
suited for recreational athletes running at slower speeds. Further, Joubert et al. [30] focused
on average group-level RE improvements, which neglects inter-individual variability and
should thus not be misinterpreted that every runner could expect to gain this amount of RE
benefit. A different approach recently proposed by Heyde et al. [32] addresses these issues
by reporting the percentage of runners likely to receive a given amount of RE improvement.
Those researchers demonstrated the feasibility of their approach by showing that only 25%
of recreational runners could expect to experience the 4% RE benefit from Nike’s Vaporfly
4% shoe reported by Hoogkamer et al. [22].

In essence, an important finding of recent AFT research is that responses to AFT are
highly individual, with large inter-individual variance in responses to different AFT models
reported [25,28,32]. Individual RE responses to AFT range from no change to substantial
improvement (≈6%) between different individuals wearing the same shoes [24,29]. This
variability has led researchers to recommend an individualized approach to running shoe
prescription [25,28]. At this time, however, there is currently no scientifically justified
strategy for determining optimal AFT properties for an individual runner. Factors that
seemingly influence individual RE response are running speed, foot strike pattern, ground
contact time, body mass, plantar flexor strength, foot arch stiffness, joint range of motion,
and training level [33].

Hence, the aim of the present study is to investigate the amount of RE benefit amateur
runners can realistically expect when switching from regular training shoes to AFT running
shoes, and whether this RE benefit differs significantly between models from different
AFT manufacturers. An additional goal of this work is to determine whether hierarchical
ranking of AFT models is appropriate when considering inter-individual variability in
runners’ responses to AFT. Lastly, associations between individual RE changes and factors
previously shown to influence RE response when wearing AFT shoes will be explored.

2. Materials and Methods
2.1. Subjects

Twelve male (34.9 ± 8.3 years, 71.1 ± 8.5 kg, BMI 22.4 ± 1.9 kg m−2, and
·

VO2peak

62.0 ± 5.1 mL kg−1 min−1) and nine female (29.1 ± 10.2 years, 62.3 ± 5.9 kg, BMI

21.8 ± 1.5 kg m−2, and
·

VO2peak 52.2 ± 3.2 mL kg−1 min−1) amateur triathletes and runners
participated in this study. All subjects had a weekly training mileage of at least 20 km
(mean of 32.4 ± 12.0 km) and a 10 km race performance of better than 45 min (males,
36:50 ± 2:50 min) or 50 min (females, 45:06 ± 3:50 min). All participants reported to be in
good health at the day of testing and to have been free of musculoskeletal injuries for at
least 3 months. There were no exclusion criteria regarding shoe size, with average shoe
sizes being US 9.5 ± 1.5 (27.5 ± 1.5 cm; range US 7 to US 11.5) for the males, and US
8.5 ± 0.9 (25.0 ± 0.9 cm; US 7 to US 10.5) for the females. All subjects provided written
informed consent prior to participating in this study. This study was conducted in accor-
dance with the Declaration of Helsinki and was approved by the Ethics Committee of the
Department of Engineering and Industrial Design at the Magdeburg-Stendal University of
Applied Sciences under certificate number EKIWID-2023-09-001RM.
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2.2. Footwear Conditions

Four current CPRS models from four different manufacturers were included in this
study: Hoka Rocket X2 (HOK), Mizuno Wave Rebellion Pro (MIZ), Puma Fast-R Nitro Elite
(PUM), and Saucony Endorphin Pro 3 (SAU) (Figure 1). The manufacturers provided their
shoes in all sizes voluntarily and free of charge and did not receive any advantage from
their support of this study. No alterations to the shoes were made, and sizes were assigned
prior to testing based on individual comfort level. Each participant’s pair of own preferred
training shoes (OWN) was used as a comparison to derive relative RE changes. While
differing mass, stiffness, and cushioning of OWN represent confounding variables that are
known to influence RE, we chose this footwear condition for the control as it provides a
realistic scenario for amateur and recreational athletes who may be considering switching
to CPRS running shoes for competitions or high-intensity interval training. The four CPRS
models differed in heel drop, mass, foam, and the shape and placement of the carbon
plate (Table 1).
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Figure 1. CPRS models used in this study. (A) Hoka Rocket X2 (HOK), (B) Mizuno Wave Rebellion
Pro (MIZ), (C) Puma Fast-R Nitro Elite (PUM), and (D) Saucony Endorphin Pro 3 (SAU).

Table 1. Specifications of the four CPRS models used.

