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Abstract
This thesis is devoted to the study of sums of independent and identically dis-
tributed (i.i.d.) heavy-tailed random variables (heavy-tailed sums). To be more
precise, we are interested in the behavior of distribution functions of such sums.
The problem with heavy-tailed sums is that the classical central limit theorem is
not applicable in many cases and thus such sums cannot be approximated using the
standard normal distribution. Moreover, for some classes even known alternative
ways do not provide a good approximation. One of such classes, the class of Pareto-
like distributions, was our field of study.

We start our investigation with random sums of heavy-tailed random variables,
which are often used in applications. “Random sum” means that the number of
summands in the sum is not fixed but also is a random variable. We consider differ-
ent classes of heavy-tailed distributions (subexponential, distributions with regularly
varying tails, Pareto-like distributions) and analyze the asymptotic results that are
already known. Then we concentrate on the class of Pareto-like distributions, which
is connected with the class of stable distributions by the following asymptotic result.
A normalized sum of n i.i.d. Pareto-like distributed random variables converges to
some stable distribution as n → ∞. This allows the approximation of the sum by
the corresponding stable distribution. The problem is that such approximations are
usually very rough, in particular if we deal with Pareto-like random variables with
shape parameter α < 2. For this case correction terms for the limit distributions
are needed. A powerful method is provided by asymptotic expansions of the dis-
tribution functions of the sums. The case α ∈ (1, 2) was already well studied in
this regard, and correction terms were obtained using the so-called pseudomoments.
Unfortunately, these known results do not provide the correction term for the limit
distribution in the case of Pareto-like random variables with α ∈ (0, 1).

Our main result concerns this case. By modifying the concept of pseudomoments
we obtain a good approximation of the distribution function of the sum of n i.i.d.
Pareto-like random variables with parameter α ∈ (0, 1). We have also obtained a
non-uniform estimate of the remainder.

Using our main theorem for the sums of n random variables with fixed n ∈ N we
obtain some asymptotic results for random sums. As an application we consider the
Cramér-Lundberg model, used in insurance mathematics, and show that for some
cases our results help to construct improved estimates of the ruin probability.





Zusammenfassung
In dieser Arbeit untersuchen wir Summen von unabhängigen identisch verteilten
(u.i.v.) heavy-tailed Zufallsvariablen (heavy-tailed Summen). Genauer sind wir an
dem asymptotischen Verhalten der Verteilungsfunktionen solcher Summen interes-
siert. Das Problem bei heavy-tailed Summen ist, dass der klassische zentrale Grenz-
wertsatz in vielen Fällen nicht anwendbar ist und sich solche Summen somit nicht
mit der Standardnormalverteilung approximieren lassen. Des Weiteren liefern auch
bekannte alternative Ansätze für einige Klassen keine gute Approximation. Eine
solche Klasse, die Klasse der Pareto-like Verteilungen, steht im Mittelpunkt dieser
Arbeit.

Wir beginnen die Untersuchungen mit zufälligen Summen der heavy-tailed Zufalls-
variablen, die in den Anwendungen oft verwendet werden. “Zufällige Summe” bedeu-
tet, dass die Anzahl der Summanden selbst eine Zufallsvariable ist. Wir betrachten
verschiedene Klassen der heavy-tailed Verteilungen (subexponentielle Verteilungen,
Verteilungen mit regulär variierenden tails, Pareto-like Verteilungen) und analysie-
ren einige bekannte asymptotische Resultate. Danach konzentrieren wir uns auf die
Klasse der Pareto-like Verteilungen, die mit der Klasse der stabilen Verteilungen
durch das folgende asymptotische Resultat verbunden ist. Eine normierte Summe
von n u.i.v. Pareto-like verteilten Zufallsvariablen konvergiert für n → ∞ gegen
eine stabile Verteilung, so dass sich die Summe durch die entsprechende stabile
Verteilung approximieren lässt. Solche Approximationen sind aber leider oft sehr
ungenau, was insbesondere für Pareto-like Zufallsvariablen mit Parameter α < 2
gilt. In diesem Fall werden Korrekturterme für die Grenzverteilungen benötigt. Um
diese zu konstruieren, betrachten wir oft asymptotische Entwicklungen der Vertei-
lungsfunktionen der Summen. Der Fall α ∈ (1, 2) wurde in dieser Hinsicht bereits
untersucht, und es wurden Korrekturterme mithilfe der sogenannten Pseudomomen-
te konstruiert. Die bekannten Methoden liefern allerdings keine Korrekturterme für
die Grenzverteilung im Fall der Pareto-like Zufallsvariablen mit α ∈ (0, 1).

Unser Hauptresultat bezieht sich auf diesen Fall. Wir konstruieren eine gute
Approximation der Verteilungsfunktion der Summe von n u.i.v. Pareto-like Zufalls-
variablen mit Parameter α ∈ (0, 1), indem wir den Begriff eines Pseudomomentes
modifizieren. Wir stellen außerdem eine nicht-gleichmäßige Abschätzung des ent-
sprechenden Restgliedes bereit.

Als Folgerung unseres Hauptsatzes für die Summen von n Zufallsvariablen mit
festem n ∈ N ergeben sich einige asymptotische Resultate für zufällige Summen. Als
Anwendung betrachten wir das Cramér-Lundberg-Modell, das in der Versicherungs-
mathematik verwendet wird. Wir zeigen, dass unsere Ergebnisse in einigen Fällen
zu verbesserten Schätzungen der Ruinwahrscheinlichkeit führen.
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Preface
Sums of independent and identically distributed (i.i.d.) random variables is an
important and popular pattern not only in probability theory and statistics but also
in many other branches of science. In particular, an important topic is to investigate
the sums of so-called heavy-tailed random variables, i.e. random variables whose tails
are not exponentially bounded. The behavior and possible approximations of the
distribution function of such sums is of great interest.

A classical tool when considering sums of i.i.d. random variables is the Central
Limit Theorem (CLT), which provides an approximation of sums by the normal
distribution. However, the CLT is only a special case of the following more general
result which was obtained independently by Lévy [38] and Khintchine [35]. If the
distribution of a normalized sum of n i.i.d. random variables converges to some
distribution as n → ∞, then the limit distribution must be stable. So the normal
distribution is one member of the class of stable distributions. Lévy and Khint-
chine also showed that the normal distribution is not the only one possible limit
distribution for sums of i.i.d. random variables.

Why is this fact important for our investigation? There are classes of heavy-tailed
distributions for which the CLT is not applicable, but any suitably normalized sum
of random variables from these classes converges to some stable distribution. One
of these classes is the class of Pareto-like distributions with shape parameter α < 2.
The distribution function of the sum of n i.i.d. Pareto-like distributed random vari-
ables has the same behavior as the corresponding stable distribution function as
n → ∞. One may ask the following question: Are the approximations by stable
distributions good enough and if not, how could we construct better ones? This
question is answered in Christoph and Wolf [12] for Pareto-like random variables.
They constructed correction terms for the stable limit distribution and obtained
good asymptotic results for the case α ∈ (1, 2) using the concept of pseudomoments.
Pseudomoments combine the features of moments and metrics. This helps to “re-
flect the geometry of the distribution more accurately and informatively than with
ordinary moments”, as Weiner wrote in [50].

Pseudomoment results do not provide good correction terms for the limit distri-
bution in case α ∈ (0, 1). This was a motivation for investigating this case, to which
the thesis is devoted. Modifying the concept of pseudomoments we obtained a good
approximation of the distribution function of the sum of n i.i.d. Pareto-like random
variables with parameter α ∈ (0, 1). We also provide a non-uniform bound for the
corresponding remainder.

Note that using the modified pseudomoments it should be possible to get better
approximations for the sums of Pareto-like random variables with α ∈ [1, 2). We
did not consider this case, since the technical realization of the proof would be much
more difficult.

Using our main theorem for sums of n random variables with fixed n ∈ N we also
obtain asymptotic results for random sums of Pareto-like random variables. As an
application we consider the Cramér-Lundberg model, used in insurance mathemat-
ics, and show that for some cases our results help to construct improved estimates
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of the ruin probability.

Below we give an overview of the thesis.
In Chapter 1 we introduce notations and basic concepts. Next, we formulate

the problem that we are interested in: how to estimate the asymptotic behavior of a
random sum of i.i.d. heavy-tailed (in particular subexponential) random variables.
We define these two classes of distributions, formulate some properties of their mem-
bers and give some examples. We finish this introductory section by describing an
application in insurance mathematics.

Chapter 2 is devoted to the analysis of previous research on the asymptotic be-
havior of random sums. We start with the class of subexponential distributions, for
which the first-order behavior of the distribution function of the sum is known. Un-
fortunately, the second-order result requires stronger assumptions than just subex-
ponentiality. Therefore, we move on from the subexponential class to a subclass:
distributions with regularly varying tails. For this subclass we analyze three known
second-order asymptotic results. They all require the existence of a density and
some additional assumptions on the random variables in the sum. We compare the
asymptotic results that these three theorems provide for different examples. We also
construct some distributions with regularly varying tails for which all three theo-
rems are not applicable. Next, we restrict ourselves to a subclass of distributions
with regularly varying tails, for which some asymptotic results are known without
requiring the existence of a density for the random variables in the sum. This sub-
class is the class of Pareto-like distributions. To obtain these asymptotic results a
completely different method, which is connected with limit theorems, is used.

Chapters 3 and 4 are central in this thesis. These chapters are devoted to
limit theorems. Here we switch from random sums (considered in Chapters 1 and 2)
to sums of n i.i.d. random variables, where n ∈ N is fixed. We start Chapter 3
by explaining the connection between stable distributions and Pareto-like distri-
butions. Here we formulate a generalization of the CLT, already obtained around
1930 [35, 38], which allows us to approximate the sums of Pareto-like distributions
with parameter α ∈ (0, 2] by the corresponding stable limit distributions.

Next, we discuss the quality of such approximations and ways of getting better
ones. Here we distinguish three cases. The case α = 2 was studied a long time
ago and good approximations of the distribution function of the sum were obtained
using the normal distribution. The research of the case α < 2 is relatively young
and involves the consideration of pseudomoments. We discuss the notion of pseu-
domoments and present the known approximation for sums of Pareto-like random
variables with α ∈ (0, 2). Since this approximation consists only of the stable limit
distribution in the case α ∈ (0, 1), we investigate this case separately. Modifying
the concept of pseudomoments we present our main result: a better approximation
for the distribution function of sums of Pareto-like random variables with α ∈ (0, 1)
and a non-uniform estimate of the corresponding remainder.

Chapter 4 is devoted to the long and technical proof of our result. In the begin-
ning of the chapter we introduce some auxiliary functions and give a concise plan of
the proof. In order to prove our main result we have to estimate three terms. The
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estimation of the second one is the most difficult part. It is carried out in four steps.
The proofs of some technical results needed in this chapter are given in Appendix B.

In Chapter 5 we come back to random sums of random variables and discuss
the second-order behavior of the distribution function of such sums. We start with
two special cases that are already known and involve the use of pseudomoments and
stable distributions. Next, we derive our asymptotic result for random sums of i.i.d.
Pareto-like random variables with parameter α ∈ (0, 1) and give some examples.
As an application we obtain the asymptotic result for the Cramér-Lundberg model
introduced in Chapter 1.

The thesis contains two Appendices. Appendix A presents some useful mathe-
matics, which we need throughout the work. In Appendix B we collect the proofs
of some technical results from Chapter 4 along with some auxiliary lemmata needed
for the proofs.





1 Introduction and problem definition

1.1 Notation
In this section we introduce some notational conventions that will be used through-
out this thesis.

Let N = {1, 2, . . . }, R = (−∞,+∞) and C be sets of natural, real and complex
numbers, respectively. We put N0 = N ∪ {0}, R+ = (0,+∞) and R = R ∪ {±∞}.
The integer part of r ∈ R is denoted by [r]. For a ∈ R we define a+ = max{0, a}.

A function f : R → R is nondecreasing (respectively, increasing) if f(x) ≤ f(y)
(respectively, f(x) < f(y)) for all x, y ∈ R with x < y.

The expression f(x) = o(g(x)) as x→∞ means that limx→∞ f(x)/g(x) = 0.
The expression f(x) = O(g(x)) as x→∞ means that the function |f(x)| / |g(x)|

is bounded for sufficiently large x.

Let X be a real random variable defined on the probability space (Ω,A, P ). The
distribution function FX of X is given by FX(x) = P (X ≤ x) for all x ∈ R. The
support of F is the set supp(F ) = {x ∈ R : 0 < F (x) < 1}.
The expectation of X is given by EX =

∫
ΩXdP , if the integral exists. It can be

also written as Riemann-Stieltjes integral:

EX =
∫ +∞

−∞
x dFX(x).

Let p ∈ N0 and r ∈ R+. Then the expectations of random variables Xp and |X|r
are called the p-th order moment of X and the absolute moment of order r of X,
respectively.

Let X be a random variable with distribution function FX , then 1 − FX(x) =
P (X > x) and FX(−x) = P (X ≤ −x) for x→∞ are the right tail and the left tail
of the distribution function FX , respectively. If P (X ≥ 0) = 1, we will use “tail”
instead of “right tail” and write FX(x) = 1− FX(x), x ≥ 0.

The characteristic function of a random variableX with distribution function FX
is given by

fX(t) = E
(
eitX

)
=
∫ +∞

−∞
eitxdFX(x), t ∈ R.

The moment generating function of a random variable X with distribution func-
tion FX is given by

MX(t) = E
(
etX

)
=
∫ +∞

−∞
etxdFX(x), t ∈ R.

The gamma function is denoted by Γ(x) =
∫+∞

0 tx−1e−tdt for x > 0.
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We say that a random variable X has a normal distribution N(µ, σ2) with para-
meters µ ∈ R and σ ∈ (0,∞) if the distribution function FX of X has the following
form:

FX(x) = 1
σ
√

2π

∫ x

−∞
e−(y−µ)2/(2σ2)dy, x ∈ R.

The distribution function of N(0, 1) is denoted by Φ(x), x ∈ R.

Throughout the thesis we will often skip the name of a random variable in the
notation of distribution function, characteristic function and moment generating
function, i.e. we will use F (x) := FX(x), f(t) := fX(t) and M(t) := MX(t).

The n-fold convolution of a function F : R→ R of bounded variation is denoted
by F n∗ for all n ∈ N0 with F 0∗(x) = 1[0,+∞)(x), x ∈ R (distribution function of the
unit measure at zero) and F n∗ = F (n−1)∗ ∗ F for n ≥ 1. Recall that the convolution
F ∗G of two functions F and G of bounded variation is defined as

(F ∗G)(x) =
∫ +∞

−∞
F (x− y) dG(y), x ∈ R.

Let X and Y be two random variables defined on some probability spaces (not
necessarily on a common one). We write X d= Y if X and Y have the same distri-
bution function.

Let F, F1, F2, . . . be bounded nondecreasing real functions on R. The sequence
(Fn)n∈N converges weakly to F if Fn(x) → F (x) as n → ∞ at every point x of
continuity of F . Throughout this thesis we write Fn → F as n → ∞ and mean
weak convergence.

For integers u and v such that u < v we set by convention: ∑u
i=v ai = 0 and∏u

i=v ai = 1 for any ai ∈ C.
Unless otherwise specified the symbols C,C1, C2, . . . denote positive constants.

One and the same letter used in different parts of the thesis may stand for different
values.

We use the standard abbreviation “i.i.d.” for “independent and identically dis-
tributed”.

1.2 Basic definitions and problem formulation
The aim of this section is to introduce the problem under consideration and to give
some elementary definitions and properties of objects, which we use in what follows.

Let X,X1, X2, ... be i.i.d. nonnegative random variables with common distribu-
tion function F and let ν be a nonnegative integer-valued counting random vari-
able, which is supposed to be independent of X1, X2, ... . Consider a compound sum
Sν = X1 + · · · + Xν , where S0 = 0. Let pn = P (ν = n) with ∑∞n=0 pn = 1. Then
the distribution function of the sum Sν can be written in the form

Kν(x) = P (Sν ≤ x) =
∞∑
n=0

P (ν = n)F n∗(x) =
∞∑
n=0

pnF
n∗(x), x ∈ R, (1)
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where F n∗ denotes the n-fold convolution of F , i.e. F n∗(x) = P (X1 + · · ·+Xn ≤ x)
for n ≥ 1 and F 0∗ is the distribution function of the unit measure at zero.

We are interested in the behavior of the ratio
1−Kν(x)
1− F (x) (2)

for large x. We restrict ourselves to the case of heavy-tailed distribution function F ,
and specifically to the case of subexponential F . The importance of ratio (2) in
applications for such F is explained at the end of Section 1.3.

Often one uses heavy-tailedness and subexponentiality as synonyms. Actually,
the class S of subexponential distributions is only a subclass (but a very important
one) of heavy-tailed distributions. For the latter no definition is universally accepted.
We will use the following one.

Definition 1.1 (Heavy-tailed distribution, [2, Appendix 5], [46, Section 2.5]).
A random variable X (or its distribution function F ) is said to be heavy-tailed on
the right (or to have heavy right tail) if

E[ etX1{X>0}] =
∫ +∞

0
etxdF (x) =∞ for all t > 0, (3)

i.e. if the moment generating function of X · 1{X>0} is infinite for all t > 0.

Remark 1.1. If a random variable X is heavy-tailed on the right, then for all λ > 0
we have (see [30])

lim
x→∞

eλxP (X > x) =∞. (4)

Condition (4) means that the right tail of F decreases to 0 as x → ∞ more slowly
than any exponential function e−λx with λ > 0.
Remark 1.2. For a random variable X with heavy left tail equality (3) holds with
e−tX1{X<0} instead of etX1{X>0}. For commonly considered applications the right
tail of a distribution is of interest, but a distribution may have heavy left tail, or
both tails may be heavy.

There are two important subclasses of heavy-tailed distributions, namely, long-
tailed distributions and subexponential distributions. In applications all commonly
used heavy-tailed distributions belong to the subexponential class, which is actually
defined only for positive random variables.

Definition 1.2 (Subexponential distribution, [30]).
A distribution function F of a positive random variable with F (x) < 1 for all x > 0
is called subexponential (we write F ∈ S) if for all n ≥ 2 the following condition
holds:

lim
x→+∞

1− F n∗(x)
1− F (x) = n. (5)

Remark 1.3. The class S of subexponential distributions was first invented and
examined by Chistyakov [13]. He proved that (5) holds for all n ≥ 2 if and only if
it holds for n = 2. Embrechts and Goldie [17] showed that (5) holds for n = 2 if it
holds for some n > 2.
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Remark 1.4. The assumption F (x) < 1 for all x > 0 means that the support of F is
unbounded from above.
Remark 1.5. Definition 1.2 may be extended to any distribution on the real line.
A distribution function G will be called subexponential on R if there exists a sub-
exponential distribution function F such that limx→+∞(1 − G(x))/(1 − F (x)) = 1,
[18, Appendix 3.2].

Some properties of subexponential distributions that will be used in this thesis
are given below.

Lemma 1.3. Let F ∈ S. Then the following properties hold:

(i)
∫ +∞

0
etxdF (x) =∞ for all t > 0, i.e. F is heavy-tailed.

(ii) lim
x→+∞

1− F (x− y)
1− F (x) = 1 for all y > 0.

(iii) For each ε > 0 there exists a finite constant K = K(ε) such that for all x ≥ 0
and n ∈ N0:

1− F n∗(x)
1− F (x) ≤ K(1 + ε)n. (6)

Proof. Both properties (i) and (ii) were proved by Chistyakov in [13]. Property (iii)
is due to Kesten (for a proof see [3]).

Remark 1.6. Property (i) demonstrates that the tail of F ∈ S is not exponentially
bounded. The latter in turn accounts for the name “subexponential”. Also we see
from (i) that class S is a subclass of heavy-tailed distributions.
Remark 1.7. A distribution function F with property (ii) is often referred to as
long-tailed , [2, Appendix 5]. From Lemma 1.3 it follows that the class S is a subset
of the class of long-tailed distributions.

We will give some examples of heavy-tailed and subexponential distributions.

Example 1.1 ([18, Section 1.4, Ex. 1.4.2]).
Consider a game where the first player (Peter) tosses a fair coin until it falls head
for the first time, receiving from the second player (Paul) 2k roubles, if this happens
at trial k. The distribution function of Peter’s gain is

F (x) =
∑

k∈N : 2k≤x
2−k, x ≥ 0.

The problem underlying this game is the famous St. Petersburg paradox (see [22,
Section X.4]). Note that for any fixed ` ∈ N we have

1− F (2` − 1)
1− F (2`) =

1−
`−1∑
k=1

2−k

1− ∑̀
k=1

2−k
= 2
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so that property (ii) from Lemma 1.3 is not satisfied. Therefore, F /∈ S. On the
other hand, F is heavy-tailed:∫ +∞

0
etxdF (x) =

∞∑
k=1

et · 2
k 2−k =∞ for all t > 0.

In fact, according to the Cauchy convergence test, the latter infinite series diverges
for all t > 0, since lim supn→∞ n

√
an = lim supn→∞ exp{t 2n/n}/2 =∞ > 1.

This example shows that the class S does not coincide with the class of heavy-
tailed distributions. Some other examples of heavy-tailed but not subexponential
distributions can be found in [16], [45].

Example 1.2. Consider a (µ, λ)-Cauchy distributed random variableX with density
function pX , distribution function FX and characteristic function fX , given by

pX(x) = 1
π

λ

λ2 + (x− µ)2 , F (x) := FX(x) = 1
π

arctan
(
x− µ
λ

)
+ 1

2 , x ∈ R,

fX(t) = exp{i µ t− λ |t|}, t ∈ R.

Let us consider the case µ = 0 and λ = 1, i.e. the standard Cauchy distribution. It
is easy to show that the condition

∫+∞
0 etx dF (x) =

∫ 0
−∞ e

−tx dF (x) = ∞ holds for
all t > 0. Hence, both tails of F are heavy. Moreover, the distribution function F is
subexponential. In order to prove this fact note that the characteristic function of
the sum of two standard Cauchy distributed independent random variables X1, X2
has the form

fX1+X2(t) = (fX1(t))2 =
(
e−|t|

)2
= e−2|t|.

Hence, X1 + X2 is also a Cauchy distributed random variable but with parame-
ters (0, 2) instead of (0, 1). This implies that FX1+X2(x) = (1/π) arctan(x/2) + 1/2
and consequently

lim
x→+∞

1− F 2∗(x)
1− F (x) = lim

x→+∞

1/2− (1/π) arctan(x/2)
1/2− (1/π) arctan x = 2.

Example 1.3. Let X be a Pareto-distributed random variable with distribution
function F , given by

1− F (x) =
{

(κ/x)α for x ≥ κ,
1 for x < κ,

(7)

where κ > 0 and α > 0 are scale and shape parameters, respectively. For x > 2κ we
have

1− F 2∗(x)
1− F (x) =

∫ ∞
κ

1− F (x− y)
1− F (x) dF (y) =

(∫ x−κ

κ
+
∫ ∞
x−κ

) 1− F (x− y)
1− F (x) dF (y)

=
∫ x−κ

κ

(x− y)−α
x−α

dF (y) +
∫ ∞
x−κ

1
1− F (x) dF (y)

=
∫ ∞
κ

(
1− y

x

)−α ακα

y1+α 1[κ,x−κ](y) dy + 1− F (x− κ)
1− F (x) .
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Using Corollary 1 from [26, Chapter XIV, § 3-518], we can show that the first term
converges to 1 as x→∞. From this it follows that

lim
x→+∞

1− F 2∗(x)
1− F (x) = 2.

Therefore, the Pareto distribution is subexponential, and, consequently, heavy-
tailed.

Remark 1.8. We proved that in all three examples we deal with heavy-tailed distri-
butions. Moreover, for the Cauchy distribution, Peter’s gain distribution, and the
Pareto distribution with α ∈ (0, 1) even the expectation is infinite or does not exist.
It is typical of heavy-tailed distributions to have infinite moments of high orders.
This makes investigating the models with such distributions very difficult, since a lot
of commonly used methods fail to work.

Other examples of subexponential distributions are Burr, log-gamma, lognormal,
Weibull with shape parameter τ ∈ (0, 1), “almost” exponential etc. (see [30]).

As we already noted, subexponential distributions are widely used in applica-
tions. This fact can be explained very well by the following equivalent description
of the class S. It gives a physical interpretation of subexponentiality.

Lemma 1.4. A distribution function F on (0,+∞) such that F (x) < 1 for all x > 0
is subexponential (F ∈ S) if and only if for all n ≥ 2 the following condition holds:

lim
x→+∞

P (X1 + · · ·+Xn > x)
P (max(X1, . . . , Xn) > x) = 1. (8)

Proof. See Embrechts and Goldie [16].

Remark 1.9. If (8) holds for some n ≥ 2, then it holds for all n ≥ 2, see Remark 1.3.
Remark 1.10. Condition (8) means that the sum of n i.i.d. subexponential random
variables and their maximum are comparable quantities, if they are sufficiently large.
Or in other words, the sum is large if and only if the maximum is large. This makes it
possible to use subexponential distributions for modeling events, that occur rarely,
but have a considerable influence on the situation. Such events are typical for
catastrophe insurance and for finance.

1.3 Motivation and possible applications
In this section we will give a detailed description of basic insurance models, where
the ratio (2) with subexponential distribution functions F occurs. Our investigation
of (2) may be useful for the following applications.

Definition 1.5 (The Cramér-Lundberg model, [18, Section 1.1]).
The Cramér-Lundberg model is given by conditions (a)-(e):

(a) The claim size process:
the claim sizes (Xk)k∈N are positive i.i.d. random variables having common
non-lattice distribution function F , finite mean µ = EX1 > 0, and variance
σ2 = Var(X1) ≤ ∞.
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(b) The claim times (point process):
the claims occur at the random instances of time

0 < T1 < T2 < . . . .

(c) The claim arrival process (counting process):
the number of claims in the interval [0, t] is denoted by

N(t) = sup{n ≥ 1 : Tn ≤ t}, t ≥ 0,

where, by convention, sup ∅ = 0.

(d) The inter-arrival times

Y1 = T1, Yk = Tk − Tk−1, k = 2, 3, . . . , (9)

are i.i.d. exponentially distributed with finite mean EY1 = 1/λ, λ > 0.

(e) The sequences (Xk) and (Yk) are independent of each other.

Remark 1.11. The claim arrival process (N(t)) is a homogeneous Poisson process
with intensity λ > 0, i.e.

P (N(t) = k) = e−λt
(λt)k
k! , k ∈ N0. (10)

Remark 1.12. In the literature the Cramér-Lundberg model is also referred to as the
classical risk model or the basic insurance risk model.

Definition 1.6 (The renewal model, [18, Section 1.1]).
The renewal model is given by conditions (a)-(c), (e) and

(d ′) the inter-arrival times Yk given in (9) are i.i.d. with finite mean EY1 = 1/λ.

Remark 1.13. The only difference between the Cramér-Lundberg and the renewal
model is that the process (N(t)) for the claim arrivals of the latter does not have to
be a homogeneous Poisson process. It can be an arbitrary renewal counting process.
This means that the Cramér-Lundberg model is a special case of the renewal model.

For the renewal model in general and for the Cramér-Lundberg model in parti-
cular, the risk process U(t) and the ruin probability ψ(u) are defined by

U(t) = u+ ct−
N(t)∑
i=1

Xi, t ≥ 0, (11)

ψ(u) = P
(
U(t) < 0 for some t ≥ 0

)
, u ≥ 0, (12)

where u ≥ 0 is the initial capital and c > 0 is the premium rate. Note that the
set {U(t) < 0 for some t ≥ 0} is a measurable set. It follows from its alternative
representation (1.8) in [18, Section 1.1]. In the literature one distinguishes the
ruin probability in finite time (or with finite horizon) and the ruin probability in
infinite time (or with infinite horizon). The former is denoted by ψ(u, T ) with
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ψ(u, T ) = P
(
U(t) < 0 for some 0 ≤ t ≤ T

)
, 0 < T < ∞, u ≥ 0. In the thesis we

deal with the ruin probability in infinite time, which is defined by (12).
To avoid ruin with probability 1 in renewal models the natural condition of

solvency is always supposed: c − λµ > 0. This condition is usually known in
applications as the basic net profit condition and given in the form: ρ = c

λµ
− 1 > 0.

An interesting question is:

How to estimate the ruin probability?

This question is tightly bound with another one: How large does the income pre-
mium rate c have to be? The first guess is provided by the net-profit condition,
but this is a rather coarse estimate. Since premiums have to be specified before
any claims occur, there are some difficulties in finding a more accurate estimate for
c. Furthermore, any insurance company can be ruined at any claim time. That is
why it seems reasonable to take the ruin probability as a measure of validity of the
value c. To be more precise, the premium rate c should be chosen so that the value
of ψ(u) is small for given u.

Then the next question appears: how can we speak about the “smallness” of the
function defined by (12). The definition tells us nothing about the behavior of the
function ψ(u). Luckily, it was shown (see [18, Section 1.1, (1.10)]) that the non-ruin
probability 1− ψ(u) can be expressed as follows:

1− ψ(u) = (1− α)
∞∑
n=0

αnHn∗(u), (13)

with some constant α ∈ (0, 1) and some distribution function H. How to find these
H and α is described in [24, Sections XII.3 and XVIII.3]. From (13) it follows that
1 − ψ can be interpreted as the distribution function of a random sum (for more
details see considerations after Theorem 1.8). Representation (13) for the non-ruin
probability holds for all renewal models. Moreover, for the Cramér-Lundberg model
the function H and the constant α were explicitly found (see [18, Section 1.2]):

1− ψ(u) = ρ

1 + ρ

∞∑
n=0

(1 + ρ)−nF n∗
I (u), (14)

where
FI(x) = 1

µ

∫ x

0
(1− F (y))dy, x ≥ 0 (15)

denotes the integrated tail distribution. This representation is known as Pollaczek-
Khinchin formula.

If the Cramér-Lundberg condition holds, i.e. if there exists some v > 0 such that∫ +∞

0
evxdFI(x) = c

λµ
= ρ+ 1, ρ > 0, (16)

then the ruin probability ψ(u) in the Cramér-Lundberg model can be estimated as
follows (for a proof see [18, Theorem 1.2.2]):

ψ(u) ≤ e−vu for all u ≥ 0. (17)
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Note that if v in (16) exists, then it is uniquely determined.
A result similar to (17) was also obtained for the renewal model (see [20]). In-

equality (17) gives a good estimate of ψ(u) even for relatively small u. But for
subexponential integrated tails FI , which fit real insurance data very well, it is easy
to see from Lemma 1.3 (i) that the Cramér-Lundberg condition (16) does not hold.

If the distribution function F of claim sizes Xi satisfies the Cramér-Lundberg
condition, then the corresponding risk processes are called risk processes with “small
claims”. Risk processes with F such that FI is subexponential are referred to as risk
processes with “large claims”. Figure 1 demonstrates the validity of such names.

0 5 10 15 20
t0

2

4

6

8

10
UHtL

0 5 10 15 20
t0

2

4

6

8

10
UHtL

Figure 1: Some realizations of risk processes U(t) for large (Pareto, left) and small
(exponential, right) claim sizes.

For risk processes with “large claims” inequality (17) for the ruin probability
does not hold. For such occasions the following theorem was obtained.

Theorem 1.7 (The Cramér-Lundberg theorem, [18, Theorem 1.3.8]).
Consider the Cramér-Lundberg model with net profit condition ρ > 0. Then the
following statements are equivalent:

(i) FI ∈ S,

(ii) 1− ψ ∈ S,

(iii) lim
u→+∞

ψ(u)
1− FI(u) = ρ−1.

Remark 1.14. The idea of the proof is the following (for a detailed proof see [18,
Section 1.3]). Representation (14) implies

ψ(u)
1− FI(u) = ρ

1 + ρ

∞∑
n=0

(1 + ρ)−n1− F n∗
I (u)

1− FI(u) . (18)

Then using property (5) of subexponential distributions, Lemma 1.3 (iii) and Lebes-
gue’s dominated convergence theorem (to interchange the limit and the infinite sum
in (18)) we get equality (iii) of Theorem 1.7.

The following result is a generalization of Theorem 1.7 for the renewal risk model.
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Theorem 1.8 ([30]). Consider the renewal risk model with net profit condition
ρ > 0. Then the following two statements are equivalent:

(i) FI ∈ S,

(ii) 1− ψ ∈ S.

If (i) or (ii) holds, then lim
u→+∞

ψ(u)
1− FI(u) = ρ−1.

Theorem 1.7 and Theorem 1.8 give us only the first-order asymptotic result for
the ratio ψ(u)/(1−FI(u)). The approximation ψ(u) ≈ ρ−1(1−FI(u)) is acceptable
only for very large u, which is hardly possible in practice. As Embrechts et al. [18,
Section 1.4] write, such estimate for ψ is “however mainly of theoretical value” in
comparison with estimate (17). Therefore, it would be useful for insurance compa-
nies to get more precise asymptotic behavior of the ratio ψ(u)/(1 − FI(u)). This
task is connected to our problem under consideration, namely, to the behavior of
ratio (2).

Indeed, using (14) and (15) we can interpret the non-ruin probability 1 − ψ(u)
as the distribution function of the sum S∗ν∗ = X∗1 + X∗2 + · · · + X∗ν∗ , S∗0 = 0, where
X∗1 , X

∗
2 , . . . are i.i.d. random variables with common distribution function FI(u)

and ν∗ is a counting random variable with distribution P (ν∗ = n) = ρ (1 + ρ)−(n+1)

for n ∈ N0, which is independent of X1, X2, . . . . In other words, according to (1) we
have 1−ψ(u) = K∗ν∗(u). Then ψ(u)/(1−FI(u)) from Theorem 1.7 and Theorem 1.8
can be written as

ψ(u)
1− FI(u) = 1−K∗ν∗(u)

1− FI(u) ,

which is a particular case of expression (2).
Thus, it is no coincidence that such an “unnaturally-looking” ratio (2) was chosen

for our investigation. The method of analyzing the data in insurance is quite different
compared to the analysis of usual statistical data. In the latter case the possibility of
very large events, which can be found on the fast decreasing tail of Kν , is considered
as negligible. In the insurance models with heavy-tailed data this is not allowed,
since the tails contain rare but very influential events. This makes the influence of
the tail of the distribution much more significant. The fact that the ruin probability
itself is the tail of the random sum defined above corroborates this significance.
Thus, the tail of a random sum, such as 1 −Kν with Kν from (1), is of interest in
insurance. But we investigate not the tail itself but the quotient of it to the tail of
one random variable. Such consideration of the problem gives the possibility to use
known properties of subexponentiality. In addition, such a pattern as ratio (2) is
often seen in some already obtained results in insurance (for example, Theorems 1.7
and Theorem 1.8). This means that the research of the general problem about the
behavior of (2) provides the ability to obtain better estimates for the ruin probability
in the basic insurance models.

We shall return to random sums and the Cramér-Lundberg model as an appli-
cation of our main theorem in Chapter 5.



2 Analysis of previous research

2.1 Subexponential and regularly varying distributions
In this section we will give a short review of the results that were obtained concerning
our problem under consideration.

Recall that we consider a compound sum Sν = X1 + X2 + · · · + Xν , S0 = 0,
of i.i.d. nonnegative random variables X,X1, X2, ... with common subexponential
distribution function F (i.e. F ∈ S) and a nonnegative integer-valued counting
random variable ν, which is supposed to be independent of X1, X2, .... Let pn =
P (ν = n) with ∑∞

n=0 pn = 1. We already know from (1) that the distribution
function Kν of the sum Sν can be expressed as follows:

Kν(x) = P (Sν ≤ x) =
∞∑
n=0

pnF
n∗(x), x ∈ R. (19)

We are interested in the behavior of the quotient

1−Kν(x)
1− F (x) as x→∞. (20)

The following theorem gives the first-order result for the problem under considera-
tion.

Theorem 2.1. Let (pn)n∈N0 be a distribution of a random variable ν and let ν be
independent of X1, X2, . . . . Suppose that for some ε > 0 we have

∞∑
n=0

pn(1 + ε)n <∞. (21)

If F ∈ S, then
lim

x→+∞

1−Kν(x)
1− F (x) = Eν. (22)

Remark 2.1. This result was obtained by Chover et al. [8, Theorem 4] in a more
general setting. The proof is similar to the proof of Theorem 1.7. Condition (21),
Lemma 1.3 (iii), property (5) of subexponential distributions and Lebesgue’s domi-
nated convergence theorem provide (22).
Remark 2.2. Condition (21) is equivalent to the condition that the moment gene-
rating function of ν is finite in a neighborhood of the origin, i.e. Eetν < ∞ for
| t| < ε for some ε > 0.

Below we give some examples of the distributions, for which condition (21) holds.

Example 2.1. Let us consider a Poisson-distributed random variable ν with para-
meter λ ∈ R+, i.e. pn = P (ν = n) = e−λλn/n! for all n ∈ N0. Then for any fixed
ε > 0 we have

∞∑
n=0

pn(1 + ε)n = e−λ
∞∑
n=0

(λ (1 + ε))n

n! = e−λ eλ(1+ε) = eλ ε <∞.

This means that condition (21) holds for the Poisson distribution.
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Example 2.2. For a random variable ν∗ considered at the end of Section 1.3 with
pn = P (ν∗ = n) = ρ(1 + ρ)−(n+1), n ∈ N0, ρ ∈ R+, condition (21) is also satisfied.
Indeed, for all 0 < ε < ρ we obtain

∞∑
n=0

pn(1 + ε)n = ρ

1 + ρ

∞∑
n=0

(
1 + ε

1 + ρ

)n
= ρ

ρ− ε
<∞.

Relation (22) gives us a first-order result for
(
1−Kν(x)

)/(
1−F (x)

)
as x→∞.

This means that 1 − Kν(x) can be estimated by Eν
(
1 − F (x)

)
for large x. The

question is: How good is this estimate? The quality of such an approximation is
characterized by the rate of convergence of

∆(x) := 1−Kν(x)
1− F (x) − Eν to 0 as x→∞ . (23)

In general, without some additional conditions on F ∈ S we cannot predict the
behavior of ∆(x), except that ∆(x) → 0 as x → ∞, which is provided by Theo-
rem 2.1. The next step in the investigation is an attempt to obtain some estimations
of ∆(x) considering not all subexponential distributions but only a subclass of them,
namely, distributions with regularly varying tails. This subclass is rather popular
for modeling heavy-tailed phenomena. The idea of regular variation was introduced
by Karamata in 1930, [34]. For an encyclopedic treatment of regular variation see
Bingham et al. [7], de Haan [14], Feller [24] or Seneta [48].

Definition 2.2 (Regular variation, [18, Appendix 3.1]).
A positive measurable function h on (0,∞) is regularly varying at infinity of index
α ∈ R (we write h ∈ RVα) if

lim
x→+∞

h(tx)
h(x) = tα, for all t > 0. (24)

Remark 2.3. If a function L is regularly varying of index α = 0, i.e. L ∈ RV0, then
we say that L is a slowly varying function.
Remark 2.4. Regular variation defined above is called regular variation in Kara-
mata’s sense.
Remark 2.5. If (24) holds, then it holds uniformly on each compact subset of (0,∞).

The following lemma gives an equivalent description of regular variation.

Lemma 2.3. A positive measurable function h on (0,∞) is regularly varying at
infinity of index α ∈ R if and only if

h(x) = xα L(x), x > 0, (25)

where L is a slowly varying function.

Proof. See [48, Section 1.1].
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Remark 2.6. Regular variation may be defined not only at infinity, but at any a ∈ R.
In the thesis we use regular variation only at infinity. Therefore in what follows we
will say “regularly varying” and mean “regularly varying at infinity”.
Remark 2.7. The property of regular variation depends only on the behavior at
infinity and it is therefore not necessary for h(x) to be positive, or even defined, for
all x > 0, [24, Section VIII.8].

Example 2.3 ([18, Appendix 3.1]).
Positive constants, functions converging to a positive constant, logarithms and
iterated logarithms are slowly varying functions. Typical examples of regularly
varying functions of index α are the following:

xα, xα log(log(e+ x)), xα(log(1 + x))γ, γ ∈ R.

Definition 2.4 (Distributions with regularly varying tails).
We say that the distribution function F has regularly varying (right) tail of index −α
if 1− F ∈ RV−α, α > 0, i.e. if

1− F (x) = x−α L(x), x > 0, (26)

where L is a slowly varying function.

Remark 2.8. If the distribution function F has regularly varying left tail of index −α,
α > 0, then instead of (26) we have

F (−x) = x−α L(x), x > 0, (27)

where L is a slowly varying function. Generally we consider nonnegative random
variables. Their distribution functions only have nontrivial right tails. Therefore,
as it was said in Section 1.1, we write “tail” and mean “right tail” unless otherwise
specified.

Lemma 2.5. Each distribution with a regularly varying tail is subexponential and
thereby heavy-tailed.

Proof. Subexponentiality is proved in [30], and heavy-tailedness follows from subex-
ponentiality and from Lemma 1.3 (i).

Example 2.4. The standard Cauchy distribution function

F (x) = 1
π

arctan x+ 1
2 , x ∈ R,

from Example 1.2 has regularly varying tail of index −1. This follows from the
following representation as x→ +∞:

1− F (x) = 1
2 −

1
π

arctan x = x−1 L(x) = 1
πx

+O
( 1
x3

)
, (28)

since L(x) = x (1/2− 1/π arctan x) is a slowly varying function. Since the standard
Cauchy distribution is symmetric, then it is clear that the left tail of its distribution
function is also regularly varying with the same index.
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Example 2.5. Pareto distribution function F with

1− F (x) =
{

(κ/x)α for x ≥ κ,
1 for x < κ,

κ > 0, α > 0

has regularly varying tail of index −α. A slowly varying function L from represen-
tation (26) can be chosen as L(x) = κα, x > 0.

Example 2.6. Consider the Lévy distribution with density function p:

p(x) = 1
2
√
π
e−

1
4 x x−

3
2 , x > 0.

The corresponding distribution function F can be represented in the following way:

1− F (x) = 1√
π
√
x

+O(x−3/2) as x→∞. (29)

According to Definition 2.4 the latter means that the Lévy distribution has regularly
varying tail with of index −1/2.

Remark 2.9. Notice that Pareto, Lévy and Cauchy distributions not only have
regularly varying tails, but also regularly varying densities. This is easy to show
using Definition 2.2.

Many papers have been devoted to the study of the behavior of the difference
R(x) = 1−Kν(x)−Eν

(
1−F (x)

)
in the case of regularly varying F . For example,

see Baltrūnas, Omey [4], [5]; Geluk [28]; Omey, Willekens [41], [42], [43].
Below we give some results due to Omey and Willekens, which can be useful

for the investigation of the behavior of ∆(x). They concern nonnegative absolutely
continuous random variables with regularly varying density p. Recall from (19) that

Kν(x) = P (Sν ≤ x) =
∞∑
n=0

pnF
n∗(x), x ∈ R,

where Sν = X1 + X2 + · · · + Xν , S0 = 0, with i.i.d. nonnegative random variables
X,X1, ..., Xν with common distribution function F and a nonnegative integer-valued
counting random variable ν with distribution pn = P (ν = n).

Theorem 2.6 (Omey, Willekens, [43]).
Assume that ∑∞n=0 pn(1 + ε)n < ∞ for some ε > 0 and µ = EX < ∞. If F has a
continuous density p ∈ RV−β with β > 1, then

lim
x→∞

1−Kν(x)− Eν
(
1− F (x)

)
p(x) = µE

(
ν(ν − 1)

)
. (30)

Remark 2.10. In the paper [43] Omey and Willekens require the condition of analy-
ticity of the function Pν(z) := ∑∞

n=0 pnz
n at z = 1 instead of ∑∞n=0 pn(1 + ε)n < ∞

for some ε > 0. These two conditions are equivalent (see [18, Remark on p. 45]).
Remark 2.11. If the conditions p ∈ RV−β and µ <∞ in Theorem 2.6 are satisfied,
then the condition β ≥ 2 holds true (this follows from [18, Proposition A.3.8]).
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The following theorem is an analogue of Theorem 2.6, for the case when the
expectation of a random variable X is infinite. The asymptotic result below is quite
different from the finite mean case, although the techniques of the proof are similar
to those used in proving Theorem 2.6.

Theorem 2.7 (Omey, Willekens, [41]).
Assume that ∑∞n=0 pn(1 + ε)n < ∞ for some ε > 0. If F has a density p ∈ RV−β
with 1 < β < 2, then

lim
x→∞

1−Kν(x)− Eν
(
1− F (x)

)
p(x)

∫ x
0 (1− F (y))dy = c(β)E

(
ν(ν − 1)

)
(31)

with
c(β) = −(2− β) (3− 2β) (Γ(2− β))2

(β − 1) Γ(4− 2β) , β ∈ (1, 2). (32)

Remark 2.12. Theorem 2.6 and Theorem 2.7 provide the first-order results for ∆(x),
and, consequently, the second-order results for (1 −Kν(x))/(1 − F (x)). Namely, if
µ <∞, then for large x

∆(x) = 1−Kν(x)
1− F (x) − Eν = µE

(
ν(ν − 1)

) p(x)
1− F (x) (1 + o(1)), (33)

and in the case µ =∞ we have

∆(x) = c(β)E
(
ν(ν − 1)

)p(x)
∫ x

0 (1− F (y))dy
1− F (x) (1 + o(1)) (34)

with c(β) from (32).
Remark 2.13. Much less is known about the case µ = ∞ in comparison with the
case µ <∞. Therefore, asymptotic equalities like (31) play a very important role.
Remark 2.14. If β = 3/2 in Theorem 2.7, then c(β) = 0 and (31) does not yield the
exact asymptotic behavior of 1−Kν(x)−Eν

(
1−F (x)

)
. Omey and Willekens [41]

improved this result in the case of a stable distribution function F (for a definition
see Section 3.1).

