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Abstract

Physarum polycephalum is a unicellular eukaryote that belongs to the
Amoebozoa group of organisms. Its complex life cycle involves various cell types
that differ in morphology and biochemical composition. Sporulation, one step in
the life cycle, is a simple form of differentiation that can be experimentally
induced by far-red light. Well-established Genetics and the occurrence of
macroscopic cells with naturally synchronous dividing nuclei make Physarum a
model organism for studying the process of cell differentiation. In this thesis,
next generation sequencing technologies were employed, specifically RNA
sequencing (RNA-seq), together with multiple computational approaches, to
study the transcriptomic changes during the commitment to sporulation in
plasmodial cells. This work involved: (i) The generation of a transcriptome from
cell pools; (ii) the identification of the transcriptome in single plasmodial cells;
and (iif) combining the transcriptomes with the novel genome sequence data
release to characterize the reference transcriptome. First, differentially
expressed genes were identified in cell populations, and their products
integrated into interaction networks using information from orthologs and the
literature. Differential expression analyses showed that after light induction of a
plasmodium the expression of transcripts linked to cell division and DNA repair
is downregulated. In contrast, light-induction stimulated the expression of genes
associated with the protein turnover, the cell cycle progression, and the
maintenance of cell integrity and cytokinesis. Additionally, different groups of
calcium-binding proteins are either down- or upregulated after light exposure.
These differentially expressed genes are associated to a network of actin-binding
proteins, whose products might accomplish different tasks in each stage. Later,
high- coverage RNA-seq was performed with samples of individual plasmodial
cells from Physarum, to characterize the the differentiation-dependent gene
expression at the single-cell level. In this case, the observed regulation patterns
correlate well with the results on cell populations, particularly regarding genes
linked to signaling and actin-binding activities. Finally, a reference transcriptome
for Physarum was generated from its first public draft genome. Novel RNA-seq
analyses together with other available cDNA databanks supported the
identification of 25,649 encoded transcripts. Genetic networks linked to cell
differentiation were annotated, and molecular complexes involved in signal
transduction and development were found within these large interactions. In
addition, other major RNA families were mapped. This work contributes to
necessary basic knowledge to understand the mechanisms of cell differentiation
in this organism, through the characterization of networks and complexes
specific to these molecular functions. Aside from the genome and transcriptomic
sequences and their analyses, this thesis also offers a working pipeline and
protocols that can be taken as a blueprint for the analysis of future
transcriptomic sequences.
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Zusammenfassung

Physarum polycephalum ist ein einzelliger Eukaryot, welcher der Gruppe der
Amoebozoen angehort. Sein komplexer Lebenszyklus umfasst verschiedene
Zelltypen, die sich in der Morphologie und biochemischen Zusammensetzung
unterscheiden. Die Sporenbildung, ein Abschnitt des Lebenszyklus, ist eine
einfache Form der Differenzierung, die experimentell mit dunkelrotem Licht
induziert werden kann. Die gut etablierte klassische Genetik und das
Vorkommen von makroskopischen Zellen mit sich natiirlicherweise synchron
verhaltenden Zellkernen machen Physarum zu einem Modellorganismus fiir das
Studium der Zelldifferenzierung. In dieser = Doktorarbeit wurden
bioinformatische Methoden zur Analyse von Daten aus Sequenzierungen der
nachsten Generation angewandt, insbesondere der RNA Sequenzierung (RNA-
Seq), um die Transkriptom-Anderungen wihrend der Determination zur
Sporulation plasmodialer Zellen zu untersuchen. Diese Doktorarbeit beinhaltet:
(i) Die Analyse des Transkriptoms aus Zellpools; (ii) die Identifizierung des
Transkriptoms einzelner Plasmodien-Zellen; und (iii) die Kombination von
Transkriptomdaten mit der noch unveréffentlichten Genomsequenz, um ein
Referenz-Transkriptom zu erstellen. Zuniachst wurden differentiell exprimierte
Gene in  Zellpopulationen identifiziert und ihre Produkte in
Interaktionsnetzwerken angeordnet, die mithilfe publizierter Informationen
tiber Orthologe erstellt wurden. Differentielle Expressionsanalysen zeigten, dass
nach Lichtinduktion eines Plasmodiums, das Expressionsniveau von
Transkripten, welche im Zusammenhang mit der Zellteilung und der DNA-
Reparatur stehen, herunterreguliert ist. Im Gegensatz dazu stimulierte die Licht
Induktion die Expression von Genen, die fiir den Protein-Turnover, die
Zellzyklus-Progression, die Aufrechterhaltung der Zellintegritit und die
Zellteilung verantwortlich sind. Desweiteren werden verschiedene Gruppen von
Calcium-bindenden Proteinen nach der Belichtung entweder nach unten oder
nach oben reguliert. Diese differentiell exprimierten Gene sind Teil eines
Netzwerkes von Aktin-bindenden Proteinen, dessen Produkte verschiedene
Funktionen bei den genannten Prozessen vermitteln konnen. In einem weiter
gehenden Ansatz wurden RNA-Seq Daten von Physarum Einzelzellen analysiert,
um das Transkriptom in Abhdngigkeit vom Differenzierungszustand auch auf
Einzelzellebene zu charakterisieren. Die beobachteten Regulationsmuster
korrelieren gut mit ersten Ergebnissen dieser Doktorarbeit hinsichtlich der
Zellpopulationen, besonders im Zusammenhang mit Proteinen, die an der Aktin-
Bindung und Signalverarbeitung beteiligt sind. Schliefdlich wurde ein Referenz
Transkriptom fiir Physarum von der noch unveroéffentlichen Genomsequenz
erzeugt. Neue RNA-Seq-Analysen zusammen mit anderen verfiigharen cDNA-
Datenbanken erlaubten die Identifikation von 25.649 kodierenden Transkripten.
Genetische Netzwerke, die an Zelldifferenzierung gekoppelt sind wurden
annotiert und Molekiilkomplexe, die an Signaltransduktion und Entwicklung
beteiligt sind, wurden anhand ihrer putativen Wechselwirkungen identifiziert.
Dartiiber hinaus wurden Mitglieder andere wichtiger RNA Familien identifiziert.



Die vorliegende Doktorarbeit liefert essentielle Grundlagen, um die
Mechanismen der Zelldifferenzierung in diesem Organismus zu verstehen, durch
die Charakterisierung von Netzwerken und Komplexen, welche spezifisch fiir die
entsprechenden molekularen Funktionen sind. Abgesehen von den Genom- und
Transkriptom-Sequenzen und ihrer Analyse, wurde im Verlauf der Doktorarbeit
auch eine bioinformatische Pipeline nebst Protokollen etabliert, die fiir
zukiinftige Analysen von Transkriptom-Daten verwendet werden kann.






Thesis Summary

Physarum polycephalum (“slime mold”), is a unicellular eukaryote that belongs to
the Amoebozoa group of organisms. Its complex life cycle involves various cell
types that differ in morphology, function, and biochemical composition.
Sporulation, one step in the life cycle, is a simple form of cell differentiation that
can be artificially induced by red light. Well-established genetics and the
occurrence of macroscopic cells with a naturally synchronous population of
nuclei as source of homogeneous cell material make Physarum a model organism
for studying the process of cell differentiation. Physarum gene expression has
been shown to be cell type-specific, but existing studies have been focused only
on individual genes. In addition, cDNA libraries from macroplasmodia and other
cell types have been reported (Martel et al. 1988; Watkins and Gray 2008;
Glockner et al. 2008).

In this work, the next generation sequencing technologies were employed,
especifically RNA-sequencing (RNA-seq), together with multiple computational
approaches, to study the transcriptomic changes during the commitment to
sporulation in plasmodial cells. These analyses were carried out at three
different levels: (i) The generation of a expressed transcriptome from cell pools;
(i) The identification of the expressed transcriptome in single plasmodial cells;
and (iif) Combining the expressed transcriptomes with the novel genome release

to characterize the reference transcriptome.

First, the global changes in expression that occur during light-induced
sporulation of Physarum were analyzed, via low coverage RNA-seq (454
sequencing). In this manner, differentially expressed genes were identified, and
their products integrated into interaction networks using information from
orthologs and the literature. It was found that after light induction of a
plasmodium the expression of transcripts linked to cell division and DNA repair
is downregulated. In contrast, light-induction stimulated the expression of genes
associated with protein turnover, genes related to cell cycle progression, and

genes involved in the maintenance of cell integrity and cytokinesis. Additionally,



different groups of calcium-binding proteins are either down- or upregulated
after light exposure. These changes were associated with a network of actin-
binding proteins, whose products might accomplish different tasks in each stage:
the reorganization of the subcellular compartments in order to inhibit migration
during starvation on one hand, and cell polarization and cytoskeletal
redistribution after photoinduction mediated by a group of actin-binding

proteins on the other.

Later, the availability of the high- coverage RNA-seq through the Illumina
platform was combined with the simplicity for obtaining single cells from
Physarum, to characterize the expressed transcriptome through the
differentiation of this lower eukaryote, at the single-cell level. The observed
regulation patterns correlate well with previous results on the differential gene
expression during the commitment to sporulation in the slime mold, particularly

with respect to proteins involved in signaling and actin-binding.

Finally, a reference transcriptome for the slime mold was generated and
annotated, over its first public draft genome. Novel RNA-seq analyses together
with other available cDNA databanks, supported the identification of 25,649
encoded transcripts. Genetic networks linked to cell differentiation were
annotated, and molecular complexes involved in signal transduction and
development were found within these large interactions. In addition, other major

RNA families were mapped.

This work contributes the necessary basic knowledge to understand the
mechanisms of cell differentiation in this organism, especially through the
characterization of networks and complexes specific to these molecular
functions. Furthermore, it provides a starting point for further exploration of the
biology of Physarum, and its utility as a model organism. It is expected that the
precise representation of the differentiation networks may become available as
gene knockout experiments, proteomic data, and other high- throughput
approaches are integrated in future studies of this organism. Aside from the

genome and transcriptomic sequences and their analyses, this work also offers a

ii



working pipeline and annotation protocols, which can be taken as a blueprint for

the analysis of future genomic and transcriptomic studies.
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Chapter 1. Introduction
Physarum polycephalum.

The slime mold Physarum polycephalum is a protist belonging to the clade of
mycetozoans, a group whose members live either as individual amoebae (Class
Dictyostelia or cellular slime molds; e.g., Dictyostelium), or are able to fuse into
large syncitia called plasmodia (Class Myxomycetes or plasmodial slime molds;
e.g., Physarum). Other groups such as the acrasid slime molds have also been
classified as mycetozoans, although there is no consensus about this inclusion

(Blanton 2001; Adl et al. 2012).

Physarum was first grouped together under the lower fungi, but in recent years it
has been accepted the following classification under the Protozoa (Baldauf and
Doolittle 1997; Blanton 2001; Adl et al. 2012; The Marine Biological Laboratory
2013):

Division Protozoa

Subdivision Mycetozoa

Class Myxomycetes

Order Physarales

Family Physaraceae

Genus Physarum

Species Physarum polycephalum Schweinitz 1822

Slime molds are cosmopolitan, with most species described in temperate forests.
They are free- living heterotrophs, i.e,, they cannot fix carbon and therefore they
rely on other organisms as sources of organic molecules, typically engulfing
bacteria and other decaying matter found in soil of their natural habitats -and as

such, they are secondary decomposers (Burland et al. 1993; Blanton 2001).
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Figure 1. The life cycle of Physarum polycephalum. Spores, released from mature
fruiting bodies, germinate into mononucleate amoebae (n), which propagate by
mitosis. At high population density, amoebae of different mating type are able to
mate, to form a zygote (2n). This diploid cell later develops into a multinuclear
plasmodium (2n), through multiple nuclear divisions. Following starvation, the
plasmodium can be induced to sporulation by visible light. Later, the plasmodial
mass develops into individual fruiting bodies, which will subsequently yield
haploid spores (n). Adapted from several sources (Burland et al. 1993; Marwan
2003).
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Figure 2. Heterothallic and Apogamic Cycles. During the heterothallic cycle (4), a
the plasmodium (P) develops into a fruiting body (Fb), which will produce
spores (S). From these, amoebae with wild-type alleles of the mating type locus
(matAx, matAy) can re-enter the cycle by fusing into a diploid zygote (Z).
Sucessive divisions of nuclei occur without cytokinesis, generating a binucleate
cell (B), that develops into a multinucleate plasmodium. In the apogamic cycle
(B), an uninucleate haploid cell committed to plasmodium formation (UC) will
develop directly from amoebae carrying the mutant allele of matAh. In C, the
cross of apogamic amoebae (genotype matAh) with heterothallic amoebae
(genotype matAx) gives progenies of both types. Redrawn from several sources
(Dee 1987; Anderson and Dee 1990).



The life cycle of Physarum.

The life cycle of the slime mold entails the alternation between uni- and
multinucleate stages, from which only the amoeba and the plasmodium are able
to proliferate (Figure 1; Burland et al. 1993). The cell cycles of these two stages,
under similar growth conditions, are the same length. The uninucleate stage is
the amoeba, an haploid cell of 10-20 um that feeds by phagocytosis of fungal
spores and bacteria. Amoebae divide by an open mitosis, which is followed by
cytokinesis, and further divisions produce colonies of genetically identical
amoebae. Upon transfer to water, amoebae transform into biflagellated cells
which change their movements from amoeboid crawling to swimming, and then
they will in turn swim to dryer regions (Burland et al. 1993; Bailey 1997).
Flagellates are not able to feed or divide; therefore, when flagellates settle on a
surface, their flagella are resorbed, and the cell reverts to its amoeboid state.
Under stress conditions (such as starvation or low temperatures), the amoebae
synthesize a resistant wall, and develop into cysts. These cysts hatch to release
the contained amoebae, when favourable conditions return. Later, at high
population density, the mating of two amoebae of compatible mating types
produces a diploid zygote, which by multiple nuclear divisions develops into a
diploid plasmodium (Bailey 1997; Marwan 2003). This change, unlike the two

others to flagellate or cyst forms, is irreversible (Burland et al. 1993).

The plasmodium is the multinucleate stage. This cell feeds by phagocytosis of
bacteria and other microbes, but they are also capable of pinocytosis, through
secretion of extracellular enzymes, in order to break down the materials. They
can be grown in liquid shaking cultures in the form of microplasmodia, which in
turn will fuse into a macroplasmodium when transferred to a surface, regularly
forming a large, yellow macroscopic syncitium of 1 x 107 - 1 x 1010 nuclei, or even
more, depending on its size. However, this union will occur only between
plasmodia sharing the same alleles from the three fusion type loci (fusA, fusB and
fusC). Upon plasmodial fusion, nuclei and cytoplasm mix, but the nuclei do not
merge, and therefore a macroplasmodium may be a heterokaryon if genetically
different plasmodia (of the same fusion type) have fused (Burland et al. 1993;

Bailey 1997). Plasmodial cells move with the help of a network of veins which



generate a cytoplasmic streaming. Nuclei are also transported across the cell
during this streaming, and the direction of the movement changes almost every
minute or less. The plasmodial mass and nuclei double with the completion of a
full cell cycle. During division, DNA synthesis and mitosis occur synchronously
within all the nuclei, but the lack of cytokinesis ensures the continuation of the
syncitial form. This synchronization means that all nuclei within the same
macroplasmodial cell are in the same cell cycle and developmental stage (Guttes
and Guttes 1964). Despite their unlimited ability to grow and divide, plasmodia
are unable to transform into flagellate cells, and thus can follow other alternate
differentiation pathways, depending on the environment and cell size. Under
adverse conditions, plasmodia can enclose themselves into dormant resistant
sclerotia. Furthermore, starved plasmodia have three developmental options: (i)
they will go through sporulation if they are illuminated or exposed to heat shock
while grown in a humid chamber; (ii) they will spherulate if they are submersed
in water; or else (iii) they will re-enter the regular growth program if they find a
nutrient source. During sporulation, the cell develops into fruiting bodies, in
which haploid mononucleate spores are formed by meiosis. In turn, these spores
will produce haploid amoebae, closing the life cycle (Bailey 1997; Kohama and
Nakamura 2001; Marwan 2003).

Genomic Organization and Strains of Physarum

The size of the nuclear genome is yet unclear, although it is believed to consist of
approximately 270 - 300 Mb (Mohberg and Rusch 1971; Mohberg 1977; Burland
et al. 1993; Glockner et al. 2008), with diploid stages entailing 40 chromosomes
(Mohberg 1977; Burland et al. 1993). The GC content of the genome is
approximately 40% (Gordon and Hardman 1988), and around 7% of the cytosine
residues are methylated (Whittaker and Hardman 1980). Two thirds of the
genome are single copy, and the repetitive regions comprise both inverted and
direct repeats (Burland et al. 1993). The gene number is not known, although
several preliminary approaches to characterize the transcriptome point to
20,000 protein- coding genes (see below; Watkins and Gray 2008; Glockner et al.
2008). In addition, the 63-Kb circular mitochondrial genome has an A+T content

of 74.1%, and possess 20 genes: eleven proteins related to the electron transport



chain, one ribosomal protein, two rRNA genes, and five tRNA genes (Takano et al.
2001). RNAs transcribed from the mitochondrial genome suffer considerable
editing, most notably the insertion of single Cs, with Us and dinucleotides,

although the function of this editing is not defined (Bundschuh et al. 2011a).

Strains. Mutants of several classes have been isolated in different laboratories,
some of them displaying natural polymorphisms or carry different allelles at
several loci; nevertheless this heterogeneity does not interfere with genetic
analyses. According to their ability to form plasmodia, two groups of amoebae
strains can be identified (heterothallic and apogamic; Figure 2). As mentioned
above, heterothallic strains are those that proliferate as amoebae, and produce
plasmodia solely through crosses —and only amoebae with compatible genotypes
can mate. Crosses are under the control of three multiallelic loci: The matB and
matC loci affect the efficiency of crossing, and different alleles for the matA locus
are required so a diploid amoeba can develop into a diploid plasmodium.
Conversely, the apogamic strains are those that generate haploid plasmodia in
clonal cultures; therefore in early studies they were widely used in gene
expression studies, as amoebae and plasmodia were of the same genotype. These
apogamic strains can be difficult to cultivate as amoebae, because of their
readiness to form plasmodia, however these problems can be avoided by
changing the culture conditions, or by altering the genotype of the strain (Figure

2; Anderson and Dee 1990).

Gene Regulation during the Life Cycle of Physarum

Amoebae and plasmodia display cell type-specific gene expression, with
specificity of microtubular and actin cytoskeleton structures in both cell types.
Early studies of the molecular biology of Physarum revealed that up to a quarter
of the abundant proteins show different expression levels in both stages (Larue
et al. 1982; Turnock et al. 1981). Cell- specific cDNA libraries revealed a 5 - 10%
cell-type specific expression for both amoebae and plasmodia, and the change of
expression patterns is initiated when unicellular forms become committed to the

formation of a plasmodium (Sweeney et al. 1987; Bailey 1997). The gene families



that show cell stage- specific patterns of expression are those encoding
microtubular, cytoskeletal, actin- and calcium- binding proteins, as well as others
associated to the GTP signaling and some with unknown functions; these genes
are controlled either by genetic or epigenetic regulation. In the following
paragraphs these differences will be summarized across the cell stages during

the life cycle of Physarum.

Microtubules. The microtubules play a fundamental role during nuclear division,
and in the maintenance of the cell shape and polarity. Four alpha-tubulin (named
altA, altB, altC and altD), and three beta-tubulin genes (betA, betB and bet() have
been described. All these genes are unlinked, and some of these exhibit cell-type
specific gene expression (Schedl et al. 1984; Burland et al. 1993; Bailey 1997).
The synthesis of tubulins T1 and T2 were found to be induced during fruiting
body formation (Putzer et al. 1984). In the amoebae, the microtubules radiate
from the so-called nucleus-associated microtubule organizing centre (MTOC).
These microtubules pertain to three tubulin isotypes (alpha-1, alpha-3, and beta-
1). The alpha-3 isotype results from the post-translational modification of alpha-
1 tubulins, and these alpha-3 subtypes can be found in flagellate and amoebae
but cannot be detected in plasmodia. In plasmodial cells, the microtubules
radiate from the cytoplasmic foci, and have no specific orientation. Plasmodia
express the alpha-1, alpha-2, beta-1 and beta-2 tubulin isotypes. The beta-2
tubulin can be found in plasmodial cells but not in amoebae, although developing
uninucleates can form beta-2(+) flagella. The expression pattern of this
plasmodium-specific isotype is similar to the actin-binding protein profilin P
(proP; Bailey et al. 1999; see below). The beta-2 isotype is first detected in
plasmodial mitosis (Bailey et al. 1999), and displayed after the commitment, and
in turn, the alpha-3 tubulin levels decrease as the beta-2 isotype increases
(Bailey et al. 1999; Bailey 1997). However, the lack of the alpha-3 isotype, and
the accumulation of the beta-2 tubulin alone are not sufficient to provoke the

reorganization of microtubules during development (Bailey 1997).



Actin Cytoskeleton. The actin cytoskeleton is a key component during processes
such as locomotion and cell division. A family of actin genes has been described,
designated ardA to ardE. The actin genes ardA, ardB and ardC are expressed at
high levels during all stages of the cell cycle; the specific expression changes of
ardE are unknown. All these genes generate identical proteins; and therefore
changes in actin gene expression are not responsible of changes in actin
organization. In amoebae, the actin layer is located underneath the cell
membrane, with a higher concentration of actin in the pseudopodia, and in the
cytokinetic furrow of cells during mitosis. In flagellates, an actin-rich support
layer runs along the dorsal axis of the cell, from the anterior to posterior regions.
In turn, plasmodia, like amoebae, contain an actin layer just beneath the cell
membrane, although they are arranged in a much more complex microfilament
network than in the amoebae. Microfilaments in plasmodia form a three-
dimensional network in areas that lack veins. The contraction of actin networks
gives the propulsive force for cytoplasmic streaming and plasmodial locomotion.
The only actin specifically associated to plasmodia is the product of the ardD
gene, which is expressed during spherulation (Bailey 1997). In contrast, the
amount of actin mRNA decreased during sporulation. Actin transcripts were
found to be abundant in amoebae, growing plasmodia, and light- induced
plasmodium, but remained in low levels at 4 hours after the light pulse and

throughout sporulation (Martel et al. 1988).

Actin-Binding Proteins. The actin-binding proteins are all cell-type specific,
except for the myosin light chain, and the myosin-like mIpA protein, which are
ubiquitously distributed. In spite of their relevance in several cell processes, little
is known about their differences in function. The main cell-type specific gene
families are the profilin, the myosin heavy chain, the 18 KDa-myosin light chain,
the fragmin genes, and coronin (Binette et al. 1990; Bailey 1997; T’jampens et al.
1999; Bailey et al. 1999; Minami et al. 2009). These actin-binding proteins
possess at least one gene member expressed in amoebae, and another present in
plasmodia, except for the coronin, that has been observed only in diploid

plasmodia so far (Bailey 1997; Minami et al. 2009). For example, there are



amoebal- (frgA) and plasmodial- specific (frgP and frg60) fragmins, as well as
amoebal and plasmodial profilins (proA and proP, respectively). Antibody studies
also suggest the presence of amoebal- and plasmodial- specific myosin genes
(Bailey et al. 1999). Both fragmins and profilins are developmentally regulated
(T’jampens et al. 1999; Bailey et al. 1999; Binette et al. 1990). The fragmins are
calcium- dependent regulators of the microfilament system, that enhance the
phosphorylation of the actin-formin heterodimer, through an actin-fragmin
specific kinase (afk; T'jampens et al. 1999). As for the profilins, the plasmodial-
specific proP is not found in sexually developing cells but in apogamically
developing cells, reaching its maximum levels in the plasmodial stage (Bailey et
al. 1999). In turn, the developmentally regulated myosin D (mynD), is similar to
the tail of the myosin Il heavy chain, and colocalizes with actins in the
microfilament network (Bailey et al. 1999). Coronin, on the other hand, is a
protein found in various eukaryotes involved in several cytoskeletal- based
processes, such as cell migration, cell division and membrane trafficking (Minami
et al. 2009). The coronin from Physarum is a 449 amino acid protein encoded by
a single copy gene, and it possess 60% identity with its Dictyostelium ortholog, a
protein that has been linked to the G- protein mediated signal transduction
(Minami et al. 2009). Taking together, these observations support that changes
in expression of genes coding actin-binding proteins are coincidental with
alterations in the cell organization and behavior, e.g., the transformation of an
amoeba into a flagellate form involves the reorganization of the actin
cytoskeleton. However, it remains to be studied if the differential gene
expression is the cause of the alterations of the actin organization (Bailey 1997;

Bailey et al. 1999).

Calcium-Binding Proteins. Although its precise function is not yet clear, calcium
surely plays a key role during the differentiation of the slime mold, as it is
released from plasmodia right after the exposure to light, concentrations of
calcium and malate are necessary for autocrine signaling in the absence of light
during sporulation (Renzel et al. 2000), and high concentrations of calcium

inhibit the actin - myosin interaction (Nakamura and Kohama 1999). Genes



encoding calcium binding proteins so far described for Physarum include several
types of spherulins (Savard et al. 1989; Pinchai et al. 2006), the regulated in
development redB gene product (Bailey et al. 1999), and LAV1-2 (Laroche et al.
1989). The spherulins entail a heterogeneous group of mRNAs first detected
during plasmodial encystment (spherulation), whose stability is calcium-
dependent (Savard et al. 1989; Pinchai et al. 2006). From the spherulin cDNAs
cloned, two have been more carefully studied, the spherulins 3a and 3b, both
sharing sequence similarities between them, and containing Greek key calcium-
binding domains from the By-crystallins (Savard et al. 1989; Pinchai et al. 2006),
a group of proteins found in vertebrate eye lenses (Slingsby et al. 2013). The
regulated in development transcripts, redA and redB, were isolated from a cDNA
library obtained from apogamically developing cells, sharing the same
expression patterns: higher levels during apogamic development, low expression
in macroplasmodia, and no detection in amoebae (Bailey et al. 1999). Only one of
these, redB, contained two calcium- binding domains, and shared significant
identity with sarcoplasmic calcium- binding proteins from invertebrates (Bailey
et al. 1999). Finally, LAV1-2 is a plasmodial- specific RNA of unknown function,
whose gene product acts as a substrate of transaminases. The sequence of LAV1-
2 contains an EF-hand type domain with a calcium- binding loop, and its calcium-
binding activities have been observed in vitro, although its function is unknown

(Laroche et al. 1989; Mottahedeh and Marsh 1998; Iwasaki et al. 1999).

Signal Transduction. Three groups of GTP- mediated signaling genes linked to
proliferation and differentiation have been extensively studied in Physarum: lig1
(Kroneder et al., 1999), the nitric oxide synthases A and B (Golderer et al,, 2001),
and the GTP cyclohydrolase I, a key enzyme that is part of the folate and
biopterin biosynthesis pathways (Werner-Felmayer et al., 1994). The light-
induced gene ligl is a homolog of the yeast gene husl, a component of an
evolutionarily conserved, genotoxin-activated checkpoint complex that is
involved in the cell cycle arrest in response to DNA damage (Kroneder et al.
1999; Weiss et al. 2000). lig1 is expressed in the starved plasmodia, and induced
up to 60-fold upon the photoinduction (Kroneder et al, 1999). On the other

hand, the nitric oxide synthases nosA and nosB are inducible isoenzymes whose
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sequences lack of the calcium- dependent region observed in the structures of
orthologs in other species, and their mRNA levels are strongly induced during

sporulation, specifically at the end of the starvation (Golderer et al. 2001).

The activity of these three genes is closely connected: The inhibition of either the
nitric oxide synthase activity, or the formation of cyclic GMP, impairs the lig1
expression and prevents sporulation (Kroneder et al. 1999; Golderer et al. 2001).
In addition, during starvation, the addition of glucose to the growing media,
suppresses the nitric oxide synthase activity, while at the same time induces the
expression of the GTP cyclohydrolase gene (Golderer et al. 2001). Furthermore,
the nitric oxide synthases use biopterin as cofactor, and it has been observed
that the GTP cyclohydrolase controls the supply of biopterin (Golderer et al.
2001). Thus it is expected that they belong to the same gene regulatory network
controlling the differentiation of the slime mold (Kroneder et al. 1999; Golderer

et al. 2001; Marwan 2003).

Epigenetic Modifications. The Physarum genome is significantly methylated,
with patterns that remind those of vertebrates —approximately 7% of cytosines
are modified, and these are mostly clustered in Hpall- repeated regions (Gordon
and Hardman 1988). About a third of the Physarum genome is composed of
repetitive elements, which are mostly clusters of retrotransposon- like
sequences (Rothnie et al. 1991), and many of these sequences might be
controlled by epigenetic modifications. The slime mold genome also contains
HTF islands (Hpall tiny fragments), similar to those found in vertebrates, but
here in contrast, almost a half of these segments are derived from rDNA
minichromosomal regions, and are mostly unmethylated (Gordon and Hardman
1988). It is very likely that these methylation levels are transient in many cases,
changing throughout the developmental cycle (Fronk and Magiera 1994), and in
fact, it has been observed that DNA methylation inhibitors (azacytidine, aza-
deoxycytidine, L-ethionine and S- adenosyl homocysteine) prevent sporulation
(Hildebrandt, 1986). Other less common DNA modifications, like N6-methyl-
adenine (m6A), have also been reported in Physarum to be present in cyst but

not in growing cell DNA (Ratel et al. 2006). To date, DNA modifications have
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been reported for only one gene involved in the differentiation of the slime mold,
spherulin-4. This gene displays specific 5-methyl-cytosine (m5C) patterns
correlated to different sporulation stages, and these levels might change
throughout the developmental cycle (Fronk and Magiera 1994). On the other
hand, it is well known that DNA methylation is typically accompanied by other
types of epigenetic marks, such as histone modifications (Strahl and Allis 2000)
and small RNAs (Grewal and Elgin 2007), and together form complex regulatory
networks. In this regard, some chromatin marks like histone H1 methylation
(Jerzmanowski and Moraczewska 1988), histone H4 acetylation (Waterborg et
al. 1983; Pesis and Matthews 1986; Loidl and Grobner 1986), histone H4
methylation (Waterborg et al. 1983), simultaneous changes in acetylation
patterns in H3 and H4 histones (Waterborg and Matthews 1984), and have been
observed during cellular differentiation in Physarum. Increased levels of the
histone H1 during early spherulation (Heads and Carpenter 1990), and changes
in the histone acetyl transferase activities (Lusser et al. 1997) have been also
reported. Furthermore, the RNA interference mechanisms has been also
observed in the slime mold (Haindl and Holler 2005). However, the current
knowledge of chromatin regulation in this organism rather insufficient, and thus
many molecular regulation phenomena that could be better explained at the
epigenetic level, such as developmental pathways, have not been described yet.
Furthermore, the process of sporulation is a good candidate for the control via
epigenetic regulation, because it is driven by environmental stimuli and requires
rapid changes in expression before reproduction, typical for this type of

expression control systems (Jaenisch and Bird 2003).

Other Stage- Specific Proteins and Metabolites. In addition to the above
mentioned genes, other molecules with unknown function have been identified
as cell type- specific in the slime mold: The “hydrophobic abundant proteins,”
hapP and hapS (Martel et al. 1988), as well as malate and beta- poly L-malate
(Renzel et al. 2000; Pinchai et al. 2006). In the former case, the hydrophobic
abundant proteins were first detected on plasmodial cDNA libraries, in a similar
manner to the discovery of LAVI-2, and were exclusively distinguished in two

cell stages, the plasmodium- specific hapP, and another observed only during
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sporulation, the hap$S. Although hapP is abundant both in growing and starving
plasmodia, photoinduction triggers the degradation of hapP and leads to
sporulation. Conversely, the sporulation- specific hapS is absent in growing or
starved plasmodia, and appears after 12 hours of light induction (Martel et al.
1988). HapP can be found in at least two allelic forms, assigned hapP1 (carried
by plasmodia from the M3C-O strain) and hapPZ2 (present in LU648 x LU688
plasmodia). Both alleles code for similar proteins of 187 amino acids which are
90.4% similar to each other, and have an identity of 50% to HapS. However,
neither of these encoded products share similarity to other known proteins
(Lépine et al. 1995). The function of the hap$ and hapP genes and their products
remains to be discovered, although it has been hypothesized that hapS might

encode a cell wall protein (Martel et al. 1988).

Moreover, Renzel et al. (2000) established a new manner to achieve sporulation
in the light or in the dark; they accompanied their methodology with the use of a
solid matrix in order to test for the secretion of sporulation- promoting factors.
In this way, they found that three substances were involved in sporulation:
calcium (described above in the “calcium binding proteins” paragraph), malate,
and beta- poly L-malate (PMLA). PMLA is a water-soluble molecule synthesized
from malate, that accumulates in the nuclei of plasmodia in amounts similar to
those of the DNA and histones, and whose abundance in plasmodia is associated
to the NKA48 transcript. The NKA48 sequence resembled the spherule- specific
transcript spherulin 3a, and therefore it was named spherulin 3b (Pinchai et al.
2006). Renzel et al. (2000) observed that calcium and malate promoted
sporulation in absence of light, while the polymalate acted as a sporulation
control factor, who also might work as a source for calcium ions and malate.
Nevertheless, the precise functions of PMLA in the sporulation process remains

to be studied in detail.
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Physarum as a model organism.

Since the second half of the last century, the slime mold has been not only an
important model in several areas of Biology, but also in Physics and Computer
Science. As happens with many microorganisms, Physarum is easily grown either
on agar plates (as plasmodium), or in a culture broth (as amoebae or
microplasmodia), and in this way large amounts of cells can be obtained with
ordinary laboratory equipment from the many available well- characterized
strains (Kohama and Nakamura 2001; Anderson and Dee 1990). Novel strains
and mutants can also be generated by several means: cell fusion,
complementation, transfection of plasmid vectors, etc. (Anderson and Dee 1990;
Marwan 2003). As mentioned before, plasmodial nuclei are synchronous, i.e., all
the nuclei from a big plasmodial mass stay in the same physiological state.
Furthermore, cell differentiation (sporulation) can be easily induced artificially
by exposure to red light, and it is also highly synchronous (Martel et al. 1988). All
these features are complemented by the disposal of standard molecular biology
tools and methods, such as RNA interference, microinjection, transformation and
cDNA libraries (Anderson and Dee 1990; Marwan 2003; Haindl and Holler 2005;
Glockner et al. 2008). These advantages have allowed to employ Physarum in
areas as diverse as cell motility, cell differentiation, RNA editing, DNA replication,

artificial intelligence and other topics, detailed below.

Cell Motility. Motility has been defined as “the ability of living systems to exhibit
motion and to perform mechanical work at the expense of metabolic energy” (Allen
1981), and includes a wide range of biological processes, including cytoplasmic
streaming, organellar and flagellar movement, cytokinesis, contractility, etc.
Studies of the movement of Physarum date back 1937, with the classical works of
Seifriz on shuttle streaming, and later continued by his student Kamiya, with
measurements of the motive forces, as well as the analysis of the effects of
diverse factors and substances on the motility of the slime mold (Seifriz 1937;
Kamiya 1940; Allen 1981). Actomyosin-like solutions induced by ATP were then
described in Physarum extracts, when Loewy employed the slime mold as the

first nonmuscle motile system to study the muscle biochemistry (Loewy 1952;
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Allen 1981). Afterwards, Huxley and collaborators (1970) showed the
evolutionary conservation of the interaction between skeletal proteins, when
they matched rabbit myosins with actins extracted from the slime mold
(Nachmias and Huxley 1970). Later, mutants defective in cell movement were
developed (Jacobson and Dove 1975), and the properties of the streaming in this
organism have been also studied at the single-cell level (Wohlfarth-Bottermann
1979). Over many years, the cytoskeleton of Physarum has stood as an important
focus of research about the roles of actin, myosin, tubulin and other cytoskeletal

proteins in motility (Burland et al. 1993).

Cell Differentiation. Sporulation in the slime mold displays typical features
present in the process of differentiation: competence, irreversible commitment,
morphogenesis, and metabolites and gene expression unique for the
differentiated state (Sauer et al. 1969). The different cell types and
developmental pathways of the slime mold provide a natural resource for
studying the differentiation in a simple manner (Burland et al. 1993). In addition,
understanding the development of individual cells of multicellular organisms
(which for many reasons cannot be easily studied in isolation) in a simpler
system, such as the sporulation of the slime mold, may help to clarify the precise
mechanisms employed by higher eukaryotes (Bailey 1997). Since sporulation
can be easily induced by starving a plasmodium and then exposing it to light, and
the conversion of plasmodia into the differentiated state allow biochemical
approaches, these characteristics have established Physarum as a model for
studying the differentiation in eukaryotic cells in the form of events that refer to
a defining startting point (Sauer et al. 1969; Burland et al. 1993; Bailey 1997). In
this respect, many cell- type specific and differentially expressed genes have
been associated to the process of sporulation, with many of these genes coding
for cytoskeletal proteins such as tubulins, profilins and actin-binding proteins,
making the slime mold also a suitable model to study these proteins (Bailey
1995; Bailey 1997; Glockner et al. 2008). The identification of developmentally
regulated genes, and the nuclei synchronization inside a plasmodium, later
allowed to study the relationship between the differentiation status and the DNA

replication (see below; Pierron et al. 1989; Maric et al. 2003)
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DNA replication. Eukaryotic genomes replicate through steps without changes
in temporal order, a fact that was first demonstrated in the slime mold (Braun et
al. 1965). Since then, the plasmodium of Physarum has been recognized as a
model for studies of the control of cell division, because of the simplicity of the
cell fusion methods, even between cells at different cell cycle stages, and the fact
that the nuclei enter S-phase immediately after mitosis, which occurs
synchronously (Braun et al. 1965; Sachsenmaier et al. 1972). In addition, the
genome contains many repetitive regions, and therefore the proteins required
for replication may be available in high amounts, which can be easily prepared
from synchronous extracts at specific stages; this allowed the identification of
the initiation from several close origins of replication for the first time in
ribosomal DNA from Physarum (Vogt and Braun 1977; Daniel and Johnson
1989). To date, research focused mostly in the relationship of the histone
modification status and the replication firing, and the developmental usage of
replication origins (Loidl 1988; Borde and Duguet 1998; Thiriet and Hayes 2005;
Thiriet and Hayes 2009; Pierron et al. 1989; Cunningham and Dove 1993; Maric
et al. 2002; Maric et al. 2003; Bénard et al. 2007). In this respect, the natural
synchrony of the cell cycle in the plasmodium allowed the mapping of replication
origins associated to highly expressed genes (Bénard and Pierron 1992). Nuclear
synchrony also enabled the discovery of cell cycle- dependent telomerase
activation (Shimada et al. 1997) and topoisomerase II sites (Borde and Duguet
1998). Later, the comparison of replication patterns in amoebae and plasmodia
showed a reprogramming of the cell cycle S-phase associated to the
reprogramming of transcription during the differentiation, i.e. genes that display
cell- type specific gene expression, are actively replicated from promoter-
proximal origins in cell stages where they are highly expressed (Maric et al.
2003; Bénard et al. 2007). Other studies involved the analysis of structural
features, such as the frequency of formation of the post-replicative X-shaped

DNA molecules (e.g., Maric et al. 2010).
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RNA editing. The phenomenon now known as RNA editing was first described
for the mitochondrial cytochrome oxidase cox2 mRNA in Trypanosoma (Benne et
al. 1986). A few years later, it was also observed in the mitochondrial ATPase
subunit 1 atpl mRNA of Physarum (Mahendran et al. 1991). RNA editing involves
modifications of mRNA molecules (insertions, deletions and substitutions),
which produce final RNAs that differ from the original genomic template
sequences. RNA editing has been described in many species, and in slime molds
it occurs exclusively in the mitochondrion, where up to 25 nucleotides are edited
in almost every gene (Bundschuh et al. 2011b). There are at least four types of
RNA editing in Physarum: The most common form is the insertion of individual
cytosines, and other possible modifications are the insertion of individual Us or
dinucleotide pairs, substitutions of Cs by Us, and deletions. Interestingly, RNA
editing in Physarum is highly accurate (Visomirski-Robic and Gott 1995), and
occurs co-transcriptionally (Visomirski-Robic and Gott 1997), and therefore it
must be associated to the RNA polymerase machinery, making this system the
only non- viral co- transcriptional RNA editing process known so far (Knoop
2011). However, the mechanism of site- recognition and the editing machinery
itself are not known so far, making this an active field of research (Knoop 2011;

Chen etal. 2012).

Epigenetics. Physarum stands out as a promising model organism for epigenetic
studies as well, because its genome is significantly methylated, with patterns that
remind those of vertebrates —approximately 7% of cytosines are modified, and
these are mostly clustered in Hpall- repeated regions. This hypermethylated
regions together comprise ca. 20% of the genome (Gordon and Hardman 1988).
For a brief review of most methylation and histone mark studies, see page 6. In
addition, recent developments will enable future assessment of the histone
marks in the course of the developmental stages in this organism. For instance,
the study of chromatin regulation in this species would be almost impossible
because of the current lack of antibodies directed against specific histone
modifications, but it was demonstrated that Physarum can not only take up
foreign histones (both native and recombinant molecules from Xenopus

expressed in E.coli; Prior et al. 1980; Thiriet and Hayes 1999) but also it can
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incorporate them into its chromatin, which will allow to monitor the differential
binding of these proteins to the studied DNA regions, and to study the influence
of histone modifications on the regulation of gene expression (Thiriet 2004;
Thiriet and Hayes 2005). Furthermore, other recent methodological advances,
such as the development of RNA interference in Physarum (Haindl and Holler
2005), or epigenetic tools created in related organisms (such as Dictyostelium),

will also be helpful to address associated biological questions (Kaller et al. 2006).