HOK MIZ PUM SAU

Heel drop 1 5.0 mm 4.5 mm 7.5 mm 8.0 mm

Mass (men US 9) * 213 g 209 g 223 g 206 g

Midsole foam 1 PEBA foam

‘Mizuno Enerzy
Lite/Lite+’ the

latter being
PEBA foam

forefoot PEBA
foam, heel
EVA foam

‘PWRRUNPB’
PEBA foam

Carbon plate 1
Carbon plate
between two

layers of foam

Carbon-infused
nylon plate

Carbon plate
named

‘PWRPLATE’

S-shaped
carbon plate

Abbreviations: HOK = Hoka Rocket X2, MIZ = Mizuno Wave Rebellion Pro, PUM = Puma Fast-R Nitro Elite,
SAU = Saucony Endorphin Pro 3, PEBA = polyether block amide, EVA = ethylene and vinyl acetate copolymer.
* Self-measured; 1 data taken from [34] for HOK, [35] for MIZ, [36] for PUM, and [37] for SAU.

2.3. Study Design

A randomized cross-over design was used to assess the effect of four different CPRS
models on RE with participants attending two separate laboratory visits (Figure 2). The
primary aim of the first visit was the determination of running speeds at ventilatory
threshold 1 (vVT1) and at ventilatory threshold 2 (vVT2), while also serving as a familiar-
ization period with the experimental setup. The subsequent visit was used to measure
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running economy in the five different footwear conditions in randomized order at the
three individual running speeds v1 = 90% vVT1, v2 = 1

2 (vVT1 + vVT2), and v3 = 100% vVT2.
The associated intensities of “easy” (v1), “threshold” (v2), and “competition” (v3) were
chosen to assess RE throughout a wide range of speeds that are typically used by runners
in training and racing. The 3 min interval duration was chosen because it represents the
shortest possible time after which steady-state oxygen consumption is likely to be reached,
ensuring accurate RE measurement while, at the same time, keeping fatigue at an accept-
able level [38]. Runners were instructed to abstain from strenuous exercise for at least 48 h
prior to both laboratory visits and were encouraged to match diet and sleep patterns as
closely as possible between visits 1 and 2.
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Figure 2. Schematic outline of the test design.

2.3.1. Laboratory Visit 1

During the first visit, participants’ anthropometric measures and baseline physiological
values were collected. Participants then put on their own training shoes (ensuring they
were not AFT) and were placed on a motorized treadmill (Star Trac FreeRunner 10TRx,
Core Health 6 Fitness, Vancouver, BC, Canada), which was set at a 1% incline to compensate
for the absence of air drag [39]. The subjects were equipped with a heartrate monitor (Polar
H10; Polar Electro Oy, Kempele, Finland) and an appropriately sized face mask (7450 Series
V2 Mask; Hans Rudolph, Inc., Shawnee, KS, USA) connected to a metabolic cart (MetaMax
3B, CORTEX Biophysik GmbH, Leipzig, Germany), providing continuous breath-by-breath
cardiopulmonary gas exchange measures (Figure 3). In this experimental setup, each
participant completed a standardized incremental protocol defined by a starting speed of
6.0 km h−1 (same for all participants), 3 min stage duration, and increments of 2.0 km h−1

until voluntary exhaustion was reached. Upon completion of the incremental test, vVT1

and vVT2, as well as peak aerobic capacity (
·

VO2,peak), were determined. The speeds vVT1
and vVT2 were used to calculate the three running speeds v1, v2, and v3 for assessing RE
during visit 2. Laboratory visits 1 and 2 were separated by at least 48 h and used the same
laboratory and experimental setups during both visits.
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2.3.2. Laboratory Visit 2

During visit 2, each participant performed five trials of 3 × 3 min of treadmill running,
wearing a different pair of shoes (i.e., either HOK, MIZ, PUM, SAU, or OWN) for each bout
in a randomized order. Each session consisted of 3 consecutive 3 min intervals of increasing
speed at v1, v2, and v3 in a fixed order. Each running session was followed by 5 min of
rest during which participants changed shoes. Before starting the next session, current
heartrate and cardiopulmonary values were obtained to ensure a physiological state close
to baseline.

