In vitro und in vivo Analyse des synaptischen Fukosyl-Proteoms der Ratte

Dissertation

zur Erlangung des akademischen Grades

doctor rerum naturalium

(Dr. rer. nat.)

genehmigt durch die Fakultät für Naturwissenschaften der Otto-von-Guericke-Universität Magdeburg

von Diplom-Biologin Nicole Höche geb. am 08.06.1983 in Sangerhausen, Sachsen-Anhalt

> Gutachter: Prof. Dr. Daniela Dieterich Prof. Dr. Rita Gerardy-Schahn

eingereicht am: 01. Oktober 2014 verteidigt am: 08. Mai 2015

Danksagung

Diese Arbeit, die der Erforschung des synaptischen Fukosyl-Proteoms gilt, entstand in den Jahren 2009-2013 am Leibniz-Institut für Neurobiologie und am Institut für Pharmakologie und Toxikologie in Magdeburg in der Forschergruppe Neuralomics. Mein besonderer Dank geht an Prof. Dr. Daniela C. Dieterich, Dr. Karl-Heinz Smalla und Dr. Wolfgang Tischmeyer, die mir die Möglichkeit gegeben haben dieses Projekt zu bearbeiten und stetig unterstützend zur Seite standen.

Auch möchte ich mich an dieser Stelle bei allen Arbeitskollegen, die diese Zeit für mich unvergesslich gemacht haben, bedanken.

Durch eine stetige Unterstützung des gesamten Arbeitskollegs und die Bereitstellung einer Vielzahl experimenteller Methodenansätze wurde meine Begeisterungsfähigkeit konstant aufrecht erhalten.

Gebührender Dank gilt dem LIN in der Gesamtheit und der Abteilung Neurochemie & Molekularbiologie unter der Leitung von Prof. Dr. Eckart Gundelfinger.

Ein besonderer Dank geht an Dr. Peter Landgraf und Dr. Anne Stellmacher die mir stetig unterstützend zur Seite standen und somit zum Gelingen der Arbeit beigetragen haben.

Ich möchte mich auch bei der gesamten Arbeitsgruppe für das angenehme Arbeitsklima bedanken.

Insbesondere Peter, Anne, Anke, Elmer, Kathi, Evi, Karina, Ines, Christine, Paula, Heike und Julia haben mir durch eine gute Portion Humor die Arbeit im Labor erleichtert.

Bei PD Dr. Thilo Kähne, Yvonne Ducho, Dr. Karin Richter, Dr. Rainer Pielot und Oliver Kobler möchte ich mich für die Unterstützung und gute Zusammenarbeit bedanken.

Mein ganz besonderer Dank gilt meiner Familie dafür, dass sie immer an mich geglaubt haben.

Inhaltsverzeichnis

Abbildur	AbbildungsverzeichnisIV				
Tabellen	TabellenverzeichnisV				
Zusamm	ZusammenfassungVI				
Summar	у	.VII			
1.	Einleitung	1			
1.1.	Das Gehirn der Säugetiere und die Funktion fukosylierter Glykokonjugate	1			
1.1.1.	Molekulare Zusammensetzung des Säugerhirns unter funktionellen Aspekten	1			
1.1.2.	Glykosylierung von Proteinen	3			
1.1.3.	Proteinfukosylierung mittels Fukosyltransferasen	7			
1.1.4.	Funktionelle Aspekte der Proteinfukosylierung	.11			
1.2.	Methodische Ansätze zur strukturellen und funktionellen Analyse von				
	fukosylierten Glykoproteinen	.12			
1.3.	Zielsetzung der Arbeit	.13			
2.	Material und Methoden	. 15			
2.1.	Material	.15			
2.1.1.	Chemikalien und Lösungen	. 15			
2.1.2.	Antikörper und Fukose-bindendes Lektin	.15			
2.1.2.1.	Primäre Antikörper	.15			
2.1.2.2.	Sekundäre Antikörper	.16			
2.1.2.3.	Darstellung eines Digoxigenin-markierten Aleuria aurantia Lektins	.17			
2.2.	Methoden	.17			
2.2.1.	Subzelluläre Fraktionierung und Isolierung von synaptischen				
	Proteinkomplexen	.17			
2.2.2.	Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese	. 19			
2.2.3.	Coomassie-Brilliantblau R250-Färbung und Silberfärbung	. 21			
2.2.4.	Westernblot, Immundetektion und Lektinfärbung	. 22			
2.2.5.	Perjodatoxidation von Glykoproteinen	. 23			
2.2.6.	Immunpräzipitation	.23			
2.2.7.	Fällung von Proteinen	24			
2.2.8.	Aleuria aurantia Lektin-Affinitätchromatographie	.24			
2.2.9.	Aleuria aurantia Lektin-basierte histochemische Färbung von Hirnschnitten	. 25			
2.2.10.	Präparation und Kultivierung von primären kortikalen Neuronenkulturen				
	aus der Ratte	.27			
2.2.11.	Metabolische Markierung kortikaler neuronaler und gliärer Proteine	. 28			
2.2.12.	Lektinzytochemie. Zuckerinhibition und Immunzytochemie	. 29			
2.2.13.	Bestimmung der Überlebensrate kortikaler Primärkulturen	30			
2.2.14.	Herstellung von BONMOT-Zellivsaten	31			
2.2.15.	Kupfer-katalysierte (3+2) Azid-Alkin-Cycoladdition (BONMOT) und				
	NeutrAvidin-Aufreinigung Biotin-markierter Proteine	.31			
2.2.16.	Kupfer-katalysierte (3+2) Azid-Alkin-Cycoladdition (FUNMOT)	33			
	und Visualisierung Fluorophor-markierter Proteine	.33			
2.2.17.	Prozessierung der Proteinproben, massenspektrometrische Analyse und				
	Auswertung der Daten	.34			
3.	Ergebnisse	36			
3.1.	Fukosylhistochemie des Rattenhirns	.36			
3.1.1.	Lokalisierung von fukosylierten Glykokoniugaten in Hirnschnittpräparaten der				
•••••	Batte	36			
3.1.2.	Intrazelluläre Lokalisation von fukosylierten Glykokoniugaten	40			
3.1.3.	Markierung fukosylierter Glykane an primären kortikalen				
	Neuronen-Glia-Kulturen mittels AAL	42			
32	AAI -hasierte Anreicherungs- und Nachweisverfahren zur Detektion				
J.2.	fukosvlierter Glykane	45			
3.2.1	Charakterisjerung der Spezifität von AAI	45			
3.2.2	AAL-basierte Identifizierung des synaptischen FukosvI-Glykonroteoms	46			
3.2.3	Massenspektrometrische Analyse des durch AAL isolierten synantischen				
512101	Fukosvl-Glykoproteoms des Rattenhirns	50			
324	Analyse der Glykanketten von Kandidatennroteinen auf das Vorkommen				
J.2. 7 .	fukosvlierter Komponenten mittels $\Delta \Delta I$	53			

Analyse dynamischer Aspekte der Fukosylierung	56			
Einfluss von NMDA, Glyzin und AzL-(-)-Fukose auf die Zellvitalität kortikaler				
Primärkulturen	56			
Analyse NMDA- und Glyzin-induzierter Auswirkungen auf die Dynamik des				
Fukosyl-Glykoproteoms durch BONMOT	59			
Massenspektrometrische Analyse des AzL-fukosylierten Glykoproteoms	64			
Analyse der Dynamik des Fukosyl-Glykoproteoms durch FUNMOT nach				
NMDA-Glyzin-induzierter Plastizität	67			
Visualisierung dynamischer Fukosylierung und Proteinneusynthese				
mittels kombinierter FUNMOT und FUNCAT-Analysen	69			
Analyse des Grades der Fukosylierung abhängig von der				
Proteinneusynthese durch BONCAT und FUNMOT	74			
Diskussion	78			
Zelluläre und subzelluläre Verteilung fukosylierter Proteine	79			
Identifizierung fukosylierter Synapsenproteine	80			
AAL-basierte Analyse fukosylierter Komponenten	81			
BONMOT	89			
Quantifizierung und Dynamik der de novo Fukosylierung synaptischer Protein	e95			
Existiert eine funktionelle Beziehung zwischen Proteinfukosylierung und				
Proteinneusynthese?	98			
Ausblick	100			
Literatur	103			
ngsverzeichnis	121			
-	123			
auf	148			
Publikation149				
ändigkeitserklärung	150			
	Analyse dynamischer Aspekte der Fukosylierung Einfluss von NMDA, Glyzin und AzL-(-)-Fukose auf die Zellvitalität kortikaler Primärkulturen Analyse NMDA- und Glyzin-induzierter Auswirkungen auf die Dynamik des Fukosyl-Glykoproteoms durch BONMOT Massenspektrometrische Analyse des AzL-fukosylierten Glykoproteoms Analyse der Dynamik des Fukosyl-Glykoproteoms durch FUNMOT nach NMDA-Glyzin-induzierter Plastizität Visualisierung dynamischer Fukosylierung und Proteinneusynthese mittels kombinierter FUNMOT und FUNCAT-Analysen Analyse des Grades der Fukosylierung abhängig von der Proteinneusynthese durch BONCAT und FUNMOT Diskussion Zelluläre und subzelluläre Verteilung fukosylierter Proteine Identifizierung fukosylierter Synapsenproteine AAL-basierte Analyse fukosylierter Komponenten BONMOT Quantifizierung und Dynamik der <i>de novo</i> Fukosylierung synaptischer Protein Existiert eine funktionelle Beziehung zwischen Proteinfukosylierung und Proteinneusynthese? Ausblick			

Abbildungsverzeichnis

Abb. 1.1.	Molekulare Zusammensetzung der synaptischen Zellmembran.	. 2
Abb. 1.2.	Die strukturelle Diversität N- und O-glykosidisch gebundener Oligosaccharide.	. 4
Abb. 1.3.	Biosynthese von O-glykosidisch gebundenen Oligosaccharidketten.	. 5
Abb. 1.4.	Biosynthese von N-glykosidisch gebundenen Oligosaccharidketten.	. 7
Abb. 1.5.	L-(-)-Fukose und Fukosylierung mittels humaner a1,2-; a1,3/4- und a1,6 FukTs	. 8
Abb. 1.6.	Biosynthese der GDP-Fukose und subzelluläre Lokalisation von FukTs.	. 9
Abb. 3.1.	Lokalisierung fukosylierter Glykokonjugate in der Hippokamusformation des adulten	
	Rattenhirns.	38
Abb. 3.2.	Lokalisierung fukosylierter Glykokonjugate in der Kleinhirnrinde des adulten Rattenhirns.	40
Abb. 3.3.	Intrazelluläre Lokalisation fukosylierter Glykokonjugate im Hippokampus und der	
	Kleinhirnrinde des adulten Rattenhirns.	41
Abb. 3.4.	Detektion fukosylierter Glykokonjugate in kortikalen Primärkulturen	43
Abb. 3.5.	Detektion fukosylierter Glykokonjugate an glialen Zellmembranen mittels	
	AAL-Markierung	44
Abb. 3.6.	Analyse der Bindungscharakteristika von AAL.	46
Abb. 3.7.	AAL-chemische Charakterisierung des synaptischen Fukosyl-Glykoproteoms im	
	adulten Rattenhirn.	48
Abb. 3.8.	Katalogisierung der durch Aleuria aurantia Lektin angereicherten Kandidatenproteine 4	49
Abb. 3.9.	Klassifizierung der durch AAL angereicherten Proteine.	51
Abb. 3.10.	Detektion terminaler Fukosyl-Glykanstrukturen an immunpräzipitieren Proteinen mittels	
	AAL-chemischem Nachweisverfahren.	55
Abb. 3.11.	Vitalität kortikaler Primärkulturen nach induzierter synaptischer Aktivität und	
	metabolischer AzL-(-)-Fukose Markierung	58
Abb. 3.12.	Anreicherung AzL-fukosylierter Glykoproteine nach erfolgter Biotin-Markierung mittels	
	CuAAC und NeutrAvidin-AC	51
Abb. 3.13.	Statistische Analyse des relativen Grades der Fukosylierung der durch NeutrAvidin	
	angereicherten AzL-fukosylierten Proteine	33
Abb. 3.14.	Klassifizierung des durch NeutrAvidin angereicherten AzL-fukosylierten Proteoms	35
Abb. 3.15.	Visualisierung AzL-fukosylierter Glykokonjugate in kortikalen Primärkulturen durch	
	FUNMOT.	38
Abb. 3.16.	Analyse des zeitlichen Einbau von AzL-(-)-Fuk in die Glykane und von HPG in	
	neusynthetisierte Proteine	71
Abb. 3.17.	Visualisierung AzL-fukosylierter Glykokonjugate und neusynthetisierter Proteine durch	
	FUNMOT und FUNCAT.	73
Abb. 3.18.	Detektion neusynthetisierter Proteine und Visualisierung AzL-fukosylierter	
	Glykokonjugate durch BONCAT und FUNMOT	76

Tabellenverzeichnis

Tabelle	1: Verwendete primäre Antikörper	15
Tabelle	2: Verwendete sekundäre Antikörper	16
Tabelle	3: Verwendete Fukose-bindende Lektine	17
Tabelle	4: Zusammensetzung von 5-20 %igen Gradienten-Polyacrylamidgelen	19
Tabelle	5: Zusammensetzung von 7 bzw. 9,5 %igen homogenen Polyacrylamidgelen	20
Tabelle	6: Verwendete Zeiss Filtersets	30
Tabelle	7: Auswahl massenspektrometrisch identifizierter AAL-bindender Membran- und	
	extrazellulärer Proteine.	52
Tabelle	8: Auflistung massenspektrometrisch identifizierter NeutrAvidin-angereicherten Proteine	66
Tabelle	9: Meta-Analyse der AAL-AC angereicherten Proteine	82
Tabelle	10: Meta-Analyse der AAL-AC angereicherten Proteine in KEGG	84
Tabelle	11: Meta-Analyse der BONMOT angereicherten Proteine mittels GO	91
Tabelle	12: Meta-Analyse der BONMOT angereicherten Proteine mittels KEGG	92
Tabelle	13: Vergleichsanalyse der BONMOT angereicherten und massenspektrometrisch	
	identifizierten Fukosyl-Proteine1	02
S1: Au	flistung der durch AAL-AC angereicherten und durch MS identifizierten	
289	9 angereicherten Membran- und extrazelluläre Proteine 1	23
S2: Au	flistung der durch BONMOT und MS 136 identifizierten Membran- und	
ext	razelluläre Proteine	29
S3: Au	flistung der durch AAL oder BONMOT und MS-Analyse 332 identifizierten Membran- und	
ext	razelluläre Proteine1	32
S4: Ve	rgleichsanalyse der durch AAL oder BONMOT und MS-Analyse 332 identifizierten	
Me	mbran- und extrazelluläre Proteine 1	40

Zusammenfassung

Zusammenfassung

Die Glykosylierung von Proteinen, im Besonderen der Prozess der Fukosylierung, stellt eine wichtige posttranslationale Modifikation dar. Die kovalente Bindung von L-Fukose beeinflusst die funktionelle Diversität der Proteine als auch deren biologische Aktivität. So konnte für Fukose-enthaltende Glykane im Gehirn des Säugetiers gezeigt werden, dass diese in kognitive Prozesse des Lernens und der Gedächtnisbildung involviert sind. Lernprozesse oder auch elektrophysiologisch herbeigeführte Plastizität führen zu einer Steigerung der Fukosylierung von Proteinen in hippokampalen Neuronen. Des Weiteren hat zwar die Inhibition der Fukosylierung von Proteinen keinen Einfluss auf die Induktion der Langzeitpotenzierung (LTP) oder Gedächtnisbildung, verhindert aber die Aufrechterhaltung der LTP oder die Ausbildung des Langzeitgedächtnisses. Um den Prozess der Fukosylierung im Kontext neuronaler Plastizität zu verstehen, ist es unabdingbar, fukosylierte synaptische Proteine zu identifizieren und ihre subzelluläre Verteilung zu analysieren. Für die Analyse der zellulären Lokalisierung Fukose-enthaltender Glykane im Gehirn der Ratte, wurde im Rahmen dieser Arbeit das Fukosespezifische Aleuria aurantia Lektin (AAL) verwendet. Eine starke Lektinbindung wurde an Zellmembran-assoziierten Strukturen, insbesondere in Regionen mit hoher Synapsendichte, festgestellt. Zur Identifizierung fukosylierter synaptischer Proteine wurden Proteinlysate einer synaptischen Membranfraktion entweder mittels AAL-Affinitäts-Chromatographie oder Lektinblotting analysiert. Ein zweiter, gezielter konzentrierte Neurotransmitter-Rezeptoren, Analyseansatz sich auf spannungsabhängige und Liganden-gesteuerte Ionenkanäle, Zelladhäsionsmoleküle, extrazelluläre Matrixproteine sowie Wachstumsfaktor-Rezeptoren. Darüber hinaus wurde eine alternative Strategie zur metabolischen Markierung mit einem Azidmarkierte Fukose-Derivat durchgeführt, um NMDA/Glyzin-induzierte Veränderungen der Proteinfukosylierung in primären kortikalen Kulturen zu untersuchen. Durch die Kombination dieser Methoden konnten sowohl bereits bekannte als auch bisher unbekannte fukosylierte Proteine bestätigt bzw. identifiziert werden. Zu diesen identifizierten Proteinen gehören unter anderem Neuroplastin, NCAM, Caspr2 und Kv1.2: Proteine, die mit Neuroplastizitätsprozessen in Verbindung gebracht werden. Auch ermöglichten die experimentellen Studien innerhalb dieser Arbeit, die Veränderungen der Fukosylierung in Abhängigkeit von NMDA-induzierter Langzeitdepression (LTD) in kortikalen Primärkulturen zu verfolgen.

Summary

Protein glycosylation, especially fucosylation, is an important post-translational modification. The covalent attachment of carbohydrates, like fucose, extends the functional spectrum of proteins, and influences their biological activity. Interestingly, fucosylated carbohydrate structures in the brain have been implicated in molecular mechanisms that underlie neuronal development, learning and memory. Plasticity phenomena including hippocampal long-term potentiation (LTP) and memory formation, for instance, are accompanied by a transient increase in fucose incorporation into membrane glycoproteins. Most notably, inhibition of protein fucosylation does not interfere with LTP induction or memory acquisition, but prevents specifically the maintenance of LTP and long-term memory formation. For a better understanding of protein fucosylation in the context of neuronal plasticity, it is, therefore, important (i) to identify fucosylated synaptic proteins, (ii) to analyse the modes of their synthesis and modification, and (iii) to determine their subcellular localization. In the present study, we used the fucose-specific lectin from Aleuria aurantia (AAL) to investigate the distribution of fucose-containing carbohydrate moieties in the rat brain. We found strong AAL staining of membrane structures especially in synaptic neurophil regions. To identify fucosylated synaptic proteins, extracts from synaptic junctions were analysed either in an unbiased approach using AAL-affinity chromatography or in a targeted approach using immunoprecipitations for selected candidate proteins in conjunction with AAL blotting. For the targeted approach we focused on proteins previously implicated in neuroplasticity, i.e. neurotransmitter receptors, cell adhesion molecules, extracellular matrix proteins, voltage-gated potassium and calcium channels, growth factor receptors and ligandgated ion channels. In addition, we performed an alternative strategy for metabolical tagging of biomolecules using an azide-labelled fucose derivative to specifically label and identify de novo fucosylated proteins in primary cortical neuronal cultures after NMDA-receptor mediated changes. As a result of this combined approach we identified various already known as well as so far unknown to be fucosylated proteins, which have been implicated in processes of neuroplasticity such as neuroplastin, NCAM, Caspr2 and Kv1.2. Furthermore, this approach enabled us to track changes in protein fucosylation for several of the identified proteins dependent on synaptic activity in primary cultures of cortical neurons. In summary, our combination of AAL-based and metabolic labelling approaches enabled a proteomewide monitoring of fucosylation dynamics.

1. Einleitung

1.1. Das Gehirn der Säugetiere und die Funktion fukosylierter Glykokonjugate

1.1.1. Molekulare Zusammensetzung des Säugerhirns unter funktionellen Aspekten

Wieso und auf welche Weise ist das Gehirn zu kognitiven Prozessen fähig? Warum ist es in seinem strukturellen Aufbau so komplex? Fragen wie diese beschäftigen Biologen, Mediziner und Hirnforscher seit Beginn der naturwissenschaftlichen Forschung.

Sinnbildlich ist das Gehirn mit einem Puzzle zu vergleichen, das sich aus mehreren tausenden Teilen zusammensetzt. Es ist die Steuerzentrale des gesamten Körpers und in der Lage auf Einflüsse aus der Umwelt zu reagieren. Zellulär betrachtet wird die Komplexität des Gehirns durch verschiedene Subtypen an Neuronen und Gliazellen hervorgerufen. Morphologisch zeichnen sich Neurone ausgehend vom Soma durch verzweigte Dendritenbäume und dem Axon aus. Durch das Axon werden Informationen vom Soma weitergeleitet, welche an den Dendriten benachbarter Neurone empfangen werden. Dennoch sind Dendriten und Axon nicht direkt verbunden, sondern durch einen Spalt, dem synaptischen Spalt, voneinander getrennt.

An diesen spezialisierten Kontaktstellen, den sogenannten Synapsen, werden die Informationen in der Kodierung von elektrischen und chemischen Signalen weitergeleitet. Die Übertragung zwischen chemischen Synapsen ist dadurch gekennzeichnet, dass elektrische Signale in Form von Aktionspotentialen in chemische Signale mittels Ionen und Neurotransmitter übersetzt werden (Weight 1971, Kandel und Gardner 1972).

Dieses Prinzip der Signalübertragung setzt in Neuronen das Vorhandensein hochkomplexer, molekularer Netzwerke voraus, die in der Lage sind, die übermittelten Signale zu dekodieren. Eine bedeutende Rolle spielen hierbei eine Vielzahl von Neurotransmitter-Rezeptoren, die durch die gegebene Aktivierung eine Weiterleitung des Signals ermöglichen, mittels Ionen-Influx oder durch die Kopplung und Aktivierung verschiedener sekundären Signalkaskaden (Weight 1971, Kandel und Gardner 1972).

Betrachtet man die Synapsen mit ihren hochmolekularen Netzwerken etwas näher im molekularen Aufbau und funktionellen Zusammenspiel, zeigt sich, dass sie durch ein hohes Maß an Dynamik im Proteom gekennzeichnet sind. Diese Dynamik wird durch Prozesse der *de novo* Translation, Proteindegradation und durch eine Vielzahl posttranslationaler Modifikationen widergespiegelt. Es wurde vielfach gezeigt, dass verschiedene Komponenten des molekularen Netzwerks der Synapsen durch eine Vielzahl an Glykanen posttranslational modifiziert sind (Gurd *et al.* 1983, Stanojev und Gurd 1987, Koles *et al.* 2005).

Glykanketten zeichnen sich strukturell durch einzeln verzweigte monosaccharidische Bausteine aus, denen in der Gesamtheit unter anderem eine funktionelle Bedeutung bei der Zelldifferenzierung, dem neuronalen Wachstum, der Signaltransduktion und bei der Zell-Zell-Erkennung zugeschrieben wird (Varki 1993, Kleene und Schachner 2004). Erwähnenswert hierbei ist, dass fast alle Familien der Neurotransmitter-Rezeptoren hochglykosyliert sind (Clark *et al.* 1998, Martin 2002).

Abb. 1.1. Molekulare Zusammensetzung der synaptischen Zellmembran. Die synaptische Zellmembran im Gehirn des Säugetiers ist durch eine Vielzahl posttranslational-modifizierter Komponenten gekennzeichnet. Die Glykosylierung, eine der wichtigsten posttranslationalen Modifikationen, führt dazu, dass Proteine und Lipide durch eine enorme strukturelle Vielfalt an monosaccharidischen Komponenten gekennzeichnet sind. Es handelt sich dabei vorwiegend um N-Acetyl-Glukosamin (GlkNAc), N-Acetyl-Galaktosamin (GalNAc), Glukose (Glk), Mannose (Man), Galaktose (Gal), Sialinsäure (NeuNAc) und Fukose (Fuk) (Kleene und Schachner 2004). Ausgehend von der Bindung im Proteingerüst kann eine Unterscheidung zwischen N- und O-Glykanen erfolgen (Breen *et al.* 1998), (Kleene und Schachner 2004). (Abbildung modifiziert nach Rillahan *et al.* (Rillahan und Paulson 2011))

Einleitung

Das Gehirn fungiert als Steuerzentrale des gesamten Körpers. Es ist in der Lage, bei Prozessen synaptischer Plastizität adaptiv auf Veränderungen der physiologischen und morphologischen Parameter mit entsprechenden Änderungen auf molekularer Ebene zu reagieren (Matthies 1989).

Lang anhaltende Veränderungen der synaptischen Effizienz, wie LTP und LTD, verlangen sowohl eine intakte Proteinbiosynthese (Krug *et al.* 1984, Montarolo *et al.* 1986, Frey *et al.* 1988, Freeman *et al.* 1995) als auch die Möglichkeit der posttranslationalen Modifikation (Jork *et al.* 1986, Krug *et al.* 1991, Rose 1995, Matthies *et al.* 1999). LTP kann induziert werden durch hochfrequente Reizungen bestimmter Nervenbahnen und führt zu einer langanhaltenden verstärkten synaptischen Übertragung. Hingegen wird als Umkehrprozess der LTP die LTD verstanden, welche durch eine reduzierte synaptische Übertragung gekennzeichnet ist (Malenka und Nicoll 1993, Oliet *et al.* 1997). Beide Prozesse stellen eigene Formen synaptischer Plastizität dar, welche durch die Abhängigkeit zu N-Methyl-D-Aspartat (NMDA)-Rezeptoren geprägt sind (Malenka und Nicoll 1993).

1.1.2. Glykosylierung von Proteinen

Die synaptische Zellmembran ist durch eine Vielzahl unterschiedlicher Glykoproteine geprägt. Glykoproteine sind durch Oligosaccharide modifiziert, welche sich strukturell aus einer bestimmten Zahl monosaccharidischer Bausteine zusammensetzen.

Es handelt sich hierbei um N-Acetyl-Glukosamin (GlkNAc), N-Acetyl-Galaktosamin (GalNAc), Glukose (Glk), Mannose (Man), Galaktose (Gal), Sialinsäure (NeuNAc) und Fukose (Fuk) (Kleene und Schachner 2004). Ausgehend von der glykosidischen Bindung im Proteingerüst kann eine Unterscheidung zwischen N- und O-Glykoproteinen erfolgen (Breen *et al.* 1998, Kleene und Schachner 2004).

Die O-glykosidisch gebundenen Oligosaccharide sind durch die Hydroxyl-Gruppe der Aminosäuren Serin (Ser) oder Threonin (Thr) mit GalNAc oder Man verbunden (Haltiwanger und Lowe 2004, Kleene und Schachner 2004, Potter *et al.* 2006). Eine Konsensussequenz für die O-Glykosylierung ist zum gegenwärtigen Stand nicht bekannt.

N-glykosidisch gebundene Oligosaccharide sind hingegen über die Amid-Gruppe der Aminosäure Asparagin (Asn), welche in der Konsensussequenz Asn-X-Ser/Thr (X≠Prolin) vorliegen kann, mit GlkNAc verbunden (Kleene und Schachner 2004). Ausgehend von der Komplexität sind O-Glykoproteine im Vergleich zu den N-Glykoproteinen durch verhältnismäßig wenige Monosaccharide modifiziert. Strukturell weisen aber sowohl die N- als auch O-Glykoproteine eine enorme strukturelle Diversität auf. Gegenwärtig ist bekannt, dass Zellmembran-assoziierteund sekretorische Proteine durch einzelne bzw. mehrere Oligosaccharidketten modifiziert sind (Varki 1993, Breen *et al.* 1998).

Die Mehrheit der zytosolischen und nukleären Proteine ist nicht glykosyliert, wenngleich zu erwähnen ist, dass Transkriptions-Faktoren und Proteine, lokalisiert im Zellkernporen-Komplex, durch einzelne GlkNAc-Monosaccharide modifiziert sein können (Breen *et al.* 1998, Dell und Morris 2001, Vosseller *et al.* 2006).

Abb. 1.2. Die strukturelle Diversität N- und O-glykosidisch gebundener Oligosaccharide. Glykanketten an Plasma-, Zellmembran-assoziierten- und sekretorischen Proteinen liegen in Nglykosidischer Bindung zu Asn oder in O-glykosidischer Bindung zu Ser/Thr vor. Sowohl N-Glykane als auch O-Glykane weisen eine hohe Diversität der monosaccharidischen Zusammensetzung auf. (Abbildung modifiziert nach Marth *et al.* (Marth J.D 2008))

Einleitung

Die strukturellen Unterschiede N- und O-glykosidisch gebundener Oligosaccharide verweisen auf verschiedene Synthesewege. Der strukturelle Aufbau von O-glykosidisch gebundenen Oligosacchariden findet überwiegend in den Zisternen des Golgi-Apparates direkt am Protein statt und wird im Einzelnen durch eine Vielzahl unterschiedlicher Glykosyltransferasen katalysiert. Beginnend mit dem Transfer von GalNAc oder Man katalysiert durch die N-Acetyl-Galaktosaminyltransferase bzw. O-Mannosyltransferase wird durch die Aktivität weiterer Transferasen das schrittweise Anheften von Monosacchariden, wie beispielweise GalNAc, Gal oder Fuk, ermöglicht (Kleene und Schachner 2004).

Abb. 1.3. Biosynthese von O-glykosidisch gebundenen Oligosaccharidketten. Die Synthese von O-Glykanen beginnt in den Zisternen des Golgi-Apparats mit dem Anfügen von (A) GalNAc oder (B) Man an Ser- oder Thr-Reste. Im weiteren Verlauf findet stufenweise aufeinander folgend das Anfügen von GlkNAc, Gal, Fuk oder NeuNAc in unterschiedlichen Verbindungen statt. (Abbildung modifiziert nach Kleene *et al.* (Kleene und Schachner 2004))

5

Einleitung

Im Gegensatz dazu ist die Synthese der N-glykosidisch gebundenen Oligosaccharide durch eine Reihe komplexer Reaktionen gekennzeichnet, die im rauen endoplasmatischen Retikulum (ER) und in den Zisternen des Golgi-Apparates ablaufen. Ausgehend von einem Lipid-Dolichol-Phosphat, welches verankert in der Membran des ER vorliegt, findet schrittweise die Synthese eines Kernmolekülgerüst 14 Monosacchariden (Glk₃Man₉GlkNAc₂) dass sich insgesamt aus statt. zusammensetzt. Der Transfer des Kerngerüsts auf das am ER translatierte Protein, wird durch die Oligosaccharid-Proteintransferase katalysiert und findet en bloc auf die Amid-Gruppe der Aminosäure Asn statt. Unmittelbar nach dem Transfer werden schrittweise drei Glk-Reste und ein Man-Rest vom Tetradecasaccharid entfernt. Nach diesem Schritt wird das Protein zum Golgi-Apparat transportiert. In den einzelnen Zisternen des Golgi-Apparates, welche durch eine Vielzahl Trimming- und unterschiedlicher Enzyme charakterisiert sind, finden weitere Elongationsschritte des N-glykosidisch gebundenen Man₈GlkNAc₂-Moleküles statt (Kleene und Schachner 2004).

Abb. 1.4. Biosynthese von N-glykosidisch gebundenen Oligosaccharidketten. Stufenweise beginnt im ER mit der Anheftung von drei Glk, neun Man und zwei GlkNAc an das Membranassoziierte Lipid-Dolichol-Phosphat die Synthese von N-glykosidisch gebundenen Oligosacchariden. Durch die Oligosaccharid-Proteintransferase wird nachfolgend das Kernmolekül *en bloc* auf die Asn-Reste von wachsenden Polypeptiden transferiert. Wobei anschließend durch zwei Glukosidasen und einer Mannosidase einzelne Glk-Reste sowie ein Man-Rest abgespalten werden. Weitere *Trimming*und Elongationsschritte einzelner Monosaccharide finden zusätzlich in den Zisternen des Golgi-Apparates statt. (Abbildung modifiziert nach Kleene *et al.* (Kleene und Schachner 2004))

1.1.3. Proteinfukosylierung mittels Fukosyltransferasen

Die L-(-)-Fukose (6-Desoxy-L-(-)-Galaktose) stellt eine essentielle terminale Komponente synaptischer Glykoproteine dar und ist in der Grundstruktur durch das Fehlen einer Hydroxylgruppe am Kohlenstoff der C6-Position gekennzeichnet (Becker und Lowe 2003).

Einleitung

Sie kommt in der Natur ausschließlich als L-Enantiomer vor und ist in den Bindungspositionen α 1,2 terminal zu D-Gal, bei α 1,3 oder α 1,4 subterminal zu GlkNAc-Resten und in α 1,6 am innersten GlkNAc in α -Konfiguration vorzufinden.

Der aktive Transfer von L-(-)-Fuk und die damit verbundene terminale Modifizierung von Glykanstrukturen wird im Einzelnen durch spezialisierte Enzyme, den Fukosyltransferasen (FukTs), katalysiert.

Beim Menschen sind bislang 13 FukTs identifiziert. Aber auch Invertebraten, Vertebraten, Pflanzen und Bakterien sind durch ein Vorkommen an FukTs gekennzeichnet (Becker und Lowe 2003, Ma *et al.* 2006, Moriwaki und Miyoshi 2010).

Abb. 1.5. L-(-)-Fukose und Fukosylierung mittels humaner α 1,2-; α 1,3/4- und α 1,6 FukTs. Die Fukosylierung der Akzeptormoleküle O-Glykane (links) und N-Glykane (rechts), findet in den Kompartimenten des Golgi-Apparates statt. Eine terminale L-(-)-Fukose-basierte α 1,2-, α 1,3/4- oder α 1,6-Modifizierung wird dabei durch die spezialisierten Fukosyltransferasen (FukTs) vorgenommen. (Abbildung modifiziert nach Bing Ma *et al.* 2006 (Ma *et al.* 2006))

Als Donor für den L-(-)-Fuk-Transfer fungiert das Nukleotid-Monosaccharid Guanosin-Diphosphat-ß-L-Fukose (GDP-Fuk). Dieses wird im Zytoplasma entweder durch *de novo* Synthese oder den *Salvage Pathway* bereitgestellt.

Bei der *de novo* Synthese, die insgesamt 90 % der totalen GDP-Fuk liefert, wird GDP-Man durch die Enzyme GDP-Mannose-4,6-Dehydrase und GPD-keto-6-Desoxymannose 3,5-Epimerase/4-Reduktase zu GDP-Fuk umgewandelt. Die verbleibenden 10 % der gesamten GDP-Fuk werden durch den *Salvage Pathway* bereitgestellt, welcher zytosolische L-(-)-Fuk nutzt, die entweder aus extrazellulären Quellen oder lysosomalem Abbau stammt. Hierbei wird die L-(-)-Fuk durch Fukokinase phosphoryliert und anschließend durch die GDP-Fukose-Pyrophosphorylase zu GDP-Fuk umgewandelt (Becker und Lowe 2003, Ma *et al.* 2006).

Abb. 1.6. Biosynthese der GDP-Fukose und subzelluläre Lokalisation von FukTs. Die Bereitstellung von Guanosin-Diphosphat-ß-L-Fukose (GDP-Fuk) findet im Zytoplasma durch zwei unterschiedliche Synthesewege statt. Bei der *de novo* Synthese wird GDP-Man zu GDP-4-keto-6-Desoxymannose und anschließend zu GDP-Fuk umgewandelt. Der *Salvage Pathway* nutzt hingegen frei verfügbare Fuk, die aus extrazellulären Quellen und Iysomalen Abbau stammt. Die Fuk wird dabei phosphoryliert und anschließend zu GDP-Fuk umgewandelt. (Abbildung modifiziert nach Bing Ma *et al.* 2006 (Ma *et al.* 2006))

Durch den Transfer des Nukleotid-Monosaccharid GDP-Fuk wird am anomeren Zentrum der L-(-)-Fuk eine Inversion hervorgerufen, so dass diese am Akzeptormolekül in α -Konfiguration vorliegt.

Einleitung

Anhand dieser Tatsache werden alle bis jetzt bekannten FukTs als α FukTs bezeichnet und entsprechend der Bindungsspezifitäten in α 1,2-; α 1,3/4-; α 1,6- und O-FukTs klassifiziert (Ma *et al.* 2006).

Die α1,2-Fukosylierung wird von den FukTs fut1 und fut2 katalysiert (Larsen et al. 1990, Kelly et al. 1995, Becker und Lowe 2003). Dieser Art der Fukosylierung wird bei Prozessen des Lernens und der Gedächtnisbildung ein entscheidender Einfluss zugeschrieben. Die FukTs fut 3-7 und fut 9-11 synthetisieren α1,3- und wie im Fall von fut 3 und fut 5 auch α 1,4-fukosylierte Glykanstrukturen, zu denen die Le^X- oder sialyl-Le^X-Antigene zählen (Becker und Lowe 2003, Ma et al. 2006). Dabei zeigen experimentelle Untersuchungen mit anti-Le^X monoklonalen Antikörpern eine Inhibierung der zellulären Adhäsion von Körnerzellen zu Astrozyten im Kleinhirn und eine Veränderung des Neuriten-Wachstums (Nishihara et al. 2003, Kudo et al. 2007). Die α 1,6-Fukosylierung wird von der *fut* 8 katalysiert (Taniguchi *et al.* 2006). Diese Art der Fukosylierung wirkt auf Proteinfaltung und -struktur ein, wodurch physiologische und pathologische Ereignisse, einschließlich der Zelldifferenzierung, Embryogenese und der Tumor-Invasion reguliert werden (Moriwaki und Miyoshi 2010). Insbesondere Studien von fut 8-knockout Mäusen zeigten die Wichtigkeit der a1,6-Fukosylierung von Membran-assoziierten Proteinen. So zeigen fut 8-knockout Mäuse starke Veränderungen des Lungengewebes. Diese resultieren aus der Fehlfunktion des TGF ß-Rezeptors, hervorgerufen durch die fehlende a1,6-Fukosylierung und eine verminderte Affinität zum Liganden (Taniguchi et al. 2006, Moriwaki und Miyoshi 2010).

Die O-FukTs *pofut 1* und *pofut 2* katalysieren den Transfer von L-(-)-Fukose direkt an die Hydroxylgruppe von Serin oder Threonin. Eine bekannte O-Fukose Modifikation ist die der *Epidermal Growth Faktor-like Repeats*, welche die Affinität des *Notch*-Rezeptors zum Liganden steuert (Wang *et al.* 2001, Haltiwanger und Lowe 2004, Ma *et al.* 2006). Die O-FukTs liegen in löslicher Form im ER vor (Ma *et al.* 2006).

Im Gegensatz dazu ist für alle bislang bekannten α1,2-; α1,3/4-; α1,6-FukTs charakteristisch, dass diese aus einer kurzen N-terminalen zytosolischen Sequenz, einer Transmembrandomäne, einer kurzen Stammregion und einer großen C-terminalen katalytischen Domäne bestehen. Für diese Transferasen ist zudem bekannt, dass durch Cathepsin-ähnliche Proteasen im *trans*-Golgi eine enzymatische Spaltung in der Stamm-Region erfolgen kann, wodurch die Möglichkeit der Sekretion gegeben ist (Lammers und Jamieson 1990, Mollicone *et al.* 1990).

Einleitung

1.1.4. Funktionelle Aspekte der Proteinfukosylierung

Fukosylierte Oligosaccharide weisen in einer Vielzahl biologischer Prozesse funktionelle Bedeutung auf. So findet die Bestimmung der ABO-Blutgruppenzugehörigkeit anhand fukosylierter Oberflächen-Antigene der roten Blutkörperchen statt (Ma *et al.* 2006). Eine veränderte Expression von fukosylierten Oligosacchariden wurde zudem bei Krebs und Entzündungsprozessen beobachtet (Moriwaki und Miyoshi 2010).

In Prozessen der neuronalen Entwicklung wurde deutlich, dass die O-Fukosylierung des *Notch*-Rezeptors eine veränderte Aktivität induziert, welche durch eine Änderung der Rezeptor-Konformation oder durch eine veränderte Affinität zum Liganden hervorgerufen wird (Haltiwanger und Lowe 2004).

Betrachtet man die Effekte der Fukosylierung hinsichtlich der Gedächtnisbildung oder des Lernens, wird durch Studien aus vergangenen Jahrzehnten gezeigt, dass fukosylierte Glykanstrukturen weitreichende Effekte ausüben. So führt LTP oder elektrophysiologische Lernmodelle zur Proteinfukosylierung in hippokampalen Neuronen (Pohle *et al.* 1987, Matthies 1989, Angenstein *et al.* 1992, Rose 1995, Matthies *et al.* 1997). Eine Steigerung der LTP *in vitro* in hippokampalen Hirnschnitten und *in vivo* wird durch die Verabreichung von L-(-)-Fuk oder 2-Fukosyllaktose induziert (Krug *et al.* 1994, Matthies *et al.* 1996, Matthies *et al.* 1997). Untersuchungen von Jork *et al.* machten zudem deutlich, dass die intraventrikuläre Injektion von 2-Desoxy-Galaktose zu einer Abnahme der Fukosylierung führt, welche durch die Inhibition der α 1,2-Verbindung hervorgerufen wird (Jork *et al.* 1986, Jork *et al.* 1989). Diese Inhibition führt einerseits zur Amnesie (Jork *et al.* 1986, Jork *et al.* 1989) in unterschiedlichen Lernparadigmen und andererseits zur Unterdrückung der LTP-Erhaltung (Krug *et al.* 1991, Matthies *et al.* 1999).

Ebenso erwähnenswert ist, dass eine plastizitätsrelevante Zunahme der Fukosylierung durch D1/D5 Dopamin-Rezeptor-Aktivität reguliert werden kann (Angenstein *et al.* 1992). Dabei wird angenommen, dass die Aktivität der Dopamin-Rezeptoren die Expression von LTP und LTD über die Modulation der glutamatergen Neurotransmission erleichtert (Frey *et al.* 1991, Frey *et al.* 1993, Otmakhova und Lisman 1996, Matthies *et al.* 1997, Lemon und Manahan-Vaughan 2006) und Assoziationen zur Gedächtniskonsolidierung impliziert (Mele *et al.* 2004, Dalley *et al.* 2005, O'Carroll *et al.* 2006, Nagai *et al.* 2007).

1.2. Methodische Ansätze zur strukturellen und funktionellen Analyse von fukosylierten Glykoproteinen

Das Repertoire der Methodik zur strukturellen Untersuchung des Glykoproteoms wurde in den vergangenen Jahren stetig erweitert. Einen besonderen Stellenwert nehmen Kohlenhydrat-bindende Proteine, die sogenannten Lektine, ein. Viele Lektine wurden in Pflanzen, Tieren und Pilzen identifiziert (Fujihashi *et al.* 2003). Ausgehend davon zeichnen sich Lektine durch eine enorme Vielfalt an Affinitäten aus, unter anderem zählen das *Ulex europaeus I*, das *Lotus tetragonolobus* und das *Aleuria aurantia* Lektin (AAL) zu den α-L-(-)-Fuk-bindenden Lektinen (Goldstein und Hayes 1978, Yamashita *et al.* 1985, Fukumori *et al.* 1990, Wimmerova *et al.* 2003).

AAL ist charakterisiert durch eine hohe Bindungsaffinität zu α 1,6-fukosylierten Oligosacchariden, zusätzlich bestehen auch Bindungsaffinitäten zu α 1,2-; α 1,3- und α 1,4-fukosylierten Oligosacchariden (Yamashita *et al.* 1985, Fukumori *et al.* 1990, Wimmerova *et al.* 2003), (Diplomarbeit Nicole Höche, 2009). Daher kann durch die Verwendung von AAL eine gezielte Anreicherung des Fukosyl-Proteoms erfolgen.

Untersuchungen von Smalla *et al.* (Smalla *et al.* 1998) mit gegen das α1,2-Fukosyl-Epitop gerichteten Antikörpern zeigten, dass die NR1-Untereinheit des NMDA-Rezeptors (Machaidze und Mikeladze 2001), die 65 kDa-Isoform des Neuroplastins und das neuronale Cadherin terminal durch L-(-)-Fuk modifiziert sind.

Auch wurde in *Ulex europaeus* I Lektin-basierte Untersuchungen am olfaktorischen Bulbus der Maus von Murrey *et al.* (Murrey *et al.* 2006, Murrey *et al.* 2009) für NCAM180 und NCAM140 eine Fukosylierung beschrieben.

Zur funktionellen Analyse neuronaler, dynamischer Prozesse, bei denen fukosylierte Glykokonjugate eine entscheidende Rolle spielen, wurde in den vergangenen Jahrzehnten eine Vielzahl neuer Methoden entwickelt. Eine Methode, die sich speziell zur differenziellen Proteomanalytik eignet, ist die Kupfer-katalysierte (3+2) *Cycloaddition* (CuAAC) von Aziden und Alkinen, welche durch Hartmuth C. Kolb, M. G. Finn, und K. Barry Sharpless (Kolb *et al.* 2001, Rostovtsev *et al.* 2002) eingeführt wurde und auch als "Klick"-Chemie bekannt ist.

Ausgangspunkt für diese hochselektive und sehr effiziente Reaktion (Prescher und Bertozzi 2005) ist der Einbau eines mit einem chemischen Reporter (z.B. Azid- oder Alkin-Gruppe) modifizierten Substrates, welches durch den zelleigenen Metabolismus in das Zielmolekül eingebaut wird. Das Repertoire an Azid- oder Alkinmodifizierten Substraten ist enorm, unter anderem sind Aminosäuren (z.B. Azidohomoalanin, AHA; Homopropargylglyzin, HPG)(Prescher und Bertozzi 2005, Dieterich *et al.* 2006, Dieterich *et al.* 2007)), Monosaccharide (z.B. Alkin-Fuk, Azido-Man (Liu *et al.* 2011)) und Fettsäuren (z.B. *17-octadecynoic acid* (Martin und Cravatt 2009)) erwähnenswert.

Für die funktionellen Untersuchungen fukosylierter Glykoproteine wurde in dieser Arbeit eine Azid-modifizierte L-(-)-Fuk verwendet. Nach dem Einbau der Azidmodifizierten L-(-)-Fuk, welcher durch den zelleigenen Metabolismus stattfindet, kann durch die Klick-Reaktion eine Detektion der Azid-fukosylierten Zielmoleküle erfolgen. Bei dieser Reaktion, fortwährend bezeichnet als BONMOT (*Bio-orthogonal noncanonical monosaccharide tagging*), können fukosylierte Konjugate unter Zuhilfenahme der chemischen Klick-Reaktion mit einer Biotin-Sonde versehen werden, welche eine Konzentrierung und weitere gezielte Analysen ermöglicht (Dieterich *et al.* 2006). Die abgewandelte Methode auch als FUNMOT (*Fluorescent noncanonical monosaccharide tagging*) bezeichnet (Dieterich *et al.* 2010), ist durch die Verwendung einer Fluoreszenz-Sonde gekennzeichnet.

Anhand der Methodik der Klick-Chemie, dem Repertoire an Azido- oder Alkin modifizierten Substraten und der Vielzahl an zur Verfügung stehenden Sonden ist es dynamische Änderungen des synaptischen Fukosyl-Proteoms möglich zu analysieren und gegebenenfalls zu visualisieren. Durch den gleichzeitigen Einsatz Alkin- oder Azid-modifizierter Substrate verschiedener Stoffklassen wie beispielsweise Azid-modifizierter Monosaccharide und Alkin-modifizierter Aminosäuren wird zusätzlich die Möglichkeit gegeben den Zusammenhang zwischen Fukosylierung und Proteinneusynthese zu verdeutlichen (Liu et al. 2011).

1.3. Zielsetzung der Arbeit

Die Vielzahl der Studien vergangener Jahrzehnte macht deutlich, dass die Informationsverarbeitung des Gehirns bei Lern- und Gedächtnisprozessen von einer intakten Glykoprotein-Biosynthese abhängig ist.

Fukosylierte Glykokonjugate nehmen hierbei eine gesonderte Stellung ein, da ihnen vielfach eine entscheidende Rolle nachgewiesen wurde (Sukumar *et al.* 1980, McCabe und Rose 1985, Pohle *et al.* 1987, Bullock und Rose 1992, Krug *et al.* 1994, Matthies *et al.* 1996, Murrey *et al.* 2009).

Unabhängig zu den vorliegenden Ergebnissen konnten gegenwärtig nur wenige Proteine charakterisiert werden, die durch fukosylierte Glykanketten modifiziert sind. Unter anderem wurde gezeigt, dass die neuronalen Zelladhäsionsmoleküle NCAM, Neuroplastin, N-Cadherin, Contacin/F3 und Thy-1 terminal durch L-(-)-Fuk modifiziert sind (Carlsson und Stigbrand 1984, Pestean *et al.* 1995, Smalla *et al.* 1998, Liedtke *et al.* 2001, Wuhrer *et al.* 2003, Murrey *et al.* 2009).

Direkte funktionelle Zusammenhänge zwischen Prozessen des Lernens und der Gedächtnisbildung sowie den vorliegenden Grad terminalen Fukosylierung konnten bisher aber noch nicht gezeigt werden.

Ziel dieser Arbeit bestand somit darin anhand der Kombination verschiedenster Techniken eine Katalogisierung des synaptischen Fukosyl-Proteoms vorzunehmen. Bei den Untersuchungen wurden verschiedene funktionelle Protein-Klassen berücksichtigt, unteranderem die Zelladhäsionsmoleküle, die Ionenkanäle und die Rezeptoren. Anhand dieses Vorgehens sollte der strukturellen Vielfalt und Verteilung der Fukosylierung Rechnung getragen werden.

Ziel weiterer Abschnitte war es, den funktionellen Zusammenhang zwischen veränderter synaptischer Aktivität und dem Grad der Proteinfukosylierung zu untersuchen. Hierbei wurden die durch eine veränderte synaptische Aktivität induzierten Veränderungen der Fukosylierung sowohl im gesamten Proteom als auch auf Ebene einzelner Kandidatenproteine untersucht. Zusätzlich wurden Analysen zum Grad der Fukosylierung in Abhängigkeit zur Proteinsynthese durchgeführt. Durch den gezielten Einsatz eines breitgefächerten Methodenspektrums sollen erste Grundsteine dafür gelegt werden, den Prozess der Fukosylierung und dessen funktionelle Konsequenzen besser zu verstehen.

2. Material und Methoden

2.1. Material

2.1.1. Chemikalien und Lösungen

Alle im Rahmen dieser Arbeit eingesetzten Chemikalien und Lösungen wurden von den Firmen Sigma-Aldrich Chemie GmbH (Steinheim), Carl Roth GmbH & CO. KG (Karlsruhe), Roche Diagnostik GmbH (Mannheim), Millipore (Schwalbach/Ts.), Invitrogen/Gibco (Darmstadt), Thermo Fisher Scientific (Bremen) und Serva (Heidelberg) in ACS (*American Chemical Society*)-Qualität oder *pro analysis* (p.a.) bezogen. Die verwendeten Lösungen werden zu Anfang der Methodenbeschreibung aufgeführt. Lösungen für proteinbiochemische Arbeiten wurden mit bideionisierten Wasser (TKA-GenPure, TKA) und für molekularbiologische Arbeiten mit Reinstwasser (Carl Roth GmbH & CO. KG (Karlsruhe)) hergestellt.

2.1.2. Antikörper und Fukose-bindendes Lektin

2.1.2.1. Primäre Antikörper

Primär Antikörper	Klon	Spezies	Verdünnung	Hersteller/Referenz
anti-ADAM22	N46/30	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-Biotin	-	Kaninchen, polyklonal	WB 1:10 000	Bethyl Laboratories Inc.
anti-Caspr2	K67/25	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-Cav1.3	L48A/9	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-Contactin/F3	K73/20	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-α1-GABA(A)R	N95/35	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-GABA(B)R2	N81/2	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-GFAP	N206A/8	Maus, monoklonal	IZC 1:500	UC Davis/NIH NeuroMab Facility
anti-GFAP	-	Huhn, polyklonal	IZC 1:500	Abcam
anti-GluR2	L21/32	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-Kv1.2	K14/16	Maus, monoklonal	WB 1:1000	UC Davis/NIH NeuroMab Facility

Tabelle 1: Verwendete primäre Antikörper

anti-MAP2	-	Kaninchen, polyklonal	IZC 1:500	Abcam
anti-NCAM	NCAM- OB11	Maus, monoklonal	WB 1:300 IP 40 µg	Sigma-Aldrich Chemie GmbH, Steinheim
anti-Neurofascin	L11A/41	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-Neuroligin-1	N97A/31	Maus, monoklonal	WB 1:1000 IP 15 μg	UC Davis/NIH NeuroMab Facility
anti-Neuroplastin	SMgp65	Maus, monoklonal	WB 1:50	Skitsa <i>et al.</i> (Skitsa <i>et al.</i> 1992)
anti-Neuroplastin 65	-	Ziege, polyklonal	IP 10 µg	R&D Systems
anti-Thy1.1	OX-7	Maus, monoklonal	WB 1:1000 IP 15 µg	Millipore
anti-TrkB	-	Kaninchen, polyklonal	WB 1:200 IP 10 μg	Santa Cruz Biotechnology Inc.

WB-Western Blot, IP-Immunpräzipitation, IHC-Immunhistochemie, IZC-Immunzytochemie

2.1.2.2. Sekundäre Antikörper

Sekundär Antikörper	Konjugat	Spezies	Verdünnung	Hersteller/Referenz
anti-Kaninchen	Peroxidase	Esel	WB 1:10 000	Jackson ImmunoResearch Laboratories, Inc.
anti-Maus	Peroxidase	Ziege	WB 1:10 000	Jackson ImmunoResearch Laboratories, Inc.
anti-Maus (leichte Kette)	Peroxidase	Ziege	WB 1:10 000	Jackson ImmunoResearch Laboratories, Inc.
anti-Ziege	Peroxidase	Esel	WB 1:10 000	Jackson ImmunoResearch Laboratories, Inc.
anti-Digoxigenin	Peroxidase	Maus	WB 1:5000	Roche Diagnostik Deutschland GmbH
anti-Digoxigenin	-	Maus	LHC 1: 500 LZC 1: 500	Roche Diagnostik Deutschland GmbH
anti-Maus	СуЗ	Esel	LHC 1:1000	Dianova
anti-Kaninchen	Cy5	Ziege	IZC 1:1000	Dianova
anti-Kaninchen	Alexa-Fluor [®] 488	Ziege	IZC 1:1000	Invitrogen
anti-Huhn	DyLight 649	Maus	IZC 1:1000	Jackson ImmunoResearch Laboratories, Inc.

Tabelle 2: Verwendete sekundäre Antikörper

WB-Western Blot, LHC- Lektinhistochemie, IZC-Immunzytochemie, LZC-Lektinzytochemie

2.1.2.3. Darstellung eines Digoxigenin-markierten Aleuria aurantia Lektins

Die Digoxigenin-Markierung von Aleuria aurantia Lektin (unkonjugiert, Vector Labortories, Inc., Burlingame, USA) erfolgte durch den Digoxigenin-3-Omethylcarbonyl-ε-aminocaproic acid-N-hydroxylsuccinimide-Ester (Roche Diagnostik Deutschland GmbH, Mannheim) gemäß den Herstellerangaben. Der Digoxigenin-3-O-methylcarbonyl-ε-aminocaproic acid-N-hydroxylsuccinimide-Ester wurde durch den Zusatz von Dimethylsulfoxid (Thermo Fisher Scientific GmbH, Bremen) aktiviert und anschließend 2 h bei RT mit AAL inkubiert.

Lektin	Spezies	Verdünnung	Hersteller/Referenz		
Digoxigenin-konjugiertes <i>Aleuria aurantia</i> Lektin	-	LHC 1:1000	Boehringer Mannheim Biochemica		
Digoxigenin-konjugiertes	-	WB 1:2000	Vector Labortories. Inc.		
Aleuria aurantia Lektin		LZC 1:500			

Tabelle 3: Verwendete Fukose-bindende Lektine

WB-Western Blot, LHC-Lektinhistochemie, LZC-Lektinzytochemie

2.2. Methoden

2.2.1. Subzelluläre Fraktionierung und Isolierung von synaptischen Proteinkomplexen

Puffer A:	5 mM HEPES pH 7,4; 320 mM Saccharose, Complete™ EDTA-frei Proteasen-Inhibitor (Roche Diagnostik Deutschland GmbH, Mannheim)
Puffer B:	5 mM Tris/HCl pH 8,1; 320 mM Saccharose
Puffer C:	1 mM Tris/HCl; pH 8,1
Puffer D:	5 mM Tris/HCl; pH 8,1
Gradientenlösungen:	0,85 M Saccharose; 5 mM Tris/HCl; pH 8,1 1,0 M Saccharose; 5 mM Tris/HCl; pH 8,1 1,2 M Saccharose; 5 mM Tris/HCl; pH 8,1
Ammoniumbikarbonatpuffer:	25 mM Ammoniumbikarbonat; pH 7,8
PBS:	 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,4

Die subzelluläre Fraktionierung von synaptischen Proteinkomplexen erfolgte nach dem Protokoll von Carlin *et al.* (Carlin *et al.* 1980) mit geringfügigen Änderungen (Wyneken *et al.* 2001). Vorderhirngewebe (Kortex, Hippokampus und Striatum) männlicher adulter Wistar-Ratten (12 Wochen alt, aus der Tierhaltung des Leibniz-Institut für Neurobiologie Magdeburg) wurde in Puffer A homogenisiert (5 ml/g Nassgewicht; Potter S Homogenisator; Sartorius, Göttingen) und 10 min bei 1000 x g_{av} zentrifugiert. Das Pellet wurde anschließend erneut in Puffer A homogenisiert und 10 min bei 1000 x g_{av} zentrifugiert. Die Überstände der vorangegangenen Zentrifugationen wurden vereinigt und 15 min bei 12 000 x g_{av} zentrifugiert. Das aus dieser Zentrifugation resultierende Pellet wurde erneut in Puffer A homogenisiert und 20 min bei 12 000 x g_{av} zentrifugiert.

Die angereicherte Membranfraktion wurde in Puffer B resuspendiert und anschließend unter Verwendung des 0,85 / 1,0 / 1,2 M-Saccharose-Stufengradienten für 2 h bei 100 000 x g_{av} in die verschiedenen Organellfraktionen separiert (Wyneken *et al.* 2001). Zur Isolierung synaptischer Proteinkomplexe wurde die angereicherte Synaptosomenfraktion (Phasengrenze 1,0 / 1,2 M) durch den Zusatz an fünffachen Volumen des Puffer C einem hypoosmotischen Schock unterzogen und anschließend für 30 min bei 33.000 x g_{av} pelletiert. Das Pellet wurde in Puffer D resuspendiert und durch einen 0,85 / 1,0 / 1,2 M-Saccharose-Stufengradienten erneut in die verschiedenen Organellfraktionen separiert. Die Fraktion der synaptischen Proteinkomplexe (Phasengrenze 1,0 / 1,2 M) wurde im dreifachen Volumen des Puffers D resuspendiert und für 1 h bei 100 000 x g_{av} pelletiert.

Für die AAL-Affinitätschromatographie (AAL-AC) wurde das Pellet in (i) Ammoniumbikarbonatpuffer und für Immunpräzipitationen (IP) in (ii) Phosphatgepufferter Salzlösung (PBS) resuspendiert. Zur Isolierung der synaptischen Proteinkomplexe wurden die Suspensionen mit 1 % (v/v) Triton X-100 (TX-100, Sigma-Aldrich Chemie GmbH, Steinheim) und 1 % (v/w) Natriumdesoxycholat (DOC, Sigma-Aldrich Chemie GmbH, Steinheim) versetzt, anschließend über Nacht (üN) bei 4°C unter stetigem Rotieren inkubiert und für 20 min bei 20 000 x g_{av} zentrifugiert. Die resultierenden Pellets wurden im identischen Puffervolumen ohne den Zusatz von DOC resuspendiert, für 1 h bei 4°C unter stetigem Rotieren inkubiert und erneut für 20 min bei 20 000 x g_{av} zentrifugiert. Die Bestimmung der Proteinkonzentration erfolgte durch den Bicinchoninsäure (BCA) -Test gemäß Herstellerangaben (Pierce, Rockford, USA).

18

2.2.2. Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese

Elektrophorese-Puffer:	25 mM Tris 192 mM Glyzin 0,1 % (w/v) SDS; pH 8,3
4 x SDS-Probenpuffer:	250 mM Tris/HCI; pH 6,8 1 % (w/v) SDS 40 % (v/v) Glyzerol 20 % (v/v) β-Mercaptoethanol 0,004 % (w/v) Bromphenolblau
Molekulargewichts-Marker:	Precision Plus Protein [™] Standard Dual Color (Bio-Rad, München), Prestained Protein Ladder (Fermentas)

Tabelle 4: Zusammensetzung von 5-20 %igen Gradienten-Polyacrylamidgelen

Substanz	Trenngel: 20 % Acrylamid	Trenngel: 5 % Acrylamid
4x Trenngelpuffer: 1,5 M Tris-HCl, pH 8,8	6,84 ml	6,84 ml
Glycerol: 87 % (v/v)	7,2 ml	1,8 ml
Rotiphorese® Gel 40: 40 % Acrylamid/Bisacrylamid im Mischungsverhältnis 19:1	16,2 ml	4,05 ml
EDTA: 0,2 M	317 µl	317 µl
SDS: 10 % (v/v)	317 µl	317 µl
ddH₂O	1,4 ml	18,94 ml
TEMED	22 µl	22 µl
APS: 10 % (v/v)	72 µl	115 µl
Bromphenolblau: 0,5 % (w/v)	50 µl	-
	Sammelgel 4	% Acrylamid
4x Sammelgelpuffer : 0,5 M Tris-HCl; pH 6,8	6 ml	
Glycerol: 87 % (v/v)	5,52 ml	
Rotiphorese® Gel 30: 30 % Acrylamid/Bisacrylamid im Mischungsverhältnis 37,5:1	3,9 ml	
EDTA: 0,2 M	240 µl	
SDS: 10 % (v/v)	240 µl	
ddH₂O	7,92 ml	
TEMED	18,:	2 µl
APS: 10 % (v/v)	150 µl	
Phenolrot: 0,5 % (w/v) 15 µl		μl

Substanz	Trenngel	Trenngel
Substanz	9,5 % Acrylamid	7 % Acrylamid
4x Trenngelpuffer: 1,5 M Tris-HCl; pH 8,8	17,5 ml	7,5 ml
Glycerol: 87% (v/v)	5,25 ml	2,5 ml
Rotiphorese® Gel 30: 30 % Acrylamid/Bisacrylamid im Mischungsverhältnis 37,5:1	22,2 ml	7,0 ml
ddH₂O	24,5 ml	13 ml
TEMED	46,6 µl	20 µl
APS: 10 % (v/v)	467 µl	200 µl
Bromphenolblau: 0,5 % (w/v)	30 µl	12,5
	Sammelgel	Sammelgel
	4 % Acrylamid	4 % Acrylamid
4x Sammelgelpuffer: 0,5 M Tris-HCl; pH 6,8	7 ml	3,25 ml
Glycerol: 87 % (v/v)	6,4 ml	2,96 ml
Rotiphorese® Gel 30: 30 % Acrylamid/Bisacrylamid im Mischungsverhältnis 37,5:1	4,6 ml	2,13 ml
ddH₂O	9,8 ml	4,53 ml
TEMED	40 µl	18,5 µl
APS: 10 % (v/v)	160 µl	75 µl
Phenolrot: 0,5 % (w/v)	25 µl	12 µl

Tabelle 5: Zusammensetzung von 7 bzw. 9,5 %igen homogenen Polyacrylamidgelen

Die Auftrennung der Proteine entsprechend ihrer Molekulargewichte erfolgte unter denaturierenden Bedingungen mittels Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) (Laemmli 1970) in einem *Hoefer Mighty Small System SE250* (Amersham Biosciences, Freiburg).

Polyacrylamidgele ($10 \times 8 \times 0,075$ cm; $10 \times 8 \times 0,15$ cm) mit einem 5-20 %; 9,5 %-oder 7 %-igen Trenngel und einem 4 %-igen Sammelgel wurden für die SDS-PAGE verwendet. Proben für die SDS-PAGE wurden mit $4 \times SDS$ -Probenpuffer im Verhältnis 3:1 (Probe : $4 \times SDS$ -Probenpuffer) versetzt, 10 min bei 95°C inkubiert und anschließend elektrophoretisch bei einer konstanten Stromstärke von 12 mA pro Gel aufgetrennt.

2.2.3. Coomassie-Brilliantblau R250-Färbung und Silberfärbung

Fixierungslösung:	30 % (v/v) Ethanol 10 % (v/v) Essigsäure
Ethanolwaschlösung:	10 % (v/v) Ethanol
Silbernitrat-Färbelösung:	0,1 % (w/v) Silbernitrat
Entwicklungslösung:	3 % (w/v) Natriumkarbonat 0,02 % (v/v) Formaldehyd
Stopplösung:	1 % (v/v) Essigsäure
Konservierungslösung:	50 % (v/v) Methanol 5 % (v/v) Glyzerin
Coomassie-Brilliantblau R250-Färbelösung:	0,05 % (w/v) Coomassie-Brilliantblau R250 50 % (v/v) Methanol 10 % (v/v) Essigsäure
Coomassie-Entfärbungslösung:	7 % (v/v) Essigsäure 5 % (v/v) Methanol
Konservierungslösung:	50 % (v/v) Methanol 5 % (v/v) Glyzerin

Die Visualisierung elektrophoretisch aufgetrennter Proteine erfolgte zum einem mittels Silberfärbung nach Heukeshoven und Dernick (Heukeshoven und Dernick 1988), zum anderen durch die Coomassie-Brilliantblau R250-Färbung.

Für die Silberfärbung wird das Polyacrylamidgel üN bei RT in der Fixierungslösung inkubiert und nachfolgend mit der Ethanolwaschlösung als auch mit ddH₂O gewaschen. Anschließend wird das Gel für 30 min bei RT in der Silbernitrat-Färbelösung inkubiert, kurzzeitig für 10 sek mit ddH₂O gewaschen und für die Visualisierung mit Entwicklungslösung inkubiert.

Für die Coomassie-Brilliantblau R250-Färbung wird das Polyacrylamidgel hingegen kurzzeitig in der Coomassie-Brilliantblau R250-Färbelösung erhitzt (Mikrowelle, 700 W) und anschließend wieder auf RT abgekühlt. Die Entfärbung des Polyacrylamidgeles erfolgte durch kurzzeitiges Erhitzen in der Entfärbelösung und anschließender Abkühlung auf RT. Ungebundener Coomassie-Brilliantblau R250-Farbstoff wurde dabei mit einem Zellstofftuch absorbiert. Dieser Vorgang wurde solange wiederholt bis der gewünschte Entfärbungsgrad erreicht war.

Die Digitalisierung der Silber- bzw. Coomassie-Brilliantblau R250-gefärbten Gele erfolgte mit einem Densitometer (GS-800[™] Densitometer, Bio-Rad, München),

wodurch eine quantitative Analyse der optischen Dichten durch die QuantityOne Software (Bio-Rad, München) erfolgen konnte.

Für die Konservierung der Polyacrylamidgele, wurden diese 10 min in der Konservierungslösung inkubiert und anschließend luftblasenfrei zwischen zwei CellophanTMFolien (Carl Roth GmbH & CO. KG, Karlsruhe) für 24 h bei RT getrocknet.

2.2.4. Westernblot, Immundetektion und Lektinfärbung

Blot-Puffer:	192 mM Glyzin 0,2 % (w/v) SDS 20 % (v/v) Methanol 25 mM Tris; pH 8,3
PonceauS-Färbelösung:	0,5 % (w/v) PonceauS (Sigma-Aldrich Chemie GmbH, Steinheim); 3 % (v/v) Essigsäure
Blockierungslösung:	(i) 5 % (w/v) Magermilchpulver oder (ii) 5 % (w/v) BSA (Carl Roth GmbH & CO. KG) in TBS-T
TBS:	140 mM NaCl; 25 mM Tris; pH 7,6
TBS-T:	0,1 % (v/v) Tween-20 in TBS; pH 7,6

Der elektrophoretische Transfer von Proteinen auf eine Nitrozellulose-Membran (Westernblots (WB), Protran BA85; 0,45 µm Whatman®, Dassel) erfolgte nach dem Protokoll von Towbin *et al.* (Towbin *et al.* 1979) in einem *Hoefer TE 22 Mini Tank Transfer Unit-System* (Amersham Bioscience, Freiburg) bei konstanter Stromstärke (200 mA) für 1,5 h unter Verwendung des Blotpuffers. Nachdem Transfer wurden die auf die Membran transferierten Proteine durch eine 10-minütige Inkubation in PonceauS gefärbt und anschließend mit ddH₂O entfärbt.

Für (i) immunologische oder (ii) lektinchemische Nachweisverfahren wurden die WB für 1 h bei RT blockiert und anschließend mit (i) primären Antikörpern oder (ii) Digoxigenin-konjugiertem AAL (Tabelle 1/3; angesetzt in Blockierungslösung unter Zusatz von 0,1 % TX-100) üN bei 4°C inkubiert.

Zur Überprüfung der Zuckerspezifität von AAL wurde dieses vorab für 30 min bei RT mit 100 mM L-(-)-Fukose (Fuk), D-(+)-Fuk oder D-(+)-Galaktose (Gal, Sigma-Aldrich Chemie GmbH, Steinheim) inkubiert. Die WB wurden anschließend für 10 min mit Tris-gepufferter Salzlösung (TBS) bzw. mit TBS unter Zusatz von 0,1 % Tween-20 (TBS-T) gewaschen und darauffolgend mit den entsprechenden Peroxidase-

konjugierten sekundären Antikörpern (Tabelle 2; angesetzt in Blockierungslösung unter Zusatz von 0,1 % TX-100) inkubiert. Die immunologische und lektinchemische Reaktivität wurde durch Chemilumineszenz visualisiert (Amersham Hyperfilm-ECL, GE Healthcare; Entwicklermaschine Curix 60, Agfa). Die Digitalisierung der ECL-Filme erfolgte durch einen GS-800 Scanner (GS-800TM Densitometer, Bio-Rad, München) wodurch eine quantitative Analyse der Intensitäten durch die *QuantityOne* Software (Bio-Rad, München) erfolgen konnte.