Since the theorems of Omey and Willekens assume regularly varying densities,
the natural question arises whether all distribution functions with regularly varying
tails have regularly varying densities (in the case when densities exist). Unfortu-
nately, the answer is No.

Example 2.7. Let us consider a nonnegative random variable X with density func-
tion p:

p(x) = αD(1− cosx)
x1+α , x ≥ 0, α ∈ (0, 1), (35)

where

D =
(∫ +∞

0

α(1− cosx)
x1+α dx

)−1

= 1
Γ(1− α) cos(πα/2) .
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Figure 2: Density function p(x) for α = 1/3.

Unfortunately, Theorems 2.6 and 2.7 cannot be applied for random variable X, since
p(x) = 0 at each point x = 2π n, n ∈ N0 and therefore p is not regularly varying.
This fact is also illustrated by Figure 2, where the density function p for α = 1/3 is
represented.

Note that the distribution function F of X can be written in the form:

1− F (x) = D

xα
+ αD sin x

x1+α +O
( 1
x2+α

)
, x→∞.

The latter means that the distribution function of X has a regularly varying tail
although the density function is not regularly varying. This fact indicates that the
assumptions of Theorems 2.6 and 2.7 might be too restrictive.

We will give one more example in order to show that there are random variables
with discontinuous densities, whose distribution functions are regularly varying al-
though their density functions are not.

Example 2.8. Let us consider a nonnegative random variable X with density func-
tion p:

p(x) =


0, for x < 0,
1− A, for 0 ≤ x < 1,

1
2
√
π
x−3/2

(
1−

∞∑
k=2

1[k− 1
k2 ; k+ 1

k2 )(x)
)
, for x ≥ 1.

(36)

where A (≈ 0.492) is chosen such that
∫+∞
−∞ p(x)dx = 1. The graph of this function

is presented in Figure 3.
The density function of X is equal to 0 at each point x = n, n ∈ N \ {1} and is

therefore not regularly varying. But the corresponding distribution function allows
the following representation for large x:

1− F (x) =
∫ ∞
x

p(y)dy = 1
2
√
π

(∫ ∞
x

1
y3/2 dy −

∞∑
k=2

∫ ∞
x

1
y3/2 1[k− 1

k2 ; k+ 1
k2 )(y) dy

)

= 1√
π
√
x
− 1√

π

∞∑
k=k∗

2k
√
k6 − 1

(√
k3 + 1 +

√
k3 − 1

)
= 1√

π
√
x

+O(x−5/2), x→∞, k∗ = min
{
k ∈ N : k − 1

k2 ≥ x
}
.

This means that the distribution function of X has a regularly varying right tail.
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Figure 3: Density function p(x).

Next, the other (even more general) question arises whether an analogue of
Theorem 2.7 holds for a distribution function without density or for densities that
are not regularly varying. As Omey and Willekens wrote in [41]: “in view of the
dependence of the limit on α this question seems to be nontrivial”.

Further investigation of this problem is due to Mikosch and Nagaev [40]. They
showed that for random variables without a regularly varying density “uncritical”
use of the approximation of 1−Kν(x) by Eν

(
1− F (x)

)
provided by Theorem 2.1

even in the case of a regularly varying distribution function F can be problematic.
In [40] an example of a distribution function F with regularly varying tails is

presented, for which the convergence rate in (23) is arbitrarily slow. This means
that in order to get more information about the behavior of ∆(x) some additional
conditions (besides regular variation) are required. As an example consider the
following theorem by Mikosch and Nagaev (for a proof see [40]).

Theorem 2.8 ([40]). Assume that a distribution function F of a positive random
variable X with finite mean µ <∞ satisfies the following conditions:

(i) lim sup
x→∞

1− F (cx)
1− F (x) <∞ for all c ∈ (0, 1);

(ii) lim inf
x→∞

xα(1− F (x)) > 0 for some α > 1;

(iii) F has density p which is non-increasing on [x0,∞) , 0 < x0 <∞.

If for random variable ν with pn = P (ν = n) condition (21) holds, then

∆(x) = 1−Kν(x)
1− F (x) − Eν = O(x−1), x→∞.

Remark 2.15. Distribution functions that satisfy condition (i) from Theorem 2.8 are
said to be of dominated variation. Actually, it is enough to check the limit inequality
from (i) only for c = 0.5. If it holds for c = 0.5, then it holds for all 0 < c < 1 (for
a proof see [7] or [23, Corollary 2.0.6]).
Remark 2.16. If the distribution function F has a regularly varying tail of non-
positive index, i.e. 1 − F ∈ RV−α, α ≥ 0, then condition (i) from Theorem 2.8 is
satisfied (for a proof see [19] or [37]).
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Remark 2.17. Theorem 2.8 is not applicable for the Lévy distribution from Exam-
ple 2.6 and for the Pareto distribution with α ∈ (0, 1] from Example 1.3, since the
expectations of the corresponding random variables are infinite. The same holds for
the random variables with infinite expectations from Examples 2.7 and 2.8. Note
that for both of them condition (iii) is also not satisfied.

Theorem 2.8 provides a rather good rate of convergence for ∆(x) in (23). But
at the same time it requires some strong conditions. This makes the theorem appli-
cable only for relatively “smooth” functions. Furthermore, as before the problem of
obtaining estimates of ∆(x) for random variables without density is not solved.

In the next section we will give some results, which do not require existence of
the density of random variables. These results are motivated by results of Christoph
from [9], [10] and concern a popular subclass of regularly varying functions, namely,
the class of Pareto-like distributions.

2.2 Pareto-like distributions
In this section we give a definition of a Pareto-like distribution, explain why it is cho-
sen for further investigation and formulate some results concerning the asymptotic
behavior of ∆(x) in the case if F (x) is Pareto-like.

As was already said, if we consider a regularly varying function F , which is not
necessarily continuous (or whose density is not necessarily regularly varying), the
rate of convergence of ∆(x) to 0 can be arbitrarily slow. Such examples may be
constructed by choosing a slowly varying function L(x) from representation (26) in
a special way (for details see [40]). In order to exclude such cases some conditions
must be imposed on the slowly varying function. One class of distribution functions
with a special form of L(x) has been popular recently, namely, the class of Pareto-like
distributions.

Definition 2.9 (Pareto-like distribution).
We say that a nonnegative random variable is Pareto-like distributed with parameter
α > 0 if its distribution function F can be represented in the following form:

1− F (x) = C(α)x−α +O(x−r), as x→∞ (37)

for some r > α and some C(α) > 0.

Remark 2.18. A Pareto-like distribution is a distribution with a regularly varying
tail of index −α with a slowly varying function L(x) = C(α) +O(x−(r−α)).

Example 2.9. Typical examples of Pareto-like distributions with parameter α are
Pareto distributions themselves (defined in Example 1.3) with the same parameter.
According to representation (29) the Lévy distribution from Example 2.6 is also
Pareto-like with parameter α = 1/2.

For a Pareto-like distribution function F with parameter α > 0 define

uα(x) := 1− F (x)− C(α)x−α, C(α) > 0.

Christoph has obtained the following results in terms of the function uα(x) .
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Theorem 2.10 ([10]). Suppose 1 < α < 2,∫ ∞
z

x[r] |duα(x)| = O(z[r]−r) as z →∞ (38)

for some r ∈ (1 + α, 2α], and additionally, in case r ∈ N,∣∣∣∣∫ z

0
xrduα(x)

∣∣∣∣ <∞ for all z > 0. (39)

If Eν3 <∞ and µ = EX, then

∆(x) = P (Sν > x)
P (X > x) − Eν = αµ (Eν2 − Eν)

x
+O

(
x−(r−α)

)
as x→∞. (40)

Theorem 2.11 ([9]). Suppose 0 < α < 2, α 6= 1. Let (38) hold for some
r ∈ (α,min{2α, 1 + α}] and additionally let (39) hold in case r ∈ N. If Eν3 < ∞,
then

∆(x) = P (Sν > x)
P (X > x) − Eν = O

(
x−(r−α)

)
as x→∞. (41)

Remark 2.19. In case α ∈ (1, 2) relation (40) gives the exact first-order result for
∆(x), since the coefficient αµ (Eν2 − Eν) at x−1 vanishes only in the trivial cases
P (X = 0) = 1 or P (ν = 1) = 1.
Remark 2.20. For α ∈ (0, 1) and α < r ≤ 2α Theorem 2.11 can provide only the
O
(
x−(r−α)

)
-behavior of ∆(x) as x→∞, where 0 < r−α < 1. Such a deterioration

of quality is connected with the infiniteness of the expectation of X for α ∈ (0, 1).
In general, infinite expectation of X is the reason, why some methods do not give
any estimates of ∆(x) at all.
Remark 2.21. In the special case of α = 1/2 Christoph [9] improved the asymptotic
result (41) from Theorem 2.11. This improvement will be discussed in Section 5.1.

Below we consider some examples for which the asymptotic results are provided
by Theorems 2.10 and 2.11. We compare these results to the asymptotics provided
by Theorems 2.6 and 2.7 due to Omey and Willekens [41, 43] and Theorem 2.8 due
to Mikosch and Nagaev [40].

Example 2.10. First, let us consider the most popular Pareto-like distribution,
namely, the Pareto distribution with parameters α > 0 and κ > 0 (see Example 1.3).
If α ∈ (1, 2), then the expectation of a Pareto-distributed random variable X is finite
and Theorems 2.6 and 2.10 give the same first-order result for ∆(x) as x→∞:

∆(x) =
αµE

(
ν(ν − 1)

)
x

+O(x−α), where µ = EX = κα

α− 1 .

In this case Theorem 2.8 provides less information, namely: ∆(x) = O(x−1).
In the case of infinite expectation of X, i.e. if α ∈ (0, 1), we have

∆(x) = c(α, κ)
xα

+ o(x−α), x→∞,
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with

c(α, κ) =


−κα Γ2(1− α)E

(
ν(ν − 1)

)
2 Γ(1− 2α) for α 6= 1/2,

0 for α = 1/2,
(42)

according to Theorem 2.7, and only

∆(x) = O(x−α), x→∞,

according to Theorem 2.11 with r = 2α.

Example 2.11. We consider a nonnegative random variable X from Example 2.8
with the density function p defined by (36). Note that p is not regularly varying. As
was already shown, the distribution function F of X can be represented as follows:

1− F (x) = 1√
π
√
x

+O(x−5/2), x→∞.

This means that X is Pareto-like distributed with α = 1/2 and the conditions of
Theorem 2.11 are satisfied with r = 1. Therefore, we have

∆(x) = P (Sν > x)
P (X > x) − Eν = O(x−1/2) as x→∞. (43)

Theorems 2.6 and 2.7 are not applicable for this example, since the condition of
regular variation of the density is not satisfied, and Theorems 2.8 and 2.10 are not
applicable, since the expectation of X is infinite.

Example 2.12 ([10]). Now let us consider an example of a random variable X
without density. Let the distribution function F of X have the following form:

F (x) = 1
2
√
π
F3/2(x) +

(
1− 1

2
√
π

)
Π(x), x ≥ 0,

where F3/2(x) = 1 − x−3/2 for x > 1 is the Pareto distribution function (α = 3/2,
κ = 1 in (7)) and Π(x) is the standard Poisson distribution function with intensity 1.
The function F has jumps at every integer k ≥ 0. Among all theorems considered
above only Theorems 2.10 and 2.11 are applicable, but the first one (with α = 3/2,
r = 3 and µ = 1 + 1/

√
π) gives a more precise approximation of ∆(x), namely:

∆(x) =
3
(
1 + π−1/2

)
E (ν(ν − 1))

2x +O(x−3/2) as x→∞.

Remark 2.22. The examples considered above show that Theorems 2.10 and 2.11
provide quite good results for random variables with regularly varying densities.
More importantly, these theorems are also applicable in case of random variables
with non-regularly-varying densities or even without densities.
Remark 2.23. Note that there are examples of distribution functions, for which
Theorem 2.8 gives better results than Theorems 2.10 and 2.11, see [10].
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As we can see, in different situations each of the theorems considered above
(concerning the behavior of ∆(x)) can give the best as well as the worst asymptotic
result in comparison with the results obtained from the other considered theorems.
Such a difference between the quality of asymptotic estimates can be explained by
the difference of methods, which provided the corresponding results. In order to
obtain Theorem 2.8 Mikosch and Nagaev approximated the n-fold convolution of F
with the function F itself, using property (5) of subexponentiality of F :

1− F n∗(x) ∼ n(1− F (x)) as x→∞,

whereas in order to obtain Theorems 2.10 and 2.11 Christoph used the approxima-
tion of the n-fold convolution of F with some stable distribution G (for details see
the next section):

1− F n∗(x) ∼ n(1−G(x)) as x→∞.

Though the asymptotic results for ∆(x) considered above have different quality
in different situations, they still have something in common: the smaller the para-
meter α of Pareto-like (or regularly varying) distribution, the worse the asymptotic
estimate of ∆(x). As we already noted, one reason for this is the infiniteness of
the expectation of Pareto-like and regularly varying distributions with parameter
α ∈ (0, 1]. This makes some theorems non-applicable at all. But the theorems
from above that can be applied for such α give us not much information about the
behavior of ∆(x) either. They provide only first-order results, which usually are of
the order x−α. If α is very small, then the convergence of ∆(x) to 0 is slow and
the approximation of 1−Kν(x) by Eν (1−F (x)) in applications is not very useful.
This is another reason for the decrease of the quality of asymptotic results with the
decrease of α.

For example, even for very “smooth” Pareto distribution with α ∈ (0, 1), α 6= 1
2 ,

the best that we are able to obtain is the following (see Example 2.10):

∆(x) = c(α, κ)
xα

+ o(x−α), x→∞,

where c(α, κ) is given by (42). Roughly speaking, this information is “nothing” for
small α. In Example 2.11 for Pareto-like distribution with α = 1/2 the asymptotic
result is even worse: we obtained only the O-estimate (43) for ∆(x). That is why
Omey and Willekens [41] pointed out the importance of finding second order results
for ∆(x). Unfortunately, they “have not been able to obtain second order results for
arbitrary regular varying densities p”, [41]. Nevertheless, they proved some theorems
about the second order behavior for stable densities (for details see [41]). In the next
section we will give more general results concerning stable distributions.





3 Limit theorems

3.1 Stable distributions. Connection with Pareto-like dis-
tributions

The aim of this section is to introduce the concept of stable distributions and explain,
how it can help to approximate ∆(x).

We already mentioned in Section 2.2 that in order to obtain Theorems 2.10
and 2.11 Christoph used the approximation of the n-fold convolution F n∗ of F with
some stable distribution G as follows: 1− F n∗(x) ∼ n(1−G(x)) as x→∞. In this
connection the following two questions naturally arise:

1) Why do we have to approximate F n∗?
2) Why are we able to approximate F n∗ with some stable distribution?

We begin with the first question. Recall that (see (19))

∆(x) = 1−Kν(x)
1− F (x) − Eν =

∞∑
n=0

pn
1− F n∗(x)
1− F (x) − Eν.

This representation shows that the quality of approximation of ∆(x) depends on
how well F n∗ is approximated. In general, it is not easy to deal with convolutions of
distribution functions, since they can not be expressed explicitly. Therefore, one tries
to find the best approximation of F n∗ in each particular situation. When dealing
with subexponential distributions, it is natural to use property (5) for estimation
of F n∗, i.e. 1−F n∗(x) ∼ n(1−F (x)) for large x. But for some kinds of distribution
functions it is possible to obtain a better approximation of F n∗(x) and, therefore, a
better approximation of ∆(x). It can be done with the help of stable distributions.

At this point we are moving to the second question. How do stable distributions
arise in this context? In order to understand this let us forget for a moment that we
consider subexponential distributions. Recall that F n∗(x) is the distribution func-
tion of the sum X1 + · · ·+Xn of i.i.d random variables with distribution function F .
The first result that comes to mind of every probabilist when considering such sums
is the central limit theorem. This theorem tells us that for i.i.d. random variables Xi

with finite expectation µ and finite variance σ2 we have

P

(
X1 + · · ·+Xn − nµ

σ
√
n

≤ x

)
→ Φ(x) as n→∞,

where Φ(x) is the distribution function of the standard normal distribution N(0, 1).
This means that for large enough n we can approximate F n∗(σ

√
nx+nµ) with Φ(x)

for any x ∈ R. At this point we recall that we consider subexponential (in particu-
lar, Pareto-like) random variables. As the examples from the previous chapter show,
variances (and expectations) of such random variables are often infinite. Therefore,
the central limit theorem is not applicable. Does this mean that distribution func-
tions of (suitably normalized) sums of i.i.d. random variables with infinite variance
(or infinite expectation) could not converge to any distribution function? Luckily it
does not. It turns out that the limit distribution can be not only normal, but any
stable distribution. This fact and this class of distributions was discovered by Paul
Lévy. Below we give a formal definition.
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Definition 3.1 (Stable distribution, [31, Section 9.1]).
The distribution of a random variable X is stable if X,X1, X2, . . . are independent,
identically distributed random variables, and there exist constants, cn > 0, and
dn ∈ R, n ≥ 1, such that

X1 + · · ·+Xn
d= cnX + dn for all n. (44)

Remark 3.1. The name “stable” of the class accounts for the fact that a sum of i.i.d.
random variables has the same distribution as a linearly transformed summand, [31,
Section 9.1].

Example 3.1. It is easy to see that the normal distribution N(µ, σ2) is stable with
cn =

√
n and dn = µ(n−

√
n) in (44).

Let Sn = X1 + · · ·+Xn. We consider the following sums:

Sn − an
bn

, (45)

where (an) and (bn) are some normalizing sequences such that an, bn ∈ R, bn > 0, for
all n ∈ N. The following theorem describes the class of all possible limit distributions
of normalized sums (45).

Theorem 3.2 ([44, Section IV.3, Theorem 10]).
The set of distributions that are limits of distributions of sums (45) of i.i.d. random
variables X1, ..., Xn coincides with the set of stable distributions.

Remark 3.2. This theorem was proved independently byLévy [38] andKhintchine [35].
Theorem 3.2 is mainly of theoretical value in comparison with the central limit

theorem. In order to use this result in practice, first of all, we need an analytic
representation of stable distributions. Second of all, we want to have a rule to
make a decision with which concrete stable distribution the distribution function of
sums (45) can be approximated in each particular situation. The solution of the
first problem is given by the following theorem.

Theorem 3.3 (Canonical representation of stable distributions I, [18, § 2.2]).
The distribution function G(x) is stable if and only if its characteristic function can
be represented by the formula

g(t) = exp {i γ∗ t− λ∗ |t|α (1− i β∗ ω∗(t, α) sign t)} , (46)

where α, β∗, γ∗, λ∗ are parameters such that α ∈ (0, 2], β∗ ∈ [−1, 1], λ∗ ∈ [0,∞),
γ∗ ∈ R and

ω∗(t, α) =

 tan(πα/2) if α 6= 1,
− 2
π

ln |t| if α = 1. (47)

Remark 3.3. This result was obtained by Khintchine and Lévy, [36].
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Remark 3.4. The value λ∗ = 0 corresponds to the degenerate distribution. Formally
it must be included in the theorem, since every sequence (Sn) can be normalized
and centered in such a way that it converges to a constant in probability, [18, § 2.2].
However, this trivial case is not of interest for us and will therefore be excluded from
our consideration hereafter.
Remark 3.5. As we can see, stable distributions form a four-parametric family of
functions. There exist some other commonly used parameterizations of the charac-
teristic function of a stable distribution beside (46). One of them will be given
below. The choice of the representation depends on the application, where stable
distributions are needed. By changing the parametrization we can make our research
easier or more difficult.
Remark 3.6. Any nondegenerate stable distribution has four parameters: the charac-
teristic exponent α, the skewness parameter β∗, the scale parameter λ∗ > 0, and
the shift parameter γ∗. The most important parameter is the parameter α, since
it determines the basic properties of distributions such as finiteness of moments,
behavior of tails, the sequences (cn) and (dn) from (44).

Example 3.2. 1) Since the characteristic function of the normal distribution
N(µ, σ2) has the form f(t) = exp{itµ − t2σ2/2}, then from Theorem 3.3 it fol-
lows that N(µ, σ2) is stable with parameters (α, β∗, λ∗, γ∗) = (2, 0, σ2/2, µ). The
value α = 2 always corresponds to the normal distribution. In this case ω∗(t, α) = 0
and the parameter β∗ can be chosen arbitrarily (it is generally accepted to put
β∗ = 0). In other words, the class of normal distributions is a subclass of the stable
distributions which depends only on two parameters (instead of four).
2) The standard Cauchy distribution (see Example 1.2) with characteristic function
f(t) = exp{−|t|} is stable with parameters (α, β∗, λ∗, γ∗) = (1, 0, 1, 0).
3) According to formula (46) the Lévy distribution defined in Example 2.6 with
characteristic function f(t) = exp{−(

√
2/2) |t|1/2

(
1− i sign(t)

)
} is also stable with

parameters (α, β∗, λ∗, γ∗) = (1/2, 1,
√

2/2, 0).

For the investigation of some analytic properties of stable distributions it is more
useful to consider another parametrization.

Theorem 3.4 (Canonical representation of stable distributions II, [12, § 1.1]).
The distribution function G(x) is stable if and only if its characteristic function can
be represented by the formula

g(t) = exp {i γ t− λ |t|α ω(t, α, β)} , (48)

where α, β, γ, λ are parameters such that α ∈ (0, 2], β ∈ [−1, 1], λ ∈ [0,∞), γ ∈ R
and

ω(α) =

 exp
(
−i π2 β K(α) sign t

)
if α 6= 1,

π/2 + iβ ln |t| sign t if α = 1.
(49)

with K(α) = α− 1 + sign(1− α).

Remark 3.7. For a proof and for a connection between the parameters β∗, λ∗, γ∗
from Theorem 3.3 and the parameters β, λ, γ from Theorem 3.4 see [12, § 1.1] or [51,
Theorem C.3]. The parameter α is the same in both theorems.
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Remark 3.8. All nondegenerate stable distributions are absolutely continuous (for a
proof see Lemma 3.13).

Note that though an explicit form of the characteristic function of a stable distri-
bution is found, explicit expressions for the stable densities in terms of elementary
functions are known only in a few cases. These are the normal distribution, the
Cauchy distribution, and the Lévy distribution (see Example 3.2).

In order to distinguish between stable distributions we will index distribution
functions and characteristic functions as Gα,β(x;λ, γ) and gα,β(t;λ, γ), respectively.
In what follows we use parametrization (48).

For each nondegenerate stable distribution we define its domain of attraction as
follows.

Definition 3.5 (Domain of attraction, [29, § 35]).
Let X,X1, X2, . . . be independent, identically distributed random variables with com-
mon distribution function F and partial sums Sn, n ≥ 1. If for suitably chosen
normalizing sequences (an) and (bn) the distribution functions of sums (45) con-
verge as n→∞ to a distribution function Gα,β(x;λ, γ), i.e.

P
(
Sn − an
bn

≤ x
)
→ Gα,β(x;λ, γ) as n→∞, (50)

then we say that F (x) is attracted to Gα,β(x;λ, γ). The set of distribution functions
attracted to Gα,β(x;λ, γ) is called the domain of attraction of Gα,β(x;λ, γ) and is
denoted by DA(Gα,β( . ;λ, γ)).

Remark 3.9. In this thesis we use the concepts “domain of attraction of distribution”
and “domain of attraction of distribution function” as synonyms. Moreover, if we
say that the random variable X is attracted to some distribution, than we mean
that the distribution function of X is attracted to the considered distribution.
Remark 3.10. In general, for any distribution function we can define its domain of
attraction in the same way as in Definition 3.5. But it is empty if this distribution
function is not stable. From Theorem 3.2 it follows that only the stable distributions
possess (non-empty) domains of attraction.
Remark 3.11. If convergence (50) takes place, then the sequence (bn) must have
the form bn = n1/α h(n), where h(n) is a slowly varying function in the sense of
Karamata (for a proof see [33, § 2.2, p. 46]).

Example 3.3. The central limit theorem states that each random variable X with
finite mean µ and finite variance σ2 is attracted to the standard normal distribution
with an = nµ and bn = σ

√
n.

The classical limit theorems of probability (de Moivre-Laplace, Lévy) show that
for the convergence to the normal distribution (which is a stable distribution with
α = 2) the most interesting case is the one with bn = an1/2 with some constant
a > 0, [33, p. 91]. This fact caused the following definition.
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Definition 3.6 (Domain of normal attraction).
We say that the distribution function F (x) belongs to the domain of normal attrac-
tion of the distribution function Gα,β(x;λ, γ) (and write F ∈ DNA(Gα,β( . ;λ, γ)))
if F (x) is attracted to Gα,β(x;λ, γ) with a normalizing sequence (bn) in (50) such
that bn = an1/α for some a > 0.
Remark 3.12. The adjective “normal” in the definition above is equivalent to the
adjective “natural” in some sense. To consider “parts” of domains of attraction with
bn = an1/α is natural enough, since only for this choice of bn any stable distribution
function Gα,β(x;λ, γ) is attracted to itself.

Now we move to the second problem formulated after Theorem 3.2: For any given
distribution function F to be able to decide whether it is attracted to some stable
distribution and if it is, to which one. This problem is equivalent to determining the
domains of attraction for each stable distribution. To determine the domain of at-
traction of stable Gα,β(x;λ, γ) means to find the necessary and sufficient conditions,
which must be imposed on the function F , in order for convergence (50) to take
place. This problem was solved completely in the 1930’s. Below we give the results
only for domains of normal attraction, since we use only them in what follows.

We distinguish two cases: the case of stable distribution with parameter α = 2
and the case of stable distribution with α ∈ (0, 2). The first case concerns the
normal distribution as limit distribution.
Theorem 3.7 (Normal limit distribution, [33, Theorem 2.6.6]).
The random variable X with distribution function F (x) belongs to the domain of
normal attraction of the normal distribution N(0, 1) if and only if it has finite vari-
ance σ2. In this case we can put bn = σ

√
n.

If we get some stable distribution with α ∈ (0, 2) as limit distribution, then we
speak about non-normal limit distribution.
Theorem 3.8 (Non-normal limit distribution, [33, Theorem 2.6.7]).
The distribution function F (x) belongs to the domain of normal attraction of the
stable distribution Gα,β(x;λ, γ) with bn = an1/α, a > 0 if and only if

1− F (x) = c1a
α

xα
+ o(x−α),

F (−x) = c2a
α

xα
+ o(x−α),

x > 0, x→∞, (51)

where c1 and c2 are nonnegative constants determined by the parameters α, β, λ such
that c1 + c2 > 0.
Remark 3.13. Because of cumbersome expressions we do not give c1 and c2 from
Theorem 3.8 explicitly. This information can be found in [33, § 2.6].
Remark 3.14. Similar results have also been obtained for domains of attraction in
general (for a proof see [29, § 35], [33, § 2.6]).
Remark 3.15. From Theorems 3.7 and 3.8 we see the following. While the normal
distribution attracts a very wide class of distributions, the domains of attraction
of the other stable distributions consist only of those distribution functions whose
behavior is similar to the behavior of the attracting distribution function, [29, § 35].
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Finally we can see how Pareto-like distributions are connected with stable dis-
tributions. From Definition 2.9 and Theorem 3.8 it follows that each Pareto-like
distribution function F with parameter α ∈ (0, 2) belongs to the domain of nor-
mal attraction of some Gα,β(x;λ, γ), i.e. F ∈ DNA(Gα,β( . ;λ, γ)). If we consider
Pareto-like F with α > 2, then Theorem 3.7 states that F ∈ DNA(Φ).

This means that for the n-fold convolution F n∗ of Pareto-like F with α ∈ (0, 2)
we have

F n∗(bnx+ an)→ Gα,β(x;λ, γ), as n→∞,

where bn = an1/α with some constant a > 0.
At this point the same question as before arises: how good is the approximation

F n∗(bnx+ an) ≈ Gα,β(x;λ, γ)? (52)

In order to answer this question we should provide estimates of remainder terms by
such approximation. The next sections are devoted to this problem.

3.2 Remainder term estimates. Case α = 2
In this section we discuss the quality of approximation of the distribution functions of
normalized sums (45) with the normal limit distribution function. We are interested
mostly in the case of non-normal limit distribution, i.e. in remainder term estimates
of approximation (52) with α ∈ (0, 2). But let us start with the classical case which
corresponds to the central limit theorem. Since this theorem is known for a long
time, it is natural to find out what was done relative to the problem formulated
above in this case and to ponder, whether the same methods are applicable in our
case of consideration.

Let us consider a distribution function F from the domain of normal attraction
of some stable distribution. Then we put Fn(x) := F n∗(bnx+ an) with normalizing
constants an and bn, which depend on the stable distribution mentioned above. In
the case of normal limit distribution Fn(x) = F n∗(σ

√
nx+ nµ).

Theorem 3.9 (The Berry-Esseen Theorem, [31, Chapter 7, § 6.1]).
Consider a random variable X with distribution function F , finite mean µ and finite
positive variance σ2. If E|X|3 <∞, then

sup
x
|Fn(x)− Φ(x)| ≤ C

E|X − µ|3

σ3√n
, (53)

where C is a purely numerical constant which does not depend on F .

Remark 3.16. This result was obtained independently by Berry and Esseen. They
also showed that the order relative to n in (53) can not be improved.
Remark 3.17. An exact value of the absolute constant C is still unknown. Esseen [21]
proved that C ≥ 0.4097. The upper bound is being constantly updated. The latest
estimate is C < 0.4748, [49].
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Under the same conditions as in Theorem 3.9 the following non-uniform bound
for the difference Fn − Φ was obtained:

|Fn(x)− Φ(x)| ≤ C̃
E|X − µ|3

σ3√n (1 + |x|3) ,

where C̃ = C + 8 (1 + e) with constant C from Theorem 3.9 (for details see [39] and
[44, Section V.4]).

Since the central limit theorem is used mostly for approximation for finite n in
applications, both mentioned results are needed for the justification of such use. But
in some situations if n is not large enough, the error by such approximation can be
significantly large. Therefore, it becomes necessary to consider some corrections to
the limit distribution function. The most powerful and general method of finding
such corrections is to consider the various asymptotic expansions for the distribution
function Fn(x), [29, Section 8]. The first such asymptotic expansion was suggested
by Chebyshev. His idea was developed and led to the following result.
Theorem 3.10 ([44, Section VI.3]).
If E|X|r <∞ for some r ≥ 3 and lim sup|t|→∞ |f(t)| < 1, then

(1 + |x|)r
∣∣∣∣∣∣Fn(x)− Φ(x)−

[r]∑
k=3

Qk(x)n−(k−2)/2

∣∣∣∣∣∣ = O(n−(r−2)/2), n→∞, (54)

where for each integer k ≥ 3 the function Qk depends on the moments EXm with
1 ≤ m ≤ k.

Remark 3.18. The explicit form of Qk is known (see [29, Section 8] or [44, Sec-
tion VI.1]). But because of its cumbersome expression we do not give it here.
Remark 3.19. Cramér’s condition lim sup|t|→∞ |f(t)| < 1 from Theorem 3.10 means
that the distribution function F of a random variable X with characteristic func-
tion f has a non-zero absolutely continuous component (for a proof see [33, § 1.4]).

Considering Theorem 3.10 it is natural to ask if it is possible to use the same
methods to construct similar functions Qk and to obtain estimates similar to (54) in
the case of non-normal limit distribution? Unfortunately, the methods used to prove
Theorem 3.10 cannot be applied in that case. As usual, the reason is the infiniteness
of moments of higher orders for the random variables attracted to Gα,β( . ;λ, γ) with
0 < α < 2.
Lemma 3.11 ([29, § 35]). If F ∈ DNA(Gα,β( . ;λ, γ)) with α ∈ (0, 2), then∫ +∞

−∞
|x|δdF (x) =∞ for δ ≥ α.

From Lemma3.11 it follows that a random variableX with F ∈DNA(Gα,β( . ;λ, γ))
has an infinite variance for α ∈ (0, 2) and even an infinite expectation for α ∈ (0, 1],
not to mention the third moment. Therefore, the asymptotic expansion of Fn(x),
which depends on the moments, can not be constructed in the non-normal case.
However, if instead of the moments we consider a more general concept of pseudo-
moments (see Section 3.4 for details), then it becomes possible to obtain results
similar to (54). Sections 3.4 and 3.5 are devoted to the solution of this problem.
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3.3 Properties of stable distributions
This section is rather technical. Here we will give some properties of stable distri-
butions and some results that will be needed in what follows. Many of them are
formulated only for α ∈ (0, 1) or for α 6= 1. The reason is that each result looks dif-
ferently depending on the parameter area. In order not to overload the section with
many cases we consider only the most necessary facts. The omitted information can
be found in [29], [33] and [51].

Recall that we are interested in nonnegative random variables Xi, i ≥ 1. In this
connection the following fact is useful: if X ≥ 0 is attracted to stable Gα,β( . ;λ, γ),
then β = 1, [51, p. 18]. Therefore, in what follows we set β = 1.

Without loss of generality we can consider λ = 1 and γ = 0 because of

Gα,1(x;λ, γ) = Gα,1(λ−1/α(x− γ); 1, 0) for α 6= 1, (55)
G1,1(x;λ, γ) = G1,1(λ−1(x− γ − λ ln λ); 1, 0).

For the sake of brevity we will write Gα,1(x, λ) := Gα,1(x ;λ, 0) and Gα,1(x) :=
Gα,1(x ; 1, 0). The same holds for characteristic functions: gα,1(t, λ) := gα,1(t ;λ, 0)
and gα,1(t) := gα,1(t ; 1, 0).

If α < 1 and γ = 0, then the corresponding stable random variable is non-
negative, i.e. Gα,1(x, λ) = 0 for x < 0.

The next property of stable distributions accounts for their name. For x > 0 we
have

Gn∗
α,1(x) = Gα,1(n−1/αx) for α 6= 1 (56)

and
Gn∗

1,1(x) = G1,1(n−1(x− n lnn)).
This follows from representation (48) and is called the stability property.

Since an explicit form of stable distribution functions is known only in a few
cases, the study of the properties of stable random variables is rather difficult. One
way to make it easier is to consider asymptotic expansions of stable distribution
functions. For α ∈ (0, 2), α 6= 1, we have (see [51, Section 2.4])

1−Gα,1(x, λ) = C1(α)λx−α+C2(α)λ2 x−2α+· · ·+Cj(α)λj x−jα+O(x−(j+1)α) (57)

as x→∞, where

Cj(α) = 1
πj! (−1)j+1 Γ(jα) sin (jαπ) , j ∈ N. (58)

Note that in this case c1 from (51) is equal to C1(α) defined in (58).
Further properties will be formulated as a sequence of lemmata.

Lemma 3.12 ([29, § 35]). If F ∈ DNA(Gα,β( . ;λ, γ)) with α ∈ (0, 2), then∫ +∞

−∞
|x|δdF (x) <∞ for 0 ≤ δ < α, δ ∈ R.
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Remark 3.20. Since every stable distribution with characteristic exponent α belongs
to its own domain of normal attraction, it has finite absolute moments of order δ < α.

Lemma 3.13 ([29, § 36]). All nondegenerate stable distributions are absolutely con-
tinuous and their distribution functions have derivatives of all orders at every point.

Proof. Notice that for a nondegenerate stable distribution we have (see parametriza-
tion (46))

|gα,β∗(t;λ∗, γ∗)| ≤ exp (−λ∗|t|α) , λ∗ > 0.
It follows from this and from the inversion theorem that nondegenerate stable distri-
bution are absolutely continuous. The corresponding density function pα,β∗(x;λ∗, γ∗)
can be written in the form:

pα,β∗(x;λ∗, γ∗) = 1
2π

∫ +∞

−∞
e−itx gα,β∗(t;λ∗, γ∗)dt.

Differentiating this formula formally n times with respect to x, we obtain

dn

dxn
pα,β∗(x;λ∗, γ∗) = 1

2π

∫ +∞

−∞
(−it)n e−itx gα,β∗(t;λ∗, γ∗)dt.

The latter integral converges absolutely, which completes the proof.

The next lemma provides some estimates for derivatives of a stable distribution
function Gα,β(x, λ) with respect to x and λ.

Lemma 3.14 ([12, Theorem 1.5]).
Let α < 1. For any integers k, j ≥ 0, k, j ∈ N0 with k + j > 0 there exist positive
constants Ak,j, Bk,j, and Dk,j, depending only on k and j, such that∣∣∣∣∣ ∂k+j

∂xk∂λj
Gα,β(x, λ)

∣∣∣∣∣ ≤ Dk,j λ
−j−k/α (59)

for all x and 0 < λ ≤ 2 and∣∣∣∣∣ ∂k+j

∂xk∂λj
Gα,β(x, λ)

∣∣∣∣∣ ≤ Bk,j |x|−k−αJ (60)

for |x| > Ak,j > 0 and 0 < λ ≤ 2, where

J =
{
j + 1 if j(α +K(α)β) is an even integer,
j otherwise,

and K(α) = α − 1 + sign(1 − α). Moreover, the constants Ak,j, Bk,j, and Dk,j can
be chosen as follows:

Dk,j = Γ(j + k/α)(πα)−1
(

cos(K(α)βπ/2)
)−j−k/α

,

Ak,j = (αJ + k)1/α, Bk,j = 4Γ(αJ + k)/π.

Remark 3.21. Lemma 3.14 holds also for 1 ≤ α < 2. But in this case the con-
stants Ak,j, Bk,j, and Dk,j have another form (for details and for a proof of the
lemma see [12]).
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3.4 Remainder term estimate: 0 < α < 2
The goal of this section is to formulate an asymptotic result for the case α < 2 similar
to Theorem 3.10. For this purpose we first have to define the pseudomoments.

3.4.1 Pseudomoments

Pseudomoments are constructed to replace ordinary moments of random variables
from the domain of normal attraction of a stable distribution. Pseudomoments com-
bine the features of moments with the features of metrics. This helps to “reflect the
geometry of the distribution more accurately and informatively then with ordinary
moments”, as Weiner wrote in [50].

We start with a motivating example. Let us consider a nonnegative Pareto-like
distributed random variable X with distribution function F , i.e.

1− F (x) = C(α)x−α +O(x−r) as x→∞ (61)

for some r > α and C(α) > 0. From Theorem 3.8 it follows that F ∈DNA(Gα,1( . ;λ, γ)).
Therefore, according to Lemma 3.11

E|X|δ =
∫ +∞

−∞
|x|δdF (x) =∞ for δ ≥ α.

Without loss of generality we can put the normalizing constant a = 1 in (51),
the scale parameter λ = 1 in (57), and C(α) = C1(α) in (61). Then we find

F (x)−Gα,1(x) = O(x−min{r,2α}) for r > α from (61), x→∞.

Hence, F (x)−Gα,1(x) has better tail-behavior than 1−F (x) and 1−Gα,1(x), which
permits to use the concept of pseudomoments. It was first introduced by Bergström
in [6]. In this thesis we are interested in nonnegative Pareto-like distributions, which
very well illustrate the reasonability to introduce the pseudomoments.

But in general, pseudomoments can be defined for any random variable with
distribution function F ∈ DNA(Gα,β( . ;λ, γ)).
Definition 3.15 (Pseudomoments).
Consider a random variable X with distribution function F ∈ DNA(Gα,β). Put
H(x) := F (x) − Gα,β(x). If the corresponding integrals exist, we define the k−th
order pseudomoment

µk = µk(H) =
∫ +∞

−∞
xk dH(x), k ∈ N0, (62)

the r−th order absolute pseudomoment

νr = νr(H) =
∫ +∞

−∞
|x|r |dH(x)| , r ≥ 0, r ∈ R, (63)

and the r−th order truncated pseudomoment

γr = γr(H) =


sup
z>0

zr−[r]
∫
|x|>z
|x|[r] |dH(x)| , r 6= [r], r > 0,

sup
z>0

(∣∣∣∣∫ z

−z
xrdH(x)

∣∣∣∣+ z
∫
|x|>z

|x| r−1 |dH(x)|
)
, r = [r], r > 0.
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Remark 3.22. Note that (62) is the improper Riemann-Stieltjes integral of xk with
respect to H(x). Let us briefly recall what this means.

The function H(x) = F (x) − Gα,1(x) is a function of bounded variation on
every finite interval [a, b] (as a difference of two nondecreasing functions, see [15,
Theorem 7.2.4]) and xk is continuous for all k ∈ N0. Therefore, the definite Riemann-
Stieltjes integral

∫ b
a x

kdH(x) exists for any a, b ∈ R and is given by the following
formula: ∫ b

a
xkdH(x) := lim

n→∞
max
i

(xi+1−xi)→0

n−1∑
i=0

tki (H(xi+1)−H(xi)) ,

where a = x0 < x1 < · · · < xn = b is a partition of [a, b] and ti ∈ [xi, xi+1],
i = 0, 1, . . . , n− 1. If there exists c ∈ R with H(c+)−H(c−) = 0 such that

lim
a→−∞

∫ c

a
xkdH(x) ∈ R and lim

b→+∞

∫ b

c
xkdH(x) ∈ R,

and the sum of both limits is not of indeterminate form ∞−∞, then we say that
the integral

∫+∞
−∞ xkdH(x) exists. In this case,∫ +∞

−∞
xkdH(x) :=

∫ c

−∞
xkdH(x) +

∫ +∞

c
xkdH(x)

:= lim
a→−∞

∫ c

a
xkdH(x) + lim

b→+∞

∫ b

c
xkdH(x).

The integral in (63) is defined similarly to that from above:

∫ b

a
|x|r |dH(x)| := lim

n→∞
max
i

(xi+1−xi)→0

n−1∑
i=0
|ti|k |H(xi+1)−H(xi)| ,

and ∫ +∞

−∞
|x|r |dH(x)| := lim

a→−∞

∫ c

a
|x|r |dH(x)|+ lim

b→+∞

∫ b

c
|x|r |dH(x)|

if both limits exist for suitably chosen c ∈ R. Also note that the definition does not
depend on the choice of c.
Remark 3.23. The pseudomoments µ0 and ν0 are finite for any random variable X
with distribution function F ∈ DNA(Gα,β). Moreover, µ0 = 0 and ν0 ≤ 2. Indeed,

µ0 =
∫ +∞

−∞
dH(x) =

∫ +∞

−∞
dF (x)−

∫ +∞

−∞
dGα,β(x) = 0;

ν0 =
∫ +∞

−∞
|dH(x)| ≤

∫ +∞

−∞
dF (x) +

∫ +∞

−∞
dGα,β(x) = 2.

Note that for a discrete random variable X we always have ν0 = 2.
The following three lemmata give some properties of pseudomoments, which we

need in what follows.
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Lemma 3.16. Let p, q ∈ R and p ≥ 0, q ≥ 0.

(a) If νp <∞, then νq <∞ for all q ≤ p. Moreover, νq ≤ ν
(p−q)/p
0 νq/pp .

(b) If νp =∞, then νq =∞ for all q ≥ p.

Proof. (a) follows from Hölder’s inequality (for a detailed proof see [12, Lemma 2.2]).
(b) For q ≥ p ≥ 0 we have

νq =
∫ +∞

−∞
|x|q |dH(x)| =

∫ 1

−1
|x|q |dH(x)|+

∫
|x|≥1
|x|q−p |x|p |dH(x)|

≥
∫ 1

−1
|x|q |dH(x)|+

∫
|x|≥1
|x|p |dH(x)|

=
∫ 1

−1
|x|q |dH(x)| −

∫ 1

−1
|x|p |dH(x)|+ νp =∞,

since the first two integrals in the last equality are finite. Indeed, for any l ≥ 0 we
find: ∫ 1

−1
|x|l |dH(x)| ≤

∫ 1

−1
|dH(x)| ≤

∫ +∞

−∞
|dH(x)| = ν0 ≤ 2.

Therefore, νq =∞ for all q ≥ p.

Lemma 3.17. If νr <∞, then µ[r] exists and |µk| <∞ for k ∈ {0, 1, . . . , [r]}, where
[r] is an integer part of real r ≥ 0. Moreover, |µk| ≤ νk for any k ∈ {0, 1, . . . , [r]}.

Proof. The assertion follows from Definition 3.15, Lemma 3.16 and Remark 3.22.

Lemma 3.18. With the notation of Definition 3.15 we have

γr ≤ νr, ∀ r ≥ 0, r ∈ R.

Proof. We consider two cases. First let r 6= [r]. Then we have

γr = sup
z>0

zr−[r]
∫
|x|>z
|x|[r] |dH(x)| ≤ sup

z>0

∫
|x|>z
|x|r−[r] |x|[r] |dH(x)|

≤ sup
z>0

∫
|x|>z
|x|r |dH(x)| =

∫ +∞

−∞
|x|r |dH(x)| = νr.

In case r = [r] we find

γr = sup
z>0

(∣∣∣∣∫ z

−z
xrdH(x)

∣∣∣∣+ z
∫
|x|>z
|x|−1 |x| r |dH(x)|

)

≤ sup
z>0

(∣∣∣∣∫ z

−z
xrdH(x)

∣∣∣∣+ ∫
|x|>z

|x| r |dH(x)|
)

≤
∫ +∞

−∞
|x| r |dH(x)| = νr.

Remark 3.24. Lemma 3.18 shows that the truncated pseudomoment γr is a modi-
fication of νr. In the examples below we will see that γr can be finite even if the
corresponding absolute pseudomoment is infinite.
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Example 3.4. We consider a random variable X with distribution function F and
density function

p(x) = 1
π

1
x2 1{|x|≥2/π}(x), x ∈ R.