Gravitational Biology (Astrobiology). Multi- and unicellular organisms typically
display different levels of gravisensitivities, and use the direction of the gravity
vector for spatial orientation (gravitaxis). Physarum is no exception, as it reacts
to many environmental stimuli, such as light, chemicals, but also to gravity
(Block et al. 1995). On an early experiment, slime molds were sent to orbit
during the Kosmos 1129 (Bion 5) unmanned space mission, which was part of
the Soviet biosatellite program. This experience proved that the slime mold
reduced its growth but maintained its migration ability after exposure to
microgravity (Tairbekov et al. 1981). Later, demonstrations of gravisensitivity
(Block et al. 1986) and gravitaxis in this organism (Wolke et al. 1987), paved the
way for its use as a model in this field. Physarum was then chosen as the subject
for studying the effects of microgravity on single cells for four missions during
the Space Shuttle program: Spacelab D1 (STS-61A Challenger, 1984), IML-1 (STS-
42 Discovery, 1992), IML-2 (STS-65 Columbia, 1994) and BRIC-06 (STS-69
Endeavour, 1995). In these experiments, it was observed the gravitaxis and the
rhythmic contraction activity in weightlessness conditions (Block et al. 1986;
Block et al. 1994), its low acceleration gravisensitivity (Block et al. 1995), and
the involvement of cAMP in the signal transduction associated to the perception
of gravity in the slime mold (Block et al. 1998). Although Physarum has not been
employed as a research model in recent studies, it will presumably stay as a
future choice for experimentation on astrobiology because of its long lasting
stimulus response, which is revealed in multiple manners (oscillating
contractions, changes in second messenger levels, differential gene expression,
etc.; Block et al. 1995; Block et al. 1998; Putzer et al. 1984; Bernier et al. 1986;
Sweeney et al. 1987; Martel et al. 1988).
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Behavioral and Computer Sciences. When the slime mold looks for food
supplies, it develops tubular structures that link the provisions it finds through a
cost- efficient, robust network (Navlakha and Bar-Joseph 2011). Physarum
requires these networks not only to transport the resources, but also to store
related information, learn and recall associated events (Reid and Beekman 2013;
De la Fuente et al. 2013), and even to solve complex nutritional problems and
develop balanced diets (Dussutour et al. 2010). Furthermore, slime molds are
able to find the minimum- length solution in different mazes (Nakagaki et al.
2000; Reid and Beekman 2013), construct robust networks to maximize nutrient
uptakes (Nakagaki et al. 2004), and recall environmental stimuli and adaptation
to changes (Saigusa et al. 2008), which suggest the existence of simple forms of
biological devices for intelligence, and memory processing and storage (De la
Fuente et al. 2013). These problem solving strategies in Physarum have been
implemented into mathematical models, and applied to develop novel algorithms
for network design (Tero et al. 2010), and its oscillatory behavior of adaptation
to stimuli used to control the locomotion of a robot (Tsuda et al. 2007).
Therefore, using biological processes such as the foraging behavior of the slime
mold, modeled as natural algorithms, has the potential of solving complex real-
world problems under a myriad of different conditions (Navlakha and Bar-

Joseph 2011).

Transcriptomes

The transcriptome is defined as the population of all RNAs in the cell, or its RNA
complement. Transcriptomes are the first phenotypic manifestation of the
genome, and as such, are the basis of cellular specificity and higher-order
phenotypes, through the mediation of all phenotypic changes encoded in the
DNA sequence. This unfolding of instructions is started by the transcription of
DNA into RNA, followed by the processing of RNA transcripts into functional
mature RNAs. Recently, a vast number of novel RNA species have been
described. Some of these species belong to novel splice forms of known protein-
coding genes, but others do not seem to encode proteins, and correspond to

novel families of small or multi-exonic noncoding RNAs. The specific roles of
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most of these species are still unknown, although many appear to be involved in
the regulation of gene expression. Therefore, RNAs not only function as carriers
of information from DNA to proteins, but also they play complex roles in cellular

homeostasis and biological regulation (Guigé 2013).

The aims of studying the transcriptome include cataloguing all transcript species,
to establish the gene structure (exons, introns and untranslated features), as well
as quantifying the changes in transcript expression under different conditions.
For the sake of simplicity, in the following paragraphs I will use the definitions
by Guig6 (2013) of protein-coding transcriptome -the set of genes that encode
proteins- and the non-coding transcriptome -the set of transcripts that are not
translated into proteins. I will also include the concepts of reference
transcriptome -the set of all genes and transcripts potentially encoded in a
genome- and expressed transcriptome —the set of genes and transcripts that are
expressed in a given condition, and which are then responsible for cellular

specificity (Guigé 2013).

Experimental methods for studying the transcriptome

Currently, the most commonly used experimental approaches to study the
transcriptomes, include hybridization- and sequence- based technologies. The
hybridization- based methods, include the genomic tiling microarrays (Schena et
al, 1995), which employ a set of overlapping oligonucleotide probes that
represent a cDNA subset or the whole transcriptome at a very high resolution,
and the sequence- based approaches comprise the expressed sequence tag (EST)
library construction (Adams et al. 1991), the tag- based methods, and more
recently the next- generation sequencing technologies, RNA-seq in particular

(Table 1; Nagalakshmi et al. 2008; Guigé 2013).
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Table 1. Experimental methods for studying whole transcriptomes (Modified
from Wang et al. 2009).

Technology Microarrays EST library RNA-Seq

Principle Oligonucleotide Sanger Next generation
Hybridization sequencing sequencing

Resolution Several to 100 bp  Single base Single base

Throughput High Low High

Reliance on Yes No No

genomic sequence

Background noise  High Low Low

Simultaneous map Yes Limited Yes

and expression

Dynamic range for Up to a few- Not practical Over several

expression hundredfold thousandfold

Isoforms detection Limited Yes Yes

Allelic expression Limited Yes Yes

detection

Required amount  High High Low

of RNA

Study cost High High Relatively low

Early approaches to study transcriptomes involved the analysis of total RNA,
often comparing different organisms, growing conditions, tissues, cell types and
disease states, in order to identify and quantify the expression of a given gene of
interest (Morozova et al. 2009; Guigé 2013). The first of these studies
(commonly known as candidate gene approaches), used a method named
Northern blot, which consisted of a low throughput approach to identify RNAs by
hybridization to radioactive probes (Alwine et al. 1977). The complexity of the
method, and the requirement of large amounts of the analyzed nucleic acids,
limited the Northern blot to the analysis of few known transcripts per
experiment (Morozova et al. 2009). Later, the development of the polymerase
chain reaction (Saiki et al. 1988), and particularly of the reverse transcriptase
methods (RT-PCR), reduced the dependence on large amounts of starting
materials, while at the same time increased the throughput. These methods
however, are still limited to a maximum of hundreds of transcripts analyzed at

the same time (Morozova et al. 2009).
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Microarrays

Also known as DNA chips, microarrays are collections of microscopic spots
attached to a solid surface, where each spot contains thousands of copies of the
same DNA molecule (“probe”), representing each spot a given gene. Each
microarray slide is employed to hybridize cDNAs present in a target sample,
whose annealing is then captured and quantified by light- detection methods
(Guig6é 2013). In the last two decades, the microarrays have been the most
commonly used method to monitor the amounts of transcripts at a whole-
transcriptome level, effectively replacing the single- gene approaches by
enabling the simultaneous characterization of thousands of RNAs (Morozova et
al. 2009; Guig6 2013). However, the microarrays are not exempted of problems,
and their major limitations can be summarized in three categories: (i) they are
unable to detect novel transcripts or those that are not previously captured
during the fabrication of the array; (ii) it is difficult to distinguish alternative
forms of transcripts, as the probes usually cover small regions (typically the 3’
ends); and (iii) the quantitative data obtained is noisy, because the transcript
amount is inferred from the intensity of hybridization, which is sensitive to
inhomogeneities of the chip surface properties (Morozova et al. 2009; Guigo

2013).

EST Libraries

Traditionally, the manner of studying RNAs involves first the synthesis of
complementary DNAs (cDNAs) by reverse transcription, using the RNA molecule
as a template. These cDNAs can be cloned into appropriate vectors, from which
these molecules can be sequenced. Using oligonucleotides that are
complementary to the poly-A tail present in eukaryotic mRNAs, cDNA libraries
can be created, entailing copies of transcripts expressed in a given cell type or
condition, and these libraries can be subsequently sequenced. However,
sequencing of large numbers of full-length cDNAs is costly and labor intensive.
Instead, a common strategy to analyze cDNA libraries is the single-pass
sequencing of random cDNA clones, which produces a collection of partial

sequences from specific transcripts, termed “expressed sequence tags” (ESTs;
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Adams et al. 1991). In this way, it was possible to overcome the cost limitation of
sequencing full-length cDNAs, although this method was still too expensive and
complex to be performed routinely on a whole transcriptomic scale. Besides,
when a very large sequencing capacity is not available, the wide range of mRNA
abundances makes random sequencing of cDNA clones inefficient for discovering
rare transcripts, because the most abundant cDNAs will be predominantly
sequenced. Nevertheless, and in spite of being low throughput, mostly non-
quantitative, and relatively expensive, as compared with the current sequencing
technologies, usually EST libraries are still the first approach to study the
transcriptome (Wang et al. 2009; Morozova et al. 2009; Guigé 2013).

Tag-Based Approaches

These methods are high- throughput and provide information on the gene
expression level. Tag- based approaches include SAGE (“serial analysis of gene
expression”), which uses 14-20 bp sequence tags from the 3’ ends of transcripts,
to measure expression levels (Velculescu et al. 1995); CAGE, which uses the 5’
end instead; and MPSS, which determines 15-20 bp signatures from cDNA ends
using multiple cycles of cleavage and ligation. The development of SAGE was an
important advance in transcriptomics as it enabled the use of Sanger sequencing
for expression profiling. Unlike microarrays, tab-based approaches were able to
detect novel transcripts and splice variants, as well as allowing their direct
quantitation; however as tag-based methods rely on Sanger sequencing, their
implementation could be expensive, and also they require complex cloning
procedures. Furthermore, in many cases the short tags cannot be uniquely
mapped in genomes, and it is difficult to distinguish between transcripts with

similar sequences (Wang et al. 2009; Morozova et al. 2009).

Microarrays, EST library sequencing and tag- based technologies have been
complemented in recent years by the development of next generation
sequencing (NGS) methods, and especially of the deep RNA sequencing, or RNA-
seq (Nagalakshmi et al. 2008). RNA profiling by RNA-seq through multiple
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conditions of expressed transcriptomes (cell types, cell cycle stages, cellular
compartments, etc.) is revealing an unexpected complexity of the eukaryotic
transcriptome. This, combined with other molecules involved in the RNA
synthesis and processing (epigenetic modifications, transcription factors,
enzymes, regulators, etc.), gives now a more complete view of the transcriptional
activity inside the cell, allowing the application of systems biology approaches to

the modeling the pathways involved in RNA metabolism (Guig6 2013).

Next- Generation Sequencing

Since its arrival, the dideoxynucleotide method (Sanger et al. 1977) has
dominated the sequencing approaches, and it has led to monumental
accomplishments, such as the first reported genomes (Fleischmann et al. 1995;
Adams et al. 2000; Lander et al. 2001). However, limitations mainly in producing
large volumes of data cheaply, motivated the development of several strategies
in the recent years, collectively known as next- generation sequencing (NGS)
technologies (Metzker 2010). These strategies rely on a mixture of template
preparation, sequencing and imaging, and genome alignment and assembly

methods, in several commercially available platforms (Table 2 and Figure 3).

DNA sample Library Amplification Sequencing Data Analysis
generation

Genomic DNA Fragmentation Emulsion PCR Pyrosequencing Quality Assessment

cDNA/EST libraries End- repair Bridge PCR Seq. by synthesis Assembly, Alignment
Adaptor ligation Seq. by ligation Annotation
Expression Analysis
Variant Calling

Figure 3. A typical next generation sequencing (NGS) flowchart. Adapted from
several sources (Metzker 2010; Rehm et al. 2013).
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Template preparation. Current methods of template preparation comprise
breaking the nucleic acids into smaller pieces from which either fragment
templates (by random shearing) or mate-pair templates (from circularized DNA)
are made. The template is then attached or immobilized to a solid support. This
immobilization of millions of separate template fragments allows thousands to
millions of sequencing reactions to be carried out simultaneously. As most
imaging devices do not possess the ability to detect single molecule signals,
reactions from amplified templates are required. Amplification of immobilized
templates then occurs either on as single strands captured on beads (“emulsion
PCR”, or emPCR), or directly on templates covalently attached to high-density
glass slides (“solid-phase amplification”). This last strategy is employed on the
popular Illumina platform (Bentley et al. 2008). The emulsion PCR beads can
then be immobilized on a glass surface through chemical crosslinking (as in the
Life Technologies APG SOLiD method), or deposited into picotiter plate (PTP)
wells (Roche-454 method; Margulies et al. 2005). Other early methods
performed the sequencing without relying on previously amplified material, to
avoid the bias introduced by PCR methods. For example, in the Helicos platform
this was achieved through immobilization of single molecule nucleic acids, either
primers or sequencing templates; and in the Pacific Biosciences system, where

the immobilized molecules are single DNA polymerases (Metzker 2010).

Sequencing. Clonal amplification results in a population of identical template
molecules, each of which has gone through the sequencing reaction. Upon
imaging, the observed signal is a consensus of the bases or probes added to the
same templates for a given cycle; this puts a greater demand on the efficiency of
the addition process, and incomplete extension of the template might result in a
lagging-strand dephasing, i.e., signal decay over time. Addition of multiple bases
or probes can also occur in a given cycle, producing dephasing at the leading-
strand. Furthermore, signal dephasing increases noise during fluorescence

imaging, causing base-calling errors and shorter reads (Metzker 2010).

25



Three approaches are currently employed for high throughput sequencing, to
overcome dephasing and base-calling errors: Cyclic reversible termination,
sequencing by ligation, and pyrosequencing. Cyclic reversible termination (CRT),
as the name indicates, uses reversible terminators in cyclic method that requires
nucleotide addition, fluorescence imaging and cleavage. CRT involves three
steps: (i) a DNA polymerase incorporates just one fluorescent nucleotide; (ii) the
remaining unincorporated nucleotides are washed away, and imaging is then
carried out to determine the identity of the incorporated nucleotide; and (iii),
cleavage of the terminating or inhibiting group and the fluorescent dye.
Additional washing is performed before the next CRT cycle. One instance of this
approach is the CRT cycle used by the Illumina platform (Figure 4; Bentley et al.
2008) during sequencing and imaging, which detects four colors utilizing two
lasers by total internal reflection fluorescence (TIRF). Fragments produced on
the Illumina systems are typically of a hundred bases, with total outputs in the
range of 3 - 20 Gb. The most common errors in this system are substitutions and

underrepresentation of AT-rich and GC-rich regions (Metzker 2010).

DNA Polymerase

A

CTA...

Figure 4. The [llumina method. This approach uses sequencing by synthesis and
fluorescently labeled nucleotide analogues, that are incorporated in reversible
reactions. These reactions occur in millions of spots (dark panels in the graphic),
allowing the sequencing of many fragments simultaneously. Modified from
Morozova et al. (2009).

26



Template Bead dNTPs
(PTP wells)
DNA Polymerase
/ Primer
/ \ APS PPi

sulfurylase

Light + Oxyluciferin

v
ATP  Luciferin

||

v

Figure 5. The Roche - 454 method. Beads with template DNA, amplified by
emulsion PCR, are incorporated into individual picotiter plate (PTP) wells,
together with additional beads, coupled with sulphurylases and luciferases. Then
dNTPs are added across the PTP wells, and the inorganic phosphate (PPi)
released starts an enzymatic cascade, that ends with the generation of light, that
is detected by a charge-coupled device (CCD) camera from each PTP well.
Adapted from several sources (Metzker 2010; Mutz et al. 2013).

On the other hand, the sequencing by ligation (SBL) approach differs from CRT in
its use of a DNA ligase. SBL employs either one- or two-base encoded probes, and
involves the hybridization of the fluorescent probe to the complementary
sequences adjacent to the primed template, followed by the addition of the DNA
ligase, which will join the dye-labeled probe to the primer. Probes that were not
ligated are washed away, and the identity of the ligated probe is determined by
fluorescence imaging. This cycle can be repeated either through cleavable probes
(to remove the fluorescent dye and regenerate a 5’ phosphate group for
subsequent ligation steps), or by removing and hybridizing a new primer to the
template. The SOLiID platform (Life Technologies) uses the SBL approach, with
templates amplified by emulsion PCR (Metzker 2010).
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Finally, the pyrosequencing, or single-nucleotide addition method (Figure 5), is a
bioluminescence, non-electrophoretic approach that measures the release of
inorganic pyrophosphate, and proportionally converting it into visible light using
a series of enzymatic reactions (Margulies et al. 2005). The addition of single
deoxynucleotide triphosphates (dNTPs) in limiting amounts allows controlling
the DNA polymerase extension, and the order and intensity of the light peaks are
recorded as flowgrams, which reveal the original DNA sequence. Margulies et al.
(2005) described the first NGS platform, integrating pyrosequencing over
picotiter plate (PTP) wells, which will be later commercially available as the
Roche-454 technology. In this platform, DNA templates are fixed to beads and
amplified by emPCR inside the PTP wells. Then smaller beads are loaded into the
wells containing the amplified templates, that carry both sulphurylase and
luciferase enzymes attached to them to facilitate light production. This is
followed by a stream of individual dNTPs across the wells, which are dispensed
in a predetermined sequential order, and the generated bioluminescence is
captured with a charge-coupled device (CCD) camera (Margulies et al. 2005;
Metzker 2010). Output fragments are in the range of several hundreds of
nucleotide bases, with a total output of 0.6 Gb (Table 2); the platform has
difficulties with homopolymeric regions, and the most common errors are

insertions, followed by deletions (Metzker 2010).

Applications. The potential and use of the NGS technologies is akin to the early
days of the polymerase chain reaction. Some example applications include: the
discovery of sequence variants, through resequencing of targeted regions of
interest, or whole genomes; the sequencing and de novo assemblies of bacterial
and non-model organisms; the genome-wide profiling of epigenetic marks and
chromatin structure (through ChIP-seq, methyl-seq, DNase-seq and others);
species classification and/or gene discovery by metagenomics studies; analyzing
mutations and variants in species populations; examination of personal
genomes; studying the evolutionary relationships of ancient genomes; assessing
the role of non-coding RNAs (ncRNAs); the qualitative and quantitative
cataloguing of transcriptomes of cells, tissues and organisms (commonly known
as RNA-seq; Table 1 and following paragraphs); between others (Nagalakshmi et
al. 2008; Wang et al. 2009; Metzker 2010).
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Table 2. Commercially available next generation sequencing platforms. Adapted
from several sources (Morozova et al. 2009; Nowrousian 2010; Metzker 2010;

Mardis 2011).

Platform Roche 454 Illumina Life Tech. SOLiD
Sequencing Pyrosequencing Sequencing by Sequencing by
Principle synthesis with ligation
cyclic reversible
terminators
Sequencing Polymerase- Ligase-mediated Polymerase-
reaction mediated mediated
Template Emulsion PCR Bridge PCR Emulsion PCR
amplification
method
Incorporated Unlabelled Fluorescent End-blocked
chemicals nucleotides oligonucleotides fluorescent
nucleotides
Post Not applicable Chemical cleavage Chemical cleavage
incorporation to remove to remove
method fluorescent dye fluorescent dye
and 3’ end of and 3’ blocking
oligonucleotide group
Detection method Light emission Fluorescent Fluorescent
emission emission
Error model Substitution errors End of read End of read
rare, insertion or substitution errors substitution errors
deletion errors at
homopolymers
Raw read =299 >98-99 >99.94
accuracy (%)
Read length 400 bp/variable 75bp/ 150 bp/
(fragment/paired length mate pairs  50+25bp 100+100 bp
end)
Total output (Gb) 0.6 3-20 50-100
Pros Longer reads Currently the most Two-base
improve mapping  widely used encoding provides
in repetitive platform in the inherent error
regions; fast run field correction
times
Cons High reagent cost; Low multiplexing  Long run times

high error rates in
homo-polymer
repeats

capability of
samples
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RNA sequencing (RNA-seq). This approach was developed to overcome the
difficulties with the classic approaches to study the transcriptomes. RNA-seq, in
simple terms, involves the sequencing and quantitative characterization of cDNA
copies of RNA molecules, or in some cases to sequence raw unamplified RNA
molecules directly, through next- generation sequencing (NGS) methods
(Nagalakshmi et al. 2008; Mortazavi et al. 2008; Ozsolak and Milos 2011). More
specifically, in RNA-seq a population of total or poly-A fractionated RNA is
converted to a cDNA library, with adapters attached to one or both fragment
ends. Then each molecule, with or without a previous amplification step, is
sequenced in a high- throughput manner, producing short sequences from one
or both ends (single- or paired- end sequencing, respectively). These short
sequences, called reads, are typically 30 - 400 bp long, depending on the
sequencing technology used. The obtained sequences are either aligned to a
reference genome, or assembled de novo, and this produces a whole genome
transcriptional map that entails both the transcriptional structures and the
expression level for each mRNA (Figure 6; Nagalakshmi et al. 2008; Wang et al.
2009).

RNA-seq presents many advantages over the hybridization- and Sanger
sequencing- based methods. For example, unlike the hybridization- based
approaches, RNA-seq is not limited to detect transcripts from known genomic
sequences. This makes RNA-seq practical for organisms whose genome
sequences are yet to be determined, such as Physarum, or for non-model
organisms. RNA-seq can reveal the location of transcriptional boundaries at
single- base resolution -30 bp. RNA-seq reads are long enough to depict how two
exons are joined, while longer and paired- end reads show connections between
multiple exons. The single base resolution also allows RNA-seq to reveal
sequence variations, i.e. single nucleotide polymorphisms (SNPs), in transcribed
regions. Another advantage over hybridization methods is that RNA-seq has a
very low or almost none background signal. This is due to the fact that DNA
sequences can be mapped almost unambiguously to unique regions in the
genome. On the other hand, RNA-seq, unlike microarrays, does not have an
upper limit for quantification, as the expression correlates with the number of

sequences obtained (Wang et al. 2009). One particularly powerful advantage of
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RNA-seq over microarrays, is that it can capture the transcriptome dynamics
across different cell types or conditions with simple normalization, and in a time-
resolved manner (Mortazavi et al. 2008; Wilhelm et al. 2008; Cloonan et al.
2008). Moreover, microarrays lack sensitivity for genes expressed at low or very
high levels. Consequently, RNA-seq has a larger and more dynamic range of
detection of transcript expression levels than hybridization- based methods.
Besides, RNA-seq studies have also shown to be highly accurate and
reproducible for quantification of expression levels, for both technical and
biological replicates. Finally, and because RNA-seq requires no previous cloning
steps (and some RNA-seq technologies like those from Helicos need no
preceding amplification step), it requires less starting RNA sample than Sanger
sequencing and hybridization methods. Considering all these advantages
together, RNA-seq is the first sequencing- based method that allows a whole
transcriptome survey in a high- throughput and quantitative manner (Wang et

al. 2009).
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Figure 6. Analysis pipeline for RNA-seq data. Black boxes represent
computational steps exclusive to the RNA-seq workflows. Modified from Mutz et
al. (2013).
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RNA-seq studies have generated an unprecedented view of the transcriptome
and its organization, for several species and cell types. For example, before the
development of RNA-seq, it was known that a larger than expected fraction of
the genomes is transcribed, and in some particular cases such in yeast and
human cells, RNA-seq have enabled the discovery of novel, distinct gene
isoforms. Nevertheless, the transcriptional boundaries (start and ends of exons)
of most genes have not yet been fully resolved, and the extent of heterogeneity
due to splicing remains poorly understood. On the other hand, the single base
resolution of RNA-seq have helped to revise existing gene annotations, including
gene and exon - intron limits for known protein- coding genes, as well as the
identification of novel transcribed regions, and the discovery of several novel
features in the eukaryotic gene organization, e.g. many yeast genes overlap with
others at their 3’ ends. RNA-seq has also opened the possibility to unravel the
extensive transcriptomic complexity, e.g. through transcription start site
mapping, strand-specific measurements, gene fusion detection, small RNA
characterization, quantitative examination of the splicing diversity by searching
reads that map to splice junctions, and also by finding novel transcription
regions that were not identified before using other methods such as transposon

tagging and microarrays (Mortazavi et al. 2008; Ozsolak and Milos 2011).

Computational methods for studying the transcriptome

Computational methods are essential to investigate the transcriptional set of a
given genome, and this is mostly because the data produced by transcriptome
analyses cannot be processed without sophisticated computational resources,
and experimental approaches are limited to analyze small fractions of reference
genome. Currently, these methods employ many different heterogeneous
sources of data, which are later processed and integrated as information,
through a series of complex computational and statistical models. These sources
generally entail three main types: (i) comparisons across genomes, at the
sequence level; (ii) intrinsic features of sequences, such as specific signals or

statistical biases on genomic regions; and (iii) transcribed sequences, such as
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those derived from cDNA sequencing (ESTs, RNA-seq) or proteins from related
species (Guigd 2013). Regardless of the lab methodology used to obtain the
transcriptomic data, the processing typically involves first the reconstruction of
the transcriptome (assembly), to then proceed to assign functional features to
each transcript (annotation), and analyze their expression patterns (Garber et al.

2011).

Assembly. The transcriptome reconstruction is a process in which a map of all
transcripts, including their isoforms, is defined for a particular cell type or
sample, and generally requires the assembly of Sanger sequencing fragments or
RNA-seq reads into transcriptional units (Garber et al. 2011). The assembly is
therefore a hierarchical data structure in which the sequence data is mapped or
built into a putative transcriptome, by grouping reads and fragments into
contigs, which entail multiple alignments of reads and consensus sequences

(Miller et al. 2010).

Transcriptome reconstruction is a highly demanding computational task: It is
affected by the several orders of magnitude that span the abundance of
individual transcripts; generally, in the samples there is a mixture of mature and
processed transcripts, increasing the difficulty in identifying the mature mRNAs;
and genes can have isoforms, so it is challenging to establish which isoform
produced a given sequencing read (Garber et al. 2011). Assembly algorithms
(and their implementations) are therefore typically complex, and their operation
can require high- performance computational platforms. For example, current
high- throughput sequencing methods produce relatively short reads, and the
assembly of these small fragments then requires a high coverage, in order to
satisfy a minimum detectable overlap to allow the formation of contigs; high
coverage in turn increases the complexity and the computational issues
associated to large datasets. Nevertheless, the use of heuristics can help to
overcome these and other common problems in real data, as well as the physical
limitations of the computational equipments currently available (Miller et al.

2010).

The assembly of the short fragments (commonly known as reads) produced by

the NGS methods is achieved by aligning the reads to a reference sequence
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(typically a pre-existing genome, “genome- guided methods”), or assembled de
novo (without using a reference sequence, “de novo methods”; Metzker 2010).
The decision of using either strategy is usually based on the intended biological
application, the existence and completedness of a reference genome, the
availability of sequencing and computing resources, the type of data generated
by the sequencing approach, and the goal of the research project, as well as other
technical considerations (cost, effort, time, etc.; Metzker 2010; Martin and Wang
2011). Regardless of the strategy used, the quality of both reference- based or de
novo assemblies can be improved by increasing the read coverage and/or
applying different platforms on the same target sequence (Aury et al. 2008;
Reinhardt et al. 2009; Metzker 2010).

Genome- guided methods (also known as ‘reference-based’ or ‘ab initio’
assembly), rely on a previously existing reference genome, to be used as a target
where all the reads are mapped, and this coordinate system of spliced reads is
then employed to build all the transcripts (Garber et al. 2011; Martin and Wang
2011). This strategy is substantially cheaper and faster than carrying out Sanger
sequencing, and single nucleotide variants (SNVs) can be readily identified,
although validation of findings through other methods, and repeated NGS
experiments is mostly required (Metzker 2010). Genome- guided methods are
then preferable for instances where a high quality reference genome is available.
An interesting advantage of this approach is that, because it reduces a large
assembly problem into many smaller by-locus assemblies, these can be easily
solved through parallel computing in machines with only few gigabytes of RAM.
Besides, contamination or artifacts are not a major concern, as these will not be
mapped into the genome, and therefore they will not appear into the output
assembly. Furthermore, as this method can incorporate low abundance
transcripts, and gaps caused by lack of coverage can be filled by the reference
genome, thus genome- guided approaches tend to generate longer untranslated
regions (UTRs), allowing the discovery of novel transcripts that might not be
included in the current annotation. However, genome- guided methods are not
flawless, and their success depends on the quality of the reference genome used
(Garber et al. 2011; Martin and Wang 2011). For example, genome- guided

methods are capable of placing reads within repetitive regions (which can be
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solved using mate-pair sequencing), or placing reads in regions that may not
exist in the reference sequence (which might result in sequence gaps caused by
structural variants; Metzker 2010). In addition, these approaches are obviously
not possible for species lacking a reference genome, and also they usually miss
spliced reads spanning large introns, and trans- spliced genes (Garber et al.

2011; Martin and Wang 2011).

Conversely, the de novo methods are genome- independent, performing the
assembly directly from the overlapping reads. For organisms lacking a finished
or high- quality genome, de novo assemblies can provide an initial set of
transcripts, thus allowing differential expression studies; and even when a
reference genome is available, de novo assemblies can recover transcripts from
segments missing in the genome assembly. De novo methods do not depend on
alignments to known or predicted splice sites, and thus long introns or trans-
spliced genes are not a concern. However, the resources needed to assemble
large transcriptomes by this method can be overwhelming (they require
complex computational facilities, and a much larger sequencing depth than
reference- based strategies). Besides, de novo assemblies are very sensitive to
sequencing errors, contaminants, chimeric molecules, and other sequencing
artifacts. In spite of all these problems, de novo assembly of bacterial and lower
eukaryotic transcriptomes is straightforward, and has led to important
discoveries in recent years (Garber et al. 2011; Martin and Wang 2011). For
example, de novo assemblies have been reported at the level of bacterial
genomes, mammalian bacterial artificial chromosomes (BACs), and lower
eukaryotic transcriptomes, although considerable challenges exist for their

application to large plant and animal transcriptomes (Metzker 2010).

In addition, there is the possibility of combining both ab initio and de novo
strategies, and in this way, one can take the advantage of the high sensitivity of
the reference- based approaches, together with the ability of capturing novel
transcripts and trans- spliced genes brought by the de novo assemblers. This
combined strategy can be carried out either way: first by aligning the reads to
the genome, or by de novo assembly of the reads -the choice of one or another

depending on several factors. In case a high quality reference genome is
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available, the combined approach should start by aligning the reads against the
genome, followed by the de novo assembly of reads that could not be mapped to
the genome. In this way it is possible to filter quickly all unwanted sequences,
contaminants and artifacts before the assembly. On the other hand, when the
quality of the reference genome is called into question, an assemble-then-align
should be carried out, first by de novo assembly of reads, and then to extend the
contigs by alignment against the genome. The two obvious advantages here are
that errors in the genome are not passed into the assembled transcripts, and also
that gaps between fragments can be easily filled by the reference sequence. In
this case it is also possible to use protein sequences for scaffolding, if the
similarity at the RNA sequence is not enough for sequence extension (Martin and

Wang 2011).

The accuracy of an assembly is difficult to measure, and therefore before
carrying out functional assignments in transcriptomes, an assessment of the
readiness of the assembly for annotation and differential expression analyses is
needed (Miller et al. 2010; Yandell and Ence 2012). To this end, there are
commonly used statistics that help to describe the completeness and contiguity
of an assembly, as well as to evaluate its accuracy, e.g. the assembly size, the
sequencing coverage, the contig N50, gaps percentage in the assembly, etc.
(Yandell and Ence 2012). Nevertheless, these metrics require a previously
existing transcriptome for comparison, and as standard criteria for assessing the
quality of assemblies have not been established yet, the use and interpretation of

these rules varies among analysts (Martin and Wang 2011).

Expression. During the assembly of fragments obtained from next generation
sequencing experiments (“reads”), one of the processes involved the alignment
or mapping of these reads against a reference genome or transcriptome, in order
to reconstruct the full transcript sequence. In RNA-seq, the count of mapped
sequencing reads for each gene in a given condition is used to measure the gene
expression (Guig6 2013). This estimate requires normalization in order to obtain
significant results (Garber et al. 2011). A common metric to this end is the
number of reads per kilobase of transcript per million of mapped reads (RPKM),

which normalizes the read count of a transcript against its length and the total of
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mapped reads in the RNA-seq sample (Mortazavi et al. 2008). Upon
normalization, the difference of expression levels across conditions is analyzed.
In this respect, as most RNA-seq studies deal with little or no sample replicates,
the current methods to model biological variation and to provide significance in
differential expression use various different parametric approaches, for example
negative binomial distributions. However, these results must be interpreted
carefully, because as with any biological measurement, replicates provide the
only way to observe intrinsic variability. The assessment of differential gene
expression is usually assisted by annotation results, e.g. by clustering genes with
related functions and similar normalized read count patterns (Garber et al.

2011).

Annotation. This is a term that entails two types of processes, one being the
identification of all genes and their exon-intron structures (the structural
annotation), and the other is the assignment of metadata to structural
annotations, such as gene ontology terms (functional annotation). Annotation
can be done manually, but it is so laborious that, although it results in high-
quality annotation sets, for reasons of budget generally projects are increasingly
relying on automated procedures. Annotation of gene structures at the whole-
genome or transcriptome level is generally divided in two different phases: (i) A
computation phase, where cDNAs, ESTs, proteins and other coding sequences,
are aligned to the genome or transcriptome, and ab initio or evidence based
predictions are produced; and (ii) an annotation phase, where all the computed
data are merged into gene descriptions. Because these processes are very
complex and involve the use of many different tools, the programs that utilize
the computed data to create annotations are typically referred to as annotation
pipelines. Although there is no standard way to annotate genomic data, the used
pipelines share some common features, such as the use of experimental
sequence evidences in order to improve the accuracy of the predicted models

(Yandell and Ence 2012).

The first step in the computation phase is the identification of repeats, which
comprise two types of sequences: (i) low complexity sequences, such as

homopolymeric regions; and (ii) mobile elements, including viruses and
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transposons. Eukaryotic genomes can be very rich in repeats, and these
complicate annotation because their borders are not clearly defined and they are
poorly conserved. Therefore, repeat identification requires the creation of
species- specific repeat libraries, which are then used as probes for similarity
search tools. Upon detection, the stretches containing repeats need to be
‘masked,’ i.e. marked as repeats, in order to avoid producing false evidences for
annotation. After this, annotation pipelines align coding evidences (protein, EST
and RNA-seq data) to the assembly, in two steps: First, approximate regions of
similarity are defined, and these alignments are usually filtered for marginal
matches; and second, the remaining data is clustered, to reveal overlapping
segments, grouping different results into a single cluster, and removing
redundant evidences. Then, ab initio gene prediction tools are employed. These
tools use mathematical models rather than evidences (EST and protein data) to
identify genes and gene structures. The advantage of this process is therefore
that it does not need external evidences; however, in practice these tools are not
sensitive or specific enough, and they necessitate previous training. To improve
the accuracy of ab initio predictions, many tools use external evidences, in
processes referred as evidence- based predictions. These tools are in practice
difficult to use, being at the present time one of the main bottlenecks in

annotation (Yandell and Ence 2012).

For the second step, the annotation phase, the simplest form to proceed is to
combine the results from different gene predictions, choosing a single prediction
that represents best the consensus of models among overlapping predictions.
Another common approach is to supply alignment evidences to the predictors
during the identification of the coding sequence, in order to improve accuracy,
and then the predictions can be combined as mentioned before. In any case, the
decision of using either approach will depend mainly in the amount and type of
evidences available, the phylogenetic status of the organism studied (i.e,, if there
are related organisms with well annotated genomes), and difficulties inherent to
projects such as the required effort versus the desired accuracy of the goals, etc.

(Yandell and Ence 2012).
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The Transcriptome of Physarum

A first approach to study the transcriptome of Physarum was carried out by
Glockner et al. (2008). To this end, they used the plasmodia competent for
sporulation, as cells in this state still have the potential to follow different routes
of growth and differentiation, and therefore they could find more transcripts that
are relevant to commitment than using either the vegetative of committed states.
In this way, 15,680 complementary DNAs (cDNAs) were sequenced, and
assembled into 5,856 contiguous fragments (contigs). These contigs represented
single genes as their cDNA library was generated from the 5’ end, and it was
enriched for long fragments. They estimated that this sequence databank was
roughly 30% of a tentative complete transcriptome of twenty thousand protein-
coding genes, and the remaining transcripts were expected to be cell stage-
specific, or expressed in very low amounts. From the 5,856 transcripts, 3,282
had orthologs on the TrEMBL database (Boeckmann et al. 2003), and 490 had no
similarity to any entry from sequence databases, although they contained
InterPro domains (Hunter et al. 2009). The main metabolic and housekeeping
genes were also found in this cell stage. However, as they used a state where the
cell is waiting for an external input, in this study they paid special attention to
signal transduction pathways, and specifically to receptors. In this regard, they
encountered 27 cDNAs with receptor domains from photolyases, a family of light
detection proteins involved in light- induced signaling processes in other species
(e.g., UV damage repair pathways); they postulated that these sensing proteins
could participate in the activation during the early stages of sporulation.
Glockner et al. also found 529 potential alternatively spliced transcripts, after the
observation of alignment gaps during clustering, and a close examination of
these sites showed that the splice site consensus did not differ from the
canonical splicing motif GT-AG. This phenomenon has been also observed in

Dictyostelium, but not in sequences from animals or plants (Gléckner et al. 2008).
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Comparative Transcriptomics of Physarum and Other Amoebozoa

Over 40% of the transcripts identified by Glockner et al. (2008) were similar to
proteins from Dictyostelium discoideum. However, 895 of their cDNAs (15.28%)
entailed orthologs to sequences other than those from Dictyostelium. They
attributed this difference to genes lost during the divergence of Physarum and
Dictyostelium, and thus evolutionary speciation might account for these
differences. The transcripts without counterparts in Dictyostelium were not
involved in primary metabolism, so either these genes might have been lost in
Dictyostelium, or these transcripts might have evolved faster in Dictyostelium
than in other species, although they did not discard the possibility of false

positive matches to other datasets (Glockner et al. 2008).

In a similar manner, Watkins and Gray (2008), performed a comparative study of
EST libraries of two free-living amoebae (Acanthamoeba castellanii,
Hartmannella vermiformis) and three slime molds (Physarum polycephalum,
Hyperamoeba dachnaya and Hyperamoeba sp.). They included in their analysis
the genome sequences of Dictyostelium and Entamoeba histolytica, and the
partial genome available for A. castellanii, and compare them to the EST data to
identify genes that are unique exclusive to the Amoebozoa. In this way, they
found a single gene cluster, called cudA, as the only strongly evidence of an
amoebozoa- specific gene. This gene is key for the slug culmination in
Dictyostelium, a terminal phase of the differentiation whose outcome is the
fruiting body, needed for sporulation. CudA is essential for asexual reproduction,
and it is also associated to the stalk cell differentiation, as cudA mutants are
unable to go through the early phases of this process. It is likely that CudA acts as
transcriptional regulator of the differentiation through interaction with DNA
binding proteins, as it localizes to the nucleus. In turn, CudA seems to be
controlled by a network of proteins involved in the regulation of morphogenesis
that detect environmental and endogenous signals. All these findings correspond
to the Dictyostelium ortholog, as the cudA functions in other amoebozoa remain

to be studied (Watkins and Gray, 2008).

40



Regarding the genes that are specific to the slime molds, Watkins and Gray
(2008) found a 23 common genes between the Dictyostelium and Physarum
transcript libraries. Five of these were annotated, with three associated to
development, and one involved in signal transduction, acting as a G-protein
receptor. One of these genes exclusive to the slime molds is the cytosolic
regulator of adenylyl cyclases (CRAC), a specific mediator of the response to
extracellular cyclic AMP, and whose sequence cluster show no similarity hits to
any other eukaryotic taxa. Interestingly, the mycetozoan- specific genes appear
to be related to the differentiation, specifically to the sporulation, and this is
probably due to the fact that the mechanisms of multicellularity might have
evolved independently in slime molds and other eukaryotes (Watkins and Gray,

2008).

The Physarum EST library contained three core meiotic genes, one of them
(Rad51) also observed in the Acanthamoeba library. This gene is crucial for
crossing over during meiosis, and also possesses a key role in the double- strand
break repair. The other two meiosis- related genes found in the Physarum library
were the less studied Rad50 and Dmc1 (Watkins and Gray, 2008). In addition,
Watkins and Gray (2008) identified orthologs encoding enzymes from the
biosynthetic pathways of trehalose and mannitol. These pathways have been
associated to the stress tolerance and adaptation in plants and fungi, and here

they observed a considerable range of enzyme diversity within the Amoebozoa.

The plasmodial cDNA libraries studied by Watkins and Gray (2008) also
exhibited considerable lateral gene transfer (LGT), comprising 25 EST clusters in
Physarum that were not found in Dictyostelium candidates, although they did not
discard the possibility of finding them in other amoebas. One of these clusters
was depicted before by Benard et al. (1992) as a late replicating gene without
further functional characterization, while the remaining ones are related to the
secreted subtilisin-like serine proteases from beta- proteobacteria. These
subtilisin-like protease clusters seemed to be fixed and also experienced further
duplications and diversification. In addition, some LGT genes annotated as

enzymes from the alternate trehalose synthesis pathway, appear to be shared
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between Hartmannella vermiformis, H.dachnaya and Physarum (Watkins and

Gray, 2008).