2.2.5. Perjodatoxidation von Glykoproteinen

PBS-T: 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat 0,1 % (v/v) Tween-20; pH 7,4

Natriumacetatpuffer: 50 mM Natriumacetat; pH 4,5

Die Abspaltung der Glykanstrukturen von Proteinen erfolgte durch eine Oxidation mittels Perjodat. Glykoprotein-enthaltende Proben wurden durch SDS-PAGE elektrophoretisch aufgetrennt und auf WB transferiert. Die Membranen wurden dreimal mit PBS-T für jeweils 10 min und zweimal mit Natriumacetatpuffer für 5 min inkubiert. Anschließend erfolgte eine einstündige Inkubation mit 100 mM Natrium-(meta)-Perjodat (Sigma-Aldrich Chemie GmbH, Steinheim) in Dunkelheit.

Dem zweimaligen Waschen mit Natriumacetatpuffer für 5 min folgte die 30-minütige Inkubation mit 50 mM Natriumborohydrid (Sigma-Aldrich Chemie GmbH, Steinheim). Dreimaliges Waschen mit PBS-T für jeweils 10 min beendete die Reaktion. Alle Inkubationsschritte wurden bei RT durchgeführt. Die Analyse der WB erfolgte durch eine Lektinfärbung (siehe 2.2.4.).

2.2.6. Immunpräzipitation

 PBS:
 137 mM Natriumchlorid

 2,7 mM Kaliumchlorid
 2,7 mM Kaliumchlorid

 4,3 mM Dinatriumhydrogenphosphat
 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,4

 1 x SDS-Probenpuffer:
 62,5 mM Tris/HCl, pH 6,8

 0,25 % (w/v) SDS
 10 % (v/v) Glyzerin

 5 % (v/v) ß-Mercaptoethanol
 0,001 % (w/v) Bromphenolblau

Die Anreicherung der Detergenz-löslichen synaptischen Proteine erfolgte mittels Protein G-beschichteter magnetischer Silica-*Beads* (Dynabeads[®] Protein G) gemäß den Anweisungen des Herstellers Invitrogen (Darmstadt).

Die Dynabeads® Protein G-Suspension (40 µl) wurde dreimalig mit PBS äquilibriert, pelletiert (Dynal MPG, Invitrogen, Darmstadt) und anschließend mit entsprechenden primären Antikörpern bzw. normalisierten Immunglobulin G (Ig, *Santa Cruz Biotechnology Inc.,* Heidelberg) der entsprechenden Spezies unter stetigem Rotieren für 1 h bei 4°C inkubiert.

Nach dreimaligem Waschen der *Beads* in PBS erfolgte die üN-Inkubation mit den Detergenz-löslichen synaptischen Proteinkomplexen (2 mg/ml) bei 4°C. Anschließend wurden die *Beads* wie oben beschrieben gewaschen, darauffolgend mit 60 µl 1 x SDS-Probenpuffer versetzt und 10 min bei 95°C inkubiert. Für eine weitere Analyse wurden die gezielt angereicherten Proteine mittels SDS-SPAGE (siehe 2.2.2.) und WB analysiert (siehe 2.2.4.).

2.2.7. Fällung von Proteinen

pH 6,8
toethanol
nphenolblau
toethanol 1phenolbl

Zur Fällung von Proteinen wurden Zellsuspensionen mit (i) Aceton (Sigma-Aldrich Chemie GmbH, Steinheim) oder (ii) Ethanol (Sigma-Aldrich Chemie GmbH, Steinheim) auf eine 80 %ige Endkonzentration eingestellt und üN bei -20°C inkubiert. Die gefällten Proteine wurden 20 min bei 20 000 x g_{av} pelletiert. Das resultierende Pellet wurde mit (i) Methanol (Sigma-Aldrich Chemie GmbH, Steinheim) oder (ii) Ethanol (Sigma-Aldrich Chemie GmbH, Steinheim) gewaschen, erneut bei 20 000 x g_{av} pelletiert und in 1 x SDS-Probenpuffer rehomogenisiert.

2.2.8. Aleuria aurantia Lektin-Affinitätchromatographie

Ammoniumbikarbonatpuffer:	25 mM Ammoniumbikarbonat; pH 7,8
1 x SDS-Probenpuffer:	62,5 mM Tris/HCl, pH 6,8
-	0,25 % (w/v) SDS
	10 % (v/v) Glyzerin
	5 % (v/v) ß-Mercaptoethanol
	0,001 % (w/v) Bromphenolblau

Poly-Prep-Chromatographiesäulen (0,8 x 4 cm; Bio-Rad, München) wurden mit 1 ml Agarose-konjugiertem AAL und Protein A (*Vector Labortories, Inc*, Burlingame, USA) gefüllt und für das Affinitätschromatographie (AC)-basierte Anreicherungsverfahren von fukosylierten Proteinen verwendet.

Das Säulenmaterial wurde mit Ammoniumbikarbonatpuffer in der 15-fachen Menge des Säulenvolumens (SV) äquilibriert und anschließend 1 h unter stetiger Rotation bei RT mit den Detergenz-löslichen synaptischen Proteinkomplexen (5 mg Protein pro Säule) inkubiert. Nach extensivem Waschen des Säulenmaterials mit Ammoniumbikarbonatpuffer (25-faches SV) erfolgte die Elution mit 100 mM L-(-)-Fuk (3,5-faches SV, Sigma-Aldrich Chemie GmbH, Steinheim). Ein anschließender Pufferaustausch gegen Ammoniumbikarbonatpuffer mittels Entsalzungssäulen (Zeba[™], 7K MWCO, Thermo Scientific Pierce, Rockford, USA) ermöglichte die Konzentration der eluierten Proteine durch Lyophilisation. Die Analyse der Proben erfolgte mittels SDS-PAGE (siehe 2.2.2.).

Für die massenspektrometrische Analyse wurde die AAL-AC (4 ml SV) an einer ÄKTA Chromatographie-Anlage (GE Healthcare Europe GmbH, Freiburg) durchgeführt. Die Anreicherung erfolgte wie bereits beschrieben, wobei die Volumina der verwendeten Puffer entsprechend dem Säulenvolumen angepasst wurden. Die Ethanol-Fällung (siehe 2.2.7.) ermöglichte die Konzentration der einzelnen Fraktionen (Input, Durchfluss, Eluat). Im weiteren Verlauf wurden die Proteine mittel SDS-PAGE elektrophoretisch aufgetrennt (siehe 2.2.2.), mit Coomassie Brilliant-R250 (siehe 2.2.3.) visualisiert und massenspektrometrisch analysiert (siehe 2.2.17.).

2.2.9. *Aleuria aurantia* Lektin-basierte histochemische Färbung von Hirnschnitten

PBS:	137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat pH 7,4
Lösung I:	10 % (v/v) Esel-Normalserum (Sigma-Aldrich Chemie GmbH, Steinheim) 0,1 % (v/v) Triton X-100 0,01 % (v/v) Natriumazid in PBS; pH 7,4
Lösung II:	0,2 % (w/v) BSA (Carl Roth GmbH & CO. KG) 0,1 % (v/v) Triton X-100 in PBS; pH 7,4

Mowiol:	10 % (w/v) Mowiol 4-88
	25 % (w/v) Glyzerin
	100 mM Tris/HCl; pH 8,5

Die Gewebepräparation für die mikroskopische Analyse und die Anfertigung sagittaler Hirnschnitte (Dicke 100 µm) von männlichen Wistar Ratten (12 Wochen alt, aus der Tierhaltung des Leibniz-Institut für Neurobiologie Magdeburg) erfolgte nach dem Protokoll von Boeckers *et al.* (Boeckers *et al.* 1999). Zur histochemischen AAL Färbung wurden die Hirnschnitte dreimal mit PBS für jeweils 10 min gewaschen und anschließend üN bei RT mit Digoxigenin-konjugiertem AAL (1:1.000) inkubiert, welches in 0,2 % BSA angesetzt wurden war.

Parallel wurden zur Überprüfung der Zuckerspezifität von AAL Kontrollfärbungen durchgeführt. AAL wurde hierfür mit 50 mM L-(-)- oder 50 mM D-(+)-Fuk (Sigma-Aldrich Chemie GmbH, Steinheim) versetzt, 30 min bei RT inkubiert und anschließend mit den Hirnschnitten wie bereits beschrieben inkubiert.

Nach der AAL-Markierung wurden die Hirnschnitte wie bereits beschrieben gewaschen, für 1 h in Lösung I blockiert und üN bei RT mit einem Anti-Digoxigenin Antikörper (1:500) inkubiert. Nachdem die Hirnschnitte erneut gewaschen wurden, erfolgte die 1 h-Inkubation bei RT in Lösung II und die üN-Inkubation bei 4°C mit dem Cy3-markierten anti-Maus Antikörpern (1:1000). Die Schnitte wurden erneut gewaschen, auf einen Objektträger aufgezogen, getrocknet und mit Mowiol versiegelt.

Die mikroskopische Analyse wurde in Zusammenarbeit mit Dr. Karin Richter am Institut für Biochemie und Zellbiologie (Otto-von-Guericke Universität Magdeburg) durchgeführt. Die Bilder wurden am Fluoreszenzmikroskop *Axioimage.M1* (Zeiss, Jena) mit dem Filter-Set 20 (EX: BP546/12; EM: 575-640) aufgenommen. Zur Dokumentation diente die Axiocam Mrc (Zeiss, Jena) in Verbindung mit der *Axio Vision 4.7.2*. Software. Die Untersuchungen der AAL-markierten Hirnschnittpräparate durch konfokale Mikroskopie wurden in Zusammenarbeit mit Oliver Kobler (Leibniz-Institut für Neurobiologie Magdeburg) durchgeführt. Die Dokumentation erfolgte am konfokalen Laserscan Mikroskop Leica TCS sp5 mit einem 63 x Objektiv.

Alle weiteren Bildbearbeitungen erfolgten mit Adobe Photoshop CS5 (Adobe Systems).

2.2.10. Präparation und Kultivierung von primären kortikalen Neuronenkulturen aus der Ratte

Kulturmedium I:	DMEM 10 % (v/v) fötales Kälberserum 100 U/ml Penicillin 100 µg/ml Streptomycin 2 mM L-Glutamin (alles Gibco, Darmstadt)
Kulturmedium II:	Neurobasal [™] 1x B27 0,8 mM L-Glutamin
Waschpuffer:	HBSS HBSS+CaCl ₂ +MgCl ₂ , (mit Phenolrot)
Trypsin:	10 x Trypsin (minus EDTA)
DNAse I:	0,1 % (200U) in HBSS 2,4 mM MgSO₄
Poly-D-Lysin:	100 mg/l in 0,15 M Borsäure; pH 8,4

Kortikale Primärkulturen wurden von E18-Rattenembryonen (Wistar-Ratten, Tierhaltung des Leibniz-Institut für Neurobiologie Magdeburg) nach dem Protokoll von Dieterich *et al.* (Dieterich *et al.* 2008) präpariert.

Nach der Isolierung der Kortex-Hemisphären wurde das Gewebe für 20 min bei 37°C mit 1 x Trypsin inkubiert und anschließend mehrmals mit *Hanks-balanced* Salzlösung (HBSS) gewaschen. Die Zellen wurden durch die Verwendung von Spritzen und Kanülen unterschiedlichen Durchmessers (Durchmesser 0,9 mm und 0,45 mm) separiert. Die Zellsuspension wurde mit 0,1 % DNAse I versetzt, filtriert (Zellsiebe mit 0,45 µm; BD Falcon) und mit Kulturmedium I verdünnt.

Für immunzytochemische oder lektinzytochemische Untersuchungen wurden die Zellen mit einer Dichte von 40 000 Zellen pro Well in eine 24-Wellplatte (Nunc) mit Poly-D-Lysin beschichteten Deckgläschen (12 mm Durchmesser, Menzel) ausplattiert. Für biochemische Untersuchungen wurden drei Millionen Zellen in Poly-D-Lysin-beschichteten Zellkulturflaschen (75 cm², Nunc) ausplattiert.

Die Zellen wurden bei 37°C und 5 % CO₂ kultiviert und einen Tag nach der Präparation (*day in vitro* (DIV) 1) wurde das Kulturmedium I gegen das Kulturmedium II ausgetauscht. Die Kultivierung erfolgte für weitere 20 Tage unter den gleichen Bedingungen wobei aller 7 Tage ein Zehntel frisches Kulturmedium II zugesetzt wurde.

2.2.11. Metabolische Markierung kortikaler neuronaler und gliärer Proteine

HBS:	10 mM HEPES 119 mM Natriumchlorid 5 mM Kaliumchlorid 2 mM Kalziumchlorid 2 mM Magnesiumchlorid 30 mM Glukose; pH 7,35
PBS:	 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,4
PBS-MC:	1 mM Magnesiumchlorid 0,1 mM Kalziumchlorid in PBS; pH 7,4
Kulturmedium II:	Neurobasal [™] 1x B27 0,8 mM L-Glutamin
Hibernate-Medium:	nach Brewer und Price (Brewer und Price 1996), (Sigma, Roth, Serva)
PFA:	4 % (w/v) PFA (Carl Roth GmbH & CO. KG) in PBS; pH 7,4

Kortikale Primärkulturen (DIV 21) wurden für die metabolischen Markierungsexperimente mit HEPES-gepufferter Salzlösung (HBS) gewaschen. Für die Induktion synaptischer Aktivität wurden die Kulturen 3 min bei 37°C und 5 % CO_2 mit 20 μ M N-Methyl-D-Aspartat (NMDA, *Tocris Bioscience*, Missouri, USA) und 10 μ M Glyzin (Gly, Sigma-Aldrich Chemie GmbH, Steinheim) inkubiert, welches in HBS angesetzt wurden war.

Nachfolgend wurden die Kulturen mit HBS gewaschen und 48 h in Kulturmedium II, versetzt mit 375 μ M 6-azido-6-deoxy-1,2,3,4-tetra-O-acetyl- α , β -L-galaktopyranose (AzL-(-)-Fukose; Genaxxon Bioscience, Ulm), kultiviert.

Für die metabolische Doppelmarkierung wurden die Kulturen zunächst für 30 min bei 37°C und 5 % CO₂ mit HBS präinkubiert und anschließend wie oben beschrieben mit NMDA und Glyzin behandelt. Nachfolgend wurden die Kulturen für 1, 4, 8, 24 oder 48 h mit *Hibernate*-Medium (Brewer und Price 1996), versetzt mit (i) 2 mM L-Methionin (Sigma-Aldrich Chemie GmbH, Steinheim), (ii) 2 mM L-Methionin und 375 μ M AzL-(-)-Fukose, (iii) 2 mM HPG (*Chiralix Nijmegen*, Niederlande) oder (iv) 2 mM HPG und 375 μ M AzL-(-)-Fukose, kultiviert.

Für die fluoreszenzmikroskopische Analyse wurden die Kulturen (24-Wellplatte, Dichte: 40 000 pro Well) im Anschluss an die 1, 4, 8, 24 und 48 h Inkubationen, vom
Kulturmedium II bzw. *Hibernate*-Medium befreit, mit PBS-MC bei RT gewaschen und für 10 min bei RT mit PFA fixiert.

Für biochemische Analysen wurden primäre Kulturen in 75 cm²-Zellkulturflaschen verwendet. Dabei wurden die Zellen nach der Induktion synaptischer Aktivität mittels NMDA/Glyzin und metabolischer Markierung bzw. Doppelmarkierung (s.o.) mit PBS-MC bei 4°C gewaschen, in PBS abgelöst (5 ml pro Flasche) und 10 min bei 3 000 x g_{av} pelletiert. Die Analyse erfolgte mittels SDS-PAGE (siehe 2.2.2.) und WB (siehe 2.2.4.).

2.2.12. Lektinzytochemie, Zuckerinhibition und Immunzytochemie

PBS:	 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,4
Blockierungslösung:	10 % (v/v) Pferdeserum (Gibco) 5 % (w/v) Saccharose 2 % (w/v) BSA in PBS, pH 7,4
PFA:	4 % (w/v) PFA (Carl Roth GmbH & CO. KG) in PBS, pH 7,4
Mowiol:	10 % (w/v) Mowiol 4-88 25 % (w/v) Glyzerin 100 mM Tris/HCl; pH 8,5

Kortikale Primärkulturen (DIV 21) wurden mit PBS-MC gewaschen, 10 min bei RT mit PFA fixiert und 1 h bei RT blockiert.

Für (i) lektinchemische Färbungen wurden die fixierten Kulturen mit Digoxigeninkonjugiertem AAL (1:500 angesetzt in Blockierungslösung, *Vector Labortories, Inc.*, Burlingame, USA) üN bei 4°C inkubiert. Parallel wurde Digoxigenin-konjugiertes AAL 30 min bei RT mit 100 mM L-(-)-Fuk, 100 mM D-(+)-Fuk oder D-(+)-Gal (Sigma-Aldrich Chemie GmbH, Steinheim) inhibiert und anschließend mit den Kulturen wie bereits beschrieben inkubiert.

Für die (ii) immunologischen Färbungen wurden die Kulturen, nachfolgend an die Blockierung oder die bereits beschriebene (i) lektinchemische Färbung, dreimal 10 min mit PBS gewaschen und einmal 20 min mit 0,1 % (v/v) TX-100 inkubiert. Anschließend wurden die Kulturen mit den entsprechenden primären Antikörpern (Tabelle 1; angesetzt in Blockierungslösung unter Zusatz von 0,1 % TX-100) 2 h bei RT inkubiert. Wurde mit den Kulturen im Weiteren eine lektinchemische Färbung durchgeführt, so wurde der primären Antikörperlösung Anti-Digoxigenin (1:500) hinzugesetzt.

Nach der Inkubation wurden die Kulturen dreimal mit PBS gewaschen und mit den entsprechenden Fluorophor-gekoppelten sekundären Antikörpern (Tabelle 2; angesetzt in Blockierungslösung unter Zusatz von 0,1 % TX-100) 2 h bei RT inkubiert. Abschließend wurden die Kulturen dreimal 10 min mit PBS gewaschen und mit Mowiol konserviert.

Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss Axio *Observer.Z1* Mikroskop (Zeiss, Jena) aufgenommen, unter Nutzung der in Tabelle 6 aufgelisteten Filtersets. Zur Dokumentation diente die *AxioCam MRm* (Zeiss, Jena) in Verbindung mit der *Axio Vision Rel. 4.8.* Software.

Tabelle 6:	Verwendete	Zeiss	Filtersets
------------	------------	-------	------------

Fluorophor	Zeiss Filterset
Alexa488	ET Filterset (Bandpass) F46-002
СуЗ	HC Filterset (Bandpass) F36-502
Cy5/ Dylight 649	HC Filterset (Bandpass) F36-523
Hoechst 33258	HC Filterset (Bandpass) F36-500
TexasRed	HC Filterset (Bandpass) F36-504

2.2.13. Bestimmung der Überlebensrate kortikaler Primärkulturen

PBS-MC:	137 mM Natriumchlorid
	2,7 mM Kaliumchlorid
	4,3 mM Dinatriumhydrogenphosphat
	1,4 mM Kaliumdihydrogenorthophosphat
	1 mM Magnesiumchlorid
	0,1 mM Kalziumchlorid; pH 7,4

Die Analyse möglicher toxischer Effekte der NMDA-, Glyzin- und AzL-(-)-Fuk-Inkubation erfolgte mittels Hoechst 33258-Färbung.

Die Kulturen wurden hierfür nach erfolgter NMDA-Gly-Behandlung und 48-stündiger metabolischer AzL-(-)-Fuk-Markierung (siehe 2.2.11.) mit Hoechst 33258 (0,01 mg/ml, Invitrogen, Darmstadt) 15 min bei 37°C und 5 % CO₂ inkubiert.

Nach der Inkubation wurden die Kulturen dreimal mit 37°C-warmen PBS-MC gewaschen und mit PFA (siehe 2.2.12.) fixiert.

2.2.14. Herstellung von BONMOT-Zelllysaten

PBS-PI: 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,8 Complete™ EDTA-frei Proteasen-Inhibitor (PI) (Roche Diagnostik Deutschland GmbH, Mannheim)

Für die biochemische Analyse wurden Zellpellets (siehe 2.2.11.) metabolisch markierter kortikaler Primärkulturen unter Zusatz von 1 % (v/v) SDS und Benzonase®-*Nuclease* (125 *Units*, Sigma-Aldrich Chemie GmbH, Steinheim) in PBS-PI resuspendiert und 7 min bei 95°C inkubiert.

Das Lysat wurde anschließend auf 0,1 % (v/v) SDS-Endkonzentration verdünnt, mit 0,2 % (v/v) TX-100 versetzt und für 5 min bei 3 000 x g_{av} zentrifugiert. Das Lysevolumen betrug 0,5 ml für eine 75 cm²-Zellkulturflasche.

2.2.15. Kupfer-katalysierte (3+2) Azid-Alkin-*Cycoladdition* (BONMOT) und NeutrAvidin-Aufreinigung Biotin-markierter Proteine

PBS-PI:	 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,8 Complete™ EDTA-frei Proteasen-Inhibitor (Roche Diagnostik Deutschland GmbH, Mannheim) 				
Biotin-Alkin-Sonde:	25 mM in PBS; pH 7,8 (Synthese: Dr. Peter Landgraf (Dieterich <i>et al.</i> 2007))				
Biotin-Azid-Sonde:	25 mM in PBS; pH 7,8 (Jena Bioscience GmbH, Jena)				
Fluorophor 488-Alkin-Sonde:	25 mM in PBS; pH 7,8 (Jena Bioscience GmbH, Jena)				
Kupfer-Bromid-Suspension:	7,5 mg CuBr/ml in H_2O , (Acros Organics, Nidderau)				
Kupfersulfat-Suspension:	49,94 mg/ml in H_2O (Sigma-Aldrich Chemie GmbH, Steinheim)				
Triazol-Ligand:	200 mM in DMSO (Tris[(1-benzyl-1H-1,2,3-triazo-4-yl)methyl]amine, beide Thermo Fisher Scientific GmbH, Bremen)				
TCEP:	114,66 mg/ml in H_2O (Sigma-Aldrich Chemie GmbH, Steinheim)				
PBS-SDS-NP40:	0,05 % (v/v) SDS 1 % (v/v) Igepal CA-630 (NP40, Sigma-Aldrich Chemie GmbH, Steinheim) in PBS; pH 7,8				
PBS-SDS:	0,05 % (v/v) SDS in PBS; pH 7,8				

1x SDS-Probenpuffer:	62,5 mM Tris/HCl, pH 6,8 0,25 % (w/v) SDS 10 % (v/v) Glyzerin 5 % (v/v) ß-Mercaptoethanol 0,001 % (w/v) Bromphenolblau
4x SDS-Probenpuffer:	250 mM Tris/HCl; pH 6,8 1 % (w/v) SDS 40 % (v/v) Glyzerin 20 % (v/v) ß-Mercaptoethanol 0,004 % (w/v) Bromphenolblau

Die Kupfer-katalysierte (3+2) Azid-Alkin *Cycloaddition* (CuAAC) erfolgte nach dem Protokoll von Dieterich *et al.* (Dieterich *et al.* 2006, Dieterich *et al.* 2007).

Ausgangsmaterial für die Reaktion war ein homogenes Zelllysat (siehe 2.2.11.) das wie folgt behandelt wurde: Zugabe von 200 μM Triazol-Ligand (*Thermo Fisher Scientific* GmbH, Bremen), 10 s Durchmischen mittels Vortexen, Zugabe von 25 μM (i) Biotin-Alkin- oder (ii) Azid-Biotin-Sonde, 10 s Durchmischen mittels Vortexen, Zugabe von Kupfer-(I)-Bromid (1:50) und abschließend 30 s Durchmischen mittels Vortexen.

Das Reaktionsgemisch wurde üN unter stetiger Rotation bei 4°C inkubiert, 5 min bei 3.000 x g_{av} zentrifugiert und der erhaltene Überstand einem Pufferaustausch gegen 0,05 % (v/v) SDS und 1 % (v/v) NP-40 (Sigma-Aldrich Chemie GmbH, Steinheim) in PBS mittels Entsalzungssäulen (Volumen 2,5 ml: PD10 Säule, GE Healthcare, Freiburg; Volumen < 1 ml: Zeba[™] Entsalzungsäulen, 7K MWCO, Pierce, Rockford, USA) gemäß Herstellerangaben unterzogen.

Für die affinitätschromatographische Anreicherung Biotin-konjugierter metabolisch markierter Proteine wurde Agarose-konjugiertes NeutrAvidin (20 µl SV pro 75cm²-Zellkulturflasche, Pierce, Rockford, USA) dreimal mit 10-fachem SV PBS, versetzt mit 0,05% (v/v) SDS und 1% (v/v) NP40, äquilibriert.

Die äquilibrierte NeutrAvidin-Agarose wurde anschließend mit der Proteinlösung üN bei 4°C unter stetiger Rotation inkubiert und nachfolgend extensiv mit 100-fachen SV an PBS-SDS-NP40 gewaschen. Die Elution der AzL-(-)-Fuk-markierten Proteine von der Säulenmatrix erfolgte durch die Inkubation bei 95°C für 10 min. Das Säulenmaterial wurde hierfür mit gleichen Teilen an einfachen und vierfachen SDS-Probenpuffer versetzt (25 μ I + 25 μ I pro 75cm²-Zellkulturflasche).

Für Analysen der metabolischen Doppelmarkierung mit AzL-(-)-Fuk und HPG wurde dieser Schritt durch eine zweiten CuACC ersetzt. Die gewaschene NeutrAvidin-Agarose wurde in PBS, versetzt mit 0,05% (v/v) SDS, resupendiert.

Weiterführend wurde die Suspension wie folgt behandelt: Zugabe von 200 μ M Triazol-Ligand (*Thermo Fisher Scientific GmbH*, Bremen), 10 s Durchmischen mittels Vortexen, Zugabe von TCEP (1:1000), 10 s Durchmischen mittels Vortexen, Zugabe von 25 μ M (i) Fluorophor 488-Alkin-Sonde, 10 s Durchmischen mittels Vortexen, Zugabe von Kupfersulfat (1:1000) und abschließend 30 s Durchmischen mittels Vortexen. Die Elution der AzL- und/oder HPG-markierter Proteine erfolgte wie bereits oben beschrieben.

Eine Analyse der gezielt angereicherten Proteine erfolgte mittels SDS-SPAGE (siehe 2.2.2.). Die Visualisierung der Fluorphor 488-Alkin-Sonde erfolgte durch den *Odyssey Fc Imager* (LI-COR Bioscience, Lincoln, USA) unter Verwendung der 685 nm-Laserdiode.

2.2.16. Kupfer-katalysierte (3+2) Azid-Alkin-*Cycoladdition* (FUNMOT) und Visualisierung Fluorophor-markierter Proteine

PBS:	 137 mM Natriumchlorid 2,7 mM Kaliumchlorid 4,3 mM Dinatriumhydrogenphosphat 1,4 mM Kaliumdihydrogenorthophosphat; pH 7,8
Fluorophor Alexa 488-Azid-Sonde:	25 mM in PBS pH 7,8 (Jena Bioscience GmbH, Jena)
Flurorophor TexasRed-Alkin-Sonde:	2 mM in H ₂ O
Kupfersulfat-Suspension:	49,94 mg/ml in H_2O (Sigma-Aldrich Chemie GmbH, Steinheim)
Triazol-Ligand:	200 mM in DMSO (Thermo Fisher Scientific GmbH, Bremen)
TCEP:	114,66 mg/ml in H_2O (Sigma-Aldrich Chemie GmbH, Steinheim)
Blockierungslösung:	10 % (v/v) Pferdeserum (Gibco) 5 % (w/v) Saccharose 2 % (w/v) BSA PBS, pH 7,4
Waschpuffer:	0,5 mM EDTA 1 % (v/v) Tween-20 in PBS, pH 7.8
PFA:	4 % (w/v) PFA (Carl Roth GmbH & CO. KG) in PBS, pH 7,4
Mowiol:	10 % (w/v) Mowiol 4-88 25 % (w/v) Glyzerin 100 mM Tris/HCl; pH 8,5

PFA-fixierte (siehe 2.2.12.), metabolisch-markierte kortikale Primärkulturen (siehe 2.2.11.), wurden für 1 h bei RT mit Blockierungslösung inkubiert und dreimal mit PBS gewaschen. Die CuAAC wurde anschließend nach dem Protokoll von Dieterich *et al.* (Dieterich *et al.* 2007) durchgeführt.

Das Reaktionsgemisch setzte sich wie folgt zusammen: 200 μ M Triazol-Ligand, 400 μ M TCEP, 0,25 μ M TexasRed-Alkin- oder Alexa488-Azid-Sonde und 200 μ M Kupfersulfat in PBS.

Jeder Zugabe der einzelnen Reagenzien folgte eine kräftige Durchmischung mit einem Vortexer. Anschließend wurden die Kulturen üN bei RT und vollkommener Dunkelheit über Kopf mit dem Reaktionsgemisch inkubiert.

Nach erfolgter Inkubation wurden die Kulturen dreimal mit PBS, versetzt mit 0,5 mM Ethylendiamintetraacetat (EDTA) und 1 % (v/v) Tween-20, gewaschen. Für die immunzytochemische Analyse wurden die Kulturen 20 min mit 1 % (v/v) TX-100 inkubiert und wie beschrieben (siehe 2.2.12.) mit primären und sekundären Antikörpern gefärbt.

2.2.17. Prozessierung der Proteinproben, massenspektrometrische Analyse und Auswertung der Daten

Ammoniumbikarbonatpuffer:	100 mM Ammoniumbikarbonat; pH 7,8 25 mM Ammoniumbikarbonat; pH 7,8
Trypsin-Verdau-Puffer:	50 mM Ammoniumbikarbonat; pH 7.8

Die angereicherten Fraktionen der AAL-AC (siehe.2.2.8.) bzw. der NeutrAvidin-AC (siehe 2.2.15.) wurden für die massenspektrometrische Analyse mittels SDS-PAGE elektrophoretisch aufgetrennt und durch die Coomassie-Brilliantblau R250- bzw. Silberfärbung (siehe 2.2.3.) visualisiert. Die Laufspuren der Eluate wurden aus dem SDS-Gel ausgeschnitten und nach dem Protokoll von Shevchenko *et al.* (Shevchenko *et al.* 1996) tryptisch verdaut.

Die SDS-Gelstücke wurden zweifach mit 100 mM Ammoniumbikarbonatpuffer und Acetonnitril (ACN) gewaschen. Nach der Trocknung der Gelstücke in einer Vakuumzentrifuge, wurden zur Reduzierung der Proteine die Gelstücke in 10 mM Dithiothreitol rehydratisiert und für 45 min bei 56 °C inkubiert. Die entstandenen freien SH-Gruppen der Cystein-Seitenketten wurden nachfolgend durch die 30-minütige Inkubation mit 55 mM Jodacetamid bei RT Carbamidomethyliert.

Die Gelstücke wurden erneut wie oben beschrieben gewaschen und getrocknet.

Im nächsten Schritt wurden die Gelstücke in Verdau-Puffer unter Zusatz von 12,5 ng/ul Trypsin Gold (Promega, Madison, USA) rehydratisiert und üN bei 37 °C inkubiert. Die erzeugten tryptischen Peptide wurden aus dem Gel durch wiederholte Zugabe von 25 mM Ammoniumbikarbonatpuffer und ACN extrahiert.

Die Extraktionseffizienz wurde durch Sonifikation im Ultraschallbad verbessert. Alle Extrakte wurden vereinigt und in einer Vakuumzentrifuge getrocknet. Die Peptide wurden in 0,1 % Trifluoressigsäure (TFA) gelöst und an einer 250 nl Reversed-Phase (C18, Poros R2)-Nanosäule angereichert. Die Peptide wurden anschließend mit 70 % (v/v) ACN eluiert und in einer Vakuumzentrifuge getrocknet.

Die Flüssig-Chromatographie Elektrospray-Tandem-Massenspektrometrie (LC-MS/MS) wurde Dual-Hybrid-Druck linearen Ionenfalle/Orbitrap an einer Massenspektrometer (LTQ Orbitrap Velos Pro, Thermo Scientific, San Jose, CA) ausgestattet mit einem EASY-nLC Ultra-HPLC (Thermo Scientific, San Jose, CA) durchgeführt. Die getrockneten Peptide wurden in 10 µl 2 % (v/v) ACN/ 0,1 % TFA gelöst und durch Verwendung einer PepMap C18-Säule fraktioniert (75 µm I.D., gepackt mit 2 µm Resin (*Dionex, Thermo Fisher Scientific*, Bremen).

Die Trennung erfolgte durch Gradienten von 2 % ACN zu 35 % ACN über eine Zeitspanne von 120 min (Fließgeschwindigkeit: 300 nl/min). Zur Generierung der MS/MS-Spektren wurden ausschließlich der CID-Fragmentierung verwendet. Die massenspektrometrischen Einstellungen waren wie folgt: MS (FTMS, Auflösung 60 000; m / z-Bereich 400-2000), MS/MS (Linear-Trap; minimale Signal Schwellenwert 500; Isolierung Breite 2 Da, dynamische Ausschluss Zeiteinstellung 30 s; einfach-geladenen Ionen wurden von der Auswahl ausgeschlossen). Die normalisierte Aufprallenergie wurde auf 35 % eingestellt, und die Aktivierungsenergie auf 10 ms.

Nach der spektralen Datenerfassung, wurden die RAW-Dateien für die Datenbank-Suche mit *Proteome Discoverer Version 1.4.* vorbereitet. Die MS/MS-Spektren wurden mit *SEQUEST* und *MASCOT* Algorithmen gegen die *Uniprot* Datenbank untersucht. Die Analyse der falsch-positiven Peptide und Proteine, erfolgte mittels *Percolator.* Für die weitere Datenanalyse wurden die gelisteten Proteine unter Zuhilfenahme von UniProt und Ingenuity Pathway Analysis (IPA) gemäß der Lokalisation der Zelle sortiert.

35

3. Ergebnisse

3.1. Fukosylhistochemie des Rattenhirns

3.1.1. Lokalisierung von fukosylierten Glykokonjugaten in Hirnschnittpräparaten der Ratte

Lektine gehören zur Klasse der Kohlenhydrat-bindenden Proteine und besitzen durch die Affinität zu spezifischen Glykanstrukturen einen hohen Wert für die Analyse spezieller Glykanketten von Glykoproteinen und Glykolipiden.

Für AAL sind nachweisbar hohe Bindungsaffinitäten zu α1,6- aber auch zu α1,2-; α1,3- und α1,4-fukosylierten Oligosacchariden bekannt (Yamashita *et al.* 1985, Fukumori *et al.* 1990, Wimmerova *et al.* 2003). Dementsprechend wurden für die Lokalisation fukosylierter Glykokonjugate sagittale Hirnschnittpräparate der adulten Ratte (12 Wochen) mit DIG-konjugiertem AAL markiert und anschließend mikroskopisch analysiert. Die lektinhistochemischen Untersuchungen der AAL-markierten Hirnschnitte wurden in Zusammenarbeit mit Dr. Karin Richter am Institut für Biochemie und Zellbiologie (Otto-von-Guericke Universität Magdeburg) durchgeführt.

Die Abb. 3.1. zeigt fluoreszenzmikroskopische Aufnahmen der AAL-markierten Hippokampusformation, welche in den *Gyrus dentatus (DG)*, das *Cornu Ammonis* (Ammonshorn, CA1-4) und das *Subiculum* (hier nicht dargestellt) unterteilt wird.

Die Fukose-spezifische AAL-Markierung zeigt im *Gyrus dentatus* (Abb. 3.1.C.), dem wichtigsten afferenten System der Hippokampusformation, eine schwache Lektinreaktivität an den Somata der Körnerzellen (*Stratum granulare*, gcl). Diese ist vorwiegend an den Zellmembranen und den extrazellulären Bereichen detektierbar. Ausgehend von dieser Schicht senden die Körnerzellen ihre Apikaldendriten in die Molekularschicht (*Stratum moleculare*, ml), welche die Haupteingangsstation für kortikale Afferenzen darstellt.

Wie in Abb. 3.1.C. ersichtlich, unterteilt sich das *Stratum moleculare* in eine innere und äußere Schicht. Die innere Schicht ist durch eine stärkere Lektinreaktivität im Vergleich zur äußeren Schicht gekennzeichnet. Innerhalb des Bogens der Körnerzellschicht befindet sich die *Lamina multiformis*, besser bekannt als *Hilus*. In dieser Schicht, in der vorwiegend die Axone der Körnerzellen lokalisiert sind, ist nur eine schwache Lektinreaktivität detektierbar.

Das *Cornu Ammonis* wird in die Regionen CA1-CA4 unterteilt. Im Einzelnen gliedern sich diese Regionen in das *Stratum oriens* (Korbzellenschicht, so), das *Stratum pyramidale* (Pyramidenzellschicht, py) und das *Stratum moleculare*. Die Molekularschicht wird zusätzlich noch in das *Stratum radiatum* und *Stratum lacunosum* abgegrenzt, so dass diese Schicht auch als *Stratum radiatum-lacunosum-moleculare* (slm) bezeichnet wird.

Die CA1-Region enthält viele kleine dichtgepackte Pyramidenzellen, wohingegen in der CA3-Region die Pyramidenzellen in lockerer Form angeordnet sind. Dennoch zeigt sich, dass in diesen Regionen die Somata der Pyramidenzellen eine schwache Lektinreaktivität, vorwiegend an der Zellmembran und im extrazellulären Bereich aufweisen (Abb. 3.1.D.). Das *Stratum oriens*, in dem die Basaldendriten der Pyramidenzellen lokalisiert sind und das *Stratum radiatum*, welches die Apikaldendriten der Pyramidenzellen enthält, weisen eine starke Lektinreaktivität auf, wohingegen im *Stratum lacunosum-moleculare* nur schwache Fluoreszenzintensitäten vorliegen.

Die vorliegenden Resultate zeigen, dass die Fukose-spezifische AAL-Markierung vorwiegend an extrazellulären Membran-assoziierten Strukturen lokalisiert ist. Folglich befinden sich in diesen Bereichen Proteine oder Lipide, die durch α1,2-; α1,3-; α1,4- und α1,6-fukosylierte Glykanketten modifiziert sind. Zellschichten, die durch ein hohes Maß an synaptischer Konnektivität beschrieben sind, unter anderem das *Stratum moleculare*, das *Stratum oriens* und das *Stratum radiatum*, weisen eine starke AAL-Markierung auf. Zellschichten, die dagegen eher durch das Vorkommen an Somata oder Nervenfasern charakterisiert sind, z.B. das *Stratum granulare*, das *Stratum pyramidale* oder das *Stratum lacunosum-moleculare*, zeigen nur eine verhältnismäßig schwache AAL-Markierung.

Abb. 3.1. Lokalisierung fukosylierter Glykokonjugate in der Hippokamusformation des adulten Rattenhirns. (A-D) Zur Detektion Fukose-enthaltender Glykanstrukturen wurden sagittale Schnittpräparate des Hippokampus der adulten Ratte (12 Wochen) mit DIG-konjugiertem AAL markiert. Die Visualisierung der AAL-Markierung erfolgte durch die Färbung mit anti-DIG Antikörpern (Maus) und Cy3-gekoppelten anti-Maus Antikörpern. Regionen mit einer hohen Dichte an synaptischen Kontakten, insbesondere das *Stratum oriens* (so), *Stratum radiatum* (sr) und *Stratum moleculare* (ml) zeichnen sich durch eine starke Lektinreaktivität aus. Zellschichten der Pyramiden-(py) und Körnerzellen (gcl), sowie das *Stratum lacunosum moleculare* (slm) zeigen hingegen nur eine schwache extrazelluläre Lektinreaktivität. (A) Sagittales Schnittpräparat der Hippokampusformation mit den Regionen CA1, CA3 und *Gyrus dentatus* (DG). (B-D) Detailaufnahmen von CA1, *Gyrus dentatus* und CA3. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss *Axioimage.M1* Mikroskop aufgenommen. (Maßstab entspricht 200 µm in A; 100 µm in B-D)

Weitere Untersuchungen zur Lokalisierung fukosylierter Glykokonjugate wurden an sagittalen Schnittpräparaten des Kleinhirns, einer wichtigen Hirnregion für die Steuerung der Motorik, durchgeführt. Die Abb. 3.2. zeigt die AAL-Markierung der Kleinhirnrinde adulter Ratten, welche von außen nach innen in das *Stratum moleculare*, das *Stratum purkinjense* (Purkinjezellschicht, pcl), das *Stratum granulosum* (Körnerzellschicht, gcl) und das Marklager (hier nicht dargestellt) gegliedert ist.

Ergebnisse

In der Molekularschicht sind die reich verzweigten Dendritenbäume der Purkinjezellen, die Axone der Körnerzellen und die Kletterfasern lokalisiert. Folglich ist diese Zellschicht, durch eine hohe Zahl synaptischer Kontakte gekennzeichnet und zeichnet sich wie in der Abb. 3.2.A. zu erkennen durch eine starke Lektinreaktivität aus. Die Somata der Purkinjezellen, lokalisiert in der *Stratum purkinjense*, zeigen eine schwache Lektinreaktivität, die vorwiegend an der Zellmembran oder im extrazellulären Bereich, sowie schwach punktiert im Soma detektierbar ist. Im *Stratum granulosum*, wo die Somata der Körnerzellen in dicht gepackter Aneinanderreihung vorliegen, ist die Lektinreaktivität ähnlich wie in der *Stratum purkinjense* vorwiegend extrazellulär und nur im geringen Maß intrazellulär nachweisbar.

Die im Rahmen dieser Arbeit durchgeführten Studien zeigen, dass Zellschichten die durch eine hohe synaptische Konnektivität (z.B. *Stratum moleculare*) gekennzeichnet sind, eine starke AAL-Markierung aufweisen. Dies ist ein Hinweis, dass Fukoseenthaltenden Glykoproteine und -lipide in synaptischen, dendritischen sowie axonalen Strukturen angereichert sein könnten.

Zusätzlich wurde zu den bereits beschriebenen Untersuchungen, die Spezifität des verwendeten DIG-konjugiertem AAL, welches von Boehringer Mannheim *Biochemica* bezogen wurde, untersucht. Das DIG-konjugierte AAL wurde hierfür zunächst mit L-(-)-Fuk oder D-(+)-Fuk inkubiert und anschließend für die AAL-Markierung der Hirnschnitte verwendet. Dabei zeigt sich, dass L-(-)-Fuk die Bindungsstellen von AAL besetzt und die Markierung von fukosylierten Glykokonjugaten durch AAL in den Hirnschnitten verhindert (Abb. 3.2.B.). AAL besitzt hingegen keine Affinität zur D-(+)-Form der Fukose, da trotz erfolgter D-(+)-Fuk Inkubation die Markierung fukosylierter Glykane durch AAL erhalten bleibt (Abb. 3.2.C.).

Abb. 3.2. Lokalisierung fukosylierter Glykokonjugate in der Kleinhirnrinde des adulten Rattenhirns. Kleinhirnschnittpräparate (sagittal) des adulten Rattenhirns (12 Wochen) wurden für die Lokalisierung fukosylierter Glykokonjugate mit DIG-konjugiertem AAL markiert. (A) AAL-Markierung der Kleinhirnrinde die unterteilt ist in die Molekularschicht (ml), Purkinjezellschicht (pcl) und Körnerzellschicht (gcl). Zur Überprüfung der Zuckerspezifität von AAL wurden sagittale Kleinhirnschnitte mit DIG-konjugiertem AAL markiert, welches vorab mit (B) L-(-)-Fuk oder (C) D-(+)-Fuk inkubiert wurde. (B) Die fluoreszenzmikroskopische Aufnahme verdeutlicht den maskierenden Effekt von L-(-)-Fuk im Vergleich zur (C) D-(+)-Fuk. Die Bilder wurden am Fluoreszenzmikroskop *Axioimage.M1* aufgenommen. (Maßstab entspricht 100 μm in A, 50 μm in B-C)

3.1.2. Intrazelluläre Lokalisation von fukosylierten Glykokonjugaten

In den Untersuchungen der AAL-markierten Hirnschnittpräparate (Abb. 3.1. und 3.2.) wurde deutlich, dass neben den extrazellulären auch intrazellulär lokalisierte Struktureinheiten der Somata durch fukosylierte Glykanketten modifiziert sind.

Die Fukosylierung von N- und O-Glykanen findet in den *medialen*- und *trans*-Zisternen des Golgi-Apparates statt und wird von den dort lokalisierten Fukosyltransferasen katalysiert (Ma *et al.* 2006). Für eine detaillierte Analyse der Somata wurden in Zusammenarbeit mit Oliver Kobler (Leibniz-Institut für Neurobiologie Magdeburg) konfokal mikroskopische Untersuchungen an den AAL-markierten Hirnschnittpräparaten durchgeführt.

Die Analysen von Pyramidenzellen der CA1- und CA3-Region des Hippokampus (Abb. 3.3.A,D; B,E), sowie der Purkinjezellen des Kleinhirns (Abb. 3.3.C,F) bestätigen, dass die Lektinreaktivität wiederum überwiegend an neuronalen Zellmembranen und in extrazellulären Bereichen lokalisiert ist (Pfeile in Abb. 3.3.). In den Somata der Zellen ist auch eine intrazelluläre punktierte Lektinreaktivität detektierbar, welche auf das Vorhandensein fukosylierter Glykane in den Zisternen des Golgi-Apparates hinweisen kann (Dreiecke in Abb. 3.3.).

Abb. 3.3. Intrazelluläre Lokalisation fukosylierter Glykokonjugate im Hippokampus und der Kleinhirnrinde des adulten Rattenhirns. Für die intrazelluläre Detektion fukosylierter Glykokonjugate, wurden AAL-markierte Hirnschnittpräparate der Hippokampusformation und der Kleinhirnrinde durch Konfokalmikroskopie (Leica TCS sp5, 63 x Objektiv) analysiert. (A-C) AAL-Markierung von Pyramidenzellen in der CA1- und CA3-Region des Hippokampus, sowie der Purkinjezellen der Kleinhirnrinde. (D-F) Detailanalyse intrazellulärer Strukturen der Somata von Pyramidalzellen und Purkinjezellen. Alle Zelltypen weisen eine intrazelluläre AAL-Markierung auf. (Maßstab entspricht 50 µm in A-C, 12,5 µm in D-F)

3.1.3. Markierung fukosylierter Glykane an primären kortikalen Neuronen-Glia-Kulturen mittels AAL

Die lektinhistochemischen Untersuchungen zeigen, dass es ein großes Vorkommen an fukosylierten Glykanen im adulten Rattenhirn gibt. Jedoch sind in den histochemischen Untersuchungen auf Grund der geringen Auflösung keine weiteren Analysen feinerer Strukturen von Neuronen, wie z.B. Filopodia oder dendritischer Spines möglich. Auch ist bislang ungeklärt, ob die bestehende Diversität ausschließlich auf neuronale Zelltypen begrenzt ist. Um im Rahmen dieser Arbeit diesen Fragen nachzugehen, wurden primäre kortikale Neuronen-Glia-Kulturen (DIV 21) mit DIG-konjugiertem AAL markiert (Abb. 3.4.A-E.). Zur Unterscheidung neuronaler Zellen wurde diese durch die Immunfärbung des Intermediärfilamentproteins MAP2 identifiziert.

Die AAL-Markierung zeigt, dass diese die Neurone vollständig mit Glykan-haltigen Molekülen umrandet sind (Abb. 3.4.A.). Kulturen, die zur Kontrolle nicht mit AAL markiert wurden, zeigen wie erwartet keine Lektinreaktivität (Abb. 3.4.B.). Dennoch wird deutlich, dass alle Bereiche eines Neurons, wie Dendriten, Soma und Axon, durch fukosylierte Glykanketten modifiziert sind.

Eine Unterscheidung ob es sich um fukosylierte Glykoproteine oder -lipide handelt kann jedoch nicht getroffen werden. Dennoch zeigt die dominante AAL-Markierung der Neurone, dass die Diversität von α 1,2-; α 1,3-; α 1,4- und α 1,6-fukosylierten Oligosacchariden wahrscheinlich sehr abundant ist.

Zusätzlich zu den bereits beschriebenen Untersuchungen wurde die Spezifität des von der Firma *Vector Labortories* bezogenen AAL untersucht. Für diese Untersuchungen wurde DIG-konjugiertes AAL mit L-(-)-Fuk, D-(+)-Fuk oder D-(+)-Gal inkubiert. Bei der anschließenden Markierung fukosylierter Glykane zeigt sich, dass ausschließlich die L-Form der Fukose die Bindungsstellen von AAL maskiert (Abb. 3.4.C.) und dadurch die AAL-Markierung fukosylierter Glykane vollständig hemmt. Die D-Form der Fukose (Abb. 3.4.D.) und Galaktose (Abb. 3.4.E.) üben keinen maskierenden Effekt aus.

Abb. 3.4. Detektion fukosylierter Glykokonjugate in kortikalen Primärkulturen. (A-E) Primäre kortikale Neuronen-Glia-Kulturen (DIV 21) wurden zur Detektion fukosylierter Glykokonjugate mit DIG-konjugiertem AAL markiert. Das DIG wurde durch einen DIG-Antikörper (Maus) markiert und mittels Cy3-gekoppelten Anti-Maus Antikörpern visualisiert. Zusätzlich wurden Neurone mit der MAP2-Immunfärbung visualisiert. (A) Die AAL-Markierung macht deutlich, dass diese die Neurone vollständig umrandet und fukosylierte Glykanstrukturen hochabundant sind. Zur Prüfung der Spezifität von AAL, wurden Kulturen mit AAL markiert, welches vorab mit (C) 100 mM L-(-)-Fuk, (D) 100 mM D-(+)-Fuk oder (E) 100 mM D-(+)-Gal inkubiert wurde. Dabei wird deutlich, dass nur L-(-)-Fuk einen maskierenden Effekt ausübt. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss *Axio Observer.Z1* Mikroskop mit einem 63 x Objektiv durchgeführt. (Maßstab entspricht 10 µm)

Weiterführende Analysen der AAL-Markierung von primären kortikalen Neuronen-Glia-Kulturen in einer 20-fachen Vergrößerung (hier nicht dargestellt) zeigen, dass nicht nur MAP2-markierte Zelltypen durch ein hohes Vorkommen an fukosylierten Glykanen gekennzeichnet sind. Dies deutet darauf hin, dass auch Glykokonjugate von Gliazellen, dem zweiten prominenten Zelltyp in Primärkulturen, durch Fukose modifiziert sind. Die Visualisierung von Gliazellen mittels einer immunologischen Markierung des sauren Gliafaserprotein (GFAP, Abb. 3.5.) bestätigt diese Vermutung. Es zeigt sich, dass die AAL-Markierung die Gliazellen vollständig umrandet (Pfeile in Abb. 3.5.A.). Somit scheinen auch Gliazellen an den Zellmembranen und den extrazellulären Bereichen durch α 1,2- ; α 1,3- ; α 1,4- und α 1,6-fukosylierte Glykokonjugate modifiziert zu sein. Kulturen die zur Kontrolle nicht mit AAL markiert wurden, weisen wie wieder erwartet keine Lektinreaktivität auf (Abb. 3.5.B.).

Abb. 3.5. Detektion fukosylierter Glykokonjugate an glialen Zellmembranen mittels AAL-Markierung. (A-B) Kortikale Neuronen-Glia-Kulturen (DIV 21) wurden mit DIG-konjugiertem AAL markiert. Durch den Einsatz eines DIG-Antikörpers der Spezies Maus und einem Cy3-gekoppelten Anti-Maus Antikörpers wurden die fukosylierten Glykane visualisiert. Die Identifizierung der Gliazellen erfolgte durch die immunologische Färbung des GFAP. (A) Die AAL-Markierung macht deutlich, dass diese die Zellen vollständig umrandet. Kulturen ohne AAL-Markierung zeigen keine Lektinreaktivität auf. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss Axio Observer.Z1 Mikroskop mit einem 63 x Objektiv durchgeführt. (Maßstab entspricht 10 μm)

3.2. AAL-basierte Anreicherungs- und Nachweisverfahren zur Detektion fukosylierter Glykane

3.2.1. Charakterisierung der Spezifität von AAL

Für AAL wurden in einer Vielzahl von Studien hohe Affinitäten zu fukosylierten Glykanen nachgewiesen (Diplomarbeit Nicole Höche, 2009) (Yamashita *et al.* 1985, Fukumori *et al.* 1990, Wimmerova *et al.* 2003). Weiterführend wurden im Rahmen dieser Arbeit die Bindungseigenschaften von AAL analysiert, welches von der Firma *Vector Labortories* bezogen wurde.

Für diese Untersuchungen wurden zum einen die Bindungsstellen des AALs mittels verschiedener Monosaccharide blockiert oder zum anderem die Glykanketten der zu untersuchenden Proteine gezielt durch die Perjodatoxidation (PO) modifiziert.

Der erste experimentelle Versuchsansatz zeigt die lektinchemische WB-Analyse des DIG-konjugierten AAL, welches mit den Zuckern L-(-)-Fuk bzw. D-(+)-Fuk inkubiert wurden (Abb. 3.6.A.). Dabei wird ersichtlich, dass die spezifische Bindung von AAL an fukosylierte Glykane ausschließlich durch die L-Form der Fukose blockiert wird. Das heißt, dass die Inkubation mit der L-(-)-Fuk zur Maskierung der AAL-Bindungsstellen führt und folglich eine Aufhebung der AAL-Markierung auf WB-Ebene nach sich zieht (Abb. 3.6.A., mittlere Spur, L-(-)-Fuk).

Im Gegensatz dazu wird das D-Enantiomer der Fukose nicht von AAL gebunden. Demzufolge wird die AAL-Markierung auf WB-Ebene nicht aufgehoben (Abb. 3.6.A., rechte Spur, D-(+)-Fuk) und entspricht in der Intensität der AAL-Färbung ohne Präinkubation (Abb. 3.6.A., linke Spur, Kontrolle).

Um die Kohlenhydratspezifität der AAL-Bindung zu zeigen, wurden die Glykanketten von Glykokonjugaten durch Perjodatoxidation chemisch verändert (Skilleter *et al.* 1985, Woodward *et al.* 1985). Dabei werden benachbarte Hydroxylgruppen von Sacchariden zu Aldehydgruppen umgewandelt und anschließend mittels Natriumborhydrid reduziert. Unter Zuhilfenahme dieses Verfahrens sollte die Spezifität des verwendeten DIG-konjugiertem AALs getestet werden. Die Abb. 3.6.B. zeigt in der WB-Analyse, dass die spezifische Bindung von AAL an oxidierbare Glykanstrukturen erfolgt und die Zerstörung der Epitope mittels Perjodat zur Aufhebung der AAL-Markierung führt (Abb. 3.6.B., rechte Spur, +PO).

Abb. 3.6. Analyse der Bindungscharakteristika von AAL. Zur Analyse der Bindungseigenschaften von AAL, bezogen von der Firma Vector Labs, wurden WB mit Extrakten synaptischer Membranproteine angefertigt und fukosylierte Proteine mit DIG-konjugiertem AAL und anschließender Inkubation mit anti-DIG analysiert. (A) Präinkubation des DIG-AALs führt zu mit L-(-)-Fuk einer Maskierung der Bindungsstellen von AAL und damit zur Aufhebung der AAL-Markierung. Das D-(+)-Fuk Enantiomer übt keinen inhibitorischen Effekt aus. (B) Die Modifikation der Glykanketten, chemisch herbeigeführt durch die Perjodatoxidation (+PO), führt auf WB-Ebene, zu einem Verlust der Fukosylierung und damit zu einer Aufhebung der AAL Markierung im unbehandelten Vergleich zur Kontrolle (-PO).

3.2.2. AAL-basierte Identifizierung des synaptischen Fukosyl-Glykoproteoms

In den vergangenen Jahrzehnten wurde immer wieder deutlich, dass insbesondere fukosylierten Glykokonjugaten eine entscheidende Rolle in biologischen und pathologischen Prozessen zukommt (Springer 1994, Lowe 1997, Guruge *et al.* 1998, Hooper und Gordon 2001, Li *et al.* 2003, Sasamura *et al.* 2003).

So werden beispielsweise kognitive Prozesse wie Lernen und Gedächtnisbildung durch fukosylierte Glykanstrukturen reguliert (Sukumar *et al.* 1980, McCabe und Rose 1985, Pohle *et al.* 1987, Bullock und Rose 1992, Krug *et al.* 1994, Matthies *et al.* 1996, Murrey *et al.* 2009).

Dennoch wurden bisher nur wenige Proteine identifiziert, die durch Fukose terminal modifiziert sind und obrige Prozesse regulieren können.

Dementsprechend war es ein wesentliches Ziel dieser Arbeit eine detaillierte

Ergebnisse

Charakterisierung des synaptischen Fukosyl-Glykoproteoms vorzunehmen. Die affinitätschromatographisch AAL-basierte Untersuchung von fukosylierten Glykoproteinen wurde angereicherten synaptischen an biochemisch Proteinkomplexen aus dem adulten Rattenhirn (12 Wochen) durchgeführt. Fukosylierte synaptische Membranproteine wurden dabei mittels AAL-Agarose angereichert und durch L-(-)-Fuk spezifisch eluiert. Der Nachweis fukosylierter Glykoproteine erfolgte nachfolgend auf WB-Ebene durch DIG-markiertes AAL (Abb. 3.7.).

Die AAL-basierte Analyse zeigt, dass das Fukosyl-Proteom des Rattenhirns eine hohe Diversität aufweist. Dies betrifft einen großen Molekulargewichtsbereich und insbesondere hochmolekulare Glykoproteine (≥ 50 kDa), welche in der Input-, Durchfluss- und Eluat-Fraktion der AAL-AC detektiert werden können (Abb. 3.7.A. AAL-AC, Spur: Input, Durchfluss, Eluat). Niedermolekulare Glykoproteine (≤ 50 kDa) scheinen hingegen nur im geringeren Maße durch Fukose terminal modifiziert zu sein. Für parallele Kontrollexperimente wurde die Anreicherung mit Protein A-Agarose durchgeführt, um mögliche unspezifische Agarose-basierte Bindungen auszuschließen. Dabei zeigte sich, dass unter Verwendung von Protein A-Agarose fukosylierte Glykoproteine nur in der Input- und Durchfluss-Fraktion detektiert werden konnten (Abb. 3.7.A. Kontroll-AC, Spur: Input, Durchfluss). Dementsprechend fand hier keine unspezifische Anreicherung fukosylierter Glykoproteine statt.

Das Coomassie-Brilliantblau R-250 gefärbte SDS-Gel repräsentiert in der Input- und Durchfluss-Fraktion beider Affinitätschromatographien die molekulare Verteilung des gesamten Proteoms (Abb. 3.7.B.). Dabei zeigt sich, dass in der jeweiligen Input- und eher **Durchfluss-Fraktion** eine gleichmäßige Verteilung hinsichtlich des vorliegt AAL-AC/Kontroll-AC, Molekulargewichts (Abb. 3.7.B. Spur: Input. Durchfluss). Das durch AAL angereicherte Eluat zeigt in Übereinstimmung mit den AAL-Blots hingegen, dass vermehrt hochmolekulare Proteine isoliert wurden (Abb. 3.7.B. AAL-AC, Spur: Eluat). Zusätzlich fand bei der Protein A-Agarose Kontrolle keine Anreicherung von unspezifisch gebundenen Proteinen statt (Abb. 3.7.B. Kontroll-AC, Spur: Eluat).

Abb. 3.7. AAL-chemische Charakterisierung des synaptischen Fukosyl-Glykoproteoms im adulten Rattenhirn. (A) Potentiell fukosylierte synaptische Membranproteine wurden durch AAL-AC angereichert, mittels 100 mM L-(-)-Fuk spezifisch eluiert und nachfolgend mit DIG-konjugiertem AAL auf einem WB-Ebene detektiert. Fukosylierte Glykoproteine konnten in der Input-, Durchfluss- und Eluat-Fraktion detektiert werden. Unter Protein A-Agarose Kontrollbedingungen wurden hingegen nur in der Input- und Durchfluss-Fraktion fukosylierte Proteine detektiert. In den Eluaten ist deutlich erkennbar, dass insbesondere hochmolekulare Glykoproteine fukosyliert sind. Niedermolekulare Glykoproteine scheinen nur im geringeren Maße durch Fukose modifiziert zu sein. (B) Dies wird auch durch SDS-PAGE und Coomassie-Brilliantblau R-250-Färbung der AAL-bindenden Proteinfraktion bestätigt.

Um einzelne Proteinkomponenten des synaptischen Fukosyl-Proteoms gezielt zu ermitteln, wurden die Eluate nach AAL-AC im Vergleich zur Agarose-Kontrolle durch WB-Analysen mit spezifischen Antikörpern auf Kandidatenproteine hin untersucht (Abb. 3.8.). Dabei wurden insbesondere Zelladhäsionsmoleküle, Rezeptoren oder auch Ionenkanäle berücksichtigt, deren Bedeutung für Neuroplastizität bereits bekannt war.

Eine Reihe von Zelladhäsionsmolekülen konnten dabei als möglicherweise fukosylierte Proteine identifiziert werden. Unter anderem wurden N-Cadherin, das Contactin assoziierte Protein Caspr2, das neuronale Zellmembranprotein Contactin/F3, das neuronale Zelladhäsionsmolekül NCAM, Neurofascin, Neuroligin-1, Neuroplastin und Thy 1.1 durch AAL-AC angereichert.

Im Gegensatz dazu erfolgte bei der Protein A Agarose-Kontrolle-AC keine Anreicherung dieser Proteine. Ähnliche Ergebnisse lagen für den spannungsabhängigen Kalziumkanal Cav1.3 und den spannungsabhängigen Kaliumkanal Kv1.2 vor. Auch Kandidatenproteine für die eine Rezeptoraktivität beschrieben ist, wurden durch AAL isoliert: unter anderem ADAM22, die alpha-1 Untereinheit des GABA(A) Rezeptors, der GABA(B)-Rezeptor 2, die AMPA-Rezeptoruntereinheit GluR2 und der BNDF- Rezeptor TrkB.

Abb. 3.8. Katalogisierung der durch *Aleuria aurantia* Lektin angereicherten Kandidatenproteine.

Synaptische Membranproteine wurden mittels 1 % TX-100 und 0,5 % DOC extrahiert (Input) und anschließend zur Anreicherung fukosylierter Glykoproteine mit AAL-Agarose bzw. zu Kontrollzwecken mit Protein A-Agarose inkubiert.

Fukosylierte Proteine wurde nachfolgend mittels 100 mM L-(-)-Fuk eluiert. Auf WB-Ebene wurden die Fraktionen der ACs gezielt mit Antikörpern auf Kandidatenproteine untersucht: ADAM22, N-Cadherin, Caspr2, Cav1.3, Contactin/F3, alpha1 Untereinheit GABA(A) Rezeptor, GluR2, Kv1.2, NCAM, Neurofascin, Neuroligin-1, Neuroplastin, Thy1.1 und der BDNF-Rezeptor TrkB wurden durch AAL angereichert und mittels L-(-)-Fuk spezifisch von der AAL-Agarose eluiert. Im Gegensatz dazu wurde eine Anreicherung durch Protein A Agarose-Kontrolle nicht erreicht, da alle Kandidatenproteine im Durchfluss der Protein A-Agarose verblieben.

3.2.3. Massenspektrometrische Analyse des durch AAL isolierten synaptischen Fukosyl-Glykoproteoms des Rattenhirns

Die vorliegenden Ergebnisse der AAL-AC machen deutlich, dass durch die immunchemische Detektion einzelner Kandidatenproteine nur ein geringer Teil identifiziert werden kann. Daher wurde das durch AAL darstellbare Fukosyl-Glykoproteom massenspektrometrisch untersucht. Die AAL-AC wurde an einer ÄKTA-Chromatographie Anlage (4 ml SV) durchgeführt. Das durch L-(-)-Fuk spezifisch eluierte Fukosyl-Glykoproteom wurde anschließend im Labor von Dr. Thilo Kähne massenspektrometrisch analysiert und somit die im Eluat enthaltenen Proteine identifiziert.

Zur Isolierung synaptischer Membranproteine wurden die Detergenzien TX-100 (1 %) und DOC (0,5 %) gemeinsam eingesetzt, was dazu führen kann, dass Proteinkomplexe möglicherweise erhalten bleiben. Folglich könnten auch potenzielle Interaktionspartner von fukosylierten Glykoproteinen wie z.B. intrazelluläre Zytoskelettstrukturen durch AAL-AC ko-purifiziert und dann später durch Massenspektrometrie identifiziert worden sein.

Nach heutigem Wissenstand sind aber nur sekretierte und integrale Membranproteine durch Glykanketten modifiziert, weshalb nur Proteine, die dem sekretorischen Stoffwechselweg folgen manuell und unter Zuhilfenahme von UniProt und *Ingenuity Pathway Analysis* (IPA) in die finale Identifizierungsliste fukosylierter Proteine aufgenommen wurden.

In die Analyse wurden Datensätze aus zwei separaten AAL-AC einbezogen. Im Eluat der ersten AAL-AC wurden 588 Proteine (Anhang digital S 1A) identifiziert. Das Eluat der zweiten AAL-AC führte zur Identifizierung von 437 Proteinen (Anhang digital S 2A). Insgesamt, ausschließlich von Duplikaten, wurden 812 verschiedene Proteine identifiziert. Dabei zeigt sich, dass bei den identifizierten Proteinen (Abb. 3.9. Venn-Diagramm) 289 Proteine als Membran- und extrazelluläre Proteine eingestuft werden konnten (Anhang S1). Demgegenüber wurden 523 zytoplasmatische, nukleäre und Proteine ohne zelluläre Lokalisation identifiziert.

Abb. 3.9. Klassifizierung der durch AAL angereicherten Proteine. Die mittels TX-100 und DOC extrahierten synaptischen Membranproteine wurden an einer ÄKTA-Chromatographie Anlage mit AAL angereichert, durch L-(-)-Fuk spezifisch eluiert und anschließend massenspektrometrisch analysiert. Zur weiteren Datenanalyse wurden die aus zwei AAL-AC Läufen spezifisch isolierten und nachfolgend identifizierten fukosylierten Proteine manuell, als auch durch Uniprot und *Ingenuity Pathway Analysis* gemäß ihrer zellulären Lokalisation eingruppiert. Die Venn-Darstellung spiegelt die relative Verteilung der Proteine hinsichtlich ihrer Lokalisationen wieder. Das Übermaß an zytosolischen und nukleären Proteinen, scheint durch die nicht stringenten Extraktionsbedingungen begründet zu sein.

Unter den 289 als Membran- und extrazellulär gruppierten Proteinen wurden die bereits immunchemisch detektieren Proteine N-Cadherin, NCAM, Neurofascin, Neuroplastin, Thy-1 und Contactin/F3 (Tabelle 7, bereits immunochemisch blau Für detektierte Proteine sind farblich markiert) identifiziert. die NCAM 2 und Neurexin 3 Zelladhäsionsmoleküle L1. wurde bislang keine Fukosylierung beschrieben, jedoch wurden diese als mögliche fukosylierte Glykoproteine in den chromatographischen Läufen identifziert. Erwähnenswert hierbei ist unteranderem, dass Neurexin 3 in den AAL-ACs mit 15 Proteinen und 10 Peptiden (1st AAL-AC) bzw. mit 19 Proteinen und 6 Peptiden (2st AAL-AC) identifiziert wurde. Dies legt nahe, dass es sich möglicherweise um ein hoch abundantes fukosyliertes Protein handelt.

Auch wurde eine Vielzahl an Transportproteinen identifiziert. Insbesondere ATPabhängige Transporter wurden in größerer Zahl und mit einer hohen Zahl an Peptiden identifiziert (Tabelle 7). Die bereits immunchemisch detektierte alpha-1 Untereinheit des GABA(A) Rezeptors und der glutamaterge Rezeptor GluR2 wurden in den Analysen funktionell zu den Ionenkanälen mit Rezeptoraktivität eingruppiert. Weitere mögliche fukosylierte Ionenkanäle die massenspektrometrisch identifiziert wurden, sind unteranderem die alpha-2 Untereinheit des spannungsabhängigen Kalziumkanals, die beta-3 Untereinheit des GABA(A) Rezeptors, GluR3 und die beta-Untereinheit des spannungsabhängigen Natriumkanals. Darüber hinaus wurden der BDNF-Rezeptor TrkB als auch der GABA(B)-Rezeptor 2 massenspektrometrisch identifiziert.

Des Weiteren wurden Proteine funktionell zugehörig zu den Klassen der Rezeptoren, Bindungsproteine, Regulatoren, G-Protein gekoppelten Rezeptoren oder Enzyme identifiziert. Betrachtet man die Fülle der gewonnen Ergebnisse, wobei die Tabelle 7 nur einen kleinen Teil der identifizierten Proteine repräsentiert, steht dem jedoch die Erkenntnis gegenüber, dass es sich bei den identifizierten Proteinen auch um mögliche direkte oder indirekte Interaktionspartner von fukosylierten Proteinen handeln kann.

Tabelle 7: Auswahl massenspektrometrisch identifizierter AAL-bindender Membran- und extrazellulärer Proteine.

Das mittels Massenspektrometrie identifizierte mögliche Fukosyl-Proteom wurde durch UniProt und IPA gemäß der zellulären Lokalisation und Funktion sortiert. Für die Analyse wurden Datensätze, aus zwei separaten AAL-AC, einbezogen. Zusätzlich wurde analysiert, ob die Proteine nur im ersten, zweiten oder in beiden chromatographischen Läufen identifiziert wurden. Die Daten der Massenspektrometrie geben des Weiteren wieder, wie viele Proteine bzw. Peptide des Kandidaten identifiziert wurden. (Farblich blau markierte Proteine sind bereits durch immunologische Detektion im AAL identifiziert; Abschnitt 3.2.2.)