From Theorem 3.8 it follows that F ∈ DNA(G1,0), where G1,0 is the Cauchy distri-
bution with density function p1,0(x) = 1/(π(1 + x2)), x ∈ R. From

νr =
∫ +∞

−∞
|x|r |dH(x)| = 2

∫ +∞

0
xr | p(x)− p1,0(x)| dx

= 2
π

(∫ +∞

2/π

xr

x2(1 + x2) dx+
∫ 2/π

0

xr

1 + x2dx

)
(64)

we have that νr < ∞ for r < 3. From Lemma 3.17 it follows that |µi| < ∞ with
i = 0, 1, 2. Easy calculations using Definition 3.15 yield

µ0 = µ1 = 0, µ2 = 1− 4
π2 .

Similarly we can show that γ3 < ∞. Moreover, it is possible to obtain the exact
value of γ3:

γ3 = sup
z>0

(∣∣∣∣∫ z

−z
x3 (p(x)− p1,0(x)) dx

∣∣∣∣+ z
∫
|x|>z

x2 | p(x)− p1,0(x)| dx
)

= sup
z>0

(
2z
∫ +∞

z
x2 | p(x)− p1,0(x)| dx︸ ︷︷ ︸

:=f(z)

)
.

Note that f(z) is a piecewise function that can be computed explicitely. Using basic
curve tracing techniques it can be shown that f(z) is increasing on R+. Due to
cumbersome expressions we skip these steps for the sake of readability and continue

γ3 = sup
z>0

(
2z
∫ +∞

z
x2 · 1

π x2(1 + x2) dx
)

= lim
z→∞

(
z − 2z arctan z

π

)
= 2
π
.

Sometimes it is not easy to calculate pseudomoments directly using only Defini-
tion 3.15. In such situations the next two lemmata are useful.

Lemma 3.19 ([12, Lemma 2.5]).
Suppose νr <∞ for some r ≥ 0. Then

f(t)− gα,β(t) =
[r]∑
k=0

(it)k
k! µk + o(|t|r) as t→ 0

and
f(t)− gα,β(t) =

R∑
k=0

(it)k
k! µk + θ |t|r νr if |t| < 1,

where {
R = [r] and |θ| ≤ 2 Γ(r − [r] + 1)/Γ(r + 1) if r 6= [r],
R = r − 1 and |θ| ≤ 1/r! if r = [r].
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Lemma 3.20 ([12, Lemma 2.6]).
If νk <∞ for some integer k ≥ 1, then f(t)− gα,β(t) is k times differentiable and,
moreover, (f(t)− gα,β(t))(m)

∣∣∣
t=0

= imµm for m ∈ {0, 1, . . . , k}.

Remark 3.25. The two lemmata given above illustrate the endless consistency and
harmony of mathematics. We see that the connection between pseudomoments and
the difference f(t)−gα,β(t) is of the same nature as the connection between moments
of a random variable and its characteristic function.
Example 3.5 (Pareto with α = 1/2).
Consider the Pareto distribution defined in (7) with α = 1/2 and κ = 1/π. Its
distribution function F is attracted to the Lévy distribution, i.e. F ∈ DNA(G1/2, 1).
Denote the Pareto density function with p(x) and the Levý density function with
p1/2, 1(x). Then we have

p(x)− p1/2, 1(x) = 1
2
√
π
x−3/2 − 1

2
√
π
x−3/2e−1/(4x)

= 1
8
√
π
x−5/2 +O(x−7/2), x→∞.

Therefore νr =
∫∞
0 xr

∣∣∣ p(x)− p1/2, 1(x)
∣∣∣ dx <∞ for any r < 3/2. From Lemma 3.17

it follows that |µ1| <∞. Moreover, integrating by parts and using the substitution
t := 1/ (2

√
x ) we obtain

µ1 =
∫ +∞

−∞
x (p(x)− p1/2,1(x)) dx = −

∫ 1/π

0
x · 1

2
√
π
x−3/2e−1/(4x) dx

+
∫ +∞

1/π
x · 1

2
√
π
x−3/2

(
1− e−1/(4x)

)
dx = − 1√

π

∫ 1/π

0
e−1/(4x) d

(√
x
)

+ 1√
π

∫ +∞

1/π

(
1− e−1/(4x)

)
d
(√

x
)

= 1√
π

(
− 1√

π
e−π/4 +

∫ +∞
√
π/2

e−t
2
dt

+ 1√
π

(
e−π/4 − 1

)
+
∫ √π/2

0
e−t

2
dt

)
= 1√

π

∫ +∞

0
e−t

2
dt− 1

π
= 1

2 −
1
π
.

Note that ν3/2 =∞, but γ3/2 <∞. Indeed,

γ3/2 = sup
z>0

(
z1/2

∫ +∞

z
x
∣∣∣ p(x)− p1/2, 1(x)

∣∣∣ dx)
≤ 1

8
√
π

sup
z>0

(
z1/2

∫ ∞
z

x · x−5/2 dx
)

= 1
4
√
π
<∞.

Example 3.6 (Pareto with α ∈ (0, 1), α 6= 1/2).
Let X be a Pareto-distributed random variable with α ∈ (0, 1), α 6= 1/2. We know
that F ∈ DNA(Gα,1). Without loss of generality we can put κ = (C1(α))1/α, where
C1(α) is defined in (58). Using representation (57) for Gα,1(x, λ) with λ = 1 we find

F (x)−Gα,1(x) = C2(α)x−2α +O(x−3α), x→∞,

where C2(α) 6= 0. From this it follows that νr < ∞ for r < 2α, ν2α = ∞, but
γ2α <∞. Proofs are similar to that of Example 3.5.
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3.4.2 A remainder term estimate

A result similar to Theorem 3.10 will be formulated here for the case α < 2. Pseudo-
moments defined in the previous subsection made it all possible.

Recall that we consider a sequence of i.i.d. random variables X,X1, X2, . . . with
distribution function F ∈ DNA(Gα,β) for α < 2. Our goal is to build an approxi-
mation of the distribution function Fn(x) defined by

Fn(x) := P
(
Sn − an
bn

≤ x
)
,

where Sn = X1 +X2 + · · ·+Xn and (an), (bn) are some suitably chosen normalizing
sequences such that Fn(x)→ Gα,β(x) as n→∞.

Under some conditions on pseudomoments Christoph [12] suggested to approxi-
mate Fn(x) by the sum of the corresponding stable distribution Gα,β(x) and some
correction term Wr,n(x). He also obtained a non-uniform bound of the remainder
term for such an approximation. His result is an analogue of Theorem 3.10. However
in this case the correction term depends on the pseudomoments, and not on the
moments of X.

Theorem 3.21 ([12, Theorem 5.2]).
Let the case α = 1, β 6= 0 be excluded. Suppose γr <∞ for some r > α, ν0 < 1 and

max{γ1/r
r , γr, γr ν

r/(r−α)
α }n−(r−α)/α ≤ 1/8,

then for all n ≥ R + 2

|Fn(x)−Gα,β(x)−Wr,n(x)| ≤ Cn−(r−α)/α(1 + |x|)−r, (65)

where constant C does not depend on n, x and

Wr,n(x) =
U∑
u=1

J∑
j=0

K∑
k=1

(
n

k

)
akuj

(−1)u
u! j!

(
∂u+j

∂xu ∂λj
Gα,β(x, λ)

∣∣∣∣∣
λ=1

)
n−j−u/α

with U = [2(r − α)/(2− α)], J = [u+ (r − u− α)/α], K = [min{u, (u+ j)/2}],

aukj =
∑

u1+...+uk=u
j1+...+jk=j

k∏
i=1

1
ui! ji!

dui ji with 1 ≤ ui ≤ R, ji ≥ 0,

du0 = (−1)u µu1 + du, duj = (−1)j du for j > 0,

and

du =
u−1∑

v=max{0,u−R}

(
u

v

)
(−µ1)v µu−v, R =

{
[r], if [r] 6= r,
r − 1, if [r] = r.

Remark 3.26. Note that the centering sequence (an) can be chosen as an = nµ1 if
r > 1 and an = 0 if r ≤ 1 (see [12, Chapter 5.2]).



52 CHAPTER 3. Limit theorems

Remark 3.27. Roughly speaking, the correction term Wr,n(x) is a sum of derivatives
of Gα,β(x) with coefficients depending on the pseudomoments. Similar correction
term will be constructed (in detail) in Section 3.5 for the case α ∈ (0, 1). For more
details and for the proof of Theorem 3.21 see [12, Theorem 5.2].
Remark 3.28. Theorem 3.21 (as well as Theorem 3.10) holds only for distribution
functions F , that have a non-zero absolutely continuous component. For such an F
Cramér’s condition lim sup|t|→∞ |f(t)| < 1 holds true. This condition is not men-
tioned explicitly in the theorem, since it follows from the condition ν0 < 1, [12,
Section 5.2].
Remark 3.29. The approximation of Fn(x) and the estimates of the remainder term
given in (65) were used in order to obtain Theorems 2.10 and 2.11. Conditions (38)
and (39) from these theorems provide γr <∞ for the specified r > α.

Example 3.7 ([12, Example 5.3]). Let us consider a random variableX from Exam-
ple 3.4. We know that γ3 <∞. Also, from (64) with r = 0 we have

ν0 = 2
π

(∫ +∞

2/π

1
x2(1 + x2) dx+

∫ 2/π

0

1
1 + x2dx

)
= 4
π

arctan
( 2
π

)
≈ 0.72 < 1.

Therefore, Theorem 3.21 yields∣∣∣∣∣Fn(x)−G1,0(x)− 1
2n µ2

d2

dx2 G1,0(x)
∣∣∣∣∣ ≤ Cn−2(1 + |x|)−3,

where the constant C does not depend on n or x.

Remark 3.30. Theorem 3.21 gives good results if α is not very small. Namely, if α
is small then r can also be small and U = [2(r − α)/(2− α)] = 0 in Theorem 3.21.
This means that the term Wr,n in (65) is equal to 0.

Example 3.8. Let us consider a Pareto-distributed random variable X with
α = 1/3 and κ = (C1(1/3))3, where C1(1/3) ≈ 0.74 is defined in (58). The dis-
tribution function F of X has the form:

1− F (x) = C1(1/3)
x1/3 , x ≥ (C1(1/3))3.

Therefore, F ∈ DNA(G1/3,1). From Example 3.6 it follows that γ2/3 < ∞, but
ν2/3 = ∞ and µ1 = ∞. Then Theorem 3.21 provides the following remainder term
estimates for the approximation of Fn(x) by G1/3,1(x):∣∣∣Fn(x)−G1/3,1(x)

∣∣∣ ≤ Cn−1(1 + |x|)−2/3.

As we can see, the correction term Wr,n vanishes in this case and the quality of
approximation is much worse than in Example 3.7.

Naturally the following question arises: is it possible to improve the approxima-
tion of Fn in the case of F ∈ DNA(Gα,1) with small values of α. This problem will
be discussed in the next section.
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3.5 Remainder term estimate: 0 < α < 1
This section is devoted to the case F ∈ DNA(Gα,1) with α ∈ (0, 1). Our goal is to
improve Theorem 3.21 for small α. On the whole, the case α ∈ (0, 1) is considerably
less studied than the case α > 1. Remark 3.30 and Example 3.8 make clear that for
small α we can not obtain a very good approximation of F n∗ using Theorem 3.21.
This can be explained by the infiniteness not only of the moments of order ≥ 1 but
also of the pseudomoments of higher orders. That is why in this section we also
discuss a possible modification of pseudomoments.

3.5.1 Function G̃α

The goal of this subsection is to construct a function whose behavior is more sim-
ilar to the behavior of F (x) as x → ∞ than that of the attracting distribution
function Gα,1(x).

We consider a nonnegative random variable X with distribution function
F ∈ DNA(Gα,1), where α ∈ (0, 1). It follows from Theorem 3.8 that

1− F (x) = c1a
α

xα
+ o(x−α), x > 0, x→∞, (66)

where c1 is the first coefficient in the expansion of Gα,1 (see (57)):

1−Gα,1(x, λ) = c1 λ

xα
+ c2 λ

2

x2α + · · ·+ cj λ
j

xjα
+O(x−(j+1)α), x→∞, (67)

with ck := Ck(α), k ∈ N, from (58). Without loss of generality we can put the
normalizing constant a = 1.

Usually the distribution function F is given (known). This means that we can
consider more terms in the asymptotic expansion of F in comparison with (66).
Therefore, in this section we suppose that F can be represented in the following
form:

1− F (x) = c1

xα
+ c2 d2

x2α + · · ·+ cs ds
xsα

+ u(x), x→∞, (68)

where s ∈ N and u(x) are such that

sα ≥ 1 + α,
∫ +∞

0
xq|du(x)| <∞ for some q > sα,

ci := Ci(α), i = 1, ..., s, from (58) and di are suitable constants for i = 2, . . . , s.
Remark 3.31. If some of the coefficients ci in (68) are equal to 0, then the corre-
sponding di can be chosen arbitrarily. It is important to fix all di, i = 2, ..., s, before
we go to the next step.
Remark 3.32. Note that the coefficients in (68) have the unusual form ck · dk with
suitable dk ∈ R. This can be explained by the requirement that if the coefficient ck
from (67) is equal to 0, then the corresponding coefficient in representation (68)
must also be equal to 0.
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The introduction of pseudomoments defined in Section 3.4 is based on the fact
that F (x)−Gα,1(x) has a better tail-behavior than 1−F (x) and 1−Gα,1(x). Note
that if c2 6= 0 and d2 6= 1 in (68), then F (x) − Gα,1(x) = O(x−2α) as x → ∞.
This means that only the first terms in both expansions are equal and vanish in the
difference. Our goal now is to construct another function G̃α (instead of Gα,1) that
can eliminate all known terms in expansion (68) of 1−F (x). Namely, we can define
G̃α as follows:

G̃α(x) = Gα,1(x) +
s∑
j=2

Aj G
(0,j)(x, 1), x ∈ R, (69)

with the coefficients

A2 = d2 − 1
2 , Ak = dk − 1

k! −
k−1∑
u=2

Au
1

(k − u)! , k = 3, . . . , s, (70)

which are chosen in such a way that

F (x)− G̃α(x) = −u(x) +O
( 1
x(s+1)α

)
as x→∞.

By G(k,j)(x, 1) we denote the derivatives of Gα,1(x, λ) with respect to x and λ:

G(k,j)(x, 1) := ∂k+j

∂xk∂λj
Gα,1(x, λ)

∣∣∣∣∣
λ=1

, k, j ∈ N0. (71)

They exist and are bounded according to Lemma 3.14. Note that F (x)− G̃α(x) = 0
for x < 0, since F (x) = Gα,1(x) = 0 for x < 0.

Lemma 3.22. For the function G̃α defined by (69) the following properties hold true.

(i) G̃α(x) is absolutely continuous and differentiable on R with G̃α(x) = 0
for x < 0.

(ii) There exists a constant G̃ > 0 such that
∣∣∣G̃α(x)

∣∣∣ ≤ G̃ for all x ∈ R.

(iii) lim
x→+∞

G̃α(x) = 1.

Proof. (i) According to the definition, G̃α is a linear combination of an absolutely
continuous and infinitely differentiable (with respect to x and λ) function Gα,1(x, λ)
and derivatives of Gα,1(x, λ), which are also absolutely continuous and differentiable
(see Lemma 3.14). This fact, the definition of G̃α(x) and the fact that Gα,1(x, λ) = 0
for x < 0 and α < 1 (see Section 3.3) give us statement (i).
(ii) Boundedness of the function G̃α(x) follows from Lemma 3.14. We have the
following estimate:

∣∣∣G̃α(x)
∣∣∣ ≤ |Gα,1(x)|+

s∑
j=2
|Aj|

∣∣∣G(0,j)(x, 1)
∣∣∣

≤ 1 +
s∑
j=2
|Aj| ·D0,j =: G̃ <∞ ∀x ∈ R, (72)
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where D0,j are defined in Lemma 3.14.
(iii) The third property follows from (60):

lim
x→+∞

G̃α(x) = lim
x→+∞

Gα,1(x) +
s∑
j=2

Aj G
(0,j)(x, 1)


= 1 +

s∑
j=2

Aj lim
x→+∞

G(0,j)(x, 1) = 1. (73)

The following lemma illustrates the “goodness” of the function G̃α(x) for our
purposes. Namely, the n-fold convolution of G̃α can be expressed explicitly. We use
the following notation:

ϕα,1(t, λ) := ln (gα,1(t, λ)) , i.e. ϕα,1(t, λ) = −λ| t|αe−i α (π/2) sign t , (74)

where gα,1(t, λ) is a characteristic function of Gα,1(x, λ). For the sake of brevity we
will also write ϕα,1(t) := ϕα,1(t, 1).

Lemma 3.23. For all ρ = 1, 2, ..., n, n ∈ N, and x ∈ R we have

G̃
ρ∗
α

(
n1/αx

)
= Gα,1

(
x,
ρ

n

)
+

sρ∑
k=2

ck,ρ
nk

G(0,k)
(
x,
ρ

n

)
(75)

with
ck, ρ =

∑
k0+k2+···+ks=ρ
k=2k2+···+sks

ρ!
k0!k2! · · · ks!

Ak2
2 · · ·Akss , (76)

where the summation is carried out over all non-negative integer solutions k0, k2, . . . , ks
of the equation k0 + k2 + · · ·+ ks = ρ and k = 2k2 + · · ·+ sks.

Proof. We consider the inverse Fourier transform g̃α of G̃α. We obtain

g̃α(t) =
∫ +∞

−∞
eitxdG̃α(x) =

∫ +∞

−∞
eitxdGα,1(x) +

s∑
j=2

Aj

∫ +∞

−∞
eitxdG(0,j)(x, 1)

= gα,1(t) +
s∑
j=2

Aj

(
dj

dλj
gα,1(t, λ)

)∣∣∣∣∣
λ=1

= gα,1(t) +
s∑
j=2

Aj gα,1(t)ϕjα,1(t). (77)

Note that the inverse Fourier transform of G̃α

(
n1/αx

)
is g̃α

(
tn−1/α

)
:

g̃α
(
tn−1/α

)
=
∫ +∞

−∞
eitn

−1/αxdG̃α(x) =
∫ +∞

−∞
eitydG̃α

(
n1/αy

)
.

It is known that the inverse Fourier transform of G̃ ρ∗
α is equal to the ρ-th power

of g̃α. Our task now is to expand and transform g̃ ρα into a suitable form. Using
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formula (147) from Lemma A.5 and the definition of gα,1(t) we write:

g̃ ρα
(
tn−1/α

)
=
gα,1(tn−1/α

)
+

s∑
j=2

Aj gα,1
(
tn−1/α

)
ϕjα,1

(
tn−1/α

)ρ

= g ρα,1
(
tn−1/α

) ∑
k0+k2+···+ks=ρ

ρ!
k0!k2! · · · ks!

1k0Ak2
2 ϕ

2k2
α,1

(
tn−1/α

)
· · ·Akss ϕsksα,1

(
tn−1/α

)

= gα,1

(
t
(
ρ

n

)1/α
) ∑
k0+k2+···+ks=ρ

ρ!
k0!k2! · · · ks!

Ak2
2 · · ·Akss

(
ϕα,1(tn−1/α)

)2k2+...+sks

= gα,1

(
t
(
ρ

n

)1/α
) sρ∑
k=0

ϕkα,1(tn−1/α)
∑

k0+k2+···+ks=ρ
2k2+···+sks=k

ρ!
k0!k2! · · · ks!

Ak2
2 · · ·Akss

︸ ︷︷ ︸
ck,ρ

= s.

Now, taking into account that c0,ρ = 1 and c1,ρ = 0 for all ρ ∈ N and using the
definition of ϕα,1 we continue

s = gα,1

(
t
(
ρ

n

)1/α
)

+
sρ∑
k=2

ck,ρ ϕ
k
α,1(tn−1/α) gα,1

(
t
(
ρ

n

)1/α
)

= gα,1

(
t
(
ρ

n

)1/α
)

+
sρ∑
k=2

ck,ρ
ρk

ϕkα,1

(
t
(
ρ

n

)1/α
)
gα,1

(
t
(
ρ

n

)1/α
)
.

(78)

The inverse Fourier transform of G(0,k) is equal to gα,1ϕkα,1. Indeed,

∫ +∞

−∞
eitx dG(0,k)

x(n
ρ

)1/α

, 1
 = dk

dλk

∫ +∞

−∞
eitxdGα,1

x(n
ρ

)1/α

, λ

∣∣∣∣∣∣
λ=1

= dk

dλk
gα,1

(
t
(
ρ

n

)1/α
, λ

)∣∣∣∣∣
λ=1

= dk

dλk
e
λϕα,1

(
t( ρn)1/α

,1
)∣∣∣∣∣
λ=1

= ϕkα,1

(
t
(
ρ

n

)1/α
, 1
)
gα,1

(
t
(
ρ

n

)1/α
, 1
)
,

which leads us to

G̃
ρ∗
α

(
xn1/α

)
= Gα,1

x(n
ρ

)1/α
+

sρ∑
k=2

ck,ρ
ρk
·G(0,k)

x(n
ρ

)1/α

, 1
 .

Finally, using property (55) for Gα,1

(
x
(
n
ρ

)1/α
)

= Gα,1
(
x, ρ

n

)
and

G(0,k)

x(n
ρ

)1/α

, 1
 = dk

dλk
Gα,1

x(n
ρ

)1/α

, λ

∣∣∣∣∣∣
λ=1

= dk

dλk
Gα,1

(
x, λ

ρ

n

)∣∣∣∣∣
λ=1

=
(
ρ

n

)k
· d

k

dyk
Gα,1 (x, y)

∣∣∣∣∣
y= ρ

n

=
(
ρ

n

)k
G

(0,k)
α,1

(
x,
ρ

n

)

we obtain the assertion of the lemma.
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3.5.2 Pseudomoments: new approach

The construction of the function G̃α allows us to use modified pseudomoments.
We put H̃(x) := F (x)− G̃α(x) and consider “new pseudomoments” µ(H̃), ν(H̃)

and γ(H̃): the k-th order pseudomoment

µ∗k = µk(H̃) =
∫ +∞

0
xk dH̃(x), k ≥ 0, k ∈ N0, (79)

the r-th order absolute pseudomoment

ν∗r = νr(H̃) =
∫ +∞

0
xr
∣∣∣dH̃(x)

∣∣∣ , r ≥ 0, r ∈ R, (80)

and the r-th order truncated pseudomoment

γ∗r = γr(H̃) =


sup
z>0

zr−[r]
∫ +∞

z
x[r]

∣∣∣dH̃(x)
∣∣∣ , r 6= [r], r > 0,

sup
z>0

(∣∣∣∣∫ z

0
xrdH̃(x)

∣∣∣∣+ z
∫ +∞

z
x r−1

∣∣∣dH̃(x)
∣∣∣) , r = [r], r > 0,

if the corresponding integrals exist.
Remark 3.33. All new pseudomoments are well-defined. It follows from Remark 3.22
and from the fact that H̃(x) is a function of bounded variation, same as H(x).
Indeed,

H̃(x) = F (x)− G̃α(x) = H(x)−
s∑
j=2

Aj G
(0,j)(x, 1).

According to Lemma 3.14 each of the functions G(0,j)(x, 1), j = 2, . . . , s, has a
bounded derivative with respect to x, which makes its variation also bounded (see
[27, Kapitel XV/568, Satz 3]). From [27, Kapitel XV/569, Satz 2] it follows that
H̃(x) is also of bounded variation as a difference of functions of bounded variation.

New pseudomoments modify the old ones. In the example below we will see that
ν∗r can be finite even if νr defined by (63) is infinite.
Example 3.9. Let us consider a Pareto-distributed random variable X from (7)
with α = 1/3 and κ = (C1(1/3))3, where C1(1/3) ≈ 0.74 is defined in (58). The
distribution function F of X has the form

1− F (x) = C1(1/3)
x1/3 , x ≥ (C1(1/3))3.

Therefore, F ∈ DNA(G1/3,1). According to representation (68) of F (x) we can put
d2 = · · · = ds = 0 for all integer s ≥ 2 and u(x) = 0. Let us consider the case s = 4
and construct the function G̃1/3 using formula (69) with A2 = −1/2, A3 = 1/3,
A4 = −1/8 defined by (70):

G̃1/3(x) = G1/3,1(x)− 1
2 G

(0,2)(x, 1) + 1
3 G

(0,3)(x, 1)− 1
8 G

(0,4)(x, 1).

Then we have

H̃(x) = F (x)− G̃1/3(x) = O
( 1
x5/3

)
as x→∞.

Therefore, ν∗r < ∞ for r < 5/3, whereas from Example 3.6 it follows that νr = ∞
already for r ≥ 2/3. Note also that γ∗5/3 <∞.
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New pseudomoments have partly the same properties as the old ones. Lem-
mata 3.16, 3.17 and 3.18 hold true with µ∗k, ν∗r and γ∗r instead of µk, νr and γr. We
also have the following result.

Lemma 3.24. For the pseudomoments µ∗0 and ν∗0 the following statements hold true:

(i) µ∗0 = 0; (ii) ν∗0 ≤ 2 +
s∑
j=2
|Aj|

(
D1,j A1,j +B1,j/αj

)
,

where A1,j, B1,j and D1,j are constants from Lemma 3.14.

Proof. (i) For µ∗0 we have

µ∗0 =
∫ +∞

0
dH̃(x) =

∫ +∞

0
dF (x)−

∫ +∞

0
dG̃α(x)

= 1−
∫ +∞

0
d

Gα,1(x) +
s∑
j=2

Aj G
(0,j)(x, 1)



= 1−
∫ +∞

0
dGα,1(x)−

s∑
j=2

Aj
dj

dλj


∫ +∞

0
dGα,1(x, λ)︸ ︷︷ ︸

=1


∣∣∣∣∣∣∣∣∣
λ=1

= 0.

The interchange of integral and differentiation in the last step is justified by the
Leibniz integral rule [26, Kapitel XIV/520, Satz 3].
(ii) Using inequalities from Lemma 3.14 with A1,j ≥ 1 we obtain for j ∈ {2, . . . , s}∫ +∞

0

∣∣∣G(1,j)(x, 1)
∣∣∣ dx =

∫ A1,j

0

∣∣∣G(1,j)(x, 1)
∣∣∣ dx+

∫ +∞

A1,j

∣∣∣G(1,j)(x, 1)
∣∣∣ dx

≤ A1,j D1,j +B1,j

∫ +∞

A1,j
x−1−αJdx ≤ A1,j D1,j +B1,j

∫ +∞

A1,j
x−1−αjdx

≤ A1,j D1,j +B1,j A
−αj
1,j /(αj) ≤ A1,j D1,j +B1,j/(αj).

The latter estimate and the fact that ν0 ≤ 2 (see Remark 3.23) yield

ν∗0 =
∫ +∞

0

∣∣∣dH̃(x)
∣∣∣ ≤ ∫ +∞

0
|d (F −Gα,1) (x)|+

∫ +∞

0

∣∣∣∣∣∣d
 s∑
j=2

Aj G
(0,j)(x, 1)

∣∣∣∣∣∣
≤ ν0 +

s∑
j=2
|Aj|

∫ +∞

0

∣∣∣G(1,j)(x, 1)
∣∣∣ dx ≤ 2 +

s∑
j=2
|Aj|

(
D1,j A1,j +B1,j/αj

)
.

This completes the proof of Lemma 3.24.

To calculate new pseudomoments directly is even more complicated than to
compute the old ones. The following lemma, which is an analogue of Lemma 3.19,
makes this easier.

Recall that

ϕα,1(t, λ) = ln (gα,1(t, λ)) , i.e. ϕα,1(t, λ) = −λ| t|αe−i α (π/2) sign t ,

where gα,1(t, λ) is a characteristic function, which corresponds to Gα,1(x, λ). Recall
also that for the sake of brevity we write ϕα,1(t) := ϕα,1(t, 1).
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Lemma 3.25. Suppose ν∗r <∞ for some r ≥ 0. Then

f(t)− g̃α(t) =
[r]∑
k=0

(it)k
k! µ∗k + o(|t|r) as t→ 0, (81)

where

g̃α(t) = gα,1(t)
1 +

s∑
j=2

Aj ϕ
j
α,1(t)

 (82)

with Aj, j = 2, . . . , s, defined in (70).

Proof. In the same way as in the proof of Lemma 3.19 we expand eitx from the
integral

∫+∞
−∞ eitxd(F − G̃α)(x) into series and obtain the right side of (81). The left

side follows from ∫ +∞

−∞
eitxd(F − G̃α)(x) = f(t)−

∫ +∞

−∞
eitxdG̃α(x)

and from ∫ +∞

−∞
eitxdG̃α(x) =

∫ +∞

−∞
eitxdGα,1(x) +

s∑
j=2

Aj

∫ +∞

−∞
eitxdG(0,j)(x, 1)

= gα,1(t) +
s∑
j=2

Aj

(
dj

dλj

∫ +∞

−∞
eitxdGα,1(x)

)∣∣∣∣∣
λ=1

= gα,1(t) +
s∑
j=2

Aj
dj

dλj
gα,1(t, λ) = gα,1(t)

1 +
s∑
j=2

Aj ϕ
j
α,1(t)

 = g̃α(t).

The interchange of integral and differentiation in the previous formula is justified
by the Leibniz integral rule [26, Kapitel XIV/520, Satz 3].

Let us see, how Lemma 3.25 works in special cases.

Example 3.10. Let α ∈ (0, 1). We consider a Pareto-distributed random variable
X with distribution function F such that

1− F (x) =


c1

xα
for x ≥ c

1/α
1 ,

1 for x < c
1/α
1 ,

where c1 = C1(α) = (Γ(α) sinαπ) /π. According to representation (68) of F (x) we
can put d2 = · · · = ds = 0 for all s ≥ 2 and u(x) = 0. For our convenience let us
fix such s ∈ N that (1 + s)α /∈ N and construct the function G̃α using formulas (69)
and (70). Then we have

F (x)− G̃α(x) = O
( 1
x(s+1)α

)
as x→∞.

Therefore, ν∗r < ∞ for r < (s + 1)α. Let us calculate pseudomoments µ∗j for
j = 1, 2, . . . , [(s+ 1)α].
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Our objective is to obtain the following expansion of f(t)− g̃α(t):

f(t)− g̃α(t) = a0 + a1it+ a2
(it)2

2! + · · · as t→ 0 (83)

and than use Lemma 3.25, which states that the coefficient a1 from (83) is the first
pseudomoment.

Using integration by parts f(t) can be represented as follows:

f(t) = −
∫ +∞

−∞
eitxd(1− F (x)) = −

∫ +∞

c
1/α
1

eitxd
(
c1

xα

)

= − c1

xα
eitx

∣∣∣∣x=+∞

x=c1/α
1

+ c1it
∫ +∞

c
1/α
1

eitxx−αdx

= eitc
1/α
1 + c1it

∫ +∞

0
eitxx−αdx− c1it

∫ c
1/α
1

0
eitxx−αdx. (84)

Note that the second term in (84) is equal to ϕα,1(t). Indeed, using the substitution
y = |t|x, Lemma A.2 and formulas from (145) we have

c1it
∫ +∞

0
eitxx−αdx = c1it

∫ +∞

0
(cos(tx) + i sin(tx))x−αdx

= c1i sign t |t|α
∫ +∞

0

(
cos(sign t |t|x) + i sign t sin(|t|x)

)
(|t|x)−αd(|t|x)

= c1i sign t |t|α
∫ +∞

0

(
cos y + i sign t sin y

)
y−αdy

= c1i sign t |t|α Γ(1− α)
(

sin απ2 + i sign t cos απ2

)
= − |t|α

(
cos απ2 − i sign t sin απ2

)
= − |t|α e−iα(π/2) sign t = ϕα,1(t).

Expanding the first term and eitx from the last integral in (84) into series for small t
we obtain

f(t) = eitc
1/α
1 + c1it

∫ +∞

0
eitxx−αdx− c1it

∫ c
1/α
1

0
eitxx−αdx

= 1 + ϕα,1(t) + c
1/α
1

α

α− 1it+ c
2/α
1

α

2(α− 2)(it)2 + c
3/α
1

α

6(α− 3)(it)3 + · · · .

Now we consider g̃α(t). First of all note that since we put d2 = · · · = ds = 0,
equalities (70) for the coefficients Ak take the form

k∑
u=2

Au
(k − u)! + 1

k! = 0, k = 2, . . . , s.

Using this representation and expanding gα,1(t) = eϕα,1(t) into series with respect
to ϕα,1(t) we obtain

g̃α(t) = gα,1(t)
1 +

s∑
j=2

Ajϕ
j
α,1(t)





3.5. Remainder term estimate: 0 < α < 1 61

=
(

1 + ϕα,1(t) +
ϕ2
α,1(t)
2! +

ϕ3
α,1(t)
3! + . . .

)1 +
s∑
j=2

Ajϕ
j
α,1(t)


= 1 + ϕα,1(t) +

(1
2 + A2

)
ϕ2
α,1(t) +

(1
6 + A2 + A3

)
ϕ3
α,1(t) + . . .

+
(

1
m! +

m∑
u=2

Au
(m− u)!

)
ϕmα,1(t) + · · ·+

(
1
s! +

s∑
u=2

Au
(s− u)!

)
ϕsα,1(t)

+
∞∑

k=s+1
ϕkα,1(t)

(
1
k! +

s∑
u=2

Au
(k − u)!

)
= 1 + ϕα,1(t)

+
s∑

k=2
ϕkα,1(t)

(
1
k! +

k∑
u=2

Au
(k − u)!

)
+

∞∑
k=s+1

ϕkα,1(t)
(

1
k! +

s∑
u=2

Au
(k − u)!

)

= 1 + ϕα,1(t) +
∞∑

k=s+1
ϕkα,1(t)

(
1
k! +

s∑
u=2

Au
(k − u)!

)
.

Thus,

f(t)− g̃(t) =
∞∑
n=1

c
n/α
1

α

α− n
(it)n
n! −

∞∑
k=s+1

ϕkα,1(t)
(

1
k! +

s∑
u=2

Au
(k − u)!

)
.

From this expansion for fixed s we can obtain formulas for pseudomoments µ∗j .
Indeed, we have

f(t)− g̃(t) =
[(1+s)α]∑
n=1

c
n/α
1

α

α− n
(it)n
n! + o

(
|t|α(s+1)

)
as t→ 0,

whence from Lemma 3.25 it follows that

µ∗j = c
j/α
1

α

α− j
for j = 1, . . . , [(1 + s)α].

It is important to note that s can be chosen arbitrarily. This means that for the
Pareto distribution we can always construct such H̃ that we have as many finite
pseudomoments µ∗j := µj(H̃) as we want.

3.5.3 Main result

In this subsection we just formulate our main result concerning the asymptotic
expansion of Fn(x) and the remainder term estimate for the case 0 < α < 1.

Recall that we consider a sequence of i.i.d. random variables X,X1, X2, . . . with
distribution function F ∈ DNA(Gα,1) for 0 < α < 1. We suppose that F can be
represented in the following form:

1− F (x) = c1

xα
+ c2 d2

x2α + · · ·+ cs ds
xsα

+ u(x), x→∞, (85)

where s ∈ N and u(x) are such that

sα ≥ 1 + α,
∫ +∞

0
xq|du(x)| <∞ for some q > sα, (86)
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ci := Ci(α), i = 1, ..., s, from (58) and di are suitable constants for i = 2, . . . , s.
Our goal is to build an approximation of the distribution function Fn defined by

Fn(x) := P
(
Sn − an
bn

≤ x
)
,

where Sn = X1 +X2 + · · ·+Xn and (an), (bn) are some suitably chosen normalizing
sequences such that Fn → Gα,1 as n → ∞. From the definition of DNA(Gα,1) (see
Definition 3.5) it follows that bn = a n1/α with a > 0. Without loss of generality we
put a = 1, and also for α ∈ (0, 1) we can take an = 0, n ∈ N. This means, we have

Fn(x) = P
(
X1 + · · ·+Xn ≤ xn1/α

)
= F n∗(xn1/α).

It is known that Fn → Gα,1, but we want to construct a correction term for Gα,1(x)
in order to get a better approximation. Just as in Theorem 3.10 or Theorem 3.21 this
correction function is a linear combination of derivatives of the corresponding limit
distribution. The only difference is that the coefficients of this linear combination
depend on new pseudomoments µ∗k = µk(F − G̃α) defined by (79).

For a given distribution function F we construct a function G̃α using formula (69)
and fix it. In terms of new pseudomoments µ∗k for some r ∈ R+, r > α and n ∈ N
we construct the function W̃r,n(x) for all x ∈ R as follows:

W̃r,n(x) =
ρ∑

k=2

ck,n
nk

G(0,k)(x, 1) (87)

+
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

G(u,k+v)(x, 1)(−`/n)v (−1)u
v! n−u/α C̃u,`,

where ρ = [2(R + 1)/α], p = [2R/α], m`,k = [R + 1 + α(` − 1 − k/2)],
mk = 1 + [(R− αk/2) /(1− α)], pu,`,k = max {0, [(R + 1− u)/α + `− 1− k/2]}
with

R =
{

[r], if [r] 6= r
r − 1, if [r] = r

, (88)

cr, ρ =
∑

k0+k2+···+ks=ρ
2k2+···+sks=r

ρ!
k0!k2! · · · ks!

Ak2
2 · · ·Akss , r, ρ ∈ N0, (89)

s is from (85), Aj, j = 2, ..., s, are from (70), G(u,k)(x, 1) are defined by (71) and

C̃u,` =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=`

`!
k1!...kR!

(
µ∗1
1!

)k1

...
(
µ∗R
R!

)kR
, u = `, ...,m`,k. (90)

Then we have the following analogue of Theorem 3.21.

Theorem 3.26. If for r > 1 we have 0 < γ∗r < ∞ and ν∗0 < 1, then for all x ∈ R
and all integers n ≥ 2 the following inequality holds:∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)

∣∣∣ ≤ C (1 + |x|)−r n−
r−α
α

(
1 + n

r
α Qn

)
,
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where constant C does not depend on x and n, W̃r,n(x) is defined by (87) and
Qn = ν∗0

n−1 +
(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−r/α

)n−1
with ε̃ defined as follows:

ε̃ = min

1, 1
c0
,

1
(2D)1/α ,

1
D1/α

cos
(
απ
2

)
8D


2+ρ/2
α

,

cos
(
απ
2

)
16 e c0

1/(1−α), (91)

where c0 = (ν∗0 + 1)γ∗r 1/r, D = max
2≤j≤s

{2 |Aj|1/j}, ρ = [2(R + 1)/α] with Aj defined
by (70) and R defined by (88).

Proof. Section 4 will be devoted to the proof of this result.

Remark 3.34. If ν∗0 < 1, then for each ε > 0 we have sup|t|>ε |f(t)| < 1. Indeed,
from formula (77) for g̃α(t) and from definition (80) of ν∗0 we have

|f(t)− g̃α(t)| =
∣∣∣∣∫ +∞

−∞
eitxd

(
F − G̃α

)
(x)
∣∣∣∣ ≤ ∫ +∞

0

∣∣∣d (F − G̃α

)
(x)
∣∣∣ = ν∗0 .

Then, using formulas (77), (74) for g̃α(t) and the fact that ν∗0 < 1 we obtain:

|f(t)| ≤ ν∗0 + |g̃α(t)| ≤ ν∗0 + |gα,1(t)|
1 +

s∑
j=2
|Aj| |ϕjα,1(t)|


≤ ν∗0 + e−|t|

α cos(απ/2)

1 +
s∑
j=2
|Aj| |t|α j

 < 1 for large |t|.

Finally, from Lemma A.16 it follows that sup|t|>ε |f(t)| < 1 for each ε > 0.
Remark 3.35. Note that there exists such n0 ∈ N that nr/αQn ≤ 1 for all n ≥ n0,
since ν∗0 < 1 and, as a result, sup|t|>ε̃ |f(t)| < 1 (see Remark 3.34).

Example 3.11. Let us consider a Pareto-distributed random variable X with
α = 1/2 and κ = c2

1, where c1 = C1(1/2) = 1/
√
π is defined in (58). The dis-

tribution function F of X has the form:

1− F (x) = 1√
π
√
x
, x ≥ 1/π.

Comparing this representation with representation (85) we can make the following
conclusions: s can be chosen equal to 3 (since 3α ≥ 1 + α), u(x) = 0 and d3 = 0.
Coefficient d2 can be chosen arbitrarily, since c2 = C2(1/2) = 0 (see formula (58)).
Let us put d2 = 3/4.

In order to apply Theorem 3.26 we have to check the condition ν∗0 < 1 and to
decide for which r we have γ∗r < ∞ and ν∗r < ∞. According to the definition (80)
we have

ν∗r =
∫ ∞

0
xr
∣∣∣d (F − G̃1/2

)
(x)
∣∣∣ , r ≥ 0,

where
G̃1/2(x) = G1/2,1(x) +

3∑
j=2

Aj G
(0,j)(x, 1)
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with coefficients A2 = −1/8 and A3 = −1/24 (see (69) and (70)), chosen in such a
way, that

F (x)− G̃1/2(x) = O
(
x−5/2

)
as x→∞.

Note that we obtain O(x−5/2) and not just O(x−(s+1)α) = O(x−2), since C4(1/2) = 0
in (57). Therefore, γ∗5/2 < ∞ and ν∗r < ∞ for r < 5/2. So, we apply Theorem 3.26
with r = 5/2.

Let us check whether the condition ν∗0 < 1 is satisfied. Note that the stable
distribution corresponding to G1/2,1(x, λ) is a Lévy distribution which has an explicit
density function

p1/2,1(x, λ) = λ

2
√
π
e−

λ2
4 x x−

3
2 , x > 0, λ > 0.

Using this we get

ν∗0 =
∫ ∞

0

∣∣∣d (F − G̃1/2
)

(x)
∣∣∣ =

∫ ∞
0

∣∣∣p(x)− p̃1/2(x)
∣∣∣ dx, where

p̃1/2(x) = 1
384
√
π
e−

1
4 x x−

9
2
(
192x3 + 48x2 − 18x+ 1

)
.

Using software Mathematica we obtain ν∗0 ≈ 0.32 < 1. Thus, Theorem 3.26 is
applicable. Now, let us see now how the correction term W̃5/2,n(x) looks like in this
particular case.

W̃5/2,n(x) =
12∑
k=2

ck,n
nk

G(0,k)(x, 1)

+
8∑

k=0

1+[4−k/2]∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

G(u,k+v)(x, 1)(−`/n)v (−1)u
v! n−u/α C̃u,`,

where m`,k =
[
3 + 1

2 (`− 1− k
2 )
]
, pu,`,k = max

{
0,
[
2 (3− u) + `− 1− k

2

]}
and

cr, ρ =
∑

k0+k2+k3=ρ
2 k2+3 k3=r

ρ!
k0! k2! k3!

(−1
8

)k2 (−1
24

)k3

, r, ρ ∈ N0,

C̃u,` =
∑

k1+2 k2=u
k1+k2=`

`!
k1! k2!

(
µ∗1
1!

)k1 (µ∗2
2!

)k2

, u = `, ...,m`,k.

The first and the second pseudomoments µ∗1, µ∗2 can be found precisely using the
same method as in Example 3.10. The only difference is that we do not put d2 equal
to 0. We get

µ∗1 =
∫ ∞

0
x d

(
F − G̃1/2

)
(x) = c

1/α
1 α

α− 1 +
(1

2 + A2

)
= 3

8 −
1
π
,

µ∗2 =
∫ ∞

0
x2 d

(
F − G̃1/2

)
(x) = 2!

 c
2/α
1 α

2(α− 2) −
( 1

24 + 1
2 A2 + A3

) = 1
8 −

1
3π2 .
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From Theorem 3.26 it follows that for all x ∈ R and n ≥ 2 we have∣∣∣Fn(x)−G1/2,1(x)− W̃5/2,n(x)
∣∣∣ ≤ C (1 + |x|)−5/2 n−4

(
1 + n5Qn

)
,

where Qn = ν∗0
n−1 +

(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−5/(2α)

)n−1
with ε̃ defined by (91).





4 Proof of the main result

4.1 Some auxiliary functions and plan of the proof
In order to prove Theorem 3.26 we need to introduce some auxiliary functions. The
first one is a truncated distribution function. We define it for any fixed n ∈ N and
ξ ∈ [0,∞) as follows:

F n,ξ(y) =
{

F (y) for y ≤ n1/α(1 + ξ),
G̃α(y) for y > n1/α(1 + ξ), y ∈ R. (92)

Thus, we have a family of truncated functions:
(
F n,ξ

)
n∈N,ξ∈[0,∞)

.

We denote Hn,ξ(x) := F n,ξ(x)− G̃α(x), i.e.

Hn,ξ(x) =
{
H̃(x) = F (x)− G̃α(x) for x ≤ n1/α(1 + ξ),

0 for x > n1/α(1 + ξ), x ∈ R, (93)

and consider pseudomoments µi,n,ξ = µi
(
Hn,ξ

)
and νr,n,ξ = νr

(
Hn,ξ

)
. They are

well-defined for the same reasons as those for which µ∗i and ν∗r are well-defined (see
Remark 3.33). Moreover, for any i ∈ N0 and any r ≥ 0 we have |µi,n,ξ| < ∞ and
νr,n,ξ <∞. Indeed, putting N = n1/α(1 + ξ), taking into account the possible jump
of H(x) at point x = N , and using the boundedness of ν∗0 (see Lemma 3.24 (ii))
and of G̃α (see (72)), we obtain

νr,n,ξ = νr
(
Hn,ξ

)
=
∫ +∞

−∞
|x|r

∣∣∣dHn,ξ(x)
∣∣∣ =

∫ N

0
xr
∣∣∣dH̃(x)

∣∣∣+N r
∣∣∣H̃(N)

∣∣∣
≤ N r

(∫ N

0

∣∣∣dH̃(x)
∣∣∣+ ∣∣∣H̃(N)

∣∣∣) ≤ N r
(
ν∗0 +

∣∣∣F (N)− G̃α(N)
∣∣∣)

≤ N r
(
ν∗0 + 1 +

∣∣∣G̃α(N)
∣∣∣) <∞ ∀ r ≥ 0. (94)

From (94) and from Lemma 3.17 it follows that |µi,n,ξ| ≤ νi,n,ξ <∞ for any i ∈ N0.
Note also that for all n ∈ N and ξ ≥ 0 we have

F n,ξ(x) = Hn,ξ(x) = 0 for x < 0. (95)

This follows from Lemma 3.22 (i) and from the fact that we consider only non-
negative random variables, i.e. we have F (x) = 0 for x < 0.