2.4. Data Processing

Ventilatory thresholds 1 and 2, as well as
·

VO2peak , were determined by two indepen-
dent experts using the Cortex MetaSoft software suite 5.5.1 before exporting the dataset
for further analysis. All further data processing steps and analyses were conducted using
a custom script written in MATLAB R2023a (The MathWorks Inc., Natick, MA, USA).
All cardiopulmonary data were first cleaned by removing outliers that exceeded the mean
of a 7-breath window by more than 2 standard deviations and then smoothed by applying
a 7-breath moving average [28]. Cardiopulmonary datasets from visit 2 were split into
3 min intervals, so that for each trial 5 × 3 = 15 intervals of gas exchange data were used
for further analysis. From these 15 3 min intervals, the final 60 s of data were averaged
and used to determine mean oxygen consumption as the first out of two quantification

approaches to RE (
·

VO2, mL·kg−1·min−1). Those data were also used to calculate energy
consumption by use of Pérronet and Massicotte’s non-protein respiratory quotient equa-
tions [4,40]. Mean energetic cost of transport (ECT, kcal·kg−1·km−1) was then calculated
as the second quantification approach to RE, accounting for differences in energy yield per
volume of oxygen and normalized with respect to body mass and running speed. Relative
RE changes (%RE) during each condition were then calculated by

%RE =
REOWN − RECPRS

REOWN
·100%

with RE being either
·

VO2 (mL·kg−1·min−1) or ECT (kcal·kg−1·km−1). Positive %RE values
indicate a RE improvement while negative %RE values indicate RE deterioration. Metabolic
steady state was confirmed visually, and limited anaerobic contribution was assured by a
respiratory exchange ratio (RER) of RER ≤ 1.0 during all trials [4,41]. Above that threshold,
a substantial anaerobic lactic contribution to energy metabolism by anaerobic glycolysis
is evident, corresponding to a physiological state beyond the first ventilatory threshold.
In such instances, the calculation of energy expenditure based on gas exchange rates
is no longer sufficient, and lactate accumulation rates should be considered as well [4].
To circumvent the necessity for additional, invasive measurements of lactate accumulation,
this metabolic condition was excluded by defining the RER exclusion criterion.

2.5. Statistical Analysis

All statistical analyses were performed in R Studio 2023.12 (RStudio PBC, Boston,
MA, USA). Two-way repeated-measures analyses of variance (rmANOVA) with running
speed and footwear condition as factorial within-subject variables were conducted to

evaluate speed and footwear effects on
·

VO2, ECT, and speed × footwear interaction effects
averaged across speeds as well as separately for each speed. Post hoc pairwise comparisons
with Holm correction were used to compare specific conditions when ANOVA showed
significant effects. In addition, repeated measures ANOVA was conducted with time of
the session as the within-subject categorical variable to evaluate whether shoe order had
affected RE results. Cohen’s d (dCohen) was calculated as a measure of effect size and
categorized as negligible (dCohen < 0.2), small (0.2–0.49), moderate (0.5–0.79), and large
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(≥0.8), respectively [42]. Results are presented as mean ± standard deviation (SD). The
level of significance was set to 0.05 for all statistical tests.

3. Results

Incremental treadmill tests resulted in mean vVT1 and vVT2 values of 11.5 ± 1.1 km h−1

and 15.4 ± 1.9 km h−1, respectively. Resulting mean testing speeds for RE were
v1 = 10.4 ± 1.0 km h−1, v2 = 13.5 ± 1.5 km h−1, and v3 = 15.4 ± 1.9 km h−1, respectively.
Two runners exceeded a respiratory exchange ratio (RER) of 1.0 during their intervals at
vVT2 and were thus removed from further analysis because they had evidently entered a
systemically anaerobic condition.

3.1. Running Economy
3.1.1. Energy Cost of Transport

As for the mixed cohort of both sexes, ECT results are summarized in Figure 4b and
Table 2. ECT was not affected by the shoes’ order (F = 1.666, p = 0.167), while the footwear
condition significantly affected ECT averaged across intensities (F = 7.136, p < 0.001). ECT was
significantly reduced by 0.03 kcal kg−1 km−1 for HOK (2.80%, pHolm < 0.001, and dCohen = 0.90),
0.03 kcal kg−1 km−1 for MIZ (2.57%, pHolm < 0.001, and dCohen = 0.60), 0.03 kcal kg−1 km−1