Protein	UniProt	Σ Proteine	Σ Peptide	MW [kDa]	AC I	AC I+II	AC II
Zelladhäsion-Zellerkennung							
Codhorin 2, Typ 1, N Codhorin	007172	2	15	99,6		+	
Caulerin 2, Typ 1, N-Caulerin	Q92113	2	14	99,6		+	
l 1 Zelladhäsionsmolekül	Q05695	1	20	140,8		+	
		1	17	140,8		+	
NCAM 1	P13596	4	26	94,6		+	
	1 13330	4	26	94,6		+	
	F1M8C0	2	12	91,1		+	
	1 110003	1	8	91,1		+	
Neurofascin	D07685	5	25	137,9		+	
	1 31003	1	21	137,9		+	
Neuroplastin	P97546	2	11	43,9		+	
		2	10	43,9		+	
Neurevin 3	007310	15	10	173,9		+	
	QUISIO	19	6	173,9		+	
Thy-1	P01830	1	2	18,2		+	
1119-1		1	2	18,2		+	
Contactin 1	063198	1	35	113,4		+	
	000100	1	31	113,4		+	
Neuroligin 2	062888	4	9	90,9		+	
	QU2000	4	10	90,9		+	
Neuroligin 3	062880	8	6	93,8		+	
Neuroligin 3	Q02009	4	7	93,8		+	

Tansporter							
ATPase, Ca++ -Transporter, Plasmamembran 4	Q64542- 3	4	11	127,4	+		
ATPase, Na+/K+- Transporter, alpha 1	DOGGOE	1	34	113,0		+	
Polypeptide	F 00003	1	36	113,0		+	
ATPase, Na+/K+- Transporter, alpha 2	P06686	1	40	112,1		+	
Polypeptide		1	38	112,1		+	
ATPase, Na+/K+ -Transporter, alpha 3	DOCCOZ	1	43	111,6		+	
Polypeptide	1 00007	1	36	111,6		+	
ATPase Catt Transporter Plasmamembran 2	P11506	7	13	136,7		+	
Arr ase, Carr - Transporter, Flasmaniembrair 2	1 11300	20	6	136,7		+	
Kinasen					n		
nourotropho Turopin Kinggo Borontor		1	9	92,1		+	
Typ 2	Q63604	1	6	92,1		+	
Ionenkanäle-Ionenkanäle mit Rezeptoraktivität							
spannungsabhängiger Kalziumkanal, alpha	ODERS2	6	31	123,4		+	
2/delta 1 Untereinheit	Q9EK33	5	26	123,4		+	
alpha -1 (GABA) A Rezentor	P62813	1	3	51,7		+	
		1	2	51,7		+	
beta-3 (GABA) A Rezeptor	P63079	4	4	54,1		+	
		4	3	54,1		+	
ionotropher Glutamatrezeptor, AMPA 2	P19491-	1	20	98,7		+	
······	2	1	10	98,7		+	
ionotropher Glutamatrezeptor. AMPA 3	P19492	1	10	100,4		+	
		3	5	100,4		+	
Spannungsabhängiger Natriumkanal, Typ 2,	P54900	2	2	24,1		+	
		2	2			+	
G-Protein gekoppelte Rezeptoren							
(GABA) B receptor 2	O88871	1	5	105,7	+		

3.2.4. Analyse der Glykanketten von Kandidatenproteinen auf das Vorkommen fukosylierter Komponenten mittels AAL

Die Wahl nichtstringenter Bedingungen für die Isolierung synaptischer Membranproteine hat zur Folge, dass Proteinkomplexe teilweise erhalten bleiben können und dementsprechend auch potenzielle Interaktionspartner von fukosylierten Proteinen mittels AAL-AC angereichert werden.

Zur detaillierten Untersuchung dieser Problematik wurden einzelne Proteine einhergehender analysiert. Das entsprechende Protein wurde dabei durch spezifische Antikörper aus dem synaptischen Membranproteinextrakt präzipitiert und auf WB-Ebene mit DIG-konjugiertem AAL detektiert. Abb. 3.10. zeigt eine Reihe immunpräzipitierter Proteine, die mit AAL auf das Vorhandensein terminaler Fukosereste getestet wurden. Die Mehrzahl der ausgewählten Proteine einschließlich ADAM22, Caspr2, Cav1.3, Contactin/F3, alpha-1 Untereinheit des GABA(A) Rezeptors, Glutamatrezeptor 2, NCAM, Neurofascin, Neuroplastin-65, Thy-1.1 und der BDNF-Rezeptor TrkB sind durch eine AAL-Reaktivität bei den entsprechenden Molekulargewichten gekennzeichnet, folglich sind diese Proteine fukosyliert.

Im Gegensatz zu diesen Ergebnissen wurde für den GABA(B) Rezeptor 2 und das Zelladhäsionsmolekül Neuroligin-1 keine AAL-Reaktivität bei entsprechendem Molekulargewicht detektiert. Ausgehend von der Bindungscharakteristika des verwendeten AAL zeigte sich, dass die untersuchten Proteine GABA(B) Rezeptor 2 und Neuroligin-1 nicht fukosyliert sind. Ungeachtet dessen können diese Proteine wahrscheinlich mit fukosylierten Glykoprotein-Komplexen interagieren und daher indirekt durch AAL-AC angereichert werden. Der spannungsabhängige Kaliumkanal Kv 1.2 und N-Cadherin konnten im Detail nicht analysiert werden, da für die Immunpräzipitationen keine geeigneten Antikörper zur Verfügung standen.

Abb. 3.10. Detektion terminaler Fukosyl-Glykanstrukturen an immunpräzipitieren Proteinen mittels AAL-chemischem Nachweisverfahren. Mögliche fukosylierte Glykoproteine wurden durch spezifische Antikörper aus dem synaptischen Membranproteinextrakt präzipitiert (Immunoblot, links) und nachfolgend auf WB-Ebene mit AAL auf das Vorhandensein fukosylierter Glykanketten getestet (AAL-Blot, rechts).

3.3. Analyse dynamischer Aspekte der Fukosylierung

Es ist bekannt, dass Synapsen durch ihre molekulare Komposition in der Lage sind, dynamisch auf Veränderungen zu reagieren. Dies stellt eine wichtige Voraussetzung für intra- und interzelluläre Kommunikation dar. Unter diesen Aspekten sind neuronale Zellen in der Lage mit ihrer Umwelt zu kommunizieren und zu interagieren (Wollscheid *et al.* 2009).

Um die dynamischen Veränderungen der Fukosylierung von Proteinen zu untersuchen, wurden bioorthogonale, chemische Reporter (z.B. Azid-Gruppe) zur Markierung Protein-assoziierter Glykane eingesetzt. Im experimentellen Ansatz wird die Azid-modifizierte L-(-)-Fukose durch den zelleigenen Metabolismus in Glykanketten eingebaut (Liu *et al.* 2011). Die anschließende Kupfer-katalysierte Azid-Alkin-Cycloaddition (CuAAC) ermöglicht die kovalente Kopplung entweder mit einer Alkin-modifizierten fluoreszenten Sonde zur Visualisierung (FUNMOT) (analog zur Markierung und Visualisierung AHA-markierter Proteine beschrieben in (Dieterich *et al.* 2010)) oder mit einer Alkin-modifizierten Affinitäts-Sonde zur biochemischen Anreicherung (BONMOT) (Rostovtsev *et al.* 2002, Dieterich *et al.* 2006, Rabuka *et al.* 2007).

3.3.1. Einfluss von NMDA, Glyzin und AzL-(-)-Fukose auf die Zellvitalität kortikaler Primärkulturen

Verschiedenste Untersuchungen haben gezeigt, dass fukosylierte Glykokonjugate eine Vielzahl von Prozessen regulieren können. Die Diskriminierungsexperimente von W. Pohle *et. al* (Pohle *et al.* 1987) haben durch die Verabreichung von ³H-Fukose gezeigt, dass trainierte Tiere einen erhöhten ³H-Fukose Einbau in synaptische Glykokonjugate aufweisen. Die Applikation von L-Fukose führt zusätzlich zu einer verbesserten Lernleistung (Wetzel *et al.* 1980).

Des Weiteren konnte durch die Verabreichung von L-(-)-Fukose oder 2-Fukosyllaktose in elektrophysiologischen Studien eine Erhöhung der LTP induziert werden (Krug *et al.* 1994, Matthies *et al.* 1996). Die Betrachtungen der Studien zeigen, dass eine Steigerung der Fukosylierung von Proteinen bislang nur unter diesen Gegebenheiten detektiert wurde. Um Aufschluss über den Grad der Fukosylierung unter entgegengesetzten Gegebenheiten zu erlangen, wurde im Rahmen dieser Arbeit der Prozess der LTD untersucht. Ein Prozess der zum einem durch die Aktivierung des NMDA-Rezeptors oder zum anderem durch die Aktivierung der metabolischen Glutamatrezeptoren erfolgen kann (Malenka und Bear 2004, Ramiro-Cortes und Israely 2013).

Bezüglich der Analyse des synaptischen Fukosyl-Glykoproteoms wurde die LTD chemisch durch die NMDA-Glyzin-Behandlung induziert, einer Form die unabhängig von Proteinneusynthese ist (Malenka und Bear 2004, Ramiro-Cortes und Israely 2013). Anschließend wurden die AzL-(-)-Fukose-markierten kortikalen Primärkulturen (DIV 21), unter Einsatz der CuAAC, biochemisch als auch fluoreszenzmikroskopisch analysiert.

Zunächst wurden mögliche Veränderungen der Zellvitalität durch den metabolischen Einbau der AzL-(-)-Fukose oder der NMDA-Glyzin-induzierten synaptischen Aktivität untersucht. Kortikale Primärkulturen (DIV 21) wurden dafür mit NMDA-Glyzin behandelt und anschließend für 48 h mit Kulturmedium inkubiert, welches mit oder als Kontrolle ohne AzL-(-)-Fukose versetzt wurde. Abschließend wurden die Primärkulturen *in situ* mit dem Hoechst 33258 Vital-Farbstoff inkubiert.

Toxische Effekte induzieren das Sterben der Zellen, ein Prozess der durch die Permeabilisierung der Zellmembranen gekennzeichnet ist. Dieser Prozess ermöglicht nachfolgend die Aufnahme des Hoechst 33258 Farbstoff in die Zellen und induziert damit eine Färbung AT-reicher DNA-Sequenzen. Die positive Hoechst 33258-Färbung der PFA-fixierten Zellen (Abb. 3.11.A.) wird durch die Permeabilisierung der Zellmembran während der Fixierung ermöglicht. Im Gegensatz dazu wurden für die untersuchten Konditionen NMDA/Gly-AzL-(-)-Fuk, basal-AzL-(-)-Fuk, NMDA/Gly-Kontrolle und basal-Kontrolle keine Hoechst 33258-Färbungen detektiert (Abb. 3.11.C-F.). Diese Färbungen waren vergleichbar mit der Negativkontrolle (kein Hoechst 33258, Abb. 3.11.B).

Durch die quantitative Analyse wurde kein statistisch signifikanter Unterschied zwischen den einzelnen Konditionen hinsichtlich der Zellsterberate identifiziert (Abb. 3.11.G). Weder die NMDA-Glyzin Inkubation zur Induktion synaptisch veränderter Aktivität noch die 48-stündige metabolische AzL-(-)-Fukose-Markierung beeinträchtigen die Vitalität der kortikalen Primärkulturen.

Zusätzlich zur Analyse der Zellvitalität durch die Hoechst 33258-Färbung lassen sich mögliche toxische Effekte durch die immunzytochemische Färbung des Intermediärfilaments MAP2 beurteilen (Abb. 3.11.H-K). Zellen, die AzL-(-)-Fuk in die

Glykanketten einbauen, zeigen eine ähnliche intakte MAP2-Färbung, wie Zellen die ohne den Azid-modifizierten Zucker inkubiert wurden (Abb.3.11.H.J). Identische Aussagen können für die NMDA-Glyzin behandelten Zellen getroffen werden (Abb.3.11.I.K). Diese Ergebnisse zeigen, dass unter den gewählten Konditionen die Vitalität der Zellen erhalten bleibt.

Abb. 3.11. Vitalität kortikaler Primärkulturen nach induzierter synaptischer Aktivität und metabolischer AzL-(-)-Fukose Markierung. Kortikale Primärkulturen (DIV 21) wurden für die Induktion veränderter synaptischer Aktivität 3 min mit HBS-Puffer versehen, welcher mit 20 µM NMDA

und 10 µM Glyzin versetzt wurden war. Für basale Konditionen wurden die Kulturen hingegen nur mit HBS-Puffer versehen. Anschließend wurden die Kulturen mit Kulturmedium versehen, versetzt mit 375 µM AzL-(-)-Fuk oder zur Kontrolle ohne AzL-Fuk. Nach 48 h Inkubation wurden die Kulturen durch die in situ Inkubation mit dem Hoechst 33258-Farbstoff auf die Zellvitalität hin untersucht. Die Experimente wurden insgesamt dreimal durchgeführt und analysiert. (A) PFA-fixierte Zellen zeigen eine positive Hoechst 33258-Färbung. (B) Zellen die hingegen nicht mit Hoechst 33258 gefärbt wurden, stellen die Negativkontrolle dar. Die vorliegenden Konditionen: (C) LTD-induziert und metabolisch mit AzL-Fuk markiert, (D) metabolisch markiert, (E) LTD-induziert aber ohne metabolische Markierung oder die (F) basale Kondition wurden durch die Hoechst 33258-Färbung auf mögliche toxische Effekte hin untersucht. (G) Die statistische Analyse mittels one-way ANOVA (P<0.05) zeigte, dass kein signifikanter Anstieg der Zahl toter Zellen durch die NMDA/Gly induzierte synaptische Aktivität oder durch die metabolische Markierung mit AzL-(-)-Fuk beobachtet wurde. Die Fehlerbalken stellen die SEM-Werte dar. Zusätzlich wurden mögliche induzierte toxische Effekte durch die MAP2-Färbung (H-K) analysiert. Dabei konnten keine Unterschiede in der Morphologie und Vitalität der Primärkulturen festgestellt werden. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss Axio Observer.Z1 Mikroskop mit einem 20 x und 63 x Objektiv durchgeführt. (Maßstab entspricht 20 µm in A-F und 10 µm in H-K)

3.3.2. Analyse NMDA- und Glyzin-induzierter Auswirkungen auf die Dynamik des Fukosyl-Glykoproteoms durch BONMOT

Für die Analyse der NMDA-Glyzin-induzierten Veränderungen des synaptischen Fukosyl-Glykoproteoms wurden kortikale Primärkulturen (DIV 21) mit NMDA-Glyzin oder zur basalen Kontrolle mit HBS-Puffer behandelt und anschließend für 48 h mit bzw. für Kontrolluntersuchungen ohne AzL-(-)-Fuk metabolisch markiert. Nachfolgend wurden die AzL-fukosylierten Glykoproteine durch die CuAAC mit einer Alkin-modifizierten Biotin-Sonde markiert und durch das Biotin-affine Protein NeutrAvidin angereichert.

Um den Grad der veränderten Fukosylierung zwischen den verschiedenen Konditionen vergleichen zu können, wurden für die NeutrAvidin-AC identische Proteinmengen der einzelnen Konditionen verwendet. Die Proteinmengen wurden mittels BCA-Test bestimmt und gegebenenfalls angeglichen. Abweichungen bis zu 5 % wurden toleriert. Zusätzlich wurden quantitative OD-Analysen der SDS-Gele durchgeführt. Weitere Untersuchungen wurden auf WB-Ebene mit einem gegen Biotin gerichtet Antikörper durchgeführt.

Das AzL-Fukosyl-Glykoproteom wurde erfolgreich mittels trägergekoppelter NeutrAvidin-Matrix angereichert (Abb. 3.12.A.B., Spur SDS-Eluat). Im Vergleich zur basalen Kontrolle, ist das Biotin-Signal nach der NMDA-Glyzin-Behandlung signifikant erhöht (Abb. 3.12.C.; Abb. 3.12.D. zweiseitiger Student t-Test,***P<0.001). Dies könnte entweder auf eine erhöhte Neusynthese fukosylierter Glykoproteine oder eine verstärkte Fukosylierung vorhandener Proteine oder beides zurück zuführen sein. Identisch zu den vorliegenden Ergebnissen zeigt das SDS-Eluats der NMDA-Glyzin-behandelten Kondition, ersichtlich in der Silberfärbung (Abb. 3.12.B.) und anschließender Histogramm-Analyse (Abb. 3.12.C.E.), eine Erhöhung der Proteinmenge im gesamten Molekulargewichtsbereich.

Allgemein und ungeachtet der synaptischen Aktivität, zeigt sich in der WB-Analyse, dass insbesondere hochmolekulare Glykoproteine ($M_r \ge 50$ kDa) durch AzL-(-)-Fuk terminal modifiziert sind und somit durch NeutrAvidin angereichert werden können. Dennoch sind auch niedermolekulare Glykoproteine ($M_r \le 50$ kDa) durch AzL-(-)-Fuk terminal modifiziert und werden dementsprechend angereichert.

Wurden die kortikalen Primärkulturen hingegen mit NMDA-Glyzin oder HBS-Puffer behandelt nachfolgend aber ohne AzL-(-)-Fuk kultiviert, zeigt sich, dass keine Markierung durch die Biotin-Sonde stattfindet. Dementsprechend konnten durch den Antikörper, gerichtet gegen Biotin, keine Signale auf WB-Ebene detektiert werden (Abb. 3.12.F, Spur Input). Lediglich endogen biotinylierte Proteine (Pacheco-Alvarez *et al.* 2004) wurden mittels NeutrAvidin angereichert und detektiert (Abb. 3.12.F, Spur Input, SDS-Eluat).

Die Ergebnisse der metabolischen AzL-(-)-Fuk-Markierung im Vergleich zu den vorangegangen AAL-Affinitäts-basierten Proteinanreicherung zeigen nach SDS-PAGE große Übereinstimmung im Proteinmuster.

Abb. 3.12. Anreicherung AzL-fukosylierter Glykoproteine nach erfolgter Biotin-Markierung mittels CuAAC und NeutrAvidin-AC. Zur Analyse dynamischer Veränderungen der Fukosylierung von Glykoproteinen, wurden kortikale Primärkulturen (DIV 21) 3 min mit 20 µM NMDA und 10 µM Glyzin behandelt. Unter basalen Bedingungen wurden die Kulturen dementsprechend 3 min ausschließlich mit HBS-Puffer inkubiert. Anschließend wurden die Kulturen mit Kulturmedium versehen, welches mit oder zu Kontrollzwecken ohne 375 µM AzL-(-)-Fukose versetzt wurden war. Nach 48 h Inkubation wurden die Proteinlysate der behandelten Kulturen durch CuAAC mit einer Biotin-Sonde markiert. Es wurden identische Proteinmengen für die nachfolgende Anreicherung mittels des Biotin-affinen NeutrAvidin verwendet. (A) Die Detektion der Biotin-Sonde wurde auf WB-Ebene durch einen anti-Biotin Antikörper ermöglicht. (B) Die molekulare Zusammensetzung des AzL-Fukosyl-Glykoproteoms wurde zusätzlich durch die Silberfärbung visualisiert. (C,E) Die Histogramm-Analyse der vorliegenden und induziert veränderten Signalstärken des Biotin-Signals bzw. der Silberfärbung, wurde mittels *Image J* realisiert. Dabei zeigt sich, dass das angereicherte AzL-Fukosyl-Glykoproteom aus molekularer Sicht im Gesamten an Masse zugenommen hat. (D) Für die quantitative Analyse der NMDA/Glyzin-induziert veränderten Fukosylierung von Glykoproteinen

wurden die Biotin-Signalintensitäten mittels *QuantityOne* analysiert, nachfolgend normalisiert und durch den zweiseitigen *Student t*-Test interpretiert. Die Fehlerbalken stellen die SEM-Werte dar. *P<0.05; **P<0.01, ***P<0.001. Diese Analyse zeigt, dass das Biotin-Signal durch die NMDA/Glyzin Behandlung signifikant erhöht ist. (F) Zur Überprüfung der methodischen Validität der verwendeten CuAAC und der Anreicherung mittels NeutrAvidin wurden Proteinlysate aus Kulturen, die ohne AzL-Fuk kultiviert wurden, analysiert. Es waren keine Biotin-Markierungen nachweisbar, wodurch die Validität der Daten in A-E bestätigt wird.

Angesichts dieser Ergebnisse ist es von großem Interesse, welche Proteine unter NMDA/Glyzin-induziert veränderter synaptischer Aktivität einer Änderung der Fukosylierung unterliegen. Die Fukosylierung jedes einzelnen Proteins kann unter Umständen hoch- oder herunter-reguliert oder auch unverändert sein. Dies muss dann nur für jedes einzelne Protein überprüft werden.

Daher wurden solche Proteine aus der Gesamtliste identifizierter Fukosyl-Proteine ausgewählt für die Antikörper verfügbar waren. Die durch Chemilumineszenz detektierten Signalintensitäten wurden mit *QuantityOne* analysiert und nachfolgend für jeden einzelnen Blot, auf den jeweiligen Mittelwert der Signale auf diesem Blot, normalisiert. Quantitativ wurden die normalisierten Lumineszenzintensitäten durch den zweiseitigen *Student t*-Test statistisch bewertet.

Die NMDA/Glyzin-induzierte veränderte synaptische Aktivität (Abb. 3.13.) führt zu einer statistisch signifikanten Reduzierung der Signalintensität der alpha-1 Untereinheit des GABA(A)-Rezeptors. Die Reduzierung in der Signalintensität beruht auf der verminderten NeutrAvidin-Anreicherung, da offenbar infolge der NMDA/Glyzin-Inkubation, weniger AzL-(-)-Fuk in die Glykanketten dieser GABA(A)-Rezeptor Untereinheit eingebaut wird.

Gegensätzlich dazu wurde für die Signalintensität des neuronalen Cadherins, des Contactin assoziierten Proteins Caspr2 und für den spannungsabhängigen Kaliumkanal Kv1.2 ein statistisch signifikanter Anstieg beobachtet. Hier wird auf Grund der veränderten synaptischen Aktivität entweder vermehrt AzL-(-)-Fuk in bereits existierende Glykanketten inkooperiert, oder es wird vermehrt AzL-(-)-Fuk in neusynthetisierte Proteine eingebaut.

Die Proteine ADAM22, Neurofascin-186 und Neuroplastin hingegen zeigten keine statistisch signifikante Veränderungen der AzL-(-)-Fuk-Inkorporation infolge der NMDA/Glyzin-Behandlung. Auch NCAM, TrkB, GluR2, Cav1.3, Thy1.1 und Contactin/F3 wurden unter den vorliegenden Konditionen untersucht, allerdings behinderten die schwachen Lumineszenzintensitäten bzw. deren Streuung eine statistische Analyse. Neuroligin-1 konnte in den Eluaten nicht detektiert werden.

normalisierte Lumineszenz Intensität

Abb. 3.13. Statistische Analyse des relativen Grades der Fukosylierung der durch NeutrAvidin angereicherten AzL-fukosylierten Proteine. Zur Analyse dynamischer Veränderungen in der Fukosylierung ausgewählter Proteine, wurde das angereicherte AzL-Fukosyl-Glykoproteom nach NeutrAvidin-Affinitätsanreicherung untersucht. Auf WBs wurden die Signalintensitäten einzelner Proteine detektiert. Für eine quantitative Analyse der NMDA/Glyzin-induziert veränderten Fukosylierung ausgewählter Proteine wurden die Signalintensitäten mittels *QuantityOne* analysiert, nachfolgend normalisiert und durch den zweiseitigen *Student t*-Test interpretiert. Für die alpha-1 Untereinheit des GABA(A)-Rezeptor wurde eine statistisch signifikante Reduzierung der Signalintensität nach NMDA/Gly Behandlung gefunden. Für das neuronale Cadherin, Caspr2 und Kv1.2 wurde hingegen ein statistisch signifikanter Anstieg der Signalintensitäten nach NMDA/Gly-Behandlung detektiert. Für ADAM22, Neurofascin-186 und Neuroplastin wurden keine Änderungen in der Signalintensität detektiert. Die Fehlerbalken stellen die SEM-Werte dar. *P<0.05; **P<0.01, ***P<0.001

3.3.3. Massenspektrometrische Analyse des AzL-fukosylierten Glykoproteoms

Die biochemischen Untersuchungen des AzL-fukosylierten Glykoproteoms und die Analysen der aktivitätsabhängigen veränderten Fukosylierung einzelner Kandidatenproteine liefern eine Vielzahl an Ergebnissen.

Ungeachtet dessen, kann durch dieses Vorgehen nur ein kleines Spektrum zur Identifizierung fukosylierter Proteine abgedeckt werden. Anhand dieser Tatsache wurden die mittels NeutrAvidin-angereicherten Fraktionen der NMDA/Gly-AzL-(-)-Fuk und basal-AzL-(-)-Fuk Konditionen massenspektrometrisch untersucht.

Basierend auf dem gegenwärtigen Wissenstand, dass nur sekretierte und integrale Membranproteine durch Glykanketten modifiziert sind, wurden die identifizierten Proteine der mit NeutrAvidin angereicherten AzL-(-)-Fuk-Fraktionen mit oder ohne NMDA/Glyzin-Behandlung bei vergleichbarem Vorgehen wie in Abschnitt 3.2.3 selektiert.

Im Eluat der Zellextrakte nach NMDA/Gly-Behandlung wurden insgesamt 635 Proteine (Anhang digital S 3B), im Eluat der Zellen den ohne Stimulus (basale Bedingung) 554 Proteine identifiziert (Anhang digital S 4B). Insgesamt, ausschließlich von Duplikaten, wurden 1129 verschiedene Proteine identifiziert. Dabei zeigt sich, dass bei den identifizierten Proteinen (Abb. 3.14. Venn-Diagramm) 136 Proteine als Membran- und extrazelluläre Proteine eingestuft werden konnten (Anhang S2). Demgegenüber wurden 993 zytoplasmatische, nukleäre und Proteine ohne zelluläre Lokalisation identifiziert.

Abb. 3.14. Klassifizierung des durch NeutrAvidin angereicherten AzL-fukosylierten Proteoms. Für die Analyse der Fukosylierung von Glykoproteinen bei veränderter synaptischer Aktivität wurden kortikale Primärkulturen (DIV 21) 3 min mit 20 µM NMDA und 10 µM Glyzin behandelt. Unter basalen Bedingungen wurden die Kulturen dementsprechend 3 min mit HBS-Puffer inkubiert. Nachfolgend wurden die Kulturen mit Kulturmedium versorgt, welches mit 375 µM AzL-(-)-Fuk versetzt worden war. Nach der 48 h Inkubation wurden die Proteinlysate der behandelten Kulturen durch die CuAAC mit einer Biotin-Sonde markiert. Anschließend wurden die mit einer Biotin-Sonde markierten Proteine über NeutrAvidin angereichert und die im Eluat enthaltenen Proteine wurden massenspektrometrisch analysiert. Manuell, als auch durch UniProt und IPA wurden die in den Eluaten identifizierten Proteine nach der zellulären Lokalisation gruppiert. In der Venn-Darstellung spiegelt sich die relative Verteilung der Proteine hinsichtlich der zellulären Lokalisation wieder.

Es zeigt sich erneut, vergleichend zur massenspektrometischen Analyse des durch AAL-angereicherten Fukosyl-Proteom (Abschnitt 3.2.3.), dass eine Vielzahl an Zelladhäsionsmolekülen, Transportern, Ionenkanälen, Rezeptoren und Regulatoren terminal durch Fukose modifiziert sein können. Es gibt viele Proteine, die in beiden analysierten Konditionen gefunden wurden. Erwähnenswert sind unteranderem NCAM und Neurofascin. Dennoch gibt es auch Proteine, wie beispielsweise Neuroplastin, die nur unter einer der beiden analysierten Konditionen detektiert wurden (Tabelle 8, Anhang S2; Anhang digital S 3B, 4B). Die drei aufgeführten Proteine repräsentieren nur einen geringen Teil der insgesamt unter beiden Bedingungen 136 identifizierten Proteine. Die Zelladhäsionsmoleküle und Transporter stellen auch hier wie nach AAL-chromatographischer Anreicherung von fukosylierten Proteinen (siehe Abschnitt 3.2.3) den Hauptteil identifizierter Proteine dar.

Ebenso wurde, wie auch im Abschnitt 3.2.3 bereits gezeigt, eine Vielzahl an ATPasen identifziert, die vorher immunchemisch nicht detektiert werden konnten. Der bereits im WB von AAL-Eluaten detektierte Glutamatrezeptor GluR2 und weitere

Rezeptoren und Ionenkanäle konnten ebenso als mögliche fukosylierte Proteine identifiziert werden (Anhang S2; Anhang digital S 3B, 4B).

Tabelle8:AuflistungmassenspektrometrischidentifizierterNeutrAvidin-angereichertenProteine.

Die mittels NeutrAvidin-angereicherten Fraktionen der NMDA/Gly-AzL-(-)-Fuk und basal-AzL-(-)-Fuk Konditionen wurden anschließend, an die massenspektrometrische Analyse, manuell, durch UniProt und IPA gemäß der zellulären Lokalisation sortiert. Untersucht wurde zusätzlich ob die Proteine unter beiden Bedingungen oder nur unter einer der beiden Bedingungen gefunden wurden. Gelistet ist zudem, wie viele Proteine bzw. Peptide des Kandidaten identifziert wurden. (Farblich blau markierte Proteine sind bereits durch immunologische Detektion im AAL identifiziert; Abschnitt 3.2.2.)

Protein	UniProt	Σ Proteine	Σ Peptide	MW [kDa]	NMDA Glyzin	basal
Zelladhäsion-Zellerkennung						
Neuroplastin	P97546-1	1	2	31,3	+	
l 1 Zelladhäsionsmolekül		1	3	140,3	+	
	0321 04	1	2	140,3		+
NCAM 1	P13596	4	21	94,6	+	
		4	18	94,6		+
Neurofascin	P97685	1	3	137,9	+	
		5	2	137,9		+
Contactin 1	Q63198	1	23	113,4	+	
		1	20	113,4		+
Tansporter						
ATPase, Na+/K+ Transporter,	DOGGRE	1	25	113,0	+	
alpha 1 Polypeptid	F00085	1	23	113,0		+
ATPase, Na+/K+ Transporter,	DOGGRG	1	24	112,1	+	
alpha 2 Polypeptid	F00080	1	21	112,1		+
ATPase, Na+/K+ Transporter,	D06697	1	36	111,6	+	
alpha 3 Polypeptid	F00087	1	32	111,6		+
ATPase, Ca++ Transporter,	P11506	6	19	136,7	+	
Plasmamembran 2	F11500	2	19	136,7		+
ATPase, Ca++ Transporter,	064568	15	11	138,5	+	
Plasmamembran 3	Q04500	15	10	138,5		+
ATPase, Ca++ Transporter,	064542-3	4	22	127,4	+	
Plasmamembran 4	004042-0	4	23	127,4		+
Neurotransmitter Transporter,	D22070	1	3	67,0	+	
GABA	GABA P23978		2	67,0		+
Ionenkanäle-Ionenkanäle mit Rezeptoraktivität						
ionotropher Glutamatrezeptor, AMPA 2	P19491	5	2	98,6	+	
spannungsabhängiger		6	11	123,7	+	
Kalziumkanal, alpha 2/delta 1 Untereinheit	P54290	6	2	123,7		+
spannungsabhängiger	P08104	3	2	221,2	+	
Natriumkanal, Typ3 , alpha	1 00104	2	4	221,2		+
GABA(A) Rezeptor, beta 3	P63079	4	2	54,1		+
G-Protein gekoppelte						
Rezeptoren	DO1 40 1	0	0	404.0		
Giutamat Rezeptor, metabotroph 5	P31424	2	3	131,8	+	

Trotz der methodischen Unterschiede zwischen BONMOT- bzw. AAL-AC wurden in den MS-Analysen insgesamt 332 Proteine (Anhang S3) identifiziert. In beiden Versuchsansätzen wurden 92 identische Membran- bzw. extrazelluläre Proteine charakterisiert. Währenddessen 156 Membran- oder extrazelluläre Proteine nur in der AAL-bindenden Fraktion und 58 Proteine nur in den BONMOT-angereicherten Proteinfraktionen identifiziert wurden (Anhang S4).

3.3.4. Analyse der Dynamik des Fukosyl-Glykoproteoms durch FUNMOT nach NMDA-Glyzin-induzierter Plastizität

Eine weitere Analyse der NMDA-Glyzin-induzierten dynamischen Veränderungen des synaptischen Fukosyl-Glykoproteoms wurde mittels Fluoreszenzsonden durchgeführt. Analog zum BONMOT-Verfahren wurden kortikale Primärkulturen (DIV 21) mit NMDA-Glyzin bzw. zur Analyse basaler synaptischer Aktivität mit HBS-Puffer behandelt. Anschließend wurden die Kulturen für 48 h in Kulturmedium mit oder zu Kontrollzwecken ohne AzL-(-)-Fukose inkubiert. Nach Fixierung der Zellen wurde durch die CuAAC eine Alkin-modifizierte TexasRed-Sonde kovalent an die Azidgruppe des L-(-)-Fukose gebunden, wodurch die Analyse AzL-fukosylierter Glykokonjugate mittels Fluoreszenzmikroskopie möglich war.

Abb. 3.15. Visualisierung AzL-fukosylierter Glykokonjugate in kortikalen Primärkulturen durch FUNMOT. Dissoziierte Neuronen-Glia-Kulturen (DIV 21) wurden zur Induktion veränderter synaptischer Aktivität 3 min mit 20 μ M NMDA und 10 μ M Glyzin behandelt. Als Kontrollgruppe dienten entsprechende Kulturen ohne den Zusatz von NMDA/Glyzin. Nach einer 48 h Inkubation in Kulturmedium welches mit oder ohne 375 μ M AzL-(-)-Fukose versehen worden war, wurden die Kulturen fixiert und durch die CuAAC mit der TexasRed-Alkin-Sonde markiert. Eine Zunahme der Fukosylierung von Glykokonjugaten spiegelt sich durch eine verstärkte TexasRed-Emission wieder. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss Axio Observer.Z1 Mikroskop mit einem 40 x Objektiv durchgeführt. (Maßstab entspricht 20 μ m)

Neuronen-Glia-Kulturen, die mit AzL-(-)-Fuk inkubiert wurden zeigen ein deutliches Fluoreszenzsignal des Fluorophors TexasRed an MAP2-positiven Neuronen (Abb. 3.15.A.B.). Kulturen, die nicht mit AzL-(-)-Fukose inkubiert wurden, weisen keine Markierung durch die Fluoreszenzsonde auf (Abb. 3.15.C.D.). Hinsichtlich der Lokalisierung AzL-fukosylierter Glykokonjugate zeigt sich übereinstimmend mit den vorangegangenen AAL-Markierungen, dass die modifizierten Glykanketten vorwiegend Zellmembran-assoziiert oder im extrazellulären Matrixraum vorliegen. Zusätzlich konnte eine intensive Emission des Fluorophors TexasRed im Soma detektiert werden. Die Ursache hierfür liegt sehr wahrscheinlich an der intrazellulären Verstoffwechselung der AzL-(-)-Fuk.

AzL-(-)-Fuk wird von der Zelle aufgenommen und im Zytoplasma mittels des *Salvage Pathways* (Ma *et al.* 2006) in die aktive GDP-AzL-Fuk umgewandelt. Des Weiteren können im Soma, im genaueren an den Zisternen des Golgi-Apparates und im ER, AzL-fukosylierte Glykokonjugate durch die Fluoreszenzsonde markiert werden. Folglich wird durch die Konzentration auf engen Raum ein starkes TexasRed-Fluoreszenzsignal detektiert.

Vergleicht man die Intensitäten der Fluoreszenzsignale der verschiedenen untersuchten Bedingungen miteinander, zeigt sich eine stärkere TexasRed-Signalintensität bei NMDA-Glyzin-behandelten Primärkulturen. Dies deutet darauf hin, dass vermehrt AzL-(-)-Fuk eingebaut und von der fluoreszenten Sonde markiert wurde. Diese Beobachtung ist im Einklang mit der Zunahme der Fukosylierung von Glykoproteinen bei NMDA-Glyzin-induzierter LTD in den BONMOT-Analysen (Abschnitt 3.3.2.).

3.3.5. Visualisierung dynamischer Fukosylierung und Proteinneusynthese mittels kombinierter FUNMOT und FUNCAT-Analysen

Durch den metabolischen AzL-(-)-Fuk Einbau und die BONMOT- bzw. FUNMOT-Analysen konnte im Rahmen dieser Arbeit gezeigt werden, dass eine Änderung der Fukosylierung von Proteinen durch die Modulation neuronaler Aktivität hervorgerufen wird.

Dennoch kann ausgehend von diesen Ergebnissen keine Aussage darüber gemacht werden, inwieweit neusynthetisierte oder bereits existierende Glykoproteine von der Veränderung in der Fukosylierung betroffen sind. Um dies im Detail zu betrachten, ist es notwendig, den Änderungsgrad der Fukosylierung in Abhängigkeit von der Proteinneusynthese zu untersuchen.

Deshalb wurde im Rahmen dieser Arbeit die metabolische Doppelmarkierung mit AzL-(-)-Fuk und HPG durchgeführt. Die Azid-modifizierte L-(-)-Fukose wird wie bereits beschrieben durch den zelleigenen Metabolismus die in die Glykanketten

eingebaut. Gleichzeitig findet durch den zelleigenen Translationsapparat ein Einbau der Alkin-modifizierten Aminosäure HPG, einem Analogon zur Aminosäure Methionin, in das Proteingerüst statt. Die beiden anschließenden CuAAC-Reaktionen (Rostovtsev *et al.* 2002, Dieterich *et al.* 2006, Dieterich *et al.* 2007, Dieterich *et al.* 2010, Liu *et al.* 2011) ermöglichen die biochemische und fluoreszenzmikropische Analyse doppelt metabolisch markierter Proteine.

Für die Optimierung der experimentellen Bedingungen wurden zunächst kortikale Primärkulturen unter basalen Konditionen für 1, 4, 8, 24 und 48 h mit AzL-(-)-Fuk oder HPG inkubiert. Für die Visualisierungen wurden AzL-(-)-Fuk-modifizierte Glykane durch die CuAAC mit der fluoreszenten TexasRed-Alkin-Sonde markiert (FUNMOT-Verfahren). Neusynthetisierte Proteine mit der Aminosäure HPG im Proteingerüst wurden hingegen durch die Alexa Fluor-488TM-Azid-Sonde (FUNCAT-Verfahren) visualisiert (Abb. 3.16.).

Abb. 3.16. Analyse des zeitlichen Einbau von AzL-(-)-Fuk in die Glykane und von HPG in neusynthetisierte Proteine. Dissoziierte Neuronen-Glia-Kulturen (DIV 21) wurden unter basalen Konditionen für 1, 4, 8, 24 und 48 h mit Hibernate-Medium inkubiert, welches mit (A) 2 mM L-Methionin und 375 µM AzL-(-)-Fuk oder (B) 2 mM HPG versehen worden war. Nach der PFA-Fixierung wurden die AzL-(-)-Fuk modifizierten Glykane durch die CuAAC mit der TexasRed-Alkin-Sonde markiert. Proteine mit der Aminosäure HPG im Proteingerüst wurden hingegen mit der Alexa Fluor-488[™]-Azid-Sonde visualisiert. Die Zunahme der Emission des TexasRed- und Alexa Fluor-488[™]-Fluorophors spiegeln die Effizienz des Einbaus in die Glykane und Proteinstruktur wieder. Dabei zeigt sich, dass AzL-(-)-Fuk erst nach 24 h gut detektierbar in die Glykane eingebaut wird. HPG konnte währenddessen bereits nach 8 h detektiert werden. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss Axio Observer.Z1 Mikroskop mit einem 40 x Objektiv durchgeführt. (Maßstab entspricht 10 µm)

Es zeigt sich deutlich, dass der AzL-(-)-Fuk Einbau in den Glykanen erst nach einer Inkubationszeit von 24 h detektiert werden kann. Die beste Emission des Fluorophors TexasRed und folglich der effizienteste Einbau von AzL-(-)-Fuk in die Glykanketten ist nach 48 h gegeben (Abb.3.16.A.). Diese lange Zeitspanne kann zum einem durch die Umwandlung der AzL-(-)-Fuk zu der aktiven GDP-AzL-(-)-Fuk oder zum anderen durch die Proteinneusynthese des AzL-fukosylierten Glykoproteins verursacht werden.

Vergleicht man die Emission des Fluorophors Alexa Fluor-488[™], welches die Effizienz des Einbaus der Aminosäure HPG in das neusynthetisierte Proteingerüst wiederspiegelt, zeigt sich, dass erste Signale nach einer 8-stündigen metabolischen Markierung detektiert werden können. Eine stärkere Emission von Alexa Fluor-488[™] ist nach einer 48-stündigen Inkubation ersichtlich. Gegensätzlich zur AzL-(-)-Fuk ist für den metabolischen Einbau von HPG keine Aktivierung erforderlich, was eine Erklärung für die kürzeren Einbauzeiten sein kann.

Für die metabolische Doppelmarkierung mit AzL-(-)-Fuk und HPG wurden kortikale Primärkulturen mit beiden Substanzen für 48 h inkubiert, wodurch ein effizienter Einbau beider Substanzen ermöglicht wird.

Basierend auf den vorangegangenen Studien wurde die Änderung der Fukosylierung in Abhängigkeit von der Proteinneusynthese untersucht. Diesbezüglich wurde in kortikale Primärkulturen chemisch mittels NMDA und Glyzin eine LTD induziert, gefolgt von einer 48-stündigen Inkubationszeit in AzL-(-)-Fuk- und HPG-haltigem Medium. Durch das anschließende FUNMOT- bzw. FUNCAT-Verfahren wurden die Visualisierung mit den Fluoreszenzsonden ermöglicht (Abb.3.17.).

Abb. 3.17. Visualisierung AzL-fukosylierter Glykokonjugate und neusynthetisierter Proteine durch FUNMOT und FUNCAT. (A) Dissoziierte Neuronen-Glia-Kulturen (DIV 21) wurden unter basalen Konditionen für 48 h mit Hibernate-Medium inkubiert welches mit 2 mM HPG oder 375 µM AzL-(-)-Fuk versehen worden war. (B-C) Zur Modulation synaptischer Aktivität wurden die kortikalen Primärkulturen mit NMDA-Glyzin, für basale Bedingungen hingegen mit HBS-Puffer behandelt. Für die Analyse in wie weit die Doppelmarkierung einen Einfluss auf den metabolischen Einbau ausübt wurden die Kulturen für 48 h mit Hibernate-Medium inkubiert, welches mit 375 µM AzL-(-)-Fuk + 2 mM HPG versehen worden war. Nach der Fixierung wurden die AzL-(-)-Fuk modifizierte Glykane durch die CuAAC mit der TexasRed-Alkin-Sonde markiert. Die Aminosäure HPG im Proteingerüst wurden hingegen mit der Alexa Fluor-488[™]-Azid-Sonde visualisiert. Die Emission von Alexa Fluor-488[™]- und TexasRed-Fluorophors visualisiert die Effizienz des metabolischen Einbaus in das Proteingerüst und in die Glykane. Dabei zeigt sich, dass die chemisch induzierte LTD eine verstärkte AzL-Fukosylierung induziert. hingegen aber keine Auswirkungen auf die Proteinneusynthese hat. Die fluoreszenzmikroskopischen Aufnahmen wurden am Zeiss Axio Observer.Z1 Mikroskop mit einem 40 x Objektiv durchgeführt. (Maßstab entspricht 10 µm)

Die veränderte synaptische Aktivität, welche durch die NMDA-Glyzin Behandlung herbeigeführt wurde, verursacht einen verstärkten AzL-(-)-Fuk Einbau in die Glykane, sowohl in den dendritischen *Spines* und dem Soma der Neuronen (Abb. 3.17.B). Folglich sind durch die chemisch induzierte LTD mehr AzL-fukosylierte Glykokonjugate an den Neuriten und dem Soma lokalisiert.

Ergebnisse

Die neusynthetisierten Proteine konnten vor allem im Soma und in den Dendriten als auch in Spines durch die Alexa Fluor-488[™] Emission detektiert werden (Abb. 3.17.C). Dabei zeigte sich, dass unter den experimentellen Bedingungen gleiche Intensitäten für FUNCAT-Markierung beobachtet wurden. Dies lässt darauf schließen, dass die NMDA-Glyzin-Behandlung, keine Auswirkungen auf die Proteinneusynthese ausübt. Zusammenfassend kann durch diesen Versuchsansatz demonstriert werden, dass die chemisch induzierte LTD keinen Einfluss auf die Proteinneusynthese ausübt, aber eine verstärkte AzL-Fukosylierung induziert, wodurch verstärkt bereits existierende Proteine modifiziert werden.

3.3.6. Analyse des Grades der Fukosylierung abhängig von der Proteinneusynthese durch BONCAT und FUNMOT

In den vorangegangen Untersuchungen wurde durch den metabolischen AzL(-)-Fuk Einbau gezeigt, dass der Grad der Fukosylierung und induzierte dynamische Veränderungen durch das BONMOT- bzw. FUNMOT-Verfahren detektiert werden können. Dennoch kann gegenwärtig keine Aussage darüber gemacht werden, inwieweit neusynthetisierte oder bereits existierende Glykoproteine von der Fukosylierung betroffen sind. Die bereits beschriebene metabolische Doppelmarkierung soll hierbei zu neuen Erkenntnissen betragen.

Dabei wurde die Azid-modifizierte L-(-)-Fuk 48 h unter basalen Konditionen durch den zelleigenen Metabolismus die in die Glykanketten bereits existierender oder neusynthetisierter Proteine eingebaut. Gleichzeitig findet dazu durch den zelleigenen Translationsapparat ein Einbau der Alkin-modifizierten Aminosäure HPG in das Proteingerüst statt. Parallel wurden zur Untersuchung der Kontrollkonditionen kortikale Primärkulturen nur mit AzL-(-)-Fuk oder HPG metabolisch markiert.

Im Anschluss an die metabolische Markierung wurden die neusynthetisierten HPGenthaltenden Proteine mittels CuAAC mit einer Azid-modifizierten Biotin-Sonde markiert (BONCAT-Verfahren) und mittels NeutrAvidin-Agarose angereichert (Rostovtsev *et al.* 2002, Dieterich *et al.* 2006, Dieterich *et al.* 2007, Liu *et al.* 2011). Durch diese Anreicherung wurden alle neusynthetisierten Proteine, fukosyliert oder nicht fukosyliert, vom übrigen Proteom separiert.

Im nächsten Schritt wurden alle fukosylierten Glykoproteine durch eine zweite CuAAC mit einer Alexa Fluor-488[™]-Alkin-Sonde visualisiert. Dieses FUNMOT-

Ergebnisse

Verfahren ermöglicht durch die Emission von Alexa Fluor-488[™] eine Detektion AzLfukosylierter Glykoproteine. Um den Grad der Fukosylierung in Abhängigkeit zur Proteinneusynthese vergleichen zu können, wurden alle Suspensionen auf ein äquivalentes Volumen eingestellt und analysiert.

In der Abb. 3.18.A. werden die neusynthetisierten Proteine, welche die Aminosäure HPG eingebaut haben und letztendlich durch die Biotin-Azid-Sonde markiert wurden, mittels eines Biotin-Antikörpers detektiert (Abb. 3.18.A. Spur Input, SDS-Eluat; Konditionen HPG/HPG-AzL-Fuk). Dabei konnte gezeigt werden, dass nur die Proteine, die HPG als Aminosäure eingebaut haben durch die Biotin-Azid-Sonde markiert wurden, wodurch letztendlich mittels NeutrAvidin eine Anreicherung des neusynthetisierten Proteoms stattfinden konnte (Abb. 3.18.A. Spur SDS-Eluat; Konditionen HPG/HPG-AzL-Fuk). Kortikale Primärkulturen, die hingegen nur mit AzL-(-)-Fuk metabolisch markiert wurden, konnten durch die Biotin-Azid-Sonde nicht markiert und letztendlich nicht immunologisch detektiert werden (Abb.3.18.A. Konditionen AzL-Fuk).

Durch die zweite CuAAC wurden alle AzL-fukosylierten Glykoproteine, unabhängig ob bereits existierend oder neusynthetisiert, mit einer Alexa Fluor-488[™]-Alkin-Sonde visualisiert (Abb. 3.18.B). Für diese Untersuchungen wurde der Durchfluss der NeutrAvidin-AC, welcher das existierende Proteom enthält und die durch NeutrAvidin angereicherte und noch gebundene, neusynthetisierte Fraktion verwendet.

Unter Kontrollbedingungen, bei denen primäre kortikale Kulturen nur mit AzL-(-)-Fuk metabolisch markiert wurden, konnten alle AzL-fukosylierten Glykoproteine im Durchfluss detektiert werden, folglich kann eine unspezifische NeutrAvidin-affine Anreicherung ausgeschlossen werden (Abb. 3.18.B. Spur Durchfluss; Kondition AzL-Fuk). Die experimentelle Bedingung setzte hingegen eine Separierung des neusynthetisierten Proteoms voraus, die zeigte, dass nur wenige neusynthetisierte Proteine durch AzL-(-)-Fuk in den Glykanketten modifiziert sind (Abb. 3.18.B. Spur SDS-Eluat; Kondition HPG-AzL-Fuk).

Somit zählt der Großteil der AzL-fukosylierten Glykoproteine zum bereits existierenden Proteom (Abb. 3.18.B. Spur Durchfluss; Kondition HPG-AzL-Fuk). Daraus kann geschlussfolgert werden, dass die metabolische Markierung der Glykanketten durch AzL-(-)-Fuk zum überwiegenden Teil *de novo* stattfindet.

75

Abb. 3.18. Detektion neusynthetisierter Proteine und Visualisierung AzL-fukosylierter Glykokonjugate durch BONCAT und FUNMOT. Kortikale Primärkulturen (DIV 21) wurden unter basalen Konditionen 48 h mit Hibernate-Medium inkubiert, welches mit 2 mM L-Methionin + 375 µM AzL-(-)-Fukose, 2 mM HPG oder 375 µM AzL-(-)-Fukose + 2 mM HPG versehen worden war. Nach der 48 h Inkubation wurden die Proteinlysate der behandelten Kulturen durch die CuAAC mit einer Biotin-Azid-Sonde markiert. Identische Proteinkonzentrationen wurden nachfolgend für die NeutrAvidin-AC verwendet. In einer zweiten CuAAC wurde der Durchfluss der NeutrAvidin-AC und die angereicherte, gebundene NeutrAvidin-Fraktion mit einer Alexa Fluor-488[™]-Alkin-Sonde markiert und anschließend visualisiert. Durch den immunologischen Nachweis mittels eines gegen Biotin gerichteten Antikörpers konnten alle neusythetisierten Proteine detektiert werden. Die Emission des Alexa Fluor-488[™]-Fluorophors visualisierte hingegen alle AzL-fukosylierten Glykoproteine. Dabei wurde ersichtlich, dass unter basalen Konditionen ein Großteil des existierenden Proteoms *de novo* fukosyliert wird.

Gegenwärtig muss man dennoch davon ausgehen, dass der Anteil des neusynthetisierten Proteoms unter basalen Konditionen, denen des bereits existierenden Proteom bei Weitem unterlegen ist. Dies könnte auch die geringe Alexa Fluor-488TM-Emission unter den Doppelmarkierungs-Konditionen erklären. Dennoch legen die Resultate nahe, dass ein Großteil der AzL-Fukosylierung *de novo* stattfindet.

4. Diskussion

In den vergangenen Jahrzehnten gelang es mit Hilfe moderner Analysemethoden, Proteine hinsichtlich ihrer Struktur und Funktion im Detail zu untersuchen. Dabei wurde beispielweise deutlich, dass Proteine unter anderem phosphoryliert oder mit Oligosaccharidketten besetzt sind.

Letzteres - die Glykosylierung - ist ein posttranslationaler Modifikationsprozess, dem wahrscheinlich eine wichtige funktionelle Rolle zukommt, da eine Vielzahl der extrazellulären und sekretierten Proteine glykosyliert ist (Varki 1993, Breen *et al.* 1998). Dank neuer Techniken können diese Modifikationen mit wesentlich höherer Effizienz und Genauigkeit untersucht werden.

Von der Zusammensetzung und dem Verzweigungsgrad sind Oligosaccharidketten kaum Grenzen gesetzt. Dennoch hat sich in den vergangenen Jahren gezeigt, dass insbesondere die L-(-)-Fuk als Glykosylierungseinheit eine Sonderstellung einnimmt (Varki 1993). Die L-(-)-Fuk existiert als terminales Monosaccharid an N- und O-glykosidisch gebundenen Kohlenhydratketten von Glykoproteinen und ist offenbar essentiell bei einer Vielzahl kognitiver Prozesse (Krug *et al.* 1994, Matthies *et al.* 1996, Murrey *et al.* 2006). Trotz dieser Erkenntnis, dass ein einzelnes Monosaccharid die zelluläre Kommunikation im Gehirn beeinflussen kann, wurden in den vergangenen Jahren auf Grund technischer Hürden nur wenige dieser fukosylierten Proteine charakterisiert.

Ein Ziel dieser vorliegenden Arbeit war es somit, die Identifizierung des synaptischen Fukosyl-Proteoms vorzunehmen, um dadurch zu einem besseren Verständnis der Rolle der Proteinfukosylierung für beispielsweise Lern- und Gedächtnisprozesse zu gelangen. Durch die Verwendung des Fukose-spezifischen *Aleuria aurantia* Lektins und der metabolischen Markierung mit einer Azid-modifizierten L-(-)-Fuk konnte hier in dieser Arbeit die Effizienz der Identifizierung und damit die Anzahl der identifizierten fukosylierten Proteine um ein Vielfaches gesteigert werden.

Synapsen sind in der Lage, durch Änderungen ihrer molekularen Zusammensetzung auf Veränderungen in ihrem Milieu und Erregungsmustern zu reagieren (Wollscheid *et al.* 2009). Darüber hinaus kann die synaptische Übertragungseffizienz auch durch dynamische Veränderungen der Protein-Glykosylierung und im Besonderen der Fukosylierung von Proteinen modifiziert werden (Bullock *et al.* 1990, Krug *et al.* 1991, Matthies *et al.* 1996, Matthies *et al.* 1999). In der vorliegenden Arbeit wurde hierzu ein Paradigma verwendet, welches chemisch induzierter LTD durch NMDA-Glyzin-Behandlung in primären Neuronen-Glia-Kulturen entspricht. Weiterhin wurde der Frage nachgegangen, ob bereits existierende Proteine fukosyliert werden oder ob dies lediglich neusynthetisierte Protein betrifft.

4.1 Zelluläre und subzelluläre Verteilung fukosylierter Proteine

Die Aleuria aurantia Lektin-basierten histochemischen Untersuchungen der Hirnschnittpräparate und lektinzytochemischen Färbungen primärer kortikaler Neuron-Glia-Kulturen zeigen, dass sich eine ausgeprägte Färbung sowohl an Neuronen als auch Astrozyten detektieren lässt. Dabei wurde insbesondere beobachtet, dass fukosylierte Glykokonjugate vorwiegend Zellmembran-assoziiert vorliegen. Konfokale Aufnahmen zeigen des Weiteren eine Färbung intrazellulärer Strukturen, die wahrscheinlich identisch mit Strukturen des Golgi-Apparates sind. Dies wäre plausibel, da im Golgi-Apparat die Komplettierung komplexer Glykanseitenketten durch terminale Kohlenhydratresten wie Sialinsäure oder L-Fukose erfolgt (Kleene und Schachner 2004, Ma *et al.* 2006, Marth J.D 2008).

Das Stratum moleculare innerhalb des Gyrus dentatus zeigt eine besonders intensive Lektinfärbung. In dieser Schicht bilden Axone aus dem entorhinalen Kortex Synapsen mit den Körnerzellen. Ferner enden hier auch Axone aus dem Gyrus dentatus der anderen Hemisphäre (Rolls 2013) auf die Körnerzellen. Somit ist das Stratum moleculare durch eine enorme Anzahl an synaptischen Kontakten gekennzeichnet, und auf Grund der intensiven AAL-Färbung muss davon ausgegangen werden, dass fukosylierte Glykokonjugate wahrscheinlich in synaptischen Komplexen lokalisiert sind. Auch das Stratum radiatum der CA3-Region zeigt eine intensive Lektinfärbung. In dieser Schicht projizieren die Körnerzellen des Stratum granulare über die Moosfasern auf die Apikaldendriten der Pyramidenzellen (Rolls 2013).

Vergleichsweise dazu ist das *Stratum lacunosum-moleculare* der CA1-Region durch eine schwache AAL-Färbung gekennzeichnet und lässt vermuten, dass in dieser Schicht eine geringere Anzahl an synaptischen Kontakten vorliegt oder bei den vorliegenden synaptischen Kontakten fukosylierte Glykokonjugate nur einen geringeren Anteil ausmachen. Vergleichbare Ergebnisse, die einen Aufschluss über

Diskussion

die Verschaltungsdichte liefern, liegen für Färbungen der Kleinhirnrinde vor. Offenbar weisen Schichten, die durch eine hohe Synapsendichte gekennzeichnet sind, eine intensive AAL-Lektinfärbung auf. Daher kann davon ausgegangen werden, dass fukosylierte Glykokonjugate in synaptischen Strukturen vorliegen und damit eine Rolle bei synaptischen Prozessen spielen könnten. Hierbei könnte über eine Beteiligung an der Etablierung synaptischer Kontakte bei dynamischen morphologischen Änderungen während Plastizitätsprozessen oder bei der generellen Signaltransmission spekuliert werden.

4.2. Identifizierung fukosylierter Synapsenproteine

Die Ergebnislage ist bereits in den Abschnitten 3.2. und 3.3. ausführlich dargestellt worden. Es wurden zwei komplementäre biochemische Anreicherungstechniken eingesetzt, nämlich AAL-Affinitätschromatographie aus einem Proteinextrakt aus synaptischen Verbindungen bzw. eine affinitätschromatographische Reinigung von Proteinen, die durch den Einbau bio-orthogonaler Fukose-Derivate in primären Neuronenkulturen markiert wurden.

In den AAL-Eluaten wurden insgesamt 812 Proteine massenspektrometrisch identifiziert. Eine erste Meta-Analyse mit dem Fokus auf subzelluläre Lokalisierung aller in AAL-Eluaten gefundenen Proteine (s. Abschnitt 3.2.3.) ergab, dass eine große Zahl von Proteinen in AAL-Eluaten zytosolisch, nukleär oder in solchen Kompartimenten vorkommen, in denen zumindest nach dem heutigen Wissensstand Glykosylierung mit Ausnahme der monosaccharidischen O-GlkNAckeine Modifikation vorliegen sollte. Vermutlich liegen diese Proteine als Bindungspartner in Komplexen mit fukosylierten Glykoproteinen vor. Im Weiteren wurde somit das Hauptaugenmerk auf integrale Membran- und extrazelluläre Proteine gelegt, wodurch sich für weitere Betrachtungen die Zahl AAL-bindender, fukosylierter Proteine auf 289 reduziert. Durch eine Motivsuche für Nbzw. O-Glykosylierungsstellen mit NetNGlyc (http://www.cbs.dtu.dk/services/NetNGlyc/) bzw. NetOGlyc (http://www.cbs.dtu.dk/services/NetOGlyc/) wurden alle 289 Proteine als positiv für das Vorhandensein möglicher Glykosylierungsstellen verifiziert.

Durch Markierung primärer Neuronen-Glia-Kulturen mit AzL-(-)-Fuk und anschließende "Klick-chemische"-Ligation von Biotin kovalent an die an Glykoproteine gebundene Fukose (BONMOT) konnten diese Proteine mittels NeutrAvidin-AC gereinigt werden.

Durch massenspektrometrische Analyse wurden insgesamt, ausschließlich von Duplikaten, 1129 verschiedene Proteine identifiziert. Auch hier wurde eine Selektion auf mögliche Fukosyl-Proteine nach den gleichen Kriterien wie bei AALchromatografisch angereicherten fukosylierten Proteinen vorgenommen und eine Überprüfung auf das Vorhandensein von N- bzw. O-Glykosylierungsmotiven durchgeführt. Im Ergebnis dessen ist bei 136 Proteinen von einer möglichen Fukosylierung auszugehen.

Die Zusammenfassung der AAL- und BONMOT-basierten Datensätze ergibt insgesamt 425 Proteine bzw. nach der Entfernung von Duplikaten 332 affinitätsgereinigte Fukosyl-Proteine. Die Interpretation dieser Einzeldatensätze und des Gesamtdatensatzes dürfte ohne eine weitergehende Meta-Analyse schwierig sein. Dies soll jeweils im ersten Teil der Diskussion behandelt werden - eine solche Analyse zur Strukturierung der vorliegenden Datensätze wurde mit Unterstützung durch Dr. Rainer Pielot (Leibniz Institut für Neurobiologie, Magdeburg) mittels "Gene Ontology" (GO) oder auch "Kyoto Encyplopedia of Genes and Genomes" (KEGG) durchgeführt. Damit sollen Schlussfolgerungen sowohl zur Konsistenz der Daten als auch zur funktionellen Kategorisierung bzw. deren Bestätigung gezogen werden. Die nachfolgenden Ausführungen werden jeweils von solchen Überlegungen ausgehen und sich danach auf einzelne, ausgewählte Proteine fokussieren.

4.2.1. AAL-basierte Analyse fukosylierter Komponenten

Die in dieser Arbeit vorgestellten Untersuchungen mit AAL zeigen, dass fukosylierte Glykokonjugate vorwiegend Zellmembran-assoziiert in Regionen mit hoher Synapsenzahl vorzufinden sind. Wodurch man sich die Fragen stellen muss: Welche synaptischen Proteine sind terminal durch Fukose modifiziert? Welche Funktion übernehmen die fukosylierten Glykane? Aber man muss sich ebenso fragen, ob sich diese Funktionen in den verschiedenen Neuronentypen unterscheiden können.

Diskussion

Daher bot sich der Einsatz von trägerfixiertem AAL zur Anreicherung synaptischer Fukosyl-Proteine mit nachfolgender massenspektrometrischer Identifizierung an. Durch die spezifische Elution mit 100 mM L-(-)-Fukose wurde die Zahl unspezifisch bindender Proteine gering gehalten.

Insgesamt wurden in den Eluaten 812 verschiedene Proteine massenspektrometrisch identifiziert. Diese Liste wurde reduziert auf 289 Proteine, nachdem Duplikate und zytosolische Proteine im Weiteren nicht berücksichtigt wurden. Unter diesen verbliebenen Proteinen können sich dennoch weitere, nur mittelbar an AAL bindende Glykoproteine, also Bindungsproteine fukosylierter Proteine, befinden. Diese finalen Ergebnisse (Tabelle 9) wurden mit Unterstützung von Dr. R. Pielot auf Gemeinsamkeiten und Zugehörigkeiten zu vorgegebenen Eigenschaften innerhalb der *Gene Ontology* bzw. der *KEGG* Datenbank untersucht.

Tabelle 9: Meta-Analyse der AAL-AC angereicherten Proteine

Meta-Analyse der 289 durch AAL-AC angereicherten und massenspektrometrisch identifizierten Proteine in "*Gene Ontology*" (GO) im Vergleich zu drei zufallsgenerierten Proteinlisten. Aus der Tabelle geht hervor, dass bestimmte GO-Termini in der experimentellen Proteinliste an- oder abgereichert erscheinen. Es wurden lediglich solche GO-Termini gelistet, für die eine signifikante Zuordnung im Vergleich zu mindestens einer Zufallsliste mit p < 0.05 möglich war.

Anreicherung	GO-Term	p-Wert / p-Wertebereich
Down	C: nucleus	1.648037e-08 - 1.258813e-07
Down	C: cytoplasm	2.956231e-08 - 4.933797e-05
Down	P: transcription, DNA-templated	5.86398e-06 - 3.157694e-05
Down	F: zinc ion binding	1.075294e-05 - 0.0006306511
Down	F: DNA binding	9.364548e-05 - 0.002075778
Down	P: negative regulation of transcription, DNA-templated	0.001202347
Down	F: sequence-specific DNA binding transcription factor activity	0.001281403
Up	C: synaptic vesicle membrane	0.0001188634 - 0.001148392
Up	C: integral component of membrane	8.622349e-08 - 1.909489e-06
Up	C: cell junction	4.170907e-07 - 0.0002675471

Up	C: plasma membrane	6.384807e-05
Up	C: external side of plasma membrane	0.002681058
Up	C: synapse	0.001754277
Up	C: presynaptic membrane	0.0005882338 - 0.002681058
Up	C: postsynaptic membrane	7.144899e-06 - 0.0001261424
Up	C :postsynaptic density	0.001148392
Up	C: dendritic spine	0.0001530357- 0.0009579872
Up	C: dendritic shaft	0.001211948
Up	C: terminal bouton	0.00253777
Up	P: homophilic cell adhesion	2.825883e-07 - 3.58711e-06
Up	P: cell adhesion	0.0001667958 - 0.001778133
Up	P: cell-cell adhesion	0.0005797958
Up	C: cell surface	0.001472972
Up	C: (AMPA) glutamate receptor complex	0.0005797958
Up	F: receptor activity	0.002234
Up	F: calcium ion binding	0.0008184277
Up	C: mitochondrial inner membrane	0.0007710017
Up	P: ATP hydrolysis coupled proton transport	0.0001188634 - 0.000171906
Up	P: ATP synthesis coupled proton transport	0.001111321 - 0.001466602

Die GO-Analyse weist auf eine Abreicherung zytosolischer und nukleärer Proteine und auch von DNA-Bindungsproteinen bzw. auf eine Anreicherung von Synapsenproteinen und hierbei insbesondere Zelladhäsionsmolekülen hin. Dies ist völlig konsistent mit der Probenauswahl für die AAL-Chromatographie; es handelt sich hierbei nämlich um Detergenz-Extrakte aus synaptischen Strukturen. Der Blick auf die Cluster-Analyse hinsichtlich KEGG-Termini in der nachfolgenden Tabelle bestätigt diese Ergebnisse und ergänzt durch die Charakterisierung zusätzlicher Cluster die Gesamtsicht.

Tabelle 10: Meta-Analyse der AAL-AC angereicherten Proteine in KEGG

Meta-Analyse der 289 mit AAL-AC angereicherten und massenspektrometrisch identifizierten Proteine in "*Kyoto Encyplopedia of Genes and Genomes*" (KEGG) im Vergleich zu drei zufallsgenerierten Proteinlisten. Es wurden lediglich "angereicherte" KEGG-Termini in der experimentellen Proteinliste gefunden. Es wurden lediglich solche KEGG-Termini gelistet, für die eine signifikante Zuordnung im Vergleich zu mindestens einer der drei Zufallslisten mit p < 0.05 möglich war.

KEGG-Term	p-Wert / p-Wertebereich
Oxidative phosphorylation	8.978614e-06 - 0.001111758
Cell adhesion molecules (CAMs)	3.820223e-06 - 2.159586e-05
Glutamatergic synapse	5.122343e-06 - 0.0006415675
GABAergic synapse	6.414581e-05
Adrenergic signaling	0.0003130062
Retrograde endocannabinoid signaling	3.948117e-05
Morphine addiction	0.0005797958
Nicotine addiction	0.002234
Synaptic vesicle cycle	0.002804711
Huntington's disease	0.00151612
Parkinson's disease	0.002804711
Alzheimer's disease	0.002804711
ECM-receptor interaction	0.00253777
Endocrine and other factor-regulated calcium reabsorption	0.00432736
Phagosome	0.0001140696 - 0.00170702

Interessanterweise fällt auch hier die Häufung von unmittelbar mit dem Terminus "Synapse" in Verbindung stehenden Clustern auf. Ebenso bemerkenswert ist der starke Bezug zu Erkrankungen, die von synaptischen Phänotypen, sogenannten Synaptopathien, begleitet werden. Ein Vergleich mit SynProt (www.synprot.de), einer Datenbank von synaptischen Proteinen zeigt, dass mehr als die Hälfte der identifizierten AAL-Bindungsproteine, nämlich 154 von 289 Proteinen, in SynProt gelistet sind.

Trotz vieler Gemeinsamkeiten stellt sich das synaptische Fukosyl-Proteom hinsichtlich funktioneller Proteinklassen als eher heterogen dar. Die identifizierten, fukosylierten Proteine gehören überwiegend zur Gruppe der Zelladhäsionsmoleküle, der Rezeptoren oder der Ionenkanäle. Ebenfalls finden sich Vertreter der ATPasen, Phosphatasen, Peptidasen, Kinasen, G-Protein gekoppelten Rezeptoren oder anderer verschiedenster Enzyme.

Zelladhäsionsmoleküle repräsentieren hierbei eine große Klasse der potentiell fukosylierten Glykoproteinen. Zelladhäsionsmoleküle beeinflussen Prozesse der zellulären Kommunikation, der neuronalen Entwicklung aber auch der synaptischen Plastizität (Ronn *et al.* 1998, Kleene und Schachner 2004). Massenspektrometrisch identifiziert und durch *Lektinblotting* verifiziert wurden unter anderem die bereits als α 1,2-fukosylierten Zelladhäsionsproteine NCAM und Neuroplastin (Smalla *et al.* 1998, Murrey *et al.* 2009).

NCAM wird beim Neuriten-Wachstum (Sytnyk *et al.* 2002, Dityatev *et al.* 2004, Sytnyk *et al.* 2006, Maness und Schachner 2007) als ein entscheidender Faktor angesehen. Neuroplastin ist vermutlich entscheidend bei der durch synaptische Aktivität induzierten Veränderungen beteiligt; die homophile Interaktion scheint essentiell zu sein für lang anhaltende Veränderungen der synaptischen Übertragungseffizienz, beispielsweise bei LTP (Smalla *et al.* 2000, Empson *et al.* 2006). Die Frage, welche speziellen Funktionen den fukosylierten Glykanketten hierbei zukommen bleibt aber auch hier im Moment noch ungeklärt.