Let us consider one more function. We denote Mn,ξ(x) := Hn,ξ(x) − Hn,0(x).
Using the definition of Hn,ξ we obtain

Mn,ξ(x) =
{
F (x)− G̃α(x), if x ∈

(
n1/α, n1/α(1 + ξ)

]
,

0, otherwise,
x ∈ R. (96)

Note that Mn,ξ and Hn,ξ are functions of bounded variation. This follows from the
fact that H̃(x) = F (x)−G̃α(x) is a function of bounded variation (see Remark 3.33).
Thus, pseudomoments µk

(
Mn,ξ

)
, k ∈ N0, and absolute pseudomoments νr

(
Mn,ξ

)
,
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r ≥ 0, are well-defined. From the definition of Hn,ξ, Mn,ξ, Lemma 3.17 and in-
equality (94) it follows that∣∣∣µi(Mn,ξ)

∣∣∣ ≤ νi(Mn,ξ) ≤ νi(Hn,ξ) = νi,n,ξ <∞, i ∈ N0. (97)

From Lemma 3.22 (iii) and from the definition of Mn,ξ it follows that

lim
x→+∞

Mn,ξ(x) = 0 for all n ∈ N and ξ ≥ 0. (98)

The following two lemmata give some properties of pseudomoments µi,n,ξ,
µi(Mn,ξ) and νr,n,ξ as well as the connection between them and pseudomoments
µ∗i and ν∗r . Recall that for any r ∈ R+ we denote

R =
{

[r], if [r] 6= r,
r − 1, if [r] = r.

(99)

Lemma 4.1. For pseudomoments µi,n,ξ, µi
(
Mn,ξ

)
and µ∗i the following statements

hold true.

(i) µ0,n,ξ = µ0
(
Mn,ξ

)
= 0 for all n ∈ N and ξ ≥ 0;

(ii) If for r > 1 we have 0 < γ∗r <∞, then∣∣∣µu,n,ξ − µ∗u∣∣∣ ≤ 2 (n1/α(1 + ξ))u−rγ∗r , u = 1, . . . , R,

where R is given by (99).

Proof. (i) We put N = n1/α(1 + ξ). Then,

µ0,n,ξ =
∫ +∞

−∞
dHn,ξ(x) =

∫ +∞

0
dHn,ξ(x) =

∫ +∞

0
dF n,ξ(x)−

∫ +∞

0
dG̃α(x)

=
∫ N

0
dF (x) +

∫ +∞

N
dG̃α(x) + G̃α(N)− F (N)−

∫ +∞

0
dG̃α(x)

=
∫ N

0
dF (x)− F (N) = 0.

Using the last equality and the definition of Mn,ξ(x) = Hn,ξ(x)−Hn,0(x) we obtain

µ0
(
Mn,ξ

)
=
∫ +∞

−∞
dMn,ξ(x) =

∫ +∞

−∞
dHn,ξ(x)−

∫ +∞

−∞
dHn,0(x) = µ0,n,ξ − µ0,n,0 = 0.

(ii) Using the fact that lim
x→+∞

H̃(x) = 0, which follows from equality (73), we have
for u = 1, . . . , R:

∣∣∣µu,n,ξ − µ∗u∣∣∣ =
∣∣∣∣∫ +∞

0
yud

((
Hn,ξ − H̃

)
(y)
)∣∣∣∣ =

∣∣∣∣∫ +∞

N
yudH̃(y) +Nu H̃(N)

∣∣∣∣
≤

∫ +∞

N
yu
∣∣∣dH̃(y)

∣∣∣+ ∣∣∣∣Nu
∫ +∞

N
dH̃(y)

∣∣∣∣
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≤
∫ +∞

N
yu
∣∣∣dH̃(y)

∣∣∣+Nu
∫ +∞

N

∣∣∣dH̃(y)
∣∣∣

≤ 2
∫ +∞

N
yu
∣∣∣dH̃(y)

∣∣∣ .
We distinguish two cases. For [r] 6= r we obtain
∣∣∣µu,n,ξ − µ∗u∣∣∣ ≤ 2

∫ +∞

N
yu
∣∣∣dH̃(y)

∣∣∣ ≤ 2Nu−rN r−[r]
∫ +∞

N
y[r]

∣∣∣dH̃(y)
∣∣∣ ≤ 2Nu−rγ∗r .

For [r] = r we have
∣∣∣µu,n,ξ − µ∗u∣∣∣ ≤ 2

∫ +∞

N
yu
∣∣∣dH̃(y)

∣∣∣ ≤ 2Nu−rN
∫ +∞

N
yr−1

∣∣∣dH̃(y)
∣∣∣

≤ 2Nu−r
(∣∣∣∣∣
∫ N

0
xrdH̃(x)

∣∣∣∣∣+N
∫ +∞

N
yr−1

∣∣∣dH̃(y)
∣∣∣)

≤ 2Nu−rγ∗r .

This completes the proof of the lemma.

Lemma 4.2. If for r > 1 we have 0 < γ∗r <∞, then

(i)
νk,n,ξ ≤ ν∗k ≤ (ν∗0 + 1)γ∗r

k/r, k = 1, . . . , R,
where R is defined by (99).

(ii)
νq,n,ξ ≤ C

(
n1/α(1 + ξ)

)q−r
γ∗r , q > r, q ∈ R, (100)

where C is some constant, which depends only on q and r.

Proof. (i) As always we put N = n1/α(1 + ξ). Using the fact that lim
x→+∞

H̃(x) = 0
we have for k = 1, . . . , R:

νk,n,ξ =
∫ +∞

−∞
xk
∣∣∣dHn,ξ(x)

∣∣∣ =
∫ +∞

0
xk
∣∣∣dHn,ξ(x)

∣∣∣ =
∫ N

0
xk
∣∣∣dH̃(x)

∣∣∣+Nk
∣∣∣H̃(N)

∣∣∣
=

∫ N

0
xk
∣∣∣dH̃(x)

∣∣∣+Nk

∣∣∣∣∫ +∞

N
dH̃(x)

∣∣∣∣
≤

∫ N

0
xk
∣∣∣dH̃(x)

∣∣∣+ ∫ +∞

N
xk
∣∣∣dH̃(x)

∣∣∣ = ν∗k .

The other inequality from (i) we obtain as follows with z = γ∗r
1/r:

ν∗k =
∫ +∞

0
xk
∣∣∣dH̃(x)

∣∣∣ =
∫ z

0
xk
∣∣∣dH̃(x)

∣∣∣+ ∫ +∞

z
xk
∣∣∣dH̃(x)

∣∣∣
≤ zk

∫ z

0

∣∣∣dH̃(x)
∣∣∣+


zk−r zr−[r]

∫ +∞

z
x[r]

∣∣∣dH̃(x)
∣∣∣ , if [r] 6= r,

zk−r z
∫ +∞

z
xr−1

∣∣∣dH̃(x)
∣∣∣ , if [r] = r

≤ zkν∗0 + zk−rγ∗r ≤ (ν∗0 + 1)γ∗r
k/r.
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(ii) We denote T (x) = −
∫+∞
x zR

∣∣∣dH̃(z)
∣∣∣. Using integration by parts, we obtain

νq,n,ξ =
∫ +∞

−∞
xq
∣∣∣dHn,ξ(x)

∣∣∣ =
∫ +∞

0
xq
∣∣∣dHn,ξ(x)

∣∣∣ =
∫ N

0
xq−RdT (x) +N q

∣∣∣H̃(N)
∣∣∣

=
(
xq−RT (x)

)∣∣∣x=N

x=0
−
∫ N

0
(q −R)xq−R−1 T (x) dx+N q−R

∫ +∞

N
xR
∣∣∣dH̃(x)

∣∣∣
≤ N q−RT (N) +

∫ N

0
(q −R)xq−R−1

∫ +∞

x
zR
∣∣∣dH̃(z)

∣∣∣ dx−N q−RT (N)

= (q −R) ·


∫ N

0
xq−r−1 xr−[r]

∫ +∞

x
z[r]

∣∣∣dH̃(z)
∣∣∣ dx, if r 6= [r],∫ N

0
xq−r−1 x

∫ +∞

x
zr−1

∣∣∣dH̃(z)
∣∣∣ dx, if r = [r]

≤ (q −R) γ∗r
∫ N

0
xq−r−1dx ≤ q −R

q − r
N q−rγ∗r .

The lemma is proved.

The following lemma gives us the estimation of absolute pseudomoments of H
`∗
n,ξ

in terms of pseudomoments of Hn,ξ.

Lemma 4.3. For all n, ` ∈ N, ξ ≥ 0 and all q ∈ N0 we have

νq

(
H
`∗
n,ξ

)
≤ `q νq,n,ξ ν

`−1
0,n,ξ <∞. (101)

In particular, the absolute pseudomoment νq
(
H
`∗
n,ξ

)
is finite.

Proof. Using (95), the definition of the `-fold convolution of Hn,ξ, inequality (148)
from Lemma A.6 and the fact that νr,n,ξ is finite for any r ≥ 0 (see (94)), we obtain
for q ∈ N:

νq

(
H
`∗
n,ξ

)
=

∫ +∞

0
xq
∣∣∣∣dH`∗

n,ξ(x)
∣∣∣∣ =

∫ +∞

0
xq
∣∣∣∣d ∫ +∞

0
H

(`−1)∗
n,ξ (x− y1)dHn,ξ(y1)

∣∣∣∣
≤

∫ +∞

0
. . .
∫ +∞

0︸ ︷︷ ︸
`

(y1 + · · ·+ y`)q
∣∣∣dHn,ξ(y1)

∣∣∣ . . . ∣∣∣dHn,ξ(y`)
∣∣∣

≤ `q
(∫ +∞

0

∣∣∣dHn,ξ(x)
∣∣∣)`−1 ∫ +∞

0
xq
∣∣∣dHn,ξ(x)

∣∣∣ ≤ `q νq,n,ξ ν
`−1
0,n,ξ <∞.

Similarly we can show that ν0

(
H
`∗
n,ξ

)
≤ ν`0,n,ξ. The lemma is proved.

Below we give one more useful lemma about the pseudomoments of H
`∗
n,ξ.

Lemma 4.4. The following properties hold true.

(i) For all u, ` ∈ N we have

µu

(
H
`∗
n,ξ

)
=

∑
k1+k2+···+k`=u

u!
k1! · · · k`!

µk1,n,ξ · · ·µk`,n,ξ.
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(ii) For all u, ` ∈ N with u < ` we have

µu

(
H
`∗
n,ξ

)
= 0.

(iii) For fixed R ≥ 1, ` ∈ N and u = 1, ..., R we have

µu

(
H
`∗
n,ξ

)
= u!

∑
k1+k2+···+kR=`

k1+2k2+...+RkR=u

`!
k1! · · · kR!

(
µ1,n,ξ

1!

)k1

· · ·
(
µR,n,ξ
R!

)kR
.

Proof. (i) Using (95) and rewriting µu
(
H
`∗
n,ξ

)
and using formula (147) from Lemma A.5

we obtain

µu

(
H
`∗
n,ξ

)
=

∫ +∞

0
yudH

`∗
n,ξ(y)

=
∫ +∞

0
...
∫ +∞

0︸ ︷︷ ︸
`

(z1 + · · ·+ z`)udHn,ξ(z1) · · · dHn,ξ(z`)

=
∫ +∞

0
...
∫ +∞

0︸ ︷︷ ︸
`

∑
k1+k2+···+k`=u

u!
k1! · · · k`!

zk1
1 · · · z

k`
` dHn,ξ(z1)...dHn,ξ(z`)

=
∑

k1+k2+···+k`=u

u!
k1! · · · k`!

µk1,n,ξ · · ·µk`,n,ξ.

(ii) If u < `, then there exists such i ∈ {1, . . . , `} that ki = 0. Therefore each
product µk1,n,ξ · · ·µk`,n,ξ from above contains µ0,n,ξ. According to Lemma 4.1 (i) we
have µ0,n,ξ = 0. This implies µu

(
H
`∗
n,ξ

)
= 0 for u < `.

(iii) Note that if u < `, then the right side of the equality in (iii) is equal to 0 since
we have to sum up over the empty set. This fact together with statement (ii) gives
us the statement of (iii) for u < `. Let us consider now u ≥ `. Using the properties
of the inverse Fourier transform hn,ξ(t) of Hn,ξ(x) (similarly to Lemma 3.25) we find

hn,ξ(t) :=
∫ +∞

−∞
eitxdHn,ξ(x) = it

1! µ1,n,ξ + · · ·+ (it)R
R! µR,n,ξ +O(|t|R+1), t→ 0.

Using this expansion and formula (147) from Lemma A.5 we obtain for t→ 0:

h
`

n,ξ(t) =
(
it

1! µ1,n,ξ + ...+ (it)R
R! µR,n,ξ

)`
+O(|t|R+1)

=
∑

k1+...+kR=`

`!
k1!...kR!

(
µ1,n,ξ

1!

)k1

...
(
µR,n,ξ
R!

)kR
(it)k1+2k2+...+RkR +O(|t|R+1)

=
R∑
u=`

(it)u
u! u!

∑
k1+k2+···+kR=`

k1+2k2+...+RkR=u

`!
k1! · · · kR!

(
µ1,n,ξ

1!

)k1

· · ·
(
µR,n,ξ
R!

)kR
+O(|t|R+1).
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On the other hand we can consider h
`

n,ξ(t) as the inverse Fourier transform ofH
`∗
n,ξ(x),

i.e. we have

h
`

n,ξ(t) = it

1! µ1

(
H
`∗
n,ξ

)
+ · · ·+ (it)R

R! µR

(
H
`∗
n,ξ

)
+O(|t|R+1), t→ 0.

Taking into account property (ii) and comparing coefficients in both representations
of h

`

n,ξ we get the statement of (iii). The lemma is proved.

We need one more auxiliary function, which is similar to the function W̃r,n

from (87). For r ∈ R+, r > 1, n ∈ N and ξ ∈ [0,∞) we define

W r,n,ξ(x) =
ρ∑

k=2

ck,n
nk

G(0,k)(x, 1) +W
∗
n,ξ(x)

+
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

G(u,k+v)(x, 1)(−`/n)v (−1)u
v! n−u/α Cu,`,

(102)

where ρ = [2(R + 1)/α], p = [2R/α], m`,k = [R + 1 + α(` − 1 − k/2)],
mk = 1 + [(R− αk/2) /(1− α)], pu,`,k = max {0, [(R + 1− u)/α + `− 1− k/2]}
with

R =
{

[r], if [r] 6= r
r − 1, if [r] = r

,

cr, ρ =
∑

k0+k2+···+ks=ρ
2k2+···+sks=r

ρ!
k0!k2! · · · ks!

Ak2
2 · · ·Akss , r, ρ ∈ N0, (103)

s and Aj, j = 2, ..., s, are from (86) and (70), respectively,

Cu,` =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=`

`!
k1!...kR!

(
µ1,n,ξ

1!

)k1

...

(
µR,n,ξ
R!

)kR
, (104)

and

W
∗
n,ξ(x) = nG(R+1,0)(x, 1) (−1)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ

+ n
(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α)−

R+1∑
w=0

nG(w,0)(x, 1) (−1)w
w! n−w/αµw

(
Mn,ξ

) (105)

with Mn,ξ(x) = Hn,ξ(x)−Hn,0(x).

Lemma 4.5. For the function W r,n,ξ defined by (102) the following holds true.

(i) W r,n,ξ is absolutely continuous and differentiable on R with W r,n,ξ(x) = 0
for x < 0.

(ii) There exists such constant W > 0 that
∣∣∣W r,n,ξ(x)

∣∣∣ ≤ W for all x ∈ R.
(iii) lim

x→+∞
W r,n,ξ(x) = 0.
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Proof. (i) According to the definition, W r,n,ξ is a linear combination of the term(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α) and some derivatives of a stable distribution function

Gα,1(x, λ). From Lemma 3.14 it follows that Gα,1(x, λ) is infinitely differentiable
with respect to x and λ, and its derivatives are absolutely continuous. The function
Gα,1( · , n) ∗Mn,ξ is absolutely continuous and differentiable as a convolution of the
absolutely continuous and infinitely differentiable function Gα,1 and the function of
bounded variation Mn,ξ. These facts together with the property Gα,1(x, λ) = 0 for
x < 0 and α < 1 (see Section 3.3) and the fact that Mn,ξ(x) = 0 for x < 0 give the
statement (i) of the lemma.
(ii) Let us consider Gα,1( · , n) ∗ Mn,ξ. Using (97) and the fact that Gα,1 is the
distribution function of a stable random variable we have∣∣∣(Gα,1( · , n) ∗Mn,ξ

)
(xn1/α)

∣∣∣ =
∣∣∣∣∫ +∞

−∞
Gα,1

(
xn1/α − y, n

)
dMn,ξ(y)

∣∣∣∣
≤
∫ +∞

−∞
1
∣∣∣dMn,ξ(y)

∣∣∣ = ν0(Mn,ξ) ≤ ν0(Hn,ξ) = ν0,n,ξ <∞.

Using the last estimate and estimate (59) from Lemma 3.14 we obtain the inequality
from (ii) for all x ∈ R:∣∣∣W r,n,ξ(x)

∣∣∣ ≤ p∑
k=2

|ck,n|
nk

D0,k +
p∑

k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

Du,k+v
(`/n)v

v! n−u/α
∣∣∣Cu,`

∣∣∣
+ n ν0,n,ξ + nDR+1,0

1
(R + 1)! n

−R+1
α

∣∣∣µR+1,n,ξ

∣∣∣+ R+1∑
w=0

nDw,0
n−w/α

w!
∣∣∣µw(Mn,ξ)

∣∣∣ =: W.

Note that all pseudomoments occurring in W are finite (see (94) and (97)).
(iii) Let us show that lim

x→+∞

(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α) = 0. Using the definition of

Gα,1 and Lemma 4.1 (i) we obtain

lim
x→+∞

(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α) = lim

x→+∞

∫ +∞

−∞
Gα,1

(
xn1/α − y, n

)
dMn,ξ(y)

=
∫ +∞

−∞
lim

x→+∞
Gα,1

(
xn1/α − y, n

)
dMn,ξ(y) =

∫ +∞

−∞
1 dMn,ξ(y) = µ0(Mn,ξ) = 0.

The convergence of all other terms to 0 as x → ∞ can be proved in the same way
as in Lemma 3.22 (iii). This completes the proof of the lemma.

Now we are ready to give a plan of the proof of our main result (Theorem (3.26)),
which we repeat here for the sake of readability. Recall that

Fn(x) = P
(
X1 + · · ·+Xn ≤ xn1/α

)
= F n∗(xn1/α).

Theorem. If for r > 1 we have 0 < γ∗r <∞ and ν∗0 < 1, then for all x ∈ R and all
integers n ≥ 2 the following inequality holds:∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)

∣∣∣ ≤ C (1 + |x|)−r n−
r−α
α

(
1 + n

r
α Qn

)
,

where W̃r,n(x) is defined by (87), Qn = ν∗0
n−1 +

(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−r/α

)n−1
with

ε̃ defined by (91) and constant C does not depend on x and n.



74 CHAPTER 4. Proof of the main result

Plan of the proof.
In order to estimate

∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)
∣∣∣ we add and subtract the auxiliary

functions F
n∗
n,ξ and W r,n,ξ with some fixed ξ ∈ [0,∞), and come to the following

inequality.∣∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)
∣∣∣∣ ≤ ∣∣∣Fn(x)− F

n∗
n,ξ

(
n1/αx

)∣∣∣
+
∣∣∣F n∗

n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣+ ∣∣∣W r,n,ξ(x)− W̃r,n(x)
∣∣∣ .

We discuss and estimate each of the three summands on the right-hand side sepa-
rately in the subsequent subsections. Combining the results we will then obtain the
estimation from the theorem.

4.2 Estimation of
∣∣∣∣Fn(x)− F n∗

n,ξ

(
n1/αx

)∣∣∣∣
Recall that F n,ξ is defined by (92) and depends on n ∈ N and ξ ∈ [0,∞). First, we
prove the following auxiliary lemma.
Lemma 4.6. If for r > 1 we have 0 < γ∗r <∞, then

(i)
∫ +∞

0

∣∣∣dF n,ξ(y)
∣∣∣ ≤ 1 + 2γ∗rn−r/α, n ∈ N;

(ii) sup
y

∣∣∣F n∗(y)− F
n∗
n,ξ(y)

∣∣∣ ≤ Cγ∗rn
−(r−α)/α (1 + ξ)−r, n ≥ 2,

where C is some constant that does not depend on n and ξ.
Proof. (i) Putting N = n1/α(1 + ξ) and using the inequality |x| − |y| ≤ |x− y|, we
obtain∫ +∞

0

∣∣∣dF n,ξ(y)
∣∣∣ ≤ ∫ N

0
dF (y) +

∫ +∞

N

∣∣∣dG̃α(y)
∣∣∣+ ∣∣∣F (N)− G̃α(N)

∣∣∣
= 1−

∫ +∞

N
dF (y) +

∫ +∞

N

∣∣∣d (G̃α(y)± F (y)
)∣∣∣+ ∣∣∣H̃(N)

∣∣∣
≤ 1 +

∫ +∞

N

∣∣∣d (F (y)− G̃α(y)
)∣∣∣+ ∣∣∣∣∫ +∞

N
dH̃(x)

∣∣∣∣
≤ 1 + 2

∫ +∞

N

∣∣∣dH̃(y)
∣∣∣ ≤ 1 + 2N−rγ∗r

= 1 + 2n−r/α(1 + ξ)−rγ∗r ≤ 1 + 2n−r/αγ∗r .

(ii) First, we represent the difference F n∗ − F
n∗
n,ξ in another form. Using the fact

that F (x) = F n,ξ(x) = 0 for x < 0 we get

F n∗(y)− F
n∗
n,ξ(y) =

= F n∗(y)± F (n−1)∗ ∗ F n,ξ(y)± · · · ± F ∗ F
(n−1)∗
n,ξ (y)− F

n∗
n,ξ(y)

=
n−1∑
j=0

(
F (n−j)∗ ∗ F

j∗
n,ξ(y)− F (n−j−1)∗ ∗ F

(j+1)∗
n,ξ (y)

)

=
n−1∑
j=0

∫ +∞

0

(
F (n−j−1)∗ ∗ F

j∗
n,ξ(y − u)

)
d
(
F − F n,ξ

)
(u).

(106)
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Using Lemma 4.6 (i) we estimate the m-fold convolutions of F n,ξ for m = 1, 2, ..., n,
n ∈ N:

∣∣∣F m∗
n,ξ (y)

∣∣∣ =

∣∣∣∣∣∣
+∞∫
0

. . .

+∞∫
0︸ ︷︷ ︸

m−1

F n,ξ(y − u1 − · · · − um−1) dF n,ξ(u1) · · · dF n,ξ(um−1)

∣∣∣∣∣∣
≤ max

{
1, G̃

}(∫ +∞

0

∣∣∣dF n,ξ(y)
∣∣∣)m−1

≤ A
(
1 + 2γ∗rn−r/α

)m−1
, (107)

where G̃ is defined in (72) and A := max
{

1, G̃
}
. Moreover, since F is a distribution

function,
|F m∗(y)| ≤ 1 for all m ∈ N0.

The above estimations lead us for j = 1, . . . , n− 2 to∣∣∣∣(F (n−1−j)∗ ∗ F
j∗
n,ξ

)
(y)
∣∣∣∣ ≤ sup

y∈R

∣∣∣∣F j∗
n,ξ(y)

∣∣∣∣ ≤ A
(
1 + 2γ∗rn−r/α

)j−1
.

Using ∫ +∞

0

∣∣∣d(F − F n,ξ

)
(y)
∣∣∣ =

∫ +∞

N

∣∣∣dH̃(y)
∣∣∣+ ∣∣∣H̃(N)

∣∣∣ ≤ 2N−rγ∗r (108)

and the three above estimates, we obtain with C = 2A
∣∣∣F n∗(y)− F

n∗
n,ξ(y)

∣∣∣ ≤ 2γ∗rN−r
n−1∑
j=1

A
(
1 + 2γ∗rn−r/α

)j−1
+ 1


≤ 2γ∗rN−r

(
A
(
1 + 2γ∗rn−r/α

)n−2
(n− 1) + 1

)
≤ 2Aγ∗rnN−r

(
1 + 2γrn−r/α

)n−2

= Cγ∗rn
−(r−α)/α

(
1 + 2γ∗rn−r/α

)n−2
(1 + ξ)−r.

Since the function f(x) = (x − 2)/xr/α, x ∈ (0,∞), with r > 1 > α takes its
maximum at xmax = 2r/(r − α), and since γ∗r > 0 and n ≥ 2, we have the following
estimation:(

1 + 2γ∗rn−r/α
)n−2

≤ exp
(

2γ∗r (n− 2)
nr/α

)
≤ exp

(
2γ∗r f

( 2r
r − α

))
=: C <∞.

This completes the proof of the lemma.

Theorem 4.7. If for r > 1 we have 0 < γ∗r < ∞, then for all x ∈ R, ξ ∈ [0,∞)
and all integers n ≥ 2 the following inequality holds:∣∣∣Fn(x)− F

n∗
n,ξ

(
n1/αx

)∣∣∣ ≤ Cγ∗rn
−(r−α)/α (1 + ξ)−r,

where C is some constant that does not depend on n and ξ.

Proof. The statement follows from the fact that

Fn(x)− F
n∗
n,ξ

(
n1/αx

)
= F n∗

(
n1/αx

)
− F

n∗
n,ξ

(
n1/αx

)
and from Lemma 4.6 (ii).
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4.3 Estimation of
∣∣∣∣F n∗

n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣∣
Estimation of this term is the most difficult part of the proof. That is why we start
this subsection by giving the general plan of our actions.

Instead of the required difference we consider the function An,ξ : R→ R with

An,ξ(x) = F
n∗
n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)−H

n∗
n,ξ

(
n1/αx

)
. (109)

Remark 4.1. Note that An,ξ(x) = 0 for x < 0, since all the components of the
function are equal to 0 for x < 0.

The first goal of this subsection is to apply the following result of Christoph and
Wolf [12] to An,ξ(x).

Lemma 4.8 ([12]). Let the function A : R→ R be given and let s ∈ N0. If

(i) A(x) is absolutely continuous with A(x)→ 0 as |x| → ∞,

(ii)
∫+∞
−∞ |x|s |dA(x)| <∞,

(iii) and there exists a constant Ks ≥ 0 such that

|A′(x)| ≤ Ks (1 + |x|)−s for all x ∈ R,

then

|A(x)| ≤ Cs (1 + |x|)−s
(
I0(T ) + Is(T ) +KsT

−1
)

for all x ∈ R and T ≥ 1,

where Cs ≥ 0 depends only on s, and

Im(T ) =
∫
|t|≤T
|dm(t)| |t|−1dt with dm(t) =

∫ +∞

−∞
eitxd (xmA(x)) , m ∈ {0, s}.

Proof. See [12, Theorem 1.16].

We will check each of the three conditions of Lemma 4.8 for A = An,ξ separately.
Conditions (i) and (ii) are easy to show. Verifying (iii) is fairly technical. We will
divide the proof of it into several parts. After that we estimate I0(T ) and Is(T )
defined in the lemma and obtain the estimation of An,ξ(x).
According to∣∣∣F n∗

n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣ ≤ ∣∣∣An,ξ(x)
∣∣∣+ ∣∣∣Hn∗

n,ξ

(
n1/αx

)∣∣∣
we will need the estimation of H

n∗
n,ξ

(
n1/αx

)
as well. And as the last step we will

combine everything in order to estimate
∣∣∣F n∗

n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣.
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4.3.1 Condition (i)

Let us show that condition (i) of Lemma 4.8 is satisfied.

Lemma 4.9. The function An,ξ(x) defined by (109) is absolutely continuous and
differentiable on R with An,ξ(x)→ 0 as |x| → ∞.

Proof. First, we show that An,ξ is an absolutely continuous and differentiable func-
tion. According to the definition of Hn,ξ we have F n,ξ = G̃α +Hn,ξ. Using this and
expanding the n-fold convolution of the sum we obtain

An,ξ(x) =
(
G̃α +Hn,ξ

)n∗ (
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)−H

n∗
n,ξ

(
n1/αx

)
=

n−1∑
`=0

(
n

`

)(
G̃

(n−`)∗
α ∗H

`∗
n,ξ

) (
n1/αx

)
−Gα,1(x)−W r,n,ξ(x).

(110)

All terms after the last equality sign are absolutely continuous and differentiable
on R. This follows from the properties of convolution and Lemmata 3.22 (i) and 4.5 (i)
for G̃α and W r,n,ξ.

Now we show that An,ξ(x)→ 0 as x→ ±∞. Since A(x) = 0 for x < 0 (see Re-
mark 4.1), it remains to show that An,ξ(x)→ 0 as x→ +∞. From Lemma 3.22 (iii)
it follows that G̃α(x) → 1 as x → +∞. Using this fact and the definitions of F n,ξ

and Hn,ξ we obtain
F
n∗
n,ξ

(
n1/αx

)
→ 1, x→ +∞,

H
n∗
n,ξ

(
n1/αx

)
→ 0, x→ +∞.

Function Gα,1 is a distribution function of a stable random variable, so Gα,1(x)→ 1.
From Lemma 4.5 (iii) it follows that W r,n,ξ(x) → 0 as x → +∞. Combining all
these limit equalities we obtain that An,ξ(x)→ 0 as x→ ±∞. The lemma is proved.

4.3.2 Condition (ii)

In this subsection we will show that condition (ii) of Lemma 4.8 is satisfied.

Lemma 4.10. If for r > 1 we have 0 < γ∗r <∞, then for any n ∈ N and ξ ∈ [0,∞)∫ +∞

−∞
|x|R+1 |dAn,ξ(x)| <∞, where R =

{
[r], r 6= [r],
r − 1, r = [r],

and An,ξ is given by (109).

Proof. Since An,ξ(x) = 0 for x < 0 (see Remark 4.1), we have to consider only
non-negative x and show that

∫+∞
0 xR+1 |dAn,ξ(x)| < ∞. We split the last integral

into
I1 =

∫ a

0
xR+1 |dAn,ξ(x)| and I2 =

∫ +∞

a
xR+1 |dAn,ξ(x)| ,

where a ∈ (0,∞) is a constant chosen as follows:

a = 2 max
{

1,max
i,j
{Ai,j}

}
, i = 1, ..., R+3+[α(n−2)], j = 0, 1, ..., sn+

[
R + 1
α

]
,
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where s ∈ N is such that sα ≥ 1 + α (for details see Section 3.5.1, formula (85)),
and Ai,j are defined in Lemma 3.14.
Integral I1. Since An,ξ is absolutely continuous (see Lemma 4.9) it follows that An,ξ
is of bounded variation on [0, a] (see [47, Lemma 5.11, p.108]). Using this fact and
[27, Kapitel XV/574] we obtain that I1 =

∫ a
0 x

R+1 |dAn,ξ(x)| <∞.
Integral I2. We start this case with rewriting An,ξ(x) in another form. Using repre-
sentation (110) of An,ξ and applying Lemma 3.23 to G̃n∗

α we obtain

An,ξ(x) = G̃
n∗
α (n1/αx) +

n−1∑
`=1

(
n

`

)(
G̃

(n−`)∗
α ∗H

`∗
n,ξ

)
(n1/αx)−Gα,1(x)−W r,n,ξ(x)

= Gα,1(x) +
sn∑
k=2

ck,n
nk

G(0,k)(x, 1)−Gα,1(x)−W r,n,ξ(x)

+
n−1∑
`=1

(
n

`

)∫ +∞

−∞
G̃

(n−`)∗
α

(
n1/α(x− y)

)
dH

`∗
n,ξ(n1/αy),

where coefficients ck,n are defined by (76). Taking into account that c0,ρ = 1 and
c1,ρ = 0 for all ρ = 1, . . . , n, we apply Lemma 3.23 to G̃

(n−`)∗
α and come to the

following representation:

An,ξ(x) =
sn∑
k=2

ck,n
nk

G(0,k)(x, 1)−W r,n,ξ(x)

+
n−1∑
`=1

(
n

`

) s(n−`)∑
k=0

ck,n−`
nk

∫ ∞
−∞

G(0,k)
(
x− y, n− `

n

)
dH

`∗
n,ξ

(
n1/αy

)
.

(111)

Let us consider the integral
∫ ∞
−∞

G(0,k)
(
x− y, n− `

n

)
dH

`∗
n,ξ

(
n1/αy

)
. Using esti-

mate (59) from Lemma 3.14 and the fact that x > a ≥ 2 we have for |y| > x/2:
∫ ∞
a

xR+1
∫
|y|>x/2

∣∣∣∣∣G(1,k)
(
x− y, n− `

n

)∣∣∣∣∣
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤
∫ ∞
a

xR+1
∫
|y|>x/2

D1,k

(
n− `
n

)−k−1/α ∣∣∣∣dH`∗
n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C

∫ ∞
a

xR+1
∫
|y|>x/2

y−R−3 yR+3
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C

∫ ∞
a

xR+1 (x/2)−R−3
∫
|y|>x/2

yR+3
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C νR+3

(
H
`∗
n,ξ

) ∫ ∞
a

x−2dx <∞,

(112)

where the last inequality holds, since the absolute (R+ 3)-pseudomoment of H
`∗
n,ξ is

finite (see Lemma 4.3). Now consider the case |y| ≤ x/2. Recall the notation

G(u,k)
(
x− y, n− `

n

)
= du+k

dzu dλk
Gα,1(z, λ)

∣∣∣∣∣
λ=n−`

n
, z=x−y

.
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Using Lemma A.8 with z = x − y and a = x we obtain the Taylor expansion for
G(1,k)

(
x− y, n−`

n

)
with respect to the first variable at the point a = x:

G(1,k)
(
x− y, n− `

n

)
=

m`,k∑
u=0

G(u+1,k)
(
x,
n− `
n

)
(−y)u
u!

+G(m`,k+2,k)
(
x− θy, n− `

n

)
(−y)m`,k+1

(m`,k + 1)! ,

where θ ∈ (0, 1) and m`,k = [R + 1 + α(`− 1− k/2)]. It is easy to see that for all `
and k we have m`,k + 1 + αk > R+ 1. Such choice of m`,k provides the convergence
of the integral considered below. Indeed, using estimate (60) from Lemma 3.14 and
the fact that x− θy > x/2 > a/2 ≥ max{1,maxk{Am`,k+2,k}} for |y| ≤ x/2 we have:∫ ∞

a
xR+1

∫
|y|≤x/2

∣∣∣∣∣G(m`,k+2,k)
(
x− θy, n− `

n

)
(−y)m`,k+1

(m`,k + 1)!

∣∣∣∣∣
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C

∫ ∞
a

xR+1
∫
|y|≤x/2

(x− θy)−m`,k−2−αk |y|m`,k+1
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C

∫ ∞
a

xR−m`,k−αk−1
∫
|y|≤x/2

|y|m`,k+1
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C νm`,k+1

(
H
`∗
n,ξ

) ∫ ∞
a

x−1−δdx <∞ with some δ > 0.

Using the expansion of G(1,k)
(
x− y, n−`

n

)
considered above we can rewrite∫

|y|≤x/2
G(1,k)

(
x− y, n− `

n

)
dH

`∗
n,ξ

(
n1/αy

)

=
m`,k∑
u=0

∫ +∞

−∞
G(u+1,k)

(
x,
n− `
n

)
(−y)u
u! dH

`∗
n,ξ

(
n1/αy

)

−
m`,k∑
u=0

∫
|y|>x/2

G(u+1,k)
(
x,
n− `
n

)
(−y)u
u! dH

`∗
n,ξ

(
n1/αy

)
+
∫
|y|≤x/2

G(m`,k+2,k)
(
x− θy, n− `

n

)
(−y)m`,k+1

(m`,k + 1)! dH
`∗
n,ξ

(
n1/αy

)
, (113)

where for the second sum we have the following estimation (by using the same
procedure as in (112)):∫ ∞

a
xR+1

m`,k∑
u=0

∫
|y|>x/2

∣∣∣∣∣G(u+1,k)
(
x,
n− `
n

)
(−y)u
u!

∣∣∣∣∣
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx <∞. (114)

Now for each n ∈ N and each ` = 1, . . . , n − 1 we apply Lemma A.8 with
z = 1− `

n
, a = 1, and obtain the Taylor expansion for G(u+1,k)

(
x, n−`

n

)
with respect

to the second variable at the point 1:

G(u+1,k)
(
x,
n− `
n

)
=

pu,`,k∑
v=0

G(u+1,k+v)(x, 1)(−`/n)v

v!

+G(u+1,k+pu,`,k+1)
(
x, 1− θ `

n

)
(−`/n)pu,`,k+1

(pu,`,k + 1)! ,
(115)
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where θ ∈ (0, 1) and pu,`,k = max{0, [(R+ 1− u)/α+ `− 1− k/2]}. It is easy to see
that u+ α(k + pu,`,k + 1) > R+ 1. Such choice of pu,`,k together with estimate (60)
for x > a provides the finiteness of the following integral:

∞∫
a

xR+1
+∞∫
−∞

∣∣∣∣∣G(u+1,k+pu,`,k+1)
(
x, 1− θ `

n

)
(−`/n)pu,`,k+1 (−y)u

(pu,`,k + 1)! u!

∣∣∣∣∣
∣∣∣∣dH`∗

n,ξ

(
n1/αy

)∣∣∣∣ dx
≤ C

∫ ∞
a

xR+1 x−u−1−α(k+pu,`,k+1) dx
∫ +∞

−∞
|y|u

∣∣∣∣dH`∗
n,ξ

(
n1/αy

)∣∣∣∣
≤ C νu

(
H
`∗
n,ξ

) ∫ ∞
a

x−1−δdx <∞ with some δ > 0.
(116)

Define Pu,`,n :=
∫∞
−∞ y

udH
`∗
n,ξ

(
n1/αy

)
= n−u/αµu

(
H
`∗
n,ξ

)
. Note that Pu,`,n = 0

for all u < ` (it follows from Lemma 4.4 (ii)) and that Pu,`,n/u! = n−u/αCu,` for
u = 1, ..., R (see Lemma 4.4 (iii) and formula (104)). Substituting representa-
tion (113) and expansion (115) in formula (111), and using the definition ofW r,n,ξ(x)
in (102), W

∗
n,ξ(x) in (105), and two facts from above about Pu,`,n we get

dAn,ξ(x) =
sn∑

k=ρ+1

ck,n
nk

G(1,k)(x, 1) dx−W
∗′
n,ξ(x) dx+

n−1∑
`=1

(
n

`

) s(n−`)∑
k=0

ck,n−`
nk
·

·

∫
|y|>x/2

(
G(1,k)

(
x− y, n− `

n

)
−

m`,k∑
u=0

G(u+1,k)
(
x,
n− `
n

)
(−y)u
u!

)
dH

`∗
n,ξ

(
n1/αy

)

+
∫
|y|≤x/2

G(m`,k+2,k)
(
x− θy, n− `

n

)
(−y)m`,k+1

(m`,k + 1)!dH
`∗
n,ξ

(
n1/αy

)

+
m`,k∑
u=0

G(u+1,k+pu,`,k+1)
(
x, 1− θ `

n

)
(−`/n)pu,`,k+1

(pu,`,k + 1)!
(−1)u
u! Pu,`,n

 dx (117)

+
n−1∑
`=1

s(n−`)∑
k=0

m`,k∑
u=R+1

+
n−1∑
`=1

s(n−`)∑
k=p+1

R∑
u=`

+
p∑

k=0

n−1∑
`=mk+1

R∑
u=`

(n
`

)
ck,n−`
nk

·
pu,`,k∑
v=0

(
− `
n

)v
(−1)u

v!u! Pu,`,n G
(u+1,k+v)(x, 1) dx

−
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=R+1

pu,`,k∑
v=0

(
− `
n

)v
(−1)u

v! n−u/α Cu,` G
(u+1,k+v)(x, 1) dx.

We need to show that
∫+∞
a xR+1 |dAn,ξ(x)| < ∞. We have already shown above

(see (112), (114), (116)) that there is no problem with the summands in square
brackets from representation (117). Let us check the convergence of the integral for
the first term of (117). Taking into account that ρ ∈ N is chosen in such a way that
(ρ+ 1)α > R + 1, and using estimate (60) from Lemma 3.14 for x > a we obtain:

∫ +∞

a
xR+1

∣∣∣∣∣∣
sn∑

k=ρ+1

ck,n
nk

G(1,k)(x, 1) dx

∣∣∣∣∣∣ ≤
sn∑

k=ρ+1

|ck,n|
nk

∫ +∞

a
xR+1

∣∣∣G(1,k)(x, 1)
∣∣∣ dx



4.3. Estimation of
∣∣∣F n∗

n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣ 81

≤ C
sn∑

k=ρ+1

|ck,n|
nk

∫ +∞

a
xR+1−(1+αk)dx ≤ C

sn∑
k=ρ+1

|ck,n|
nk

∫ +∞

a
x−1−δdx <∞,

where δ > 0. In a similar way we can show the convergence of the integral for all
terms after the square brackets in (117). Namely, for the first and the last sums
with u ≥ R + 1 we apply Lemma 3.14 and obtain for x > a:∫ +∞

a
xR+1

∣∣∣G(u+1,k+v)(x, 1)
∣∣∣ dx ≤ C

∫ +∞

a
xR+1−(u+1+α)dx ≤ C

∫ +∞

a
x−1−αdx <∞.

For k ≥ p+1 with p = [2R/α] we have R−u−α(k+v) ≤ R−1−α(p+1) ≤ −R−1,
and the integral of the second sum converges too. Finally, for ` ≥ mk + 1 and k ≤ p
we get R − u− α(k + v) ≤ R − `− αk ≤ R − (mk + 1)− αk < −1 (see estimation
of (163) from Appendix B). Using this fact and Lemma 3.14 we obtain the following
for the third sum:∫ +∞

a
xR+1

∣∣∣G(u+1,k+v)(x, 1)
∣∣∣ dx ≤ C

∫ +∞

a
xR+1−(u+1+α(k+v))dx <∞.

It remains to show that
∫+∞
a xR+1

∣∣∣∣W ∗′
n,ξ(x)

∣∣∣∣ dx <∞. From (105) it follows that

W
∗′
n,ξ(x) = nG(R+2,0)(x, 1) (−1)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ

+ n
d

dx

(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α)−

R+1∑
w=0

nG(w+1,0)(x, 1) (−1)w
w! n−w/αµw

(
Mn,ξ

)
.

From Lemma 3.14 it follows that∫ +∞

a
xR+1

∣∣∣G(R+2,0)(x, 1)
∣∣∣ dx ≤ C

∫ +∞

a
xR+1−(R+2+α)dx <∞.

Let us consider the second term of W
∗
n,ξ(x). Using the definition of the convolution

and formula (55) we get(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α) =

∫ +∞

−∞
Gα,1(x− y, 1) dMn,ξ(yn1/α).

Now we distinguish two cases: |y| > x/2 and |y| ≤ x/2. Using estimate (59) from
Lemma 3.14, the fact that x > a ≥ 2 and acting in the same way as in (112) we
obtain for |y| > x/2:
∞∫
a

xR+1
∫

|y|>x/2

∣∣∣G(1,0) (x− y, 1)
∣∣∣ ∣∣∣dMn,ξ

(
n1/αy

)∣∣∣ dx ≤ C νR+3
(
Mn,ξ

) ∞∫
a

x−2dx <∞,

where the last inequality holds, since the absolute (R+ 3)-pseudomoment of Mn,ξ is
finite (see (97)). Now consider the case |y| ≤ x/2. Using Lemma A.8 with z = x−y
and a = x we obtain the Taylor expansion for G(1,0) (x− y, 1):

G(1,0) (x− y, 1) =
R+1∑
w=0

G(w+1,0) (x, 1) (−y)w
w! +G(R+3,0) (x− θy, 1) (−y)R+2

(R + 2)! ,
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where θ ∈ (0, 1). Taking into account that x− θy > x/2 for |y| ≤ x/2 we get∫ ∞
a
xR+1

∫
|y|≤x/2

∣∣∣∣∣G(R+3,0) (x− θy, 1) (−y)R+2

(R + 2)!

∣∣∣∣∣ ∣∣∣dMn,ξ

(
n1/αy

)∣∣∣ dx
≤ C

∫ ∞
a

xR+1
∫
|y|≤x/2

(x− θy)−R−3 |y|R+2
∣∣∣dMn,ξ

(
n1/αy

)∣∣∣ dx
≤ C

∫ ∞
a

xR+1−R−3
∫
|y|≤x/2

|y|R+2
∣∣∣dMn,ξ

(
n1/αy

)∣∣∣ dx
≤ C νR+2

(
Mn,ξ

) ∫ ∞
a

x−2dx <∞.

Plugging the Taylor expansion into the formula for W
∗′
n,ξ and taking into account

inequalities from above we get I2 =
∫+∞
a xR+1

∣∣∣∣W ∗′
n,ξ(x)

∣∣∣∣ dx < ∞. This completes
the proof of the lemma.

4.3.3 Condition (iii)

This subsection is devoted to the estimation of A′n,ξ(x). Our goal is to prove the
following theorem, which states that condition (iii) of Lemma 4.8 is satisfied.