Objectives and Approach

The thesis work presented was motivated by the availability of the first
transcriptomes (Glockner et al. 2008; Watkins and Gray 2008) and the first draft
of the genome of the slime mold (The Genome Institute, Washington University
School of Medicine), as well as the development of the high- throughput, next
sequencing technologies, RNA-seq (Nagalakshmi et al. 2008; Wang et al. 2009) in
particular, which would allow us to reveal all genes linked to the differentiation
of the slime mold. Thus the general aim of this thesis was to identify all
transcripts associated to the sporulation, a simple form of cell differentiation
present in Physarum. More specifically  aimed to: (i) compare the transcriptomic
changes during the sporulation of plasmodial cell pools, using RNA-seq; (ii)
develop a single-cell approach to study these whole transcriptome differences
under the same experimental conditions; and (iii) reveal all theoretically
encoded transcripts in the genome, that could be linked to the cell differentiation

of the slime mold.

Thesis Organization

In Chapter 2, I will describe the materials and methods employed during the
course of this thesis work. Then, in Chapter 3, I will introduce the analysis of the
whole transcriptome of the slime mold during sporulation. Here it was found
that the most up- and downregulated transcripts could be associated through a
protein interaction network involving actin-binding activities. This was achieved
via RNA-seq, using the 454 sequencing platform, and comparing cell pool
samples before and after the induction for sporulation (exposure to red light). In
Chapter 4, I will detail the development of a novel approach, in order to study the
transcriptomic changes during the sporulation at the single-cell level. To this
end, similar growth and induction conditions were applied to those employed in
the previous chapter, and performed the RNA-seq experiments using [llumina

sequencing, to obtain the largest coverage possible. In this case, a similar
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network of actin-binding proteins was observed, thus confirming our results in
cell pools, but also as supporting the feasibility of using Physarum as a model for
transcriptomic studies at the single-cell level. Finally, in Chapter 5, I analyze the
latest unpublished version of the genome of the slime mold, in order to identify
all possible coding sequences, using a combination of experimental evidences
(ESTs, RNA-seq, proteins), and computational predictions. In this manner, I was
able to extend the sporulation network, displaying in detail the interaction
groups associated to the differentiation, development, and signal transduction in
the slime mold. This study not only provides sets of putative candidates that
could be used in future experimental studies in the genetic nature of the
sporulation in the slime mold, but also a pipeline to annotate the genome of

Physarum, including both the coding and noncoding transcriptomes.

43



Chapter 2. Methods.

I. Materials.

Three different strains were employed in this study: WT31 (Chapters 4 and 5;
Glockner et al. 2008), LU352 (Chapter 5; Dee et al. 1989), and the cross LU897 x
LU898 (Chapters 3 and 5; Sujatha et al. 2005). These are described in detail the

Table 3. Computer equipment, data sources, and data generated during this

thesis work, are listed in tables 4 to 7. Finally, the programs used are included in

tables 8 to 11.

Table 3. Strains used in this work. The LU strain prefix stands for Leicester
University (Anderson and Dee 1990). The strain LU352 was provided by Gerard
Pierron (Villejuif, France) to the Washington University Sequencing Center
(St.Louis, Missouri) for the genome project. The LU897 x LU898 cross derivative

and the WT31 strain were developed and are available locally.

Strain Origin  Genotype Phenotype Apogamic Sporulation Reference
Name Growth
LU352 Cld-AXE matA2, yellow yes yes Dee et al.
x LU213 gadAh, npfC, 1989
Cross matB3,
fusA1, axe,
whiA*
LU897 x LU897 x matAl, white no yes Glockner et
LU898 LUB98  matAz, al. 2008
Cross fusA1, fusA2,
fusB1, fusC1,
whiAl
WT31 LU352x matA2, yellow yes yes Sujatha et al.
LU897  fusAl, 2005
Cross gadAh, npfC+,
whiA*
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Table 4. Hardware.

Platform IBM x3755 M3 MacPro4,1 MacBook Pro PC

6,2
Processor(s) Four 12-Core Two Quad-Core One Intel Core  One Intel Core-2
AMD Opteron  Intel Xeon i7 (2.66 GHz) Duo E6850 (3
6172 (2.1 GHz) GHz)
RAM 256 Gb (see note 17 Gb, 1066 4 Gb, 1067 MHz 3.2 Gb
Memory below) MHz DDR3 DDR3
Storage Eight 2-Tb SAS  639.79 Gb SATA One 499,76 Gb Two 250 Gb
NearLine Western Digital SATA Seagate SATA Seagate
Operating SUSE Linux Mac OS X Mac OS X Ubuntu 10.04;
System Enterprise version 10.6.8  version 10.6.8  Windows XP
Server 11 SP3
(x86_64)
Purpose Data Analysis;  Data Analysis;  Data Analysis;  Statistics;
Data Storage; Scripting; Scripting; Scripting
Scripting Statistics Statistics

Note: Some bioinformatics applications, e.g. de novo assembly of large genomes
and transcriptomes, require large amounts of RAM memory. In general, an
approximation formula was derived by Simon Gladman (CSIRO, Australia) to

calculate the RAM needed for de novo assembly (Gladman 2009):

RAM = —109635 + 18977 * ReadSize + 86326 x GenomeSize + 233353
* NumReads — 51092 * Kmer
Where the read size is given in base pairs, the genome size in megabases, and the
number of reads is in millions; the result can be divided by 1,048,576 to convert
it to gigabytes. For example, over 512 Gb of RAM are needed to work with the
human genome. Moreover, to carry out the assembly of the Physarum genome
(~300 Mb), with shorts reads (36 bp), on a mid- coverage resolution (24 million
reads) using the velvet assembler (k-mers: 31, 41, 51; Zerbino and Birney 2008),
the amount of RAM required would be in the range between 28.10 and 29.08 Gb.
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Table 5. Nucleotide Databases and Datasets

Database Purpose Version Reference

RepBase Repeat annotation and masking 20120418 Jurka et al.
2005

Rfam Noncoding RNA annotation 11.0 Griffiths-Jones
etal. 2005

Physarum rRNA

rRNA annotation. Obtained from

Accessed on

Benson et al.

GenBank via Entrez. 29/01/2013 2011
Physarum nucleotide Annotation. Obtained from Accessed on Benson et al.
sequences GenBank via Entrez. 30/01/2013 2011
Physarum EST clustering; Mapping ESTsto  N.A. Glockner et al.
transcriptomic ESTs  Protein Models 2008
Physarum EST clustering and mapping. N.A. Watkins and
transcriptomic ESTs  Obtained from GenBank Gray 2008
Physarum amoeba Long read mapping. Obtained Accession Unpublished
transcriptome long  from the European Nucleotide SRP000013

reads

Archive (ENA).

D. discoideum EST

Annotation; Mapping ESTs to

Version date

Chisholm et

sequences Protein Models 12/19/2008 al. 2006

D. discoideum coding Annotation; comparative Version date Chisholm et
sequences genomics of coding potential 18/02/2014 al. 2006

D. discoideum Mapping CEGMA against Accessed on Chisholm et
genomic scaffolds Dictyostelium genomes 26/02/2013 al. 2006

D. purpureum Mapping CEGMA against Accessed on Sucgang et al.
genomic scaffolds Dictyostelium genomes 26/02/2013 2011
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Table 6. Protein Databases and Datasets

Database Purpose Version Reference

Physarum amino Annotation. Obtained from Accessed on Benson et al.

acid sequences GenBank via Entrez. 30/01/2013 2011

UniProt Protein- coding gene annotation  Version date The UniProt

11/2012 Consortium
2010

CEGMA (core Assessment of Completeness; N.A. Parra et al.

eukaryotic genes) SimiTri Analysis; Mapping 2007; Parra et
CEGMA against Dicty and al. 2009
Physarum genomes; comparison
against protein models

OrthoMCL-DB Mapping Protein Models to Version 5 Lietal. 2003
Ortholog Clusters (31/03/2011)

KEGG GENES Mapping Protein Models to KEGG  Release 66, Kanehisa et al.
Orthologs; Mapping Dicty 04/2013 2010

Proteins to KEGG Orthologs

Monosiga brevicollis
Protein sequences

Comparative genomics via
SimiTri Analysis. Obtained from
the DOE Joint Genome Institute.

Accessed on
05/08/2009

King et al.
2008

Saccharomyces
cerevisiae Protein
sequences

Comparative genomics via
SimiTri Analysis. Downloaded
from Saccharomyces Genome
Database (SGD).

Accessed on
05/08/2009

Issel-Tarver et
al. 2002

D. purpureum
Protein sequences

Comparative genomics via
SimiTri Analysis. Obtained from
the DOE Joint Genome Institute.

Version date
02/04/2010

Sucgang et al.
2011

D. discoideum
Protein sequences

SimiTri Analysis; Mapping
CEGMA proteins against
Dictyostelium genomes. Obtained
from DictyBase.

Version date
09/12/2011

Chisholm et al.
2006
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Table 7. RNA-seq datasets. Each accession corresponds to a different sequencing
run or experiment. All sets were generated during the course of this study,
except for the data from the LU352 amoebae, which was sequenced at the
Washington University Sequencing Center (St.Louis, Missouri), from an RNA
sample preparated by Gerard Pierron (Patrick Minx, personal communication).

Strain Source Method Reads Database Accession Reference
LU352 amoebae Roche 8,064,625 SRA SRP000013  Unpublished
454
LU897 x plasmodia Roche 405,363 SRA SRP001397 This work
LU898 454

WT31 plasmodia [llumina 77,023,388 ENA ERP001220 This work

LU897 x plasmodia Illumina 15,844,226 SRA SRP009381 This work
LU898

LU897 x plasmodia Illumina 98,803,609 N.A. Unsubmitted  This work
LU898

Table 8. Programs used for assembly and mapping RNA-seq data

Program Purpose Version Reference
cap3 Sequence Assembly 12/21/07 Huang and Madan
1999
BLAST+ Sequence clustering 2.2.27+ Camacho et al.
2009
Bowtie Short reads mapping 0.12.7 Langmead et al.
2009
TopHat Mapping short sequences from 1.4.0 Trapnell et al.
spliced transcripts to the 2009
genome
Cufflinks Transcriptome assembly 1.3.0 Trapnell et al.
2012
samtools Short reads manipulation 0.1.18 Lietal. 2009
(r982:295)
USEARCH Sequence clustering 5.2.32 Edgar 2010
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Table 9. Programs used for identification of repetitive sequences and non-coding
RNA annotation. All programs are Linux versions, executed under SuSE, except
for CPC, whose source was modified to run on 0SX 10.6.8

Program Purpose Version Reference
RepeatMasker Repeat annotation; repeat open-4.0.0 Smitetal. 2010
masking
RepeatModeler Repeat annotation, masking, and open-1-0-7 Smit and Hubley
modeling of repetitive sequences 2010
TRF (Tandem  Repeat annotation, masking, and 4.07b Benson 1999
Repeats modeling of repetitive sequences
Finder)
RECON Modeling of repetitive sequences 1.07 Bao and Eddy
2002
RepeatScout Modeling of repetitive sequences 1.0.5 Price et al. 2005
RMBLASTN Nucleotide-nucleotide BLAST 2.2.27+ Smit et al. (2010)
with RepeatMasker extensions
BLAST+ rRNA annotation 2.2.27+ Camacho et al.
2009
tRNAscan-SE tRNA annotation 1.23 Lowe and Eddy
1997
RNAmmer rRNA mapping 1.2 Lagesen et al. 2007
Infernal Noncoding RNA annotation 1.0.2 Nawrocki et al.
2009
bedtools Noncoding RNA annotation 2.17.0 Quinlan and Hall
(ncRNA GFF statistics) 2010
CPC (coding Noncoding RNA annotation 0.9-r2 Kong et al. 2007

potential
calculator)

(Protein Coding Potential)
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Table 10. Programs used in the annotation and the comparative analysis of the
coding transcriptome.

Program Purpose Version Reference
InterProScan  Protein signature (domains) 4.8 Zdobnov and Apweiler
recognition 2001
Blast2GO Annotation 2.5 Conesa et al. 2005
OrthoMCL Mapping Protein Models to 2.0; Chen etal. 2007
Ortholog Clusters. Webserver
accessed 17/05/2013
KAAS Mapping Protein Models to 1.67x Moriya et al. 2007
KEGG Orthologs. Webserver
accessed 17/05/2013
GOSlimViewer summary of GO annotation Webserver McCarthy et al. 2006
v.2.00
iPath Comparative Metabolic Webserver Yamadaetal. 2011
Pathways of Physarum and version
Dictys 2.0
Blast Simitri analysis 2.2.26 Altschul et al. 1997
(0SX)
SimiTri Simitri analysis Peregrin-Alvarez and
Parkinson 2009
SOBACcl command line tool for Eilbeck et al. 2005
analyzing GFF3 annotations
CodonW Codon usage 1.4.4 Peden, John;
compiled  codonw.sourceforge.net
under
Ubuntu
10.04.4
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Table 11. Programs used for the identification of gene models. All programs are
Linux versions, executed under SuSE, except for CPC, whose source was modified
torun on 0SX 10.6.8

Program Purpose Version Reference
blat Sequence alignment 35x1 Kent 2002
Genemark-ES  Gene prediction 2.3e Borodovsky and
Lomsadze 2011
MAKER?2 Protein and Transcript Model 2.1 (0SX) Holt and Yandell
Identification 2011
BLAST+ Gene prediction (under 2.2.27+ Camacho et al.
MAKER?2) 2009
Exonerate Gene prediction (under 2.2.0 (OSX) Slater and Birney
MAKER?2) 2005
Augustus Gene prediction (under 2.5.5 Stanke et al. 2008
MAKER?2) (source
modified
for OSX)
SNAP Gene prediction (under 2006-07- Korf 2004
MAKER?2) 28 (0SX)
Eval Comparison of predicted gene v.2.2.8 Keibler and Brent

models

2003
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II. Methods

Analysis of the expressed transcriptome during the differentiation of

Physarum cell pools

Culture and light-induction of plasmodial cells. Physarum plasmodia of the
white strain (LU897 x LU898 cross) were hatched from spherules, and grown as
microplasmodial suspensions for four days. The plasmodial mass was then
applied to starvation agar plates. Microplasmodia spontaneously fused to give a
single plasmodium on each plate. Plasmodia were then starved for six days in the
dark at 22°C to obtain maximal competence for sporulation. To verify the
sporulation-competent state, plasmodia were cut into two halves. One half was
immediately frozen in liquid nitrogen for RNA extraction, and the other half was
returned to the dark and incubated until the next day to verify that the
plasmodium had not been induced to sporulation. To obtain light-induced
plasmodia, competent plasmodia were irradiated for 30 min with far red light
and then returned to the dark. Six hours after the start of irradiation, plasmodia
were cut into two halves. One half was frozen in liquid nitrogen for RNA
extraction. The other half was returned to the dark and incubated until the next
day to verify the sporulation status (Roland Kroneder et al. 1999; Golderer,

Werner, Leitner, Grobner, et al. 2001).

cDNA Library Construction and Sequencing. Transcript poly(A)+ RNAs were
isolated by oligo-dT chromatography. cDNAs were prepared from these RNAs by
the full-length enriched synthesis method (vertis Biotechnologie, Freising-
Weihenstephan, Germany). First strand cDNA was synthesized using oligo(dT)
adapter primers and MMLV H-reverse transcriptase. Following RNA hydrolysis,
an adapter primer was annealed to the 3' end, and the produced fragments were
PCR-amplified for 22 cycles with a proofreading enzyme. The cDNA libraries
were then directly sequenced using the 454 GS FLX system (Roche Diagnostics,
Mannheim, Germany; Margulies et al. 2005). Chromatograms were scored for
quality, and the produced sequences were trimmed of adapter sequences, and

coassembled into contigs using previously available transcriptomic data
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(Glockner et al. 2008). For expression comparisons I obtained for each contig: (i)
the number of reads (defined here as "hit counts") in both libraries; and (ii) their
relative frequencies (reads of a given contig divided by the total number of
reads). Statistical significance between the two hit counts for each contig species

was then assessed (Audic and Claverie 1997).

Sequence Annotation and Network Inference. Similarity searches against
protein databases were performed using BLASTX (Altschul et al. 1990; Altschul
et al. 1997). I employed nine protein databases in this comparison: Swiss-Prot
and TrEMBL, versions 56.3 and 39.3 (Boeckmann et al. 2003), dictyBase
(Chisholm et al. 2006) and RefSeq database subsets: mammalian, other
vertebrates, invertebrate, protozoa, plant and microbial, release 31 (Pruitt et al.
2007). Functional annotation was carried out using BLAST2GO, version 2.2.3
(Gotz et al. 2008). This procedure consisted of a similarity search against the
non-redundant GenBank database (Benson et al. 2008a), using BLASTX (e-value
1E-3), followed by Gene Ontology (GO) (Gene Ontology Consortium 2008)
mappings extracted from similarity results and InterPro domain matches
(InterPro release 18.0) (Hunter, Apweiler, Attwood, Bairoch, Bateman, Binns,
Bork, Das, Daugherty, Duquenne, Finn, Gough, Haft, Hulo, Kahn, Kelly, Laugraud,
Letunic, Lonsdale, Lopez, Madera, Maslen, McAnulla, McDowall, Mistry, Mitchell,
Mulder, Natale, Orengo, Quinn, Selengut, C. ]. a Sigrist, et al. 2009). Annotation of
sequences (cutoff value 1E-6) was followed by their validation, and these
annotations were extended using ANNEX (Myhre et al. 2006). Statistical analysis
of GO annotations between differentially expressed cDNAs was carried out using
the Fisher exact test, as implemented in the GOSSIP module (Bluthgen et al.
2005) of BLAST2GO. Sequences were also categorized in metabolic and signaling
pathways, via similarity search against orthologs present in the KEGG database
using the KAAS server (Kanehisa et al. 2008; Moriya et al. 2007). In this case, |
employed default parameters for ESTs. KEGG orthologs (KOs) were then plotted
into the whole metabolic atlas, utilizing the KEGG mapping tool (Okuda et al.
2008a). Putative networks of correlated genetic interactions were generated

from annotation information, using the MLE algorithm (Deng et al. 2002), as
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implemented in the Cytoprophet plugin of the program Cytoscape (Morcos et al.

2008; Shannon et al. 2003). For a summary of these procedures, see Figure 7.
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Figure 7. Overview of the experimental design for the analysis of the
transcriptome in cell pools. A summary of experiments and computational
analyses is depicted for the analysis of the transcriptome during the
differentiation of cell pools. RNA samples were taken from competent plasmodia
after six days of starvation in the dark, and from competent plasmodia at six
hours after exposition to a 30 minutes pulse of red light (= 700 nm) (1). cDNAs
were synthesized from extracted RNAs (2), and sequenced and quantitated using
the 454 Life Sciences platform (3). Contigs generated were then annotated at
every bioinformatic level (4), and network interactions (5) were obtained both
by a combination of manual curation of literature, expression data, and
predictions from annotations
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Analysis of the expressed transcriptome during the differentiation of

Physarum single cells

Culture and sequencing. Physarum macroplasmodia, apogamic strain WT31
(Starostzik and Marwan 1998), were cultured as previously described in the
previous chapter. Cells were grown and collected under two different conditions:
(i) a plasmodium starved for 6 days (competent D1 and D2 individual cell
samples); and (ii) a plasmodium starved for 6 days, exposed to far red light for
30 minutes, and returned to the dark for 6.5 hours (photoinduced L1 and L2
cells; Table 1). During this time period the cell becomes irreversibly committed
to sporulation (Starostzik and Marwan 1995). Samples were frozen and PolyA+
RNA was isolated from the total RNA samples (by two rounds of oligo-dT affinity
chromatography), and fragmented with ultrasound (4 pulses of 30 sec at 4°C).
Subsequently, the RNA fragments were poly(A)-tailed using poly(A) polymerase,
followed by treatment with tobacco acid pyrophosphatase (TAP). Then a RNA
adapter was ligated to the 5'-monophosphate of the RNA. First-strand cDNA
synthesis was performed using an oligo(dT)-adapter primer and the M-MLV
reverse transcriptase. The resulting cDNAs were PCR-amplified for 14-15 cycles
to about 20-30 ng/ul, including distinctive 4-bp 5'-barcodes for each sample
(Table 1), and using a high fidelity DNA polymerase. The PCR products were
purified with the Agencourt AMPure XP kit (Beckman Coulter Genomics), and
pooled in equivalent amounts. cDNAs in the range of 200 to 400 bp were
fractionated from agarose gels and sequenced using the Illumina HiSeq 2000

system.

Data Analysis. The 100-bp sequencing outputs were then trimmed for quality
(Phred score > 33), and later assembled de novo, using velvet (Zerbino and
Birney 2008) and oases (Schulz et al. 2012). k-mers of 31, 41, and 51 nucleotides
long were used for these assemblies. Later, CAP3 (Huang and Madan 1999) was
employed to reduce redundancy in the assembly. The annotation of this
assembly was carried out first through BLAST (Altschul, Madden, A. A. Schiffer,
et al. 1997) searches (e-value 1E-3) against the SwissProt (Boeckmann et al.

2003) protein database. A search for Physarum noncoding RNAs was not
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included due to the lack of complete gene models and a finished reference
genome in this species. Afterwards, domains and protein signature patterns
were associated from matches to the InterPro database, and Gene Ontology (GO)
based annotations were assigned using Blast2GO (Gotz et al. 2008), from
annotations pertaining to orthologs (annotation e-value cutoff < 1E-6). Gene
names and descriptions were filtered using the Blast Description Annotation tool
from Blast2GO (Gotz et al. 2008). Significant differences in GO annotations
between sets of up- and downregulated genes from each cDNA library were

evaluated using Fisher exact tests, as implemented in Blast2GO.

To assess the differential expression between the several single cells, the
sequencing output was splitted using the barcode information for each sample.
Then the decoded outputs were mapped to the novel assembly with Bowtie
(Langmead, Trapnell, Pop & S. Salzberg 2009). Samtools (Li et al. 2009) and
Tablet (Milne et al. 2010) were later used to obtain mapped read counts. For
expression comparisons it was obtained for each transcript: (i) the number of
mapped reads; and (ii) the normalized expression value, as measured in reads
per kilobase per million mapped reads, RPKM (Mortazavi et al. 2008). To identify
differentially expressed transcripts between starved and photoinduced cells, the
non-normalized mapped read count data was analyzed using the R-based
package DESeq (Anders and Huber 2010). Transcript abundances for each gene
were estimated as a weighted mean of mapped read counts from each replicate,
normalised to the library size. P-values (adjusted for false discovery rate) were
generated for each gene in pairwise comparisons between different conditions
(competent and induced cells). I used the per-condition method and fit-only
sharing mode. A summary of experiments and bioinformatic analyses is depicted

in Figure 8.
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Figure 8. Overview of the experimental design for the analysis of the
transcriptome in single cells. A summary of experiments and computational
analyses is shown. RNA samples were taken from competent and light-induced
plasmodia (culture). These RNAs were employed as templates for cDNA
synthesis, which were later sequenced using the Illumina HiSeq 2000 platform
(RNA-seq). Reads were assembled (assembly), and the obtained contigs were
annotated at every bioinformatic level (annotation). Then, to evaluate
differentially expressed transcripts, reads were mapped to the assembly and
normalized (differential expression). Finally, gene ontology annotations were
tested for enrichment between up- and downregulated transcripts (enrichment
tests).
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Identification and Annotation of the Reference Transcriptome of Physarum

polycephalum

RNA Sequencing of the White Strain (First Batch). In order to obtain the
maximum number of expressed transcripts, RNA-seq was carried out in two
batches, from samples of Physarum plasmodia of the white strain (LU897 x
LU898 cross; Table 3). For the first white strain sequencing batch (here named
“LULU1"), macroplasmodial single-cells were grown and collected under three
different conditions: (i) a plasmodium starved for 6 days (competent D cell
sample); (ii) a plasmodium starved for 6 days, exposed to far red light for 30
minutes, and returned to the dark for 2 hours (L2 photoinduced cell); and (iii) a
plasmodium starved for 6 days, exposed to far red light for 30 minutes, and
returned to the dark for 6 hours (L6 photoinduced cell). Upon collection, the
three samples were ground under liquid nitrogen. Total RNA was then isolated
from the frozen samples using the mirVana miRNA isolation kit (Ambion). The
total RNAs were tested for their integrity by capillary electrophoresis.
Afterwards, to enrich for mRNA in the total RNA preparation, the RNA samples
were incubated with Terminator exonuclease (New England Biolabs), which
specifically degrades RNA species which carry a 5' phosphate. The obtained full-
length mRNAs were then treated with a tobacco acid pyrophosphatase, to release
the 5' CAP structure. This was followed by ligation of a RNA adapter to the 5’-
phosphate of the decapped mRNAs. First-strand cDNA synthesis was carried out
with a N6 randomized adapter primer and M-MLV-RNase H- reverse
transcriptase. The resulting cDNAs were amplified with cycles of LA (long and
accurate)-PCR. For Illumina sequencing (Bentley et al. 2008), the cDNAs were
pooled in equal amounts and from this pool, the cDNAs in the size range of 200 -
450 bp were eluted from a preparative agarose gel. An aliquot of the size
fractionated cDNA was analyzed by capillary electrophoresis. The output was
encoded in Illumina Phred-64 FASTQ format (Cock et al., 2010), and deposited in
the NCBI Sequence Read Archive (accession SRP009381; Table 7).
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The primers used for PCR amplification were designed for amplicon sequencing
according to the instructions of Illumina/Solexa. The following adapter
sequences flanked the cDNA inserts (Illumina adapter sequences are

underlined):

5’- end (53 bases):

5’- AAT GAT ACG GCG ACC ACC GAC AGG TTC AGA GTT CTA CAG TCC GAC GAT C-
NNNN-3’

3’-end (39 bases):

5’- CAA GCA GAA GAC GGC ATA CGA-TCA GGC AGA GGA CGA GAA-3’

RNA Sequencing of the White Strain (Second Batch). For the second RNA-seq
batch (“LULUZ2"), I included single-cell white strain samples from a competent
plasmodium, and photoinduced cells collected after 3.5, 8 and 10 hours after far
red light exposure. Poly(A)+ RNA was then isolated from total RNA, and
fragmented with ultrasound (4 cycles at 4°C for 30 seconds). The RNA samples
were then dephosphorylated using antarctic phosphatase and re-phosphorylated
with polynucleotide kinase (PNK). Afterwards, the RNA fragments were poly(A)-
tailed using a poly(A) polymerase. Then an adapter was ligated to the 5'-
phosphate end. First- strand cDNA synthesis was carried out using an oligo(dT)-
adapter primer and a Moloney murine leukemia virus reverse transcriptase (M-
MLV). The obtained cDNAs were PCR-amplified to about 20-30 ng/pl using a
high fidelity DNA polymerase, with primers including the barcoded TruSeq
sequencing adapters (Illumina; cycle programs are indicated in the Table).
Subsequently, the cDNA samples were pooled in 3 different pools, and then
eluted from agarose gels in the size range of 200- 500 bp. Aliquots of the
fractionated cDNA were analyzed by capillary electrophoresis. The cDNA pools
were then sequenced (single reads) on a [llumina HiSeq 2000 system. The output

was encoded in Phred-33 FASTQ (Sanger) format (Cock et al,, 2010).
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The following adapter sequences flank the DNA inserts (combined length of the

flanking sequences is 146 bases):

TrueSeq Sense primer:

5- AAT GAT ACG GCG ACC ACC GAG ATC TAC ACT CTT TCC CTA CAC GAC GCT
CTT CCG ATCT-3'

TrueSeq Antisense primer (N6- Barcode):

5’-CAA GCA GAA GAC GGC ATA CGA GAT-N(6)-GTG ACT GGA GTT CAG ACG TGT
GCT CTT CCG ATC (dT25)-3".

For both RNA sequencing batches, the RNA material was provided by Wolfgang
Marwan (Otto von Guericke University), and RNA preparation and sequencing as
described here were carried out by vertis Biotechnologie (Freising-

Weihenstephan, Germany).

Genome sequencing and annotation. The Physarum genome assembly, version
7.3.1, was obtained from The Genome Institute, Washington University School of
Medicine (St Louis, MO). First, a search for rRNAs, tRNAs and other noncoding
RNAs, via a combination of similarity (BLAST+), ab initio (RNAmmer, tRNAscan-
SE, CPC) and motif finding strategies (Infernal; Table 9) was performed
(Camacho et al. 2009; Lagesen et al. 2007; Lowe and Eddy 1997; Kong et al.
2007; Nawrocki et al. 2009). Most of the following analyses were carried out
over repeat masked sequences. To this end, a species- specific repeat library was
created, using the RepeatModeler package, and then the repeats were identified
with a combination of programs: TRF for tandem repeats, RECON and
RepeatScout for ab initio repeat detection, and RMBLASTN and RepeatMasker
for known repeats and transposons present in the RepBase database (see Table
9; Benson 1999; Bao and Eddy 2002; Price et al. 2005). The masked genome
obtained was then (i) mapped for Physarum and Dictyostelium ESTs (Table 5;
Chisholm et al. 2006; Glockner et al. 2008; Watkins and Gray 2008); (ii) searched
for ortholog proteins from the UniProt database (Table 6; The UniProt
Consortium 2010); (iii) aligned against long (454) and short (Illumina) RNA-seq

outputs, obtained in previous experiments (Table 7); and (iv) used for gene
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prediction with the GeneMark ES program (Table 11; Borodovsky and Lomsadze
2011). Then these four types of evidences (ESTs, proteins, RNA-seq reads and
predicted genes) were combined over the masked genome into the final protein-
coding gene models (Holt and Yandell 2011). The accuracy of these predicted
gene models, in terms of sensitivity and specificity, was measured with Eval

(Keibler and Brent 2003).
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Figure 9. Gene identification and genome annotation pipeline. The genome was
first searched for noncoding RNAs and repetitive sequences, and masked for the
repeats found. Then known proteins, cDNAs (ESTs), as well as predicted exons
were mapped and combined into gene models. Finally, the proteins encoded in
these gene models were annotated and compared against closely related
proteomes. The coding and noncoding RNA annotations were integrated into a
uniform database.
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The encoded proteins were then annotated (Altschul et al. 1997; Conesa et al.
2005; Hunter et al. 2009; Zdobnov and Apweiler 2001; Okuda et al. 2008), and
their sequences and annotations were used for comparative genomics against
the proteomes from D.discoideum, D.purpureum, Monosiga and yeast. Proteins
annotated for Gene Ontologies associated to cell differentiation, signal
transduction, and embryo development, were selected and joined into
interaction networks, with the Cytoscape program. These procedures are shown

in Figure 9.
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Chapter 3. The expressed transcriptome during the differentiation of

Physarum cell pools

Background

In order to identify the differentially expressed genes associated with the
commitment to sporulation, a characterization and comparison of two cDNA
libraries prepared from competent and light-induced plasmodia using massive
parallel sequencing of RNAs, or RNA-seq (Margulies et al. 2005; Nagalakshmi et
al. 2008), was carried out. This method was employed because it does not rely on
reference transcripts for quantitation, previous cloning steps are not required, it
does not have an upper limit for quantitation, and it is a relatively unbiased
approach (Wang et al. 2009). The comparison of annotations and transcript
quantitations show that most differentially expressed genes encode proteins
associated to a network of actin-binding proteins. Components of this putative
interaction network are associated to development, DNA repair, cell division,

calcium release, cell death, and maintenance of cell integrity.

Results

Sequencing and Profiling of cDNAs expressed in competent and light-induced

plasmodia

Separate cDNA libraries were constructed from polyA+ RNA isolated from two
sources: (i) competent plasmodia; and (ii) sporulation- induced plasmodia
(competent plasmodia harvested six hours after exposure to far-red light). The
cDNAs libraries were then analyzed using massive parallel sequencing
(Margulies et al. 2005; Wang et al. 2009). Transcripts were annotated at every
bioinformatic level, and the annotation data was used to infer hypothetical
interaction networks from differentially regulated genes. The whole approach is

summarized in the Figure 7.

63



From the pyrosequencing, a total output of 61.9 Mb from two runs was obtained,
corresponding to the starved (26.1 Mb) and light-induced (35.8 Mb) plasmodia
libraries. As Physarum possess a 300 Mb genome (Glockner et al. 2008), and
assuming that 10% is encoding genes, therefore a 2.06X coverage of protein
coding sequences was estimated. The assembled sequencing output consisted of
26,037 sequences, and large cDNAs from this assembly (>500 bp) were then
joined to a previously available sequence dataset (Glockner et al. 2008), to form
a comprehensive set of representative transcripts. This analysis produced
16,669 sequences, 13,169 of these containing transcript abundance data:
125,456 reads from competent and 99,632 reads from light-induced plasmodia,
respectively. For practical reasons, this entire transcript abundance dataset is
not included here, but can be accessed at:

http://www.biomedcentral.com/content/supplementary/1471-2164-11-115-

s2.xls

This abundance data (number of reads for each assembled transcript) was then
used as a measure of expression, which defined here as "hit counts". The
remaining contigs without hit counts consisted of previously sequenced clones
from a normalized cDNA library prepared from competent plasmodia (Gléckner
et al. 2008), indicating that the normalization produced a broader coverage of
transcripts. From 11,399 cDNA contigs detected in the competent plasmodia
library (10,689 in light-induced plasmodia), over 4,227 were represented with at
least five hits (3,553 in light-induced plasmodia; Figure 10). Conversely, 8,711
transcripts (52,3%) were found with 5 or less sequence hits in both samples. For
statistical reasons, no statement on the differential expression from this fraction
could be made. Between contigs with lowest hit counts, 2,437 cDNA species were
represented by just one hit (competent plasmodia), and 2,621 from light-induced

sample (Figure 10).
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Figure 10. Hits Distribution of Transcript Species. The distribution of
pyrosequencing hit counts respect to the number of transcript species on each
library (starvation and light-induced) is depicted on a semi-logarithmic scale. Hit
counts are included in the adjacent upper ranges to the right; for example,
transcripts with 2 hits are present in the 2-5 range. Similar distributions of
contig species were found on both libraries, and most transcripts were
represented by 1 to 5 hits only.

Then a comparison of the transcript hit counts between different libraries as a
measure of differential gene expression was necessary. As most contig species
were represented by low hit counts, the number of hits was normalized. To this
end, first the relative frequency (number of hits divided by the total hits on a
given condition) was obtained, and later the relative frequencies were calculated
for each contig in the two cDNA samples compared to each other. Given that each
EST belongs to a single gene, the significance of its differential expression
depends only on the number of hits, respect to the total number of hits on each
library (Audic and Claverie 1997). Following these assumptions, 2,772 cDNAs
were found that displayed significant differential expression (P-value < 0.05). All
contig species, regardless of whether differentially expressed or not were

submitted to the Sequence Read Archive subset of GenBank (Benson et al. 2008).
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The sequencings were deposited under the accession numbers SRX012830 and

SRX012831.

The newly assembled contigs were compared against sequence databases using
BLASTX (Altschul et al. 1990; Altschul et al. 1997). This analysis revealed that
3,310 sequences have significant similarity (< 1E-15) to existing sequences in
SwissProt (Boeckmann et al. 2003), 3,651 to the protozoa subset from RefSeq
(Pruitt et al. 2007), and 3,345 to proteins of the related model organism
Dictyostelium discoideum, present in dictyBase (Chisholm et al. 2006). From the
13,169 sequences with hit counts data, orthologs were identified for 5,544
transcripts (1,287 of these with significant differential expression). The
similarity data for the entire transcript set is available at:

http://www.biomedcentral.com/content/supplementary/1471-2164-11-115-

s4.xls

Later, in order to identify differentially regulated genes, the contig species were
clustered into expression groups according to their relative frequencies in both
conditions. As a result, contigs encoding orthologs related to cell division
(meiosis-related protein MEIZ2; DNA polymerase beta; actin) and protein
synthesis and degradation (elongation factor 1- alpha; cathepsin-L cysteine
protease) were found, with higher relative frequencies in the competent
plasmodial library. Similarly, orthologs related to the cytoskeleton (spire;
actophorin; cell wall integrity and stress response component, WSC1) and cell
differentiation genes (CudA) were found with greater relative frequencies in the

light- induction library (Figure 11 and Table 12).
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Figure 11. Relative frequencies of transcripts in libraries prepared from
competent and photoinduced plasmodia. Each circle represents a single cDNA,
plotted according to its relative frequencies (number of hits per transcript
divided by the total number of hits) on each cDNA library. rell. and relD
represent the relative frequencies in the libraries prepared from light-induced
and competent plasmodia, respectively. Transcripts more abundant in light-
induced (red dots, above the diagonal) or in competent, not light-induced
plasmodia (black dots, below the diagonal) are shown, and SwissProt orthologs
are indicated for 10 contigs with relative frequencies greater than 0.005.

Table 12. Annotated transcripts with relative frequencies higher than 0.005. A
list of transcripts obtained from the scatterplot of relative frequencies (Figure
11) is depicted.

Contig ID Annotation hits(D) hits(L) P-value
ppN1d50g09  Transcriptional Regulator CudA 280 1779 0.00
ppN1d38e09 Elongation Factor 1-alpha, EF1A 887 969 3.31E-12
contig04302 Actophorin 950 908 3.33E-05
contig12806 Cysteine Proteinase 2, CYSP2 714 773 1.17E-09
contig04331 Cell wall integrity and stress, WSC1 189 506 1.03E-52
ppN1d106h10 Spire 23 813 5.38E-250
contig12440 DNA Polymerase beta, POLB 1292 812 7.17E-08
ppN0Oal10e04  Plasmodial-specific protein LAV1-2 801 190 1.74E-62
ppN1d32d11  Meiosis protein MEI2 848 93 1.26E-118
ppNOallel2  Actin P, plasmodial isoform 1924 1306 5.56E-06
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Gene Ontology Annotation of the Transcriptome

The Gene Ontology (GO) project (Gene Ontology Consortium 2000) is an
annotation framework that provides a standardized vocabulary that is used to
assign function to uncharacterized sequences, based on three main categories:
biological processes (BP), molecular functions (MF) and cellular components
(CC). I employed BLAST2GO (Go6tz, Juan M Garcia-Gémez, et al. 2008), a tool that
associates GO terms to sequences based in several annotation evidences, to
classify gene function in our dataset. Using the BLASTX hits (annotation e-value
cutoff < 1E-6), together with GO terms previously extracted from InterPro
domain searches (Hunter, Apweiler, Attwood, Bairoch, Bateman, Binns, Bork,
Das, Daugherty, Duquenne, Finn, Gough, Haft, Hulo, Kahn, Kelly, Laugraud,
Letunic, Lonsdale, Lopez, Madera, Maslen, McAnulla, McDowall, Mistry, Mitchell,
Mulder, Natale, Orengo, Quinn, Selengut, C. ]. a Sigrist, et al. 2009), 13,068 GO
annotations for 3,304 (20%) cDNAs were inferred, with 11,446 annotations
belonging to 2,459 sequences with hit counts data. Annotations of all sequences,
including those with or without hit counts data, can be consulted at the following
URL:

http://www.biomedcentral.com/content/supplementary/1471-2164-11-115-

s7.xls

Transcripts were associated to biological processes (n = 2,437; 15%), molecular
functions (n = 2,801; 17%), and cellular components (n = 2,023; 12%). As many
as 2,136 (13%), 1,663 (10%) and 1,645 (10%) sequences were annotated with a
combination of MF and BP terms, MF and CC, and BP and CC terms respectively,
and 1,487 cDNAs were annotated with MF, BP and CC terms altogether. Later, in
order to analyze the differences between the two condition groups with respect
to the GO annotations, Fisher exact tests were conducted using the Gossip
module (Bluthgen et al. 2005) from BLAST2GO. The GO terms 'cell development'
(GO:0048468), 'cell death' (GO:0008219) and 'death' (GO:0016265) were found
to be overrepresented in cDNAs with higher relative frequencies in light-induced
plasmodia (false discovery rate < 0.01), as compared to competent plasmodia

(Table 13).
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Table 13. Overrepresented Gene Ontology terms in Upregulated Transcripts. Full
lists of GO terms from up- and downregulated contigs were compared against
each other using the Fisher’s exact test from the GOSSIP program (Bluthgen et
al, 2005), as implemented in BLAST2GO (Gotz et al., 2008). A two-tailed test
with the false discovery rate (FDR) filter was employed. The number of GO-
annotated transcripts used for comparison between up- (Test) and
downregulated (Ref) groups of cDNAs is shown. All overrepresented GO terms
belong to the biological process (BP) category.