Wie NCAM und Neuroplastin und eine Reihe weiterer Zelladhäsionsproteine zählt das identifizierte Neurofascin zur Klasse der Ig-Superfamilie, denen entscheidende Einflüsse in Prozessen der neuronalen Entwicklung, der Zelladhäsion und -migration zugeschrieben werden (Kleene und Schachner 2004). *In vitro* bindet Neurofascin (NF) andere Zelladhäsionsmoleküle, einschließlich Nr-CAM, Axonin-1, und Contactin (Koticha *et al.* 2005). Die axonale Isoform NF 186 scheint inhibierend auf Zelladhäsion einzuwirken, was eine wichtige Funktion für die Bildung des Ranvier'schen Schnürrings sein kann (Basak *et al.* 2007). Die Isoform NF 155 ist hingegen vorwiegend nur an den myelinisierenden Schwann'schen Zellen und Oligodendrozyten lokalisiert (Basak *et al.* 2007). Klinisch wird Neurofascin mit der Autoimmunantwort bei der Multiple Sklerose Erkrankung in Verbindung gebracht

(Howell *et al.* 2006, Pomicter *et al.* 2010). Bei Multipler Sklerose findet eine Demyelinisierung von Nervenfasern statt, die eine Vielzahl neuronaler Ausfälle wie beispielsweise Sehstörungen oder Lähmungen von Extremitäten bedingt (Meinl 2011, Meinl *et al.* 2011).

Unsere massenspektrometrischen und *Lektinblotting*-Analysen zeigen erstmalig eine Fukosylierung von Neurofascin auf. Es wäre vorstellbar, dass eine Fukosylierung der Glykanketten modulierend auf adhäsive Eigenschaften wirkt. Ob die Fukosylierung von Neurofascin einen Beitrag zur Multiple Sklerose-Symptomatik leistet, muss in zukünftigen Studien geklärt werden.

Ein weiteres und erstmalig durch unsere Untersuchungen als fukosyliert identifiziertes Protein, ist das neuronale Zelladhäsionsmolekül Caspr2. Das Contactin assoziierte Protein 2 (Caspr2) ist in hippokampalen Neuronen vorwiegend an postsynaptischen Kompartimenten (z.B. Soma, Dendriten) (Poliak *et al.* 1999) und synaptischen Zellmembranen, vorzufinden. Im juxtaparanodalen Bereich des Axons übernimmt es durch Assoziationen zu TAG-1 (Poliak *et al.* 1999, Bakkaloglu *et al.* 2008) Funktionen bei der Clusterbildung von Kalium-Kanälen. Funktionell können die fukosylierten Glykanketten hierbei entscheidend für die Clusterbildung sein, wobei beispielsweise Interaktionsstudien von fukosylierten bzw. defukosylierten Caspr2 nähere Informationen liefern würden.

Insbesondere interessant ist auch, dass Caspr2 in einen Zusammenhang mit den sogenannten *Autism spectrum disorders* (ASD) gebracht wird (Kleijer *et al.* 2014). Zur Symptomatik von ASD gehören beispielsweise kognitive Defizite, eine verzögerte Sprachentwicklung oder eine Beeinträchtigung sozialer Interaktionen der betroffenen Individuen (Anderson *et al.* 2012, Condro und White 2014). Auch hierbei bleibt völlig offen, ob der Proteinfukosylierung eine spezielle Rolle bei der Ausbildung der ASD-Symptomatik zukommt. Dies muss in zukünftigen Studien geklärt werden.

Mittels AAL wurde auch Thy-1 isoliert, ein weiteres Zelladhäsionsmolekül, für das bereits eine α1,6-Fukosylierung beschrieben wurde (Carlsson und Stigbrand 1984). Thy-1 Null-Mutanten (Spezies Maus) sind überlebensfähigen und zeigen einen neurologisch normalen Phänotyp. Auffällig ist jedoch, dass diese Tiere eine exzessive GABAerge Inhibition im *Gyrus dentatus* besitzen und durch ein gestörtes sozial-erlerntes Futterverhalten geprägt sind. Demnach könnte Thy-1 die GABAerge Transmission beeinflussen und dadurch das Futterverhalten steuern (Rege und Hagood 2006).

Auch das bereits durch Murrey *et. al.*, (Murrey *et al.* 2009) als α 1,2-fukosyliert charakterisierte Contactin-1 konnte mittels AAL in der vorliegenden Arbeit identifiziert werden.

Massenspektrometrisch wurden des Weiteren eine Vielzahl an Rezeptoren und Ionenkanälen identifiziert - unteranderem die alpha-1 und die beta-3 Untereinheit des GABA(A)-Rezeptors, die AMPA-Rezeptoruntereinheiten GluR2 und GluR3, die alpha-2 Untereinheit des spannungsabhängigen Kalziumkanals, der GABA(B)-Rezeptor 2 und die beta-Untereinheit des spannungsabhängigen Natriumkanals. Verifiziert durch *Lektinblotting* sind die alpha-1 Untereinheit des GABA(A)-Rezeptors, die AMPA-Rezeptor. 3 und der Kv1.2-Kanal.

Da bislang nur wenig über den Einfluss terminal gebundener L-(-)-Fuk bekannt ist, kann über deren Implikationen bei einer Vielzahl der möglicherweise fukosylierten Rezeptoren und Ionenkanälen nur spekuliert werden. Dennoch sind Einzelbefunde bekannt, allerdings können diese nicht generalisiert werden für alle in der vorliegenden Arbeit identifizierten Proteine.

Studien haben beispielsweise gezeigt, dass die Defukosylierung des TGF β-Rezeptors, gekennzeichnet durch die fehlende α1,6-Fukosylierung, eine verminderte Affinität zum Liganden hervorruft, was eine Fehlfunktion des Rezeptors nach sich zieht (Taniguchi *et al.* 2006, Moriwaki und Miyoshi 2010). Auch zeigen Studien, dass die O-Fukosylierung des EGF-Rezeptors, die Affinität des *Notch*-Rezeptors zum Liganden steuert (Wang *et al.* 2001, Haltiwanger und Lowe 2004, Ma *et al.* 2006). Eine Veränderung der N-Glykosylierung von GluR2, führt zu einem veränderten Transport des AMPA-Rezeptors vom ER zur synaptischen Membran (Tucholski *et al.* 2013). Fukose könnte hierbei eine Schlüsselrolle übernehmen und als Monosaccharid mit Signalcharakter fungieren.

Eigenschaften von Ionenkanälen, wie beispielweise die Leitfähigkeit oder Spannungssensorik, können ebenso durch Glykosylierung, insbesondere durch terminale Fukosylierung oder sogar Defukosylierung, reguliert werden, was beispielsweise Folgen für die Reizweiterleitung haben kann. Dies müsste im Detail beispielsweise durch *Patch-Clamp*-Analysen untersucht werden.

In Studien des spannungsabhängigen Kaliumkanal Kv1.3 (Zhu *et al.* 2012) wurde gezeigt, dass die Zellmembran-assoziierte Expression durch die Gabe von L-(-)-Fukose gesteigert wird. Dies lässt vermuten, dass sogar die Expression von Proteinen durch Fukosylierung beeinflusst werden kann (Zhu *et al.* 2012).

87

Massenspektrometrisch - und durch *Lektinblotting* verifiziert - wurde der bislang noch nicht als fukosyliert bekannte BDNF-Rezeptor TrkB identifiziert. Dem TrkB Rezeptor werden modulierende Funktionen in neuronalen Überlebensprozessen und eine wichtige Rolle bei synaptischer Plastizität zugeschrieben (Skaper 2008, Longo und Massa 2013). Klinisch wird eine verringerte TrkB-Rezeptor Expression mit der Symptomatik der Alzheimer Erkrankung in Verbindung gebracht (Connor *et al.* 1996). Ein Zusammenhang zwischen TrkB-Funktion und dem Glykosylierungs- bzw. Fukosylierungs-Zustand ist bisher nicht bekannt.

Ahnlich wie bei den massenspektrometrischen Ergebnissen zur Identifizierung von fukosylierten Proteinen aus Extrakten des gesamten *Bulbus olfactorius* der Maus (Murrey *et al.* 2009), fällt besonders die große Zahl von fukosylierten ATPasen auf. Diese Fukosylierung müsste in weiteren Studien durch *Lektinblotting* verifiziert werden. Zusätzlich müssten Studien über mögliche regulatorische Funktionen der Fukose erfolgen. Aber auch eine Vielzahl an Proteinen wie beispielsweise aus den funktionellen Klassen der Phosphatasen, Peptidasen, Kinasen, G-Protein gekoppelten Rezeptoren oder Enzyme wurden durch AAL und MS-Analyse als möglicherweise fukosyliert katalogisiert, bislang aber nicht verifiziert.

Somit konnten durch die im Rahmen dieser Arbeit durchgeführten Untersuchungen bereits bekannte als auch bisher unbekannte fukosylierte Proteine bestätigt bzw. identifiziert werden.

Dabei ist hervorzuheben, dass Proteine mit unterschiedlichsten, bereits bekannten Fukosyl-Epitopen identifiziert wurden, was die Verwendung des *Aleuria aurantia* Lektins als spezifisches Werkzeug für den Nachweis von Proteinfukosylierung rechtfertigt. Dennoch müssen noch eine Vielzahl der durch MS-Analyse identifizierten Proteine durch AAL-Lektinblotting verifiziert werden, dies konnte nur teilweise in dieser Arbeit wegen des begrenzten zeitlichen und monetären Rahmens geleistet werden.

Ausschlaggebend für die Notwendigkeit eines zusätzlichen Nachweises, dass ein identifiziertes Protein tatsächlich fukosyliert ist, liegt in der Wahl der Bedingungen für die Isolierung synaptischer Membranproteine. Durch die Detergenz-vermittelte Extraktion unter nicht stringenten Bedingungen können mögliche komplexe Strukturen erhalten bleiben und gegebenenfalls auch potentielle Interaktionspartner, die ihrerseits nicht notwendigerweise fukosyliert sein müssten, identifziert werden. Ein Indiz dafür, dass komplexe Strukturen erhalten blieben, ist die Tatsache, dass eine Vielzahl zytosolischer und nukleärer Proteine in der massenspektrometrischen Analyse detektiert wurden. Um falsch-positive Resultate auszuschließen, wurden ausgewählte Kandidaten zielgerichtet auf fukosylierte Strukturen hin untersucht. Bestätigt wurde dabei, dass die Kandidaten ADAM22, Caspr2, Cav1.3, Contactin/F3, die alpha-1 Untereinheit des GABA(A)-Rezeptors, die AMPA-Rezeptoruntereinheit GluR2, NCAM, Neurofascin, Neuroplastin-65, Thy1.1, der BDNF-Rezeptor TrkB terminal durch L-(-)-Fukose modifiziert sind.

Als falschpositiv wurde der GABA(B)-Rezeptor 2 und das Zelladhäsionsmolekül Neuroligin-1 identifiziert, da keine AAL-Reaktivität beim entsprechenden Molekulargewicht detektiert wurde. Daher müssen diese Kandidatenproteine mit fukosylierten Glykoproteinen in Komplexen vorgelegen haben, was zu einer Kopurifizierung mit fukosylierten Proteinen bei der AAL-AC geführt haben kann. Ein potentieller Interaktionspartner für Neuroligin-1 stellt Neurexin-1 dar (Ichtchenko *et al.* 1996), ein Protein, welches mit einem hohem Vorkommen in der MS-Analyse der AAL-AC detektiert wurden ist. Diese Hypothese müsste in weiterführenden Studien bestätigt werden, könnte aber unter anderem einen ersten Anhaltspunkt zur Existenz möglicher Fukose-bindender endogener Lektine liefern.

4.2.3. BONMOT

Die molekulare Zusammensetzung der Synapsen kann durch die Neusynthese von Proteinen, deren Degradation oder durch posttranslationale Modifikationen dynamischen Änderungen unterliegen. Durch solche Veränderungen können Synapsen ihr Aktivitätsprofil an Änderungen in ihrer Umgebung anpassen (Wollscheid *et al.* 2009).

Seit den 1980iger Jahren konnte von verschiedenen Gruppen gezeigt werden, dass in sehr verschiedenen Spezies und unterschiedlichen Lernparadigmen die Ausbildung des Langzeitgedächtnisses von einer intakten Proteinneusynthese (Kandel und Gardner 1972, Frey *et al.* 1988, Matthies 1989, Rose 1995) und darüber hinaus von einem intakten Protein-Glykosylierungsapparat abhängt (Jork *et al.* 1986, Pohle *et al.* 1987, Frey *et al.* 1988, Jork *et al.* 1989, Matthies *et al.* 1999, Matthies *et al.* 2000). So ist in Lernstudien in der Matthies-Gruppe (Matthies 1989, Matthies *et al.* 1999) oder im Labor von S. Rose (Rose 1995) gezeigt worden, dass trainierte Tiere einen erhöhten ³H-Fukose Einbau in synaptische Glykokonjugate aufwiesen. Ebenso

Diskussion

führt die Gabe von L-(-)-Fuk oder 2-Fukosyllaktose zur Erhöhung der hippokampalen LTP (Krug *et al.* 1994, Matthies *et al.* 1996). Andererseits verhindert eine Hemmung der Protein-Glykosylierung generell oder spezifisch der Fukosylierung die Ausbildung des Langzeitgedächtnisses (Jork *et al.* 1986, Jork *et al.* 1989, Rose 1995) oder die Aufrechterhaltung von LTP in späten Phasen (Krug *et al.* 1991, Matthies *et al.* 2000).

Studien zur Veränderung der Proteinfukosylierung bei synaptischer LTD lagen bislang jedoch noch nicht vor. Daher wurden in der vorliegenden Arbeit gezielt Experimente durchgeführt, um diesbezügliche Erkenntnisse auch zu diesem Aspekt synaptischer Plastizität zu gewinnen. LTD kann durch niederfrequente Stimulation von Neuronenpopulationen herbeigeführt werden und hat eine verringerte Übertragungseffizienz an Synapsen zur Folge. Der majoritäre, essentielle Neurotransmitter hierbei ist L-Glutamat. Daher kann unter bestimmten Umständen LTD auch "chemisch" durch die Aktivierung des NMDA-Rezeptors oder zum anderem durch die Aktivierung metabolischer Glutamatrezeptoren erfolgen (Malenka und Bear 2004, Ramiro-Cortes und Israely 2013). Für unsere Untersuchungen wurde die LTD chemisch durch eine NMDA-Glyzin-Behandlung induziert, einer Form die unabhängig von Proteinneusynthese ist (Malenka und Bear 2004, Ramiro-Cortes und Israely 2013).

Erstmalig konnte durch unsere BONMOT-Analyse gezeigt werden, dass nach Induktion einer chemischen LTD eine verstärkte Metabolisierung von AzL-(-)-Fuk erfolgt und nachfolgend eine erhöhte Proteinfukosylierung vorliegt.

Die Suche nach systematischer Zusammengehörigkeit zwischen den über BONMOT und Massenspektrometrie identifizierten fukosylierten Proteinen wurde mit Unterstützung durch Dr. R. Pielot in der "*Gene Ontology*"-Datenbank bzw. der KEGG-Datenbank durchgeführt. Die Ergebnisse sind in den nachfolgenden Tabellen 11. und 12. dargestellt.

Tabelle 11: Meta-Analyse der BONMOT angereicherten Proteine mittels GO

Meta-Analyse der 136 mit BONMOT angereicherten und massenspektrometrisch identifizierten Proteine in GO im Vergleich zu drei zufallsgenerierten Proteinlisten. Aus der Tabelle geht hervor, dass bestimmte GO-Termini in der experimentellen Proteinliste an- oder abgereichert erscheinen. Es wurden lediglich solche GO-Termini gelistet, für die eine signifikante Zuordnung im Vergleich zu mindestens einer Zufallsliste mit p < 0.05 möglich war.

Anreicherung	GO-Term	p-Wert / p-Wertebereich
Down	C: extracellular region	0.004778183
Down	C: cytoplasm	1.292891e-05 - 0.001541961
Down	C: nucleus	0.001989832 - 0.004116983
Down	P: transcription, DNA-templated	0.0006034201 - 0.001805939
Down	F: DNA binding	0.008000924
Down	P: proteolysis	0.004620006
Up	C: synaptic vesicle membrane	1.739928e-06 - 0.00035124
Up	C: synaptic vesicle	0.01069711
Up	P: neurotransmitter transport	0.000220756 - 0.001187327
Up	C: integral component of membrane	5.438269e-06 - 4.43858e-05
Up	C: neuron projection	0.000684489 - 0.007820526
Up	C: cell junction	0.001483711 - 0.004522912
Up	C: plasma membrane	0.01132573
Up	C: presynaptic membrane	0.0004421463 - 0.005233205
Up	C: dendritic spine	0.0001502543 - 0.0007539379
Up	C: dendritic shaft	0.00790323
Up	C: apical plasma membrane	0.0006113715 - 0.001729537
Up	P: cell adhesion	0.00352922 - 0.005919866
Up	C: caveola	0.00439231 - 0.01109657
Up	C: mitochondrial inner membrane	0.0005379195 - 0.005053767
Up	P: protein transport	0.009459915
Up	P: neural retina development	0.00374359 - 0.00439231
Up	F: signal transducer activity	1.031779e-05 - 0.001496656
Up	F: GTP binding	0.002194732
Up	F: GTPase activity	0.0007173521 - 0.001470695
Up	C: heterotrimeric G-protein complex	1.856199e-05 - 0.002162818
Up	F: G-protein beta/ gamma-subunit complex binding	6.106253e-05 - 0.0005483957
Up	P: cellular calcium ion homeostasis	0.00790323
Up	F: calmodulin binding	0.008853537

Up	P: ATP catabolic process	0.001292597 - 0.003939238
Up	P: ATP biosynthetic process	0.007507734 - 0.008853537
Up	P: ATP synthesis coupled proton transport	0.0006704662 - 0.00374359
Up	P: ATP hydrolysis coupled proton transport	1.739928e-06 - 2.728831e-06
Up	F: calcium-transporting ATPase activity	0.01069711
Up	F: proton-transporting ATP synthase activity, rotational mechanism	0.002238035 - 0.002749667
Up	F: proton-transporting ATPase activity, rotational mechanism	0.002238035 - 0.002749667
Up	C: sodium: potassium-exchanging ATPasecomplex	0.002238035 - 0.002749667
Up	F: sodium:potassium-exchanging ATPase activity	0.002238035 - 0.002749667

Diese GO-Analyse zeigt zwei sehr bemerkenswerte Aspekte auf: Erstens liegen auch hier erwartungsgemäß zytosolische und nukleäre Proteine "abgereichert" vor und zweitens gibt es eindeutig einen Cluster mit direktem Bezug zu Synapsenstrukturen und Signaltransduktion, obwohl in diesem Falle keine subzelluläre Vorfraktionierung des Ausgangsmaterials erfolgte. Darüber hinaus ist ein starker Bezug ATP-vermittelten bzw. -synthetisierenden Prozessen erkennbar.

Tabelle 12: Meta-Analyse der BONMOT angereicherten Proteine mittels KEGG

Meta-Analyse der 136 mit BONMOT angereicherten und massenspektrometrisch identifizierten Proteine in KEGG im Vergleich zu drei zufallsgenerierten Proteinlisten. Es wurden lediglich "angereicherte" KEGG-Termini in der experimentellen Proteinliste gefunden. Es wurden lediglich solche KEGG-Termini gelistet, für die eine signifikante Zuordnung im Vergleich zu mindestens einer der drei Zufallslisten mit p < 0.05 möglich war.

KEGG-Term	p-Wert / p-Wertbereich
Oxidative phosphorylation	1.654269e-06 - 0.0001624341
Synaptic vesicle cycle	2.493429e-05 - 3.939502e-05
Long-term depression	0.0001345938 - 0.002162818
Glutamatergic synapse	1.941556e-06 - 0.0002630091
Endocrine and other factor-regulated calcium reabsorption	0.0004010669 - 0.001975556
GABAergic synapse	2.001665e-06 - 0.000635912
Cholinergic synapse	0.001609714 - 0.003944399
Serotonergic synapse	0.001732841
Dopaminergic synapse	0.0005976574
Adrenergic signaling	4.702785e-05 - 0.0009296317
Calcium signaling pathway	1.476218e-05 - 0.004997697
Retrograde endocannabinoid signaling	5.772298e-06 - 0.001354961
Insulin secretion	0.001732841 - 0.003717035

Thyroid hormone synthesis	0.00374359 - 0.00439231
Morphine addiction	2.082209e-05 - 0.002162818
Huntington's disease	2.875675e-05 - 0.00448745
Parkinson's disease	7.969526e-05 - 0.002129727
Alzheimer's disease	0.0005976574
Gap junction	0.004269174 - 0.009707887
ECM-receptor interaction	0.00790323
Carbohydrate digestion and absorption	0.007507734 - 0.008853537
Protein digestion and absorption	0.003482189 - 0.00439231
Phagosome	0.003939238

Die KEGG-Analyse zeigt noch deutlicher als die GO-Analyse die Häufung von Proteinmerkmalen, die im Zusammenhang mit Synapsen stehen. Dies betrifft nicht nur Identifizierung der majoritären Transmittersysteme, sondern auch die Verbindung zu zahlreichen Erkrankungen, die mit synaptischen Phänotypen einhergehen. Hierin besteht auch eine sehr weitgehende Übereinstimmung mit der GO- und KEGG-Analyse der mit AAL-AC angereicherten Fukosyl-Proteine. Mit 94 von 136 Proteinen sind fast drei Viertel der über Klick-chemische Verfahren angereicherten Proteine in *SynProt* eingetragen.

Insgesamt zeigt der Vergleich der über BONMOT angereicherten fukosylierten Proteine mit denen über AAL-AC und nachfolgend massenspektrometrisch identifizierten eine weitreichende fukosylierten Proteine teilweise sehr der methodischen Unterschiede Ubereinstimmung. Trotz zwischen den Versuchsansätzen wurden in beiden MS-Analysen 92 identische Membran- bzw. Proteine extrazelluläre charakterisiert. Dazu zählen unteranderem die Zelladhäsionsmoleküle NCAM, Neuroplastin und Neurofascin. Währenddessen wurden 156 Membran- oder extrazelluläre Proteine nur in der AAL-bindenden Fraktion und 58 Membran- oder extrazelluläre Proteine nur in den BONMOTangereicherten Proteinfraktionen identifiziert.

Die Unterschiede in den beiden Ergebnislisten können auf verschiedene Ursachen zurückgeführt werden: Für die AAL-AC wurden spezifisch synaptische Verbindungen aus dem Gesamthirn der Ratte präpariert und Detergenz-Extrakte für die Chromatographie eingesetzt. Bei den BONMOT-Anreicherungen hingegen lieferten kortikale primäre Neuronenkulturen das Ausgangsmaterial.

Andererseits wurden zur Probengewinnung unterschiedlich stringente Bedingungen eingesetzt. Diese waren bei den Extrakten für die AAL-AC weniger stringent, wodurch möglicherweise komplexere Strukturen erhalten bleiben und somit auch potentielle Interaktionspartner fukosylierter Proteine identifziert wurden. Für die BONMOT-Analysen wurden hingegen stringente Extraktionsbedingungen gewählt, was sich auch in der Zahl der identifizierten Membran- und extrazellulären Proteine widerspiegelt. In beiden MS-Analysen wurden auch zahlreiche zytosolische und/oder nukleäre Proteine gefunden. Diese sind entweder in Proteinkomplexen, welche Fukosylproteine enthielten, mit gereinigt worden oder waren eher unspezifisch an die Agarose-Säulenmatrix des AAL bzw. der NeutrAvidin-Matrix gebunden.

Da aus zellbiologischer Sicht Fukosylierungen zytosolischer und nukleärer Proteine nach dem derzeitigen Erkenntnisstand nicht zu erwarten sind, wurden diese Proteine aus den finalen Ergebnislisten für Fukosyl-Proteine entfernt. Generell wurden keine Analysen der Glykanstrukturen durchgeführt, da der Fokus dieser Arbeit auf der Identifizierung fukosylierter Proteine liegt. Eine genauere Analyse der Fukosylierung müsste hingegen an den einzeln hydrolysierten Glykanketten erfolgen und wäre somit Bestandteil zukünftiger Studien.

Die in dieser Arbeit vorgenommenen Identifikationsstrategien mittel AAL-AC und BONMOT erweitern die bereits beschriebenen proteomischen Analysen erheblich (Smalla *et al.* 1998, Murrey *et al.* 2006, Murrey *et al.* 2009). Murrey *et al.* (2009) nutzten eine lektin-affinitätschromatographische Anreicherung α1,2-fukosylierter Glykoproteine aus dem *Bulbus olfactorius* der Maus mittels *Ulex europaeus I*-Lektin und identifizierten 32 Lektin-bindende Proteine massenspektrometrisch.

Die Majorität der identifizierten Fukosyl-Proteine ließ sich den Zelladhäsionsmolekülen, Ionenkanälen, Transportern oder ATP-Bindungsproteinen zuordnen. Smalla *et al.* (Smalla *et al.* 1998) generierten Antikörper, die gegen α 1,2-Fukosyl-Epitope gerichtet sind und konnten in Kombination mit radiochemischen Methoden zeigen, dass die NR1-Untereinheit des NMDA-Rezeptors (Machaidze und Mikeladze 2001), die beiden neuronalen Neuroplastin-Isoformen Np65 und Np55, N-Cadherin, NCAM180 und NCAM140 fukosyliert sind, wobei NR1, Np65 und N-Cadherin α 1,2-Fukosylierungen aufweisen (Smalla *et al.* 1998).

4.3. Quantifizierung und Dynamik der *de novo* Fukosylierung synaptischer Proteine

Unsere Untersuchungen zeigen erstmalig, dass eine chemisch NMDA/Glyzininduzierte LTD eine Zunahme der Fukosylierung von Proteinen hervorruft. Dabei stellt sich jedoch die Frage, ob die Dynamik der Fukosylierung an allen Proteinen zu verzeichnen ist. Um dies zu untersuchen, wurden Einzelanalysen an ausgewählten Proteinen durchgeführt. Dazu wurden gleiche Proteinmengen NeutrAvidin-gereinigter Proteine auf Westernblots aufgetragen und die Stärke des Chemilumineszenz-Signals als Maß für die relative Abundanz eines Proteins detektiert. Dabei bedeutet ein Anstieg des Signals, dass das betreffende Protein verstärkt fukosyliert ist.

Für die Zelladhäsionsmoleküle Caspr2 und N-Cadherin konnte in der statistischen Analyse der Chemilumineszenz-Signale ein signifikanter Anstieg beobachtet werden. Dies ist darauf zurückzuführen, dass diese Proteine erhöht *de novo* AzL-fukosyliert nach Auslösung von chemisch-induzierter LTD sind. Ähnliche Ergebnisse lagen für den spannungsabhängigen Kaliumkanal Kv1.2 vor. Im Gegensatz dazu ist durch NMDA/Glyzin-induzierte LTD die Fukosylierung von alpha-1 Untereinheiten des GABA(A)-Rezeptors reduziert. Für die Proteine ADAM22, NF-186 und Neuroplastin wurde hingegen keine Dynamik in der Proteinfukosylierung detektiert.

Bei LTD wurden strukturelle Veränderungen (z.B. Verkleinerung oder Eliminierung) von Synapsen beobachtet, die aber abhängig sind von der Proteinsynthese (Malenka und Bear 2004). Die chemische, NMDA/Glyzin-induzierte LTD ist jedoch nach derzeitigem Wissensstand unabhängig von der Proteinneusynthese (Malenka und Bear 2004, Ramiro-Cortes und Israely 2013) - hierdurch hervorgerufene strukturelle Veränderungen wurden allerdings bislang noch nicht untersucht. Möglicherweise können strukturelle Veränderung der Synapsen auch durch Modifikationen der Glykane bereits vorhandener Synapsenproteine induziert werden.

Unsere quantitativen Analysen haben zum einem gezeigt, dass insbesondere die Zelladhäsionsmoleküle Caspr2 und N-Cadherin nach chemisch-induzierter LTD verstärkt fukosyliert werden, wodurch unteranderem adhäsive Eigenschaften verändert werden können. Weiterhin ist in der Literatur beschrieben, dass Caspr2 am axonalen Initialsegment lokalisiert ist - dies ist ein Bereich, der eine hohe Dichte an Kaliumkanälen aufweist (Inda *et al.* 2006, Ogawa *et al.* 2008). Das axonale

Initialsegment stellt eine kritische Region für die Generierung von Aktionspotentialen dar, hier ist insbesondere auch der Kv1.2-Kanal lokalisiert (Inda *et al.* 2006).

Es ist beschrieben, dass spannungsabhängige Kaliumkanäle durch den Ausstrom von K⁺-Ionen zur Repolarisation der Membran führen (Kruse *et al.* 2012). Somit hätten eine veränderte Expression oder veränderte Kanaleigenschaften einen großen Einfluss auf die Länge und Amplitude des Aktionspotentials. Dies könnte jedoch nur durch eingehende funktionelle Analysen, z.B. *Patch-Clamp*-Messungen bestätigt werden.

LTD-induzierte dynamische Veränderungen der Proteinfukosylierung in vivo sind bislang noch nicht analysiert, da solche Analysen auf Grund der Toxizität des Kupfers, welches notwendig für die Katalyse der Klick-Reaktion ist, nicht durchgeführt werden können. Durch Verwendung einer DIFO-Sonde (Difluorinatedcyclooctyne) könnte dies umgangen werden (Sawa et al. 2006, Dehnert et al. 2011). Da dieses Cyclooctin mit der Azidgruppe in Abwesenheit von Kupfer reagiert, so dass eine Beobachtung der Fukosylierung von Zellmembran-assoziierten Strukturen in vivo möglich wäre. Dieser Vorteil macht Klick-Chemie basierte Techniken zu wertvollen Werkzeugen, die zu einen besseren Verständnis der Dynamik auf der Ebene der Glykane beitragen können.

Aus heutiger Sicht weiß man, dass eine Vielzahl der Membran- und sekretierten Proteine glykosyliert sind (Varki 1993, Breen *et al.* 1998) und dass diese Glykosylierungen in der überwiegenden Mehrzahl im ER und Golgi-Apparat durch dort lokalisierte Enzyme katalysiert werden (Varki 1993, Kleene und Schachner 2004, Marth J.D 2008).

Außerdem ist durch frühere Arbeiten - insbesondere der Gruppe um W. Reutter bekannt, dass die Halbwertszeiten der Peptidanteile und der Glykanketten von Glykoproteinen sich teilweise stark unterscheiden: In Einzelfällen kann die Halbwertszeit des Peptidrückgrates oft ein Mehrfaches terminaler Kohlehydratreste dieser Glykoproteine (Kreisel *et al.* 1980, Vischer und Reutter 1980, Volk *et al.* 1983) betragen. Das heißt mit anderen Worten, dass nicht nur *de novo* synthetisierte Proteine *de novo* glykosyliert werden. Dies kann also auch für solche Proteine erfolgen, die durch endozytotische Vorgänge von Plasmamembranen aus zurück in Golgi-Zisternen oder ER-Strukturen transportiert wurden. Dort kann dann eine teilweise oder auch komplette "Re-Glykosylierung" stattfinden, wobei diese dann durchaus "bedarfsgesteuert" und verschieden von der ursprünglichen Struktur sein könnte durch eine veränderte "zelluläre/synaptische Vorerfahrung".

Belege für das Vorhandensein eines vollständig intakten Glykosylierungs-Apparates wurden durch Villanueva und Steward bereits 2001 erbracht (Villanueva und Steward 2001) und durch neuere Arbeiten um Ehlers (Ehlers 2007) erhärtet. Die Mechanismen, die zum gerichteten Transport der Membranproteine zu Endosomen und die anschließende Sortierung in den lysosomale oder in ER- oder Golgi-Kompartimente führen, sind gegenwärtig Gegenstand intensiver Forschung, sind aber noch nicht völlig verstanden.

Die Kompartimente des Golgi-Apparates und des endoplasmatischen Retikulum sind also somatisch als auch dendritisch vorzufinden (Horton und Ehlers 2004, Ehlers 2007, Ramirez *et al.* 2011). Dendritische Golgi-Kompartimente (*Golgi outposts*) würden lokale Glykosylierungen in unmittelbarer Nähe Synapsen erlauben. Die lokale *de novo* Fukosylierung setzt zudem voraus, dass GDP-Fuk-Transporter in den vorliegenden Kompartimenten vorhanden sind, um die Aufnahme der zytosolisch synthetisierten GDP-Fuk (Ma *et al.* 2006) oder wie in diesen hier vorliegenden Untersuchungen GDP-AzL-Fuk zu gewährleisten. Ebenso müssen entsprechende Glykosyltransferasen (Liu und Mushegian 2003, Kleene und Schachner 2004) in Nähe der Synapsen in solchen Kompartimenten vorhanden sein.

Hierbei handelt es sich um Enzyme, die eine kovalente Bindung von Monosacchariden an Aminosäuren oder bestehende Kohlehydratketten und somit den letzten Schritt beim Aufbau der Oligosaccharidketten katalysieren. Sie sind in den Kompartimenten des ER oder Golgi-Apparates, zum Teil aber auch im Zytosol lokalisiert (Rexach *et al.* 2010). Galaktosyltransferasen wurden bereits in dendritischen Kompartimenten gefunden (Horton und Ehlers 2004). Für FukTs ist bislang beschrieben, dass diese in Eukaryoten ausschließlich in den Zisternen des Golgi-Apparates oder in löslicher Form im ER vorzufinden sind (Ma *et al.* 2006). Eine zytosolische α 1,2-FukTs ist bislang nur im Zytosol von *Dictyostelium* (Gonzalez-Yanes *et al.* 1992, West *et al.* 1996) identifiziert.

Obwohl eine chemisch durch NMDA/Glyzin-induzierte LTD unabhängig von Proteinneusynthese sein sollte (Malenka und Bear 2004, Ramiro-Cortes und Israely 2013), wurde in den hier vorgelegten Untersuchungen eine signifikant erhöhte Fukosylierung der Proteine in kortikalen primären Neuronenkulturen festgestellt. Somit liegen hier Indizien für eine *de novo* oder partielle *de novo* Glykosylierung

bereits vorhandener Proteine vor. Darüber hinaus erfolgt unter den Bedingungen der chemisch induzierten LTD offenbar eine veränderte "Re-Glykosylierung" im Vergleich zu Neuronenkulturen, die unter Kontrollbedingungen gehalten wurden.

Um dies näher zu beleuchten, wurde im Rahmen dieser Arbeit der Strategie einer metabolischen Doppelmarkierung von Glykanen und Proteinen gefolgt (Liu *et al.* 2011). Die modifizierte Fukose wird dabei durch den zelleigenen Metabolismus in die Glykanketten der Proteine eingebaut, währenddessen der Einbau der modifizierten Aminosäure durch die zelleigenen Translation ermöglicht wird. Weitere Untersuchungen fanden durch das FUNMOT- und FUNCAT-Verfahren statt.

Dabei wurde ersichtlich, dass durch die NMDA-Glyzin Behandlung, die chemisch eine veränderte synaptische Aktivität induziert, verstärkt AzL-(-)-Fuk in die Glykane der Zellmembran-assoziierten Proteine eingebaut wird. Eine Veränderung in der Proteinneusynthese im Vergleich zu den basalen Konditionen konnte durch das FUNCAT-Verfahren nicht detektiert werden. Dies bestätigt erneut, dass chemisch induzierte LTD unabhängig von Proteinneusynthese ist und gleichzeitig eine *de novo* Fukosylierung prä-existierender Proteine induziert.

Wie bereits oben ausgeführt, werden existierende Membranproteine durch endozytotische Mechanismen von der Zellmembran zu Kompartimenten des Golgi-Apparates oder dem ER transportiert. Experimentelle Studien zeigten, dass ein retrograder Transport von Endosomen zum trans-Golgi-Netzwerk (Ghosh und Kornfeld 2004, Wahle et al. 2005, Shirahama-Noda et al. 2013) existiert. Dies macht, gemeinsam mit den experimentellen Befunden der vorliegenden Studie eine de novo Fukosylierung plausibel. Darüber hinaus kämen Fukosylierungen durch Ektofukosyltransferasen in Betracht. Im Gehirn wurden solche Glykosyltransferasen allerdings noch nicht gefunden, aber an Zelloberflächenproteinen von Ratten-Lymphozyten wurden bereits Ektofukosyltransferase-Aktivitäten nachgewiesen (Hoflack et al. 1978).

4.4. Existiert eine funktionelle Beziehung zwischen Proteinfukosylierung und Proteinneusynthese?

Die Veränderungen der synaptischen Aktivität - induziert durch eine chemische NMDA/Glyzin-vermittelte LTD - basieren, wie die vorliegenden Resultate demonstrieren, nicht zwangsläufig auf einer Proteinneusynthese. Dennoch wird

davon ausgegangen, dass eine von Proteinneusynthese unabhängige Plastizität, nur kurzfristige strukturelle Veränderungen induziert (Ramiro-Cortes und Israely 2013).

Eine Vielzahl experimenteller Studien haben allerdings gezeigt, dass lang anhaltende Veränderungen der synaptischen Effizienz sowohl eine intakte Proteinbiosynthese (Krug *et al.* 1984, Montarolo *et al.* 1986, Frey *et al.* 1988, Freeman *et al.* 1995) als auch eine intakte Glykosylierungsmaschinerie (Jork *et al.* 1986, Krug *et al.* 1991, Rose 1995, Matthies *et al.* 1999) erfordern.

Um die Aspekte der Fukosylierung in Abhängigkeit von Proteinneusynthese zu untersuchen, ist die Strategie der Doppelmarkierung (Liu *et al.* 2011) eine bewährte Methode. So können in zukünftigen Experimenten beispielsweise in primären Zellkulturen verschiedene Formen synaptischer Plastizität induziert werden, für die eine Abhängigkeit von der Proteinsynthese beschrieben wurden ist. So benötigt beispielsweise die durch Aktivierung metabotroper Glutamat-Rezeptoren ausgelöste langanhaltende LTD eine Proteinneusynthese (Ramiro-Cortes und Israely 2013). Ebenso sind auch späte Phasen der NMDA-abhängigen LTP, abhängig von der Neusynthese von Proteinen (Krug *et al.* 1984, Frey *et al.* 1988, Malenka und Nicoll 1993).

Durch die selektive Markierung von Glykanen und Proteinen, mit Alkin- oder Azidmodifizierten Zuckern bzw. Aminosäuren, ist die Möglichkeit der Selektion gegeben. Da fortwährend durch die Verwendung einer modifizierten Fukose und einer modifizierten Aminosäure eine Charakterisierung von neusynthetisierten, neusynthetisiert und fukosylierten, oder neufukosylierten Glykoproteinen erfolgen kann.

Erste Untersuchungen bestätigen die Nutzbarkeit dieser kombinierten Methodik. Unter basalen Bedingungen konnten neusynthetisierte Proteine, die das Methionin-Analog HPG im Proteingerüst eingebaut haben, vom restlichen Proteom separiert werden. Durch eine zweite Klick-Reaktion ist dann die Möglichkeit gegeben, alle fukosylierten Proteine, ob neusynthetisiert oder bereits existierend, zu detektieren. Somit kann durch diese Methode die Veränderungen der Fukosylierung in Abhängigkeit von der Proteinneusynthese, induziert durch synaptische Plastizität, untersucht werden.

5. Ausblick

Ausgehend von dieser hier vorgelegten, überwiegend proteomischen Studie konnte eine Vielzahl möglicher fukosylierter Proteine identifiziert werden. Dennoch bleiben weiterhin viele Fragen unbeantwortet bzw. bedürfen einer weitergehenden Untersuchung. Da nur für einen Teil der identifizierten Fukosyl-Proteine ein zweifelsfreier Nachweis der Fukosylierung erbracht werden konnte, muss dies in nachfolgenden Arbeiten für die anderen Proteine noch verifiziert werden. Insbesondere bleibt unklar, welche funktionelle Rolle die Fukose in den Glykanketten übernimmt und welche Oligosaccharid-Strukturen überhaupt vorliegen.

Außerdem stellen sich Fragen wie: Ist die Funktion der Fukosyl-Epitope konserviert oder besitzt diese eine Variabilität? Demnach wird erneut die Notwendigkeit der Strukturanalyse deutlich, um nachfolgend den Einfluss jedes einzelnen Fukosyl-Epitops zu untersuchen. Möglichkeiten hierfür bieten unteranderem die enzymatische Deglykosylierung, in der Analyse der Zusammensetzung der Glykanketten oder deren Strukturaufklärung. WB-Analysen mit Antikörpern (Lucka *et al.* 2005) oder speziellen Lektinen, beispielsweise dem aus *Ulex europaeus I* können hierbei ebenfalls sehr hilfreich sein. Auch Fukosidasen können hierbei wichtige Werkzeuge sein, (i) α -Fukosidasen hydrolysieren alle α -Fukosyl-Verknüpfungen, (ii) α 1,2-Fukosidasen, (iii) α 1,3/4-Fukosidasen und (iv) α 1,6-Fukosidasen hydrolysieren entsprechend Ihrer Klassifizierung die spezifischen Fukosyl-Verbindungen (Kobata 2000).

Des Weiteren können Glykane strukturell über die High-Performance-Anionenaustausch-Chromatographie mit amperometrischer Detektion (Elwood et al. 1988, Lucka et al. 2005) oder über die reverse phase-HPLC (Ogawa et al. 1990, Zamze et al. 1999) analysiert werden. Zu diesem Zweck werden Glykoproteine mit PNGase F behandelt, was eine Spaltung der N-glykosidisch-gebundenen Oligosaccharide katalysiert (Magnelli et al. 2011). Aber auch chemisch können durch Trifluoromethansulfonsäure N-glykosidisch und auch O-glykosidisch gebundene Oligosaccharidketten abgespalten werden (Edge 2003). Um funktionelle Aspekte der Proteinfukosylierung zu analysieren, könnte die Verwendung von Fukosidasen sehr hilfreich und effizient sein, da die Polypeptidketten erhalten bleiben und weiterführende Untersuchungen direkt am Protein durchgeführt werden können. Durch Patch-Clamp-Messungen (Neher und Sakmann 1976, Hamill et al. 1981)
Ausblick

lassen sich Änderungen in der Leitfähigkeit und Spannungssensorik von Ionenkanälen sehr gut charakterisieren. Änderungen in der Affinität zum Liganden können beispielsweise durch Konformationsänderungen des Proteins herbeigeführt werden. Strukturelle Untersuchungen wie beispielsweise die der Proteinkristall-Strukturanalyse würden hierbei Aufschluss darüber geben können (Caliandro *et al.* 2013). Funktionelle Aspekte der Fukosylierung könnten des Weiteren durch Desoxygalaktose-Derivate (Jork *et al.* 1989, Krug *et al.* 1991), FukTs-*knockout* Studien (Taniguchi *et al.* 2006, Moriwaki und Miyoshi 2010) oder Lektin-basierte *in vitro*-Studien untersucht werden, da Veränderungen in der Zelladhäsion, Zellmigration oder im Neuriten-Wachstum direkt ersichtlich sind.

Einen weiteren Ansatzpunkt für zukünftige Forschungen zur Aufklärung der Rolle der Fukosylierung bieten Studien mit mutanten Proteinen an den jeweiligen Anheftungsstellen an das Peptid-Rückgrat (Asp, Ser, Thr) in heterologen Expressionssystemen, die funktionelle Testungen hinsichtlich Veränderungen in der Zellmorphologie, der Signaltransduktion oder elektrophysiologischen Parametern gestatten.

Die Auswirkungen einer veränderten Fukosylierung auf die molekularen Eigenschaften der betroffenen Proteine könnten sehr vielfältig sein. Dies könnte einen verbesserten Schutz gegen proteolytischen Abbau, ein verändertes Sortierungssignal, adhäsiver/repulsiver intrazelluläres eine Veränderung Eigenschaften durch "Abschirmung" oder Konformationsänderungen oder auch eine Veränderung in den Bindungseigenschaften für endogene Lektine beinhalten. Die Identifizierung solcher Bindungsproteine für Fukose-haltige Glykanstrukturen könnte sehr wichtige Informationen zum Verständnis einer funktionell bedingt veränderten Proteinfukosylierung liefern.

Schließlich sollte die Identität zytosolischer bzw. nukleärer fukosylierter Proteine eindeutig geklärt oder mittels der oben beschriebenen Analyseverfahren ausgeschlossen werden. Ebenso könnten mittels Kandidaten-basierten Ansätzen die Fukosylierung als auch deren Ausmaß für Proteine, die massenspektrometrisch nur in einer der beiden Gruppen identifiziert werden konnten (siehe Tabelle 13), bestätigt oder ausgeschlossen werden, um damit Limitationen in der Analysetiefe der verwendeten Massenspektrometer entgegenzusteuern.

101

Tabelle 13: Vergleichsanalyse der BONMOT angereicherten und massenspektrometrisch identifizierten Fukosyl-Proteine.

Protein name	UniProt entry	Basal	NMDA	Function	SynProt
Gamma-aminobutyric acid receptor subunit beta-3 [GBRB3_RAT]	P63079			Neurotransmitter receptor	
Sodium- and chloride-dependent GABA transporter 3 [S6A11_RAT]	P31647			Neurotransmitter transport	
Synaptic vesicle glycoprotein 2B [SV2B_RAT]	Q63564			Presynaptic vesicle protein	
Reticulon-3 [RTN3_RAT]	Q6RJR6			Regulatory, Secretory pathway	
Plasma membrane calcium-transporting ATPase 2 [AT2B2_RAT]	P11506			Ca2+ homeostasis	
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 [AT2A2_RAT]	P11507			Ca2+ homeostasis	
Sodium/hydrogen exchanger [D3ZJ86_RAT]	D3ZJ86			Ion transport	
Basigin [BASI_RAT]	P26453			Cell adhesion/recognition	
Isoform 1 of Neuroplastin [NPTN_RAT]	P97546-1			Cell adhesion/recognition	
Isoform 2 of Leukocyte surface antigen CD47 [CD47_RAT]	P97829-2			Cell adhesion/recognition	
Opioid-binding protein/cell adhesion molecule [OPCM_RAT]	P32736			Cell adhesion/recognition	
Protein Cdh13 (Fragment) [F1M7X3_RAT]	F1M7X3			Cell adhesion/recognition	
Protein Dsg1b [D3ZQ45_RAT]	D3ZQ45			Cell adhesion/recognition	
Receptor-type tyrosine-protein phosphatase S [PTPRS_RAT]	Q64605			Cell adhesion/recognition	
LETM1 and EF-hand domain-containing protein 1, mitochondrial [LETM1_RAT]	Q5XIN6			Mitochondria	
Mitochondrial import receptor subunit TOM40 homolog [G3V8F5_RAT]	G3V8F5			Mitochondria	
Mitochondrial import receptor subunit TOM70 [TOM70_RAT]	Q75Q39			Mitochondria	
Phosphate carrier protein, mitochondrial [G3V741_RAT]	G3V741			Mitochondria	
Sideroflexin-3 [SFXN3_RAT]	Q9JHY2			Mitochondria	
Sideroflexin-5 [SFXN5_RAT]	Q8CFD0			Mitochondria	
ATP synthase subunit b, mitochondrial [AT5F1_RAT]	P19511			Mitochondria	
ATPase, H+ transporting, 38kDa, V0 subunit d1 [Q5M7T6_RAT]	Q5M7T6			Mitochondria	
Protein Atp6v1a [D4A133_RAT]	D4A133			Mitochondria	

6. Literatur

Anderson, G. R., T. Galfin, W. Xu, J. Aoto, R. C. Malenka and T. C. Sudhof (2012).
"Candidate autism gene screen identifies critical role for cell-adhesion molecule
CASPR2 in dendritic arborization and spine development." <u>Proc Natl Acad Sci U S A</u> **109**(44): 18120-18125.

Angenstein, F., H. Matthies, Jr., S. Staeck, K. G. Reymann and S. Staak (1992). "The maintenance of hippocampal long-term potentiation is paralleled by a dopamine-dependent increase in glycoprotein fucosylation." <u>Neurochem Int</u> **21**(3): 403-408.

Angenstein, F., S. Staak and R. Jork (1992). "Phorbol ester-induced changes in rat hippocampal glycoprotein fucosylation." <u>Neurosci Lett</u> **135**(2): 269-272.

Bakkaloglu, B., B. J. O'Roak, A. Louvi, A. R. Gupta, J. F. Abelson, T. M. Morgan, K.
Chawarska, A. Klin, A. G. Ercan-Sencicek, A. A. Stillman, G. Tanriover, B. S.
Abrahams, J. A. Duvall, E. M. Robbins, D. H. Geschwind, T. Biederer, M. Gunel, R.
P. Lifton and M. W. State (2008). "Molecular cytogenetic analysis and resequencing of contactin associated protein-like 2 in autism spectrum disorders." <u>Am J Hum</u>
<u>Genet</u> 82(1): 165-173.

Basak, S., K. Raju, J. Babiarz, N. Kane-Goldsmith, D. Koticha and M. Grumet (2007). "Differential expression and functions of neuronal and glial neurofascin isoforms and splice variants during PNS development." <u>Dev Biol</u> **311**(2): 408-422.

Becker, D. J. and J. B. Lowe (2003). "Fucose: biosynthesis and biological function in mammals." <u>Glycobiology</u> **13**(7): 41R-53R.

Boeckers, T. M., M. R. Kreutz, C. Winter, W. Zuschratter, K. H. Smalla, L. Sanmarti-Vila, H. Wex, K. Langnaese, J. Bockmann, C. C. Garner and E. D. Gundelfinger (1999). "Proline-rich synapse-associated protein-1/cortactin binding protein 1 (ProSAP1/CortBP1) is a PDZ-domain protein highly enriched in the postsynaptic density." <u>J Neurosci</u> **19**(15): 6506-6518.

Breen, K. C., C. M. Coughlan and F. D. Hayes (1998). "The role of glycoproteins in neural development function, and disease." <u>Mol Neurobiol</u> **16**(2): 163-220.

Brewer, G. J. and P. J. Price (1996). "Viable cultured neurons in ambient carbon dioxide and hibernation storage for a month." <u>Neuroreport</u> **7**(9): 1509-1512.

Bullock, S., J. Potter and S. P. Rose (1990). "Effects of the amnesic agent 2deoxygalactose on incorporation of fucose into chick brain glycoproteins." <u>J</u> <u>Neurochem</u> **54**(1): 135-142.

Bullock, S. and S. P. Rose (1992). "Glycoproteins modulate changes in synaptic connectivity in memory formation." <u>Biochem Soc Trans</u> **20**(2): 412-414.

Caliandro, R., D. B. Belviso, B. M. Aresta, M. de Candia and C. D. Altomare (2013). "Protein crystallography and fragment-based drug design." <u>Future Med Chem</u> **5**(10): 1121-1140.

Carlin, R. K., D. J. Grab, R. S. Cohen and P. Siekevitz (1980). "Isolation and characterization of postsynaptic densities from various brain regions: enrichment of different types of postsynaptic densities." <u>J Cell Biol</u> **86**(3): 831-845.

Carlsson, S. R. and T. Stigbrand (1984). "Partial characterization of the oligosaccharides of mouse thymocyte Thy-1 glycoprotein." <u>Biochem J</u> **221**(2): 379-392.

Clark, R. A., J. W. Gurd, N. Bissoon, N. Tricaud, E. Molnar, S. E. Zamze, R. A. Dwek, R. A. McIlhinney and D. R. Wing (1998). "Identification of lectin-purified neural glycoproteins, GPs 180, 116, and 110, with NMDA and AMPA receptor subunits: conservation of glycosylation at the synapse." <u>J Neurochem</u> **70**(6): 2594-2605.

Condro, M. C. and S. A. White (2014). "Distribution of language-related Cntnap2 protein in neural circuits critical for vocal learning." <u>J Comp Neurol</u> **522**(1): 169-185.

Connor, B., D. Young, P. Lawlor, W. Gai, H. Waldvogel, R. L. Faull and M. Dragunow (1996). "Trk receptor alterations in Alzheimer's disease." <u>Brain Res Mol Brain Res</u> **42**(1): 1-17.

Dalley, J. W., K. Laane, D. E. Theobald, H. C. Armstrong, P. R. Corlett, Y. Chudasama and T. W. Robbins (2005). "Time-limited modulation of appetitive

Pavlovian memory by D1 and NMDA receptors in the nucleus accumbens." <u>Proc Natl</u> <u>Acad Sci U S A</u> **102**(17): 6189-6194.

Dehnert, K. W., B. J. Beahm, T. T. Huynh, J. M. Baskin, S. T. Laughlin, W. Wang, P. Wu, S. L. Amacher and C. R. Bertozzi (2011). "Metabolic labeling of fucosylated glycans in developing zebrafish." <u>ACS Chem Biol</u> **6**(6): 547-552.

Dell, A. and H. R. Morris (2001). "Glycoprotein structure determination by mass spectrometry." <u>Science</u> **291**(5512): 2351-2356.

Dieterich, D. C., J. J. Hodas, G. Gouzer, I. Y. Shadrin, J. T. Ngo, A. Triller, D. A. Tirrell and E. M. Schuman (2010). "In situ visualization and dynamics of newly synthesized proteins in rat hippocampal neurons." <u>Nat Neurosci</u> **13**(7): 897-905.

Dieterich, D. C., A. Karpova, M. Mikhaylova, I. Zdobnova, I. Konig, M. Landwehr, M. Kreutz, K. H. Smalla, K. Richter, P. Landgraf, C. Reissner, T. M. Boeckers, W. Zuschratter, C. Spilker, C. I. Seidenbecher, C. C. Garner, E. D. Gundelfinger and M. R. Kreutz (2008). "Caldendrin-Jacob: a protein liaison that couples NMDA receptor signalling to the nucleus." <u>PLoS Biol</u> 6(2): e34.

Dieterich, D. C., J. J. Lee, A. J. Link, J. Graumann, D. A. Tirrell and E. M. Schuman (2007). "Labeling, detection and identification of newly synthesized proteomes with bioorthogonal non-canonical amino-acid tagging." <u>Nat Protoc</u> **2**(3): 532-540.

Dieterich, D. C., A. J. Link, J. Graumann, D. A. Tirrell and E. M. Schuman (2006). "Selective identification of newly synthesized proteins in mammalian cells using bioorthogonal noncanonical amino acid tagging (BONCAT)." <u>Proc Natl Acad Sci U S</u> <u>A</u> **103**(25): 9482-9487.

Dityatev, A., G. Dityateva, V. Sytnyk, M. Delling, N. Toni, I. Nikonenko, D. Muller and M. Schachner (2004). "Polysialylated neural cell adhesion molecule promotes remodeling and formation of hippocampal synapses." <u>J Neurosci</u> **24**(42): 9372-9382.

Edge, A. S. (2003). "Deglycosylation of glycoproteins with trifluoromethanesulphonic acid: elucidation of molecular structure and function." <u>Biochem J</u> **376**(Pt 2): 339-350.

Ehlers, M. D. (2007). "Secrets of the secretory pathway in dendrite growth." <u>Neuron</u> **55**(5): 686-689.

Elwood, P. C., W. K. Reid, P. D. Marcell, R. H. Allen and J. F. Kolhouse (1988). "Determination of the carbohydrate composition of mammalian glycoproteins by capillary gas chromatography/mass spectrometry." <u>Anal Biochem</u> **175**(1): 202-211.

Empson, R. M., L. E. Buckby, M. Kraus, K. J. Bates, M. R. Crompton, E. D. Gundelfinger and P. W. Beesley (2006). "The cell adhesion molecule neuroplastin-65 inhibits hippocampal long-term potentiation via a mitogen-activated protein kinase p38-dependent reduction in surface expression of GluR1-containing glutamate receptors." J Neurochem **99**(3): 850-860.

Freeman, F. M., S. P. Rose and A. B. Scholey (1995). "Two time windows of anisomycin-induced amnesia for passive avoidance training in the day-old chick." <u>Neurobiol Learn Mem</u> **63**(3): 291-295.

Frey, U., Y. Y. Huang and E. R. Kandel (1993). "Effects of cAMP simulate a late stage of LTP in hippocampal CA1 neurons." <u>Science</u> **260**(5114): 1661-1664.

Frey, U., M. Krug, K. G. Reymann and H. Matthies (1988). "Anisomycin, an inhibitor of protein synthesis, blocks late phases of LTP phenomena in the hippocampal CA1 region in vitro." <u>Brain Res</u> **452**(1-2): 57-65.

Frey, U., H. Matthies, K. G. Reymann and H. Matthies (1991). "The effect of dopaminergic D1 receptor blockade during tetanization on the expression of long-term potentiation in the rat CA1 region in vitro." <u>Neurosci Lett</u> **129**(1): 111-114.

Fujihashi, M., D. H. Peapus, N. Kamiya, Y. Nagata and K. Miki (2003). "Crystal structure of fucose-specific lectin from Aleuria aurantia binding ligands at three of its five sugar recognition sites." <u>Biochemistry</u> **42**(38): 11093-11099.

Fukumori, F., N. Takeuchi, T. Hagiwara, H. Ohbayashi, T. Endo, N. Kochibe, Y. Nagata and A. Kobata (1990). "Primary structure of a fucose-specific lectin obtained from a mushroom, Aleuria aurantia." <u>J Biochem</u> **107**(2): 190-196.

Ghosh, P. and S. Kornfeld (2004). "The GGA proteins: key players in protein sorting at the trans-Golgi network." <u>Eur J Cell Biol</u> **83**(6): 257-262.

Goldstein, I. J. and C. E. Hayes (1978). "The lectins: carbohydrate-binding proteins of plants and animals." <u>Adv Carbohydr Chem Biochem</u> **35**: 127-340.

Gonzalez-Yanes, B., J. M. Cicero, R. D. Brown, Jr. and C. M. West (1992). "Characterization of a cytosolic fucosylation pathway in Dictyostelium." <u>J Biol Chem</u> **267**(14): 9595-9605.

Gurd, J. W., P. R. Gordon-Weeks and W. H. Evans (1983). "Identification and localization of concanavalin A binding sites on isolated postsynaptic densities." <u>Brain</u> <u>Res</u> **276**(1): 141-146.

Guruge, J. L., P. G. Falk, R. G. Lorenz, M. Dans, H. P. Wirth, M. J. Blaser, D. E. Berg and J. I. Gordon (1998). "Epithelial attachment alters the outcome of Helicobacter pylori infection." <u>Proc Natl Acad Sci U S A</u> **95**(7): 3925-3930.

Haltiwanger, R. S. and J. B. Lowe (2004). "Role of glycosylation in development." <u>Annu Rev Biochem</u> **73**: 491-537.

Hamill, O. P., A. Marty, E. Neher, B. Sakmann and F. J. Sigworth (1981). "Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches." <u>Pflugers Arch</u> **391**(2): 85-100.

Heukeshoven, J. and R. Dernick (1988). "Improved silver staining procedure for fast staining in PhastSystem Development Unit. I. Staining of sodium dodecyl sulfate gels." <u>Electrophoresis</u> **9**(1): 28-32.

Hoflack, B., R. Cacan and A. Verbert (1978). "Occurrence of two fucosyltransferase activities at the outer surface of rat lymphocytes." <u>Eur J Biochem</u> **88**(1): 1-6.

Hooper, L. V. and J. I. Gordon (2001). "Glycans as legislators of host-microbial interactions: spanning the spectrum from symbiosis to pathogenicity." <u>Glycobiology</u> **11**(2): 1R-10R.

Horton, A. C. and M. D. Ehlers (2004). "Secretory trafficking in neuronal dendrites." <u>Nat Cell Biol</u> **6**(7): 585-591.

Howell, O. W., A. Palser, A. Polito, S. Melrose, B. Zonta, C. Scheiermann, A. J. Vora, P. J. Brophy and R. Reynolds (2006). "Disruption of neurofascin localization reveals early changes preceding demyelination and remyelination in multiple sclerosis." <u>Brain</u> **129**(Pt 12): 3173-3185.

Ichtchenko, K., T. Nguyen and T. C. Sudhof (1996). "Structures, alternative splicing, and neurexin binding of multiple neuroligins." <u>J Biol Chem</u> **271**(5): 2676-2682.

Inda, M. C., J. DeFelipe and A. Munoz (2006). "Voltage-gated ion channels in the axon initial segment of human cortical pyramidal cells and their relationship with chandelier cells." <u>Proc Natl Acad Sci U S A</u> **103**(8): 2920-2925.

Jork, R., G. Grecksch and H. Matthies (1986). "Impairment of glycoprotein fucosylation in rat hippocampus and the consequences on memory formation." <u>Pharmacol Biochem Behav</u> **25**(6): 1137-1144.

Jork, R., I. Schnurra, K. H. Smalla, G. Grecksch, N. Popov and H. Matthies (1989). "Deoxy-galactose mediated amnesia is related to an inhibition of training-induced increase in rat hippocampal glycoprotein fucosylation." <u>Neurosci.Res.Commun.</u> **5**: 3-8.

Kandel, E. R. and D. Gardner (1972). "The synaptic actions mediated by the different branches of a single neuron." <u>Res Publ Assoc Res Nerv Ment Dis</u> **50**: 91-146.

Kelly, R. J., S. Rouquier, D. Giorgi, G. G. Lennon and J. B. Lowe (1995). "Sequence and expression of a candidate for the human Secretor blood group alpha(1,2)fucosyltransferase gene (FUT2). Homozygosity for an enzyme-inactivating nonsense mutation commonly correlates with the non-secretor phenotype." <u>J Biol</u> <u>Chem</u> **270**(9): 4640-4649.

Kleene, R. and M. Schachner (2004). "Glycans and neural cell interactions." <u>Nat Rev</u> <u>Neurosci</u> **5**(3): 195-208. Kleijer, K. T., M. J. Schmeisser, D. D. Krueger, T. M. Boeckers, P. Scheiffele, T. Bourgeron, N. Brose and J. P. Burbach (2014). "Neurobiology of autism gene products: towards pathogenesis and drug targets." <u>Psychopharmacology (Berl)</u>.

Kobata, A. (2000). "A journey to the world of glycobiology." <u>Glycoconj J</u> **17**(7-9): 443-464.

Kolb, H. C., M. G. Finn and K. B. Sharpless (2001). "Click Chemistry: Diverse Chemical Function from a Few Good Reactions." <u>Angew Chem Int Ed Engl</u> **40**(11): 2004-2021.

Koles, K., W. McDowell, R. Mileusnic and S. P. Rose (2005). "Glycan analysis of the chicken synaptic plasma membrane glycoproteins--a major synaptic N-glycan carries the LewisX determinant." Int J Biol Sci **1**(4): 126-134.

Koticha, D., J. Babiarz, N. Kane-Goldsmith, J. Jacob, K. Raju and M. Grumet (2005). "Cell adhesion and neurite outgrowth are promoted by neurofascin NF155 and inhibited by NF186." <u>Mol Cell Neurosci</u> **30**(1): 137-148.

Kreisel, W., B. A. Volk, R. Buchsel and W. Reutter (1980). "Different half-lives of the carbohydrate and protein moieties of a 110,000-dalton glycoprotein isolated from plasma membranes of rat liver." <u>Proc Natl Acad Sci U S A</u> **77**(4): 1828-1831.

Krug, M., R. Jork, K. Reymann, M. Wagner and H. Matthies (1991). "The amnesic substance 2-deoxy-D-galactose suppresses the maintenance of hippocampal LTP." <u>Brain Res</u> **540**(1-2): 237-242.

Krug, M., B. Lossner and T. Ott (1984). "Anisomycin blocks the late phase of longterm potentiation in the dentate gyrus of freely moving rats." <u>Brain Res Bull</u> **13**(1): 39-42.

Krug, M., M. Wagner, S. Staak and K. H. Smalla (1994). "Fucose and fucosecontaining sugar epitopes enhance hippocampal long-term potentiation in the freely moving rat." <u>Brain Res</u> **643**(1-2): 130-135. Kruse, M., G. R. Hammond and B. Hille (2012). "Regulation of voltage-gated potassium channels by PI(4,5)P2." <u>J Gen Physiol</u> **140**(2): 189-205.

Kudo, T., T. Fujii, S. Ikegami, K. Inokuchi, Y. Takayama, Y. Ikehara, S. Nishihara, A. Togayachi, S. Takahashi, K. Tachibana, S. Yuasa and H. Narimatsu (2007). "Mice lacking alpha1,3-fucosyltransferase IX demonstrate disappearance of Lewis x structure in brain and increased anxiety-like behaviors." <u>Glycobiology</u> **17**(1): 1-9.

Laemmli, U. K. (1970). "Cleavage of structural proteins during the assembly of the head of bacteriophage T4." <u>Nature</u> **227**(5259): 680-685.

Lammers, G. and J. C. Jamieson (1990). "Cathepsin D-like activity in the release of Gal beta 1-4GlcNAc alpha 2-6sialyltransferase from mouse and guinea pig liver Golgi membranes during the acute phase response." <u>Comp Biochem Physiol B</u> **95**(2): 327-334.

Larsen, R. D., L. K. Ernst, R. P. Nair and J. B. Lowe (1990). "Molecular cloning, sequence, and expression of a human GDP-L-fucose:beta-D-galactoside 2-alpha-L-fucosyltransferase cDNA that can form the H blood group antigen." <u>Proc Natl Acad</u> <u>Sci U S A</u> **87**(17): 6674-6678.

Lemon, N. and D. Manahan-Vaughan (2006). "Dopamine D1/D5 receptors gate the acquisition of novel information through hippocampal long-term potentiation and long-term depression." <u>J Neurosci</u> **26**(29): 7723-7729.

Li, Y., L. Lei, K. D. Irvine and N. E. Baker (2003). "Notch activity in neural cells triggered by a mutant allele with altered glycosylation." <u>Development</u> **130**(13): 2829-2840.

Liedtke, S., H. Geyer, M. Wuhrer, R. Geyer, G. Frank, R. Gerardy-Schahn, U. Zahringer and M. Schachner (2001). "Characterization of N-glycans from mouse brain neural cell adhesion molecule." <u>Glycobiology</u> **11**(5): 373-384.

Liu, J. and A. Mushegian (2003). "Three monophyletic superfamilies account for the majority of the known glycosyltransferases." <u>Protein Sci</u> **12**(7): 1418-1431.

Liu, K., P. Y. Yang, Z. Na and S. Q. Yao (2011). "Dynamic monitoring of newly synthesized proteomes: up-regulation of myristoylated protein kinase A during butyric acid induced apoptosis." <u>Angew Chem Int Ed Engl</u> **50**(30): 6776-6781.

Longo, F. M. and S. M. Massa (2013). "Small-molecule modulation of neurotrophin receptors: a strategy for the treatment of neurological disease." <u>Nat Rev Drug Discov</u> **12**(7): 507-525.

Lowe, J. B. (1997). "Selectin ligands, leukocyte trafficking, and fucosyltransferase genes." <u>Kidney Int</u> **51**(5): 1418-1426.

Lucka, L., M. Fernando, D. Grunow, C. Kannicht, A. K. Horst, P. Nollau and C. Wagener (2005). "Identification of Lewis x structures of the cell adhesion molecule CEACAM1 from human granulocytes." <u>Glycobiology</u> **15**(1): 87-100.

Ma, B., J. L. Simala-Grant and D. E. Taylor (2006). "Fucosylation in prokaryotes and eukaryotes." <u>Glycobiology</u> **16**(12): 158R-184R.

Machaidze, G. G. and D. Mikeladze (2001). "Different effects of lectins on the ligand binding of the NMDA receptors and sigma sites in rat brain hippocampus synaptic membranes." <u>Neurochem Res</u> **26**(5): 457-462.

Magnelli, P. E., A. M. Bielik and E. P. Guthrie (2011). "Identification and characterization of protein glycosylation using specific endo- and exoglycosidases." J <u>Vis Exp(58)</u>: e3749.

Malenka, R. C. and M. F. Bear (2004). "LTP and LTD: an embarrassment of riches." <u>Neuron</u> **44**(1): 5-21.

Malenka, R. C. and R. A. Nicoll (1993). "NMDA-receptor-dependent synaptic plasticity: multiple forms and mechanisms." <u>Trends Neurosci</u> **16**(12): 521-527.

Maness, P. F. and M. Schachner (2007). "Neural recognition molecules of the immunoglobulin superfamily: signaling transducers of axon guidance and neuronal migration." <u>Nat Neurosci</u> **10**(1): 19-26.

Marth J.D, G. P. K. (2008). "Mammalian glycosylation in immunity." Nature 8.

Martin, B. R. and B. F. Cravatt (2009). "Large-scale profiling of protein palmitoylation in mammalian cells." <u>Nat Methods</u> **6**(2): 135-138.

Martin, P. T. (2002). "Glycobiology of the synapse." <u>Glycobiology</u> **12**(1): 1R-7R.

Matthies, H. (1989). "In search of cellular mechanisms of memory." <u>Prog Neurobiol</u> **32**(4): 277-349.

Matthies, H. (1989). "Neurobiological aspects of learning and memory." <u>Annu Rev</u> <u>Psychol</u> **40**: 381-404.

Matthies, H., A. Becker, H. Schroeder, J. Kraus, V. Hollt and M. Krug (1997). "Dopamine D1-deficient mutant mice do not express the late phase of hippocampal long-term potentiation." <u>Neuroreport</u> **8**(16): 3533-3535.

Matthies, H., Jr., J. Kretlow, H. Matthies, K. H. Smalla, S. Staak and M. Krug (1999). "Glycosylation of proteins during a critical time window is necessary for the maintenance of long-term potentiation in the hippocampal CA1 region." <u>Neuroscience</u> **91**(1): 175-183.

Matthies, H., H. Schroeder, K. H. Smalla and M. Krug (2000). "Enhancement of glutamate release by L-fucose changes effects of glutamate receptor antagonists on long-term potentiation in the rat hippocampus." <u>Learn Mem</u> **7**(4): 227-234.

Matthies, H., S. Staak and M. Krug (1996). "Fucose and fucosyllactose enhance invitro hippocampal long-term potentiation." <u>Brain Res</u> **725**(2): 276-280.