Theorem 4.11. If for r > 1 we have 0 < γ∗r < ∞, then for all x ∈ R, n ∈ N and
ξ ∈ [0,∞) the following inequality holds:∣∣∣A′n,ξ(x)

∣∣∣ ≤ K(n, ξ)(1 + |x|)−R−1, where R =
{

[r], r 6= [r],
r − 1, r = [r],

K(n, ξ) = C (1 + ξ)R+1−r n−
r−α
α

(
1 + n

r+1
α Qn

)
with Qn = ν∗0

n−1 +
(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−r/α

)n−1
and constant C not depending

on n and ξ, but depending on the pseudomoments. The constant ε̃ will be defined in
the proof (see formula (123)).

Remark 4.2. Since An,ξ(x) = 0 for x ≤ 0 (see Remark 4.1), we need to consider only
the case x > 0 and show that

∣∣∣A′n,ξ(x)
∣∣∣ ≤ K(n, ξ)(1 + x)−R−1 for x > 0.

Plan of the proof. The proof of this theorem is very long and technical. In order
to make it more comprehensible for the reader we will at first give a rough sketch.
Denote an,ξ(t) :=

∫+∞
−∞ eitxdAn,ξ(x). Using the inversion formula for the Fourier

transform and the Riemann-Lebesgue lemma we will come to the inequality∣∣∣A′n,ξ(x)
∣∣∣ ≤ x−R−1

2π

(∫
|t|≤εn

+
∫
|t|>εn

) ∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt (118)

with some εn > 0. Next step is the estimation of
∣∣∣a(R+1)
n,ξ (t)

∣∣∣. Note that different
methods will be used for that in the cases |t| ≤ εn and |t| > εn. After that we will
estimate each of the two integrals from (118) and summarize, which will lead us to
the statement of Theorem 4.11.

Proof. The proof is carried out in four steps.
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Step 1: Getting to the integrals

For an,ξ(t) =
∫+∞
−∞ eitxdAn,ξ(x) the following lemma holds true.

Lemma 4.12. Function an,ξ(t) is an (R + 1)-times differentiable function and

a
(k)
n,ξ(t)→ 0 as t→ ±∞ (119)

for all k = 0, 1, . . . , R + 1.

Proof. The first statement of the lemma follows from Lemma 4.10. Namely,
∣∣∣a(k)
n,ξ(t)

∣∣∣ ≤ ∫ +∞

−∞
|x|k |dAn,ξ(x)| <∞ for k = 0, 1, . . . , R + 1.

Denote vk(x) := (ix)kA′n,ξ(x) for k = 0, 1, . . . , R + 1. It follows from Lemma 4.10
that vk ∈ L1(R), since∫ +∞

−∞
|vk(x)| dx =

∫ +∞

−∞
|x|k

∣∣∣A′n,ξ(x)
∣∣∣ dx =

∫ +∞

−∞
|x|k |dAn,ξ(x)| <∞

for all k = 0, 1, . . . , R+1. This makes the Riemann-Lebesgue lemma (see Lemma A.12)
applicable and we obtain

a
(k)
n,ξ(t) =

∫ +∞

−∞
eitx(ix)kA′n,ξ(x)dx→ 0 as |t| → ∞.

Since the function An,ξ is absolutely continuous and differentiable on R (see
Lemma 4.9), its derivative can be represented as follows

A′n,ξ(x) = 1
2π

∫ +∞

−∞
e−itxan,ξ(t)dt for all x ∈ R.

Using integration by parts (R + 1) times and property (119) we obtain for x > 0:

A′n,ξ(x) = − i

2πx

∫ +∞

−∞
e−itxa′n,ξ(t)dt = i2

2πx2

∫ +∞

−∞
e−itxa′′n,ξ(t)dt = · · ·

= (−i)R+1

2πxR+1

∫ +∞

−∞
e−itxa

(R+1)
n,ξ (t)dt.

(120)

In order to prove Theorem 4.11 we need to estimate the integrals from the following
inequality

∣∣∣A′n,ξ(x)
∣∣∣ ≤ x−R−1

2π

∫ +∞

−∞

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt = x−R−1

2π

(∫
|t|≤εn

+
∫
|t|>εn

) ∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt
with some constant εn > 0. This will be done in the following two steps.
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Step 2: Estimation of the first integral

Our task is to estimate the (R+ 1)-st derivative of an,ξ(t) for |t| ≤ εn, and then the
integral

∫
|t|≤εn

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt itself.
First, let us represent an,ξ(t) in another form. Denote fn,ξ(t) =

∫+∞
−∞ eitxdF n,ξ(x),

wr,n,ξ(t) =
∫+∞
−∞ eitxdW r,n,ξ(x) and hn,ξ(t) =

∫+∞
−∞ eitxdHn,ξ(x). Then by (109) we

have
an,ξ(t) = f

n

n,ξ

(
tn−1/α

)
− gα,1(t)− wr,n,ξ(t)− h

n

n,ξ

(
tn−1/α

)
,

where gα,1(t) = exp(ϕα,1(t)) is the characteristic function of stable distribution
Gα,1(x). Recall (see Lemma 3.25) that the inverse Fourier transform of G̃α(x) is

g̃α(t) =
∫ +∞

−∞
eitxdG̃α(x) = gα,1(t) +

s∑
k=2

Akgα,1(t)ϕkα,1(t).

Using the definition of W r,n,ξ(x) and the fact that the inverse Fourier transform of
G(u,k)(x, 1) is equal to gα,1(t)ϕkα,1(t)(−it)u we obtain

wr,n,ξ(t) =
∫ +∞

−∞
eitxdW r,n,ξ(x) =

ρ∑
k=2

ck,n
nk

gα,1(t)ϕkα,1(t) + w
∗
n,ξ(t)

+
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

gα,1(t)ϕk+v
α,1 (t) (it)u (−`/n)v

v! n−u/α Cu,`,

(121)

where ck,n, Cu,`, ρ, p, mk, m`,k and pu,`,k are defined after formula (102), and

w∗n,ξ(t) =
∫ +∞

−∞
eitxdW

∗
n,ξ(x) = n gα,1(t) (it)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ

+ n gα,1(t)
∫ +∞

−∞

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

 d (Hn,ξ −Hn,0
)

(x).

Using the fact that fn,ξ(t) = g̃α(t) + hn,ξ(t) we have

an,ξ(t) =
(
g̃α
(
tn−1/α

)
+ hn,ξ

(
tn−1/α

))n
− gα,1(t)− wr,n,ξ(t)− h

n

n,ξ

(
tn−1/α

)
= g̃nα

(
tn−1/α

)
+

n−1∑
`=1

(
n

`

)
g̃n−`α

(
tn−1/α

)
h
`

n,ξ

(
tn−1/α

)
− gα,1(t)− wr,n,ξ(t).

Applying formula (78) for g̃ρα and using the representation of wr,n,ξ from (121) we
continue

an,ξ(t) = gα,1(t) +
sn∑
k=2

ck,n
nk

gα,1(t)ϕkα,1(t)

+
n−1∑
`=1

(
n

`

) s(n−`)∑
k=0

ck,n−`
(n− `)k gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1

(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)

− gα,1(t)−
ρ∑

k=2

ck,n
nk

gα,1(t)ϕkα,1(t)− w∗n,ξ(t)−
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−
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

gα,1(t)ϕk+v
α,1 (t) (it)u (−`/n)v

v! n−u/αCu,`

=
sn∑

k=ρ+1

ck,n
nk

gα,1(t)ϕkα,1(t)

+
n−1∑
`=1

(
n

`

) s(n−`)∑
k=0

ck,n−`
nk

gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1(t)h

`

n,ξ

(
tn−

1
α

)
− w∗n,ξ(t)

−
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

gα,1(t)ϕk+v
α,1 (t) (it)u (−`/n)v

v! n−u/αCu,`

=
sn∑

k=ρ+1

ck,n
nk

gα,1(t)ϕkα,1(t)

+
p∑

k=0

n−1∑
`=mk+1

(
n

`

)
ck,n−`
nk

ϕkα,1(t) gα,1
(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)

+
n−1∑
`=1

(
n

`

) s(n−`)∑
k=p+1

ck,n−`
nk

ϕkα,1(t) gα,1
(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)

+
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

gα,1 (t (n−`n ) 1
α

)
ϕkα,1(t)h

`

n,ξ

(
tn−

1
α

)

−
m`,k∑
u=`

pu,`,k∑
v=0

gα,1(t)ϕk+v
α,1 (t) (it)u (−`/n)v

v! n−u/αCu,`

− w∗n,ξ(t). (122)

As we will show in Appendix B each of the four terms of an,ξ(t) in (122) is
differentiable. Now we differentiate and estimate the derivatives of these terms.
The results are presented in the following four lemmata (their proofs are given in
Appendix B). Recall that we consider |t| ≤ εn with some εn > 0. Also note that in
the following we use constants C that do not depend on n and ξ, but may depend
on the pseudomoments.

Lemma 4.13. Define d1n(t) = ∑sn
k=ρ+1

ck,n
nk
ϕkα,1(t) gα,1(t) with ρ = [2(R + 1)/α].

Then for |t| ≤ εn1/α and q = 0, 1, ..., R + 1 we have
∣∣∣d(q)

1n (t)
∣∣∣ ≤ C e−

1
4 |t|

α cos(απ2 ) n−
R+1
α |t|−q

(
|t|α(

ρ
2 + 1

2) + |t|α(ρ+2)
)

with constant C not depending on n, and

ε = min

1, 1
(2D)1/α ,

1
D1/α

cos
(
απ
2

)
8D


2+ρ/2
α
, D = max

2≤j≤s
{2 |Aj|1/j},

where s and Aj, j = 2, ..., s, are defined in (85) and (70).
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Lemma 4.14. Define

d2n(t) =
p∑

k=0

n−1∑
`=mk+1

(
n

`

)
ck,n−`
nk

ϕkα,1(t) gα,1
(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)
,

where p = [2R/α] and mk = 1 +
[(
R− αk

2

)
/(1− α)

]
. Then for |t| ≤ εn1/α we have∣∣∣d(q)

2n (t)
∣∣∣ ≤ C e−

|t|α
4 cos(απ2 ) n−

R+1−α
α |t|R+1−q

(
|t|θ1 + |t|θ2

)
, q = 0, 1, ..., R,∣∣∣d(R+1)

2n (t)
∣∣∣ ≤ C e−

|t|α
4 cos(απ2 ) n−

r−α
α

(
|t|θ1 + |t|θ2 + |t|αp+1

)
(1 + ξ)R+1−r,

where θ1(2) = min
k

(max
k

){mk + αk − R} > 0, r comes from Theorem 3.26,

ε = min

1, 1
c0
,

cos
(
απ
2

)
8 e c0

1/(1−α) with c0 = (ν∗0 + 1)γ∗r 1/r, and constants C do

not depend on n and ξ.

Lemma 4.15. Define

d3n(t) =
n−1∑
`=1

(
n

`

) s(n−`)∑
k=p+1

ck,n−`
nk

ϕkα,1(t) gα,1
(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)
,

where p = [2R/α]. Then for |t| ≤ εn1/α we have∣∣∣d(q)
3n (t)

∣∣∣ ≤ C e−
|t|α

8 cos(απ2 ) n−
R+1−α

α |t|1−q
(
|t|α(

p
2 + 1

2) + |t|α(p+2)
)
, q = 0, 1, ..., R,∣∣∣d(R+1)

3n (t)
∣∣∣ ≤ C e−

|t|α
8 cos(απ2 ) n−

r−α
α

(
|t|

α(p+1)
2 −R + |t|α(p+2)+1

)
(1 + ξ)R+1−r,

where r comes from Theorem 3.26, constants C do not depend on n and ξ, and

ε = min

1, 1
c0
,

1
(2D)1/α ,

1
D1/α

cos
(
απ
2

)
8D


2+p/2
α

,

cos
(
απ
2

)
16 e c0

1/(1−α)
with D = max

2≤j≤s
{2 |Aj|1/j}, c0 = (ν∗0 + 1)γ∗r 1/r, s and Aj defined in (85) and (70).

Lemma 4.16. Define

d4n(t) =
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

gα,1 (t (n−`n ) 1
α

)
ϕkα,1(t)h

`

n,ξ

(
tn−

1
α

)

−
m`,k∑
u=`

pu,`,k∑
v=0

Cu,`
(−`/n)v

v! n−u/α gα,1(t)ϕk+v
α,1 (t) (it)u

− w∗n,ξ(t),
where p = [2R/α], mk = 1 + [(R− αk/2) /(1− α)], m`,k = [R+ 1 + α(`− 1− k/2)]
and pu,`,k = max {0, [(R + 1− u)/α + `− 1− k/2]} and

Cu,` =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=`

`!
k1!...kR!

(
µ1,n,ξ

1!

)k1

...

(
µR,n,ξ
R!

)kR
,
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w
∗
n,ξ(t) = n gα,1(t)

∫ +∞

−∞

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

 d (Hn,ξ −Hn,0
)

(x)

+ n gα,1(t) (it)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ.

Then for |t| ≤ ε n1/α and q = 0, 1, ..., R + 1 we have
∣∣∣d(q)

4n (t)
∣∣∣ ≤ C e−

1
2 |t|

α cos(απ2 ) n− r−αα (1 + ξ)R+1−r |t|R+1−q
(
|t|θ + |t|R max{1, α

1−α}
)
,

where θ = min
u
{u + α(pu,1,0 + 1) − (R + 1)} ∈ (0, α], ε = min

{
1, c−1

0

}
with

c0 = (ν∗0 + 1)γ∗r 1/r, pseudomoments ν∗0 , γ∗r are defined in (80), r comes from Theo-
rem 3.26, R is defined by (99) and constant C does not depend on n and ξ.

The proofs of Lemmata 4.13 - 4.16 are given in Appendix B.

Now we come back to the main task of this step, namely, to the estimation of the
integral

∫
|t|≤εn

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt. Using representation (122) and Lemmata 4.13 - 4.16 we
obtain ∫

|t|≤εn

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt ≤ 4∑
k=1

∫
|t|≤εn

∣∣∣d(R+1)
kn (t)

∣∣∣ dt.
Let us specify εn. We have to find such a region |t| ≤ εn that Lemmata 4.13 - 4.16
are satisfied. Let us take

εn = ε̃ n1/α with

ε̃ = min

1, 1
c0
,

1
(2D)1/α ,

1
D1/α

cos
(
απ
2

)
8D


2+ρ/2
α

,

cos
(
απ
2

)
16 e c0

1/(1−α), (123)

where c0 = (ν∗0 + 1)γ∗r 1/r, D = max
2≤j≤s

{2 |Aj|1/j}, ρ = [2(R + 1)/α].

When estimating the integrals of d(R+1)
kn (t), k = 1, ..., 4, we have to deal with only

one pattern: |t|s exp{−b |t|α cos
(
απ
2

)
} with different powers s > 0 and constants

b > 0. Using Lemma A.14 we obtain∫
|t|≤εn

e−b |t|
α cos(απ2 )|t|sdt ≤

∫ +∞

−∞
e−b |t|

α cos(απ2 ) |t|sdt ≤ C,

where C > 0 depends on α, b and s. Now, using this inequality we get∫
|t|≤εn

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt ≤ C n−
R+1
α + C (1 + ξ)R+1−r n−

r−α
α ≤ C (1 + ξ)R+1−r n−

r−α
α .

This completes the second step.
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Step 3: Estimation of the second integral.

Our task is to estimate the (R+ 1)-st derivative of an,ξ(t) for |t| > εn, and then the
integral

∫
|t|>εn

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt itself.

Using the definition of an,ξ and the fact that fn,ξ(t)− hn,ξ(t) = g̃α(t) we obtain

an,ξ(t) = f
n

n,ξ

(
tn−1/α

)
− gα,1(t)− wr,n,ξ(t)− h

n

n,ξ

(
tn−1/α

)
= g̃α

(
tn−1/α

) n−1∑
`=0

f
n−1−`
n,ξ

(
tn−1/α

)
h
`

n,ξ

(
tn−1/α

)
︸ ︷︷ ︸

=:b1n(t)

− (gα,1(t) + wr,n,ξ(t))︸ ︷︷ ︸
=:b2n(t)

. (124)

Next we differentiate b1n(t) and b2n(t) separately and get the following lemmata.
Their proofs are given in Appendix B.

Lemma 4.17. Define b1n(t) =
n−1∑
`=0

g̃α
(
tn−1/α

)
f
n−1−`
n,ξ

(
tn−1/α

)
h
`

n,ξ

(
tn−1/α

)
. Then for

|t| > εn we have

∣∣∣b(q)
1n (t)

∣∣∣ ≤

C e−

|t|α
4n cos(απ2 )

(
ν∗0

n−1 +Q
n−1
n,ξ

)
nq (1− 1

α
), q = 0, ..., R;

C e−
|t|α
4n cos(απ2 )

(
ν∗0

n−1 +Q
n−1
n,ξ

)
nR+1− r

α (1 + ξ)R+1−r, q = R + 1,

where Qn,ξ = sup
|t|>ε̃

∣∣∣fn,ξ(t)∣∣∣, r comes from Theorem 3.26, εn = ε̃n1/α with ε̃ defined

in (123), and constants C do not depend on n and ξ.
Lemma 4.18. Define b2n(t) = gα,1(t) + wr,n,ξ(t). Then for |t| > εn we have∣∣∣b(q)

2n (t)
∣∣∣ ≤ C e−

1
4 |t|

α cos(απ2 )n−
r−α
α (1 + ξ)R+1−r, q = 0, 1, ..., R + 1,

where r comes from Theorem 3.26, εn = ε̃n1/α with ε̃ defined in (123) and constant C
does not depend on n and ξ.

Using Lemmata 4.17, 4.18 and formula (157) for Qn,ξ we obtain∣∣∣a(R+1)
n,ξ (t)

∣∣∣ ≤ ∣∣∣b(R+1)
1n

∣∣∣+ ∣∣∣b(R+1)
2n

∣∣∣ ≤ C (1 + ξ)R+1−r n−
r−α
α

·

e− |t|α4 cos(απ2 ) + e−
|t|α
4n cos(απ2 ) nR

ν∗0n−1 +
sup
|t|>ε̃
|f(t)|+ 2 γ∗rn−r/α

n−1

 .

From Lemma A.14 it follows that
∫
|t|>εn

e−
|t|α
4n cos(απ2 )dt ≤

∫ +∞

−∞
e−
|t n−1/α|α

4 cos(απ2 ) n1/α d(t n−1/α)

≤ n1/α
∫ +∞

−∞
e−
|y|α

4 cos(απ2 ) dy ≤ C n1/α.
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Combining this and the above estimation of
∣∣∣a(R+1)
n,ξ (t)

∣∣∣ we get
∫
|t|>εn

∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt ≤ C (1 + ξ)R+1−r n−
r−α
α

(
1 + nR+ 1

α Qn

)
,

where

Qn = ν∗0
n−1 +

sup
|t|>ε̃
|f(t)|+ 2 γ∗rn−r/α

n−1

. (125)

This completes the third step.

Step 4: Summarizing the previous steps.

Finally we come to the last step of the proof of Theorem 4.11. According to our
plan we use the results of Step 2 and 3 in order to get the following:

∣∣∣A′n,ξ(x)
∣∣∣ ≤ x−R−1

2π

(∫
|t|≤εn

+
∫
|t|>εn

) ∣∣∣a(R+1)
n,ξ (t)

∣∣∣ dt
≤ C x−R−1 (1 + ξ)R+1−r n−

r−α
α

(
1 + nR+ 1

α Qn

)
, (126)

where Qn is defined by (125). Moreover, from formula (120) it follows that for all
q = 0, ..., R we have

∣∣∣A′n,ξ(x)
∣∣∣ ≤ x−q

2π

∫ +∞

−∞

∣∣∣a(q)
n,ξ(t)

∣∣∣ dt = x−q

2π

(∫
|t|≤εn

+
∫
|t|>εn

) ∣∣∣a(q)
n,ξ(t)

∣∣∣ dt,
where εn is defined by (123). Using Lemma 4.13-4.18 and acting in the same way
as in Steps 2 and 3 we get∣∣∣A′n,ξ(x)

∣∣∣ ≤ C x−q (1 + ξ)R+1−r n−
r−α
α

(
1 + n

r+1−α
α

+q(1− 1
α)Qn

)
, (127)

where Qn is from (125). Combining inequality (127) with q = 0 and inequality (126)
we get for x > 0:

(1 + xR+1)
∣∣∣A′n,ξ(x)

∣∣∣ ≤ C (1 + ξ)R+1−r n−
r−α
α

(
1 + n

r+1
α Qn

)
.

Taking into account Remark 4.2 and the fact that 1 + xR+1 ≥ 2−R (1 + x)R+1 for
x > 0 we obtain ∣∣∣A′n,ξ(x)

∣∣∣ ≤ K(n, ξ) (1 + |x|)−R−1

with K(n, ξ) = C (1 + ξ)R+1−r n−
r−α
α

(
1 + n

r+1
α Qn

)
. This completes the proof of

Theorem 4.11.



90 CHAPTER 4. Proof of the main result

4.3.4 Final results

In this subsection we estimate the function An,ξ(x) defined by (109) and finally get
the estimate of

∣∣∣F n∗
n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣.
Theorem 4.19. If for r > 1 we have 0 < γ∗r < ∞, then for all x ∈ R, n ∈ N and
ξ ∈ [0,∞) the following inequality holds:

|An,ξ(x)| ≤ C (1 + |x|)−R−1 (1 + ξ)R+1−r n−
r−α
α

(
1 + n

r
α Qn

)
,

where Qn = ν∗0
n−1 +

(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−r/α

)n−1
with ε̃ defined in (123), con-

stant C does not depend on n and ξ, R = [r] if r 6= [r], and R = r − 1 otherwise.

Proof. From Lemmata 4.9, 4.10 and Theorem 4.11 it follows that all requirements
of Lemma 4.8 with s = R+ 1 and A(x) = An,ξ(x) are satisfied. This means that we
can estimate An,ξ(x) as follows:

|An,ξ(x)| ≤ C (1 + |x|)−R−1
(
I0(T ) + IR+1(T ) +K(n, ξ)T−1

)
for all x ∈ R and T ≥ 1. Here C ≥ 0 depends only on R, K(n, ξ) is defined in
Theorem 4.11, and

Im(T ) =
∫
|t|≤T
|dm(t)| |t|−1dt with dm(t) =

∫ +∞

−∞
eitxd (xmAn,ξ(x))

for m ∈ {0, R + 1}. Let us take T = n1/α and estimate I0(T ) and IR+1(T ). Using
the definition of an,ξ(t), representation (122) for |t| ≤ εn and representation (124)
for |t| > εn, we obtain for I0(n1/α):

I0(n1/α) =
∫
|t|≤n1/α

|t|−1
∣∣∣∣∫ +∞

−∞
eitxdAn,ξ(x)

∣∣∣∣ dt =
∫
|t|≤n1/α

|t|−1 |an,ξ(t)| dt

≤
(∫
|t|≤εn

+
∫
|t|>εn

)
|an,ξ(t)|
|t|

dt ≤
4∑

k=1

∫
|t|≤εn

|dkn(t)|
|t|

dt+
2∑

k=1
ε−1
n

∫
|t|>εn

|bkn(t)| dt,

where εn is given in (123). Now applying Lemmata 4.13 - 4.18 with q = 0 and
dealing with the integrals in the same way as in Step 2 and Step 3 of Theorem 4.11
we get

I0(n1/α) ≤ C n−
r−α
α (1 + ξ)R+1−r

(
1 + n

r−α
α Qn

)
,

where Qn is defined by (125).
Now let us consider IR+1(T ). From Lemmata 4.9 and 4.10 it follows that

Lemma A.15 with G(x) = An,ξ(x) and m = R + 1 holds true and we get

(−it)R+1
∫ +∞

−∞
eitxd

(
xR+1An,ξ(x)

)
= (R + 1)!

R+1∑
q=0

(−t)q
q! a

(q)
n,ξ(t).

Using this equality we repeat what we have done above for I0(T ):

IR+1(n1/α) =
∫
|t|≤n1/α

|t|−1
∣∣∣∣∫ +∞

−∞
eitxd

(
xR+1An,ξ(x)

)∣∣∣∣ dt
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≤ C
R+1∑
q=0

∫
|t|≤n1/α

∣∣∣a(q)
n,ξ(t)

∣∣∣
|t|R+2−q dt ≤ C

R+1∑
q=0

(∫
|t|≤εn

+
∫
|t|>εn

) ∣∣∣a(q)
n,ξ(t)

∣∣∣
|t|R+2−q dt

≤ C
R+1∑
q=0

 4∑
k=1

∫
|t|≤εn

∣∣∣d(q)
kn (t)

∣∣∣
|t|R+2−q dt+

2∑
k=1

εq−R−2
n

∫
|t|>εn

∣∣∣b(q)
kn (t)

∣∣∣ dt
 .

Recall that εn = ε̃ n1/α. The integrals of b(q)
kn (t) can be estimated as in Step 3 of the

proof of Theorem 4.11. For d(q)
kn we apply Lemmata 4.13 - 4.16 with q = 0, 1, ..., R+1

and use Lemma A.14 for the estimation of integrals. This yields

IR+1(n1/α) ≤ C n−
r−α
α (1 + ξ)R+1−r

(
1 + nRQn

)
,

where Qn is the same as before, i.e. defined by (125). Summarizing everything we
obtain the following estimate of An,ξ(x):

|An,ξ(x)| ≤ C (1 + |x|)−R−1
(
I0(n1/α) + IR+1(n1/α) +K(n, ξ)n−1/α

)
≤ C (1 + ξ)R+1−r (1 + |x|)−R−1 n−

r−α
α

(
1 + n

r
α Qn

)
.

This completes the proof of Theorem 4.19.

In order to prove our next theorem we will need the following auxiliary lemma.

Lemma 4.20. If for r > 1 we have 0 < γ∗r < ∞, then for all x ∈ R, n ∈ N and
ξ ∈ [0,∞) the following inequality holds:∣∣∣Hn∗

n,ξ(n1/αx)
∣∣∣ ≤ C (1 + |x|)−R−1 (1 + ξ)R+1−r n ν∗0

n−1,

where constant C does not depend on n and ξ, R = [r], if r 6= [r], and R = r − 1
otherwise.

Proof. From the definition of Hn,ξ it follows that H
n∗
n,ξ(n1/αx) = 0 for x ≤ 0, which

means that the lemma holds true for x ≤ 0. Using H
n∗
n,ξ(z) = −

∫∞
z dH

n∗
n,ξ(y), z ∈ R,

and Lemmata 4.2, 4.3 we get for x > 0:∣∣∣Hn∗
n,ξ(n1/αx)

∣∣∣ ≤ ∫ ∞
n1/αx

∣∣∣dHn∗
n,ξ(y)

∣∣∣ ≤ ν0
(
H
n∗
n,ξ

)
≤ νn0,n,ξ ≤ ν∗0

n,

and for xn1/α > 1 we can estimate as follows:∣∣∣Hn∗
n,ξ(n1/αx)

∣∣∣ ≤ ∫ ∞
n1/αx

y−R−1 yR+1
∣∣∣dHn∗

n,ξ(y)
∣∣∣ ≤ (n1/αx

)−R−1
νR+1

(
H
n∗
n,ξ

)
≤
(
n1/αx

)−R−1
nR+1 νR+1,n,ξ ν

n−1
0,n,ξ ≤ C x−R−1 (1 + ξ)R+1−r nR+1− r

α ν∗0
n−1.

Combining the last two inequalities we obtain for x > n−1/α:(
1 + xR+1

) ∣∣∣Hn∗
n,ξ(n1/αx)

∣∣∣ ≤ C (1 + ξ)R+1−r n ν∗0
n−1,
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which, together with 1 + xR+1 ≥ 2−R (1 + x)R+1 for x > 0, gives the following
estimate for x > n−1/α:∣∣∣Hn∗

n,ξ(n1/αx)
∣∣∣ ≤ C (1 + x)−R−1 (1 + ξ)R+1−r n ν∗0

n−1.

For 0 < x ≤ n−1/α we estimate as follows;∣∣∣Hn∗
n,ξ(n1/αx)

∣∣∣ ≤ ν∗0
n (1 + x)−R−1 (1 + n−1/α)R+1 ≤ C (1 + x)−R−1 ν∗0

n−1.

The last two inequalities give us the estimate of
∣∣∣Hn∗

n,ξ(n1/αx)
∣∣∣ for all x > 0:∣∣∣Hn∗

n,ξ(n1/αx)
∣∣∣ ≤ C (1 + x)−R−1 (1 + ξ)R+1−r n ν∗0

n−1.

This completes the proof of the lemma.

Theorem 4.21. If for r > 1 we have 0 < γ∗r < ∞, then for all x ∈ R, n ∈ N and
ξ ∈ [0,∞) the following inequality holds:∣∣∣F n∗

n,ξ(n1/αx)−Gα,1(x)−W r,n,ξ(x)
∣∣∣ ≤ C (1+|x|)−R−1 (1+ξ)R+1−r n−

r−α
α

(
1 + n

r
α Qn

)
,

where Qn = ν∗0
n−1 +

(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−r/α

)n−1
with ε̃ defined in (123), con-

stant C does not depend on n and ξ, R = [r] if r 6= [r], and R = r − 1 otherwise.

Proof. From definition (109) of An,ξ(x) it follows that∣∣∣F n∗
n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣ ≤ ∣∣∣An,ξ(x)
∣∣∣+ ∣∣∣Hn∗

n,ξ

(
n1/αx

)∣∣∣ .
Using the estimates from Theorem 4.19 for An,ξ and from Lemma 4.20 for H

n∗
n,ξ we

obtain the statement of the theorem.

4.4 Estimation of
∣∣∣∣W r,n,ξ(x)− W̃r,n(x)

∣∣∣∣
Theorem 4.22. If for r > 1 we have 0 < γ∗r < ∞, then for all x ∈ R, n ∈ N and
ξ ∈ [0,∞) the following inequality holds:

∣∣∣W r,n,ξ(x)− W̃r,n(x)
∣∣∣ ≤ C n−

r−α
α

p∑
k=0

mk∑
`=1

m`,k∑
u=`

(1 + |x|)−u (1 + ξ)u−r,

where p = [2R/α], mk = 1 + [(R− αk/2) /(1− α)], m`,k = [R+ 1 +α(`− 1− k/2)]
with R = [r] if r 6= [r] and R = r − 1 otherwise, and constant C does not depend
on n and ξ.

Proof. Using definition (102) of W r,n,ξ and definition (87) of W̃r,n we obtain∣∣∣W r,n,ξ(x)− W̃r,n(x)
∣∣∣ ≤ ∣∣∣W ∗

n,ξ(x)
∣∣∣ (128)

+
p∑

k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

∣∣∣G(u,k+v)(x, 1)
∣∣∣ (`/n)v

v! n−u/α
∣∣∣Cu,` − C̃u,`

∣∣∣ ,
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where p = [2R/α], mk = 1 + [(R− αk/2) /(1− α)], m`,k = [R+ 1 +α(`− 1− k/2)],
pu,`,k = max {0, [(R + 1− u)/α + `− 1− k/2]} with

R =
{

[r], if [r] 6= r
r − 1, if [r] = r

,

C̃u,` =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=`

`!
k1!...kR!

(
µ∗1
1!

)k1

...
(
µ∗R
R!

)kR
,

Cu,` =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=`

`!
k1!...kR!

(
µ1,n,ξ

1!

)k1

...

(
µR,n,ξ
R!

)kR
,

W
∗
n,ξ(x) and ck,n−` are given by formulas (105) and (103), respectively.

First, let us consider the second term from (128). From the definition of ck,n−`
it is easy to see that for k = 0, ..., p and ` = 1, ...,mk there always exists a constant
C > 0 such that

|ck,n−`|
nk

≤
∑

k0+k2+···+ks=n−`
2k2+···+sks=k

(n− `)!
k0!k2! · · · ks!nk

|A2|k2 · · · |As|ks ≤
C

nk/2
,

where k0, k2, ..., ks ∈ N0 and C does not depend on n. Using Lemma 3.14 and
Lemma A.4 for

∣∣∣G(u,k+v)(x, 1)
∣∣∣ we obtain

∣∣∣G(u,k+v)(x, 1)
∣∣∣ ≤ Cu (1 + |x|)−u, x ∈ R, (129)

where Cu = 4Dmax(1 +Amax)u, Dmax = max
u,k,v
{Du,k+v} and Amax = max

u,k,v
{Au,k+v} > 1

with Du,k+v, Au,k+v defined in Lemma 3.14 and all possible combination of u, k, v
that can appear in the sum from (128).

Let us estimate the difference
∣∣∣Cu,` − C̃u,`

∣∣∣. Using the formulas given above we get

∣∣∣Cu,` − C̃u,`

∣∣∣ ≤ ∑
k1+k2+...+kR=`

k1+2k2+...+RkR=u

`!
k1!...kR!

∣∣∣∣∣∣
(
µ1,n,ξ

1!

)k1

...

(
µR,n,ξ
R!

)kR
−
(
µ∗1
1!

)k1

...
(
µ∗R
R!

)kR ∣∣∣∣∣∣ .
First of all note that u = `, `+1, ...,m`,k andm`,k ≤ `+R (see the definition ofm`,k).
Let us fix an arbitrary ` ∈ {1, ...,mk} and observe what happens with the sum
considered above for different u ∈ {`, `+ 1, ..., `+R}. For u = ` only one solution is
possible for the system of equation k1 + ...+kR = `, k1 +2k2 + ...+RkR = u. Namely,
k1 = `, k2 = ... = kR = 0. If u = `+1 we obtain k1 = `−1, k2 = 1, k3 = ... = kR = 0
and so on. Let us take u = `+ j with arbitrary j ∈ {0, ..., R}. It follows from{

k1 + · · ·+ kR = `
k1 + 2k2 + · · ·+RkR = `+ j

⇐⇒
{
k1 + · · ·+ kR = `
k2 + 2k3 + · · ·+ (R− 1)kR = j
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that the largest i ∈ {1, ..., R} such that ki 6= 0 cannot be greater than j+1 = u−`+1.
In other words,

ki = 0 for i > u− `+ 1. (130)
Note that for u ∈ {`, ...,m`,k} and ` ∈ {1, ...,mk} we have u− `+ 1 ∈ {1, ..., R+ 1}.
The case u − ` + 1 = R + 1 is only possible if k = 0, ` = 1 and u = m1,0 = R + 1.
But for ` = 1 and u = R + 1 we have Cu,` = C̃u,` = 0. Therefore we exclude this
case and consider u− `+ 1 ∈ {1, ..., R} in what follows.
Denote q := u− `+ 1. Using (130) we obtain for

∣∣∣Cu,` − C̃u,`

∣∣∣:
∣∣∣Cu,` − C̃u,`

∣∣∣ ≤ ∑
k1+k2+...+kq=`
k1+2k2+...+qkq=u
u−`+1∈{1,...,R}

`!
k1!...kq!

∣∣∣∣∣∣
(
µ1,n,ξ

1!

)k1

...

(
µq,n,ξ
q!

)kq
−
(
µ∗1
1!

)k1

...

(
µ∗q
q!

)kq ∣∣∣∣∣∣ .

From Lemma 4.2 (i) it follows that
∣∣∣µj,n,ξ∣∣∣ ≤ νj,n,ξ ≤ ν∗j ≤ C and

∣∣∣µ∗j ∣∣∣ ≤ ν∗j ≤ C for
all j ∈ {1, ..., R}. Using this fact and the fact that kj ∈ {0, 1, ...,mk} with finite mk

we apply Lemma A.7 and get
∣∣∣Cu,` − C̃u,`

∣∣∣ ≤ C
q∑
j=1

∣∣∣µj,n,ξ − µ∗j ∣∣∣ = C
u−`+1∑
j=1

∣∣∣µj,n,ξ − µ∗j ∣∣∣ .
Finally, applying Lemma 4.1 (ii) and taking into account that u− `+ 1 ∈ {1, ..., R}
and that R < r we obtain∣∣∣Cu,` − C̃u,`

∣∣∣ ≤ C
u−`+1∑
j=1

2
(
n1/α (1 + ξ)

)j−r
γ∗r ≤ C

(
n1/α (1 + ξ)

)u−`+1−r
.

Using this estimate, the estimates for |ck,n−`|
nk

and
∣∣∣G(u,k+v)(x, 1)

∣∣∣ and the facts that
α ∈ (0, 1), ` ≥ 1, we get

p∑
k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

∣∣∣G(u,k+v)(x, 1)
∣∣∣ (`/n)v

v! n−u/α
∣∣∣Cu,` − C̃u,`

∣∣∣
≤ C

p∑
k=0

mk∑
`=1

m`,k∑
u=`

n`−k/2−u/α (1 + |x|)−u
(
n1/α (1 + ξ)

)u−`+1−r

≤ C n−
r−α
α

p∑
k=0

mk∑
`=1

m`,k∑
u=`

(1 + |x|)−u (1 + ξ)u−r. (131)

Now let us estimate the term
∣∣∣W ∗

n,ξ(x)
∣∣∣ from (128). Recall from (105) that

W
∗
n,ξ(x) = nG(R+1,0)(x, 1) (−1)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ︸ ︷︷ ︸
=:W

∗
1(x)

+ n
(
Gα,1( · , n) ∗Mn,ξ

)
(xn1/α)−

R+1∑
w=0

nG(w,0)(x, 1) (−1)w
w! n−w/αµw

(
Mn,ξ

)
︸ ︷︷ ︸

:=W
∗
2(x)

,
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where Mn,ξ(x) = Hn,ξ(x)−Hn,0(x). From estimate (129) and from Lemma 4.2 (ii)
for νR+1,n,ξ ≥ |µR+1,n,ξ| it follows that∣∣∣W ∗

1(x)
∣∣∣ ≤ C n1−R+1

α (1 + |x|)−R−1
(
n1/α (1 + ξ)

)R+1−r

≤ C n−
r−α
α (1 + |x|)−R−1 (1 + ξ)R+1−r, x ∈ R.

Let us estimate
∣∣∣W ∗

2(x)
∣∣∣. We start with a slight transformation of W

∗
2(x). Using the

definition of pseudomoments µw(Mn,ξ) and property (55) we obtain

W
∗
2(x) = n

∫ +∞

−∞

(
Gα,1(x− y, 1)−

R+1∑
w=0

G(w,0)(x, 1) (−y)w
w!

)
dMn,ξ(yn1/α).

First of all note that for x ≤ 0 we have Gα,1(x, λ) = Mn,ξ(x) = 0 and, consequently,
W
∗
2(x) = 0. Let x > 0 in what follows. We consider separately two cases: x > 0

and x > A, where A := 2 max
j∈{1,...,R+2}

{Aj,0} with Aj,0 defined in Lemma 3.14.

Case x > A. For |y| ≤ x/2 we use Lemma A.8 with z = x− y, a = x and θ ∈ (0, 1):

n

∣∣∣∣∣
∫
|y|≤x/2

(
Gα,1(x− y, 1)−

R+1∑
w=0

G(w,0)(x, 1) (−y)w
w!

)
dMn,ξ(yn1/α)

∣∣∣∣∣
≤ n

∫
|y|≤x/2

∣∣∣G(R+2,0)(x− θy, 1)
∣∣∣ |y|R+2

(R + 2)!
∣∣∣dMn,ξ(yn1/α)

∣∣∣ = s.

Note that |x− θy| ≥ x/2 for |y| ≤ x/2. Using the fact that x > A and applying
formulas (60), (97) and (100) we continue

s ≤ C n
∫
|y|≤x/2

|x− θy|−R−2 |y|R+2
∣∣∣dMn,ξ(yn1/α)

∣∣∣
≤ C n (x/2)−R−1

∫
|y|≤x/2

|y|R+1
∣∣∣dMn,ξ(yn1/α)

∣∣∣
≤ C n (x/2)−R−1 n−

R+1
α νR+1

(
Mn,ξ

)
≤ C n1−R+1

α x−R−1 νR+1,n,ξ

≤ C n1−R+1
α x−R−1 (n1/α (1 + ξ))R+1−r ≤ C n−

r−α
α x−R−1 (1 + ξ)R+1−r.

For |y| > x/2 we again use formulas (60), (97) and (100) and obtain

n

∣∣∣∣∣
∫
|y|>x/2

(
Gα,1(x− y, 1)−

R+1∑
w=0

G(w,0)(x, 1) (−y)w
w!

)
dMn,ξ(yn1/α)

∣∣∣∣∣
≤ C n

∫
|y|>x/2

∣∣∣dMn,ξ(yn1/α)
∣∣∣+ C n

R+1∑
w=1

x−w
∫
|y|>x/2

|y|w
∣∣∣dMn,ξ(yn1/α)

∣∣∣
≤ C n

(
x

2

)−R−1 ∫
|y|>x/2

|y|R+1
∣∣∣dMn,ξ(yn1/α)

∣∣∣
+ C n

R+1∑
w=1

x−w
(
x

2

)w−R−1 ∫
|y|>x/2

|y|R+1
∣∣∣dMn,ξ(yn1/α)

∣∣∣
≤ C nx−R−1 n−

R+1
α νR+1

(
Mn,ξ

)
≤ C n−

r−α
α x−R−1 (1 + ξ)R+1−r.
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Summarizing the cases |y| > x/2 and |y| ≤ x/2 we have∣∣∣W ∗
2(x)

∣∣∣ ≤ C n−
r−α
α x−R−1 (1 + ξ)R+1−r, x > A. (132)

Case x > 0. From the definition of Mn,ξ (see (96)) it follows that Mn,ξ(x) = 0 if
x 6∈ (n1/α, n1/α(1+ξ)]. Using this fact and formulas (59), (97) and (100) we estimate

∣∣∣W ∗
2(x)

∣∣∣ ≤ n
∫ 1+ξ

1

∣∣∣∣∣Gα,1(x− y, 1)−
R+1∑
w=0

G(w,0)(x, 1) (−y)w
w!

∣∣∣∣∣ ∣∣∣dMn,ξ(yn1/α)
∣∣∣

≤ C n
∫ 1+ξ

1

yR+1

yR+1

∣∣∣dMn,ξ(yn1/α)
∣∣∣+ C n

R+1∑
w=1

∫ 1+ξ

1
|y|w y

R+1

yR+1

∣∣∣dMn,ξ(yn1/α)
∣∣∣

≤ C n1−R+1
α νR+1

(
Mn,ξ

)
≤ C n−

r−α
α (1 + ξ)R+1−r, x > 0.

Note that the last inequality holds for all x ∈ R, since W
∗
2(x) = 0 for x ≤ 0. This

means that condition (i) from Lemma A.4 is satisfied for W
∗
2(x). Estimate (132)

(which is also true for x < −A) provides us condition (ii) from Lemma A.4 and we
obtain ∣∣∣W ∗

2(x)
∣∣∣ ≤ C n−

r−α
α (1 + |x|)−R−1 (1 + ξ)R+1−r, x ∈ R.

Using this estimate and the estimate for W
∗
1(x) we get∣∣∣W ∗

n,ξ(x)
∣∣∣ ≤ ∣∣∣W ∗

1(x)
∣∣∣+ ∣∣∣W ∗

2(x)
∣∣∣ ≤ C n−

r−α
α (1 + |x|)−R−1 (1 + ξ)R+1−r, x ∈ R.

Plugging the last inequality together with estimate (131) into (128) we get the
statement of the theorem:

∣∣∣W r,n,ξ(x)− W̃r,n(x)
∣∣∣ ≤ C n−

r−α
α

p∑
k=0

mk∑
`=1

m`,k∑
u=`

(1 + |x|)−u (1 + ξ)u−r.

4.5 Proof of Theorem 3.26
According to our plan we have estimated each of the three summands on the right-
hand side of the following inequality:∣∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)

∣∣∣∣ ≤ ∣∣∣Fn(x)− F
n∗
n,ξ

(
n1/αx

)∣∣∣
+
∣∣∣F n∗

n,ξ

(
n1/αx

)
−Gα,1(x)−W r,n,ξ(x)

∣∣∣+ ∣∣∣W r,n,ξ(x)− W̃r,n(x)
∣∣∣ .

If 0 < γ∗r < ∞ for some r > 1, then we can apply Theorems 4.7, 4.21 and 4.22.
Thus, for all x ∈ R, ξ ∈ [0,∞) and all integers n ≥ 2 we obtain∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)

∣∣∣ ≤ C n−
r−α
α (1 + ξ)−r γ∗r

+ C (1 + |x|)−R−1 (1 + ξ)R+1−r n−
r−α
α

(
1 + n

r
α Qn

)
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+ C n−
r−α
α

p∑
k=0

mk∑
`=1

m`,k∑
u=`

(1 + |x|)−u (1 + ξ)u−r,

where Qn = ν∗0
n−1 +

(
sup|t|>ε̃ |f(t)|+ 2 γ∗rn−r/α

)n−1
with ε̃ defined in (123), p, mk,

m`,k defined after formula (87), R = [r] if r 6= [r], and R = r − 1 otherwise.
Note that constants C do not depend on n and ξ. Let now ξ := |x| for each x ∈ R.
This gives us the following estimate∣∣∣Fn(x)−Gα,1(x)− W̃r,n(x)

∣∣∣ ≤ C (1 + |x|)−r n− r−αα
(
1 + n

r
α Qn

)
.

This completes the proof of Theorem 3.26.





5 Further asymptotic results for Pareto-like dis-
tributions

In Section 2.2 we introduced a class of Pareto-like distributions and gave some
known asymptotic results concerning this class. In this section we want to continue
investigating the asymptotic behavior of sums of Pareto-like distributed random
variables. Here we consider some special cases and obtain some new results.