GO term GO description FDR P-value Test Ref
G0:0048468 cell development 0.009272 0.000314 35 8
G0:0008219  cell death 0.009272 0.000314 35 8
G0:0016265 death 0.009272 0.000314 35 8

Table 14. Summary of the transcriptome sequencing and annotation. 2Contigs
with relative frequencies higher in the competent plasmodial library (relD/relL >
1), are classified as downregulated, and conversely Pupregulated transcripts are
those with relative frequencies higher in the light-induced plasmodial library
(relL/relD > 1). The significance of differential expression was determined
according to the model by Audic and Claverie (1997).

sequencing
Total 454 reads 405,363
Total sequencing output (Mb) 61.9
Reads from the competent plasmodia library 125,456
Reads from the light-induced plasmodia library 99,632
contigs
Total contigs 16,669
Contigs with hit counts 13,169
Contigs with at least 5 hits in both libraries 2,103
More abundant in the library from competent plasmodia 3,9472
More abundant in the library from light-induced plasmodia 4,972b
Downregulated, significant differential expression 1,149
Upregulated, significant differential expression 1,623
similarity search
Total contigs with blastx results (e-value < 1E-3) 7,778
Contigs with blastx results and hit counts 5,544
Contigs with blastx results and significant differential expression 1,287
annotations
Total contigs with GO annotations 3,304
Total contigs with KEGG orthologs 2,716
Total contigs with InterPro results 6,813
Contigs with GO annotations and hit counts 2,459
Contigs with KEGG orthologs and hit counts 1,904
Contigs with InterPro results and hit counts 5,180
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Pathway classification of transcripts

Functional annotation can also be classified using the pathway-based definition
of ortholog genes from the Kyoto Encyclopedia of Genes and Genomes (KEGG)
database (Kanehisa et al. 2008). In order to categorize the transcripts in KEGG
pathways, the KAAS server (Moriya et al. 2007), a tool that uses similarity
information to assign a sequence to a KEGG ortholog (KO) identifier, was
employed with default parameters for ESTs. 2,716 (16%) transcripts were
mapped to 114 reference metabolic pathways, 1,904 including hit counts data,
from which 770 correspond to cDNAs with higher relative frequencies in the
library prepared from competent plasmodia, and 743 cDNAs in the library
prepared from light-induced plasmodia respectively. In addition, 496 sequences
in total were assigned to the KEGG BRITE hierarchies. Transcripts associated to
the nucleotide metabolism (n = 110) and citrate cycle (n = 40) had the highest
representation for the reference metabolic pathways, and the Wnt, TGF-beta and
Jak- STAT signaling pathways were also depicted for the whole dataset (n = 49,
42 and 32 matches respectively). In the whole dataset 420 cDNAs were
identified with potential roles in cell differentiation, with molecular entities
associated to kinases (n = 140) and GTP binding (n = 110) having the highest
representation in the BRITE hierarchies. In addition, 1,159 total enzyme
commission (EC) numbers (418 unique) were mapped with 380 unique enzyme
names in 851 transcripts, using the EC-module of BLAST2GO (Go6tz et al. 2008).
Later, in order to assess the global metabolic changes that occur after light
induction, transcripts with KO identifiers were mapped using the KEGG Atlas
tool (Okuda et al. 2008a). For transcripts with higher relative frequencies in the
competent plasmodia library, enzymes were mapped for the lipid biosynthesis
(map00061) and oxidative phosphorylation (map00190) pathways. Conversely,
enzymes for the N-glycan biosynthesis (map00510), urea cycle (map00220) and
fatty acid metabolism (map00071) pathways were identified in transcripts with
higher relative frequencies in the light-induced plasmodial library (Figure 12). In
the end, 2,567 contigs annotated for GO terms, KEGG orthologs, and InterPro hits
together were obtained. A summary of sequencing annotations and statistics is

listed on the Table 14.
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Figure 12. Metabolic Atlas of Physarum polycephalum. All P. polycephalum cDNAs
(Watkins and Gray 2008; Glockner et al. 2008; and our results) were sent for
KEGG Ortholog (KO; Kanehisa et al. 2008) prediction using the KAAS server
(Moriya et al. 2007). The output list of orthologs was used to plot this atlas with
the KEGG mapping tool (Okuda et al. 2008a). Nodes represent metabolites and
edges (lines) correspond to enzymatic reactions. Colors are assigned to either
down- (green) or upregulated (light blue) transcripts, and the significance of up-
or downregulation was calculated via the model of Audic and Claverie (1997).
Transcripts with equivalent relative frequencies in both novel cDNA libraries
(relL/relD = 1) are also depicted (blue lines and nodes); black represent those
cDNAs with no expression data. After photoinduction, most enzymes from the N-
glycan biosynthesis (A) and the urea cycle (D) pathways are upregulated. In
contrast, cDNAs mapped to the oxidative phosphorylation (C) had higher relative
frequencies in competent plasmodia, whereas a change from fatty acid synthesis
to degradation is seen after photoinduction (B).

Inference of Interaction Networks

In order to identify the functional relationships between the annotated cDNAs,
known interactions in the literature were searched. First, the cDNAs that were
previously clustered according to their relative frequencies (Figure 11; Table 12)
were used, and included additional proteins whose interactions have been

observed in the literature for Physarum. Using the "guilt by association" heuristic
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to link coexpressed transcripts into functional groups (Ge et al. 2001; Fraser et
al. 2004), an interaction network between those transcripts was inferred. This

network is based primarily on actin- binding activities (Figure 13).
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Figure 13. Interactions with the Actin Cytoskeleton of Transcripts with Higher
Relative Frequencies. The network was hypothesized from interaction data
reported in the literature, using transcripts previously clustered according to
their relative frequencies (Figure 11 and Table 12). The transcripts shown are a
subset of those from Figure 1, except for certain gene products (FRGP, AFK, and
PROP) which were also included as their interactions have been previously
observed in Physarum. cDNAs are displayed in colors corresponding to their
expression status: down- (black) or up-regulated (red) upon photoinduction, as
separated by the dotted vertical gray reference line. Each contig is shown with its
hit number counts in both libraries (D: competent plasmodia, L: light-induced
plasmodia).

Later, to identify genes with similar regulation, those transcripts with highest
rates of relative frequencies, counted in both cDNA libraries (Tables 15 and 16)
were listed. As most of these highly differentially regulated transcripts did not

show any sequence similarity to previously annotated genes, the subset of
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cDNAs with similarity to annotated genes were clustered according to two
parameters: (i) their rate of relative frequencies; and (if) their statistical
significance of differential expression (Audic and Claverie 1997). In this way
those 20 transcripts with annotations that were most up- or most
downregulated in light-induced plasmodia were listed, based on the statistical
significance of their differential expression (P < 0.05; Tables 17 and 18). Despite

the apparent diversity in biochemical functions, a search for known interactions

between these two groups of transcripts was performed.

Table 15. Top 20 Transcripts Downregulated in Light-induced Plasmodia.
Transcripts with the highest rates of downregulation (relD/relL > 1.0), are listed.
BLAST2GO (Gotz et al, 2008) automatic annotations were used, and manual
corrections were included in some cases. Transcripts with unknown orthologs
are described with “---NA---"

Contig ID SwissProt  Annotation D L Rate P-value
contig12399 ---NA--- ---NA--- 368 3 97.31 1.58E-88
contig12495 ---NA--- ---NA--- 141 2 5592 1.84E-33
contig00052 ---NA--- ---NA--- 45 1 35.69 4.49E-11
Cell division control
contig10338 P36618 protein 16 40 1 31.73 7.48E-10
contig10470 P20072 Annexin A7 68 2 2697 1.54E-15
contig00397 Q5BMR2 Phospholipase D 62 2 2459 4.31E-14
contig01934  ---NA--- ---NA--- 27 1 2142 1.04E-06
ppN0a05b03  ---NA--- ---NA--- 50 2 1983 3.20E-11
Poly [ADP-ribose]
contig00525 Q7EYV7 polymerase 1 244 10 19.36 5.19E-49
Transporter
contig11321 P38750 YHLO008C 24 1 19.04 5.43E-06
contig03338  ---NA--- ---NA--- 23 1 1824 9.39E-06
contig02945 ---NA--- ---NA--- 22 1 1745 1.62E-05
contig02169 ---NA--- ---NA--- 22 1 1745 1.62E-05
contig00994  ---NA--- ---NA--- 22 1 1745 1.62E-05
ppNOal14b03  ---NA--- ---NA--- 151 7 1711 4.08E-30
contig00901 P16064 Subtilisin inhibitor 1 21 1 16.66 2.79E-05
Glutamate
ppN1a03al2 Q07346 decarboxylase 20 1 15.87 4.80E-05
contig00391 ---NA--- ---NA--- 20 1 15.87 4.80E-05
ppN1a02c07  P34121 Coactosin A 56 3 1481 1.07E-11
contig00477  ---NA--- ---NA--- 110 6 1454 1.67E-21
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Table 16. Top 20 Transcripts Upregulated in Light-induced Plasmodia.
Transcripts with the highest rates of upregulation (relL/relD > 1.0), are listed.
BLAST2GO (Gotz et al, 2008) automatic annotations were used, and manual
corrections were included in some cases. Columns follow the same convention as
in Table 15.

Contig ID SwissProt Annotation D L Rate P-value
contig10367 ---NA--- ---NA--- 1 79 99.94  2.20E-27
ppNOal0a04 ---NA--- ---NA--- 9 565 79.11 4.30E-184
ppN1d39e07 008623 Sequestosome 1 3 171 71.69 2.03E-56
contig00236 ---NA--- ---NA--- 1 54 68.31 1.08E-18
contig12905 ---NA--- ---NA--- 2 82 51.87 4.73E-27
contig01485 ---NA--- ---NA--- 1 41 51.86 3.32E-14
contig12498 ---NA--- ---NA--- 10 402 50.68 2.39E-126
ATP-dependent RNA
contig02685 Q541V3 helicase DDX42 1 37 46.81 7.87E-13
ppN1d106h10 Q9U1K1 Spire 23 813 4455 5.38E-250
contig11969 ---NA--- ---NA--- 1 30 3795 1.95E-10
contig03550 ---NA--- ---NA--- 3 81 33.96  1.66E-25
Hypothetical protein
contig07470 ---NA--- EHI83570 1 26 32.89 4.45E-09
contigl2244 ---NA--- ---NA--- 1 25 31.62 9.71E-09
Regulator of G-protein
ppN1a08g07 008849 signaling 2 1 22 27.83  9.99E-08
contig12659 ---NA--- ---NA--- 1 22 27.83  9.99E-08
GTPase-activating
contig05590 Q8H100 protein 8, AGD8 1 21 26.57  2.17E-07
contig12288 ---NA--- ---NA--- 3 63 2642 191E-19
contig12864 ---NA--- ---NA--- 5 104 26.22 4.67E-31
ppN1al4d12 Q07283 Trichohyalin, TCHH 1 20 25.29  4.69E-07
contig07949 ---NA--- ---NA--- 1 20 25.29  4.69E-07
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From annotations of the top up- and down-regulated transcripts (Tables 17 and
18), and including the transcripts from the above mentioned analysis (Figure
13), the initial putative network was extended using Cytoprophet (Morcos et al.
2008). This Cytoscape (Shannon et al. 2003) plugin predicts networks based on
information from interaction databases, associated to SwissProt matches of
newly annotated genes (Deng et al. 2002). Accordingly, [ found that most of these
genes encoded proteins predicted to interact in a network of actin-binding
proteins (coaA, ABP120, actobindin, FRGP, AFK, PROP; Figure 14). These genes
encoding proteins orthologs of which are associated to cell division (MEIZ, PUM2,
CDC16), DNA repair (POLB, FEN1), signal transduction (PP2C, CDC16), and
calcium-binding (LAV1-2, KCNIP2, GAD) are downregulated in light-induced
plasmodia (Tables 12 and 17). In turn, a different group of developmentally
regulated genes is preferentially expressed after photoinduction, including genes
the products of which are involved in signaling (DCR2, RGSZ2, YPTC6, pakA),
protein processing (FKBP70, sequestosome-1, PSMA7, RR7), cell integrity (WSC1,
CDC31), calcium-binding (MLR1, TRHY, PAT1), and developmentally regulated
actin-binding, such as the elongation factor 1 alpha (EF1A), spire, and actophorin
(Tables 12 and 18; Figures 13 and 14). Interestingly, the previously featured
network (Figure 13) connects the two groups of up- and downregulated
transcripts in this figure. However, as Cytoprophet gathers experimental
interaction data from specialized databases, some interactions depicted in Figure
13 are not shown (e.g., between POLB and ACTINP), because this data is not

present on those source databases used by Cytoprophet for prediction.
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Table 17. Top 20 Annotated Transcripts Downregulated in Light-induced
Plasmodia. Transcripts with unambiguous annotations, significant differential
expression (P < 0.05), and that possess the highest levels of downregulation
(relD/relL > 1.0), are listed. BLAST2GO (Go6tz et al., 2008) automatic annotations
were used, and manual corrections of annotations were included in some cases.

Contig ID SwissProt Annotation D L Rate P-value
Cell division control

contigl0338 P36618 protein 16, CDC16 40 1 31.73 7.48E-10

contigl0470  P20072 Annexin A7, ANXA7 68 2 26.97 1.54E-15

contig00397 Q5BMR?2 Phospholipase D, PLD1 62 2 24.59 4.31E-14
Poly ADP-ribose

contig00525  Q7EYV7 polymerase 1, PARP1 244 10 19.36 5.19E-49
Transporter YHLOOS8C,

contigl1321  P38750 YHAS 24 1 19.04 5.43E-06

contig00901  P16064 Subtilisin inhibitor 1, ICI1 21 1 16.66 2.79E-05
Glutamate decarboxylase,

ppN1a03al2 Q07346 GAD 20 1 15.87 4.80E-05

ppN1a02c07 P34121 Coactosin, COAA 56 3 14.81 1.07E-11
Flap endonuclease 1,

contigl1574  P39749 FEN1 18 1 14.28 0.000141
Putative ankyrin repeat

contigl0414  Q5UNX2 protein, YL715 90 5 14.28 8.82E-18
F-box/LRR-repeat

contig03548 049286 protein 5, FBL5 17 1 13.49 0.000242

contig00369  Q80U58 Pumilio homolog 2, PUM2 17 1 13.49 0.000242
Kv channel-interacting

contigl0457 Q8WNO3 protein 2, KCNIP2 16 1 12.69 0.000412
Actin-binding protein

contig00264  P13466 120, ABP120 32 2 12.69 5.26E-07
Poltergeist phosphatase

contig02333  Q8RWN7 2C 32, PP2C 15 1 11.89 0.000701

contig01650 024496 Glyoxalase II, GLO2C 15 1 11.89 0.000701
NADH pyro phosphatase,

contig01322  Q94B74 NUDT2 15 1 11.89 0.000701
Pyruvate decarboxylase

contig08310 Q10MW3 isozyme 2, PDC2 73 5 11.58 6.84E-14

contig00558  P18281 Actobindin, ACTO 29 2 11.50 2.55E-06
Apoptosis inhibitor 1,

contigl1873 010296 IAP1 28 2 11.11 4.30E-06
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Table 18. Top 20 Annotated Transcripts Upregulated in Light-induced
Plasmodia. A list of transcripts with unambiguous annotations, significant
differential expression (P < 0.05) with the highest levels of upregulation
(relL/relD > 1.0), is shown. Annotations, SwissProt accessions, hit counts, and

probability values follow the same convention as in Table 17.

Contig ID SwissProt Annotation D L Rate P-value
Sequestosome-1,

ppN1d39e07 008623 SQSTM1 3 171  71.69 2.03E-56
ATP-dependent RNA

contig02685 Q541V3 helicase, DDX42 1 37 46.81 7.87E-13

ppN1d106h10 Q9U1K1 Spire, SPIR 23 813 44.55 5.40E-250
Regulator of G-protein

ppN1a08g07 008849 signaling 2, RGS2 1 22 27.83 9.99E-08
GTPase-activating,

contig05590 Q8H100 AGD8 1 21 26.57 2.17E-07

ppN1lal4d12 Q07283 Trichohyalin, TRHY 1 20 25.29 4.69E-07
Serine/threonine-

contig11781 Q55D99 protein kinase, PAKA 2 34 21.51 8.84E-11
Myosin regulatory light

contig06420 Q9UUGS chain 1, MLR1 1 17 21.50 4.69E-06
Uncharacterized

contig08470 Q54MI7 DDB_G0285917,Y6747 1 16 20.24 1.01E-05
Transmembrane

contig12553 Q5R826 protein 63A, TM63A 20 308 19.41 1.89E-83
Dosage-dependent cycle

ppN1d18d06 Q05924 regulator 2, DCR2 1 15 18.98 2.15E-05

contig08799 Q43207 Rotamase, FKBP70 1 14 17.71 4.59E-05
Non-histone

contig12445 Q7S045 chromosomal 6, NHP6 1 13 16.45 9.76E-05
Calcium-transporting

contig11110 P54678 ATPase, PAT1 1 13 16.45 9.76E-05
Ras-related Protein,

contig08929 Q39572 YPTC6 1 13 16.45 9.76E-05
Zinc finger- containing

contig08360 Q6TQE1 protein 18, NHN1 1 12 15.17 2.06E-04

contig04102 Q9D0C1 Rab RING finger 7, RR7 4 47 14.80 2.86E-13
Cell division control

contig03233 P06704 protein 31, CDC31 2 23 14.55 3.44E-07
FNIP repeat-containing

contig02500 Q5UPW6 protein, L281 2 23 14.55 3.44E-07
Proteasome subunit

contig08917 Q9PTW9 alpha type-7, PSMA7 1 11 1391 4.35E-04
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Figure 14. Interaction of the Most Upregulated and Downregulated Transcripts
with the Actin Cytoskeleton. The conceptual network was predicted using the
Cytoprophet module of Cytoscape, and therefore is solely based on information
included on specialized interaction databases. Input transcripts included those
from the top up- and down- regulated transcripts (Tables 17 and 18), and cDNAs
taken from the previous interaction network (Figure 13). A significant
probability of interaction (P-value > 0.9) is indicated as a thick edge. Node colors
follow the same convention as in Figure 13. This network includes 64
interactions (33 with P > 0.9) between 38 gene products. Genes without
Cytoprophet-predicted interactions are not included, except for two interactions
with Actin-P that were not predicted by Cytoprophet but that can be found in the
literature (indicated with arrows).
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Discussion.

The development of plasmodia competent for sporulation includes growth
arrest, condensation of cellular constituents, and mitosis (Bailey 1997).
Sporulation of competent plasmodia can be triggered by a light pulse. Some
proteins associated with the light-induced pathways that lead to sporulation
have been described (Martel et al. 1988; Kroneder et al. 1999; Golderer et al.
2001), suggesting that several signaling mechanisms are involved, but there are
no studies that describe changes at the level of the whole transcriptome. In the
present study the most up- and downregulated transcripts, which are associated
to a network of putative interactions, were identified (Figure 14). The network is
hypothetical as interactions used for inference are based on data obtained from
different organisms. For the sake of simplicity, the discussion will be focused on

genes with predicted significant interactions (P > 0.9).

A network of actin-binding proteins is associated to changes during light-

induced sporulation in Physarum

The actin cytoskeleton of Physarum is essential for locomotion, division, and
other biological processes (Bailey 1997). Assembly and disassembly of actin
filaments is controlled by a group of actin-binding proteins, whose activities in
turn are regulated by specific signaling pathways. Physarum cell types differ in
actin organization but express the same actin genes, suggesting that changes in
actin-binding proteins are responsible for the differences in actin organization
(Bailey et al. 1999). Physarum possesses several classes of actin- binding
proteins, and most of these proteins display cell type-specific patterns of
expression, but their precise roles are not known (Shirai et al. 2006; Binette et al.
1990). Nevertheless, expression changes in genes coding for actin-binding
proteins correlate with modifications in cell organization and behavior (Bailey
1997). In the present study, some actin-binding genes were linked specifically to

stages before and after photoinduction in the starved Physarum plasmodium.
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Specifically, protist orthologs for actin-binding proteins were identified,
including Dictyostelium coaA (Coactosin A) and ABP-120 (actin-binding protein
120), and actobindin from Acanthamoeba, which binds actin monomers (Table
17; De Hostos et al. 1993; Vandekerckhove et al. 1990). Coactosin A interferes
with the capping of F-actin filaments (Rohrig et al. 1995), and is differentially
expressed after metal exposure in worms (Brulle et al. 2008). ABP-120 organizes
filamentous actin into networks of fibers, and Dictyostelium cells lacking ABP-120
have a severe phototaxis defect at the multicellular slug stage (Khaire et al.
2007). In addition, transcripts coding for Physarum plasmodia-specific actin-
binding proteins, such as profilin P (PROP; Binette et al. 1990) and fragmin P
(FRGP; T’Jampens et al. 1999), are downregulated after photoinduction (Figure
13). FRGP enables actin phosphorylation by the actin-fragmin kinase (AFK), and
binds phosphorylated actin (Shirai et al. 2006; T'Jampens et al. 1999). Therefore
it is possible that during sporulation these proteins are involved in the
reorganization of the subcellular compartments via interactions with the actin

cytoskeleton.

Transcripts linked to cell division and DNA repair are downregulated in the

light-induced plasmodium

After several days of starvation, cell processes must be limited in order to save
energy. Coordination of several biological processes is then required, and thus
regulation of these phenomena needs a pleiotropic transducer like the cAMP,
which targets several signaling pathways, including those that limit cell
proliferation (Howe 2004). Cell differentiation pathways regulated by cAMP
levels have been described in Dictyostelium, a closely related protist (Aubry and
Firtel 1999). In Physarum, the MEI2 gene, which is controlled via cAMP levels, is
downregulated in the light-induced plasmodium (Table 12 and Figure 13). MEI2
is an RNA-binding protein that encodes a cAMP-regulated positive regulator of
meiosis in the yeast S.pombe (Stettler et al. 1996; Fujioka and Shimoda 1989).
This gene product is functionally related to the actin cytoskeleton via the cAMP-

dependent protein kinase A (PKA; Howe 2004; Aubry and Firtel 1999). Other
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transcripts downregulated in light-induced plasmodia associated to cell division
and DNA repair comprised FEN1, CDC16 and PUMZ. First, the Flap endonuclease
1 (FEN1) appears in several processes linked to the maintenance of the genome
integrity, such as the UV-induced DNA repair, as well as in DNA replication and
DNA recombination (Christmann et al. 2005; Larsen et al. 2008). Second, the
yeast cell division control protein 16 (CDC16), constitutes the catalytic subunit of
the spglp GTPase-activating protein, that is involved in the signal transduction
controlling septum formation. CDC16 is involved in cytokinesis and is essential
for proliferation, as spores lacking a functional CDC16 gene complete mitosis
without undergoing cell cleavage (Cerutti and Simanis 1999; Fankhauser et al.
1993). Finally, PUMZ2 (Pumilio 2) encodes a RNA-binding protein associated to
the control of meiosis during development (Lin and Spradling 1997).
Consequently, starvation seems to be the signal that regulates cell division while
protecting the cells from oxidative stress, through cAMP-regulated pathways

(Figure 13).

Other downregulated transcripts in the light-induced plasmodium comprised
orthologs of transducers, such as FBL5, a leucine-repeat protein linked to
phosphorylation-dependent ubiquitination (Jin et al. 2004), PARP1, an Oryza
poly ADP-ribose polymerase, a phospholipase D from Phytophtora (PLD1), and
the Arabidopsis phosphatase 2C (PP2C, also known as Poltergeist). In plants, G-
proteins are involved in phospholipase D activation, and this also seems to be the
case for Phytophtora (Meijer et al. 2005); on the other hand, PP2C operates in
several signaling pathways that regulate stem cell differentiation (Yu et al.
2003). It is then reasonable to consider that the differential expression of these
transducers is also associated with the control of signaling mechanisms for
differentiation, but more profound studies are needed to establish precise causal

relationships.
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Calcium-binding proteins exhibit diverse regulation patterns in the light-

induced plasmodium

Transcripts identified as calcium-binding proteins displayed different patterns of
expression regulation. These were either down- (LAV1-2, KCNIP2 and GAD) or
upregulated (MLR1, TRHY, and PATI1) after light induction. LAVI-2 is a
plasmodium-specific RNA of unknown function that encodes a protein
containing an EF-hand type domain whose calcium-binding activity has been
observed in vitro in Physarum (Iwasaki et al. 1999). LAV1-2 seems to act as a
sensor of cell damage, releasing Ca?* that leads to the activation of a
plasmodium-specific transglutaminase, which separates damaged areas of a
plasmodium (Mottahedeh and Marsh 1998). Other transcripts encoding
orthologs of calcium-binding proteins, such as KCNIP2 and GAD, were also
downregulated in the photoinduced plasmodium and have not been previously
described for in Physarum. KCNIPZ encodes a potassium channel-interacting
protein that probably modulates channels density in a Ca?*- dependent manner.
In turn, the activation of glutamate decarboxylase (GAD) by calcium-bound
calmodulin (CaM) is required for normal growth in plants (Yap et al. 2003).
Previous studies have shown that the intracellular increase of calcium levels is
correlated with increased concentrations of cAMP and with sporulation and
differentiation in both Physarum and Dictyostelium (Schlatterer et al. 1994;
Renzel et al. 2000). Moreover, actin filament crosslinking is affected by changes
in intracellular calcium levels, which ultimately influences the cell contractility
(Furukawa et al. 2003). Therefore it seems possible that these calcium-binding
proteins coordinate the Ca?* release as a means to influence the cell contractility

through the interaction with the actin cytoskeleton (Figure 14).

Furthermore, the upregulated subset of calcium-binding proteins included MLR1,
which inhibits cytokinesis in yeasts; trychohyalin (TRHY), which is involved in its
own calcium-dependent processing during differentiation; and the Dictyostelium
PAT1 ATPase. PAT1 is localized in the membrane of contractile vacuoles, and is a
component of a calcium sequestration and excretion pathway, which functions to

help maintain homeostasis, especially under conditions of Ca?* stress (Moniakis
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et al. 1999). Thus these are candidates to control the intracellular calcium levels

after light induction of starved plasmodia.

Actin-binding proteins associated to development are overexpressed in the

light-induced plasmodium

After photoinduction, a group of actin-binding proteins is upregulated including
the elongation factor 1 alpha (EF1A4), Spire, and actophorin (Figures 13 and 14;
Tables 12 and 18). Spire is a Drosophila gene involved in development through
actin assembly. This gene is also widely distributed across the metazoan
genomes. Spire mammalian isoforms are MAP kinase substrates, and data
suggest that Spire evolved as an alternative independent mechanism of actin
polymerization, necessary for cell polarization in multicellular organisms
(Quinlan et al. 2005). Actophorin, in turn, binds actin monomers and separates
actin filaments in a dose-dependent manner. Phosphorylation of actophorin
blocks actin binding (Blanchoin et al. 2000). In turn, EF1A4, aside from its role in
the protein synthesis, has a separate conserved actin-binding activity in
eukaryota, initially observed in Dictyostelium, where it is predominantly found in
actin-bound form (Yang et al. 1990; Edmonds et al. 1998). EF1A regulates the
stoichiometry of cytoskeletal components, and the conservation of the EFI1A-
actin interaction across eukaryotes suggests its importance for cytoskeletal
maintenance (Gross and Kinzy 2007). Overexpression of EFIA in yeast results in
effects on cell growth, and influences the actin distribution, morphology and
budding in a dosage-dependent manner, although this increase of EFIA has no
effect over the protein synthesis (Munshi et al. 2001). In addition, changes in
cytoskeletal redistribution of EFIA seem to be linked to the differentiation
status, where the association between EFIA and microtubules gradually
increases in differentiating cultures (Bluem et al. 2007). Furthermore, EF1A
stimulates actin remodeling and induces the formation of filopodia, and possibly
connects these processes with signaling pathways (Jeganathan et al. 2008; Li et

al. 2007).
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Remarkably, two coexpressed transcripts (the cysteine proteinase CYSP2 and the
developmentally regulated gene CudA) are related to EF1A. First, cysteine
proteinases are believed to participate in protein cleavage during the
differentiation of Dictyostelium as a response to starvation (Datta and Firtel
1987), and these peptidases were copurified with EF1A4 in yeasts (Pope and Lee
2005). CudA, on the other hand, is associated to the transition from slug
migration to culmination in Dictyostelium, and CudA expression levels depend on
local cAMP concentration (Fukuzawa and Williams 2000). Recent evidences
show that CudA contains a novel DNA-binding site that is distantly related to the
metazoan STAT domains, which participate in the regulation of developmentally
controlled genes (Yamada et al. 2008), and whose orthologs coexpress with EF1A
(Li et al. 2007). Yamada et al. (2008) also proved a relationship between
Dictyostelium CudA and a cDNA from Physarum, which corresponds to the contig
reported here as a CudA ortholog. For these reasons, EF1A could work as a link
between regulation of the protein synthesis, cytoskeletal maintenance, and

signal transduction in slime molds (Figure 13).

Other developmentally regulated transcripts associated to the actin cytoskeleton
included the cell wall integrity and stress response component (WSC1), which is
a yeast membrane protein that acts as a sensor of cell wall damage (Gualtieri et
al. 2004), and CDC31, a constituent of the nuclear pore complex that is also
involved in the maintenance of cell morphology (Table 18 and Figure 14). WSC1
is essential to keep the cell integrity, behaving like a stress-specific signal
transducer that is involved in the reorganization of the actin cytoskeleton in
response to osmotic shock (Serrano et al. 2006; Delley and Hall 1999). WS(1 is
involved in the depolarization of the actin cytoskeleton (Delley and Hall 1999),
and, like CDC16 (downregulated in light-induced plasmodia), is entailed in

cytokinesis (Cerutti and Simanis 1999).
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GTP signaling genes involved in different processes are upregulated in the

light-induced plasmodium

Orthologs of certain genes highly upregulated in light-induced plasmodia are
involved in signal transduction. These include transcripts linked to the GTP
signaling (AGD8, YPTC6, RGS2), kinases (pakA) and phosphatases (DCRZ2). The
serine/threonine-kinase pakA is a regulator of the myosin component of the
cytoskeleton, required for cytokinesis and the regulation of the cytoskeleton
during chemotaxis in Dictyostelium (Chung and Firtel 1999). In turn, the yeast
dosage-dependent cell cycle regulator 2 (DCRZ), is a phosphatase whose
increased dosage alters cell cycle progression, while its loss delays the
progression in the G1 phase (Pathak et al. 2004). In addition, upregulated GTP
signaling transducers included a putative GTPase- activating protein from
Arabidopsis (AGD8); a Chlamydomonas GTP-binding protein (YPTC6); and RGS2,
which acts as a negative regulator of G-protein signaling, a function that is
evolutionarily conserved in yeast, C. elegans and mammals. Increased RGS2
expression is primarily mediated by the cAMP/PKA pathway (Miles et al. 2000),
therefore it is possible that RGSZ is carrying out similar tasks in slime molds,
where it could work in coordination with the other transducers, as hypothesized

in Figure 14.

Transcripts annotated for cell death are overrepresented in the light-

induced plasmodium

Comparison of GO terms between up- and downregulated groups showed that
transcripts annotated for ‘cell development' (G0:0048468), 'cell death'
(GO:0008219) and 'death' (GO:0016265) were overrepresented in the
upregulated group (Table 13). However, all these ontologies belong to the same
hierarchy, meaning that 'cell death' can be the product of either development or
organismal death, and hence 'cell death' is the only difference between both
expression groups. One of these cDNAs annotated for 'cell death' is
Sequestosome 1, which is also included on the list of upregulated transcripts

(Table 18). Sequestosome 1, also known as p62, is a multifunctional protein that
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targets polyubiquitinated proteins to degradation by proteasomes and
autophagy (Seibenhener et al. 2007). p62 knockouts significantly increased cell
death (Bjorkoy et al. 2005), and this is probably linked to the interaction with
atypical protein kinase C isoforms that are involved in pathways that control
differentiation and apoptosis (Puls et al. 1997). Therefore it is likely that this
gene product regulates cell death pathways linked to the commitment for

sporulation.

Furthermore, other highly upregulated genes are also functionally linked to the
protein turnover. These include the FKBP70 rotamase, which accelerates the
folding of proteins during synthesis; the PSMA7 proteasome subunit, which
together with the other subunits, suffer changes during the meiotic cell cycle
(Tokumoto et al. 2000); and the endosome-lysosome vesicle traffic-related RR7
(Mizuno et al. 2003). It is likely then that these gene products, together with
Sequestosome 1, are linked to the control of differentiation through post-

transcriptional regulation.
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Conclusions

The gain of sporulation-competence of Physarum plasmodia involves growth
arrest, condensation of constituents, and mitosis and is a prerequisite before
sporulation can be induced by light (Bailey 1997). Physarum gene expression has
been shown to be cell type-specific, but existing studies have been focused only
on individual genes (Martel et al. 1988; Kroneder et al. 1999; Golderer et al.
2001). Previously, a library of 5,856 sequences obtained from plasmodia
competent for the induction of sporulation was reported by our group (Glockner
et al. 2008). In this chapter the use of the massive parallel sequencing technology
at the level of the whole transcriptome (Margulies et al. 2005; Wang et al. 2009)
was described in order to identify global changes in expression that occur during
light-induced sporulation of Physarum. The differentially expressed cDNAs were
integrated into networks using interaction information from orthologs and the
literature. The results show that after light induction of a plasmodium the
expression of transcripts linked to cell division and DNA repair is
downregulated. In contrast, light-induction stimulated the expression of genes
associated with protein turnover (proteases and proteasome transcripts), genes
related to cell cycle progression, and genes involved in the maintenance of cell
integrity and cytokinesis. These latter gene products might protect the cell
against osmotic shock. Additionally, different groups of calcium-binding proteins
are either down- or upregulated after light exposure. These gene products are
candidates to control the intracellular calcium levels during sporulation. Here it
is postulated that these changes are associated with a network of actin-binding
proteins (Figures 13 and 14), the components of which are differentially
regulated upon plasmodial photoinduction. These gene products might
accomplish different tasks in each stage: the reorganization of the subcellular
compartments in order to inhibit migration during starvation on one hand, and
cell polarization and cytoskeletal redistribution after photoinduction mediated
by a group of actin-binding proteins on the other. The precise representation of
the proposed interaction networks is therefore expected to become available as
gene knockout experiments, proteomic data, and comparative interactomics are

integrated in future studies of this organism.
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Summary

Physarum polycephalum displays a complex life cycle, including alternation
between single- and multinucleate stages through sporulation. This process of
sporulation is a simple form of cell differentiation can be experimentally induced
by several external factors, such as red light. In order to identify the genes
associated to the light-induced sporulation in Physarum, especially those related
to signal transduction, RNA was isolated before and after photoinduction from
sporulation- competent cells, and used these RNAs to synthesize cDNAs, which
were then analyzed using the 454 sequencing technology. 16,669 cDNAs were
obtained, which were then annotated at every computational level. 13,169
transcripts included hit count data, from which 2,772 displayed significant
differential expression (upregulated: 1,623; downregulated: 1,149). Transcripts
with valid annotations and significant differential expression were later
integrated into putative networks using interaction information from orthologs.
After the integration of annotations, the gene ontology analysis suggested that
most significantly downregulated genes are linked to DNA repair, cell division,
inhibition of cell migration, and calcium release, while highly upregulated genes
were involved in cell death, cell polarization, maintenance of integrity, and
differentiation. In addition, transcripts related to cell death were
overrepresented between the upregulated transcripts. These changes are
associated to a network of actin-binding proteins encoded by genes that are

differentially regulated before and after light induction.
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Chapter 4. The expressed transcriptome during the differentiation of
Physarum single cells

Differentiation follows spatial and temporal changes in transcript abundance in a
cell type specific manner. Stochastic variations in gene expression presumably
do impact cell-fate decisions (Wang and Bodovitz 2010), and therefore the time-
resolved analysis of gene expression patterns in individual cells would provide
valuable insight as compared to averaged data from measurements obtained on
cell populations (Wang and Bodovitz 2010; Tang et al. 2011). Expression
patterns of single-cells have been analysed using deep RNA sequencing, or RNA-
seq (Nagalakshmi et al. 2008), to characterize the transcriptomes of individual
embryonic mouse cells separated by technically complex procedures, and relying
on the mouse genomic information for transcript assembly and mapping (Tang

etal. 2010; Islam et al. 2011).

At the time of this study, the Physarum genome was deposited into the GenBank
database (Benson et al. 2011) in the form of 454 sequencing reads (Margulies et
al. 2005), but the data was still not assembled into a complete genome sequence
(The Genome Institute, Washington University School of Medicine). Therefore,
here [ evaluated the possibility of studying the global transcriptional changes
during the differentiation of Physarum single cells through RNA-seq and without
relying on genomic information. In this manner an approach was developed to
analyze the differential expression at several time points during the commitment
of a plasmodial cell to sporulation. The results show that the detected differential
expression patterns correlate well with those obtained in cell pools, especially
regarding the annotations of the most up- and downregulated transcripts, which
are also associated to actin-binding activities, as reported in the previous

chapter.
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Results and Discussion

Four datasets consisting a total of 77.07 million 100-base reads from single cell
Physarum plasmodia were obtained from the Illumina sequencing (77.02 million
reads with Phred score > 33; 7.12 Gb). This RNA-seq output was deposited in the
European Nucleotide Archive (Leinonen, Akhtar, et al. 2011), as the study
accession ERP001220 (see Methods, Table 7). The number of reads obtained for
each [llumina run (18.28 - 19.94 million reads) is close to the reported optimal
range for the creation of a representative de novo assembly (20 - 30 millions;
Francis et al. 2013). Replicate data distributions were 1.85 and 1.82 Gb
corresponding to the starved plasmodium (cDNA library replicates D1 and D2),
and 1.67 and 1.78 Gb for the cells collected 6 hours after photoinduction
(libraries L1 and L2; Table 19). Therefore, assuming a 10% of protein-encoding
genes (see preceding chapter), a 237.32x coverage was obtained for the 300 Mb
genome of Physarum. The data was then trimmed and filtered for quality (Figure
15), and assembled de novo using a combination of the velvet and oases
programs (Zerbino and Birney 2008; Schulz et al. 2012). A basic statistic for
describing the contiguity of an assembly is the N50 number, which is the length
of the shortest sequence contig such that the sum of contigs of equal length or
longer is at least 50% of the total length of all assembled contigs (Yandell and
Ence 2012). In this case, the assembly consisted of 909,505 sequences, with a
N50 contig size of 371 bp.

Large cDNAs from this assembly (>500 bp) were then clustered into 16,822
contigs (N50 length: 778 bp) with CAP3 (Huang and Madan 1999), to create a
comprehensive set of representative transcripts. The number of sequence reads
that align to an assembled transcript is commonly called a mapped read (or tag
count), and this is conventionally used as a measure of gene expression. In this
novel transcript assembly, 10,278 of these contigs included transcript
abundance data in the form of mapped reads, in at least one cell sample.
Transcriptionally active genes were then defined as contigs with at least one
mapped read present in all four samples or differentiation stages; in this regard,

8,149 transcripts encompassed mapped reads in all libraries.
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To make the mapped read counts for each transcriptionally active gene
comparable among samples, a normalization must be performed, which is
commonly done as reads per kilobase per million mapped reads (RPKM;
Mortazavi et al. 2008). This method is a standard widely used in RNA-seq
studies, and consists of two calculations: (/) A normalization to library size,
which consists in dividing the mapped reads by the total reads in the library; and
(i) A normalization to transcript length, that is to divide the mapped read counts
by the length of the assembled transcript in kilobases. In the first case, the
normalization to library size is done because different replicates with different
library sizes would produce different mapped reads for the same gene, and the
second is to avoid a fragmentation bias, caused by the fragmentation step during
RNA-seq library preparation followed by size selection, where longer transcripts
would produce more fragments than shorter ones. Therefore a normalization

according to the following equation was performed (Mortazavi et al. 2008):

(1x 106reads)(transcript reads)

RPKM = . 5
(total reads)(transcript length bp / 10°bp)
or:
9 .
RPKM = 10” - transcript reads

total reads - transcript length (bp)

Then a comparison of the RPKM- normalized data for competent plasmodia (D1
and D2 cells) and photoinduced cells (L1 and L2) that were separately processed
was carried out (Figure 16). Accordingly, cells from related developmental
stages exhibit very similar transcriptomic profiles (competent cells: r = 0.99;
light- induced plasmodia: r = 0.98, where r is the symbol of the correlation
coefficient). On the other hand, lower correlations were found between
competent and photoinduced cells (r = 0.96 between D2 and L1; r = 0.97 in all
other cases; Figure 16). However, further studies, involving comparisons
between several cell types and cell stages, are required to establish if these lower

correlations account for the variations between individual cells.

91



97Z'6 L80'6 2276 59¢‘6 speal paddew yym sydriosueny pajquiassy
2TT'LE6T 6%2'L9ST 2859L0C €61'821°C speaa paddew [e10],
%CE %T1E %7 g %< A[quiasse 10J pasn spea. Jo )Ho,
6¥9vEC6T L62'697'8T YvZ'681'61 861°0€6'61 A[quiasse 10 pasn speay
0609%¢'6T €12'6L7'8T L1¥'667'6T TTL'TV6'6T Spe9dy [e10.],
000°6097E€6'T  00€TZ6'LZ8T  00LT¥6'6¥6'T  00T'TLIV66'T (dq) saseg [e10],
LLOJVL OVILVD VOLLIV J.LVIV) 9pod.eq
buiouanbag
St 4 ST 4 sa1045 uoneoyidwe yNQ2
€6c1 9°¢6 €18 90¢1 (8n) 3unowry
7’999 8'CLY 0S¢ 0rLC (in/3u) uonesyuaduo)
sajduivs YNY
S9 S'9 (say) aansodxa .I93je oW} UONIJ[[0)
S0 S0 (say) aansodxa 1y3I]
09 09 09 09 (sAep) swny uonealels
1 11 ca 1d {1 21eo11day
Zwnipowisvld [ WNIpowsvld g WnNIpowsvld [ wWnipouwsvjd
pasnpuj pasnpuj uajaduwo) uajaduwo) a.n3n)

‘(z'1 pue 17) sazearfdau [[92 [enpialpul paonpurooyd pue ‘(zq pue 1 SaLIe1qi) yuajaoduwod ay3
01 Suipuodsaliod ‘UMoys SI SaLIeIqI] VNY [[92-9[8uls a3 jJo Arewwins y “durpuanbas swojdLosueny [[92-9[3uls ay3 jo Arewiwing "6 d[qe.



Afterwards, an analysis of which transcripts were being expressed at different
levels in the two studied conditions was needed. Therefore, an estimation of the
differentially expressed transcripts was performed from the raw mapped reads,
with the R package DESeq (Anders and Huber 2010). The aim of this package is
to assess the statistical significance of the differences in gene expression
measured in RNA-seq experiments. Mapped read count data follows a Poisson
distribution, but because in RNA-seq genes with larger mean counts have greater
variances, the DESeq package uses an approximation of the count data with a
negative binomial distribution. Briefly, the read count data is first normalized
against the geometric mean of the counts, for each gene and across all samples.
This step however, is not used to transform the data, but to generate
normalization factors that will be employed during the statistical testing. Then,
the dispersion within DESeq is estimated from the library coverage, gene
expression (mean counts for each individual gene and for each condition), and
the variance between genes, which under the model introduced by DEseq, is
assumed to be a function of the mean. Finally, the differential expression is
tested through the calculation of a probability of null hypothesis, ie. that the
gene is expressed at the same level in all conditions. This P-value is obtained
through a generalized linear model (GLM) test, which is analogous to a Fisher
exact test, but using a negative binomial distribution instead.