Matthies, H., S. Staak, K. H. Smalla and M. Krug (1997). "Enhancement if hippocampal long-term potentiation in vitro by fucosyl-carbohydrates." <u>Neurochemistry: Cellular, Molecular and Clinical Aspects; Eds A. Teelken and J.</u> <u>Korf; Plenum Press 1997, New York and London.</u>: 905-908. McCabe, N. R. and S. P. Rose (1985). "Passive avoidance training increases fucose incorporation into glycoproteins in chick forebrain slices in vitro." <u>Neurochem Res</u> **10**(8): 1083-1095.

Meinl, E. (2011). "Untapped targets in multiple sclerosis." <u>J Neurol Sci</u> **311 Suppl 1**: S12-15.

Meinl, E., T. Derfuss, M. Krumbholz, A. K. Probstel and R. Hohlfeld (2011). "Humoral autoimmunity in multiple sclerosis." <u>J Neurol Sci</u> **306**(1-2): 180-182.

Mele, A., M. Avena, P. Roullet, E. De Leonibus, S. Mandillo, F. Sargolini, R. Coccurello and A. Oliverio (2004). "Nucleus accumbens dopamine receptors in the consolidation of spatial memory." <u>Behav Pharmacol</u> **15**(5-6): 423-431.

Mollicone, R., A. Gibaud, A. Francois, M. Ratcliffe and R. Oriol (1990). "Acceptor specificity and tissue distribution of three human alpha-3-fucosyltransferases." <u>Eur J</u> <u>Biochem</u> **191**(1): 169-176.

Montarolo, P. G., P. Goelet, V. F. Castellucci, J. Morgan, E. R. Kandel and S. Schacher (1986). "A critical period for macromolecular synthesis in long-term heterosynaptic facilitation in Aplysia." <u>Science</u> **234**(4781): 1249-1254.

Moriwaki, K. and E. Miyoshi (2010). "Fucosylation and gastrointestinal cancer." <u>World</u> <u>J Hepatol</u> **2**(4): 151-161.

Murrey, H. E., S. B. Ficarro, C. Krishnamurthy, S. E. Domino, E. C. Peters and L. C. Hsieh-Wilson (2009). "Identification of the Plasticity-Relevant Fucose-(1-2)-Galactose Proteome from Mouse Olfactory Bulb." <u>Biochemistry</u>.

Murrey, H. E., C. I. Gama, S. A. Kalovidouris, W. I. Luo, E. M. Driggers, B. Porton and L. C. Hsieh-Wilson (2006). "Protein fucosylation regulates synapsin Ia/Ib expression and neuronal morphology in primary hippocampal neurons." <u>Proc Natl</u> <u>Acad Sci U S A</u> **103**(1): 21-26.

Nagai, T., K. Takuma, H. Kamei, Y. Ito, N. Nakamichi, D. Ibi, Y. Nakanishi, M. Murai, H. Mizoguchi, T. Nabeshima and K. Yamada (2007). "Dopamine D1 receptors

regulate protein synthesis-dependent long-term recognition memory via extracellular signal-regulated kinase 1/2 in the prefrontal cortex." Learn Mem **14**(3): 117-125.

Neher, E. and B. Sakmann (1976). "Single-channel currents recorded from membrane of denervated frog muscle fibres." <u>Nature</u> **260**(5554): 799-802.

Nishihara, S., H. Iwasaki, K. Nakajima, A. Togayachi, Y. Ikehara, T. Kudo, Y. Kushi, A. Furuya, K. Shitara and H. Narimatsu (2003). "Alpha1,3-fucosyltransferase IX (Fut9) determines Lewis X expression in brain." <u>Glycobiology</u> **13**(6): 445-455.

O'Carroll, C. M., S. J. Martin, J. Sandin, B. Frenguelli and R. G. Morris (2006). "Dopaminergic modulation of the persistence of one-trial hippocampus-dependent memory." <u>Learn Mem</u> **13**(6): 760-769.

Ogawa, H., M. Ueno, H. Uchibori, I. Matsumoto and N. Seno (1990). "Direct carbohydrate analysis of glycoproteins electroblotted onto polyvinylidene difluoride membrane from sodium dodecyl sulfate-polyacrylamide gel." <u>Anal Biochem</u> **190**(2): 165-169.

Ogawa, Y., I. Horresh, J. S. Trimmer, D. S. Bredt, E. Peles and M. N. Rasband (2008). "Postsynaptic density-93 clusters Kv1 channels at axon initial segments independently of Caspr2." <u>J Neurosci</u> **28**(22): 5731-5739.

Oliet, S. H., R. C. Malenka and R. A. Nicoll (1997). "Two distinct forms of long-term depression coexist in CA1 hippocampal pyramidal cells." <u>Neuron</u> **18**(6): 969-982.

Otmakhova, N. A. and J. E. Lisman (1996). "D1/D5 dopamine receptor activation increases the magnitude of early long-term potentiation at CA1 hippocampal synapses." <u>J Neurosci</u> **16**(23): 7478-7486.

Pacheco-Alvarez, D., R. S. Solorzano-Vargas, R. A. Gravel, R. Cervantes-Roldan, A. Velazquez and A. Leon-Del-Rio (2004). "Paradoxical regulation of biotin utilization in brain and liver and implications for inherited multiple carboxylase deficiency." <u>J Biol</u> <u>Chem</u> **279**(50): 52312-52318.

Literatur

Pestean, A., I. Krizbai, H. Bottcher, A. Parducz, F. Joo and J. R. Wolff (1995). "Identification of the Ulex europaeus agglutinin-I-binding protein as a unique glycoform of the neural cell adhesion molecule in the olfactory sensory axons of adults rats." <u>Neurosci Lett</u> **195**(2): 117-120.

Pohle, W., L. Acosta, H. Ruthrich, M. Krug and H. Matthies (1987). "Incorporation of [3H]fucose in rat hippocampal structures after conditioning by perforant path stimulation and after LTP-producing tetanization." <u>Brain Res</u> **410**(2): 245-256.

Poliak, S., L. Gollan, R. Martinez, A. Custer, S. Einheber, J. L. Salzer, J. S. Trimmer,
P. Shrager and E. Peles (1999). "Caspr2, a new member of the neurexin superfamily, is localized at the juxtaparanodes of myelinated axons and associates with K+ channels." <u>Neuron</u> 24(4): 1037-1047.

Pomicter, A. D., S. M. Shroff, B. Fuss, C. Sato-Bigbee, P. J. Brophy, M. N. Rasband, M. A. Bhat and J. L. Dupree (2010). "Novel forms of neurofascin 155 in the central nervous system: alterations in paranodal disruption models and multiple sclerosis." <u>Brain</u> **133**(Pt 2): 389-405.

Potter, B. A., R. P. Hughey and O. A. Weisz (2006). "Role of N- and O-glycans in polarized biosynthetic sorting." <u>Am J Physiol Cell Physiol</u> **290**(1): C1-C10.

Prescher, J. A. and C. R. Bertozzi (2005). "Chemistry in living systems." <u>Nat Chem</u> <u>Biol</u> **1**(1): 13-21.

Rabuka, D., S. C. Hubbard, S. T. Laughlin, S. P. Argade and C. R. Bertozzi (2006).
"A chemical reporter strategy to probe glycoprotein fucosylation." <u>J Am Chem Soc</u> 128(37): 12078-12079.

Ramirez, O. A., S. Hartel and A. Couve (2011). "Location matters: the endoplasmic reticulum and protein trafficking in dendrites." <u>Biol Res</u> **44**(1): 17-23.

Ramiro-Cortes, Y. and I. Israely (2013). "Long lasting protein synthesis- and activitydependent spine shrinkage and elimination after synaptic depression." <u>PLoS One</u> **8**(8): e71155. Rege, T. A. and J. S. Hagood (2006). "Thy-1 as a regulator of cell-cell and cell-matrix interactions in axon regeneration, apoptosis, adhesion, migration, cancer, and fibrosis." FASEB J **20**(8): 1045-1054.

Rexach, J. E., C. J. Rogers, S. H. Yu, J. Tao, Y. E. Sun and L. C. Hsieh-Wilson (2010). "Quantification of O-glycosylation stoichiometry and dynamics using resolvable mass tags." <u>Nat Chem Biol</u> **6**(9): 645-651.

Rillahan, C. D. and J. C. Paulson (2011). "Glycan microarrays for decoding the glycome." <u>Annu Rev Biochem</u> **80**: 797-823.

Rolls, E. T. (2013). "The mechanisms for pattern completion and pattern separation in the hippocampus." <u>Front Syst Neurosci</u> **7**: 74.

Ronn, L. C., B. P. Hartz and E. Bock (1998). "The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system." <u>Exp Gerontol</u> **33**(7-8): 853-864.

Rose, S. P. (1995). "Glycoproteins and memory formation." <u>Behav Brain Res</u> **66**(1-2): 73-78.

Rostovtsev, V. V., L. G. Green, V. V. Fokin and K. B. Sharpless (2002). "A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes." <u>Angew Chem Int Ed Engl</u> **41**(14): 2596-2599.

Sasamura, T., N. Sasaki, F. Miyashita, S. Nakao, H. O. Ishikawa, M. Ito, M. Kitagawa, K. Harigaya, E. Spana, D. Bilder, N. Perrimon and K. Matsuno (2003). "neurotic, a novel maternal neurogenic gene, encodes an O-fucosyltransferase that is essential for Notch-Delta interactions." <u>Development</u> **130**(20): 4785-4795.

Sawa, M., T. L. Hsu, T. Itoh, M. Sugiyama, S. R. Hanson, P. K. Vogt and C. H. Wong (2006). "Glycoproteomic probes for fluorescent imaging of fucosylated glycans in vivo." <u>Proc Natl Acad Sci U S A</u> **103**(33): 12371-12376.

Shevchenko, A., M. Wilm, O. Vorm and M. Mann (1996). "Mass spectrometric sequencing of proteins silver-stained polyacrylamide gels." <u>Anal Chem</u> **68**(5): 850-858.

Shirahama-Noda, K., S. Kira, T. Yoshimori and T. Noda (2013). "TRAPPIII is responsible for vesicular transport from early endosomes to Golgi, facilitating Atg9 cycling in autophagy." <u>J Cell Sci</u> **126**(Pt 21): 4963-4973.

Skaper, S. D. (2008). "The biology of neurotrophins, signalling pathways, and functional peptide mimetics of neurotrophins and their receptors." <u>CNS Neurol Disord</u> <u>Drug Targets</u> **7**(1): 46-62.

Skilleter, D. N., R. J. Price and P. E. Thorpe (1985). "Modification of the carbohydrate in ricin with metaperiodate and cyanoborohydride mixtures: effect on binding, uptake and toxicity to parenchymal and non-parenchymal cells of rat liver." <u>Biochim Biophys</u> <u>Acta</u> **842**(1): 12-21.

Skitsa, I., T. Willmott, A. K. Allen and P. W. Beesley (1992). "The structural relationship between the two synapse enriched glycoproteins, GP65 and GP55." <u>Biochem Soc Trans</u> **20**(2): 156S.

Smalla, K. H., F. Angenstein, K. Richter, E. D. Gundelfinger and S. Staak (1998). "Identification of fucose alpha(1-2) galactose epitope-containing glycoproteins from rat hippocampus." <u>Neuroreport</u> **9**(5): 813-817.

Smalla, K. H., H. Matthies, K. Langnase, S. Shabir, T. M. Bockers, U. Wyneken, S. Staak, M. Krug, P. W. Beesley and E. D. Gundelfinger (2000). "The synaptic glycoprotein neuroplastin is involved in long-term potentiation at hippocampal CA1 synapses." <u>Proc Natl Acad Sci U S A</u> **97**(8): 4327-4332.

Springer, T. A. (1994). "Traffic signals for lymphocyte recirculation and leukocyte emigration: the multistep paradigm." <u>Cell</u> **76**(2): 301-314.

Stanojev, D. and J. W. Gurd (1987). "Characterization of fucosyl oligosaccharides associated with synaptic membrane and synaptic junctional glycoproteins." J Neurochem **48**(5): 1604-1611.

Sukumar, R., S. P. Rose and R. D. Burgoyne (1980). "Increased incorporation of [3H]fucose into chick brain glycoproteins following training on a passive avoidance task." <u>J Neurochem</u> **34**(4): 1000-1006.

Sytnyk, V., I. Leshchyns'ka, M. Delling, G. Dityateva, A. Dityatev and M. Schachner (2002). "Neural cell adhesion molecule promotes accumulation of TGN organelles at sites of neuron-to-neuron contacts." <u>J Cell Biol</u> **159**(4): 649-661.

Sytnyk, V., I. Leshchyns'ka, A. G. Nikonenko and M. Schachner (2006). "NCAM promotes assembly and activity-dependent remodeling of the postsynaptic signaling complex." <u>J Cell Biol</u> **174**(7): 1071-1085.

Taniguchi, N., E. Miyoshi, J. Gu, K. Honke and A. Matsumoto (2006). "Decoding sugar functions by identifying target glycoproteins." <u>Curr Opin Struct Biol</u> **16**(5): 561-566.

Towbin, H., T. Staehelin and J. Gordon (1979). "Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications." <u>Proc Natl Acad Sci U S A</u> **76**(9): 4350-4354.

Tucholski, J., M. S. Simmons, A. L. Pinner, V. Haroutunian, R. E. McCullumsmith and J. H. Meador-Woodruff (2013). "Abnormal N-linked glycosylation of cortical AMPA receptor subunits in schizophrenia." <u>Schizophr Res</u> **146**(1-3): 177-183.

Varki, A. (1993). "Biological roles of oligosaccharides: all of the theories are correct." <u>Glycobiology</u> **3**(2): 97-130.

Villanueva, S. and O. Steward (2001). "Glycoprotein synthesis at the synapse: fractionation of polypeptides synthesized within isolated dendritic fragments by concanavalin A affinity chromatography." <u>Brain Res Mol Brain Res</u> **91**(1-2): 137-147.

Vischer, P. and W. Reutter (1980). "Different turnover of fucose residues in plasma membranes of rat liver and Morris hepatoma 7777." <u>Biochem J</u> **190**(1): 51-55.

Volk, B. A., W. Kreisel, E. Kottgen, W. Gerok and W. Reutter (1983). "Heterogeneous turnover of terminal and core sugars within the carbohydrate chain of dipeptidylaminopeptidase IV isolated from rat liver plasma membrane." <u>FEBS Lett</u> **163**(1): 150-152.

Vosseller, K., J. C. Trinidad, R. J. Chalkley, C. G. Specht, A. Thalhammer, A. J. Lynn, J. O. Snedecor, S. Guan, K. F. Medzihradszky, D. A. Maltby, R. Schoepfer and A. L. Burlingame (2006). "O-linked N-acetylglucosamine proteomics of postsynaptic density preparations using lectin weak affinity chromatography and mass spectrometry." <u>Mol Cell Proteomics</u> **5**(5): 923-934.

Wahle, T., K. Prager, N. Raffler, C. Haass, M. Famulok and J. Walter (2005). "GGA proteins regulate retrograde transport of BACE1 from endosomes to the trans-Golgi network." <u>Mol Cell Neurosci</u> **29**(3): 453-461.

Wang, Y., L. Shao, S. Shi, R. J. Harris, M. W. Spellman, P. Stanley and R. S. Haltiwanger (2001). "Modification of epidermal growth factor-like repeats with O-fucose. Molecular cloning and expression of a novel GDP-fucose protein O-fucosyltransferase." J Biol Chem **276**(43): 40338-40345.

Weight, F. F. (1971). "Mechanisms of synaptic transmission." <u>Neurosci Res (N Y)</u> **4**: 1-27.

West, C. M., T. Scott-Ward, P. Teng-umnuay, H. van der Wel, E. Kozarov and A. Huynh (1996). "Purification and characterization of an alpha1,2,-L-fucosyltransferase, which modifies the cytosolic protein FP21,from the cytosol of Dictyostelium." <u>J Biol</u> <u>Chem</u> **271**(20): 12024-12035.

Wetzel, W., N. Popov, B. Lossner, S. Schulzeck, R. Honza and H. Matthies (1980). "Effect of L-fucose on brain protein metabolism and retention of a learned behavior in rats." <u>Pharmacol Biochem Behav</u> **13**(6): 765-771.

Literatur

Wimmerova, M., E. Mitchell, J. F. Sanchez, C. Gautier and A. Imberty (2003). "Crystal structure of fungal lectin: six-bladed beta-propeller fold and novel fucose recognition mode for Aleuria aurantia lectin." <u>J Biol Chem</u> **278**(29): 27059-27067.

Wollscheid, B., D. Bausch-Fluck, C. Henderson, R. O'Brien, M. Bibel, R. Schiess, R. Aebersold and J. D. Watts (2009). "Mass-spectrometric identification and relative quantification of N-linked cell surface glycoproteins." <u>Nat Biotechnol</u> **27**(4): 378-386.

Woodward, M. P., W. W. Young, Jr. and R. A. Bloodgood (1985). "Detection of monoclonal antibodies specific for carbohydrate epitopes using periodate oxidation." <u>J Immunol Methods</u> **78**(1): 143-153.

Wuhrer, M., H. Geyer, M. von der Ohe, R. Gerardy-Schahn, M. Schachner and R. Geyer (2003). "Localization of defined carbohydrate epitopes in bovine polysialylated NCAM." <u>Biochimie</u> **85**(1-2): 207-218.

Wyneken, U., K. H. Smalla, J. J. Marengo, D. Soto, A. de la Cerda, W. Tischmeyer,
R. Grimm, T. M. Boeckers, G. Wolf, F. Orrego and E. D. Gundelfinger (2001).
"Kainate-induced seizures alter protein composition and N-methyl-D-aspartate
receptor function of rat forebrain postsynaptic densities." <u>Neuroscience</u> 102(1): 65-74.

Yamashita, K., N. Kochibe, T. Ohkura, I. Ueda and A. Kobata (1985). "Fractionation of L-fucose-containing oligosaccharides on immobilized Aleuria aurantia lectin." <u>J Biol</u> <u>Chem</u> **260**(8): 4688-4693.

Zamze, S., D. J. Harvey, P. Pesheva, T. S. Mattu, M. Schachner, R. A. Dwek and D. R. Wing (1999). "Glycosylation of a CNS-specific extracellular matrix glycoprotein, tenascin-R, is dominated by O-linked sialylated glycans and "brain-type" neutral N-glycans." <u>Glycobiology</u> **9**(8): 823-831.

Zhu, J., J. Yan and W. B. Thornhill (2012). "N-glycosylation promotes the cell surface expression of Kv1.3 potassium channels." <u>FEBS J</u> **279**(15): 2632-2644.

Abkürzungsverzeichnis

(v/v)	Volumen pro Volumen
(w/v)	Masse pro Volumen
°C	Grad Celsius
AAL	Aleuria aurantia Lektin
Abb	Abbildung
AC	Affinitätschromatographie
ACN	Acetonnitril
AHA	Azidohomoalanin
AK	Antikörper
AMPA	α-Amino-3-Hvdroxy-5-Methyl-Isoxazolpropionsäure
Asn	Asparagin
Azl -(-)-Eukose	6-azido-6-deoxy-1 2 3 4-tetra-O-acetyl-α β-I -galaktopyranose
BCA	Bicinchoninsäure
BDNE	Brain derived neurotrophic factor
BONCAT	Bioarthogonales nicht-kanonischen Aminosäure Tagging
BONMOT	Bioorthogonales nicht-kanonisches Monosaccharid Tagging
BCN	Bovino sorum albumino
	Ammonshorn
	Kupfor katalysiarta (2+2) Azid Alkin Cycloaddition
CUAAC	Kohlandiavid
	Digovigonin
	Digoxigenin Digoxigenin markiartaa Alauria aurontia Laktin
	Digoxigenin-markienes Aleuna auranua Leklin
DIV	aay in vitro
DMEM	Duibecco's modified Eagle Medium
DMSO	Dimethylsulfoxid
DNA	Desoxyribonukleinsäure
DNase	Desoxyribonuklease
DOC	Natriumdesoxycholat
ECL	Verstärkte Chemilumineszenz (enhanced chemiluminescence)
EDTA	Ethylendiamintetraacetat
ER	Endoplasmatische Retikulum
et al.	und Mitarbeiter
FKS	Fötales Kälberserum
Fuk	Fukose
FukTs	Fukosyltransferasen
FUNCAT	Fluoreszenz nicht-kanonisches Aminosäure Tagging
FUNMOT	Fluoreszenz nicht-kanonisches Monosaccharid Tagging
g _{av}	Erdbeschleunigung
GABA	Gamma-aminobutyric acid
Gal	Galaktose
GalNAc	N-Acetyl-Galaktosamin
gcl	Stratum granulare
GDP-Fuc	Guanosin-Diphosphat-ß-L-Fukose
GFAP	Gliafaserprotein
GFP	Grün fluoreszierendes Protein
Glk	Glukose
GlkNAc	N-Acetyl-Glukosamin
Gly	Glyzin
GÓ	Gene Ontology
	<i></i>

h/min/sek	Stunde/Minute/Sekunde
HBS	HEPES-gepufferter Salzlösung
HBSS	Hanks-balanced Salzlösung
HCI	Chlorwasserstoff
HEPES	N-[2-Hvdroxvethvl]-piperazin-N ⁻ -[2-ethansulfon-säure]
HPG	Homopropaglyglyzin
la	Immunalobulin
IP	Immunpräzipitationen
KCI	Kaliumchlorid
kDa	Kilodalton
KEGG	Kyoto Encyplopedia of Genes and Genomes
	Langzeit-Depression
ITP	Langzeit-Potenzierung
M	molar
mΛ	milli Ampor
Mon	Mannaga
	Mikrotubuli appoziiortao Drotoin 2
	Mathianin
	Methonin Methodischer interviel
MgCIZ	
mi	Stratum moleculare
ml	Milliliter
MS	Massenspektrometrie
MW	Molekulargewicht
NF	Neurofascin
nm	Nanometer
NMDA	N-Methyl-D-Aspartat
NMDA-R	N-Methyl-D-Aspartat-Rezeptor
PAGE	Polyacrylamid-Gelelektrophorese
PBS	Phosphat-gepufferte Salzlösung (phosphate buffered saline)
pcl	Purkinjezellschicht
PFA	Paraformaldehyd
PI	Protease-Inhibitor-Cocktail
ру	Stratum pyramidale
RT	Raumtemperatur
SDS	Natriumdodecylsulfat (sodium dodecylsulfate)
SDS-PAGE	Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese
Ser	Serin
SEM	Standardfehler/ Standard error of the mean
slm	Stratum radiatum-lacunosum-moleculare
SO	Stratum oriens
SV	Säulenvolumen
TBS	Tris-gepufferte Salzlösung (tris buffered saline)
TFA	Trifluoressigsäure
Thr	Threonin
Tris	Tris(hydroxymethyl)aminomethan
Tween 20	Polyoxyethylen-sorbitan-monolaurat
TX-100	Triton X-100
üN	über Nacht
	Volt
, W/B	Westernhlot

Anhang

S1: Auflistung der durch AAL-AC angereicherten und durch MS identifizierten 289 angereicherten Membran- und extrazelluläre Proteine

Uni-Prot ID	Protein
Q794F9	4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT]
Q05962	ADP/ATP translocase 1 OS=Rattus norvegicus GN=Slc25a4 PE=1 SV=3 - [ADT1_RAT]
Q09073	ADP/ATP translocase 2 OS=Rattus norvegicus GN=Slc25a5 PE=1 SV=3 - [ADT2_RAT]
Q99068	Alpha-2-macroglobulin receptor-associated protein OS=Rattus norvegicus GN=Lrpap1 PE=1 SV=2 - [AMRP_RAT]
Q07936	Annexin A2 OS=Rattus norvegicus GN=Anxa2 PE=1 SV=2 - [ANXA2_RAT]
P02650	Apolipoprotein E OS=Rattus norvegicus GN=Apoe PE=1 SV=2 - [APOE_RAT]
Q75T81	Asc-type amino acid transporter 1 OS=Rattus norvegicus GN=SIc7a10 PE=2 SV=1 - [Q75T81_RAT]
P11608	ATP synthase protein 8 OS=Rattus norvegicus GN=Mt-atp8 PE=1 SV=1 - [ATP8_RAT]
P15999	ATP synthase subunit alpha, mitochondrial OS=Rattus norvegicus GN=Atp5a1 PE=1 SV=2 - [ATPA_RAT]
P19511	ATP synthase subunit b, mitochondrial OS=Rattus norvegicus GN=Atp5f1 PE=1 SV=1 - [AT5F1_RAT]
P10719	ATP synthase subunit beta, mitochondrial OS=Rattus norvegicus GN=Atp5b PE=1 SV=2 - [ATPB_RAT]
P31399	ATP synthase subunit d, mitochondrial OS=Rattus norvegicus GN=Atp5h PE=1 SV=3 - [ATP5H_RAT]
P35434	ATP synthase subunit delta, mitochondrial OS=Rattus norvegicus GN=Atp5d PE=1 SV=2 - [ATPD_RAT]
P29419	ATP synthase subunit e, mitochondrial OS=Rattus norvegicus GN=Atp5i PE=1 SV=3 - [ATP5I_RAT]
D3ZAF6	ATP synthase subunit f, mitochondrial OS=Rattus norvegicus GN=Atp5j2 PE=1 SV=1 - [ATPK_RAT]
P35435	ATP synthase subunit gamma, mitochondrial OS=Rattus norvegicus GN=Atp5c1 PE=1 SV=2 - [ATPG_RAT]
Q06647	ATP synthase subunit O, mitochondrial OS=Rattus norvegicus GN=Atp5o PE=1 SV=1 - [ATPO_RAT]
Q3KRE0	ATPase family AAA domain-containing protein 3 OS=Rattus norvegicus GN=Atad3 PE=2 SV=1 - [ATAD3_RAT]
Q5M7T6	ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 OS=Rattus norvegicus GN=Atp6v0d1 PE=2 SV=1 - [Q5M7T6_RAT]
Q6P503	ATPase, H+ transporting, V1 subunit D, isoform CRA_c OS=Rattus norvegicus GN=Atp6v1d PE=2 SV=1 - [Q6P503_RAT]
Q8R2H0	ATPase, H+ transporting, V1 subunit G isoform 2 OS=Rattus norvegicus GN=Atp6v1g2 PE=4 SV=1 - [Q8R2H0_RAT]
Q5M9H4	ATPase, Na+/K+ transporting, beta 2 polypeptide OS=Rattus norvegicus GN=Atp1b2 PE=2 SV=1 - [Q5M9H4_RAT]
P26453	Basigin OS=Rattus norvegicus GN=Bsg PE=1 SV=2 - [BASI_RAT]
Q63604	BDNF/NT-3 growth factors receptor OS=Rattus norvegicus GN=Ntrk2 PE=1 SV=1 - [NTRK2_RAT]
P38718	Brain protein 44 OS=Rattus norvegicus GN=Brp44 PE=2 SV=1 - [BR44_RAT]
D3ZN99	Brain-specific angiogenesis inhibitor 2 (Predicted) OS=Rattus norvegicus GN=Bai2 PE=4 SV=1 - [D3ZN99_RAT]
D4A831	Brain-specific angiogenesis inhibitor 3 (Predicted) OS=Rattus norvegicus GN=Bai3 PE=4 SV=1 - [D4A831_RAT]
Q9Z1Y3	Cadherin-2 OS=Rattus norvegicus GN=Cdh2 PE=1 SV=1 - [CADH2_RAT]
P55280	Cadherin-6 OS=Rattus norvegicus GN=Cdh6 PE=2 SV=1 - [CADH6_RAT]
O54800	Cadherin-8 OS=Rattus norvegicus GN=Cdh8 PE=2 SV=1 - [CADH8_RAT]
D4A055	Calcium channel, voltage-dependent, beta 4 subunit, isoform CRA_b OS=Rattus norvegicus GN=Cacnb4 PE=4 SV=1 - [D4A055_RAT]
Q6Q0N0	Calsyntenin-1 OS=Rattus norvegicus GN=Clstn1 PE=2 SV=1 - [CSTN1_RAT]
Q6AY20	Cation-dependent mannose-6-phosphate receptor OS=Rattus norvegicus GN=M6pr PE=2 SV=1 - [MPRD_RAT]
O35112	CD166 antigen OS=Rattus norvegicus GN=Alcam PE=1 SV=1 - [CD166_RAT]
A0A5D0	Cd200 molecule OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [A0A5D0_RAT] s.auch OX-2
B1PLB2	CD34 antigen isoform 2 OS=Rattus norvegicus GN=Cd34 PE=2 SV=1 - [B1PLB2_RAT]
P26051	CD44 antigen OS=Rattus norvegicus GN=Cd44 PE=1 SV=2 - [CD44_RAT]
Q6AYP5	Cell adhesion molecule 1 OS=Rattus norvegicus GN=Cadm1 PE=2 SV=1 - [Q6AYP5_RAT]
Q1WIM2	Cell adhesion molecule 2 OS=Rattus norvegicus GN=Cadm2 PE=1 SV=2 - [CADM2_RAT]
Q1WIM3	Cell adhesion molecule 3 OS=Rattus norvegicus GN=Cadm3 PE=2 SV=1 - [CADM3_RAT]
Q1WIM1	Cell adhesion molecule 4 OS=Rattus norvegicus GN=Cadm4 PE=1 SV=1 - [CADM4_RAT]

Q5FVI4	Cell cycle exit and neuronal differentiation protein 1 OS=Rattus norvegicus GN=Cend1 PE=1 SV=1 - [CEND_RAT]
Q9ERQ6	Chondroitin sulfate proteoglycan 5 OS=Rattus norvegicus GN=Cspg5 PE=1 SV=1 - [CSPG5_RAT]
Q08406	Ciliary neurotrophic factor receptor subunit alpha OSE Rattus norvegicus GN=Cnttr PE=2 SV=2 - [CNTFR_RAT]
P05371	Clusterin OS=Rattus norvegicus GN=Clu PE=1 SV=2 - [CLUS_RAT]
035796	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Rattus norvegicus GN=C1qbp PE=1 SV=2 - [C1QBP_RAT]
G3V758	Contactin 2 OS=Rattus norvegicus GN=Cntn2 PE=4 SV=1 - [G3V758_RAT]
Q63198	Contactin-1 OS=Rattus norvegicus GN=Cntn1 PE=1 SV=2 - [CNTN1_RAT]
P22063	Contactin-2 OS=Rattus norvegicus GN=Cntn2 PE=1 SV=1 - [CNTN2_RAT]
Q62682	Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT]
Q62845	Contactin-4 OS=Rattus norvegicus GN=Cntn4 PE=1 SV=1 - [CNTN4_RAT]
Q37652	Cytochrome c oxidase subunit 2 OS=Rattus norvegicus GN=Mt-co2 PE=3 SV=1 - [Q37652_RAT]
P11951	Cytochrome c oxidase subunit 6C-2 OS=Rattus norvegicus GN=Cox6c2 PE=1 SV=3 - [CX6C2_RAT]
Q925T8	Deleted in bladder cancer protein 1 homolog OS=Rattus norvegicus GN=Dbc1 PE=2 SV=1 - [DBC1_RAT]
Q08554	Desmocollin-1 OS=Homo sapiens GN=DSC1 PE=1 SV=2 - [DSC1_HUMAN]
Q02413	Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN]
Q9JI66	Electrogenic sodium bicarbonate cotransporter 1 OS=Rattus norvegicus GN=Slc4a4 PE=1 SV=1 - [S4A4_RAT]
O88775	Embigin OS=Rattus norvegicus GN=Emb PE=1 SV=1 - [EMB_RAT]
P24942	Excitatory amino acid transporter 1 OS=Rattus norvegicus GN=SIc1a3 PE=1 SV=2 - [EAA1_RAT]
P31596	Excitatory amino acid transporter 2 OS=Rattus norvegicus GN=SIc1a2 PE=1 SV=2 - [EAA2_RAT]
P51907	Excitatory amino acid transporter 3 OS=Rattus norvegicus GN=SIc1a1 PE=1 SV=1 - [EAA3_RAT]
Q8K3V3	G-protein coupled receptor 56 OS=Rattus norvegicus GN=Gpr56 PE=2 SV=1 - [GPR56_RAT]
Q6Q7Y5	Galpha13 OS=Rattus norvegicus GN=Gna13 PE=2 SV=1 - [Q6Q7Y5_RAT]
P62813	Gamma-aminobutyric acid receptor subunit alpha-1 OS=Rattus norvegicus GN=Gabra1 PE=1 SV=1 - [GBRA1_RAT]
P15431	Gamma-aminobutyric acid receptor subunit beta-1 OS=Rattus norvegicus GN=Gabrb1 PE=2 SV=1 - [GBRB1_RAT]
P63138	Gamma-aminobutyric acid receptor subunit beta-2 OS=Rattus norvegicus GN=Gabrb2 PE=1 SV=1 - [GBRB2_RAT]
P63079	Gamma-aminobutyric acid receptor subunit beta-3 OS=Rattus norvegicus GN=Gabrb3 PE=1 SV=1 - [GBRB3_RAT]
O88871	Gamma-aminobutyric acid type B receptor subunit 2 OS=Rattus norvegicus GN=Gabbr2 PE=1 SV=2 - [GABR2_RAT]
D4A5X7	Ganglioside-induced differentiation-associated-protein 1 (Predicted) OS=Rattus norvegicus GN=Gdap1 PE=4 SV=1 - [D4A5X7_RAT]
P08050	Gap junction alpha-1 protein OS=Rattus norvegicus GN=Gja1 PE=1 SV=2 - [CXA1_RAT]
B2RYC9	Gba protein OS=Rattus norvegicus GN=Gba PE=2 SV=1 - [B2RYC9_RAT]
Q792X9	GDNF receptor-beta (Fragment) OS=Rattus norvegicus GN=Gfra2 PE=2 SV=1 - [Q792X9_RAT]
P19490	Glutamate receptor 1 OS=Rattus norvegicus GN=Gria1 PE=1 SV=2 - [GRIA1_RAT]
G3V914	Glutamate receptor 2 OS=Rattus norvegicus GN=Gria2 PE=4 SV=2 - [G3V914_RAT]
P19492	Glutamate receptor 3 OS=Rattus norvegicus GN=Gria3 PE=1 SV=1 - [GRIA3_RAT]
P19493	Glutamate receptor 4 OS=Rattus norvegicus GN=Gria4 PE=1 SV=1 - [GRIA4_RAT]
Q8K5B5	Glutamate transporter GLT1b OS=Rattus norvegicus GN=SIc1a2 PE=2 SV=1 - [Q8K5B5_RAT]
G3V8G5	Golgi apparatus protein 1 OS=Rattus norvegicus GN=Glg1 PE=4 SV=1 - [G3V8G5_RAT]
P04897	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Rattus norvegicus GN=Gnai2 PE=1 SV=3 - [GNAI2_RAT]
P54311	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Rattus norvegicus GN=Gnb1 PE=1 SV=4 - [GBB1_RAT]
P59215	Guanine nucleotide-binding protein G(o) subunit alpha OS=Rattus norvegicus GN=Gnao1 PE=1 SV=2 - [GNAO_RAT]
P82471	Guanine nucleotide-binding protein G(q) subunit alpha OS=Rattus norvegicus GN=Gnaq PE=1 SV=2 - [GNAQ_RAT]
P63095	Guanine nucleotide-binding protein G(s) subunit alpha isoforms short OS=Rattus norvegicus GN=Gnas PE=1 SV=1 - [GNAS2_RAT]
G3V8K2	Guanine nucleotide-binding protein subunit gamma OS=Rattus norvegicus GN=Gng3 PE=3 SV=1 - [G3V8K2_RAT]
Q925N6	Immunoglobulin superfamily member 1 OS=Rattus norvegicus GN=lgsf1 PE=2 SV=1 - [IGSF1_RAT]
Q6Q629	Inactive dipeptidyl peptidase 10 OS=Rattus norvegicus GN=Dpp10 PE=1 SV=1 - [DPP10_RAT]
Q924W2	Integrin alpha 6 subchain (Fragment) OS=Rattus norvegicus GN=Itga6 PE=2 SV=1 - [Q924W2_RAT]

P43406	Integrin alpha-V OS=Mus musculus GN=ltgav PE=1 SV=2 - [ITAV_MOUSE]
D3ZP06	Integrin beta OS=Rattus norvegicus GN=ltgb8 PE=3 SV=1 - [D3ZP06_RAT]
P49134	Integrin beta-1 OS=Rattus norvegicus GN=ltgb1 PE=2 SV=1 - [ITB1_RAT]
G3V667	Integrin, alpha 6, isoform CRA_a OS=Rattus norvegicus GN=Itga6 PE=3 SV=1 - [G3V667_RAT]
P97546-1	Isoform 1 of Neuroplastin OS=Rattus norvegicus GN=Nptn - [NPTN_RAT]
Q63372-13	Isoform 13a of Neurexin-1 OS=Rattus norvegicus GN=Nrxn1 - [NRX1A_RAT]
Q9ERQ6-2	Isoform 2 of Chondroitin sulfate proteoglycan 5 OS=Rattus norvegicus GN=Cspg5 - [CSPG5_RAT]
P97829-2	Isoform 2 of Leukocyte surface antigen CD47 OS=Rattus norvegicus GN=Cd47 - [CD47_RAT]
Q812E9-2	Isoform 2 of Neuronal membrane glycoprotein M6-a OS=Rattus norvegicus GN=Gpm6a - [GPM6A_RAT]
Q568Y7-2	Isoform 2 of Noelin-2 OS=Rattus norvegicus GN=Olfm2 - [NOE2_RAT]
P46101-2	Isoform DPPX-S of Dipeptidyl aminopeptidase-like protein 6 OS=Rattus norvegicus GN=Dpp6 - [DPP6_RAT]
P19490-2	Isoform Flip of Glutamate receptor 1 OS=Rattus norvegicus GN=Gria1 - [GRIA1_RAT]
P19491-2	Isoform Flip of Glutamate receptor 2 OS=Rattus norvegicus GN=Gria2 - [GRIA2_RAT]
P19492-2	Isoform Flip of Glutamate receptor 3 OS=Rattus norvegicus GN=Gria3 - [GRIA3_RAT]
P22462-3	Isoform KSHIIIA.1 of Potassium voltage-gated channel subfamily C member 2 OS=Rattus norvegicus GN=Kcnc2 - [KCNC2_RAT]
Q03351-2	Isoform TRKC of NT-3 growth factor receptor OS=Rattus norvegicus GN=Ntrk3 - [NTRK3_RAT]
Q64542-3	Isoform ZA of Plasma membrane calcium-transporting ATPase 4 OS=Rattus norvegicus GN=Atp2b4 - [AT2B4_RAT]
Q5PPI4	LAMP family protein C20orf103 homolog OS=Rattus norvegicus PE=2 SV=1 - [CT103_RAT]
O88917	Latrophilin-1 OS=Rattus norvegicus GN=Lphn1 PE=1 SV=1 - [LPHN1_RAT]
Q9Z173	Latrophilin-3 OS=Rattus norvegicus GN=Lphn3 PE=2 SV=1 - [LPHN3_RAT]
Q5XIN6	LETM1 and EF-hand domain-containing protein 1, mitochondrial OS=Rattus norvegicus GN=Letm1 PE=1 SV=1 - [LETM1_RAT]
G3V881	Leucine rich repeat neuronal 6A, isoform CRA_a OS=Rattus norvegicus GN=Lingo1 PE=4 SV=1 - [G3V881_RAT]
Q8K4Y5	Leucine-rich glioma-inactivated protein 1 OS=Rattus norvegicus GN=Lgi1 PE=1 SV=1 - [LGI1_RAT]
D4A7P2	Leucine-rich repeat transmembrane neuronal protein 2 OS=Rattus norvegicus GN=Lrrtm2 PE=1 SV=1 - [LRRT2_RAT]
F1LNW2	Leucine-rich repeat transmembrane neuronal protein 4 (Fragment) OS=Rattus norvegicus GN=Lrrtm4 PE=4 SV=2 - [F1LNW2_RAT]
B4F7C5	Leucine-rich repeat transmembrane neuronal protein 4 OS=Rattus norvegicus GN=Lrrtm4 PE=1 SV=1 - [LRRT4_RAT]
Q45R42	Leucine-rich repeat-containing protein 4 OS=Rattus norvegicus GN=Lrrc4 PE=1 SV=1 - [LRRC4_RAT]
P0CC10	Leucine-rich repeat-containing protein 4B OS=Rattus norvegicus GN=Lrrc4b PE=1 SV=1 - [LRC4B_RAT]
Q62813	Limbic system-associated membrane protein OS=Rattus norvegicus GN=Lsamp PE=1 SV=1 - [LSAMP_RAT]
Q7TMB7	Lipid phosphate phosphatase-related protein type 4 OS=Rattus norvegicus GN=Lppr4 PE=2 SV=1 - [LPPR4_RAT]
P97544	Lipid phosphate phosphohydrolase 3 OS=Rattus norvegicus GN=Ppap2b PE=1 SV=1 - [LPP3_RAT]
P27615	Lysosome membrane protein 2 OS=Rattus norvegicus GN=Scarb2 PE=1 SV=2 - [SCRB2_RAT]
P14562	Lysosome-associated membrane glycoprotein 1 OS=Rattus norvegicus GN=Lamp1 PE=1 SV=1 - [LAMP1_RAT]
P13852	Major prion protein OS=Rattus norvegicus GN=Prnp PE=1 SV=2 - [PRIO_RAT]
P60756	MAM domain-containing glycosylphosphatidylinositol anchor protein 2 OS=Rattus norvegicus GN=Mdga2 PE=2 SV=1 - [MDGA2_RAT]
Q5XII0	Mammalian ependymin-related protein 1 OS=Rattus norvegicus GN=Epdr1 PE=2 SV=1 - [EPDR1_RAT]
P31424	Metabotropic glutamate receptor 5 OS=Rattus norvegicus GN=Grm5 PE=1 SV=2 - [GRM5_RAT]
P35400	Metabotropic glutamate receptor 7 OS=Rattus norvegicus GN=Grm7 PE=1 SV=1 - [GRM7_RAT]
G3V6H5	Mitochondrial 2-oxoglutarate/malate carrier protein OS=Rattus norvegicus GN=Slc25a11 PE=3 SV=1 - [G3V6H5_RAT]
P97521	Mitochondrial carnitine/acylcarnitine carrier protein OS=Rattus norvegicus GN=Slc25a20 PE=1 SV=1 - [MCAT_RAT]
P84817	Mitochondrial fission 1 protein OS=Rattus norvegicus GN=Fis1 PE=1 SV=1 - [FIS1_RAT]
Q505J6	Mitochondrial glutamate carrier 2 OS=Rattus norvegicus GN=Slc25a18 PE=2 SV=2 - [GHC2_RAT]
Q75Q41	Mitochondrial import receptor subunit TOM22 homolog OS=Rattus norvegicus GN=Tomm22 PE=1 SV=1 - [TOM22_RAT]
G3V8F5	Mitochondrial import receptor subunit TOM40 homolog OS=Rattus norvegicus GN=Tomm40 PE=4 SV=1 - [G3V8F5_RAT]
Q75Q39	Mitochondrial import receptor subunit TOM70 OS=Rattus norvegicus GN=Tomm70a PE=1 SV=1 - [TOM70_RAT]
P08482	Muscarinic acetylcholine receptor M1 OS=Rattus norvegicus GN=Chrm1 PE=1 SV=1 - [ACM1 RAT]