for PUM (2.31%, pHolm < 0.001, and dCohen = 0.80), and 0.02 kcal kg−1 km−1 for SAU (1.52%,
pHolm = 0.016, and dCohen = 0.42). Reductions by HOK and SAU were large in magni-
tude, whereas the effects of ECT reductions by MIZ and PUM were moderate and small,
respectively.
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Figure 4. Energy cost of transport (ECT) in the four CPRS models studied, averaged across running
speeds and ranked from the least (left) to most (right) economical. The bars show group averages
while the connected symbols depict individual responses. (a) Sex-specific averages: Darker bar fill
colours (left bar of a pair) represent mean values for the male runners whereas the lighter fill colours
show female means. Blue connected down triangles (▼) depict individual male (♂) responses and
red connected circles (•) individual female (♀) responses. (b) Averages for both sexes combined
in one group. OWN: subjects’ own preferred pair of running shoes, HOK = Hoka Rocket X2,
MIZ = Mizuno Wave Rebellion Pro, PUM = Puma Fast-R Nitro Elite, and SAU = Saucony Endorphin Pro 3.
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Table 2. Energy cost of transport for each footwear condition and tested running speed, including
results of repeated-measures analysis of variance (rmANOVA).

Energy Cost of Transport (kcal·kg−1·km−1)

Speed OWN HOK MIZ PUM SAU rmANOVA

Mean ± SD Mean ± SD Mean ± SD Mean ± SD Mean ± SD F p η2

v1 1.01 ± 0.08 0.99 ± 0.06 0.99 ± 0.06 1.00 ± 0.06 0.99 ± 0.08 2.375 0.060 0.02
v2 1.00 ± 0.07 0.97 ± 0.06 0.98 ± 0.05 0.98 ± 0.06 0.97 ± 0.06 3.514 0.011 * 0.026
v3 1.02 ± 0.06 0.99 ± 0.06 0.99 ± 0.06 1.00 ± 0.06 0.99 ± 0.06 8.497 <0.001 * 0.048
Ø 1.01 ± 0.07 0.98 ± 0.06 0.98 ± 0.05 1.00 ± 0.06 0.99 ± 0.06 7.136 <0.001 * 0.028

Abbreviations: SD = standard deviation, η2 = generalized eta squared, and * = statistical significant (p < 0.05).
HOK = Hoka Rocket X2, MIZ = Mizuno Wave Rebellion Pro, PUM = Puma Fast-R Nitro Elite, and SAU = Saucony
Endorphin Pro 3.

Although peak oxygen uptake per body mass was higher for the men than for the
women, gender had no impact on the order of ECT reductions (p > 0.59, two-way ANOVA
with the factors sex and footwear condition), yielding equivalent results for men and
women with footwear condition being the only significant influence (p < 0.001, ηg

2 = 0.04).
No interaction effect between sex and footwear condition was found (p > 0.59). In view of
these results, the following analyses will focus on the mixed cohort of both sexes.

When considering footwear effects on ECT at individual running speeds, there were
no significant differences in the energy cost of transport between footwear conditions at
v1 (F = 2.375, p = 0.060). At v2, in contrast, ECT was significantly affected by the footwear
condition (F = 3.514, p = 0.011), with significant reductions in ECT by 0.03 kcal kg−1 km−1

for HOK (2.71%, pHolm = 0.028, and dCohen = 0.78) and 0.02 kcal kg−1 km−1 for SAU
(2.40%, pHolm = 0.023, and dCohen = 0.81) as compared to OWN. Reductions by HOK
were moderate in magnitude, whereas SAU showed a large effect. MIZ (pHolm = 0.230,
dCohen = 0.53) and PUM (pHolm = 0.230, dCohen = 0.55) did not significantly affect ECT
at this speed. At v3, footwear condition significantly affected ECT (F = 8.497, p < 0.001)
with significant reductions of 0.03 kcal kg−1 km−1 by HOK (3.32%, pHolm < 0.001, and
dCohen = 1.56), 0.03 kcal kg−1 km−1 by MIZ (3.23%, pHolm < 0.001, and dCohen = 0.97), 0.02
kcal kg−1 km−1 by PUM (1.86%, pHolm = 0.015, and dCohen = 0.61), and 0.03 kcal kg−1 km−1

by SAU (2.83%, pHolm < 0.001, and dCohen = 1.17). The effects of HOK, MIZ, and SAU were
large in magnitude, while the effect magnitude for PUM was moderate.

3.1.2. Effect of Running Speed on RE Response

Two-way rmANOVA revealed a significant main effect of running speed on
·

VO2
(F = 353.838, p < 0.001), whereas running speed did not affect ECT (F = 3.975, p = 0.057).
There was no significant footwear condition × speed interaction effect (F = 0.540, p = 0.719).