In the present differential expression analyses, only contigs with a combined
count of 300 mapped reads among all the samples were considered, i.e., 3,164
contigs were then selected that fitted these criteria. This mapped read count
threshold was selected to reduce the noise caused by spurious contigs and
alignments. Upon normalization, the distribution of mapped reads reflected the
presence of differentially expressed transcripts and genes with other kinds of
regulation, with a slightly greater set of genes with higher expression in light-
induced cells (Figure 17). Specifically, 556 upregulated transcripts were
identified (P-value < 0.05), 504 of these with false discovery rate (FDR) less than
0.1, and 531 downregulated (475 with FDR < 0.1), between the photoinduced
and competent cell libraries for transcriptionally active contigs with mapped

reads (Figure 17).
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Subsequently, to assign functions to the novel sequences, annotations were
associated to the transcriptome assembly. In this way 92,641 Gene Ontology
(GO) terms were obtained (Gene Ontology Consortium 2008), corresponding to
5,722 SwissProt orthologs (The UniProt Consortium 2010), where 64,730 GO
terms belong to 4,222 sequences with mapped reads. cDNAs were linked
biological processes (n = 1,135), molecular functions (n = 1,558), and cellular
components (n = 576). From the transcriptionally active genes with mapped
reads, 231 annotated transcripts were upregulated, and 264 downregulated.
These expression data results are fully and publicly available at:

http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3469328/bin/Supplementary.x

Is

A comparison of GO annotations between sets of up- and downregulated
transcripts revealed two terms exclusively featured in upregulated genes
(‘'symplast,’ GO:0055044; and 'auxiliary transport protein," GO:0015457). Both
annotations are related to the extracellular transport via pores. Conversely, six
GO terms were identified only in downregulated transcripts ('synapse,’
G0:0045202; 'synapse part,' G0:0044456; 'antioxidant activity,’ G0:0016209;
'translation regulator activity,’ GO0:0045182; 'immune system process,'
G0:0002376; and 'viral reproduction,” GO: 0016032; Figure 18). These groups of
GO annotations are associated to the regulation of translation. Next, the
enrichment of GO terms in up- and downregulated contigs was tested, against
the full list of annotated transcripts, using the Fisher's exact test as implemented
in Blast2GO (Gotz, Juan Miguel Garcia-Gomez, et al. 2008). In this manner,
significant overrepresentation was found only in upregulated transcripts (FDR =
0.037; P-value = 0.046), with all GO terms belonging to the molecular function
category of ontologies: metal ion binding (GO:0046872), calcium ion binding
(GO:0005509), ion binding (GO:0043167), and cation binding (G0:0043169). All
these functions belong to the same hierarchy of ontologies, so all these can be
summarized with the lower and more specific category, ie., the 'calcium ion
binding' GO term. Both analyses of GO annotations correlate well with the results
shown in the previous chapter, that point to the upregulation of genes associated

to the ion transport in the light-induced plasmodium.
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Figure 15. Quality assessment of the [llumina RNA-seq outputs. Each sequencing
position in the read, given in base pairs (bp), is plotted against their
corresponding sequencing quality values, measured in Phred-64 scores (vertical
axis; Cock et al. 2010). These quality values belong to all sequencing reads from
each RNA library (L1, L2, D1 and D2; see Table 19), and were obtained from the
direct sequencing output (FASTQ format including sequence and quality). Bases
with Phred scores over 28 are of very good quality (green area), bases in the
brown area are of acceptable quality (Phred score 20-28), while those with score
below 20 are of poor quality. The vertical yellow bars indicate the interquartile
range, i.e. the distance between the upper and lower quartiles, which contains
50% of the plotted values around to the median (indicated with a red line inside
the yellow bar). After this quality check, all bases with scores lower than 33
(base call accuracy > 99.95%) were trimmed.
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Figure 16. Assessment of the reproducibility of the approach. Correlation plots of
the RPKM- normalized reads (Mortazavi et al. 2008) for competent (D1 and D2)
and light- induced (L1 and L2) plasmodia were employed to assess the
reproducibility of the single-cell RNA-seq in Physarum. Reads mapped to the
novel transcriptomic assembly were used for plotting. Values of correlation
coefficients (r) are shown in the corresponding boxes and the red lines indicate
no fold changes in expression. Labels of both x- and y- axis are the Log: of the
RPKM- normalized reads.
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Figure 17. Fold change and significance. Log> fold-changes of normalized mapped
reads are plotted on the y-axis, and logz-normalized means are plotted on the x-
axis. Differentially expressed transcripts (turquoise points) were identified
between photoinduced and starved single cells of Physarum, through the use of a
generalized linear model test, as implemented in the R package DEseq (version
1.6.1, false discovery rate < 0.05; Anders and Huber 2010). Transcripts with high
fold change may not be significantly diferentially expressed simply due to high
variance.
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Later, to evaluate the genes with similar regulation, the fully annotated
transcripts were clustered for the highest statistically significant up- and
downregulation levels, as compared to the starved plasmodium cell libraries
(Tables 20 and 21). In spite of the apparent diversity on the annotations,
potential functions were inferred based on ortholog identities and gene ontology
assignments. In this way, upregulated transcripts were identified encoding
endopeptidases (PHYSA), phospholipases (PLDG) and stress response proteins
(BPM1, NAH1), as well as genes related to biosynthetic processes (COAD, I10D1,
PYR1), development (STX3), chromatin remodeling (YA27), and signaling (ARF1,
CYH4, SAR1, LTBPZ2), that are highly expressed 6.5 hours after photoinduction
(Table 20).

On the other hand, a different group of genes is downregulated upon light
exposure. In this case, transcripts associated to actin- binding (MYSZ2, COMA),
FMN- binding (NOS, NCPR), signaling (VWKA), sugar- (TCT1) and cation- binding
proteins (XANP, BOTZ2), transporter (PEP3) and transferases (SET5, HMNT), were
found as downregulated 6.5 hours after light induction (Table 21). These
measurements of transcriptional regulation at different time points correlate
well with previous results in cell pools, where actin-binding and signaling
proteins were identified as core members of the regulatory network during

sporulation (see previous chapter).
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Figure 18. Gene Ontology (GO) classification of differentially expressed
transcripts. A comparison of the three main GO categories (Biological Process,
Molecular Function, and Cellular Component) between the different expression

groups using WEGO (Ye et al. 2006), is shown. Up- and downregulated
represents the number of transcripts for each GO category, plotted in logarithmic

transcripts are indicated with dark green and red colors, respectively. The y-axis
scale.

99



Table 20. Top 20 Annotated Transcripts Upregulated after Photoinduction. A list
of transcripts with unambiguous annotations, significant differential expression
(P < 0.05), and with the highest levels of upregulation between the competent
and light-induced libraries, is shown. Sums of mapped reads (D: starved, L:
photoinduced) and fold changes are indicated for each transcript on a given
condition under the column “Fold”. Blast2GO (Go6tz, Juan Miguel Garcia-Gémez, et
al. 2008) automatic annotations were used, and manual corrections of
annotations were included in some cases.

Contig ID UniProt Annotation D L Fold P-value
ADP-ribosylation factor,

s432k3t27235 000909 ARF1 43 3,475 10636 3.75E-50

s431k3t6841 (Q8MZS4 Physarolisin, PHYSA 10 655 81.16 6.79E-39
Small COPII coat GTPase

s431k4t817 POCR31 SARI1, SAR1 161 7,079 57.20 6.92E-47

s431k4t520 Q86AV9  Phospholipase D, PLDG 15 607 48.14 1.39E-34

s431k4t26745 Q8MZS4 Physarolisin, PHYSA 32 1,043 39.06 5.44E-37
BTB/POZ and MATH

s422k4t53788 Q8L765 domain-1, BPM1 67 1,057 20.81 6.62E-28
BTB/POZ and MATH

s422k4t53789 Q8L765 domain-1, BPM1 44 589 17.67 8.25E-24
lodothyronine

s431k3t89 P49894  deiodinase, I0D1 201 2,474 1614 6.09E-24

s431k3t4056 Q20797  Syntaxin-3, STX3 157 1,885 15.39 2.41E-23
BTB/POZ and MATH

s431k3t8494 Q8L765 domain-1, BPM1 53 619 15.39 1.31E-22
Latent-transforming
growth factor beta-

s432k3t59570 Q28019 binding 2, LTBP2 38 459 1412 2.17E-22
PYR1-3 CAD homolog,

s432k4t17 P20054 PYR1 37 441 1392 3.32E-22
BTB/POZ and MATH

s422k4t53790 Q8L765 domain-1, BPM1 66 692 13.83 4.95E-22
F-box and FNIP repeat-

s432k3t79109 Q5UPW1 protein, YR286 37 382 1229 1.83E-20
BTB/POZ and MATH

s422k4t53791 Q8L765 domain-1, BPM1 101 884 1149 2.26E-20
Uncharacterized

s432k4t1366 Q09698  C2F7.07c, YA27 493 4,849 1147 2.67E-22
Na+/H+ antiporter,

s431k3t50779 Q99271 NAH1 48 410 1096 4.53E-18

s431k4t11834 Q80YWO Cytohesin-4, CYH4 425 3,365 1032 8.72E-19

ctg9928 P08955 CAD protein, PYR1 90 737 9.90 4.73E-19
Phosphopantetheine
adenylyltransferase,

s431k4t20190 C1DIB2 COAD 68 519 9.89 4.5E-17
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Table 21. Top 20 Annotated Transcripts Downregulated after Photoinduction.
Transcripts with unambiguous annotations, significant differential expression
(P-value < 0.05), with mapped reads in all libraries, and that possess the highest
levels of downregulation between the competent and light-induced samples, are
listed. Annotations, UniProt accessions, mapped reads, and probability values
follow the same convention as in Table 20.

Contig ID UniProt Annotation D L Fold P-value
Interferon-induced 44-

s424k41102 Q53G44  like, IF44L 792 7 001 6.4E-36
Botrydial synthesis

s422k3t11297 Q6WP50 protein 2, BOT2 7,869 124  0.02 1.8E-39
SET domain-containing

s424k4t12560 074467 5,SETS 616 30 0.06 1.5E-23
SET domain-containing

s424k3t14992 074467 5,SETS5 852 46  0.07 2.0E-21
Nitric oxide synthase,

s424k3t34437 P29473 NOS 504 48 0.11 8.8E-17

s424k3t13022 Q60106 Xanthomonalisin, XANP 1,507 174 0.13 5.3E-13
NADPH-cytochrome

s424k4t29841 Q27597 P450 reductase, NCPR 380 45 0.14 2.5E-14

ctg353 061063 Tectonin-1, TCT1 2,055 243 0.14 3.6E-13

ctg4361 P08799 Myosin-2, MYS2 311 39 0.14 7.0E-13
Histamine methyl

s424k3t6526 Q9EST2 transferase, HNMT 1,322 165 0.14 2.5E-12
Peptide transporter 3,

ctg5105 001840 PEPT3 1,646 199 0.14 1.3E-12
NADPH-cytochrome

s424k4t30424 Q27597 P450 reductase, NCPR 1,344 166 0.14 2.1E-12

s424k4t31287 Q60106 Xanthomonalisin, XANP 1,584 208 0.15 7.9E-12
Nitric oxide synthase,

s424k4t4957 Q8T8CO NOS 1,535 195 0.15 4.4E-12

s424k4t2011 Q6B9X6 a-protein kinase, VWKA 9,604 1,216 0.15 1.6E-13

s424k4t319 Q03380 Comitin, COMA 17,238 2,208 0.16 9.7E-13

s422k4t3112 Q03380 Comitin, COMA 1,664 217 0.16 6.2E-12

s422k4t11955 P08799 Myosin-2, MYS2 311 44  0.16 8.4E-12

s422k3t4555 Q03380 Comitin, COMA 1,223 163 0.16 8.6E-12

s422k3t4907 Q6B9X6 a-protein kinase, VWKA 5,034 683 0.16 8.6E-13
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Interestingly, the expression of multiple transcript isoforms in the same cell at
the same time point, both in up- (PYR1, BPM1, PHYSA; Table 20), as in
downregulated transcripts (COMA, VWKA, NOS, NCPR, XANP, MYS2, SET5; Table
21) was observed. This phenomenon has been also observed in previous single-
cell studies, and has been attributed to the complexity of transcript variants
(Tang et al. 2009). Whether these genes encode isoforms controlling stage-

specific signalling pathways, remains to be studied in detail.

Before this work, two studies have reported the RNA-seq analysis of
transcriptomes in eukaryotic organisms, using single embryonic cells as models
(Tang et al. 2010; Islam et al. 2011). In these works, both the assembly and
mapping procedures were achieved using the mouse genome as a reference.
Here, using the power of RNA-seq to obtain whole transcriptomes without
relying on previous genomic information, a characterization of a large set of
expressed genes in different samples during the sporulation of Physarum, an
organism without a known genomic sequence, was performed. Furthermore, in
order to obtain single cells, all former studies on single-cell multiplex gene
expression analysis required complex separation methods, such as pipetting
cells manually, or using laser microdissection or fluorescence-activated cell
sorting (Tang et al. 2011). In this study, the plasmodium was used, a natural
macroscopic multinucleate single-cell stage from Physarum, whose culture and
handling is straightforward, and for which there are several well established
methods for genetic manipulation (Burland et al. 1993; Bailey 1997; Wolfgang
Marwan 2003).
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Conclusions

By combining the power of the next generation sequencing technologies, and the
simplicity for obtaining single cells from Physarum, an approach to characterize
the whole transcriptome through the differentiation of this lower eukaryote was
developed, at the single-cell level. The observed regulation patterns correlate
well with previous studies on the differential gene expression during the
commitment to sporulation in the slime mold, particularly with respect to
proteins involved in signaling and actin-binding. It is expected that
improvements in single-cell transcriptomics, such as the discrimination in sense
and antisense transcripts, the ability to sequence a more diverse range of nucleic
acid species, and other future developments, will help to display a more precise

picture of the regulatory network controlling the differentiation in this organism.
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Summary

Cell fate decisions are influenced by stochastic variations in gene expression
observed between cells in a population. In recent years, several studies attemped
to cope with these variations through the analysis of single cells, which provides
a better picture of the expression behavior, as compared to averaged data
obtained on cell populations. These studies generally involved complex
procedures to separate individual cells, high throughput methods to assess the
expression (such as RNA-seq), and the use of the mouse genomic information for
transcript assembly and mapping.

Here, an approach for studying the transcriptomic changes during the
differentiation of the slime mold in individual cells was developed. This approach
combines the use of the Physarum plasmodium, a natural macroscopic single-
cell, with the power of RNA-seq to obtain whole transcriptomes without relying
on previous genomic information.

To test the validity of this approach, first its reproducibility was evaluated
through the correlation of expression patterns. Here it was observed that cells
from related developmental stages exhibited very similar transcriptomic profiles
(competent cells: r = 0.99; light- induced plasmodia: r = 0.98), while lower
correlations were found between competent and photoinduced cells (r = 0.96
between D2 and L1; r = 0.97 in all other cases).

Then the gene regulation patterns and transcriptionally active genes were
analyzed. In this manner 556 upregulated and 531 downregulated transcripts
were identified when comparing the photoinduced against the competent cell
RNA-seq libraries. Some of these transcriptionally active genes were associated
to annotations (231 and 264 from the up- and downregulated transcripts,
respectively), and the combination of expression and annotation data correlate
well with previous results in cell pools, where actin-binding and signaling
proteins were indicated as core members of the regulatory network during
sporulation.

The expression of multiple transcript isoforms was also noticed in the same cell
at the same time point. This phenomenon has been also observed in previous
single-cell studies, and has been attributed to the complexity of transcript

variants. Finally, analyses of gene ontology classifications and enrichment also
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correlate well with the results shown in the previous chapter, that point to the
upregulation of genes associated to the ion transport in the light-induced
plasmodium. It is expected that this single-cell transcriptomics approach will
enable in the future to display a more precise picture of the regulatory network

controlling the differentiation in this organism.
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Chapter 5. The reference transcriptome of Physarum polycephalum

Background

Many aspects of the biology of an organism are encoded in its genome. Genomes
display phenotypically in a given condition through their expressed
transcriptomes, while the whole set of transcripts comprised in a given genome
is its reference transcriptome. Recent technological advances, and particularly
the development of the next generation sequencing methods, make possible to
survey the transcriptional complement of the genomes at the single base level.
When the full sequence of the reference transcriptome is known, the effort then
shifts in finding the biological function of the encoded genes (U.S. Department of

Energy 1992; Guigé 2013).

In the case of Physarum, although genetic manipulation is possible, and
comprehensive genomic and transcriptomic information are available for several
closely related organisms, such as Dictyostelium discoideum and D.purpureum,
the study of biological functions in the slime mold at the molecular level is still
restricted to small groups of genes. In this respect, next generation sequencing
technologies have nowadays allowed the study of several model organisms, even
of those that are not amenable to classic genetic methods (National Institutes of
Health 2004). Given the potential of Physarum as a model in many research
areas, a genome consortium was formed (Physarum Genome Sequencing
Consortium 2013), which sequenced and delivered a draft of the genome

assembly.

Here, in order to identify all genes possibly associated with the sporulation in the
slime mold, the Physarum genome was characterized and all its protein coding
genes annotated, which were later organized into putative regulatory networks
linked to biological processes such as signal transduction and differentiation.
The process specifically involved searching and masking repetitive regions, and
then the masked genome was used to map cDNAs (derived from Physarum ESTs
and RNA-seq, and D.discoideum ESTs), and proteins from the UniProt database.

In parallel, novel noncoding RNAs (ncRNAs) were also identified and mapped.
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Outputs from these computational experiments were integrated for annotation,
and the protein coding gene models evaluated for certainty and completeness
(Figure 2). The analyses of the genome and the putative reference transcriptome
presented here not only provide the first steps to a better understanding of the
slime mold biology at the transcriptomic level, but also serve as a pilot pipeline

that can be used for the annotation of the final genome release.

Results

The Physarum Genome

The genomic DNA sample was obtained from haploid amoeba (strain LU352;
Table 3), by Gerard Gernot and Marianne Bernard (Integrated Research Cancer
Institute, Villejuif, France), and sequenced using a whole genome shotgun
strategy, at The Genome Institute of the Washington University School of
Medicine (St Louis, MO), under the supervision of Patrick Minx. The platforms
used were Roche 454 instruments, and the combined sequence reads were
assembled via the Newbler package, version 2.6 (454 Life Sciences, Roche). The
contaminating contigs, as well as redundant contigs resulting from high levels
heterozygosity, have been removed from the final assembly. The retained contigs
were then scaffolded, i.e. reunited into scaffolds, by introducing artificial gaps
(represented by Ns), whose lengths were calculated from the clone or sequence
libraries of origin. Afterwards, the scaffolds of at least 200 bases were submitted
to GenBank, where they were stored under the accession number 709848. This
draft assembly is referred as version 7.3.1, with coverage of 54.6X (Patrick Minx,
personal communication). According to the present analyses, this Physarum
genome release contains 126,782 scaffolds, with a total length of 239,752,614
base pairs (189,684,779 bp excluding undefined bases), and a GC-level of
41.16%. The results here shown however may differ from the GenBank version,
as the NCBI staff performs further filtering of contaminants and sequences prior
to the public release. A summary of statistics of the genomic contigs and scaffolds
is listed at the Table 22, and the distribution of these fragments is shown in the

Figure 19.
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Table 22. Sequencing summary for the genome assembly, release 7.3.1

Scaffolds Contigs

Total (Mb) 239.75 189.68
Undefined (Mb) 50.08 0.015
Real bases (Mb) 189.67 189.67
Sequences 126,782 189,840
Mean Size 1,891.1 999.2
Smallest 17 17
Largest 821,622 74,487
Fragment N50 97,377 2,096
N50 length 119,912,848 94,842,743
%’5 . scaffolds contigs r %
113335 110261
E 1 11426 11426 | E
3074
1405 1405
616
. # 3l 1-10 10-100 >100 <0.1 0.1-1 1-10 >10 =
(A) Size (Kb) (B)

Figure 19. Distribution of scaffolds and contigs in the Physarum genome. The
fragment size range (in Kb, x-axis), is plotted against the number of sequences (y-
axis), for all the scaffolds (4) and contigs (B) in the genome, version 7.3.1
(GenBank Accession 709848; Unpublished). Number of fragments for a given
size range are indicated inside the bars (e.g., there are 616 genomic scaffolds
with sizes over 100 Kb).
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Repeat Annotation

Identification and masking of repetitive sequences is widely regarded as the first
step towards genome annotation. Two kinds of sequences are considered
repeats: homopolymeric tracts (“low- complexity regions”), and transposable
elements, such as short and long interspersed nuclear elements (SINEs and
LINEs, respectively). Repeats are extensively distributed in eukaryotic genomes,
and their borders usually overlap or occur inside other repetitive elements, with
most repeats rarely found complete (Lerat 2010). After repeat searches, genome
sequences are typically masked, ie., each nucleotide regarded as part of a
repetitive element is changed for an “N.” Given that most programs used for gene
annotation are sensitive to low- complexity sequences, they complicate genomic
characterizations; and genomes without masking can produce millions of
spurious similarity alignments, repetitive elements must be identified before
genes are mapped and modeled (Yandell and Ence 2012). Here, a repeat search
was carried out with the RepeatMasker software (version open-3.3.0; Smit et al.
2010). This Perl program uses a search engine like BLAST with a library of
transposable elements, satellites, and typical low complexity sequences, to detect
these in novel genomes (Tempel 2012). The default mode was employed,
supported by the Tandem Repeats Finder (version 4.07b; Benson 1999),
RMBLASTN (version 2.2.27+) and the RepBase database (update 20120418;
Jurka et al. 2005). In this manner, a total of 34,875,330 bp (14.55%) were
masked from the scaffolds. Following the classification of eukaryotic
transposable elements (Wicker et al. 2007), most elements were found entailing
LINEs (337,725 bp; 0.14%), simple repeats (13,11 Mbp; 5.47%), and low
complexity regions (21,35 Mbp; 8.9%). The output of the RepeatMasker analysis
was a masked genome of 154,830,967 bp excluding undefined bases, that was

used later as the target for EST and cDNA mapping.
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However, the RepBase library release contains only three Physarum- specific
sequences, and 2 ancestral from the Mycetozoan lineage, from a total of 179
sequences. This, together with the fact that the Physarum genome is larger and
more fragmented than those from related social amoebae (Hardman et al. 1980;
Sucgang et al. 2011; Eichinger et al. 2005), encouraged the building of a species-
specific transposable elements database. For this purpose, the repeat modeling
package RepeatModeler was employed (version open-1.0.7; Smit and Hubley
2010). RepeatModeler internally calls two de novo repeat finding programs
(RECON and RepeatScout; Bao and Eddy 2002; Price et al. 2005), and uses their
outputs to build a library of putative interspersed repeats. Following the
recommendations of Hu (2011), only sequences longer than 100 Kb were
employed to build the custom library (616 scaffolds; 118,143,527 total bp;
86,429,144 bp excluding undefined bases). The obtained library consists of 338
nucleotide sequences distributed among 23 repeat families, with a total of
289,971 bp (N50: 1640 bp; N50 length: 144,972; see Figure 20). This novel
repeat library was then used for a new repeat search using RepeatMasker. Here a
significant increase in total number of elements was observed, which went from
0.17% with the default RepBase library, to covering up to 15.29% of the genome
with the custom library, and also increasing the proportion of the genome
masked (from 14.55 to 27.59%; see Table 23). However, these results must be
taken carefully, as these are algorithm predictions, and more wet-lab research is
needed to verify the nature of these candidate regions. Nevertheless, the custom
masked genome output still entails an important resource, and thus it was

included later during the modeling of protein coding genes (see page 119).

110



Table 23. Distribution of repetitive elements on the Physarum genome. These
regions were identified with RepeatMasker, using either RepBase (Update
20120418, “default” library), or a RepeatModeler- custom built library (“custom”
library). The elements listed in the first column follow the classification of
Wicker et al. (2007). Column parameters represent the number of elements
found, the length covered in bp., and the proportion in percentages (Perc %).

Library Default Custom
Parameter Elements  Length  Perc (%) Elements  Length  Perc (%)
SINEs 198 27,026 0.01 0 0 0.00
ALUs 145 22,094 0.01 0 0 0.00
MIRs 35 3,999 0.00 0 0 0.00
LINEs 1,494 337,725 0.14 6,713 2,893,999 1.21
LINE1 1,340 327,197 0.14 2,404 26,625 0.20
LINE2 53 3,724 0.00 0 0 0.00
L3/CR1 83 5,504 0.00 0 0 0.00
LTR elements 168 28,573 0.01 17,579 6,657,620 2.78
ERVL 21 4,008 0.00 0 0 0.00
ERVL-MaLRs 29 5,470 0.00 0 0 0.00
ERV_classl 100 14,868 0.01 909 176,670 0.07
ERV_classlI 12 3,285 0.00 0 0 0.00
DNA elements 106 17,495 0.01 12,836 3,128,705 1.30
hAT-Charlie 18 2,155 0.00 0 0 0.00
TcMar-Tigger 37 3,154 0.00 0 0 0.00
Unclassified 2 210 0.00 130,568 23,979,251 10.00
Total 411,029 0.17 --- 36,659,575 15.29
Small RNA 397 36,756 0.02 0 0 0.00
Satellites 101 23,133 0.01 1 241 0.00
Simple repeats 180,381 13,113,566 547 306,223 23,422,801 9.77
Low complexity 262,728 21,348,986 890 78942 6,662,193 2.78
Bases masked --- 34,875,330 14.55 --- 66,150,424 27.59

111



LINE/RTE-BovB —
LINE/R2-NeSL -
LINE/L1-Tx1 —
DNA/Sola
DNA/PIF-Harbinger
DNA/Novosib
DNA/Maverick
DNA/hAT-hATm
DNA/hAT-hATA
DNA?/Crypton
DNA

LTR
LINE/R2-Hero
LINE/Penelope —
DNA/MULE-MuDR
buffer

LTR/ERV1
LINE/R2

LINE/L1
Simple_repeat —
DNA/CMC-EnSpm
LTR/Gypsy -
LTR/Copia —

|

1

|

|

|

|

|

1

|

|

|

Entries

Figure 20. Distribution of repeat families at the Physarum- specific custom repeat
library. The y-axis specifies the family name, and the number of entries for each
family is plotted on the x-axis.

Non-coding RNA (ncRNA) Annotation

In eukaryotes, most of the genomic DNA comprises non-protein-coding
transcripts. These RNAs consist of many heterogeneous groups, and the best-
characterized ncRNA classes are known to form secondary structures that are
relevant for their function. These classes include ribosomal RNAs (rRNA), small
nuclear RNAs (snRNAs), and transfer RNAs (tRNAs) that are involved in
messenger RNA (mRNA) splicing and translation. Also in this group are catalytic
RNAs such as snRNAs, RNase P RNA, and other ribozymes, and regulatory RNAs
such as microRNAs and spliceosomal RNAs, which direct protein complexes to
RNA targets. In addition, ncRNAs are also known to be involved in the regulation
of gene expression, chromosome replication, RNA processing and modification,
mRNA stability, protein degradation and translocation (Dhanasekaran et al.

2013).
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In this work, a combination of similarity, pattern and ab initio approaches were
used to find all noncoding RNA classes in the Physarum genome. To this end, first
all possible noncoding RNAs were identified using the Infernal package (version
1.0.2; Nawrocki et al. 2009). This program combines the use of probabilistic
models of known consensus RNAs, built from collections of RNA families present
in the Rfam database (version 11.0, August 2012; Griffiths-Jones et al. 2005;
Burge et al. 2013), with similarity searches against the sequences of these
consensus models. For this analysis and in order to reduce the computation time,
a prefiltering was first performed through a BLASTN search (Altschul et al. 1990;
Altschul et al. 1997) against the noncoding RNA sequences present in the Rfam
database, with an E-value of 0.01. This was achieved using a perl script obtained
from Rfam (rfam_scan.pl, version 1.0.4), modified for multi-thread execution. The
filtering and the Infernal search allowed the identification of 1,436 ncRNAs,
comprising 144 small nucleolar RNAs (snoRNAs; Table 24), 777 micro-RNAs (as
indexed in miRBase, see Table 25; Kozomara and Griffiths-Jones 2011), 16 RNAs
involved in Group II intron splicing (Table 26), 29 bacterial small RNAs (Table
27; possible vector contaminants), and 183 members of other diverse non-

coding RNA families (Table 28).

Subsequently, tRNA gene structures were predicted with the tRNAscan-SE
program, with default parameters (version 1.23; Lowe and Eddy 1997).
tRNAscan-SE uses probabilistic structure profiles built from known RNAs, to find
novel tRNAs in uncharacterized sequences. tRNAscan-SE predicted 325 tRNA
genes in this release of the Physarum genome, 281 of these encoding the twenty
standard amino acids, and including eleven Selenocysteine (Sec) tRNAs (Table
29). Furthermore, 29 were predicted as tRNA pseudogenes, 30 containing
introns (see Table 30), and 4 encoded undetermined tRNA isotypes. No
suppressor tRNAs (CTA and TTA anticodons) were found.
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Table 24. Small nucleolar RNAs (snoRNAs) in the Physarum genome. A total of
144 snoRNA homologs were found, corresponding to three main taxonomic
groups: 115 from Plasmodium falciparum, two from a human homolog, and
several types belonging to Trypanosomatid ncRNA sequences (27 snoRNAs).
Accession numbers are listed as Rfam entries (Griffiths-Jones et al. 2005).

Type Origin ID(s) Accession(s) Number

snoR11 P.falciparum Single RF01589 115
member

SNORA17 Human Single RF00560 2
member

snoTBR Trypanosoma  snoTBR17 RF00294 3
snoTBR5 RF00292
snoTBR7 RF00295

TB10 Trypanosoma TB10Cs1H1 RF01522 7

TB10Cs1H2 RF01523
TB10Cs1H3 RF01524
TB10Cs2H1 RF01525
TB10Cs3H1 RF01531
TB10Cs3H2 RF01532
TB10Cs4H2 RF01862

TB11 Trypanosoma TB11Cs2H1 RF01537 4
TB11Cs4H1 RF01539
TB11Cs4H2 RF01540

TB6 Trypanosoma TB6Cs1H1 RF01546 3
TB6Cs1H3 RF01547
TB6Cs1H4 RF(01548

TB8 Trypanosoma TB8Cs2H1 RF01549 2
TB8Cs3H1 RF01550
TB9 Trypanosoma TB9Cs1H1 RF01861 8

TB9Cs1H2 RF01552
TB9Cs1H3 RF01553
TB9Cs2H1 RF01554
TB9Cs3H1 RF01555
TB9Cs3H2 RF01556
TB9Cs4H2 RF01558
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Table 25. Micro RNAs (miRNAs) in the Physarum genome. miRNAs found are all
involved in post-transcriptional regulation and belong to diverse species, and
were obtained from miRBase (Kozomara and Griffiths-Jones 2011). Accession,
gene ID, and the number of genes found (Number), follow the same convention
as in the Table 24.

Accession ID Number Accession ID Number
RF00639 mir-515 2 RF00871 mir-689 1
RF00665 mir-290 1 RF00876 mir-684 19
RF00690 MIR408 193 RF00885 MIR821 2
RF00692 MIR171_ 1 RF00886 MIR807 2
RF00708 mir-450 42 RF00911 mir-672 45
RF00729 mir-278 285 RF00929 mir-574 14
RF00736 mir-320 1 RF00994 mir-1255 1
RF00758 mir-346 1 RF01005 MIR530 1
RF00788 mir-287 105 RF01021 mir-558 1
RF00834 mir-268 2 RF01059 mir-598 50

RF01063 mir-324 8

Table 26. Group II intron splicing non-coding RNAs found in the Physarum
genome. These molecules are a class of self- catalytic ribozymes and mobile
elements. Accession, number and ID columns follow the same convention as in
the Table 24.

Accession ID Number
RF00029 Intron gpll

RF01998 group-1I-D1D4-1
RF01999 group-1I-D1D4-2
RF02001 group-I1I-D1D4-3
RF02003 group-1I-D1D4-4
RF02012 group-1I-D1D4-7

N W[k |~ |+~ |0
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Table 27. Bacterial non-coding RNAs found in the Physarum genome. Accession
and numbers follow the same convention as in the Table 25.

Accession Functional Category

Number

RF02076

Gammaproteobacterial SRNA STnc100

RF02221

Xanthomonas small RNA, sRNA-Xccl

RF02278

Betaproteobacteria toxic small RNA

RF00624

P9, small RNA from P.aeruginosa

RF00106

regulation of DNA replication RNAI

RF00391

bacterial cis-regulatory element RtT

RF00442

Detoxification in B.subtilis, ykkC-yxkD

RF01699

RNA motif from Clostridial bacteria, Clostridiales-1

RF01725

SAM riboswitch, Gram-positive bacteria, SAM-I-IV-variant

RF01757

DNA repair in Burkholderiaceae, sbcD

RF01766

cold shock response in Enterobacteriales, cspA

RF01497

frameshifting in bacteria, ALIL

RF00240

Inhibition of IS10 transposase expression, RNA-OUT

Table 28. Other non-coding RNAs found in the Physarum genome.

Accession Functional Category

R R |WR|R|[O|R|N[OA|R[N|R |~

Number

RF00009 tRNA processing, RNAse P

RF00019 Ro ribonucleoprotein particle (Ro RNP), Y-RNA

33

RF00032  Histone mRNA 3'-end processing

RF00039 mRNA binding, DicF

RF00174  cobalamin binding

RF00198 nuclear mRNA trans splicing SL1, via spliceosome

RF01656 small RNAs ceN72-3 ceN74-2, function unknown

NN | R P, W

RF01666  Cis-regulatory element rox2

51

RF00003  Splicing U1l

20

RF00004  Splicing U2

31

RF00007  Splicing U12

RF00015  Splicing U4

RF00020 Splicing U5

10

RF00026  Splicing U6

13

RF00619  Splicing U6atac
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Table 29. tRNA Genes in the Physarum Genome. The corresponding codons are
listed from the universal genetic code, in IUPAC notation. The number of tRNA
genes for each codon is indicated between parentheses. The presence of the 20
standard proteinogenic amino acids for eukaryotes confirms the completion of
the draft genome.

Amino acid Codons tRNA genes
Ala/A GCT (9), GCC, GCA (8), GCG (4) 21
Arg/R CGT (6), CGC, CGA (3), CGG (2), AGA (4), AGG (4) 19
Asn/N AAT, AAC (6) 6
Asp/D GAT, GAC (6) 6
Cys/C TGT (1), TGC (7) 8
Gln/Q CAA (6), CAG (4) 10
Glu/E GAA (7), GAG (6) 13
Gly/G GGT (1), GGC (13), GGA (10), GGG (3) 27
His/H CAT, CAC (10) 10

lle/I ATT (7), ATC (1), ATA (3) 11
Leu/L TTA (4), TTG (5), CTT (7), CTC, CTA (3), CTG (4) 23
Lys/K AAA (8), AAG (12) 20
Met/M ATG (22) 22
Phe/F TTT, TTC (7) 7
Pro/P CCT (9), CCC, CCA (6), CCG (2) 17
Sec/U TGA (11) 11
Ser/S TCT (4), TCC (6), TCA (2), TCG (1), AGT, AGC (8) 21
Thr/T ACT (7), ACC (1), ACA (3), ACG (2) 13
Trp/W TGG (5) 5
Tyr/Y TAT (1), TAC (7) 8
Val/V GTT (5), GTC (1), GTA (3), GTG (5) 14

Finally, the focus was directed to the mapping of ribosomal RNAs using methods
different than the Infernal search of RNAs present in the Rfam database, that was
previously carried out. Thus, additional 19 rRNAs were predicted ab initio by
RNAmmer (version 1.2; Lagesen et al. 2007), with default parameters. This
program uses probabilistic models built over known ribosomal RNAs present in
the European ribosomal database project. rRNAs found by this method include

seventeen 8S, one 18S and one 28S rRNA (Table 31).
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Table 30. tRNA Genes including introns in the Physarum Genome. This list
includes 5 pseudogenes, corresponding to the TGC (Ala; 3tRNA pseudogenes),
TCG (Arg, 1 tRNA) and TCT (Arg, 1 tRNA) anticodons.

Amino acid Codon Anticodon Intron genes

Ala GCA TGC 4
Gly GGC GCC 1
Gly GGA TCC 3
Arg CGA TCG 1
Arg AGA TCT 2
Leu CTG CAG 1
Lys AAG CTT 1
Lys AAA TTT 1
Gln CAA TTG 2
Ile ATA TAT 3
Tyr TAC GTA 7
Sec TGA TCA 4

Furthermore, 19 previously characterized Physarum ribosomal RNA sequences
present in GenBank were also used for similarity searches. In this manner, these
sequences were mapped to 893 positions, via BLASTN alignment to the
unmasked genome sequence, with an e-value of 1E-5 (version 2.2.27+; Camacho
et al. 2009). To minimize the redundancy between the noncoding RNA genes
predicted with different methods and programs, overlaps between the positions
in the genome (also known as “annotated genomic intervals”) were identified
with the intersect tool of the bedtools program (version 2.17.0; Quinlan and Hall
2010). Upon filtering of overlapping ribosomal and transfer RNAs intervals, the
final set consisted of 928 rRNA (873 from BLASTN, 19 from RNAmmer and 36
from Infernal) and 347 tRNA (96 from tRNAscan and 251 from Infernal)
annotations. A summary of these noncoding annotations is displayed in the Table

32.
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Table 31. rRNA genes identified using RNAMMER (Lagesen et al.,, 2007). The
positions in the genomic scaffolds (start and end, in base pairs) are indicated for
each predicted rRNA molecule.

rRNA type Scaffold ID Start End
28STrRNA  Scaffold2079 93 6,644
8S rRNA Scaffold8822 8 122
8S rRNA Scaffold34229 583 697
8S rRNA Scaffold143 110,478 110,586
8S rRNA Scaffold38711 2472 356
8S rRNA Scaffold91028 7 121
8S rRNA Scaffold108587 13 127
8S rRNA Scaffold58903 184 298
8S rRNA Scaffold19812 149 263
8S rRNA Scaffold54413 102 216
8S rRNA Scaffold42285 354 468
8S rRNA Scaffold958 9,791 9,905
8S rRNA Scaffold14262 1,754 1,868
8S rRNA Scaffold164 201,223 201,337
8S rRNA Scaffold93590 36 150
8S rRNA Scaffold389 81,909 82,023
8S rRNA Scaffold8558 1,125 1,241
8S rRNA Scaffold13630 73 185
18SrRNA  Scaffold2079 6,902 9,103

Table 32. Summary of noncoding RNA predictions.

Program Molecule Total Unique
BLASTN rRNA 893 873
RNAmmer rRNA 19 19
Rfam rRNA 36 36
tRNAscan-SE  tRNA 325 96
Rfam tRNA 251 251

119



Mapping RNA-seq short reads to the Physarum genome

As covered in previous chapters, RNA-seq offers the capacity of finding new
genes, due to its ability to reconstruct transcripts from short cDNA fragments,
even being able to reveal alternative splice isoforms and context-specific
transcripts. For these reasons, it was decided to include the identification of
unannotated transcripts using mapped reads from RNA-seq experiments. To this
end, Physarum macroplasmodia from the white strain (LU897 x LU898 cross;
Table 3) were cultured and collected through several points of the sporulation
cycle, and their RNAs were then sequenced in two batches (LULU1 and LULUZ;
Table 33), using the Illumina platform (see Methods; Bentley et al. 2008;
Nagalakshmi et al. 2008). RNA isolation, cDNA synthesis and cDNA library
preparations were carried out by vertis Biotechnologie (Freising-
Weihenstephan, Germany). A summary of these RNA sequencing outputs can be

seen in the Table 33.

Table 33. RNA samples and sequencings from the white strain batches.

Sample RNA Time PCR Sample Conc. Amount Output

Group sample Point cycles Barcode (ng/ul) (ug) Reads

LULU1 ds72 0 23 AGAC 1097 88 5,915,413
LULU1 ds10 2 24 TCCA 476 38 4,273,727
LULU1 ds87 6 23 GAGT 133 11 5,678,394
LULU2 dS54 0 13 CGATGT 638 44,0 15,242,846
LULU2 ds16 3.5 12 ATCACG 359 29,0 20,000,414
LULU2 dS37 8 14 TTAGGC 256 19,0 40,986,624
LULU2 dS101 10.5 13 TGACCA 212 14,0 23,138,471

In addition, the RNA-seq output from the single-cell experiment (strain WT31;
European Nucleotide Archive, accession ERP001220; Chapter 4) was also
included in the following analyses. All sequencing outputs were then decoded if
necessary, and trimmed for quality using the FASTX Toolkit, using an arbitrary
minimum Phred score of 33, which is equivalent to 99.94988% of base call
accuracy (version 0.0.13; Gordon 2008). The RNA-seq datasets were then
processed separately, according to their respective sequencing experiment, and

following a standard procedure for short-read mapping (Trapnell et al. 2012).

120



First, the unmasked Physarum genome scaffolds were prepared as a target
database, and then each RNA-seq output was mapped to the genome using the
Bowtie aligner (version 0.12.7; Langmead et al. 2009). In this way candidate
exons were obtained, with their potential splice junctions identified with TopHat
(version 1.4.0; Trapnell et al. 2009). A summary of the mapping statistics can be

found in the Table 34.