5.1 Two special cases
First of all, let us recall that a Pareto-like distributed random variable X ≥ 0 with
parameter α > 0 has the distribution function F of the form (see Definition 2.9)

1− F (x) = C(α)x−α +O(x−r), as x→ +∞

for some r > α and some C(α) > 0. We consider a random sum Sν = X1 + · · ·+Xν ,
S0 = 0, where X1, X2, ... is a sequence of independent and identically Pareto-like
distributed random variables and ν is an integer-valued counting random variable
with pn = P (ν = n), n ∈ N0. Theorem 2.11 states that under some technical
conditions for α ∈ (0, 1) we have

∆(x) = P (Sν > x)
P (X > x) − Eν = O

(
x−α

)
as x→∞. (133)

In the special case of α = 1/2 this asymptotic result can be improved as follows.

Theorem 5.1 ([10]). Let α = 1/2. Suppose u1/2(x) := 1−F (x)−(πx)−1/2 = O(x−r)
as x → ∞ for 3/2 < r ≤ 5/2, and, additionally, (39) holds if r = 2. If Eν4 < ∞,
then

∆(x) = 1
2x

(
µ1Eν

2 − 1
6 Eν

3 −
(
µ1 −

1
6

)
Eν

)
+O

(
x−(r−1/2)

)
, x→∞,

where µ1 =
∫+∞
−∞ xd

(
F −G1/2,1

)
(x) is the first pseudomoment (see Definition 3.15).

Remark 5.1. From Section 3.1 we know that the Pareto-like distribution function F
with parameter α = 1/2 belongs to the domain of normal attraction of stable distri-
bution function G1/2,1, i.e. F ∈ DNA(G1/2,1). That is how the first pseudomoment
appears in Theorem 5.1. But why is the case α = 1/2 special? For other α ∈ (0, 1)
we use the same method with stable distributions but have only (133) for ∆(x). The
answer lies in the representation of stable Gα,1 with α ∈ (0, 1) (see formula (57)):

1−Gα,1(x) = C1(α)x−α +C2(α)x−2α +C3(α)x−3α +C4(α)x−4α +O(x−5α) (134)

as x → ∞ with coefficients Cj(α) defined in (58). For α = 1/2 we have C2(α) =
C4(α) = 0. Therefore,

F (x)−G1/2,1(x) = C3 (1/2)x−3/2 +O(x−r) as x→∞

and the first pseudomoment is finite if r > 3/2. This helps to estimate ∆(x) more
precisely.
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Another special case concerns the class of stable distributions (see Definition 3.1).
First, we consider stable distributions with parameter α ∈ (0, 1). From representa-
tion (134) it follows that each stable distribution is Pareto-like. Therefore, Theo-
rem 2.11 from Section 2.2 may be applied. But we can deal with stable distributions
in a different way. Namely, we can use stability property (56): for x > 0 we have

Gn∗
α,1(x) = Gα,1(n−1/αx) if α 6= 1. (135)

Using this Christoph [9] obtained not only the first-order asymptotic result for ∆(x)
but also results of higher orders.

Theorem 5.2 ([9]). Suppose 0 < α < 1. Let X,X1, X2, . . . be independent and
identically distributed random variables with stable distribution function Gα,1. If
Eν4 <∞, then as x→∞

∆(x) = P (Sν > x)
P (X > x) − Eν =

(
Eν2 − Eν

) C2(α)
C1(α) x

−α

+
{(
Eν3 − Eν

) C3(α)
C1(α) −

(
Eν2 − Eν

) C2
2(α)

C2
1(α)

}
x−2α +O(x−3α),

where Cj(α), j = 1, 2, 3, are defined by (58).

Proof. For a detailed proof see [9, Proposition 1].

Remark 5.2. In order to obtain more terms in the asymptotic expansion of ∆(x) we
have to consider more terms in representation (134).

For stable distributions with parameter α ∈ (1, 2) stability property (135) is also
satisfied and allows to improve asymptotic results from Section 2.2 as follows.

Theorem 5.3 ([9]). Suppose 1 < α < 2. Let X,X1, X2, . . . be independent and
identically distributed random variables with stable distribution function Gα,1(·; 1, γ)
for some γ > 0. If Eν3 <∞, then as x→∞

∆(x) = α γ
(
Eν2 − Eν

)
x−1 +

(
Eν2 − Eν

) C2(α)
C1(α) x

−α +O(x−2),

where Cj(α), j = 1, 2, are defined by (58).

Proof. The proof is given in [9, Proposition 2].

Remark 5.3. Similarly to the previous theorem it is possible to obtain more terms in
the expansion of ∆(x) by considering more terms in the expansion of Gα,1(x; 1, γ).
The latter can be obtained from formula (55) and representation (134).

We do not give here an asymptotic result in the case of stable distributions
with parameter α = 1. It was obtained by Christoph and can be found in [9,
Proposition 3].

Independently from Christoph, Omey and Willekens have obtained the following
asymptotic results for ∆(x) in the case of stable X1, X2, ... .
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Theorem 5.4 ([41]). Let X1, X2, ... be independent and identically distributed posi-
tive random variables with a stable distribution function G := Gα,β(· ;λ, γ) of index
α ∈ (0, 1) and let p = G′. If ∑∞n=0 pn(1 + ε)n <∞ for some ε > 0 then

(i) lim
x→∞

∆(x) (1−G(x))
p(x)

∫ x
0 (1−G(y)) dy = c(α + 1)E (ν(ν − 1)) if α 6= 1

2 ,

(ii) lim
x→∞

∆(x) (1−G(x))
p(x) = 1

6 E
(
ν(ν2 − 1)

)
if α = 1

2 ,

(iii) lim
x→∞

∆(x) (1−G(x))− c(α + 1)E (ν(ν − 1)) p(x)
∫ x
0 (1−G(y)) dy

(1−G(x))3

= 1
6 d(α + 1)E

(
ν(ν2 − 1)

)
,

where

d(α + 1) = −1
4

(
α

1− α

)2
c2(α + 1) Γ(3α) Γ(α) (1 + 2 cos(2απ))

Γ2(2α) cos2(απ)

and c(α + 1) is defined by (32).

Remark 5.4. In the paper [41] Omey and Willekens require the condition of analy-
ticity of the function Pν(z) := ∑∞

n=0 pnz
n at z = 1 instead of ∑∞n=0 pn(1 + ε)n < ∞

for some ε > 0. These two conditions are equivalent (see [18, Remark on p. 45]).

5.2 Pareto-like with α ∈ (0, 1). Improvement
In this section we give a new asymptotic result for ∆(x) in the case of Pareto-
like distributed random variables X,X1, X2, ... with parameter α ∈ (0, 1) and with
distribution function F in a special form. Namely,

1− F (x) = c1

xα
+ c2 d2

x2α + · · ·+ cs ds
xsα

+ u(x), x→∞, (136)

where ck := Ck(α) are defined by (58), s ∈ N and u(x) are such that

1 + α ≤ sα < 1 + 2α,
∫ +∞

0
xq|du(x)| <∞ for some q > sα,

and di ∈ R are arbitrary constants for i = 2, ..., s. Such a representation of F
implies that there exists an r ∈ (sα, (s + 1)α], such that γ∗r < ∞, and allows to
apply Theorem 3.26. For more details about pseudomoments see Section 3.5.

Recall that we consider a random sum Sν = X1 + · · · + Xν , S0 = 0, where
X1, X2, ... is a sequence of nonnegative independent and identically distributed ran-
dom variables with distribution function F , and ν is an integer-valued counting
random variable with pn = P (ν = n), n ∈ N0. Our task is to get more terms in
asymptotic expansion (133) of

∆(x) = P (Sν > x)
P (X > x) − Eν as x→∞.
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Theorem 5.5. Let α ∈ (0, 1) and let F satisfy condition (136) from above. If ν∗0 < 1
and Eνj <∞ for all j ∈ N, then

∆(x) =P (Sν > x)
P (X > x) − Eν = c2 (Eν2 − Eν)

c1 xα

+ m2

x2α + · · ·+ ms−1

x(s−1)α + αµ∗1 (Eν2 − Eν)
x

+O(x−1−δ), x→ +∞,

where δ > 0 is some constant and mi, i = 2, ..., s − 1, depend only on Eν, ..., Eνs,
d2, ..., ds, c1, ..., cs and α. Namely, mi, i = 2, ..., s− 1, can be found as follows:

mi =
∞∑
n=2

pn bi with b0 = n, b1 = c2(n2 − n)/c1, (137)

bk−1 = 1
c1

cknk
1 +

k∑
j=2

cj,n
nj

k!
(k − j)!

− k∑
j=2

cj dj bk−j

 , k = 3, ..., s,

where cj, dj are from (136), cj,n is defined by (89).

Proof. Recall that we consider nonnegative random variables X1, X2, .... Therefore,
for x < 0 we have ∆(x) = 1 − Eν. Let x ≥ 0 in what follows. Using equality (1)
and the fact that ∑∞n=0 pn = 1 we obtain for x ≥ 0:

P (Sν > x)
P (X > x) =

1−
∞∑
n=0

pnF
n∗(x)

1− F (x) =

∞∑
n=0

pn (1− F n∗(x))

1− F (x)

=
p0
(
1− 1[0,+∞)(x)

)
1− F (x)︸ ︷︷ ︸

=0

+p1 +
∞∑
n=2

pn
1− F n∗(x)
1− F (x) .

We want to apply Theorem 3.26 with r ∈ (sα, (s + 1)α). Therefore, using the
notation Fn(x) = F n∗(n1/αx) we add and subtract Gα,1(xn−1/α) + W̃r,n(xn−1/α)
with W̃r,n(x) defined by (87). We get

P (Sν > x)
P (X > x) = p1 +

∞∑
n=2

pn
1− Fn(xn−1/α)±

(
Gα,1(xn−1/α) + W̃r,n(xn−1/α)

)
1− F (x)

= p1 +
∞∑
n=2

pn
1−Gα,1(xn−1/α)− W̃r,n(xn−1/α)

1− F (x)

+
∞∑
n=2

pn
Gα,1(xn−1/α) + W̃r,n(xn−1/α)− Fn(xn−1/α)

1− F (x) .

Let us show that
∞∑
n=2

pn
Gα,1(xn−1/α) + W̃r,n(xn−1/α)− Fn(xn−1/α)

1− F (x) = O(xα−r), x→∞,
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where r > sα ≥ 1+α. From (136) it follows that there always exists such a constant
C > 0 that for some large A > 0 we have

1− F (x) ≥ C

xα
, x ≥ A. (138)

Using the estimate from Theorem 3.26 we obtain∣∣∣Gα,1(xn−1/α) + W̃r,n(xn−1/α)− Fn(xn−1/α)
∣∣∣ ≤ C(1 + xn−1/α)−rn−

r−α
α

(
1 + n

r
α Qn

)
≤ C (n−1/α + xn−1/α)−r n−

r−α
α

(
1 + n

r
α Qn

)
≤ C (1 + x)−r n

(
1 + n

r
α Qn

)
,

where Qn is defined in Theorem 3.26. Note that since ν∗0 < 1 there always exists such
n0 ∈ N that n r

α Qn < 1 for all n > n0. Using this fact and the last two estimates we
get

∞∑
n=2

pn

∣∣∣Gα,1(xn− 1
α ) + W̃r,n(xn− 1

α )− Fn(xn− 1
α )
∣∣∣

(1− F (x))xα−r ≤
∞∑
n=2

pn
C(1 + x)−r n

(
1 + n

r
α Qn

)
C x−α xα−r

≤ C

(1 + 1/x)r


n0∑
n=2

pn n
(
1 + n

r
α Qn

)
︸ ︷︷ ︸

≤C

+
∞∑

n=n0+1
pn n

(
1 + n

r
α Qn

)
︸ ︷︷ ︸

≤2



≤ C

(1 + 1/x)r

1 +
∞∑

n=n0+1
pn n

 ≤ C (1 + Eν)
(1 + 1/x)r ≤ C.

Thus, we proved that

P (Sν > x)
P (X > x) = p1 +

∞∑
n=2

pn
1−Gα,1(xn−1/α)− W̃r,n(xn−1/α)

1− F (x) +O(xα−r), x→∞.

(139)
The next step is to show that for x→∞

1−Gα,1(xn−1/α)− W̃r,n(xn−1/α) = a1

xα
+ · · ·+ as

xsα
+ as+1

xα+1 +O(x−2α−1), (140)

where a1 = c1n, as+1 = α c1µ
∗
1(n2 − n), ak = ckn

k

(
1 +

k∑
j=2

cj,n
nj

k!
(k−j)!

)
, k = 2, ..., s,

with cj = Cj(α) defined by (58) and cj,n defined by (89). Recall from (87) that

W̃r,n(x) =
ρ∑

k=2

ck,n
nk

G(0,k)(x, 1)

+
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

G(u,k+v)(x, 1)(−`/n)v (−1)u
v! n−u/α C̃u,`.

In order to show (140) we use asymptotic expansion (57) of Gα,1(x, λ):

Gα,1(x, λ) = 1− c1 λx
−α − c2 λ

2 x−2α − · · · − cs λs x−sα +O(x−(s+1)α)
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as x→∞ with cj = Cj(α) defined by (58). Since Gα,1(x, λ) has bounded derivatives
of all orders with respect to x and λ (see Lemma 3.14) we also have:

G(0,k)(x, λ) = −k! ck x−kα −
(k + 1)!

1! ck+1 λx
−(k+1)α − ...

− s!
(s− k)! cs λ

s−k x−sα +O(x−(s+1)α)

= −
s∑

j=k

j!
(j − k)! cj λ

j−k x−jα +O(x−(s+1)α), x→∞, k = 1, ..., s,

and

G(1,0)(x, λ) = α c1 λx
−α−1 +O(x−2α−1), x→∞,

G(1,0)(x, λ) = α c1 x
−α−1 +O(x−2α−1), x→∞.

Recall the notation G(u,k)(x, λ) = ∂u+k

∂xu∂λk
Gα,1(x, λ). Using the same considerations

as above we obtain that

G(0,k)(x, λ) = O(x−(s+1)α), x→∞, for k ≥ s+ 1,
G(u,v)(x, λ) = O(x−2α−1), x→∞, for u = 1, v ≥ 2 or u ≥ 2, v ≥ 0.

Thus, some terms from W̃r,n(xn−1/α) do not have to be considered at all, since they
go directly into O(x−(s+1)α) or O(x−2α−1) for large x. Taking into account that
(s+ 1)α ≥ 2α + 1 we have

1−Gα,1(xn−1/α)− W̃r,n(xn−1/α) = 1−Gα,1(xn−1/α)−
s∑

k=2

ck,n
nk

G(0,k)(xn−1/α, 1)

−
(
n

1

)
c0,n−1

n0 G(1,0)(xn−1/α, 1)(−1)
0! n−1/α C̃1,1

−
(
n

1

)
G(1,1)(xn−1/α, 1)n−1/α C̃1,1

(
c0,n−1

n0
1/n
1! + c1,n−1

n1
(−1)

0!

)
+O(x−2α−1), x→∞,

where c0,n−1 = 1, c1,n−1 = 0 and C̃1,1 = µ∗1 (see formulas (89), (90)). Now, using
the asymptotic expansions for Gα,1(x, 1), G(0,k)(x, 1), k = 2, ..., s, and G(1,0)(x, 1),
G(1,1)(x, 1) considered above and simplifying, we obtain

1−Gα,1(xn−1/α)− W̃r,n(xn−1/α) = c1nx
−α +

s∑
k=2

ckn
k

1 +
k∑
j=2

cj,n
nj

k!
(k − j)!

x−kα
+ α c1 µ

∗
1 (n2 − n)x−α−1 +O(x−2α−1), x→∞.

Finally, we want to show that for x→∞

1−Gα,1(xn−1/α)− W̃r,n(xn−1/α)
1− F (x) = b0 + b1

xα
+ · · ·+ bs−1

x(s−1)α + bs
x

+O(x−1−δ),

(141)
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where δ > 0 is some constant and

b0 = n, bs = αµ∗1 (n2 − n), (142)

bk−1 = 1
c1

cknk
1 +

k∑
j=2

cj,n
nj

k!
(k − j)!

− k∑
j=2

cj dj bk−j

 , k = 2, ..., s.

Note that dj are coming from the representation (136) of F (x). According to the
definition we have to prove that for large x we have∣∣∣1−Gα,1(xn−1/α)− W̃r,n(xn−1/α)− (1− F (x))

(
b0 + b1

xα
+ · · ·+ bs−1

x(s−1)α + bs
x

)∣∣∣
(1− F (x))x−1−δ ≤ C.

(143)

From (136) it follows that

(1− F (x))
(
b0 + b1

xα
+ · · ·+ bs−1

x(s−1)α + bs
x

)
= c1 b0 x

−α + c1 bs x
−1−α

+
s∑

k=2

c1 bk−1 +
k∑
j=2

cj dj bk−j

x−kα +O(x−1−α−δ), x→∞,

where δ > 0 is some constant. Since bj are chosen in such a way that

a1 = c1 b0, as+1 = c1 bs,

ak = c1 bk−1 +
k∑
j=2

cj dj bk−j, k = 2, ..., s,

with aj from (140), we obtain for large x:

1−Gα,1(xn−1/α)− W̃r,n(xn−1/α)− (1− F (x))
(
b0 + b1

xα
+ · · ·+ bs−1

x(s−1)α + bs
x

)
= O(x−1−α−δ), x→∞.

From this fact and from estimate (138) for 1 − F (x) for large x it follows that
inequality (143) and, consequently, (141) hold true.

From asymptotic equality (141) with bj defined by (142) it follows that

∞∑
n=2

pn
1−Gα,1(xn−1/α)− W̃r,n(xn−1/α)

1− F (x) =
∞∑
n=2

pn n+
∑∞
n=2 pn b1

xα
+ · · ·

+
∑∞
n=2 pn bs−1

x(s−1)α + αµ∗1
∑∞
n=2 pn (n2 − n)

x
+O(x−1−δ), x→∞.

Now, plugging the last formula into formula (139) and using the definition of Eνj,
j = 1, 2..., we obtain

P (Sν > x)
P (X > x) = Eν +

∑∞
n=2 pn b1

xα
+ · · ·+

∑∞
n=2 pn bs−1

x(s−1)α + αµ∗1 (Eν2 − Eν)
x

+O(x−1−δ)
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as x → ∞. Using formula (142) we can calculate all bj, j = 1, ..., s. For example,
b1 = c2 (n2 − n)/c1. Unfortunately, there is no explicit form for bj. Using the
notation mj = ∑∞

n=2 pn bj, j = 2, ..., s − 1, and the fact that all moments of ν are
finite we get

∆(x) = c2 (Eν2 − Eν)
c1 xα

+m2

x2α+· · ·+ ms−1

x(s−1)α+αµ∗1 (Eν2 − Eν)
x

+O(x−1−δ), x→∞.

This completes the proof of the theorem.

5.3 Application: Cramér-Lundberg model
Consider the Cramér-Lundberg model introduced in Section 1.3. Under some con-
ditions Theorem 5.5 allows to obtain a result similar to Theorem 1.7. Suppose that
the integrated tail distribution FI(x) (see formula (15)) can be represented in the
form

1− FI(x) = c1

xα
+ c2 d2

x2α + · · ·+ cs ds
xsα

+ u(x), x→∞, (144)

where ck := Ck(α) are defined by (58), s ∈ N and u(x) are such that

1 + α ≤ sα < 1 + 2α,
∫ +∞

0
xq|du(x)| <∞ for some q > sα,

and di ∈ R are suitable constants for i = 2, ..., s. Such a representation of FI implies
that there exists an r ∈ (sα, (s + 1)α], such that γ∗r < ∞, and allows to apply
Theorem 3.26.

We are interested in the asymptotic behavior of the ruin probability ψ defined
by (12). From (14) in Section 1.3 we know that the non-ruin probability 1−ψ can be
interpreted as the distribution function of the sum S∗ν∗ = X∗1 +X∗2 +· · ·+X∗ν∗ , S∗0 = 0,
where X∗1 , X∗2 , . . . are i.i.d. random variables with common distribution function
FI(u) and ν∗ is a counting random variable defined by P (ν∗ = n) = ρ (1 + ρ)−(n+1)

for n ∈ N0. In other words, we have ψ(u) = P (S∗ν∗ > u). Then ψ(u)/(1 − FI(u))
considered in Theorem 1.7 can be written as

ψ(u)
1− FI(u) = P (S∗ν∗ > u)

P (X∗ > u) = ∆∗(u) + Eν∗.

Applying Theorem 5.5 we obtain the following result.
Corollary 5.6. Consider the Cramér-Lundberg model with the net profit condition
ρ > 0. Let FI satisfy condition (144) with α ∈ (0, 1). If ν∗0 < 1, then

ψ(u)
1− FI(u) =ρ−1 + 2 c2

c1 ρ2 xα

+ m2

x2α + · · ·+ ms−1

x(s−1)α + 2αµ∗1
ρ2 x

+O(x−1−δ), x→∞,

where δ > 0 is some constant and mi, i = 2, ..., s − 1, depend only on d2, . . . , ds,
c1, ..., cs, ρ and α. Namely, mi, i = 2, ..., s− 1, can be found as follows:

mi =
∞∑
n=2

ρ (1 + ρ)−(n+1) bi with b0 = n, b1 = c2 (n2 − n)/c1,
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bk−1 = 1
c1

cknk
1 +

k∑
j=2

cj,n
nj

k!
(k − j)!

− k∑
j=2

cj dj bk−j

 , k = 3, ..., s,

where cj, dj are from (144), cj,n is defined by (89).

Proof. Let us show that the moments of ν∗ of all orders are finite. For any j ∈ N
we have

Eνj =
∞∑
n=0

nj P (ν∗ = n) = ρ
∞∑
n=0

nj (1 + ρ)−(n+1).

According to the ratio convergence test, the latter infinite series converges, since
lim supn→∞ an+1/an = lim supn→∞(1 + 1/n)j/(1 + ρ) = 1/(1 + ρ) < 1.
Moreover, for j = 1, 2 we have Eν = 1/ρ and Eν2 = (2 + ρ)/ρ2. Using these facts
and Theorem 5.5 we get the statement of the corollary.

5.4 Examples
In this section we consider some examples for which we can apply Theorem 5.5.

Example 5.1. Let us consider a Pareto-distributed random variable X with
α = 1/3 and κ = c3

1, where c1 = C1(1/3) =
√

3 Γ(1/3)/(2π) is defined in (58).
The distribution function F of X has the form:

1− F (x) = c1

x1/3 , x ≥ c3
1.

Comparing this representation with representation (136) we can make the following
conclusions: s can be chosen equal to 4 (since 4α ≥ 1+α), u(x) = 0 and d2 = d4 = 0.
Coefficient d3 can be chosen arbitrarily, since c3 = C3(1/3) = 0 (see formula (58)).
Let us put d3 = −0.98.

In order to apply Theorem 5.5 we have to check the condition ν∗0 < 1. First,
let us see how pseudomoment ν∗0 can be calculated. According to definition (80) we
have

ν∗0 =
∫ ∞

0

∣∣∣d (F − G̃1/3
)

(x)
∣∣∣ ,

where
G̃1/3(x) = G1/3,1(x) +

4∑
j=2

Aj G
(0,j)(x, 1)

with coefficients A2 = −1/2, A3 = 17/100 and A4 = 23/600, chosen in such a way,
that

F (x)− G̃1/3(x) = O
(
x−5/3

)
as x→∞.

This implies the finiteness of the first pseudomoment µ∗1. Moreover, it can be found
precisely:

µ∗1 =
∫ ∞

0
x d

(
F − G̃1/3

)
(x) = c

1/α
1 α

α− 1 −
(1

6 + A2 + A3

)
= 49

300 −
3
√

3
16π3 Γ3(1/3).
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When calculating µ∗1 we used the same method as in Example 3.10. The only
difference is that we do not put all d2, d3, d4 equal to 0. The absolute pseudomoment
ν∗0 was calculated using softwareMathematica and has approximate value ν∗0 ≈ 0.995,
which is less than 1. Thus, Theorem 5.5 is applicable.

If Eνj <∞ for all j ∈ N, then according to Theorem 5.5 we have

∆(x) = c2 (Eν2 − Eν)
c1 x1/3 + m2

x2/3 + m3

x
+ µ∗1 (Eν2 − Eν)

3x +O
( 1
x1+δ

)
, x→∞,

with some δ > 0. Let us calculate m2 and m3. Using formulas (137) we have
m2 = ∑∞

n=2 pn b2 and m3 = ∑∞
n=2 pn b3 with

b2 = 1
c1

c3n
3

1 +
3∑
j=2

cj,n
nj

3!
(3− j)!

− 3∑
j=2

cj dj b3−j

 ,
b3 = 1

c1

c4n
4

1 +
4∑
j=2

cj,n
nj

4!
(4− j)!

− 4∑
j=2

cj dj b4−j

 .
Using formula (89) for cj,n, j = 2, 3, 4, we obtain

c2,n = −n2 , c3,n = 17n
100 , c4,n = 75n2 − 52n

600 .

Using this and the fact that d2 = c3 = d4 = 0 we get

b2 = c3

50 c1

(
50n3 − 150n2 + 51n

)
= 0, b3 = c4

25 c1

(
25n4 − 150n3 + 177n2 − 52n

)
.

Thus, m2 = ∑∞
n=2 pnb2 = 0. From the definition of Eνj, j = 1, ..., 4, and the fact

that 25n4 − 150n3 + 177n2 − 52n = 0 for n = 0, 1, we obtain

m3 = c4

25 c1

∞∑
n=2

pn
(
25n4 − 150n3 + 177n2 − 52n

)
= c4

25 c1

(
25Eν4 − 150Eν3 + 177Eν2 − 52Eν

)
.

Using formula (58) for ck = Ck(1/3), k = 1, ..., 4, we calculate

c1 =
√

3
2π Γ(1/3), c2 = −

√
3

4π Γ(2/3), c3 = 0, c4 =
√

3
144π Γ(1/3).

Plugging c1, c2,m2,m3 and µ∗1 into the formula for ∆(x) we obtain

∆(x) = Γ(2/3) (Eν − Eν2)
2 Γ(1/3)x1/3

+
2π3(Eν4 − 6Eν3) +

(
22π3 − 9

√
3 Γ3(1

3)
)
Eν2 −

(
12π3 − 9

√
3 Γ3(1

3)
)
Eν

144 π3 x

+O
( 1
x1+δ

)
, x→∞,

with some δ > 0.
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Example 5.2. Consider a nonnegative random variable X with distribution func-
tion F and density function p:

p(x) =


0, for x < 0,
1− A, for 0 ≤ x < 1,

1
2
√
π
x−3/2

(
1−

∞∑
k=2

1[k− 1
k2 ; k+ 1

k2 )(x)
)
, for x ≥ 1.

where A (≈ 0.492) is chosen such that
∫+∞
−∞ p(x)dx = 1. In Example 2.8 we have

shown that
1− F (x) = 1√

π
√
x

+O(x−5/2), x→∞.

Comparing this representation with representation (136) we can make the following
conclusions: α = 1/2, c1 = 1/

√
π, s can be chosen equal to 3 (since 3α ≥ 1 + α)

and d3 = 0. Coefficient d2 can be chosen arbitrarily, since c2 = C2(1/2) = 0 (see
formula (58)). Let us put d2 = 3/4. Such a choice of d2 makes the pseudomoment
ν∗0 less than 1. Recall how ν∗0 can be calculated. According to definition (80) we
have

ν∗0 =
∫ ∞

0

∣∣∣d (F − G̃1/2
)

(x)
∣∣∣ with G̃1/2(x) = G1/2,1(x) +

3∑
j=2

Aj G
(0,j)(x, 1)

and coefficients A2 = −1/8 and A3 = −1/24. Note that the stable distribution
corresponding to G1/2,1(x, λ) (Lévy distribution) has an explicit density function

p1/2,1(x, λ) = λ

2
√
π
e−

λ2
4 x x−

3
2 , x > 0, λ > 0,

which makes all calculations much easier. Using software Mathematica we obtain
ν∗0 ≤ 0.32 < 1. Thus, Theorem 5.5 is applicable.

If Eνj <∞ for all j ∈ N, then according to Theorem 5.5 we have

∆(x) = c2 (Eν2 − Eν)
c1 x1/2 + m2

x
+ µ∗1 (Eν2 − Eν)

2x +O
( 1
x1+δ

)
, x→∞,

with some δ > 0. Let us calculate m2. Using formulas (137) we have m2 =
∞∑
n=2

pn b2

with

b2 = 1
c1

c3n
3

1 +
3∑
j=2

cj,n
nj

3!
(3− j)!

− 3∑
j=2

cj dj b3−j

 .
Using formula (89) for cj,n, j = 2, 3, we obtain

c2,n = −n8 , c3,n = − n

24 .

Using this and the fact that c2 = d3 = 0 we get

b2 = c3

4 c1

(
4n3 − 3n2 − n

)
.
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From the definition of Eνj, j = 1, ..., 3, and the fact that 4n3 − 3n2 − n = 0 for
n = 0, 1, we obtain

m2 = c3

4 c1

∞∑
n=2

pn
(
4n3 − 3n2 − n

)
= c3

4 c1

(
4Eν3 − 3Eν2 − Eν

)
.

Using formula (58) for ck = Ck(1/3), k = 1, ..., 3, we calculate

c1 = 1√
π
, c2 = 0, c3 = − 1

12
√
π
.

Plugging c1, c2, c3 and m2 into the formula for ∆(x) we obtain

∆(x) = − (4Eν3 − 3Eν2 − Eν) + 24µ∗1 (Eν2 − Eν)
48x +O

( 1
x1+δ

)
, x→∞,

with some δ > 0. Pseudomoment µ∗1 was also approximately calculated usingMathe-
matica and has approximate value µ∗1 ≈ −0.128.

For more examples see [11].



Appendix A Some useful results
Lemma A.1 ([33, p. 87]). For α ∈ (0, 1) we have

∫ +∞

0

{
sin x
cosx

}
x−αdx = Γ(1− α)

{
cos (πα/2)
sin (πα/2)

}
. (145)

Lemma A.2 (Euler’s reflection formula; see [32, pp. 58–59]).
For all α ∈ R+ we have

Γ(1− α)Γ(α) = π/ sin(πα). (146)

Lemma A.3. Let m ∈ N0.

(i) For any y ∈ R we have∣∣∣∣∣∣eiy −
m∑
j=0

(iy)j
j!

∣∣∣∣∣∣ ≤ min
{
|y|m+1

(m+ 1)! ,
2 |y|m
m!

}
.

(ii) For z ∈ C with |z| ≤ 1 we have∣∣∣∣∣∣ez −
m∑
j=0

zj

j!

∣∣∣∣∣∣ ≤ C(m) |z|m+1

(m+ 1)! ,

where C(m) = m(e+ 1) + e+ 2.

Proof. Part (i) of the lemma is [31, Appendix A, Lemma 1.2].
In order to show part (ii) we consider the general form of the remainder in the

Taylor’s expansion (see [1, Chapter IV, §3, 3.2]). Using |z| ≤ 1 we get∣∣∣∣∣∣ez −
m+1∑
j=0

zj

j!

∣∣∣∣∣∣ ≤ |z|
m+1

m! sup
0≤θ≤1

∣∣∣eθz − 1
∣∣∣ ≤ (e+ 1) |z|m+1

m! .

Now, using the triangle inequality |a+ b| − |b| ≤ |a| with a = ez − ∑m+1
j=0

zj

j! and
b = zm+1

(m+1)! we obtain∣∣∣∣∣∣ez −
m∑
j=0

zj

j!

∣∣∣∣∣∣− |z|m+1

(m+ 1)! ≤

∣∣∣∣∣∣ez −
m+1∑
j=0

zj

j!

∣∣∣∣∣∣ ≤ (e+ 1) |z|m+1

m!

and, finally, ∣∣∣∣∣∣ez −
m∑
j=0

zj

j!

∣∣∣∣∣∣ ≤ (e+ 1) |z|m+1

m! + |z|m+1

(m+ 1)! = C(m) |z|m+1

(m+ 1)! ,

where C(m) = m(e+ 1) + e+ 2.
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Lemma A.4. If for some function f : R→ R and a, b, d ∈ R, r ∈ R+ we have

(i) |f(x)| ≤ d for all x ∈ R,

(ii) |f(x)| ≤ b |x|−r for |x| > a,

then
|f(x)| ≤ C(1 + |x|)−r for all x ∈ R,

where C = max{d (1 + a)r, b (1 + 1/a)r}.

Proof. Using condition (i) and the definition of C we have for |x| ≤ a

C(1 + |x|)−r ≥ C(1 + a)−r ≥ d ≥ |f(x)|.

From condition (ii) for |x| > a it follows that

C(1 + |x|)−r = C |x|−r(1 + 1/|x|)−r ≥ C |x|−r(1 + 1/a)−r ≥ b |x|−r ≥ |f(x)|.

This completes the proof.

Lemma A.5 (see [1, Chapter I, §8, 8.5]).
For n, v ∈ N and all y1, . . . , yn ∈ C the following equality holds

(y1 + · · ·+ yn)v =
∑

k1+···+kn=v

v!
k1! . . . kn!y

k1
1 . . . yknn , (147)

where the summation is carried out over all non-negative integer solutions k1, k2, . . . , kn
of the equation k1 + k2 + · · ·+ kn = v.

Lemma A.6. For n, v ∈ N, yi ∈ R, yi ≥ 0, i = 1, ..., n, we have

(y1 + · · ·+ yn)v ≤ nv−1(yv1 + · · ·+ yvn). (148)

Proof. This is application of Jensen’s inequality (see [25, Chapter IV]) to the convex
function x 7→ xv.

Lemma A.7. Let s,K ∈ N. If |aj| ≤ a and |bj| ≤ b for j ∈ {1, ..., s} and some
constants a, b > 0, then

∣∣∣ak1
1 ak2

2 · · · akss − bk1
1 bk2

2 · · · bkss
∣∣∣ ≤ C(a, b, s,K)

s∑
j=1
|aj − bj| ,

where kj ∈ {0, 1, ..., K} for j ∈ {1, ..., s} and C(a, b, s,K) is some constant depending
only on a, b, s and K.
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Proof. We prove by induction on s.
For s = 1 we have∣∣∣ak1

1 − bk1
1

∣∣∣ =

∣∣∣∣∣∣(a1 − b1)
k1−1∑
j=0

aj1b
k1−1−j
1

∣∣∣∣∣∣
≤ |a1 − b1|

k1−1∑
j=0

ajbk1−1−j ≤ |a1 − b1|C(a, b, 1, K),

where C(a, b, 1, K) = KaKbK .
Now, suppose that the inequality from the assertion of the lemma holds for some

s ≤ n and consider the case s = n+ 1:∣∣∣ak1
1 · · · aknn a

kn+1
n+1 − bk1

1 · · · bknn b
kn+1
n+1

∣∣∣
≤
∣∣∣ak1

1 · · · aknn a
kn+1
n+1 ± ak1

1 · · · aknn b
kn+1
n+1 − bk1

1 · · · bknn b
kn+1
n+1

∣∣∣
≤
∣∣∣∣ak1

1 · · · aknn
(
a
kn+1
n+1 − b

kn+1
n+1

)
︸ ︷︷ ︸

case s=1

∣∣∣∣+ ∣∣∣∣(ak1
1 · · · aknn − bk1

1 · · · bknn
)

︸ ︷︷ ︸
case s=n

b
kn+1
n+1

∣∣∣∣
≤ |a|nK C(a, b, 1, K) |an+1 − bn+1|+ |b|K C(a, b, n,K)

n∑
j=1
|aj − bj|

≤ C(a, b, n+ 1, K)
n+1∑
j=1
|aj − bj| ,

where C(a, b, n+ 1, K) = max
{
|a|nK C(a, b, 1, K), |b|K C(a, b, n,K)

}
.

Lemma A.8 (see [1, Chapter IV, §3, 3.8]).
Let f : D → R be (n + 1) times differentiable on D, where D ⊆ R is convex with
a ∈ D. Then for any x ∈ D we have

f(x) =
n∑
k=0

f (k)(a)
k! (x− a)k + (x− a)n+1

(n+ 1)! f (n+1)(a+ θ(x− a)), with θ ∈ (0, 1).

Lemma A.9 ([44, Chapter VI, §1]).
Let the functions y : R→ C and z : C→ C have derivatives of order ν ∈ N and let
00 = 1. Then

dν

dtν
z(y(t)) = ν!

∑ dsz(y)
dys

∣∣∣∣∣
y=y(t)

ν∏
m=1

1
km!

(
1
m!

dmy(t)
dtm

)km
, (149)

where the summation is carried out over all non-negative integer solutions
(k1, k2, . . . , kν) of the equation k1 + 2k2 + · · ·+ νkν = ν, and s = k1 + k2 + · · ·+ kν.
Remark A.1. If y : R→ C has a derivative of order ν ≥ 1, then

dν

dtν
ey(t) = ν! ey(t) ∑

k1+2k2+...+νkν=ν

ν∏
m=1

1
km!

(
1
m!

dmy(t)
dtm

)km
. (150)

This follows from Lemma A.9 with z(y) = ey.
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Lemma A.10. If the functions f1, . . . , fs : R→ C have derivatives of order n ∈ N,
then

(f1 · f2 · . . . · fs)(n)(t) =
∑

k1+...+ks=n

n!
k1! . . . ks!

f
(k1)
1 (t) · . . . · f (ks)

s (t). (151)

Proof. We get the assertion by inductively applying the Leibniz rule of differentiation
(product rule for higher-order derivatives, see [1, Chapter IV, §1, 1.12]). Compare
also to Lemma A.5.

Lemma A.11. For each a ∈ (0, 1) and s ∈ N there exists a constant C = C(s, a)
such that

C (|y|+ |y|s) e−a|y| ≤ 1 for all y ∈ R.

Proof. We need to show that the function f(x) = (x+xs)e−ax is bounded on [0,∞).
This follows from lim

x→∞
f(x) = 0 and from the continuity of f on [0,∞).

Lemma A.12 (Riemann-Lebesgue lemma; see [3, Prop. 5.7.1]).
Let L1(R) = {v | v : R → C Borel measurable,

∫
R |v| dλ < ∞}, where λ is Lebesgue

measure. If v ∈ L1(R), then∫
R
v(x)eitxλ(dx)→ 0 as |t| → ∞.

Lemma A.13. Suppose b, s > 0 and α ∈ (0, 1) are fixed. Then for all t ∈ R we
have

z(t) := exp
(
−b |t|α cos

(
απ

2

))
|t|s ≤

 s

e α b cos
(
απ
2

)
s/α .

Proof. If t = 0, then z(t) = 0 and the statement of the lemma is satisfied. Now
we consider the case t ∈ R \ {0}. Denote y := b |t|α cos

(
απ
2

)
. Then we obtain

z(y) = e−y ys/α
(
b cos

(
απ
2

))−s/α
, y > 0. It is easy to see that the function e−y ys/α

achieves its maximum (on R+) at the point y0 = s/α. Thus,

z(y) ≤ e−s/α (s/α)s/α
(
b cos

(
απ

2

))−s/α
≤
(
s−1 e α b cos

(
απ

2

))−s/α
.

This completes the proof of the lemma.

Lemma A.14. For α ∈ (0, 1), b > 0 and d > −1 we have
∫ +∞

−∞
e−b |t|

α |t|d dt = 2α−1 b−
1+d
α Γ

(
1 + d

α

)
<∞.
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Proof. Consider t ≥ 0 and denote y := b tα. Then we have t = (b−1 y)1/α. Integrating
by substitution and using the definition of the gamma function we obtain∫ +∞

−∞
e−b |t|

α |t|d dt = 2
∫ +∞

0
e−b t

α

td dt = 2
∫ +∞

0
e−y

(
b−1 y

)d/α
α−1 b−1/α y

1
α
−1 dy

= 2α−1 b−
1+d
α

∫ +∞

0
e−y y

1+d
α
−1 dy = 2α−1 b−

1+d
α Γ

(
1 + d

α

)
.

Note that Γ
(

1+d
α

)
<∞ for d > −1. This completes the proof of the lemma.

Lemma A.15 ([44, Chapter VI.2, Lemma 7]).
Let G(x) be a function of bounded variation on the real line and let g(t) be its
Fourier-Stieltjes transform. Suppose that lim|x|→∞G(x) = 0 and∫ +∞

−∞
|x|m |dG(x)| <∞

for some integer m ≥ 1. Then xmG(x) is a function of bounded variation on the
real line and we have

(−it)m
∫ +∞

−∞
eitxd (xmG(x)) = m!

m∑
ν=0

(−t)ν
ν!

dν

dtν
g(t).

Lemma A.16 ([44, Chapter I.2, Theorem 1]).
Let f(t) be a characteristic function and let b > 0 and c ∈ (0, 1). If |f(t)| ≤ c for
|t| ≥ b, then

|f(t)| ≤ 1− 1− c2

8 b2 t2 for all |t| < b.





Appendix B Proofs of Lemmata 4.13 – 4.18
In this appendix we often use estimate (i) from Lemma 4.2 for pseudomoments νk,n,ξ:

νk,n,ξ ≤ (ν∗0 + 1)γ∗r
k/r, k = 1, . . . , R,

where r and R come from Theorem 3.26. Since γ∗r <∞ and ν∗0 are fixed and can be
calculated, we can estimate all νk,n,ξ by some constant C > 0:

νk,n,ξ ≤ C for k = 1, ..., R.

Therefore, in the formulations and proofs of some lemmata from this section con-
stants C depend on the pseudomoments.

B.1 Some auxiliary results
Lemma B.1. For k ∈ N, s ∈ N0 and ϕα,1(t) = − |t|α e−i α π

2 sign t, t ∈ R, we have∣∣∣∣∣ dsdtsϕkα,1(t)
∣∣∣∣∣ =

s−1∏
j=0
|αk − j| |t|αk−s for t ∈ R \ {0}.

Moreover, if s < αk then∣∣∣∣∣ dsdtsϕkα,1(t)
∣∣∣∣∣ =

s−1∏
j=0

(αk − j) |t|αk−s for t ∈ R.

Proof. For k ∈ N we obtain

ϕkα,1(t) =
(
− |t|α

)k
e−i α k

π
2 sign t =


(−1)ktαke−iαk π2 , if t > 0,

0, if t = 0,
(−1)k(−t)αkeiαk π2 , if t < 0.

If s = 0, then the assertion of the lemma is immediately true. We consider s ∈ N in
what follows. For t > 0 we have

ds

dts
ϕkα,1(t) = (−1)kαk(αk − 1) · · ·

(
αk − (s− 1)

)
tαk−se−iαk

π
2 .

For t < 0 we get

ds

dts
ϕkα,1(t) = (−1)k+sαk(αk − 1) · · ·

(
αk − (s− 1)

)
(−t)αk−seiαk π2 .

Finally, we compute the derivatives at t = 0. With αk − s > 0 we obtain for s = 1:
(
ϕkα,1

)′
+

(0) = lim
h→0+

ϕkα,1(0 + h)− ϕkα,1(0)
h

= lim
h→0+

(−1)khαk−1e−iαk
π
2 = 0,

(
ϕkα,1

)′
−

(0) = lim
h→0−

ϕkα,1(0 + h)− ϕkα,1(0)
h

= lim
h→0−

(−1)k−1(−h)αk−1eiαk
π
2 = 0.

Thus,
(
ϕkα,1

)′
(0) = 0. Similarly it can be shown that

(
ϕkα,1

)(s)
(0) = 0 for all s < αk.

Combining all three cases we get the assertion of the lemma.
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Lemma B.2. Let gα,1(t) = eϕα,1(t) with ϕα,1(t) = − |t|α e−i α π
2 sign t, t ∈ R. For

s ∈ N0, some constant N ∈ R+ and t ∈ R \ {0} we have∣∣∣∣∣ dsdts gα,1(Nt)
∣∣∣∣∣ ≤ C(s) e−|Nt|α cos(απ2 )/2 |t|−s,

where C(s) is some constant not depending on N .

Proof. For s = 0 the assertion of the lemma is obviously true. We consider the case
s ∈ N in what follows. Note that gα,1(t) is infinitely differentiable for t ∈ R \ {0}.
Using formula (150) with y(t) = ϕα,1(Nt) and Lemma B.1 we obtain∣∣∣∣∣ dsdts gα,1(Nt)

∣∣∣∣∣ =

∣∣∣∣∣∣s! gα,1(Nt)
∑

k1+2k2+...+sks=s

s∏
m=1

1
km!

(
1
m!

dm

dtm
ϕα,1(Nt)

)km ∣∣∣∣∣∣
≤ s! |gα,1(Nt)|

∑
k1+2k2+...+sks=s

s∏
m=1

1
km!

( 1
m!

)km
Nαkm

∣∣∣∣∣ dmdtmϕα,1(t)
∣∣∣∣∣
km

.

Removing the product sign and taking into account that 1 ≤ k1 + k2 + · · · + ks ≤
k1 + 2k2 + · · ·+ sks = s for s ≥ 1, we find∣∣∣∣∣ dsdts gα,1(Nt)

∣∣∣∣∣ ≤ s! |gα,1(Nt)|
∑

k1+2k2+...+sks=s

1
k1! · · · ks!

( 1
1!

)k1

. . .
( 1
s!

)ks
×

×Nα(k1+...+ks)
∣∣∣∣∣ ddtϕα,1(t)

∣∣∣∣∣
k1

︸ ︷︷ ︸
=(α |t|α−1)k1

· · ·
∣∣∣∣∣ dsdtsϕα,1(t)

∣∣∣∣∣
ks

︸ ︷︷ ︸
=
(
s−1∏
j=0
|α−j| |t|α−s

)ks
≤ s! |gα,1(Nt)|

∑
k1+2k2+...+sks=s

C(k1, .., ks)Nα(k1+...+ks) |t|α(k1+...+ks)−(k1+2k2+...+sks)

= s! |gα,1(Nt)|
∑

k1+2k2+...+sks=s
C(k1, .., ks)Nα(k1+...+ks) |t|α(k1+...+ks)−s

≤ C(s) e−|Nt|α cos(απ2 )
(
Nα |t|α−s +N sα |t|αs−s

)
.