However, effect sizes of differences in
·

VO2 as compared to OWN increased with running
speed from moderate to large for HOK, from small to moderate for MIZ, and from small to
large for SAU. Likewise, with increasing running speed, effect sizes of differences in ECT
compared to OWN grew from moderate to large for HOK, from small to large for MIZ,
from small to moderate for PUM, and from moderate to large for SAU (Table 3).

Table 3. Changes (∆) and relative changes in energy cost of transport during CPRS conditions
compared to own training shoes and pairwise comparison results.

Change Compared to OWN

Energy Cost of Transport (kcal·kg−1·km−1)
Footwear N Speed ∆ % pHolm dCohen Effect Size

HOK 19 v1 0.02 2.38 0.114 0.65 moderate
19 v2 0.03 2.71 0.028 * 0.78 moderate
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Table 3. Cont.

Change Compared to OWN

Energy Cost of Transport (kcal·kg−1·km−1)
Footwear N Speed ∆ % pHolm dCohen Effect Size

MIZ 19 v1 0.02 2.38 0.555 0.43 small
19 v2 0.02 2.10 0.230 0.53 moderate
19 v3 0.03 3.23 <0.001 * 0.97 large
57 Ø 0.03 2.57 <0.001 * 0.60 moderate

PUM 19 v1 0.01 0.89 1.000 0.20 small
19 v2 0.02 1.80 0.230 0.55 moderate
19 v3 0.02 1.86 0.015 * 0.61 moderate
57 Ø 0.02 1.52 0.016 * 0.42 small

SAU 19 v1 0.02 1.68 0.311 0.53 moderate
19 v2 0.02 2.40 0.023 * 0.81 large
19 v3 0.03 2.83 <0.001 * 1.17 large
57 Ø 0.02 2.31 <0.001 * 0.80 large

Abbreviations: * = Statistical significant (p < 0.05). HOK = Hoka Rocket X2, MIZ = Mizuno Wave Rebellion Pro,
PUM = Puma Fast-R Nitro Elite, and SAU = Saucony Endorphin Pro 3.

3.2. Inter-Individual Variability

Effects of CPRSs on measures of RE showed considerable inter-individual variability
(cf. Figure 4a). Mean effects of CPRSs on ECT ranged from −1.7 to 6.5% for HOK, −2.5
to 9.4% for MIZ, −2.2 to 4.9% for PUM, and −4.5 to 5.8% for SAU among individuals.
In summary, 21% of all subjects reached their individually best relative reduction in ECT
wearing HOK, 32% wearing MIZ, 16% wearing PUM, and 32% wearing SAU, respectively.

Figure 5 displays the percentage of subjects experiencing mean metabolic savings
between 0 and 10% in the four CPRS conditions studied. In summary, ECT was reduced by
at least 1% in 89.5% of all subjects wearing SAU, by 73.7% of subjects wearing HOK, by
63.2% of subjects wearing MIZ, and by 52.6% of subjects wearing PUM shoes. Reductions
in ECT of 4% were exceeded by 36.8% of subjects wearing MIZ, 31.6% HOK, 15.8% SAU,
and 10.5% PUM. Notably, 10.5% of subjects wearing SAU, 15.8% wearing HOK, 36.8%
wearing MIZ, and also 36.8% wearing PUM experienced a detrimental effect on ECT instead
of an improvement.
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Figure 5. Percentage of subjects that experienced average metabolic savings between 0 and 10% in
CPRS conditions. HOK = Hoka Rocket X2, MIZ = Mizuno Wave Rebellion Pro, PUM = Puma Fast-R
Nitro Elite, and SAU = Saucony Endorphin Pro 3. The dashed lines depict the thresholds of savings
of 1% and 4%, respectively.
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3.3. Intra-Individual Variability

Individual responses averaged across running speeds are displayed in Figure 4a (lines
connecting the symbols). Relative changes in ECT experienced by individuals across dif-
ferent CPRS models exhibit considerable variability. This is evident both visually (lines
crossing in Figure 4a) and numerically from the widened mean range of individual per-
centage changes in ECT across the CPRS amounting to 3.9% (thereby exceeding the highest
cohort average of ECT reduction across CPRSs of 2.8% for HOK, see above). In fact, the
maximum range of individual percentage ECT reductions across CPRS conditions observed
for one subject was as high as 7.6% (from −4.5% in SAU to 3.1% in PUM).