Afterwards, the reconstruction of candidate transcript models was carried out
with Cufflinks (version 1.3.0; Roberts et al. 2011), with default settings, from
mapped reads and splice sites predicted by Bowtie and TopHat. Statistics about
mapped reads and exon/intron structures were estimated with samtools
(version 0.1.7; Li et al. 2009) and eval (Keibler and Brent 2003), respectively. In
this manner, a range of 25 to 82 thousand genes was obtained, corresponding to
over 26 - 92 thousand transcripts. Later, the cufflinks2gff3 tool from MAKER2
(Holt and Yandell 2011) was employed to filter these mappings, reducing the
transcript range to 8 to 51 thousand protein-coding genes (Table 35). Finally,
with the help of the bedtools package (version 2.17.0; Quinlan and Hall 2010),
the number of predicted transcripts shared between the different RNA-seq
outputs was assessed. The bedtools program achieves this by comparing all the
genomic intervals where the transcript are located, eliminating redundancies
between overlapping genomic positions (Quinlan and Hall 2010). In this manner
30,283 transcript intervals were found shared between the two white strain
RNA-seq outputs, and 39,539 intervals shared by all three Illumina sequencing
groups (Eilbeck et al. 2005).
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Table 34. Summary of Illumina RNA sequencing mappings. Sample groups
correspond to WT31 (European Nucleotide Archive, accession ERP001220; see
Chapter 4); LULU1 (Sequence Read Archive, accession SRP009381); and LULU2
(not submitted to databases).

Sample RNA Database Readsused Mapped Percentage
group sample accession Total reads for mapping reads mapped
WT31 422 ERS09485 19,941,711 19,930,198 8,412,392 42.21
WT31 424 ERS09485 19,499,417 19,489,244 8,421,530 43.21
WT31 431 ERS09485 18,279,213 18,269,297 6,610,504 36.18
WT31 432 ERS09485 19,346,090 19,334,649 7,777,779 40.23
LULU1 dS10  SRX10602 4,273,727 4,268,022 2,808,910 65.81
LULU1 dS72 SRX10602 5,915,413 5,907,188 3,994,729 67.62
LULU1 dS87  SRX10602 5,678,394 5,669,016 3,639,024 64.19
LULU2 dS101 ---NA--- 23,138,471 22,995,174 10,289,027 44.74
LULU2 dS16 ---NA--- 20,000,414 19,896,573 8,923,108 44.85
LULU2 dS37 ---NA--- 40,986,624 40,763,966 18,976,937 46.55
LULU2 dS54 ---NA--- 15,242,846 15,147,896 6,630,770 43.77

Table 35. Transcripts identified by mapping of RNA-seq short reads. This search
was done with the Cufflinks and TopHat programs (Langmead, Trapnell, Pop & S.
L. Salzberg 2009; Trapnell et al. 2009; Roberts et al. 2011). The protein-coding
genes and transcript statistics were obtained using eval (Keibler and Brent,
2003), except for those that were passed to MAKER2, which were analyzed with
SOBACcI (Eilbeck et al., 2005). Differences in the number of transcripts and their
total lengths are likely linked to differences on the RNA-seq dataset sizes (Table
34). Default settings were employed in all cases.

Sample group
Sequencing Batch WT31 LULU1 LULU2
Cufflinks Gene Count 68,872 25,737 82,584
Total Transcripts 73,836 26,554 92,109
Transcript Average Length 952.87 322.48 1,378.54
Transcript Total Length 70,356,304 8,563,115 126,975,784
Transcripts passed to MAKER2 32,298 8,939 51,763
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Clustering cDNAs for EST mapping against the Physarum genome

In order to create summaries of large datasets, clustering approaches are
typically applied to enlist commonly occurring sequence signatures (Hawkins et
al. 2010). Here, to avoid redundancies in the cDNA reference dataset, all
Physarum EST sequences (Glockner et al. 2008; Watkins and Gray 2008), were
clustered together with the obtained 454 sequencing output, via the UCLUST
algorithm from USEARCH (version 5.2.32; Edgar 2010). An identity threshold of
100% was used for this clustering. This produced 22,632 clusters that were later
combined with the CAP3 assembler (version date: 12/21/07; Huang and Madan
1999). The final non-redundant cDNA set consisted of 17,931 sequences, with
1,797 contigs and 16,134 EST singlets. This cDNA dataset was included in the

next step (gene modeling) and during the estimation for completeness.

Inference of the Protein-coding gene models

The protein- coding gene models were predicted with the annotation program
MAKER?2 (Holt and Yandell 2011). This is an automated pipeline that aligns EST
and protein data using several tools (BLAST, exonerate; Altschul et al. 1997;
Slater and Birney 2005), and it is also capable to include other types of
annotations, such as RNA-seq outputs and ab initio gene predictions, to create
consensus gene models located in the genome. By default, MAKERZ2 requires two
types of information (“biological evidences”): ab initio gene predictions, and
alignments of transcripts and proteins to the genome. For each locus with
existing gene predictions, MAKER2 evaluates if there are evidences of gene
expression (RNA-seq and protein alignments), and if there are other overlapping
evidences such as ESTs, the program chooses which prediction better matches
the evidences, raising the prediction to annotation, i.e. a novel gene model.
Predictions without overlapping evidences are not incorporated into the
annotations, but they are still saved for future references (Holt and Yandell

2011).
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In the case of the Physarum genome, three types of evidences were used for the
modeling: (i) The entire protein dataset containing all non- redundant sequences
from all organisms, included in UniProt (Release 2012/08; The UniProt
Consortium 2010); (i) two EST sets: A Physarum EST databank formed by
clustering all existing cDNAs with the 454 data (8.94 Mb, 17,931 sequences;
Chapter 3), and a collection of ESTs from Dictyostelium discoideum, from
dictyBase (86.44 Mb, 163,182 sequences; Gaudet et al. 2011); and (iii) the three
groups of transcript models obtained from the mapping of short RNA-seq reads

to the genome (LULU1, LULUZ, and WT31 datasets; Table 35).

As recommended before (Vonk et al. 2013; Gioti et al. 2013), a total of three
consecutive iterative runs of MAKER2 were carried out to produce the final gene
set, all of them using UniProt proteins, the Physarum EST evidences, and in the
absence of a trained gene predictor. A different [llumina RNA-seq evidence was
included for each run (LULU1, LULU2, and WT31), the Dictyostelium ESTs only in
the second run, and data from the masking of repeats using a Physarum specific-
custom library solely during the first run (see Repeat Annotation). No protein
mappings to the genome were included for the modeling, but rather only those
who matched a cDNA evidence were kept, although these evidences were still

analyzed and saved for future reference.

In addition, to calculate the minimum size of a genomic scaffold to be analyzed, I
used as a rule of thumb an estimate of the average length of a protein- coding
gene in Physarum. For this purpose, the regression curve from the relationship
between genome and gene sizes in average genomes was employed (Yandell and
Ence 2012). There are, of course, exceptions to gene size - genome correlation,
but for the sake of simplicity it was assumed this rule applies to Physarum. Here,
the gene and genome data were plotted in a logarithmic scale (Table 36 and

Figure 21), obtaining the following regression curve:

y = 0.4138 x + 2.5482
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Where:
y = log(gene.size); x = log(genome. size)

Given that the Physarum genome is approximately 300 Mb (Mohberg and Rusch
1971; Glockner et al. 2008), then:

log(gene.size) = 0.4138log 300 + 2.5482
gene.size = 1035732 = 3,743.11

Therefore the average Physarum gene should be 3,743 bp long, or around 4 Kb,
and this number was used as the minimum contig size that should be analyzed
by MAKER2 (Table 37). Finally, the output of each iteration from MAKER2 was
converted into a GFF3 gene model formatted file (Eilbeck et al. 2005), to be
provided as input in the following run (Gioti et al. 2013). During the first
MAKERZ run no coding sequences were predicted because the parameter
est2genome, which enables the mapping of EST data to the genome via the
exonerate spliced aligner (Slater and Birney 2005), was disabled (Table 37). In
this manner the ESTs were mapped directly to the genome with blastn and their
coordinates recorded in the first MAKERZ output. Later this data was passed to
the second run, in which 31,429 transcripts were obtained (N50 1,102 bp;
average length 827.2 bp). Finally, after the third iteration, a set of 25,649
protein- coding transcripts was established (AED score < 0.49; 5,197 with AED <
0.2), encoded in 5,422 unique scaffolds (i.e., 4.73 transcripts per scaffold on
average). Four scaffolds contained more than a hundred transcripts, eight
hundred encoded at least ten proteins, and 3,659 scaffolds comprised at least
one transcript. Moreover, 2,906 transcripts used ESTs as evidences (identified
with exonerate), 22,315 come from RNA-seq sequences alone (candidate gene
models from Cufflinks), and 428 possessed both EST and RNA-seq evidences
(combined exonerate and Cufflinks predictions). These transcripts have an
average length of 601.5 base pairs and N50 of 746 bp, and an average number of
3.36 exons per gene. The highest number of exons on a gene is 27, and 483 genes
are single exonic. A summary of the gene model statistics is listed in the Table 38,

and an example of the predicted gene models can be seen on the Figure 22.
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Table 36. Gene and genome sizes from a representative set of species (D.Ence,
personal communication; Yandell and Ence 2012). The genome sizes are given in
megabase pairs (Mbp), and the average gene sizes in base pairs (bp).

Genome Average

Species Size Gene Size
Escherichia coli 4.74 806
Saccharomyces cerevisiae 12 1,070
Schizosaccharomyces pombe 14 1,866
Caenorhabditis elegans 100 1,967
Arabidopsis thaliana 120 1,847
Volvox carteri 138 3,851
Drosophila melanogaster 169 1,841
Citrus clementina 296 2,931
Takifugu rubripes 392 5,307
Oryza sativa 430 2,705
Populus trichocarpa 500 2,278
Eucalyptus grandis 641 2,473
Gallus gallus 1,080 9,693
Danio rerio 1,400 12,138
Ornithorhynchus anatinus 1,900 9,628
Zea mays 2,070 2,746
Ailuropoda melanoleuca 2,400 13,024
Mus musculus 2,720 15,819
Homo sapiens 2,870 20,590
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Figure 21. Relationship between the gene and genome sizes from a
representative set of species. The common logarithms of the genome sizes (x-
axis, in Mbp) were plotted against the logarithms of their corresponding average
gene lengths (y-axis, in bp) for each species. A regression curve was obtained
(blue line), and the average size for a Physarum gene was projected from the x- to
the y- axis as a reference (green line), using the approximate size of the
Physarum genome (Mohberg and Rusch 1971). Data was obtained from Daniel
Ence (University of Utah, personal communication; Table 36), and the figure
redrawn from Yandell and Ence (2012)
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Table 37. Identification of protein gene models. The employed biological
evidences, further parameters and outputs are listed for each MAKER2 iteration

(Holt and Yandell 2011).
Evidences and input data
Iteration First Second Third
Input models GFF3 output from GFF3 output from
the first iteration the second iteration

Primary EST Physarum non Physarum non Physarum non
evidence redundant clusters  redundant clusters = redundant clusters
Secondary EST — --- Dictyostelium ESTs ~ ---
evidence from dictyBase
RNA-seq Transcripts from Transcripts from Transcripts from
evidence mapped LULU1 mapped LULUZ mapped WT31

reads reads reads
Protein Uniprot Uniprot Uniprot
evidences
Repeat Physarum custom RepBase RepBase
evidences library

Modeling parameters

Date complete Nov 18 2012 Jan 24 2013 Feb 27 2013
Running time ~15 days ~34 days ~26 days
Parallel CPUs 6 6 8
Minimum contig 1 9,999 4,000
size (bp)
Mapping EST no yes yes
data to genome
Identify single no no yes
exonic genes
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Table 38. Features of the predicted reference gene models. These statistics
correspond to the three GFF3- formatted outputs from the MAKER2 runs,
obtained with the SOBAcI program (Eilbeck et al. 2005; Holt and Yandell 2011;

Moore et al. 2010).

Gene models

Iteration First Second Third
mRNAs none 31,429 25,649
Genes 0 28,379 24,615
Exons 0 131,097 84,152
Coding sequences 0 125,363 75,448
Matching evidences
Expressed 56,822 93,583 92,537
Protein 446,897 265,209 512,450
Translated 0 5,854 0
Transcript statistics
Total bases --- 25,999,231 15,426,914
Minimum size --- 22 26
Maximum size --- 9,717 7,016
Average size 827.2 601.5
N50 length -- 12,999,712 7,713,703
N50 value 1,102 746

Annotation of the Gene Models

In order to characterize the gene functions in the Physarum genome, first the set
of transcripts and proteins (corresponding to the gene models identified with
MAKER?2 in the previous step), was extracted using the fasta_merge utility
included in this pipeline (Holt and Yandell 2011). Then a blastp similarity search
(version 2.2.27; parameters: e-value 1E-3; maximum target sequences = 20) of
the encoded proteins was performed against the UniProt database (Altschul et al.
1997; The UniProt Consortium 2010). Simultaneously, motifs and domains
present in the InterPro database were obtained in these protein sequences, with
the InterProScan program, including the gene ontology (GO) annotations for
each domain found (Hunter et al. 2009; Quevillon et al. 2005; Ashburner et al.
2000).
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Figure 22. Example of evidences forming a gene model. A plot of the several
mapped evidences against a region of the genomic Scaffold1 is presented. This
region corresponds to an interval between approximately 2 - 6 Kb, and
separated by two predicted intergenic spacers (IGS). A gene was identified in the
forward strand (Gene-0.0; above), encoding an homolog of the U4/U6 small
nuclear ribonucleoprotein PRP31. In this case, the EST and RNA-seq evidences
(found with blastn, est2genome and cufflinks), are in agreement with the
mapped protein, identified via the blastx and protein2genome programs inside
the MAKER2 pipeline. Conversely, in the opposite strand, a gene model was
predicted as noncoding (Gene-0.6), given that it does not possess complete
overlapping physical evidences (RNA-seq, EST or protein alignments). In all
cases, the default gene naming convention of the MAKER2 pipeline (such as
Gene-0.0 and Gene-0.6 in this example) was employed.

Then the annotations from the outputs from both the blastp and InterProScan
searches were integrated, by obtaining the gene ontology information from the
UniProt entries, and adding those from the Interpro database, with the Blast2GO
pipeline (version 2.5; Gotz et al. 2008; Conesa et al. 2005). The Blast2GO
annotation database employed was the version b2g_aug12, accessed online at

http://publicdb.blast2go.com. All these processes were executed through

command line- batch protocols. In this manner, 4,915 sequences were linked to
UniProt homologs, 5,752 were associated to gene ontology (GO) annotations, and
15,914 contained InterPro domains, including 7,080 sequences (27.60%) that
possessed PFAM domains (Finn et al. 2008). The UniProt protein homologs

pertained to 3,549 unique annotation descriptions and 483 species, with the
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most common gene description found was the DNA ligase (38 orthologs; Figure
23), and Dictyostelium discoideum is the most represented species, together with
a considerable number of other animal and fungal species (Figure 24). Most
encoded proteins were associated to binding, kinase and other gene ontologies
related to the interaction with nucleic acids (Figure 25). Moreover, the novel
proteins were also searched for similarity against the KEGG orthologs, in order
to study the representation of enzymes and metabolic pathways in the Physarum

genome (Kanehisa et al. 2008).

To this end, the bidirectional best hit mode and the GENES dataset from the
KAAS annotation server were employed (version 1.67; Moriya et al. 2007). Here,
2,066 transcripts with KEGG orthologs were found (1,779 unique); the most
common of these entailed transferases (AKR1, NatA, mhkB, omt5, ppkA) and
dehydrogenases (CHDH, ptpB, PP2C; Table 39). Finally, these KEGG orthologs
were mapped to the KEGG Atlas of metabolic pathways, using the version 2 of
ipath tool (Okuda et al. 2008b; Yamada et al. 2011; Letunic et al. 2008). In this
manner, 741 KEGG orthologs (KOs) were linked to the metabolic primary map,
439 to the regulatory and 202 to the biosynthetic pathway, and, as shown in
Figure 26, most KOs belong to the main macromolecular pathways

(carbohydrate, lipid, amino acids, nucleotide and energy metabolism).
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Table 39. Top 10 most frequent KEGG orthologs.

Accession Annotation Transcripts

K06867

Palmitoyl transferase, AKR1

K00108

Choline dehydrogenase, CHDH

K00670

N(alpha)-acetyltransferase, NatA

K00924

Phosphotransferase mhkB

K01104

Protein-tyrosine phosphatase ptpB

K01802

Peptidylprolyl isomerase impA

K07126

sel-1 suppressor of lin-12-like 2, SEL1L2

K08884

Serine/threonine protein kinase ppkA

K00599

O-methyltransferase family 3 protein omt5

K01090

Bl o ool Ul o

Protein phosphatase 2C-related protein PP2C
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Figure 23. Top 10 most frequent gene annotation descriptions. The number of
most common unique annotation descriptions was plotted against their
frequency in transcripts. Displayed annotations correspond to the following
genes: DNA ligase (DLIG), physarolisin (PHYSA), choline dehydrogenase (CHOD),
an uncharacterized protein (UNCHR), the guanine exchange factor for RAC 30

(GEFR),

the NHL repeat-containing protein 2 (NHLZ2), the hybrid signal

transduction histidine kinase | (HISKJ), myosin-I heavy chain (MYOHC), ankyrin-
1 (ANK1), and a chaperone protein (CHAP). Annotation data was analyzed and
plotted using the R statistical environment (R Core Team 2013).
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Figure 24. Top 10 most represented species in the orthologs. Plotted species
correspond to the cellular slime mold Dictyostelium discoideum (ddi), human
(hsa), mouse (mmu), the thale cress Arabidopsis thaliana (ath), the fission yeast
Schizosaccharomyces pombe (spo), rat (rno), cattle (bta), zebrafish (dre), the
budding yeast (sce), and the fruitfly (dme). Statistics were obtained in a similar
manner as in the Figure 23.
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ATPB —I:I 106
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Transcripts

Figure 25. Top 10 most frequent gene ontology associations. Ontologies plotted
belong to the following descriptions: protein binding (PBIN); binding (BIND);
ATP binding (ATPB); calcium ion binding (CABD); catalytic activity, metabolic
process (CATM); DNA ligase activity (LIGA); zinc ion binding (ZNBD); nucleotide
binding (NABD); protein kinase activity (PKPP); and nucleotide binding (NUBD).
The plot follows the same conventions as in Figures 23 and 24.
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Figure 26. The reference metabolic map of Physarum. The transcripts were
assigned to KEGG orthologs through similarity search, and these were mapped to
pathways with the ipath tool. Above (A), the generic map of the whole
metabolism is displayed, with reference colors to each pathway. Below (B), all
predicted metabolic reactions in the slime mold, according to the reference
transcriptome obtained in this thesis work.
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Network Analysis

First, all UniProt IDs were extracted from the obtained annotations under the R
environment, and these were mapped to their extended annotations, stored in
the UniProt database. Then the gene ontologies (GO) were analyzed, to select
those that are annotated for “cell differentiation” (GO: 0030154), using the GO
Retriever and GO Slim Viewer from AgBase version 2 (McCarthy et al. 2006a).
This produced a dataset of 432 proteins (277 unique entries). A treemap of the
ontology terms was then plotted for these 432 proteins, in order to summarize
the annotations, with a modified R script from REVIGO (Figure 27; Supek et al.
2011). From these results, two subsets from this differentiation dataset were
chose: one annotated with the GO:0009790 (“embryo development”’; 40 unique
entries), and another with the GO:0007165 (“signal transduction”; 111 entries)
ontologies. This was done to simplify the network reconstruction, and because
these annotations indicate that a given protein is more likely to be actively
involved in the differentiation process. The remaining entries that were not
annotated from any of these two ontologies were kept for later analyses (150
unique entries). Then these three subsets were loaded into Cytoscape, a
biological network visualization and analysis software (Shannon et al. 2003;
Smoot et al. 2011), and the conceptual interactions between proteins of each
subset predicted with the Cytoprophet plugin (Morcos et al. 2008). This tool
draws potential networks based on the domain composition and experimental
assays from the input proteins, gathered from databases of protein interactions
through their UniProt accessions. Here the default mode of Cytoprophet was
used, ie., the maximum likelihood estimation (MLE) algorithm, and protein -
protein interactions (PPI).

At this point, the predicted networks were composed of large numbers of edges:
There were 2,047 interactions predicted for the proteins annotated for signal
transduction, 171 for those with the embryo development ontology, and 1,948
between those annotated for cell differentiation, but not included in the two
former ontologies. Therefore the most closely connected regions in these large
Cytoprophet- predicted networks were searched, using the MCODE clustering
algorithm (Bader and Hogue 2003). MCODE is an automated method to

encounter all the highly interconnected subgraphs as protein complexes in large
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PPI networks. This procedure is generally recommended in standard network
analysis protocols in order to simplify even further these interactions (Cline et al.
2007). MCODE gives each predicted complex a score, equivalent to the network
density multiplied by the number of nodes; where the density of a graph is the
number of edges divided by the maximum theoretical number of edges. In this
manner, the existence of one protein complex within the network of proteins
annotated for the embryo development ontology (EDC, Table 41), four
complexes for those with the signal transduction GO (Tables 43 and 44), and
three for those annotated with cell differentiation alone were inferred (Tables 46
- 48). These protein complex predictions are summarized on Table 40, and

displayed in Figures 28 - 30.

Table 40. Summary of the conceptual protein complexes linked to the Cell
Differentiation ontology. A list of complexes predicted by the MCODE tool, inside
the networks previously created with Cytoprophet, is displayed (Bader and
Hogue 2003; Morcos et al. 2008; Cline et al. 2007). These complexes were
classified according to a given ontology (embryo development or signal
transduction), and those who did not belong to those two ontologies (Cell
Differentiation ontology alone). Scores are standard MCODE scores. Nodes and
edges represent proteins and interactions, respectively, and the Node IDs are the
UniProt entries associated to a given complex.

Embryo Development (GO:0009790)
Complex  Score Nodes  Edges
ED1 5,665 15 85

Signal Transduction (GO:0007165)
Complex  Score Nodes  Edges

ST1 24,868 53 1,318
ST2 2,875 8 23
ST3 2 5 10
ST4 1 3 3

Cell Differentiation (GO: 0030154)
Complex  Score Nodes  Edges

CDN1 20,878 49 1,023
CDN2 2,583 12 31
CDN3 1 3 3
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Figure 27. Summary of ontologies for the genes associated to cell differentiation.
In these genes, 17 ontologies were identified as the most frequent: cytoskeleton-
dependent intracellular transport; protein folding; response to stress;
reproduction; biosynthesis; secondary metabolism; ribosome biogenesis;
catabolism; homeostatic process; immune system process; growth; locomotion;
carbohydrate metabolism; cofactor metabolism; sulfur compound metabolism;
symbiosis; generation of precursor metabolites and energy. Each color
represents a group of ontologies that share a parent (e.g. "response to stress"
contains two ontologies: "signal transduction” and "response to stress"). Each
lower level of ontology is indicated as a separate box, and the size of each box is
proportional to the frequency of these ontologies in the analyzed gene dataset.
The analysis was performed with REVIGO (Supek et al. 2011).
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Those subnetworks predicted by Cytoprophet but without MCODE
subcomplexes, were saved and analyzed separately: One subnetwork for signal
transduction (Table 45), four for embryo development (Table 42) and three for
cell differentiation (Tables 49 and 50) respectively. No analyses of the
expression statuses (i.e., differential expression) of the transcripts included in
these networks were carried out in this thesis work. Later, in order to
distinguish the processes and functions for each complex and network, the
ontology annotations from these associations were then compared, through the
WEGO online tool (Ye et al. 2006). Here, the results show that the largest
complex (CDN1) is annotated for the following ontologies: membrane enclosed
lumen, transcriptional regulator, adhesion, locomotion, and multiorganism
process; while the second complex (CDN2), is associated to the auxiliary
transport and enzyme regulation (Figure 31A). The complexes CDN1 and CDN3
shared most gene ontologies. On the other hand, the network CDO1 is linked to
multiple ontologies: envelope, complex, and lumen (cellular component GO);
electron carrier, structural molecule, transcriptional regulator, and transporter
(molecular function GO); and anatomical structure formation, adhesion, death,
and immune system process (biological process GO; Figure 31B). As in the case
before, the largest network (CDO1) and the smallest (CDO3) shared most
ontology associations. Then, regarding the analysis of the signal transduction
entries, the signal transduction complex ST1 was found to be related to the
transcriptional regulator, adhesion, death, rhythmic process, and viral
reproduction ontologies, while the ST3 complex is exclusively annotated for the
extracellular region category (Figure 32A). At the same time, the transduction
network STNC1 alone entailed the auxiliary transport, transducer, transcription
regulator, transporter, and immune system process ontologies; and those
proteins not forming networks or complexes, that are annotated for signal
transduction are exclusively linked to the electron carrier ontology (Figure 32B).
Finally, it was observed that the proteins from the embryo development complex
(EDC) are annotated for enzyme regulation and cell adhesion, while all other
subnetworks are associated to electron -carrier, molecular transducer,

transcriptional regulator, growth, and rhythmic processes (Figure 33).
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Figure 28. Complexes and subnetworks linked to the embryo development
ontology. These modules were identified first by extracting proteins annotated
for the cell differentiation and embryo development gene ontologies, then by
predicting their interactions obtained from the bibliography, and then by
locating protein complex with the MCODE tool. Annotations from each protein
entry are listed in Tables 41 and 42.

139



ICuL4

(LrBP3}——{LTBP4)
\FBN2! {FBN2 ST3
sy
(ARLS)
hRFlHynz) $T4
FZD2 [FzD6l
(cvar)  AoCYy csy
CYAG——{GPA1} RGS14) ~ ‘
- " N (PwL2——{DOM) (PSN) .
N - — PTEN DUSE NF1)
Posz\ [ [ / \
- o e N\ N N\ ) ! ‘,—' ~ ) —~ - B .
RDEA———CYAD——— STX2}————/SNW1}——DDX§—{TEN3— \ALK»—CELRZ herd fapn G2
(TcsA { I
DHKA) (acep oct jj.;mq (epras) AmMPD PSRA XDH)

Figure 29. Complexes and subnetworks linked to the signal transduction
ontology. The procedure to obtain these modules, and the annotations for each
entry, follows the same convention as in the Figure 28.
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Figure 30. Complexes and subnetworks linked to the cell differentiation
ontology. The procedure to obtain these modules, and the annotations for each
entry, follows the same convention as in the Figure 28.
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Table 41. A protein complex annotated with the Embryo Development ontology
(GO: 0009790). Entries are specified as UniProt accession numbers.

Protein  Entries Annotation

CTR9 Q62018 RNA polymerase-associated protein CTR9 homolog
FLII Q24020 Flightless-I

FPA Q8LPQI9 Flowering time control protein FPA

IFT88 Q13099,Q61371  Intraflagellar transport protein 88 homolog

MYO7A Q13402,P97479 Unconventional myosin-VIla

NLE1 Q58D20 Notchless protein homolog 1

NPHP3 Q7TNH6 Nephrocystin-3

RAC1 Q6RUV5S Ras-related C3 botulinum toxin substrate 1
RAS3 P08645 Ras-like protein 3

RASA1 P50904 Ras GTPase-activating protein 1

SOS P26675 Protein son of sevenless

TITIN Q8WZ42, A2ASS6  Titin

Table 42. Protein orthologs annotated with the Embryo Development ontology
(GO:0009790) that do not form protein complexes. Subnetwork names are
indicated for each protein entry, and other fields follow the same convention as
in Table 41. The inclusion of proteins such as kinesin and the cytochrome P450
obeys only to their presence in their annotations at UniProt.

Network Protein Entries Annotation

EDNOO ACSL4 Q9QuJ7 Long-chain-fatty-acid--CoA ligase 4
EDNOO CUL4 Q8LGH4 Cullin-4

EDNOO DDX5 Q61656 ATP-dependent RNA helicase DDX5
EDNOO DUS6 Q9DBB1 Dual specificity protein phosphatase 6
EDNOO MPIP P20483 M-phase inducer phosphatase

EDNOO NMT 061613 Glycylpeptide N-tetradecanoyltransferase
EDNOO NP1L1 Q28EB4 Nucleosome assembly protein 1-like 1
EDNOO RP12A Q9SGW3 26S proteasome non-ATPase regulatory subunit
EDNO1 ARF12 Q10943 ADP-ribosylation factor 1-like 2

EDNO1 AMPD 080452 AMP deaminase

EDNO1 CP1A1 P00185 Cytochrome P450 1A1

EDNO1 KINH P17210 Kinesin heavy chain

EDNO2 FZD?2 Q08464 Frizzled-2

EDNO2 FZD6 Q8WMU5 Frizzled-6

EDNO2 GLU2B 008795 Glucosidase 2 subunit beta

EDNO3 MLL2 Q6PDK2 Histone-lysine N-methyltransferase MLL2
EDNO3 MYB P10242 Transcriptional activator Myb

EDNO3 SOX7 Q28GD5 Transcription factor Sox-7

EDNO4 FBN2 P35556,Q61555 Fibrillin-2
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Table 43. Proteins from the Signal Transduction Complex ST1. Listed are those
entries whose annotations are other than Kinases, and containing the signal
transduction ontology (GO: 0007165). Fields follow the same convention as in
Table 42.

Protein Entries Annotation

ANK1 P16157,Q02357 Ankyrin-1

ANK2 Q01484,Q8C8R3  Ankyrin-2

ANK3 Q12955 Ankyrin-3

ANKHM Q9VCAS8 Ankyrin repeat and KH domain-containing mask
ANR54 Q91WK7 Ankyrin repeat domain-containing protein 54
ASB2 Q8KOLO Ankyrin repeat and SOCS box protein 2

CDC42 Q4R4R6 Cell division control protein 42 homolog

CHIO Q03070 Beta-chimaerin

CRAC P35401 Protein CRAC

ECT2 Q9H8V3,Q07139  Protein ECT2

FBXW?7 Q969H0, Q8VBV4  F-box/WD repeat-containing protein 7

LIS1 Q8I0F4 Lissencephaly-1 homolog

MIB Q9VUX2 E3 ubiquitin-protein ligase mind-bomb

MYO010 Q9HD67 Unconventional myosin-X

NEDD4 P46935 E3 ubiquitin-protein ligase NEDD4

NLE1 Q58D20 Notchless protein homolog 1

PKHA1 Q8BUL6 Pleckstrin homology domain-containing A member 1
RAB7B Q96AH8 Ras-related protein Rab-7b

RAC1 Q03206 Ras-related protein ced-10

RAC1 Q6RUV5S Ras-related C3 botulinum toxin substrate 1
RAC2 P15153 Ras-related C3 botulinum toxin substrate 2
RAPZA Q5R988 Ras-related protein Rap-2a

RAS3 P08645 Ras-like protein 3

RASA1 P50904 Ras GTPase-activating protein 1

RAS P08647 Ras-like protein 1

RBM4 Q4R979 RNA-binding protein 4

RGRF1 Q13972,P28818 Ras-specific guanine nucleotide-releasing factor 1
RHG22 Q7Z5H3, Q8BL80 Rho GTPase-activating protein 22
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Table 44. Kinases from the Signal Transduction Complex ST1, and members of
the protein complexes ST2, ST3 and ST4. Complexes are indicated for each entry,
and other fields follow the same convention as in Table 43.

Complex Protein Entries Annotation

ST1 ABL2 P42684 Abelson tyrosine-protein kinase 2

ST1 CDPKB Q39016 Calcium-dependent protein kinase 11

ST1 GSK3B Q91757 Glycogen synthase kinase-3 beta

ST1 GSK3 P51136 Glycogen synthase kinase-3

ST1 KPCA P10102 Protein kinase C alpha

ST1 KPCL P24723 Protein kinase C eta

ST1 LRRK2 Q55006 Leucine-rich repeat Ser/Thr kinase 2

ST1 MKKA Q54R82 MAPK/ERK kinase 1

ST1 P4KB1 Q9FMJ0 Phosphatidylinositol 4-Kinase beta 1

ST1 PAK1 Q13153, 088643 Serine/threonine-protein kinase PAK 1

ST1 S0S2 Q07890 Son of sevenless homolog 2

ST1 SOS P26675 Protein son of sevenless

ST1 SPEN Q8SX83 Protein split ends

ST1 SPNA 015743 Ser/Thr phosphatase spalten

ST1 STATA 000910 Signal transducer, activator of transcription A
ST1 STRN 043815 Striatin

ST1 TITIN A2ASS6 Titin

ST1 VPS34 P50520 Phosphatidylinositol 3-kinase vps34

ST2 CTR9 Q62018 RNA polymerase-associated CTR9 homolog
ST2 CUL4 Q8LGH4 Cullin-4

ST2 DGKG P49620 Diacylglycerol kinase gamma

ST2 FKBP4 Q02790, P30416 Peptidyl-prolyl cis-trans isomerase FKBP4
ST2 IFT88 Q13099, Q61371 Intraflagellar transport protein 88 homolog
ST2 NPHP3  Q7TNH6 Nephrocystin-3

ST3 FBN2 P35556,Q61555 Fibrillin-2

ST3 LTBP3 QI9NS15 Latent-transforming growth factor (-binding 3
ST3 LTBP4 Q8N2S1 Latent-transforming growth factor -binding 4
ST3 SI1L1 043166 Signal-induced proliferation-associated 1-like 1
ST4 ARF12 Q10943 ADP-ribosylation factor 1-like 2

ST4 ARL6 088848 ADP-ribosylation factor-like protein 6

ST4 Y1727 Q9VYY9 TBC1 domain family member CG11727
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Table 45. Proteins annotated for the signal transduction ontology that do not
form complexes. These entries do not form any complexes. Subnetworks are
indicated for each entry, and other fields follow the same convention as in Table

43.
Network Protein Entries Annotation
STNC1 ACBP Q5FXM5  Acyl-CoA-binding protein
STNC1 ADCY1 088444 Adenylate cyclase type 1
STNC1 ALK P97793 ALK tyrosine kinase receptor
STNC1 CELR2 Q9HCU4  Cadherin EGF LAG seven-pass G-type receptor 2
STNC1 CYA1 P32870 Ca(2+)/calmodulin-responsive adenylate cyclase
STNC1 CYAD Q55F68 Adenylate cyclase, terminal-differentiation specific
STNC1 CYAG Q03101 Adenylate cyclase, germination specific
STNC1 DDX5 Q61656 Probable ATP-dependent RNA helicase DDX5
STNC1 DHKA Q54087 Hybrid signal transduction histidine kinase A
STNC1 DOM Q9ND]J2 Helicase domino
STNC1 EPHAS Q60629 Ephrin type-A receptor 5
STNC1 FZD?2 Q08464 Frizzled-2
STNC1 FZD6 Q8WMUS5  Frizzled-6
STNC1 GPA1 P16894 Guanine nucleotide-binding protein alpha-1 subunit
STNC1 NCS1 P62168 Neuronal calcium sensor 1
STNC1 OCT7 Q940M4  Organic cation/carnitine transporter 7
STNC1 PDE2 Q23917 3',5'-cyclic-nucleotide phosphodiesterase regA
STNC1 PHLD Q8R2H5  Phosphatidylinositol-glycan-specific phospholipase D
STNC1 PIWL2 A2CEI6 Piwi-like protein 2
STNC1 PSN P52166 Presenilin sel-12
STNC1 RDEA Q54RR8 Phosphorelay intermediate protein rdeA
STNC1 RGS14 043566 Regulator of G-protein signaling 14
STNC1 SNW1 Q5R7R9 SNW domain-containing protein 1
STNC1 STX2 P32856 Syntaxin-2
STNC1 TCSA Q9P896 Two-component system protein A
STNC1 TEN3 Q9W7R4  Teneurin-3
STNCO RP12A Q9SGW3  26S proteasome non-ATPase regulatory subunit
STNCO XDH P47989 Xanthine dehydrogenase/oxidase
STNCO PTEN 008586 Dual-specificity protein phosphatase
STNCO DUS6 Q9DBB1  Dual specificity protein phosphatase 6
STNCO RBP9X Q47Z8K6 Ran-binding proteins 9/10 homolog
STNCO AGFG1 Q4KLH5  Arf-GAP domain and FG repeat-containing protein 1
STNCO AMPD 080452 AMP deaminase
STNCO NF1 P97526 Neurofibromin
STNCO PSRA Q54VB6 Ser/Thr phosphatase 2A regulatory subunit
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Table 46. Proteins from the Cell Differentiation complex CDN1. Featured here are
those whose annotations are for proteins other than kinases. Fields follow the

same convention as in Table 43.

Protein Entries Annotation

AARA Q54171 Protein aardvark

ANKR2 Q9WV06 Ankyrin repeat domain-containing 2

CANS Q22036 Calpain-5

CUL1 060999 Cullin-1

CUL2 Q9X7Z]J3 Cullin-2

DR111 P42698 DNA-damage-repair/toleration protein DRT111
EXD P40427 Homeobox protein extradenticle

FBXA Q9YO0T?2 F-box/WD repeat-containing protein A
FBXW?7 Q9VZF4 F-box/WD repeat-containing protein 7

FHL2 070433 Four and a half LIM domains protein 2
FIMB2 Q9FKIO Fimbrin-like protein 2

FZR2 Q8L37Z8 Protein FIZZY-RELATED 2

IMA1 Q96321 Importin subunit alpha-1

IMB 018388 Importin subunit beta

KCBP Q9FHNS8 Kinesin-like calmodulin-binding protein
LDB3 Q9JKS4 LIM domain-binding protein 3

MSI2 022468 WD-40 repeat-containing protein MSI2
MSIR6 Q9VVES RNA-binding protein Musashi homolog Rbp6
MYO7A  Q17LWO0,Q9V3Z6  Myosin-Vila

P2C76 Q94AT1 Probable protein phosphatase 2C 76

PDLI7 Q679P3 PDZ and LIM domain protein 7

PEX13 Q92968 Peroxisomal membrane protein PEX13
PKHH1 QO00IB7 Pleckstrin domain-containing H1

PSME4 Q5SSwW2 Proteasome activator complex subunit 4
PTBP1 P26599, Q00438 Polypyrimidine tract-binding protein 1
PUB13 QI9SNC6 U-box domain-containing protein 13

PZRN3 QoUPQ7 E3 ubiquitin-protein ligase PDZRN3

RBRA Q6T486 Probable E3 ubiquitin-protein ligase rbrA
RH35 QI9LU46 DEAD-box ATP-dependent RNA helicase 35
SMCAZ2 Q6DICO Probable global transcription activator SNF2L2
SUV92 Q5F3W5 Histone-lysine N-methyltransferase SUV39H2
TANC1 QOVGYS8 Protein TANC1

TRPC5 Q9UL62 Short transient receptor potential channel 5
U2AF2 Q24562 Splicing factor U2AF 50 kDa subunit

UPL3 Q6WWW4 E3 ubiquitin-protein ligase UPL3

VPS27 013821 Vacuolar protein sorting-associated 27
WARA Q54F46 Homeobox protein Wariai

WDS Q9V3J8 Protein will die slowly

YKX2 Q9P3U4 Uncharacterized RING finger C328.02
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Table 47. Kinases from the cell differentiation complex CDN1. Fields follow the
same convention as in Table 43.

Protein Entries Annotation

ATG1 Q86CS2  Serine/threonine-protein kinase atg1

DYR1B Q97188  Dual specificity Tyr-phosphorylation-regulated kinase 1B
FES P14238 Tyrosine-protein kinase Fes/Fps

MAK P20794 Serine/threonine-protein kinase MAK

PLK1 P70032  Serine/threonine-protein kinase PLK1

PMYT1 QI9NI63 Membrane Tyr/Threonine-specific cdc2-inhibitory kinase
PRKX P51817 cAMP-dependent protein kinase catalytic subunit PRKX
ZAK2 Q552C6 Dual specificity protein kinase zak2

Table 48. Proteins from the Cell Differentiation complexes CDN2 and CDN3.
Fields follow the same convention as in Table 44.

Complex Protein Entries Annotation

CDN2 AFG32 Q8JZ2Q2 AFG3-like protein 2

CDN?2 CALM P05933 Calmodulin

CDNZ2 CANB1 Q55G87 Calcineurin subunit B type 1

CDN2 CD48B Q9ZPR1 Cell division control protein 48 homolog B
CDN?2 FIG4 Q92562 Polyphosphoinositide phosphatase
CDN2 FREQ P37236 Frequenin-1

CDN2 KCIP2 Q9JM59 Kv channel-interacting protein 2

CDN2 NCS1 Q5RC90 Neuronal calcium sensor 1

CDN?2 PCH?2 Q5XHZ9 Pachytene checkpoint protein 2 homolog
CDN?2 PRS4B QI9SL67 26S proteasome regulatory subunit 4B
CDN2 SP5K P27643 Stage V sporulation protein K

CDN2 SPAST Q719N1 Spastin

CDN3 HELLS Q60848 Lymphocyte-specific helicase

CDN3 FLNC Q14315,Q8VHX6  Filamin-C
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Table 49. Proteins from the Cell Differentiation subnetwork CDO1. Featured here
are those whose annotations are other than enzymes. Fields follow the same
convention as in Table 43.