Applying Lemma A.11 with |y| = |Nt|α and a = cos(απ2 )/2 to the last expression
we get the assertion of the lemma.

Lemma B.3. For ρ ∈ N0 and t ∈ R \ {0} we have∣∣∣∣∣ dρdtρ g̃α
(
tn−1/α

)∣∣∣∣∣ ≤ C(ρ) e−
|t|α
4n cos(απ2 ) |t|−ρ,

where g̃α is given by (82) and C(ρ) > 0 is some constant not depending on n.

Proof. Recall that g̃α(t) =
∫+∞
−∞ eitxdG̃α(x) = gα,1(t) +∑s

k=2Ak gα,1(t)ϕkα,1(t), t ∈ R,
with Ak, k = 2, ..., s, from (70). Define A0 := 1 and A1 := 0. Then we have

g̃α(tn−1/α) =
s∑

k=0
Ak gα,1(tn−1/α)ϕkα,1(tn−1/α) =

s∑
k=0

Ak
nk

gα,1(tn−1/α)ϕkα,1(t).
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For t 6= 0 functions gα,1 and ϕkα,1 are infinitely differentiable and Lemma A.10 can
be applied:

dρ

dtρ
g̃α
(
tn−1/α

)
=

s∑
k=0

Ak
nk

∑
n1+n2=ρ
n1,n2∈N0

dn1

dtn1
gα,1

(
tn−1/α

) dn2

dtn2
ϕkα,1(t).

Using the above equality and Lemmata B.1 and B.2 we get∣∣∣∣∣ dρdtρ g̃α
(
tn−1/α

)∣∣∣∣∣ ≤
s∑

k=0

|Ak|
nk

∑
n1+n2=ρ

C(n1) e−
|tn−1/α|α

2 cos(απ2 ) |t|−n1


·
(
n2−1∏
i=0
|αk − i| |t|αk−n2

)
≤ C(ρ) e−

|tn−1/α|α
2 cos(απ2 ) |t|−ρ

s∑
k=0

|t|αk

nk

≤ C(ρ) e−
|tn−1/α|α

4 cos(απ2 ) |t|−ρ
e− |tn−1/α|α

4 cos(απ2 )
s∑

k=0

∣∣∣tn−1/α
∣∣∣αk
 .

It follows from Lemma A.13 that the expression in square brackets in the last in-
equality can be estimated by a constant not depending on n. Thus, we obtain∣∣∣∣∣ dρdtρ g̃α

(
tn−1/α

)∣∣∣∣∣ ≤ C(ρ) e−
|t|α
4n cos(απ2 ) |t|−ρ.

This completes the proof of the lemma.

Lemma B.4. Let s, p, u ∈ N0, N ∈ R and t ∈ R \ {0}. For |N ||t|α ≤ 1 we have∣∣∣∣∣ dsdts
(
tu
(
eNϕα,1(t) −

p∑
v=0

N v

v! ϕ
v
α,1(t)

))∣∣∣∣∣ ≤ C(s, u, p) |N |p+1 |t|α(p+1)+u−s,

where ϕα,1(t) = − |t|α e−i α π
2 sign t, t ∈ R, and C(s, u, p) is some constant not depen-

ding on N .

Proof. For s = 0 Lemma A.3 provides the assertion of the lemma. We consider the
case s ∈ N in what follows. Note that tu

(
eNϕα,1(t) −∑p

v=0
Nv

v! ϕ
v
α,1(t)

)
is infinitely

differentiable for t ∈ R \ {0}. Using formula (151) from Lemma A.10 we obtain∣∣∣∣∣ dsdts
(
tu
(
eNϕα,1(t) −

p∑
v=0

N v

v! ϕ
v
α,1(t)

))∣∣∣∣∣
≤

s∑
j=(s−u)+

(
s

j

) ∣∣∣∣∣ djdtj
(
eNϕα,1(t) −

p∑
v=0

N v

v! ϕ
v
α,1(t)

)∣∣∣∣∣ ·
∣∣∣∣∣ds−j tudts−j

∣∣∣∣∣ = s.

Now we apply formula (149) with y(t) = Nϕα,1(t) and z(y) = ey −∑p
v=0

yv

v! :∣∣∣∣∣ djdtj z(y(t))
∣∣∣∣∣ ≤ j!

∑
k1,...,kj∈N0

k1+2k2+...+jkj=j
q:=k1+k2+...+kj

∣∣∣∣∣∣ d
qz(y)
dyq

∣∣∣∣∣
y=y(t)

∣∣∣∣∣∣
j∏

m=1

1
km!

(
1
m!

∣∣∣∣∣dmy(t)
dtm

∣∣∣∣∣
)km

≤ C(j)
∑

k1+2k2+...+jkj=j
q:=k1+k2+...+kj

∣∣∣∣∣ey(t) −
p−q∑
v=0

y(t)v
v!

∣∣∣∣∣ |N |k1+...+kj
j∏

m=1

∣∣∣∣∣dmϕα,1(t))
dtm

∣∣∣∣∣
km

.
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Taking into account that |N ||t|α ≤ 1 and using Lemmata B.1 and A.3 we get∣∣∣∣∣ djdtj z(y(t))
∣∣∣∣∣ ≤ C(j)

∑
k1+2k2+...+jkj=j
q:=k1+k2+...+kj

|Nϕα,1(t)|(p−q+1)+
|N |q |t|α(k1+...+kj)−k1−2k2−...−jkj

≤ C(j) |t|−j
∑

k1+2k2+...+jkj=j
q:=k1+k2+...+kj

(|N ||t|α)(p−q+1)+
(|N ||t|α)q ≤ C(j) |N |p+1 |t|α(p+1)−j.

Using the last estimation we continue

s ≤
s∑

j=(s−u)+

(
s

j

)
C(j) |N |p+1 |t|α(p+1)−j C(u, s, j) |t|u−(s−j)

≤ C(s, u) |N |p+1 |t|α(p+1)+u−s.

This completes the proof of the lemma.

Lemma B.5. For s ∈ N0, ` ∈ N and some constant N ∈ R+ we have∣∣∣∣∣ dsdtsh`n,ξ(Nt)
∣∣∣∣∣ ≤ (N`)s νs,n,ξ ν`−1

0,n,ξ,

where hn,ξ(t) =
∫+∞
−∞ eitx dHn,ξ(x) for t ∈ R with Hn,ξ defined by (93) and pseudo-

moments νs,n,ξ are given immediately after formula (93).
Proof. Using the properties of Fourier transform we have

h
`

n,ξ(Nt) =
∫ +∞

−∞
eitNx dH

`∗
n,ξ(x).

From Lemma 4.3 it follows that h
`

n,ξ(Nt) is s times differentiable, and for s ∈ N0 we
obtain using (101):∣∣∣∣∣ dsdtsh`n,ξ(Nt)

∣∣∣∣∣ =
∣∣∣∣∫ +∞

−∞
(ixN)seitxN dH

`∗
n,ξ(x)

∣∣∣∣ ≤ N s
∫ +∞

−∞
|x|s

∣∣∣∣dH`∗
n,ξ(x)

∣∣∣∣
= N sνs

(
H
`∗
n,ξ(x)

)
≤ (N`)s νs,n,ξ ν`−1

0,n,ξ.

This completes the proof of the lemma.

Lemma B.6. Let hn,ξ be as in Lemma B.5. For s ∈ N0, ` ∈ N and some constant
N ∈ R+ we have

∣∣∣∣∣ dsdtsh`n,ξ(Nt)
∣∣∣∣∣ ≤


C(s)N s

min{s,`}∑
j=1

`j (N |t| ν1,n,ξ)`−j νs−j+1,n,ξ, if s ∈ N,

(N |t| ν1,n,ξ)` , if s = 0.
(152)

In particular, for s = 0, 1, . . . , R + 1 with R defined by (99) and N |t| ≤ 1 we have∣∣∣∣∣ dsdtsh`n,ξ(Nt)
∣∣∣∣∣ ≤ C (N `)s (N |t| ν1,n,ξ)(`−s)+

(
1 + (N |t|)(min{`,s}−1)+

νs,n,ξ
)
, (153)

where constants C, C(s) do not depend on n, `, ξ or N , and pseudomoments νs,n,ξ
are defined immediately after formula (93).
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Proof. Consider s = 0. Using the fact that µ0,n,ξ =
∫+∞
−∞ 1 dHn,ξ(x) = 0 (see

Lemma 4.1 (i)) we obtain for ` ∈ N:
∣∣∣∣h`n,ξ(Nt)∣∣∣∣ =

∣∣∣∣∫ +∞

−∞
eitNx dHn,ξ(x)

∣∣∣∣` =
∣∣∣∣∫ +∞

−∞

(
eitNx − 1

)
dHn,ξ(x)

∣∣∣∣`
≤
(∫ +∞

−∞
|itNx|

∣∣∣dHn,ξ(x)
∣∣∣)` = (N |t| ν1,n,ξ)` .

(154)

Now let s ∈ N. Using formula (149) with z(y) = y` and y(t) = hn,ξ(Nt) we obtain

ds

dts
h
`

n,ξ(Nt) = s!
∑

k1+2k2+···+sks=s
ρ:=k1+···+ks

dρ

dyρ
y`
∣∣∣∣∣
y=hn,ξ(Nt)

s∏
m=1

1
km!

(
1
m!

dm

dtm
hn,ξ(Nt)

)km

= s!
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`!
(`− j)!h

`−j
n,ξ (Nt)

s∏
m=1

1
km!

(
1
m!

dm

dtm
hn,ξ(Nt)

)km
.

(155)

From Lemma B.5 we obtain∣∣∣∣∣ dmdtmhn,ξ(Nt)
∣∣∣∣∣ ≤ Nm νm,n,ξ, for m ∈ N.

Plugging the last estimation and estimation (154) in (155) we come to the following:
∣∣∣∣∣ dsdtsh`n,ξ(Nt)

∣∣∣∣∣ ≤ s!
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`!
(`− j)! (N |t| ν1,n,ξ)`−j ×

×
s∏

m=1

1
km!

( 1
m!

)km (
N1ν1,n,ξ

)k1 · · · (N sνs,n,ξ)ks

≤ C(s)N s
min{s,`}∑
j=1

`j (N |t| ν1,n,ξ)`−j
∑

k1+2k2+···+sks=s
k1+···+ks=j

νk1
1,n,ξ · · · ν

ks
s,n,ξ.

Note that if j = 1, then ks = 1. From j = 2 it follows that ks = 0. For each j ≥ 3
we always have ks = ks−1 = ... = ks−j+2 = 0. This means that the “largest-order”-
pseudomoment that can appear above is νs−j+1,n,ξ. Using this fact and Lemma 4.2
we can estimate the sum of pseudomoments in the last expression by some constant
times the largest-order pseudomoment νs−j+1,n,ξ. Finally, combining the cases s = 0
and s ∈ N we get (152).

Let now s = 1, . . . , R + 1 and N |t| ≤ 1. From Lemma 4.2 (i) and from in-
equality (152) it follows for ` ≤ s that∣∣∣∣∣ dsdtsh`n,ξ(Nt)

∣∣∣∣∣ ≤ C N s
∑̀
j=1

`j (N |t| ν1,n,ξ)`−j νs−j+1,n,ξ

≤ C (N`)s
(
(N |t|)`−1 νs,n,ξ + 1

)
.
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For ` > s we have∣∣∣∣∣ dsdtsh`n,ξ(Nt)
∣∣∣∣∣ ≤ C N s

s∑
j=1

`j (N |t| ν1,n,ξ)`−j νs−j+1,n,ξ

≤ C (N `)s
(N |t| ν1,n,ξ)`−1

νs,n,ξ +
s∑
j=2

(N |t| ν1,n,ξ)`−j νs−j+1,n,ξ


≤ C (N `)s (N |t| ν1,n,ξ)`−s

(N |t| ν1,n,ξ)s−1
νs,n,ξ +

s∑
j=2

(
N |t|︸ ︷︷ ︸
≤1

ν1,n,ξ
)s−j

≤ C (N `)s (N |t| ν1,n,ξ)`−s
(
(N |t|)s−1 νs,n,ξ + 1

)
.

Combining the cases ` ≤ s and ` > s we obtain formula (153), which also holds true
for s = 0. This completes the proof of the lemma.

Lemma B.7. Let gα,1, ϕα,1 and hn,ξ be as in Lemmata B.2 and B.5. Further, let
k ∈ N0, ` = 0, 1, ..., n, n ∈ N and |t| ≤ ε n1/α, t 6= 0, where ε = min{1, c−1

0 } with
c0 = (ν∗0 + 1)γ∗r 1/r.
If q = 0, 1, ..., R or if q = R + 1 and ` = 0, then∣∣∣∣∣ dqdtq

(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣
≤ C e−

n−`
2n |t|

α cos(απ2 ) (max{1, k} max{1, `})q |t|αk−q
(
c0 |t| n−

1
α

)`
.

If q = R + 1 and ` ≥ 1, then∣∣∣∣∣ dR+1

dtR+1

(
ϕkα,1(t) gα,1

(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

))∣∣∣∣∣ ≤ Ce−
n−`
2n |t|

α cos(απ2 )(`max{1, k})R+1

· |t|αk−(R+1)
((
c0 |t|n−

1
α

)`
+
(
c0 |t|n−

1
α

)R+1+(`−(R+1))+ (
n−

1
α |t|

)min{1,`−1}
νR+1,n,ξ

)
,

where pseudomoments ν∗0 , γ∗r are given by (80), pseudomoment νR+1,n,ξ is defined
immediately after formula (93), r comes from Theorem 3.26, R is defined by (99)
and constants C (in both cases) do not depend on n, `, ξ.

Proof. Let `, k ∈ N. For t 6= 0 the functions ϕkα,1, gα,1 and h
`

n,ξ are infinitely
differentiable and we can apply formula (151) from Lemma A.10:

dq

dtq

(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))
=

∑
n1,n2,n3∈N0
n1+n2+n3=q

q!
n1!n2!n3!

dn1

dtn1

(
ϕkα,1(t)

) dn2

dtn2

(
gα,1

(
t
(
n−`
n

) 1
α

))
dn3

dtn3

(
h
`

n,ξ

(
tn−

1
α

))
.

Applying Lemmata B.1, B.2 and (153) in B.6 we get∣∣∣∣∣ dqdtq
(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣
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≤
∑

n1+n2+n3=q

q!
n1!n2!n3!

n1−1∏
j=0
|αk − j| |t|αk−n1

 · (C e−n−`2n |t|
α cos(απ2 ) |t|−n2

)

·
(
C (n− 1

α `)n3
(
n−

1
α |t| ν1,n,ξ

)(`−n3)+ (
1 +

(
n−

1
α |t|

)(min{`,n3}−1)+

νn3,n,ξ

))
≤ C e−

n−`
2n |t|

α cos(απ2 ) (` k)q
∑

n1+n2+n3=q
|t|αk−n1−n2−n3

·
(
|t| n−

1
α

)n3 (
n−

1
αν1,n,ξ |t|

)(`−n3)+ (
1 +

(
n−

1
α |t|

)(min{`,n3}−1)+

νn3,n,ξ

)
. (156)

Denote

χ(t) :=
(
|t| n−

1
α

)n3 (
n−

1
αν1,n,ξ |t|

)(`−n3)+ (
1 +

(
n−

1
α |t|

)(min{`,n3}−1)+

νn3,n,ξ

)
.

At this point we have to distinguish two cases: q = R + 1 and q = 0, 1, ..., R.
Case 1: q = R + 1. If q = R + 1, then n3 can take the values 0, 1, ..., R + 1.
If n3 = 0, 1, .., R, then according to Lemma 4.2 pseudomoments νn3,n,ξ can be es-
timated by (ν∗0 + 1)γ∗r n3/r. Denote c0 := (ν∗0 + 1)γ∗r 1/r. Taking into account that
c0 |t|n−1/α ≤ 1 and |t|n−1/α ≤ 1 we get

χ(t) ≤

 2
(
|t| n− 1

α

)`
(ν∗0 + 1)`+1−n3 γ∗r

`/r, if ` > n3,

2
(
|t| n− 1

α

)n3 (ν∗0 + 1) γ∗r n3/r ≤ 2
(
(ν∗0 + 1)γ∗r 1/r |t| n− 1

α

)n3
, if ` ≤ n3

≤ C
(
c0 |t| n−

1
α

)`
for all ` = 1, ..., n.

Consider n3 = R+ 1. Again, applying Lemma 4.2 for estimation of ν1,n,ξ we obtain

χ(t) ≤


C
(
(ν∗0 + 1) γ∗r 1/r |t| n− 1

α

)` (
1 +

(
n−

1
α |t|

)R
νR+1,n,ξ

)
, if ` > R + 1,(

|t| n− 1
α

)R+1
(

1 +
(
n−

1
α |t|

)`−1
νR+1,n,ξ

)
, if ` ≤ R + 1

≤ C
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+ (
1 +

(
n−

1
α |t|

)min{1,`−1}
νR+1,n,ξ

)
, ` = 1, ..., n.

Combining these two cases we obtain∣∣∣∣∣ dR+1

dtR+1

(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣ ≤ C e−
n−`
2n |t|

α cos(απ2 ) |t|αk−(R+1)

· (` k)R+1
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+ (
n−

1
α |t|

)min{1,`−1}
νR+1,n,ξ

)
.

Now we consider the second case.
Case 2: q = 0, 1, ..., R. If q = 0, 1, ..., R, then n3 ≤ R in (156) and we can use the
estimate χ(t) ≤ C

(
c0 |t| n−

1
α

)`
as above. From (156) we obtain∣∣∣∣∣ dqdtq

(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣
≤ C e−

n−`
2n |t|

α cos(απ2 ) (k `)q |t|αk−q
(
c0 |t| n−

1
α

)`
,
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which proves the statement of the lemma for this case.
Using the same method as above it is easy to see that the statement of the lemma

holds true if k = 0 and/or ` = 0.

Lemma B.8. Let ` = 1, 2, ..., n, n ∈ N. For s = 0, 1, ..., R+ 1 and |t| > εn we have∣∣∣∣∣ dsdts f `n,ξ
(
tn−1/α

)∣∣∣∣∣ ≤ C `s n−s/α max{1, νs,n,ξ} Q
(`−s)+

n,ξ

where fn,ξ(t) =
∫+∞
−∞ eitxdF n,ξ(x) with F n,ξ defined in (92), εn = ε̃ n1/α with ε̃ given

by (123), Qn,ξ = sup
|t|>ε̃

∣∣∣fn,ξ(t)∣∣∣, pseudomoments νs,n,ξ are defined immediately after

formula (93), and constant C does not depend on n, `, ξ.

Remark B.1. Note that Qn,ξ can be estimated by a constant not depending
on n and ξ. It follows from the definition of fn,ξ, f and estimate (108) with
N = n1/α(1 + ξ) that
∣∣∣fn,ξ(t)∣∣∣ =

∣∣∣∣∫ +∞

−∞
eitxdF n,ξ(x)

∣∣∣∣ ≤ ∣∣∣∣∫ +∞

−∞
eitxdF (x)

∣∣∣∣+ ∣∣∣∣∫ +∞

−∞
eitxd

(
F n,ξ − F

)
(x)
∣∣∣∣

≤ |f(t)|+
∫ +∞

0

∣∣∣d (F n,ξ − F
)

(x)
∣∣∣ ≤ |f(t)|+ 2 γ∗rn−r/α ≤ C, t ∈ R.

Hence,
Qn,ξ ≤ sup

|t|>ε̃
|f(t)|+ 2 γ∗rn−r/α ≤ C. (157)

Proof. Consider s = 0. Using the definition of Qn,ξ and the fact that ν0,n,ξ can be
estimated by a constant (see (94) with r = 0) we obtain the statement of the lemma.

Now let s ≥ 1. According to the definition we have fn,ξ(t) = g̃α(t) + hn,ξ(t).
From Lemma B.3 and Lemma B.5 it follows that for m = 1, ..., R + 1 and |t| > εn
we have∣∣∣∣∣ dmdtmfn,ξ

(
tn−

1
α

)∣∣∣∣∣ ≤
∣∣∣∣∣ dmdtm g̃α

(
tn−

1
α

)∣∣∣∣∣+
∣∣∣∣∣ dmdtmhn,ξ

(
tn−

1
α

)∣∣∣∣∣ ≤ C e−
|t|α
4n cos(απ2 ) |t|−m

+ n−m/α νm,n,ξ ≤ C n−m/α + n−m/α νm,n,ξ ≤ C n−m/α max{1, νm,n,ξ}.
(158)

Using formula (149) from Lemma A.9 with z(y) = y` and y(t) = fn,ξ(Nt) we obtain

ds

dts
f
`

n,ξ(Nt) = s!
∑

k1+2k2+···+sks=s
ρ:=k1+···+ks

dρ

dyρ
y`
∣∣∣∣∣
y=fn,ξ(Nt)

s∏
m=1

1
km!

(
1
m!

dm

dtm
fn,ξ(Nt)

)km

= s!
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`!
(`− j)!f

`−j
n,ξ (Nt)

s∏
m=1

1
km!

(
1
m!

dm

dtm
fn,ξ(Nt)

)km
.

(159)
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Plugging estimation (158) in (159) with N = n−1/α we come to the following:∣∣∣∣∣ dsdtsf `n,ξ
(
tn−

1
α

)∣∣∣∣∣ ≤ s!
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`!
(`− j)! Q

`−j
n,ξ

s∏
m=1

1
km!

( 1
m!

)km
×

×
(
C n−1/α max{1, ν1,n,ξ}

)k1 · · ·
(
C n−s/α max{1, νs,n,ξ}

)ks = s.

Note that ks ≤ 1. Then taking into account Remark B.1, the fact that s = 1, ..., R+1
and that all pseudomoments νs,n,ξ can be estimated by some constant for s = 1, ..., R
(see Lemma 4.2 (i)), we continue

s ≤ C
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`!
(`− j)! Q

`−j
n,ξ n

−s/α max{1, νs,n,ξ}

≤ C `s n−s/α max{1, νs,n,ξ} Q
(`−s)+

n,ξ .

This completes the proof of the lemma.

Lemma B.9. Let r > 1 such that 0 < γ∗r < ∞. Define R as in (99) and, further,
for n ∈ N, ξ ∈ [0,∞) and t ∈ R define

χR,n,ξ(t) =
µ1,n,ξ(itn−1/α)

1! +
µ2,n,ξ(itn−1/α)2

2! + · · ·+
µR,n,ξ(itn−1/α)R

R!

where µk,n,ξ, k = 1, ..., R, are given immediately after formula (93).
Then for s = 0, 1, ..., R + 1 and |t| ≤ n1/α we have∣∣∣∣∣ dsdts χ`R,n,ξ(t)

∣∣∣∣∣ ≤ C(`)n−s/α
(
|t|n−1/α

)`−s
,

where C(`) is some constant not depending on n and ξ.

Proof. Consider s = 0. Taking into account that
∣∣∣µk,n,ξ∣∣∣ ≤ νk,n,ξ ≤ (ν∗0 + 1)γ∗r k/r for

k = 1, ..., R (see Lemma 4.2) and that |t|n−1/α ≤ 1 we obtain

∣∣∣χ`R,n,ξ(t)∣∣∣ ≤ (|t|n−1/α
)` (ν1,n,ξ

1! + · · ·+ νR,n,ξ(|t|n−1/α)R−1

R!

)`

≤ (ν∗0 + 1)`
(
γ∗r

1/r

1! + · · ·+ γ∗r
R/r

R!

)` (
|t|n−1/α

)`
≤ C(`)

(
|t|n−1/α

)`
,

which means that for s = 0 the assertion of the lemma is true. We consider the
case s = 1, 2, ..., R + 1 in what follows. Using formula (149), the above estimate of
χ`R,n,ξ(t) and keeping in mind that |t|n−1/α ≤ 1 we obtain

∣∣∣∣∣ dsdts χ`R,n,ξ(t)
∣∣∣∣∣ =

∣∣∣∣∣∣∣∣s!
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`! χ`−jR,n,ξ(t)
(`− j)!

s∏
m=1

1
km!

(
1
m!

dm

dtm
χR,n,ξ(t)

)km ∣∣∣∣∣∣∣∣
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≤ C
min{s,`}∑
j=1

∑
k1+2k2+···+sks=s

k1+···+ks=j

`j C(`, j)
(
|t|n−1/α

)`−j 1
k1!...ks!

( 1
1!

)k1

· ... ·
( 1
s!

)ks

·
∣∣∣∣∣(in−1/α)1

R∑
u=1

µu,n,ξ(itn−1/α)u−1

(u− 1)!

∣∣∣∣∣
k1

· ... ·
∣∣∣∣∣(in−1/α)s

R∑
u=s

µu,n,ξ(itn−1/α)u−s

(u− s)!

∣∣∣∣∣
ks

≤ C(`)
min{s,`}∑
j=1

(
|t|n−1/α

)`−j ∑
k1+2k2+···+sks=s

k1+···+ks=j

[
R∑
u=1

γ∗r
u/r

(u− 1)!

]k1

...

[
R∑
u=s

γ∗r
u/r

(u− s)!

]ks

· n−s/α (ν∗0 + 1)j ≤ C(`)n−s/α
min{s,`}∑
j=1

(
|t|n−1/α

)`−j
≤ C(`)n−s/α

(
|t|n−1/α

)`−min{s,`}
.

Since |t|n−1/α ≤ 1 we have
(
|t|n−1/α

)`−min{s,`}
≤
(
|t|n−1/α

)`−s
. This completes the

proof of the lemma.

Below we give the technical proofs of Lemmata 4.13 – 4.18. For reader’s conve-
nience we also repeat the statements of the lemmata.

B.2 Proof of Lemma 4.13
Lemma 4.13. Define d1n(t) = ∑sn

k=ρ+1
ck,n
nk
ϕkα,1(t) gα,1(t) with ρ = [2(R + 1)/α].

Then for |t| ≤ εn1/α and q = 0, 1, ..., R + 1 we have∣∣∣d(q)
1n (t)

∣∣∣ ≤ C e−
1
4 |t|

α cos(απ2 ) n−
R+1
α |t|−q

(
|t|α(

ρ
2 + 1

2) + |t|α(ρ+2)
)

with constant C not depending on n, and

ε = min

1, 1
(2D)1/α ,

1
D1/α

cos
(
απ
2

)
8D


2+ρ/2
α
, D = max

2≤j≤s
{2 |Aj|1/j},

where s and Aj, j = 2, ..., s, are defined in (85) and (70).

Proof. For t 6= 0 the functions ϕkα,1(t) and gα,1(t) are infinitely differentiable. Ap-
plying formula (151) from Lemma A.10 we obtain for t 6= 0:

(
ϕkα,1 · gα,1

)(q)
(t) =

∑
n1+n2=q
n1,n2∈N0

q!
n1!n2!

(
ϕkα,1

)(n1)
(t) · g(n2)

α,1 (t).

Taking into account that k ≥ ρ + 1 > 2(R+1)
α

> q
α
and using Lemmata B.1 and B.2

we can estimate∣∣∣∣(ϕkα,1 · gα,1)(q)
(t)
∣∣∣∣ ≤ ∑

n1+n2=q

q!
n1!n2!

∣∣∣∣(ϕkα,1)(n1)
(t)
∣∣∣∣ · ∣∣∣g(n2)

α,1 (t)
∣∣∣

≤
∑

n1+n2=q

q!
n1!n2!

n1−1∏
j=0

(αk − j) |t|αk−n1 · C(n2)e−
1
2 |t|

α cos(απ2 ) |t|−n2
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≤ e−
1
2 |t|

α cos(απ2 ) |t|αk−q
∑

n1+n2=q
C(n2) q!

n1!n2!

n1−1∏
j=0

(αk − j)

≤ C kq e−
1
2 |t|

α cos(απ2 ) |t|αk−q . (160)

Let us consider the case t = 0. We start with the first derivative of ϕkα,1 gα,1.
Taking into account that αk > R + 1 we get

(
ϕkα,1 gα,1

)′
+

(0) = lim
h→0+

(
ϕkα,1 gα,1

)
(h)−

(
ϕkα,1 gα,1

)
(0)

h

= lim
h→0+

(
e−h

αe−iα
π
2 (−1)khαk−1e−iα

π
2 k
)

= 0

as well as
(
ϕkα,1 gα,1

)′
−

(0) = lim
h→0−

(
ϕkα,1 gα,1

)
(h)−

(
ϕkα,1 gα,1

)
(0)

h

= lim
h→0−

(
e−|h|

αeiα
π
2 (−1)k−1 |h|αk−1 eiα

π
2 k
)

= 0.

Thus, the first derivative of ϕkα,1 gα,1 exists at point 0 and
(
ϕkα,1 gα,1

)′
(0) = 0. Simi-

larly, it can be shown that
(
ϕkα,1 gα,1

)(i)
(0) = 0 for i = 1, . . . , R + 1.

Thus, inequality (160) holds for all t ∈ R. Using it and the fact that there always
exists a constant C > 0 such that kq ≤ kR+1 ≤ C 2k for all k ∈ N, we estimate∣∣∣d(q)

1n (t)
∣∣∣ ≤ sn∑

k=ρ+1

|ck,n|
nk

∣∣∣∣(ϕkα,1 · gα,1)(q)
(t)
∣∣∣∣

≤ C
sn∑

k=ρ+1

|ck,n|
nk

kq |t|αk−q e−
1
2 |t|

α cos(απ2 )

≤ C |t|−q e−
1
2 |t|

α cos(απ2 )
sn∑

k=ρ+1

c∗k,n(
n
2

)k |t|αk ,
where the notation c∗k,n comes from the following:

|ck,n| ≤ c∗k,n :=
∑

k0+k2+···+ks=n
2k2+···+sks=k

n!
k0!k2! · · · ks!

|A2|k2 · · · |As|ks .

Note that c0,n = c∗0,n = 1 and c1,n = c∗1,n = 0 for all n ∈ N. We have to find an
upper bound for the sum ∑sn

k=ρ+1
c∗k,n(
n/2
)k |t|αk. Using formula (147) from Lemma A.5

we obtain1 + |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

n

=
∑

k0+k2+···+ks=n

n!
k0!k2! · · · ks!

 |A2| |t|2α(
n
2

)2


k2

· · ·

 |As| |t|sα(
n
2

)s
ks
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=
∑

k0+k2+···+ks=n

n!
k0!k2! · · · ks!

|A2|k2 · · · |As|ks
|t|
(

2k2+...+sks
)
α(

n
2

)2k2+...+sks

=
sn∑
k=0

|t|αk(
n
2

)k ∑
k0+k2+···+ks=n
2k2+···+sks=k

n!
k0!k2! · · · ks!

|A2|k2 · · · |As|ks

︸ ︷︷ ︸
c∗
k,n

=
sn∑
k=0

c∗k,n(
n
2

)k |t|αk .

Thus, taking into account that c∗0,n = 1 and c∗1,n = 0 we get

sn∑
k=ρ+1

c∗k,n(
n
2

)k |t|αk =

1 + |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

n

− 1−
ρ∑

k=2

c∗k,n(
n
2

)k |t|αk .

In other words, from
(

1 + |A2||t|2α
(n2 )2 + · · ·+ |As||t|sα

(n2 )s

)n
we subtract 1 and all sum-

mands containing |t|2α, |t|3α , . . . , |t|ρα. In order to see the structure of the remainder
we do the following. Let ρ̃ =

{
ρ/2, if ρ even

(ρ−1)/2, if ρ odd . Note that ρ̃ ∈ N is the smallest num-
ber such that 2α(ρ̃+ 1) > αρ. Then we have

1 + |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

n

=
n∑
k=0

(
n

k

) |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

k

= 1 + n

 |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s


+ n(n− 1)
2!

 |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s


2

+ · · ·

+
n(n− 1) · · ·

(
n− (ρ̃− 1)

)
ρ̃ !

 |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

ρ̃

+
n∑

k=ρ̃+1

(
n

k

) |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

k

.

With some constants c1, . . . , cρ̃ not depending on n we obtain1 + |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

n

−
ρ∑

k=0

c∗k,n(
n
2

)k |t|αk

≤
sρ̃∑

k=ρ+1

(
c1

nk−1 + · · ·+
cρ̃

nk−ρ̃

)
|t|αk +

n∑
k=ρ̃+1

(
n

k

) |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

k

.
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Let us try to estimate the second sum from the above expression. Consider k = ρ̃+1.
Taking into account that D |t|α/n ≤ 1/2 with D = max

2≤j≤s
{2 |Aj|1/j} and using the

definition of ρ and ρ̃ we obtain

(
n

ρ̃+ 1

) |A2| |t|2α(
n
2

)2 + ...+ |As| |t|
sα(

n
2

)s

ρ̃+1

≤ nρ̃+1

[D |t|α
n

]2

+ ...+
[
D |t|α

n

]sρ̃+1

≤ nρ̃+1

(s− 1)
(
D |t|α

n

)2
ρ̃+1

≤ C
|t|2α(ρ̃+1)

nρ̃+1
≤ C n−

R+1
α

(
|t|α(ρ+1) + |t|α(ρ+2)

)
.

Now let k ≥ ρ̃ + 2. Denote U := Un(t) := D |t|α/n with D defined above. Using
the formula for the infinite geometric series together with the fact that U ≤ 1/2 we
have

n∑
k=ρ̃+2

(
n

k

) |A2| |t|2α(
n
2

)2 + · · ·+ |As| |t|
sα(

n
2

)s

k

≤
n∑

k=ρ̃+2

(
n

k

)(
U2 + · · ·+ U s

)k

≤
n∑

k=ρ̃+2

(
n

k

)(
U

ρ̃+1
ρ̃+2 U

1
ρ̃+2

)k (
U1 + · · ·+ U s−1

)k

≤ U ρ̃+1
n∑

k=p̃+2

(
n

k

)
U

k

ρ̃+2

(
U

1− U

)k
≤ U ρ̃+1

1 + U
1
ρ̃+2 U

1− U


n

= s.

Now using fact that U ≤ min{1/2, ε0} with ε0 =
(

1
8D cos

(
απ
2

))ρ̃+2
and plugging the

formula for U we continue

s ≤ U ρ̃+1

1 +
ε

1
ρ̃+2
0

D|t|α
n

1/2


n

≤
(
D|t|α

n

)ρ̃+1
1 +

|t|α cos
(
απ
2

)
4n

n

≤ C
|t|α(ρ̃+1)

nρ̃+1
e

1
4 |t|

α cos(απ2 ) ≤ C e
1
4 |t|

α cos(απ2 )n−
R+1
α

(
|t|α(

ρ
2 +1) + |t|α(

ρ
2 + 1

2)
)
.

Now we have all we need for the estimation of the sum∑sn
k=ρ+1

c∗k,n(
n/2
)k |t|αk. Thus,

taking into account the definition of ρ, ρ̃ and the fact that |t| ≤ ε n
1
α we have

sn∑
k=ρ+1

c∗k,n(
n
2

)k |t|αk ≤ sρ̃∑
k=ρ+1

(
c1

nk−1 + . . .+
cρ̃

nk−ρ̃

)
|t|αk

+
n∑

k=ρ̃+1

(
n

k

) |A2| |t|2α(
n
2

)2 + . . .+ |As| |t|
sα(

n
2

)s

k

≤ C

n−ρ̃

sρ̃∑
k=ρ+1

(
|t|α

n

)k

+ C n−
R+1
α

(
|t|α(ρ+1) + |t|α(ρ+2)

)
+ C e

1
4 |t|

α cos(απ2 )n−
R+1
α

(
|t|α(

ρ
2 +1) + |t|α(

ρ
2 + 1

2)
)
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≤ C nρ̃−ρ−1 |t|α(ρ+1) + C e
1
4 |t|

α cos(απ2 )n−
R+1
α

(
|t|α(

ρ
2 + 1

2) + |t|α(ρ+2)
)

≤ C e
1
4 |t|

α cos(απ2 )n−
R+1
α

(
|t|α(

ρ
2 + 1

2) + |t|α(ρ+2)
)
. (161)

Finally we come back to the estimation of d(q)
1n (t). Combining everything we

obtain ∣∣∣d(q)
1n (t)

∣∣∣ ≤ C |t|−q e−
1
2 |t|

α cos(απ2 )
sn∑

k=ρ+1

c∗k,n(
n
2

)k |t|αk
≤ C e−

1
4 |t|

α cos(απ2 ) n−
R+1
α |t|−q

(
|t|α(

ρ
2 + 1

2) + |t|α(ρ+2)
)
,

where α(ρ + 1)/2 − q ≥ α(ρ + 1)/2 − (R + 1) > 0 according to the definition of ρ.
This completes the proof of the lemma.

B.3 Proof of Lemma 4.14
Lemma 4.14. Define

d2n(t) =
p∑

k=0

n−1∑
`=mk+1

(
n

`

)
ck,n−`
nk

ϕkα,1(t) gα,1
(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)
,

where p = [2R/α] and mk = 1 +
[(
R− αk

2

)
/(1− α)

]
. Then for |t| ≤ εn1/α we have

∣∣∣d(q)
2n (t)

∣∣∣ ≤ C e−
|t|α

4 cos(απ2 ) n−
R+1−α

α |t|R+1−q
(
|t|θ1 + |t|θ2

)
, q = 0, 1, ..., R,∣∣∣d(R+1)

2n (t)
∣∣∣ ≤ C e−

|t|α
4 cos(απ2 ) n−

r−α
α

(
|t|θ1 + |t|θ2 + |t|αp+1

)
(1 + ξ)R+1−r,

where θ1(2) = min
k

(max
k

){mk + αk − R} > 0, r comes from Theorem 3.26,

ε = min

1, 1
c0
,

cos
(
απ
2

)
8 e c0

1/(1−α) with c0 = (ν∗0 + 1)γ∗r 1/r, and constants C do

not depend on n and ξ.

Proof. We will distinguish two cases.
Case 1: q = R + 1. Using Lemma B.7 and taking into account that k = 0, 1, ..., p,
` ≥ 1 and that |t|n−1/α ≤ 1 we obtain for |t| ≤ εn1/α, t 6= 0:∣∣∣∣∣ dR+1

dtR+1

(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣ ≤ C e−
n−`
2n |t|

α cos(απ2 )

· `R+1 |t|αk−(R+1)
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)
.

(162)

Let us consider the case t = 0. Using the definition of mk and p we can show that
αk + ` > R + 1 for k = 0, ..., p and ` = mk + 1, ..., n− 1. Indeed,

αk+` ≥ αk+mk+1 > αk+R− αk/2
1− α +1 = R + 1− α

1− α + αk (1− 2α)
2 (1− α) = s (163)
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For α < 1/2 the expression s considered above is increasing with respect to k and
takes the smallest value at point k = 0. Therefore, s ≥ R+1−α

1−α > R+ 1. If α ≥ 1/2,
then expression s is decreasing with respect to k and takes the smallest value at
point k = p. From the definition of p it follows that s ≥ 2R + 1 > R + 1. Thus,
αk+ ` > R+ 1 for all α ∈ (0, 1) and k, ` considered in the lemma. Keeping this fact
in mind let us calculate the first derivative of ϕkα,1(t) gα,1

(
t
(
n−`
n

)1/α
)
h
`

n,ξ

(
tn−1/α

)
.

Using the definition of hn,ξ and the fact that µ0,n,ξ =
∫+∞
−∞ 1 dHn,ξ(x) = 0 (see

Lemma 4.1) we obtain(
ϕkα,1(·) gα,1

(
·
(
n−`
n

)1/α
)
h
`

n,ξ

(
·n−1/α

))′
+

(0)

= lim
h→0+

e−
n−`
n
hαe−iα

π
2 (−1)khαke−iαπ2 k

(
∞∫
−∞

(
eihn

−1/αx − 1
)
dHn,ξ(x)

)`
− 0

h

= lim
h→0+

e−
n−`
n
hαe−iα

π
2 (−1)khαke−iαπ2 k

∫ ∞
−∞

eihn
−1/αx − 1
h1/` dHn,ξ(x)

` = 0

as well as(
ϕkα,1(·) gα,1

(
·
(
n−`
n

)1/α
)
h
`

n,ξ

(
·n−1/α

))′
−

(0)

= lim
h→0−

e−
n−`
n
|h|αeiα

π
2 (−1)k−1 |h|αk eiα

π
2 k

∫ ∞
−∞

eihn
−1/αx − 1
|h|1/`

dHn,ξ(x)
` = 0.

Thus, the first derivative at point 0 exists and is equal to 0. Similarly, using the
fact that αk + ` > R + 1 we can show that

dj

dtj

(
ϕkα,1(t) gα,1

(
t
(
n−`
n

)1/α
)
h
`

n,ξ

(
tn−1/α

))∣∣∣∣∣
t=0

= 0 for j = 1, ..., R + 1.

Thus, inequality (162) holds for all |t| ≤ εn1/α. Using it we estimate
∣∣∣d(R+1)

2n (t)
∣∣∣ ≤ p∑

k=0

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

C e−
n−`
2n |t|

α cos(απ2 ) `R+1 |t|αk−(R+1)

·
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)

= C e−
|t|α

2 cos(απ2 )
p∑

k=0
|t|αk−(R+1)

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

(
e
|t|α
2n cos(απ2 )

)`
· `R+1

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)
.

(164)

It is easy to see that for k = 0, . . . , p and ` = 1, . . . , n − 1 there always exists a
constant C > 0 such that

c∗k,n−`
nk

=
∑

k0+k2+···+ks=n−`
2k2+···+sks=k

(n− `)!
k0!k2! · · · ks!nk

|A2|k2 · · · |As|ks ≤
C

nk/2
, (165)
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where k0, k2, ..., ks ∈ N0 and C does not depend on n.
Note also that e

|t|α
2n cos(απ2 ) ≤ e, since |t| ≤ n1/α. Using the last two inequalities

and the fact that there exists a constant C > 0, such that `R+1 ≤ C 2` for all ` ∈ N,
we obtain

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

(
e
|t|α
2n cos(απ2 )

)`
`R+1

((
c0 |t| n−

1
α

)`
+ · · ·

)

≤ C
n−1∑

`=mk+1

(
n

`

)
(2 e)`
nk/2

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)

= C
R+1∑

`=mk+1

(
n

`

)
(2 e)`
nk/2

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1
νR+1,n,ξ

)

+ C
n−1∑

`=max{mk+1,R+2}

(
n

`

)
(2 e)`
nk/2

((
c0 |t| n−

1
α

)`
(1 + νR+1,n,ξ)

)
= s.

Note that if k ≤ 2R then the first sum in s is equal to 0, since mk + 1 > R+ 1 (this
follows from the definition of mk). This means, one considers the first sum only for
k > 2R. We denote `0 := max{mk + 1, R + 2} and continue

s ≤ C
R+1∑

`=mk+1
n`−k/2−`/α |t|` + C

(
n−

1
α |t|

)R+1
νR+1,n,ξ

R+1∑
`=mk+1

n`−k/2

+ C max{1, νR+1,n,ξ} n−k/2
(
|t| n−

1
α

)`0 n−1∑
`=`0

(
n

`

)(
2 e c0 |t| n−

1
α

)`−`0 = s.

Using the definition of mk we obtain for ` ≥ mk + 1:

`(1− 1
α

)− k/2 ≤ (mk + 1)(1− 1
α

)− k/2 <
(
1 + R−kα/2

1−α

)
α−1
α
− k/2 = −R+1−α

α
.

Also, for ` = mk + 1, ..., R + 1 with mk + 1 ≤ R + 1 we have

`− k/2 ≤ R + 1− k/2 < R + 1− 2R/2 = 1.

Taking into account that |t| ≤
(
cos

(
απ
2

)
/(8 e c0)

)1/(1−α)
n1/α and using the pro-

perties
(
n
k

)
= n

k

(
n−1
k−1

)
and (1 + a/n)n ≤ ea, a ∈ R+, we have

n−1∑
`=`0

(
n

`

)(
2 e c0 |t| n−

1
α

)`−`0 =
n−1−`0∑
j=0

(
n

j + `0

)(
2 e c0 |t| n−

1
α

)j

=
n−1−`0∑
j=0

n(n− 1) · · · (n− `0 + 1)
(j + `0) · · · (j + 1)

(
n− `0

j

)(
2 e c0 |t| n−

1
α

)j

≤ n`0
(
1 + 2 e c0 |t| n−

1
α

)n−`0 ≤ n`0

1 + 2 e c0 |t|α

n

(
|t|α

n

) 1−α
α

n

≤ n`0

1 +
cos

(
απ
2

)
|t|α

4n

n ≤ n`0 e
|t|α

4 cos(απ2 ).

(166)
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Denote D = {m ∈ N : m > 2R}. Using the last three inequalities considered above,
the fact that `0

(
1− 1

α

)
− k/2 ≤ (mk + 1)

(
1− 1

α

)
− k/2 < −(R + 1 − α)/α and

Lemma 4.2 for νR+1,n,ξ, we finally obtain

s ≤ C
(
n−

R+1−α
α

(
|t|mk+1 + |t|R+1

)
+ n−

r−α
α |t|R+1 (1 + ξ)R+1−r

)
1D(k)

+ C e
|t|α

4 cos(απ2 ) n`0(1− 1
α)−k/2 |t|`0 n

R+1−r
α (1 + ξ)R+1−r

≤ C e
|t|α

4 cos(απ2 ) n−
r−α
α

((
|t|mk+1 + |t|R+1

)
1D(k) + |t|`0

)
(1 + ξ)R+1−r.