Similarly, intra-individual variability between running speeds for a given CPRS proved
to be substantial (Figure 6): the mean range of individual ECT percentage reductions as
a function of speed amounted to 4.0% for HOK, 6.0% for MIZ, 5.4% for PUM, and 3.8%
for SAU, respectively. Interestingly, the maximal range of speed-related individual ECT
percentage reductions observed for one individual was 14.7% (from −9.9% at v1 to 4.8%
at v3 for PUM). Furthermore, only 5 out of 19 subjects (26.3%) experienced their highest
individual reduction in ECT for the same CPRS model across all running speeds (HOK
2 subjects, MIZ 1, PUM 0, and SAU 2), whereas the “individually best” CPRS model varied
in relation to running speed for the majority (14 out of 19, 73.7%).
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Figure 6. Relative changes in energy cost of transport (ECT) at each running speed. Connected dots
represent individual runners. v1 = speed 1, v2 = speed 2, and v3 = speed 3. HOK = Hoka Rocket X2,
MIZ = Mizuno Wave Rebellion Pro, PUM = Puma Fast-R Nitro Elite, and SAU = Saucony Endorphin Pro 3.

3.4. Correlation of RE Changes and Other Measures

Table 4 shows the Spearman’s correlation coefficients between individual relative RE
changes %RE at the three different running speeds v1, v2, and v3, and additionally between
individual %RE (averaged across the individual speeds v1, v2, and v3), individual body

mass, mean individual running speed, and individual
·

VO2,peak. A significant correlation
between %RE at v1 and v2 was found only for the SAU footwear condition (ECT: r = 0.558,
p = 0.018). For speeds v2 vs. v3, %RE correlated significantly for the MIZ (ECT: r = 0.631,
p = 0.006), HOK (ECT: r = 0.575, p = 0.014), and PUM (ECT: r = 0.472, p = 0.05) footwear
conditions. There were no significant correlations between %RE for speeds v1 vs. v3. As for
the other parameters, %RE showed a small negative correlation with body mass in terms of

ECT (r = −0.262, p = 0.049) and with
·

VO2peak (ECT: r = −0.311, p = 0.022) only for HOK. For
all other CPRSs, no significant correlations were observed in this respect.
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Table 4. Spearman’s correlation coefficients of percentage RE changes (%RE) between running speeds

v1, v2, and v3 and between relative RE changes and body mass, running speed, and
·
VO2,peak.

v1 vs. v2 v2 vs. v3 v1 vs. v3
Body Mass

vs. %RE
Speed

vs. % RE

·
VO2peak

vs. %RE
%RE

vs. %RE

Parameter ECT ECT ECT ECT ECT ECT
·
VO2 vs. ECT

HOK r 0.441 0.575 * 0.292 −0.262 * −0.068 −0.311 * 0.967 *
p 0.069 0.014 0.239 0.049 0.614 0.022 <0.001

MIZ r 0.418 0.631 * 0.179 −0.185 −0.058 −0.136 0.990 *
p 0.086 0.006 0.477 0.169 0.671 0.328 <0.001

PUM r 0.368 0.472 * −0.150 −0.103 0.003 −0.049 0.974 *
p 0.133 0.050 0.552 0.446 0.980 0.724 <0.001

SAU r 0.558 * 0.437 0.001 −0.124 0.125 −0.094 0.977 *
p 0.018 0.072 1.000 0.359 0.355 0.499 <0.001

Abbreviations: r = Spearman’s correlation coefficient, v1 = running speed 1, v2 = running speed 2, v3 = running

speed 3, speed = absolute running speed (km·h−1),
·

VO2 = oxygen consumption, ECT = energy cost of transport,
and %RE = percentage change in running economy. * Flags significant correlations. HOK = Hoka Rocket X2,
MIZ = Mizuno Wave Rebellion Pro, PUM = Puma Fast-R Nitro Elite, and SAU = Saucony Endorphin Pro 3.