Protein Entries Annotation

ABCG2 QI9NGP5 ABC transporter G family member 2

ABCGI Q8ST66 ABC transporter G family member 18

ACBP5 Q8RWD9 Acyl-CoA-binding domain-containing protein 5
ADSV Q28046 Adseverin

AP3B1 Q32PG1 AP-3 complex subunit beta-1

ATGS5 Q3MQ24 Autophagy protein 5

CDC23 Q9STS3 Anaphase-promoting complex subunit 8

CLH P25870 Clathrin heavy chain

COTA P07788 Spore coat protein A

CYB5 Q9V4N3 Cytochrome b5

DIMB Q54ER9 Basic-leucine zipper transcription factor B
E2FB Q9FV71 Transcription factor E2ZFB

FIGL1 Q8BPY9 Fidgetin-like protein 1

MTMR2 Q972D1 Myotubularin-related protein 2

PCSK4 P29121 Proprotein convertase subtilisin/kexin type 4
PESC P79741 Pescadillo

PIWL1 Q96]J94 Piwi-like protein 1

POE QI9VLTS5, Q29L39 Protein purity of essence

P Q04671 P protein

RS132 P59224 40S ribosomal protein S13-2

SCC12 Q9FQ20 Sister chromatid cohesion 1 protein 2

SMBP2 P40694 DNA-binding protein SMUBP-2

SNP30 QILMG8 Putative SNAP25 homologous protein SNAP30
SPO75 Q07798 Sporulation-specific protein 75

SYNJ1 Q62910 Synaptojanin-1

TISB P23950 Zinc finger protein 36, C3H1 type-like 1
TMTC3 Q6ZXV5 Transmembrane and TPR repeat-containing protein 3
TRAP1 Q86L04 TNF receptor-associated 1, mitochondrial
VP33A Q9D2N9 Vacuolar protein sorting-associated protein 33A
XCT Q9UPY5 Cystine/glutamate transporter
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Table 50. Enzymes and proteins associated to cell differentiation from the
subnetwork CDO1. Featured here are those belonging to the subnetworks CDO2
and CDO3, as well as those that do not form interactions (CDOO). Fields follow
the same convention as in Table 45.

Network Protein Entries Annotation

CDO1 ADA22 Q9P0OK1 Disintegrin and metalloproteinase domain 22
CDO1 ANM1 Q54EF2 Protein arginine N-methyltransferase 1

CDO1 AT8A2 QINTIZ Probable phospholipid-transporting ATPase IB
CDO1 ATG7 Q86CR9 Ubiquitin-like modifier-activating enzyme atg7

CDO1 CNEP1 Q8JIL9 CTD nuclear envelope phosphatase 1

CDO1 CP17A P11715 Steroid 17-alpha-hydroxylase/17,20 lyase

CDO1 DHRS9 Q9BPW9  Dehydrogenase/reductase SDR family member 9

CDO1 HBD P45856 Probable 3-hydroxybutyryl-CoA dehydrogenase

CDO1 HERC4 Q5GLZ8 Probable E3 ubiquitin-protein ligase HERC4

CDO1 MYCB2 Q7TPH6 Probable E3 ubiquitin-protein ligase MYCBP2

CDO1 NOXA Q9XYS3 Superoxide-generating NADPH oxidase heavy chain A

CDO1 PI5K1 Q6EX42 Phosphatidylinositol 4-phosphate 5-kinase 1

CDO1 PI5K5 Q9SLGI9 Phosphatidylinositol 4-phosphate 5-kinase 5

CDO1 PKS37 Q54FI3 Probable polyketide synthase 37

CDO1 PP1 Q9UWS86  Serine/threonine-protein phosphatase PP1
CDO1 S5A1 Q28891 3-ox0-5-alpha-steroid 4-dehydrogenase 1
CDO1 SAN QI9NHD5  Probable N-acetyltransferase san

CDO1 SPLA P18160 Dual specificity protein kinase splA

CDO1 SSH1 Q8WYL5  Protein phosphatase Slingshot homolog 1
CDO1 SSH2 Q76176 Protein phosphatase Slingshot homolog 2
ChO1 SSH3 Q5XIS1 Protein phosphatase Slingshot homolog 3

CDO1 TAGA Q9GTN7 Serine protease/ABC transporter B family protein tagA

CDO1 THIC1 Q8S4Y1 Acetyl-CoA acetyltransferase, cytosolic 1

CDO1 UBE12 P92974 Ubiquitin-activating enzyme E1 2

CDO1 UBPE Q24574 Ubiquitin carboxyl-terminal hydrolase 64E

CDO2 HEXA QOV8R6 Beta-hexosaminidase subunit alpha

CDO2 HEXB P49614 Beta-hexosaminidase subunit beta

CDO3 YVDP 006997 FAD-linked oxidoreductase YvdP

CDO3 DIM Q39085 Delta(24)-sterol reductase

CDOO0 ENG2 Q09850 Putative endo-1,3(4)-beta-glucanase 2

CDOO0 TGM3 Q08189 Protein-glutamine gamma-glutamyltransferase E

CDOO SPT20 Q8TB22 Spermatogenesis-associated protein 20

CDOO0 EHD1 Q64176 EH domain-containing protein 1

CDOO0 SPO12 Q9M4A1  Meiotic recombination protein SPO11-2

CDOO0 EF1A2 P05303 Elongation factor 1-alpha 2

CDOO0 ECE2 060344 Endothelin-converting enzyme 2

CDOO BGA11 Q9ScCVv1 Beta-galactosidase 11
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and biological process, respectively). The comparison was plotted using the

correspond to the ontology categories (cellular component, molecular function,
WEGO tool (Ye et al. 2006).

and below (B), interaction networks without complexes. CC, MF and BP
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Figure 32. Comparison of gene ontologies between complexes and subnetworks
annotated for signal transduction. Above (A4), the predicted protein complexes,

and below (B), interaction networks without complexes. The procedure to obtain
these plots, and the ontology category conventions, are the same as in the Figure

31.
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Figure 33. Comparison of gene ontologies between complexes and subnetworks
annotated for embryo development. ED, stands for the single complex found
under this ontology (Table 41), and EDNO, for those entries that do not form
complexes (Table 42). The procedure to obtain these plots, and the ontology
category conventions, are the same as in the Figure 31.

Validation and Completeness of the Genome and the Gene Models

The desired goal for a genome project is to achieve a high- quality draft
assembly. In this work, the genome reported by the sequencing facility at
Washington University (St.Louis MO) was employed, whose assembly combined
short and long genomic reads, to achieve a maximum of completeness. Besides,
assessing the accuracy of the annotation is important, given that even the best
gene prediction programs and annotation pipelines hardly exceed the 80%
accuracy at the exon level. Here, a set of metrics (N50 scaffold, coding potential)
and evidences (contaminants, ESTs, RNA-seq, gene prediction, CEGMA) were
used to determine whether this genome assembly, and its derived gene models,
meet the minimum standards required for submission to databases (Yandell and

Ence 2012). These analyses are detailed in the following paragraphs.
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Quality of the Assembly. Although there are no general rules for establishing
what is a ‘good’ or ‘high-quality’ draft assembly, there are several summary
statistics that can be used to describe its completedness and contiguity, and the
most commonly used are the N50 scaffold, the gap distributions, and the percent
coverages. The scaffold N50 is calculated by ordering each scaffold from longer
to shortest, and then the scaffold lengths are summed starting from the longest
fragment, until the sum equals half of the total length of all scaffolds. Therefore,
the longer the scaffold N50, the better the genome assembly is, and this is useful
to compare between different assembly releases from a given species or
biological sample. A derived rule of thumb is that an acceptable assembly should
have a gene sized N50 scaffold length; i.e., if the N50 scaffold equals the average
gene length, then approximately 50% of the genes will be contained in a single
scaffold (Yandell and Ence 2012). In this case, the assembly has a N50 scaffold of
97,377 bp (Table 22), a theoretical gene size of 3,743 bp (see Inference of the
Protein-coding gene models, page 119), and the average of the obtained
transcript model is 601.5 bp (Table 38). Thus the average gene and transcript
sizes are well below the N50, and therefore this genome release can be counted
as a reliable source for gene model annotations. Furthermore, a comparison
between the present and former genome releases, using several common
assembly descriptors (scaffold N50, gaps and percent coverage), shows that the
version 7.3.1 contains less gaps (50.08 versus 50.11 and 77.14 Mb of its
immediate predecessors), while having a higher N50 scaffold that the previous

version (97.38 vs. 88.91 Kb). These analyses are summarized in the Table 51.
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Table 51. Scaffolds and gaps from the most recent genome releases. Percent gaps
are the rates between the total gap size and the genome size, and the percent
coverage (genomic) was calculated by dividing the obtained genome size against
the expected genome value (approx. 300 Mb; Mohberg and Rusch 1971).

Genome
Release 4.0 5.0 7.0 7.3 7.3.1
Date 07/2009 06/2010 05/2011 07/2011 12/2011
Total Size (Mb) 137.54 125.56 272.23 254.79 239.75
Percent coverage (%) 45.85 41.85 90.74 84.93 79.92
Scaffolds
Total 12,974 5,049 181,840 129,575 126,782
Largest (bp) 97,839 122,657 761,234 821,622 821,622
Smallest (bp) 1,986 11,204 74 17 17
Mean Size (bp) 10,601.2 24,867.8 1,497.1 1,966.4 1,891.1
N50 (bp) 15,456 27,536 114,306 88,913 97,377
Gaps
Total Gap Size (Mb) 36.48 31.08 77.14 50.11 50.08
Percent gaps (%) 26.52 24.75 28.34 19.67 20.89
Smallest Size (bp) 1 1 1 1 1
Smallest gaps 2,754 4,470 14,349 14,103 14,059
Largest Size (bp) 3,493 3,090 7,021 1,005 1,005
Largest gaps 1 1 1 1 1
Most frequent gap size (bp) 1 1 1 1,000 1,000
Most frequent gaps 2,754 4,470 14,349 39,162 39,137

Sequencing Contaminants. Newly obtained sequences, when acquired from
impure DNA preparations, might contain contaminants (sequences from sources
different than the intended sample). These contaminants limit the quality of the
data, and the conclusions than can be reached in downstream analyses.
Consequently, it was decided to check the genome sequence for potential
contaminants with the online version of the DeconSeq tool (Schmieder and
Edwards 2011). Here the program was ran against the unmasked genome
sequences, and results from this analysis can be seen in the Figure 34. By setting
the coverage to equal or over 90%, and an identity threshold of 94%, 771
sequences (0.61%) were found matching the contaminant “Remove” databases
(archaeal and bacterial genomes). Both the contaminant and clean sequences

were kept for further analyses.
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Figure 34. Coverage identity plot of contaminants. Hits against the DeconSeq
Remove database are displayed. Multiple hits for one query with different
covegare and identity values may be plotted (e.g., two hits with 90% coverage /
90% identity and 89% coverage / 95% identity). This plot was obtained with the
DeconSeq program (Schmieder and Edwards 2011).

Mapping ESTs as an estimate of completeness. To estimate the completeness
of the sequenced genome and the gene models, a mapping of the clustered ESTs
(Glockner et al. 2008; Watkins and Gray 2008) was performed. To this end, the
genome was first masked for repeats with RepeatMasker (Smit et al. 2010;
Tempel 2012), using default values. Then a BLASTN search was carried out
(version 2.2.27+; Altschul et al. 1990; Camacho et al. 2009) against the clustered
cDNAs of Physarum (page 115), with an e-value of 1 x 10-8. This value which has
been indicated as appropriate for EST mapping (Korf et al. 2003). In this way,
17,577 contigs were successfully matched against the unmasked genome

(17,500 for the masked version; see Table 52), which represent the 98.03% of
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the total cDNAs clustered (97.60% considering the mapping against the masked
genome). Later, different datasets of Physarum cDNAs were mapped against the
protein models obtained in this thesis work. This was done to assess the
representation of these transcript sequences in the final reference proteome. The
included cDNAs entailed published sequences (Glockner et al. 2008; Watkins and
Gray 2008), the transcriptomic assembly of the 454 RNA-seq (Chapter 2), the
clustered cDNAs of Physarum (page 115), as well as the Illumina short read
mappings completed earlier in this chapter using tophat (page 115; samples
WT31, LULU1 and LULUZ2). The procedure first involved conversion of the tophat
outputs into FASTA assemblies, and then all cDNAs were used on BLASTX
searches (e-value of 1 x 10-6). The results can be seen in the Table 53. The
lowest representation, both at the number of ESTs and proteins matched,
corresponded to the tophat assembly of the LULU1 strain: ~4 thousand ESTs and
proteins, or roughly 15% of both datasets. Proportionally, from the previosly
reported EST banks, the most represented was the dataset reported by Watkins
and Gray (2008), with 78.58% of their cDNAs found in the protein models. In
addition, the tophat assembly of the WT31 strain has the largest representation
in the final models: 22,934 protein matches (89.41% of the proteome).

Mapping Physarum GenBank sequences to the novel assembly. In order to
annotate the genome with previously characterized Physarum genes, all the
GenBank (Benson et al. 2008b; Benson et al. 2011) nucleotide and protein
sequences were obtained, excluding those of mitochondrial origin, for this
organism (NCBI taxonomic id: 5791). This resulted in 253 nucleic acid and 297
amino acid downloaded sequences (Date obtained: January 30th, 2013). Then
BLAT was used (version 35x1; Kent 2002) to map these sequences, with default
parameters in both searches. In this manner, 261 protein (87.87%) and 231
GenBank nucleotide (91.30%) sequences were located in the masked genome.
The fact that approximately one out of ten sequences were not mapped to the
genome, might be due to the fragmentation of the genome version analyzed. The
BLAT outputs were later converted to the GFF3 standard format, as described in
the Sequence Ontology project (Eilbeck et al., 2005), to be incorporated in a
future MAKERZ2 annotation.
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Table 52. Mapping clustered ESTs to the Physarum genome.

Genome Unmasked Masked
Total mapped 119,859 119,177
ESTs with hits 17,577 17,500
without hits 354 431
Total ESTs 17,931 17,931
Percentage mapped 98.03 97.60

Table 53. Mapping ESTs to the novel protein models.

EST matches Uniquely  Represented

Total ESTs Total EST over 70% mapped protein
Dataset in dataset matches identity ESTs models
Watkins and 9,713 33,446 9,415 7,632 4,126
Gray 2008
Glockner et 15,680 56,016 13,113 11,684 6,635
al. 2008
454 cDNAs 16,669 56,469 10,879 9,752 11,119
Clustered 17,931 64,227 12,320 10,842 12,042
cDNAs
LULU1 26,554 12,093 4,296 4,104 3,930
LULU2 92,109 294,806 42,028 42,601 22,465
WT31 73,836 186,018 39,551 35,990 22,934

Mapping RNA-seq short reads to assess the gene coverage. As a manner of
quality control of the accuracy of the Illumina RNA-seq experiments to represent
the full transcriptomic set, the gene body coverage of the mapped short reads
was investigated. To this end, first the GFF3 annotation file output from MAKER
(Holt and Yandell 2011), was converted to the BED format using the gff2bed and
sortBed tools from bedops version 2.0.0b (Neph et al., 2012). Then the [llumina
sequencing RNA-seq runs from the strain WT31 (Chapter 4) were mapped
against the masked genome, version 7.3.1, using bowtie version 0.12.7
(Langmead, Trapnell, Pop & S. L. Salzberg 2009). Previous masking was achieved
by employing the RepeatMasker program version 3.0 (Smit et al., 2010; Tempel,
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2012), against the Physarum- specific custom library, built with RepeatModeler
1.0.7 (Smit et al,, 2010). Finally, the mapped reads coverage over the annotated
gene bodies were obtained with ever-seq version 1.0.7 (Wang 2012), and plotted
using the R statistical environment, version 3.0.0 (R Core Team 2013). The plots
below (Figure 35) show uneven distributions of mapped reads, probably due to

degradation of the initial RNA sample.

Mapping long RNA-seq reads against the genome. The availability of datasets
of long reads allowed to check the presence of these transcript fragments in this
genome release. For this, RNAs were obtained from Physarum polycephalum
amoebae, strain LU352 (Dee et al. 1989), by Marianne Bénard and Gerard
Pierron (Institut Gustave-Roussy, Paris XI University, France). cDNAs were
synthesized from these RNAs, and then used for sequencing on the 454 FLX
platform; the adaptors used are listed on Table 54 (Pat Minx, personal
communication). This was carried out at The Genome Institute, Washington
University School of Medicine (St Louis, MO). 598,725 spots were obtained (two
reads per spot), spanning 155 Mb and distributed in 5 datasets, which were
deposited in the Sequence Read Archive (Leinonen, Sugawara, et al. 2011), under

the accession SRX000019 (Table 55).
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Figure 35. Gene-body coverage of short RNA-seq reads from Physarum, strain
WT31. The plot shows distributions of mapped short reads for gene bodies of
different Illumina RNA-seq outputs (starved D1 and D2, and photoinduced L1
and L2 samples). Gene bodies were defined as the sequence between the
transcriptional start and termination sites annotated in the genome version
7.3.1.

Table 54. Adaptors used for cDNA synthesis and sequencing of the amoeba RNA

samples.
Name Step Sequence (5’ 2> 3’)
5’ Smart cDNA AAG CAG TGG TAA CAA CGC ATC CGA CGC rGrGrG

3'SmartlIA  c¢cDNA AAG CAG TGG TAA CAA CGC ATC CGA

N-SmartlIA  ¢cDNA AAG CAG TGG TAA CAACGCATCCGAC

Adaptor A 454  CCA TCT CAT CCC TGC GTG TCC CAT CTG TTC CCT CCC TGT CTC

Adaptor B 454  CCT ATC CCC TGT GTG CCT TGC CTA TCC CCT GTT GCG TGT CTC
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Table 55. Runs from the 454 sequencing of amoeba transcript library (SRA
accession SRX000019). This alignment data was obtained with the flagstat
algorithm of samtools, version 0.1.7 (Li et al. 2009), and analyzed using R (R Core
Team 2013).

Dataset Total Reads Mapped Reads Rate (%)

SRR000117 6,759 6,695 99.05
SRR000118 496,176 491,109 98.98
SRR000119 446,732 442,103 98.96
SRR000120 3,677 3,659 99.51
SRR000121 6,414 6,350 99.00
SRR000122 3,410 3,382 99.18

The RNA-seq long reads outputs from these experiments were then downloaded
from the Sequence Read Archive, and their reverse transcription and sequencing
adaptors (Table 54) removed with the TagCleaner tool (Schmieder et al. 2010).
For mapping, the datasets were filtered (quality threshold: 25) with the FASTX
toolkit (Gordon 2008), and the genome was masked for repeats with the default
RepeatMasker library. Then the long reads were compared against the genome
with the Burrows - Wheeler aligner (BWA, version 0.6.1-r104; Li and Durbin
2009). This program was chosen because: (i) it manages better the alignment to
large genomes, through the bwtsw option; (ii) it entails algorithms optimized for
long reads (bwa-sw and bwa-mem); and (iii) the bwa-sw algorithm is more
sensitive to frequent alignment gaps, which are present in this genome release.
Therefore, through the bwa-sw algorithm of the BWA aligner, over 98% of the
sequencing reads were mapped (Table 55). These high rates of mapping reflect
the fact that these RNA-seq outputs were employed during the finishing of the

genome assembly (Pat Minx, personal communication).

Comparison of Evidence- based Gene Models versus Gene Prediction. To
assess the reliability of the evidence- based gene modeling, i.e. the prediction of
protein coding genes using the consensus of experimental sources (cDNA, EST,
RNA-seq and protein data; see page 116, Inference of the Protein-coding gene
models), the obtained gene model structures were compared against models
predicted ab initio (gene prediction using gene content statistics and signals). To

this end, the slime mold genome was searched for novel genes with the
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GeneMark program (Borodovsky and Lomsadze 2011). Specifically, the
GeneMark-ES algorithm was employed, which unlike most gene prediction
software, does not require a previous training, ie., the obtention of the set of
rules and genome- specific parameters that allow the gene identification (gene
content, UTR and splice signals, etc.). Instead, GeneMark-ES uses the input
genomic sequence to derive these rules and parameters, and thus this self-
training is an attractive feature for organisms lacking reliable sources of full gene
models, as it is the case of Physarum (Ter-Hovhannisyan et al. 2008; Borodovsky
and Lomsadze 2011). As previously recommended (Shulaev et al. 2011),
GeneMark-ES was ran against the repeat- masked genome, switching off the
branch point submodel of the program (Lomsadze et al. 2005). The results of
these predictions were then compared first against the second and third
iteration of MAKER2 (see Inference of the Protein-coding gene models; Tables 56
and 57), and later also against the transcript models derived from mapping short
RNA-seq reads (see Mapping RNA-seq short reads to the Physarum genome; Table
58). These comparisons were carried out with the EVAL program (Keibler and
Brent 2003), and using a standard set of metrics for the evaluation of gene
prediction programs (Burset and Guigo 1996). These results show that the
evidence- based identification produced only a third of exons predicted ab initio,
but these exons were more than double of the size on average (133.78 bp for the
third MAKER iteration versus 59.47 of GeneMark; Table 56). The number of
introns also decreased in the final gene models (87 versus 48 thousand), but
these introns were more than double the size longer, and the total intronic
regions in the genome increased from 14.09 with GeneMark, to 21.43 for the
final MAKER?2 iteration. Taken these results together, it can be affirmed that the
evidence- based gene modeling brought less false positive exons, while being
more sensitive in mapping introns. These results are also supported by the fact
that these numbers follow a progression of improvement between the second
and the third and final MAKER run (in both cases decreasing the exon number
while increasing the intron total length; Tables 56 and 57). Moreover, the
sensitivity (proportion of coding nucleotides correctly predicted as coding;
Burset and Guigo 1996) to detect genes and transcripts, was increased over 30-

fold from the GeneMark predictions to the MAKER2 second iteration, while the
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specificity (proportion of predicted coding bases that are actually coding), was
over a hundred times larger in the MAKER2 second iteration than in the ab initio
predictions (Table 57). The annotation edit distance (AED), which indicates the
correspondence between annotations and supporting evidences (Eilbeck et al.
2009), decreased from 99.64 - 99.66% in genes and transcripts in the GeneMark
prediction, to ~83% in the MAKER2 second pass distance, meaning that the
support of the annotations increased from less than 1% in ab initio predictions to
close to 17% in evidence- based gene modeling (i.e., the lower the AED value, the
better the agreement between the annotation set and its evidence; Table 57).
Furthermore, a comparison between the mappings of RNA-seq short reads from
several strains, the GeneMark predictions, and the evidence- based MAKER2
gene models, showed larger transcript per gene rates in the RNA-seq and
MAKER?2 analyses than in the ab initio predictions, which might account for a
better identification of alternative spliced transcripts using these two methods
(Table 58). Finally, the average number of exons was also larger in the RNA-seq
mappings and MAKER2 gene models, except in the case of the RNA-seq sample
with the lower coverage (LULU1; Table 58).

Table 56. Evidence- and prediction- based exons and introns. A comparison of
gene models predicted by MAKER2 (second and third iterations; M2 and M3
respectively), and GeneMark (GMES), is listed. These results include all types of
exons: single, initial, internal and terminal.

Model Source M3 M2 GMES
Exons

Count 73,670 114,992 231,981

Average Length 133.78 142.64 59.47

Total Length (Mb) 9.86 16.40 13.80
Introns

Count 48,606 85,636 87,444

Average Length 440.86 451.38 161.09

Total Length (Mb) 21.43 38.65 14.09
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Table 57. Correspondences between gene models and ab initio gene predictions.
These statistics entail comparisons of annotations from the second iteration and
the gene prediction, against those from the final gene model set (third MAKER2
iteration; M2 and GMES versus M3). Results were obtained with eval (Keibler
and Brent 2003), and the parameters used, ie. specificity and sensitivity, are
based on the recommendations by Burset and Guigd (1996), except for the
accuracy and annotation edit distance (AED), which were manually calculated
from the sensitivity and specificity values (Yandell and Ence 2012).

Model Source M2 GMES M2 GMES
Gene Transcript
Sensitivity 18.13% 0.58% 17.81% 0.55%
Specificity 15.71% 0.14% 14.59% 0.14%
Accuracy 16.92% 0.36% 16.2% 0.34%
AED 83.08% 99.64% 83.8% 99.66%
Exon Nucleotide
Sensitivity 48.49% 1.89% 96.95% 76.08%
Specificity 31.06% 0.64% 86.01% 83.90%
Accuracy 39.78% 1.27% 91.48%  79.99%
AED 60.23% 98.74% 8.52% 20.01%

Table 58. Comparison of genes and transcripts identified though RNA-seq, ab
initio gene prediction and consensus gene modeling. WT31, LULU1 and LULU2
represent the RNA-seq reads from said strains, mapped against the genome
using TopHat (see page 116); GMES is the gene identification with GeneMark-ES;
and M2 and M3 are the second and third MAKER2 runs. Statistics obtained with
eval (Keibler and Brent 2003), except for the exons count of the RNA-seq
mapping outputs, that were calculated using a bash/perl script one-liner.

Model Source WT31 LULU1 LULU2 GMES M2 M3
Genes
Count 68,872 25,737 82,584 190,995 28,379 24,615
Total Transcripts 73,836 26,554 92,109 190,995 31,429 25,649
Transcripts Per Gene 1.07 1.03 1.12 1 1.11 1.04
Transcripts
Count 73,836 26,554 92,109 190,995 31,429 25,649
Average Length 952.87 322.48 1,378.54 172.7 1,915.42 1,253.5
Total Length (Mb) 70.36 8.56 126.98 32.98 60.20 32.15
Ave Exons Per 1.99 1.38 2.76 1.53 3.99 2.94
Total Exons 146,644 36,597 254,347 292,177 125,363 75,448
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Mapping CEGMA datasets as an estimate of completeness of the genome
assembly and the protein models. CEGMA (core eukaryotic genes mapping
approach), is a method to assess the reliability of a set of annotations, which
includes a computational pipeline and sets of conserved, single-copy protein
families present in a extensive range of eukaryotes (Parra et al. 2007). Two
CEGMA sets of protein families are available (Table 59, Parra et al. 2007; Parra et
al. 2009), and the comparison of novel genome scaffolds and their annotations
against these protein sets can be also used as an estimate of completeness and
contiguity of a reported assembly (Yandell and Ence 2012). Here, to evaluate the
completeness of the current genome release and the reported protein- coding
gene models, the coverage of the two CEGMA protein sets in these two sequence

datasets was analyzed.

First, for the evaluation of the genome sequence, I used the GenBlastA software
(She et al. 2009; She et al. 2011), following a previously reported protocol that
employed the default settings of the program (Wang et al. 2011). GenBlastA is a
program that filters the high scoring sequence outputs from a BLAST similarity
search, in order to identify candidate homologous genes (She et al. 2009). In this
case, 451 proteins from the core set (98.47%) and 245 from the second set
(98.79%) were matched by GenBlastA to the current genome release; 206
(83.06%) and 386 (84.27%) possessed over 50% identity coverage. In addition,
more than a half of the core eukaryotic genes (CEGs) were found, regardless of
using masked or unmasked sequences in the analysis (Table 60), and similar
results were obtained with both CEGMA datasets (54.03% with the CEGMA-248
sequences, and 58.52% for the core set; Table 60). Later, a comparison against
the CEGMA-248 set was carried out, this time using the CEGMA pipeline itself
(Keith Bradnam, personal communication). This procedure involved a
combination of similarity and motif searches, in order to find represented CEGs
on a given genome. For this analysis, the CEGMA proteins were separated into
four groups, according to their sequence conservation, where the Group 1
contains the most divergent, and the Group 4 the most conserved set (Parra et al.
2009). This separate assessment is recommended for highly divergent genomes,

in order to avoid the bias caused by evolutionary distance. According to these
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results (Table 61), the novel genome assembly of Physarum can be classified as a
highly divergent sequence, as the partial matches range from 50% completeness
in the Group 1, to 83.08% for the Group 4, and this pattern is expected in this
type of genomes; however, considering the complete sequences, the Physarum
genome could be considered either incomplete or divergent, given that the
conservation ranges from 33.33% to 55.74 (Parra et al. 2009). Finally, the
predicted reference proteome and the CEGs were compared using blastp (e-
value 1E-6; Altschul et al. 1997). 84 matches (18.34%) were found against the
dataset with 458 proteins, and 43 against the smaller CEGMA dataset (17.34%)
with over 70% of identity coverage. These results are on disagreement with
previous results with GenBlastA from this thesis work, while at the same time
supporting the idea that this genome release could be incomplete, at least in its
protein- coding regions. Nevertheless, it is also possible that the results from the
CEGMA pipeline in this case are not conclusive due to the fact that this estimate
of completeness may not be accurate in highly divergent genomes (Parra et al.

2009).

Protein coding potential of the transcript models. In terms of mass, most
cellular RNA is noncoding, and while there are several experimental methods
that allow the identification of RNA molecules as such, these procedures are
limited by cost and number of samples, and therefore the incorporation of
computational predictions might help in the search for putative noncoding RNA
genes. Here, to find coding and noncoding sequences among the transcript
models, the Coding Potential Calculator (CPC) program (Kong et al. 2007) was
used as previously described (Young et al. 2012).

Table 59. CEGMA datasets. The core set are the original CEGs (core eukaryotic
genes), and the 248 dataset is a group of genes with are generally in low copy
number, and therefore are better for studying the completeness of genomes
(Parra et al. 2009).

Dataset Core 248

Total proteins 2,748 1,488

Unique CEGs 458 248

Reference Parra etal. 2007 Parra et al. 2009
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Table 60. Mapping of CEGMA datasets to different genome versions. For this
search, GenBlastA with default settings of the different genome releases was
used, including the current unmasked (U) and masked for repeats (M) versions.
The protein matches listed below correspond to those over >= 70% identity
coverage, and the percentage stands for the proportion of proteins found on a
given genome release, as compared to the total number of proteins in the
analyzed CEGMA dataset.

CEGMA Dataset 248 Core
Genome Release Matches Percentage Matches Percentage
4.0 70 28,23 158 34,50
7.0 127 51,21 249 54,37
7.3 173 69,76 324 70,74
7.3.1 (U) 136 54,84 268 58,52
7.3.1 (M) 134 54,03 268 58,52

CPC is a de novo noncoding RNA predictor that classifies novel sequences as
coding or not, based on several sequence features, e.g. a coding transcript will
have more similarity search hits (and with lower e-values) with known proteins
than a noncoding one, and these hits usually reside within one frame (Kong et al.
2007). Several tests with noncoding RNA databases, reported CPC as the most
sensitive of its type (Wang et al. 2013). In this manner, 19,254 transcripts
(75.07%) were predicted as noncoding, from which 17,823 lacked UniProt
annotations, and 9,306 could not be associated with InterPro domains (Table
62). Conversely, 3,214 transcripts (12.53%) were predicted as coding by CPC
while having an ortholog in the UniProt database. It was also noticed that the
ESTs libraries obtained by cDNA cloning and Sanger sequencing contained
proportionally more coding sequences than the 454 and MAKER gene models
(Table 62). This must be due to a large percentage of RNA-seq reads that are
expressed from noncoding regions. In summary, further screenings from
noncoding RNAs should be performed in these candidate genes, e.g. RFAM and

tRNA searches, to identify true long noncoding sequences in this genome.
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Table 61. Statistics of the completeness of the genome using CEGMA. This
analysis is based on the 248 CEGs dataset (Parra et al. 2009), and was carried out
at the Genome Center of the University of California, Davis (Keith Bradnam,
personal communication). CEGs were divided into divergence groups (1 to 4),
and the complete and partial matches are included; complete proteins will also
be included with the partial matches. Proteins, are the number of CEGs present in
the genome; Completeness, is the percentage of CEGs present; Total, number of
CEGs including putative orthologs; Average, is the average number of orthologs
per CEG; and Orthologs, are percentages of CEGs that have more than one
ortholog.

Complete

Proteins Completeness Total Average Orthologs
Total 115 46.37 148 1.29 20.87
Group 1 22 33.33 28 1.27 18.18
Group 2 23 41.07 27 1.17 17.39
Group 3 34 55.74 46 1.35 26.47
Group 4 36 55.38 47 1.31 19.44

Partial

Proteins Completeness Total Average Orthologs
Total 183 73.79 290 1.58 38.80
Group 1 33 50.00 44 1.33 24.24
Group 2 45 80.36 66 1.47 33.33
Group 3 51 83.61 83 1.63 47.06
Group 4 54 83.08 97 1.80 44.44

Table 62. Predicted coding potential of transcripts and ESTs. These predictions
were obtained with CPC (Kong et al. 2007) using default values, against two EST
libraries (Glockner et al. 2008; Watkins and Gray 2008), the 454 assembly
(Chapter 3), the clustering of all cDNAs, and the second and third MAKER2 runs
(M2 and M3).

Total in Percen
EST dataset cDol\as Trgr(igcri%)ts ncRNAs ngilirtlagge
Glockner 2008 15,680 7,159 8,521 45.66%
Watkins and Gray 2008 9,713 6,639 3,074 68.35%
454 assembled cDNAs 16,669 4,173 12,496 25.03%
Clustered cDNAs 17,931 4,881 13,050 27.22%
M2 transcript models 31,429 9,702 21,727 30.87%
M3 transcript models 25,649 6,125 19,524 23.88%
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Comparative Analyses.

Genome Assemblies. The genome of Physarum is considerably larger than the
closest Mycetozoans, being close to five times the size of the genome of
D.discoideum, and eight times the assembly from D.purpureum (Table 63). The
number of undefined bases also exceeds those from these Dictyostelium species
(50.08 Mb versus 0.03 and 0.11 Mb), and the GC-content is almost the double
from these taxa (41.16% versus 21.99 and 24.47%; Table 63). In both Physarum
and D.purpureum, the Scaffold N50 is over 50 Kb, with their average gene sizes of
1,689 bp (dictybase website; Gaudet et al. 2011) and 1,253.5 bp (see Table 58)
respectively, and this means that in theory more than 50% of the genes will be
contained on a single scaffold (Yandell and Ence 2012). Similarly, the scaffold
N50 of D.discoideum (3,809 bp) still fits an average gene (1,756 bp; data from
dictybase, accessed September 9, 2010), although to a lesser extent. The larger
scaffold sizes and N50 in Physarum and D.purpureum, might account for the
differences in sequencing technologies used in these projects (next generation

sequencing versus Sanger in D.discoideum; Sucgang et al. 2011).

[ ]

Physarum

Polysphondylium

Root

13 | » D.discoideum

| « D.purpureum

12

R D.fasciculatum

Figure 36. Phylogenetic tree of Mycetozoans. This plot is based on the multiple
alignments of conserved coding sequence blocks, calculated with mauve (Darling
etal. 2004).

168



Table 63. Sequencing summary of the genomes of Physarum and other
Mycetozoa. All specified values are in base pairs (bp). These statistics were
obtained using the faSize program, from the Jim Kent source tree, except for the
GC level percentage, which was obtained from the RepeatMasker output, and the

N50- related values, which were calculated using in-house Perl scripts.

Species D.discoideum D.purpureum Ppolycephalum
Data obtained 26 Feb 2013 26 Feb 2013 05 Dec 2011
Data source Dictybase JGI WUSTL

Site dictybase.org genome.jgi-psf.org genome.wustl.edu
Reference Eichinger et al. 2005 Sucgangetal. 2011 Unpublished
Total bases 50,649,189 32,967,507 239,752,614
Undefined bases 36,046 115,529 50,083,098

Real bases 50,613,143 32,851,978 189,669,516
GC-level (%) 21.99 2447 41.16
Sequences 13,475 799 126,782

Mean Size 3,758.8 41,261.0 1,891.1
Smallest size 1084 3,010 17

Smallest scaffold DDB_G0294661 scaffold_821 Scaffold244352
Largest size 35,422 285,244 821,622

Largest scaffold DDB_G0292696 scaffold_1 Scaffold1
Scaffold N50 3,809 66,881 97,377

N50 length 25,325,737 16,520,785 119,912,848

The general features of the Physarum genome show that this novel assembly
might form a separate clade within the Mycetozoans. To analyze this further, a
phylogenetic analysis at the whole- transcriptome level, involving multiple
alignment of all conserved coding blocks, was built with the mauve program,
release 2.3.1 (Darling et al. 2004). Here, sequences from P.polycephalum,
Dictyostelium discoideum (Eichinger et al. 2005), D.purpureum (Sucgang et al.
2011), D.fasciculatum, and Polysphondylium pallidum (Heidel et al. 2011) were
compared. After the alignments, a rooted tree was plotted from the Newick
output from mauve, using the ADE4 library from the R statistical environment
(Dray and Dufour 2007; R Core Team 2013). The tree shows the expected

separation of Physarum from the Dictyostelium clade (Figure 36).
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Repetitive Sequences. Similar repeat searches were performed over the
genomes of the social amoebae Dictyostelium discoideum (Eichinger et al. 2005)
and D.purpureum (Sucgang et al. 2011), as I did before with the Physarum
assembly. To this end, genomic sequences were downloaded from dictybase (Fey
et al,, 2009) and the DoE Joint Genome Institute websites, respectively, and these
datasets were then analyzed using RepeatMasker with default settings, and
compared against the default repeat library. Results from these analyses are
displayed on the Table 64. First, it was observed that the total length of SINE
elements is small, compared to the Physarum genome searched with the default
repeat library: 308 and 139 bp in dictyostelids, versus 27,026 bp in Physarum
(Tables 23 and 64). The extent of LINEs, LTR and DNA elements is 12.67x, 52.62x
and 107.33 times larger in Physarum than in D.discoideum; similar results were
obtained with D.purpureum, although RepeatMasker found no LTR elements in
this species (Table 64). The predicted total length of small RNAs in Physarum is
between the values of both dictyostelids, although D.discoideum presents a larger
proportion, accounting for its smaller genome size (0.11% of small RNAs).
Furthermore, the total extent of simple repeats and low complexity regions in
Physarum (13.11 Mb of simple repeats and 21.35 Mb of low complexity
sequences), is also larger in Physarum than in dictyostelids, although
proportionally the Dictyostelium genus have larger simple repeat content
(17.75% in D.discoideum and 9.87% in D.purpureum). Finally, no satellites were
detected in dictyostelids, while 23,133 bp of this type of elements were found in
the Physarum genome. Similar results were obtained when using the custom
library for Physarum, except for detecting no small RNAs in this case (Table 23).

Moreover, it was also noticed that the employed version of the transposable
elements database (RepBase v.20120418) contained 179 sequences matching
Physarum polycephalum (56,836 bp): 176 ancestral and ubiquitous sequences
(two of these belonging to the Mycetozoa clade), with a total length of 50,916 bp,
and three lineage- specific sequences (5,920 bp), corresponding to the
retrotransposon- related Tpl (274 bp; Rothnie et al,, 1991) and Tp2 elements
(1,679 bp; McCurrach et al., 1990), and a HERO non-LTR retrotransposon (3,967
bp; Kapitonov and Jurka, 2009). In comparison, this database possesses 18

lineage specific sequences (74,309 bp in total) for Dictyostelium discoideum, and
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none for D.purpureum. These differences in the default library might account for

some of the disparities on the results.

Encoded Genes and Proteins. The number of protein models predicted in this
work for Physarum far exceeds those for the dictyostelids: there are 25,649 in
the slime mold, as compared to over 12 thousand genes in both D.discoideum and
D.purpureum (Table 65). In fact, this large number of proteins, within protists, is
only akin to those from free-living Ciliophora. The reasons why these organisms
feature larger numbers of protein coding genes is unknown, although they also
possess large genome sizes (ciliophora genomes range from 72 Mb in
Paramecium, to 103 Mb for the Tetrahymena macronuclear sequence; Liolios et
al. 2010). In addition, to compare the number of noncoding transcripts between
Physarum and other mycetozoans, I calculated the coding potential in the
D.discoideum transcripts, using CPC (Kong et al. 2007). 11,128 transcripts
(90.33%) were classified as coding in Dictyostelium, a number proportionally
higher than the number found in Physarum (6,125 coding transcripts or 23.88%;
Table 62). These results might be related to the higher number of repetitive

elements found in the slime mold genome (see paragraph above).

Afterwards, the tRNA gene subsets from Physarum and Dictyostelium were
compared, using the predicted data obtained with tRNAscan-SE for the first
(Table 29), and data from dictybase (Gaudet et al. 2011) for the latter.
Specifically, it was studied whether the number of tRNA genes is correlated to
the codon usage. To this end, first the total number of codons, and then the
relative frequencies of occurrence of synonymous codons for a specific amino
acid (also called “relative synonymous codon usage,” or RSCU; Oresic and
Shalloway 1998) were calculated. This was carried out with the codonw
program, in transcripts of both species, as previously described (Peden 2005;
Behura and Severson 2011). Results from these analyses can be seen on the

Tables 66 and 67.
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Table 64. Distribution of repetitive elements identified with RepeatMasker on
two species of the Dictyostelium genus, D.discoideum and D.purpureum. Column
parameters follow the same convention as in Table 23.

Species Dictyostelium discoideum Dictyostelium purpureum
Parameter Elements  Length Perc (%) Elements Length  Perc (%)
SINEs 6 308 0 3 139 0
ALUs 1 253 0.00 0.00 0.00 0.00
MIRs 0.00 0.00 0.00 0.00 0.00 0.00
LINEs 141 26,660 0.05 76 15,659 0.05
LINE1 140 26,625 0.05 48 13,844 0.04
LINE2 0.00 0.00 0.00 6 351 0.00
L3/CR1 1 35 0.00 22 1,464 0.00
LTR elements 5 543 0.00 0.00 0.00 0.00
ERVL 0.00 0.00 0.00 0.00 0.00 0.00
ERVL-MaLRs 0.00 0.00 0.00 0.00 0.00 0.00
ERV_classl 4 490 0.00 0 0 0.00
ERV_classlII 1 53 0.00 0 0 0.00
DNA elements 3 163 0.00 5 269 0.00
hAT-Charlie 1 66 0.00 1 41 0.00
TcMar-Tigger 1 51 0.00 1 59 0.00
Unclassified 0 0 0.00 0 0 0.00
Total 27,674 0.05 16,067 0.05
Small RNA 640 56,454 0.11 230 25,304 0.08
Satellites 0 0 0 0 0 0
Simple repeats 158,246 8,990,383 17.75 58,402 3,252,880 9.87
Low complexity 34931 2,668,725 5.27 15,060 959,594 291
Bases masked --- 11,453,026 22.61 --- 4,158,906 12.62
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Table 65. Protein-coding gene numbers between protists and other lower
eukaryotes. Abbreviations. Where: Autotrophic (A); free-living (F); mixotrophic
(M); parasite (P); and saprophytic (S). Sources: dictybase (D; Chisholm et al.
2006); GOLD (G; Liolios et al. 2010); Heidel et al. 2011 (H); and the DoE Joint
Genome Institute (J; Grigoriev et al. 2012).