(167)

Now we come back to the estimation of d(R+1)
2n (t). Plugging the upper bound (167)

of the sum ∑n−1
`=mk+1

(
n
`

) c∗k,n−`
nk

. . . into formula (164) we obtain

∣∣∣d(R+1)
2n (t)

∣∣∣ ≤ C e−
|t|α

2 cos(απ2 )
p∑

k=0
|t|αk−(R+1)

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

(
e
|t|α
2n cos(απ2 )

)`
· `R+1

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)
≤ C e−

|t|α
4 cos(απ2 ) n− r−αα (1 + ξ)R+1−r

p∑
k=0
|t|αk−(R+1)

((
|t|mk+1 + |t|R+1

)
1D(k) + |t|`0

)
≤ C e−

|t|α
4 cos(απ2 ) n−

r−α
α

(
|t|θ1 + |t|θ2 + |t|αp+1

)
(1 + ξ)R+1−r,

where θ1 := min
0≤k≤p

{mk+αk−R} and θ2 := max
0≤k≤p

{mk+αk−R}. From inequality (163)
it follows that θ1, θ2 > 0.

Now we come back to the second case, which is much simpler.

Case 2: q = 0, 1, ..., R. Again, using Lemma B.7 we obtain:∣∣∣∣∣ dqdtq
(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣
≤ C e−

n−`
2n |t|

α cos(απ2 ) `q |t|αk−q
(
c0 |t| n−

1
α

)`
.

Now we repeat the same procedure as in the case q = R + 1. Using the above
estimate we obtain

∣∣∣d(q)
2n (t)

∣∣∣ ≤ p∑
k=0

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

C e−
n−`
2n |t|

α cos(απ2 ) `q |t|αk−q
(
c0 |t| n−

1
α

)`

= C e−
|t|α

2 cos(απ2 )
p∑

k=0
|t|αk−q

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

(
e
|t|α
2n cos(απ2 )

)`

· `q
(
c0 |t| n−

1
α

)`
.

(168)

Using (166) with mk + 1 instead of `0 we estimate the sum ∑n−1
`=mk+1

(
n
`

) c∗k,n−`
nk

. . . as
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follows:
n−1∑

`=mk+1

(
n

`

)
c∗k,n−`
nk

(
e
|t|α
2n cos(απ2 )

)`
`q
(
c0 |t| n−

1
α

)`

≤ C
n−1∑

`=mk+1

(
n

`

)
(2 e)`

nk/2

(
c0 |t| n−

1
α

)`

≤ C
(
|t| n−

1
α

)mk+1
n−k/2

n−1∑
`=mk+1

(
n

`

) (
2 e c0 |t| n−

1
α

)`−(mk+1)

≤ C e
|t|α

4 cos(απ2 ) |t|mk+1 n(mk+1)(1− 1
α)−k/2 ≤ C e

|t|α
4 cos(απ2 ) |t|mk+1 n−

R+1−α
α .

(169)

Plugging (169) into formula (168) we obtain

∣∣∣d(q)
2n (t)

∣∣∣ ≤ C e−
|t|α

2 cos(απ2 )
p∑

k=0
|t|αk−q

n−1∑
`=mk+1

(
n

`

)
c∗k,n−`
nk

(
e
|t|α
2n cos(απ2 )

)`
`q

·
(
c0 |t| n−

1
α

)`
≤ C e−

|t|α
4 cos(απ2 ) n−

R+1−α
α

p∑
k=0
|t|αk+(mk+1)−q

≤ C e−
|t|α

4 cos(απ2 ) n−
R+1−α

α |t|R+1−q
(
|t|θ1 + |t|θ2

)
.

where θ1(2) = min
k

(max
k

){αk+mk−R} > 0. This completes the proof of the lemma.

B.4 Proof of Lemma 4.15
Lemma 4.15. Define

d3n(t) =
n−1∑
`=1

(
n

`

) s(n−`)∑
k=p+1

ck,n−`
nk

ϕkα,1(t) gα,1
(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

)
,

where p = [2R/α]. Then for |t| ≤ εn1/α we have
∣∣∣d(q)

3n (t)
∣∣∣ ≤ C e−

|t|α
8 cos(απ2 ) n−

R+1−α
α |t|1−q

(
|t|α(

p
2 + 1

2) + |t|α(p+2)
)
, q = 0, 1, ..., R,∣∣∣d(R+1)

3n (t)
∣∣∣ ≤ C e−

|t|α
8 cos(απ2 ) n−

r−α
α

(
|t|

α(p+1)
2 −R + |t|α(p+2)+1

)
(1 + ξ)R+1−r,

where r comes from Theorem 3.26, constants C do not depend on n and ξ, and

ε = min

1, 1
c0
,

1
(2D)1/α ,

1
D1/α

cos
(
απ
2

)
8D


2+p/2
α

,

cos
(
απ
2

)
16 e c0

1/(1−α)
with D = max

2≤j≤s
{2 |Aj|1/j}, c0 = (ν∗0 + 1)γ∗r 1/r, s and Aj defined in (85) and (70).
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Proof. We distinguish two cases: q = R + 1 and q = 0, 1, ..., R.
Case 1: q = R + 1. Using Lemma B.7 and taking into account that `, k ≥ 1 and
that |t|n−1/α ≤ 1 we obtain for |t| ≤ εn1/α, t 6= 0:∣∣∣∣∣ dR+1

dtR+1

(
ϕkα,1(t) gα,1

(
t
(
n−`
n

) 1
α

)
h
`

n,ξ

(
tn−

1
α

))∣∣∣∣∣ ≤ C e−
n−`
2n |t|

α cos(απ2 ) (k `)R+1

· |t|αk−(R+1)
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)
.

(170)

Now let us consider the case t = 0. In the same way as in Lemma 4.13 or
Lemma 4.14 (i.e. using the definition of the derivative) we can show that

dj

dtj

(
ϕkα,1(t) gα,1

(
t
(
n−`
n

)1/α
)
h
`

n,ξ

(
tn−1/α

))∣∣∣∣∣
t=0

= 0

for j = 1, . . . , R+ 1. When proving this one takes into account that αk > R+ 1 for
k ≥ p+ 1. This follows from the definition of p.
Thus, inequality (170) holds for all |t| ≤ εn1/α. Using it, the estimate e

|t|α
2n cos(απ2 ) ≤ e

(since |t| ≤ n1/α), and the fact that there always exists a constant C > 0 such that
kR+1 ≤ C 2k for all k ∈ N, we obtain

∣∣∣d(R+1)
3n (t)

∣∣∣ ≤ n−1∑
`=1

(
n

`

) s(n−`)∑
k=p+1

|ck,n−`|
nk

C e−
n−`
2n |t|

α cos(απ2 ) (k `)R+1 |t|αk−(R+1)

·
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)

≤ C e−
|t|α

2 cos(απ2 ) |t|−(R+1)
n−1∑
`=1

(
n

`

)(
e
|t|α
2n cos(απ2 )

)`
`R+1

·
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

) s(n−`)∑
k=p+1

c∗k,n−`
nk

kR+1 |t|αk

≤ C e−
|t|α

2 cos(απ2 ) |t|−(R+1)
n−1∑
`=1

(
n

`

)
(2e)`

·
((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

) s(n−`)∑
k=p+1

c∗k,n−`(
n
2

)k |t|αk .
Now we find an upper bound for the sum ∑s(n−`)

k=p+1
c∗k,n−`
(n/2)k |t|

αk. Note that we consider
only |t| ≤ εn1/α, where ε is defined in the statement of the lemma. Recall that

c∗k,n−` =
∑

k0+k2+···+ks=n−`
2k2+···+sks=k

(n− `)!
k0!k2! · · · ks!

|A2|k2 · · · |As|ks ,

where k0, k2, ..., ks ∈ N0. It is easy to see that c∗k,n−` ≤ c∗k,n for all ` = 1, ..., n − 1.
Using this fact first and then doing the same procedure as we did in order to get
inequality (161) from Lemma 4.13 we obtain
s(n−`)∑
k=p+1

c∗k,n−`(
n
2

)k |t|αk ≤ sn∑
k=p+1

c∗k,n(
n
2

)k |t|αk ≤ C e
1
4 |t|

α cos(απ2 )n−Rα
(
|t|α(

p
2 + 1

2) + |t|α(p+2)
)
.
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Using the last inequality we continue estimating d (R+1)
3n (t):∣∣∣d (R+1)

3n (t)
∣∣∣ ≤ C e−

|t|α
4 cos(απ2 ) n−Rα |t|−(R+1)

(
|t|α(

p
2 + 1

2) + |t|α(p+2)
)

·
n−1∑
`=1

(
n

`

)
(2e)`

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)
.

(171)

For the sum from (171) we distinguish two cases ` ≤ R + 1 and ` ≥ R + 2 and get
n−1∑
`=1

(
n

`

)
(2e)`

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1+(`−(R+1))+

νR+1,n,ξ

)

≤
R+1∑
`=1

(
n

`

)
(2e)`

((
c0 |t| n−

1
α

)`
+
(
c0 |t| n−

1
α

)R+1
νR+1,n,ξ

)

+
n−1∑

`=R+2

(
n

`

)
(2e)`

((
c0 |t| n−

1
α

)`
(1 + νR+1,n,ξ)

)
= s.

Now using the estimation for νR+1,n,ξ from Lemma 4.2 and repeating the same
procedure as in (166) for |t| ≤

(
cos

(
απ
2

)
/(16 e c0)

)1/(1−α)
n1/α, we continue

s ≤ C
R+1∑
`=1

n` (1− 1
α) |t|` + C nR+1

(
|t| n−

1
α

)R+1 (
n

1
α (1 + ξ)

)R+1−r

+ C
(
n

1
α (1 + ξ)

)R+1−r (
|t| n−

1
α

)R+2 n−1∑
`=R+2

(
n

`

) (
2 e c0 |t| n−

1
α

)`−(R+2)

≤ C
(
|t|+ |t|R+1

)
n1− 1

α + C |t|R+1 (1 + ξ)R+1−r nR+1− r
α

+ C e
|t|α

8 cos(απ2 ) |t|R+2 (1 + ξ)R+1−r nR+2− r+1
α

≤ C e
|t|α

8 cos(απ2 ) (
|t|+ |t|R+2

)
(1 + ξ)R+1−r nmax{R+1− r

α
,1− 1

α} (172)

Finally, combining inequalities (171) and (172) we obtain∣∣∣d(R+1)
3n (t)

∣∣∣ ≤ C e−
|t|α

8 cos(απ2 ) (1 + ξ)R+1−r n−
r−α
α

(
|t|

α(p+1)
2 −R + |t|α(p+2)+1

)
,

where α(p+ 1)/2−R > 0 according to the definition of p.
Now we consider the second case.

Case 2: q = 0, 1, ..., R. It follows from Lemma B.7 that in this case we have∣∣∣∣∣ dqdtq
(
ϕkα,1(t) · gα,1

(
t
(
n−`
n

) 1
α

)
· h

`

n,ξ

(
tn−

1
α

))∣∣∣∣∣
≤ C e−

n−`
2n |t|

α cos(απ2 ) (k `)q |t|αk−q
(
c0 |t| n−

1
α

)`
.

(173)

Now we repeat the same procedure as in the case q = R+1. Using the estimate (173)
we obtain∣∣∣d(q)

3n (t)
∣∣∣ ≤ n−1∑

`=1

(
n

`

) s(n−`)∑
k=p+1

|ck,n−`|
nk

C e−
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2n |t|

α cos(απ2 ) (k `)q |t|αk−q
(
c0 |t| n−

1
α

)`
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|t|α

2 cos(απ2 ) |t|−q
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`=1

(
n

`

) (
2 e c0 |t| n−

1
α

)` s(n−`)∑
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n
2

)k |t|αk .
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We already showed above that
s(n−`)∑
k=p+1

c∗k,n−`(
n
2

)k |t|αk ≤ C e
1
4 |t|

α cos(απ2 )n−Rα
(
|t|α(

p
2 + 1

2) + |t|α(p+2)
)
.

Using the same method as in (166) for |t| ≤
(
cos

(
απ
2

)
/(16 e c0)

)1/(1−α)
n1/α we

obtain
n−1∑
`=1

(
n

`

)(
2 e c0 |t| n−

1
α

)`
≤ C n−

1
α |t|

n−1∑
`=1

(
n

`

)(
2 e c0 |t| n−

1
α

)`−1

≤ C e
|t|α

8 cos(απ2 ) n1− 1
α |t|.

Using these two estimates we have∣∣∣d(q)
3n (t)

∣∣∣ ≤ C e−
|t|α

8 cos(απ2 ) n−
R+1−α

α |t|1−q
(
|t|α(

p
2 + 1

2) + |t|α(p+2)
)
,

where 1− q+α(p+ 1)/2 ≥ α(p+ 1)/2−R > 0 according to the definition of p. This
completes the proof of the lemma.

B.5 Proof of Lemma 4.16
Lemma 4.16. Define

d4n(t) =
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

gα,1 (t (n−`n ) 1
α

)
ϕkα,1(t)h

`

n,ξ

(
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1
α

)

−
m`,k∑
u=`

pu,`,k∑
v=0

Cu,`
(−`/n)v

v! n−u/α gα,1(t)ϕk+v
α,1 (t) (it)u

− w∗n,ξ(t),
where p = [2R/α], mk = 1 + [(R− αk/2) /(1− α)], m`,k = [R+ 1 + α(`− 1− k/2)]
and pu,`,k = max {0, [(R + 1− u)/α + `− 1− k/2]} and

Cu,` =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=`

`!
k1!...kR!

(
µ1,n,ξ

1!

)k1

...

(
µR,n,ξ
R!

)kR
,

w
∗
n,ξ(t) = n gα,1(t)

∫ +∞

−∞

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

 d (Hn,ξ −Hn,0
)

(x)

+ n gα,1(t) (it)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ.

Then for |t| ≤ ε n1/α and q = 0, 1, ..., R + 1 we have∣∣∣d(q)
4n (t)

∣∣∣ ≤ C e−
1
2 |t|

α cos(απ2 ) n− r−αα (1 + ξ)R+1−r |t|R+1−q
(
|t|θ + |t|R max{1, α

1−α}
)
,

where θ = min
u
{u + α(pu,1,0 + 1) − (R + 1)} ∈ (0, α], ε = min

{
1, c−1

0

}
with

c0 = (ν∗0 + 1)γ∗r 1/r, pseudomoments ν∗0 , γ∗r are defined in (80), r comes from Theo-
rem 3.26, R is defined by (99) and constant C does not depend on n and ξ.
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Proof. We start with some transformations of d4n(t). We denote the expression in
square brackets from the definition of d4n(t) by Ik,`(t). We will distinguish three
cases: (1) k = 0, ` = 1; (2) k = 0, ` = 2, ...,mk and (3) k ≥ 1, ` = 1, ...,mk. Taking
into account that c0,n = 1 and c1,n = 0 for all n ∈ N we obtain

d4n(t) =
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

Ik,`(t)− w∗n,ξ(t) =
(
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)
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m0∑
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(
n

`

)
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mk∑
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(
n

`

)
ck,n−`
nk

Ik,`(t). (174)

We need to estimate the q-order derivative of Ik,`(t) for q = 0, 1, ..., R+1. Before
differentiating we start with some transformations of Ik,`(t). We consider

χR,n,ξ(t) =
µ1,n,ξ(itn−1/α)

1! +
µ2,n,ξ(itn−1/α)2

2! + · · ·+
µR,n,ξ(itn−1/α)R

R! .

Taking into account that gα,1
(
t
(
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n

) 1
α

)
= e
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n
ϕα,1(t) we obtain:
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(
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) 1
α

)
ϕkα,1(t)
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`

n,ξ

(
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)
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︸ ︷︷ ︸
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+
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m`,k∑
u=`

Cu,` n
−u/α (it)u
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︸ ︷︷ ︸
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]
= S1(t) + S2(t) + S3(t).

Note that the expression in the square brackets in the last formula is equal to 0.
Applying formula an − bn = (a − b)∑n−1

j=0 a
j bn−1−j and taking into account that
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1
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)
=
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∫+∞
−∞ xkdHn,ξ(x) and µ0,n,ξ = 0 for all

n ∈ N, ξ ≥ 0 (see Lemma 4.1 (i)), we rewrite S1(t) as follows:

S1(t) = gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1(t)

(
hn,ξ

(
tn−

1
α

)
− χR,n,ξ(t)

) `−1∑
j=0

h
j

n,ξ

(
tn−

1
α

)
χ`−1−j
R,n,ξ (t)

=
∫ +∞

−∞

eixtn− 1
α −

R∑
w=0

(ixtn− 1
α )w

w!

 dHn,ξ(x)·

·
`−1∑
j=0

gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1(t)h

j

n,ξ

(
tn−

1
α

)
χ`−1−j
R,n,ξ (t).
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Now let us differentiate S1(t) and estimate the q-order derivative. We distinguish
two cases: q = R + 1 and q = 0, 1, ..., R.
Case 1: q = R + 1. For t 6= 0 we can apply formula (151) and get∣∣∣∣∣ dR+1

dtR+1 S1(t)
∣∣∣∣∣ ≤ ∑

n1,n2,n3∈N0
n1+n2+n3=R+1

(R + 1)!
n1!n2!n3!

∣∣∣∣∣ dn1

dtn1

∫ +∞

−∞

(
eixtn

− 1
α −

R∑
w=0

(ixt)w
nw/αw!

)
dHn,ξ(x)

∣∣∣∣∣
·
`−1∑
j=0

∣∣∣∣∣ dn2

dtn2

(
gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1(t)h

j

n,ξ

(
tn−

1
α

))∣∣∣∣∣
∣∣∣∣∣ dn3

dtn3
χ`−1−j
R,n,ξ (t)

∣∣∣∣∣ = s.

We consider the cases n1 = R + 1, n2 = n3 = 0 and n2 = R + 1, n1 = n3 = 0
separately. Taking into account that k, ` are finite and using Lemmata A.3, B.7, B.9
we continue

s ≤ C
∑

n1+n2+n3=R+1
n1,n2 6=R+1

∫ +∞

−∞

(
|x|n−1/α

)n1

∣∣∣∣∣∣eixtn−
1
α −

R−n1∑
w=0

(ixt)w
nw/αw!

∣∣∣∣∣∣︸ ︷︷ ︸
≤C |txn−1/α|R+1−n1

∣∣∣dHn,ξ(x)
∣∣∣

·
`−1∑
j=0

e−
n−`
2n |t|

α cos(απ2 ) |t|αk−n2
(
c0 |t| n−

1
α

)j
n−n3/α

(
|t|n−

1
α

)`−1−j−n3

+ C
∫ +∞

−∞

(
|x|n−

1
α

)R+1 ∣∣∣dHn,ξ(x)
∣∣∣ `−1∑
j=0

e−
n−`
2n |t|

α cos(απ2 ) |t|αk
(
c0 |t| n−

1
α

)j

·
(
|t|n−

1
α

)`−1−j
+ C

`−1∑
j=0

(
|t|n−

1
α

)`−1−j
e−

n−`
2n |t|

α cos(απ2 ) |t|αk−(R+1)

·


(
c0 |t| n−

1
α

)j ∫ +∞

−∞

∣∣∣∣∣eixtn− 1
α −

R∑
w=0

(ixt)w
nw/αw!

∣∣∣∣∣︸ ︷︷ ︸
≤C |txn−1/α|R+1

∣∣∣dHn,ξ(x)
∣∣∣+ (

n−
1
α |t|

)min{1,j−1}

·
(
c0 |t| n−

1
α

)R+1+(j−(R+1))+

νR+1,n,ξ

∫ +∞

−∞

∣∣∣∣∣eixtn− 1
α −

R∑
w=0

(ixt)w
nw/αw!

∣∣∣∣∣︸ ︷︷ ︸
≤C |txn−1/α|R

∣∣∣dHn,ξ(x)
∣∣∣
 ,

where c0 = (ν∗0 + 1)γ∗r 1/r. Taking into account that c0 |t| n−
1
α ≤ 1 and |t| n− 1

α ≤ 1,
and using Lemma 4.2 for the estimation of νk,n,ξ with k = R,R + 1 we obtain:∣∣∣∣∣ dR+1

dtR+1 S1(t)
∣∣∣∣∣ ≤ C e−

n−`
2n |t|

α cos(απ2 ) (|t|n− 1
α

)`−1
|t|αk n−R+1

α νR+1,n,ξ

+ |t|αk−1 n−
R
α νR,n,ξ νR+1,n,ξ

`−1∑
j=0

(
c0 |t| n−

1
α

)R+1+(j−(R+1))+−j (
n−

1
α |t|

)min{1,j−1}


≤ C e−
n−`
2n |t|

α cos(απ2 ) n−
R+1
α νR+1,n,ξ |t|αk

(
|t|n−

1
α

)`−1

≤ C e−
n−`
2n |t|

α cos(απ2 ) n− r
α (1 + ξ)R+1−r |t|αk

(
|t|n−

1
α

)`−1
.
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Case 2: q = 0, 1, ..., R. Acting in the same way as in Case 1 we obtain for |t| ≤ εn1/α

(ε is defined in the statement of the lemma) and t 6= 0:∣∣∣∣∣ dqdtq S1(t)
∣∣∣∣∣ ≤ C e−

n−`
2n |t|

α cos(απ2 ) n− r
α (1 + ξ)R+1−r |t|αk+R+1−q

(
|t|n−

1
α

)`−1
.

Combining Case 1 and Case 2 we get for t 6= 0 and q = 0, 1, ..., R + 1:∣∣∣∣∣ dqdtq S1(t)
∣∣∣∣∣ ≤ C e−

n−`
2n |t|

α cos(απ2 ) n− r
α (1 + ξ)R+1−r |t|αk+R+1−q

(
|t|n−

1
α

)`−1
. (175)

Similarly to d1n(t) and d2n(t) (i.e. using the definition) we can show that S1(t) is
(R + 1)-times differentiable at point t = 0 and its derivatives are equal to 0. Thus,
inequality (175) holds for all |t| ≤ ε n1/α.

Now we consider S2(t). From (147) in Lemma A.5 it follows that

S2(t) = gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1(t)

`R∑
u=m`,k+1

Cu,` n
−u/α (it)u

Note that from the fact that |µk,n,ξ| ≤ νk,n,ξ and from Lemma 4.2 it follows that
|Cu,`| ≤ C, where C is some constant not depending on n and ξ. Let us dif-
ferentiate S2(t) and estimate the q-order derivative. For |t| ≤ εn1/α, t 6= 0 we apply
formulas (151), (160) and after some transformations we get∣∣∣∣∣ dqdtq S2(t)

∣∣∣∣∣ ≤
`R∑

u=m`,k+1

∣∣∣Cu,`

∣∣∣ n−u/α q∑
j=0

(
q

j

) ∣∣∣∣∣ djdtj
(
gα,1

(
t
(
n−`
n

) 1
α

)
ϕkα,1(t)

)∣∣∣∣∣
∣∣∣∣∣ dq−jdtq−j

tu
∣∣∣∣∣

≤ C e−
n−`
2n |t|

α cos(απ2 ) |t|αk+m`,k+1−q n−
m`,k+1

α . (176)

Now let us differentiate S3(t). Note that pu,`,k + 1 > R+1−u
α

+ `− 1− k
2 . Again,

for |t| ≤ εn1/α, t 6= 0 we apply formulas (151), (160) and Lemma B.4, and get∣∣∣∣∣ dqdtq S3(t)
∣∣∣∣∣ ≤

m`,k∑
u=`

∣∣∣Cu,`

∣∣∣ n−u/α q∑
j=0

(
q

j

) ∣∣∣∣∣ djdtj
(
gα,1(t)ϕkα,1(t)

)∣∣∣∣∣
·
∣∣∣∣∣ dq−jdtq−j

(
(it)u

(
e−

`
n
ϕα,1(t) −

pu,`,k∑
v=0

(−`/n)v
v! ϕvα,1(t)

))∣∣∣∣∣
≤ C e−

1
2 |t|

α cos(απ2 ) |t|αk−q
m`,k∑
u=`

(
|t|n−1/α

)u+α(pu,`,k+1)
(177)

≤ C e−
1
2 |t|

α cos(απ2 ) |t|αk−q
(
|t|n−1/α

)R+1+α(`−1− k2 )
. (178)

Using the definition of the derivative we can show that S(i)
2 (0) = 0 and S(i)

3 (0) = 0
for i = 1, ..., R + 1. Thus, estimations (176), (178) hold true for all |t| ≤ ε n1/α.

Since ` ≤ mp and |t| ≤ n1/α, we have e−
n−`
2n |t|

α cos(απ2 ) ≤ C e−
1
2 |t|

α cos(απ2 ). Note also
that m`,k +1 > R+1+α(`−1−k/2). Using these facts and combining (175), (176)
and (178) we obtain for q = 0, 1, ..., R + 1 and |t| ≤ εn1/α:∣∣∣∣∣ dqdtq Ik,`(t)

∣∣∣∣∣ ≤
∣∣∣∣∣ dqdtq S1(t)

∣∣∣∣∣+
∣∣∣∣∣ dqdtq S2(t)

∣∣∣∣∣+
∣∣∣∣∣ dqdtq S3(t)

∣∣∣∣∣ ≤ C e−
1
2 |t|

α cos(απ2 ) |t|αk−q ·
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·
(
n−

r
α (1 + ξ)R+1−r |t|R+1

(
|t|n−

1
α

)`−1
+
(
|t|n−

1
α

)m`,k+1

+
(
|t|n−

1
α

)R+1+α(`−1− k2 )
)
≤ C e−

1
2 |t|

α cos(απ2 ) |t|αk−q

·
(
n−

r
α (1 + ξ)R+1−r |t|R+1

(
|t|n−

1
α

)`−1
+
(
|t|n−

1
α

)R+1+α(`−1− k2 )
)
. (179)

Now we come back to the estimation of d(q)
4n (t). From (174) it follows that∣∣∣∣∣ dqdtq d4n(t)

∣∣∣∣∣ ≤
∣∣∣∣∣ dqdtq

(
n I0,1(t)− w∗n,ξ(t)

)∣∣∣∣∣+
m0∑
`=2

(
n

`

) ∣∣∣∣∣ dqdtq I0,`(t)
∣∣∣∣∣

+
p∑

k=2

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

∣∣∣∣∣ dqdtq Ik,`(t)
∣∣∣∣∣ . (180)

Using estimation (179), the facts that |t|n−1/α ≤ 1,
(
n
`

)
≤ n` and the definitions

of r, R,m0 we obtain
m0∑
`=2

(
n

`

) ∣∣∣∣∣ dqdtq I0,`(t)
∣∣∣∣∣ ≤ C e−

1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r
α (1 + ξ)R+1−r

·
m0∑
`=2

n`
((
|t|n−

1
α

)`−1
+
(
|t|n−

1
α

)α(`−1)
)

≤ C e−
1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r
α (1 + ξ)R+1−r

m0∑
`=2

n`
(
|t|n−

1
α

)α(`−1)

≤ C e−
1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r−α
α (1 + ξ)R+1−r

(
|t|α + |t|

αR
1−α

)
.

Using estimations (165), (179), the definition of mk and the fact that |t|n−1/α ≤ 1
we show in the same way as above that

p∑
k=2

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

∣∣∣∣∣ dqdtq Ik,`(t)
∣∣∣∣∣ ≤ C e−

1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r
α (1 + ξ)R+1−r

·
p∑

k=2

mk∑
`=1

n`−
k
2 |t|αk

((
|t|n−

1
α

)`−1
+
(
|t|n−

1
α

)α(`−1− k2 )
)

≤ C e−
1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r
α (1 + ξ)R+1−r

p∑
k=2

mk∑
`=1

n`−
k
2 |t|αk

(
|t|n−

1
α

)α(`−1− k2 )

≤ C e−
1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r−α
α (1 + ξ)R+1−r

(
|t|α + |t|R + |t|

αR
1−α

)
.

Now, it only remains to estimate the first term from (180). In this case we transform
I0,1(t) a little bit differently. Note that if k = 0, ` = 1, then m`,k = m1,0 = R + 1,
CR+1,1 = 0 and for u = 1, ..., R we have

Cu,` = Cu,1 =
∑

k1+2k2+...+RkR=u
k1+k2+...+kR=1

1
k1!...kR!

(
µ1,n,ξ

1!

)k1

...

(
µR,n,ξ
R!

)kR
=
µu,n,ξ
u! ,



142 APPENDIX B. Proofs of Lemmata 4.13 – 4.18

which allows the following representation

χR,n,ξ(t) =
m1,0∑
u=1

Cu,1 n
−u/α (it)u.

Using this and the fact that gα,1
(
t
(
n−1
n

) 1
α

)
= e

n−1
n
ϕα,1(t) = gα,1(t) e− 1

n
ϕα,1(t) we

obtain

I0,1(t) = gα,1

(
t
(
n−`
n

) 1
α

)
hn,ξ

(
tn−

1
α

)
−

m1,0∑
u=1

pu,1,0∑
v=0

Cu,1
(−1/n)v

v! n−u/αgα,1(t)ϕvα,1(t)(it)u

= gα,1(t)
(
e−

1
n
ϕα,1(t) − 1

) (
hn,ξ

(
tn−

1
α

)
− χR,n,ξ(t)

)
︸ ︷︷ ︸

=:V1(t)

+ gα,1(t)
(
hn,ξ

(
tn−

1
α

)
− χR,n,ξ(t)

)
︸ ︷︷ ︸

=:V2(t)

+ gα,1(t)
m1,0∑
u=1

Cu,1 n
−u/α (it)u

(
e−

1
n
ϕα,1(t) −

pu,1,0∑
v=0

(−1/n)v
v! ϕvα,1(t)

)
︸ ︷︷ ︸

=:V3(t)

= V1(t) + V2(t) + V3(t).

Note that V3(t) is a particular case (k = 0, ` = 1) of S3(t) considered above. There-
fore, using (177) and taking into account that pu,1,0 + 1 > R+1−u

α
and |t|n−1/α ≤ 1

we obtain for q = 0, 1, ..., R + 1:∣∣∣∣∣ dqdtq V3(t)
∣∣∣∣∣ ≤ C e−

1
2 |t|

α cos(απ2 ) |t|−q
m1,0∑
u=1

(
|t|n−1/α

)u+α(pu,1,0+1)

≤ C e−
1
2 |t|

α cos(απ2 ) |t|−q
(
|t|n−1/α

)R+1+θ
,

where θ = min
u
{u+α(pu,1,0 + 1)− (R+ 1)} ∈ (0, α]. Acting in the same way as with

S1(t) above we get for q = 0, 1, ..., R + 1:∣∣∣∣∣ dqdtq V1(t)
∣∣∣∣∣ ≤ C e−

1
2 |t|

α cos(απ2 ) n−
r+α
α (1 + ξ)R+1−r |t|α+R+1−q.

Let us consider V2(t). Taking into account that hn,ξ
(
tn−

1
α

)
=
∫+∞
−∞ eixtn

− 1
α dHn,ξ(x),

µk,n,ξ =
∫+∞
−∞ xkdHn,ξ(x) and µ0,n,ξ = 0 (see Lemma 4.1 (i)), we obtain

V2(t) = gα,1(t)
(
hn,ξ

(
tn−

1
α

)
− χR,n,ξ(t)

)
= gα,1(t)

∫ +∞

−∞

eixtn− 1
α −

R∑
w=0

(ixtn− 1
α )w

w!

 dHn,ξ(x)

= gα,1(t)
∫ +∞

−∞

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

 dHn,ξ(x) + gα,1(t)

(
itn−

1
α

)R+1

(R + 1)! µR+1,n,ξ.
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Using the last equality and the definition of w∗n,ξ(t) we get

nV2(t)− w∗n,ξ(t) = n gα,1(t)
∫ +∞

−∞

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

 dHn,0(x).

Using Lemmata B.2, A.3 and Lemma 4.2 (ii) for estimation νR+2,n,0 we obtain∣∣∣∣∣ dqdtq
(
nV2(t)− w∗n,ξ(t)

)∣∣∣∣∣ ≤ C n e−
1
2 |t|

α cos(απ2 ) |t|R+2−q n−
R+2
α νR+2,n,0

≤ C e−
1
2 |t|

α cos(απ2 ) n−
r−α
α |t|R+2−q.

Now, using the the last estimate and the estimates for
∣∣∣ dq
dtq
V1(t)

∣∣∣ and ∣∣∣ dq
dtq
V3(t)

∣∣∣ found
above we obtain for q = 0, 1, ..., R + 1:∣∣∣∣∣ dqdtq

(
n I0,1(t)− w∗n,ξ(t)

)∣∣∣∣∣ ≤ n

(∣∣∣∣∣ dqdtq V1(t)
∣∣∣∣∣+

∣∣∣∣∣ dqdtq V3(t)
∣∣∣∣∣
)

+
∣∣∣∣∣ dqdtq

(
nV2(t)− w∗n,ξ(t)

)∣∣∣∣∣
≤ C e−

1
2 |t|

α cos(απ2 ) n− r−αα (1 + ξ)R+1−r |t|R+1−q
(
|t|θ + |t|

)
,

where θ = min
u
{u+ α(pu,1,0 + 1)− (R + 1)} ∈ (0, α].

Now we summarize everything for d4n(t) and get∣∣∣∣∣ dqdtq d4n(t)
∣∣∣∣∣ ≤ C e−

1
2 |t|

α cos(απ2 ) n−
r−α
α (1 + ξ)R+1−r |t|R+1−q

(
|t|θ + |t|R max{1, α

1−α}
)
.

This completes the proof of the lemma.

B.6 Proof of Lemma 4.17

Lemma 4.17. Define b1n(t) =
n−1∑
`=0

g̃α
(
tn−1/α

)
f
n−1−`
n,ξ

(
tn−1/α

)
h
`

n,ξ

(
tn−1/α

)
. Then for

|t| > εn we have

∣∣∣b(q)
1n (t)

∣∣∣ ≤

C e−

|t|α
4n cos(απ2 )

(
ν∗0

n−1 +Q
n−1
n,ξ

)
nq (1− 1

α
), q = 0, ..., R;

C e−
|t|α
4n cos(απ2 )

(
ν∗0

n−1 +Q
n−1
n,ξ

)
nR+1− r

α (1 + ξ)R+1−r, q = R + 1,

where Qn,ξ = sup
|t|>ε̃

∣∣∣fn,ξ(t)∣∣∣, r comes from Theorem 3.26, εn = ε̃n1/α with ε̃ defined

in (123), and constants C do not depend on n and ξ.

Proof. For |t| > εn the functions g̃α, f
n−1−`
n,ξ and h

`

n,ξ are infinitely differentiable and
we can apply formula (151) from Lemma A.10:

dq

dtq

(
g̃α
(
tn−

1
α

)
· f

n−1−`
n,ξ

(
tn−

1
α

)
· h

`

n,ξ

(
tn−

1
α

))
=

∑
n1,n2,n3∈N0
n1+n2+n3=q

q!
n1!n2!n3!

· d
n1

dtn1

(
g̃α
(
tn−

1
α

)) dn2

dtn2

(
f
n−1−`
n,ξ

(
tn−

1
α

)) dn3

dtn3

(
h
`

n,ξ

(
tn−

1
α

))
.
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Using estimations from Lemmata B.3, B.5 and B.8 we get for ` = 1, ..., n− 2:∣∣∣∣∣ dqdtq
(
g̃α
(
tn−

1
α

)
f
n−1−`
n,ξ

(
tn−

1
α

)
h
`

n,ξ

(
tn−

1
α

))∣∣∣∣∣
≤

∑
n1,n2,n3∈N0
n1+n2+n3=q

q!
n1!n2!n3!

(
C e−

|t|α
4n cos(απ2 ) |t|−n1

) ((
` n−

1
α

)n3
νn3,n,ξ ν

`−1
0,n,ξ

)

·
(
C (n− 1− `)n2 n−n2/α max{1, νn2,n,ξ} Q

(n−1−`−n2)+

n,ξ

)
= s.

Distinguishing the cases n2 = q and n3 = q, using Lemma 4.2 for estimation of νni,n,ξ
and keeping Remark B.1 in mind we obtain

s ≤ C e−
|t|α
4n cos(απ2 ) ν`−1

0,n,ξ Q
n−1−`
n,ξ

∑
n1,n2,n3∈N0

n1+n2+n3=R+1

|t|−n1
((
` n−

1
α

)n3
νn3,n,ξ

)

·
(
C (n− 1− `)n2 n−n2/α max{1, νn2,n,ξ}

)
≤ C e−

|t|α
4n cos(απ2 ) ν∗0

`−1 Q
n−1−`
n,ξ nq (1− 1

α
) max{1, νq,n,ξ}.

In the same way we obtain the estimations for ` = 0 and ` = n− 1:∣∣∣∣∣ dqdtq
(
g̃α
(
tn−

1
α

)
f
n−1
n,ξ

(
tn−

1
α

))∣∣∣∣∣ ≤ C e−
|t|α
4n cos(απ2 ) Q

n−1
n,ξ nq (1− 1

α
) max{1, νq,n,ξ},

and ∣∣∣∣∣ dqdtq
(
g̃α
(
tn−

1
α

)
h
n−1
n,ξ

(
tn−

1
α

))∣∣∣∣∣ ≤ C e−
|t|α
4n cos(απ2 ) ν∗0

n−2 nq (1− 1
α

) νq,n,ξ.

Combining everything and using inequality |a|u |b|v ≤ |a|u+v + |b|u+v for a, b ∈ R we
get

∣∣∣b(q)
1n (t)

∣∣∣ ≤ C e−
|t|α
4n cos(απ2 ) nq (1− 1

α
) max{1, νq,n,ξ} ν∗0

−1
n−1∑
`=0

ν∗0
` Q

n−1−`
n,ξ

≤ C e−
|t|α
4n cos(απ2 ) nq (1− 1

α
) max{1, νq,n,ξ}

(
ν∗0

n−1 +Q
n−1
n,ξ

)
.

Now, distinguishing the cases q = 0, 1, ..., R and q = R+ 1 and applying Lemma 4.2
for the estimation of νq,n,ξ we obtain

∣∣∣b(q)
1n (t)

∣∣∣ ≤

C e−

|t|α
4n cos(απ2 )

(
ν∗0

n−1 +Q
n−1
n,ξ

)
nq (1− 1

α
), q = 0, ..., R;

C e−
|t|α
4n cos(απ2 )

(
ν∗0

n−1 +Q
n−1
n,ξ

)
nR+1− r

α (1 + ξ)R+1−r, q = R + 1.

This completes the proof of the lemma.
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B.7 Proof of Lemma 4.18
Lemma 4.18. Define b2n(t) = gα,1(t) + wr,n,ξ(t). Then for |t| > εn we have∣∣∣b(q)

2n (t)
∣∣∣ ≤ C e−

1
4 |t|

α cos(απ2 )n− r−αα (1 + ξ)R+1−r, q = 0, 1, ..., R + 1,

where r comes from Theorem 3.26, εn = ε̃n1/α with ε̃ defined in (123) and constant C
does not depend on n and ξ.

Proof. From (121) we know that

wr,n,ξ(t) =
ρ∑

k=2

ck,n
nk

gα,1(t)ϕkα,1(t) + w
∗
n,ξ(t)

+
p∑

k=0

mk∑
`=1

(
n

`

)
ck,n−`
nk

m`,k∑
u=`

pu,`,k∑
v=0

gα,1(t)ϕk+v
α,1 (t) (it)u (−`/n)v

v! n−u/α Cu,`,

where ck,n, Cu,`, ρ, p, mk, m`,k and pu,`,k are defined after formula (102), and

w∗n,ξ(t) =
∫ +∞

−∞
eitxdW

∗
n,ξ(x) = n gα,1(t) (it)R+1

(R + 1)! n
−R+1

α µR+1,n,ξ

+ n gα,1(t)
∫ +∞

−∞

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

 d (Hn,ξ −Hn,0
)

(x).

Using this representation of wr,n,ξ we obtain∣∣∣b(q)
2n (t)

∣∣∣ ≤ ∣∣∣g(q)
α,1(t)

∣∣∣+ ρ∑
k=2

|ck,n|
nk

∣∣∣∣∣ dqdtq
(
gα,1(t)ϕkα,1(t)

)∣∣∣∣∣+
∣∣∣∣∣ dqdtq w∗n,ξ(t)

∣∣∣∣∣
+

p∑
k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

∣∣∣∣∣ dqdtq
(
gα,1(t)ϕk+v

α,1 (t) tu
)∣∣∣∣∣ (`/n)v

v! n−u/α |Cu,`|.

For dq

dtq

(
gα,1(t)ϕk+v

α,1 (t) tu
)
we can apply formula (151) from Lemma A.10, since the

functions gα,1, ϕk+v
α,1 and tu are infinitely differentiable for |t| > εn:

dq

dtq

(
gα,1(t)ϕk+v

α,1 (t) tu
)

=
q∑

j=(q−u)+

(
q

j

)
dj

dtj

(
gα,1(t)ϕk+v

α,1 (t)
) dq−j
dtq−j

tu.

Plugging the last equality into the estimate for
∣∣∣b(q)

2n (t)
∣∣∣, and applying Lemma B.2

and estimate (160) from Lemma 4.13 we continue∣∣∣b(q)
2n (t)

∣∣∣− ∣∣∣w∗(q)n,ξ(t)∣∣∣ ≤ C e−
1
2 |t|

α cos(απ2 ) |t|−q +
ρ∑

k=2

|ck,n|
nk

(
C kq e−

1
2 |t|

α cos(απ2 ) |t|αk−q
)

+
p∑

k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

(`/n)v

v! n−u/α |Cu,`|
q∑

j=(q−u)+

(
q

j

)
C |t|u−(q−j)

·
(
C (k + v)j e−

1
2 |t|

α cos(απ2 ) |t|α(k+v)−j
)
≤ C e−

1
2 |t|

α cos(απ2 )
(
|t|−q +

ρ∑
k=2

|ck,n|
nk
|t|αk−q

+
p∑

k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

(`/n)v

v! n−u/α |Cu,`| |t|α(k+v)+u−q
)

= s.
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Now we split e−
1
2 |t|

α cos(απ2 ) into two equal parts as a product. Multiplying and
dividing each term in the brackets by |t|R+1 and using Lemma A.13 we continue

s ≤ C e−
1
4 |t|

α cos(απ2 )|t|−(R+1)
(
C(q) +

ρ∑
k=2

|ck,n|
nk

C(k, q)

+
p∑

k=0

mk∑
`=1

(
n

`

)
|ck,n−`|
nk

m`,k∑
u=`

pu,`,k∑
v=0

(`/n)v

v! n−u/α |Cu,`|C(k, v, u, q)
)
.

Recall that for ck,n−` with k = 0, ..., p and ` = 1, ..., n − 1, n ∈ N we have the
following estimate (see (165)):

|ck,n−`|
nk

≤
c∗k,n−`
nk

=
∑

k0+k2+···+ks=n−`
2k2+···+sks=k

(n− `)!
k0!k2! · · · ks!nk

|A2|k2 · · · |As|ks ≤
C

nk/2
.

In the same way we obtain that |ck,n|/nk ≤ c∗k,n/n
k ≤ C n−k/2 for k = 2, ..., ρ and

n ∈ N. Using the fact that |t| > εn1/α, definition (104) of Cu,` together with
Lemmata 3.17 and 4.2 (i) we obtain∣∣∣b(q)

2n (t)
∣∣∣− ∣∣∣∣∣ dqdtqw∗n,ξ(t)

∣∣∣∣∣ ≤ C e−
1
4 |t|

α cos(απ2 )n−
R+1
α

(
1 +

p∑
k=0

mk∑
`=1

n` n−k/2
m`,k∑
u=`

n−u/α
)
.

Let us consider the sum in the brackets from the expression above. Taking into
account that α ∈ (0, 1) we obtain

p∑
k=0

mk∑
`=1

n` n−k/2
m`,k∑
u=`

n−u/α ≤ C
p∑

k=0

mk∑
`=1

n` n−k/2 n−`/α = C
p∑

k=0

mk∑
`=1

n` (1− 1
α) n−k/2 < C.

Using the the last estimate we get∣∣∣b(q)
2n (t)

∣∣∣− ∣∣∣∣∣ dqdtqw∗n,ξ(t)
∣∣∣∣∣ ≤ C e−

1
4 |t|

α cos(απ2 )n−
R+1
α .

Let us estimate
∣∣∣ dq
dtq
w∗n,ξ(t)

∣∣∣. Recall that Mn,ξ(x) = Hn,ξ(x) − Hn,0(x). Using this
fact, Lemma B.2 and inequalities (97), (100) we obtain for q = 0, 1, ..., R + 1:∣∣∣∣∣ dqdtqw∗n,ξ(t)

∣∣∣∣∣ ≤ n−
R+1−α

α
|µR+1,n,ξ|
(R + 1)!

q∑
j=0

(
q

j

) ∣∣∣∣∣ djdtj gα,1(t)
∣∣∣∣∣
∣∣∣∣∣ dq−jdtq−j

tR+1
∣∣∣∣∣

+ n
q∑
j=0

(
q

j

) ∣∣∣∣∣ dq−jdtq−j
gα,1(t)

∣∣∣∣∣
∫ +∞

−∞

∣∣∣∣∣∣ d
j

dtj

eixtn− 1
α −

R+1∑
w=0

(ixtn− 1
α )w

w!

∣∣∣∣∣∣
∣∣∣dMn,ξ(x)

∣∣∣
≤ C e−

1
2 |t|

α cos(απ2 ) |t|R+1−q n−
R+1−α

α

(
νR+1,n,ξ + νR+1

(
Mn,ξ

))
≤ C e−

1
2 |t|

α cos(απ2 ) |t|R+1−q n−
r−α
α (1 + ξ)R+1−r

≤ C e−
1
4 |t|

α cos(απ2 ) n−
r−α
α (1 + ξ)R+1−r.

Combining the last two estimates above we get∣∣∣b(q)
2n (t)

∣∣∣ ≤ C e−
1
4 |t|

α cos(απ2 ) n−
r−α
α (1 + ξ)R+1−r,

which completes the proof of the lemma.
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