4. Discussion

The primary aim of this study was to evaluate the amount of RE benefit amateur
athletes can realistically expect when switching running gear from their traditional training
shoes to CPRSs and to compare this benefit across CPRS models from different manufac-
tures for the same cohort. As expected, all models of CPRS significantly reduced mean
ECT when compared to traditional training shoes with percentage differences from −1.52%
to −2.80%. These effects are similar in magnitude to previously reported findings of
CPRS/AFT effects when compared to regular running shoes [32] and racing flats [22–24].
Interestingly, all CPRSs tested showed an improvement of more than 1.5% in RE, a level not
achieved by several other current manufacturers [31,43,44]. Based on mean group-level RE
improvement, the CPRS models rank as follows (in the order of worst-performing to best-
performing): Puma Fast-R Nitro Elite (−1.52% ECT), Saucony Endorphin Pro 3 (−2.31%
ECT), Mizuno Wave Rebellion Pro (−2.57% ECT), and Hoka Rocket X2 (−2.80% ECT).
Notably, regarding pairwise comparisons, only the differences between Hoka Rocket X2
and Puma Fast-R Nitro Elite were statistically significant. When considering the percentage
of runners experiencing RE benefits of a given magnitude, however, rankings change and
substantial differences between CPRS models become apparent. At 1% improvement, the
Saucony Endorphin Pro 3 performed best with 89.5% of runners experiencing at least this
amount of ECT reduction, closely matching values recently reported for the Nike Vaporfly
4% [32]. In contrast, reductions of at least 1% ECT were induced in 73.7% of runners for
HOK, 63.2% for MIZ, and in 52.6% for PUM, indicating increasingly higher numbers of
non-responders. Conversely, at 4% improvement, MIZ and HOK performed similarly well
with 36.8% and 31.6% of runners reducing their ECT by this amount. Both CPRS models
exceed values reported for the Nike Vaporfly 4% [32]. In contrast, SAU and PUM were
substantially less beneficial, providing (at least) 4% of ECT reduction only to 15.8% and
10.5% of runners, respectively.

A comparison of the structural parameters of the various CPRS models, as outlined in
Table 1, with the corresponding experimental RE results reveals some noteworthy insights.
The PUM model is the only CPRS model to utilize solely EVA foam in the heel section,
with the remaining models employing either PEBA or a combination of EVA and PEBA
(e.g., the MIZ) in this region of the shoe. A recent study has indicated that footwear with
PEBA foam incorporated into the midsole results in a lower ECT than footwear with EVA
foam midsoles [45]. It may thus be reasonably deduced that the structural distinctiveness of
the PUM shoes, which feature PEBA foam only in the forefoot section and EVA in the heel
section, might have had a detrimental effect on the potential for RE improvement, given
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that a substantial proportion of the amateur athletes in our cohort exhibited a heel-striking
running pattern. In contrast, the MIZ model features a midsole comprising layers of PEBA
and EVA foams throughout the entire shoe, with a carbon plate positioned between them.
Given the MIZ’s top ranking in our study, it is plausible that this specific layer combination
may confer an advantage in terms of improved RE compared to midsole structures with a
single foam layer.

In essence, these results demonstrate the importance of reporting RE effects of CPRSs
on an individual rather than group level. While the Hoka Rocket X2 did not perform best
at any increment of improvement and led to the greatest RE improvement in only 4 out of
19 subjects, it consistently performed well with most subjects, resulting in only few non-
responders and a large percentage of runners gaining substantial benefit. Conversely, the
Mizuno Wave Rebellion Pro and the Saucony Endorphin Pro 3 performed well at opposite
ends of the spectrum, with the Saucony model showing the lowest rate of non-responders
and leading to greatest RE improvement in 7 out of 19 subjects, while the Mizuno model
improved RE beyond 4% for the highest percentage of runners and led to greatest RE
improvement in 6 out of 19 subjects. The Puma Fast-R Nitro Elite underperformed at
each increment of improvement compared to other CPRS models and led to greatest RE
improvement in only 2 out of 19 subjects. Interestingly, a considerable percentage of
subjects (>30%) experienced detrimental effects on RE when wearing specific CPRS models
(i.e., PUM and MIZ), which differs from previously published findings of CPRS models
from other manufacturers [24,29] and warrants further investigation into shoe design
features, including foam properties, geometry, stack height, stiffening elements, etc., which
might lead to higher numbers of non-responders. In the case of MIZ, the large percentage
of non-responders may be due to its peculiar heel design (cf. Figure 1) which potentially
affects heel strikers differently than forefoot strikers (with the latter being less common in
amateur athletes than in elite runners).

Although body mass, running speed, and training level have been shown to influence
individual RE response [33], HOK was the only footwear condition to show any significant
correlation between RE response and any of the mentioned factors in the present study.
A small negative correlation between body mass and ECT reduction (r = −0.262) indicates
that lighter runners may benefit slightly better than heavier runners, while a moderate

negative correlation between
·

VO2,peak and ECT reduction (r = −0.311) indicates that less
trained runners can potentially expect greater RE improvements in this CPRS model than
better trained individuals. The lack of correlation observed in this study further demon-
strates that mechanisms behind the observed differences in RE response are multifactorial
and of a complex nature. Future work should aim at elucidating biomechanical expla-
nations and strategies to enable an effective prediction of individual RE response for a
given CPRS model.