	I	

Anhang

P13586 Neural cell adhesion molecule 1.0S=Ratus norvegicus GN-Intern PE-2 SV-2 [UCAM, RAT] 00587 Neural cell adhesion molecule 1.0S=Ratus norvegicus GN-Litcam PE-2 SV-2 [UCAM, RAT] 00585 Neural cell adhesion molecule 1.0S=Ratus norvegicus GN-Litcam PE-2 SV-2 [UCAM, RAT] 007310 Neurasin-1adµa OS=Ratus norvegicus GN-Marcan PE-1 SV-1 [NRXA, RAT] 007310 Neurasin-1adµa OS=Ratus norvegicus GN-Marcan SPE-1 SV-1 [NRXA, RAT] 007310 Neurasin-1adµa OS=Ratus norvegicus GN-Marcan SPE-1 SV-1 [NRXA, RAT] 007310 Neurasin-1adµa OS=Ratus norvegicus GN-Marcan SPE-1 SV-1 [NRCA, RAT] 007308 Neuralogicu OS=Ratus norvegicus GN-Marcan SPE-1 SV-1 [NRCA, RAT] 007809 Neuralogicu OS=Ratus norvegicus GN-Marcan SPE-1 SV-1 [NRCA, RAT] 007809 Neuralogicu OS=Ratus norvegicus GN-Nervegicus GN-Nercan PE-2 SV-1 (ORPW34, RAT] 007208 Neuranal gout Adhesion molecule OS=Ratus norvegicus GN-Nervegicus GN-Nercan PE-2 SV-1 (NRCA, RAT] 007208 Neuranal gout Adhesion molecule OS=Ratus norvegicus GN-Nervegicus GN-Nervegicus GN-Nervegicus GN-Nervegicus GN-Nervegicus GN-1 (SV-1 NRT) 007411 Neuronal pertraint-1 CS=Ratus norvegicus GN-Nervegicus GN-Nervegicus GN-1 (SV-1 NRT) 007540 Neuronal pertraint-1 CS=Ratus norvegicus GN-Nervegicus GN-SC 44 PE-2 SV-1 - (OFGL9_RAT] 007641 Neuronal pertraint-	P07722	Myelin-associated glycoprotein OS=Rattus norvegicus GN=Mag PE=1 SV=1 - [MAG_RAT]
D32PC4 Neural cell adhesion molecule L1 OS-Rattus norvegicus GN-L1cam PE-2 SV-2 [D32PC4 RAT] 063965 Neural cell adhesion molecule L1 OS-Rattus norvegicus GN-L1cam PE-2 SV-3 [L1CAM, RAT] 06372 Neuresin-Lapita OS-Rattus norvegicus GN-MN PE-1 SV-3 [NRXIA, RAT] 07310 Neuresin-Lapita OS-Rattus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 08286 Neurolascin OS-Rattus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 08287 Neurolascin OS-Rattus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 08288 Neurolascin OS-Rattus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 08288 Neurolagin C3-Battus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 08288 Neurolagin C3-Battus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 08288 Neurolagin C3-Battus norvegicus GN-MN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolagin C3-Battus norvegicus GN-NN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolagin C3-Battus norvegicus GN-NN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolagin C3-Battus norvegicus GN-NN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolagin C3-Battus norvegicus GN-NN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolagin C3-Battus norvegicus GN-NN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolagin C3-Battus norvegicus GN-NN PE-1 SV-1 [NRXIA, RAT] 082084 Neurolag	P13596	Neural cell adhesion molecule 1 OS=Rattus norvegicus GN=Ncam1 PE=1 SV=1 - [NCAM1_RAT]
06569 Neural cell adhesion molecule L1 OS-Rattus norvegicus GN-Hxm PE=1 SVa-1 [NRX1A_RAT] 067371 Neuresini-alpha OS-Rattus norvegicus GN-Hxm3 PE=1 SVa-1 [NRX1A_RAT] 067310 Neuresini-alpha OS-Rattus norvegicus GN-Hxm3 PE=1 SVa-1 [NRX2A_RAT] 97685 Neurofascin CS-Rattus norvegicus GN-Hxm3 PE=1 SVa-2 [NRSC_RAT] 06288 Neurofascin CS-Rattus norvegicus GN-Hxm3 PE=1 SVa-2 [NRSC_RAT] 06288 Neurofascin CS-Rattus norvegicus GN-Hxm3 PE=1 SVa-2 [NRSC_RAT] 06288 Neurofascin CS-Rattus norvegicus GN-Hxm3 PE=1 SVa-1 [NRCA_RAT] 06288 Neurofascin CS-Rattus norvegicus GN-Hxm3 PE=1 SVa-1 [NRCA_RAT] 06289 Neurofascin CS-Rattus norvegicus GN-Hxm3 PE=1 SVa-1 [NRCAR_RAT] 06289 Neuronal cell adhesion molecule GS-Rattus norvegicus GN-Nxm3 PE=1 SVa-1 [NRCAR_RAT] 082708 Neuronal growth regulator 1 OS-Rattus norvegicus GN-Nxm3 PE=1 SVa-1 [NRCAR_RAT] 082709 Neuronal pentraxin receptor GS-Rattus norvegicus GN-Nxm3 PE=1 SVa-1 [NFTAR_RAT] 082709 Neuronal pentraxin receptor GS-Rattus norvegicus GN-Nxm3 PE=1 SVa-1 [NFTA RAT] 082709 Neuronal pentraxin receptor GS-Rattus norvegicus GN-Nxm3 PE=2 SVa-1 [NFTA RAT] 082709 Neuronal pentraxin receptor GS-Rattus norvegicus GN-Nxm3 PE=2 SVa-1 [NFTA RAT] 082709 Neuronal pentraxin receptor	D3ZPC4	Neural cell adhesion molecule L1 OS=Rattus norvegicus GN=L1cam PE=2 SV=2 - [D3ZPC4_RAT]
063372 Neurexin-1apha OS=Ratus norvegicus ON-Norri PEE 1 SV-3 [IRX1A_RAT] 07310 Neurexin-3apha OS=Ratus norvegicus ON-Norris PEE 1 SV-1 [IRX2A_RAT] P28841 Neurofascin OS=Ratus norvegicus ON-Narse PEE 1 SV-2 [IRX1A_RAT] 037056 Neurofascin OS=Ratus norvegicus ON-Narse PEE 1 SV-2 [IRX1A_RAT] 037056 Neurofascin OS=Ratus norvegicus ON-Narse PEE 1 SV-2 [IRX1Kez RAT] 062889 Neurofascin OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 062889 Neurofascin OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 062889 Neurofascin OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 062880 Neurofascin OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 062081 Neuronal gent notecal OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 061281 Neuronal membrane glycoprotein M6a OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 061281 Neuronal membrane glycoprotein M6a OS=Ratus norvegicus ON-Narge PE 1 SV-1 [IRX1A_RAT] 061291 Neuronal membrane glycoprotein M6a OS=Ratus norvegicus ON-Narge PE 1 SV-1 [INX1A_RAT] 061204 Neuronal membrane glycoprotein M6a OS=Ratus norvegicus ON-Narge PE 1 SV-1 [INX1A_RAT] 076149 Neuronal membrane glycoprotein M6a OS=Ratus norvegicus ON-Stora PE 1 SV-1 [INX1A_RAT] 076149 Neuronal membran	Q05695	Neural cell adhesion molecule L1 OS=Rattus norvegicus GN=L1cam PE=2 SV=3 - [L1CAM_RAT]
G07310 Neuren-Saipha OS-Rattus norvegicus GN-Nx07a PE-1 SV-1 [NRX3, RAT] P82841 Neurodecinc convertase 2 OS-Rattus norvegicus GN-PSk2 PE-1 SV-1 [NRC2, RAT] D32W66 Neurofascin OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NFASC, RAT] D62888 Neurofascin OS-Rattus norvegicus GN-Nx07a PE-1 SV-1 [NLGN2, RAT] D62888 Neurofigin-2 OS-Rattus norvegicus GN-Nx07a PE-1 SV-1 [NLGN2, RAT] D62889 Neurofigin-2 OS-Rattus norvegicus GN-Nx07a PE-1 SV-1 [NLGN2, RAT] D62889 Neurofigin-2 OS-Rattus norvegicus GN-Nx07a PE-1 SV-1 [NLGN3, RAT] D62889 Neuronia cell adhesion molecule OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D64794 Neuronia growth regulator 1 OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D812E9 Neuronal pentraxin receptor OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D812E9 Neuronal pentraxin receptor OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D812E9 Neuronal pentraxin receptor OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D812E9 Neuronal pentraxin receptor OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D812E9 Neuronal pentraxin receptor OS-Rattus norvegicus GN-Nx07a PE-1 SV-2 [NRCAN, RAT] D612G4 Nigenap1 protein (Fragment) OS-Rattus norvegicus GN-Nx007 PE-1 SV-2 [NRT] D612G4 </td <td>Q63372</td> <td>Neurexin-1-alpha OS=Rattus norvegicus GN=Nrxn1 PE=1 SV=3 - [NRX1A_RAT]</td>	Q63372	Neurexin-1-alpha OS=Rattus norvegicus GN=Nrxn1 PE=1 SV=3 - [NRX1A_RAT]
P2841 Neuroadocrine convertase 2 OS-Ratus norvegicus GN-NEGS (PE-1 SV-2 - INRC2, RAT] P97685 Neurofascin OS-Ratus norvegicus GN-NEGS (PE-1 SV-2 - INRASC, RAT] 062888 Neuroligin-3 OS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INLGN3, RAT] 062888 Neurologin-3 OS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INLGN3, RAT] 062888 Neuronal cell adhesion molecule long isotom NOT OS-Ratus norvegicus GN-Nigo, RAT] 087044 Neuronal cell adhesion molecule OS-Ratus norvegicus GN-Nigo, RAT] 087204 Neuronal growth regulator I.OS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INCRR1, RAT] 087204 Neuronal growth regulator I.OS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INFTX1, RAT] 087741 Neuronal pertraxin - IOS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INFTX1, RAT] P47771 Neuronal pertraxin - IOS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INFTX1, RAT] P47784 Neuronal pertraxin - IOS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INFTX1, RAT] P47640 Nuclastin OS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - INFTX1, RAT] P47641 Neurolagentraxin - IOS-Ratus norvegicus GN-Nigo, PE-1 SV-1 - IO76GL9, RAT] 0862640 Neutral admin oxid transporter SXC1 - SN-1 - INFX1, RAT] 087640 Neutral pertraxin receptor relation norvegicus GN-SN-Dirap PE-2 SV-1 - IO76GL9, RAT] 087640 <t< td=""><td>Q07310</td><td>Neurexin-3-alpha OS=Rattus norvegicus GN=Nrxn3 PE=1 SV=1 - [NRX3A_RAT]</td></t<>	Q07310	Neurexin-3-alpha OS=Rattus norvegicus GN=Nrxn3 PE=1 SV=1 - [NRX3A_RAT]
P97685 Neurofascin OS=Ratus norvegicus GN=Nasc PE=15V=2. [NFASC_RAT] D22W56 Neurofascin OS=Ratus norvegicus GN=Nasc PE=25V=2. [D22W56, RAT] 062888 Neuroligin-2 OS=Ratus norvegicus GN=Nasc PE=25V=2. [D1CM3, RAT] 062899 Neuroligin-3 OS=Ratus norvegicus GN=Nasc PE=15V=1. [DLGN2, RAT] 062890 Neuronal cell adhesion molecule OS=Ratus norvegicus GN=Narca PE=15V=1. [DGPM34, RAT] 092708 Neuronal growth regulator 1 OS=Ratus norvegicus GN=Narca PE=15V=1. [GPM6A, RAT] 092708 Neuronal pentraxin receptor OS=Ratus norvegicus GN=Narca PE=15V=1. [GPM6A, RAT] 093764 Neuronal pentraxin receptor OS=Ratus norvegicus GN=Narch PE=15V=1. [MPTXR, RAT] 093764 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch PE=15V=1. [MPTXR, RAT] 093764 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch PE=15V=1. [MPTXR, RAT] 093764 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch PE=15V=1. [MPTXR, RAT] 093764 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch RAT] 036309 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch RAT] 036404 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch RAT] 036309 Neuronal pentraxin ro. OS=Ratus norvegicus GN=Narch RAT] 036404 Nincostin GN=Satus norvegicus GN=Narch RAT]	P28841	Neuroendocrine convertase 2 OS=Rattus norvegicus GN=Pcsk2 PE=1 SV=1 - [NEC2_RAT]
D32W66 Neurolipn-2 OS-Ratus norvegicus GN-Niga PE F1 SV-1 - INLGN2, RAT] G62889 Neurolipn-3 OS-Ratus norvegicus GN-Niga PE F1 SV-1 - INLGN2, RAT] G62889 Neuronal cell adhesion molecule long isofom NE17 OS-Ratus norvegicus GN-Nicam PE=2 SV-1 - [OSPW34, RAT] G97054 Neuronal cell adhesion molecule long isofom NE17 OS-Ratus norvegicus GN-Nicam PE=1 SV-2 - INRCAM, RAT] G97054 Neuronal growth regulator I OS-Ratus norvegicus GN-Nicam PE=1 SV-1 - [NPTXR, RAT] G9754 Neuronal pentaxin - I OS-Ratus norvegicus GN-Nicam PE=1 SV-1 - [NPTXR, RAT] G9754 Neuronal pentaxin - OS-Ratus norvegicus GN-Nicam PE=1 SV-1 - [NPTXR, RAT] F97758 Neuronal pentaxin - OS-Ratus norvegicus GN-Nica RAT] G9564 Neuronal pentaxin - OS-Ratus norvegicus GN-Nica RAT] G9764 Neuronal pentaxin - OS-Ratus norvegicus GN-SIC RAT G9764 Neuronal pentaxin - OS-Ratus norvegicus GN-SIC RAT G9764 Neuronal pentaxin - OS-Ratus norvegicus GN-SIC RAT G9765 S-Ratus	P97685	Neurofascin OS=Rattus norvegicus GN=Nfasc PE=1 SV=2 - [NFASC_RAT]
G62888 Neurolign-2 OS-Ratus nonvegicus GN-Nign2 PE-1 SV-1 - [NLCN3, RAT] G62889 Neurola cell adhesion molecule Org isoform Not7 OS-Ratus norvegicus GN-Nicar PE-2 SV-1 - [O6PW34, RAT] G97086 Neuronal cell adhesion molecule OS-Ratus norvegicus GN-Nicar PE-1 SV-1 - [NLCN3, RAT] G92089 Neuronal growth regulator 1 OS-Ratus norvegicus GN-Nicar PE-1 SV-1 - [NEGRI, RAT] G92708 Neuronal growth regulator 1 OS-Ratus norvegicus GN-Nicar PE-1 SV-1 - [GPM6A, RAT] G93764 Neuronal pentrawn torepticus GN-Nicar DE-1 SV-1 - [NPTX RAT] G93764 Neuronal pentrawn toregicus GN-Nicar DE-1 SV-1 - [NPTX RAT] P97738 Neuronal pentrawn - QS-Ratus norvegicus GN-Nicar DE-1 SV-1 - [NPTX RAT] G92619 Neuronal pentrawn - QS-Ratus norvegicus GN-Nicar DE-1 SV-1 - [NPTX RAT] Q97564 Neuronal pentrawn - QS-Ratus norvegicus GN-Nicar DE-1 SV-1 - [NPTX RAT] Q97619 Neuronal pentrawn - QS-Ratus norvegicus GN-Nicar DE-1 SV-1 - [NPTX RAT] Q97644 Nicastrin GS-Ratus norvegicus GN-Nico PE-1 SV-1 - [NPTX RAT] Q97645 Nicastrin GS-Ratus norvegicus GN-Nico PE-1 SV-1 - [NPTX RAT] Q97644 Nicastrin GS-Ratus norvegicus GN-Nico PE-1 SV-1 - [NPTX RAT] Q97645 Nicastrin GS-Ratus norvegicus GN-Nico PE-1 SV-1 - [NPTX RAT] Q97656 Nicastrin GS-Ratus norvegic	D3ZW56	Neurofascin OS=Rattus norvegicus GN=Nfasc PE=2 SV=2 - [D3ZW56_RAT]
G6289 Neurolagin-3 OS-Rattus norvegicus GN-Nign3 PE-1 SV-1 - [NLGN3, RAT] G67W34 Neuronal cell adhesion molecule Ogi softom Nr17 OS-Rattus norvegicus GN-Nrcam PE-2 SV-1 - [OGPW34, RAT] G920.18 Neuronal growth regulator / OS-Rattus norvegicus GN-Nrcam PE-1 SV-2 - [NERCAH, RAT] G920.18 Neuronal pentrasin-rocepticus GN-Nrgin PE-1 SV-1 - [NERCAH, RAT] G93764 Neuronal pentrasin-1 OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NPTXR, RAT] P47971 Neuronal pentrasin-1 OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NPTXR, RAT] P97738 Neuronal pentrasin-1 OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NPTXR, RAT] G97640 Neuroplasin OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NPTXR, RAT] G97640 Neuroplasin OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NPTX, RAT] G97640 Neuroplasin OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NPTX, RAT] G97640 Neuroplasin OS-Rattus norvegicus GN-Nrphr PE-1 SV-1 - [NCA, RAT] G97641 Neasin OS-Rattus norvegicus GN-SUPC SV-2 - [NVC1, RAT] G97640 Nyoger S0-S-Rattus norvegicus GN-SOP PE-2 SV-1 - [Q05EB44, RAT] G97773 Obioid-binding protein (Fragment) OS-Rattus norvegicus GN-SOP PE-2 SV-1 - [Q05CM, RAT] G97784 Nposphate carrier protein, milcohondrial OS-Rattus norvegicus GN-SOP SV-1 [G05CR] G97784 <	Q62888	Neuroligin-2 OS=Rattus norvegicus GN=NIgn2 PE=1 SV=1 - [NLGN2_RAT]
GePW34 Neuronal cell adhesion molecule Ospattus norvegicus GNN-Nram PE-1 SV-2 - [NRCAM.RAT] G9208 Neuronal growth regulator 1 OS-Rattus norvegicus GNN-Magne PE-1 SV-1 - [NGCAM.RAT] G9209 Neuronal growth regulator 1 OS-Rattus norvegicus GNN-Magne PE-1 SV-1 - [CPM6A.RAT] G93764 Neuronal pentraxin receptor OS-Rattus norvegicus GNN-Magne PE-1 SV-1 - [NPTXR.RAT] P47971 Neuronal pentraxin rosceptor OS-Rattus norvegicus GNN-Mapter PE-1 SV-1 - [NPTXR.RAT] P479748 Neuronal pentraxin - IOS-Rattus norvegicus GNN-Mapter PE-1 SV-1 - [NPTXR.RAT] P47754 Neuronal pentraxin - OS-Rattus norvegicus GNN-Mapter PE-2 SV-1 - [Q7GCL9_RAT] Q7GEL9 Neutral amin codi transporter ASCT1 OS-Rattus norvegicus GNN-Striat PE-2 SV-1 - [Q7GCL9_RAT] Q8CGU6 Nicsatrin OS-Rattus norvegicus GNN-Mapter PE-2 SV-1 - [Q7GCL9_RAT] Q6ESBA4 Nipsnap1 Potein (Fragment) OS-Rattus norvegicus GNN-Striat PE-2 SV-1 - [Q7GCL9_RAT] Q6ESBA4 Nipsnap1 Potein (Fragment) OS-Rattus norvegicus GNN-Striat PE-2 SV-1 - [Q7GCL9_RAT] Q6ESBA4 Nipsnap1 Potein (Fragment) OS-Rattus norvegicus GNN-Striat PE-2 SV-1 - [Q7TM3_RAT] Q62609 Noelin QS-Rattus norvegicus GNN-Striat PE-2 SV-1 - [Q7TM3_RAT] Q62609 Noelin QS-Rattus norvegicus GNN-Striat PE-2 SV-2 - [Q7TM3_RAT] Q7TM34 Objecd-Inding proterivicell adhesion molecule	Q62889	Neuroligin-3 OS=Rattus norvegicus GN=NIgn3 PE=1 SV=1 - [NLGN3_RAT]
P97686 Neuronal cell adhesion molecule OS=Ratus norvegicus GN=Nrcam PE-1 SV=2 : [NRCAM_RAT] Q920.08 Neuronal growth regulator 1 OS=Ratus norvegicus GN=Cpm6a PE-1 SV=1 : [DPKAR_RAT] Q8720.8 Neuronal gentraxin receptor QS=Ratus norvegicus GN=Cpm6a PE-1 SV=1 : [DPXAR_RAT] Q87674 Neuronal pentraxin receptor QS=Ratus norvegicus GN=Cpm6a PE-1 SV=1 : [DPXXR_RAT] P477911 Neuronal pentraxin receptor QS=Ratus norvegicus GN=Nptxr PE-1 SV=1 : [DPXX2_RAT] P977486 Neuroplastin OS=Ratus norvegicus GN=Nptxr PE-1 SV=1 : [DPXX2_RAT] Q76619 Neuroplastin OS=Ratus norvegicus GN=Nptxr PE-1 SV=1 : [DPXX2_RAT] Q76640 Nicastrin OS=Ratus norvegicus GN=Nptxr PE-1 SV=1 : [DPXX2_RAT] Q86204 Nicastrin OS=Ratus norvegicus GN=Nptxr PE-1 SV=2 : [DPX12_RAT] Q86204 Nicastrin OS=Ratus norvegicus GN=Nptxr PE-2 SV=1 : [Q67614 PE-2 SV=1 : [Q76619_RAT] Q86204 Nolarin OS=Ratus norvegicus GN=Nptxr PE-2 SV=1 : [Q67514 PE-2 SV=1 : [Q76019_RAT] Q86204 Nolarin OS=Ratus norvegicus GN=Q000000000000000000000000000000000000	Q6PW34	Neuronal cell adhesion molecule long isoform Nc17 OS=Rattus norvegicus GN=Nrcam PE=2 SV=1 - [Q6PW34_RAT]
G920J8 Neuronal growth regulator 1 OS-Rattus norvegicus GN-Negr1 PE-1 SV-1 - IQEM6A_RAT] G93759 Neuronal pertraxin receptor QS-Rattus norvegicus GN-Nepro PE-1 SV-1 - IQEM6A_RAT] P47971 Neuronal pertraxin - QS-Rattus norvegicus GN-Nepro PE-1 SV-1 - IQEM6A_RAT] P97546 Neuroplastin QS-Rattus norvegicus GN-Nepro PE-1 SV-1 - INPTX2_RAT] P97547 Neuroplastin QS-Rattus norvegicus GN-Nepro PE-1 SV-2 - INPTX_RAT] Q8CGU6 Nicastrin QS-Rattus norvegicus GN-Nepro PE-1 SV-2 - INPTX_RAT] Q8CGU6 Nicastrin QS-Rattus norvegicus GN-Nepro PE-1 SV-2 - INPTX_RAT] Q8CGU6 Nicastrin QS-Rattus norvegicus GN-SIC1a4 PE-2 SV-1 - [Q5GL9_RAT] Q8EBA4 Nijenapi protein (Fragmeni QS-Rattus norvegicus GN-SIC1a4 PE-2 SV-1 - [Q5EBA4_RAT] Q68E506 Noelin QS-Ratus norvegicus GN-SIC1a4 PE-2 SV-1 - [Q5CB4A_RAT] Q68E506 Noelin QS-Ratus norvegicus GN-SIC1a4 PE-2 SV-1 - [Q5CB4A_RAT] Q68E506 Noelin QS-Ratus norvegicus GN-SIC24 PE-2 SV-1 - [Q5CB4A_RAT] Q68E506 Nvi GGF DS-SIRatus norvegicus GN-SIC24 PE-2 SV-1 - [Q7TM3_RAT] Q71M33 Oligodendrocyte-myelin glycoprotein OS-Ratus norvegicus GN-SIC24 PE-2 SV-1 - [Q7TM3_RAT] Q7236 Opicid-binding protein/Cange Antex norvegicus GN-SIC24 PE-2 SV-2 - [Q7TM_RAT] Q7418 OX-2 membrane glycoprotein OS-Ratus norvegicus GN-Apti PE-2 SV-2 - [Q7TM_RAT] <td>P97686</td> <td>Neuronal cell adhesion molecule OS=Rattus norvegicus GN=Nrcam PE=1 SV=2 - [NRCAM_RAT]</td>	P97686	Neuronal cell adhesion molecule OS=Rattus norvegicus GN=Nrcam PE=1 SV=2 - [NRCAM_RAT]
C812E9 Neuronal membrane glycoprotein M6-a OS-Rattus norvegicus GN-bpt/ PE-1 SV-1 - [CPM6A, RAT] C93764 Neuronal pentraxin receptor OS-Rattus norvegicus GN-hpt/ PE-1 SV-1 - [NPTX, RAT] P97738 Neuronal pentraxin - 2 OS-Rattus norvegicus GN-hpt/ PE-1 SV-2 - [NPTX, RAT] P97748 Neuronal pentraxin - 2 OS-Rattus norvegicus GN-hpt/ PE-1 SV-2 - [NPTX, RAT] Q8CGU6 Neuronal pentraxin receptor OS-Rattus norvegicus GN-Strate PE-2 SV-1 - [Q76GL9_RAT] Q8CGU6 Nicastin OS-Rattus norvegicus GN-Notton PE-1 SV-2 - [NPTX, RAT] Q8CGU6 Nicastin OS-Rattus norvegicus GN-Strate PE-1 SV-2 - [NPTA, RAT] Q8CGU6 Nicastin OS-Rattus norvegicus GN-Strate PE-2 SV-1 - [Q26EBA4_RAT] Q62609 Neelin OS-Rattus norvegicus GN-Strate PE-2 SV-1 - [NOE1, RAT] Q82604 Nicastin Ogeoptein OS-Rattus norvegicus GN-OBD PE-2 SV-1 - [Q271M3, RAT] Q82738 Opioid-binding protein/cell adhesion molecule OS-Rattus norvegicus GN-ODD PE-1 SV-2 - [OPCM_RAT] P04218 OX-2 membrane glycoprotein OS-Rattus norvegicus GN-Strate PE-2 SV-1 - [OX2G_RAT] Q8741 Phosphale carrier protein, mitochondnal OS-Rattus norvegicus GN-App2 PE-2 SV-2 - [AT2B1_RAT] Q1506 Plasma membrane calcium-transporting ATPase 2 OS-Rattus norvegicus GN-App2 PE-2 SV-2 - [AT2B1_RAT] Q1506 Plasma membrane calcium-transporting ATPase 2 OS-Rattus	Q9Z0J8	Neuronal growth regulator 1 OS=Rattus norvegicus GN=Negr1 PE=1 SV=1 - [NEGR1_RAT]
C035764 Neuronal pentraxin receptor OS=Ratus norvegicus GN=Nptx PE=1 SV=1 - [NPTXR_RAT] P47971 Neuronal pentraxin - 2 OS=Ratus norvegicus GN=Nptx 2 PE=1 SV=1 - [NPTX2_RAT] P97738 Neuroplastin OS=Ratus norvegicus GN=Nptx 2 PE=1 SV=1 - [NPTX_RAT] Q76GL9 Neutral amino acid transporter ASCT1 OS=Ratus norvegicus GN=Strat PE=2 SV=1 - [Q76GL9_RAT] Q8CE040 Nicastrin OS=Ratus norvegicus GN=Ncstn PE=1 SV=1 - [NICA_RAT] Q8EE044 Nipsnap1 protein (Fragment) OS=Ratus norvegicus GN=Ncstn PE=2 SV=1 - [Q76GL9_RAT] Q8E6040 Nicastrin OS=Ratus norvegicus GN=Ncstn PE=1 SV=1 - [NICA_RAT] Q68636 Nvelin OS=Ratus norvegicus GN=Ncstn PE=2 SV=1 - [Q6R5J6_RAT] Q7TNM3 Oligodendrocyte-myelin glycoprotein OS=Ratus norvegicus GN=Omg PE=2 SV=1 - [Q7TM3_RAT] Q68741 Ohogid-binding protein/Gel adhesion molecule OS=Ratus norvegicus GN=CMg PE=1 SV=2 - [Q7TM3_RAT] Q37741 Phosphate carrier protein, mitochondrial OS=Ratus norvegicus GN=SIc28a2 PE=3 SV=1 - [QX741_RAT] Q64741 Phosphate carlier protein, mitochondrial OS=Ratus norvegicus GN=SIc28a2 PE=3 SV=2 - [A7281_RAT] Q37741 Phosphate carlier protein, mitochondrial OS=Ratus norvegicus GN=SIc28a2 PE=3 SV=2 - [A7281_RAT] Q1505 Plasma membrane calcium-transporting ATPase 1 OS=Ratus norvegicus GN=SIc28a2 PE=3 SV=2 - [A7281_RAT] Q4746 Dx20	Q812E9	Neuronal membrane glycoprotein M6-a OS=Rattus norvegicus GN=Gpm6a PE=1 SV=1 - [GPM6A_RAT]
P47971 Neuronal pentraxin-2 OS=Rattus norvegicus GN=Nptx1 PE=1 SV=1 : INPTX2. RAT] P97738 Neuronal pentraxin-2 OS=Rattus norvegicus GN=Nptx1 PE=1 SV=2 : INPTX. RAT] Q76GL9 Neural amino acid transporter ASCT1 OS=Rattus norvegicus GN=Nptx1 RAT] Q8CGU6 Nicastrin OS=Rattus norvegicus GN=Nptx1 PE=1 SV=2 : NPTN_RAT] Q8CGU6 Nicastrin OS=Rattus norvegicus GN=Nptx1 PE=1 SV=1 : [NICA_RAT] Q8EGU6 Noselin OS=Rattus norvegicus GN=Nptx1 PE=2 SV=1 : [Q6EBA4_RAT] Q8E600 NvGGF5 OS=Rattus norvegicus GN=Nptx1 = [NICA_RAT] Q8E504 NYGGF5 OS=Rattus norvegicus GN=Nptx1 = [NICA_RAT] Q8E504 NYGGF5 OS=Rattus norvegicus GN=Nptx1 = [NICA_RAT] Q8E504 Objoid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Ompt PE=1 SV=2 : [OPCM_RAT] Q971M3 Objoid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Sic25a3 PE=3 SV=1 : [G3V741_RAT] Q8FVH2 Phospholipase D3 OS=Rattus norvegicus GN=Sic25a3 PE=3 SV=1 : [G3V741_RAT] Q32V51 Phospholipase D3 OS=Rattus norvegicus GN=Sic25a3 PE=2 SV=1 : [G3V741_RAT] Q32V54 Phospholipase D3 OS=Rattus norvegicus GN=Sic25a3 PE=3 SV=1 : [G3V741_RAT] Q34741 Phospholipase D3 OS=Rattus norvegicus GN=Mptr2 PE=2 SV=2 : [AT2B1_RAT] P11505 Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Apt2 PE=2 SV=2 : [AT2B1_RAT]<	O35764	Neuronal pentraxin receptor OS=Rattus norvegicus GN=Nptxr PE=1 SV=1 - [NPTXR_RAT]
P97738 Neuronal pentraxin-2 OS=Rattus norvegicus GN=Nptoz PE=1 SV=1 - INPTX2, RAT] P97546 Neuroplastin OS=Rattus norvegicus GN=Nptoz PE=1 SV=1 - [NICA, RAT] Q8C6U6 Nicastrin OS=Rattus norvegicus GN=Nptoz PE=1 SV=1 - [NICA, RAT] Q8C6U6 Noisastrin OS=Rattus norvegicus GN=Nptoz PE=1 SV=1 - [NICA, RAT] Q8C809 Noelin OS=Rattus norvegicus GN=Nptoz PE=2 SV=1 - [OR65J6, RAT] Q6R5J6 NYGGFC SO=Rattus norvegicus GN=Nptoz PE=2 SV=1 - [OR76J6, RAT] Q0r104 Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=OpenI PE=1 SV=2 - [OPCM, RAT] P02736 Opiold-binding protein/CBI adhesion molecule OS=Rattus norvegicus GN=OpenI PE=1 SV=2 - [OPCM, RAT] P04218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=OpenI PE=1 SV=2 - [OPCM, RAT] P04218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=OpenI PE=1 SV=2 - [OPCM, RAT] P04218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=OpenI PE=2 SV=1 - [OX20, RAT] P14218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=PAg20 PE=2 SV=2 - [AC281, RAT] P3756 Plasma membrane calcium-transporting ATPase OS=Castus norvegicus GN=Ap221 PE=2 SV=2 - [AC281, RAT] P11506 Plasma membrane grotein 758 OS=Rattus norvegicus GN=Print PE=3 SV=1 - [C9758, RAT] P11507 Plasma membrane grotein 10 S=Rattus norvegicus GN=Print PE=3 SV=1 - [C9758, RAT] P	P47971	Neuronal pentraxin-1 OS=Rattus norvegicus GN=Nptx1 PE=1 SV=1 - [NPTX1_RAT]
P97546 Neuroplastin OS=Rattus norvegicus GN=Nptn PE=1 SV=2 · [NPTN_RAT] QAGGU6 Nicastrin OS=Rattus norvegicus GN=Ncstn PE=1 SV=1 · [NICA_RAT] QAGGU6 Nicastrin OS=Rattus norvegicus GN=Ncstn PE=1 SV=1 · [NICA_RAT] QAEGU6 Nicastrin OS=Rattus norvegicus GN=Ncstn PE=2 SV=1 · [QGEBA4_RAT] QAEGU6 Nosin OS=Rattus norvegicus GN=Ncstn PE=2 SV=1 · [QGEBA4_RAT] QAEGU6 Nosin OS=Rattus norvegicus GN=Ncstn PE=2 SV=1 · [QGEBA4_RAT] QAEGU6 Nosin OS=Rattus norvegicus GN=Ncstn PE=2 SV=1 · [QGEBA4_RAT] QAEGU6 Nigodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Opent PE=1 SV=2 · [OPCM_RAT] QATTMM3 Objoid-binding proteincell adhesion molecule OS=Rattus norvegicus GN=Opent PE=1 SV=2 · [OPCM_RAT] QAV218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 · [Q32/AT]_RAT] QAV218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Sc25a3 PE=3 SV=1 · [G37/41_RAT] QBY741 Phospholipase D3 OS=Rattus norvegicus GN=Pix18 on SV=2 SV=1 · [Q37/41_RAT] P1505 Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 · [AT2B_RAT] P30507 Plexin B2 OS=Rattus norvegicus GN=Pix11PE=4 SV=2 · [F1LNP8_RAT] D30267 Plexin B2 OS=Rattus norvegicus GN=Pix11PE=4 SV=2 · [F1LNP8_RAT] D4A6L0 Proba	P97738	Neuronal pentraxin-2 OS=Rattus norvegicus GN=Nptx2 PE=1 SV=1 - [NPTX2_RAT]
Or6GL9 Neutral amino acid transporter ASCT1 OS=Rattus norvegicus GN=Sictal PE=2 SV=1 · [076GL9_RAT] OBEGU6 Nicastrin OS=Rattus norvegicus GN=Nestn PE=1 SV=1 · [NICA_RAT] OBEBA4 Nipsnap1 protein (Fragment) OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 · [ORE5J6_RAT] OBR5J6 Nvolein OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 · [ORE5J6_RAT] OTTNM3 Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Ong PE=2 SV=1 · [ORTNM3_RAT] P32736 Oploid-binding protein/vell adhesion molecule OS=Rattus norvegicus GN=OxO2 PE=2 SV=1 · [OZG_RAT] P4218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=OxO2 PE=2 SV=1 · [OZG_RAT] G37741 Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=AEQS2 PE=3 SV=1 · [GX741_RAT] Objoid-binding protein/vell adhesion nolecule OS=Rattus norvegicus GN=AEQS2 PE=2 SV=2 · [AT281_RAT] OBSFVH2 Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=AEQS2 PE=3 SV=1 · [GX741_RAT] OBSFVH2 Phosphate carrier protein mitochondrial OS=Rattus norvegicus GN=AEq2b2 PE=2 SV=2 · [AT281_RAT] D32057 Plexin B2 OS=Rattus norvegicus GN=AEq2b2 PE=2 SV=2 · [AT281_RAT] D32057 Plexin B2 OS=Rattus norvegicus GN=AEq2b2 PE=2 SV=2 · [AT281_RAT] D4A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prif1 PE=3 SV=1 · [GPR58_RAT] D4A133 P	P97546	Neuroplastin OS=Rattus norvegicus GN=Nptn PE=1 SV=2 - [NPTN_RAT]
Q8CGU6 Nicastrin OS=Rattus norvegicus GN=Ncstn PE=1 SV=1 - [NICA_RAT] Q62609 Noelin OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 - [Q5EBA4_RAT] Q62609 Noelin OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 - [Q5EBA4_RAT] Q6750 OS=Rattus norvegicus GN=SizeSaZ7 PE=2 SV=1 - [NOE1_RAT] Q6750 OS=Rattus norvegicus GN=SizeSaZ7 PE=2 SV=1 - [Q7TNM3_RAT] Q10ide-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=OpernI PE=1 SV=2 - [OPCM_RAT] P04218 QX-2 membrane glycoprotein OS=Rattus norvegicus GN=SizeSa3 PE=3 SV=1 - [GX2G_RAT] Q67571 Phospholipase D3 OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [GX2G_RAT] Q57741 Phospholipase D3 OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [GX2G_RAT] Q57741 Phospholipase D3 OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [GX2G_RAT] Q57741 Phospholipase D3 OS=Rattus norvegicus GN=Cd200 PE=2 SV=2 - [AT2B1_RAT] P11505 Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT] P11506 Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT] D3Z057 Plavin B2 OS=Rattus norvegicus GN=Prv11 PE=4 SV=2 - [FILNP8_RAT] D4A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prv11 PE=2 SV=2 - [PRT1_RAT] D3Z5F6 Protein App41 (Fragment) OS=R	Q76GL9	Neutral amino acid transporter ASCT1 OS=Rattus norvegicus GN=SIc1a4 PE=2 SV=1 - [Q76GL9_RAT]
GSEBA4 Nipsnap1 protein (Fragment) OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 - [QSEBA4_RAT] Q6R5J6 NYGGF5 OS=Rattus norvegicus GN=Sic52a27 PE=2 SV=1 - [Q6R5J6_RAT] Q7TNM3 Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Omp PE=2 SV=1 - [Q7TNM3_RAT] P32736 Opioid-binding protein/cell adhesion molecule OS-Rattus norvegicus GN=Omp PE=2 SV=2 - [OPCM_RAT] P04218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Comp PE=3 SV=2 - [OPCM_RAT] Q3TV14 Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Alsza PE=3 SV=1 - [GX741_RAT] Q35V14 Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Alsza PE=3 SV=1 - [GX741_RAT] Q35V14 Phospholipase D3 OS=Rattus norvegicus GN=Compeicus GN=Alsza PE=3 SV=1 - [GX741_RAT] Q455V12 Phospholipase D3 OS=Rattus norvegicus GN=Alsza PE=3 SV=1 - [GX267_RAT] P11505 Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Alszb PE=3 SV=2 - [AT282_RAT] D32C57 Plexin B COSFRattus norvegicus GN=Print PE=2 SV=2 - [FILNB_RAT] P11506 Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Alszb PE=3 SV=1 - [GY158_RAT] D4A6L0 Proble G-protein coupled receptor 158 OS=Rattus norvegicus GN=Print PE=2 SV=2 - [FILNB_RAT] D32FB6 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Print PE=2 SV=2 - [PRRT1_RAT] D32FB6	Q8CGU6	Nicastrin OS=Rattus norvegicus GN=Ncstn PE=1 SV=1 - [NICA_RAT]
Obselin OS=Rattus norvegicus GN=Olfm1 PE=2 SV=1 - [NOE1_RAT] Q6R5J6 NYGGF5 OS=Rattus norvegicus GN=Silc25a27 PE=2 SV=1 - [Q6R5J6_RAT] Q7TNM3 Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Omg PE=2 SV=1 - [Q7TNM3_RAT] P932736 Opioid-binding protein/cell adhesion molecule QS=Rattus norvegicus GN=QmP PE=1 SV=2 - [OPCM_RAT] P04218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Sic25a3 PE=3 SV=1 - [G3V741_RAT] Q5FVH2 Phospholipase D3 OS=Rattus norvegicus GN=Pid3 PE=2 SV=1 - [D12_RAT] P11505 Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT] P11506 Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT] D32C57 Plexin B2 OS=Rattus norvegicus GN=Plxb2 PE=4 SV=2 - [F1LNP8_RAT] P11506 Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT] D32C57 Plexin B2 OS=Rattus norvegicus GN=Print PE=4 SV=2 - [F1LNP8_RAT] D4A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Qr158 PE=3 SV=1 - [GP158_RAT] D4A62 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Print PE=2 SV=2 - [PRRT1_RAT] D32F86 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Print PE=2 SV=2 - [PRRT2_RAT] F1LRS5 Protein A	Q5EBA4	Nipsnap1 protein (Fragment) OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 - [Q5EBA4_RAT]
QRE5.6 NYGGF5 OS=Rattus norvegicus GN=Slc25a27 PE=2 SV=1 - [QRESJ6_RAT] Q7TNM3 Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Opmg PE=2 SV=1 - [Q7TNM3_RAT] P92736 Opliol-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Opml PE=1 SV=2 - [OPCM_RAT] P04218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [QXG_RAT] G3V741 Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Slc25a3 PE=3 SV=1 - [G3V741_RAT] Q3FVH2 Phospholipase D3 OS=Rattus norvegicus GN=Pld3 PE=2 SV=1 - [PD3_RAT] P11506 Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT] P11506 Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=4p2b2 PE=2 SV=2 - [AT2B1_RAT] D3ZQ57 Plexin B2 OS=Rattus norvegicus GN=Plx1 PE=4 SV=2 - [PLNP8_RAT] D4A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prt1 PE=4 SV=2 - [PLNP8_RAT] D4A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prt1 PE=2 SV=2 - [PRT1_RAT] D3ZPB6 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prt2 PE=1 SV=1 - [PRRT2_RAT] F1LRS5 Protein App1 (Fagment) OS=Rattus norvegicus GN=App1 PE=2 SV=2 - [PRRT1_RAT] D3ZFB6 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prt2 PE=1 SV=1 - [PRT1_RAT] D3ZVF1 Protein	Q62609	Noelin OS=Rattus norvegicus GN=Olfm1 PE=2 SV=1 - [NOE1_RAT]
QTTNM3 Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Omg PE=2 SV=1 - [QTTNM3_RAT] P32736 Opioid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=QcDpcnl PE=1 SV=2 - [QPCM_RAT] PO4218 OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [G3V741_RAT] G3V741 Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Sic25a3 PE=3 SV=1 - [G3V741_RAT] QSFVH2 Phospholipase D3 OS=Rattus norvegicus GN=PId3 PE=2 SV=1 - [PLD3_RAT] P11505 Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT] D32G7 Plexin B2 OS=Rattus norvegicus GN=PVH1 PE=4 SV=2 - [FLNP8_RAT] D34A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prv11 PE=4 SV=2 - [FLNP8_RAT] D44A6L0 Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prv11 PE=4 SV=2 - [FLNP8_RAT] D32FB6 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prv11 PE=4 SV=2 - [FLNP8_RAT] D32FB6 Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prv11 PE=3 SV=1 - [GP158_RAT] D4A133 Protein Adplv1 (Fragment) OS=Rattus norvegicus GN=Prv11 PE=1 SV=1 - [FLRS5_RAT] D4A133 Protein Adplv1 OS=Rattus norvegicus GN=Atp6v1 PE=2 SV=1 - [FLRP5_RAT] D32FF1 Protein Adplv1 OS=Rattus norvegicus GN=Atp6v1 PE=2 SV=1 - [FLRS5_RAT] D4X133 Protein Adplv1	Q6R5J6	NYGGF5 OS=Rattus norvegicus GN=Slc25a27 PE=2 SV=1 - [Q6R5J6_RAT]
P32736Opioid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Opcml PE=1 SV=2 - [OPCM_RAT]P04218OX-2 membrane glycoprotein OS=Rattus norvegicus GN=2d200 PE=2 SV=1 - [CX2G_RAT]G3V741Phosphate carrier protein, mitochondrial OS-Rattus norvegicus GN=Slc25a3 PE=3 SV=1 - [G3V741_RAT]Q5FVH2Phospholipase D3 OS=Rattus norvegicus GN=Pld3 PE=2 SV=1 - [PLD3_RAT]P11505Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]P11506Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]D32C67Plexin B2 OS=Rattus norvegicus GN=Plxnb2 PE=4 SV=1 - [D32Q67_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]D4A6L0Probine-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prt1 PE=4 SV=2 - [PLNP8_RAT]C6M682Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prt1 PE=2 SV=2 - [PRRT1_RAT]D3ZFB6Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prt2 PE=1 SV=1 - [PLRT2_RAT]F1LR85Protein Atp6v1 a OS=Rattus norvegicus GN=Aplp1 PE=3 SV=1 - [PRRT2_RAT]D4A133Protein Atp6v1 a OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D3ZNF1Protein Atp6v1 a OS=Rattus norvegicus GN=Aplp4 PE=3 SV=1 - [D3ZNF1_RAT]D3ZNF1Protein C2d2l OS=Rattus norvegicus GN=Aplp4 PE=2 SV=1 - [F1LR98_RAT]D3ZNF1Protein Bati OS=Rattus norvegicus GN=Cdn10 PE=2 SV=1 - [F1LR98_RAT]D3ZNF1Protein C2d10 OS=Rattus norvegicus GN=Cdn10 PE=2 SV=1 - [F1LR98_RAT]F1LR98Protein C2d10 OS=Rattus norvegicus GN=Cdn10 PE=2 SV=1 - [F1LR98_RAT] <tr< td=""><td>Q7TNM3</td><td>Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Omg PE=2 SV=1 - [Q7TNM3_RAT]</td></tr<>	Q7TNM3	Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Omg PE=2 SV=1 - [Q7TNM3_RAT]
P04218OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [OX2G_RAT]G3V741Phosphalte carrier protein, mitochondrial OS=Rattus norvegicus GN=Slc25a3 PE=3 SV=1 - [G3V741_RAT]G3V741Phospholipase D3 OS=Rattus norvegicus GN=PId3 PE=2 SV=1 - [PL03_RAT]P11505Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]P11506Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B2_RAT]D32Q57Plexin B2 OS=Rattus norvegicus GN=Phrlb2 PE=4 SV=1 - [D32G57_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Gpr158 PE=3 SV=1 - [GP158_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Gpr158 PE=3 SV=1 - [GP158_RAT]C66M682Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prr1 PE=2 SV=2 - [PRRT1_RAT]D3ZFB6Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prr1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6/1A OS=Rattus norvegicus GN=Atp1PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6/1A OS=Rattus norvegicus GN=Atp6/1A PE=3 SV=1 - [F1LRS5_RAT]D3ZPF1Protein Atp6/1A OS=Rattus norvegicus GN=Atp6/1A PE=3 SV=1 - [F1LRS5_RAT]D32D57Protein Cdn10 OS=Rattus norvegicus GN=Atp6/1A PE=2 SV=1 - [G12D5_RAT]G3U2F1Protein Cdn10 OS=Rattus norvegicus GN=Atp6/1A PE=2 SV=1 - [G12D5_RAT]D32D57Protein Cdn10 OS=Rattus norvegicus GN=Cd1P PE=2 SV=1 - [G12D5_RAT]G3U2F1Protein Cdn10 OS=Rattus norvegicus GN=Cd1P PE=2 SV=1 - [G12D5_RAT]F1LR98Protein Cdn10 OS=Rattus norvegicus GN=Cd1P DE=2 SV=1 - [G12D5_RAT]F1M702Prote	P32736	Opioid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Opcml PE=1 SV=2 - [OPCM_RAT]
G3V741Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Blc25a3 PE=3 SV=1 - [G3V741_RAT]Q5FVH2Phospholipase D3 OS=Rattus norvegicus GN=Pld3 PE=2 SV=1 - [PLD3_RAT]P11505Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]D3ZQ57Plexin B2 OS=Rattus norvegicus GN=Plxnb2 PE=4 SV=1 - [D3ZQ57_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Qr158 PE=3 SV=1 - [G9158_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prr1 PE=2 SV=2 - [F1LNP8_RAT]Q6MG82Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prr1 PE=2 SV=2 - [PRRT1_RAT]D3ZF86Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prr1 PE=2 SV=2 - [PRRT1_RAT]D4A133Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Prr1 PE=1 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Sragment) OS=Rattus norvegicus GN=Prr1 PE=3 SV=1 - [PRRT2_RAT]D4A133Protein Aplp1 (Sragment) OS=Rattus norvegicus GN=Prr1 PE=3 SV=1 - [PRRT2_RAT]D3ZF86Protein Aplp1 (Sragment) OS=Rattus norvegicus GN=Prr1 PE=3 SV=1 - [PRRT2_RAT]D4A133Protein Aplp1 (Sragment) OS=Rattus norvegicus GN=Prr1 PE=3 SV=1 - [PRRT2_RAT]D4A134Protein Aplp1 (Sragment) OS=Rattus norvegicus GN=Pr1 [PE=3 SV=1 - [F1LRS5_RAT]D3ZF95Protein C2d21 OS=Rattus norvegicus GN=2d1 PE=3 SV=1 - [C3U2F5_RAT]F1LR98Protein C2d11 OS=Rattus norvegicus GN=C2d21 PE=2 SV=2 - [RAT]F1M7X3Protein Cdh13 OS=Rattus norvegicus GN=C2d11 PE=2 SV=2 - [F1LN7X3_RAT]F1M7X4Protein Cdh13 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M7X3_RAT]F1M7X3Protein Cd	P04218	OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [OX2G_RAT]
QSFVH2Phospholipase D3 OS=Rattus norvegicus GN=Pld3 PE=2 SV=1 - [PLD3_RAT]P11505Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]P11506Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT]D3ZQ57Plexin B2 OS=Rattus norvegicus GN=Plxhb2 PE=4 SV=1 - [D3ZG57_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Orvegicus GN=Cp158 PE=3 SV=1 - [GP158_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prr1 PE=2 SV=2 - [FRT1_RAT]D3ZFB6Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prr1 PE=2 SV=2 - [PRT1_RAT]D3ZFB6Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Prr1 PE=2 SV=1 - [PRT2_RAT]D4A133Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [PAT33_RAT]E9PT11Protein Atp6v1a OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [D4A133_RAT]D3ZFP5Protein Bai1 OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [D4A133_RAT]GSU2P5Protein Cact2l OS=Rattus norvegicus GN=2 (J2ZZE) - [D3ZNF1_RAT]OSU2P5Protein Cact2l OS=Rattus norvegicus GN=2 (J2ZZE) - [D3ZNF1_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh10 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M7X3_RAT]F1M7X3Protein Cdh13 OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M7X2Protein Cdh18 OS=Rattus norvegicus GN=Cdh13 PE=2 SV=1 - [F1M7Y3_RAT]F1M7X3Protein Cdh18 OS=Rattus norvegicus GN=Cdh13 PE=2 SV=1 - [F1M7Y3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh13 PE=2 SV=1 -	G3V741	Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=SIc25a3 PE=3 SV=1 - [G3V741_RAT]
P11505Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]P11506Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT]D32Q57Plexin B2 OS=Rattus norvegicus GN=Plxnb2 PE=4 SV=1 - [D3ZQ57_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Pvrl1 PE=4 SV=2 - [F1LNP8_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prrl1 PE=2 SV=2 - [PRR11_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Prrl1 PE=2 SV=2 - [PRR11_RAT]D3ZFB6Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prrl2 PE=1 SV=1 - [PRR12_RAT]D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Atp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein App1 (Fragment) OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]D3ZFF1Protein Bail OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]D3ZF52Protein Cdn10 OS=Rattus norvegicus GN=Cdp1 PE=2 SV=1 - [G02PF5_RAT]F1LR98Protein Cdn10 OS=Rattus norvegicus GN=Cdn10 PE=2 SV=1 - [G02PF5_RAT]F1M1A2Protein Cdn10 OS=Rattus norvegicus GN=Cdn10 PE=2 SV=1 - [F1LR98_RAT]F1M7X3Protein Cdn11 OS=Rattus norvegicus GN=Cdn12 PE=3 SV=2 - [F1M7X3_RAT]F1M7X0Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=2 - [F1M7X3_RAT]F1M7X2Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=2 - [F1M7X3_RAT]F1M7X3Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=2 - [F1M7X3_RAT]F1M7X3Protein Cd	Q5FVH2	Phospholipase D3 OS=Rattus norvegicus GN=Pld3 PE=2 SV=1 - [PLD3_RAT]
P11506Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT]D3ZQ57Plexin B2 OS=Rattus norvegicus GN=Pknb2 PE=4 SV=1 - [D32Q57_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Pvrl1 PE=4 SV=2 - [F1LNP8_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Pvrl1 PE=4 SV=2 - [PRT1_RAT]Q6MG82Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Pvrl2 PE=1 SV=1 - [PRRT2_RAT]D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Pvrl2 PE=1 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D3ZF1Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]D3ZP5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [G3UP5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [C1LR98_RAT]F1M7X3Protein Cdh12 OS=Rattus norvegicus GN=C2cd12 PE=2 SV=1 - [F1LR98_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 -	P11505	Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]
D3ZQ57Plexin B2 OS=Rattus norvegicus GN=Plxnb2 PE=4 SV=1 - [D3ZQ57_RAT]F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Pvr11 PE=4 SV=2 - [F1LNP8_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Pr11 PE=3 SV=1 - [GP158_RAT]Q6MG82Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Pr11 PE=2 SV=2 - [PRRT1_RAT]D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Pr12 PE=1 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PT11Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]D3ZF5Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]G5U2P5Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=2 SV=1 - [D3ZNF1_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdn10 OS=Rattus norvegicus GN=C2cd2l PE=3 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdn12 OS=Rattus norvegicus GN=Cdn12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdn13 (Fragment) OS=Rattus norvegicus GN=Cdn13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdn18 OS=Rattus norvegicus GN=Cdn18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdn18 OS=Rattus norvegicus GN=Cdn19 PE=3 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdn9 OS=Rattus norvegicus GN=Cdn19 PE=3 SV=1 - [F1M702_RAT]	P11506	Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT]
F1LNP8Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Pvrl1 PE=4 SV=2 - [F1LNP8_RAT]D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Gpr158 PE=3 SV=1 - [GP158_RAT]Q6MG82Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prt1 PE=2 SV=2 - [PRRT1_RAT]D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prt1 PE=2 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A134Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PT11Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1a PE=2 SV=1 - [E9PT11_RAT]D3ZFF1Protein Bai1 OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [E9PT11_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [O5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh19 PE=3 SV=1 - [D3ZFQ5_RAT]	D3ZQ57	Plexin B2 OS=Rattus norvegicus GN=Plxnb2 PE=4 SV=1 - [D3ZQ57_RAT]
D4A6L0Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Gpr158 PE=3 SV=1 - [GP158_RAT]Q6MG82Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prrt1 PE=2 SV=2 - [PRRT1_RAT]D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prrt2 PE=1 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PT11Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]D3ZNF1Protein Bail OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=C2d11 PE=3 SV=2 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1MTA2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh19 PE=3 SV=1 - [D3ZFQ5_RAT]	F1LNP8	Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Pvrl1 PE=4 SV=2 - [F1LNP8_RAT]
Q6MG82Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prrt1 PE=2 SV=2 - [PRRT1_RAT]D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prrt2 PE=1 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PT11Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]D3ZNF1Protein Bai1 OS=Rattus norvegicus GN=E4b6v1h PE=2 SV=1 - [E9PT11_RAT]Q5U2P5Protein Cdcl2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [G5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	D4A6L0	Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Gpr158 PE=3 SV=1 - [GP158_RAT]
D3ZFB6Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prrt2 PE=1 SV=1 - [PRRT2_RAT]F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PT11Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PTI1_RAT]D3ZNF1Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [F1M725_RAT]	Q6MG82	Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prrt1 PE=2 SV=2 - [PRRT1_RAT]
F1LRS5Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PT11Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PT11_RAT]D3ZNF1Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [F1LR98_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [F1M725_RAT]	D3ZFB6	Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prrt2 PE=1 SV=1 - [PRRT2_RAT]
D4A133Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]E9PTI1Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PTI1_RAT]D3ZNF1Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh10 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	F1LRS5	Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]
E9PTI1Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PTI1_RAT]D3ZNF1Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	D4A133	Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]
D3ZNF1Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	E9PTI1	Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PTI1_RAT]
Q5U2P5Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]F1LR98Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]F1M1A2Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]F1M7X3Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]F1M702Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]D3ZFQ5Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	D3ZNF1	Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]
F1LR98 Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT] F1M1A2 Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT] F1M7X3 Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT] F1M702 Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT] D3ZFQ5 Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	Q5U2P5	Protein C2cd2I OS=Rattus norvegicus GN=C2cd2I PE=2 SV=1 - [Q5U2P5_RAT]
F1M1A2 Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT] F1M7X3 Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT] F1M702 Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT] D3ZFQ5 Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	F1LR98	Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]
F1M7X3 Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT] F1M702 Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT] D3ZFQ5 Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	F1M1A2	Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]
F1M702 Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT] D3ZFQ5 Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	F1M7X3	Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]
D3ZFQ5 Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	F1M702	Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]
	D3ZFQ5	Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]

D3ZHX3	Protein Diras2 OS=Rattus norvegicus GN=Diras2 PE=4 SV=1 - ID3ZHX3 RATI
D3ZQ45	Protein Dsg1b OS=Rattus norvegicus GN=Dsg1b PE=2 SV=1 - [D3ZQ45] RATI
F1LMV6	Protein Dsp OS=Rattus norvegicus GN=Dsp PE=2 SV=1 - [F1LMV6 RAT]
Q8K1M8	Protein FAM5B OS=Rattus norvegicus GN=Fam5b PE=2 SV=1 - [FAM5B RAT]
D4A435	Protein Icam5 OS=Rattus norvegicus GN=Icam5 PE=4 SV=1 - [D4A435 RAT]
F1LVR0	Protein Iglon5 OS=Rattus norvegicus GN=Iglon5 PE=4 SV=2 - [F1LVR0_RAT]
M0RAS4	Protein Igsf21 (Fragment) OS=Rattus norvegicus GN=Igsf21 PE=4 SV=1 - [M0RAS4_RAT]
Q5FVG4	Protein LOC100911440 OS=Rattus norvegicus GN=SIc25a22 PE=2 SV=1 - [Q5FVG4_RAT]
G3V928	Protein Lrp1 OS=Rattus norvegicus GN=Lrp1 PE=4 SV=1 - [G3V928_RAT]
D3ZCJ3	Protein Mfsd6 OS=Rattus norvegicus GN=Mfsd6 PE=4 SV=1 - [D3ZCJ3_RAT]
F1M8G9	Protein Ncam2 (Fragment) OS=Rattus norvegicus GN=Ncam2 PE=2 SV=2 - [F1M8G9_RAT]
F1M8K1	Protein Pcdh1 (Fragment) OS=Rattus norvegicus GN=Pcdh1 PE=4 SV=2 - [F1M8K1_RAT]
F1LS01	Protein Pcdh9 OS=Rattus norvegicus GN=Pcdh9 PE=2 SV=2 - [F1LS01_RAT]
D3ZES7	Protein Plxna4a OS=Rattus norvegicus GN=Plxna4a PE=4 SV=1 - [D3ZES7_RAT]
D3ZDX5	Protein Plxnb1 OS=Rattus norvegicus GN=Plxnb1 PE=4 SV=1 - [D3ZDX5_RAT]
D4ACB3	Protein RGD1559672 OS=Rattus norvegicus GN=RGD1559672 PE=4 SV=1 - [D4ACB3_RAT]
D3Z981	Protein RGD1560871 OS=Rattus norvegicus GN=RGD1560871 PE=4 SV=2 - [D3Z981_RAT]
D4A188	Protein Rgma OS=Rattus norvegicus GN=Rgma PE=4 SV=1 - [D4A188_RAT]
D3ZQP6	Protein Sema7a OS=Rattus norvegicus GN=Sema7a PE=4 SV=1 - [D3ZQP6_RAT]
D3ZVM6	Protein Siglec1 OS=Rattus norvegicus GN=Siglec1 PE=4 SV=2 - [D3ZVM6_RAT]
E9PTX9	Protein Slc12a2 OS=Rattus norvegicus GN=Slc12a2 PE=4 SV=1 - [E9PTX9_RAT]
M0R4V4	Protein Slc25a23 OS=Rattus norvegicus GN=Slc25a23 PE=4 SV=1 - [M0R4V4_RAT]
Q9EPH7	Protein Slc25a27 OS=Rattus norvegicus GN=Slc25a27 PE=2 SV=1 - [Q9EPH7_RAT]
D4A517	Protein Slc39a10 OS=Rattus norvegicus GN=Slc39a10 PE=4 SV=1 - [D4A517_RAT]
Q4V7D9	Protein Smpdl3b OS=Rattus norvegicus GN=Smpdl3b PE=2 SV=1 - [Q4V7D9_RAT]
D4ABK1	Protein Syngr3 OS=Rattus norvegicus GN=Syngr3 PE=4 SV=1 - [D4ABK1_RAT]
F1M8Y2	Protein Tspan7 (Fragment) OS=Rattus norvegicus GN=Tspan7 PE=2 SV=2 - [F1M8Y2_RAT]
D4A383	Protein Ttyh3 OS=Rattus norvegicus GN=Ttyh3 PE=4 SV=1 - [D4A383_RAT]
P0C5X8	Protein tweety homolog 1 OS=Rattus norvegicus GN=Ttyh1 PE=2 SV=1 - [TTYH1_RAT]
Q68HB5	Protocadherin 7, isoform CRA_b OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 - [Q68HB5_RAT]
Q68HB8	Protocadherin 7, isoform CRA_c OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 - [Q68HB8_RAT]
I6LBX6	Protocadherin gamma a9 OS=Rattus norvegicus GN=Pcdhga9 PE=2 SV=1 - [I6LBX6_RAT]
O14917	Protocadherin-17 OS=Homo sapiens GN=PCDH17 PE=2 SV=2 - [PCD17_HUMAN]
Q8CIN0	Receptor-like protein tyrosine phosphatase gamma S-type isoform OS=Rattus norvegicus GN=Ptprg PE=2 SV=1 - [Q8CIN0_RAT]
Q03348	Receptor-type tyrosine-protein phosphatase alpha OS=Rattus norvegicus GN=Ptpra PE=2 SV=1 - [PTPRA_RAT]
P23468	Receptor-type tyrosine-protein phosphatase delta OS=Homo sapiens GN=PTPRD PE=1 SV=2 - [PTPRD_HUMAN]
Q64605	Receptor-type tyrosine-protein phosphatase S OS=Rattus norvegicus GN=Ptprs PE=1 SV=2 - [PTPRS_RAT]
Q62656	Receptor-type tyrosine-protein phosphatase zeta OS=Rattus norvegicus GN=Ptprz1 PE=1 SV=1 - [PTPRZ_RAT]
Q64548	Reticulon-1 OS=Rattus norvegicus GN=Rtn1 PE=2 SV=1 - [RTN1_RAT]
Q6RJR6	Reticulon-3 OS=Rattus norvegicus GN=Rtn3 PE=1 SV=1 - [RTN3_RAT]
Q9JK11	Reticulon-4 OS=Rattus norvegicus GN=Rtn4 PE=1 SV=1 - [RTN4_RAT]
Q80WD1	Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Rtn4rl2 PE=2 SV=1 - [R4RL2_RAT]
P11507	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Rattus norvegicus GN=Atp2a2 PE=1 SV=1 - [AT2A2_RAT]
Q63965	Sideroflexin-1 OS=Rattus norvegicus GN=Stxn1 PE=2 SV=4 - [SFXN1_RAT]
Q9JHY2	Sideroflexin-3 OS=Rattus norvegicus GN=Stxn3 PE=2 SV=1 - [SFXN3_RAT]
Q8CFD0	Sideroflexin-5 OS=Rattus norvegicus GN=Sfxn5 PE=2 SV=1 - [SFXN5_RAT]

Q62861	Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Scn2b PE=2 SV=1 - [Q62861_RAT]
Q00954	Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn1b PE=1 SV=1 - [SCN1B_RAT]
P54900	Sodium channel subunit beta-2 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 - [SCN2B_RAT]
Q9JK00	Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT]
P23978	Sodium- and chloride-dependent GABA transporter 1 OS=Rattus norvegicus GN=SIc6a1 PE=1 SV=1 - [SC6A1_RAT]
P31647	Sodium- and chloride-dependent GABA transporter 3 OS=Rattus norvegicus GN=SIc6a11 PE=2 SV=1 - [S6A11_RAT]
Q9JHZ9	Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=SIc38a3 PE=2 SV=1 - [S38A3_RAT]
P31662	Sodium-dependent neutral amino acid transporter SLC6A17 OS=Rattus norvegicus GN=SIc6a17 PE=1 SV=1 - [S6A17_RAT]
Q80ZA5	Sodium-driven chloride bicarbonate exchanger OS=Rattus norvegicus GN=Slc4a10 PE=2 SV=1 - [S4A10_RAT]
Q01728	Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Slc8a1 PE=2 SV=3 - [NAC1_RAT]
P48768	Sodium/calcium exchanger 2 OS=Rattus norvegicus GN=Slc8a2 PE=2 SV=1 - [NAC2_RAT]
D3ZJ86	Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Slc9a6 PE=2 SV=1 - [D3ZJ86_RAT]
P06685	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Rattus norvegicus GN=Atp1a1 PE=1 SV=1 - [AT1A1_RAT]
P06686	Sodium/potassium-transporting ATPase subunit alpha-2 OS=Rattus norvegicus GN=Atp1a2 PE=1 SV=1 - [AT1A2_RAT]
P06687	Sodium/potassium-transporting ATPase subunit alpha-3 OS=Rattus norvegicus GN=Atp1a3 PE=1 SV=2 - [AT1A3_RAT]
P07340	Sodium/potassium-transporting ATPase subunit beta-1 OS=Rattus norvegicus GN=Atp1b1 PE=1 SV=1 - [AT1B1_RAT]
Q63377	Sodium/potassium-transporting ATPase subunit beta-3 OS=Rattus norvegicus GN=Atp1b3 PE=2 SV=1 - [AT1B3_RAT]
Q63633	Solute carrier family 12 member 5 OS=Rattus norvegicus GN=SIc12a5 PE=1 SV=2 - [S12A5_RAT]
Q9QZG1	Solute carrier family 22 member 23 OS=Rattus norvegicus GN=SIc22a23 PE=2 SV=2 - [S22AN_RAT]
O54861	Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT]
Q6AXV4	Sorting and assembly machinery component 50 homolog OS=Rattus norvegicus GN=Samm50 PE=1 SV=1 - [SAM50_RAT]
P24054	SPARC-like protein 1 OS=Rattus norvegicus GN=Sparcl1 PE=2 SV=1 - [SPRL1_RAT]
Q02563	Synaptic vesicle glycoprotein 2A OS=Rattus norvegicus GN=Sv2a PE=1 SV=2 - [SV2A_RAT]
Q63564	Synaptic vesicle glycoprotein 2B OS=Rattus norvegicus GN=Sv2b PE=1 SV=1 - [SV2B_RAT]
Q62876	Synaptogyrin-1 OS=Rattus norvegicus GN=Syngr1 PE=2 SV=1 - [SNG1_RAT]
P07825	Synaptophysin OS=Rattus norvegicus GN=Syp PE=1 SV=1 - [SYPH_RAT]
Q9Z327	Synaptopodin OS=Rattus norvegicus GN=Synpo PE=2 SV=2 - [SYNPO_RAT]
P21707	Synaptotagmin-1 OS=Rattus norvegicus GN=Syt1 PE=1 SV=3 - [SYT1_RAT]
P29101	Synaptotagmin-2 OS=Rattus norvegicus GN=Syt2 PE=1 SV=1 - [SYT2_RAT]
G3V7P1	Syntaxin-12 OS=Rattus norvegicus GN=Stx12 PE=1 SV=1 - [STX12_RAT]
P32851	Syntaxin-1A OS=Rattus norvegicus GN=Stx1a PE=1 SV=1 - [STX1A_RAT]
P61265	Syntaxin-1B OS=Rattus norvegicus GN=Stx1b PE=1 SV=1 - [STX1B_RAT]
070257	Syntaxin-7 OS=Rattus norvegicus GN=Stx7 PE=1 SV=4 - [STX7_RAT]
Q05546	Tenascin-R OS=Rattus norvegicus GN=Tnr PE=1 SV=1 - [TENR_RAT]
P01830	Thy-1 membrane glycoprotein OS=Rattus norvegicus GN=Thy1 PE=1 SV=1 - [THY1_RAT]
Q5U2X7	TIM21-like protein, mitochondrial OS=Rattus norvegicus PE=2 SV=1 - [TI21L_RAT]
G3V679	Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT]
Q80WF4	Transmembrane protein 132A OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT]
Q5PQV5	Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT]
P57097	Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT]
Q63116	Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT]
P55146	Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT]
Q9JJW3	Up-regulated during skeletal muscle growth protein 5 OS=Rattus norvegicus GN=Usmg5 PE=2 SV=1 - [USMG5_RAT]
P25286	V-type proton ATPase 116 kDa subunit a isoform 1 OS=Rattus norvegicus GN=Atp6v0a1 PE=2 SV=1 - [VPP1_RAT]
P62815	V-type proton ATPase subunit B, brain isoform OS=Rattus norvegicus GN=4tp6v1b2 PE=1 SV=1 - [VATB2_RAT]
Q5FVI6	V-type proton ATPase subunit C 1 OS=Rattus norvegicus GN=Atp6v1c1 PE=2 SV=1 - [VATC1_RAT]

Q6PCU2	V-type proton ATPase subunit E 1 OS=Rattus norvegicus GN=Atp6v1e1 PE=1 SV=1 - [VATE1_RAT]
O54715	V-type proton ATPase subunit S1 OS=Rattus norvegicus GN=Atp6ap1 PE=2 SV=1 - [VAS1_RAT]
P29534	Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT]
Q9JI51	Vesicle transport through interaction with t-SNAREs homolog 1A OS=Rattus norvegicus GN=Vti1a PE=1 SV=1 - [VTI1A_RAT]
Q63666	Vesicle-associated membrane protein 1 OS=Rattus norvegicus GN=Vamp1 PE=1 SV=2 - [VAMP1_RAT]
P63045	Vesicle-associated membrane protein 2 OS=Rattus norvegicus GN=Vamp2 PE=1 SV=2 - [VAMP2_RAT]
Q9Z270	Vesicle-associated membrane protein-associated protein A OS=Rattus norvegicus GN=Vapa PE=1 SV=3 - [VAPA_RAT]
Q9Z269	Vesicle-associated membrane protein-associated protein B OS=Rattus norvegicus GN=Vapb PE=1 SV=3 - [VAPB_RAT]
Q4KM74	Vesicle-trafficking protein SEC22b OS=Rattus norvegicus GN=Sec22b PE=1 SV=3 - [SC22B_RAT]
Q62634	Vesicular glutamate transporter 1 OS=Rattus norvegicus GN=SIc17a7 PE=1 SV=1 - [VGLU1_RAT]
Q9Z2L0	Voltage-dependent anion-selective channel protein 1 OS=Rattus norvegicus GN=Vdac1 PE=1 SV=4 - [VDAC1_RAT]
P81155	Voltage-dependent anion-selective channel protein 2 OS=Rattus norvegicus GN=Vdac2 PE=1 SV=2 - [VDAC2_RAT]
Q9R1Z0	Voltage-dependent anion-selective channel protein 3 OS=Rattus norvegicus GN=Vdac3 PE=1 SV=2 - [VDAC3_RAT]
Q8VHW5	Voltage-dependent calcium channel gamma-8 subunit OS=Rattus norvegicus GN=Cacng8 PE=1 SV=1 - [CCG8_RAT]
Q8CFG6	Voltage-dependent calcium channel subunit alpha-2/delta-2 OS=Rattus norvegicus GN=Cacna2d2 PE=2 SV=1 - [CA2D2_RAT]
Q8CFG5	Voltage-dependent calcium channel subunit alpha-2/delta-3 OS=Rattus norvegicus GN=Cacna2d3 PE=2 SV=1 - [CA2D3_RAT]
P54287	Voltage-dependent L-type calcium channel subunit beta-3 OS=Rattus norvegicus GN=Cacnb3 PE=1 SV=1 - [CACB3_RAT]
Q9ERS3	Voltage-gated calcium channel alpha2/delta-1 subunit OS=Rattus norvegicus GN=Cacna2d1 PE=2 SV=1 - [Q9ERS3_RAT]

S2: Auflistung der durch BONMOT und MS 136 identifizierten Membran- und extrazelluläre Proteine

Uni-Prot ID	Protein
Q7TQ74	Ac1573 OS=Rattus norvegicus GN=Stt3b PE=2 SV=1 - [Q7TQ74_RAT]
O35889	Afadin OS=Rattus norvegicus GN=MIlt4 PE=1 SV=1 - [AFAD_RAT]
Q3B8P6	Alg2 protein (Fragment) OS=Rattus norvegicus GN=Alg2 PE=2 SV=1 - [Q3B8P6_RAT]
Q07936	Annexin A2 OS=Rattus norvegicus GN=Anxa2 PE=1 SV=2 - [ANXA2_RAT]
Q6PST4	Atlastin-1 OS=Rattus norvegicus GN=Atl1 PE=1 SV=1 - [ATLA1_RAT]
P15999	ATP synthase subunit alpha, mitochondrial OS=Rattus norvegicus GN=Atp5a1 PE=1 SV=2 - [ATPA_RAT]
P19511	ATP synthase subunit b, mitochondrial OS=Rattus norvegicus GN=Atp5f1 PE=1 SV=1 - [AT5F1_RAT]
P10719	ATP synthase subunit beta, mitochondrial OS=Rattus norvegicus GN=Atp5b PE=1 SV=2 - [ATPB_RAT]
P31399	ATP synthase subunit d, mitochondrial OS=Rattus norvegicus GN=Atp5h PE=1 SV=3 - [ATP5H_RAT]
D3ZAF6	ATP synthase subunit f, mitochondrial OS=Rattus norvegicus GN=Atp5j2 PE=1 SV=1 - [ATPK_RAT]
P35435	ATP synthase subunit gamma, mitochondrial OS=Rattus norvegicus GN=Atp5c1 PE=1 SV=2 - [ATPG_RAT]
Q06647	ATP synthase subunit O, mitochondrial OS=Rattus norvegicus GN=Atp5o PE=1 SV=1 - [ATPO_RAT]
Q3KRE0	ATPase family AAA domain-containing protein 3 OS=Rattus norvegicus GN=Atad3 PE=2 SV=1 - [ATAD3_RAT]
Q5M7T6	ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 OS=Rattus norvegicus GN=Atp6v0d1 PE=2 SV=1 - [Q5M7T6_RAT]
P26453	Basigin OS=Rattus norvegicus GN=Bsg PE=1 SV=2 - [BASI_RAT]
F1LLX6	Calcium-dependent secretion activator 1 OS=Rattus norvegicus GN=Cadps PE=4 SV=2 - [F1LLX6_RAT]
Q62745	CD81 antigen OS=Rattus norvegicus GN=Cd81 PE=1 SV=1 - [CD81_RAT]
Q63198	Contactin-1 OS=Rattus norvegicus GN=Cntn1 PE=1 SV=2 - [CNTN1_RAT]
Q9R066	Coxsackievirus and adenovirus receptor homolog OS=Rattus norvegicus GN=Cxadr PE=2 SV=2 - [CXAR_RAT]
P07153	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Rattus norvegicus GN=Rpn1 PE=2 SV=1 - [RPN1_RAT]
P25235	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Rattus norvegicus GN=Rpn2 PE=2 SV=2 - [RPN2_RAT]
P24942	Excitatory amino acid transporter 1 OS=Rattus norvegicus GN=SIc1a3 PE=1 SV=2 - [EAA1_RAT]
P31596	Excitatory amino acid transporter 2 OS=Rattus norvegicus GN=SIc1a2 PE=1 SV=2 - [EAA2_RAT]

D3ZX42	G protein-coupled receptor 21 (Predicted), isoform CRA_a OS=Rattus norvegicus GN=Rabgap1 PE=4 SV=1 - [D3ZX42_RAT]
Q6Q7Y5	Galpha13 OS=Rattus norvegicus GN=Gna13 PE=2 SV=1 - [Q6Q7Y5_RAT]
P63079	Gamma-aminobutyric acid receptor subunit beta-3 OS=Rattus norvegicus GN=Gabrb3 PE=1 SV=1 - [GBRB3_RAT]
P08050	Gap junction alpha-1 protein OS=Rattus norvegicus GN=Gja1 PE=1 SV=2 - [CXA1_RAT]
P19491	Glutamate receptor 2 OS=Rattus norvegicus GN=Gria2 PE=1 SV=2 - [GRIA2_RAT]
P10824	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Rattus norvegicus GN=Gnai1 PE=1 SV=3 - [GNAI1_RAT]
P04897	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Rattus norvegicus GN=Gnai2 PE=1 SV=3 - [GNAI2_RAT]
P54311	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Rattus norvegicus GN=Gnb1 PE=1 SV=4 - [GBB1_RAT]
P54313	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 OS=Rattus norvegicus GN=Gnb2 PE=1 SV=4 - [GBB2_RAT]
P59215	Guanine nucleotide-binding protein G(o) subunit alpha OS=Rattus norvegicus GN=Gnao1 PE=1 SV=2 - [GNAO_RAT]
D4ABT0	Guanine nucleotide-binding protein G(o) subunit alpha OS=Rattus norvegicus GN=Gnao1 PE=2 SV=2 - [D4ABT0_RAT]
P82471	Guanine nucleotide-binding protein G(q) subunit alpha OS=Rattus norvegicus GN=Gnaq PE=1 SV=2 - [GNAQ_RAT]
P63095	Guanine nucleotide-binding protein G(s) subunit alpha isoforms short OS=Rattus norvegicus GN=Gnas PE=1 SV=1 - [GNAS2_RAT]
P19627	Guanine nucleotide-binding protein G(z) subunit alpha OS=Rattus norvegicus GN=Gnaz PE=2 SV=3 - [GNAZ_RAT]
Q9JID2	Guanine nucleotide-binding protein subunit alpha-11 OS=Rattus norvegicus GN=Gna11 PE=2 SV=1 - [GNA11_RAT]
P62882	Guanine nucleotide-binding protein subunit beta-5 OS=Rattus norvegicus GN=Gnb5 PE=2 SV=1 - [GBB5_RAT]
G3V8Y8	Huntingtin interacting protein 1, isoform CRA_a OS=Rattus norvegicus GN=Hip1 PE=4 SV=1 - [G3V8Y8_RAT]
P97546-1	Isoform 1 of Neuroplastin OS=Rattus norvegicus GN=Nptn - [NPTN_RAT]
P97829-2	Isoform 2 of Leukocyte surface antigen CD47 OS=Rattus norvegicus GN=Cd47 - [CD47_RAT]
Q812E9-2	Isoform 2 of Neuronal membrane glycoprotein M6-a OS=Rattus norvegicus GN=Gpm6a - [GPM6A_RAT]
Q9R1Z0-2	Isoform 2 of Voltage-dependent anion-selective channel protein 3 OS=Rattus norvegicus GN=Vdac3 - [VDAC3_RAT]
Q64542-3	Isoform ZA of Plasma membrane calcium-transporting ATPase 4 OS=Rattus norvegicus GN=Atp2b4 - [AT2B4_RAT]
P70490	Lactadherin OS=Rattus norvegicus GN=Mfge8 PE=2 SV=1 - [MFGM_RAT]
Q63016	Large neutral amino acids transporter small subunit 1 OS=Rattus norvegicus GN=SIc7a5 PE=1 SV=2 - [LAT1_RAT]
Q5XIN6	LETM1 and EF-hand domain-containing protein 1, mitochondrial OS=Rattus norvegicus GN=Letm1 PE=1 SV=1 - [LETM1_RAT]
Q5FVQ4	Malectin OS=Rattus norvegicus GN=Mlec PE=2 SV=1 - [MLEC_RAT]
P70580	Membrane-associated progesterone receptor component 1 OS=Rattus norvegicus GN=Pgrmc1 PE=1 SV=3 - [PGRC1_RAT]
P31424	Metabotropic glutamate receptor 5 OS=Rattus norvegicus GN=Grm5 PE=1 SV=2 - [GRM5_RAT]
P97521	Mitochondrial carnitine/acylcarnitine carrier protein OS=Rattus norvegicus GN=Slc25a20 PE=1 SV=1 - [MCAT_RAT]
B0BN52	Mitochondrial carrier homolog 2 (C. elegans) OS=Rattus norvegicus GN=Mtch2 PE=2 SV=1 - [B0BN52_RAT]
G3V8F5	Mitochondrial import receptor subunit TOM40 homolog OS=Rattus norvegicus GN=Tomm40 PE=4 SV=1 - [G3V8F5_RAT]
Q75Q39	Mitochondrial import receptor subunit TOM70 OS=Rattus norvegicus GN=Tomm70a PE=1 SV=1 - [TOM70_RAT]
Q3KR86	Mitochondrial inner membrane protein (Fragment) OS=Rattus norvegicus GN=Immt PE=1 SV=1 - [IMMT_RAT]
P53987	Monocarboxylate transporter 1 OS=Rattus norvegicus GN=Slc16a1 PE=1 SV=1 - [MOT1_RAT]
P97603	Neogenin (Fragment) OS=Rattus norvegicus GN=Neo1 PE=2 SV=1 - [NEO1_RAT]
P13596	Neural cell adhesion molecule 1 OS=Rattus norvegicus GN=Ncam1 PE=1 SV=1 - [NCAM1_RAT]
D3ZPC4	Neural cell adhesion molecule L1 OS=Rattus norvegicus GN=L1cam PE=2 SV=2 - [D3ZPC4_RAT]
Q63372	Neurexin-1-alpha OS=Rattus norvegicus GN=Nrxn1 PE=1 SV=3 - [NRX1A_RAT]
P97685	Neurofascin OS=Rattus norvegicus GN=Nfasc PE=1 SV=2 - [NFASC_RAT]
Q812E9	Neuronal membrane glycoprotein M6-a OS=Rattus norvegicus GN=Gpm6a PE=1 SV=1 - [GPM6A_RAT]
E9PSV8	Neuronal membrane glycoprotein M6-b OS=Rattus norvegicus GN=Gpm6b PE=4 SV=2 - [E9PSV8_RAT]
Q76GL9	Neutral amino acid transporter ASCT1 OS=Rattus norvegicus GN=SIc1a4 PE=2 SV=1 - [Q76GL9_RAT]
P32736	Opioid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Opcml PE=1 SV=2 - [OPCM_RAT]
G3V741	Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=Slc25a3 PE=3 SV=1 - [G3V741_RAT]
P11505	Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]
P11506	Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT]

Q64568	Plasma membrane calcium-transporting ATPase 3 OS=Rattus norvegicus GN=Atp2b3 PE=2 SV=2 - [AT2B3_RAT]
D3ZPX4	Plexin-A3 OS=Rattus norvegicus GN=Plxna3 PE=3 SV=1 - [PLXA3_RAT]
D3ZFB6	Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prrt2 PE=1 SV=1 - [PRRT2_RAT]
D4A133	Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]
E9PTI1	Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PTI1_RAT]
F1M7X3	Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]
D3ZQ45	Protein Dsg1b OS=Rattus norvegicus GN=Dsg1b PE=2 SV=1 - [D3ZQ45_RAT]
F1LMV6	Protein Dsp OS=Rattus norvegicus GN=Dsp PE=2 SV=1 - [F1LMV6_RAT]
Q5FVG4	Protein LOC100911440 OS=Rattus norvegicus GN=Slc25a22 PE=2 SV=1 - [Q5FVG4_RAT]
D3ZJX5	Protein LOC687295 OS=Rattus norvegicus GN=LOC687295 PE=4 SV=2 - [D3ZJX5_RAT]
G3V928	Protein Lrp1 OS=Rattus norvegicus GN=Lrp1 PE=4 SV=1 - [G3V928_RAT]
M0RDI5	Protein Mcu OS=Rattus norvegicus GN=Mcu PE=4 SV=1 - [M0RDI5_RAT]
D3ZES7	Protein Plxna4a OS=Rattus norvegicus GN=Plxna4a PE=4 SV=1 - [D3ZES7_RAT]
D3Z981	Protein RGD1560871 OS=Rattus norvegicus GN=RGD1560871 PE=4 SV=2 - [D3Z981_RAT]
F1M5X1	Protein Rrbp1 OS=Rattus norvegicus GN=Rrbp1 PE=2 SV=2 - [F1M5X1_RAT]
B5DFL9	Protein Sestd1 OS=Rattus norvegicus GN=Sestd1 PE=2 SV=1 - [B5DFL9_RAT]
D4A383	Protein Ttyh3 OS=Rattus norvegicus GN=Ttyh3 PE=4 SV=1 - [D4A383_RAT]
Q64605	Receptor-type tyrosine-protein phosphatase S OS=Rattus norvegicus GN=Ptprs PE=1 SV=2 - [PTPRS_RAT]
Q64548	Reticulon-1 OS=Rattus norvegicus GN=Rtn1 PE=2 SV=1 - [RTN1_RAT]
Q6RJR6	Reticulon-3 OS=Rattus norvegicus GN=Rtn3 PE=1 SV=1 - [RTN3_RAT]
F1LRZ1	Ryanodine receptor 2 OS=Rattus norvegicus GN=Ryr2 PE=2 SV=2 - [F1LRZ1_RAT]
P11507	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Rattus norvegicus GN=Atp2a2 PE=1 SV=1 - [AT2A2_RAT]
Q9ERM8	Secretory carrier membrane protein 3 (Fragment) OS=Rattus norvegicus GN=Scamp3 PE=2 SV=1 - [Q9ERM8_RAT]
P56603	Secretory carrier-associated membrane protein 1 OS=Rattus norvegicus GN=Scamp1 PE=1 SV=1 - [SCAM1_RAT]
Q9JKE3	Secretory carrier-associated membrane protein 5 OS=Rattus norvegicus GN=Scamp5 PE=2 SV=1 - [SCAM5_RAT]
Q63965	Sideroflexin-1 OS=Rattus norvegicus GN=Sfxn1 PE=2 SV=4 - [SFXN1_RAT]
Q9JHY2	Sideroflexin-3 OS=Rattus norvegicus GN=Sfxn3 PE=2 SV=1 - [SFXN3_RAT]
Q8CFD0	Sideroflexin-5 OS=Rattus norvegicus GN=Sfxn5 PE=2 SV=1 - [SFXN5_RAT]
P08104	Sodium channel protein type 3 subunit alpha OS=Rattus norvegicus GN=Scn3a PE=1 SV=1 - [SCN3A_RAT]
P23978	Sodium- and chloride-dependent GABA transporter 1 OS=Rattus norvegicus GN=Slc6a1 PE=1 SV=1 - [SC6A1_RAT]
P31647	Sodium- and chloride-dependent GABA transporter 3 OS=Rattus norvegicus GN=Slc6a11 PE=2 SV=1 - [S6A11_RAT]
Q01728	Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=SIc8a1 PE=2 SV=3 - [NAC1_RAT]
P48768	Sodium/calcium exchanger 2 OS=Rattus norvegicus GN=SIc8a2 PE=2 SV=1 - [NAC2_RAT]
D3ZJ86	Sodium/hydrogen exchanger OS=Rattus norvegicus GN=SIc9a6 PE=2 SV=1 - [D3ZJ86_RAT]
P06685	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Rattus norvegicus GN=Atp1a1 PE=1 SV=1 - [AT1A1_RAT]
P06686	Sodium/potassium-transporting ATPase subunit alpha-2 OS=Rattus norvegicus GN=Atp1a2 PE=1 SV=1 - [AT1A2_RAT]
P06687	Sodium/potassium-transporting ATPase subunit alpha-3 OS=Rattus norvegicus GN=Atp1a3 PE=1 SV=2 - [AT1A3_RAT]
P07340	Sodium/potassium-transporting ATPase subunit beta-1 OS=Rattus norvegicus GN=Atp1b1 PE=1 SV=1 - [AT1B1_RAT]
P13638	Sodium/potassium-transporting ATPase subunit beta-2 OS=Rattus norvegicus GN=Atp1b2 PE=2 SV=1 - [AT1B2_RAT]
Q63633	Solute carrier family 12 member 5 OS=Rattus norvegicus GN=SIc12a5 PE=1 SV=2 - [S12A5_RAT]
Q07647	Solute carrier family 2, facilitated glucose transporter member 3 OS=Rattus norvegicus GN=SIc2a3 PE=1 SV=1 - [GTR3_RAT]
Q02563	Synaptic vesicle glycoprotein 2A OS=Rattus norvegicus GN=Sv2a PE=1 SV=2 - [SV2A_RAT]
Q63564	Synaptic vesicle glycoprotein 2B OS=Rattus norvegicus GN=Sv2b PE=1 SV=1 - [SV2B_RAT]
Q62876	Synaptogyrin-1 OS=Rattus norvegicus GN=Syngr1 PE=2 SV=1 - [SNG1_RAT]
P07825	Synaptophysin OS=Rattus norvegicus GN=Syp PE=1 SV=1 - [SYPH_RAT]
P21707	Synaptotagmin-1 US=Rattus norvegicus GN=Syt1 PE=1 SV=3 - [SYT1 RAT]

B5DF41	Syntaphilin OS=Rattus norvegicus GN=Snph PE=2 SV=1 - [SNPH_RAT]
P32851	Syntaxin-1A OS=Rattus norvegicus GN=Stx1a PE=1 SV=1 - [STX1A_RAT]
P61265	Syntaxin-1B OS=Rattus norvegicus GN=Stx1b PE=1 SV=1 - [STX1B_RAT]
O70257	Syntaxin-7 OS=Rattus norvegicus GN=Stx7 PE=1 SV=4 - [STX7_RAT]
Q05546	Tenascin-R OS=Rattus norvegicus GN=Tnr PE=1 SV=1 - [TENR_RAT]
P46462	Transitional endoplasmic reticulum ATPase OS=Rattus norvegicus GN=Vcp PE=1 SV=3 - [TERA_RAT]
Q63584	Transmembrane emp24 domain-containing protein 10 OS=Rattus norvegicus GN=Tmed10 PE=1 SV=2 - [TMEDA_RAT]
A9CMA6	Transmembrane protein 163 OS=Rattus norvegicus GN=Tmem163 PE=1 SV=1 - [TM163_RAT]
P25286	V-type proton ATPase 116 kDa subunit a isoform 1 OS=Rattus norvegicus GN=Atp6v0a1 PE=2 SV=1 - [VPP1_RAT]
P62815	V-type proton ATPase subunit B, brain isoform OS=Rattus norvegicus GN=Atp6v1b2 PE=1 SV=1 - [VATB2_RAT]
Q5FVI6	V-type proton ATPase subunit C 1 OS=Rattus norvegicus GN=Atp6v1c1 PE=2 SV=1 - [VATC1_RAT]
Q6PCU2	V-type proton ATPase subunit E 1 OS=Rattus norvegicus GN=Atp6v1e1 PE=1 SV=1 - [VATE1_RAT]
P63045	Vesicle-associated membrane protein 2 OS=Rattus norvegicus GN=Vamp2 PE=1 SV=2 - [VAMP2_RAT]
Q9Z270	Vesicle-associated membrane protein-associated protein A OS=Rattus norvegicus GN=Vapa PE=1 SV=3 - [VAPA_RAT]
Q9Z269	Vesicle-associated membrane protein-associated protein B OS=Rattus norvegicus GN=Vapb PE=1 SV=3 - [VAPB_RAT]
Q62634	Vesicular glutamate transporter 1 OS=Rattus norvegicus GN=SIc17a7 PE=1 SV=1 - [VGLU1_RAT]
O35458	Vesicular inhibitory amino acid transporter OS=Rattus norvegicus GN=Slc32a1 PE=1 SV=1 - [VIAAT_RAT]
Q9Z2L0	Voltage-dependent anion-selective channel protein 1 OS=Rattus norvegicus GN=Vdac1 PE=1 SV=4 - [VDAC1_RAT]
P81155	Voltage-dependent anion-selective channel protein 2 OS=Rattus norvegicus GN=Vdac2 PE=1 SV=2 - [VDAC2_RAT]
P54290	Voltage-dependent calcium channel subunit alpha-2/delta-1 OS=Rattus norvegicus GN=Cacna2d1 PE=1 SV=1 - [CA2D1_RAT]
Q5GH59	XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT]

S3: Auflistung der durch AAL oder BONMOT und MS-Analyse 332 identifizierten Membran- und extrazelluläre Proteine

Accession	Name	Klassifikation 1
Q7TQ74	Ac1573 OS=Rattus norvegicus GN=Stt3b PE=2 SV=1 - [Q7TQ74_RAT]	Protein modification and degradation
Q99068	Alpha-2-macroglobulin receptor-associated protein OS=Rattus norvegicus GN=Lrpap1 PE=1 SV=2 - [AMRP_RAT]	Others/unknown
Q07936	Annexin A2 OS=Rattus norvegicus GN=Anxa2 PE=1 SV=2 - [ANXA2_RAT]	Calcium2+ binding
Q75T81	Asc-type amino acid transporter 1 OS=Rattus norvegicus GN=SIc7a10 PE=2 SV=1 - [Q75T81_RAT]	Transporter proteins
P55280	Cadherin-6 OS=Rattus norvegicus GN=Cdh6 PE=2 SV=1 - [CADH6_RAT]	Cell adhesion molecules
O54800	Cadherin-8 OS=Rattus norvegicus GN=Cdh8 PE=2 SV=1 - [CADH8_RAT]	Cell adhesion molecules
D4A055	Calcium channel, voltage-dependent, beta 4 subunit, isoform CRA_b OS=Rattus norvegicus GN=Cacnb4 PE=4 SV=1 -	
	[D4A055_RAT]	Ionotropic receptors and ion channels
F1LLX6	Calcium-dependent secretion activator 1 OS=Rattus norvegicus GN=Cadps PE=4 SV=2 - [F1LLX6_RAT]	Presynaptic vesicle proteins
Q6Q0N0	Calsyntenin-1 OS=Rattus norvegicus GN=Clstn1 PE=2 SV=1 - [CSTN1_RAT]	Cell adhesion molecules
O35112	CD166 antigen OS=Rattus norvegicus GN=Alcam PE=1 SV=1 - [CD166_RAT]	Cell adhesion molecules
B1PLB2	CD34 antigen isoform 2 OS=Rattus norvegicus GN=Cd34 PE=2 SV=1 - [B1PLB2_RAT]	Cell adhesion molecules
P26051	CD44 antigen OS=Rattus norvegicus GN=Cd44 PE=1 SV=2 - [CD44_RAT]	Extracellular matrix components
Q6AYP5	Cell adhesion molecule 1 OS=Rattus norvegicus GN=Cadm1 PE=2 SV=1 - [Q6AYP5_RAT]	Cell adhesion molecules
Q1WIM1	Cell adhesion molecule 4 OS=Rattus norvegicus GN=Cadm4 PE=1 SV=1 - [CADM4_RAT]	Cell adhesion molecules
Q62845	Contactin-4 OS=Rattus norvegicus GN=Cntn4 PE=1 SV=1 - [CNTN4_RAT]	Cell adhesion molecules
Q9R066	Coxsackievirus and adenovirus receptor homolog OS=Rattus norvegicus GN=Cxadr PE=2 SV=2 - [CXAR_RAT]	Cytoskeleton/actin-associated proteins
Q08554	Desmocollin-1 OS=Homo sapiens GN=DSC1 PE=1 SV=2 - [DSC1_HUMAN]	Cell adhesion molecules
O88775	Embigin OS=Rattus norvegicus GN=Emb PE=1 SV=1 - [EMB_RAT]	Cell adhesion molecules
P51907	Excitatory amino acid transporter 3 OS=Rattus norvegicus GN=SIc1a1 PE=1 SV=1 - [EAA3_RAT]	Transporter proteins