Organism Genes Group Life Source
Phaeodactylum 9,479 Bacillariophyta A G
Thalassiosira 11,242 Bacillariophyta A G
Paulinella 922 Cercozoa A G
Guillardia 553 Cryptophyta A G
Cyanidioschyzon 5,331 Rhodophyta A G
Tetrahymena 27,000 Ciliophora F G
Paramecium 40,000 Ciliophora F G
D.purpureum 12,410 Mycetozoa F J
D.discoideum 12,646 Mycetozoa F D
D.lacteum 11,477 Mycetozoa F H
D.fasciculatum 12,173 Mycetozoa F H
Polysphondylium 12,373 Mycetozoa F H
Naeglaeria 15,753 Heterolobosea F |
Bigelowiella natans 21,708 Rhizaria M J
T.gondii 8,155 Apicomplexa P G
Babesia 3,773 Apicomplexa P G
Theileria 4,159 Apicomplexa P G
Cryptosporidium 3,956 Apicomplexa P G
C.parvum 3,886 Apicomplexa P G
P.falciparum 5,298 Apicomplexa P G
P.yoelii 7,910 Apicomplexa P G
Giardia 6,598 Diplomonadida P G
E.histolytica 10,202 Entamoebidae P G
T.brucei 10,253 Euglenozoa P G
L.infantum 7,993 Euglenozoa P G
T.cruzi 22,570 Euglenozoa P G
L.major 1,579 Euglenozoa P G
Phytophthora 17,797 Stramenopiles S G
Monosiga 9,174 Choanoflagellates F G
Hydra 18,950 Cnidaria F G
Trichoplax 11,520 Placozoa F G
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These results were then compared to the number of tRNA genes on each of these
two genomes, and a significant association (P < 0.05) between the number of
tRNA genes and the codon usage in both Physarum and Dictyostelium was found
(Figure 37). These results are analogous to those obtained in bacteria, yeast,
C.elegans, Drosophila, and the mosquitoes Aedes and Anopheles (Behura and
Severson 2011), which also showed a significant correlation between the codon

usage and the number of tRNA genes.

Subsequently, the differences in gene ontology (GO) and KEGG orthologs (KOs)
annotations of Physarum and the two species of Dictyostelium studied above
were investigated. To this end, first a GO slim analysis was carried out, ie,
obtaining a summary of gene ontologies for a large annotation set. The
GOslimViewer server (McCarthy et al. 2006a) was used, with the obtained gene
ontology annotations from D.discoideum and D.purpureum from dictybase
(Gaudet et al. 2011), together with the annotations from the reference
transcriptome obtained for Physarum (Tables 68 - 70). Here it was observed that
the number of genes in Physarum associated to the signal transduction ontology
(GO:0007165, 513 genes or 20.28% of biological process annotations), is
proportionally larger than those in the dictyostelids: 1,078 (8.21%) and 287
(10.63%) of the biological process ontologies for D.discoideum and D.purpureum
respectively. This might reflect the fact that most well studied genes and proteins
in Physarum are related to this type of signaling processes. Conversely, the
proportion of transport ontologies (G0:0006810), is larger in the dictyostelids
than in Physarum (over 20% in the former group, versus 13.17% in the slime
mold). Other categories of genes, particularly those related to metabolic
processes (G0:0009058, biosynthesis process; and GO0:0009056, catabolic
process), showed similar proportions in the three studied taxa. Later, these
results were extended, using the original annotations from Physarum and those
from dictyostelids (downloaded from dictybase), to plot the differences of all
gene ontologies with the WEGO online tool (Ye et al. 2006).
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Table 66. Codon usage pattern in Physarum. Total codon counts (N) and RSCU
(relative synonymous codon usage) values are displayed for each codon.
Calculations were obtained with the codonw program (Peden 2005).

AA Codon N RSCU | AA Codon N RSCU
Phe uuu 207,307 1.35 UCuU 82,131 1.18
uucC 100,429 0.65 Ser UCC 79,893 1.14
UUA 83,520 1.04 UCA 78,331 1.12
uuG 106,377 1.33 UCG 47,285 0.68
Leu CUU 89,686 1.12 CCU 74,987 1.09
CucC 80,874 1.01 Pro CCC 78,470 1.14
CUA 58,741 0.73 CCA 87,537 1.27
CUG 61,685 0.77 CCG 35,202 0.51
AUU 126,451 1.33 ACU 73,503 0.97
Ile AUC 73,847 0.78 Thr ACC 68,568 0.91
AUA 85,299 0.9 ACA 107,789 1.42
Met  AUG 86,848 1 ACG 53,004 0.7
GUU 73,968 1.2 GCU 63,651 0.99
GUC 37,969 0.62 GCC 51,510 0.8
Val Ala
GUA 60,835 0.99 GCA 86,886 1.36
GUG 73,657 1.2 GCG 54,245 0.85
UAU 88,176 1.1 UGU 76,939 1.02
Tyr Cys
UAC 71,971 0.9 UGC 74,072 0.98
Stop UAA 71,120 1.15 | Stop UGA 70,007 1.13
Stop UAG 44,993 0.73 | Trp UGG 81,894 1
His CAU 71,602 0.92 CGU 40,185 0.69
CAC 83,494 1.08 Arg CGC 54,678 0.94
CAA 137,930 1.34 CGA 54,459 0.94
Gl CAG 67,204 0.66 CGG 30,429 0.52
AAU 127,576 1.15 AGU 64,750 0.93
Asn Ser
AAC 94,993 0.85 AGC 66,344 0.95
AAA 246,097 1.35 AGA 99,508 1.71
Lys Arg
AAG 117,932 0.65 AGG 68,877 1.19
Asp GAU 83,079 1.18 GGU 50,266 0.83
GAC 57,768 0.82 Gly GGC 48,859 0.8
Clu GAA 128,061 1.2 GGA 90,326 1.49
GAG 85,711 0.8 GGG 53,391 0.88
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Table 67. Codon usage pattern in Dictyostelium discoideum. Total codon counts
(N) and RSCU (relative synonymous codon usage) values are shown for each
codon, and follow the same conventions as in Table 66.

AA Codon N RSCU AA Codon N RSCU
ppe 1T 227897 142 TCT 106,729 096
TTC 93939 058 . TCC 27186 024
TTA 391,116  3.97 TCA 347541  3.11
TTG 73,016  0.74 TCG 15082  0.14
L, CIT 65402  0.66 CCT 40,628  0.59
CTC 22612 023 cce 7051 012
CTA 35635 036] ° cca 221,685  3.24
CTG 2,693 003 cCG 3,631  0.05
ATT 354934  1.83 ACT 143,962  1.39
le  ATC 76747 04| ACC 53,028  0.52
ATA 148,697  0.77 ACA 209,559  2.02
Met  ATG 108,057 1 ACG 7066 0.07
GTT 162,975  2.22 GCT 69223 131
GTC 22,662 031 GCC 22814 043
Val Ala
GTA 91,612 125 GCA 114611 217
GTG 15,886  0.22 GCG 4222 0.8
TAT 207,489 17 TGT 87110  1.79
Tyr Cys
TAC 35969 0.3 TGC 10378 021
Stop  TAA 12,012 2.56 | Stop TGA 1029 022
Stop  TAG 1013 022 |Trp  TGG 50,404 1
i CAT 103,772 17 CGT 40125 124
CAC 18299 03], CGC 644  0.02
. CAA 338481  1.92 CGA 3,729 012
Gin - ~aG 13,466  0.08 CGG 414 001
AAT 700498  1.79 AGT 155436  1.39
Asn Ser
AAC 81,800  0.21 AGC 17384  0.16
AAA 448344  1.69 AGA 138,697 43
Lys Arg
AAG 80,922 031 AGG 9,865 031
GAT 327,835  1.83 GGT 223372 291
AP GAC 3,009 017 . GGC 14,691  0.19
G _GAA 340872  1.69 GGA 62249 081
GAG 61,898 031 GGG 6,482  0.08
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Figure 37. Regression analysis of tRNA genes and codon counts in Mycetozoans.
Displayed here are calculations based on the codons and tRNAs from the
Physarum (A) and D.discoideum (B) genomes. A positive correlation was
observed in both cases (R? = 0.10 for Physarum and R? = 0.32 for Dictyostelium,

respectively).
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Table 68. Summary of biological process ontologies in Physarum. The top 20
gene ontologies for the biological process category are listed, which were
obtained from the analysis of the UniProt annotations with the GOSlimViewer
server (McCarthy et al. 2006b). Gene counts for each id and descriptions are
displayed.

GO id GO description Count
G0:0008150 Biological process 2529
G0:0007165 signal transduction 513
G0:0006464 cellular protein modification process 415
G0:0034641 cellular nitrogen compound metabolic process 356
G0:0009058 biosynthetic process 356
G0:0006810 transport 333
G0:0044281 small molecule metabolic process 317
G0:0005975 carbohydrate metabolic process 260
G0:0006259 DNA metabolic process 258
G0:0009056 catabolic process 219
G0:0055085 transmembrane transport 174
G0:0006950 response to stress 145
G0:0006520 cellular amino acid metabolic process 140
G0:0006412 translation 124
G0:0006629 lipid metabolic process 112
G0:0034655 nucleobase-containing compound catabolic process 107
G0:0016192 vesicle-mediated transport 73
G0:0006457 protein folding 55
G0:0006399 tRNA metabolic process 52
G0O:0065003 macromolecular complex assembly 39

Figure 38 shows that that more D.discoideum genes are linked to cell
differentiation- related ontologies (such as death, developmental process,
growth, locomotion, and reproduction). The proteasome regulator and cell
killing ontologies were located only in D.purpureum, but no GOs were counted
solely for Physarum. The remaining ontologies show similar distributions in all
species. Later, to study the alterations in metabolic maps, the proteins from
Physarum and dictyostelids were mapped to the KEGG database with the KAAS
server (Kanehisa et al. 2008; Moriya et al. 2007). The version 1.67x, the method
“bidirectional best hit,” and the GENES subset from KEGG were employed to this

end.
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Table 69. Summary of biological process ontologies in Dictyostelium discoideum.
The method to obtain these results, and the meaning of the columns follow the

same convention as the table 68.

GO id GO description Count
G0:0008150 Biological process 13124
G0:0006810 transport 3869
G0:0016192 vesicle-mediated transport 2612
G0:0034641 cellular nitrogen compound metabolic process 2399
G0:0009058 biosynthetic process 2165
G0:0044281 small molecule metabolic process 1416
G0:0007165 signal transduction 1078
G0:0006950 response to stress 1038
G0O:0006464 cellular protein modification process 949
G0:0009056 catabolic process 923
G0:0006259 DNA metabolic process 798
G0:0006629 lipid metabolic process 625
G0:0006412 translation 511
G0:0006520 cellular amino acid metabolic process 481
G0:0000003 reproduction 474
G0:0034655 nucleobase-containing compound catabolic process 449
G0:0048856 anatomical structure development 431
G0:0005975 carbohydrate metabolic process 416
G0:0007010 cytoskeleton organization 328
G0:0055085 transmembrane transport 259

Outputs from the KEGG mappings were then plotted to the reference metabolic

map, on the ipath server version 2 (Yamada et al. 2011), for each Dictyostelium

species against the Physarum proteins (Figure 39). By comparison with the

generic metabolic map (Figure 26A), it was noticed that in both Physarum and

dictyostelids, the terpenoid, polyketide and secondary metabolites pathways, as

well as the glycan metabolism, are poorly represented. Besides, the fatty acid

biosynthesis reactions are present only in dictyostelids (Figure 39; black box at

the center left).

179



Table 70. Summary of biological process ontologies in Dictyostelium purpureum.
The method to obtain these results, and the meaning of the columns follow the
same convention as the table 68.

GOid GO description Count
G0:0008150 Biological process 2700
G0:0006464 cellular protein modification process 669
G0:0009058 biosynthetic process 641
G0:0006810 transport 638
G0:0034641 cellular nitrogen compound metabolic process 483
G0:0044281 small molecule metabolic process 315
G0:0007165 signal transduction 287
G0:0006412 translation 280
G0:0006259 DNA metabolic process 210
G0:0006520 cellular amino acid metabolic process 207
G0:0006629 lipid metabolic process 187
G0:0005975 carbohydrate metabolic process 160
G0:0009056 catabolic process 147
G0:0006399 tRNA metabolic process 115
G0:0006950 response to stress 92
G0:0006457 protein folding 68
G0:0051276 chromosome organization 55
G0:0051186 cofactor metabolic process 42
G0:0016192 vesicle-mediated transport 39
GO:0007155 cell adhesion 37

Conversely, the urea cycle, which is associated to the arginine synthesis and is

used by mammals and fish to remove excess nitrogen, is displayed only in

Physarum (Figure 39; black box at the bottom right). The lack of this and other

amino acid synthetic pathways in Dictyostelium has been confirmed both by

computational and experimental approaches (Payne and Loomis 2006), and

shows the evolutionary divergence at the metabolic level of the dictyostelids

from the Physarum genus. Hence, a more detailed study of the metabolism of

Physarum is needed to firmly establish the differences in the metabolism

between the slime mold and the dictyostelids.
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Figure 38. Comparison of gene ontologies between Physarum and dictyostelids.
Level 3 ontologies were plotted, where the green bars belong to the Physarum
genes, light blue for D.discoideum, and violet for D.purpureum. CC, MF and BP
correspond to the ontology categories (cellular component, molecular function,
and biological process, respectively). The vertical values on the left indicate the
percentage of genes, while at the right they denote the gene number. The graphic
was plotted using the WEGO tool (Ye et al. 2006).

Then the ESTs from D.discoideum were compared against the reference
proteome of Physarum, using the blastx algorithm from blast (Altschul et al.
1990). These EST sequences comprised 163,182 sequences, that were obtained
from dictybase (Chisholm et al. 2006). In this case 259,791 matches were found
(68,205 unique), with 45,635 cDNA matches over 70% identity. These
dictyostelid matches represent 4,574 Physarum protein models (17.83%).
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Figure 39. The reference metabolic maps of Physarum and dictyostelids.
Transcripts were assigned to KEGG orthologs through similarity search, and
these were mapped to the primary metabolic pathways with the ipath tool.
Above (A), comparison of the whole metabolism of D.discoideum is displayed;
below (B), an analogue comparison against D.purpureum. The black boxes
indicate the fatty acid biosynthesis (FAS, left) and the urea cycle (UC, right). In
both cases, the green lines stand for metabolic reactions in Physarum, navy blue
for the dictyostelids, and light blue for those reactions that occur in both cases.
Data from dictybase and this thesis work.
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Furthermore, the dictyostelid genomes and proteomes were also compared with
the core eukaryotic gene (CEGMA) datasets (Parra et al. 2007; Parra et al. 2009).
For this, first the genomic scaffolds from D.discoideum and D.purpureum were
obtained, and mapped the two CEGMA sets to these dictyostelid genomes (Table
71) with the genblasta program (She et al. 2009), as previously described (Wang
et al. 2011). Here it was observed that the dictyostelid genomes have a very large
coverage of the CEGMA sets (over 92%; Table), as opposed to the Physarum
genome, whose matches to the core eukaryotic genes range from 54.03 to
58.52% (Table 60). Afterwards, a similarity search of the dictyostelid proteomes
was performed versus the most recent CEGMA dataset (Parra et al. 2009), with
the blastp algorithm of blast (e-value 1E-6, over >= 70% identity coverage). Here,
the reference proteome of Physarum was found to cover more core eukaryotic
proteins than the dictyostelid proteomes, with up to 17.34% orthologs of the
CEGMA proteins in Physarum, and less than 9% for both species of the genus
Dictyostelium (Table 72). These apparent opposite results between the genome
and proteome mappings might be due to curation and annotation of the

dictyostelid genes.

Later, the OrthoMCL server (Li et al. 2003) was employed to find groups of
unique and conserved ortholog genes in the Physarum and dictyostelid
proteomes, with default parameters. This program uses the similarity search
(blastp, e-value 1E-5 and 50% identity match; Altschul et al. 1990) against a
database of conserved proteins (OrthoMCL-DB). Queried proteins that are
reported above the cutoff, are assigned to the respective ortholog group,
otherwise they are classified as “no group.” Here, almost all proteins from
D.discoideum (12,272 matches, 99.64%) were assigned to ortholog groups, while
D.purpureum and Physarum had proportionally less assignments (71.35 and
36.33% respectively; Table 73). This might be because the proteins from
dictybase were a primary source for building the OrthoMCL ortholog groups.
Later, the phylogenetic patterns of species in ortholog groups from dictyostelids
and Physarum was obtained. As for D.discoideum, 12,261 of the mapped
orthologs belong to the species itself, and its taxonomic representation included

other nine species, with 2 or 1 orthologs. Conversely, the phylogenetic patterns
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of D.purpureum and Physarum entailed many species, and with similar frequency
distributions (Figure 40). Together, these results reflect the fact that both
proteomes, of D.purpureum and Physarum, used common sources for gene

modeling and annotation, particularly the inclusion of the D.discoideum data.

Finally, an evaluation of how related is the Physarum proteome to other
eukaryotic proteomes was performed. For these analyses, the SimiTri program
(Parkinson and Blaxter 2003) was utilized as previously described (Peregrin-
Alvarez and Parkinson 2009; Wang et al. 2007). This Java application allows the
simultaneous comparison of similarities of a given query, to three different
sequence databases, and the visualization of the evolutionary relationships
between these sequence sets. The outputs of similarity searches were employed
as inputs, between the predicted protein models of Physarum, and the proteome
sets from D.discoideum and D.purpureum (Chisholm et al. 2006; Parikh et al.
2010), the best filtered protein models from the choanoflagellate Monosiga
brevicollis (King et al. 2008; Grigoriev et al. 2012), the translations of curated
ORFs from the yeast Saccharomyces cerevisiae (Cherry et al. 2012), and the most
recent core eukaryotic gene (CEGMA) dataset (Parra et al. 2009). The similarity
searches were carried out with the blastp algorithm of blast (Altschul et al. 1990;
Altschul et al. 1997), using an e-value of 1E-6. The outputs were adapted to
SimiTri with a combination of several in-house bash and perl scripts, and plotted
in groups of three proteomes: (i) D.discoideum, D.purpureum, and yeast; (ii)
D.discoideum, Monosiga, and yeast; and (iii) D.discoideum, CEGMA proteins, and
yeast (Figure 41). First, when comparing the Physarum proteome with those of
the dictyostelids and yeast, the slime mold sequences group either in the center,
or closer to those from D.discoideum or yeast (Figure 41A). Replacement of the
D.purpureum with the choanoflagellate proteome, group the matches either in
the center or closer to D.discoideum (Figure 41B). Finally, the substitution of the
Monosiga proteome with the core eukaryotic gene (CEGMA) dataset, resulted in
the Physarum sequences clearly aligning with at the D.discoideum and yeast side,
with most proteins mapping at the dictyostelid corner (Figure 41C). Also it is
interesting to noticed that in two of the SimiTri plots, a clearly detached group of

dots are closer to the yeast proteome vertex (Figure 41A and 41C). Separate
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examination of Physarum genes corresponding to these dots showed that most of
these are fungal homologs linked to the primary metabolism: The acetolactate
synthase ILV2, the R export factor ELF1, the fatty acid synthase subunit alpha
FAS2, and the sulfite reductase subunit beta SIR1 (Table 74). Annotations of
these proteins map to the amino acid (ILVZ, gltB, and SIR1) and fatty acid
biosynthesis (FAS2); and three of them possess oxidoreductase activities (FASZ2,
gltB, and SIR1). These results are in agreement with previous observations in
this thesis work, regarding differences in the fatty acid synthesis and amino acid

metabolism between the Physarum and dictyostelid genomes (Figure 39).

Table 71. Mapping CEGMA datasets to dictyostelid genomes. For this search
GenBlastA was used with default settings. The protein matches listed and the
percentages follow the same convention as in the Table 60.

CEGMA Dataset 248 Core
Species Matches Percentage Matches Percentage
D.discoideum 237 95.56 431 94.10
D.purpureum 234 94.35 424 92.58

Table 72. Mapping CEGMA datasets to Physarum and dictyostelid proteomes. For
this search I used the most recent core eukaryotic genes dataset (CEGMA; 248
entries). The protein matches listed below (over 70% of identity coverage), and
the percentages follow the same convention as in the Table 60.

Proteome Matches  Percentage
Physarum 43 17.34
D.discoideum 21 8.47
D.purpureum 19 7.66

Table 73. OrthoMCL analysis of the Physarum and dictyostelid proteomes.

Sequences  Proteins Unique Represented
Proteome in Proteome  assigned No Group  matches species
D.discoideum 12,316 12,272 2,403 11,754 10
D.purpureum 12,410 8,854 1,188 7,027 108
Physarum 25,649 9,318 345 7,568 146
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Table 74. SimiTri yeast matches.

Physarum Gene id UniProt id Annotation
maker-Scaffold361- ILVB_.CRYNV  Acetolactate synthase,
est_gff Cufflinks-gene-0.3-mRNA-1 ILV2
maker-Scaffold370- ELF1_SCHPO R exportfactor ELF1
est_gff Cufflinks-gene-1.6-mRNA-1

maker-Scaffold152- FAS2_CANAX  Fatty acid synthase
est_gff Cufflinks-gene-0.10-mRNA- subunit alpha, FAS2
2

maker-Scaffold1925- GLTB_BACSU  Glutamate synthase
est_gff Cufflinks-gene-0.0-mRNA-1 small chain, gItB
maker-Scaffold251- MET5_SCHPO  Sulfite reductase

est_gff Cufflinks-
exonerate_estZ2genome-gene-1.0-
mRNA-1

subunit beta, SIR1
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Figure 40. Phylogenetic pattern of Dictyostelium purpureum and Physarum. The
proteomes of D.purpureum (A) and Physarum (B) were searched for conserved
ortholog genes with the OrthoMCL server, with default values. The plot shows
the top ten species with the most orthologs, whose frequencies are in
logarithmic (Log2) scale. Species listed include Dictyostelium discoideum (ddis),
the fungus Phytophthora ramorum (pram) and Laccaria bicolor (lbic), the
choanoflagellate Monosiga brevicollis (mbre), the placozoon Trichoplax
adhaerens (tadh), the sea anemone Nematostella vectensis (nvec), the zebrafish
Danio rerio (drer), and the plants Physcomitrella patens (ppat), Ricinus communis
(rcom), Arabidopsis thaliana (atha), and Oryza sativa (osat).
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Figure 41. SimiTri profiles of the Physarum protein models. The reference
proteome of Physarum was searched for similarity against the protein datasets
from Dictyostelium discoideum, D.purpureum, Monosiga brevicollis, the yeast
Saccharomyces cerevisiae, and the set of core eukaryotic genes (CEGMA), with
blastp (e-value 1E-6). Outputs from the blastp alignments were then loaded and
plotted in sets of three proteomes (A - C), with the SimiTri application
(Parkinson and Blaxter 2003). The position of each dot represents its similarity
to a given protein set, specified in blast scores (Altschul et al. 1990), and their
color is coded according to the highest of these blast scores.
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Discussion

Genome Annotation. The draft genome assembly of this Physarum genome
release comprises 239.75 Mb (Table 22). This value is below the latest expected
size of 300 Mb (Glockner et al. 2008). Early experiments showed that the amount
of DNA per nucleus (C-values) is between 0.25 and 0.3 pg. (Mohberg and Rusch
1971; Mohberg 1977). Using the equivalence of C-values or masses to base pairs
(Dolezel et al. 2003), in this work it was estimated that the genome ranges
between 244.5 and 293.4 Mb, with the first value fitting closely the obtained size
for the working draft.

Respect to the noncoding fraction of the genome, this assembly has a high GC-
content (41.16%), with a repeat content of 14.55% (27.59% using a Physarum-
specific library). Most repetitive elements found are simple repeats (5.47% of
the total assembly) and low complexity regions (8.9%). Furthermore, 1,436
noncoding RNA genes were also identified, most of them pertaining to the
ribosomal RNA, microRNA, small nucleolar RNA and transfer RNA families (928,
777, 144 and 347 genes, respectively; Tables 24, 25 and 32). Selenocysteine
tRNAs were found within the tRNA gene set, and more importantly, all twenty
standard amino acids (Table 29). However, some predicted noncoding RNAs
might be sample contaminants, particularly those annotated as bacterial small

RNAs (Table 27).

As for the coding regions of the genome, three main sources were used to search
for transcripts: ESTs, RNA-seq, and well-annotated proteins from the UniProt
database. First, the clustering of all available cDNA data (Watkins and Gray 2008;
Glockner et al. 2008) together with the transcriptome obtained by 454
sequencing (Chapter 3), produced a nonredundant dataset of 17,931 coding
sequences. Later, to use the RNA-seq outputs in gene modeling, a previous
mapping of the short reads against the genome was required. This resulted in
36.18 to 67.62% mapped reads (Table 34). Why an average of 49.03% of reads
do not map to the assembly might be due to several reasons, eg. (i) the
generation of chimeric sequences during the PCR amplification previous to the

[llumina sequencing; (i) the quality and coverage depth of the RNA-seq output
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(which is varies between samples and strains); (iii) the alignment method use,
and the criteria for these alignments; (iv) many reads align to the mitochondrial
genome, which is in a large copy number excess, relative to the genome; (v) a
percentage of reads map to microRNA precursors and several types of 5" or 3’
end untranslated regions (UTR), such as promoters, spliced exons, etc.; and (vi)
the number of mutations, paralogs or CNVs (copy number variations) between
different strains (Hansey et al. 2012; Mortazavi et al. 2008). In future RNA-seq
experiments (with increased depths), a better correspondence between the read

mapping and the predicted transcripts is expected.

Afterwards, the combination of the TopHat and Cufflinks programs generated
approximately from 25 to 82 thousand genes from these mappings (Table 35).
The obtained wide range might be due to the difficulty in obtaining full-length
cDNAs from short-read high-throughput sequencing experiments, although other
factors, such as post-transcriptional modifications that occur in this species
might be contributing to the fragmentation. In spite of this, the number of reads
per lllumina run in the RNA-seq outputs from the WT31 and LULU2Z samples was
within the considered optimal range to generate a representative de novo
assembly (20 - 30 millions; Francis et al. 2013), and therefore these datasets
represent a reliable source for protein- coding gene modeling. The average
transcript length ranged between 322 - 1,379 bp, which is well below the
expected value of 3,743 bp (see Inference of Protein Models). For the protein-
coding gene modeling, the RNA-seq outputs required a previous conversion,
utilizing the cufflinks2gff3 tool from MAKERZ2, leaving a transcript range of 8 -
51 thousand protein-coding genes (Table 35). The reason of this lower number
of transcripts is that by default this tool will ignore features that correspond to
single exon models, because these could pertain to repetitive elements and
pseudogenes (Holt and Yandell 2011). In the end, 39,539 transcripts intervals
were shared by all [llumina sequencings. These results suggest that the number
of protein-coding genes in Physarum predicted by RNA-seq mapping might be
overestimated, while the shorter than expected transcript lengths would
eventually fuse into larger cDNAs, thus diminishing the final protein-coding gene

number.
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The EST and RNA-seq data, together with proteins from UniProt and cDNAs from
Dictyostelium discoideum, were then used as evidences to predict the protein
coding gene models, which resulted in 25,649 transcripts identified in 5,422
unique genomic scaffolds. The total transcript extension is 15.43 Mb, i.e. 6.44%
of the genome is coding (Table 38). Most of these transcripts came from RNA-seq
evidences alone (22,315 sequences or 87%), while 428 had both EST and RNA-
seq previous data. In this respect, and as a manner of experimental control, an
equation based on the relationship between gene numbers and genome sizes
was used, to estimate the expected number of protein coding genes in Physarum
(Hou and Lin 2009). This calculation yielded 38,188 genes (Appendix 2), which is
larger than the number of obtained models (25,649 transcripts), almost the
double of the last estimation (20 thousand genes; Glockner et al., 2008), but close
to the number obtained by the RNA-seq mappings (39,539 transcripts). The
discrepance indicates not only that the gene number versus genome size
equation does not apply to Physarum, but also that most genes assembled from
RNA-seq mappings must have fused into longer transcripts in the final gene set.
In addition, an estimate the transcriptome size using the distribution of k-mers
in the sequencing outputs (Marcais and Kingsford 2011) was also attempted, but
the k-mer distributions showed no peak in any of the samples separately, or
combining all of them into a single source (data not shown), and therefore no

prediction of the transcriptome size was obtained in this manner.

Then, the predicted protein- coding genes were annotated using several sources
of biological information, which resulted in 4,915 sequences associated to
UniProt homologs, 5,752 with gene ontology annotations, 15,914 containing
InterPro domains, and 2,066 linked to KEGG orthologs; 1,629 transcripts were
annotated at all these levels. The most common species in the UniProt orthologs
was Dictyostelium discoideum, reflecting the high degree of annotation of the
genome of this species. Then, in order to study those genes involved in cell
differentiation, genes linked to this gene ontology were selected (GO:0030154;
432 genes). The encoded proteins were then separated into three groups, one
with those associated to the “embryo development” ontology (GO:0009790; 40

unique proteins), another with those with the “signal transduction” annotation
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(GO:0007165; 111 proteins), and a third group with those lacking these two
gene ontologies. Within these three groups, potential protein - protein
interactions were searched, and certain groups inside these large interactions
networks were classified as macromolecular complexes (Table 40). From the
associated ontologies, it was observed that these complexes feature distinctive
biological functions, and therefore they constitute valuable candidates to study
different aspects of the regulation of the cell differentiation in this organism in

future studies.

Validation and Completeness. To evaluate whether this assembly is a reliable
source for gene annotation, several measures of completeness were used
(Yandell and Ence 2012). First, the current assembly was compared against older
versions, and found that this release contains fewer gaps than its predecessors
(Table 51). The N50 scaffold is also larger than in former releases (97.38 Kb), a
value also greater than our estimations for the average gene size (3,743 bp; see
Inference of Protein Models). This result secures that more than 50% of the genes
will be contained in a single scaffold; otherwise additional sequencing would be
required to extend the N50 scaffold length (Yandell and Ence 2012). Then, the
genome was checked for contaminants, and found 771 sequences matching
bacterial and archaeal genome. These entries should be removed to avoid false

annotations in future releases.

Afterwards, several coding sources were mapped against the genome assembly:
ESTs, RNA-seq short and long reads, GenBank sequences and CEGMA datasets.
Most ESTs (17,577 cDNAs, or 98.03%), GenBank sequences (231 nucleotide
entries, or 91.3%) and RNA-seq long reads (over 98%; Table 55) were matched
in the genome. Unmatched sequences might have been lost due to the
fragmentation of the genome. In a similar manner, most CEGMA proteins were
found in the genome: 98.47% of the core and 98.79% of the most recent dataset.
In parallel, a CEGMA analysis was performed with its original pipeline, a
procedure recommended for highly divergent genomes. This resulted in protein
conservation ranging between 33.33% to 55.74% of the core eukaryotic genes,

and therefore this genome release can be considered either incomplete or
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divergent (Parra et al. 2007; Parra et al. 2009; Yandell and Ence 2012).

Then, the annotated gene models were compared against ab initio gene
predictions. In this case, the results show that the evidence- based gene
identification produced less false positive exons, while increasing the length of
these coding fragments (Table 56); similarly, the number of introns decreased,
while at the same time being longer. The sensitivity increased up to 30-fold, and
the specificity reached over 100-fold, when comparing the second run of
MAKER2 with the GeneMark ab initio predictions (Table 57). The support of
annotations is 17 times larger in the second MAKER2 iteration than in the
GeneMark predictions. Therefore, the method used for gene identification is
validated for this genome release, as being more sensitive, more specific, and

more supportive of annotations that standard ab initio gene finding procedures.

Furthermore, two more measures of completeness were employed with the
annotated genes: the number of encoded tRNA genes, and the percentage of
detected domains. First, a complete genome is expected to encode for all
standard amino acids for protein translation; therefore, I searched for the tRNA
genes, and found all those coding for the twenty standard amino acids (Table
29). Later, a measure of annotation quality can be obtained by calculating the
percentage of annotated proteins with known domains from the InterPro
(Hunter et al. 2009) or PFAM (Finn et al. 2008) databases. For example, the
domain content in well annotated model organisms such as human, mouse and
Drosophila range from 57 to 75% (Yandell and Ence 2012). Here it was observed
that 25,649 predicted protein- coding gene models included 7,080 sequences
(27.60%) that possessed PFAM domains, which is just over the lower threshold
for poor gene predictions (5 - 25% PFAM content; Yandell and Ence 2012).
However, as these gene models were obtained using default annotation distance
(AED) values, it is expected that the proportion of genes with PFAM domains will
increase with higher AED thresholds, and these parameters should be

incorporated in future annotation releases.
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Comparative Genomics. The Physarum genome is 4.73 and 7.27 times larger
than its D.discoideum and D.purpureum counterparts, and almost doubling their
GC-content - 41.16% in Physarum against 21.99% and 24.47% in D.discoideum
and D.purpureum, respectively. However, the number of undefined bases is over
a thousand fold larger in Physarum than in these dictyostelids (Table 63). On the
other hand, the N50 value is in all cases larger than the average gene size, with
larger N50 scaffold values in D.purpureum and Physarum, reflecting the more

recent sequencing technologies used (see page 164).

Afterwards, the repetitive sequences of Physarum and dictyostelids were
compared. First, it was noticed that, although the extent of masked bases is
larger in Physarum, the percentage of bases masked is greater in D.discoideum
than in Physarum (Tables 23 and 64). This might be due to the use of the default
RepBase database (Jurka et al. 2005), which contains more repetitive elements
from dictyostelids than from those discovered in Physarum. It was also found
that the length of repetitive elements is larger in Physarum than in D.discoideum
and D.purpureum, ranging from 52- (LTR transposons) to more than a hundred
fold (DNA elements). Furthermore, the Physarum genome is the only of the three
Mycetozoans analyzed that contains satellites. These results must be taken
cautiously, however, as these sequences were not found when using a custom
library of repetitive sequences (Table 23). All these results so far suggested that
Physarum might form a separate clade within the Mycetozoans; this hypothesis
was tested and verified through the multiple alignments of conserved coding

blocks (Figure 36).

Later, it was decided to further contrast the Physarum and the dictyostelid
genomes in terms of their coding regions. First, the number of protein coding
genes in Physarum doubled those in D.discoideum and D.purpureum (25,649
versus ~12 thousand genes; Table 65). However, less than 24% of the Physarum
transcripts were predicted as coding (23.88%, Table 62), while most
D.discoideum genes were predicted as such (90.33% coding). These results could
be linked to the fact that the method used (CPC; Kong et al. 2007) employs

similarity to annotated proteins, and because D.discoideum possess more
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annotated proteins in UniProt, therefore more sequences will be predicted as
coding. In a similar manner, both dictyostelids have larger proteome coverages
in the CEGMA proteins (larger than 92%, Table 71), and most of the D.discoideum
proteins were also assigned to orthologs groups with OrthoMCL (12,272
matches or 99.64%; Table 73). The results of the noncoding prediction with CPC,
the mapping versus CEGMA, and the OrthoMCL classification showed that the
D.discoideum genome was employed as a primary source of annotations in these
databases. Furthermore, the Gene Ontology analyses proved that a larger
proportion of the protein- coding genes is associated to signal transduction in
Physarum than in other dictyostelids, while D.discoideum and D.purpureum
displayed more genes related to transport ontologies. Other ontologies linked to
cell differentiation were found mostly or exclusively in dictyostelids, reflecting
the larger degree of experimental annotation of these two genomes (Figure 38).
The proteins encoding metabolic enzymes and their reactions in Physarum also
differ with those from the dictyostelids: In this work, the urea cycle reactions
were only observed in the slime mold, and the fatty acid biosynthesis reactions
exclusively in dictyostelids (Figure 39). These results are in agreement with the
SimiTri analyses early in this chapter, which showed that most proteins cluster
closely to dictyostelid proteins (Figure 41), except for a small group of metabolic
proteins that are highly similar to their yeast counterparts (Table 74). However,

these predicted differences would require experimental studies for confirmation.
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Conclusions

This study provides the first genomic survey of the slime mold Physarum
polycephalum. These novel deep RNA sequencings, together with formerly
obtained cDNAs, support a reference transcriptome of 25,649 encoded
nucleotide sequences. In addition, other major RNA families were mapped. These
analyses contribute the necessary basic knowledge to wunderstand the
mechanisms of cell differentiation in this organism, especially through the
characterization of networks and complexes specific to these molecular
functions. Furthermore, it provides a starting point for further exploration of the
biology of Physarum, and its utility as a model organism. Aside from the genome
and transcriptomic sequences and their analyses, this study also offers a working
pipeline and annotation protocols, which can be taken as a blueprint for the

analysis of future genome releases.
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Summary

In this chapter, the analysis of the first draft of the genome of the slime mold
Physarum polycephalum (NCBI accession 709848) was presented. This genomic
assembly entails 239.75 Mb (scaffold N50: 97.38 Kb). The genome is high on GC-
content (41.16%) and repetitive sequences (14.55 to 27.59%, depending on the
repeat library used).

Novel RNA sequencings (RNA-seq) of several strains, sample types (cell pools,
single cells), growth conditions (starved, sporulation- induced, etc.), and
different time points of the sporulation cycle were also carried out. These data,
combined with previous RNA-seq studies from this thesis work (see Chapters 3
and 4), and formerly published EST sequencings from different cell stages
(plasmodium, amoeba) support a total of 25,649 transcripts. 4,915 of these
sequences were associated to UniProt homologs, 5,752 to gene ontologies,
15,914 to InterPro domains, and 2,066 linked to KEGG pathway orthologs. No
automatic annotations or predictions were used as evidences for finding protein-
coding genes. Genes annotated for the cell differentiation (GO:0030154) were
joined into interaction networks, including subsets involved in signal
transduction and development. Protein complexes within these networks were
also identified. In addition, complete sets of 347 transfer, 928 ribosomal and
other 161 noncoding RNAs, were also mapped in the genome.

The genome annotation is validated through mapping of Physarum- specific
coding evidences (EST and RNA-seq data) and sets of core eukaryotic genes.
Furthermore, tRNA genes for all twenty standard amino acids were found, and
the protein domain content (27.6%) is within the range of reliable gene
identifications.

Compared to the dictyostelid genomes, the Physarum genome is larger and richer
in GC-content and repetitive sequences. The number of protein- coding genes is
twice as large in Physarum than in D.discoideum and D.purpureum, with more
genes annotated for the signal transduction ontology in Physarum, while more
genes linked to transport and cell differentiation ontologies were found in

dictyostelids. Annotations pertaining to metabolic pathways also support
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considerable differences between Physarum and the dictyostelids, although these
predictions require experimental confirmation.

As far as the literature shows, this is the first global analysis of the genome of
Physarum and its encoded genes, offering valuable information that adds to the
current knowledge of the slime mold biology. Furthermore, this work also offers
novel databanks of transcriptomic sequences and a working annotation pipeline,

which can be taken as a blueprint for the analysis of future genome releases.
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7. Appendix
Appendix 1. Calculation of RNA-seq Reads per mRNA molecule.

The analysis of differential gene expression usually requires normalization, to
adjust the samples and sequencing runs, into a single and common scale. The
most common normalization method for RNA-seq sequencing outputs is the
number of reads per kilobase of transcript per million of mapped reads (RPKM),
which normalizes the read counts of a given transcript to its length and the total
number of mapped reads (Mortazavi et al. 2008). However, when working with
single cells and to have a practical cutoff value of expression, it is also possible to
calculate the number of RNA-seq reads per each nuclei, and therefore on each

single cell (Parikh et al. 2010).

The procedure involves using the extracted mRNA mass, the molar mass of a
ribonucleotide, and the Avogadro number, in the mass and number
concentration equations. For example, from each sample of a wild-type single-
cell Physarum plasmodium, 100 ug of total RNA were extracted on average. The
average assembled contig length is 847 bp (Chapter 4) and the average
molecular weight (or molar mass) of a ribonucleotide monophosphate is 339.5
gr/mol. Assuming that total RNA contains 4% mRNA (4 ug), therefore I
estimated the number of transcripts per cell represented by each RNA-seq read

as follows:

4x10~0 g mRNA x 6.022x10%
847bp x 339.5gr/mol

12

=8.4X10"“ transcripts per cell
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Since the plasmodium consists of 108 nuclei (Burland et al. 1993), the number of

transcripts per nucleus is:

8.4x10" transcripts/cell
10° nuclei/cell

= 84,000 transcripts per nucleus

Considering an average of 2 x 107 mRNA reads per RNA-seq lane (Chapter 4),

then the number of transcripts represented by a sequencing read is:

84,000 ¢ranscripts | nucleus

2x10" reads/run

=0.0042 transcripts [read

Therefore, each RNA-seq mapped read represents approximately 0.004
transcripts per nucleus, so 240 reads represent approximately 1 mRNA molecule
per nucleus in our analyses of the WT31 strain (Chapter 4). In this same study,
the differential expression analysis with the deseq library from R (Anders and
Huber 2010; R Core Team 2013), was performed over contigs with combined
count of 300 mapped reads (1,26 mRNA molecule per nucleus), to reduce

noisecaused by spurious contigs and alignments.
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Appendix 2. Estimating the number of protein coding genes in Physarum

Hou Y, Lin S (2009) Distinct Gene Number-Genome Size Relationships for
Eukaryotes and Non-Eukaryotes: Gene Content Estimation for Dinoflagellate
Genomes. PLoS ONE 4(9): e6978.

Hou and Lin (2009) found a relation between the genome size (S, in Kb), and the
protein-coding gene number (P):

y' = In (—46.2 + 22.217 x")
Where x’ and y’ represent:
x" = log (S);y" = log (P)
Therefore, for the Physarum genome (S = 3 x 10¢ Kb):
P = 10!n (-46.2+22.217 log3 x10%) _— 38,187.75 ~ 38,188

there must be over 38 thousand protein-coding genes.
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