Notably, only small to moderate correlations were observed between the individual RE
benefits for each footwear condition for running speeds v1 vs. v2 and v2 vs. v3, while they
were small to even negligible for speeds v1 vs. v3. Although some variability may be due to
the inherent measurement error of single-trial RE data [33] and gas exchange data [46], this
lack of correlation between %RE at different running speeds highlights the importance of
measuring RE across multiple running speeds. Variability across velocities may also partly
explain why previous research was unable to link RE benefits to performance benefits, as RE
measurements are typically undertaken at running speeds slower than during performance
testing [25,27].

Given the variability in responses among individuals, it proves challenging to provide
a universal recommendation regarding footwear selection. Generally speaking, it seems
advisable to evaluate a range of CPRS models at the same testing occasion. In some cases,
it may be beneficial to assess the suitability of different shoes over a testing distance of
400–1000 m at a competitive pace. This approach could help identify the shoe that offers the
least exertion during running. However, it is important to note that this purely subjective
method is not a substitute for objective spiroergometric testing.
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Some limitations of this study must be noted. First, individual RE measures in the
present study are based on single-trial data as each participant ran in each footwear
condition at each running speed only once. This is likely to be a reason for the large
intra-individual variability across running speeds seen in this study (Figure 6). Although
desirable, it was not feasible to test subjects multiple times in this work due to the consid-
erable number of combinations of footwear condition (n = 5) and running speeds (n = 3)
during the limited time of CPRS availability. Measuring running economy based on single
trials may be subject to reduced reliability so that intra-individual RE changes between
running speeds and footwear conditions (Figure 6) should be interpreted with caution [33].
Therefore, no single-trial RE measures were used in this study for calculating mean CPRS
effects (averaged across speeds and subjects) or percentage of subjects receiving certain
amounts of benefit (averaged across velocities). Furthermore, as RE was assessed at speeds
up to the second ventilatory threshold, a non-negligible amount of energy may have been
produced through anaerobic lactic metabolism by anaerobic glycolysis, even though this
was partly controlled by excluding subjects that exceeded an RER of >1.0. A small amount
of the observed variation between subjects may thus have been due to lactic anaerobic
contributions. By spot checking via individual lactate measurements with the maximum
additional lactate accumulation observed reaching 2.0 mmol L−1, an upper limit of 10%
to 13% for this lactic contribution to total energy consumption could be estimated (with
an additional lactate accumulation of 1 mmol L−1 lactate corresponding to an additional
3 mL min−1 kg−1 oxygen consumption) [4,47]. Despite the fact that using only spirometric
gas exchange rates to calculate energy expenditure represents the standard practice in the
current footwear literature, future research should consider lactate accumulation at running
speeds close to the second ventilatory threshold to increase the accuracy of CPRS effect
measurements. Moreover, this study is limited by examining only four different CPRS
models. It is likely that CPRSs from other manufactures may yield different results.

5. Conclusions

The present study provides comprehensive insights into the running economy benefits
amateur runners can realistically expect when transitioning from regular training shoes to
carbon plate racing shoes and elucidates the variations in these benefits across different
models from various manufacturers. Although all tested CPRS models offer measurable
benefits, the presented findings illustrate that the extent of improvement and the propor-
tion of athletes benefiting vary substantially across different CPRS manufactures and shoe
designs. In essence, focusing only on mean group-level improvements fails to convey the
nuances of the individual RE response of runners and may be misleading to consumers,
which highlights the importance of presenting individual-level data when testing CPRSs
with respect to their RE benefits. The finding of a substantial number of non-responders
with certain models further underscores the complexity behind shoe performance interac-
tions and the necessity for future research into design features to maximize benefit for a
wider range of athletes. Future studies should aim to incorporate multiple trial measure-
ments and try to explore the mechanisms of individual RE responses. Moreover, at running
speeds close to or above the individual’s second ventilatory threshold, lactate accumula-
tion should be considered in total energy expenditure to improve accuracy, especially for
middle-distance runners and sprinters. Eventually, investigating the relationship between
RE improvements at various running speeds and actual performance outcomes will be
crucial for translating these findings into valid practical recommendations for athletes.
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