Q8K3V3	G-protein coupled receptor 56 OS=Rattus norvegicus GN=Gpr56 PE=2 SV=1 - IGPR56 RATI	Cell adhesion molecules
P63079	Gamma-aminobutyric acid receptor subunit beta-3 OS=Rattus norvegicus GN=Gabrb3 PE=1 SV=1 - [GBRB3 RAT]	Ionotropic receptors and ion channels
B2RYC9	Gba protein OS=Rattus norvegicus GN=Gba PE=2 SV=1 - [B2RYC9 RAT]	Catabolic pathway
Q792X9	GDNF receptor-beta (Fragment) OS=Rattus norvegicus GN=Gfra2 PE=2 SV=1 - [Q792X9_RAT]	Metabotropic receptors- RTKs and others
G3V8G5	Golgi apparatus protein 1 OS=Rattus norvegicus GN=Glg1 PE=4 SV=1 - [G3V8G5_RAT]	Others (Lipase binding)
G3V8K2	Guanine nucleotide-binding protein subunit gamma OS=Rattus norvegicus GN=Gng3 PE=3 SV=1 - [G3V8K2_RAT]	Regulatory proteins
G3V8Y8	Huntingtin interacting protein 1, isoform CRA_a OS=Rattus norvegicus GN=Hip1 PE=4 SV=1 - [G3V8Y8_RAT]	Endocytic proteins
Q925N6	Immunoglobulin superfamily member 1 OS=Rattus norvegicus GN=lgsf1 PE=2 SV=1 - [IGSF1_RAT]	Regulatory proteins
Q924W2	Integrin alpha 6 subchain (Fragment) OS=Rattus norvegicus GN=Itga6 PE=2 SV=1 - [Q924W2_RAT]	Cell adhesion molecules
P43406	Integrin alpha-V OS=Mus musculus GN=Itgav PE=1 SV=2 - [ITAV_MOUSE]	Cell adhesion molecules
D3ZP06	Integrin beta OS=Rattus norvegicus GN=Itgb8 PE=3 SV=1 - [D3ZP06_RAT]	Cell adhesion molecules
P49134	Integrin beta-1 OS=Rattus norvegicus GN=Itgb1 PE=2 SV=1 - [ITB1_RAT]	Cell adhesion molecules
G3V667	Integrin, alpha 6, isoform CRA_a OS=Rattus norvegicus GN=ltga6 PE=3 SV=1 - [G3V667_RAT]	Cell adhesion molecules
P97546-1	Isoform 1 of Neuroplastin OS=Rattus norvegicus GN=Nptn - [NPTN_RAT]	Cell adhesion molecules
P22462-3	Isoform KSHIIA.1 of Potassium voltage-gated channel subfamily C member 2 OS=Rattus norvegicus GN=Kcnc2 -	
	[KCNC2_RAT]	Ionotropic receptors and ion channels
Q03351-2	Isoform TRKC of NT-3 growth factor receptor OS=Rattus norvegicus GN=Ntrk3 - [NTRK3_RAT]	Metabotropic receptors- RTKs and others
P70490	Lactadherin OS=Rattus norvegicus GN=Mfge8 PE=2 SV=1 - [MFGM_RAT]	Cell adhesion molecules
Q63016	Large neutral amino acids transporter small subunit 1 OS=Rattus norvegicus GN=SIc7a5 PE=1 SV=2 - [LAT1_RAT]	Transporter proteins
G3V881	Leucine rich repeat neuronal 6A, isoform CRA_a OS=Rattus norvegicus GN=Lingo1 PE=4 SV=1 - [G3V881_RAT]	Others/unknown
Q45R42	Leucine-rich repeat-containing protein 4 OS=Rattus norvegicus GN=Lrrc4 PE=1 SV=1 - [LRRC4_RAT]	Others/unknown
P0CC10	Leucine-rich repeat-containing protein 4B OS=Rattus norvegicus GN=Lrrc4b PE=1 SV=1 - [LRC4B_RAT]	Cell adhesion molecules
P27615	Lysosome membrane protein 2 OS=Rattus norvegicus GN=Scarb2 PE=1 SV=2 - [SCRB2_RAT]	Cell adhesion molecules
P14562	Lysosome-associated membrane glycoprotein 1 OS=Rattus norvegicus GN=Lamp1 PE=1 SV=1 - [LAMP1_RAT]	Others/unknown
Q5FVQ4	Malectin OS=Rattus norvegicus GN=Mlec PE=2 SV=1 - [MLEC_RAT]	Others/unknown
P60756	MAM domain-containing glycosylphosphatidylinositol anchor protein 2 OS=Rattus norvegicus GN=Mdga2 PE=2 SV=1 - [MDGA2_RAT]	Others/unknown
Q5XII0	Mammalian ependymin-related protein 1 OS=Rattus norvegicus GN=Epdr1 PE=2 SV=1 - [EPDR1_RAT]	Extracellular matrix components
G3V6H5	Mitochondrial 2-oxoglutarate/malate carrier protein OS=Rattus norvegicus GN=Slc25a11 PE=3 SV=1 - [G3V6H5_RAT]	Transporter proteins
P97521	Mitochondrial carnitine/acylcarnitine carrier protein OS=Rattus norvegicus GN=Slc25a20 PE=1 SV=1 - [MCAT_RAT]	Transporter proteins
Q505J6	Mitochondrial glutamate carrier 2 OS=Rattus norvegicus GN=Slc25a18 PE=2 SV=2 - [GHC2_RAT]	Transporter proteins
G3V8F5	Mitochondrial import receptor subunit TOM40 homolog OS=Rattus norvegicus GN=Tomm40 PE=4 SV=1 - [G3V8F5_RAT]	Transporter proteins
P08482	Muscarinic acetylcholine receptor M1 OS=Rattus norvegicus GN=Chrm1 PE=1 SV=1 - [ACM1_RAT]	Metabotropic receptors- GPRCRs
Q6PW34	Neuronal cell adhesion molecule long isoform Nc17 OS=Rattus norvegicus GN=Nrcam PE=2 SV=1 - [Q6PW34_RAT]	Cell adhesion molecules
E9PSV8	Neuronal membrane glycoprotein M6-b OS=Rattus norvegicus GN=Gpm6b PE=4 SV=2 - [E9PSV8_RAT]	Cell adhesion molecules
O35764	Neuronal pentraxin receptor OS=Rattus norvegicus GN=Nptxr PE=1 SV=1 - [NPTXR_RAT]	Calcium2+ binding
Q76GL9	Neutral amino acid transporter ASCT1 OS=Rattus norvegicus GN=Slc1a4 PE=2 SV=1 - [Q76GL9_RAT]	Transporter proteins
Q6R5J6	NYGGF5 OS=Rattus norvegicus GN=Slc25a27 PE=2 SV=1 - [Q6R5J6_RAT]	Transporter proteins
Q7TNM3	Oligodendrocyte-myelin glycoprotein OS=Rattus norvegicus GN=Omg PE=2 SV=1 - [Q7TNM3_RAT]	Others/unknown
G3V741	Phosphate carrier protein, mitochondrial OS=Rattus norvegicus GN=SIc25a3 PE=3 SV=1 - [G3V741_RAT]	Transporter proteins
D3ZQ57	Plexin B2 OS=Rattus norvegicus GN=Plxnb2 PE=4 SV=1 - [D3ZQ57_RAT]	Others/unknown
D3ZPX4	Plexin-A3 OS=Rattus norvegicus GN=Plxna3 PE=3 SV=1 - [PLXA3_RAT]	Others/unknown
F1LNP8	Poliovirus receptor-related 1 OS=Rattus norvegicus GN=Pvrl1 PE=4 SV=2 - [F1LNP8_RAT]	Others/unknown
D4A6L0	Probable G-protein coupled receptor 158 OS=Rattus norvegicus GN=Gpr158 PE=3 SV=1 - [GP158_RAT]	Metabotropic receptors- GPRCRs
F1LRS5	Protein Aplp1 (Fragment) OS=Rattus norvegicus GN=Aplp1 PE=2 SV=1 - [F1LRS5_RAT]	Others/unknown
F1M1A2	Protein Cdh12 OS=Rattus norvegicus GN=Cdh12 PE=3 SV=2 - [F1M1A2_RAT]	Cell adhesion molecules

Tot2FOS Protein Cdte OS-Ratus norvegicus GN-Edito PE-2 SV-1 - [D2/PG. RAT] Cell adhesion molecules GRK1M8 Protein FAMS OS-Ratus norvegicus GN-Edito PE-2 SV-1 - [RAMS RAT] Extracellular matrix components MORAS4 Protein Inglori OS-Ratus norvegicus GN-Edito SV-2 - [FLIXR0_RAT] Extracellular matrix components D32LXS Protein InGC OS-Ratus norvegicus GN-Edito SV-2 - [FLIXR0_RAT] Transporter proteins D32LXS Protein InGC OS-Ratus norvegicus GN-Edito SV-2 - [FLIXR0_RAT] Others'unknown D32LXS Protein InGO OS-Ratus norvegicus GN-Edito PE-4 SV-1 - [D2/LXS_RAT] Others'unknown D4LXDS Protein RGD1550672 Schatta norvegicus GN-Edito PE-4 SV-1 - [D2/LXD, GRT] Others'unknown D4LXDS Protein RGD1550672 Schatta norvegicus GN-Edito PE-4 SV-1 - [D2/LXD, GRT] Others'unknown D4LXDS Protein RGD1550672 Schatta norvegicus GN-Edito PE-4 SV-1 - [D4/LXD, GRT] Others'unknown D4LXDS Protein Sight I GS-Fatus norvegicus GN-Edito PE-4 SV-1 - [D4/LXD, GRT] Others'unknown D4X571 Protein Sight I GS-Fatus norvegicus GN-Edito PE-4 SV-1 - [D4/LXD, GRT] Others'unknown D4X571 Protein Sight I GS-Fatus norvegicus GN-Edito PE-2 SV-1 - [D42/LXD, GRT] Others'unknown <	F1M702	Protein Cdh18 OS=Rattus norvegicus GN=Cdh18 PE=2 SV=1 - [F1M702_RAT]	Cell adhesion molecules
CBRK1MB Protein IpROS CS=Ratus nonvegicus CM-Isports PE-4 SV2-1 [FLM0E, RAT] Others/unknown MORAS4 Protein IgR0S CS=Ratus nonvegicus CM-Isports PE-4 SV2-1 [TUX0E, RAT] Extracellular matrix components D3ZUX5 Protein IngR0S CS=Ratus nonvegicus CM-Isports PE-4 SV2-1 [TUX0E, RAT] Transporter proteins D3ZUX5 Protein IncR0S CS=Ratus nonvegicus CM-Isports PE-2 SV2-2 [TUX0E, RAT] Others/unknown D3ZUX5 Protein IncR0S CS=Ratus nonvegicus CM-PE04P E-2 SV2-2 [TUX0E, RAT] Others/unknown D3ZUX5 Protein IncR0S CS=Ratus nonvegicus CM-PE04P E-2 SV2-1 [D3ZDX5, RAT] Others/unknown D4XD83 Protein Rgma CS=Ratus nonvegicus CM-RC0155907 2FE-4 SV1-1 [D4XD8, RAT] Others/unknown D4XD84 Protein Rgma CS=Ratus nonvegicus CM-RC0155907 EFE-4 SV1-1 [D4XD8, RAT] Others/unknown D4XD48 Protein Rgma CS=Ratus nonvegicus CM-RS100 FE-2 SV1-1 [D4XD4, RAT] Others/unknown D3ZVM6 Protein Rgma CS=Ratus nonvegicus CM-RS102 FE-2 SV1-1 [D4XD4, RAT] Transporter proteins D4XD44 Protein Rgma CS=Ratus nonvegicus CM-RS102 FE-2 SV1-1 [D4XD4, RAT] Transporter proteins D4XD47 Protein Rgma CS=Ratus nonvegicus CM-RS102 FE-2 SV1-1 [D4XD4, RAT] Transporter proteins D4XD77 Proteas St2220 CS=Ratus nonvegicus	D3ZFQ5	Protein Cdh9 OS=Rattus norvegicus GN=Cdh9 PE=3 SV=1 - [D3ZFQ5_RAT]	Cell adhesion molecules
Fr1LVR0 Protein Iglon5 OS=Ratus norvegicus GN-Iglor2 PE-4 SV-2. [FLVR0, RAT] Extracelular matrix components D92LXS Protein IGC1 (Fragment) OS=Ratus norvegicus GN-IgC2 PE-4 SV-2. [D32LXS, RAT] Transporter proteins D32LXS Protein Misd OS=Ratus norvegicus GN-IndC687295 PE-4 SV-2. [D32LXS, RAT] Others/unknown D32LXS Protein Misd OS=Ratus norvegicus GN-Pachto PE-2 SV-2. [FLISD1, RAT] Cell adhesion molecules D32DXS Protein Pacht OS=Ratus norvegicus GN-Pachto PE-4 SV-1. [D32DXS, RAT] Others/unknown D4ACB3 Protein Rich OS=Ratus norvegicus GN-Reprotein PE-4 SV-1. [D32DXS, RAT] Others/unknown D4ACB3 Protein Seidt OS=Ratus norvegicus GN-Seidt PE-4 SV-1. [D32DXS, RAT] Others/unknown B5DFL9 Protein Sizd OS=Ratus norvegicus GN-Seidt PE-4 SV-1. [D32VM6, RAT] Cell adhesion molecules E97TX9 Protein Sizd OS=Ratus norvegicus GN-Sizd PE-4 SV-1. [B3DFL9, RAT] Transporter proteins OME4V4 Protein Sizd OS=Ratus norvegicus GN-Sizd Sizd PE-4 SV-1. [M32V4 RAT] Transporter proteins OME4V4 Protein Sizd OS=Ratus norvegicus GN-Sizd Sizd PE-4 SV-1. [M32V4 RAT] Transporter proteins OME4V4 Protein Sizd OS=Ratus norvegicus GN-Sizd Sizd PE-4 SV-1. [M32V4 RAT] Transporter proteins OME4V4	Q8K1M8	Protein FAM5B OS=Rattus norvegicus GN=Fam5b PE=2 SV=1 - [FAM5B_RAT]	Others/unknown
M0RAS4 Protein LOSAR Extracellular matrix components D32LX5 Protein LOSAR228 OS-Ratus norvegicus GN-LoGAR289 FE-4 SV-1 LOSACS, RAT] Transporter proteins D32LX5 Protein Misd6 OS-Ratus norvegicus GN-LoGAR289 FE-4 SV-1 LOSACS, RAT] Others/unknown D32LX5 Protein Protein Schattus norvegicus GN-LoGAR289 FE-4 SV-1 LOSACS, RAT] Others/unknown D4AC83 Protein Ryma OS-Ratus norvegicus GN-LoGAR FE-4 SV-1 LOSACS, RAT] Others/unknown D4AC84 Protein Ryma OS-Ratus norvegicus GN-Select IFE-2 SV-1 LOAAC83, RAT] Others/unknown D4AC83 Protein Sigle-1 OS-Ratus norvegicus GN-Select IFE-2 SV-1 LOAAC83, RAT] Others/unknown D32VM6 Protein Sigle-2 OS-Ratus norvegicus GN-Select IFE-4 SV-1 LOAAC83, RAT] Transporter proteins D47045 Protein Sic23-OS-Ratus norvegicus GN-Select IFE-4 SV-1 LOAAT1 Cell adhesion molecules D47045 Protein Sic23-OS-Ratus norvegicus GN-Select IFE-4 SV-1 LOAAT1 Transporter proteins D47047 Protein Sic23-OS-Ratus norvegicus GN-Select IFE-4 SV-1 LOBAT1 Transporter proteins D47047 Protein Sic23-OS-Ratus norvegicus GN-Select IFE-4 SV-1 LOBAT5 </td <td>F1LVR0</td> <td>Protein IgIon5 OS=Rattus norvegicus GN=IgIon5 PE=4 SV=2 - [F1LVR0_RAT]</td> <td>Extracellular matrix components</td>	F1LVR0	Protein IgIon5 OS=Rattus norvegicus GN=IgIon5 PE=4 SV=2 - [F1LVR0_RAT]	Extracellular matrix components
D32LXS Protein Micd OS=Ratus norvegicus GN=LOC687295 PE-4 SV-2 [D32LXS_RAT] Transporter proteins D32CJ3 Protein Micd OS=Ratus norvegicus GN=Micd PE-4 SV-1 [D32LX3_RAT] Cell adhesion molecules D32DX5 Protein Picht OS=Ratus norvegicus GN=Picht PE-4 SV-1 [D32LX3_RAT] Cell adhesion molecules D32DX5 Protein Picht OS=Ratus norvegicus GN=Ret Mich PE-4 SV-1 [D32LX6_RAT] Transporter proteins D4AC83 Protein Right OS=Ratus norvegicus GN=Ret Mich PE-4 SV-1 [D32LX6_RAT] Others/unknown B35DF19 Protein Sized OS=Ratus norvegicus GN=Sized PE-4 SV-1 [D32LX6_RAT] Others/unknown B35VH0 Protein Sized OS=Ratus norvegicus GN=Sized PE-4 SV-1 [D32LX6_RAT] Transporter proteins M0R4V4 Protein Sized OS=Ratus norvegicus GN=Sized PE-4 SV-1 [D32LX6_RAT] Transporter proteins D4A517 Protein Sized OS=Ratus norvegicus GN=Sized PE-4 SV-1 [D32LX6_RAT] Transporter proteins D4A517 Protein Sized OS=Ratus norvegicus GN=Sized PE-4 SV-1 [M24V4_RAT] Transporter proteins D4A517 Protein Sized OS=Ratus norvegicus GN=Sized PE-2 SV-1 [M24V2_RAT] Catabelic pathway C11842 Protein Sized OS=Ratus norvegicus GN=Sized PE-2 SV-1 [M24V2_RAT] Cell adhesion molecules D425770 Protein Sized OS=Ratus norvegic	M0RAS4	Protein Igsf21 (Fragment) OS=Rattus norvegicus GN=Igsf21 PE=4 SV=1 - [M0RAS4_RAT]	Extracellular matrix components
192CI.3 Protein Mids6 OS-Rattus norvegicus GN-Pickel PE-2 SV-2 [FILS01, RAT] Others/unknown 191S01 Protein Picht OS-Rattus norvegicus GN-Picht PE-2 SV-2 [FILS01, RAT] Others/unknown 192DX5 Protein RD10556972 OS-Rattus norvegicus GN-Picht PE-4 SV-1 [DACB3, RAT] Others/unknown 194AC83 Protein Rgma OS-Rattus norvegicus GN-Sett PE-4 SV-1 [DACB3, RAT] Others/unknown 193ZVM6 Protein Siglect OS-Rattus norvegicus GN-Sett PE-2 SV-1 [BDFD, RAT] Others/unknown 193ZVM6 Protein Siglect OS-Rattus norvegicus GN-Sic232 PE-4 SV-1 [BDFD, RAT] Transporter proteins 194X43 Protein Sic232 OS-Rattus norvegicus GN-Sic232 PE-4 SV-1 [BDFD, RAT] Transporter proteins 194X44 Protein Sic2327 OS-Rattus norvegicus GN-Sic2327 PE-4 SV-1 [BDFD, RAT] Transporter proteins 04X4709 Protein Sic2347 OS-Rattus norvegicus GN-Sic2327 PE-4 SV-1 [D4A517, RAT] Transporter proteins 04X471 Protein Sic301 OS-Rattus norvegicus GN-Sic2327 PE-2 SV-1 [OBFHV, RAT] Others/unknown 068H88 Protocadherin 7, isoform CRA, b OS-Rattus norvegicus GN-Picht PE-2 SV-1 [C4BHB, RAT] Cell adhesion molecules 014917 Protocadherin 7, isoform CRA, b OS-Rattus norvegicus GN-Sic232 PE-2 SV-1 [C4BHB, RAT] Cell adhesion molecules 014917 Protocadherin 7, isoform CRA, b OS-Rattus norvegicus	D3ZJX5	Protein LOC687295 OS=Rattus norvegicus GN=LOC687295 PE=4 SV=2 - [D3ZJX5_RAT]	Transporter proteins
F1LS01 Protein Padha QS-Rattus norvegicus GN-Padha PE-2 SV-2 - [F1LS01, RAT] Cell adhesion molecules D3ZDXS Protein RD10 SS-Rattus norvegicus GN-Patha PE-4 SV-1 - [DA408, RAT] Transporter proteins D4A683 Protein RGD GS-Rattus norvegicus GN-Bagna PE-4 SV-1 - [DA408, RAT] Others/unknown B5DF19 Protein Sett1 OS-Rattus norvegicus GN-Sett1 PE-2 SV-1 - [DA408, RAT] Others/unknown B3ZVM6 Protein Sett1 OS-Rattus norvegicus GN-Sigler 1 PE-4 SV-2 - [D3ZVM6 RAT] Cell adhesion molecules E9PTX9 Protein Sigler 1 OS-Rattus norvegicus GN-Sic22a2 PE-4 SV-1 - [BDF17, RAT] Transporter proteins O4PEF17 Protein Sic2a2 OS-Rattus norvegicus GN-Sic22a2 PE-4 SV-1 - [MO2PH7, RAT] Transporter proteins O4PEF17 Protein Sic3a10 OS-Rattus norvegicus GN-Sic2a32 PE-4 SV-1 - [MO4PH7, RAT] Catabolic pathway F1M872 Protein Sic3a10 OS-Rattus norvegicus GN-Forda7 PE-2 SV-1 - [C08PH7, RAT] Catabolic pathway F1M872 Protein Sic3a10 OS-Rattus norvegicus GN-Forda7 PE-2 SV-1 - [C08PH8, RAT] Cell adhesion molecules G8H88 Protocadhein 7, isoform CRA - DS-Rattus norvegicus GN-FORT PE-2 SV-1 - [C08PH8, RAT] Cell adhesion molecules G8H88 Protocadhein 7, isoform CRA - DS-Rattus norvegicus GN-Sic2a PE-2 SV-1 - [C08PH8, RAT] Cell adhesion molecules <td>D3ZCJ3</td> <td>Protein Mfsd6 OS=Rattus norvegicus GN=Mfsd6 PE=4 SV=1 - [D3ZCJ3_RAT]</td> <td>Others/unknown</td>	D3ZCJ3	Protein Mfsd6 OS=Rattus norvegicus GN=Mfsd6 PE=4 SV=1 - [D3ZCJ3_RAT]	Others/unknown
D32D/S6 Protein PknD1 OS=Ratus norvegicus ON=PknD1 PE=4 SV=1 (D32DXS, RAT] Others/unknown D4ACB3 Protein RG10558972 OS=Ratus norvegicus ON=RCD1598972 PE=4 SV=1 (D4ACB3, RAT] Tonsporter proteins D4A188 Protein RG10558972 OS=Ratus norvegicus GN=Seid1 PE=2 SV=1 (EBSPL, RAT] Others/unknown D32VM6 Protein Siglect OS=Ratus norvegicus GN=Seid1 PE=2 SV=1 (EBSPLS, RAT] Tonsporter proteins D32VM6 Protein Sic22 OS=Ratus norvegicus GN=Sic12a2 PE=4 SV=1 (SV=17) Transporter proteins D47474 Protein Sic23a2 OS=Ratus norvegicus GN=Sic12a2 PE=4 SV=1 (D4A717, RAT] Transporter proteins D474757 Protein Sic23a2 OS=Ratus norvegicus GN=Sic23a2 PE=4 SV=1 (D4A717, RAT] Transporter proteins D4A517 Protein Sic3a10 OS=Ratus norvegicus GN=Sic23a2 PE=4 SV=1 (D4A707, RAT] Catabesion nolecules C44709 Protein Tspan7 (Fragment) OS=Ratus norvegicus GN=Ped7P FE=2 SV=1 (D4A817, RAT] Catabesion nolecules C68HB8 Protocadherin 7, Isdorm CRA, c OS=Ratus norvegicus GN=Ped7P FE=2 SV=1 (D4A817, RAT] Catabesion nolecules C68HB8 Protocadherin 7, Soform CRA, c OS=Ratus norvegicus GN=Ped7P FE=2 SV=1 (D4B818, RAT] Catabesion nolecules C68HB8 Protocadherin 7, Soform CRA, c OS=Ratus norvegicus GN=Ped7PE=2 SV=1 (SC4B81, RAT] Catabesion nolecules	F1LS01	Protein Pcdh9 OS=Rattus norvegicus GN=Pcdh9 PE=2 SV=2 - [F1LS01_RAT]	Cell adhesion molecules
ID4A633 Protein RGD1559672 OS=Ratus norvegicus GN=RGD1559672 PE=4 SV=1 [DA4083_RAT] Transporter proteins D4A188 Protein Rgm OS=Ratus norvegicus GN=Seatd1 PE=2 SV=1 [DA4088_RAT] Others/unknown B5DFL9 Protein Sestid OS=Ratus norvegicus GN=Sestid1 PE=2 SV=1 [B5DFL9_RAT] Cell adhesion molecules E9PTX9 Protein Sic12a OS=Ratus norvegicus GN=Sic25a2 PE=4 SV=1 [D40744 RAT] Transporter proteins OMR4V4 Protein Sic25a2 OS=Ratus norvegicus GN=Sic25a2 PE=4 SV=1 [D40744 RAT] Transporter proteins O45F17 Protein Sic25a2 OS=Ratus norvegicus GN=Sic25a3 PE=4 SV=1 [D40747 RAT] Transporter proteins O44517 Protein Sic25a2 OS=Ratus norvegicus GN=Sic25a3 PE=4 SV=1 : IO477D9 RAT] Catabolic pathway C4V709 Protein Sic301 OS=Ratus norvegicus GN=Port PE=2 SV=1 : IO477D9 RAT] Catabolic pathway C4W709 Protein Sic301 OS=Ratus norvegicus GN=Port PE=2 SV=1 : IO487H8 RAT] Cell adhesion molecules C88H58 Protocadherin Z, sidorm CAL & DS=Ratus norvegicus GN=PortPT FE=2 SV=1 : IO487H8 RAT] Cell adhesion molecules C88H54 Protocadherin Z, sidorm CAL & DS=Ratus norvegicus GN=Sic27 PE=2 SV=1 : IO487H8 RAT] Cell adhesion molecules C88H56 Protocadherin Z, sidorm CAL & DS=Ratus norvegicus GN=Sic27 PE=2 SV=1 : IO471 MIAN2 Cell adhesion molecules<	D3ZDX5	Protein Plxnb1 OS=Rattus norvegicus GN=Plxnb1 PE=4 SV=1 - [D3ZDX5_RAT]	Others/unknown
D44188 Protein Rgma QS-Ratus norvegicus GN-Rgma PE-4 SV-1 - [D47488.RAT] Others/unknown D32VM6 Protein Siglect OS-Ratus norvegicus GN-Seiglect 1PE-4 SV-2 - [D32VM6.RAT] Cell achesion molecules D32VM6 Protein Sitzet OS-Ratus norvegicus GN-Seiglect 1PE-4 SV-2 - [D32VM6.RAT] Transporter proteins M0R4V4 Protein Sitz32 OS-Ratus norvegicus GN-Sitz323 PE-4 SV-1 - [D47479.RAT] Transporter proteins Q3EPH7 Protein Sitz332 OS-Ratus norvegicus GN-Sitz332 PE-4 SV-1 - [D47517.RAT] Transporter proteins Q47709 Protein Sitz332 OS-Ratus norvegicus GN-Sitz332 PE-4 SV-1 - [Q4770-RAT] Catabolic pathway F11M872 Protein Singa7 (Fragment) GS-Ratus norvegicus GN-Sitz332 PE-4 SV-1 - [Q4770-RAT] Catabolic pathway G48709 Protein Singa7 (Fragment) GS-Ratus norvegicus GN-Pcdr/ PE-2 SV-1 - [Q4770-RAT] Cell achesion molecules Q68H86 Protocacherin 7, isoform CRA, DGS-Ratus norvegicus GN-Pcdr/ PE-2 SV-1 - [M472, RAT] Cell achesion molecules Q68H86 Protocacherin 7, isoform CRA, DGS-Ratus norvegicus GN-Pcdr/ PE-2 SV-1 - [068H86, RAT] Cell achesion molecules Q68H86 Protocacherin 7, soform CRA, DGS-Ratus norvegicus GN-Pcdr/ PE-2 SV-1 - [062861, RAT] Cell achesion molecules Q61497 Ratus norvegicus GN-Pcdr/ PE-2 SV-1 - [062816, RAT] Cell a	D4ACB3	Protein RGD1559672 OS=Rattus norvegicus GN=RGD1559672 PE=4 SV=1 - [D4ACB3_RAT]	Transporter proteins
B5DFL9 Protein Sestid CS-Ratus norvegicus GN-Sestid PE-2 SV-1 - [B2DFL9_RAT] Others/unknown D32VM6 Protein Sic2a2 OS-Ratus norvegicus GN-Siglect PE-4 SV-2 - [D32VM6 RAT] Celi adhesion molecules E9PTX9 Protein Sic2a2 OS-Ratus norvegicus GN-Sic2a2 PE-4 SV-1 - [D47MP ART] Transporter proteins 08PPH7 Protein Sic25a2 OS-Ratus norvegicus GN-Sic25a2 PE-4 SV-1 - [048PH7_RAT] Transporter proteins 04A709 Protein Sic25a2 OS-Ratus norvegicus GN-Sic25a2 PE-2 SV-1 - [04877_RAT] Transporter proteins 04A770 Protein Tsparr/ (Fragment) OS-Ratus norvegicus GN-Sic25a2 SV-1 - [04877_RAT] Celi adhesion molecules 068H85 Protocadherin 7, isoform CRA, b OS-Ratus norvegicus GN-PcdrP PE-2 SV-1 - [068H85_RAT] Celi adhesion molecules 068H8 Protocadherin 7, isoform CRA, c OS-Ratus norvegicus GN-PcdrP PE-2 SV-1 - [068H85_RAT] Celi adhesion molecules 014917 Protocadherin 7, Isoform CRA, c OS-Ratus norvegicus GN-PcdrP PE-2 SV-1 - [068H85_RAT] Celi adhesion molecules 026WD1 Reticulor-A ceptor-Ika 2 OS-Ratus norvegicus GN-Schaf42 PE-2 SV-1 - [RARL2_RAT] Others/unknown 026281 Sodium channel protein type 3 subunt tight OS-Ratus norvegicus GN-Schaf2 PE-1 SV-1 - [RARL2_RAT] Others/unknown 062861 Sodium-channel protein type 3 subunt tight OS-Ratus norvegic	D4A188	Protein Rgma OS=Rattus norvegicus GN=Rgma PE=4 SV=1 - [D4A188_RAT]	Others/unknown
D32/Wile Protein Siglect OS-Ratus norvegicus GN-Siglect PE=4 SV-2 : [D32/Wie RAT] Cell adhesion molecules EPPTX9 Protein Sic2820 SQ=Ratus norvegicus GN-Sic2820 PE=4 SV-1 : [M0R4V4 RAT] Transporter proteins Q0EPH7 Protein Sic2820 SQ=Ratus norvegicus GN-Sic2820 PE=4 SV-1 : [00EPH7 RAT] Transporter proteins Q0EPH7 Protein Sic2820 SQ=Ratus norvegicus GN-Sic2820 PE=4 SV-1 : [04X7D9 RAT] Catabolic pathway Q4W7D9 Protein Singd1b OS=Ratus norvegicus GN-Sic3910 PE=4 SV=1 : [04X7D9 RAT] Catabolic pathway Q4W7D9 Protecafnin T, soform CRA, 0 SQ=Ratus norvegicus GN+Edn7 PE=2 SV=1 : [068H55, RAT] Cell adhesion molecules Q68H85 Protocadherin 7, soform CRA, 0 SQ=Ratus norvegicus GN+Pcdn7 PE=2 SV=1 : [068H56, RAT] Cell adhesion molecules Q68H86 Protocadherin 7, soform CRA, 0 SQ=Ratus norvegicus GN+Pcdn7 PE=2 SV=1 : [068H56, RAT] Cell adhesion molecules Q68H86 Protocadherin 7, soform on sagiens GN+PCdn7 PE=2 SV=1 : [068H56, RAT] Cell adhesion molecules Q14917 Protocadherin 7, soform on sagiens GN+PCDH7 PE=2 SV=1 : [068H56, RAT] Cell adhesion molecules Q68H86 Protocadherin 7, soform on sagiens GN+PCDH7 PE=2 SV=1 : [RATL2, RAT] Others/unknown Q68261 Sodium channel bstubuit Ub=2 QS=Ratus norvegicus GN-Scn2b PE=1 SV=1 : [SCN3, RAT]	B5DFL9	Protein Sestd1 OS=Rattus norvegicus GN=Sestd1 PE=2 SV=1 - [B5DFL9_RAT]	Others/unknown
EPPTX9 Protein Sic12a2 OS=Ratus norvegicus GN=Sic12a2 PE=4 SV=1 [J0RRV4 RAT] Transporter proteins MORAV4 Protein Sic28a2 OS=Ratus norvegicus GN=Sic2a27 PE=4 SV=1 [J0RRV4 RAT] Transporter proteins QBEPH7 Protein Sic28a2 OS=Ratus norvegicus GN=Sic2a27 PE=2 SV=1 [J0RRV4 RAT] Transporter proteins Q4X7D9 Protein Sic38a10 OS=Ratus norvegicus GN=Sic29a27 PE=2 SV=1 [J0RV19 RAT] Catabolic pathway Q4Y7D9 Protein Tispan7 (Fragment) OS=Ratus norvegicus GN=Sic29a27 PE=2 SV=1 [J0RV2 RAT] Others/unknown Q68H5 Protocadherin 7, isoform CRA, D CS=Ratus norvegicus GN=Chr/PE=2 SV=1 [G0RHB2, RAT] Cell adhesion molecules Q68H5 Protocadherin 7, isoform CRA, D CS=Ratus norvegicus GN=Chr/PE=2 SV=1 [G0RHB2, RAT] Cell adhesion molecules Q68H5 Protocadherin 7, isoform CRA, D CS=Ratus norvegicus GN=Chr/PE=2 SV=1 [G0RHB2, RAT] Cell adhesion molecules Q68WD1 Reticulon-4 receptor-like OS=Ratus norvegicus GN=SoraD PE=2 SV=1 [G0R4, RAT] Cell adhesion molecules Q68WD1 Reticulon-4 receptor-like OS=Ratus norvegicus GN=SoraD PE=2 SV=1 [GCR61, RAT] Ionotropic receptors and ion channels Q69WD4 Sodium channel subunit beta-1 OS=Ratus norvegicus GN=SoraD PE=1 SV=1 [SCN8, RAT] Ionotropic receptors and ion channels Q69WD4 Sodium channel subunit beta-1 OS=Ratus	D3ZVM6	Protein Siglec1 OS=Rattus norvegicus GN=Siglec1 PE=4 SV=2 - [D3ZVM6_RAT]	Cell adhesion molecules
IMDRAV4 Protein Stc25a21 OS-Rattus norvegicus ON-Sic25a21 OS-Rattus norvegicus ON-Sic25a11 OSic	E9PTX9	Protein SIc12a2 OS=Rattus norvegicus GN=Sic12a2 PE=4 SV=1 - [E9PTX9_RAT]	Transporter proteins
COBEPH7 Protein SIc25a27 OS=Ratus norvegicus GN=Sic25a27 PE=2 SV=1 - [COEPH7_RAT] Transporter proteins O4A517 Protein Sic25a21 OS=Ratus norvegicus GN=Sic23a10 PE=4 SV=1 - [CAV7D9_RAT] Catabolic pathway O4V7D9 Protein Smpd3b OS=Ratus norvegicus GN=Sic23a10 PE=4 SV=1 - [CAV7D9_RAT] Catabolic pathway Protein Tispan [Fragment] OS=Ratus norvegicus GN=Pch7 PE=2 SV=1 - [CAV7D9_RAT] Cell adhesion molecules C68HB8 Protocadherin 7, isoform CRA to CS=Ratus norvegicus GN=Pch7 PE=2 SV=1 - [CABH85_RAT] Cell adhesion molecules C64H917 Protocadherin garma a9 CS=Ratus norvegicus GN=Pch7 PE=2 SV=1 - [CABH86_RAT] Cell adhesion molecules C64H917 Protocadherin garma a9 CS=Ratus norvegicus GN=CAD12 PE=2 SV=1 - [CABL8_RAT] Cell adhesion molecules C64H917 Protocadherin garma a9 CS=Ratus norvegicus GN=CAD2 PE=2 SV=1 - [CABL2_RAT] Coll adhesion molecules C044917 Protocadherin darma a9 CS=Ratus norvegicus GN=Scn2b PE=2 SV=1 - [CABL2_RAT] Ionotropic receptors and ion channels C04900 Sodium channel bubnit beta-1 OS=Ratus norvegicus GN=Scn2b PE=1 SV=1 - [SCN3A_RAT] Ionotropic receptors and ion channels C09954 Sodium channel subunit beta-1 OS=Ratus norvegicus GN=Scn2b PE=1 SV=1 - [SCN3A_RAT] Ionotropic receptors and ion channels C09056 Sodium channel subunit beta-	M0R4V4	Protein Slc25a23 OS=Rattus norvegicus GN=Slc25a23 PE=4 SV=1 - [M0R4V4_RAT]	Transporter proteins
D44517 Protein SIc3a10 OS=Ratus norvegicus GN=Sic3a10 PE-4 SV=1 - [D447D9 RAT] Transporter proteins OdV7D9 Protein Span7 (Fragment) OS=Ratus norvegicus GN=Smpd3b DE=2 SV=1 - [O47D9 RAT] Catabolic pathway F1M872 Protein Tspan7 (Fragment) OS=Ratus norvegicus GN=Tspan7 PE-2 SV=2 - [F1M872 RAT] Others/unknown 0681H8 Protocadherin 7, isolom CRA, b OS=Ratus norvegicus GN=Pcdh17 PE-2 SV=1 - [O681H85 RAT] Cell adhesion molecules 0681H8 Protocadherin 7, isolom CRA, b OS=Ratus norvegicus GN=Pcdh17 PE-2 SV=1 - [O681H85 RAT] Cell adhesion molecules 014917 Protocadherin 7, isolom CRA, b OS=Ratus norvegicus GN=Pcdh17 PE-2 SV=1 - [O681H85 RAT] Cell adhesion molecules 028918 Protocadherin 7, isolom CRA, b OS=Ratus norvegicus GN=Pcdh17 PE-2 SV=1 - [O6261H8, T] Others/unknown 062861 Sodium channel protein type 3 subunit alpha OS=Ratus norvegicus GN=Scn3a PE=1 SV=1 - [SCN3A_RAT] Ionotropic receptors and ion channels 040954 Sodium channel subunit beta-2 OS=Ratus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels 049140 Sodium channel subunit beta-2 OS=Ratus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels 049140 Sodium channel subunit beta-2 OS=Ratus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion cha	Q9EPH7	Protein Slc25a27 OS=Rattus norvegicus GN=Slc25a27 PE=2 SV=1 - [Q9EPH7 RAT]	Transporter proteins
D4V7D9 Protein Snpd1b OS=Ratus norvegicus GN=Snpd1b PE=2 SV=1 - [04V7D9_RAT] Catabolic pathway F1M8Y2 Protein Tspan7 (Fragment) OS=Ratus norvegicus GN=Tspan7 PE=2 SV=2 - [F1M8Y2_RAT] Others/unknown 068H85 Protocadherin 7, isoform CRA_ to OS=Ratus norvegicus GN=Pcdh7 PE=2 SV=1 - [068H85_RAT] Cell adhesion molecules 068H86 Protocadherin 7, isoform CRA_ to OS=Ratus norvegicus GN=Pcdh7 PE=2 SV=1 - [068H85_RAT] Cell adhesion molecules 014917 Protocadherin 2, mas ad OS=Ratus norvegicus GN=Pcdh2 PE=2 SV=1 - [068H84_RAT] Cell adhesion molecules 0360WD1 Reticulon-4 feceptorI+162 OS=Ratus norvegicus GN=Scr02b PE=2 SV=1 - [062861_RAT] Cell adhesion molecules 04817 Protocadherin 2, mas ad OS=Ratus norvegicus GN=Scr02b PE=2 SV=1 - [062861_RAT] Ionotropic receptors and ion channels 0480WD1 Reticulon-4 feceptorI+162 OS=Ratus norvegicus GN=Scr03a PE=1 SV=1 - [SCN3E_RAT] Ionotropic receptors and ion channels 040954 Sodium channel subunit beta 2 OS=Ratus norvegicus GN=Scr03a PE=1 SV=1 - [SCN3E_RAT] Ionotropic receptors and ion channels 040954 Sodium channel subunit beta 2 OS=Ratus norvegicus GN=Scr03a PE=1 SV=1 - [SCN3E_RAT] Ionotropic receptors and ion channels 040954 Sodium channel subunit beta 3 OS=Ratus norvegicus GN=Scr03a PE=1 SV=1 - [SCN3E_RAT] Ionotropic receptors and ion channe	D4A517	Protein Slc39a10 OS=Rattus norvegicus GN=Slc39a10 PE=4 SV=1 - ID4A517 RATI	Transporter proteins
F1M8Y2 Protein Tspan7 (Fragment) OS=Rattus norvegicus GN=Tspan7 PE=2 SV=1 · [068HB5_RAT] Others/unknown Q68HB5 Protocadherin 7, isoform CRA_ 0 OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 · [068HB5_RAT] Cell adhesion molecules Q68HB6 Protocadherin 7, isoform CRA_ 0 OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 · [068HB5_RAT] Cell adhesion molecules I6LBX6 Protocadherin 7 (Soform CRA_ C OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 · [068HB5_RAT] Cell adhesion molecules 014917 Protocadherin 7 (Soform CRA_ C OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 · [062861_RAT] Cell adhesion molecules 0268HB6 Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Sch2 PE=2 SV=1 · [062861_RAT] Iontropic receptors and ion channels 0480WD1 Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Sch2 PE=2 SV=1 · [SCN3A_RAT] Ionotropic receptors and ion channels 0480WD1 Reticulon-4 nerceptor-site 2 SS-Rattus norvegicus GN=Sch2 PE=1 SV=1 · [SCN3A_RAT] Ionotropic receptors and ion channels 040954 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Sch3b PE=1 SV=1 · [SCN3B_RAT] Ionotropic receptors and ion channels 09JK00 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Sch3b PE=2 SV=1 · [SCN3B_RAT] Ionotropic receptors and ion channels 09JK00 Sodium-claum exchanger 1 OS=Rattus norvegicus GN=Sch3b PE=2 SV=1 · [SCN3B_RAT]	Q4V7D9	Protein Smpdl3b OS=Rattus norvegicus GN=Smpdl3b PE=2 SV=1 - [Q4V7D9_RAT]	Catabolic pathway
O68HB5 Protocadherin 7, isoform CRA, b OS-Rattus norvegicus GN-Pcdn7 PE-2 SV=1 - [068HB5, RAT] Cell adhesion molecules 068HB8 Protocadherin 2, isoform CRA, c OS-Rattus norvegicus GN-Pcdn7 PE-2 SV=1 - [068HB8, RAT] Cell adhesion molecules 014917 Protocadherin gamma a9 OS-Rattus norvegicus GN-Pcdn39 PE-2 SV=1 - [I6LBA6, RAT] Cell adhesion molecules 030000 Reticulon-4 receptor-Nike 2 OS-Rattus norvegicus GN-Pcdn39 PE-2 SV=1 - [RARL2, RAT] Others/unknown 0628616 Sodium channel beta 2 subunit OS-Rattus norvegicus GN-Scr2b PE-2 SV=1 - [CR2861 RAT] Ionotropic receptors and ion channels 000954 Sodium channel buta1 alpha OS-Rattus norvegicus GN-Scr2b PE-2 SV=1 - [CR2861 RAT] Ionotropic receptors and ion channels 000954 Sodium channel subunit beta-1 OS-Rattus norvegicus GN-Scr2b PE-1 SV=1 - [SCN3B, RAT] Ionotropic receptors and ion channels 098104 Sodium channel subunit beta-2 OS-Rattus norvegicus GN-Scr2b PE-1 SV=1 - [SCN3B, RAT] Ionotropic receptors and ion channels 094179 Sodium channel subunit beta-3 OS-Rattus norvegicus GN-Scr2b PE-2 SV=1 - [SCN3B, RAT] Ionotropic receptors and ion channels 094179 Sodium-coupled neutral amino acid transporter 3 OS-Rattus norvegicus GN-Scr2b PE-2 SV=1 - [SCN3B, RAT] Ionotropic receptors and ion channels 094179 Sodium/hydrogen exchanger OS-Rattus norvegicus G	F1M8Y2	Protein Tspan7 (Fragment) OS=Rattus norvegicus GN=Tspan7 PE=2 SV=2 - [F1M8Y2 RAT]	Others/unknown
D68H86 Protocadherin 7, isoform CR_c OS=Rattus norvegicus GN=Pcdh 7E=2 SV=1 - [06BH86_RAT] Cell adhesion molecules I6LBX6 Protocadherin 7 OS=Rattus norvegicus GN=Pcdh 78 PE=2 SV=1 - [16LBX6_RAT] Cell adhesion molecules 014917 Protocadherin 7.0 SO=Rattus norvegicus GN=Pcdh 78 PE=2 SV=1 - [16LBX6_RAT] Cell adhesion molecules 0380WD1 Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Sch2 PE=2 SV=1 - [062861_RAT] Ionotropic receptors and ion channels 062861 Sodium channel butai 2 subunit 05=Rattus norvegicus GN=Sch2 PE=2 SV=1 - [062861_RAT] Ionotropic receptors and ion channels 00954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Sch2 PE=1 SV=1 - [SCN18_RAT] Ionotropic receptors and ion channels 094104 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Sch2 PE=1 SV=1 - [SCN38_RAT] Ionotropic receptors and ion channels 093H29 Sodium-channel subunit beta-3 OS=Rattus norvegicus GN=Sch28 PE=1 SV=1 - [SCN38_RAT] Ionotropic receptors and ion channels 093H29 Sodium-claime achanger 10 S=Rattus norvegicus GN=SicBa1 PE=2 SV=-1 - [SCN38_RAT] Ionotropic receptors and ion channels 093H29 Sodium/calcum exchanger 10 S=Rattus norvegicus GN=SicBa1 PE=2 SV=-1 - [SCN38_RAT] Transporter proteins 03246 Sortim Carier family 22 member 23 OS=Rattus norvegicus GN=SicBa1 PE=2 SV=-1 - [SCN38_RAT]	Q68HB5	Protocadherin 7, isoform CRA b OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 - [Q68HB5_RAT]	Cell adhesion molecules
I6LBX6 Protocadherin gamma a9 OS=Rattus norvegicus GN=Pcdhga9 PE=2 SV=1 - [I6LBX6_RAT] Cell adhesion molecules O14917 Protocadherin-17 OS=Homo sapiens GN=PCDH17 PE=2 SV=1 - [PC017_HUMAN] Cell adhesion molecules Q80WD1 Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Rn412 PE=2 SV=1 - [R4RL2_RAT] Others/unknown G62861 Sodium channel bata 2 subunit OS=Rattus norvegicus GN=Scn3b PE=2 SV=1 - [SCN3A_RAT] Ionotropic receptors and ion channels P08104 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn1b PE=1 SV=1 - [SCN1B_RAT] Ionotropic receptors and ion channels Q00954 Sodium channel subunit beta-2 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN2B_RAT] Ionotropic receptors and ion channels Q3JK00 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q3JK20 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q3JK20 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Scn3b PE=2 SV=1 - [D32J86_RAT] Transporter proteins Q3ZJ86 Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Slc2a PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q3ZJ86 Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Slc2a PE=2 SV=2 - [S22AN_RAT] Transporter proteins	Q68HB8	Protocadherin 7, isoform CRA c OS=Rattus norvegicus GN=Pcdh7 PE=2 SV=1 - [Q68HB8_RAT]	Cell adhesion molecules
O14917 Protocadherin-17 OS=Homo sapiens GN=PCDH17 PE=2 SV=2 · [PCD17_HUMAN] Cell adhesion molecules Q80WD1 Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Rnt412 PE=2 SV=1 · [R4RL2_RAT] Others/unknown Q62861 Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Scn2b PE=2 SV=1 · [Q52681 RAT] Ionotropic receptors and ion channels Q00954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 · [SCN3B_RAT] Ionotropic receptors and ion channels Q0954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 · [SCN3B_RAT] Ionotropic receptors and ion channels Q9JK00 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=ScR3b PE=1 SV=1 · [SCN3B_RAT] Ionotropic receptors and ion channels Q9JK00 Sodium-channel subunit beta-3 OS=Rattus norvegicus GN=ScR3b PE=1 SV=1 · [SCN3B_RAT] Ionotropic receptors and ion channels Q9JK00 Sodium-channel subunit beta-3 OS=Rattus norvegicus GN=ScR3b PE=2 SV=1 · [S28A3_RAT] Transporter proteins Q9JK26 Sodium/calcum exchanger OS=Rattus norvegicus GN=Sic8a1 PE=2 SV=2 · [S22AN_RAT] Transporter proteins D3ZJ86 Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Sic22a2 PE=2 SV=2 · [S22AN_RAT] Transporter proteins Q9QZC1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Sic22a2 PE=2 SV=1 · [D3C79_RAT] Transporter	I6LBX6	Protocadherin gamma ag OS=Rattus norvegicus GN=Pcdhga9 PE=2 SV=1 - [I6LBX6 RAT]	Cell adhesion molecules
Q80WD1 Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Rth4f2 PE=2 SV=1 - [R4RL2_RAT] Others/unknown Q62861 Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Scn3b PE=2 SV=1 - [G62861_RAT] Ionotropic receptors and ion channels P08104 Sodium channel protein type 3 subunit alpha OS=Rattus norvegicus GN=Scn3a PE=1 SV=1 - [SCN3A_RAT] Ionotropic receptors and ion channels Q00954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JK00 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JK00 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Sic38a3 PE=2 SV=1 - [S38A3_RAT] Transporter proteins Q01728 Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Sic38a2 PE=2 SV=3 - [NAC1_RAT] Transporter proteins D32J86 Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Sic2a23 PE=2 SV=3 - [S22AN_RAT] Transporter proteins D54861 Sortlin OS=Rattus norvegicus GN=Sic2a23 PE=2 SV=3 - [S22AN_RAT] Transporter proteins D54864 Sortlin OS=Rattus norvegicus GN=Sic2a23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q94C34 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Sic2a23 PE=2 SV=2 - [S22AN_RAT] Transporter protein	014917	Protocadherin-17 OS=Homo sabiens GN=PCDH17 PE=2 SV=2 - IPCD17 HUMAN	Cell adhesion molecules
Q62861 Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Scn2b PE=2 SV=1 - [Q62861_RAT] Ionotropic receptors and ion channels P08104 Sodium channel protein type 3 subunit alpha OS=Rattus norvegicus GN=Scn3a PE=1 SV=1 - [SCN3a_RAT] Ionotropic receptors and ion channels Q00954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JH29 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JH29 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Scn3b PE=2 SV=1 - [S38A3_RAT] Transporter proteins Q01728 Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Slc8a1 PE=2 SV=3 - [NAC1_RAT] Transporter proteins Q9QZG1 Solium/hydrogen exchanger OS=Rattus norvegicus GN=Slc2a23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q9QZG1 Solium/hydrogen exchanger OS=Rattus norvegicus GN=Slc2a23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q54861 Sortlin DS=Rattus norvegicus GN=Slc72b PE=1 SV=1 - [Z366_RAT] Transporter proteins Q54861 Sortlin DS=Rattus norvegicus GN=Sparc1 PE=2 SV=3 - [SPRL1_RAT] Transporter proteins Q54861 Sortlin DS=Rattus norvegicus GN=Trc PE=4 SV=1 - [S3679_RAT] Transporter proteins <td>Q80WD1</td> <td>Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Rtn4rl2 PE=2 SV=1 - [R4RL2 RAT]</td> <td>Others/unknown</td>	Q80WD1	Reticulon-4 receptor-like 2 OS=Rattus norvegicus GN=Rtn4rl2 PE=2 SV=1 - [R4RL2 RAT]	Others/unknown
P08104 Sodium channel protein type 3 subunit alpha OS=Rattus norvegicus GN=Scn3a PE=1 SV=1 - [SCN3A_RAT] Ionotropic receptors and ion channels Q00954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn1b PE=1 SV=1 - [SCN1B_RAT] Ionotropic receptors and ion channels P64900 Sodium channel subunit beta-2 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q3JK00 Sodium-channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q4JK29 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Sic38a3 PE=2 SV=1 - [S3843_RAT] Transporter proteins Q01728 Sodium/calcium exchanger 10S=Rattus norvegicus GN=Sic39a6 PE=2 SV=1 - [D32J86_RAT] Transporter proteins Q9QZG1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Sic232 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q9QZG1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Sic240 PE=2 SV=1 - [S7847_RAT] Transporter proteins Q54861 Sortilin OS=Rattus norvegicus GN=Sic240 PE=2 SV=1 - [S7847_RAT] Transporter proteins Q402X7 TIM21-like protein 1 OS=Rattus norvegicus GN=TroPE=2 SV=1 - [T121L_RAT] Transporter proteins Q30K79 Transferrin receptor protein 1 OS=Rattus norvegicus GN=TroPE=4 SV=1 - [G37679_RAT] <t< td=""><td>Q62861</td><td>Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Scn2b PE=2 SV=1 - [Q62861_RAT]</td><td>Ionotropic receptors and ion channels</td></t<>	Q62861	Sodium channel beta 2 subunit OS=Rattus norvegicus GN=Scn2b PE=2 SV=1 - [Q62861_RAT]	Ionotropic receptors and ion channels
Q00954 Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn1b PE=1 SV=1 - [SCN1B_RAT] Ionotropic receptors and ion channels P54900 Sodium channel subunit beta-2 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 - [SCN2B_RAT] Ionotropic receptors and ion channels Q9JK00 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JHZ9 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Slc38a3 PE=2 SV=1 - [S38A3_RAT] Transporter proteins Q01728 Sodium/hydrogen exchanger 1 OS=Rattus norvegicus GN=Slc81e PE=2 SV=3 - [NAC1_RAT] Transporter proteins Q32J86 Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Slc28a3 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q34461 Sortlin OS=Rattus norvegicus GN=Slc28a3 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q34461 Sortlin OS=Rattus norvegicus GN=Slc28a3 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q4054 SPARC-like protein 1 OS=Rattus norvegicus GN=Slc28a3 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q54054 SPARC-like protein 1 OS=Rattus norvegicus GN=Slc28a3 PE=2 SV=1 - [TRAT] Extracellular matrix components Q55074 Timasporter protein 1 OS=Rattus norvegicus GN=Slc28a3 PE=2 SV=1 - [TRAT] Extracellular matrix components Q592V57 Timpohoblast glycoprotein 0 OS=Rattus	P08104	Sodium channel protein type 3 subunit alpha OS=Rattus norvegicus GN=Scn3a PE=1 SV=1 - [SCN3A_RAT]	Ionotropic receptors and ion channels
P54900 Sodium channel subunit beta-2 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 - [SCN2B_RAT] Ionotropic receptors and ion channels Q9JHZ9 Sodium-channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JHZ9 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Slc38a3 PE=2 SV=1 - [S38A3_RAT] Transporter proteins Q01728 Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Slc38a1 PE=2 SV=3 - [NAC1_RAT] Transporter proteins D3ZJ86 Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Slc22a23 PE=2 SV=1 - [D3ZJ86_RAT] Transporter proteins Q9QZG1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Slc22a23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins D54861 Sortilin OS=Rattus norvegicus GN=Sparc11 PE=2 SV=3 - [NAC1_RAT] Transporter proteins P24054 SPARC-like protein 1 OS=Rattus norvegicus GN=Sparc11 PE=2 SV=1 - [SPRL1_RAT] Transporter proteins G3V679 Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tifc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q4SPQV5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Tifc PE=4 SV=1 - [T124L_RAT] Regulatory proteins Q57097 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tifc PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q5234	Q00954	Sodium channel subunit beta-1 OS=Rattus norvegicus GN=Scn1b PE=1 SV=1 - [SCN1B_RAT]	Ionotropic receptors and ion channels
Q9JK00 Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT] Ionotropic receptors and ion channels Q9JHZ9 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Slc38a3 PE=2 SV=1 - [S38A3_RAT] Transporter proteins Q01728 Sodium/cydrogen exchanger 0S=Rattus norvegicus GN=Slc9a6 PE=2 SV=3 - [NAC1_RAT] Transporter proteins Q22G1 Solue carrier family 22 member 23 OS=Rattus norvegicus GN=Slc9a6 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q94861 Sortlin OS=Rattus norvegicus GN=Sparc1 PE=2 SV=1 - [D3Z46_RAT] Transporter proteins Q54861 Sortlin OS=Rattus norvegicus GN=Sparc1 PE=2 SV=1 - [SPRL1_RAT] Transporter proteins Q5427 TIM21-like protein 1 OS=Rattus norvegicus GN=Sparc1 PE=2 SV=1 - [SPRL1_RAT] Transporter proteins Q50287 Transporter protein 1 OS=Rattus norvegicus GN=Sparc1 PE=2 SV=1 - [S72AN_RAT] Transporter proteins Q54861 Sortilin OS=Rattus norvegicus GN=Trc PE=4 SV=1 - [S78RL1_RAT] Transporter proteins Q54287 TIM21-like protein 1 OS=Rattus norvegicus GN=Trc PE=4 SV=1 - [S78AR_AT] Transporter proteins Q54079 Transmebrane protein 10S=Rattus norvegicus GN=Trc PE=4 SV=1 - [S78AR_AT] Nucleic acid-binding proteins Q57097 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT] Metabotropic rece	P54900	Sodium channel subunit beta-2 OS=Rattus norvegicus GN=Scn2b PE=1 SV=1 - [SCN2B_RAT]	Ionotropic receptors and ion channels
Q9JHZ9 Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Slc38a3 PE=2 SV=1 - [S38A3_RAT] Transporter proteins Q01728 Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=Slc8a1 PE=2 SV=3 - [NAC1_RAT] Transporter proteins D3ZJ86 Sodium/hydrogen exchanger 0S=Rattus norvegicus GN=Slc8a1 PE=2 SV=3 - [NAC1_RAT] Transporter proteins Q9Q2G1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Slc23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins Q94861 Sortilin OS=Rattus norvegicus GN=Snc41 PE=1 SV=3 - [SORT_RAT] Transporter proteins Q54861 Sortilin OS=Rattus norvegicus GN=Snc41 PE=2 SV=1 - [SPRL1_RAT] Extracellular matrix components Q5402X7 TIM21-like protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT] Transporter proteins Q63V679 Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [T132A_RAT] Regulatory proteins Q640V5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Tfrc PE=2 SV=1 - [T132A_RAT] Regulatory proteins Q63116 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Tfrc PE=2 SV=1 - [T132A_RAT] Regulatory proteins Q63116 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Thrc PE=2 SV=1 - [T132A_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Thrc P	Q9JK00	Sodium channel subunit beta-3 OS=Rattus norvegicus GN=Scn3b PE=1 SV=1 - [SCN3B_RAT]	Ionotropic receptors and ion channels
Q01728Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=SIc8a1 PE=2 SV=3 - [NAC1_RAT]Transporter proteinsD3ZJ86Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Sic9a6 PE=2 SV=1 - [D3ZJ86_RAT]Transporter proteinsQ9ZG1Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Sic2a23 PE=2 SV=2 - [S22AN_RAT]Transporter proteinsO54861Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT]Transporter proteinsP24054SPARC-like protein 1 OS=Rattus norvegicus GN=Sparc11 PE=2 SV=1 - [SPRL1_RAT]Extracellular matrix componentsQ5U2X7TIM21-like protein 1 OS=Rattus norvegicus GN=Sparc11 PE=2 SV=1 - [T121L_RAT]Transporter proteinsQ3V679Transferrin receptor protein 1 OS=Rattus norvegicus GN=Thrc PE=4 SV=1 - [G3V679_RAT]Nucleic acid-binding proteinsQ80WF4Transmembrane protein 132A OS=Rattus norvegicus GN=Thrc PE=4 SV=1 - [G3V679_RAT]Nucleic acid-binding proteinsQ5PQV5Trophoblast glycoprotein OS=Rattus norvegicus GN=Them132a PE=1 SV=1 - [T132A_RAT]Regulatory proteinsQ63116Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Metrk PE=2 SV=1 - [MERTK_RAT]Metabotropic receptors- RTKs and othersQ63116Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [MERTK_RAT]Metabotropic receptors- RTKs and othersP55146Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [VCAM1_RAT]Cell adhesion moleculesQ6262Contactin-3 OS=Rattus norvegicus GN=Com3 PE=2 SV=1 - [VCAM1_RAT]Cell adhesion moleculesQ62642Contactin-3 OS=Rattus norvegicus GN=Com3 PE=2 SV=1 - [VCAM1_RAT]Cell adhesion molecules<	Q9JHZ9	Sodium-coupled neutral amino acid transporter 3 OS=Rattus norvegicus GN=Slc38a3 PE=2 SV=1 - [S38A3_RAT]	Transporter proteins
D3ZJ86 Sodium/hydrogen exchanger OS=Rattus norvegicus GN=Slc9a6 PE=2 SV=1 - [D3ZJ86_RAT] Transporter proteins Q9QZG1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Slc2a23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins O54861 Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT] Transporter proteins P24054 SPARC-like protein 1 OS=Rattus norvegicus GN=Sparc11 PE=2 SV=1 - [SPRL1_RAT] Extracellular matrix components G5U2X7 TIM21-like protein, mitochondrial OS=Rattus norvegicus GN=Trc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins G3V679 Transperter protein 1 OS=Rattus norvegicus GN=Tirc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q80WF4 Transmembrane protein 1 OS=Rattus norvegicus GN=Tirc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q80WF4 Transmembrane protein 1 OS=Rattus norvegicus GN=Tirc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q63116 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Tirc PE=4 SV=1 - [T132A_RAT] Regulatory proteins P57097 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Merk PE=2 SV=1 - [TPBG_RAT] Metabotropic receptors- RTKs and others P55146 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [Q63116_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cel	Q01728	Sodium/calcium exchanger 1 OS=Rattus norvegicus GN=SIc8a1 PE=2 SV=3 - [NAC1_RAT]	Transporter proteins
Q9QZG1 Solute carrier family 22 member 23 OS=Rattus norvegicus GN=Slc22a23 PE=2 SV=2 - [S22AN_RAT] Transporter proteins O54861 Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT] Transporter proteins P24054 SPARC-like protein 1 OS=Rattus norvegicus GN=Sparcl1 PE=2 SV=1 - [SPRL1_RAT] Extracellular matrix components Q502X7 TIM21-like protein, mitochondrial OS=Rattus norvegicus GN=Sparcl1 PE=2 SV=1 - [T121L_RAT] Transporter proteins G3V679 Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q80WF4 Transmembrane protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [T132A_RAT] Regulatory proteins Q80WF4 Transmembrane protein OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT] Regulatory proteins Q5PQV5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT] Regulatory proteins P57097 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q63116 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P2534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Verant PE=2 SV=1 - [CAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegi	D3ZJ86	Sodium/hydrogen exchanger OS=Rattus norvegicus GN=SIc9a6 PE=2 SV=1 - [D3ZJ86_RAT]	Transporter proteins
O54861 Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT] Transporter proteins P24054 SPARC-like protein 1 OS=Rattus norvegicus GN=Sparcl1 PE=2 SV=1 - [SPRL1_RAT] Extracellular matrix components Q5U2X7 TIM21-like protein, mitochondrial OS=Rattus norvegicus GN=Sparcl1 PE=2 SV=1 - [TI21L_RAT] Transporter proteins G3V679 Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q80WF4 Transmembrane protein 132A OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT] Regulatory proteins Q80WF4 Transmembrane protein 132A OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [T132A_RAT] Regulatory proteins Q80WF4 Transmembrane protein 0S=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT] Regulatory proteins Q5PQV5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q63116 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT] Metabotropic receptors- RTKs and others P55146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3	Q9QZG1	Solute carrier family 22 member 23 OS=Rattus norvegicus GN=SIc22a23 PE=2 SV=2 - [S22AN_RAT]	Transporter proteins
P24054 SPARC-like protein 1 OS=Rattus norvegicus GN=Sparc1 PE=2 SV=1 - [SPRL1_RAT] Extracellular matrix components Q5U2X7 TIM21-like protein, mitochondrial OS=Rattus norvegicus PE=2 SV=1 - [TI21L_RAT] Transporter proteins G3V679 Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT] Nucleic acid-binding proteins Q80WF4 Transmembrane protein 132A OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT] Regulatory proteins Q5PQV5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT] Regulatory proteins P57097 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q63116 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P255146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Vror3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vror3 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Vran PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q794F9 4F2	O54861	Sortilin OS=Rattus norvegicus GN=Sort1 PE=1 SV=3 - [SORT_RAT]	Transporter proteins
Q5U2X7TIM21-like protein, mitochondrial OS=Rattus norvegicus PE=2 SV=1 - [TI21L_RAT]Transporter proteinsG3V679Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT]Nucleic acid-binding proteinsQ80WF4Transmembrane protein 132A OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT]Regulatory proteinsQ5PQV5Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT]Regulatory proteinsP57097Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT]Metabotropic receptors- RTKs and othersQ63116Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT]Metabotropic receptors- RTKs and othersP55146Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT]Metabotropic receptors- RTKs and othersP29534Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT]Cell adhesion moleculesQ62682Contactin-3 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [CNTN3_RAT]Cell adhesion moleculesQ5GH59XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT]Others/unknownQ794F94F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT]Transporter proteins	P24054	SPARC-like protein 1 OS=Rattus norvegicus GN=Sparcl1 PE=2 SV=1 - [SPRL1_RAT]	Extracellular matrix components
G3V679Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT]Nucleic acid-binding proteinsQ80WF4Transmembrane protein 132A OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT]Regulatory proteinsQ5PQV5Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT]Regulatory proteinsP57097Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT]Metabotropic receptors- RTKs and othersQ63116Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT]Metabotropic receptors- RTKs and othersP55146Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT]Metabotropic receptors- RTKs and othersP29534Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT]Cell adhesion moleculesQ62682Contactin-3 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [CNTN3_RAT]Cell adhesion moleculesQ5GH59XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT]Others/unknownQ794F94F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT]Transporter proteins	Q5U2X7	TIM21-like protein, mitochondrial OS=Rattus norvegicus PE=2 SV=1 - [TI21L_RAT]	Transporter proteins
Q80WF4 Transmembrane protein 132A OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT] Regulatory proteins Q5PQV5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT] Regulatory proteins P57097 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q63116 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT] Metabotropic receptors- RTKs and others P55146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	G3V679	Transferrin receptor protein 1 OS=Rattus norvegicus GN=Tfrc PE=4 SV=1 - [G3V679_RAT]	Nucleic acid-binding proteins
Q5PQV5 Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG_RAT] Regulatory proteins P57097 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q63116 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT] Metabotropic receptors- RTKs and others P55146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	Q80WF4	Transmembrane protein 132A OS=Rattus norvegicus GN=Tmem132a PE=1 SV=1 - [T132A_RAT]	Regulatory proteins
P57097 Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT] Metabotropic receptors- RTKs and others Q63116 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT] Metabotropic receptors- RTKs and others P55146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	Q5PQV5	Trophoblast glycoprotein OS=Rattus norvegicus GN=Tpbg PE=2 SV=1 - [TPBG RAT]	Regulatory proteins
Q63116 Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116_RAT] Metabotropic receptors- RTKs and others P55146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	P57097	Tyrosine-protein kinase Mer OS=Rattus norvegicus GN=Mertk PE=2 SV=1 - [MERTK_RAT]	Metabotropic receptors- RTKs and others
P55146 Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3_RAT] Metabotropic receptors- RTKs and others P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	Q63116	Tyrosine-protein kinase receptor OS=Rattus norvegicus GN=Kit PE=2 SV=1 - [Q63116 RAT]	Metabotropic receptors- RTKs and others
P29534 Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1_RAT] Cell adhesion molecules Q62682 Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	P55146	Tyrosine-protein kinase receptor TYRO3 OS=Rattus norvegicus GN=Tyro3 PE=2 SV=1 - [TYRO3 RAT]	Metabotropic receptors- RTKs and others
Q62682 Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT] Cell adhesion molecules Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	P29534	Vascular cell adhesion protein 1 OS=Rattus norvegicus GN=Vcam1 PE=2 SV=1 - [VCAM1 RAT]	Cell adhesion molecules
Q5GH59 XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT] Others/unknown Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	Q62682	Contactin-3 OS=Rattus norvegicus GN=Cntn3 PE=1 SV=1 - [CNTN3_RAT]	Cell adhesion molecules
Q794F9 4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2_RAT] Transporter proteins	Q5GH59	XK-related protein 4 OS=Rattus norvegicus GN=Xkr4 PE=2 SV=1 - [XKR4_RAT]	Others/unknown
	Q794F9	4F2 cell-surface antigen heavy chain OS=Rattus norvegicus GN=Slc3a2 PE=1 SV=1 - [4F2 RAT]	Transporter proteins

Q05962	ADP/ATP translocase 1 OS=Rattus norvegicus GN=SIc25a4 PE=1 SV=3 - [ADT1 RAT]	Membrane trafficking proteins
Q09073	ADP/ATP translocase 2 OS=Rattus norvegicus GN=Slc25a5 PE=1 SV=3 - [ADT2_RAT]	Membrane trafficking proteins
O35889	Afadin OS=Rattus norvegicus GN=MIlt4 PE=1 SV=1 - [AFAD_RAT]	Cytoskeleton/actin-associated proteins
Q3B8P6	Alg2 protein (Fragment) OS=Rattus norvegicus GN=Alg2 PE=2 SV=1 - [Q3B8P6_RAT]	Protein modification and degradation
P02650	Apolipoprotein E OS=Rattus norvegicus GN=Apoe PE=1 SV=2 - [APOE_RAT]	Transporter proteins
P06685	Sodium/potassium-transporting ATPase subunit alpha-1 OS=Rattus norvegicus GN=Atp1a1 PE=1 SV=1 - [AT1A1_RAT]	Ionotropic receptors and ion channels
P06686	Sodium/potassium-transporting ATPase subunit alpha-2 OS=Rattus norvegicus GN=Atp1a2 PE=1 SV=1 - [AT1A2_RAT]	Ionotropic receptors and ion channels
P06687	Sodium/potassium-transporting ATPase subunit alpha-3 OS=Rattus norvegicus GN=Atp1a3 PE=1 SV=2 - [AT1A3_RAT]	Ionotropic receptors and ion channels
P07340	Sodium/potassium-transporting ATPase subunit beta-1 OS=Rattus norvegicus GN=Atp1b1 PE=1 SV=1 - [AT1B1_RAT]	Transporter proteins
Q5M9H4	ATPase, Na+/K+ transporting, beta 2 polypeptide OS=Rattus norvegicus GN=Atp1b2 PE=2 SV=1 - [Q5M9H4_RAT]	Transporter proteins
P13638	Sodium/potassium-transporting ATPase subunit beta-2 OS=Rattus norvegicus GN=Atp1b2 PE=2 SV=1 - [AT1B2_RAT]	Transporter proteins
Q63377	Sodium/potassium-transporting ATPase subunit beta-3 OS=Rattus norvegicus GN=Atp1b3 PE=2 SV=1 - [AT1B3_RAT]	Transporter proteins
P11507	Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 OS=Rattus norvegicus GN=Atp2a2 PE=1 SV=1 - [AT2A2_RAT]	Ionotropic receptors and ion channels (by homology)
P11505	Plasma membrane calcium-transporting ATPase 1 OS=Rattus norvegicus GN=Atp2b1 PE=2 SV=2 - [AT2B1_RAT]	Ionotropic receptors and ion channels
P11506	Plasma membrane calcium-transporting ATPase 2 OS=Rattus norvegicus GN=Atp2b2 PE=2 SV=2 - [AT2B2_RAT]	Membrane trafficking proteins
Q64568	Plasma membrane calcium-transporting ATPase 3 OS=Rattus norvegicus GN=Atp2b3 PE=2 SV=2 - [AT2B3_RAT]	Ionotropic receptors and ion channels
Q64542-3	Isoform ZA of Plasma membrane calcium-transporting ATPase 4 OS=Rattus norvegicus GN=Atp2b4 - [AT2B4_RAT]	Transporter proteins
P19511	ATP synthase subunit b, mitochondrial OS=Rattus norvegicus GN=Atp5f1 PE=1 SV=1 - [AT5F1_RAT]	Mitochondrial proteins - energy metabolism (by homology)
Q3KRE0	ATPase family AAA domain-containing protein 3 OS=Rattus norvegicus GN=Atad3 PE=2 SV=1 - [ATAD3_RAT]	Mitochondrial proteins - energy metabolism
Q6PST4	Atlastin-1 OS=Rattus norvegicus GN=Atl1 PE=1 SV=1 - [ATLA1_RAT]	Membrane trafficking proteins (by homology)
P31399	ATP synthase subunit d, mitochondrial OS=Rattus norvegicus GN=Atp5h PE=1 SV=3 - [ATP5H_RAT]	Mitochondrial proteins - energy metabolism
P29419	ATP synthase subunit e, mitochondrial OS=Rattus norvegicus GN=Atp5i PE=1 SV=3 - [ATP5I_RAT]	Mitochondrial proteins - energy metabolism
P11608	ATP synthase protein 8 OS=Rattus norvegicus GN=Mt-atp8 PE=1 SV=1 - [ATP8_RAT]	Mitochondrial proteins - energy metabolism
P15999	ATP synthase subunit alpha, mitochondrial OS=Rattus norvegicus GN=Atp5a1 PE=1 SV=2 - [ATPA_RAT]	Mitochondrial proteins - energy metabolism
P10719	ATP synthase subunit beta, mitochondrial OS=Rattus norvegicus GN=Atp5b PE=1 SV=2 - [ATPB_RAT]	Mitochondrial proteins - energy metabolism
P35434	ATP synthase subunit delta, mitochondrial OS=Rattus norvegicus GN=Atp5d PE=1 SV=2 - [ATPD_RAT]	Mitochondrial proteins - energy metabolism
P35435	ATP synthase subunit gamma, mitochondrial OS=Rattus norvegicus GN=Atp5c1 PE=1 SV=2 - [ATPG_RAT]	Mitochondrial proteins - energy metabolism
D3ZAF6	ATP synthase subunit f, mitochondrial OS=Rattus norvegicus GN=Atp5j2 PE=1 SV=1 - [ATPK_RAT]	Mitochondrial proteins - energy metabolism
Q06647	ATP synthase subunit O, mitochondrial OS=Rattus norvegicus GN=Atp5o PE=1 SV=1 - [ATPO_RAT]	Mitochondrial proteins - energy metabolism
B0BN52	Mitochondrial carrier homolog 2 (C. elegans) OS=Rattus norvegicus GN=Mtch2 PE=2 SV=1 - [B0BN52_RAT]	Transporter proteins
D3ZNF1	Protein Bai1 OS=Rattus norvegicus GN=Bai1 PE=4 SV=2 - [D3ZNF1_RAT]	Metabotropic receptors- GPRCRs
D3ZN99	Brain-specific angiogenesis inhibitor 2 (Predicted) OS=Rattus norvegicus GN=Bai2 PE=4 SV=1 - [D3ZN99_RAT]	Metabotropic receptors- GPRCRs
D4A831	Brain-specific angiogenesis inhibitor 3 (Predicted) OS=Rattus norvegicus GN=Bai3 PE=4 SV=1 - [D4A831_RAT]	Metabotropic receptors- GPRCRs
P26453	Basigin OS=Rattus norvegicus GN=Bsg PE=1 SV=2 - [BASI_RAT]	Membrane trafficking proteins (by homology)
P38718	Brain protein 44 OS=Rattus norvegicus GN=Brp44 PE=2 SV=1 - [BR44_RAT]	Others/unknown
O35796	Complement component 1 Q subcomponent-binding protein, mitochondrial OS=Rattus norvegicus GN=C1qbp PE=1 SV=2 - [C1QBP_RAT]	Others/unknown (by homology)
Q5U2P5	Protein C2cd2l OS=Rattus norvegicus GN=C2cd2l PE=2 SV=1 - [Q5U2P5_RAT]	Others/unknown
P54290	Voltage-dependent calcium channel subunit alpha-2/delta-1 OS=Rattus norvegicus GN=Cacna2d1 PE=1 SV=1 - [CA2D1_RAT]	Transporter proteins
Q8CFG6	Voltage-dependent calcium channel subunit alpha-2/delta-2 OS=Rattus norvegicus GN=Cacna2d2 PE=2 SV=1 - [CA2D2 RAT]	Transporter proteins (by homology)
Q8CFG5	Voltage-dependent calcium channel subunit alpha-2/delta-3 OS=Rattus norvegicus GN=Cacna2d3 PE=2 SV=1 - ICA2D3 RATI	Transporter proteins (by homology)
P54287	Voltage-dependent L-type calcium channel subunit beta-3 OS=Rattus norvegicus GN=Cacnb3 PE=1 SV=1 - [CACB3_RAT]	Ionotropic receptors and ion channels
h		

F1LR98	Protein Cdh10 OS=Rattus norvegicus GN=Cdh10 PE=2 SV=1 - [F1LR98_RAT]	Cell adhesion molecules
Q9Z1Y3	Cadherin-2 OS=Rattus norvegicus GN=Cdh2 PE=1 SV=1 - [CADH2_RAT]	Ca2+ binding proteins
Q1WIM2	Cell adhesion molecule 2 OS=Rattus norvegicus GN=Cadm2 PE=1 SV=2 - [CADM2_RAT]	Cell adhesion molecules
Q1WIM3	Cell adhesion molecule 3 OS=Rattus norvegicus GN=Cadm3 PE=2 SV=1 - [CADM3_RAT]	Presynaptic vesicle proteins
Q8VHW5	Voltage-dependent calcium channel gamma-8 subunit OS=Rattus norvegicus GN=Cacng8 PE=1 SV=1 - [CCG8_RAT]	lonotropic receptors and ion channels (by homology)
P97829-2	Isoform 2 of Leukocyte surface antigen CD47 OS=Rattus norvegicus GN=Cd47 - [CD47_RAT]	Cell adhesion molecules
Q62745	CD81 antigen OS=Rattus norvegicus GN=Cd81 PE=1 SV=1 - [CD81_RAT]	Regulatory proteins
Q5FVI4	Cell cycle exit and neuronal differentiation protein 1 OS=Rattus norvegicus GN=Cend1 PE=1 SV=1 - [CEND_RAT]	Membrane trafficking proteins
P05371	Clusterin OS=Rattus norvegicus GN=Clu PE=1 SV=2 - [CLUS_RAT]	Regulatory proteins (by homology)
Q08406	Ciliary neurotrophic factor receptor subunit alpha OS=Rattus norvegicus GN=Cntfr PE=2 SV=2 - [CNTFR_RAT]	Metabotrobic receptors- RTKs and others
Q63198	Contactin-1 OS=Rattus norvegicus GN=Cntn1 PE=1 SV=2 - [CNTN1_RAT]	Regulatory proteins
P22063	Contactin-2 OS=Rattus norvegicus GN=Cntn2 PE=1 SV=1 - [CNTN2_RAT]	Regulatory proteins
Q37652	Cytochrome c oxidase subunit 2 OS=Rattus norvegicus GN=Mt-co2 PE=3 SV=1 - [Q37652_RAT]	Mitochondrial proteins - energy metabolism
Q9ERQ6-2	Isoform 2 of Chondroitin sulfate proteoglycan 5 OS=Rattus norvegicus GN=Cspg5 - [CSPG5_RAT]	Extracellular matrix components
Q9ERQ6	Chondroitin sulfate proteoglycan 5 OS=Rattus norvegicus GN=Cspg5 PE=1 SV=1 - [CSPG5_RAT]	Membrane trafficking proteins (by homology)
P11951	Cytochrome c oxidase subunit 6C-2 OS=Rattus norvegicus GN=Cox6c2 PE=1 SV=3 - [CX6C2_RAT]	Transporter proteins
P08050	Gap junction alpha-1 protein OS=Rattus norvegicus GN=Gja1 PE=1 SV=2 - [CXA1_RAT]	Membrane trafficking proteins
D3ZHX3	Protein Diras2 OS=Rattus norvegicus GN=Diras2 PE=4 SV=1 - [D3ZHX3_RAT]	Presynaptic vesicle proteins
D4A133	Protein Atp6v1a OS=Rattus norvegicus GN=Atp6v1a PE=3 SV=1 - [D4A133_RAT]	Transporter proteins
D4A5X7	Ganglioside-induced differentiation-associated-protein 1 (Predicted) OS=Rattus norvegicus GN=Gdap1 PE=4 SV=1 - [D4A5X7_RAT]	Mitochondrial proteins - others
D4ABK1	Protein Syngr3 OS=Rattus norvegicus GN=Syngr3 PE=4 SV=1 - [D4ABK1_RAT]	Presynaptic vesicle proteins
Q925T8	Deleted in bladder cancer protein 1 homolog OS=Rattus norvegicus GN=Dbc1 PE=2 SV=1 - [DBC1_RAT]	Regulatory proteins (by homology)
F1LMV6	Protein Dsp OS=Rattus norvegicus GN=Dsp PE=2 SV=1 - [F1LMV6_RAT]	Cytoskeleton/intermediate filament-associated proteins
Q6Q629	Inactive dipeptidyl peptidase 10 OS=Rattus norvegicus GN=Dpp10 PE=1 SV=1 - [DPP10 RAT]	Others/unknown
P46101-2	Isoform DPPX-S of Dipeptidyl aminopeptidase-like protein 6 OS=Rattus norvegicus GN=Dpp6 - [DPP6_RAT]	Regulatory proteins
Q02413	Desmoglein-1 OS=Homo sapiens GN=DSG1 PE=1 SV=2 - [DSG1_HUMAN]	Cell adhesion molecules
D3ZQ45	Protein Dsg1b OS=Rattus norvegicus GN=Dsg1b PE=2 SV=1 - [D3ZQ45_RAT]	Cell adhesion molecules
P24942	Excitatory amino acid transporter 1 OS=Rattus norvegicus GN=SIc1a3 PE=1 SV=2 - [EAA1_RAT]	Membrane trafficking proteins
P31596	Excitatory amino acid transporter 2 OS=Rattus norvegicus GN=SIc1a2 PE=1 SV=2 - [EAA2_RAT]	Membrane trafficking proteins
Q9ERM8	Secretory carrier membrane protein 3 (Fragment) OS=Rattus norvegicus GN=Scamp3 PE=2 SV=1 - [Q9ERM8_RAT]	Transporter proteins
P84817	Mitochondrial fission 1 protein OS=Rattus norvegicus GN=Fis1 PE=1 SV=1 - [FIS1_RAT]	Presynaptic vesicle proteins
O88871	Gamma-aminobutyric acid type B receptor subunit 2 OS=Rattus norvegicus GN=Gabbr2 PE=1 SV=2 - [GABR2_RAT]	Metabotropic receptors- GPCRs
P54311	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 OS=Rattus norvegicus GN=Gnb1 PE=1 SV=4 - [GBB1_RAT]	GTPases and regulators
P54313	Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 OS=Rattus norvegicus GN=Gnb2 PE=1 SV=4 - [GBB2_RAT]	GTPases and regulators
P62882	Guanine nucleotide-binding protein subunit beta-5 OS=Rattus norvegicus GN=Gnb5 PE=2 SV=1 - [GBB5_RAT]	GTPases and regulators
P62813	Gamma-aminobutyric acid receptor subunit alpha-1 OS=Rattus norvegicus GN=Gabra1 PE=1 SV=1 - [GBRA1_RAT]	Ionotropic receptors and ion channels (by homology)
P15431	Gamma-aminobutyric acid receptor subunit beta-1 OS=Rattus norvegicus GN=Gabrb1 PE=2 SV=1 - IGBRB1 RATI	Ionotropic receptors and ion channels
P63138	Gamma-aminobutyric acid receptor subunit beta-2 OS=Rattus norvegicus GN=Gabrb2 PE=1 SV=1 - IGBRB2 RATI	Ionotropic receptors and ion channels
Q9JID2	Guanine nucleotide-binding protein subunit alpha-11 OS=Rattus norvegicus GN=Gna11 PE=2 SV=1 - IGNA11 RATI	GTPases and regulators
P10824	Guanine nucleotide-binding protein G(i) subunit alpha-1 OS=Rattus norvegicus GN=Gnai1 PE=1 SV=3 - IGNAI1 RATI	GTPases and regulators
P04897	Guanine nucleotide-binding protein G(i) subunit alpha-2 OS=Rattus norvegicus GN=Gnai2 PE=1 SV=3 - [GNAI2 RAT]	GTPases and regulators
P59215	Guanine nucleotide-binding protein G(o) subunit alpha OS=Rattus norvegicus GN=Gnao1 PE=1 SV=2 - [GNAO RAT]	GTPases and regulators
----------	--	--
P82471	Guanine nucleotide-binding protein G(g) subunit alpha OS=Rattus norvegicus GN=Gnag PE=1 SV=2 - [GNAQ_RAT]	GTPases and regulators
P63095	Guanine nucleotide-binding protein G(s) subunit alpha isoforms short OS=Rattus norvegicus GN=Gnas PE=1 SV=1 - [GNAS2_RAT]	GTPases and regulators
P19627	Guanine nucleotide-binding protein G(z) subunit alpha OS=Rattus norvegicus GN=Gnaz PE=2 SV=3 - [GNAZ_RAT]	GTPases and regulators
Q812E9-2	Isoform 2 of Neuronal membrane glycoprotein M6-a OS=Rattus norvegicus GN=Gpm6a - [GPM6A_RAT]	Ionotropic receptors and ion channels
Q812E9	Neuronal membrane glycoprotein M6-a OS=Rattus norvegicus GN=Gpm6a PE=1 SV=1 - [GPM6A_RAT]	Presynaptic vesicle proteins
P19490-2	Isoform Flip of Glutamate receptor 1 OS=Rattus norvegicus GN=Gria1 - [GRIA1_RAT]	Ionotropic receptors and ion channels
P19490	Glutamate receptor 1 OS=Rattus norvegicus GN=Gria1 PE=1 SV=2 - [GRIA1_RAT]	Ionotropic receptors and ion channels
P19491-2	Isoform Flip of Glutamate receptor 2 OS=Rattus norvegicus GN=Gria2 - [GRIA2_RAT]	Ionotropic receptors and ion channels
P19491	Glutamate receptor 2 OS=Rattus norvegicus GN=Gria2 PE=1 SV=2 - [GRIA2_RAT]	Ionotropic receptors and ion channels
P19492-2	Isoform Flip of Glutamate receptor 3 OS=Rattus norvegicus GN=Gria3 - [GRIA3_RAT]	Ionotropic receptors and ion channels
P19492	Glutamate receptor 3 OS=Rattus norvegicus GN=Gria3 PE=1 SV=1 - [GRIA3_RAT]	Ionotropic receptors and ion channels
P19493	Glutamate receptor 4 OS=Rattus norvegicus GN=Gria4 PE=1 SV=1 - [GRIA4_RAT]	Membrane trafficking proteins
P31424	Metabotropic glutamate receptor 5 OS=Rattus norvegicus GN=Grm5 PE=1 SV=2 - [GRM5_RAT]	Metabotropic receptors- GPCRs
P35400	Metabotropic glutamate receptor 7 OS=Rattus norvegicus GN=Grm7 PE=1 SV=1 - [GRM7_RAT]	Metabotropic receptors- GPCRs
Q07647	Solute carrier family 2, facilitated glucose transporter member 3 OS=Rattus norvegicus GN=Slc2a3 PE=1 SV=1 -	
	[GTR3_RAT]	Presynaptic vesicle proteins
D4A435	Protein Icam5 OS=Rattus norvegicus GN=Icam5 PE=4 SV=1 - [D4A435_RAT]	Cell adhesion molecules
Q3KR86	Mitochondrial inner membrane protein (Fragment) OS=Rattus norvegicus GN=Immt PE=1 SV=1 - [IMMT_RAT]	Regulatory proteins (by homology)
Q05695	Neural cell adhesion molecule L1 OS=Rattus norvegicus GN=L1cam PE=2 SV=3 - [L1CAM_RAT]	Cell adhesion molecules
Q5PPI4	LAMP family protein C20orf103 homolog OS=Rattus norvegicus PE=2 SV=1 - [CT103_RAT]	Presynaptic vesicle proteins
Q5XIN6	LETM1 and EF-hand domain-containing protein 1, mitochondrial OS=Rattus norvegicus GN=Letm1 PE=1 SV=1 -	
	[LETM1_RAT]	Regulatory proteins (by homology)
Q8K4Y5	Leucine-rich glioma-inactivated protein 1 OS=Rattus norvegicus GN=Lgi1 PE=1 SV=1 - [LGI1_RAT]	Regulatory proteins
O88917	Latrophilin-1 OS=Rattus norvegicus GN=Lphn1 PE=1 SV=1 - [LPHN1_RAT]	Metabotropic receptors- GPCRs
Q9Z173	Latrophilin-3 OS=Rattus norvegicus GN=Lphn3 PE=2 SV=1 - [LPHN3_RAT]	Metabotropic receptors- GPCRs
P97544	Lipid phosphate phosphohydrolase 3 OS=Rattus norvegicus GN=Ppap2b PE=1 SV=1 - [LPP3_RAT]	Lipid binding proteins (by homology)
Q7TMB7	Lipid phosphate phosphatase-related protein type 4 OS=Rattus norvegicus GN=Lppr4 PE=2 SV=1 - [LPPR4_RAT]	Lipid binding proteins
G3V928	Protein Lrp1 OS=Rattus norvegicus GN=Lrp1 PE=4 SV=1 - [G3V928_RAT]	Endocytic proteins
D4A7P2	Leucine-rich repeat transmembrane neuronal protein 2 OS=Rattus norvegicus GN=Lrrtm2 PE=1 SV=1 - [LRRT2_RAT]	Others/unknown (by homology)
B4F7C5	Leucine-rich repeat transmembrane neuronal protein 4 OS=Rattus norvegicus GN=Lrrtm4 PE=1 SV=1 - [LRRT4_RAT]	Others/unknown
Q62813	Limbic system-associated membrane protein OS=Rattus norvegicus GN=Lsamp PE=1 SV=1 - [LSAMP_RAT]	Cell adhesion molecules
M0RDI5	Protein Mcu OS=Rattus norvegicus GN=Mcu PE=4 SV=1 - [M0RDI5_RAT]	Ionotropic receptors and ion channels
P07722	Myelin-associated glycoprotein OS=Rattus norvegicus GN=Mag PE=1 SV=1 - [MAG_RAT]	Cell adhesion molecules (by homology)
P53987	Monocarboxylate transporter 1 OS=Rattus norvegicus GN=SIc16a1 PE=1 SV=1 - [MOT1_RAT]	Membrane trafficking proteins
Q6AY20	Cation-dependent mannose-6-phosphate receptor OS=Rattus norvegicus GN=M6pr PE=2 SV=1 - [MPRD_RAT]	Transporter proteins
P48768	Sodium/calcium exchanger 2 OS=Rattus norvegicus GN=SIc8a2 PE=2 SV=1 - [NAC2_RAT]	Ionotropic receptors and ion channels
P13596	Neural cell adhesion molecule 1 OS=Rattus norvegicus GN=Ncam1 PE=1 SV=1 - [NCAM1_RAT]	Cell adhesion molecules
F1M8G9	Protein Ncam2 (Fragment) OS=Rattus norvegicus GN=Ncam2 PE=2 SV=2 - [F1M8G9_RAT]	Cell adhesion molecules
P28841	Neuroendocrine convertase 2 OS=Rattus norvegicus GN=Pcsk2 PE=1 SV=1 - [NEC2_RAT]	Protein modification and degradation (by homology)
Q9Z0J8	Neuronal growth regulator 1 OS=Rattus norvegicus GN=Negr1 PE=1 SV=1 - [NEGR1_RAT]	Transporter proteins
P97603	Neogenin (Fragment) OS=Rattus norvegicus GN=Neo1 PE=2 SV=1 - [NEO1_RAT]	Regulatory proteins (by homology)
P97685	Neurofascin OS=Rattus norvegicus GN=Nfasc PE=1 SV=2 - [NFASC_RAT]	Cell adhesion molecules
Q8CGU6	Nicastrin OS=Rattus norvegicus GN=Ncstn PE=1 SV=1 - [NIČA_RAT]	Membrane trafficking proteins

Q62888	Neuroligin-2 OS=Rattus norvegicus GN=Nlgn2 PE=1 SV=1 - [NLGN2 RAT]	Cell adhesion molecules
Q62889	Neuroligin-3 OS=Rattus norvegicus GN=NIgn3 PE=1 SV=1 - [NLGN3_RAT]	Cell adhesion molecules
Q62609	Noelin OS=Rattus norvegicus GN=Olfm1 PE=2 SV=1 - [NOE1_RAT]	Regulatory proteins
Q568Y7-2	Isoform 2 of Noelin-2 OS=Rattus norvegicus GN=Olfm2 - [NOE2_RAT]	Regulatory proteins
P97546	Neuroplastin OS=Rattus norvegicus GN=Nptn PE=1 SV=2 - [NPTN_RAT]	Cell adhesion molecules
P47971	Neuronal pentraxin-1 OS=Rattus norvegicus GN=Nptx1 PE=1 SV=1 - [NPTX1_RAT]	Regulatory proteins
P97738	Neuronal pentraxin-2 OS=Rattus norvegicus GN=Nptx2 PE=1 SV=1 - [NPTX2_RAT]	Extracellular matrix components
P97686	Neuronal cell adhesion molecule OS=Rattus norvegicus GN=Nrcam PE=1 SV=2 - [NRCAM_RAT]	Cell adhesion molecules (by homology)
Q63372-13	Isoform 13a of Neurexin-1 OS=Rattus norvegicus GN=Nrxn1 - [NRX1A_RAT]	Cell adhesion molecules
Q63372	Neurexin-1-alpha OS=Rattus norvegicus GN=Nrxn1 PE=1 SV=3 - [NRX1A_RAT]	Cell adhesion molecules
Q07310	Neurexin-3-alpha OS=Rattus norvegicus GN=Nrxn3 PE=1 SV=1 - [NRX3A_RAT]	Cell adhesion molecules
Q63604	BDNF/NT-3 growth factors receptor OS=Rattus norvegicus GN=Ntrk2 PE=1 SV=1 - [NTRK2_RAT]	Metabotrobic receptors- RTKs and others (by homology)
P32736	Opioid-binding protein/cell adhesion molecule OS=Rattus norvegicus GN=Opcml PE=1 SV=2 - [OPCM_RAT]	Membrane trafficking proteins
A0A5D0	Cd200 molecule OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [A0A5D0_RAT] s.auch OX-2	Others/unknown
P04218	OX-2 membrane glycoprotein OS=Rattus norvegicus GN=Cd200 PE=2 SV=1 - [OX2G_RAT]	Presynaptic vesicle proteins
F1M8K1	Protein Pcdh1 (Fragment) OS=Rattus norvegicus GN=Pcdh1 PE=4 SV=2 - [F1M8K1_RAT]	Cell adhesion molecules
P70580	Membrane-associated progesterone receptor component 1 OS=Rattus norvegicus GN=Pgrmc1 PE=1 SV=3 - [PGRC1_RAT]	Regulatory proteins (by homology)
Q5FVH2	Phospholipase D3 OS=Rattus norvegicus GN=PId3 PE=2 SV=1 - [PLD3_RAT]	Presynaptic vesicle proteins
D3Z981	Protein RGD1560871 OS=Rattus norvegicus GN=RGD1560871 PE=4 SV=2 - [D3Z981_RAT]	Others/unknown
D3ZES7	Protein Plxna4a OS=Rattus norvegicus GN=Plxna4a PE=4 SV=1 - [D3ZES7_RAT]	Others/unknown
P13852	Major prion protein OS=Rattus norvegicus GN=Prnp PE=1 SV=2 - [PRIO_RAT]	Regulatory proteins
Q6MG82	Proline-rich transmembrane protein 1 OS=Rattus norvegicus GN=Prrt1 PE=2 SV=2 - [PRRT1_RAT]	Membrane trafficking proteins
D3ZFB6	Proline-rich transmembrane protein 2 OS=Rattus norvegicus GN=Prrt2 PE=1 SV=1 - [PRRT2_RAT]	Presynaptic vesicle proteins
Q03348	Receptor-type tyrosine-protein phosphatase alpha OS=Rattus norvegicus GN=Ptpra PE=2 SV=1 - [PTPRA_RAT]	Regulatory proteins (by homology)
P23468	Receptor-type tyrosine-protein phosphatase delta OS=Homo sapiens GN=PTPRD PE=1 SV=2 - [PTPRD_HUMAN]	Metabotrobic receptors- RTKs and others (by homology)
Q64605	Receptor-type tyrosine-protein phosphatase S OS=Rattus norvegicus GN=Ptprs PE=1 SV=2 - [PTPRS_RAT]	Metabotrobic receptors- RTKs and others
Q8CIN0	Receptor-like protein tyrosine phosphatase gamma S-type isoform OS=Rattus norvegicus GN=Ptprg PE=2 SV=1 - [Q8CIN0_RAT]	Phosphatases and regulators
Q62656	Receptor-type tyrosine-protein phosphatase zeta OS=Rattus norvegicus GN=Ptprz1 PE=1 SV=1 - [PTPRZ_RAT]	Phosphatases and regulators
Q5EBA4	Nipsnap1 protein (Fragment) OS=Rattus norvegicus GN=Nipsnap1 PE=2 SV=1 - [Q5EBA4_RAT]	Transporter proteins
Q5FVG4	Protein LOC100911440 OS=Rattus norvegicus GN=SIc25a22 PE=2 SV=1 - [Q5FVG4_RAT]	Transporter proteins
Q5M7T6	ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 OS=Rattus norvegicus GN=Atp6v0d1 PE=2 SV=1 - [Q5M7T6_RAT]	Presynaptic vesicle proteins
Q6P503	ATPase, H+ transporting, V1 subunit D, isoform CRA_c OS=Rattus norvegicus GN=Atp6v1d PE=2 SV=1 - [Q6P503_RAT]	Presynaptic vesicle proteins
Q6Q7Y5	Galpha13 OS=Rattus norvegicus GN=Gna13 PE=2 SV=1 - [Q6Q7Y5_RAT]	Presynaptic vesicle proteins
Q8K5B5	Glutamate transporter GLT1b OS=Rattus norvegicus GN=Slc1a2 PE=2 SV=1 - [Q8K5B5_RAT]	Transporter proteins
Q8R2H0	ATPase, H+ transporting, V1 subunit G isoform 2 OS=Rattus norvegicus GN=Atp6v1g2 PE=4 SV=1 - [Q8R2H0_RAT]	Presynaptic vesicle proteins
F1M7X3	Protein Cdh13 (Fragment) OS=Rattus norvegicus GN=Cdh13 PE=2 SV=2 - [F1M7X3_RAT]	Cell adhesion molecules
Q9ERS3	Voltage-gated calcium channel alpha2/delta-1 subunit OS=Rattus norvegicus GN=Cacna2d1 PE=2 SV=1 - [Q9ERS3_RAT]	Ionotropic receptors and ion channels
D3ZX42	G protein-coupled receptor 21 (Predicted), isoform CRA_a OS=Rattus norvegicus GN=Rabgap1 PE=4 SV=1 - [D3ZX42_RAT]	GTPases and regulators
P07153	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 OS=Rattus norvegicus GN=Rpn1 PE=2 SV=1 - [RPN1 RAT]	Protein modification and degradation
P25235	Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 OS=Rattus norvegicus GN=Rpn2 PE=2 SV=2 -	Protein modification and degradation

		[RPN2_RAT]	
ľ	F1M5X1	Protein Rrbp1 OS=Rattus norvegicus GN=Rrbp1 PE=2 SV=2 - [F1M5X1_RAT]	Transporter proteins
ľ	Q64548	Reticulon-1 OS=Rattus norvegicus GN=Rtn1 PE=2 SV=1 - [RTN1_RAT]	Membrane trafficking proteins
ľ	Q6RJR6	Reticulon-3 OS=Rattus norvegicus GN=Rtn3 PE=1 SV=1 - [RTN3_RAT]	Membrane trafficking proteins
ľ	Q9JK11	Reticulon-4 OS=Rattus norvegicus GN=Rtn4 PE=1 SV=1 - [RTN4_RAT]	Membrane trafficking proteins
ľ	F1LRZ1	Ryanodine receptor 2 OS=Rattus norvegicus GN=Ryr2 PE=2 SV=2 - [F1LRZ1_RAT]	Ionotropic receptors and ion channels
ľ	Q63633	Solute carrier family 12 member 5 OS=Rattus norvegicus GN=Slc12a5 PE=1 SV=2 - [S12A5_RAT]	Ionotropic receptors and ion channels
ľ	Q80ZA5	Sodium-driven chloride bicarbonate exchanger OS=Rattus norvegicus GN=SIc4a10 PE=2 SV=1 - [S4A10_RAT]	Membrane trafficking proteins (by homology)
ľ	Q9JI66	Electrogenic sodium bicarbonate cotransporter 1 OS=Rattus norvegicus GN=Slc4a4 PE=1 SV=1 - [S4A4_RAT]	Membrane trafficking proteins (by homology)
ľ	P31647	Sodium- and chloride-dependent GABA transporter 3 OS=Rattus norvegicus GN=Slc6a11 PE=2 SV=1 - [S6A11_RAT]	Membrane trafficking proteins (by homology)
ľ	P31662	Sodium-dependent neutral amino acid transporter SLC6A17 OS=Rattus norvegicus GN=SIc6a17 PE=1 SV=1 -	
		[S6A17_RAT]	Presynaptic vesicle proteins
	Q6AXV4	Sorting and assembly machinery component 50 homolog OS=Rattus norvegicus GN=Samm50 PE=1 SV=1 - [SAM50_RAT]	Regulatory proteins
ſ	Q4KM74	Vesicle-trafficking protein SEC22b OS=Rattus norvegicus GN=Sec22b PE=1 SV=3 - [SC22B_RAT]	Membrane trafficking proteins
ſ	P23978	Sodium- and chloride-dependent GABA transporter 1 OS=Rattus norvegicus GN=Slc6a1 PE=1 SV=1 - [SC6A1_RAT]	Transporter proteins
ſ	P56603	Secretory carrier-associated membrane protein 1 OS=Rattus norvegicus GN=Scamp1 PE=1 SV=1 - [SCAM1_RAT]	Transporter proteins
ſ	Q9JKE3	Secretory carrier-associated membrane protein 5 OS=Rattus norvegicus GN=Scamp5 PE=2 SV=1 - [SCAM5_RAT]	Presynaptic vesicle proteins
ľ	D3ZQP6	Protein Sema7a OS=Rattus norvegicus GN=Sema7a PE=4 SV=1 - [D3ZQP6_RAT]	Regulatory proteins
ľ	Q63965	Sideroflexin-1 OS=Rattus norvegicus GN=Sfxn1 PE=2 SV=4 - [SFXN1_RAT]	Mitochondrial proteins - energy metabolism
ľ	Q9JHY2	Sideroflexin-3 OS=Rattus norvegicus GN=Sfxn3 PE=2 SV=1 - [SFXN3_RAT]	Mitochondrial proteins - others
ľ	Q8CFD0	Sideroflexin-5 OS=Rattus norvegicus GN=Sfxn5 PE=2 SV=1 - [SFXN5_RAT]	Mitochondrial proteins - energy metabolism
ľ	Q62876	Synaptogyrin-1 OS=Rattus norvegicus GN=Syngr1 PE=2 SV=1 - [SNG1_RAT]	Regulatory proteins (by homology)
ľ	B5DF41	Syntaphilin OS=Rattus norvegicus GN=Snph PE=2 SV=1 - [SNPH_RAT]	Endocytic proteins (by homology)
ſ	G3V7P1	Syntaxin-12 OS=Rattus norvegicus GN=Stx12 PE=1 SV=1 - [STX12_RAT]	Presynaptic vesicle proteins
ſ	P32851	Syntaxin-1A OS=Rattus norvegicus GN=Stx1a PE=1 SV=1 - [STX1A_RAT]	Endocytic proteins
ſ	P61265	Syntaxin-1B OS=Rattus norvegicus GN=Stx1b PE=1 SV=1 - [STX1B_RAT]	Transporter proteins
ſ	O70257	Syntaxin-7 OS=Rattus norvegicus GN=Stx7 PE=1 SV=4 - [STX7_RAT]	Transporter proteins (by homology)
ſ	Q02563	Synaptic vesicle glycoprotein 2A OS=Rattus norvegicus GN=Sv2a PE=1 SV=2 - [SV2A_RAT]	Regulatory proteins
	Q63564	Synaptic vesicle glycoprotein 2B OS=Rattus norvegicus GN=Sv2b PE=1 SV=1 - [SV2B_RAT]	Regulatory proteins
	Q9Z327	Synaptopodin OS=Rattus norvegicus GN=Synpo PE=2 SV=2 - [SYNPO_RAT]	Cytoskeleton/actin-associated proteins
ſ	P07825	Synaptophysin OS=Rattus norvegicus GN=Syp PE=1 SV=1 - [SYPH_RAT]	Presynaptic vesicle proteins (by homology)
ſ	P21707	Synaptotagmin-1 OS=Rattus norvegicus GN=Syt1 PE=1 SV=3 - [SYT1_RAT]	Endocytic proteins
ſ	P29101	Synaptotagmin-2 OS=Rattus norvegicus GN=Syt2 PE=1 SV=1 - [SYT2_RAT]	Endocytic proteins
	Q05546	Tenascin-R OS=Rattus norvegicus GN=Tnr PE=1 SV=1 - [TENR_RAT]	Extracellulary matrix components
ſ	P46462	Transitional endoplasmic reticulum ATPase OS=Rattus norvegicus GN=Vcp PE=1 SV=3 - [TERA_RAT]	Lipid binding proteins (by homology)
ſ	P01830	Thy-1 membrane glycoprotein OS=Rattus norvegicus GN=Thy1 PE=1 SV=1 - [THY1_RAT]	Cell adhesion molecules
ſ	A9CMA6	Transmembrane protein 163 OS=Rattus norvegicus GN=Tmem163 PE=1 SV=1 - [TM163_RAT]	Presynaptic vesicle proteins
ľ	Q63584	Transmembrane emp24 domain-containing protein 10 OS=Rattus norvegicus GN=Tmed10 PE=1 SV=2 - [TMEDA_RAT]	Presynaptic vesicle proteins
ľ	Q75Q41	Mitochondrial import receptor subunit TOM22 homolog OS=Rattus norvegicus GN=Tomm22 PE=1 SV=1 - [TOM22_RAT]	Transporter proteins
ſ	Q75Q39	Mitochondrial import receptor subunit TOM70 OS=Rattus norvegicus GN=Tomm70a PE=1 SV=1 - [TOM70_RAT]	Mitochondrial proteins - others (by homology)
ſ	P0C5X8	Protein tweety homolog 1 OS=Rattus norvegicus GN=Ttyh1 PE=2 SV=1 - [TTYH1_RAT]	Transporter proteins (by homology)
ĺ	D4A383	Protein Ttyh3 OS=Rattus norvegicus GN=Ttyh3 PE=4 SV=1 - [D4A383_RAT]	Ionotropic receptors and ion channels
ĺ	Q9JJW3	Up-regulated during skeletal muscle growth protein 5 OS=Rattus norvegicus GN=Usmg5 PE=2 SV=1 - [USMG5_RAT]	Mitochondrial proteins - energy metabolism
ľ	Q63666	Vesicle-associated membrane protein 1 OS=Rattus norvegicus GN=Vamp1 PE=1 SV=2 - [VAMP1_RAT]	Presynaptic vesicle proteins
ľ	P63045	Vesicle-associated membrane protein 2 OS=Rattus norvegicus GN=Vamp2 PE=1 SV=2 - [VAMP2_RAT]	Membrane trafficking proteins
ľ	Q9Z270	Vesicle-associated membrane protein-associated protein A OS=Rattus norvegicus GN=Vapa PE=1 SV=3 - [VAPA RAT]	Membrane trafficking proteins

Q9Z269	Vesicle-associated membrane protein-associated protein B OS=Rattus norvegicus GN=Vapb PE=1 SV=3 - [VAPB_RAT]	Membrane trafficking proteins
O54715	V-type proton ATPase subunit S1 OS=Rattus norvegicus GN=Atp6ap1 PE=2 SV=1 - [VAS1_RAT]	Presynaptic vesicle proteins
P62815	V-type proton ATPase subunit B, brain isoform OS=Rattus norvegicus GN=Atp6v1b2 PE=1 SV=1 - [VATB2_RAT]	Mitochondrial proteins - energy metabolism
Q5FVI6	V-type proton ATPase subunit C 1 OS=Rattus norvegicus GN=Atp6v1c1 PE=2 SV=1 - [VATC1_RAT]	Transporter proteins
Q6PCU2	V-type proton ATPase subunit E 1 OS=Rattus norvegicus GN=Atp6v1e1 PE=1 SV=1 - [VATE1_RAT]	Transporter proteins
Q6PCU2	V-type proton ATPase subunit E 1 OS=Rattus norvegicus GN=Atp6v1e1 PE=1 SV=1 - [VATE1_RAT]	Transporter proteins
E9PTI1	Protein Atp6v1h OS=Rattus norvegicus GN=Atp6v1h PE=2 SV=1 - [E9PTI1_RAT]	Transporter proteins
Q9Z2L0	Voltage-dependent anion-selective channel protein 1 OS=Rattus norvegicus GN=Vdac1 PE=1 SV=4 - [VDAC1_RAT]	Ionotropic receptors and ion channels
P81155	Voltage-dependent anion-selective channel protein 2 OS=Rattus norvegicus GN=Vdac2 PE=1 SV=2 - [VDAC2_RAT]	Ionotropic receptors and ion channels
Q9R1Z0-2	Isoform 2 of Voltage-dependent anion-selective channel protein 3 OS=Rattus norvegicus GN=Vdac3 - [VDAC3_RAT]	Ionotropic receptors and ion channels
Q9R1Z0	Voltage-dependent anion-selective channel protein 3 OS=Rattus norvegicus GN=Vdac3 PE=1 SV=2 - [VDAC3_RAT]	Transporter proteins
Q62634	Vesicular glutamate transporter 1 OS=Rattus norvegicus GN=Slc17a7 PE=1 SV=1 - [VGLU1_RAT]	Transporter proteins
O35458	Vesicular inhibitory amino acid transporter OS=Rattus norvegicus GN=Slc32a1 PE=1 SV=1 - [VIAAT_RAT]	Presynaptic vesicle proteins
P25286	V-type proton ATPase 116 kDa subunit a isoform 1 OS=Rattus norvegicus GN=Atp6v0a1 PE=2 SV=1 - [VPP1_RAT]	Transporter proteins
Q9JI51	Vesicle transport through interaction with t-SNAREs homolog 1A OS=Rattus norvegicus GN=Vti1a PE=1 SV=1 - [VTI1A_RAT]	Presynaptic vesicle proteins

S4: Vergleichsanalyse der durch AAL oder BONMOT und MS-Analyse 332 identifizierten Membran- und extrazelluläre Proteine

Protein name	UniProt entry	1st AAL-AC	2st AAL-AC	NMDA/Glyzin	basal
Ac1573 [Q7TQ74_RAT]	Q7TQ74				
4F2 cell-surface antigen heavy chain [4F2_RAT]	Q794F9				
ADP/ATP translocase 1 [ADT1_RAT]	Q05962				
ADP/ATP translocase 2 [ADT2_RAT]	Q09073				
Afadin [AFAD_RAT]	O35889				
Alg2 protein (Fragment) [Q3B8P6_RAT]	Q3B8P6				
Alpha-2-macroglobulin receptor-associated protein [AMRP_RAT]	Q99068				
Annexin A2 [ANXA2_RAT]	Q07936				
Apolipoprotein E [APOE_RAT]	P02650				
Asc-type amino acid transporter 1 [Q75T81_RAT]	Q75T81				
Atlastin-1 [ATLA1_RAT]	Q6PST4				
ATP synthase protein 8 [ATP8_RAT]	P11608				
ATP synthase subunit alpha, mitochondrial [ATPA_RAT]	P15999				
ATP synthase subunit b, mitochondrial [AT5F1_RAT]	P19511				
ATP synthase subunit beta, mitochondrial [ATPB_RAT]	P10719				
ATP synthase subunit d, mitochondrial [ATP5H_RAT]	P31399				
ATP synthase subunit delta, mitochondrial [ATPD_RAT]	P35434				
ATP synthase subunit e, mitochondrial [ATP5I_RAT]	P29419				
ATP synthase subunit f, mitochondrial [ATPK_RAT]	D3ZAF6				
ATP synthase subunit gamma, mitochondrial [ATPG_RAT]	P35435				
ATP synthase subunit O, mitochondrial [ATPO_RAT]	Q06647				
ATPase family AAA domain-containing protein 3 [ATAD3_RAT]	Q3KRE0				
ATPase, H+ transporting, lysosomal 38kDa, V0 subunit d1 [Q5M7T6_RAT]	Q5M7T6				
ATPase, H+ transporting, V1 subunit D, isoform CRA_c [Q6P503_RAT]	Q6P503				
ATPase, H+ transporting, V1 subunit G isoform 2 [Q8R2H0_RAT]	Q8R2H0				

ATPase, Na+/K+ transporting, beta 2 polypeptide [Q5M9H4_RAT]	Q5M9H4		
Basigin [BASI_RAT]	P26453		
BDNF/NT-3 growth factors receptor [NTRK2_RAT]	Q63604		
Brain protein 44 [BR44_RAT]	P38718		
Brain-specific angiogenesis inhibitor 2 (Predicted) [D3ZN99_RAT]	D3ZN99		
Brain-specific angiogenesis inhibitor 3 (Predicted) [D4A831_RAT]	D4A831		
Cadherin-2 [CADH2_RAT]	Q9Z1Y3		
Cadherin-6 [CADH6_RAT]	P55280		
Cadherin-8 [CADH8_RAT]	O54800		
Calcium channel, voltage-dependent, beta 4 subunit, isoform CRA_b [D4A055_RAT]	D4A055		
Calcium-dependent secretion activator 1 [F1LLX6_RAT]	F1LLX6		
Calsyntenin-1 [CSTN1_RAT]	Q6Q0N0		
Cation-dependent mannose-6-phosphate receptor [MPRD_RAT]	Q6AY20		
CD166 antigen [CD166_RAT]	O35112		
Cd200 molecule [A0A5D0 RAT] s.auch OX-2	A0A5D0		
CD34 antigen isoform 2 [B1PLB2 RAT]	B1PLB2		
CD44 antigen [CD44 RAT]	P26051		
CD81 antigen [CD81 RAT]	Q62745		
Cell adhesion molecule 1 [Q6AYP5 RAT]	Q6AYP5		
Cell adhesion molecule 2 [CADM2 RAT]	Q1WIM2		
Cell adhesion molecule 3 [CADM3 RAT]	Q1WIM3		
Cell adhesion molecule 4 [CADM4 RAT]	Q1WIM1		
Cell cvcle exit and neuronal differentiation protein 1 [CEND_RAT]	Q5FVI4		
Chondroitin sulfate proteoglycan 5 [CSPG5 RAT]	Q9ERQ6		
Ciliary neurotrophic factor receptor subunit alpha [CNTFR_RAT]	Q08406		
Clusterin ICLUS RATI	P05371		
Complement component 1 Q subcomponent-binding protein, mitochondrial [C1QBP_RAT]	O35796		
Contactin-1 [CNTN1_RAT]	Q63198		
Contactin-2 [CNTN2 RAT]	P22063		
Contactin-3 [CNTN3_RAT]	Q62682		
Contactin-4 [CNTN4_RAT]	Q62845		
Coxsackievirus and adenovirus receptor homolog [CXAR_RAT]	Q9R066		
Cytochrome c oxidase subunit 2 [Q37652_RAT]	Q37652		
Cytochrome c oxidase subunit 6C-2 [CX6C2_RAT]	P11951		
Deleted in bladder cancer protein 1 homolog [DBC1_RAT]	Q925T8		
Desmocollin-1 [DSC1_HUMAN]	Q08554		
Desmoglein-1 [DSG1_HUMAN]	Q02413		
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 1 [RPN1_RAT]	P07153		
Dolichyl-diphosphooligosaccharideprotein glycosyltransferase subunit 2 [RPN2_RAT]	P25235		
Electrogenic sodium bicarbonate cotransporter 1 [S4A4_RAT]	Q9J166		
Embigin [EMB_RAT]	O88775		
Excitatory amino acid transporter 1 [EAA1 RAT]	P24942		
Excitatory amino acid transporter 2 [EAA2_RAT]	P31596		
Excitatory amino acid transporter 3 [EAA3_RAT]	P51907		
G protein-coupled receptor 21 (Predicted), isoform CRA_a [D3ZX42_RAT]	D3ZX42		
G-protein coupled receptor 56 [GPR56_RAT]	Q8K3V3		

Galpha13 [Q6Q7Y5 RAT]	Q6Q7Y5		
Gamma-aminobutyric acid receptor subunit alpha-1 [GBRA1 RAT]	P62813		
Gamma-aminobutyric acid receptor subunit beta-1 [GBRB1 RAT]	P15431		
Gamma-aminobutyric acid receptor subunit beta-2 [GBRB2 RAT]	P63138		
Gamma-aminobutyric acid receptor subunit beta-3 [GBRB3 RAT]	P63079		
Gamma-aminobutyric acid type B receptor subunit 2 [GABR2 RAT]	O88871		
Ganglioside-induced differentiation-associated-protein 1 [D4A5X7_RAT]	D4A5X7		
Gap junction alpha-1 protein [CXA1_RAT]	P08050		
Gba protein [B2RYC9 RAT]	B2RYC9		
GDNF receptor-beta (Fragment) (Q792X9 RAT)	Q792X9		
Glutamate receptor 1 [GRIA1 RAT]	P19490		
Glutamate receptor 2 [GRIA2 RAT]	P19491		
Glutamate receptor 3 [GRIA3 RAT]	P19492		
Glutamate receptor 4 [GRIA4 RAT]	P19493		
Glutamate transporter GLT1b [Q8K5B5 RAT]	Q8K5B5		
Golgi apparatus protein 1 [G3V8G5 RAT]	G3V8G5		
Guanine nucleotide-binding protein G(i) subunit alpha-1 [GNAI1 RAT]	P10824		
Guanine nucleotide-binding protein G(i) subunit alpha 2 [GNAI2 RAT]	P04897		
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-1 [GBB1 RAT]	P54311		
Guanine nucleotide-binding protein G(I)/G(S)/G(T) subunit beta-2 [GBB2 RAT]	P54313		
Guanine nucleotide-binding protein G(o) subunit alpha [GNAO_RAT]	P59215		
Guanine nucleotide-binding protein G(g) subunit alpha [GNAQ_RAT]	P82471		
Guanine nucleotide-binding protein G(s) subunit alpha isoforms short [GNAS2 RAT]	P63095		
Guanine nucleotide-binding protein G(z) subunit alpha [GNAZ RAT]	P19627		
Guanine nucleotide-binding protein subunit alpha-11 [GNA11 RAT]	Q9JID2		
Guanine nucleotide-binding protein subunit beta-5 [GBB5 RAT]	P62882		
Guanine nucleotide-binding protein subunit gamma [G3V8K2 RAT]	G3V8K2		
Huntingtin interacting protein 1, isoform CRA_a [G3V8Y8_RAT]	G3V8Y8		
Immunoglobulin superfamily member 1 [IGSF1 RAT]	Q925N6		
Inactive dipeptidyl peptidase 10 [DPP10_RAT]	Q6Q629		
Integrin alpha 6 subchain (Fragment) [Q924W2 RAT]	Q924W2		
Integrin alpha-V [ITAV_MOUSE]	P43406		
Integrin beta [D3ZP06_RAT]	D3ZP06		
Integrin beta-1 [ITB1_RAT]	P49134		
Integrin, alpha 6, isoform CRA_a [G3V667_RAT]	G3V667		
Isoform 1 of Neuroplastin [NPTN_RAT]	P97546-1		
Isoform 13a of Neurexin-1 [NRX1A_RAT]	Q63372-13		
Isoform 2 of Chondroitin sulfate proteoglycan 5 [CSPG5_RAT]	Q9ERQ6-2		
Isoform 2 of Leukocyte surface antigen CD47 [CD47_RAT]	P97829-2		
Isoform 2 of Neuronal membrane glycoprotein M6-a [GPM6A_RAT]	Q812E9-2		
Isoform 2 of Noelin-2 OS=Rattus norvegicus GN=Olfm2 - [NOE2_RAT]	Q568Y7-2		[
Isoform 2 of Voltage-dependent anion-selective channel protein 3 [VDAC3 RAT]	Q9R1Z0-2		
Isoform DPPX-S of Dipeptidyl aminopeptidase-like protein 6 [DPP6 RAT]	P46101-2		ĺ
Isoform Flip of Glutamate receptor 1 [GRIA1_RAT]	P19490-2		ĺ
Isoform Flip of Glutamate receptor 2 [GRIA2_RAT]	P19491-2		ĺ
Isoform Flip of Glutamate receptor 3 [GRIA3_RAT]	P19492-2		

			·	 -	
	Isoform KSHIIA.1 of Potassium voltage-gated channel subfamily C member 2 [KCNC2_RAT]	P22462-3			
	Isoform TRKC of NT-3 growth factor receptor [NTRK3_RAT]	Q03351-2			
	Isoform ZA of Plasma membrane calcium-transporting ATPase 4 [AT2B4_RAT]	Q64542-3			
	Lactadherin [MFGM_RAT]	P70490	1		
	LAMP family protein C20orf103 homolog [CT103 RAT]	Q5PPI4			
	Large neutral amino acids transporter small subunit 1 [LAT1 RAT]	Q63016			
	Latrophilin-1 [LPHN1_RAT]	O88917			
	Latrophilin-3 [LPHN3_RAT]	Q9Z173			
	LETM1 and EF-hand domain-containing protein 1, mitochondrial [LETM1_RAT]	Q5XIN6			
	Leucine rich repeat neuronal 6A, isoform CRA_a [G3V881_RAT]	G3V881			
	Leucine-rich glioma-inactivated protein 1 [LGI1 RAT]	Q8K4Y5			
	Leucine-rich repeat transmembrane neuronal protein 2 [LRRT2 RAT]	D4A7P2			
	Leucine-rich repeat transmembrane neuronal protein 4 [LRRT4 RAT]	B4F7C5			
	Leucine-rich repeat-containing protein 4 [LRRC4 RAT]	Q45R42			
	Leucine-rich repeat-containing protein 4B [LRC4B RAT]	P0CC10	-		
	Limbic system-associated membrane protein [LSAMP_RAT]	Q62813	-		
	Lipid phosphate phosphatase-related protein type 4 [LPPR4 RAT]	Q7TMB7	-		
	Lipid phosphate phosphohydrolase 3 [LPP3 RAT]	P97544	-		
	Lysosome membrane protein 2 [SCRB2 RAT]	P27615	-		
	Lysosome-associated membrane glycoprotein 1 [LAMP1 RAT]	P14562	-		
	Maior prion protein [PRIO_RAT]	P13852	-		
	Malectin [MLEC_RAT]	Q5FVQ4			
	MAM domain-containing glycosylphosphatidylinositol anchor protein 2 [MDGA2 RAT]	P60756	1		
	Mammalian ependymin-related protein 1 [EPDR1 RAT]	Q5XII0			
	Membrane-associated progesterone receptor component 1 [PGRC1_RAT]	P70580			
	Metabotropic glutamate receptor 2 [GRM2 RAT]	P31421			
	Metabotropic glutamate receptor 5 [GRM5 RAT]	P31424	+		
	Metabotropic glutamate receptor 7 [GRM7 RAT]	P35400	1		
	Mitochondrial 2-oxoglutarate/malate carrier protein [G3V6H5_RAT]	G3V6H5			
	Mitochondrial carnitine/acvlcarnitine carrier protein [MCAT_RAT]	P97521			
	Mitochondrial carrier homolog 2 [B0BN52 RAT]	B0BN52			
	Mitochondrial fission 1 protein [FIS1 RAT]	P84817	1		
	Mitochondrial glutamate carrier 2 IGHC2 RAT	Q505J6			
	Mitochondrial import receptor subunit TOM22 homolog [TOM22 RAT]	Q75Q41			
	Mitochondrial import receptor subunit TOM40 homolog [G3V8F5_RAT]	G3V8F5			
	Mitochondrial import receptor subunit TOM70 [TOM70 RAT]	Q75Q39	-		
	Mitochondrial inner membrane protein (Fragment) [IMMT_RAT]	Q3KR86	-		
	Monocarboxylate transporter 1 [MOT1_RAT]	P53987			
	Muscarinic acetylcholine receptor M1 [ACM1 RAT]	P08482	1		
	Myelin-associated glycoprotein IMAG_RATI	P07722		1	İ
	Neogenin (Fragment) [NEO1 RAT]	P97603			
ļ	Neural cell adhesion molecule 1 [NCAM1_RAT]	P13596			
	Neural cell adhesion molecule I 1 [I 1CAM_RAT]	Q05695			
	Neurexin-1-alpha INRX1A_RATI	Q63372			
ļ	Neurexin-3-alpha [NRX3A_RAT]	Q07310			
				4	1

Neuroendocrine convertase 2 [NEC2_RAT]	P28841		
Neurofascin [NFASC_RAT]	P97685		
Neuroligin-2 [NLGN2_RAT]	Q62888		
Neuroligin-3 [NLGN3_RAT]	Q62889		
Neuronal cell adhesion molecule long isoform Nc17 [Q6PW34_RAT]	Q6PW34		
Neuronal cell adhesion molecule [NRCAM_RAT]	P97686		
Neuronal growth regulator 1 [NEGR1_RAT]	Q9Z0J8		
Neuronal membrane glycoprotein M6-a [GPM6A_RAT]	Q812E9		
Neuronal membrane glycoprotein M6-b [E9PSV8 RAT]	E9PSV8		
Neuronal pentraxin receptor [NPTXR_RAT]	O35764		
Neuronal pentraxin-1 [NPTX1_RAT]	P47971		
Neuronal pentraxin-2 [NPTX2_RAT]	P97738		
Neuroplastin [NPTN_RAT]	P97546		
Neutral amino acid transporter ASCT1 [Q76GL9_RAT]	Q76GL9		
Nicastrin [NICA RAT]	Q8CGU6		
Nipsnap1 protein (Fragment) [Q5EBA4 RAT]	Q5EBA4		
Noelin [NOE1 RAT]	Q62609		
NYGGF5 IQ6R5J6 RATI	Q6R5J6		
Oliaodendrocyte-myelin alycoprotein [Q7TNM3 RAT]	Q7TNM3		
Opioid-binding protein/cell adhesion molecule [OPCM RAT]	P32736		
OX-2 membrane glycoprotein IOX2G RATI	P04218		
Phosphate carrier protein, mitochondrial [G3V741 RAT]	G3V741		
Phospholipase D3 [PLD3 RAT]	Q5FVH2		
Plasma membrane calcium-transporting ATPase 1 [AT2B1 RAT]	P11505		
Plasma membrane calcium-transporting ATPase 2 [AT2B2 RAT]	P11506		
Plasma membrane calcium-transporting ATPase 3 [AT2B3 RAT]	Q64568		
Plexin B2 (D3ZQ57 RAT)	D3ZQ57		
Plexin-A3 PLXA3 RATI	D3ZPX4		
Poliovirus receptor-related 1 [F1LNP8 RAT]	F1LNP8		
Probable G-protein coupled receptor 158 [GP158 RAT]	D4A6L0		
Proline-rich transmembrane protein 1 [PRRT1_RAT]	Q6MG82		
Proline-rich transmembrane protein 2 [PRRT2_RAT]	D3ZFB6		
Protein Aplp1 (Fragment) [F1LRS5 RAT]	F1LRS5		
Protein Atp6v1a [D4A133 RAT]	D4A133		
Protein Atp6v1h [E9PTI1 RAT]	E9PTI1		
Protein Bai1 [D3ZNF1 RAT]	D3ZNF1		
Protein C2cd2l [Q5U2P5 RAT]	Q5U2P5		
Protein Cdh10 [F1LR98 RAT]	F1LR98		
Protein Cdh12 F1M1A2 RATI	F1M1A2		
Protein Cdh13 (Fragment) [F1M7X3 RAT]	F1M7X3		
Protein Cdh18 [F1M702 RAT]	F1M702		
Protein Cdh9 [D3ZFQ5 RAT]	D3ZFQ5		
Protein Diras2 [D3ZHX3 RAT]	D3ZHX3		
Protein Dsg1b [D3ZQ45 RAT]	D3ZQ45		
Protein Dsp [F1LMV6 RAT]	F1LMV6		
Protein FAM5B [FAM5B RAT]	Q8K1M8		
\cdot $ \cdot$			

Protein Icam5 [D4A435_RAT]	D4A435			1
Protein Iglon5 [F1LVR0_RAT]	F1LVR0			
Protein Igsf21 (Fragment) [MORAS4_RAT]	M0RAS4			
Protein LOC100911440 [Q5FVG4_RAT]	Q5FVG4			
Protein LOC687295 [D3ZJX5_RAT]	D3ZJX5			
Protein Lrp1 [G3V928_RAT]	G3V928			
Protein Mcu [M0RDI5_RAT]	M0RDI5			
Protein Mfsd6 [D3ZCJ3_RAT]	D3ZCJ3			
Protein Ncam2 (Fragment) [F1M8G9_RAT]	F1M8G9			
Protein Pcdh1 (Fragment) [F1M8K1_RAT]	F1M8K1			
Protein Pcdh9 [F1LS01_RAT]	F1LS01			
Protein Plxna4a [D3ZES7_RAT]	D3ZES7			
Protein Plxnb1 [D3ZDX5_RAT]	D3ZDX5			
Protein RGD1559672 [D4ACB3_RAT]	D4ACB3			
Protein RGD1560871 [D3Z981 RAT]	D3Z981			
Protein Rgma [D4A188 RAT]	D4A188			
Protein Rrbp1 [F1M5X1 RAT]	F1M5X1			
Protein Sema7a ID3ZQP6 RATI	D3ZQP6			
Protein Sestd1 [B5DFL9 RAT]	B5DFL9			
Protein Siglec1 [D3ZVM6 RAT]	D3ZVM6			
Protein SIc12a2 [E9PTX9 RAT]	E9PTX9			
Protein Slc25a23 [M0R4V4 RAT]	M0R4V4			
Protein SIc25a27 [Q9EPH7 RAT]	Q9EPH7			
Protein Slc39a10 [D4A517 RAT]	D4A517			
Protein Smpdl3b [Q4V7D9 RAT]	Q4V7D9			
Protein Syngr3 [D4ABK1 RAT]	D4ABK1			
Protein Tspan7 (Fragment) [F1M8Y2 RAT]	F1M8Y2			
Protein Ttyh3 [D4A383_RAT]	D4A383			
Protein tweety homolog 1 [TTYH1 RAT]	P0C5X8			
Protocadherin 7, isoform CRA b [Q68HB5 RAT]	Q68HB5			
Protocadherin 7, isoform CRA_c [Q68HB8_RAT]	Q68HB8			
Protocadherin gamma a9 [I6LBX6 RAT]	I6LBX6			
Protocadherin-17 [PCD17_HUMAN]	O14917			
Receptor-like protein tyrosine phosphatase gamma S-type isoform [Q8CIN0_RAT]	Q8CIN0			
Receptor-type tyrosine-protein phosphatase alpha [PTPRA_RAT]	Q03348			
Receptor-type tyrosine-protein phosphatase delta [PTPRD_HUMAN]	P23468			
Receptor-type tyrosine-protein phosphatase S [PTPRS_RAT]	Q64605			
Receptor-type tyrosine-protein phosphatase zeta [PTPRZ_RAT]	Q62656			
Reticulon-1 [RTN1 RAT]	Q64548			
Reticulon-3 RTN3 RAT	Q6RJR6			
Reticulon-4 RTN4 RAT	Q9JK11			
Reticulon-4 receptor-like 2 [R4RL2 RAT]	Q80WD1			
Ryanodine receptor 2 [F1LRZ1 RAT]	F1LRZ1			
Sarcoplasmic/endoplasmic reticulum calcium ATPase 2 [AT2A2 RAT]	P11507			
Secretory carrier membrane protein 3 (Fragment) [Q9ERM8 RAT]	Q9ERM8			
Secretory carrier-associated membrane protein 1 [SCAM1_RAT]	P56603	1		

Secretory carrier-associated membrane protein 5 [SCAM5_RAT]	Q9JKE3		
Sideroflexin-1 [SFXN1_RAT]	Q63965		
Sideroflexin-3 [SFXN3_RAT]	Q9JHY2		
Sideroflexin-5 [SFXN5_RAT]	Q8CFD0		
Sodium channel beta 2 subunit [Q62861_RAT]	Q62861		
Sodium channel protein type 3 subunit alpha [SCN3A_RAT]	P08104		
Sodium channel subunit beta-1 [SCN1B_RAT]	Q00954		
Sodium channel subunit beta-2 [SCN2B_RAT]	P54900		
Sodium channel subunit beta-3 [SCN3B_RAT]	Q9JK00		
Sodium- and chloride-dependent GABA transporter 1 [SC6A1_RAT]	P23978		
Sodium- and chloride-dependent GABA transporter 3 [S6A11_RAT]	P31647		
Sodium-coupled neutral amino acid transporter 3 [S38A3_RAT]	Q9JHZ9		
Sodium-dependent neutral amino acid transporter SLC6A17 [S6A17_RAT]	P31662		
Sodium-driven chloride bicarbonate exchanger [S4A10_RAT]	Q80ZA5		
Sodium/calcium exchanger 1 [NAC1_RAT]	Q01728		
Sodium/calcium exchanger 2 [NAC2_RAT]	P48768		
Sodium/hydrogen exchanger [D3ZJ86_RAT]	D3ZJ86		
Sodium/potassium-transporting ATPase subunit alpha-1 [AT1A1_RAT]	P06685		
Sodium/potassium-transporting ATPase subunit alpha-2 [AT1A2_RAT]	P06686		
Sodium/potassium-transporting ATPase subunit alpha-3 [AT1A3_RAT]	P06687		
Sodium/potassium-transporting ATPase subunit beta-1 [AT1B1_RAT]	P07340		
Sodium/potassium-transporting ATPase subunit beta-2 [AT1B2_RAT]	P13638		
Sodium/potassium-transporting ATPase subunit beta-3 [AT1B3_RAT]	Q63377		
Solute carrier family 12 member 5 [S12A5_RAT]	Q63633		
Solute carrier family 2, facilitated glucose transporter member 3 [GTR3_RAT]	Q07647		
Solute carrier family 22 member 23 [S22AN_RAT]	Q9QZG1		
Sortilin [SORT_RAT]	O54861		
Sorting and assembly machinery component 50 homolog [SAM50_RAT]	Q6AXV4		
SPARC-like protein 1 [SPRL1_RAT]	P24054		
Synaptic vesicle glycoprotein 2A [SV2A_RAT]	Q02563		
Synaptic vesicle glycoprotein 2B [SV2B_RAT]	Q63564		
Synaptogyrin-1 [SNG1_RAT]	Q62876		
Synaptophysin [SYPH_RAT]	P07825		
Synaptopodin [SYNPO_RAT]	Q9Z327		
Synaptotagmin-1 [SYT1_RAT]	P21707		
Synaptotagmin-2 [SYT2_RAT]	P29101		
Syntaphilin [SNPH_RAT]	B5DF41		
Syntaxin-12 [STX12_RAT]	G3V7P1		
Syntaxin-1A [STX1A_RAT]	P32851		
Syntaxin-1B [STX1B_RAT]	P61265		
Syntaxin-7 [STX7_RAT]	O70257		
Tenascin-R [TENR_RAT]	Q05546		
Thy-1 membrane glycoprotein [THY1_RAT]	P01830		
TIM21-like protein, mitochondrial - [TI21L_RAT]	Q5U2X7		
Transferrin receptor protein 1 [G3V679_RAT]	G3V679		
Transitional endoplasmic reticulum ATPase [TERA_RAT]	P46462		

Transmembrane emp24 domain-containing protein 10 [TMEDA_RAT]	Q63584		
Transmembrane protein 132A [T132A_RAT]	Q80WF4		
Transmembrane protein 163 [TM163_RAT]	A9CMA6		
Trophoblast glycoprotein [TPBG_RAT]	Q5PQV5		
Tyrosine-protein kinase Mer [MERTK_RAT]	P57097		
Tyrosine-protein kinase receptor [Q63116_RAT]	Q63116		
Tyrosine-protein kinase receptor TYRO3 [TYRO3_RAT]	P55146		
Up-regulated during skeletal muscle growth protein 5 [USMG5_RAT]	Q9JJW3		
V-type proton ATPase 116 kDa subunit a isoform 1 [VPP1_RAT]	P25286		
V-type proton ATPase subunit B, brain isoform [VATB2_RAT]	P62815		
V-type proton ATPase subunit C 1 [VATC1_RAT]	Q5FVI6		
V-type proton ATPase subunit E 1 [VATE1_RAT]	Q6PCU2		
V-type proton ATPase subunit S1 [VAS1_RAT]	O54715		
Vascular cell adhesion protein 1 [VCAM1_RAT]	P29534		
Vesicle transport through interaction with t-SNAREs homolog 1A [VTI1A_RAT]	Q9JI51		
Vesicle-associated membrane protein 1 [VAMP1_RAT]	Q63666		
Vesicle-associated membrane protein 2 [VAMP2_RAT]	P63045		
Vesicle-associated membrane protein-associated protein A [VAPA_RAT]	Q9Z270		
Vesicle-associated membrane protein-associated protein B [VAPB_RAT]	Q9Z269		
Vesicle-trafficking protein SEC22b [SC22B_RAT]	Q4KM74		
Vesicular glutamate transporter 1 [VGLU1_RAT]	Q62634		
Vesicular inhibitory amino acid transporter [VIAAT_RAT]	O35458		
Voltage-dependent anion-selective channel protein 1 [VDAC1_RAT]	Q9Z2L0		
Voltage-dependent anion-selective channel protein 2 [VDAC2_RAT]	P81155		
Voltage-dependent anion-selective channel protein 3 [VDAC3_RAT]	Q9R1Z0		
Voltage-dependent calcium channel gamma-8 subunit [CCG8_RAT]	Q8VHW5		
Voltage-dependent calcium channel subunit alpha-2/delta-1 [CA2D1_RAT]	P54290		
Voltage-dependent calcium channel subunit alpha-2/delta-2 [CA2D2_RAT]	Q8CFG6		
Voltage-dependent calcium channel subunit alpha-2/delta-3 [CA2D3_RAT]	Q8CFG5		
Voltage-dependent L-type calcium channel subunit beta-3 [CACB3_RAT]	P54287		
Voltage-gated calcium channel alpha2/delta-1 subunit [Q9ERS3_RAT]	Q9ERS3		
XK-related protein 4 [XKR4_RAT]	Q5GH59		

Lebenslauf

Nicole Höche

Persönliche Angaben

Geburtsdaten: Familienstand:	08.06.1983 in Sangerhausen ledig
Berufliche Erfahrung	
08/2013-heute	Vertriebsassistenz
05/2012-07/2013	Otto-von-Guericke Universität Magdeburg, Institut für Pharmakologie und Toxikologie, Gastwissenschaftlerin
10/2009-07/2013	Leibniz-Institut für Neurobiologie Magdeburg, wissenschaftliche Mitarbeiterin
03/2007-09/2009	Leibniz-Institut für Neurobiologie Magdeburg, studentische Hilfskraft
05/2005-03/2006	Immunolab GmbH Kassel, studentische Hilfskraft
Studium und Ausbildung	
10/2006-09/2009	Otto-von-Guericke Universität Magdeburg, Diplomstudiengang Biologie (Hauptstudium)
10/2003-09/2006	Universität Kassel, Diplomstudiengang Biologie (Grundstudium)
1994-2003 1990-1994	Goethegymnasiums Kelbra Grundschule Berga/ Kyffhäuser

Publikation

Dopaminergic modulation of the hippocampal neuropil proteome identified by bioorthogonal noncanonical amino acid tagging (BONCAT) Hodas JJ, Nehring A, Höche N, Sweredoski MJ, Pielot R, Hess S, Tirrell DA, Dieterich DC, Schuman EM. <u>Proteomics. 2012 Aug</u>;12(15-16):2464-76. doi:

10.1002/pmic.201200112.

Selbstständigkeitserklärung

Entsprechend der Promotionsordnung der Fakultät für Naturwissenschaften der Otto-von-Guericke-Universität erkläre ich, dass mir die geltende Promotionsordnung der Fakultät bekannt ist. Ich versichere, dass die von mir eingereichte Dissertation zu dem Thema:

In vitro und in vivo Analyse des synaptischen Fukosyl-Proteoms der Ratte

selbständig verfasst habe und keine anderen als die von mir angegebenen Quellen, und Hilfsmittel benutzt wurden.

Alle Personen, die meine Arbeit gefördert haben, sind in der Danksagung genannt.

Weiterhin erkläre ich, dass ich weder diese noch eine andere Arbeit zur Erlangung des akademischen Grades *doctor rerum naturalium* (Dr. rer. nat.) an anderen Einrichtungen eingereicht habe oder entsprechend abgeändert.

Ort,

Nicole Höche